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Foreword

This handbook is intended to be a guide for researchers in universities and industries and for design-
ers who wish to use artificial materials for electronic devices in the whole frequency spectrum, from
megahertz to optical frequencies.

Artificial materials, often called metamaterials, are artificial electromagnetic media whose physical
properties are engineered by assembling microscopic and nanoscopic structures in unusual com-
binations. The study of these materials breaks the traditional frontiers and brings together many
disciplines such as physics and microfabrication; electromagnetic theory and computational meth-
ods; optics and microwaves; and nanotechnology and nanochemistry. Their possible applications
range from electronics and telecommunications to sensing, medical instrumentation, and data stor-
age. Therefore, research in the field of artificial materials requires a multifaceted understanding of the
fundamentals of science as well as the scientific and technological needs of potential applications.

The topics contained in this handbook cover the major strands: theory, modeling and design, appli-
cation in practical devices, fabrication, characterization, and measurement. The strategic objectives
of developing new artificial materials require close cooperation and cross-fertilization of the research
in each subarea.

We, thus, felt the need to organize in two volumes all possible aspects of the results of various years
of research in this exciting field. A few books on metamaterials have been published in these years
but we believe that this handbook has a different aim. Topics are presented here in a concise manner,
with many references to details published elsewhere, covering most of the areas where artificial mate-
rials have been developed to provide a reference guide in this difficult and broad multidisciplinary
field. Most of the authors included in this handbook were associated with the European Network of
Excellence “Metamorphose” (METAMaterials Organised for Radio, millimeter wave, and PHOtonic
Superlattice Engineering), and this work is a result of a coordinated integration of the various experts
in this network. Metamorphose gave us a rare opportunity to collect a large variety of disciplines in
two volumes. We would like to thank the European Project Officer Anne de Baas, who, with profes-
sionalism and dedication, stimulated our work while also providing valid suggestions. Other selected,
internationally renowned experts in the field of metamaterials have also contributed as authors.

The Editor
Filippo Capolino, University of California Irvine (previously with the University of Siena)

Advisory Board
Sergei A. Tretyakov, Helsinky University of Technology

Stefan Maier, Imperial College
Ekmel Ozbay, Bilkent University

Ari Sihvola, Helsinky University of Technology
Yiannis Vardaxoglou, Loughborough University

xi

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page xiii -- #

Preface

I am very thankful to all the authors who have contributed these informative chapters and to my
Metamorphose∗ friends and colleagues for the fun and stimulating time we spent together as profes-
sionals. I am particularly grateful to the advisory board whose work, encouragement, and advice have
been fundamental. When I proposed the idea of writing this handbook, a book that summarizes the
various topics divided into many related chapters, also indicating more detailed sources to the inter-
ested reader to my Metamorphose friends and colleagues, they were all enthusiastic to contribute one
or more chapters each. Then I invited some of the best experts in the field of metamaterials outside
Metamorphose. I have invested a large amount of time and energy in pooling together the people
and information collected in this project.

Since the aim of the two-volume handbook is to provide a reference guide that summarizes the
state-of-the-art in the field of electromagnetic artificial materials, often called metamaterials, I have
waited for the field to become mature, to a certain degree, before finalizing the project. In this hand-
book, the term “metamaterials” is used in a broad sense. With this term, we denote general composite
materials made of specific micro- or nanoscatterers, whose ensemble exhibits the peculiar electro-
magnetic properties shown here. Some topics related to photonic or electromagnetic crystals are also
summarized here because of their use in modern electrical engineering, and because their electro-
magnetic performance is due to the collective interaction of the micro- or nanoconstituents via the
hosting element. According to many researchers, it is required that periodic metamaterials have a
periodicity length much smaller than the operating wavelength. However, the boundary between
metamaterials and other artificial materials based on the ratio of the size of the constitutive cells
and the operating wavelength is not clearly defined, especially for the state-of-the-art metamaterials
at optical frequencies where fabrication technology and power losses still represent the major chal-
lenge. Researchers have suggested different definitions for the term “metamaterials”; an example of
a broad vision can be found in Refs. [,]. However, the aim of this handbook is not to propagate a
specific definition but to provide a reference guide for researchers who are interested in the particular
properties of composite artificial materials.

I hope that the efforts that have gone into writing this handbook will be useful for many others.

Filippo Capolino
University of California, Irvine, California

MATLAB R© is a registered trademark of The MathWorks, Inc. For product information, please
contact:

The MathWorks, Inc.
 Apple Hill Drive
Natick, MA - USA
Tel:   
Fax: --
E-mail: info@mathworks.com
Web: www.mathworks.com

∗Metamorphose is the FP Network of Excellence of metamaterials, “METAMaterials Organised for Radio, millimeter
wave and PHOtonic Superlattice Engineering”, funded by the European Union, FP, contract number FP/NMPCT-
-.
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Historical Notes on Metamaterials

Constantin R. Simovski
Helsinki University of Technology

Sergei A. Tretyakov
Helsinki University of Technology

. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
. Prehistory of Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . -
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. Modern History of Metamaterials . . . . . . . . . . . . . . . . . . . . -
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. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

1.1 Introduction

The modern history of “electromagnetic metamaterials,” often called simply as “metamaterials”
(MTM) can probably be counted from the seminal paper [] where an ambitious goal to create a
so-called perfect lens was put forward by J. B. Pendry. For such a “lens” one needs to design an arti-
ficial medium which would possess specific properties, not observed in natural materials. Namely,
the perfect lens material should be a medium with both negative permittivity and permeability in
the same frequency range. In fact, the light focusing in the planar lens studied in [] was previously
considered by V. G. Veselago []. This review paper was devoted to phenomena that would occur in
strange “left-handed” media (media with ε <  and μ < ). Such media did not exist at that time but
could be imagined as possible “composites of the future.” Notice, that V. G. Veselago in the period
before the paper [] had believed that such media could be found among homogenous magnetic
semiconductors fabricated chemically. However, no magnetic semiconductors with doubly negative
material parameters had been obtained and this failure was reported in []. In [,] it was empha-
sized that such media should be strongly dispersive (resonant) composites. In [] the inverse effect
in the Cerenkov radiation of a charge moving through a left-handed medium, the inversion of the
Doppler shift in it and the “negative refraction” of optical rays at its interface were reviewed. It was
pointed out that a slab under the condition ε = μ = − will focus a diverging light beam. Under the
condition d = D where d is the thickness of the left-handed slab and D is the distance from the slab
interface to the source, the light will be focused at the point distanced by D from the back interface
without aberrations and reflections. However, V. G. Veselago missed in this work the great opportu-
nity indicated by J. B. Pendry: the perfectness of this pseudo-lens,∗ i.e., the infinitesimal size of the
focal spot corresponding to a point source.

∗ It is not a lens in its optical meaning since it does not focus a parallel light beam. It focuses only diverging beams. V. G.
Veselago suggested the term pseudo-lens in [].

1-1

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

1-2 Theory and Phenomena of Metamaterials

The perfect lens described in [] is not attainable as any other perfectness []. But it is an exciting
task to approach to this perfect image, i.e., to obtain a subwavelength image in the far zone of a source.
It has been known since works of Lord Rayleigh that the diffraction imposes a limit to the focal spot
size. This limit is the main restriction in what concerns the spatial resolution of two closely positioned
point sources or the imaging of small-scale details in complex sources []. The best possible resolution
and the smallest size of the focal spot offered by lenses∗ is approximately equal to .λ. This result
for the focal spot diameter is still considered as not subwavelength imaging and is allowed by the
diffraction limit. It practically corresponds to the focusing in a so-called solid immersion lens [] or
in dielectric spheres of certain optical size† [].

The diffraction limit, however, implies that the image is created only by propagating waves, and
the subwavelength information contained in “evanescent waves,” exponentially decaying with the dis-
tance from the field source, is lost in the image domain. In the so-called near-field optical microscopy
the spatial resolution is not restricted by the diffraction limit since the probe in this technique detects
not the wave field components but also the near field close to the surface of the source (object). The
image is created, usually, after scanning the probe (tip) over the surface. From the theoretical point
of view the subwavelength details of the object are retained since the evanescent waves produced
by these details are detected by the probe. The near-field scanning optical microscopes (NSOM)
were invented by G. Binnig and H. Rohrer [].‡ The evanescent waves used in this high-resolution
microscopy exist only in the near zone of sources. Practically, they are detectable by NSOM at the
distances of the order of  nm and less [,].

Studying the pseudo-lens design suggested by V. G. Veselago, J. B. Pendry revealed the mechanism
that allows one to redistribute the evanescent (near-zone) fields in the space so that the evanescent
waves are transported far from the source and take part in the formation of the far-field image. In
this way one can theoretically beat the diffraction limit. This sounded exciting for specialists in the
photolithography, recording and reading optical information and for experts in all domains where
the near-field scanning technique cannot be practically used.

The ideas of [] gave a strong impulse to the development of artificial materials with doubly negative
constitutive parameters. In fact, theoretical papers seldom evoke such consequences. The situation
with this publication was so special because the publication of [] resonated with the simultaneous
issuing of paper []. In this paper the first design of a structure with ε <  and μ <  was suggested and
numerically studied.§ These two seminal publications were germs of the new tree in the garden of the
electromagnetic science: the electromagnetics of metamaterials. The term “metamaterials” was intro-
duced and established in – in interdisciplinary scientific conferences for radio and optical
engineers (such as Progress in Electromagnetics Research, Bianisotropics, and others). The modern
concept of metamaterials is discussed below.

The electromagnetics of MTM is now a whole branch of modern science. It rose not only from
pioneering works [–]. A long period of accumulation of knowledge resulted recently in a large
number of publications on MTM. A chapter on metamaterials appeared in a monograph pub-
lished in  []. Three monographs totally devoted to metamaterials [–] appeared in a very
short time ( years) after establishing the appropriate terminology, and more are coming to the
market.

Fortunately, the needed knowledge was accumulated by rather few specialists having enough broad
vision over the electromagnetic science, while many of the modern engineers are specialists perhaps

∗ Following to the Rayleigh criteria.
† The result of the focusing in the second case is narrow but long focal spots called photonic nanojets.
‡ This invention together with the tunnel microscope developed in the same scientific group was awarded the Nobel Prize
in . More knowledge on the near-field microscopy can be obtained from [,].
§ Earlier results for doubly negative composites than reported in [] are possible, but for the instance are unknown.
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experienced and skillful but in a rather narrow domain. As a result, the specialists that developed con-
cepts of negative refraction, artificial dielectrics, artificial magnetics, and artificial plasma are often
considered as founders of these directions in applied electromagnetics. This is not a fruitful point of
view. When we attribute artificial magnetism only to [] and artificial plasma only to []∗ we behave
as if there were nothing known about these subjects before. It is not only odd to ignore previous works,
it is not instructive. The theoretical and practical potential of the concept of metamaterials is defi-
nitely not exhausted by the recent implementations. Therefore, textbooks and handbooks should pay
attention to most important old works.

1.2 Prehistory of Metamaterials

1.2.1 Artificial Dielectrics

In , W. E. Kock suggested to make a dielectric lens lighter by replacing heavy high-permittivity
refractive materials with a mixture of small metal spheres in a light-weight matrix []. The artificial
dielectric material was defined in this pioneering work as a composite reproducing, on a much larger
scale, processes occurring in the molecules of a usual dielectric. This involved arranging metallic
elements in a three-dimensional (D) array or lattice structure to simulate the crystalline lattices of
dielectric materials. Such an array responds to radio waves just as a molecular lattice responds to light
waves: Free electrons in the metal elements flow back and forth under the action of the alternating
electric field. Metal elements called also as lattice inclusions or lattice particles become oscillating
dipoles similar to the oscillating molecular dipoles of a natural dielectric.

This concept, however, probably was first suggested by Lord Rayleigh in his pioneering work [].
Rayleigh considered a lattice of small scatterers (molecules modeled by spheres) whose period was
much smaller compared to the wavelength, as in a sample of an equivalent continuous medium.
Kock reproduced this concept for arrays of metal spheres and used that for practical applications.
Then this concept was developed in an important work by M. M. Kharadly and W. Jackson [].
They calculated the effective permittivity of artificial dielectrics comprising metal ellipsoids, disks,
or rods assuming that the frequency of operation is low enough and the Rayleigh quasi-static restric-
tion holds. This restriction is usually satisfied with practical accuracy for artificial dielectrics utilized
in microwave lens antennas. In a popular book [] as well as in the famous overview [] one can
find a well explained quasi-static theory of artificial dielectrics. This theory is valid when the lattice
of metal particles is sparse enough, i.e., the ratio of the lattice period to the maximal particle size is
rather large (e.g., . and more). The theory of densely packed artificial dielectrics is more difficult.
It was developed by mathematicians [–]. Artificial dielectrics with dense packaging of metal
inclusions possess rather high losses and are not used in lens antennas. They are applied in absorb-
ing sheets. Artificial dielectrics are not necessarily regular lattices. They can be random mixtures
reviewed in []. Even the nonuniform concentration of particles is sometimes allowed, which offers
unusual properties of such composite media [,]. When the concentration of particles exceeds the
so-called percolation threshold (particles touch one another and/or the capacitive coupling between
adjacent particles is very strong) artificial dielectrics in the same low frequency range become artifi-
cial conductors with complex conductivity []. Their conductivity can be engineered (i.e., controlled
by the design parameters) and is in principle tunable magnetically or electrically. Artificial conduc-
tors have found applications in electromechanical devices, fuel cells, and other techniques where
controlled heating by electric current is needed.

∗We do not object to the importance of the cited works, of course.
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FIGURE . SRRs in the s. (From Schelkunoff, S.A. and Friis, H.T., Antennas: Theory and Practice, John Wiley
& Sons, New York, . With permission.)

1.2.2 Artificial Magnetics

Magnetism without magnetic constituents has been known since s due to works of S. A.
Schelkunoff and H. T. Friis that suggested so-called split-ring resonators (SRRs). Figure .a repre-
sents a scanned copy of a page of the classical textbook [] which is rather popular among specialists
in radio frequency antennas. A formula for the magnetic polarizability of an individual SRR element
derived in this old book is visible and indicates the Lorentz frequency behavior of the element.

Notice, that the “artificial magnetism” also happens in ordinary structures, like wet snow. Here,
loop-forming parts of liquid water cause diamagnetic behavior. But in lattices of SRRs the artificial
magnetism is significantly enhanced in the resonant frequency range (and it is paramagnetic at lower
frequencies).

Particles with metal loops of various shapes were studied in the s [,]. In combination with
other shapes, also in the s [], especially in connection with artificial bianisotropic materials
for microwave applications. Polarizabilities of these bianisotropic particles in magnetic and elec-
tric fields were studied analytically, numerically, and experimentally. In Figure .b another scanned
copy shows possible designs of so-called double SRRs suggested in [] in  (at the bottom the
simulated material parameters of corresponding composite media are shown). In these designs the
bianisotropy was essentially (though not completely) compensated. Such double SRRs could be used
to create artificial magnetics without chirality (see also in []). In [] one finds probably the first
experimental demonstration of negative permeability in artificial microwave materials ().

The design with strong capacitive coupling between loops suggested in [] turned out, however,
more appropriate for the artificial magnetism. The strong coupling of two loops allowed one to obtain
the magnetic resonance at lower frequencies. This means that the resonant frequency is low enough to
consider the lattice of SRRs as a continuous medium. Because of its planar structure SRRs suggested
in [] and shown in Figure .a as well as SRRs suggested in [] are perhaps very practical ways
of creating artificial magnetism at microwaves. So-called Swiss roll metal scatterers reported in []
and depicted in Figure .b (right) turned out to be more efficient as magnetic resonators but work at
considerably lower frequencies. The amplitude and frequency bandwidth of magnetic response can
be enhanced by using very densely packed stacks of split rings, called metasolenoids [].

1.2.3 Artificial Plasma

Artificial plasma, i.e., a medium with negative permittivity, has been known since s due to works
of J. Rotman [] and J. Brown []. This medium is presently called wire medium (Figure .). Usually
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FIGURE . (a) SRRs in the s. (From Pendry, J.B., Holden, A.J., Robins, D.J., and Stewart, W.J., IEEE Trans.
Microw. Theory, , , . With permission.) (b) Swiss rolls. (From Hardy, W.N. and Whitehead, L.A., Rev. Sci.
Instrum., , , ; Wiltshire, M.C., Pendry, J.B., Young, I.R., et al., Science, , , . With permission.)
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FIGURE . (a) Simple wire media in the s; and (b) Triple wire media in the s. (From Rotman, W., IRE
Trans. Antennas Propagat., , , . With permission.)

this is a square lattice of thin parallel wires which can be considered at microwaves as perfectly con-
ducting ones.∗ Recent studies discovered for these lattices many new interesting features unknown
before. These newly revealed phenomena arise due to spatial dispersion. When the wave propagates
normally with respect to the wires, the spatial dispersion does not arise. Then, the effective permit-
tivity of the wire medium obeys the so-called Drude model of electric (nonmagnetized) plasma. This
formula for the simple wire medium reads as

εp = ε ( −
ω

p

ω + ν + j
ω

pν/ω
ω + ν ) (.)

In this form and with these notations it was derived in [].

∗This is the so-called simple wire medium. Double and triple wire media were also studied in [] for the case of the axial
propagation.
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The lattice of parallel wires was considered up to s as a kind of artificial dielectric because it
was invented and practically used for applications in microwave lenses. In the s tunable lattices
of wires in which PiN-diodes were inserted in order to switch the negative effective permittivity of
the lattice to the positive one were created and even produced by the industry [].

The term wire media appeared after theoretically revealing the effects of spatial dispersion in recent
works [–]. Experimental confirmation of some of these effects was also obtained []. Notice
that the array of parallel Swiss rolls reviewed above behaves like a wire medium (of thick wires) with
respect to the magnetic field of propagating wave.

1.2.4 Backward Waves in Bulk Media

The earliest fundamental publication on backward electromagnetic waves and on negative refraction
was, probably, that of lecture notes of Professor L. I. Mandelshtam [] (–) (see Figure .),
although waves in media with negative group velocity were discussed as early as  by Lamb and
 by H. Pocklington []. The logic of Mandelshtam was simple. In isotropic media, the absolute
value of the wave vector is fully determined by the frequency. Therefore, the group velocity

vg =
dω(k)

dk
= k

k
dω
dk

(.)

is directed along vector k or opposite to it, depending on the sign of the derivative dω/dk. The case of
the negative sign corresponds to the negative dispersion.∗ Mandelshtam mentioned that in the case
of negative dispersion the wave in the medium is backward and the negative refraction should occur
at an interface with such a medium. The possibility of the negative refraction was also mentioned
by A. Schuster in []; however, Schuster meant the anomalous dispersion and not negative one as a
possible reason of the negative refraction. Mandelshtam (with a reference to Lamb () who “gave
examples of fictitious D media with negative group velocity” of the acoustic wave) presented at the
end of his life a physical example of a D structure supporting backward electromagnetic waves [].
It was an inhomogeneous material with permittivity periodically varying in space. Basically, this work
predicted the negative refraction in photonic crystals later rediscovered by M. Notomi [].

In – L. Brillouin [] and J. R. Pierce [] developed the theory of backward-wave
microwave tubes utilizing the series-capacitance/shunt-inductance equivalent circuit model similar
to that shown in Figure ., and pointed out the antiparallel phase/group velocities propagation. In
 G. D. Malyuzhinets (who was apparently not aware of works [] and []) generalized this con-
cept to the D case in a paper on the Sommerfeld radiation condition in hypothetic backward-wave
media []. Malyuzhinets noted that in such media the phase velocity of waves at infinity should point
from infinity to the source. An equivalent D analogue of these media was artificial transmission lines
depicted by Malyuzhinets and shown in Figure . (compare with [,]).

Materials with negative parameters as backward-wave materials were mentioned by D. V. Sivukhin
in  []. He was probably the first who noticed that media with double negative parameters
are continuous and homogeneous backward-wave media. Simultaneously he stated that “. . . media
with ε < and μ < are not known. The question on the possibility of their existence has not been
clarified” [].

During the s, D backward-wave structures were very much studied in connection with the
design of microwave tubes and slow-wave periodic systems [–]. Let us also refer to an interesting

∗ Negative dispersion is a more strong effect than the well-known anomalous dispersion described by the inequality
dω/dn <  in which n is the refraction index n ≡ k/ω√εμ. When the dispersion is anomalous in natural isotropic
media the group velocity is directed positively with respect to the phase one (except the frequencies where the losses are
too high and the whole concept of the group velocity becomes invalid).
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FIGURE . Professor L. I. Mandelshtam, photo ; An extract from his book []. The text reads “. . . However,
the last equation is satisfied not only at φ, but also at π−φ. Demanding as before that the energy in the second medium
propagates from the boundary, we arrive to the conclusion that the phase must propagate towards the boundary and,
consequently, the propagation direction of the refracted wave will make with the normal the angle π−φ. Although this
derivation appears to be unusual, but of course there is no wonder, because the phase velocity still tells us nothing about
the direction of the energy transfer.” (From Mandelshtam, L.I., Lectures on some problems of the theory of oscillations
(), in Complete Collection of Works, Vol. , Academy of Sciences, Moscow, , –.)

FIGURE . Backward-wave transmission lines from a paper by Malyuzhinets (). (From Malyuzhinets, G.D.,
Zhurnal Technicheskoi Fiziki, , , .)

was discussed. We can see it in Figure .a.
An important step forward was made by V. G. Veselago (Moscow Institute of Technical Physics)

in , see Figure .b. Professor Veselago made a systematic study of electromagnetic properties
of materials with negative parameters and reported on his unsuccessful search for such media in
the domain of magnetic semiconductors []. This study was, however, optimistic, stating that such
D continuous media can be possibly discovered in the future. Now such media are often called left-
handed media (LHM) or Veselago media. The first term is related with the fact that the triad of vectors
E, H, and k is left handed (the vector product E×H determines the Poynting vector and it is opposite
to the wave vector, since the Poynting vector direction in low-loss linear media coincides with that
of the group velocity and the wave vector direction coincides with that of the phase velocity).
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FIGURE . (a) Negative refraction in periodical media, from a paper by R. A. Silin () []. The text reads “An
illustration to the refraction law in a medium with negative dispersion.” (b) Cerenkov radiation in doubly negative
medium. (From Veselago, V.G., Sov. Phys. Uspekhi, , , .)

1.3 Modern History of Metamaterials

In this historical overview we intentionally do not touch such issues as very recent and exciting works
on invisibility cloaks based on MTM. In this new domain of knowledge there are still important points
to be clarified. The state of the art can hardly be described reliably at the time of writing. It would be
especially difficult in view of the sensational background in mass media, where the presentation of
facts is sometimes distorted. It is especially so for the optical frequency range. Therefore, we cannot
mention these works in the historical part of the handbook.

Also, we do not present in this part any overview of various microwave and optical applications
of MTM. All these applications have been found recently and are under studies and discussions.
Sometimes, the word metamaterials is mentioned in the design of antenna arrays, antenna elements,
feeding lines, and other microwave components without a solid background for this term. This word
is often used in order to designate the unusual design of a component. It is not a purpose of the
historical introduction to clarify these points, and we avoid in it all practical questions related to
applications of MTM. These applications (already established as well as possible ones) are reviewed,
for example, in [–], and are considered with more detail in this handbook.

We concentrate on the history of the Pendry–Veselago perfect lens, because the Pendry–Veselago
perfect lens is probably the best example illustrating the modern history of MTM.

1.3.1 Negative Refraction and Subwavelength Resolution

The attempts to create practically applicable isotropic D Veselago media in many frequency ranges
from meter waves to the visible band still refer to the modern scientific reality. In spite of success-
ful demonstration of subwavelength resolution in some works, no practically applicable super-lens
has been created at this stage, and this allows one to conclude that there the encountered difficul-
ties are really dramatic. In this section we discuss the emergence and development of the concepts
of negative refraction and subwavelength imaging in the Pendry–Veselago flat lens. This is already
history.
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FIGURE . Vision of the negative refraction of a wave pulse in the paper []. (From Valanju, P.M., Walser, R.M.,
and Valanju, A.P., Phys. Rev. Lett., , , . With permission.)

The most strong objection to the negative refraction was presented by P. Valanju et al. []. Using
the causality and the Huygens principles it was proven that the normal to the pulse front should
refract positively. This consideration was taken seriously. Really, in analytical calculations and in
simulations of the wave beam refraction (one example of such a simulation is shown in Figure .a)
the field is usually monochromatic. Monochromatic waves are physical idealizations. In [] a fre-
quency package was considered that corresponds to a wave pulse. Not only the forward front of the
pulse has the normal that refracts positively. It also concerns the pulse as a whole: the plane at which
the field of the pulse is maximal (in free space it is parallel to the phase front) refracts positively. In
Figure .b the normal to this plane is identified with the group velocity []. In the reply by J. Pendry
and D. Smith [] it was explained that this is not the group velocity. The effect of pulse reshaping
after the negative refraction can be understood from Figure ., presented in []. This is forming of
the so-called interference pattern in the two-frequency wave (frequencies are close to one another
and the refraction indices are slightly different for them due to the dispersion in the doubly nega-
tive medium). For the pulse comprising a continuum of frequencies and a continuum of incidence
angles (i.e., for the wave beam pulse) the refraction can be illustrated by Figure .b. One can see
that the pulse reshapes, however, as a whole it refracts negatively.∗ And of course the Poynting vec-
tor of every frequency component of the pulse (i.e., the energy flux of every monochromatic wave
forming the pulse) is directed strictly oppositely to the phase velocity of the wave. In the isotropic
media the angle between the phase velocity and the energy flux of a harmonic wave can be either  or
π [], and this fact follows from the basic symmetry principles and from the physical meaning of the
energy flux.

The reply by J. Pendry and D. Smith to P. Valanju et al., did not stop the discussion. However, it took
a more philosophical and even terminological form. In papers [,] one asserted that the velocity
of the plane wave pulse maximum is the best definition for the group velocity as the speed of the
information transport, and that the nonzero angle between the group velocity and the Poynting vector
is allowed in dispersive media.† This discussion has little practical importance today. The purpose is
to obtain a low-loss doubly negative MTM where the group velocity can be defined in the usual way,
i.e., by formula .. Notice, that the arguments of P. Valanju et al., can be referred to anisotropic media
as well. However, the negative refraction in anisotropic media is a well-known phenomenon, at least
for the cases when the optical axis forms a sharp angle with the interface. What is impossible in

∗ If the pulse frequency range is very narrow, the pulse is very prolate along the ray direction. Then far from the forward
and backward fronts of the pulse beam one still observes the refraction illustrated by Figure .a.
† Because it is allowed in lossy media [], and the dispersive media are lossy.
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FIGURE . (a) Frequency interference pattern explained in []. (b) Short pulse reshaping due to the negative
refraction simulated in []. (From Pendry, J.B. and Smith, D.R., Phys. Rev. Lett., , , . With permission.)

anisotropic continuous media is the all-angle negative refraction (for all possible angles of the plane
wave incidence) which has been observed in composites modeling the Veselago media.

Strong attempts to overthrow the experimental observations of negative refraction in the double
negative medium (started by [] and then developed in [,] and other works) were made by
N. Garcia and M. Nieto-Vesperinas in []. The structure representing the uniaxial variant of the
Veselago medium in a certain frequency range is shown in Figure .. It is formed by two orthog-
onal arrays of SRRs printed on thin dielectric sheets and long strip wires printed on the opposite
side of these sheets. The anisotropy of the structure (its optical axis is vertical) does not affect the
waves propagating in the horizontal plane. For waves whose electric field vector is polarized verti-
cally there is a narrow frequency range where both permittivity and permeability have negative real
parts (it is located slightly above the resonance of SRRs). The result for the negative deviation angle of
wave beams was proven in experiments with prisms formed by such composites.∗ In [] this result
was explained not by the negative index of refraction of the composite medium but by tunneling of
energy. Following to simulations made in [], the array should possess huge losses and no propa-
gating wave exists inside it. The transmission of the negatively diverted beam through the prism is
then possible only due to the tunneling effect which is stronger in the thinner part of the prism than

∗ A usual prism (with a positive refraction index of the medium filling the prism) diverts a beam positively from its initial
direction.
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FIGURE . Uniaxial variant of the microwave Veselago medium developed in []. (From Shelby, R.A., Smith,
D.R., and Schultz, S., Science, , , . With permission.)

in the thicker part of it. However, calculations of losses in [] were apparently not quite correct. Not
only simulations using commercial software packages but the analytical theory [] predicts mod-
erate values of Im(ε) and Im(μ) for such structures at the frequencies where Re(ε) and Re(μ) are
close to −.

In the next discussion those who tried to decline the negative refraction in lattices of wires and
SRRs suggested as an argument the following observations. It was observed that wave beams in a
prism prepared from parallel wires only also experience negative deviation. This phenomenon was
observed at a frequency higher than the plasma frequency ωp of the wire lattice. At these frequencies
the real part of the refraction index is positive and the negative refraction at the interface of wire lattice
is apparently impossible. It was interpreted as a sign of huge losses leading to the tunneling through
the wire medium. However, in fact at such high frequencies the description of the wire medium as
an artificial plasma is not adequate. The wave phenomena are determined by spatial dispersion. And
the negative refraction in lattices of cylinders at high frequencies is not surprising [].

One of the first papers casting doubts on the possibility of subwavelenegth imaging in the Vese-
lago lens suggested by J. Pendry in [] was published in  []. In that paper it was stated that the
derivations of [] were mathematically not strict and that the final result cannot be applied to real
sources, so that the theory should be updated for practically achievable subwavelength imaging in
the far zone of the source. Next, a strong objection to the whole idea of the subwavelength imaging
was published in []. The logic of this work was as follows. The operation of the super-lens imaging
a point source to a point (in the ideal case) is thought to be based on the amplification of evanes-
cent waves across the slab of Veselago medium (evanescent waves grow from the source to the image
point). It becomes theoretically possible (i.e., does not violate the energy balance) because evanes-
cent waves do not transport energy. However, when one tries to detect the image (e.g., with a probe in
which the field at the image point induces currents) this field distribution becomes perturbed. When
power is consumed in the image domain, the amplification of evanescent waves across the slab of
LHM will violate the energy conservation. It was also claimed in [] that any losses, even very small,
being taken into account for the Veselago medium will transform the amplification of the evanes-
cent waves from the source to their attenuation. The following theoretical studies showed that this
last assertion was not well founded: The waves which are evanescent in the lossless media become
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weakly propagating in the lossy one, however, they still grow across the slab. The mechanism of this
growth is related with interaction of surface waves excited by the evanescent part of the source radia-
tion spectrum on the two sides of the LHM slab. And this phenomenon does not vanish due to small
losses. The amplification of evanescent waves in the absence of the sensor at the image point is the
spatial redistribution of the energy density. It is analogous, in general, to the effect of a resonance. In
the absence of the sensor the presence of the LHM layer makes the field amplitude at the image point
Q times larger than that without the LHM layer. Here Q is an analogue of the unloaded quality factor
of a resonant circuit. When the structure is totally lossless, Q is infinite. Introducing the sensor is anal-
ogous to replacement of Q by the loaded quality factor QL. Of course, QL < Q, but it does not mean
that QL <  and the presence of the Veselago medium layer is not helpful. The detailed consideration
of the detection of the subwavelength focal spot by an electrically small antenna (a magnetic probe) is
presented in []. The subwavelength imaging related to the amplification of evanescent waves across
the flat layer was demonstrated in  in both microwave []∗ and visible []† ranges in spite of
the existence of losses [–], especially high in the last case. Though losses in the doubly negative
MTM do not kill the resolution completely, they significantly deteriorate it. If the needed resolution
is fixed, the losses restrict the possible distance between the source and the image. In the microwave
experiments [,–] and in the optical experiments [–] the distance from the source to the
subwavelength image was larger than the wavelength λ in free space, but the mechanisms of the
subwavelength imaging were different from the operation of the Veselago–Pendry super-lens.

In the optical experiment [] the mechanism of the interaction of two surface waves on the
sides of a highly polished silver layer (silver is an epsilon-negative material in the visible and
ultraviolet ranges) was explored. This poor-man’s super-lens was also suggested in [] and in the
practical implementation the distance D to the image was close to λ/. The scale of the spatial
resolution was approximately equal to D. The subwavelength imaging at the distance λ/ is a cer-
tain progress with respect to the near-field microscopy; however, the distance to the image is still
too small to have practical importance for the purposes of optical lithography, super-dense data
storage, etc.

The influence of ohmic losses to the quality of the far-field image in super-lenses was studied, for
example, in []. Ohmic and dielectric losses strongly restrict the possible thickness of the super-lens
destroying the mechanism of the interaction of two surface wave packages which is responsible for the
growing evanescent waves across the “lens” []. All known super-lenses are sensitive to losses, but
the Veselago–Pendry super-lens is especially sensitive to them. The analysis of the current literature
data allows us to conclude that this shortcoming probably makes Veselago–Pendry super-lens not
the optimal passive linear device for far-field subwavelength imaging.

However, the historical importance of the studies of subwavelenghth imaging in the Veselago-
Pendry super-lens is huge. These studies revealed many other possibilities to overcome the diffraction
limit in the linear electrodynamics. Accurate and reliable experimental works proving the subwave-
length image resolution (including far-field devices) of microwave and optical sources appeared in
– [,,–]. In these works the design of super-lenses was very different from a slab of
the Veselago medium. These works cannot be referred to the history and represent some topics of the
present book.

∗The interaction of surface waves excited by evanescent spatial harmonics of the source on two sides of the slab results in
growing of these evanescent waves across the slab. This refers not only to Veselago–Pendry lens but also to photonic crystals
whose interfaces support surface waves. The last case was theoretically studied in [], and [] provided an experimental
validation of the theory.
† In that work the idea suggested in [] has been experimentally fulfilled. It was the idea of the so-called poor-man’s super-
lens, which restores the part of the image created by evanescent waves, whereas the propagating harmonics do not take
part in the imaging. This imaging allows reproduction of fine details of a complex source but the information of its overall
shape may be lost. The poor-man’s super-lens cannot form images at distances larger than the wavelength from the source.
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1.3.2 Transmission-Line Networks

Many authors have noticed that bulk double negative composites based on electrically small separate
scatterers seem of limited practical interest for engineering applications because these structures are
strongly resonant. Consequently, they exhibit high loss and narrow bandwidth. Therefore, such struc-
tures do not constitute a good transmission medium for a modulated signal. For given dielectric losses
and metal (ohmic) losses there is an unavoidable trade-off between the bandwidth and the transmis-
sion level. Due to the weaknesses of resonant-type backward-wave structures, there was a need for
alternative architectures. Almost simultaneously, in June , the so-called transmission-line net-
works (TLN) were developed as an alternative of bulk MTM in the groups of G. Eleftheriades [],
N. Oliner [], and C. Caloz []. A TLN supporting backward waves can be realized as a square
mesh of transmission lines as it is shown in Figure .. The mesh of host lines forms a forward-wave
TLN. The shunt inductances and the series capacitances in the backward-wave TLN are designed
artificially. The shunt inductance can be that of a thin metal pin (or even of a lumped coil) connect-
ing the capacitively loaded conducting mesh with the ground plane. The effective mesh with series
capacitances can be designed in different ways. The two most known designs are simply meshes of
microstrips with inserted bulk capacitors [] and so-called closed multilevel mushroom structures
[] whose geometry is presented in Figure ..

We can see that the TLN are D generalizations of a D backward-wave line depicted in Figure ..
Since backward-wave TLN are much more apt for designing the needed effective-medium parameters
than the lattices of resonant scatterers [] and their response is not resonant (TLN are especially
wide-band in the so-called balanced case when a special relation between shunt and series L and C
parameters holds [,]) it was easier to realize the super-lens namely in this D variant. Historically,
[] presented the first known realization of the Pendry’s idea. The super-lens was based on the three-
layer structure of TLN (two forward-wave TLN at two sides of the backward-wave TLN). Its picture
is shown in Figure .. The focal spot with the effective diameter of λ/ was obtained in the far zone
of the point source coupled to the forward-wave TLN, which excited a divergent wave of voltages
and currents. A possibility for super-resolution in an isotropic D network of loaded transmission
lines was analytically studied in [] and probably for the first time demonstrated experimentally
in []. The demonstration of super-lensing attracted huge attention to the transmission-line MTM;
however, it was not the final goal of its inventors. In books [,] numerous microwave applications
of such MTM are reviewed.
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FIGURE . A transmission-line network behaving as a D analogue of a metamaterial. (From Eleftheriades, G.V.,
Iyer, A.K., and Kremer, P.C., IEEE Trans. Microw. Theory Technique, , , . With permission.)
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FIGURE . Closed mushroom structure: (a) overall structure and (b) unit cell. (From Caloz, C. and Itoh, T. Electro-
magnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New York, .
With permission.)
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FIGURE . First known super-lens realized with transmission-line networks. (From Grbic, A. and Eleftheriades,
G.V., Phys. Rev. Lett., , , . With permission.)

The concept of metamaterials adopted in this book allows us to consider also so-called high-
impedance surfaces, also called artificial magnetic conductors or meta-surfaces, as a class of D
metamaterials. The theory and applications of high-impedance surfaces are well reviewed in the
book [], which also contains a rather detailed and useful overview of bulk MTM.

1.4 Conclusions

The prehistory of metamaterials together with pioneering works by V. G. Veselago, J. B. Pendry,
and D. R. Smith with coauthors formed in the beginning of the twenty-first century presupposi-
tions for quick development of a new branch of electromagnetic science—the electromagnetics of
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metamaterials. In a few years of its modern history the objections to two exciting and novel oppor-
tunities offered by MTM—all-angle negative refraction and far-field subwavelength focusing—were
overthrown theoretically and experimentally. No principal obstacles for the future development of
MTM are visible now. However, the practical importance of already developed MTM for numerous
applications (improvements offered by metamaterials in various devices as compared to conventional
solutions) as well as prospectives of MTM in both technological and economical aspects are still
subjects of broad and keen discussions.

References

. J. B. Pendry, Phys. Rev. Lett.,  () .
. V. G. Veselago, Sov. Phys. Uspekhi,  ()  (Originally in Russian in Uspekhi Fizicheskikh Nauk,

 () ).
. D. R. Smith and N. Kroll, Phys. Rev. Lett.,  () .
. D. R. Smith, W. J. Padilla, D. C. Vier et al., Phys. Rev. Lett.,  () .
. V. G. Veselago, Phys. Usp.,  () .
. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Oxford: Pergamon Press, .
. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett.,  () .
. A. V. Itagi and W. A. Challener, J. Opt. Soc. Am. A,  () .
. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett.,  () .

. X. Zhu and M. Obtsu (Eds.), Near-Field Optics: Principles and Applications, Singapore: World Scientific
Publishing, .

. M. Ohtsu and H. Hori, Near-Field Nano-Optics: From Basic Principles to Nano-Fabrication and Nano-
Photonics, New York: Plenum Publishers, .

. S. Tretyakov, Analytical Modeling in Applied Electromagnetics, Norwood, MA: Artech House,
.

. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave
Applications, New York: John Wiley & Sons, .

. G. Eleftheriades and K. G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and
Applications, New York: Wiley, .

. N. Engheta and R. Ziolkowski, (Eds.), Metamaterials Physics and Engineering Explorations, New York:
John Wiley & Sons, .

. J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. Microw. Theory,  ()
.

. J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, J. Phys. Condens. Matter,  () .
. W. E. Kock, Bell System Technical J.,  () .
. Lord Rayleigh, Phil. Mag., Ser. ,  () .
. M. M. Z. Kharadly and W. Jackson, Proc. IEE,  () .
. R. E. Collin, Field Theory of Guided Waves, nd edn., New York: IEEE Press, , Chapter .
. J. Brown, Artificial dielectrics, in Progress in Dielectrics, Birks, J.B. (Ed.), New York: Wiley, ,

pp. –.
. V. Jikov, S. Kozlov, and O. Oleinik, Homogenization of Differential Operators and Integral Functionals,

Berlin-Heidelberg-New York: Springer-Verlag, .
. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media, Moscow: Nauka, 

(in Russian).
. A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis of Periodic Structures, Amster-

dam, the Netherlands: North-Holland, .
. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications, London: IET Publishers, .

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

1-16 Theory and Phenomena of Metamaterials

. S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett.,  () .
. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge:

Cambridge University Press, .
. A. P. Vinogradov, Electrodynamics of Composite Materials, Moscow: URSS Publishers,  (in

Russian).
. S. A. Schelkunoff and H. T. Friis, Antennas: Theory and practice, New York: John Wiley & Sons,

.
. H. J. Schneider and P. Dullenkopf, Rev. Sci. Instrum.,  () .
. W. N. Hardy and L. A. Whitehead, Rev. Sci. Instrum.,  () –.
. S. A. Tretyakov, F. Mariotte, C. R. Simovski et al., IEEE Trans. Antennas Propagat.,  () .
. M. V. Kostin and V. V. Shevchenko, Proceedings of Chiral ’, Périgueux, France, pp. –, .
. A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev et al., Electromagnetics,  () .
. R. Marques, F. Medina, and R. Rafii-el-Idrissi, Phys. Rev. B,  () .
. M. C. Wiltshire, J. B. Pendry, I. R. Young et al., Science,  () .
. S. Maslovski, P. Ikonen, I. Kolmakov et al., Artificial magnetic materials based on the new magnetic

particle: Metasolenoid, in Progress in Electromagnetics Research, vol. , Cambridge: EMW Publishing,
, pp. –.

. W. Rotman, IRE Trans. Antennas Propagat.,  () .
. C. Chekroun, D. Herrick, Y. M. Michel et al., L’Onde Electrique,  () .
. G. Shvets, Photonic approach to making a surface wave accelerator, in CP, Advanced Accelerator

Concept: Tenth Workshop, C.E. Clayton and P. Muggli (Eds.), American Institute of Physics, Mandaly
Beach, CA, , pp. –.

. P. Belov, R. Marques, M. Silveirinha et al., Phys. Rev. B,  () .
. C. R. Simovski and P. A. Belov, Phys. Rev. E,  () .
. M. Silveirinha, IEEE Trans. Antennas Propagat.,  () .
. M. Silveirinha and C. A. Fernandes, IEEE Trans. Antennas Propagat.,  () .
. I. S. Nefedov, A. J. Viitanen, and S. A. Tretyakov, Phys. Rev. E,  () .
. P. A. Belov, Y. Hao, and S. Sudhakaran, Phys. Rev. B,  () .
. L. Mandelshtam, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki,  ()  (in Russian).
. H. C. Pocklington, Nature,  () –.
. A. Schuster (Sir), An Introduction to the Theory of Optics, nd edn., London: E. Arnold, .
. L. I. Mandelshtam, Lectures on some problems of the theory of oscillations (), in Complete

Collection of Works, vol. , Moscow: Academy of Sciences, , pp. – (in Russian).
. M. Notomi, Phys. Rev. B,  () .
. L. Brillouin, Wave Propagation in Periodic Structures, New York: McGraw-Hill, .
. J. R. Pierce, Traveling-Wave Tubes, New York: Van Nostrand, .
. G. D. Malyuzhinets, Zhurnal Technicheskoi Fiziki,  ()  (English translation in Sov. Phys. Tech.

Phys.).
. A. Grbic and G. Eleftheriades, IEEE Trans. Antennas Propagat,  () .
. C. Caloz and T. Itoh, IEEE Trans. Antennas Propagat,  () .
. D. V. Sivukhin, Opt. Spektroscopy,  () .
. R. G. E. Hutter, Beam and Wave Electronics in Microwave Tubes, Princeton, NJ: Van Nostrand,

.
. J. L. Altman, Microwave Circuits, Princeton, NJ: Van Nostrand, .
. R. A. Silin and V. P. Sazonov, Slow-Wave Structures, Moscow: Soviet Radio,  (in Russian).
. R. A. Silin, Voprosy Radioelektroniki, Elektronika,  ()  (in Russian).
. P. M. Valanju, R. M. Walser, and A. P. Valanju, Phys. Rev. Lett.,  () .
. J. B. Pendry and D. R. Smith, Phys. Rev. Lett.,  () .
. V. G. Veselago and E. E. Narimanov, Nat. Mater.,  () .
. R. Loudon, J. Phys. A: Gen. Phys.,  () .

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Historical Notes on Metamaterials 1-17

. N. Garcia and M. Nieto-Vesperinas, Opt. Lett.,  () .
. R. A. Shelby, D. R. Smith, and S. Schultz, Science,  () .
. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Phys. Rev. Lett.,  ()

.
. A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett.  () .
. C. Simovski and B. Sauviac, Phys. Rev. E,  () .
. G. W. t’Hooft, Phys. Rev. Lett.,  () .
. N. Garcia and M. Nieto-Vesperinas, Phys. Rev. Lett.,  () .
. F. Mesa, M. J. Freire, R. Marqués, and J. D. Baena, Phys. Rev. B,  () .
. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, Phys. Rev. Lett., 

() .
. N. Fang, H. Lee, C. Sun, and X. Zhang, Science,  () .
. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B,  () .
. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, IEEE T. Microw. Theory Technique, () ()

–.
. A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, Opt. Express,  () –.
. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys.

Lett.,  () .
. R. Marqués and J. Baena, Microwave Opt. Technol. Lett.,  () .
. A. M. Bratkovski, A. Cano, and A. P. Levanyuk, Appl. Phys. Lett.,  () .
. P. Ikonen, P. A. Belov, C. R. Simovski, and S. I. Maslovski, Phys. Rev. B,  () .
. Z. Liu, S. Durant, H. Lee, et al. Optics Lett.,  () .
. S. Maslovski, S. Tretyakov, P. Alitalo, J. Appl. Phys., () () –.
. P. Alitalo, S. Maslovski, S. Tretyakov, Phys. Lett. A, (–) () –.
. A. K. Iyer and G. V. Eleftheriades, in IEEE-MTT International Symposium vol. , Seattle, WA, pp. –

, June .
. A. A. Oliner, in URSI Digest, IEEE-AP-S USNC/URSI National Radio Science Meeting, San Antonio,

TX, p. , June .
. C. Caloz and T. Itoh, in Proceedings of the IEEE-AP-S USNC/URSI National Radio Science Meeting,

vol. , San Antonio, TX, p. , June .
. A. Grbic and G. V. Eleftheriades, Phys. Rev. Lett.,  () .
. P. Alitalo and S. Tretyakov, Metamaterials, () () –.
. P. Alitalo, S. Maslovski, and S. Tretyakov, J. Appl. Phys.,  () .

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials C Finals Page  -- #

2
Material Parameters and

Field Energy in Reciprocal
Composite Media

Constantin R. Simovski
Helsinki University of Technology

Sergei A. Tretyakov
Helsinki University of Technology

. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
. Local and Nonlocal Composite Media . . . . . . . . . . . . . . . . -

Preliminary Remarks ● On Material Parameters of Media
with Strong Spatial Dispersion ● Locality and Nonlocality

. Media with Weak Spatial Dispersion . . . . . . . . . . . . . . . . . -
Definition of Weak Spatial Dispersion ● Polarization
Current in Media with Weak Spatial Dispersion ● Electric
and Magnetic Polarization Currents ● Noncovariant Form
of Material Equations of Media with WSD ●Material
Equations Covariant in the First Order of WSD ●Material
Equations Covariant in the Second Order of WSD ● Special
Cases of Material Equations in Media with WSD

. What the Theory of WSD Reveals for MTM . . . . . . . . . . -
. An Alternative Approach to the Description

of WSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
. Energy Density in Passive Artificial Materials and

Physical Limitations to Their Material Parameters . . . . -
Energy Density ●Material Parameter Limitations for
Low-Loss Passive Linear Media ● Concluding Remarks

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

2.1 Introduction

Electromagnetic properties of metamaterials (MTM) are defined by the properties of inclusions
(artificial molecules) and by their positioning in the matrix (in this chapter we consider only three-
dimensional bulk MTM).The inclusions forming many MTM are resonant and their resonances are
in the frequency range where the distance between them can be a rather small fraction of the wave-
length in the host medium. In this case it is reasonable to represent such composite media as spatially
uniform continuous effective media introducing for themmaterial parameters.This modeling called
homogenization allows dramatic simplification of the scattering problem and other electrodynamic
problems for MTM samples. However, homogenization of MTM is not an easy task. Frequency dis-
persion inMTM formed by electrically (optically) small inclusions is very strong, since such particles
can be effectively excited only in the vicinity of their resonant frequencies. Also, spatial dispersion
effects can be strong inMTM, because inclusions or distances between them are often comparable in

2-1
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size with the effective wavelength in the composite. Even if these sizes are optically small in terms of
the wavelength in the host medium, the effective wavelength shortens due to the presence of resonant
inclusions. In some MTM, inclusions are even much larger than the wavelength (an example is the
so-called wire media discussed below).

This chapter is devoted to the homogenization of MTM formed by small scatterers. Even in this
case the homogenization of MTM is a complex and difficult task that obviously implies the answers
to the following questions:

• How to introduce (define) material parameters of composite media, what is the physical
meaning of them, and in which electrodynamic problems such material parameters are
applicable?

• What are frequency bounds in which these material parameters keep their physical
meaning and applicability?

• What are physical limitations that should be imposed on these material parameters and
must be taken into account in calculations, measurements, and in practical applications?

Without these answers the use of material parameters in the description of any composite
media, especially MTM, is senseless. The answers can be found in the overview presented below and
are based on the known theory of weak spatial dispersion (WSD) in molecular or composite media.
In the beginning the second question is answered, because the bounds of homogenization models
can be discussed before we introduce material parameters. The last question is answered in the end
of the chapter after inspecting the energy density in composite media.

2.2 Local and Nonlocal Composite Media

2.2.1 Preliminary Remarks

From themicroscopic point of view, all media, natural and artificial, are spatially discontinuous since
they are formed by particles. However, a vast class of naturalmaterials is considered as effectively con-
tinuous media, and it is not surprising since the optical size of atoms and molecules is very small at
radio, microwave, and even optical frequencies. Quantum objects such as atoms can resonate at mil-
limeter waves, at infrared or visible frequencies where their optical sizes are negligible. Therefore,
the resonance phenomena in many natural media are also successfully described as if they happened
in an ideally continuous medium. The most known exceptions are gases and water vapor (like in
clouds) where the discontinuity is related with large molecular clusters or with considerably large
particles (e.g., water drops) and leads to the Rayleigh and Mie scattering. Structures with Mie scat-
tering usually are not considered as continuous media []. Structures with Rayleigh scattering where
the scattering objects are optically small are described in the literature as continuous but nonuniform
media: media with small-scale spatial fluctuations of permittivity []. This means that the homog-
enization of molecular arrays is possible, and the nonuniformity of the molecular concentration is
taken into account as the position-dependent permittivity.

Both these situations are typical for natural media and not for composites and MTM. Specially
prepared particles forming MTM usually resonate at frequencies where their size and the distance
between adjacent particles are small but not negligible compared to the wavelength in the medium.
We can exclude from the theory the Mie scattering by separate particles of MTM.∗ We also can
exclude the fluctuations of the particles’ density leading to the Rayleigh scattering since MTM with
strongly inhomogeneous concentration of inclusions are unknown and probably hardly useful.

∗MTM with such inclusions are possible but are not considered here.
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Themain difficulty for the homogenization of MTM is specific for all composite media. This diffi-
culty appears in cases when the ratio a/λ, where a is the average distance between centers of adjacent
particles, is not very small, such as a/λ > .. In this situation we should take into account the
nonuniformity of the field over the particle and over the unit cell of the composite medium. We
emphasize that the effective material parameters (EMP) discussed in this chapter describe the elec-
tric and magnetic responses of the medium unit cell, i.e., they have a clear physical meaning. Below
we name these EMP as “local material parameters” and explain this terminology.

In a number of recent works devoted to MTM (which are not reviewed in this book), the for-
mal homogenization procedure is applied to spatially dispersive media, and negative permeability
and permittivity are reported for them without discussion of the physical meaning of these material
parameters. In Section .. we discuss this formal homogenization, its usefulness, and the limit case
of very low frequencies.

2.2.2 On Material Parameters of Media with Strong Spatial Dispersion

The formal homogenization of discontinuous media to which certain tensors of permittivity ε and
permeability μ are attributed is generally possible. At least it is possible under the assumption of the
medium transparency, when the wave propagates without strong attenuation. Let us give an example
of such formal homogenization for an infinite lattice of artificial inclusions (photonic crystal). The
eigenwave in a photonic crystal can be described by its wave vector q, and the difference of the wave
field from that of the uniform plane wave can be described by higher-order terms in the well-known
Bloch expansion of the eigenwave electromagnetic field []:

{E(r)
H(r) = {

E
H

e− jq⋅r + ∑
n≠

{En
Hn

e− j(qr+Gn .r) , (.)

where Gn ≡ (Gx ,Gy ,Gz) = (πnx/ax , πny/ay , πnz/az) are multiples of the generic lattice vector,
(ax ,y ,z are lattice periods, and n = (nx , ny , nz), nx ,y ,z = , , . . . ,∞).

At the frequencies where the lattice periods are optically large, the contribution of higher-order
harmonics with the amplitudes En , Hn is of the same order as that of the zero-order Bloch harmonic
E, H. At low frequencies where the periods are optically small, the zero harmonic dominates and
the field is close to that of a uniform plane wave. However, at any frequency one can formally treat
the plane-wave part of the field in the lattice (i.e., the zeroth Bloch harmonic) as if it were a separate
plane wave traveling in an anisotropic continuous medium.Then the product of the permittivity and
permeability tensors can be defined through the normal refraction vector n ≡ q/k of the lattice (here
k is the wave number in the matrix). The known plane-wave equation for an anisotropic magneto-
dielectric medium [] can be written in the form, where instead of the mean field we substitute E:

(nI − nn − ε ⋅ μ) ⋅ E = . (.)

Here I is the unit dyadic. The second equation for obtaining ε and μ through the known q, E, and
H can be found in []. The wave impedance γ of the plane wave with vector q propagating in an
anisotropic medium is defined by the standard relation

n × E = γ(ε, μ) ⋅ H. (.)

The expression of γ through ε and μ of an anisotropic medium (given by relations () and () from
[]) is involved and omitted here. The aim of this example was to show that one really introduces
formalmaterial parameters ε and μ at an arbitrary frequency. Really, Equations . and . allow us to
find all the components of unknown ε and μ through the known parameters of the lattice eigenwave.
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Such material parameters for photonic crystals (and other spatially dispersive media) are depen-
dent on q. If the eigenwave is not transverse electromagnetic (TEM), they also dependent on the
wave polarization. Let the direction of propagation be described by the angles θ and ϕ that it makes
with the lattice axes. Calculating the eigenwaves of the lattice we can express q and the polarization
ellipse through ω, θ and ϕ. Then ε and μ obtained from Equations . and . will be functions not
only of the frequency ω, but also of the angles θ and ϕ. This is a typical feature of spatial dispersion
[].Themore essential is the angular dependence of material parameters, the more significant is the
difference between the medium with spatial dispersion and the homogeneous anisotropic medium.

In homogeneous anisotropic dielectrics the permittivity is a tensor whose components depend
only on ω. In the lossless case it is diagonal in the lattice coordinate axes and can be written in the
dyadic form as

ε(ω) = εx x(ω)xx + εy y(ω)yy + εzz(ω)zz. (.)

If we calculate the wavevector q as a solution of the dispersion equation of an anisotropic dielectric:

det(kε − q × q × I) = , (.)

q will of course depend on the angles ϕ and θ. But this dependence at any frequency will be fully
determined by two numbers εx x/εzz and εy y/εzz that do not depend on θ and ϕ. From this one can
derive that iso-frequencies surfaces, i.e., surfaces F(qx , qy , qz) =  for fixed ω∗ can be only of two
types: ellipsoids and hyperboloids []. Ellipsoids correspond to the so-called definitemedia, when the
signs of all components of ε are the same, and hyperboloids correspond to the so-called indefinite
media, when the signs of these components are different.

In spatially dispersive media the components of the permittivity tensor depend also on ϕ and θ.
This gives freedom for iso-frequency shapes that can serve for the detection of spatial dispersion [].

In many recent papers devoted to anisotropic MTM the following simplification of the formal
homogenization is adopted. Instead of tensors of permittivity and permeability one introduces two
scalar values ε and μ defining them by relations

√
ε(ω, θ, ϕ)μ(ω, θ, ϕ) = n,

�
�� ε(ω, θ, ϕ)

μ(ω, θ, ϕ) =
E

H
. (.)

Indeed, why not? The physical meaning of these “material parameters” in anisotropic media with
strong spatial dispersion is very limited, but it is also the case for anisotropic ε and μ defined by
vector equations (Equations . and .). In both isotropic and anisotropic variants formally intro-
duced material parameters do not describe the electric and magnetic polarization of the medium
unit cell. It is also not clear how to use them for solving boundary problems for finite-size samples of
spatially dispersive media.

However, the introduction of material parameters for a spatially dispersive lattice, i.e., its formal
homogenization can be sometimes useful for the following reasons:

. At very low frequencies the spatial dispersion vanishes, and formal material parameters
of lattices defined through Equations . and . (as if it were an anisotropic contin-
uous medium) transit to quasistatic EMP of the anisotropic composite. Respectively, for
isotropic composites formal material parameters defined through Equation . transit at
very low frequencies to physically sound EMP. Below we will see that in the static limit

∗ Called also wave surfaces in [].
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the permeability tends to its trivial value μ, if lattices do not comprise natural magnetic
media.∗

. In spatially dispersive media one can introduce material parameters depending on ω
and q in a different way than it was done above []. Together with so-called additional
boundary conditions (ABC) nonlocal material parameters ε(ω, q) and μ(ω, q) intro-
duced in [,] can be used for solving the problem of plane-wave reflection and trans-
mission in some MTM layers (at least at the frequencies up to the first Bragg resonance
a = λeff/) [].

. If we introducematerial parameters in a formal way through Equations . and . in one
special case they can be useful for the analysis of eigenwaves in photonic crystals and even
give some new physical insight. This special case is the case when the analytical solution
of the dispersion problem n(ω) and the eigenpolarization E of the lattice are known.
Then from comparison with Equation .

(nI − nn − ε) ⋅ E = 

we can find ε as a function of q analytically.† This is, for example, the case of the wire
medium, e.g., doubly periodic array of thin infinitely long parallel wires (spatial disper-
sion in thatmediumwas studied in []) or triply periodic arrays of crossingwires (spatial
dispersion in that case was studied in []).

. In some special cases (e.g., so-called waveguide medium []) the nonlocal permittivity
ε(ω, q) introduced by Equation . also can be used for solving boundary problems
together with specially derived ABC.

However, below we concentrate on local EMP of composite media since only for them the physical
limitations following from the causality and passivity are known.‡ The terminology of the present
chapter does not allow us to consider the introduction of nonlocal EMP as homogenization.

2.2.3 Locality and Nonlocality

The physical reason of the spatial dispersion phenomenon is the nonlocality of the polarization
response []. The nonlocality in an array of separate scatterers (particles) appears due to two rea-
sons: an optically non-negligible size of particles d and optically non-negligible distances a between
the particles (which leads to spatial dispersion even if the particles are optically negligibly small).

The first case is evident. The polarization currents in a particle are excited by the field distributed
over its optically finite volume. But the overall current distribution in the particle depends on the
particle geometry and size. So, the polarization at any particular point of the particle “feels” the field
at other points of the same particle. Of course, in this case the electric and magnetic responses of a
large particle except an isotropic and homogeneous one (a sphere) will be strongly dependent on the
direction of the propagatingwave and often also on its polarization. In the case of spherical inclusions
spatial dispersion appears due to the second reason: if d is large, then a (which is larger than d) is
obviously also large.§

∗ Of course, material parameters defined by Equation . introduced for “geometrically anisotropic” spatially dispersive
composites do not follow this limit since their static analogue is anisotropic.
† Probably this is also possible for lattices with electric and magnetic inclusions, but we know only the example of the
nonmagnetic lattice.
‡ Physical limitations imposed on the relations between components of the nonlocal permittivity tensor following from
the spatial symmetry can be found in [].
§ Strictly speaking it also appears due to excitation of higher-order multipoles in the spherical particle (see following text).
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Existence of spatial dispersion in the case when only the particle size d is optically large can be
explained as a result of the averaging of microscopic fields over an optically large volume. Really,
electric and magnetic susceptibilities of the medium by definition describe the relations between
the averaged electric and magnetic fields and electric and magnetic polarizations []. Assume that
the particles are optically small.Then their electric polarization is a response to the local electric field
distributed in a small volume. In other words the polarizability of the particle is local. But even in this
case the electric susceptibility of the medium is nonlocal. The susceptibility relates the polarization
of the unit cell (which is equal to the dipole moment of the particle and is local) to the averaged field
Eav. And this field is nonlocal since d ∼ λ and the interval of the averaging covers an optically large
volume.The averaged field taken at the particle center contains information on the true (microscopic)
field at large distances from it. That is why in the case d ∼ λ the susceptibility and therefore the
permittivity are nonlocal values and can be written in the form of integral operators acting on the
field distributed over a significant volume V = d [].

The frequency boundary between regions of the local and nonlocal (spatially dispersive) composite
media can be better understood from the high-frequency analogue of the static equation of Lorentz–
Lorenz–Clausius–Mossotti. This equation for lattices of electric dipoles and for lattices of magnetic
dipoles has been derived in many works, unfortunately sometimes in contradictory ways.

For a simple cubic lattice of electric dipoles two totally different approaches used in papers [,]
under the assumption a ≪ λ (practically a < .λ) give the result with the correction term CP to the
well-known static equation of Lorentz–Lorenz–Clausius–Mossotti. This term is proportional to the
polarization of the unit cell P:

Eloc − Eav = ( + C)
ε

P. (.)

The bulk electric polarization P is related to the dipole moment p of the reference particle to which
the local fieldEloc is applied as:P = p/V (hereV is the unit cell volume).The correction factorC arises
due to thewave interaction of the reference dipole with the other dipoles of the lattice and for a < .λ
contains only terms of the orders of (ka) and (ka). Let us show that this frequency-dependent
correction to the static equation does not prohibit homogenization.

Thedipolemomentp is determined by the local fieldp = αEloc, where α is the particle polarizability
tensor. Substituting Eloc from Equation ., we obtain

P = (Vα
− −  + C

ε
I)
−
⋅ Eav ≡ κEav . (.)

In Equation . the polarization at the center of the unit cell and the averaged field at the same
point are uniquely related: their relation is determined only by the polarizability α, the unit cell size,
and the frequency, and it is independent from the wave propagation direction. In other words, this
composite can be described by the local electric susceptibility κ and therefore by the local permittivity
ε = ε + κ.

The situation changes dramatically if the cell size is not small enough to neglect the wave-vector
correction terms to the static equation of Lorentz–Lorenz–Clausius–Mossotti. Correction terms of
higher orders omitted in Equation . correspond to the Taylor expansion of the known dynamic
interaction constant of the dipole lattice []. These correction terms are significant for a/λ > .
and depend not only on the normalized optical size ka in terms of the wavelength in the matrix, but
also on the optical size qa in terms of the effective wavelength λ = π/q. If C is dependent on q in
Equation . (in this case factor C is a tensor), the relationship of the polarization and the averaged
field is no more local, and the medium exhibits spatial dispersion. This example shows the order of
the cell optical size when the composite or molecular medium becomes nonlocal.

If the medium is still local but the particles have a complex shape, even a very small phase shift of
the wave over the particle size d, such as (qd) ∼ . can lead to a very large phase shift of the polar-
ization current induced in it. An example of this is artificial magnetism in arrays of small metal rings.
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The current induced in any ring has the opposite directions at two diametrally opposite points of the
ring (the phase shift is π) but this corresponds to a very small phase shift of the wave propagating
across the ring. It is well known that this effect can be described in terms of permeability [,].This
is the effect of WSD: If the phase shift of the wave across a ring tends to zero, the induced current
in it vanishes. The permeability of artificial magnetic media can, of course, describe the local mag-
netization of the medium. This example shows that the homogenization of a composite (and even
molecular []) media with vortex-type polarization currents is possible. However, if we consider
not only closed metal rings, we have to take into account the possibility of multipolar polarization of
particles. Then the homogenization model can lead to more material parameters in addition to the
permittivity and permeability [,].The general theory leading to these models is briefly presented
in Section .. Within this model the dynamic definition of local permeability automatically appears
as a result of WSD.

2.3 Media with Weak Spatial Dispersion

2.3.1 Definition of Weak Spatial Dispersion

We saw above that the inequality d ≪ λ where d is the particle size is an obvious condition for
homogenization. However, if we completely neglect all values containing the product (kd), some
important phenomena drop out of the homogenization model. Even if terms containing (ka) can
be neglected in Equation ., similar terms should not be neglected when we analyze the electric
[] and magnetic [] polarization currents excited in composite or even molecular media [,].
These phenomena are known as bianisotropy and artificial magnetism. Below we concentrate on the
artificial magnetism and do not consider particles prepared from natural magnetic media. Unlike the
natural one, the artificial magnetism is a reciprocal phenomenon.

The reason ofWSD is possible strong variation of the phase of the polarization current in particles
in the presence of a small variation of the applied electric field over it. As we already have noticed,
resonant response of particles under the condition (ka) <  is possible due to complex shapes of the
particles (helicoidal molecules, split-ring resonators (SRRs), Ω-shaped metal particles, etc.) It is also
possible due to very high contrast of permittivity (piezoelectric particles at microwaves or so-called
polaritonic semiconductors [] at infrared).

The consequence of small phase shift of the averaged field over the domain occupied by a resonant
particle is much more significant than the consequences of the phase shift of the averaged field over
empty intervals between particles. We can consider the last effect as being small and have in mind
the relation equation (Equation .) between the local and averaged fields. The consequence of the
same small phase shift of the field over the particle is its multipolar polarization and consequently
the multipolar polarization of the effective medium.

Polarization at point r feels the field not only at the same point r but also around it. This is the
reason why media of such particles are called media withWSD in books [,]. This term is, unfor-
tunately, not commonly adopted. For example, in [,] WSD is referred to as the effect of the
bianisotropy (gyrotropy). We follow the terminology adopted in the book [] that treats the bian-
isotropy as spatial dispersion of the first order (also in books [,,,]) and the artificialmagnetism
as spatial dispersion of the second order (also in []). Both these phenomena are in our terms special
cases of WSD.

The molecular theory∗ of media with WSD is extremely important for understanding MTM.
Books [,,] are mainly devoted to spatial dispersion of the first order, and only isotropic media

∗That is, the theory that leads to the material equations and not the theory that studies wave processes in media described
by these equations.
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with second-order spatial dispersion were analyzed in []. Reference [] has not been translated
into English. For this reason, we present the most important steps of this molecular theory though
this presentation implies rather involved expressions. This theory is based on the general multi-
pole approach developed by R. Raab and L. Barron with members of their scientific groups in many
publications, which are summarized in the monograph [].

2.3.2 Polarization Current in Media with Weak Spatial Dispersion

When we calculate the polarization current J induced in the medium with WSD, the variation of
the field over the scale d is not more negligible. Therefore, J(R) will be determined by not only the
electric field at point R belonging to the particle but by field E(R′) around the observation point
R (∣R − R′∣ ∼ d). We represent the general relation for the vector J in the index form:

Ji(R) =
�
Ω

Ki j(R − R′)E j(R′)dV ′ . (.)

Here Ki j are components of the polarization response dyadic (which can be found for example from
numerical simulations) and Ω is the effective volume of integration with characteristic size d. The
electric field inside it can be expanded into Taylor series:

E(R′) = E(R) + (∇αE)∣
R
(R′α − Rα) +



(∇β∇αE)∣

R
(R′α − Rα)(R′β − Rβ) +⋯ (.)

The substitution of Equation . into Equation . leads to the Taylor expansion of the polarization
current:

Ji = jω(bi jE j + bi jk∇k E j + bi jk l∇l∇k E j) +⋯ (.)

Equation . with neglected higher-order terms describes the phenomenon of WSD in terms of
the averaged polarization current J(R). Here we omit the discussion of the averaging procedure.
There are different ways to define the averaging for fields and polarizations. Some of them [] allow
one to satisfy the usual boundary conditions for homogenized composite media, i.e., keep tangential
components of averaged fields E and H continuous across the boundary.

This continuity can be preserved (see also in []) introducing Drude transition layers [] across
which the permittivity (and permeability) of the homogenized medium varies from its bulk value
to its value in the surrounding space. The effect of the finite-thickness “boundary” of a composite
medium should be obviously taken into account at high enough frequencies (qa) > . or even
at (qa) > . if the composite layer is geometrically thin, i.e., comprises only a few unit cells
across it [].∗

Another definition of averaged fields and polarizations [] allowed one to avoid the use of
Drude layers introducing a sharp boundary between the homogenized lattice and the surrounding
medium. However, it was obtained at the price of discontinuity of all the components of elec-
tromagnetic field at this effective boundary. No practically applicable expressions for these jumps
allowing to solve boundary problems were obtained in [] (and to the best of our knowledge in any
further work).

∗ Notice that the thickness of the Drude layers remained unknown since [], only the case of a simple cubic lattice of
dielectric or ferrite spheres was studied.
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The objective of this chapter is not to discuss the averaging algorithms for composite media. We
finalize this discussion by three important comments:

• In Equation . it is assumed that the polarization current J in Equation . is purely
electric (i.e., it can be interpreted in terms of averaged charge density and charge velocity
J = ρV). We exclude from our consideration the case of natural magnetic inclusions that
would require magnetic currents from the start.

• The action of the time-dependent magnetic field to samples of nonmagnetic (dielec-
tric or conducting) media as well as to complex-shape molecules is fully described in
Equation . as a response to the spatially variable local electric field [,]. There is no
need to introduce the response of particles to the magnetic field explicitly.

• In Equations . through . we can imply the averaged field (i.e., in these formulas and
below E ≡ Eav) instead of the local field. Though the local field is the true reason of
the polarization current Eloc, in media with WSD it is assumed to be uniquely related
to Eav and to the polarization taken at the same point (Equation . and its anisotropic
analogues).

2.3.3 Electric and Magnetic Polarization Currents

In media with multipole polarization the polarization current can be presented through the spatial
derivatives of the multipole moments densities. In the index form [] this expansion is as follows:

Jα = jωPα −
jω

∇βQαβ + eαβγ∇βMγ +

jω

∇γ∇βOαβγ −




eαβδ∇γ∇βSδγ +⋯ (.)

Here Pα are Cartesian components of the electric dipole polarization vector (Greek or Latin indices
below denote the coordinate axes x , y, z), Qαβ are the components of the electric quadrupole polar-
ization tensor (dyadic), Mγ are the components of the magnetic dipole polarization vector, Sδγ are
the components of the magnetic quadrupole polarization tensor (dyadic), and Oαβγ are the compo-
nents of the electric octopole polarization tensor (triadic). The Levy-Civita tensor e with the only
nonzero components ex yz ,zx y ,yzx =  and exz y ,z yx ,yxz = − (totally antisymmetric unit triadic []) is
used in Equation ., which defines the root operation as

(∇ × M)α = eαβγ∇αMγ . (.)

Equation . can be found in the fundamental books [,]; however, the notations used for multi-
pole moments in these books are more complicated, and we use the most simple and clear notations
suggested in [].

Taking into account thesemultipoles, we take into account effects of both first-order spatial disper-
sion (e.g., bianisotropy) and second-order spatial dispersion [,,,,].Higher-ordermultipoles
neglected in Equation . would correspond to the spatial dispersion of the third order and higher
orders, to which no known physical effects correspond.∗ Equation . can be rewritten in the tensor
form

J = jωP − jω

∇Q +∇ × M + jω


∇∇Q − 


∇×∇S . (.)

We can see that the polarization current is the sum of two components; one of them is the vortex-
free (noncirculating) polarization current that is often called the electrical one, the other one is the

∗ Of course, these terms cannot be neglected for media with strong spatial dispersion, but in the last case Equation . is
divergent [] and, consequently, useless.
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vortex-type (circulating) polarization current that is often called the magnetic one:

J = Jel +∇ × Tmag, (.)

where
Jel = jωP − jω


∇Q +⋯, (.)

Tmag = M − 

∇S +⋯ (.)

Equations . through . together with the expansion (Equation .) are of key importance for the
procedure of the introduction of material parameters in composite and molecular media [,,].

2.3.4 Noncovariant Form of Material Equations of Media with WSD

Material equations for time-harmonic fields are introduced in order to get rid of averaged polariza-
tion current (the polarization charges are expressed belowusing the continuity equation) inMaxwell’s
equations for time-harmonic averaged fields in the medium

∇× E = − jωB, (.)

∇ ⋅ B = , (.)

∇× B = jωεμE + μJ, (.)

∇ ⋅ E = ρ
ε

= −∇ ⋅ J
Jωε

. (.)

Here we follow the formalism [] in which the main (uniquely defined and measurable) field vectors
are E and B (since they define the Lorentz force), and vectors D and H are auxiliary and introduced in
order to replace Equations . and . by equations that do not contain the polarization current.The
formalism in which vectors E and H are considered as the main vectors and D and B are auxiliary is
also possible and often convenient. However, in this case the first Maxwell’s equation should be of the
form: ∇× E = − jωμH + Jmag, i.e., we have to introduce magnetic currents on the start. This would
correspond to the medium with natural magnetic particles. Description of both effects of natural
and artificial magnetism is very difficult. If in our initial Maxwell’s equations there are no magnetic
currents, and the formalism Equations . through . based on the main vectors E and B is more
appropriate (see, e.g., in []).

Substituting Equation . into Equation . we can see that in fact

∇ ⋅ E = −∇ ⋅ ( 
Jωε

Jel) . (.)

Substituting Equation . into Equation . we obtain

∇× (B − Tmag) = jωμ(εE + Jel). (.)

Therefore, defining
D = εE + Jel , H = μ− B − Tmag, (.)

we obtain equations
∇× H = jωD, (.)

∇ ⋅ D = , (.)
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that complement Equations . and . and do not contain polarization currents. Taking into
account Equations . and . one can see that vectors D and H are in fact defined through the
multipole densities:

D = εE + P − 

∇ ⋅ Q + 


∇ ⋅ (∇ ⋅ O), (.)

H = (μ)−B + M − 

∇ ⋅ S . (.)

If there are no other multipoles induced in particles in addition to electric and magnetic dipoles,
these equations are reduced to the usual form:

D = εE + P, H = (μ)−B − M. (.)

These equations are usually treated as general definitions of D and B, and for this special case the
definitions of the effective permittivity and permeability are well known. However, the media from
particles containing only electro-dipole and magneto-dipole moments form only a special case of
media with WSD. For the correct interpretation of experimental results recently obtained for MTM
it is very important to know the general theory of media with WSD.

The next step after Equations . and . is to express the multipole densities entering Equa-
tions . and . through the averaged electric field E and its spatial derivatives using Equation .
and Equation . and relate in this way vectors D and B with E and its derivatives. These relations
will be further derived to the form of material equations.

By analogy of Equation . with Equation . we can write a similar expansion for multipole
moments densities through E and its derivatives

Pα(R) = aαβEβ(R) + 


a′αβγ∇γEβ(R) + 


a′′αβγδ∇γ∇δEβ(R) +⋯ (.)

for the electro-dipole polarization,

Qαβ = Q′αβγEγ +



Q′′αβγδ∇δEγ +⋯ (.)

for the quadrupole one,

Mα = M′αβEβ +



M′′αβγ∇γEβ +⋯ (.)

for the magneto-dipole one,

Sαβ = S′αβEβ +⋯ (.)

for the magneto-quadrupole one, and finally

Oαβγ = O′αβγδEδ +⋯ (.)

for the electric octopole polarization O. The second-order spatial dispersion corresponds to the
omission of higher-order terms in these expansions [,,,,,].

Before substituting Equations . through . into Equations . and . we have to separate

the symmetric (with respect to the last two indices) part and the antisymmetric part of a
′

(the electro-
dipole susceptibility to the first-order derivatives of E). Any antisymmetric triad can be presented as
a scalar product of the Levy–Civita tensor and a certain dyadic (denoted below as g/ jω).Therefore,
we can write

a′αβγ = (a′αβγ)symm. + (a′αβγ)
nonsym.
αβγ ≡ dαβγ + eδβγ

gαδ

jω
. (.)
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In paper [] it was proven for an individual particle and in [] it was done for bulk arrays of
particles that the quadrupole susceptibility to the electric field and the symmetric part of the electro-
dipole susceptibility to the derivatives of the electric field are related:

Q′αβγ = Q′βαγ = dγαβ = dγβα . (.)

Substituting Equations . through . into Equations . and ., we can also use Maxwell’s
equation (Equation .) rewritten in the index form:

Bβ =


jω
eβαγ∇αEγ . (.)

After these substitutions one derives from Equations . and . the following relations []:

Di = ε i jE j − gi jB j +


(Q′jk i − Q′i k j)∇ jEk + β i jk l∇ j∇k El (.)

and

Hi = μ
−Bi − M′i jE j + γ i jk∇ jEk . (.)

In these equations, Equations . and . were taken into account and the following notations

ε i j = εIi j + ai j , β i jk l =


(a′′i l jk − Q′′i jk l − O′i k l j), γ i jk =



(M′′i jk − S′i jk) (.)

were used.Here Ii j are the components of the unit dyadic Ii j = , i = j, Ii j = , i ≠ j.Thefirst formula
in Equation . is the usual (static) definition of the permittivity. In media with WSD the tensor ε
is also defined through the electro-dipole susceptibility to the averaged field. Since this susceptibility
corresponds to the zero-order term in the initial expansion (Equation .), the permittivity repre-
sents the zero-order response of the medium to the electric field. Of course, the ai j in the wave field
can be frequency dispersive, and the words “zero order” refer to the spatial dispersion.

Equations . and . still cannot be named as material equations, because the dyadic M′i j and
the triad (Q′jk i − Q′i k j) are not covariant. In [] it was shown that for an individual particle these
dyadics depend on the location of the point to which the particle multipoles are referred. This is
because all the multipoles of any particle except the electric dipole moment contain by definition
[,] the radius vector centered at an arbitrary chosen particle center. This means that all higher
multipoles (electric quadrupole, magnetic quadrupole, electric octopole, etc.) are not measurable
physical values [,,,]. The same concerns, in the general case, also the magnetic dipole. Only
in two special cases themagnetic dipole susceptibility to the electric field and to its spatial derivatives
can be covariant. The first case [] corresponds to the frequencies at which the polarization current
induced in the particle flows along a closed path (loop) and its density is uniform along this effective
loop. The second case [] corresponds to the frequencies at which the electro-dipole susceptibility
to E and ∇E vanishes. The medium corresponding to the first case can be fabricated from particles
performed as loops. The medium corresponding to the second case will be discussed below.

Thus, if the open part of a conductive scatterer containing a loop portion (metal split rings, Ω-
shaped particles, etc.) is large, i.e., comparable with the circumference of this loop, the magnetic
dipole of the particle is not covariant and therefore is not physically measurable. What is covariant
(andmeasurable at least indirectly) is a certain combination of the magnetic dipole with higher mul-
tipoles (at least the electric quadrupole). This means that higher multipoles are significant in this
case. Notice, that higher multipoles are seldom negligible for media from complex-shape molecules
[,,,]. This is so because complex molecules are rarely shaped like closed loops. The only
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known exception are some dies in which atoms form effective knots. Therefore, this theory is of key
importance also for media of complex molecules.

In [] it was derived (using the Equation .) that from the dependence of multipoles moments of
a molecule on the choice of the molecule center the dependence of the averaged multipole moments
on the Cartesian coordinate origin follows. Therefore, parameters M′i j and (Q′jk i − Q′i k j) entering
Equations . and . depend on the location of the coordinate origin for the composite medium
withWSD.Of course, themediummaterial parameters cannot physically depend on the choice of the
coordinate origin.Therefore, tensors M′i j and (Q′ki j−Q′k ji) are still not material parameters. Respec-
tively, vectors D and B defined by Equation . that are in the second order of spatial dispersion
equivalent to noncovariant equation (Equations . and .) are “not physically sound electric dis-
placement and magnetic induction vectors” in presence of higher multipoles. Such D and B not only
violate usual boundary conditions, they cannot be applied in any boundary problem (since being
applied violates the causality of the solution, as it was explicitly shown in []). Equations . and
. were named in [] as “quasi-material equations” of media with WSD.

2.3.5 Material Equations Covariant in the First Order of WSD

In order to make D and H covariant at least within the first-order approximation of WSD we should
add to D and H defined by Equation . certain vectors, denoted below as K and T, respectively.
These vectors should be chosen so that the coordinate dependence of M′i j and (Q′ki j − Q′k ji) in
Equations . and . is compensated.

Maxwell’s equations (Equations . and .) will be not violated with this redefinition of D and
H if these two additional vectors are related as

K = 
jω
∇× T. (.)

The needed vectors K and T were found in []:

Ki =


(Q′ji k − Q′i jk)∇ jEk , Ti = −

jω


ei jk Q′jkm Em . (.)

The operation
Dnew = Dold + K, Hnew = Hold + T (.)

applied to Equations . and . leads to the following equations (terms of the second order are
not shown):

Di = є i jE j +



ei jk ek l m Q′ml s∇ jEs − gi jB j +⋯ (.)

and

Hi = μ− Bi − (M′i j +
jω


e jkm Q′mi k)E j +⋯ (.)

Using Equation ., Equations . and . can be rewritten in the form

Di = є i jE j − [gi j +
jω


ei km Q′m jk]B j + ⋅ ⋅ ⋅ ≡ є i jE j + jξ i jB j , (.)

Bi = μHi + μ (M′i j +
jω


e jkm Q′mi k)E j ≡ μH j − jμξ ji E j . (.)
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In the final form of material equations of media with WSD of the first order derived in []

D = є ⋅ E + jξ ⋅ B +⋯, (.)

B = μH − jμξ
T
⋅ E +⋯, (.)

the molecular reciprocity theorem [] M′i j = g ji was used. In Equations . and ., ξ
T
denotes

the transposed dyadic with respect to ξ ≡ jg − ωe ∶ Q/ = j(M
′

)T − ωe ∶ Q
′

/. Here “∶” means the
double scalar product of tensors.

One can see that the first-order spatial dispersion still does not givemagnetic susceptibility of com-
posite ormolecularmedia.Thematerial parameter ξ is called themagnetoelectric coupling parameter
(MCP) []. Since we consider reciprocal media, the same MCP ξ enters both material equations
(Equations . and .). It contains the magneto-dipole susceptibility to the uniform (across the
unit cell) part of the averaged electric field, which is equal to the electro-dipole susceptibility to the
vortex part of the averaged electric field.∗ It also contains the quadrupole susceptibility to the uniform
part of the electric field.

In lossless media tensor ξ is purely real [,,], and this is why we introduced the factor j in the
definition of this tensor by Equations . and .. In isotropic media ξ = ξI, i.e., MCP is the scalar
parameter. In this case it is called the “chirality” parameter [].

Equations . and . are anisotropic generalizations of the so-called Post material equations

D = εE + jξB, (.)

B = μH − jμξE, (.)

obtained for media formed by helicoidal molecules in []. It is one of the standard forms of material
equations adopted in the theory of bianisotropic media [,,] such as Fedorov (sometimes
Drude–Born–Fedorov) equations [] or Lindell–Sihvola equations []. Equations . and .
can be expressed in these standard forms, for example, as Lindell–Sihvola equations

D = ε
′ ⋅ E + jκ ⋅ H, B = μ ⋅ H − jκ ⋅ E, (.)

after some tensor algebra using Maxwell’s Equations (. and .). These derivations were done
in []. However, these two popular forms of bianisotropic material equations are not physically
self-consistent with the molecular theory of WSD presented in this section. In Equation . the

MCP κ includes not only first-order parameters M
′

and Q
′

as our MCP ξ, but also the electro-dipole
susceptibility a which is the zero-order parameter []. Moreover, the nontrivial permeability μ in
Equation . includes the electro-dipole susceptibility a (zero-order parameter) and the quadrupole

susceptibility Q
′

(first-order parameter) and not the parameters of the second order [].
Physically, the nontrivial magnetic permeability in reciprocal media is the effect of the second

order [,]. If there are higher multipoles in the medium, the formalism of F.I. Fedorov and that of
I. Lindell and A. Sihvola leads to material parameters in which the effects of WSD of different orders
are mixed. Therefore, the generalized Post equations (Equations . and .) are more suitable
for the description of WSD, while the Lindell–Sihvola formalism is sometimes more convenient for
solving engineering problems.

∗That is, to the uniform across the unit cell part of the magnetic field.
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2.3.6 Material Equations Covariant in the Second Order of WSD

Now let us rewrite Equations . and . including in them the second-order terms fromEquations
. and . that the operation equation (Equation .) keeps intact:

Di = ε i jE j + jξ i jB j + β i jk l∇ j∇k El (.)

and
Hi = μ

−Bi + jξ ji E j + γ i jk∇ jEk , (.)

where tetradic tensor with components β i jk l and triadic with components γ i jk are defined through
multipole susceptibilities by Equation .. First, in the same way as we did above let us separate the

antisymmetric part of the tensor M
′′

:

M′′i jk = (M′′i jk)
symm.
i jk + (M′′i jk)

asym.
i jk ≡ fi jk +


jω

ei kmG jm , (.)

where again the antisymmetric tensor has been presented through the Levy–Civita triadic and a
certain dyadic G. A similar relation as Equation . for electro-dipole and electro-quadrupole
susceptibilities can be written for magneto-dipole and magneto-quadrupole ones []:

fi jk = f ji k = S′ji k = S′jk i . (.)

Equation . can be rewritten after substitutions of Equations . and . in the form

Hi = (μ
−Ii j + Gi j)B j + jξ ji E j + (S′ji k − S′i jk)∇ jEk . (.)

Of course in Equation . we again took into account the relation given in Equation ..
Equations . and . are still not material equations since tensors with components Gi j and

(S′ji k − S′i jk) are origin dependent. We have to find a vector T′ so that the operation

Dnew = Dold +∇ × T′ , Hnew = Hold + jωT′ (.)

would give new D and B which are covariant in the second order of spatial dispersion. At this point
we can notice that the coefficients in the expansion (Equation .) are origin independent. This is
because the current J is a measurable quantity, unlike all the higher multipoles. The comparison of
Equations . and . gives a set of equations relating covariant coefficients bi j , bi jk , bi jk l with
origin-dependent multipole polarizabilities (see also in []):

bi j = ai j , bi jk =


(a′i jk − Q′i k j) +


jω

ei kn M′n j , (.)

bi jk l =


(a′′i jk l − Q′′i k j l + O′i k l j) +


 jω

ei kn(M′′n jl − S′nl j). (.)

The last equation rewritten in the form

bi jk l =


(a′′i jk l − Q′′i k j l + O′i k l j) +


 jω

ei kn(S′j l n − S′nl j) (.)

is what we need. We can notice that adding the term

K′i = (∇ × T′)i =


 jω
ei kn(S′j l n − S′nl j)∇k E j (.)
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to Dold defined by Equation . we obtain Dnew in the form

Di = ε i jE j + jξ i jB j + bi jk l∇l∇k E j , (.)

i.e., an equation that contains the terms of the second order with covariant coefficients.
It is possible to show that the operation given in Equation . with vector T′ that can be found

from Equation . removes from the Equation . the term (S′ji k − S′i jk)∇ jEk and simultaneously
adds to Gi j a dyadic that makes the corresponding coefficient origin independent []. The result of
the operation (Equation .) with substitution of Equation . is as follows:

Di = ε i jE j + jξ i jB j + bi jk l∇l∇k E j , (.)

Hi = (μ i j)−B j + jξ ji E j . (.)

In these material equations the following notations have been introduced:

(μ−)i j =

μ

Ii j + Gi j −
jω


e jkm S′imk . (.)

It is clear that the inverse tensor to (μ−) is the medium permeability in which the magnetic suscep-
tibility arises as an effect of the second-order spatial dispersion. The dyadic G is the susceptibility of

the magnetic dipole to the vortex part of the electric field and the triadic S is the susceptibility of
the magnetic quadrupole to the uniform part of the electric field. This is the physical meaning of the
permeability in media with WSD. Since media with WSD are local media, and material parameters
in Equations . and . are covariant, these equations can be applied in boundary problems. The
term bi jk l∇l∇k E j does not comprise first spatial derivatives of ∇ × E since bi jk l is symmetric with
respect to the pairs of indices ( j, k) and ( j, l). It follows from Equation . and the known prop-
erties of multipolar susceptibilities.∗ Equations . and . do not contain the bianisotropy in the
second order of spatial dispersion. However, the second order of spatial dispersion for media from
complex-shape molecules comprises the susceptibilities of higher multipoles.

2.3.7 Special Cases of Material Equations in Media with WSD

When higher-order multipoles are negligible, the electro-dipole and magneto-dipole polarizations
give the following special results for the material parameters entering Equations . and .:

bi jk l = , ξ = j(M
′

)T, μ = μ(I + μG)− .

In this case, Equations . and . take the form

D = ε ⋅ E + jξ ⋅ B, B = μ ⋅ (H − jξ ⋅ E), (.)

i.e., they take the form of anisotropic Post equations. The difference between Equation . and the
anisotropic Post equations formedia with first-order spatial dispersion is the nontrivial permeability.

∗Thequadrupole susceptibility to the derivatives of E entering Equation . contains the nonsymmetric part with respect
to indices ( j, k). However, this nonsymmetric part cancels out with the nonsymmetric part of the second term in the
righthand side of Equation . containing the susceptibility of the magnetic quadrupole to E. As a result, the electric
quadrupole polarization of particles by the magnetic field does not enter the material equation (Equation .).
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If the scatterers possess no bianisotropic response (the corresponding restrictions to the scatterer
geometry are discussed in []), the MCP is also equal to zero and we have simply

D = ε ⋅ E, B = μ ⋅ H. (.)

The obvious condition of these material equations is the absence of higher-order multipoles. They
are evidently negligible when the medium polarization is purely an electro-dipole one. If it is not
so, and there are vortex-type polarization currents, then higher multipoles can be present. When
the vortex-type currents form effective loops and currents are uniform along these loops, higher
multipoles are absent and we can use Equation ..

In the isotropic case media with spatial dispersion of the second order can also contain higher
multipoles. From the symmetry the only possible isotropic representation of the term bi jk l∇l∇k E j
in Equation . is b grad div E, which gives []

D = εE + jξB + b∇∇ ⋅ E, (.)

H = μ−B + jξE. (.)

Substituting the secondmaterial equation into the first onewe can rewrite these equations in the form
generalizing the Lindell–Sihvola equations for reciprocal isotropic media with spatial dispersion of
the first order (also called “chiral” media):

D = ε′E + jξ′H + b∇∇ ⋅ E, (.)

B = μH − jξ′E, (.)

where new material parameters are expressed through EMP of our molecular theory as follows:

ε′ = ε + ξμ, ξ′ = ξμ. (.)

The term b∇∇ ⋅ E cannot be removed from Equation . by further redefinition of D and H since
such redefinition would violate the covariance of material equations. The same concerns anisotropic
equations (Equations . and .). These equations can be also expressed in the generalized
Lindell–Sihvola form:

Di = ε′i jE j + jξ′i jH j + bi jk l∇k∇l E j , (.)

Bi = μ′i jH j − jξ′ji E. (.)

However, in the presence of highermultipoles effects of the zero, first and second orders will bemixed

in new EMP ε
′

, μ
′

and ξ
′

.

2.4 What the Theory of WSD Reveals for MTM

The theory of WSD reveals the following features of reciprocal composite or molecular media:

• The magnetoelectric coupling is the effect of the spatial dispersion of the first order, and
the artificial permeability is the effect of the spatial dispersion of the second order.

• In presence of higher multipoles induced in the particles both MCP and permeability
contain contributions from multipolar susceptibilities (additionally to the electric and
magnetic dipole moment susceptibilities per unit volume).

• Inmedia with spatial dispersion of the second order (except the special case when higher-
ordermultipoles are absent) the first material equation contains second-order derivatives
of E, i.e., the medium cannot be described in terms of only three EMP (permittivity,
permeability, and MCP).
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These conclusions force us to revise many scientific publications devoted toMTM. In the literature
there are numerous attempts to describe MTMwith magnetic response in terms of only permittivity
and permeability, i.e., using Equation .. These equations are applicable if there is no bianisotropy
and if, simultaneously, the higher-order multipoles are negligible. The last condition means that
current circulating in a magnetic scatterer should be uniform around its closed effective path.

If this scatterer is the so-called SRR formed by two very strongly coupled concentric broken loops
as in [,], the polarization current induced in it is practically uniform. It is the conductivity cur-
rent, and the displacement currents are concentrated between the two rings []. This means that
the magnetic dipole induced in this SRR turns out to be covariant. Simultaneously, the quadrupole
moment of the SRR is negligible. Probably (though this was never studied) the other higher mul-
tipoles are also negligible close to the resonant frequency of the magnetic dipole induced in this
particle and below it. Then the medium of SRRs can be really described (in the region where the
spatial dispersion is weak) by Equation ..

If the magnetic scatterer is an S-shaped metal particle as in [] (in this work the negative mag-
netic response is attributed to composites of these as well as similar particles) or a single split ring
(C-shaped particle), the conductivity current is strongly nonuniform and does not form a closed loop
(the displacement currents are widely spread around the effective loop, and the significant alternating
charges are accumulated at the ends of the S-shaped conductor). In other words, the S-particle is a
multipolar particle. What is considered as negative magnetic response of the medium of such parti-
cles should be shared between μ and thematerial parameter located in front of the second derivatives
of E in Equation . (the S-particles were specially paired in [] in order to avoid the medium
bianisotropy, so the MCP is zero).

If magnetic scatterers of effectivemedia are formed by pairs of resonant electric scatterers like pairs
of plasmonic nanopyramids [], pairs of nanowires or nanoplates [,], higher multipoles obvi-
ously dominate over the magnetic dipole, and the use of Equation . instead of Equations . and
. may lead to serious misinterpretations. What can one achieve expressing the dispersion charac-
teristics of such media in terms of ε and μ without taking into account the last term in Equation .
as well as heuristically defining EMP, fitting only two tensor values ε and μ to transmission and reflec-
tion characteristics? It is the same as to attribute the electric multipolar response of the material to
the permeability. Physical interpretation of the results [–] described as artificialmagnetismneeds
further theoretical clarification.

Let us consider an example of a complex “magnetic” particle for the visible range of frequencies
realized as a closely positioned pair of small plasmonic nanoparticles. Such nanopairs forming a
metamaterial were described, in []. As it was shown in [] and in precedent works, within the
band of the so-called plasmonic resonance of the individual nanoparticle, there is a frequency at
which the magnetic mode is excited in the pair. This mode corresponds to the antiparallel excitation
of resonant electric dipoles in two nanoparticles. As a result, the total electro-dipole moment of the
nanopair at this mode is zero, and the particle can be presented as a superposition of a magnetic
dipole and an electric quadrupole, both with susceptibilities to E and its spatial derivatives, and a
magnetic quadrupole and electric octopole, both with susceptibilities to E.

panel. Then at a certain frequency ω = ωmag the phase shift of the wave between two nanospheres
will be such that p = −p ≡ −p, and the total electric dipole moment vanishes. In this case the
magnetic moment∗ of the nanopair is origin independent. This was discussed above: The zero
electro-dipole polarizability leads to the independence of m on the location of the particle cen-
ter. The octopole moment can be neglected. The electric quadrupole polarization by the magnetic

∗ As well as the quadrupole moment.
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FIGURE . A nanopair of two plasmonic spheres at ω = ωmag. Left: a purely magnetic mode is excited when the
wave propagates along X. Right: a superposition of modes is excited when the wave propagates obliquely.

field and the magnetic quadrupole polarization by E does not enter into our material equations
(Equations . and .), as it was noticed above.This means that the local electric field (the field of
the exciting wave at the pair center) does not excite the nanopair.The excitation is due to the nonzero
local magnetic field (nonzero spatial derivative of E at the pair center).

In this special case the response of the lattice formed by parallel nanopairs is truly magnetic. This
can explain why in the literature one characterizes such structures by permittivity and permeability
without involving terms with∇∇ ⋅ E.

However, this characterization is not fully consistent. First, beyond this special frequency the total
dipole moment will be nonzero even for this special direction of propagation. And both magnetic
and quadrupole moments become noncovariant. We should take into account the susceptibility of
the quadrupole polarization to the spatial derivatives of E and usematerial equations (Equations .
and .) (with vanishing MCP ξ =  since a pair of equivalent dipoles is not bianisotropic). Second,
material parameters of a homogeneous magnetic medium even at the special frequency ω = ωmag
should not depend on the direction of propagation. If the propagation is oblique, as it is shown in
Figure ., right panel, the phase shift of the wave over the nanopair at the same frequency will be
different. Therefore, p ≠ −p, i.e., not only the magnetic dipole mode but also the electro-dipole
mode will be excited in every nanopair of the medium. Even at this special frequency we come to
material equations (Equations . and .) in which the term ∇∇ ⋅ E vanishes only for a special
direction of propagation.

Notice, however, that in the case of a plasmonic nanopair in which the resonance bands of the
magneto-dipole and electro-dipole modes are separated on the frequency axis, the magnetic mode
can be excited without parasitic excitation of the electric mode for any direction of propagation. In
this case the medium of such nanopairs would behave as a resonant magnetic within the “magnetic”
band and as a resonant dielectric within the “electric” band. This is not the case of nanopyramids
reported in []. Is it the case of paired nanowires or nanoplates [,]? In this chapter we avoid
the discussion of these works since our goal is to show the general frames of the description of
homogenized MTM in terms of material parameters. We also try to motivate additional theoretical
investigations of MTM with artificial magnetism taking into account resonant multipolar polariza-
tions existing, probably, in all of them.The same remark concerns, of course, themagnetismof optical
SRRs reported in works [–] and some other works.

In some papers (e.g., in [,]) isotropic [] or anisotropic []∗ permeability is attributed to
photonic crystals in order to describe their strong spatial dispersion in the vicinity of the Braggmode.
This kind of “artificial magnetism” description is not very useful because the nonlocal permittivity
and permeability defined by Equations . and . can have an arbitrary sign, and only few physical

∗ As it was shown above, the obvious angular dependence of ε and μ is implied in both these cases.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials C Finals Page  -- #

2-20 Theory and Phenomena of Metamaterials

effects can be relatedwith their signs: the stop-band if their signs are opposite and the backward-wave
regime if their signs are negative, since the product of nonlocal permittivity and permeability is by
definition the square of the refraction index. However, these effects are fully described in terms of
the refraction index, and there is no need to extract material parameters from it, if they anyway do
not measure averaged polarization in the medium.

2.5 An Alternative Approach to the Description of WSD

An alternative approach to the description of WSD was suggested in [] and developed in []. This
approach is based on the definition of auxiliary field vectors H and D, instead of Equations ., by
equations

D = εE + J, H = μ− B. (.)

No splitting of the polarization current to the electric part and the vortex-type part is implied and,
of course, this approach also allows us to satisfy Maxwell’s equations (Equations . and .). This
method allows one to avoid the consideration of multipoles, and this is a serious simplification of the
theory (recall that the definitions (Equation .) were also not suitable for multipolar media and
we have twice redefined H and D adding to them vectors T, K and T′ , K′ in order to introduce
origin-independent material parameters). Then it is assumed that the plane wave with wave vector q
propagates in the medium, which allows us to rewrite Equation . in the form

Ji = jω(bi jE j + jbi jk qk E j − bi jk l ql qk E j +⋯) (.)

and substituting this relation into Equation ., we immediately obtain

Di = ε i j(ω, q)E j , ε i j(ω, q) = ε()i j (ω) + jγ i jk(ω)qk + jγ i jkm(ω)qk qm +⋯ (.)

and μ = μI. Here the expressions for coefficients ε()i j (ω), γ i jk(ω), and γ i jkm through bi j , bi jk , and
bi jk l are evident.

This simple approach is mostly fruitful if γ i jk ≡  (for nongyrotropic crystals in terms of []).The
spatial dispersion studied in this book is related with the nonzero phase shift of the wave per unit cell.
In fact, the term of the second order in Equation . cannot be neglected even for electro-dipole
lattices (in this theory they were neglected for this case), if we inspect the fine effects accompanying
the refraction of visible light into crystals. These effects are the generation of so-called exciton and
polariton waves by the incident light at the crystal boundary.∗

Usual boundary conditions for light are obviously complemented in this situation by additional
boundary conditions, which can express different quantum states of the surface (e.g., well-known
Tamm’s or Shockley’s states) and take into account the finite distances between surface atoms [].

This spatial dispersion has little to do with that considered above. Though the general formula
(Equation .) is valid in both theories, this theory ignores the q-dependent corrections in the for-
mula equation (Equation .) and implies uniquely related local and averaged fields, and the theory

∗ Polaritons are exponentially decaying eigenwaves of the lattice of electromagnetic nature (in lossless dielectric crystals
they are transversally electric (TE)-polarizedwith respect to the energy propagation). Excitons arewaves ofEwhich are not
TE (nor transversally magnetic (TM)). If they are not purely longitudinal (in semiconductors) they are called real excitons
(and are related to electron-hole pairs), if they are longitudinal they are mechanical (E =  but P ≠ ) and Coulomb
(∇ × E = ) excitons. Excitons are not important for MTM. Polaritons in MTM lattices can be important, but this effect
cannot be taken into account within the framework of the homogenized model of the lattice.
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developed in [] avoids the use of this formula. For scientists working in the optics of natural crys-
tal media the most important effects of WSD are related with the terms that we neglected in our
molecular theory. As a result, for the theory developed in [] the concept of the local field becomes
useless. All the effects of WSD are described in terms of q-dependent vectors and tensors (averaged
polarization current J, averaged field E, and permittivity ε).

The theory of WSD neglects excitons and polaritons but takes into account the possibility of res-
onant frequency response of coefficients entering the expansion equation (Equation .). In our
case these coefficients correspond to not purely electro-dipole polarization of medium particles.
Unlike [] and similar works, we assume that the volume of integration around the particle cen-
ter in Equation . is the volume of the particle. And the second-order terms can be significant due
to the resonant response of the particle. As a result, the q dependence disappears in this theory, but
we have to introduce the magnetic moment and higher multipoles.

The authors of [] assume that the volume Ω is that of the unit cell and the second-order terms
are taken into account not because they can be resonant and large, but because they are q dependent
and their presence in the medium response makes possible polaritons and excitons. It is not a theory
of local medium. In other words, the theory [] does not offer a model of lattice homogenization.

Recently, the approach based on Equations . was applied in [] in order to explain the nega-
tive refraction in terms of the second-order spatial dispersion. It was successfully done for isotropic
media. However, on this way the authors of [] came to our model. Additionally, to the assumption
of the isotropic non-chiral medium ε()i j = ε()Ii j and γ i jk ≡  the authors of [] introduced the
assumption (formula () of []) that in their isotropic media tensor γ i jkm takes the special form

γ i jkm(ω) = a(ω)Ii j Ikm + a(ω)


(er i k er jm + er im er jk). (.)

This substitution transforms the equation Di = ε i j(ω, q)E j in the absence of bianisotropy
(γ i jk = ) into

D = ε()(ω)E + a(ω)∇ ×∇ × E. (.)

Let us now redefine D and H following the Equation . where T′ = −a∇× E and obtain

D = ε()(ω)E, B = μ(ω)H, (.)

where
μ(ω) = μ

 − ωμa

. (.)

This redefinition does not violate the covariance ofmaterial parameters since all the parameters in the
initial equation (Equation .) are covariant, and it transforms thematerial equations of themedium
with second-order spatial dispersion to material equations of a usual isotropic magneto-dielectric.

Equation . was first derived in [] and in our theory the material equations (Equation .)
correspond tomedia without highermultipoles (compare with Equation .). It is clear that formula
equation (Equation .) is a restrictive assumption which is equivalent to the assumption of local
isotropic μ (no dependence on q in material equations) and to vanishing of the term grad∇⋅E in this
special case of Equation .. Excitons and polaritons are then neglected in this special case, as in the
theory ofWSD. In other words, paper [] gives the same results for negative refraction as compared
to its previous description in terms of negative permittivity and permeability in []. Results of []
confirm the theory of WSD [].

An anisotropic analogue of formula (Equation .) was derived in []:

μ i i =
μ

 − ωμ


∂ ε j j(ω,q)
∂q

k
∣
qi=q j=qk=

. (.)
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In Equation . the permittivity with components ε j j is defined by Equation .. Notice that we
presented above the material parameters in arbitrary Cartesian system where they could comprise
off-diagonal terms. Equation . was derived for lossless (practically for low-loss) lattices when in
the lattice coordinate system the tensor ε is diagonal. Equation . gives the same result for μ. The
model of the homogenization of lattices discussed in [] also does not imply the existence of higher
multipoles.∗

Section . is devoted to the physical limitations imposed to local EMP of composite or molecular
media that follow from the obvious causality and passivity conditions.These limitations are strongly
related to the energetic relations in frequency-dispersive media. Therefore, we will first inspect the
energy density in such media.

2.6 Energy Density in Passive Artificial Materials and Physical
Limitations to Their Material Parameters

It is well known that in causal media (and all passive materials are causal), dispersion is accompanied
by losses.Thus, even the definition of stored field energy is far from being trivial (the usual definition
applies only to materials with negligible losses []). Also, causality imposes restrictions on physically
possible values of material parameters. This chapter presents an overview of these aspects of meta-
material modeling. This subsection is based on previously published papers [–]. We restrict our
analysis to the case of isotropic media without bianisotropy and higher multipoles, i.e., assume that
material equations take the formas in Equation .. Similar analysis for anisotropicmedia is possible;
however, we do not need it. This chapter is concentrated on local reciprocal bulk artificial materials.
In [,§] it was briefly noticed that the same physical limitations concern the components of the per-
mittivity tensor of reciprocal crystal media as those imposed to the isotropic ε. The physical reason
of it becomes clear if we consider the permittivity tensor in the diagonal form (i.e., in the Cartesian
coordinates comprising the optical axes). Three components of ε enter separately in the refraction
coefficient of the wave propagating along Cartesian axes and having three orthogonal polarizations.
The same assertion can be applied to the components of the permeability tensor μ. In composites
with both nontrivial ε and μ all components of these tensors are responsible for refraction index and
wave impedances of waves propagating along the Cartesian axes. The limitations we impose below
to ε and μ of isotropic media can be referred to as components of ε and μ, if the composite medium
is described by Equation .. For the case of bianisotropic media the physical restrictions for MCP
are also known [,]. However, in this section we do not consider biansiotropic composites and
also avoid the case when d-order derivatives of E must be taken into account in material equations.
The physical limitations to the corresponding material parameter are still unknown and the energy
density in such multipolar media has not been studied.

2.6.1 Energy Density

It is well known that the field energy density in materials can be uniquely defined in terms of the
effectivematerial parameters only in case of small (negligible) losses [].This is because in the general
case when absorption cannot be neglected, the terms

E ⋅ ∂D
∂t

+ H ⋅ ∂B
∂t

(.)

∗This work allows one to understand better the bounds between weak and strong spatial dispersion and also explains the
usefulness of nonlocal material parameters which was already discussed above.
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describe both the rate of changing the stored energy and the absorption rate. Only if the absorption
is negligible, we can write

E ⋅ ∂D
∂t

+ H ⋅ ∂B
∂t

= ∂we

∂t
+ ∂wm

∂t
, (.)

where we and wm are the energy densities of the electric and magnetic fields, respectively.
For artificial materials based on metal or dielectric inclusions of various shapes absorption can

be neglected when the operational frequency is far from the resonant frequencies of the inclusions
and from the lower Bragg resonant frequency where the phase shift per period approaches ○, if
the material is periodical. For electromagnetic fields whose spectrum is concentrated near a cer-
tain frequency ω, the time-averaged energy density in a material with scalar frequency-dispersive
parameters є(ω) and μ(ω) reads [,]

w = we +wm = 


d(ωє(ω))
dω

∣
ω=ω

∣E∣ + 


d(ωμ(ω))
dω

∣
ω=ω

∣H∣ . (.)

If in the vicinity of the operating frequency ω the frequency dispersion can be neglected and є and μ
can be assumed to be independent from the frequency (e.g., when the operating frequency is far from
resonant frequencies of inclusions and well below the Bragg resonance), Equation . simplifies to

w = 

є∣E∣ + 


μ∣H∣ . (.)

The validity of this formula is restricted to positive values of є and μ because no passive media in
thermodynamic equilibrium can store negative reactive energy, as this is forbidden by the thermo-
dynamics (the second principle)∗ [,]. This means that frequency dispersion cannot be neglected
when estimating the stored energy in the frequency regions where the material parameters are
negative.

If the material has considerable losses near the frequency of interest, it is not possible to define the
stored energy density in a general way (more precisely, it is not possible to express that in terms of the
material permittivity and permeability functions) []. Knowledge about the material microstructure
is necessary to find the energy density, and this problem is far from trivial. A general method to find
the reactive energy density in lossy dispersive magnetodielectrics is presented in [,].

2.6.2 Material Parameter Limitations for Low-Loss Passive Linear Media

2.6.2.1 Causal Dispersion

In this section we consider passive linear materials in thermodynamic equilibrium in the frequency
regions where absorption can be neglected and the field energy density can be found in terms of the
effective permittivity and permeability functions. For simplicity of writing, we restrict the analysis to
isotropic media.

L.D. Landau and L.M. Lifshitz in [,§] give a proof that for all linear “passive” materials in the
frequency regions with weak absorption (here this assumption means that the frequency-domain
effective parameters can be assumed to be real functions of the frequency) the value of w in Equa-
tion . is not only always positive,† but it is always larger than the energy density of the same fields

∗ In thermodynamically nonequilibrium states, e.g., in nonuniform magnetized plasmas, the field energy may take
negative values [] leading to power amplification and instabilities, see also [].
† Positiveness of the derivatives in Equation . is equivalent to the Foster theorem in the circuit theory.
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E and H in vacuum. Indeed, the following inequalities can be derived from the causality requirement
assuming negligible losses []:

dє(ω)
dω

>  (.)

(Equation . in []) and

dє(ω)
dω

> (є − є)
ω

(.)

(Equation . in []). Summing these two inequalities one finds that [, §]

d(ωє(ω))
dω

> є. (.)

The same is true for the permeability as well, because in the frequency range where permeability
can be defined as a physical linear response function, it satisfies the same physical conditions as
permittivity []:

d(ωμ(ω))
dω

> μ. (.)

This has a clear physical meaning: To create fields in a material, work must be done to polarize
the medium, which means that in the absence of losses more energy will be stored in the material
than in vacuum. This result is very general and applies also to passive low-loss MTM with negative
parameters, because this result follows only from the causality principle applied to linear systems.

Inequality (Equation .) can be cast in equivalent form

d(ωє(ω))
dω

> є − є(ω). (.)

Depending on the value of є, either Equation . or Equation . is the stronger inequality. As is
seen from Equation ., when the permittivity is negative and large in the absolute value, it must be
very dispersive.

Considering plane electromagnetic waves in transparent isotropic dispersive materials, Sivukhin
[] gave one more limitation on the relative material parameters:

d(ωєr(ω))
dω

+ μr

єr

d(ωμr(ω))
dω

> . (.)

This relation holds if “both” єr and μr are either positive or negative [].
If in a certain model the material parameters are assumed to be completely lossless, the above

inequalities can become equalities. For example, the lossless plasma permittivity function

є(ω) = є ( −
ω

p

ω ) (.)

is just on the allowed limit, because in this case

d(ωє(ω))
dω

= є ( +
ω

p

ω ) = є − є(ω). (.)

It is easy to check that the lossless Lorentz permittivity model [,§..]

є(ω) = є ( +
ω

p

ω
 − ω ) (.)
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satisfies all the above inequalities at all frequencies. Losses in this model are taken into account by
the small parameter γ (∣γ∣ ≪ ω) that describes in media from natural atoms the relaxation of the
electron oscillations [], inmedia from complex resonantmolecules the relaxation ofmolecular oscil-
lations [], and in composite media the relaxation of the polarization currents. In all these cases the
dispersion relation (Equation .) generalizes to the form

є(ω) = є ( +
ω

p

ω
 − ω + jγω

) . (.)

The sign of the parameter γ will be discussed below.
Modeling of artificial magnetic materials requires more care because the very notion of perme-

ability loses its physical meaning at high frequencies before the permittivity loses its meaning.This is
so because the permeability arising due to the spatial dispersion of the d order is more sensitive to
the spatial dispersion than the permittivity.Thus, the model permeability expressions obtained from
quasi-static considerations do not necessarily satisfy the basic physical requirements at high frequen-
cies. An important example is the effective permeability of a mixture of chiral or omega particles [],
or SRRs [,], or of arrays of “Swiss rolls” []:

μ = μ ( +
Aω

ω
 − ω + jγω

) . (.)

This function has a physically sound behavior (the loss coefficient γ is assumed to be small compared
to ω) at low frequencies (μ(ω) = O(ω)) and near the resonance. But in the limit ω →∞ it essen-
tially does not tend to μ. Really, Equation . gives μ(ω →∞) →  − A; however, the amplitude of
the Lorentz resonance A can be much larger than unity. However, in the limit of extremely high fre-
quencies materials cannot be polarized at all because of inertia of electrons, so the parameters must
tend to є and μ. As a result, this expression becomes nonphysical (due to instantaneous response
of the material, condition given by Equation . is not satisfied) at frequencies larger than

√
ω.

For this reason, some authors use the simple Lorentz dispersion law (Equation .) to model the
effective permeability of dense arrays of SRRs []. This model is physically sound at high frequen-
cies, but fails in the low-frequency limit, because in that case the effective permeability does not tend
to μ at ω → . However, in the static limit artificial magnetic response cannot exist because static
magnetic field cannot induce any current in nonmagnetic inclusions. In the vicinity of the resonant
frequency both models give similar results.

As explained in [,§], the integrals in the Kramers–Krönig relations should be truncated at a
high enough frequency where the permeability becomes nearly real and constant (formula (.) in
[]). At higher frequencies the permeability loses its physical meaning.

In [] readers can find a discussion on effective permeability of matter at optical frequencies. In
[,§] it is concluded that permeability in the visible is trivial (equals to μ). It is often thought that
the permeability of any composite medium (including MTM) must be obviously equal to unity and
the resonant magnetism is forbidden in the optical range as such. However, the content of [,§]
refers only to “natural” media and is based on the observation that the magnetic susceptibility of
atoms is proportional to v/c where v is the effective velocity of electrons oscillating in an atom in
the optical electric field applied to the atom. This has nothing to do with the artificial magnetism
studied in this chapter, for which no restriction to the maximal positive or minimal negative values
of the real part of μ is known at optical frequencies. Equation . can be referred to media from
optical SRRs as well, though it is practically valid for the resonant frequency region.

In [] it was shown that for conducting particles comprising effective loops for the induced cur-
rent (like SRRs) the dispersion law (Equation .) is an approximation that neglects the dielectric
losses in the capacitive portions of the scatterer as compared to conductivity losses in its metal parts.
In otherwords, the imaginary part of μ determined byEquation . properly describes the casewhen
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the conductivity losses in the particle dominate. More accurate consideration based on the circuit
model of the conducting scatterer leads to the following form of the dispersion of permeability:

μ = μ ( +
Aω − jωB

ω
 − ω + jωγ

) . (.)

Here the parameters B and γ are dependent on the effective resistor Rd “shunting” the effective
capacitance C of the scatterer (the larger the dielectric losses the smaller is Rd ): B = B′/Rd and
γ = γ+γ/Rd . The frequency dependence of Rd was studied in [] based on the Lorentz dispersion
of the permittivity of the medium that determines the effective capacitance of the scatterer. It can
be a homogeneous host medium or a special dielectric insertion into the capacitive portion of the
magnetic scatterer.The losses of this medium determine Rd and practically Rd ∼ /ω.Then we have
μ(ω →∞) → −B′/γ, where B′ ≪ γ and μ(ω →∞) ≈ . Formula . is not exact, but it describes
the dispersion of the permeability at high frequencies much better than Equation ..

Formula . can be generalized to optical frequencies if the particle can be modeled as a system
of optically small effective loops with comparatively small splits. For example, it is applicable to opti-
cal SRRs since the generalization of the microwave model (Equation .) to the optical range was
properly done in [].

2.6.2.2 The Sign of the Imaginary Part of Effective Parameters

Though the energy density in media composed by dispersive particles comprises the frequency
derivatives of material parameters, the dissipation of energy by unit volume of the medium in unit
time can be written for every frequency harmonic as [,§]:

Q = ±ω( εIm(ε)Ê


+ μIm(μ)Ĥ


) . (.)

Here Â denotes the time averaging of a real scalar function A = A cos(ωt + ϕ), which is equal to
Â = A/. The plus sign in Equation . corresponds to the temporal dependence exp(−iωt), the
minus sign corresponds to exp( jωt). This dissipation factor Q is obviously always positive since the
second law of thermodynamics establishes the equivalence of dissipation and heating []. Because
by varying distribution of sources one can realize arbitrary spatial distributions of fields (e.g., it is
possible to distribute sources so that in some volumemagnetic field is zero or very small while electric
field is strong, or the other way around), it is obvious that both terms in Equation . must be
positive []. This implies that both imaginary parts of ε and μ must be positive for exp(−iωt) and
negative for exp( jωt). This also defines the sign of the loss coefficient γ in the Lorentz dispersion
models and Equations . and .: positive for exp( jωt) and negative for exp(−iωt). In passive
low-loss media (∣Im∣(ε) ≪ ∣Re(ε)∣ and ∣Im(μ)∣ ≪ ∣Re(μ)∣) the electric andmagnetic energies can be
separated [], and two terms in Equation . describe the electric andmagnetic energy dissipation,
respectively.

If losses are so significant that ∣Im∣(ε) ≥ ∣Re(ε)∣ and ∣Im(μ)∣ ≥ ∣Re(μ)∣ holds within the resonant
band of inclusions, the wave decays so fast that the local material parameters have no physical mean-
ing. Therefore, we consider Equation . as applicable in frequency regions where the concept of
local EMP makes sense.

In the modern literature devoted to MTM there are different points of view on the sign of Im(ε)
and Im(μ). In some works [] it is assumed that one of two EMP can have the “wrong” sign of the
imaginary part if the imaginary part of the refraction index n has the correct sign. In other works
[] it is stated that the requirement of the correct sign of Im(ε) and Im(μ) is obvious, and even the
known algorithm of the extraction of EMP of MTM lattices through the reflection and transmission
of MTM slabs is modified so as to satisfy this condition. In other works [] it is assumed that the
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correct sign of Im(ε) is obvious, whereas the sign of Im(μ) can be arbitrary, since μ is related to
spatial dispersion. This difference between the origin of ε and μ is not a valid argument for homoge-
nized arrays of small scatterers. The result of the theory of WSD is μ representing the local magnetic
response of the medium.

The requirement of the correct sign of Im(ε) and Im(μ) cannot be avoided for local (successfully
homogenized) media. Speculations that to respect the correct sign of Im(n) is enough stand no crit-
ics, because the correct sign of n ensures passivity only in case of individual plane waves traveling in
the medium, but not for arbitrary field distributions. It is obvious [] that if the sign of Im(ε) or if
the sign of Im(μ) is incorrect separately, it implies “negative heating” of medium samples located in
a resonator. If the medium sample with the wrong sign of Im(ε) is centered at the maximum of the
electric field (the node of the magnetic field), energy is generated in it, since the electric field dom-
inates over the magnetic field in the sample, and negative electric losses are more important than
the positive magnetic losses. If the medium sample with the wrong sign of Im(μ) is centered at the
maximum of the magnetic field (the node of the electric field), energy is also generated in it.

We do not comment here on the method of extraction of EMP [] introducing the condition of
the correct sign of both electric and magnetic losses into the algorithm, since a special chapter is
devoted to the correct extraction of local EMP for composite layers. However, we should notice that
the correct extraction of local EMP from experimental data or data of numerical simulations should
obviously satisfy this condition.

2.6.3 Concluding Remarks

MTMdesigned to exhibit such properties as negative permittivity and permeability have complicated
microstructures. As it was noticed above, most of the interesting phenomena take place when the
inclusion resonates, and within the resonant band the effective wavelength in the medium strongly
shortens.Within these bandsMTMexhibit spatial dispersion effects. If the spatial dispersion is strong
in the meaning discussed above, i.e., if the medium is nonlocal, the usual effective material param-
eters lose their physical meaning. The theory of WSD briefly reported in this chapter reveals related
limitations to the effective medium description. WSD is of prime importance for MTM formed by
complex particles. The physical limitations to material parameters are reported above only for MTM
without higher multipoles.The contribution of multipolar polarizations inMTMhas not been inves-
tigated up to the present time. This study is very important. It will give a new insight of existing and
prospective MTM and will help to separate MTM with strong spatial dispersion from MTM which
can be homogenized.

The situation with spatial dispersion in MTM with inclusions optically long in one direction and
small in other direction (directions) is totally different.This concerns for example wire media (arrays
of thin conducting wires used to realize negative permittivity). Since the wires are usually quite long
(large inclusions), spatial dispersion is very strong even at very low frequencies []. However, in sim-
ple wire media [] this spatial dispersion holds only if the wave propagates obliquely with respect
to the axes of wires. If it propagates transversally to them, the local permittivity tensor can be intro-
duced.The component of this local permittivity tensor parallel to wires is negative at low frequencies
and obeys the Drude dispersion law (more details in the corresponding chapter). For waves propa-
gating in this transversal plane in arrays of parallel Swiss rolls [] the theory of WSD can be applied
and the local tensor of permeability can be introduced.∗

∗ In [] very specific “material parameters” were introduced for lattices of SRRs and Swiss rolls. They look like nonlocal
(strongly angularly dependent tensor parameters) even in local media.The physical meaning of these material parameters
and their applicability in boundary problems is still unclear in spite of discussions in the literature, for example in [].
In this chapter we do not discuss these and similar exotic material parameters.
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3.1 Introduction

The notion of symmetry in its simple form is known to any engineer: a rectangle has two planes of
symmetry, a sphere is indistinguishable after rotation by any angle, an infinite crystal is characterized
by periodicity. Space reflections, rotations, and translations are examples of geometrical symme-
tries. After the publication of Einstein’s theory of relativity, physicists began to consider Time as a

3-1
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geometrical coordinate and to discuss the corresponding symmetries as well. But the ideas of symme-
try are not restricted only by geometry. Nongeometrical symmetries, for example, gauge invariance,
dynamical symmetries, etc., are effectively used in modern physics.

The group theory is a mathematical tool for description of symmetries. Many applications of
group theory in crystallography, quantum mechanics, and in classical and quantum electrodynamics
are described in physics and mathematics literature. In particular, the group theory had and has
a deep influence on the development of molecular and solid-state physics. Group theory is used
to select those mathematical models which are adequate for description of a new phenomenon.
When the physical theory is developed, the group theory allows one to define some general prop-
erties of the physical object under consideration without solution of the corresponding differential
equations.

The aim of this chapter is to consider some of the group-theoretical methods which are used for the
study of complex media. Our discussion will be based on the magnetic group theory which includes
nonmagnetic groups as a particular case.

3.2 Symmetry of Maxwell’s Equations

Symmetry of mathematical objects (such as differential and algebraic equations, tensors, matrices)
and the concepts of equivalence and invariants can be defined shortly as follows []:

Equivalence deals with the determination of when two mathematical objects are the
same under a change of variables. The symmetries of a given object can be interpreted as
the group of self-equivalences. Conditions guaranteeing equivalence are most effectively
expressed in terms of invariants, whose values are unaffected by the changes of variables.

Geometrical symmetry of a physical object is defined by a set of the transformations which bring
the object into self-coincidence. These transformations are rotations, mirror reflections in a plane,
translations and combinations of them. Often, Time reversal is also considered as an element of
geometrical symmetry. In this chapter, we shall consider some symmetries which exist in classical
electromagnetic theory based on Maxwell’s equations. The variables of our physical problems are
Space and Time coordinates.

The simplicity and elegance of Maxwell’s equations are defined by their high symmetry []. The
symmetry of Maxwell’s equations in vacuum with respect to continuous translations in Space (due
to homogeneity of Space), Time (due to homogeneity of Time), and rotations (due to isotropy of
Space) gives rise to conservation of linear momentum, energy, and angular momentum, respectively.
The combined continuous Space–Time symmetry leads to the invariance of Maxwell’s equations
with respect to Lorentz transformations. The special theory of relativity is closely related to this
symmetry.

In addition to the continuous Space- and Time-translation symmetry, Maxwell’s equations possess
some discrete symmetries. They are Space inversion, Time reversal, and charge conjugation (P, T,
and C, respectively), and combinations of these symmetries.

Maxwell’s equations also have other types of symmetry which are not defined by change of the
Space–Time variables. They are often called “hidden” symmetries []. For example, Heaviside’s
transformation for electric and magnetic fields E → H and H → −E is known in electromagnet-
ics as the duality principle. A generalization of this transformation is E → E cos θ + H sin θ and
H → −H cos θ − E sin θ, where θ is a parameter. The hidden symmetries allow one to obtain new
solutions from the known ones.

Maxwell’s equations become complete with constitutive relations or with equations of medium
motion. These relations and equations usually also possess some symmetry. Besides, in practical
problems one should take into consideration symmetry of the electromagnetic sources and of the
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boundary conditions. The resulting symmetry of the problem will depend on all these constituents.
This symmetry is defined by Curie’s principle of symmetry superposition and it always leaves its
footprints in the solutions of the problem.

Symmetry operations form groups. Discussion of the symmetry problems is simplified greatly
by using group theory (Appendix A). This theory is a natural mathematical tool for analysis of the
consequences of the symmetry in solutions of the corresponding equations.

3.3 Symmetry of Complex Media and Sources

3.3.1 Symmetry of Complex Media

The simplest homogeneous stationary unbounded linear medium has continuous translational sym-
metry. It is also invariant under Time reversal. Any point of this medium is described by the point
group of symmetry Kh (the Schoenflies system of group notations is given in Appendix B) which
defines the highest possible spherical symmetry. We can consider such a medium as a special waveg-
uide of electromagnetic waves with linear polarized plane waves as eigenmodes. A “cross section”
of this waveguide, i.e., a plane normal to the wave vector, has the symmetry C∞v . Electromagnetic
properties of this medium do not depend on direction.

An unbounded homogeneous chiral medium possesses a lower symmetry which is described by
the continuous point group K. A random distribution of electrically small helixes gives this symme-
try. If any point of space has the symmetry K, it is a homogeneous chiral medium with right-handed
or left-handed properties. Any cross section of this medium has the symmetry C∞. The eigenmodes
of the medium are right-handed or left-handed circularly polarized plane waves. All the directions
in such a medium are equivalent.

The media of the above two examples have simple properties due to their spherical symmetries.
These symmetries correspond to the symmetry of scalars (the group Kh) or pseudoscalars (the
group K), and the constitutive parameters of the media are scalars or a combination of scalars and
pseudoscalars, respectively.

Uniaxial media with one principal axis of infinite order C∞ can be of different types. A medium
which is formed, for example, by electrically small cylindrical particles oriented in one direction has
the symmetry D

∞h . A medium formed by cones oriented along one axis possesses the symmetry
C
∞v . The uniaxial media are described by the second-rank constitutive tensors and electromagnetic

properties of them depend on direction.
Anisotropic and bianisotropic media described by lower discrete groups of symmetry have usually

a more number of independent parameters and more complex electromagnetic properties.
Symmetry of a complex medium is defined by the symmetry of atoms and molecules

and their space conformations in natural media and by symmetry of artificial particles and
their arrangements in artificial media. If both the particles and the distances between them are electri-
cally small, some methods of electromagnetic averaging can be used to calculate the effective medium
parameters. Several examples of artificial particles with different geometries are shown in Figure ..

3.3.2 Symmetry of Electromagnetic Sources

Electromagnetic sources can also be described in terms of magnetic groups. The electric dipole, for
example, has the symmetry C

∞v ; the magnetic dipole is described by the group D
∞h(C∞h) (the mag-

netic groups and their notations are discussed in Appendix B). Symmetry of more complex sources
such as continuous and discrete charge and current distributions, double electric layers, antennas and
arrays of antennas can be found using Curie’s principle.
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(c)(b)(a)

(f)(e)(d)

z

FIGURE . Examples of symmetrical artificial elements: D grid spaced a distance dz ≠ dx = dy with the symmetry
Dh (a). D array of dipoles described by the symmetry Dh (b). D array of crosses with the symmetry Cv (c). Helix:
the medium formed by electrically small helixes has the symmetry D∞ (d). Omega-element in the form of a hat with the
symmetry Cv (e). D magnetic particle with the symmetry Oh (f). (From Barybin, A.A. and Dmitriev, V.A., Modern
Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics, Rinton Press, Princeton, NJ, . With
permission.)

3.3.3 Curie’s Principle of Symmetry Superposition

Artificial composite media can consist of a host material and some inclusions (particles), and may
be under external fields and forces (perturbations). The host material may have a certain symmetry,
the inclusions and their spatial arrangements may also be described by certain groups of symmetry.
External perturbation may be of different natures (for example, electric and magnetic fields, mechani-
cal forces, temperature fields and their combinations) and of different symmetries. In this case, the
problem of determination of the symmetry group of the medium can be solved on the basis of Curie’s
principle, known in crystallography. In mathematical language, Curie’s principle can be written as
intersection of the symmetry groups of all the constitutive elements of the medium: the host material
with the symmetry G, the shape of the particles and their arrangements with the symmetry G, an
external perturbation with the symmetry G, etc.:

Gres = G ∩G ∩G ∩ . . . . (.)

This expresses the principle of symmetry superposition, that is, the symmetry of a complex object is
defined by the highest common subgroup of the groups G , G , G . . . which describe the object.

As examples of the use of Curie’s principle to find the resultant symmetry Gres, let us consider the
following combinations:

. Isotropic ferrite chiral medium with applied dc magnetic field H

. Static electric field E and a uniform dc magnetic field H intersecting at a right angle

In case , the chiral medium under dc magnetic field acquires the symmetry D
∞
(C
∞
) because the

group K describing chiral medium and the group D
∞h(C∞h) describing dc magnetic field have one

common element (except the unit element), namely the axis C
∞

; besides, an infinite number of axes
of the second order C perpendicular to the axis C

∞
are converted under dc magnetic field into the

antiaxes TC.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Symmetry Principles and Group-Theoretical Methods 3-5

(a)

E0

(b)

H0

(c)

H0

Jev

FIGURE . Examples of external perturbations: uniform static electric field E (a), uniform dc magnetic field H

(b), velocity of a moving medium v (c). (From Barybin, A.A. and Dmitriev, V.A., Modern Electrodynamics and Coupled-
Mode Theory: Application to Guided-Wave Optics, Rinton Press, Princeton, NJ, . With permission.)

In case , the resultant magnetic symmetry of the two vectors E and H is Cv(Cs). This group
has one plane with H perpendicular to it, one antiplane of symmetry (both E and H lie in this
antiplane), and the antiaxis coinciding with the direction of vector E.

According to Curie’s principle, an isotropic medium with the symmetry Kh under an external
perturbation acquires symmetry of this perturbation. For example, an isotropic dielectric medium
with applied static uniform electric field E (Figure .a) has the symmetry of the electric field C

∞v .
An isotropic ferrite medium under uniform dc magnetic field H depicted in Figure .b acquires
the symmetry of the magnetic field D

∞h(C∞h). In still another example, the velocity v of a moving
isotropic dielectric medium leads to electric current Je , which in its turn produces a dc ring mag-
netic field H shown in Figure .c. Therefore, a moving dielectric medium acquires the magnetic
symmetry D

∞h(C∞v). These symmetries define the structure of the constitutive tensors for the cor-
responding media. Thus, external perturbations may change electromagnetic properties of media. In
particular, an isotropic medium under perturbation may become anisotropic or even bianisotropic.

3.4 Time-Reversal Symmetry, Reciprocity, and Bidirectionality

3.4.1 Time-Reversal Symmetry

An important physical symmetry, which is widely used in physics and, particularly, in classical elec-
trodynamics, is defined by the Time reversal. Literally, the Time-reversal operator T denotes the
change of the sign of Time t, i.e., t → −t. Maxwell’s equations are invariant with respect to this
operator.

In mathematical description of physical problems, the operator T reverses the direction of motion.
In the time domain, as a result, it changes the signs of the quantities which are odd in Time: the
velocity, the wave vector, the magnetic field, the Poynting vector, etc. In the frequency domain, the
operator T also complex transposes all quantities.

One of the important consequences of the Time-reversal symmetry is the Onsager’s theorem [],
which has a general nature. Symmetry of the permittivity and permeability tensors with respect to
their main diagonals for nonmagnetic media, for example, follows from this theorem. In the theory
of microwave circuits with nonmagnetic materials, symmetry of the scattering matrix with respect
to its main diagonal is also a consequence of this symmetry.

There are certain difficulties in physical interpretation of the operator T. For example, in the wave
equations obtained from Maxwell’s equations combined with constitutive relations, the Time-reversal
operator transforms a passive medium in an active one and as a consequence, a damping electro-
magnetic wave into a growing one. Thus, the dissipative processes are not Time reversible (notice
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that in order to overcome this difficulty at least mathematically, it was suggested in [] to use the
so-called restricted Time-reversal operator T , which preserves the passive or active nature of the
medium). Another example of difficulties in the operator T interpretation is as follows: a plane wave
diffracted on an object is transformed into a spherical one, but nobody has seen the Time-reversed
process when an incoming spherical wave is transformed into the plane wave. Still another example
is transformation of the sources under Time reversal into sinks.

These examples show that the approach based on the Time-reversal invariance, where the present
and the past are reversible, strictly speaking is not correct. There exists “the arrow of Time” []. In the
mathematical description of thermodynamical processes, in particular, one of the consequences of
this irreversibility is splitting of the dynamical group of evolution of a physical system with an oper-
ator U(t) into two semigroups, one for U(+t), and the other one for U(−t). In nonlinear problems,
the Time reversal also should be excluded from consideration.

In spite of these difficulties in interpretation of the Time reversal, the idea of using this operator
in classical electrodynamics is very fruitful. In particular, the Lorentz reciprocity theorem can be
considered as a consequence of the invariance with respect to the restricted Time-reversal operator.
The operator T is especially useful in the problems involving magnetic media.

3.4.2 Reciprocity

In general, reciprocity principles in electromagnetics are related with the interchange of cause and
effect. A simple example is interchange of the positions of a source and a detector which leads to the
same results in measurements. The nonreciprocity of a medium can manifest itself in difference of
the wave vectors (phase, velocity difference), of the structure of electromagnetic waves (particularly,
in polarization), or in amplitudes of the waves propagating in opposite directions in the medium.

For scattering and guided wave problems, the reciprocity theorems are useful tools in solving these
problems. In many particular applications, reciprocity theorems are formulated often in simplified
forms, for example, for linear regime and local media, for monochromatic radiation, for scalar waves,
for finite regions of scatterers, for prescribed directions of the incident and reflected waves, etc. [].

Reciprocity can be considered as a special type of symmetry. Reciprocity is closely related to the
Time-reversal symmetry, though these two types of symmetry are, in general, different. The principal
difference is that the Time-reversal symmetry does not exist in the presence of absorption, but the
reciprocity can exist in this case. Reciprocity of the problem manifests itself in the symmetry of the
constitutive tensors, scattering matrices, and Green’s tensors.

3.4.3 Bidirectionality

We call a given medium bidirectional for a given direction of the wave vector k if there is a geometrical
operatorR or a combined Time-reversal geometrical operator TR such that

Rk = −k, (.)

or

TRk = −k. (.)

With this condition, for any branch of the dispersion characteristic ωn(k) with the vector k there
exists another branch ωm(−k) with the vector −k such that

ωn(k) = ωm(−k). (.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Symmetry Principles and Group-Theoretical Methods 3-7

In Equation ., different subindexes n and m are used because, in general, the structure of the
electromagnetic field of the eigenwaves corresponding to k and −k is different.

The following symmetry elements change the sign of the vector k defining bidirectionality
in media:

• Reflection in a plane for the direction of propagation normal to the plane
• Improper rotation about an axis for the direction of propagation along this axis
• Center of symmetry (inversion) for any direction of propagation
• Rotation about an axis through π for the directions of propagation perpendicular to

this axis
• Reflection in an antiplane for the directions of propagation parallel to the antiplane
• Rotation about an antiaxis for the direction of propagation along this antiaxis

In a nonmagnetic medium, the notion of bidirectionality is related to the notion of equivalent
directions. All the physical properties of a medium along the equivalent directions (not necessarily
opposite) are the same. This is stipulated by the presence of some elements of symmetry: axes, planes
and the center (inversion symmetry). However, existence of these symmetry elements in magnetic
media does not always lead to equivalence of the directions. For example, a plane of symmetry in a
nonmagnetic medium defines equivalent directions normal to the plane. But the plane of symmetry
which is perpendicular to a dc magnetic field does not define equivalent directions. For the opposite
directions normal to this plane, the circularly polarized eigenwaves of the same handedness have
different propagation constants, and this property defines the well-known nonreciprocal Faraday
effect.

Notice that the condition ωn(k) = ωm(−k) is not a sufficient condition for nonreciprocity, i.e., the
bidirectional medium can be reciprocal or nonreciprocal.

3.5 Material Tensors

3.5.1 Different Forms of the Constitutive Relations

In practice, those media are usually used which have a certain symmetry. This is because the sym-
metrical media make it possible to choose and control physical effects used in electromagnetic
components and devices. Due to very high symmetry of microscopic Maxwell’s equations without
sources, the resulting symmetry of the system “Maxwell’s equations + a medium” is defined by the
symmetry of the constitutive relations of this medium.

Using group-theoretical approach, one deals only with geometry and is not concerned with the
physical properties of medium particles and their dimensions, and consequently, the numerical
values of the tensor parameters.

For bianisotropic media, the vectors D and H are related to both vectors E and B. The functional
dependence

D = D(E, B), (.)

H = H(E, B), (.)

i.e., the constitutive equations may be involved and, in general, contain integral–differential opera-
tors. In the above equations, E and H are the electric and magnetic field-intensity vectors, D and B
are the electric and magnetic flux-density vectors.

We shall consider unbounded linear, stationary and, in general, dissipative bianisotropic media
in the frequency domain. The media under consideration are assumed to be homogeneous,
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i.e., the constitutive tensors are not functions of space variables (long-wave approximation), but elec-
tromagnetic properties of the media depend, in general, on direction in space. The elements of the
constitutive tensors are complex due to complex electromagnetic field consideration and due to pos-
sible losses in media. The numerical values of the tensor elements depend on frequency. It means that
the media are time dispersive and obey the Kramers–Kronig relations [] which are a consequence of
causality.

In what follows, we shall be interested in the structure of macroscopic constitutive tensors. It
means equality of some of their elements to each other, or equality of the element moduli but
with opposite sign, or equality of the elements to zero. Such a structure is dictated by Space–Time
reversal symmetry of the medium. Symmetry may reduce significantly the number of independent
parameters of the tensors and simplify the following analysis of electromagnetic properties of the
medium.

The linear relations between the four vectors D, B, E, and H can be written in different forms. One
of them is the presentation DB(EH) which is often used in the theory of bianisotropic media:

(D
B ) = K ⋅ ( E

H ) where K = ( є ξ
ζ μ ) . (.)

The tensors of the second rank є and μ are the tensors of the permittivity and permeability, respec-
tively. The magnetoelectric tensors ξ and ζ describe the cross-coupling between the electric and
magnetic fields.

From general properties of the tensors we know that any relation between the tensors expressed
as a sum or a product of them is invariant with respect to the group of permissible coordinate trans-
formations []. It allows one to show that the tensor structure obtained by symmetry principles is
invariant with respect to the presentations DB(EH), EH(DB), DH(EB), and EB(DH). The traditional
presentation DB(EH) is convenient in some applications, particularly, in solutions of boundary value
problems where the boundary conditions are written in terms of tangential components of E and H
in calculations of Poynting’s vector and impedances.

3.5.2 Calculation of the Constitutive Tensors and Some of Their Properties

It is well-known that the structure of the constitutive tensors can be simplified by making use of
symmetry operations corresponding to the point group of the crystal []. The magnetic group
of symmetry of a medium is defined by the symmetry of its particles, their mutual arrangement,
the symmetry of the host medium, the symmetry of the external perturbations, as it follows from
Curie’s principle of symmetry superposition (Section ..). In this section, we discuss a method of
calculation of the second-rank tensor structure for complex and bianisotropic media with a known
symmetry.

The tensors є, μ, ξ and ζ of Equation . form the constitutive relations

D = є ⋅ E + ξ ⋅H, (.)

B = ζ ⋅ E + μ ⋅H. (.)

The four  ×  tensors of Equations . and . in the most general form contain  independent
parameters. The structure of the tensors describing a symmetrical medium depends on the mutual
orientation of the chosen Cartesian coordinate system x, y, z and the symmetry axes and planes of the
medium. Usually, the orientation of one of the coordinate axes is chosen to be along the symmetry
axis of the highest order.
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Using matrix representations of D point symmetry operators (see Appendix D) and transfor-
mation properties of the tensors of the second rank [], from invariance of the medium under
Space–Time reversal transformations, one can obtain the following identities:

. For the case of unitary transformations (they correspond to Space symmetry):

R ⋅ є = є ⋅R, R ⋅ μ = μ ⋅R, (.)

R ⋅ ξ = det(R)ξ ⋅R, R ⋅ ζ = det(R)ζ ⋅R, (.)

. For the case of antiunitary transformations (they correspond to combined Space–Time
reversal symmetry):

R ⋅ є = єt ⋅R, R ⋅ μ = μt ⋅R, (.)

R ⋅ ξ = −det(R)ζt ⋅R, R ⋅ ζ = −det(R)ξt ⋅R, (.)

where R is the D matrix representation of the corresponding group element and the superscript t
means matrix transposition.

The number of independent parameters of the constitutive tensors can be reduced using
Equations . through .. It is not necessary to use all the group elements to calculate the ten-
sors. It is sufficient to use only generators of the group (Appendix A) for this purpose. For the
magnetic groups of the third category (Appendix C), the generators can be chosen as generators
of the corresponding unitary subgroup and any antiunitary element.

In accordance with Hermann’s theorem [], some of the groups lead to identical tensor structure.
German-Hermann’s theorem for our case reads as follows: “If Cn is an axis of symmetry for a consti-
tutive tensor (of rank ) and n > , then the axes C , C, . . . , C

∞
are also the axes of symmetry for

this tensor.” In other words, all the axes of geometrical symmetry higher than  are converted into the
axes of infinite order for the tensors. If the group also has a plane of symmetry which is perpendicular
to this axis, the corresponding tensor acquires the center of symmetry.

Thus, the symmetry of medium and the symmetry of the second-rank tensor which describes this
medium may not coincide. The tensor symmetry may be higher than the symmetry of the medium.
This is reflected, for example, in the fact that though the cubic crystals do not have isotropic symmetry
of their unit cells, nevertheless, their tensors are degenerate to scalars. Anisotropy of these crystals
appears when we describe them in terms of the tensors with ranks higher than . The full tables of
the second-rank tensors comprising  crystallographic and  continuous magnetic point groups
can be found in [].

An example of the calculated tensors for the continuous groups of the first category is given in
Table . for the orientation of the axis C∞ ∥ z. Notice that the calculated structures of the tensors
є and μ coincide because they have the same transformation properties and they are calculated by
the analogous expressions (Equations . and .).

Nonreciprocity of a medium is defined by any of the conditions []:

є ≠ єt , μ ≠ μt , ξ ≠ −ζt . (.)

Thus, the structure of the constitutive tensors of complex and bianisotropic media is defined in
many respects by symmetry of the media and of external perturbation. The dynamical peculiarities
of the media are reflected in the numerical values of the constitutive parameters and sometimes in a
simplification of the tensor structure in comparison with those calculated by symmetry methods [].

The structure of the tensors is frequency- and model-independent. In particular, it does not depend
on possible effects of the mutual interaction between particles of the medium. It is a consequence of
the symmetry approach used for calculations.
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TABLE . Constitutive Tensors for Media Described by Continuous Groups of the First Category
N Group μ є ξ ζ

 Kh μ є  
 K μ є ξ −ξ

 D
∞h

⎛

⎝

μ  
 μ 
  μ

⎞

⎠

⎛

⎝

є  
 є 
  є

⎞

⎠

⎛

⎝


⎞

⎠

⎛

⎝


⎞

⎠

 D∞
⎛

⎝

μ  
 μ 
  μ

⎞

⎠

⎛

⎝

є  
 є 
  є

⎞

⎠

⎛

⎝

ξ  
 ξ 
  ξ

⎞

⎠

⎛

⎝

−ξ  
 −ξ 
  −ξ

⎞

⎠

 C∞v
⎛

⎝

μ  
 μ 
  μ

⎞

⎠

⎛

⎝

є  
 є 
  є

⎞

⎠

⎛

⎝

 ξ 
−ξ  

  

⎞

⎠

⎛

⎝

 ξ 
−ξ  

  

⎞

⎠

 C
∞h

⎛

⎝

μ  
 μ 
  μ

⎞

⎠

⎛

⎝

є  
 є 
  є

⎞

⎠

⎛

⎝


⎞

⎠

⎛

⎝


⎞

⎠

 C∞
⎛

⎝

μ  
 μ 
  μ

⎞

⎠

⎛

⎝

є  
 є 
  є

⎞

⎠

⎛

⎝

ξ ξ 
−ξ ξ 

  ξ

⎞

⎠

⎛

⎝

−ξ ξ 
−ξ −ξ 

  −ξ

⎞

⎠

Source: Barybin, A.A. and Dmitriev, V.A., Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave
Optics, Rinton Press, Princeton, NJ, . With permission.

Reciprocity of a medium is stipulated by the symmetry of the constitutive relations with respect to
the restricted Time-reversal operator T .

Besides Space–Time reversal symmetry constraints considered above, some other restrictions,
when imposed on the constitutive tensors can simplify them. For example, the idealization of
losslessness []:

є = є†, μ = μ†, ξ = ζ† (.)

leads to further reduction of the number of independent parameters. In the above equations, the
symbol “†” stands for the complex conjugation and transposition. Another example of the restrictions
is the so-called Post constraint [].

A remark should be made with respect to the decomposition analysis of the constitutive ten-
sors. One can decompose a tensor into the sum of its symmetric and antisymmetric parts, then the
symmetric part can be decomposed into a sum of a spherical (scalar) one and a deviator, etc. The
antisymmetric part of the tensor μ, for example, describes an axial vector (a dc magnetic field or
magnetization), the deviator of the tensor є presents the quadrupole electrical moment. Thus we
can take into account the multipole contributions in the constitutive tensors and obtain additional
information about the electromagnetic properties of the medium.

Finally, we can notice that some general electromagnetic properties of linear homogeneous media
can be defined by inspection of the constitutive tensors. In accordance with Neumann’s principle,
known in crystallography [], symmetry of a medium defines some possible physical effects in the
medium and those which are “forbidden” completely. Therefore, using the group decompositions
(group trees) and the existing tables of the tensors [], one can select those symmetrical media which
can possess certain electromagnetic properties.

The group-theoretical approach is based on very general grounds, namely on symmetry principles.
One can consider the tensors calculated for different groups of symmetry as a systematic classification
of bianisotropic media.

3.6 Symmetry of Photonic Crystals

3.6.1 Symmetry Description of 2D Magnetic Crystal with Square Lattice

From the point of view of symmetry, any photonic crystal is a periodic structure, i.e., it possesses a dis-
crete translational symmetry []. Besides, one can consider also geometrical symmetry of dielectric
elements, symmetry of their material (for example, anisotropy), geometrical symmetry of the crystal
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FIGURE . D square lattice of circular cross-section ferrite rods (a), the unit cell magnetized by H ∥ z (b).

unit cells and Time-reversal symmetry. The symmetry of possible external perturbations (such as
static electric or dc magnetic fields) should also be taken into account.

We shall not discuss the consequences of the periodicity of the crystals which are mathematically
expressed in Bloch’s theorem and geometrically presented by the Brillouin zone (BZ). Instead we shall
concentrate ourselves on the point group symmetry of the crystals.

In order to illustrate the group-theoretical approach to photonic crystals, let us apply to a relatively
simple example of a D magnetic crystal with square lattice (Figure .). The uniform in z-direction
circular ferrite rods are oriented along the z-axis. They form a square lattice in the plane x–y. The
permeability of the magnetized ferrite rods is a tensor of the second rank μ(r) and the permittivity
is a scalar є(r). The space between the rods is filled with a dielectric with a scalar permeability μ and
a scalar permittivity є. Both the ferrite and the dielectric are for simplicity considered to be lossless.
Without a dc magnetic field, one can consider the ferrite rods as dielectric ones described by a scalar
permeability μ(r).

The square unit cell of the lattice has the period d in both the x- and the y-direction (Figure .a).
The uniform dc magnetic field is an axial odd in Time vector with the symmetry D

∞h(C∞h). The
group D

∞h(C∞h) contains all the rotations about the vector H, the twofold rotations about the
axis normal to H combined with the Time reversal T , and it also has the product of Space inver-
sion with all the above operations. In accordance with Curie’s principle of symmetry superposition,
the magnetic group of the crystal is defined by the elements of symmetry which are common for
the point group Cv + TCv of the nonmagnetic square lattice and the magnetic group D

∞h(C∞h)
of the dc magnetic field H.

The resulting group of symmetry of the magnetic crystal will depend on the orientation of H with
respect to the z-axis in Figure .a. All the possible magnetic groups of symmetry can be obtained
from the group tree of Figure .. All these groups are subgroups of the group of symmetry Cv+TCv
of our crystal in nonmagnetic state.

We shall consider the crystal magnetized by magnetic field H ∥ z (Figure .b). The resulting
group of symmetry of the system “D square lattice + dc magnetic field” is Cv(C) which contains
the following eight elements:

• e is the identity element
• C is a rotation by π around the z-axis
• C and C−

 are rotations around the z-axis by π/ and by −π/, respectively
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C4v

C1

CSC2

C4 C2v

FIGURE . Subgroup decomposition of the point group Cv .

• Tσx and Tσy are the antireflections in the plane x =  and in the plane y = , respectively
• Tσ

(a−a) and Tσ
(b−b) are the antireflections in the planes which pass through the z-axis

and the line (a–a) and (b–b), respectively

Notice that application of a dc magnetic field leads in general to a reduction of symmetry of the
nonmagnetic lattice.

Before discussing the symmetry of the wave vector k, one should define the BZ of the crystal. First
of all, the shape of the BZ zone does not coincide, in general, with the shape of the unit cell of a lattice.
However, in the case of the nonmagnetic square unit cell, the BZ also has the square shape.

Besides, a dc magnetic field can change the size and even the shape of the BZ. But in our case of
the uniform dc magnetic field, the unit cell, and, consequently, the BZ are not changed because the
translational symmetry of the crystal is unchanged after being biased by such a dc magnetic field.
Thus, in spite of different magnetic symmetries, the BZ of the photonic crystal with and without
magnetization is exactly the same. Therefore, for the symmetry Cv(C), we shall investigate the
square BZ which is identical to the BZ of the nonmagnetic lattice.

In band calculations, we can usually restrict ourselves to a single basic domain of the BZ. This
allows one to reduce the burden of numerical calculations. The basic domain for nonmagnetic crys-
tals is defined by the smallest part of the BZ from which the whole BZ can be obtained by applying
all the operators of the point group []. The basic domain for the nonmagnetic square lattice is the
triangle ΓMX shown in Figure .. It is one-eighth of the area of the whole BZ. It is not difficult to
show that the basic domain for the group Cv(C) coincides with that for the group Cv + TCv .

3.6.2 Group of Symmetry of the Wave Vector

Now, let us apply to the symmetry of the wave vector k. In the theory of electronic waves in crystals,
the symmetry group of k is called the little group. In the theory of magnetic crystals, it is called the
magnetic little group. We shall denote the magnetic little group for a given k as Mk.

There is a general symmetry property of the wave vector k in crystals. The groups of the wave
vector k for different points and lines of symmetry of a given crystal are subgroups of the symmetry
group of the crystal as a whole. In order to clarify this property, let us denote a magnetic group of
symmetry of a crystal as G(H). At any symmetric point or line of the BZ with a lower symmetry, the
group of the vector k denoted as G(H) will be a subgroup of G(H). Moreover, the group H is a
subgroup of H. These subgroup relations are shown pictorially in Table . for the groups Cv+TCv
and Cv(C).
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FIGURE . Reduced BZ for the D square lattice of circular cross-section ferrite rods. (From Dmitriev, V.A., Eur.
J. App. Phys., , . With permission.)

TABLE . Subgroup Relations for the Group Cv + TCv

and Its Subgroup Cv(C)
Nonunitary Group Unitary Subgroup
Cv + TCv �→ Cv

↓ ↓

Cv(C) �→ C

In order to define the group Mk for electromagnetic waves in magnetic photonic crystals, one
should consider all the constituents of the physical problem from the point of view of magnetic sym-
metry. The wave vector k in free space is a polar odd in Time vector with the symmetry D

∞h(C∞v).
The group D

∞h(C∞v) contains the axis of an infinite order C
∞

coinciding with k, an infinite number
of planes of symmetry σv passing through this axis, an antiplane Tσh which is perpendicular to the
principal axis, an infinite number of the twofold antiaxis TC lying in the antiplane Tσh , and also
the anticenter Ti.

The symmetry of k in free space does not depend on its orientation in Space. In a magnetic lat-
tice, the group of symmetry of k (i.e., the little group Mk) is defined by the “environment,” i.e., by
the symmetry of the lattice and by the symmetry of the magnetic field H. Mk depends also on the
orientation of the vector k and its size. The point Γ (k = ) of the center of the BZ has the symmetry
of the crystal as a whole.

The Time-reversal operator T as an element of the group of symmetry of a nonmagnetic crystal
sends k into −k, i.e.,

Tk = −k. (.)

In the cases of magnetic crystals, the Time reversal T does not exist in “pure” form, but it can enter
in the group in the combined operations (a geometrical operation + Time reversal). Let us denote
any operator of geometrical symmetry as R and an operator of combined symmetry as TR. The
magnetic little group Mk consists of those geometrical operatorsR which transform the wave vector
k into itself or into k +G []:

Rk = k or Rk = k +G , (.)
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TABLE . Little Groups and Their Elements for Points and Lines of Symmetry
for Square Nonmagnetic Lattice

Representative Little Order of Elements of
Symmetry Symbol Wave Vector k Group the Group the Group

Γ, M π/d(, ), π/d(, ) Cv  e , C , C−
 , C ,

σx , σ y , σ
(a−a) , σ

(b−b)
X π/d(, ) Cv  e , C , σx , σ y
Z π/d(, β) Cs  e , σ y
Σ π/d(α, α) Cs  e , σ

(a−a)
Δ π/d(α, ) Cs  e , σx
Λ π/d(α, β) C  e

and also of the combined operators TR withR which transform k into −k or into −k +G:

Rk = −k or Rk = −k +G (.)

where G and G are primitive translations of the reciprocal lattice.
We shall denote a general point Λ of the BZ by π/d(α, β) which means that k = π/d(αex + βey),

where ex and ey are the unit vectors in the x and y directions, respectively.
Nonmagnetic crystal. In Table ., we give a description of the little groups for the nonmagnetic

crystal described by the group Cv . This table can serve as a reference for the magnetic symmetry
discussed below.

The points Γ and M of the BZ (Figure .) have the symmetry Cv . When we depart from the
point Γ in the direction of M, we are on the line denoted Σ with the coordinates of the wave vector
(α, α),  < α <

√
π/d. The group of symmetry of the wave vector on the line Σ is Cs which is a

subgroup of Cv . The group Cs contains the elements e and σ
(a−a). Analogous examination can be

made for other points and lines of the BZ.
Magnetic crystal. Now we apply to the magnetic crystal. The magnetization H ∥ z reduces the

symmetry of the crystal from Cv +TCv to Cv(C). For the points Γ and M of the BZ (Figure .),
the wave vectors have the symmetry Cv(C) (Table .). The symmetry of the point X is Cv(C).
The symmetry of the vectors Z , Σ, and Δ is Cs(C). The wave vector Λ in a general point of the BZ
has no symmetry.

One important consequence of the crystal symmetry is as follows. The dispersion characteristics
ωn(k) of the magnetic crystal have the full symmetry of the point magnetic group of the crystal.
Thus, we can use the irreducible representations (IRREPs, Appendix A) of the magnetic little groups
to classify the eigenmodes. In fact, in most cases for the correct classification of the eigenmodes,
it is sufficient to use only the unitary subgroups of the corresponding magnetic little groups. The
peculiarities of the IRREPs of the point magnetic groups are discussed in [].

3.6.3 Lifting of Degeneracy by dc Magnetic Field

The points Γ and M of the BZ (Figure .) in nonmagnetic state have doubly degenerate representa-
tions i.e., these representations are two-dimensional. With dc magnetic field applied to the crystal, we

TABLE . Little Groups and Their Elements for Points and Lines of Symmetry for
Square Magnetic Lattice with dc Magnetic Field H ∥ z, the Crystal Group Is Cv(C)

Representative Little Order of Elements of
Symmetry Symbol Wave Vector k Group the Group the Group

Γ, M π/d(, ), π/d(, ) Cv(C)  e , C , C−
 , C ,

T σx , T σ y , Tσ
(a−a) , Tσ

(b−b)
X π/d(, ) Cv(C)  e , C , T σx , Tσ y
Z π/d(, β) Cs(C)  e , T σ y
Σ π/d(α, α) Cs(C)  e , T σ

(a−a)
Δ π/d(α, ) Cs(C)  e , T σx
Λ π/d(α, β) C  e

Source: Dmitriev, V.A., Eur. J. App. Phys., , . With permission.
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can expect the corresponding eigenwaves with symmetry-induced degeneracies to be split by sym-
metry reduction into two different nondegenerate eigenwaves. This splitting can be predicted without
numerical calculations by inspection of the irreducible representation Tables.

3.7 Conclusions

In this chapter, we have used symmetry principles and group theory as basic tools for the investigation
of complex media. Advantages of the group-theoretical methods are their universality, independence
of the results on frequency and on details of the structure, and simplicity of calculations. The higher
the symmetry the more the information one can obtain from the theory. However, the frameworks of
these methods which are purely geometrical ones are restricted and naturally, they cannot substitute
the electrodynamic methods. One should consider group theory as an auxiliary analytical tool which
can be used before the electrodynamic calculations.

The group-theoretical methods allow one:

. To calculate the structure of material tensors. The calculated tensors can be used, in par-
ticular, to predict physical effects which can exist in a given medium and, according to
Neumann’s principle, those effects which are forbidden in the medium completely.

. To calculate the structure of a matrix (impedance, scattering) in the circuit theory
of artificial particles.

. To resolve the problem of reciprocity and bidirectionality of a medium.
. To define

a. Degeneracy of eigenmodes in a given medium

b. Lifting of degeneracy of eigenmodes in a medium by an external perturbation

c. The structure of Green’s tensors in a given medium []

d. Electromagnetic modes of artificial particles

e. Magneto-optical response of a symmetrical metamaterial []

Some other examples of application of group theory to electromagnetics can be found in [,].

Appendix A: Elements of Group Theory and Theory
of Representations

In the modern literature, there are many publications devoted to the group theory (see, e.g., books

from the group theory and the theory of representations which is used in this chapter.
Group. A group G is a set of distinct elements ui ∈ G for which a combining operation called the

product is defined. By definition, the set of elements constituting a group:

. Satisfies the following condition: if ui and u j are elements of G, their product ui u j is also
an element of the same group

. Possesses an associative law of combination, i.e., ui(u juk) = (ui u j)uk

. Contains a unit element e such that eui = ui e = ui

. For every ui contains an inverse element u−
i such that u−

i ui = ui u−
i = e

The number of elements of a group is its order M. The order of the group may be finite or infinite.
If it is possible for an infinitesimal change in a group element to come to another element, the group
is called continuous. Using a small number of elements called generators one can get all the other
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elements of the group, i.e., every element of a group can be written as a product of generators and
their inverses.

In general, any element of a group commutes only with the unit element and with the inverse one.
If all the elements of a group commute, the group is called Abelian.

Subgroup. Any subset H of G which by itself forms a group is called a subgroup. All the four above
properties are inherent in a subgroup H as well. A subgroup H of a finite group G has an index.
The index which is always an integer is defined by the quotient of the orders of the group and the
subgroup.

Point groups. The groups of our interest are those whose elements describe geometrical or physical
transformations. The geometrical transformations are Space rotations and reflections. All the sym-
metry operations of an object form a point group. All the axes and planes of a point group have at
least one common point of intersection.

Representations. The theory of representations deals with mapping of groups on groups of linear
operators (for example, matrices, see Appendix D). If a set of N × N square matrices Ru has, with
respect to ordinary matrix multiplication, the properties (Equations . through .) of a group G
written above, then this set forms a representation of G. Hence, the matrices Ru satisfy the equation

R ui ⋅R u j = R ui u j , (.A.)

where ui and u j are any two elements of the group G. The square matrices Ru are unitary and non-
singular and their order of them N is called the dimension of the representation. The matrices Ru
form a group of linear transformations.

Matrix representations of a group G can be brought into a block-diagonal form by a similarity
transformation. The blocks of the transformed representations in the simplest forms which cannot
be reduced further are called irreducible representations of the Group G.

Appendix B: Notations of Elements of Symmetry, Symmetry
Operations, and Point Groups

Different systems of group notations are used in practice []. The most popular systems are the
International (devised by Hermann and Mauguin), the Schoenflies and the Shubnikov ones.

Below, we shall describe briefly the Schoenflies system which is used in this chapter. Notice that
the notations of group elements, of symmetry operations, and the notations of the groups themselves
may coincide. For example, the symbol C denotes the operation of rotation about an axis by π, and
also it may denote the group C consisting of the two elements: the identity e and the rotation C.

Notations of group elements. The n-fold proper rotations are considered as elementary operators.
In order to obtain the remaining operators, one can form products of the rotations with the space
inversion, or alternatively with the reflection in a plane perpendicular to the n-fold axis. We shall
consider first the notations of the symmetry elements.

A proper rotation through π/n (where n is an integer) about a certain axis is denoted by the
symbol Cn (where C means Cyklus). The symbol σ (and also Cs) defines reflection in a plane. The
reflection in a plane perpendicular to the principal axis is denoted by σh (the subscript h for hori-
zontal), while σv (the subscript v for vertical) is used for reflection in a plane passing through the
axis, and σd (d for diagonal) designates a mirror plane containing the axis but diagonal to an already
existing plane σv. A combined operation Cn and σh is denoted by Sn (where S means Spiegelaxe)
which is improper rotation. Therefore, the inversion i which presents a rotation C (rotation by π)
followed by the reflection σh may also be denoted as S.

Group notations. Let us apply now to the group notations in the Schoenflies system. The groups
with one axis of symmetry are denoted by Cn . Joining σh to Cn gives the groups Cnh. The groups

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Symmetry Principles and Group-Theoretical Methods 3-17

having an n-fold axis and a system of twofold axes at right angles to it are denoted by Dn (dihedral
groups). Dnd and Dnh contain in addition the planes σd and σh, respectively. The higher groups T and
O contain only pure rotations, but Td also has planes of symmetry, and Th and Oh contain the center
of symmetry. The Schoenflies system is particularly suitable for notation of the magnetic groups of
the third category. In this case, the notation shows explicitly the structure of the group, i.e., the unitary
subgroup and the antiunitary elements.

Continuous group notations. In the continuous point groups, the index n which defines the order
of the axis is replaced by the symbol∞ for the axes of an infinite order. Thus, the axis of an infinite
order is denoted by C∞. With n →∞, the group Dn is transformed in the group D

∞
, the group Cnv

in C
∞v , and so on. Two highest point groups describing spherical symmetry have special notations,

namely, the groups consisting of an infinite number of axes of an infinite order are denoted by K.
Adding an infinite number of planes of symmetry to the group K, one obtains the group Kh .

Appendix C: Brief Description of Magnetic Groups

Time-reversal operator. For magnetic structures, it is necessary to include into consideration the Time
reversal T as an element of magnetic groups and combinations of space symmetry operations with
T . T changes the sign of time, i.e., (t) → −(t). The Time reversal T commutes with all the space
elements. It has the property TT = T = e (e is the unit element). Thus the elements T and e form a
group. The Time-reversal operator T corresponding to the group element T belongs to the so-called
antiunitary operators []. This operator has no unitary matrix representation.

When we deal with electromagnetic processes in the frequency domain, the usual description of
electromagnetic quantities is in terms of complex functions. The effect of the operator T on time-
harmonic quantities is expressed as follows. First of all, the operator reverses the velocities and
changes the current directions, the signs of electron spins, magnetic fluxes, magnetic fields and
Poynting’s vector. All these quantities are odd in Time. Secondly, it complex conjugates all the elec-
tromagnetic quantities. This property is verified easily by considering Fourier transformation of the
Time-reversed quantities [].

Strictly speaking, there exists no Time-reversal symmetry in physical processes. The main reason
of this is causality, i.e., initial conditions impose asymmetry with respect to the past and the future.
In the presence of losses in a medium, the physical processes are not the same in a given and in the
Time-reversed medium. For example, the operator T converts a damping electromagnetic wave into
a growing one and vice versa because the dissipative processes are not Time reversible.

It was suggested in [] to use along with T another operator which was called the restricted Time-
reversal operator. This operator T fulfills the same functions as T with one exception: it is not applied
to the imaginary dissipative terms of the electromagnetic quantities. This preserves the damping or
growing character of the wave under the Time reversal.

Categories of magnetic groups. There exist three categories of discrete and continuous point mag-
netic groups. The group of the first category G consists of a unitary subgroup H (in our case, it
contains the usual rotation–reflection elements) and products of T with all the elements of H. The
full group is then H + TH including T = Te, i.e., the group of the first category G is a direct product
of the group H and the group formed by T and e.

In the case of magnetic groups of the second category G, there are no Space elements combined
with the Time reversal T , and T itself is not an element of the groups. The nomenclature and the
notations of the groups of the first (nonmagnetic) category and that of the second (magnetic) category
coincide. In order to distinguish them, we use bold-face type for the groups of the second category.

The magnetic groups of the third category G(H) contain, in addition to the rotation–reflection
elements of the unitary subgroup H, an equal number of antiunitary elements which are the pro-
duct of T and the usual geometrical symmetry elements. These combined elements we call antiaxes,
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TABLE .C. Content of Magnetic Groups of Symmetry
First Category Second Category Third Category
G = H + T H including T G without T G(H) = H + T H′ , H′ ≠ H

T only in combination with
rotation–reflections

antiplanes, and anticenter of symmetry. The full group is H+TH′. Notice that the elements of H′ are
distinguished from those of H.

The unitary elements of a magnetic group of the third category form a unitary subgroup of index .
It means that in every group of the third category there are equal number of elements with and with-
out T . In contrast to the groups of the first category, the operator T itself is not an element of the
magnetic groups of the third category. The content of the three categories of magnetic groups is
presented in Table .C..

Appendix D: Matrix Representations of 3D Point Symmetry
Operators

In order to describe symmetry operations in D space, such as rotations and reflections, we use D
matrix representations of the point groups. Each element of a group corresponding to a point sym-
metry can be presented by a  ×  square orthonormal real matrix R, i.e., R− = Rt , detR = ±; the
superscript t means matrix transposition, the superscript − denotes the inverse matrix. Thus, these
representations are unitary. The unit element of the group has the unit × matrix as a representation.
The matrices R fulfilling rotations through an angle α about the axes x , y, and z are

RCx
=
⎛
⎜
⎝

  
 cos α − sin α
 sin α cos α

⎞
⎟
⎠

, RC y
=
⎛
⎜
⎝

cos α  sin α
  

− sin α  cos α

⎞
⎟
⎠

, RCz
=
⎛
⎜
⎝

cos α − sin α 
sin α cos α 

  

⎞
⎟
⎠

,

(.D.)

respectively.
The D matrix representations for reflections in the planes x = , y = , and z =  are written

respectively as

Rσx
=
⎛
⎜
⎝

−  
  
  

⎞
⎟
⎠

, Rσ y
=
⎛
⎜
⎝

  
 − 
  

⎞
⎟
⎠

, Rσz
=
⎛
⎜
⎝

  
  
  −

⎞
⎟
⎠

, (.D.)

and the matrix representing inversion i (the center of symmetry) is

Ri =
⎛
⎜
⎝

−  
 − 
  −

⎞
⎟
⎠

. (.D.)

The determinant of R for rotations (.D.) is + but it is equal to − for reflections (.D.) and
inversion (.D.).

References

. Olver, P. J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, .
. Fushchich, W. I. and Nikitin, A. G., Symmetries of Maxwell’s Equations, D. Reidel, Dordrecht, .

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Symmetry Principles and Group-Theoretical Methods 3-19

. Padilla, W. J., Group theoretical description of artificial electromagnetic metamaterials, Opt. Express,
(), –, .

. Onsager, L., Reciprocal relations in irreversible processes, Phys. Rev., , –, .
. Altman, C. and Suchy, K., Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, Kluwer,

Dordrecht, .
. Prigogine, I., From Being to Becoming: Time and Complexity in the Physical Sciences, W. H. Freeman

and Company, San Francisco, CA, .
. Potton, R. J., Reciprocity in optics, Rep. Prog. Phys., , –, .
. Landau, L. D. and Lifshits, E. M., Electrodynamics of Continuous Media, Pergamon Press, Oxford, .
. Korn, G. A. and Korn, T. M., Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New

York, .
. Nye, J. F., Physical Properties of Crystals, Oxford University Press, New York, .
. Koptsik, V. A., Shubnikov Groups, Handbook on the Symmetry and Physical Properties of Crystal

Structures, Moscow State University, Moscow,  (in Russian).
. Dmitriev, V., Tables of the second rank constitutive tensors for linear homogeneous media described

by the point magnetic group of symmetry, in Progress in Electromagnetics Research, J. A. Kong (Ed.),
PIER, EMW Publishing, Cambridge, MA, Vol. , pp. –, .

. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, .
. Post, E. J., Formal Structure of Electromagnetics: General Covariance and Electromagnetics, Courier

Dover Publications, Mineola, NY, .
. Birss, R. R., Symmetry and Magnetism, North Holland, Amsterdam, .
. Dresselhaus, M. S., Dresselhaus, G., and Jorio, A., Group Theory: Application to the Physics of

Condensed Matter, Springer-Verlag, Berlin, Heidelberg, .
. Wu-Ki Tung, Group Theory in Physics, World Scientific, Philadelphia, .
. Lax, M., Symmetry Principles in Solid State and Molecular Physics, Wiley, New York, .
. Dmitriev, V., Space–Time reversal symmetry properties of electromagnetic Green’s tensors for com-

plex and bianisotropic media, Progress in Electromagnetic Research, J. A. Kong (Ed.), PIER, EMW
Publishing, Cambridge, MA, Vol. , pp. –, .

. Johnson, S. G. and Joannopoulos, J. D., Photonic Crystals: The Road from Theory to Practice, Kluwer,
Boston, MA, .

. Bradley, C. J. and Cracknell A. P., The Mathematical Theory of Symmetry in Solids, Clarendon,
Oxford, .

. Baum C. E. and Kritikos N. H. (Eds.), Electromagnetic Symmetry, Taylor & Francis, Washington,
DC, .

. Barybin, A. A. and Dmitriev V. A., Modern Electrodynamics and Coupled-Mode Theory: Application to
Guided-Wave Optics, Rinton Press, Princeton, NJ, .

. Tretyakov, S. A. and Sochava, A. A., Proposed composite material for nonreflecting shields and
antenna radoms, Electron. Lett., , –, .

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

4
Differential Forms and

Electromagnetic Materials

Ismo V. Lindell
Helsinki University of Technology

. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
. Field and Medium Equations . . . . . . . . . . . . . . . . . . . . . . . . . -
. Classes of Electromagnetic Media . . . . . . . . . . . . . . . . . . . . -

Perfect Electromagnetic Conductor ● Q-Media ● Generalized
Q-Media ● IB-Media ● Self-Dual Media

. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
Appendix: Multivectors, Multiforms, and Dyadics . . . . . . . . . -

Notation ● Products ● Dyadics ● Products of Dyadics ●
Identities

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

4.1 Introduction

Differential-form calculus is a branch of mathematics based on the algebra of multivectors (ele-
ments of spaces E , . . . , En) and multiforms (dual multivectors, elements of spaces F , . . . , Fn)
[]. The notation applied here follows closely that of Ref. [] and a short summary is given in
the Appendix. Corresponding representation using tensors instead of dyadics can be found, e.g.,
in Ref. []. Application of differential forms to electromagnetic theory instead of the classical
Gibbsian vector formalism [,] is suggested by the simplicity and elegance obtained in writing the
basic Maxwell equations as []

d ∧Φ = γm , d ∧Ψ = γe . (.)

Here

d =


∑
i=

ei ∂xi = ds + e∂x (.)

is the four-dimensional (D) differential operator and ∧ the exterior product, while

Φ = B + E ∧ ε, Ψ = D −H ∧ ε (.)

represent the D electromagnetic two-forms (fields depending on the spatial coordinates x , x , x
and the temporal coordinate x = τ = ct) in terms of spatial (D) two-forms B, D and one-forms E,
H. The electric and magnetic source three-forms γe , γm can be expressed as

γe = ρe − Je ∧ ε, γm = ρm − Jm ∧ ε (.)

in terms of combinations of spatial (D) charge three-forms ρe , ρm and current two-forms Je , Jm .

4-1
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Inserting the D expansions (Equations . and .), the D Maxwell equations (Equation .) can
be split in more familiar-looking D equations as

ds ∧ E + ∂τB = −Jm , ds ∧ B = ρm , (.)

ds ∧H − ∂τD = Je , ds ∧D = ρe . (.)

Here ds denotes the spatial part of the differential operator d and ∂τ = ∂x = ∂/∂τ.
Linear medium relations between the field two-forms Φ ∈ F and Ψ ∈ F can be compactly

handled in terms of the medium dyadic M ∈ FE as

Ψ =M∣Φ. (.)

Another, equivalent, way to represent the medium relation is by mapping the one-form Ψ with the
quadrivector eN = e to the bivector eN⌊Ψ ∈ E, in which case the medium relation is represented as

eN⌊Ψ =Mg ∣Φ, (.)

through the modified medium dyadic

Mg = eN⌊M ∈ EE . (.)

Both M and Mg possess × matrix components when expanded in certain bases, which means that
they correspond to  parameters in the general case. In this presentation we consider some obvious
ways to define classes of media by reducing the generality of the medium dyadic M or Mg .

4.2 Field and Medium Equations

For simplicity, let us assume that there exist no magnetic sources γm = . Because of d ∧Φ = , the
field two-form can be expressed in terms of an electric potential one-form αe ∈ F in the form []

Φ = d ∧ αe , (.)

whence inserting the medium Equation . in Equation . the following second-order equation can
be formed for the potential:

d ∧Ψ = d ∧M∣(d ∧ αe) = γe . (.)

The differential operator in Equation . can be made more compact by transforming the equation
by eN⌊ to the form

(Mg⌊⌊dd)∣αe = ge , (.)

where ge = eN⌊γe ∈ E is the vector counterpart of the electric source three-form γe . Equation .
represents the potential equation in terms of the dyadic operator Mg⌊⌊dd ∈ EE. Solving Equa-
tion . analytically for a bianisotropic medium with the general dyadic Mg appears to be out of
reach, but solutions can be found in some special classes of media. Also, it is of interest to find possible
plane-wave solutions of the form

αe(x) = αo exp(ν∣x), (.)

where ν ∈ F is the D wave one-form corresponding to the Gibbsian D wave vector k. αo is the
potential amplitude one-form. Because the plane wave does not have sources in the finite region,
Equation . reduces to the algebraic equation

(Mg⌊⌊νν)∣αo = . (.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Differential Forms and Electromagnetic Materials 4-3

It is of interest to compare D formulation of media with the classical D formulation using Gibb-
sian medium dyadics єg , ξ

g
, ζ

g
, and μ

g
∈ EE. Medium relations (Equations . and .) correspond

to the conditions

(D
B) =

⎛
⎝

єg ξ
g

ζ
g

μ
g

⎞
⎠
⋅ ( E

H) , (.)

where the fields are understood as Gibbsian vectors and “⋅” is the Gibbsian dot product. A direct
relation between the modified medium dyadic Mg and the D Gibbsian medium dyadics can be
expressed as []

Mg = єg
∧

∧
ee − (e⌊IT + e ∧ ξ

g
)∣μ−

g ∣(I⌋e − ζ
g
∧ e), (.)

which allows one to interpret results in terms of the Gibbsian medium dyadics.

4.3 Classes of Electromagnetic Media

Let us now consider some classes of media defined in terms of the medium dyadic M or the corres-
ponding modified medium dyadic Mg taking a simple analytic appearance or satisfying some basic
condition.

4.3.1 Perfect Electromagnetic Conductor

In Gibbsian formalism the simplest electromagnetic medium is the isotropic medium represented by
two scalars є and μ. Such a medium is not isotropic in the sense of differential forms. For example, in
the D relation D = єE the permittivity є cannot be a scalar but, rather, a dyadic є ∈ FE mapping
one-forms to two-forms. Moreover, a Gibbsian unit dyadic∑ ei ei depends on the choice of the vector
basis {ei} while the unit dyadic I = ∑ ei ε i , where {ε i} is the reciprocal basis, is independent of
that choice.

The only truly isotropic medium satisfies the condition

Ψ = MΦ, (.)

for some scalar M (physicists call this pseudoscalar). The medium dyadic for such a medium is, thus,
of the form

M = MI()T = M


IT∧
∧
IT = M∑

i< j
ε i jei j . (.)

Equation . describes a medium which turns out to be invariant in all affine transformations,
including motion of the observer with constant velocity []. Inserting Equation . in Equation .
yields the D conditions

D = MB, H = −ME. (.)

It does not appear easy to express these in terms of Gibbsian medium parameters. However, a possible
representation as a bi-isotropic medium with four scalar parameters is defined through the limit []

(єg ξg
ζg μg

) = q (M 
 /M) , q →∞. (.)
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Although the four Gibbsian parameters have infinite values, the following combinations remain
finite:

єg μg − ξg ζg = , єg/μg = M . (.)

This is an example of a medium which is quite simple to describe in terms of differential forms
while the classical Gibbsian representation appears somewhat artificial. Anyway, Equation . is of
great interest since it defines the simplest medium condition between the field two-forms.

One can show that in a medium defined by Equation . the Maxwell stress dyadic vanishes which
means vanishing Poynting vector and energy density, for example, in Ref. []. Thus, electromagnetic
fields cannot propagate in such a medium. Because the PMC and PEC media can be conceived as
special cases of the present medium,

M = ⇒ H = , D = , (PMC), (.)

/M = ⇒ E = , B = , (PEC). (.)

The medium defined by Equation . has been coined the perfect electromagnetic conductor
(PEMC) and M is the PEMC admittance parameter [,]. In physics, the parameter M is known
as the axion []. One can show that PEMC makes a boundary with nonreciprocal properties if the
parameter satisfies  < ∣M∣ < ∞. For example, a plane wave reflecting from a PEMC plane experi-
ences rotation of polarization []. Besides representing a boundary, the PEMC concept is also useful
as an effective medium for fields restricted by some conditions.

4.3.2 Q-Media

The general modified medium dyadic Mg ∈ EE is characterized by  parameters. The number of
parameters is reduced to  if it is represented in terms of a dyadic Q ∈ EE in the form

Mg = Q() = 

Q∧
∧
Q. (.)

One can show that in the D space a dyadic mapping two-forms to bivectors can always be expressed
in this form in terms of some dyadic Q. The reason is, of course, that the dyadic spaces EE and
EE have the same dimension . This is not so in D, where Equation . defines a class of media
labeled as that of Q-media in Refs. [,].

The wave equation (Equation .) is radically simplified for a Q-medium. Applying the dyadic
identity (Equation .A.) in the form

Q()⌊⌊dd = (Q∣∣dd)Q − (Q∣d)(d∣Q), (.)

Equation . becomes

(Q∣∣dd)Q∣αe − (Q∣d)(d∣Q∣αe) = ge . (.)

Because the potential is not unique, one can assume an additional scalar condition (gauge condition)
for the four-potential αe . Assuming the condition

d∣Q∣αe = , (.)

which can be regarded as the generalized Lorenz condition, the wave equation (Equation .) is
simplified to

(Q∣∣dd)αe = Q−∣ge . (.)
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Equation . is essentially simpler than Equation ., because the dyadic operator Mg⌊⌊dd is
replaced by a scalar operator of the second order, d∣Q∣d. Depending on the nature of the dyadic
Q, Equation . represents a wave equation (hyperbolic) or D Laplace equation (elliptic) for which
standard solution processes can be applied.

Conditions for the Gibbsian medium dyadics єg , ξ
g
, ζ

g
, μ

g
corresponding to the Q-medium can

be found after some algebraic steps in the form [,]

aєg + bμT
g = , ξ

g
+ ξT

g = , ζ
g
+ ζT

g = , (.)

where the scalar coefficients a, b may have any values. These conditions define a medium studied
previously in Refs. [,]. A plane wave in such a medium is characterized by a single wave-vector
surface of the second order. This means that a plane wave in a Q-medium has no birefringence. One
can show that the class of Q-media can be defined by the D condition []

aMg + bM−T
g ⌋⌋eN eN = , (.)

which is a compact representation of the three conditions (Equation .).

4.3.3 Generalized Q-Media

An obvious generalization to Equation . is the definition

Mg = Q() +AB, (.)

where A, B ∈ E are two bivectors. In this case we can apply the same gauge condition (Equation .)
for the potential αe , whence the potential equation (Equation .) becomes

[(Q∣∣dd)Q + (A⌊d)(B⌊d)]∣αe = ge . (.)

This equation still involves a dyadic operator. The corresponding inverse dyadic operator can be
expressed as

[(Q∣∣dd)Q + (A⌊d)(B⌊d)]
−

= 
L(d)

Q− − 
L(d)

Q−∣(A⌊d)(B⌊d)∣Q− , (.)

where the two scalar operators are defined by

L(d) = Q∣∣dd, L(d) = (Q∣∣dd)(Q + BA⌊⌊Q−)∣∣dd. (.)

Thus, the solution of Equation . can be written in two parts: αe = αe + αe as

αe =


L(d)
Q−∣ge , αe = −


L(d)

Q−∣(A⌊d)(B⌊d)∣Q−∣ge . (.)
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The potential can now be found by solving two equations involving the scalar operators

L(d)αe = Q−∣ge , (.)

L(d)αe = −Q−∣(A⌊d)(B⌊d)∣Q−∣ge . (.)

L(d) is of a factorized fourth-order form. The class of media defined by the condition (Equation .)
has been called that of generalized Q-media [,]. Because of the factorized operator, the plane wave
is characterized by a k-vector surface which does not consist of a single quartic (fourth-order surface)
but of two quadrics (second-order surfaces).

Conditions for the Gibbsian medium dyadics corresponding to a generalized Q-medium were
derived in Ref. [] after considerable algebraic work. They can be expressed in the form

aєg + bμT
g = pq + qp , (.)

ξ
g
+ ξT

g =

a
(pq + qp), ζ

g
+ ζT

g =

b
(pq + qp), (.)

for some scalars a, b and vectors p , p , q , q. These conditions turn out to correspond to those of
the “decomposable medium” defined previously in Refs. [,]. It is most obvious that the definition
(Equation .) in terms of differential forms appears much simpler than that using Gibbsian dyadics
satisfying the conditions (Equations . and .). Another form for the condition for Mg defining
a generalized Q-medium is obtained from Equation . as

a(Mg −AB) + b(Mg −AB)−T
g ⌋⌋eN eN = , (.)

which should be valid for some bivectors A, B and scalars a, b.

4.3.4 IB-Media

A class of media with medium dyadics M ∈ FE defined in terms of a dyadic B ∈ EF as

M = (I∧
∧
B)T (.)

is labeled as that of IB-media. The number of free parameters is again reduced from  to . To study
its basic properties, let us first decompose

B = trB


I +Bo , trBo =  (.)

where Bo is the trace-free part of B. Because of the relation

trM = I()∣∣(I∧
∧
B)T = (I()⌊⌊IT)∣∣BT = trB, (.)

we can expand

M = trM


I()T +Mo =
trB


I()T + (I∧
∧
Bo)T, (.)

where Mo is the trace-free part of M. Applying the following special case of the dyadic identity
(Equation .A.):

(I∧
∧
B)⌊⌊IT = (trB)I + B, (.)
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Equation . can be inverted as

B = 

(MT⌊⌊IT − trM


I). (.)

Introducing the identity []

I()T⌊⌊C = (trC)I()T − (CT⌊⌊I)∧
∧
IT + CT, (.)

valid for any dyadic C ∈ EF, and replacing C by MT
o with I() = eN εN inserted, yields

I()T⌊⌊MT
o = εN eN⌊⌊MT

o = εN⌊(eN⌊Mo)T = −Mo , (.)

or

(eN⌊Mo)T = −eN⌊Mo . (.)

This states that the modified medium dyadic of a trace-free IB-medium is antisymmetric. The class
defined by antisymmetric modified medium dyadics was labeled as that of skewon media by Hehl
and Obukhov []. Thus, the IB-medium consists of axion and skewon components corresponding to
 and  medium parameters, respectively. The  parameters involve those responsible for the chiral
and Faraday rotation effects of the medium [].

The condition for a medium dyadic to be of the form as in Equation . is now obtained from
Equation . by inserting Equation . as

I()T⌊⌊(MT − trM


I()) = −M + trM


I()T, (.)

or

I()T⌊⌊MT = trM


I()T −M. (.)

If this is satisfied by M, the dyadic B can be found from Equation ..
Let us consider plane-wave propagation in an IB-medium. Substituting Equations . and .

in Equation . yields

d ∧ (I∧∧B)T∣(d ∧ αo) exp(ν∣x) = , (.)

from which we obtain

ν ∧ (I∧
∧
B)T∣(ν ∧ αo) = ν ∧ (BT∣ν) ∧ αo = . (.)

This is the sole condition for the one-forms ν and αo . Actually, ν can be freely chosen. The case
ν ∧ (ν∣B) =  i.e., ν being a left eigen-one-form of the dyadic B is not interesting because it will
eventually lead to vanishing of the field Φo = ν ∧ αo . Thus, ν must be chosen to satisfy ν ∧ (ν∣B) ≠ .

The dependence of the potential amplitude αo on ν is now obtained from Equation . which tells
us that the one-forms αo , ν and BT∣ν = ν∣B are linearly dependent and one of them can be expressed
in terms of the other two. Thus, the potential amplitude one-form can be written in the form

αo = aν + bν∣B, (.)
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where a, b are two arbitrary coefficients. Actually, the coefficient a can be ignored since it does not
affect the field two-form

Φo = ν ∧ αo = bν ∧ (ν∣B). (.)

Example

As a concrete example of an IB-medium let us consider the simplest generalization of the PEMC
(axion) medium as defined by two scalar parameters M and N in the form

B = M


I + N

(Is − eε). (.)

In this case the medium dyadic becomes

M = (I∧
∧
B)T = MI()T + N(I()Ts − IT

s
∧

∧
εe). (.)

Obviously, for N =  we have the axion (PEMC) medium while for M =  the dyadics B and M
are trace-free and, thus, the medium falls to the class of skewons. This kind of medium was called
spatially isotropic in Ref. [, pp. –], while the skewon medium with M =  was considered in
Ref. [, pp. –].

The modified medium dyadic corresponding to Equation . can be expanded as

Mg = (M + N)(ee + ee + ee) + (M − N)(ee + ee + ee). (.)

Obviously, this dyadic is symmetric for N =  and antisymmetric for M = . The medium conditions
can be represented by

D = (M + N)B, H = (N −M)E, (.)

which appear as generalizations of those of the PEMC medium [].
Actually, we can find a Gibbsian representation similar to that in Equation . as the limit

(єg ξg
ζg μg

) = q
⎛
⎜
⎝

√
M − N

√
M+N
M−N√

M−N
M+N /

√
M − N

⎞
⎟
⎠

, q →∞ (.)

and it obviously reduces to the PEMC representation (Equation .) for N → . In the other case
M → , we obtain

(єg ξg
ζg μg

) = q (N −
 −/N ) , q →∞ (.)

when absorbing the imaginary unit in the parameter q. Expressing

M = P cosh ψ, N = P sinh ψ, (.)

a more compact representation of Equation . can be obtained,

(єg ξg
ζg μg

) = q( P eψ

e−ψ /P) , q →∞. (.)
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In spite of infinite-valued parameters, they satisfy the finite conditions

єg μg − ξg ζg = , єg/μg = P = M − N (.)

for q →∞.

4.3.5 Self-Dual Media

Since any medium dyadic M corresponds to a  ×  matrix, it always satisfies an algebraic equation
of the sixth order. On the other hand, it is obvious that medium dyadics satisfying a second-order
equation define a certain class of media. The general second-order equation can be written in the form

M − (M
+
+M

−
)M +M

+
M
−
I()T =  (.)

for some parameters M
+

, M
−

. It can be shown that media satisfying Equation . are invariant
in some duality transformations, which is why such media have been called self-dual in the past
[]. It is easy to see that if M satisfies Equation ., the dyadic

M′ = D∣M∣D− (.)

also satisfies the same equation for any D ∈ FE possessing a finite inverse D−.
Expressing Equation . as

(M −M
+
I()T)∣(M −M

−
I()T) = (M −M

−
I()T)∣(M −M

+
I()T) = , (.)

and defining two dyadics

P
+
= M −M

−
I()T

M
+
−M

−

, P
−
= M −M

+
I()T

M
−
−M

+

, (.)

one can see that M
+

and M
−

represent eigenvalues of the eigenproblem

M∣Φ
±
= M

±
Φ
±

, Φ
±
= P

±
∣Φ, (.)

where Φ
+

and Φ
−

are the corresponding eigenfield two-forms for some two-form Φ. This means
that, for a self-dual medium, there exist at most two distinct eigenvalues. Let us assume M

+
≠ M

−
in

the following.
The dyadics P

±
∈ FE are orthogonal projection operators, because they satisfy

P
±
= P

±
, P

+
∣P
−
= P

−
∣P
+
= , (.)

and

P
+
+ P

−
= I()T , M = M

+
P
+
+M

−
P
−

. (.)

Actually, we can decompose any given two-form Φ in its eigenfields as

Φ = (P
+
+ P

−
)∣Φ = Φ

+
+Φ

−
. (.)

From Equation . the inverse of the medium dyadic can be expressed as

M− = 
M
+

M
−

((M
+
+M

−
)I()T −M) = 

M
+

P
+
+ 

M
−

P
−

. (.)
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As an example, a self-dual medium dyadic is defined by two scalars M
+

, M
−

and the projection
dyadics

P
+
= εe + εe + εe , (.)

P
−
= εe + εe + εe , (.)

in some reciprocal bases ei , ε i . The sum of the projection dyadics obviously equals I()T and the
eigenfields Φ

+
, Φ
−

are any two-forms in the subspaces spanned by the respective basis two-forms
(ε , ε , ε) and (ε , ε , ε).

After some algebra, one can show that the D Gibbsian medium dyadics for the self-dual medium
must be of the form []

μ
g
= Q, єg = M

+
M
−
Q, (.)

ξ
g
= M

+
+M

−


Q −T, ζ

g
= M

+
+M

−


Q +T, (.)

with some dyadics Q, T ∈ EE. The number of free medium parameters can be seen, from Equa-
tion ., to be . The class of self-dual media was previously introduced through D Gibbsian
analysis in Ref. [] where it was shown that the D Green dyadic can be expressed in analytic form.

4.3.5.1 Almost-Complex Structure

Let us define a dyadic J ∈ FE as one satisfying the equation

J = −I()T. (.)

Because dyadics J appear to be similar to an imaginary unit, they are said to form an almost-complex
structure in the space of medium dyadics M [,]. In fact, expressing Equation . in the form

(M − 

(M
+
+M

−
)I()T)


= 


(M
+
−M

−
)I()T, (.)

any self-dual medium dyadic can be expressed in the form

M = 

(M
+
+M

−
)I()T + j


(M
+
−M

−
)J, (.)

for some dyadic J satisfying Equation .. Another form for the medium dyadic is

M = Mo exp( jψJ), (.)

with

Mo =
√
(M
+
+M

−
)/, tanh ψ = M

+
−M

−

M
+
+M

−

. (.)

4.3.5.2 AB Media

As a special case of self-dual media let us consider the class of AB (affine bianisotropic) media, corre-
sponding to the case when the dyadic T in Equation . is a multiple of the dyadic Q. The medium
dyadic can then be expanded in the form []

M = αI
()T
s + є′B ∧ e + μ−ε ∧B− + βε ∧ IT

s ∧ e, (.)
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where Is = eε + eε + eε denotes the spatial unit dyadic and B ∈ FE is a dyadic mapping D
one-forms to two-forms. Equation . satisfies Equation . as

M − (α − β)M + ( є′

μ
− αβ) I()T = , (.)

which corresponds to the eigenvalues

M
±
= 


(α − β ±

√
(α + β) − (є′/μ)) . (.)

The AB medium is invariant in all spatial affine transformations. It corresponds to the medium whose
Gibbsian medium dyadics єg , ξ

g
, ζ

g
, μ

g
are all multiples of the same dyadic G = e⌊B ∈ EE.

4.3.5.3 Fields

Considering fields from electric and magnetic sources in a self-dual medium, the Maxwell equations
for the eigenfields become uncoupled and have the simple form

d ∧Φ
±
= γm±, (.)

d ∧Ψ
±
= M

±
d ∧Φ

±
= γe±. (.)

To avoid contradiction, these must be the same pair of equations and the decomposed sources must
satisfy

γe± = M
±

γm±. (.)

Thus, from

γe = γe+ + γe−, (.)

γm = γm+ + γm−, (.)

we obtain the decompositions

γm± = ±
γe −M

∓
γm

M
+
−M

−

= γe±

M
±

. (.)

The eigenfields are defined by Equation . together with polarization restrictions of the form

A
∓
∣Φ
±
= , (.)

where the bivectors A
±

are

A
∓
= A∣P

∓
, (.)

for an arbitrary bivector A.
Because the eigenfields are linearly related as Ψ± = M

±
Φ
±

, this can be interpreted so that each of
the eigenfield components sees the medium as an effective PEMC with respective PEMC admittance
M
±

. Since we know that there is no power propagation in a PEMC medium, the eigenfields cannot
be power orthogonal. On the contrary, power propagation in a self-dual medium comes through an
interaction of the eigenfields. In fact, considering the stress dyadic []

T = 

(Ψ ∧ IT⌋Φ −Φ ∧ IT⌋Ψ), (.)
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after expanding in terms of eigenfields this becomes

T = (M
+
−M

−
)(Φ

+
∧ IT⌋Φ

−
−Φ

−
∧ IT⌋Φ

+
), (.)

which clearly shows us that the power effects are due to the interaction of Φ
+

and Φ
−

.
The significance of the class of self-dual media is in that certain transformations can be made for the

sources and fields without changing the medium. This allows one to find a larger number of solutions
for the field problem in that medium []. Further discussion on the properties of the transformation
does not fall in the scope of this chapter.

4.4 Conclusion

In this short overview it was demonstrated that differential-form formalism aided by suitably
extended dyadic algebra can be applied to the analysis of electromagnetic fields in various bi-
anisotropic media. Certain classes of media could be defined in simpler terms when compared to their
definition in classical Gibbsian vector analysis. Main points in the analysis of fields in these media,
treated more extensively in previous articles found in the list of references, were given and their
connection to the corresponding studies using the classical Gibbsian analysis were briefly pointed out.

Appendix: Multivectors, Multiforms, and Dyadics

Application of differential forms in electromagnetic analysis requires some skill in using various iden-
tities in multivector and dyadic algebra. In the literature the notation varies slightly from author to
author. The present notation is based on that in Ref. [].

4.A.1 Notation

Differential-form formalism is based on two linear spaces: E containing vectors a, b . . . and F con-
taining dual vectors α, β, . . .. Fields (functions of space and time) of dual vectors like the electric and
magnetic fields E, H are called one-forms. Using the anticommutative exterior product∧ other linear
spaces are formed: E containing bivectors Σai ∧bi and F containing dual bivectors Σα i ∧β i . More
complicated products like a ∧ b ∧ c and α ∧ β ∧ γ give rise to multivectors and dual multivectors
(multiforms), respectively. Dyadic algebra introduced by Gibbs as a coordinate-free representation
of linear mappings in the D vector space [,] can be generalized to the algebra of differential forms,
as was shown in Ref. []. Dyadics mapping vectors to vectors form a linear space denoted by EF.
Other spaces are denoted similarly, e.g., those mapping two-forms to two-forms belong to the space
FE.

4.A.2 Products

Different products of multivectors and dual multivectors are listed below.

• The exterior product (wedge product) of vectors is associative, (a∧b)∧c = a∧(b∧c), and
anticommutative, a∧b = −b∧a. For a p-vector ap ∈ Ep and a q-vector bq ∈ Eq it is either
commutative or anticommutative according to the rule (superscript p in multivectors and
dual multivectors is not a power but shows its grade)

ap ∧ bq = (−)pqbq ∧ ap ∈ Ep+q . (.A.)
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p-vectors over an n-dimensional vector space span a linear space whose dimension is
n!/(p!(n − p)!). For example, in D vector space, bivectors (p = ) form a space of six
dimensions and trivectors a space of four dimensions.

• The duality product between a vector a and a dual vector α is denoted by a∣α = α∣a and
the result is a scalar. For a given basis of vectors {ei} the reciprocal basis of dual vectors
{ε j} satisfies the biorthogonality condition

ei ∣ε j = ε j ∣ei = δ i j . (.A.)

Expanding a = Σai ei , α = Σα jε j , the duality product gives

a∣α = ∑ ai α i . (.A.)

• Basis vectors and dual basis vectors generate the set of basis bivectors and dual bivectors
as ei j = ei ∧ e j , ε i j = ε i ∧ ε j satisfying the orthogonality ei j ∣εkℓ = δ i k δ jℓ . This can be
continued to p-vectors and dual p-vectors. In the n-dimensional space there is only one
basis n-vector eN = e∧⋯∧en and dual n-vector εN = ε∧⋯∧ εn . They satisfy eN ∣εN = .

• The incomplete duality product, also known as contraction, between a p-vector ap and
a dual q-vector αq is written as ap⌊αq for p > q and ap⌋αq for p < q and the result is a
(p − q)-vector or a dual (q − p)-vector, respectively. For p > q and βp−q being a dual
(p − q)-vector, αq ∧ βp−q is a dual p-vector and we define [], Eqn. (D.),

(ap⌊αq)∣βp−q = ap ∣(αq ∧ βp−q), βp−q ∣(αq⌋ap) = (βp−q ∧ αq)∣ap . (.A.)

Because of the property (Equation .A.), the incomplete duality product of a p-vector ap

and a dual q-vector αq obeys the rule

ap⌊αq = (−)q(p−q)αq⌋ap , p > q. (.A.)

4.A.3 Dyadics
• The dyadic product of a vector a ∈ E and a dual vector α ∈ F is presented by the classical

Gibbsian “no sign” notation as aα and the result is in the space of dyadics denoted by
EF. It defines a mapping of a vector b to a multiple of a as

(aα)∣b = a(α∣b), (.A.)

as a simple associative rule. More generally, any linear mapping from vector to another
vector can be expressed as a dyadic A ∈ EF:

A = ∑ ai α i . (.A.)

Correspondingly, AT, the transpose of A is in the space FE,

AT = ∑ α i ai , (.A.)

and it maps dual vectors to dual vectors. In the same way we can define dyadic spaces
EE , FF and, more generally, spaces like EpFp , FpEp , EpFn−p , which define mappings
between multivectors and/or dual multivectors of the same dimension.

• The duality product A∣A between two dyadics A , A ∈ EpFp or ∈ FpEp gives a dyadic in
the same space. In analogy to Gibbsian double-dot product [,], double-duality product
can be defined as (aα)∣∣(βb) = (a∣β)(α∣b) and, more generally, for dyadics Ai ∈ EF
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as A∣∣A
T
 . The result is a scalar. The double-duality product A∣∣B can also be defined for

dyadics A ∈ EpEp , B ∈ FpFp . Similarly, the incomplete double-duality products A⌊⌊B
and B⌋⌋A can be defined between dyadics in certain spaces. For example, for A ∈ EpEp
and B ∈ FqFq with p > q, the resulting dyadic lies in the space Ep−qEp−q .

• The unit dyadic I maps a vector to itself, I∣a = a, and its transpose a dual vector to itself,
IT∣α = α. Its expansion

I = ∑ ei ε i (.A.)

is independent of the chosen vector and reciprocal dual vector bases. In contrast, Gibbsian
definition Σei ei depends on the chosen basis.

• Because spaces Fp and Fn−p have the same dimension, dyadics FpEn−p and Fn−pEp
mapping between these two spaces have special importance and they are called Hodge
dyadics. Also, dyadics mapping p-vectors to dual p-vectors and conversely are important
and they are called (generalized) metric dyadics. A symmetric metric dyadic G ∈ EE
defines a dot product between dual vectors: α ⋅ β = β ⋅ α = α∣G∣β.

• In spaces EpEp and FpFp transpose of a dyadic is in the same space. In these cases sym-
metric dyadics can be defined to satisfy, AT = A, and antisymmetric dyadics, AT = −A.
The most general antisymmetric dyadic A ∈ EE can be expressed in terms of a bivector
A as

A = I⌋A, (.A.)

because, from the bac-cab rule (Equation .A.) below, for each term in A = Σa j ∧b j we
can write the antisymmetric expression

I⌋(a j ∧ b j) = ∑ ei ε i⌋(a j ∧ b j) = ∑ ei ε i ∣(b ja j − a jb j) = b ja j − a jb j . (.A.)

4.A.4 Products of Dyadics
• Denoting the D (Euclidean) spatial basis vectors by e , e , e and by e = eτ, the temporal

basis vector with regards to some observer, the reciprocal dual basis vectors ε , ε , ε , ε =
dτ satisfy ei ∣ε j = δ i j .

• The sign | denotes the scalar product between a p-vector and a dual p-vector while ⌋ or
⌊ denotes the contraction (incomplete duality product) between a p-vector and a dual
q-vector []. Double products ∧

∧
, ∣∣, ⌋⌋, ⌊⌊ follow laws similar to those defined in the

Gibbsian dyadic algebra.
• The double-wedge product of two dyadics A, B ∈ EF is the counterpart of the double-

cross product between two Gibbsian dyadics [,] and it is defined as

(aα)∧
∧
(bβ) = (a ∧ b)(α ∧ β), (.A.)

and similarly for sums of such products:

A∧
∧
B = ∑ ai α i

∧

∧∑b jβ j = ∑(ai ∧ b j)(α i ∧ β j). (.A.)

The result is in the dyadic space EF. Similarly we can define products A∧
∧
B∧
∧
C, etc.

• The double-wedge square of a dyadic A ∈ EF is

A() = 

A∧
∧
A = 

 ∑i
∑

j
(ai ∧ a j)(α i ∧ α j) = ∑

i< j
(ai ∧ a j)(α i ∧ α j). (.A.)
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Similarly we can define A() and A() as special cases of the pth double-wedge power:

A(p) = 
p!

A∧
∧
A∧
∧
⋯∧
∧
A = 

p! ∑
i , i⋯i p

(ai ∧ ai ∧⋯∧ ai p)(α i ∧ α i ∧⋯∧ α i p). (.A.)

For p > n dimension of space, we have A(p) = .
• The unit dyadic mapping any bivector to itself is

I() = 

I∧
∧
I = 

 ∑i , j
(ei ∧ e j)(ε i ∧ ε j). (.A.)

More generally, the unit dyadic for p-vectors is I(p). The unit dyadic mapping a p-form
to itself is the transpose I(p)T. For p = n we have I(n) = eN εN . For any A ∈ EF we can
write A(n) = det A I(n) where the scalar det A is called the determinant of A. It satisfies

detA = A(n)∣∣I(n)T = εN ∣A(n)∣eN . (.A.)

• If vectors are mapped through the dyadic A, bivectors are mapped through A(),

(A∣a) ∧ (A∣a) = A()∣(a ∧ a), (.A.)

and p-vectors as

(A∣a) ∧ (A∣a) ∧⋯ ∧ (A∣ap) = A(p)∣(a ∧ a ∧⋯∧ ap). (.A.)

• The inverse of a dyadic can be formed much in the same manner as in the Gibbsian D
case [,]. For example, the inverse of a dyadic A ∈ EF has the form []

A− = I(n)⌊⌊A(n−)T

detA
∈ EF . (.A.)

4.A.5 Identities

An identity is an equation which is valid for any values of its arguments. Certain number of identities
is essential in any analysis using differential forms because they reduce the need to expand expressions
in terms of basis vectors and their basic relations. Identities can be derived by expanding multivectors,
dual multivectors, and dyadics in terms of basis vectors and dual basis vectors. Here we just give some
examples taken from Ref. [].

The counterpart of the Gibbsian bac-cab rule a × (b × c) = b(a ⋅ c) − c(a ⋅ b) can be expressed for
any vector a and two dual vectors β, γ as

a⌋(β ∧ γ) = β(a∣γ) − γ(a∣β). (.A.)

This can be generalized in many ways, for example, replacing the dual vector γ by the dual p-vector γp :

a⌋(β ∧ γp) = β ∧ (a⌋γp) + (−)pγp(a∣β). (.A.)

As an example of an identity involving dyadics let us take the following one,

(A∧
∧
B)⌊⌊CT = (A∣∣CT)B + (B∣∣CT)A −A∣C∣B −B∣C∣A, (.A.)
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valid for three dyadics A, B, C ∈ FE. The result is another dyadic in the same space FE. This
identity is the counterpart of the one for Gibbsian dyadics []

(A××B)××C = (A ∶ C)B + (B ∶ C)A −A ⋅ CT ⋅B −B ⋅ CT ⋅A. (.A.)

A useful special case of Equation .A. is obtained as the special case B = A:

A()⌊⌊CT = (A ∶ C)A −A∣C∣A. (.A.)

The same identity is also valid for dyadics in the metric spaces A ∈ EE and C ∈ FF or A ∈ FF
and C ∈ EE.
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5.1 Introduction

In this chapter, the method of moments (MoM) adapted to the simulation of fields in periodic and
nonperiodic structures is briefly reviewed. The integral equation (IE) techniques are known for pro-
viding accurate results whenmodeling conducting and dielectric structures. A drawback of theMoM
is that the matrices associated to the resulting linear systems of equations (we assume here linear
media) are dense, and their inversion may require significant computational resources for complex
structures, or for large structures as compared to the wavelength. However, it is important to note
that when the analyzed structures are composed of piecewise homogeneous media, the respective IE
can be simplified by expressing the unknown fields in terms of the tangential components of electric
and magnetic fields at the media interfaces only. In the following, the structures considered will be
assumed piecewise homogeneous initially, and will be supposed periodic next. Hence, the surface IE
for the tangential electric and magnetic fields will be primarily discussed, whereas a few references
will be provided to the volumetric approaches, which enable the analysis of inhomogeneous media.
Fast solutions can be obtained by either considering unit-cell approaches (i.e., assuming infinite peri-
odic structures with periodic excitation) or specializedmethods enabling efficient simulation of large
finite structures, like the fast multipoles methods (FMMs) and the Green’s function interpolation
and fast Fourier transform (GIFFT) method, as well as the macro basis functions (MBFs) approach,
all summarized in this chapter. The array scanning method (ASM), which allows for the solution
for a point source excitation in an otherwise infinite passive array, will also be briefly discussed.

5-1
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5-2 Theory and Phenomena of Metamaterials

Implementation details will be omitted and references will be provided for further reading on each
specific method. A comprehensive discussion of the MoM can be found in [,] and its applications
to analyze the specific electromagnetic structures are illustrated, e.g., in [,].

5.2 Equivalence Principle

The equivalence principle [] is frequently used for solving scattering problems by the MoM. To
illustrate the concept, let us consider the example shown in Figure .a, where an external incident
electromagnetic field impinges on a body of volume V with permittivity єin and permeability μin.
Fields outside the body can be represented with the help of equivalent sources, distributed either
inside V or over the surface S (as shown in Figure .b), enclosing the volume V . This property is
extensively exploited in IE approaches based on the surface equivalence principle [] by representing
the equivalent electric and magnetic current sources in the form

J = n̂ × H (.)

M = E × n̂ (.)

where
n̂ is the external normal to the surface
E and H are the electric and magnetic fields on the surface

The field generated by J and M is such that its superposition with the incident field produces the
original field outside and zero field inside the volume V . Therefore, one can virtually consider the
presence of any material inside because of the absence of field. For example, one could assume a
perfect conductor inside, or a homogeneous material as the one outside, so as to use the free-space
Green’s function (GF) to determine the field radiated outside by the equivalent currents J and M.
Analogously, the equivalent currents can be used to evaluate the field inside the surface S when they
radiate in the environment shown in Figure .c. A discussion of the equivalence principle can be
found in [], and its use in the MoM is detailed in [,].
In most cases, artificial media are composed of piecewise homogeneous volumes, as in Figure .,

which allows for the use of a surface IE approach, with unknown field and currents at the interfaces

Einc Hinc S

V
εin μin

εin μin

εin μin

εout μout

n̂z

x y

Einc Hinc

J J

M

(a) (b) (c)

M

S S

εout μout

εout μout

n̂ n̂z

x y

z

x y

FIGURE . (a) Geometry of a scatterer of arbitrary shape with permittivity єin and permeability μin. (b) Equivalent
surface electric J and magnetic M currents are shown on its boundary S. They radiate in a homogeneous medium,
produce the original field outside and a vanishing field inside, when the incident field is added. A perfect electric
conductor scatterer would have only electric currents. (c)The equivalent currents produce the original field inside the
boundary S.
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only.This assumption is employed below, and, in general, implies the need of amuch smaller number
of unknowns than required in a volumetric MoM for piecewise homogeneous media. For inhomo-
geneous volumes, instead, a volume IE can also be exploited [,].The latter approach is based on the
replacement of the dielectric contrast by an equivalent volumetric current at an arbitrary location r
given by the relation

JV(r) = jω (єin(r) − єout) E(r) (.)

where
ω is the radian frequency
єout is the free-space permittivity
єin(r) is the relative permittivity of the medium at point r
E(r) is the electric field at the same location

A contrast magnetic current MV = jω (μin(r) − μout)H(r) can be defined similarly, based
on the variation of permeability μin(r) versus position. An example of metamaterial analysis
based on the volume IE can be found in []. In Section ., we discuss the MoM for the solution
of surface IEs. However, before proceeding further we illustrate the equivalence principle for two
important particular cases. In Figure . the surface equivalence principle is illustrated for the case
of a scatterer made by a perfect electric conductor (PEC). In this case, only the equivalent current on
the boundary S is necessary to restore the original field outside the scatterer, since the total tangen-
tial electric field vanishes because of the PEC boundary condition, which implies M=E × n̂=. This
special case is particularly important in the RF/microwave range because metals are well approxi-
mated by PECs. In Figure . the surface equivalence principle is illustrated for the case of a scatterer
made by a PEC surface with an aperture in it. The equivalent problem consists of two regions sepa-
rated by a closed PEC surface. Radiation by the equivalent magnetic current M=E × n̂, located just
outside the scatterer at the location of the original aperture, restores the exterior field. Radiation by
the equivalent magnetic current −M, located just inside the scatterer at the location of the original
aperture, restores the interior field. The opposite signs of the exterior and interior magnetic currents
establish the continuity of the tangential electric field across the aperture. The continuity of the tan-
gential magnetic field across the aperture is enforced by the IE (Section .). The latter version of the
equivalence principle is also used to model apertures (and periodic sets of apertures) in PEC screens
of infinite extent, shown in Figure .c and d.

Einc Hinc

εout μout

PEC

S

V

n̂z

x y

(a) (b)

Einc Hinc

εout μout

εout μout

J
S

n̂z

x y

FIGURE . (a) Geometry of a PEC scatterer of arbitrary shape. (b) The equivalent surface electric J current is
shown on its boundary S. It radiates in a homogeneous medium, produces the original field outside and a vanishing
field inside, when the incident field is added.
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(a)

PEC

Einc Hinc

V

Aperture

εin μin

εout μout

n̂z

x y

(b)

PEC

Einc Hinc M

–M
εin μin

εout μout

n̂z

x y

(d)(c)

PEC

Einc Hinc

Aperture Aperture

ε μ

PEC

Einc Hinc

M1 M2

–M1 –M2 ε μ

FIGURE . (a) Geometry of a PEC scatterer of arbitrary shape and aperture filled with a material with permittivity
єin and permeability μin. (b) Closed PEC scatterer with equivalent surfacemagnetic currentsM and−M on the exterior
and interior parts of the PEC boundary S, respectively, at the location of the original aperture. M radiates outside and
produces the original field when the incident field is added. −M radiates inside and produces the original field. The
analogous problem for apertures in an infinite PEC screen is in (c), and its equivalent problem is (d). Here M and −M,
just above and below the PEC screen, restore the field above and below, respectively.

5.3 Method of Moments for Surface Integral Equations

5.3.1 Spatial Domain

Electric and magnetic fields are often conveniently expressed in terms of scalar and vector potentials
(see, e.g., [,]). The time dependence is assumed in the form e jωt and suppressed in the following.
When both electric andmagnetic current sources are present, the fields in the homogeneousmedium
with permittivity є and permeability μ are represented in the frequency domain as follows:

H = − jω F +∇ψ + 
μ
∇× A (.)

E = − jω A −∇ ϕ − 
є
∇× F (.)

Here, ϕ and ψ are the electric andmagnetic scalar potentials andF andA are the electric andmagnetic
vector potentials. It is convenient to interrelate the vector and scalar potentials by the Lorentz gauge
∇ ⋅ A= − jωμєϕ and ∇ ⋅ F= jωμєψ. In this way, the knowledge of the electric and magnetic vector
potentials is sufficient to determine all fields. In free space, the vector potentials can be represented as

A(r) = μ
�
D

J(r′) G dD′ (.)

F(r) = є
�
D

M(r′) G dD′ (.)

where G is the free-space scalar GF

G = G(∣r − r′∣) = e− jkR/(πR) (.)
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where the wavenumber k is defined as k =ωєμ and R = ∣r−r′∣ is the distance between the observa-
tion and source points at r and r′, respectively. J and M can be linear, and surface, or volume current
densities, and the corresponding integration domainD can be a contour, a surface, or a volume.
With reference to the scattering problem shown in Figure .a, where an external incident electro-

magnetic field impinges on a body of volume V with permittivity єin and permeability μin, the fields
outside and inside the boundary S of the scatterer are represented by the radiation of the equivalent
current in Figure .b. In this case all the potentials A, F, ϕ, ψ can be expressed in terms of the scalar
GF, and the electric and magnetic fields outside the surface S as follows:

E = − jωμ
�
S

GJdS′ + 
jωє

∇∇ ⋅
�
S

GJdS′ −∇ ×
�
S

MGdS′ + Einc (.)

H = − jωє
�
S

GMdS′ + 
jωμ

∇∇ ⋅
�
S

GMdS′ +∇ ×
�
S

JGdS′ + Hinc (.)

where the superscript “inc” in the last term of both equations denotes incident fields.
In the following, since we deal with surface IEs, we need to evaluate the fields at the surface S,

generated by equivalent currents located on the same surface. In this case, the integrands of the last
integral terms of Equations . and . contain a singularity that needs to be treated carefully. For the
electric field produced by equivalent magnetic current or for the magnetic field created by electric
current (see Equations . through .), a proper treatment of the field discontinuities across the
equivalence surface is very important. In the last terms of Equations . and ., we need to evaluate
integrals of the type

∇×
�
S

GMdS′ = −
�
S

∇′G × MdS′ (.)

where ∇′G denotes the gradient with respect to the coordinates of the source point r′. It can be
proven [,] that, when r approaches the smooth surface from outside, the limit of the integral
(Equation .) equals

− n̂ × M


+
�
S

− M ×∇′G dS (.)

where
�
− denotes a principal value integral, and n̂ is a unit normal pointing toward the space con-

taining the observation point r. This exposes the discontinuity of fields at the surface: the fields differ
depending on the side from which the surface is approached.
Thus, for components tangential to S, the fields at the exterior of surface S, where the currents are

located, have the following form:

E = − jωμ
�
S

GJdS′ + 
jωє

∇∇ ⋅
�
S

GJdS′ + n̂ × M


−
�
−
S

M ×∇′GdS′ + Einc (.)

H = − jωє
�
S

GMdS′ + 
jωμ

∇∇ ⋅
�
S

GMdS′ − n̂ × J


+
�
−
S

J ×∇′GdS′ + Hinc (.)

When the observation point lies outside the integration surface, the integrands of Equation . are
no longer singular. Therefore, the fields are still given by Equations . and ., where the terms
n̂×M/ and n̂× J/ should be dropped, while all integrals are understood in the conventional sense,
and all three field components can be considered.

5.3.1.1 Basis and Testing Functions

Surface electric currents onmetallic sheets, as well as equivalent electric andmagnetic currents on the
interfaces between homogeneous media, are usually approximated by linear combinations of known
basis functions Λ i ,
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J ≃
Ne

∑
i=

Ii Λ J
i (.)

M ≃
Nm

∑
i=

Vi ΛM
i (.)

where Ii and Vi are weighting coefficients. ΛJ
i and ΛM

i denote basis functions used to approximate
electric and magnetic currents, respectively. For brevity of notation, this distinction will be omitted
below, also because in many practical implementations of the MoM, the same basis functions are
used for both electric and magnetic currents.
Many types of basis functions have been proposed in the literature. Two major categories are usu-

ally distinguished: entire-domain basis functions and subdomain basis functions []. The former
are particularly well suited to domains with canonical shapes.The latter have the advantage of fitting
easier to surfaces with arbitrary shapes being assisted by commercially available libraries for mesh
generation. The “Rao–Wilton–Glisson” (RWG, []) basis functions have gained particular popular-
ity. They are defined on two triangular subdomains connected along a common edge and provide
smooth approximations of the currents in the subdivided domains. Between these simple basis func-
tions and the entire-domain basis functions, a number of higher-order basis functions have been
defined.The use of higher-order functions allows the currents on larger domains to be approximated
with fewer coefficients at the cost of a limited additional computational load [].
Theweighting coefficients Ii andVi for each basis function are determined by imposing the bound-

ary conditions at the scatterer surface S. The boundary conditions need, in principle, to be satisfied
at each point of S. However, since there are N = Ne + Nm unknowns, enforcing those conditions at
N points (“point-matching” procedure) is sufficient, in principle, to obtain a system of N linear equa-
tions for N unknowns. These points can be chosen near the middle of the subdomain for each basis
function. However, a better conditioning is generally achieved by enforcing the boundary conditions
in an average sense, through multiplication of the fields by testing functions and integration of the
equations over the definition domain of the testing functions []. It is necessary to note that when the
testing function is a Dirac delta function of the surface coordinates, the testing procedure is reduced
to the point-matching. The testing functions used are often chosen to be the same as the basis func-
tions. This important special case is referred to as the Galerkin method [,,], and gives rise to a
symmetric system of linear algebraic equations.

5.3.1.2 The Integral Equations and Discretization

In the case of “dielectric interfaces” (Figure .), the two possible types of boundary conditions to
be satisfied are () the continuity of both the tangential electric and magnetic fields at the inter-
face, as computed from equivalent currents on either side (“continuity” or Poggio–Miller–Chang–
Harrington–Wu–Tsai (PMCHWT) formulation [,,], see also []) and () the correspondence
between, on one side, the equivalent currents, and on the other side, the tangential total fields,
computed as a superposition of the incident field and the field radiated by the equivalent currents
(“consistency” or Müller formulation []).
For instance, the continuity formulation for a dielectric interface S takes the form�

S

Λt
j ⋅ (Ein − Eout) dS =  (.)

�
S

Λt
j ⋅ (Hin − Hout) dS =  (.)

where Λt
j is the jth testing function, and Eout and Hout, and Ein and Hin are the total electric and

magnetic fields at the opposite sides of the interface, respectively. The external fields Eout , Hout are
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the sums of the incident and the scattered fields created by the equivalent surface currents (assuming
an infinite homogeneous medium with properties as the exterior one, see Figure .b). The interior
fields Ein , Hin are produced by the scattered equivalent currents assuming an infinite homoge-
neous medium, with the parameters corresponding to the interior of the volume enclosed in S (see
Figure .c).The basis and testing functions chosen here have a vanishing component normal to their
domain edges that allows the application of the div operator to the testing and basis functionswithout
introducing equivalent charges at the subdomain boundaries [,]. The Galerkin testing procedure
generally results in a better conditioned system of linear algebraic equations, which can be written as
follows (the set of Λt

i is identical to the set of Λb
i ):

⎡⎢⎢⎢⎢⎣

[Z in
mn + Zout

mn] [−βin
mn − βout

mn]

[βin
mn + βout

mn] [Y in
mn + Y out

mn ]

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

[In]
[Vn]

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

[V inc
m ]

[I incm ]

⎤⎥⎥⎥⎥⎦
(.)

with

Z in/out
mn =

�
S

�
S′

[ jωμin/out G in/out(r, r′) Λt
m(r) ⋅ Λn(r′)

+ 
jωєin/out

G in/out(r, r′) ∇ ⋅ Λt
m(r) ∇′ ⋅ Λn(r′)] dS′ dS (.)

βin/out
mn =

�
S

Λt
m(r) ⋅

�
S′
− [Λn(r′) × ∇G in/out(r, r′)]dS′ dS (.)

and Y in/out
mn = Z in/out

mn /(ηin/out), where єin/out , μin/out, and ηin/out = (μin/out/єin/out)/ repre-
sent permittivity, permeability and impedances of the medium inside/outside of the surface S,
respectively. The excitation vectors are determined by projecting the incident fields on the testing
functions

V inc
m =

�
S

Einc(r) ⋅ Λt
m(r)dS (.)

I incm =
�
S

Hinc(r) ⋅ Λt
m(r)dS (.)

In the case of “perfectly conducting surfaces” (Figure .), there are two possible conditions to
be satisfied: () the tangential total (incident + scattered) electric field be zero and () the tangential
total (incident + scattered) magnetic field (n̂ × H=) be zero slightly inside the surface boundary
of the PEC scatterer. These two boundary conditions lead to () the electric field integral equation
(EFIE), which can be used for both open and closed PEC surfaces, and to () the magnetic field inte-
gral equation (MFIE), which can be used only for closed PEC surfaces [,]. Either equation can be
employed to determine the electric current on the scatterer, and each discretization scheme based on
the aforementioned testing procedures leads to a system of linear algebraic equations for the weight-
ing coefficients in the Equation ., of the surface currents only. For example, the discretized EFIE
has the form

[Zmn] [In] = [V inc
m ] (.)

where Zmn is evaluated as in Equation . considering the material parameters of the medium sur-
rounding the PEC surface, and V inc

m is given in Equation .. It is noteworthy that currents on
infinitesimally thin PEC sheets actually correspond to the sum of currents on both sides of the sheets.
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This is why the solution of the EFIE and theMFIE on closed conducting surfaces suffers from instabil-
ities at frequencies corresponding to interior resonances. These resonances can be generally avoided
by combining the EFIE and the MFIE [,,], leading to what is generally referred to as the com-
bined field integral equation (CFIE), which is based on a weighted sum of the EFIE and the MFIE
into a single equation [].
In the case of “perfectly conducting surfaces with apertures” (Figure .a), a convenient model

consists of using surface magnetic currents shown in Figure .b, which guarantee the continuity of
the tangential electric field across the aperture.Themagnetic current on the aperture S is discretized
as in Equation ..The IE is based on enforcing the continuity of the tangential magnetic field across
the aperture S as in Equation .. This leads to a linear system

[Ymn] [Vn] = [I incm ] (.)

where Ymn is evaluated as in the text below Equation . considering the material parameters of the
medium inside and outside the PEC boundary, and I incm is given in Equation .. It is important to
note that in this particular case the magnetic current radiates in presence of the PEC scatterer and
the GF used in Equation . should explicitly account for that.The special case of a PEC screen with
apertures, shown in Figure .c and d, involves less complicated GFs, since it involves the use of the
free-space GF (with a factor  due to the image principle) or the use of the layered media GF.
When the basis and testing functions in the integral Equation . are defined on the same sub-

domain, the singular part /(πR) of the GF is often extracted and its convolution with the basis and
testing functions in Equations . and . is calculated analytically. The remaining integrals of the
regular part of the GF are then evaluated using standard numerical quadratures for regular functions.
The readers are referred to [] where the corresponding expressions are presented for the low-order
basis functions. Similarly, the singularity can be extracted from the terms involving the gradient of
the GF [], and respective integrals are evaluated in a similar fashion.
Recently, purely numerical quadrature schemes based upon singularity cancellation have been

proposed in [,] for direct evaluation of GF convolutions with basis and testing functions. This
approach hinges on a change of variables such that the Jacobian of the transformation cancels the
singularity analytically. In contrast to the singularity subtraction approach, the resulting integrand
is a regular function in the transformed variables, and hence is amenable to integration by Gauss-
Legendre rules []. The developed scheme accurately and efficiently handles both singular and
near-singular potential integrals with kernels of the form /R defined on triangular elements, which
can be used as building blocks for more complex elements. The major advantage of this approach is
that it provides robust and efficient computational codes without the need for explicit extraction of
GF singularities.

5.3.1.3 Periodic Structures

The method described above can be applied to periodic structures as well. In this particular case,
only one cell of the periodic structure needs to be analyzed numerically, and the use of the periodic
GF takes into account the periodic replicas of the modeled scatterer. However, depending on the
geometry considered, a few cases need to be distinguished.
First, suppose that the periodic structure is made of scatterers which are not electrically connected

with those in contiguous cells. For metallic scatterers (made of perfect electric conductors as in
Figure .) the use of the periodic GF is sufficient to obtain a correct model. When the scattering
body is made of a dielectric material (as in Figure .) then, the formulation in Equation . is still
valid as long as the periodic GF is considered for the exterior problem. In other words, Gout(r, r′) is
now the periodic GF, and G in(r, r′) is the homogeneous free-space GF, as it was in Equation ..
Suppose instead that the periodic scattering object in the main reference cell is now electrically

connected to others in adjacent cells. For perfect electric conducting scatterers, basis functions should
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be placed across the boundary of the periodic cell, representing a flow of current into the next con-
tiguous cell, and each basis function across the periodic boundary should be connected to the same
one at the other side of the periodic cell (“overlapping basis function”) with the proper boundary con-
dition enforced (for example, see [] and Fig.  of []). For dielectric objects, instead, we need to
make a further distinction.When a dielectric object is located across the boundary of the periodic cell,
but it is not connected to the other periodic dielectric replicas, then the “overlapping basis functions”
technique is applied to the basis functions used for the interior and exterior problems.
The case of a periodic structure made by connected dielectric objects (like a chain of touching

spheres, or a dielectric grating) poses a more challenging problem, and two strategies can be used,
as described below. The first one, applied in [], consists of using the free-space GF inside the
dielectric medium and the -D periodic GF outside. However, in this case it is necessary to add
unknowns at the boundaries of the periodic cell in order to explicitly enforce the periodic bound-
ary conditions between fields in the interior domain. Also, precautions need to be taken along the
lines connecting three media: outer space, the dielectric material of a given cell, and the dielectric
material of a neighboring cell. The reader is referred to [] for the treatment of junctions between
multiple media. The second strategy for connected dielectric objects, applied in [], does not use
basis functions on the periodic boundary. It consists of using a periodic GF, with appropriate mate-
rial parameters, for the interior problemaswell, and the overlapping basis functions for the equivalent
electric and magnetic currents across the periodic cell, for both the interior and exterior problems.
When the structure under consideration is periodic in two directions, but the dielectric scatterers
are connected to each other in one direction only (e.g., as in a linear chain of connected spheres),
then, the -D periodic GF shall be used for the exterior problems, and the -D periodic GF should be
used for the interior problem. If dielectric scatterers are connected in two directions, then the -D
periodic GF should be used also for the interior problem.

5.3.2 Spectral Domain

Fields can be represented also in the spectral domain as a superposition of the spectral constituents,
such as plane waves.The free-space scalar GF Equation . for a point source located at r′ is expressed
in the spectral domain as

G(r, r′) = 
(π)

∞�
−∞

∞�
−∞

G̃(kx , ky , ∣z − z′∣)e− j[kx(x−x′)+k y(y−y′)] dkxdky (.)

where

G̃(kx , ky , ∣z − z′∣) = e− jkz ∣z−z′∣

 jkz
(.)

and kz =
√

k − k
x − k

y .
When a point source is an electric current J of unit magnitude ( [A/m]) located at r′, the fields at

point r are described by the dyadic GFs of electric GE J and magnetic GHJ types [,],

GE J(r, r′) = 
(π)

∞�
−∞

∞�
−∞

G̃E J(kx , ky , ∣z − z′∣)e− j[kx(x−x′)+k y(y−y′)] dkxdky (.)

GHJ(r, r′) = 
(π)

∞�
−∞

∞�
−∞

G̃HJ(kx , ky , ∣z − z′∣)e− j[kx(x−x′)+k y(y−y′)] dkxdky (.)
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Lateral view (multilayer case)
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FIGURE . (a) Planar PEC scatterer of a simple shape on a dielectric layer of infinite extent. (b)The lateral view of
a multilayer case.

where G̃E J and G̃HJ are the spectral-domain counterparts of GE J and GHJ . For a homogeneous
medium, the respective spectral dyads are

G̃E J
(kx , ky , ∣z − z′∣) = ( jωє)− [kI − kk] G̃(kx , ky , ∣z − z′∣) (.)

G̃HJ
 (kx , ky , ∣z − z′∣) = − j [k × I] G̃(kx , ky , ∣z − z′∣) (.)

where k = kx x̂ + ky ŷ ± kz ẑ, and the ± signs correspond to z > z′ and z < z′, respectively.
The spectral-domain representations (Equations . and .) of Green’s dyads are particularly

instrumental for calculating the electric and magnetic fields generated by currents located in planes
normal to the z-axis (see, for example, a geometry in Figure .). Indeed, the fields produced by the
current J(r′) distributed, for example, on planar conductors at a certain plane z′ (Figure .) can
be obtained as a convolution between J(r′) and the Green’s dyads, cf. Equations . and .. Then,
making use of G̃E J and G̃HJ in the forms of Equations . and . and integrating with respect to
r′ over the area S occupied by the current sources in the plane z′ results in the field representations
expressed in terms of inverse Fourier transforms or the spectral-domain convolution of Green’s dyads
and current density:

E(r) = 
(π)

∞�
−∞

∞�
−∞

G̃E J(kx , ky , ∣z − z′∣) ⋅ J̃(kx , ky , z′)e− j(kx x+k y y) dkxdky (.)

H(r) = 
(π)

∞�
−∞

∞�
−∞

G̃HJ(kx , ky , ∣z − z′∣) ⋅ J̃(kx , ky , z′)e− j(kx x+k y y) dkxdky (.)

where the spectral-domain current J̃(kx , ky , z′) is defined as

J̃(kx , ky , z′) =
�
S

J(r′) e j(kx x′+k y y′) dx′dy′ (.)

It is necessary to note that while the Fourier transform of J(r′) above is taken in infinite limits, the
integral in Equation . is confined only to the finite area S occupied by the currents, in the plane z′.
In the problems of wave scattering by planar conductors, the current J(r′) is unknown a priori in

Equations . and . andmust be determined by enforcing the piecewise boundary conditions for
the fields at planes with constant z′ (note that the current sources may be placed at several interfaces
in multilayered structures with various discrete values of z′). This results in the EFIE or MFIE simi-
lar to those discussed in Section .. with the only difference that the integrands in Equations .
and . are defined in the spectral domain. These equations are usually solved by the Galerkin
method. The spectral-domain approach has originally been developed for analysis of printed
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transmission lines and planar circuits [–], and later applied to the highly efficient modeling of
periodic structures [–].
Assuming that the nth basis and mth testing functions are confined to the domains located in the

planes z = zb and z = zt , respectively, their spectral-domain convolutionswith theGF can be expressed
as an inner product, cf. Equation .:

Zmn = 
(π)

∞�
−∞

∞�
−∞

Λ̃m G̃E J(kx , ky , zt , zb) Λ̃⋆n dkx dky (.)

where G̃E J(kx , ky , zt , zb) is a dyadic operator representing the GF in spectral-domain. It is necessary
to note that while in homogeneous medium G̃E J(kx , ky , zt , zb)= G̃E J(kx , ky , ∣zt − zb ∣), in general,
this relationship does not hold for layered media. The terms Λ̃n in Equation . are the Fourier
transforms of the testing and basis functions, defined as

Λ̃n(kx , ky , z) =
�
S

Λn(x , y, z) e j(kx x+k y y)dx dy (.)

The salient feature of Equation . is that the spectral-domain Green’s dyads (Equations .
and .) required for computations of Zmn are available in closed form for a broad range of multi-
layered structures. For details of construction and computation of the spectral-domain GFs and their
specific applications, we address the readers to the extensive literature on this topic (see, e.g., [,,]
and references therein).
In the case of planar stratified media, as on the right side of Figure . or in Figure ., the fields

can be expressed as a superposition of TE and TMwaves with respect to the interface normal (z-axis)
(see, e.g., [,,]).The TE and TMwaves independently satisfy the boundary conditions at source-
free interfaces between the layers. This significantly simplifies the field representations and enables
the use of the transmission matrix method to obtain the fields of each individual mode at any point
of the planar stratified medium, see, e.g., [–] and references therein. It is necessary to note that
the TE and TMwaves are separable only in homogeneous planar layers, whereas they are hybridized
at curvilinear interfaces, discontinuities, and in anisotropic media.
The transverse magnetic (TM) and transverse electric (TE) waves with the real wavenumber kz in

the lossless layers surrounding a source can propagate in these layers along the z-axis and carry away

y

2L

z

μN+1= εN+1= 1

μ1= ε1= 1

BN, μN, εN

B3, μ3, ε3

B2, μ2, ε2

zN

z2

z1

zN– 1

x

l –(x)

b

a
(a) (b)

l +(x)

FIGURE . Unit cell of amultilayered periodic array: (a) top view showing three apertures, and (b) side view show-
ing the apertures in the conductor screens located at the interfaces of (N − )magnetodielectric layers of thicknesses
Bi with relative permittivities є i and permeabilities μ i , i = , , . . . , N . The layer stack is surrounded by free space
(є = μ =  and єN+ = μN+ = ).
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real power. Conversely, the evanescentmodeswith complex or purely imaginary kz only store reactive
power in the source vicinity and do not carry away real power along the z direction. Nevertheless,
the evanescent part of the spectrum cannot be neglected because these modes contain the important
fine details of field distributions near the sources and discontinuities. It is noteworthy that the layered
medium may also guide the TE and TM eigenwaves. These traveling waves manifest themselves as
the poles of the dyadic term G̃E J(kx , ky) in the variables (kx , ky), which correspond to the tangential
components of the wavevectors of the respective TE and TMmodes.

5.3.2.1 Periodic Arrangements

Recently, periodic structures in layered media have attracted considerable attention in the con-
text of modeling metamaterials and photonic crystals, and the study of enhanced transmis-
sion through sub-wavelength apertures in perforated screens. The spectral formulation described
above can be easily adapted to the analysis of periodic structures by replacing the dyadic
GF in Equation . with the dyadic GF G̃p (the superscripts “EJ” or “HJ” are omitted here because
what follows is applicable to both cases). For example, when analyzing a doubly periodic geometry
on rectangular lattices, the dyadic GF takes the form

G̃p(kx , ky , z, z′) =
(π)

ab

∞

∑
p ,q=−∞

δ (kx − kx , − p
π
a
) δ (ky − ky , − q

π
b
) G̃(kx , ky , z, z′) (.)

where
a and b are spacings along the x and y directions, respectively
kx ,a and ky ,b are interelement phase shifts
z′ and z correspond to the source and observation points, respectively
G̃(kx , ky , z, z′) is the Green’s dyad for nonperiodic structures

Besides that, G̃(kx , ky , z, z′)may contain poles in the phasing variables (kx , ky), which are associated
with TE or TM eigenwaves.
When Equation . is substituted in Equation ., the elements of the MoM impedance matrix

turn into very slow convergent infinite sums. It is necessary to note that the slow convergence of the
spectral integrals or sums above for z close to z′ can be traced back to the spatial singularities of fields
at the source, i.e., at x → x′ and y → y′. The convergence of these series or integrals can be signifi-
cantly accelerated either by using GF representations that have an explicit singular spatial term (like
in the Ewald and Kummer methods) or by isolating the spatial singularity associated with sources
(for instance, through a space-domain approach).The techniques for accelerating convergence of the
series in the periodic GFs are further discussed in Section ..
The spectral-domain solution of the IEs is usually computationally more efficient than the respec-

tive spatial-domain procedure, provided that the proper basis and testing functions are readily
available in spectral-domain. The major advantage of the spectral-domain approach is that the GFs
for complex-layered structures exist in closed form.Therefore the inner products in Equation . can
be efficiently calculated using the Parseval theorem for convolution of the spectral-domain GF with
the respective basis and testing functions. This property is particularly beneficial for the canonical
geometries, where the known entire-domain basis functions take into account the specific features of
field distributions, e.g., edge singularities.The latter feature has been extensively exploited in the anal-
ysis of printed transmission lines and planar circuits (see, e.g., [–]), and highly efficientmodeling
of periodic structures [–,]. Unfortunately, the spectral-domain basis functions accounting for
the edge singularities of fields are available only for a few basic configurations, which considerably
limits applications of the spectral-domain approach.
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5.4 Green’s Functions for Periodic Structures

The problem of modeling infinite periodic arrays can be reduced to the analysis of a single reference
unit cell. This provides a great numerical advantage as compared to direct simulations of very large
structures. The MoM techniques described above for isolated scatterers can be applied here as well,
with the only difference that a periodic GF should be used instead of the GF in Equation . for a
homogeneous medium.
To illustrate this approach, let us consider an infinite array on a rectangular lattice, with period-

icities a and b, along the x and y directions, respectively. The periodic GF for infinite arrays can
be represented as a superposition of the fields generated by an elementary source inside the refer-
ence unit cell and the source replicas in all the other unit cells. Without loss of generality we can
assume that the source is placed at the origin (r′ =) of the reference unit cell, and all its mn-replicas
are located at r′mn =max̂ + nbŷ. The spatial representation of the periodic GF is thus given by

G p =
∞

∑
m ,n=−∞

e− jkRmn

πRmn
e− j (mkx ,a+nk y ,b) (.)

where
kx ,a and ky ,b are the phase shifts between successive cells in the x and y directions,

respectively

Rmn =
√

(x − ma) + (y − nb) + z with x and y being confined to the reference unit cell
(m =, n =)

Rmn corresponds to the distance between the observation point at (x, y, z) and the source in the
unit cell (m,n) of the infinite array. The use of the periodic GF (Equation .) reduces the solution
domain of the IE to a single unit cell at the expense of complexity in calculation of the GF, which
includes the periodic replicas of the actual source. The convergence of the space-domain series in
Equation . is very slow, and usually thousands or tens of thousands of terms must be summed
up to attain acceptable accuracy. Moreover, the spatial series (Equation .) does not converge for
complex wavenumbers kx , and ky ,.
Alternatively, the periodic GF can be obtained with the aid of Equation . for periodically spaced

sources and the spectral-domain GF, G̃(kx , ky , ∣z − z′∣), defined in Equation .. This approach
results in the spectral series expansion utilizing an infinite discrete spectrum of plane waves:

G p = 
 jab

∞

∑
m ,n=−∞

e− j (kx ,m x+k y ,n y+kz ,mn ∣z∣)

kz ,mn
(.)

with

kx ,m = kx , + m
π
a
, ky ,n = ky , + n

π
b

(.)

kz ,mn =
√

k − k
x ,m − k

y ,n (.)

The branch of kz ,mn is chosen so that Im{kz ,mn}<, unless the GF is used to model leaky waves,
where the other branch should be adopted (see [] for more details). The drawback of the series
(Equation .) is that it converges slowly for observation points close to the array plane, i.e., at ∣z∣→.
Therefore, the evaluation of the GF requires acceleration of the series convergence.
Intensive research has been carried out to accelerate the GF computations, and several techniques

have been developed to address this problem. Reviews on this topic can be found, for example,
in [,–], and references therein. In this section, only three efficient approaches are briefly
outlined.
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Series acceleration formulations, like the Shanks and Levin-T transforms, have been used suc-
cessfully [–] to evaluate periodic GFs. Alternative techniques of convergence acceleration in
periodic GFs, particularly Ewald and Kummer transformations, have shown excellent computational
efficiency. Algorithms based upon the Ewald method [] are extensively discussed in [–,–].
Approaches based on the Kummer method are described in [,,,]. It is necessary to mention
that other efficient schemes have been reported for the periodic GF acceleration. For example in []
the Veysoglu’s transformation (see also [,,]) is used to achieve exponential convergence for
-D problems periodic in one direction.
While the numerical procedure based on Ewald’s method with Gaussian convergence (cf. [])

is faster, it suffers from breakdown when the structure period is larger than the wavelength [].
This problem, known as the “high-frequency breakdown,” can be avoided by a proper choice of
the Ewald splitting parameter [–]. The physical reasons underlying the breakdown effect are
explained in [] in terms of emergence of propagating modes. In contrast to the Ewald method,
the Kummer method provides only algebraic convergence of the GF series. Nevertheless, both these
techniques exhibit excellent performance, and we briefly outline them for the reference.
Following [], a Kummer transformation is applied to the spectral series representation of the GF

(Equation .)

G p =
∞

∑
m ,n=−∞

Fmn =
∞

∑
m ,n=−∞

(Fmn − F a
mn) +

∞

∑
m ,n=−∞

F a
mn (.)

where

Fmn = e− j(kx ,m x+k y ,n y+kz ,mn ∣z∣)

 jabkz ,mn
(.)

and F a
mn ∼ Fmn , i.e., these terms are asymptotically equal for large ∣m∣, ∣n∣. Therefore a proper choice

of the asymptotic terms F a
mn provides faster convergence of the difference series than the original sum

of Fmn , while the sum of F a
mn in Equation . can be efficiently computed with the aid of Poisson

summation formula.
The asymptotic terms F a

mn in Equation . are chosen according to [] by representing kz ,mn in
the form, cf. Equation .,

kz ,mn = − j
√

k
mn − (k + u) (.)

where

k
mn = k

x ,m + k
y ,n + u (.)

and u is termed “smoothing parameter.” For this definition of the asymptotic form of kz ,mn , it is
evident that at large m,n

e− jkz ,mn ∣z∣

jkz ,mn
∼ e−kmn ∣z∣

kmn
(.)

Then F a
mn can be represented in the following form:

F a
mn = e− j(kx ,m x+k y ,n y+kmn ∣z∣)

abkmn
(.)
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Finally, substituting Equation . into Equation . and applying the Poisson summation
formula to the last series in Equation . results in the following representation of the GF:

G p = 
ab

∞

∑
m ,n=−∞

e− j(kx ,m x+k y ,n y) ( e− jkz ,mn ∣z∣

jkz ,mn
− e−kmn ∣z∣

kz ,mn
)

+ 
π

∞

∑
m ,n=−∞

e− j(mkx ,a+nk y ,b) e−uRmn

Rmn
(.)

The series Equation . converges faster than the original series Equation .. Its convergence
rate depends on the smoothing parameter u. As demonstrated in [], the choice of the smoothing
parameter has amore dramatic effect on the convergence rate of the spatial series than on the spectral
sum. A reasonable choice of u, which can provide good convergence of both the spatial and spectral
series in Equation . is about half the size of the maximal reciprocal lattice base vector [].
An important result of this convergence acceleration procedure is that the singularity of GF is con-

tained only in the single term m = n = of the spatial series (Equation .), as the distance between
the source and observation points in the reference unit cell R → 

e−uR

R
∼ 

R
(.)

This implies that the infinite series in Equation . are regular functions and their convergence can
be further accelerated by repetitive application of Kummer method or other techniques.
An alternative implementation of the Kummermethod has been reported in [,]. Starting from

the spatial representation of GF given by Equation . and explicitly extracting the singular part G
of G p at Rmn → , the series (Equation .) can be expressed in the form of G p =G + Gr where

G =
e− jkR

πR
(.)

and

Gr =


∑
i=

Ω i (.)

is a regular function of x, y, z:

Ω =


πb ∑
n

∣k y ,n ∣>k

e− jk y ,n y
∞

∑
m=−∞

m≠

e− jmkx ,a K (
√

k
y ,n − k

√
z + (x − ma)) (.)

Ω =
∞

∑
n=−∞

n≠

e− jnbk y ,
e− jRn

πRn
(.)

Ω = ∑
n

∣k y ,n ∣<k

[ j
b

H() (
√

k − k
y ,n

√
z + x) e− jk y ,n y

+
∞

∑
m=−∞

e− j(kx ,m x+k y ,n y+kz ,mn ∣z∣)

 jabkz ,mn

⎤⎥⎥⎥⎦
(.)

Here, K (⋅) is the Macdonald function, and H() (⋅) is the zero-order Hankel function of
second kind.
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The series in Equation . converges exponentially because the summation over n is performed
only for the evanescent waves with ∣ky ,n ∣ > k. The external sum over n in Equation . contains
only a finite number of terms which correspond to the propagating waves. But convergence of the
infinite series in Equations . and . is accelerated by the Kummer method, as detailed in [,
]. It is necessary to emphasize that the Kummer method is applied here to a single summation in
m only.Therefore Ω andΩ can be efficiently calculated in a robustmannerwith any specified rate of
algebraic convergence of order N .The resulting serieswith the terms of orderO (m−N) are uniformly
convergent for any parameters of the structure and frequency and, in contrast to Equation ., they
do not require the additional smoothing parameter.
The Ewald’s method has been recognized as one of the most efficient techniques for computation

of periodic GFs. It is based upon representation of the GF as a sum of spatial and spectral series [],

G p = Gspatial + Gspectral (.)

with

Gspatial =
∞

∑
m ,n=−∞

e− j(mkx ,a+nk y ,b)

πRmn
[e− jkRmnerfc(Rmn E − jk

E
)

+e+ jkRmnerfc(Rmn E + jk
E

)] (.)

Gspectral =
∞

∑
m ,n=−∞

e− j(kx ,m x+k y ,n y)

 jabkz ,mn
[e− jkz ,mn ∣z∣erfc( jkz ,mn

E
− ∣z∣E)

+e jkz ,mn ∣z∣erfc( jkz ,mn

E
+ ∣z∣E)] (.)

where
erfc is the complementary error function
E is the Ewald splitting parameter

The two series exhibit Gaussian convergence, and inmost cases only the terms with m, n = −, ,  are
sufficient to guarantee accuracy up to five or six decimal places when the so-called “optimal” choice
E =

√
π/ab is used. The optimal E implies that the same number of terms in the spatial and spectral

series is used to achieve a certain rate of convergence [,]. When the period a or b becomes larger
than the wavelength the optimal parameter E must be increased, as noted in [], to avoid the “high-
frequency breakdown.” Simple algorithms for the choice of E are based on [,], and the details of
automatic choice of E are discussed in [,].
Inspection of Equations . and . shows that the spatial singularity of G p is contained only in

the single term /R ofGspatial .This implies that the singular and regular parts ofG p can be explicitly
separated within the Ewald scheme, similar to that in the Kummer method, and can be used for the
analytical preconditioning of the IE kernel. It is noteworthy that the Ewald representation can be
used for complex wavenumbers kx , and ky ,, and for complex frequency, i.e., for complex-valued k.
Finally, it is necessary to note that the use of Faddeeva functions instead of error functions in

the series Equations . and . considerably accelerates the GF computation, e.g., in [] a -fold
speed upwas achieved in calculating theGFwith a relative error less than −. Indeed, some effective
numerical algorithms for the evaluation of the error function are based on the use of the Faddeeva
function for certain parameter values.
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The Ewald method is generally more efficient than the Kummer based algorithms. However,
certain implementations of the Kummer method provide uniform convergence and do not require
any setup or run time modification of the parameters for internal convergence control, which are
dependent on the structure dimensions and frequency. For relative errors of less than −dB, both
acceleration techniques exhibit commensurable convergence rates [] and can be equally used for
regularization and efficient solution of the IEs with either the entire-domain or subdomain basis
functions.
Another approach intimately related to the Kummer method, the so-called “line-by-line” tech-

nique, provides an efficient means for calculating the periodic GF. The spectral summation is used
here in successive lines of sources, while a spatial summation is carried out to add up the contri-
butions of successive lines [,–]. This summation is carried out separately for each mode of
the spectral sum, and convergence can be dramatically accelerated with the help of the Shanks and
Levin-T transforms. This approach can be regarded as a reformulation of the Kummer method out-
lined above. Indeed, in this case, the Ω term in Equation . is simply replaced by the summation
of the terms corresponding to propagating cylindrical waves radiated by successive lines of sources.
In other words, Ω is extended to propagating modes by the new expression for Ω, which reads

Ω =


 jb ∑
n

∣k y ,n ∣<k

e− jk y ,n y
∞

∑
m=−∞

m≠

e− jmkx ,a H() (
√

(k − k
y ,n)(z + ∣x − ma∣)) (.)

where the inner sum can be accelerated to obtain an exponentially convergent series, as long as the
source spacings are smaller than half a wavelength. In this new formulation, Equation . describes
the field radiated by the closest line of sources, whereas Equations . and ., both amenable to
exponentially converging series with the help of the Levin accelerator, correspond to evanescent and
propagating cylindrical waves radiated by the other lines of sources.

5.5 Illustrative Numerical Examples

In this section, we provide two illustrative examples of efficient simulations of periodic structures by
the MoM: one is composed of dielectric spheres, the other one is formed by apertures in conducting
screens in a layeredmedium. Subdomain basis functions are used for the former structure, and entire-
domain basis functions are employed for apertures.

5.5.1 Arrays of Spheres, Using Subdomain Basis Functions

In this example, the surface equivalence principle outlined in Section .. has been exploitedwith the
“continuity” formulation, while the GF computation is based on the line-by-line approach presented
at the end of Section ... Simulations have been carried out for transmission of plane waves through
an infinitely periodic dense array of spheres with several values of the dielectric constant.Themesh of
the sphere making out the unit cell contains  RWG [] basis functions. The sphere radius is  cm
and the size of the square unit cell along the x and y axes is . cm. The magnitudes of transmission
(T) and reflection (R) coefficients for normal incidence are shown in Figure ., along with the
sum of their squared magnitudes ∣R∣ + ∣T ∣ that should equal unity (check of energy conservation).
The bottom plot shows that the energy conservation is excellent: inmost cases, the value of ∣R∣+∣T ∣,
expressed in dB, does not exceed a fewhundredths of a dB, except for the case of єr =  and λ <  cm,
because in this case the domain of the basis functions Λm is not much smaller than the wavelength λ
in the dielectricmedium (in particular, it is larger than λ/. when λ = cm).The total computation
time for each frequency point, on a .GHz desktop computer, is about .min ( s for the tabulation
of the GF and its gradients, min for filling the MoM matrix, and  s for solution of the system of
equations). It should be noted that when the unit cells are not too complex (fewer than –
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FIGURE . Reflection R (middle) and transmission T (top) coefficients through a layer of arrayed dielectric
spheres. Spheres: various permittivities;  RWG basis functions; diameter= . cm; period= . cm. Bottom:
Total= ∣R∣ + ∣T ∣ for testing the conservation of energy. (From Dardenne, X. and Craeye, C., IEEE Trans. Antennas
Propagat., , , .)

basis functions), important time savings (a factor between  and ) can be achieved by interpolating
the frequency dependence of the MoMmatrix.

5.5.2 Arrays of Apertures, Using Entire-Domain Basis Functions

This example illustrates the application of Galerkin method (same basis and testing functions) with
entire-domain basis functions (cf. Section ..). Reflectance and transmittance are calculated for an
array of -D periodically spaced apertures of arbitrary shapes in stacked conducting screens. As the
same periodicity in x and y directions is assumed in all layers, the problem is reduced to a single unit
cell (a × b), which may contain several dissimilar apertures as shown in Figure .. Each aperture
is defined by its length L along the x-axis and variable width [l+(x) + l−(x)] in the y direction.
The screens are assumed to be infinitesimally thin and perfectly conducting. Finite thickness of the
screens is also taken into account with the aid of the effective aperture dimensions [] and the
impedance boundary conditions can alternatively be used to model imperfect conductors.
The array is illuminated by a TE (S) or TM (P) polarized plane wave incident at an arbitrary angle

θ to the z-axis, so that the y components of their electric fields, Ey , are perpendicular to the aperture’s
larger side (L) extended along the x direction.The array reflectance and transmittance are calculated
by solving a system of IEs for unknown magnetic currents on the apertures as shown in Figure .d.
The IE with the periodic GF has been treated by Galerkin method with the entire-domain basis and
test functions, which explicitly account for the field singularities at the aperture edges. This leads to
a system of linear equations similar to Equation ..The convergence of GF has been accelerated by
the Kummer method as detailed in Section ... Then, the convolutions of the singular part of GF
with the basis and test functions have been evaluated analytically; that resulted in a rapidly convergent
computational algorithm with controllable accuracy of the numerical solution (see details in []).
The convergence tests have shown that for calculating the scattering parameters with the relative
error less than −, two to four basis functions are sufficient for rectangular slots and six to eight
basis functions are required for apertures with substantial width variations. The simulation time per
frequency point for the two-layer array with dissimilar apertures (relative error less than .) was

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Fundamentals of Method of Moments for Artificial Materials 5-19

H

Measurements

Wavelength (mm)(a)

Tr
an

sm
iss

io
n 

(d
B)

Simulation t = 0
Simulation t = 8.4 μm

0

–1

–2

–3

–4

–5

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
–6

0

–2

–4

–6

–8

–10

–12

–14

Tr
an

sm
iss

io
n 

(d
B)

Wavelength (mm)(b)

E

Measurements

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

Simulation t = 0
Simulation t = 8.4 μm

FIGURE . Comparison of measured and simulated transmittance for (a) TM and (b) TE waves incident at ○

on the slot arrays with the following dimensions: (a) a = .mm, b = .mm, L = .mm, l = .mm; (b)
a = .mm, b = .mm, L = .mm, l = .mm. (From Schuchinsky, A., Zelenchuk, D., and Lerer, A.,
J. Opt. A: P Appl. Opt., (), , .)

about  s when using a desktop PC with CPU Athlon XP  and KB RAM. Further details of
the method and verification of the computational algorithm are discussed in [].
The simulated transmission coefficients for the single layer slot arrays illuminated by TM (mag-

netic field in the conductor plane, see inset in Figure .a) and TE (electric field in the conductor
plane, see inset in Figure .b) polarized plane waves incident at ○ are shown in Figure . in
comparison with the measured transmittance [–]. The resonant wavelengths of the maximum
transmittance calculated for infinitesimally thin conductors (t =) are in excellent agreement with
the measured results for both polarizations, and the simulated and measured characteristics closely
follow each other in a broad range of wavelengths.
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5.6 Eigenmode Analysis

Eigenmodes are waves that can propagate or resonate in the structure without distortion and inter-
action with other modes. This implies that they represent nontrivial solutions of the homogeneous
system of algebraic equations arising from theMoM solution of the IE. Hence the determinant of the
system matrix is zero, or equivalently, at least one of the matrix eigenvalues is zero. When applied
to periodic structures, eigenmodes can be analyzed in the Brillouin space, appearing for particu-
lar values of phase shifts kx ,a and ky ,b, that can be complex-valued for leaky modes or waves in
lossy structures. Searching for zeros of the impedancematrixmay be computationally intensive, since
zero-searching must be carried out over a large -D domain. This calls for faster methods for com-
puting the GF, for interpolating the MoM impedance matrix elements over the Brillouin space, etc.
Successful implementations of the eigenmode analysis are described in [,–], where, in the lat-
ter references, the procedure is accelerated thanks to a transformed IE formulation, which avoids
root-searching methods by obtaining all eigenvalues at once. As an illustration, we can present the
characterization of a double negative material [], where the unit cell contains a wire section and
a split-ring resonator. In Figure . the dispersion characteristics of the metamaterial are depicted
(β represents the propagation wavenumber), first without the wires (solid line) and then with the
wires and the split-ring resonator particle (dashed line). It can be seen that when the wires are
added to the crystal, a new transparency band emerges in a frequency range previously forbid-
den. Furthermore, the slope of the curve is negative, showing that the mode exhibits backward
propagation.
The interpretation of the resulting eigenmode loci (generally speaking, -D domains in a -D

space) can be found in [] for example. A more difficult task is the tracking of complex modes
(i.e., eigenmodes with complex-valued wavenumbers kx , and ky ,, or with complex frequencies),
which are important for the analysis of leakywave structures and near field interactions.This involves
evaluation of complex roots of complex-valued functions which require specialized algorithms for
locating, bracketing, and refinement of the roots. The recent developments in computing complex
zeros of analytical functions [–] provide efficient tools for analysis of such complex eigenmodes.
Examples of accurate numerical complexmode analysis in periodic structures andmetamaterials can
be found in [,–].
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FIGURE . Dispersion characteristic of the medium with SRRs (solid line) and with SRRs and wires (dashed line).
(From Silveirinha, M.G. and Fernandes, C.A., IEEE Trans. Microwave Theory Tech., , , .)
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5.7 Array Scanning Method

The ASM (see [,–] and references therein, and [,] for a time-domain implementation)
allows for the determination of fields radiated by an isolated source in an infinite periodic structure.
More details for arrays periodic in two directions are presented in Chapter  []. An explanation
is provided here for the case of linear arrays of point sources along the x direction []. The point
source at r′ = can be alternatively represented by a continuous superposition of arrays of phased
sources as

δ(r′) = δ(x′) δ(t′) = δ(t′) 
π

π�


∞

∑
m=−∞

δ(x′ − ma) e− jmψ dψ (.)

where
a is the array spacing along x
δ(t′) is a Dirac delta function defined in the plane transverse to the x-axis and centered on it

The interelement phase shift equals ψ = kx ,a and varies over the Brillouin zone. Since this superpo-
sition property holds for the sources, it holds also for the generated fields. Thus, superimposing the
electric field solutions, E∞, from the infinite array of sources in the infinite periodic structure, we
obtain the solution for one source at r′ = only in the infinite-array structure:

E(r + nax̂) = 
π

π�


E∞(r, ψ) e− jnψ dψ (.)

where r + nax̂ is the coordinate of the observation point in the nth periodic cell and r lies within
the reference unit cell (with n =). When, for numerical integration, the integral is approximated
by a sum of P terms, the calculated field is the one produced by the original source at r′ = plus
the “images” repeated every P elements (aliasing phenomenon [,,]). An estimate of the ASM
numerical merit as compared to a standard plane-wave superposition for the field represented by a
single source is discussed in [,]. When applied to -D periodic arrays [], the ASM permits
to determine the point-spread function (spatial impulse response), which corresponds to the field
radiated by a point source through an infinite slab periodic in two directions. In [], this technique
has been used to estimate the point-spread function of a metamaterial composed of parallel wires. In
three dimensions, the ASM enables the computation of fields radiated by localized sources in infinite
periodic media.

5.8 Finite Arrays

In practice, periodic metamaterials will have finite size, generally limited to a few wavelengths. In
view of the eigenmodes that may propagate within the structure, strong reflections at the edges of the
array may take place and lead to a significantly different response of the finite structure [,], as
compared to the infinite-array case. These effects need to be evaluated very quickly and, in doing so,
the periodicity of the structure is, in general, exploited efficiently. Three main approaches are briefly
outlined below.

5.8.1 Fast Multipole Methods

Fast multipoles are based on the observation that the free-space GF can be decomposed into a con-
tinuous spectrum of plane waves whose directions of propagation span the whole unit sphere. In
this decomposition, the addition theorem for Bessel and Hankel functions plays a key role [].This
decomposition leads to diagonalization of the operator standing for radiation from a given region
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and testing by decomposition functions located in another, sufficiently distant, region. The required
data are then the far-field patterns of basis functions and a translation operator, which depends on
the relative positions of centroids of the groups. If the N basis functions are arranged into about

√
N

groups of about
√

N basis functions, the testing by all basis functions of fields radiated from thewhole
current distribution can be carried out in order of N/ operations instead of order N []. When
extended to a multilevel scheme, with a hierarchic decomposition of groups, the complexity asymp-
totically reduces to order N log N [,]. This method has been successfully applied by different
authors [–] to the fast simulation of fields in periodic structures. Advantage can be taken from
the periodicity to reduce the amount of memory needed to store the patterns of basis functions and
to compute preconditioners [] that lead to accelerated convergence of iterative solvers based on
Krylov subspace [] methods.

5.8.2 The Fast Solver GIFFT

A new algorithm that combines the use of green’s function (GF) interpolation (FFT) and fast Fourier
transforms, GIFFT has been recently proposed in [,] tomodel large periodic structures of finite
size. This method is similar to the adaptive integral method (AIM) [] in the sense that it projects
the solution domain onto a regular grid to enable the use of the FFT algorithm.The key difference is
how the projections are done. In AIM, radiating basis and testing functions are replaced by a neigh-
boring grid of approximately equivalent monopole sources, and the usual GF is used to compute
the interactions between these groups of equivalent sources. In GIFFT, the GF is approximated on
an interpolation grid, and the basis and testing function integrations are done in the usual manner
using the interpolated GF. The method lends itself to efficiently handle large arrays while maintain-
ing the generality of standard MoM. Instead of using field representation in the spectral domain as
in FMM, GIFFT works entirely in the spatial domain and basis function interactions rely on point
to point interactions, calculated with the proper environment GF. Therefore, multilayer GFs can be
readily used in GIFFT as in the standard MoM [].

5.8.3 Macro Basis Functions Approach

When complex unit cells of a particular artificialmaterial,made of a periodic structure of finite extent,
are considered, the solution of the IE may require a very large number of unknowns. Nevertheless,
when the elements are smaller than the wavelength, which is always the case in metamaterials, the
fields radiated by a given structure can be described with very few parameters [,]. Also, in
passive periodic structures, fields (or equivalent currents) that can be excited on a given cell have
relatively few physical degrees of freedom [] formost types of excitations. In other words, the phys-
ically possible discretized solutions belong to a relatively small subspace of the space representing all
possible mathematical solutions (with dimension equal to the number of unknowns). An alterna-
tive basis set for this physical subspace can be formed by the solution for a given unit cell under a
few illuminations [–]. A relatively open problem then consists of finding a systematic way to
construct such a basis. Several methods developed for antenna array applications and for metama-
terials have been proposed in the literature. The first consists of exciting one cell from a number of
directions [] or from point sources located on a surface enclosing the structure []. The singu-
lar value decomposition (SVD) procedure then enables the reduction of the number of generated
MBFs, based on their linear dependence below a certain threshold. Another method for MBF gener-
ation is based on the illumination of an isolated element (primary), which in turn, illuminates other
elements (secondaries) of the array []. Alternative methods are based on the solutions obtained
with small arrays (e.g., ×  arrays) []. Finally, another approach starts from the superposition of
infinite-array solutions [] for a given set of phasings along the periodic directions, kx ,a and ky ,b,
which finds its justification in the ASM. Reference [] shows how to obtain the reduced system of
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equations, whereas an accelerated technique which avoids the computation of the original system of
equations, based on multipole decompositions, is described in [].
An example for the use of MBFs in the analysis of finite metamaterials is given below []. The

analyzed structure is composed of  ×  ×  unit cells along the x, y, and z directions, respectively,
as shown in the insert of Figure .. Every unit cell of the array is made of the combination of a
metallic (perfect electric conductor) split-ring resonator and strip, in order to realize a negative-index
material []. Each unit cell occupies a cube with sides of . cm and is meshed with  RWG []
unknowns. The array is illuminated, on one side, by a dipole fed with a delta gap excitation. On the
other side, a receiving dipole is placed, in order to evaluate the transmission coefficient of the array, as
shown in the inset in Figure .. Both dipoles are short in comparison to the wavelength, and have a
height of  cm.
The transmission coefficient versus frequency is shown in Figure ., and it is defined as the ratio

between the currents flowing at the center of the receiving and transmitting dipoles, in the presence
of the metamaterial, normalized with respect to the same ratio in the absence of the metamaterial.
The transmission coefficient is computed by simulating the structure in three different manners: by
usingMBFs obtained from a ××-array solution, by usingMBFs obtained from the infinite-array
solution, and by a standard MoM procedure (solved with gaussian elimination). The latter solution
is used as a reference solution to calculate the absolute error of the transmission obtained with the
MBF methods and requires to solve a system of equations involving  unknowns.
The first method based on using theMBFs from the finite-array solution represents a simple way—

but also computationally expensive—for obtaining the MBFs []. It consists of analyzing via a
standard MoM a small-scale interconnected structure, made of  ×  ×  unit cells, excited by only
one plane wave. TheMBFs are extracted from the currents induced in each unit cell of the structure.
In the second method, based on using the MBFs from the infinite-array solution (see Figure .),

the primary MBF corresponds to the infinite-array solution obtained with a plane-wave excitation.
The secondary MBFs [] are obtained by placing the primary MBF in a small-scale ( ×  ×  unit
cells) interconnected structure and by computing on the neighboring elements, taken individually,
the currents induced by the fields radiated by the primary MBF. The advantages of this approach
are summarized here: () only two MoM impedance matrices need to be inverted, corresponding
to the infinite-array and the single-element cases, respectively, and () the unit cells connecting to
the primary MBF solution inherently exhibit continuous currents across the electric connection.

Infinite-array simulation

Extraction of the
current distribution

Creation of
secondary MBFs

Nonzero
current at connection

Use this current
distribution as a

primary MBF
in a small array

2 × 3 × 2

FIGURE . Scheme for creating a set of MBFs from an infinite-array solution.
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FIGURE . Transmission coefficient, as defined in Section .., for a periodic metamaterial (see inset) made of
 ×  ×  unit cells.

Consequently, this method is faster and gives better results than the previous one, especially when
connections are present between the unit cells of the studied structure.
Both MBF approaches allows us to reduce dramatically the number of unknowns of the complete

system. Indeed, since in both methods  MBFs are obtained, the number of unknowns is reduced
from  to .
Figure . compares the solutions for the transmission coefficient obtained with the two MBF

methods. The top line corresponds to the transmission coefficient obtained via the standard MoM
with gaussian elimination for the  ×  ×  array. Overall, the presence of the metamaterial leads
to a certain field blockage (transmission coefficient below zero). Since the metamaterial structure is
not large, compared to the wavelength, that blockage is limited. The peak near . GHz is believed
to correspond to the negative-index region, where a pass-band is expected. We have verified that
the peak around . GHz is related to the resonance of the wires with finite length. The two other
curves represent, on the same dB scale, the absolute error in evaluating the transmission coefficient
obtained by solving the problem with the two MBF-based approaches described above; the error is
computed as the magnitude of the difference between the transmission coefficients obtained with
the MBF-based formulation and the standard MoM solution.The curve with bullets shows the error
when using the MBFs obtained from the small finite-array analysis. The curve with triangles shows
the error when using the MBFs obtained from the infinite-array solution. It can be seen clearly that
the error from the latter method is smaller, i.e., near −dB. The two methods based on the use
of MBFs are much faster than the standard MoM, since they require mainly the solution of unit-
cell problems only and the solution of the whole scattering problem with just a few unknowns per
unit cell.
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6.1 Introduction

Most metamaterials have periodic repetitions in one or more directions. Thus, it is desirable to apply
periodic boundary conditions (PBCs) in electromagnetic modeling to reduce the computational
cost. PBCs are formulated in the spectral domain and have been efficiently implemented by fre-
quency domain numerical techniques. In order to develop an efficient time-domain technique for
the modeling of periodic structures, spectral approaches should be explored. This chapter describes
the finite-difference time-domain (FDTD) techniques developed for the modeling of periodic struc-
tures. After reviewing the basic principles of the FDTD method, we present a spectral PBC for the
method, which can be used in both guided wave analysis and scattering characterization. Further-
more, the array scanning method (ASM) is integrated with the spectral FDTD method to analyze a
finite source in metamaterials.

6.2 FDTD Fundamentals

The FDTD method, which discretizes Maxwell’s equations in both the time and space domains, has
demonstrated desirable features for the analysis of electromagnetic structures []. A significant advan-
tage of the FDTD method is the versatility to solve a wide range of microwave and antenna problems.

6-1
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It is flexible enough to model various media, such as conductors, dielectrics, lumped elements, active
devices, and dispersive materials. Another advantage of the FDTD method is its capability in broad-
band characterizations. Since this method is carried out in the time domain, the transient data from
one simulation can be transformed to the frequency domain to obtain a wideband response.

The FDTD method deals with the differential form of Maxwell’s equations in the time domain,

∇× E⃗ = −∂B⃗
∂t

,

∇× H⃗ = ∂D⃗
∂t
+ J⃗ ,

∇ ⋅ D⃗ = ρ,

∇ ⋅ B⃗ = , (.)

where
E⃗ is the electric field intensity in V/m
D⃗ is the electric flux density in C/m

H⃗ is the magnetic field intensity in A/m
B⃗ is the magnetic flux density in Wb/m

J⃗ represents the electric current density in A/m

ρ denotes the electric charge density in C/m

Constitutive relations, which describe the electric and magnetic characteristics of materials, are a
necessary supplement to Maxwell’s equations. In a linear, isotropic, and nondispersive material, they
can be simply written as follows:

D⃗ = εE⃗ , B⃗ = μH⃗, (.)

where
ε is the permittivity
μ is the permeability

It is important to point out that the four equations in Equation . are not independent of each
other. Actually, the two divergence equations can be derived from the two curl equations. Therefore,
only the two curl equations need to be considered in the derivation of the FDTD method.

To solve Maxwell’s equations numerically, Yee introduced a cubic lattice with electric and mag-
netic field vectors sampled in a special manner, as shown in Figure . []. The cell dimensions are
(Δx , Δy, Δz) in Cartesian coordinates. It is observed that every E⃗ component is surrounded by four
circulating H⃗ components, and every H⃗ component is surrounded by four circulating E⃗ components.
The space domain V is then filled with these unit cells, and a grid point (i , j, k) is defined as

(i, j, k) = (iΔx , jΔy, kΔz). (.)

In the time domain, the electric field and magnetic field are sampled with a half time step difference,
i.e., the electric field is evaluated at t = nΔt and the magnetic field is computed at t = (n + /)Δt.
Here, Δt is the time increment.

With the above definitions, a central difference scheme is used to discretize the two curl equations
in Equation .. For example, the following six equations are obtained in free space:
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The updated Equations . and . can be adjusted to model different dielectrics, conductors, thin
wires, and lumped elements encountered in electromagnetic problems. In addition, active devices
and dispersive materials can also be accurately characterized with proper models in the FDTD
method [].

To calculate the time evolution of the electromagnetic fields, Equations . and . are used in the
following manner. Initially, all field values within the computational domain are set to zero. An exci-
tation, which can be a lumped voltage source or a distributed plane wave source, is then introduced
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at a specified location. The values of magnetic fields are computed at time t = (n + /)Δt, followed
by the computation of electric fields at time t = (n + )Δt. The time-stepping iterative procedure
is repeated until the desired time response for the electromagnetic problem is obtained. Finally, a
Fourier transform is performed on the time-domain data to derive the frequency characteristics of
the electromagnetic problem. This implementation procedure is fully explicit, thereby avoiding the
inversion of a large matrix required in other numeric methods.

As an explicit difference scheme, the FDTD algorithm requires that the time step size Δt must
be smaller than a specific bound determined by the space increments Δx , Δy, and Δz in order
to avoid numerical instability. For three-dimensional (D) problems, the Courant–Friedrich–Lewy
(CFL) stability condition gives the following bound in free space:

Δt ≤ 

C
√


Δx + 

Δ y + 
Δz

, (.)

where C is the free space wave speed.
A fundamental consideration with the FDTD method is the treatment for boundary conditions.

For a closed structure with metal walls, boundary conditions can be simply handled by setting the
tangential electric fields to zero. For an open structure encountered in many antenna radiation or
electromagnetic scattering problems, the simulation grids must theoretically extend to infinity for
a perfect representation of the actual electromagnetics scenario. Clearly, no computer can store an
unlimited amount of data, and therefore, the computational domain must be truncated to a finite size.
Various absorbing boundary conditions (ABCs) are developed to eliminate the reflection of outgoing
waves on the perimeter of the domain as if the simulation were performed on a computational domain
of infinite extent. Two popularly used boundary conditions are radiation boundary conditions based
on traveling wave equations [,] and perfectly matched layers (PMLs) based on an appropriate
design of a uniaxial lossy medium [,]. Modern ABCs have excellent capabilities for virtually
reflection-free truncation of the computation domain with a wide dynamic range of  dB or more.

The aforementioned boundary conditions are used for electromagnetic structures with finite sizes.
In many EM applications, especially in artificial materials, the analyzed structure is considered to be
infinite in a periodic manner. Typical examples include corrugated waveguides, frequency selective
surfaces (FSSs), electromagnetic bandgap (EBG) structures, and double negative materials. A direct
simulation of the entire periodic structure requires prohibitively large computational resources,
which is impractical for researchers and engineers. To alleviate the computational burden, PBC that
models the effect of periodic replication is utilized to truncate the computational domain so that only
a single unit cell needs to be simulated. In the following sections, several PBCs will be described, and
their applications in a variety of artificial materials will be highlighted.

6.3 Periodic FDTD Method for Waveguide Designs

Periodic structures have been used to design various waveguides. For example, a metal ground plane
with periodic corrugations is designed to guide slow waves. Recently, an EBG structure consisting
of periodic patches and vias on a grounded dielectric slab are proposed to suppress surface waves
within a certain frequency band. A common question behind these applications is how to accurately
characterize the dispersion curve of periodic structures. More specifically, at a given frequency, the
propagation constants of surface waves need to be identified. A reverse statement of this question
is to find the eigenfrequencies of surface waves at a given propagation constant. The FDTD method
has been successfully applied to analyze periodic waveguides. Since it is a time-domain method, the
latter statement of the problem is more convenient for finding the dispersion curve.

The FDTD algorithm discussed in the previous section still applies, and the main distinction here
is the setup of PBCs [,]. Assume that an electromagnetic wave is guided along the z-direction with a
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propagation constant kz . The period of the artificial waveguide is pz . For the purpose of computation
efficiency, the computation domain is truncated to include only a single unit of the periodic cell. In
transverse directions, the traditional metal wall condition or ABC is used. In the longitude direction
(z-direction), the following equations are used:

E(x , y, z) = E(x , y, z + pz) ⋅ exp( jkz pz),
H(x , y, z) = H(x , y, z + pz) ⋅ exp( jkz pz). (.)

The eigenfrequencies of the system at the selected propagation constant kz are computed from the
Fourier transforms of the time-domain data of the fields. In practice, these frequencies correspond
to the peaks in the frequency spectrum. To obtain a complete dispersion curve, the FDTD simu-
lation needs to be repeated for different values of the propagation constant kz . It is worthwhile to
point out that the excitation condition and the extraction of time-domain data are critical to obtain
accurate results. For example, if the excitation point is put at a null location of a specific mode, the
corresponding eigenfrequency may be lost in the frequency spectrum.

Figure . shows a periodically segmented waveguide, which is analyzed using the FDTD
method []. This waveguide is used for the quasiphase-matched second harmonic generation of blue
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FIGURE . Periodically segmented dielectric waveguide structure. (a) Waveguide geometry with dimensions:
w = . μm, h = . μm, d = . μm, εr = , εr = (.) , and εr = (.); and (b) propagation constants
and eigenfrequencies of surface wave modes. (From Cangellaris, A.C., Gribbons, M., and Sohos, G., IEEE Microwave
Guided Wave Lett., (), , October . With permission.)
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X ∶ (kx , ky) = [π/(W + g), ], M ∶ (kx , ky) = [π/(W + g), π/(W + g)]. (From Yang, F., Aminian, A., and
Rahmat-Samii, Y., Microwave Optical Technol. Lett., (), , November . With permission.)

light. In the analysis, perfect electric conductors were used . μm above the air/substrate interface
and . μm below the interface for truncation. PBC is used to truncate the computation domain in
the z-direction. Figure .b shows a comparison of the eigenfrequencies found using a slab waveg-
uide model and the FDTD method. Excellent agreement is observed even when multiple modes are
present in the structure.

The aforementioned FDTD technique is also used to analyze a mushroom-like EBG structure [].
The EBG structure consists of four parts: a ground plane, a dielectric substrate, periodic patches,
and connecting vias, as shown in Figure .a. The dimensions of an analyzed EBG structure are
W = . mm, g = . mm, h =  mm, and εr = .. Here W is the patch width, g is the gap width,
h is the substrate thickness, and εr is the dielectric constant of the substrate. The vias’ radius in
the EBG structure is . mm. In this implementation, the structure is periodic in both x- and y-
directions. To accommodate this D periodicity, PBCs need to be put on four side walls of the unit
EBG cell. For a given pair of horizontal wave numbers (kx , ky), equations similar to Equation .
can be derived for x and y boundary treatments. Figure .b shows the dispersion diagram of the
EBG structure, where the vertical axis denotes the frequency and the horizontal axis represents the
values of the transverse wave numbers (kx , ky). One FDTD simulation outputs the eigenfrequencies
of surface wave modes at a given combination of wave numbers (kx , ky), and the FDTD simulation
is repeated for  different combinations of kx and ky in the Brillouin zone. Thus, each point in the
modal diagram represents a certain surface wave mode. It is observed that no surface waves exist in
the frequency range from . to . GHz regardless of the propagation directions and polarizations.
This frequency region is known as a surface wave bandgap of the EBG structure.

6.4 Periodic FDTD Method for Scattering Analysis

Periodic structures have also been used to design various scatterers and antenna arrays. For example,
FSSs consisting of periodic dipoles or slots are widely used as radomes and subreflectors in large
antenna systems. Planar reflectarray antennas, which are built from thousands of microstrip antenna
elements arranged in a periodic lattice, are utilized in the Earth remote sensing and deep space
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FIGURE . An FDTD model setup to simulate the scattering property of a general periodic structure.

exploration programs. More recently, artificial materials made of periodic metal wires and split
rings are designed to achieve simultaneous negative permittivity and permeability, that are known as
double negative metamaterials.

An FDTD model used to analyze the scattering property of a general periodic structure is plotted
in Figure .. The computation domain is enclosed by PMLs on the top and bottom and PBCs on four
sides. A single unit cell of the periodic structure is included in the computation domain. A plane wave
source is added on a virtual connection surface, which separates the entire computation domain from
the scattered field region above and the total field region below. An observational plane is set in the
scattered field region to extract the reflected field, and the reflection coefficient Γ is calculated by
taking the ratio of the reflected field over the incident field.

According to the Floquet theory for periodic scattering problems, PBC along the x-direction is
expressed in the frequency domain as below:

E(x , y, z) = E(x + px , y, z) exp( jkx px),
H(x , y, z) = H(x + px , y, z) exp( jkx px), (.)

where
px denotes the periodicity in the x-direction
kx is the horizontal wave number determined by both the frequency and the incident angle θ

kx = k ⋅ sin θ, (.)

where k = π f√εμ is the free space wave number. When Equation . is transformed into the
time domain,

E(x , y, z, t) = E(x + px , y, z, t + px sin θ/C),
H(x , y, z, t) = H(x + px , y, z, t + px sin θ/C),

(.)
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FIGURE . A PBG crystal analyzed using the FDTD method. (a) Geometry of the PBG crystal that consists of six
rows of  mm diameter Pyrex rods (εr = .) on a  mm square lattice; and (b) magnitude of transmission through
the PBG crystal. (Reproduced from Maloney, J. and Kesler, M.P., Analysis of Periodic Structures, Computational
Electrodynamics: The Finite Difference Time Domain Method, Artech House, Boston, MA, . With permission.)

it is noticed that the field data in the future time (t + px sin θ/C) are needed to update the electric
and magnetic fields in the current time (t), which creates a fundamental challenge in formulating
the PBCs.

6.4.1 Normal Incidence

Normal incidence is a simple but fundamental case to deal with. When a plane wave is normally
incident on a periodic structure, we have θ =  and kx = . Therefore, Equation . is simplified to

E(x , y, z, t) = E(x + px , y, z, t),
H(x , y, z, t) = H(x + px , y, z, t). (.)

It is clear that no data in the future time is needed in this PBC. Hence, the difficulty in Equation .
automatically vanishes and the PBC can be implemented easily. It should be pointed out that the
stability condition and the dispersion relation of the normal incidence case remain the same as
Equation ..

PBCs (Equation .) for normal incidence have been combined with the FDTD technique to
analyze a number of scatter problems. For example, Figure .a shows a photonic bandgap (PBG)
crystal consisting of six rows of Pyrex rods []. The rods are assumed to be infinitely long in the
z-direction and are periodically repeated in the y-direction. Thus, this problem is simplified into
a D simulation, and PBCs are applied in the y-direction. A plane wave propagating along the x-
direction normally illuminates on the PBG crystal. The computed transmission coefficient is shown
in Figure .b, where a stop band around . GHz is realized with an attenuation around− dB. The
FDTD results agree very well with the numerical results obtained from the mode-matching method.

6.4.2 Oblique Incidence: Sine–Cosine Method

Scattering properties of a periodic structure, such as resonant frequency, reflection and transmission
coefficients, vary with the incidence angle of the plane wave. Therefore, it is necessary to simulate
the plane wave incidence at oblique incidence angles. Various approaches have been proposed to
overcome the difficulty of PBC in Equation .. Here, a Sine–Cosine method [] is discussed first.

This technique incorporates the Floquet phase shift boundary condition (Equation .) directly
into the FDTD simulation instead of using its time-domain form (Equation .). To this end, the
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computation domain is excited by two plane waves incident simultaneously: one with a cos ωt
time dependence and the other with sin ωt. The corresponding fields are denoted by (E , H) and
(E , H). The conventional Yee’s algorithm is used to update these two sets of fields separately. To
apply the PBC, the fields on the boundary are first combined as follows:

Ec = E + jE , Hc = H + jH . (.)

It is worthwhile to emphasize that the combined fields have complex values. Since the combined
fields are equivalently excited by e jωt = cos ωt + j sin ωt, the phase relation in Equation . can be
used directly for the combined fields:

Ec(x , y, z) = Ec(x + px , y, z) exp( jkx px),
Hc(x , y, z) = Hc(x + px , y, z) exp( jkx px), (.)

where kx is calculated using Equation . with a known frequency ω and an incident angle θ. Finally,
two sets of fields are extracted from the combined field:

(E , H) = Re(Ec , Hc), (E , H) = Im(Ec , Hc). (.)

This procedure is repeated in each time step until the steady state is reached. The scattering properties
are then obtained from the time-domain field data.

The accuracy of this approach is validated through several FSS examples. A thick, double-
concentric loop FSS is shown in Figure .a with all dimensions provided in the caption. FDTD
computed results for a transverse electric (TE) incident plane wave at an elevation angle of ○ are
plotted in Figure .b []. The resonant frequency is accurately computed in comparison with that
from method of moment (MoM) analysis. The general behavior of the FSS near the resonance is
captured.

The stability condition of the Sine–Cosine method remains unchanged regardless of the incidence
angles because it uses the conventional Yee’s algorithm. However, a major concern is the computa-
tional efficiency. This method deals with PBCs from a single-frequency perspective. Thus, it loses
the wideband capability of the FDTD method. To improve the computation efficiency, a split-field
technique is described next.
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FIGURE . A thick double concentric square loop FSS analyzed using the FDTD method. (a) A single unit cell
of the periodic FSS with dimensions d = t = /Tx , W = .Tx , and W = .Tx ; and (b) reflected power
from the FSS for a TE wave incident at an angle of θ = ○ and ϕ = ○. (From Maloney, J. and Kesler, M.P., Analysis
of Periodic Structures, Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House,
Boston, MA, . With permission.)
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6.4.3 Oblique Incidence: Split-Field Method

Based on the field transformation technique [], a split-field method is proposed to analyze periodic
structures []. To explain the essence of this method, let us assume that a TMz plane wave is incident
on a D material that is periodic in the x-direction, as shown in Figure .. To account for the phase
shift along the x-direction, a set of auxiliary fields are introduced as follows:

Pz = Eze− jkx x/η,

Qx = Hx e− jkx x ,

Qy = Hye− jkx x , (.)

where η is the wave impedance of free space. After this transformation, the boundary conditions of
auxiliary fields on the opposite boundary wall are as simple as

Pz(x = ) = Pz(x = px),
Qx(x = ) = Qx(x = px),
Qy(x = ) = Qy(x = px). (.)

Difficulties of the field transformation technique arise when substituting Equation . into
Maxwell’s curl equations:

jω
εrPz

C
=

∂Qy

∂x
− ∂Qx

∂y
+ jω

sin θ
C

Qy ,

jω
μrQx

C
= −∂Pz

∂y
,

jω
μrQy

C
= ∂Pz

∂x
+ jω

sin θ
C

Pz . (.)

It is noticed that the time derivative ( jω ↔ ∂/∂t) appears on both sides of the equations. In addi-
tion, the right-hand sides are no longer spatially aligned to the Yee’s cell. Therefore, the conventional
leapfrog algorithm is not applicable now. Instead, a split-field update algorithm is proposed to solve
the above equations. The auxiliary fields P and Q are each split into two parts:

Pz = Pa
z + Pb

z , Qy = Qa
y + Qb

y ,

jω
εrPa

z

C
=

∂Qy

∂x
− ∂Qx

∂y
, jω

μrQa
y

C
= ∂Pz

∂x
,

Pb
z =

sin θ
εr

Qy , Qb
y =

sin θ
μr

Pz . (.)

The Yee’s lattice is used to discretize the computation domain, and time/spatial derivatives are
calculated by the central difference scheme. It is important to point out that a dual time grid is
introduced in this technique, i.e., each field component of P and Q is computed at every half time step.

The split-field method has been implemented to analyze a number of periodic structures. For
example, the scattering property of a PBG structure is presented here. Figure .a shows four rows of
Pyrex rods illuminated by an oblique incident plane wave []. The parameters of the rods and lattice
are the same as the one shown in Figure .. Both the measured and computed transmission coeffi-
cients at a ○ incident angle are plotted in Figure .b. A good agreement between simulation and
experiment results is obtained. When the incident angle increases to ○, the resonance frequency
also increases as compared to Figure .b.

The numerical stability of the split-field method is always a key concern. Since a new, updating
algorithm is used in Equations . and . instead of the conventional leapfrog method, the stability
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FIGURE . A PBG crystal analyzed using the FDTD method. (a) A plane wave obliquely incident on a PBG crystal
that consists of four rows of Pyrex rods; and (b) magnitude of transmission coefficient at an incident angle of ○.
(From Roden, J.A., Gedney, S.D., Kesler, M.P., Maloney, J.G., and Harms, P.H., IEEE Trans. Microwave Theory, Tech.,
(), , . With permission.)

constraint (Equation .) is changed as well. A simple and conservative stability limit obtained from
the maximum velocity in a cubic grid is given by

CΔt
Δx
≤  − sin θ√

D
, (.)

where D is the dimensionality of the problem. For normal incidence, this stability condition is the
same as in Equation .. As the incident angle increases, the required time step size must become
smaller. When the incident angle is close to the grazing angles such as ○, the time step is so tiny
that the FDTD simulation time is prohibitively long. Figure . shows how the stability limits of the
split-field technique vary with the incident angle [].

Besides the aforementioned three PBCs, a number of genius ideas have been proposed in the last
decade to formulate the PBC in various forms. For example, the use of multiple unit cells is one way
to solve the difficulty of the requirement of future time-domain data []. Angle-update method is
another approach based on memorizing data in a buffer [].

In addition to the scattering analysis, PBCs are also used in antenna array designs. For example,
a  ×  stacked microstrip patch array is analyzed in [] and the active reflection coefficient is
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FIGURE . Stability limit of the split-field technique varies with the incident angle. (Reproduced from Taflove, A.
and Hagness, S., Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, Inc.,
Norwood, MA, . With permission.)

obtained. Furthermore, a finite dipole array is demonstrated in [], and the blind scan angle is identi-
fied. Due to the page limits, these diverse PBCs and their numerous applications cannot be discussed
here. Interested readers are suggested to find more information in [].

6.5 A Unified Spectral FDTD Method

FDTD method for waveguide analysis was discussed in Section . and scattering analysis was dis-
cussed in Section .. In , a novel FDTD/PBC approach was introduced that was capable to
simultaneously analyze both the guided wave property and the plane wave property of periodic
structures in a simple and unified manner [,]. This section presents the basic concept and imple-
mentation issues of this unified spectral FDTD method and its applications in soft/hard surface
characterizations (Figure .).

6.5.1 Basic Concept of the Unified Spectral FDTD Method

Electromagnetic properties of periodic structures vary with the angle and polarization of an incident
wave. For a general structure that is periodic in the x- and y-directions, let k represent the free
space wave number, kx denote the propagation constant along the x-direction, and ky denote the
propagation constant along the y-direction.

. If k
x + k

y > k
, the incident wave is a guided wave along the horizontal direction and it

decays in the z-direction. The eigenmodes and eigenfrequencies of the structure are of
special interest.

. If k
x + k

y ≤ k
, the incident wave is a plane wave propagating along a direction denoted

by k⃗ = x̂kx + ŷky + ẑkz , where kz =
√

k
 − k

x − k
y . The reflection and transmission

coefficients need to be characterized.

Therefore, if we keep (kx , ky) as constants and vary the frequency from zero to a high value, the
incident wave starts in the guided wave region and ends in the plane wave region. The idea of setting
(kx , ky) as constant has been used in Section . for guided wave analysis. However, what is the
physical meaning of constant horizontal wave numbers in the scattering analysis? See Equation .
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FIGURE . A new FDTD model for periodic structure analysis using the spectral FDTD technique.

to obtain the incident angle θ of a plane wave as follows:

θ = sin−
⎛
⎜
⎝

√
k

x + k
y

k

⎞
⎟
⎠

. (.)

For a fixed (kx , ky), varying the frequency or k in the plane wave region will result in different
incident angles.

In contrast to the split-field method that calculates the electromagnetic behavior at a given
incident angle but different horizontal wave numbers, the unified spectral FDTD method simulates
the electromagnetic behavior at given horizontal wave numbers but different incident angles. The
advantage of choosing a constant kx is recognized from the transformation of Equation . into the
time domain, while a very simple PBC is obtained:

E(x , y, z, t) = E(x + px , y, z, t) exp( jkx px),
H(x , y, z, t) = H(x + px , y, z, t) exp( jkx px).

(.)

Note that exp( jkx px) is a constant number in Equation . resulting in complex values for both
E and H fields. It is clear from Equation . that no time delay or advancement is required in this
equation. This PBC can be considered as an extension of Equation . that applies to both the guided
wave region and the plane wave region [,]. Actually, the Sine–Cosine method is a special case of
Equation ., since the propagation constant is also a constant in Equation . for a given frequency
and incident angle.

The applicability of this PBC can be understood using the principle of superposition. For a given
kx , the time-domain equation (Equation .) is true for each frequency component. Therefore, when
a wideband pulse is launched into a linear system, Equation . still holds by the superposition of
all frequency components.
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6.5.2 Implementation Issues

The implementation procedure of the unified spectral FDTD method is similar to the normal
incidence case, which is also a special case in Equation . with kx = . The electric and magnetic
fields are computed as follows:

• In the interior of the computational domain, the conventional Yee’s scheme is used to
update the electromagnetic fields.

• At the periodic boundaries of the computational domain, Equation . is used to update
the EM fields instead of Equation ..

Several important issues need to be considered during the implementation. The first one is the plane
wave excitation. In Section ., the total field/scattered field (TF/SF) technique is used to excite plane
waves. Both the incident electric and magnetic fields are incorporated on the virtual connecting sur-
face that separates the computational domain into the total field region and scattered field region,
as shown in Figure .. When this technique is applied with constants (kx , ky), a difficulty arises
regarding the incident angle. For example, if a TEz wave illuminates upon a periodic structure, the
tangential incident fields E inc

y and H inc
x are expressed below:

E inc
y (x , y, z) = E inc

 ,

H inc
x (x , y, z + Δz/) = E inc

 /η ⋅ e jk Δz/ cos θ. (.)

It is noticed that the Hx component depends on the incident angle. Since in the proposed algorithm,
kx , is fixed and the incident angle θ varies with frequency, it is not easy to transform Hx into the time
domain. To solve the difficulty, an alternative excitation technique is used: only the Ey component
is added on the excitation plane for the TEz case. As a consequence of this one-field excitation tech-
nique, the plane wave is launched to propagate not only into z < z region but also into z > z region.
Thus, the entire computational domain becomes the total field region, and there is no scattered field
region, as shown in Figure .. A similar strategy applies for the TMz case: only the Hy component
is added on the excitation plane. For general polarizations, it is required to break it up into TE and
TM components, but both components can be excited and computed simultaneously.

The second issue is the parameter extraction. An observation plane is set in the computational
domain to collect the tangential electric and magnetic fields. Considering the horizontal phase delay,
the total E and H fields on the surface are extracted as follows:

Es =
�
S

E(x , y)e j(kx x+k y y)ds,

Hs =
�
S

H(x , y)e j(kx x+k y y)ds. (.)

Then, the impedance on the observation plane is calculated by taking the ratio of E and H fields,

Zs =
E
H

. (.)

Similar to the transmission line theory, the reflection coefficient can be calculated as follows:

Γ = Zs − Z

Zs + Z
, (.)

where Z is the tangential wave impedance of the incident plane wave in free space. For TM and TE
plane waves, the wave impedances are

ZTM
 = kz

k
η, ZTE

 =
k

kz
η. (.)
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Above equations not only apply in the plane wave region, but also can be used for surface wave
analysis. In the surface wave region, kz is an imaginary number and Z is also imaginary. When the
calculated reflection coefficient in Equation . becomes infinity, the corresponding frequency is
the eigenfrequency for the periodic structure. It is important to point out that higher Floquet modes
exist in periodic structures. These modes can be extracted from Equation . by replacing (kx , ky)
with (kx +m ⋅ π/px , ky + n ⋅ π/py).

The third issue is the eigenmode resonance []. When the plane wave and surface wave are ana-
lyzed simultaneously, one encounters the resonant time-domain data. At the eigenfrequencies, the
surface waves are guided along horizontal directions. The energy exiting the computation domain
at boundary x = px reenters the domain at boundary x =  following the PBC in Equation ..
Consequently, the time-domain data does not come down to zero, and a resonance behavior is
observed. As a result, the Fourier transformation cannot be used to obtain the accurate frequency
domain features. To solve this problem, the auto-regressive moving average (ARMA) estimator in
the signal processing area is implemented here to process the time-domain data. The analyzed struc-
ture is considered as a linear system, and the early time-domain data is used to derive the transfer
function of the system. Using the ARMA estimator, the frequency domain data can be obtained accu-
rately and efficiently. In addition, the eigenfrequencies can be directly obtained from the poles of the
transfer function.

It is worthwhile to emphasize several important advantages of this new approach. First, the new
algorithm is easy and straightforward to implement. In contrast to the field transformation methods
that use auxiliary fields P and Q, the new approach computes E and H fields directly. No compli-
cated discretization formulas need to be derived, and the traditional Yee’s updating scheme is still
valid. Another advantage of the new algorithm is the efficiency in calculating the scattering at large
incident angles. The stability condition of the proposed algorithm remains unchanged regardless of
the horizontal wave numbers or incident angles. Finally, this new algorithm is consistent with the
guided wave analysis method, which provides an opportunity to combine the surface wave and plane
wave analysis in a single FDTD simulation [].

6.5.3 Application in Soft/Hard Surface Analysis

A corrugated surface can be realized by adding metal walls to a grounded dielectric slab, as shown
in Figure .. This surface operates as a soft surface and a hard surface for waves propagating along
the x- and y-directions, respectively. This artificial structure has been used in waveguide designs and
profiled horn antennas.

The TM and TE impedances of the surface are calculated at several kx and ky values. Since no loss
is assumed in the FDTD simulation, the real parts of the impedances are zero and the imaginary parts
are plotted in Figures . and .. When the incident wave propagates along the x-direction, the TE
impedance has a small value, whereas the TM impedance has a large value in a certain frequency
range, which indicates a soft operation that stops the wave propagation. It is interesting to notice that
both TM and TE impedances are almost independent of the wave number (incident angle). When the
wave propagates along the y-direction, the TE impedance is large and the TM impedance becomes
small, which represents a hard operation that allows the wave to propagate. For y-propagated waves,
the wave impedances are sensitive to the wave number (incident angle) [].

6.6 Finite Source on Periodic Structure

In previous sections, we presented techniques of using PBC in the FDTD method so that only a
single periodic element needs to be modeled. However, all of the previous implementations assume
that periodic structures are illuminated by planar electromagnetic signals. That is, these methods
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FIGURE . Geometry of a corrugated soft/hard surface. Let g =  mm, t =  mm, h =  mm, and εr = .. (From
Aminian, A., Yang, F., and Rahmat-Samii, Y., IEEE Trans. Antenn. Propag., (), , January . With permission.)
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FIGURE . Surface impedances of the corrugated structure for waves propagating along the x-direction. (a) A low
TE impedance and (b) a high TM impedance are obtained, which indicate a soft operation.

are valid when the incident electromagnetic signal is also periodic and infinite in nature. For some
applications in which electromagnetic responses from finite-sized sources are required, “brute-force”
FDTD simulations were performed []. In these brute-force simulations, rather than using a single
periodic element, many repetitive cells are used to approximate the structure’s infinite extension.
Often, at least  unit cells are required in the directions where the infinite repetitions exist. However,
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FIGURE . Surface impedances of the corrugated structure for waves propagating along the y-direction.
(a) A high TE impedance and (b) a low TM impedance are obtained, which indicate a hard operation.

such an approximation truncates the actual domain, which could lead to a significant reflection from
truncated boundaries. In addition, this approach also requires significantly more computer memory
and CPU time as compared with the modeling of a single periodic element.

The purpose of this section is to present a novel FDTD method to analyze the interaction between
arbitrarily finite-sized electromagnetic sources over infinite periodic structures. The approach
described here is based on a spectral FDTD scheme. In this approach, the original finite-sized electro-
magnetic source is naturally expanded into the sum of series of periodic array sources. This technique
is referred to as the ASM, and its frequency-domain approach has been well discussed in several liter-
atures [–]. Instead of using complex numerical evaluation of the periodic Green’s function that
is performed in the frequency-domain ASM approach, we propose to use the time-domain modeling
technique in combination with the spectral domain PBC.

6.6.1 ASM–FDTD Theory

Consider an arbitrary periodic structure schematic as shown in Figure ., where a and b are the
periodicities along the x- and y-directions of this periodic structure. A finite electromagnetic current
source with a distribution of

�→
J (x , y, z, t) is located above the periodic structure. The unit cell where

z

b

a

x

(0,0)th

y

FIGURE . Planar periodic structure schematic. The distances between unit elements are a and b in the x- and
y-directions, respectively. An arbitrarily shaped source is placed over a unit element, and this element is denoted as
the (,)th unit element.
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the source is located is denoted as the (,)th unit cell. Once this is accomplished, the solutions are
obtained by the following methods.

. Perform multiple periodic spectral FDTD simulations using the following boundary pairs
to find the field Ẽ∞ (kx , ky , x , y, z, t) in the (, )th unit element excited by the infi-
nite periodic source array J̃∞(x , y, z, kx , ky) corresponding to different wave numbers of
kx and ky ,

E⃗ (x + a, y + b, z, t) = E⃗ (x , y, z, t) exp (− jkx a) (− jkyb) ,

H⃗ (x + a, y + b, z, t) = H⃗ (x , y, z, t) exp (− jkx a) (− jkyb) . (.)

. Integrate all of the harmonic responses Ẽ∞ (kx , ky , x , y, z, t) to obtain the total field in
the (,)th unit cell [],

E⃗(x , y, z, t) = ab
(π)

+π/b�
−π/b

+π/a�
−π/a

Ẽ∞(kx , ky , x , y, z, t)dkx dky . (.)

. Add a complex phase shift to the integration to find the solution in the (m, n)th element,

E⃗ (x +m × a, y + n × b, z, t)

= 
(π)

+π/b�
−π/b

+π/a�
−π/a

Ẽ∞ (kx , ky , x , y, z, t) exp (− jkx ma) exp (− jky nb)dkx dky .

(.)

6.6.2 ASM–FDTD Algorithm Properties

It is important to understand the numerical properties of this algorithm before efficiently applying
it to any practical problem. In this section, the radiation field of a y-polarized electric dipole source
with a current strength of  A in free space is first analyzed (see Figure .). A sinusoid signal with
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FIGURE . (Left) Periodic setup for algorithm analysis. (Right) The electric field distribution along the AA′

line calculated by different methods.  ×  means that eight sampling points are used in the interval described in
Equation ..
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an operating wavelength of λ = . m is launched and placed at the origin. To apply the PBC, the
computational domain is divided into a series of periodic cells in the x–y plane. The dimension of
each cell in the x- and y-directions is a = λ/, b = λ/, and the ASM–FDTD is performed only on
the (,)th cell, in which the source is located. For comparison, the conventional FDTD method with
the same spatial resolution is also used in the same problem. In order to evaluate the far-field region,
a much larger computational domain .λ × .λ in the x–y plane is included in the simulation
of conventional FDTD.

The magnitude of the electric field radiated by this dipole source is sampled starting from the
origin and moving up to λ away (see AA′ line in Figure .), and this is plotted in Figure ..
The analytical, conventional FDTD and ASM–FDTD solutions are given here. Increasing the spectral
sampling rate for both kx and ky by the order of power of  for each step, the results for three different
rates are obtained (Figure .). It is not surprising to find that the FDTD solution has excellent
agreement with the analytical solution because the spatial sampling rates for all of the directions are
dx = dy = dz = λ/, and the dispersion error is already minimized. Using the same mesh grid
size, when the segment number is n =  for both kx and ky decompositions, the field, especially in
the far-field region, shows significant deviation from the analytical and FDTD solutions. When the
sampling rate is doubled, the error drops dramatically, but only a few oscillations to the left in the far
field. After doubling the sampling rate once more, no noticeable difference can be observed between
the ASM–FDTD result and the analytical and FDTD solutions. This phenomenon can be explained
by the aliasing distortion.

It is also important to see the effect of the aliasing distortion on the time-domain response.
At this time, the excitation becomes a modulated Gaussian pulse function of exp (−.(t − t)/σ)
sin(π f t), and the parameters are f =  GHz, σ = /(π ⋅ BW), and t = σ. BW here refers to the
bandwidth of the Gaussian pulse with the unit hertz. The field is sampled at the point, which is λ/
away from the origin on the AA′ line.

From Figure .a, it can be observed that the solution of ASM–FDTD is almost identical with
that of FDTD upto t = . ns even when the sampling rate index n is only . However, as the signal
continues to propagate in free space, the responses excited by adjacent image sources begin to inter-
fere with the field at t ≈ . ns. When t is larger than  ns, the interference error cannot be neglected
because a high level of distortion as observed in Figure .b could dramatically affect the calculation
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FIGURE . Time-domain waveform of electric field sampled at the point that is λ/ away from the origin on the
AA′ line: (a) time axis from  to  ns; and (b) time axis from  to  ns.
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of frequency domain response. If we increase n to , the noise is obviously reduced but only after
n exceeds , and the distortion effect from the image sources can be regarded as having the same
level of background noise. This example reveals the fact that in the time-domain simulation using the
ASM–FDTD method, the spectral sampling rate must be carefully selected according to the length
of simulation time.

6.6.3 Numerical Examples

To validate our proposed D ASM–FDTD algorithm, several numerical examples are described
below. We use FDTD (m × n) to denote the brute-force FDTD result that includes m unit cells in
the x-direction and n unit cells in the y-direction. For the solution of the ASM–FDTD method,
ASM–FDTD (m × n) refers to the sampling rates in the spectral domain.

The first example investigated here is a photonic band structure of the square lattice with a dielec-
tric cylinder that was first reported in []. It consists of a periodic alumina (εr = ) cylinder array
that is exactly filled into the holes drilled on a Styrofoam (εr = .) support plate. The whole sub-
strate is embedded between two perfect conductor plates with a distance of  cm between them. Each
alumina cylinder has a radius of . cm, and they are separated by a = . cm in both the x- and
y-directions. The conductor loss in the alumina cylinder and Styrofoam support are both negli-
gible. To observe the wave-propagation behavior, we placed an Ez-polarized, infinitesimal electric
dipole in the geometry origin (,,) and then sampled the electric fields at (a,,) and (a,a,).
A wideband Gaussian pulse is excited and transmitted by the electric dipole in a . mm, discretized,
uniform grid of Yee’s cell space (Figure .).

Figure .a shows the time-domain waveform that is received at the observation point , obtained
by the FDTD and ASM–FDTD simulations. It is clear that before t =  ns all the results match
very well with each other. After this time, the solution of FDTD that includes only  ×  unit
cells in the computational space begins to deviate from the other solutions due to early boundary
reflection. The same phenomenon can be observed for the FDTD ( × ) solution at the time
t =  ns. We performed the Fourier transform on this waveform and normalized it to the field of free
space emission, and also plotted its frequency-domain propagation characteristic in Figure .b.
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FIGURE . A D photonic band structure of the square lattice with dielectric cylinders. (a) Top view; and (b) side
view and a single dielectric cylinder.
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FIGURE . Comparison of simulation results by the FDTD and ASM–FDTD methods at the observation point .
(a) Time-domain waveform; and (b) magnitude of normalized E field.

The figure reveals the fact that boundary reflection affects low-frequency energy transmission
very much.

The second example is a periodic cross-dipole array shown in Figure .. In this example, the
length and the width of each dipole strip is  mm ×  mm. The center spacing between cross-dipole
elements is  mm in both the x- and y-directions. The structure is illuminated by an infinitesimal
electric dipole source with unit strength, and polarized in the x-direction, located  mm above the
center of the (,)th unit structure. In the simulation, the FDTD mesh size becomes  mm in the
x-, y-, and z-directions. Again, a modulated Gaussian signal with a center frequency of  GHz and a
bandwidth of  GHz is launched from the dipole source.

Figure . shows the time-domain waveform comparison at a receiving point that is  mm below
the periodic structure. As we can see from the figure, in the time domain the results of all the methods
agree very well at the early time instances upto t =  ns. However, the brute-force FDTD result that
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FIGURE . A periodic cross-dipole array. (a) Configuration; and (b) detailed view and parameters of a unit cell.
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includes a smaller number of unit elements starts to deviate from the other two solutions significantly
due to the early boundary-reflection effect.

Based on this time-domain waveform, the magnitude and the phase of the normalized transmitted
electric field as a function of frequency at the observation location is shown in Figure .a and b.
Using Equation ., the field at the location that is offset by a distance of five unit elements in both
the horizontal directions is also computed and plotted. It is not surprising to see that the ASM–
FDTD solution tracks with that of the brute-force FDTD, which has larger truncated space, very
well again, although the difference between two FDTD solutions is small in this case. We do not
observe the fluctuation in FDTD but in the ASM–FDTD result. This may be because, in this example
the horizontal-resonance effect that we talked about in [] plays a more important role than the
reflection error due to the FDTD boundary termination.

6.7 Conclusions

Time-domain electromagnetic modeling techniques are presented for the analysis of periodic struc-
tures. After reviewing the basic FDTD principles, techniques for implementation of the PBC in the
FDTD method are discussed. To take advantage of the periodic nature of metamaterials, novel time-
domain algorithms formulated in the spectral domain are proposed. Using such implementations,
simulations are carried out in the complex domain, which is particularly suitable for stable FDTD
methods involving incidence angles near grazing. Some properties of these proposed algorithms are
presented in this chapter. Numerical examples are used to demonstrate the effectiveness of proposed
approaches. The memory usage of these methods is drastically lower than that of a standard FDTD
implementation, which has to discretize a large portion of the periodic structure to avoid truncation
effects.
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7.1 Introduction

In this chapter, basic material modeling questions are discussed with a focus on the polarizability of
dielectric particles. Polarizability is a very important concept in the analysis of macroscopic dielec-
tric properties of heterogeneous media. Special emphasis is given to the manner how geometric and
surface characteristics affect the response of matter inclusions. This review presents results for the
dielectric response and discusses the surface-geometrical parameters of various particle polarizabil-
ities that are important in the modeling of material effects in the context of metamaterials. Because
of the generality of the electric modeling results, many of the results are, mutatis mutandis, directly
applicable to certain other fields of science, like magnetic, thermal, and even (at least analogously)
mechanical responses of matter. The correspondence between different fields of physics permits such
a transfer but also defines its limitations. Since many of the polarizability results are also relevant
from the metamaterials point of view, the analogy also paves way to carry the whole metamaterials
paradigm beyond the domain of electromagnetics.

7.2 Static Electric Response of a Simple Scatterer

The response of an individual, well-defined inclusion can be solved from the electrostatic problem
when the object is placed in vacuum and exposed to a uniform static electric field. The effect of this
inclusion, or scatterer, is that the uniform field becomes distorted. The perturbation of the field is
concentrated into the vicinity of the scatterer.

To find order into this perturbation in the field structure, it is usually expanded in a multipo-
lar form. There the strongest field component is due to an effective dipole, which decays with a
dependence of the distance to the inverse third power. The amplitudes of the higher multipole fields
(quadrupole, octopole, etc.) decrease with faster rates as the distance from the scatterer increases.
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A homogeneous dielectric sphere is the basic shape in scattering problems. The response of a
homogeneous, isotropic, dielectric sphere in a homogeneous, uniform electric field in vacuum is
extraordinarily simple: it is a dipolar field. And the internal field of the sphere is also uniform,
directed along the exciting field and of an amplitude dependent on the permittivity. No higher-order
multipoles are excited.

The homogeneous internal field Ei as a function of the exciting, primary field Ee reads [,]

Ei =
є

є + є
Ee (.)

where
є is the (absolute) permittivity of the spherical object
є is the free-space permittivity

The polarization density induced within the sphere volume is (є − є)Ei and since the dipole
moment of a scatterer is the volume integral of the polarization density (dipole moment density),
the dipole moment of this sphere is

p = (є − є)
є

є + є
EeV (.)

where V is the volume of the sphere. Then we can write the (absolute) polarizability of the sphere
αabs, which is defined as the relation between the dipole moment and the incident field (p = αabsEe):

αabs = єV
є − є

є + є
(.)

In the modeling of dielectric materials, the polarizability is a very useful concept. However, even if
for a sphere with homogeneous excitation, the polarizability and the induced dipole moment fully
characterize the field behavior outside the scatterer, the whole story about the response of an arbi-
trary scatterer is not told. In the case of inclusion of shapes other than spherical, also quadrupolic,
octopolic, and even higher-order multipoles are created (and in the case of dynamic fields, the list of
multipole moments is much longer, see [] for a concise treatment of these). A more accurate name
for the polarizability we are now discussing (αabs) would be dipolarizability.

Nevertheless, the dipolarizability is the most important of the multipole moments. The dipole is
the lowest-order multipole except the monopole, which is not present in this type of polarization
problem with globally neutral particles. A monopole requires net charge.

The absolute definition of the (di)polarizability αabs carries information about the following
properties:

• Size of the inclusion
• Permittivity of the inclusion
• Shape of the inclusion

In addition, the dimension of the absolute polarizability includes that of the absolute permittivity. But
as can be seen from Equation ., the dependence on volume is trivial. The bigger the volume of the
inclusions, the larger is its electrical response. A more characteristic quantity would be a normalized
polarizability α, which for the sphere reads

α = αabs

єV
= 

єr − 
єr + 

(.)

where the division with the free-space permittivity є leaves us with a dimensionless quantity. Note
also the use of the relative permittivity of the sphere єr = є/є.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Polarizability of Simple-Shaped Particles 7-3

With this polarizability, the response of matter distils to the very essentials. It is a response quantity
of the most basic three-dimensional geometrical object with one single material parameter, permit-
tivity. And still, this response function is by no means trivial. Some of the properties of this function
are very universal.

The behavior of the polarizability as a function of the material permittivity is shown in Figure .
for positive permittivity values. In the limiting cases, the normalized polarizability saturates to the
value  for large permittivities and to the value −/ for the zero-permittivity.

Even if the behavior in Figure . looks monotonous, there is much physics inside it. In addition,
very interesting phenomena can be observed when the permittivity is allowed to become negative.
Figure . shows the behavior in this case.

In Figure ., one phenomenon overrides all other polarizability characteristics: the singularity
of the function for the permittivity value єr = −. This is also obvious from Equation .. This is the
electrostatic resonance that goes in the literature under several names, depending on the tradition: in
electromagnetics, microwave engineering, optics, and materials science, the terminology is different.
The singularity is also known as surface plasmon or Fröhlich resonance [].
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FIGURE . The polarizability of a dielectric sphere for positive values of the relative permittivity with linear and
logarithmic scales. Note the negative values for the polarizability for permittivities less than that of free space. The
symmetry of the polarizability behavior in the two limits (high-permittivity or “conducting”, and zero-permittivity or
“insulating”) can be seen from the right-hand side curve.
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FIGURE . The polarizability of a dielectric sphere when the permittivity is allowed to be negative as well as posi-
tive. The resonance at єr = − dominates the curve in the linear-amplitude plot (left), but if the amplitude is shown
logarithmically (right), the zero-crossing at єr =  becomes prominent.
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The behavior of the negative-permittivity resonances for small-sized scatterers is an interesting
topic in plasmonics []. Even if such media form a large class of metamaterials [], let us focus in the
following on positive permittivity values. Phenomena in the material response within this regime are
also worth studying [].

The formula for the polarizability of the sphere is enlightening in the respect that the α(єr) function
displays certain properties that can be easily derived from the mathematical form in Equation .. Yet,
these properties are universal in the sense that they also apply to dielectric objects of other shapes; at
least when the three-dimensional average of the response is concerned.

From the normalized polarizability α(єr), for the permittivity value єr = , we can write down the
following:

• The quasitrivial observation that transparent particles have zero polarizability:

α = , for єr =  (.)

• The slope of the function is unity at this point:

∂α
∂єr
= , for єr =  (.)

• Also there exists a condition for the second derivative:

∂α
∂є

r
= −


, for єr =  (.)

There are not many shapes that are less simple than the sphere, but are still analyzable in closed form.
Ellipsoids are, however, such geometries. Because the internal field of a homogeneous ellipsoid in
a constant electric field is also constant, the polarizability can be written as an explicit function of
the shape of the ellipsoid and its permittivity. The amplitude of this field is naturally linear to the
external field, but there also exists a straightforward dependence of this field on the permittivity of
the ellipsoid and of a particular shape parameter, the so-called depolarization factor. Note, however,
that the field “external” to the ellipsoid is no longer purely dipolar. In the vicinity of the boundary
there are multipolar disturbances whose amplitudes depend on the eccentricity of the ellipsoid.

Let the semiaxes of the ellipsoid in the three orthogonal directions be ax , ay , and az . Then
the internal field of the ellipsoid (with permittivity є), given that the external, primary field Ee be
x-directed, is (a generalization of Equation .)

Ei =
є

є + Nx(є − є)
Ee (.)

where Nx is the depolarization factor of the ellipsoid in the x direction, and can be calculated from

Nx =
ax ay az



∞�


ds

(s + a
x)
√
(s + a

x)(s + a
y)(s + a

z)
(.)

For the depolarization factor Ny , interchange ay and ax in the above integral. Similarly, in the case
of Nz , interchange az and ax .

The three depolarization factors for any ellipsoid satisfy

Nx + Ny + Nz =  (.)

Due to symmetry, a sphere has three equal depolarization factors of /. For prolate and oblate
spheroids (ellipsoids of revolution), closed-form expressions can be written for the depolarization
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factors [,]. The limiting cases of spheroids are a disk (depolarization factors (, , )) and a needle
(depolarization factors (/, /, )).

The polarizability components can be written using the field relation (Equation .). In this case,
where the spherical symmetry is broken, the polarizabilities are different for different directions. In
the x-direction the polarizability component reads

αx =
єr − 

 + Nx(єr − ) (.)

and the corresponding expressions for the y- and z-components are similar with obvious replace-
ment of Nx by the depolarization factor in the respective direction. The depolarization factor affects
the amplitude of the polarizability, and indeed, this relation allows quite strong deviations from the
polarizability of the spherical shape.

For a simple example, consider the limits of very large or very small permittivities. For єr → ∞,
we have αx = 

Nx
. And the other limit is αx = − 

−Nx
for єr → . Depending on the depolarization

factor values, these polarizabilities can vary in a very strong manner. Exploiting this property in a
synthesis problem, it provides a possibility to design media with a very strong, effective macroscopic
permittivity, using extremely squeezed ellipsoids, at least if the field direction is aligned with all the
ellipsoids in the mixture.

A mixture composed of aligned ellipsoids is macroscopically anisotropic. But also an isotropic
mixture can be generated from nonsymmetric elements (like ellipsoids) by mixing them in random
orientations in a neutral background. Then the average response of one ellipsoid is one-third of the
sum of its three polarizability components:

αave =

 ∑

i=x , y ,z

єr − 
 + Ni(єr − ) (.)

Figure . displays the effects of the shape of the ellipsoids on the averaged macroscopic response.
One-third of the sum of the three orthogonal polarizability components is plotted against the
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FIGURE . The average polarizability of a dielectric ellipsoid (one-third of the normalized polarizabilities in the
three orthogonal directions) for spheres (smallest), elongated (depolarization factors ., ., .; middle curve), and
flattened (depolarization factors ., ., .; highest curve).
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permittivity for different ellipsoids. We can observe that the deviation from the spherical form of the
inclusion enhances its dielectric response, as for high-permittivity inclusions the sphere response is
smallest; then comes the elongated (needle-shaped) inclusion, and the highest response is that from a
flattened spheroid. It is also worth observing that in the complementary direction (the permittivity of
the inclusion is less than that of vacuum), the situation with respect to the magnitude of the response
is the same; only then the polarizability is negative.

The geometry of a sphere is indeed a “minimum” geometry. In other words, with a given amount
of dielectric material, in a spherical form, it creates the smallest dipole moment, and every devi-
ation from this shape increases its polarizability. Here polarizability has to be understood in the
average three-dimensional sense. Of course, some of the polarizability components of an ellipsoid
may be smaller than that of the sphere of the same permittivity and volume; however, the remaining
components are so large that the average overrides the sphere value. For theoretical analysis on this
phenomenon in the literature, see [,].

A slight but perhaps essential difference can be observed in the curves of the figure. On the high-
permittivity side, the curves for the needle and the disk differ strongly from the sphere curve (and
would go to infinity for ideal needles and disks with depolarization factors (/, /, ) and (, , ),
respectively). On the other hand, on the low-permittivity regime the situation is different: the disk
curve separates from the sphere and needle curves. It seems that to have a strong response for
zero-permittivity inclusions, it is not enough to have objects with zero curvature in one dimension
(needles) but in two orthogonal dimensions (planar disks).

Polarizability is a truly powerful concept and tool in analyzing the dielectric response of single
scatterers. It is also very useful in computation of the response of dielectric mixtures as a whole. The
classical homogenization principles starting from Maxwell Garnett [], following through Brugge-
man [], over to the modern refined theories take advantage of the polarizabilities of the particles
that form the mixture.

7.3 Other Inclusion Shapes

It seems that for geometrical shapes other than the ellipsoid, the electrostatic solution of the particle
in the external field does not have a closed-form solution. In such cases one must resort to computa-
tional approaches. With various finite-element and difference-method principles, many electrostatics
and even electromagnetic problems involving small inclusions of matter can be solved with almost
any desired accuracy (see, e.g., [,]).

For a homogeneous scatterer with an arbitrary shape, a very efficient way to solve the field prob-
lem and the polarizability is through an integral equation for the potential on the surface. Such an
equation for the unknown potential function on the surface of the inclusion ϕ in this electrostatic
problem reads as follows []:

ϕe(r) =
єr + 


ϕ(r) + єr − 

π

�
S

ϕ(r′) ∂
∂n′
( 
∣r − r′∣ ) dS′ , r on S (.)

where
S is the surface of the inclusion
ϕe = −Eez is the potential of the incident field
ϕ is the total potential on the surface

The outward normal to the surface is n′ at point r′. Equation . is a Fredholm integral equation
of the second kind. Expanding the unknown function with piecewise elements, the solution can be
computed with the method of moments []. The dipole moment comes from
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p = −(єr − )єe

�
S

ϕ(r)n dS (.)

and consequently the polarizability α can be enumerated by renormalization with Ee.
For an arbitrary object, now there are new geometrical parameters that define the inclusion and

affect the polarizability, in addition to the permittivity []. One of the interesting questions in con-
nection with the material design is how the specific geometrical and surface parameters correlate with
the amplitude of the polarizability. A systematic study into this problem would require the numeri-
cal electrostatic analysis of many different scatterer shapes. In addition, one must remember that for
nonsymmetric, anisotropic-type shapes one needs to distill the trace (or the average of the compo-
nents) of the polarizability dyadic, which in the end would be a fair quantity to compare with the
canonical shapes.

In the following, the polarizabilities of some important shapes are presented, for which a closed-
form solution of the Laplace equation does not exist except in the form of infinite series. And again,
in the normalized form of the polarizability, the linear dependence on the volume of the inclusion is
taken away, and the effect of geometry is mixed with the effect of permittivity.

7.3.1 Regular Polyhedra

The five regular (Platonic) polyhedra are very symmetric shapes: tetrahedron, hexahedron (cube),
octahedron, dodecahedron, and icosahedron. They all have in common with the sphere the polariz-
ability dyadic is a multiple of the unit dyadic. In other words, the three eigenvalues of polarizability are
equal. One single parameter is sufficient to describe the dipole moment response. Of course, higher-
order multipolarizabilities are also present in increasing magnitudes as the sharpness of the corners
of the polyhedra increases. In this sense the symmetry of Platonic polyhedra is not as complete as
that of the sphere.

The dielectric response of regular polyhedra has been solved with a boundary-integral-equation
principle in []. There, an integral equation for the potential is solved with the method of moments
[], which consequently allows many characteristic properties of the scatterer to be computed.
Among them the polarizabilities of the five Platonic polyhedra have been enumerated with a very
good accuracy. Also regression formulas turned out to predict the polarizabilities correct to at least
four digits. These have been given in the form []

α = α∞(єr − ) є
r + pє

r + pєr − α

є
r + qє

r + qє
r + qєr + α

∞

(.)

where
p , p , q , q , q are numerical parameters
α
∞

and α are the computationally determined polarizability values for єr → ∞ and єr → ,
respectively

Of course, these parameters are different for all five polyhedra. At the special point єr = , the con-
ditions (Equations . through .) are satisfied for all five cases. See also [] for the connection of the
derivatives of the polarizability with the virial coefficients of the effective conductivity of dispersions,
and the classic study by Brown [] on the effect of particle geometry on the coefficients.

The polarizabilities of Platonic polyhedra are shown in Figure . as functions of the permittivity.
From these results it can be observed that the dielectric response is stronger than that of the sphere,

and it seems to be stronger for shapes with fewer faces (tetrahedron, cube) and sharper corners, which
is intuitively to be expected. Sharp corners bring about field concentrations, which consequently lead
to larger polarization densities and to a larger dipole moment.
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FIGURE . The polarizabilities of regular polyhedra and a sphere. Note that the curve for a sphere is always smallest
in magnitude, and the order of increase is icosa, dodeca, octa, hexa, and tetra (which has the highest curve). (From
Sihvola, A., J. Nanomater., , , .)

7.3.2 Circular Cylinder

Another basic geometry is the circular cylinder. This shape is more difficult to analyze exhaustively
for the reason that it is not isotropic. The response is dependent on the direction of the electric field.
The two eigendirections are the axial direction and the transversal direction (which is degenerate
as in the transverse plane no special axis breaks the symmetry). Furthermore, the description of
the full geometry of the object requires one geometrical parameter (the length-to-diameter ratio),
which means that the two polarizability functions are dependent on this value and the dipolarizability
response of this object is a set of two families of curves depending on the permittivity.

The polarizabilities of circular cylinders of varying lengths and permittivities have been computed
again with the computational approach []. Approximative formulas can be written to give a practi-
cal algorithm to calculate the values of the polarizabilities. In [] these formulas are presented as dif-
ferences to the polarizabilities of spheroids with the same length-to-width ratio as that of the cylinder
under study. Spheroids are easy to calculate with exact formulas (Equation .). Since they come close
to cylinders in shape when the ratio is very large or very small, one can expect their electric response
also to be similar, and the differences to vanish in the limits. Obviously the field singularities of
the wedges in the top and bottom faces of the cylinder cause the main deviation of the response from
that of the spheroid. Note also [] and the early work on the cylinder problem in the U.S. National
Bureau of Standards (references in []).

An illustrative example is the case of “unit cylinder.” A unit cylinder has the height equal to the
diameter []. Its polarizability components are shown in Figure .. There, one can observe that its
effect is stronger than that of a sphere (with equal volume), but not as strong as that of a cube.

7.3.3 Semisphere

One further canonical shape is a dielectrically homogeneous semisphere (a sphere cut in half
gives two semispheres). However, the electrostatic problem, where two dielectrically homogeneous
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FIGURE . A comparison of the polarizability of a unit cylinder and a cube. The unit cylinder has different
responses to axial and transversal excitations; here one-third of the trace of the polarizability is taken. Both curves
are relative to a sphere with the corresponding volume and permittivity. (From Sihvola, A., J. Nanomater., , ,
.)

domains are separated by semispherical boundaries, leads to infinite series with Legendre functions.
The polarizability of the semisphere cannot be written in a closed form. However, by truncating
the series and inverting the associated matrix, accurate estimates for the polarizability can be enu-
merated []. This requires matrix sizes of a couple of hundred rows and columns. Furthermore, a
semisphere as a rotationally symmetric object has to be described by two independent polarizability
components. It is nevertheless more “fundamental” than a cylinder because no geometrical parameter
is needed to describe its shape.

The axial (z) and transversal (t) polarizability curves for the semisphere resemble those for the
other shapes. The limiting values for low and high permittivities are the following:

αz ≈ ., αt ≈ ., (єr →∞)
αz ≈ −., αt ≈ −., (єr → )

Note, here the larger high-permittivity polarizability in the transversal direction compared to the
longitudinal, which is explained by the elongated character in the transversal plane of the semisphere.
In the єr =  limit, the situation is the opposite: a larger polarizability for the axial case (larger in
absolute value, as the polarizability is negative).

7.3.4 Double Sphere

A doublet of spheres is another important geometrical shape that is encountered in modeling of
random media. When an isolated sphere in a mixture gets into the vicinity of another sphere, espe-
cially in the small scales, the interaction forces may be very strong, and the doublet of spheres can
be seen as a single polarizing object. Even more, two spheres can become so close in contact that
they merge and metamorphose into a cluster. Such a doublet can be described with one geometrical
parameter: the distance between the center points of the spheres divided by their radius. The value
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 for this parameter divides the range into two cases: whether the doublet is clustered or separate.
Again, this object is rotationally symmetric and needs to be described by two polarizabilities, axial
and transversal.

A solution of the electrostatic problem with double-sphere boundary conditions is not easy
[–]. It requires either a numerical approach or a very complicated analysis using toroidal
coordinate system. Several partial results have been presented for the problem [–], but only
recently a full solution for this problem [] and its generalization [] have appeared.

In both limiting cases of the double sphere (the distance of the center points of the spheres goes
either to zero or very large), both the normalized polarizability components of the double sphere
approach the sphere value (Equation .). And obviously, the polarizability components deviate from
the sphere value to the largest degree when the distance between the centers is around two radii
(the distance for maximum deviation depends on the permittivity of the spheres). For the case of єr
approaching infinity, the case of touching spheres has the following analytical properties [,]:

αz = ζ() ≈ ., αt =



ζ() ≈ . (.)

with the Riemann Zeta function. Here the axial polarizability (z) is for the case that the electric field
excitation is parallel to the line connecting the center points of the two spheres, and if the field is
perpendicular to it, the transversal (t) polarizability applies.

7.4 Conclusion

A detailed knowledge of the polarizability of inclusions with basic shapes gives valuable information
about the way how such building blocks contribute to the effective dielectric parameters of a conti-
nuum. Many models for the macroscopic properties of matter replace the effect of the particles in the
medium fully by its polarizability. It is to be admitted that for complex scatterers this is only a part
of the whole response, which also contains near-field terms due to higher-order multipoles that are
characterized by stronger spatial field variation close to the scatterer. Nevertheless, dipolarizability
remains the dominant term in the characteristics of the inclusion. In this respect, the results of the
present chapter are hopefully helpful for modeling of complex materials.

A Web site for interactive Java-applet to calculate the depolarization factors and polarizability com-
ponents for inclusions of many basic shapes is located in the URL address of the Helsinki University
of Technology: http://www.tkk.fi/Yksikot/Sahkomagnetiikka/kurssit/animaatiot/dipolapplet/.
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The single dipole approximation for modeling finite and periodic collections of nanoscatterers is
summarized and discussed in this chapter. Special attention is given to arrays of nanospheres peri-
odic in one and two dimensions. Different expressions for polarizability reported in the literature are
summarized, discussed, and tested against a pure numerical method. It is shown that the use of the
polarizability, taken from the exact value of the Mie coefficient, provides the best comparison with
full-wave results. We also consider the modeling of periodic arrays of nanoparticles excited by a plane
wave and by a single dipole via the array scanning method (ASM).

8.1 Introduction

Consider a collection of N nanoscatterers (nanoparticles) placed at positions rn , n = , . . . , N shown
in Figure .. N can be finite or infinite. We will use bold face symbols for vectors and a hat will tag
unit vectors.

We show how to model the electromagnetic response of the collection of nanoscatterers to an
external source and how to determine the modes supported by the ensemble. It is known that if the
size of a particle is much smaller than the wavelength, its response to an external field can be easily
evaluated if the polarizability of the particle is known. The subwavelength particle can be assumed to
be immersed in a locally homogeneous electromagnetic field, and its response is described in terms of

8-1
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FIGURE . Structure consisting of particle. (a) Particles modeled by a couple of induced electric and magnetic
dipoles; and (b) particles modeled by electric dipoles.

its induced dipole moments [–]. Though, in general, one assumes the field response of the particle
expressed in terms of dipolar and multipolar fields, for small size scatterers one can often consider
only the lower orders and neglect the higher order. Here, we use only the first (lowest) order, and thus,
the field generated by the particle is represented as the combination of the electric pn and magnetic
mn dipole moments to characterize the nth particle [–]:

pn = αe e ⋅ Eloc
n + αem ⋅Hloc

n ,
mn = αme ⋅ Eloc

n + αmm ⋅Hloc
n . (.)

Here, Eloc
n and Hloc

n are the local electromagnetic fields acting on the nth particle (the field produced
by all the other particles, i.e., excluding that produced by the nth particle itself), and α i j , i, j = e , m
are the polarizability tensors of the particle []. However, depending on the geometry and nature of
the particle, one of the dipole moments can be dominant and the other can be neglected.

For example, as a first approximation, which has been recognized as satisfactory for several pur-
poses, metallic nanospheres at optical frequencies are usually treated as electric dipoles (Figure .a)
[–]; however, consideration of both electric and magnetic dipoles would improve the accuracy of
the analysis [–]. Due to the promising applications and simplicity of fabrication, structures made of
nanoparticles have received considerable attention in the past years. Among them, the nanosphere
geometry has been highly considered because of the simplicity of its modeling [–,–], as we
show in this chapter. Metallic nanoellipsoid (Figure .b) can also be described by an induced elec-
tric dipole [,,], and its polarizability must be described by a dyadic expression. For certain
scattering elements, it is the magnetic polarizability that is dominant. An example of elements with
dominant-induced magnetic dipole is shown in Figure . [,].

The dipole approximation is an important technique for the analysis of structures made of
nanoparticles, as it helps to gain physical insight into the phenomena disregarding minor features
from a significantly more involved full-wave analysis. It has been widely used for the analysis of finite
structures [–,,], as well as for structures periodic in one [–,–,,], two [,,–],
and three [,] dimensions. The technique has also helped to discover various interesting properties
of wave physics in nanostructures.

In this chapter, we consider the single dipole approximation for finite and periodic collections
of spherical metallic nanoparticles at optical frequencies. Various expressions for the polarizability
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FIGURE . Metallic nanospheres and ellipsoids modeled by electric dipoles at optical frequencies.
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FIGURE . Loop-like nanoparticle that possesses dominant-induced magnetic dipole.

of a nanosphere are given and tested. It has been shown that the precise value of polarizability, from
the Mie theory, provides the best comparison with a full-wave analysis. We provide a framework
to analyze any collection of nanoscatterers, periodic and nonperiodic, considering also the case of a
single dipole excitation, by using the ASM technique, shown in Chapter  of this book [], and here
summarized in Section ...

8.2 Single Dipole Formulation for Modeling Collections
of Spherical Nanoparticles

In an isotropic medium, spherical nanoparticles can be characterized by their induced electric
dipoles:

pn = αEloc
n , (.)

where
α is the electric field polarizability of a spherical nanoparticle
Eloc

n is the local field acting on the nth particle, which accounts for the fields produced by all
the other sources, excluding the field produced by the nth particle itself
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In general, the single dipole approximation significantly simplifies the models of structures made
of nanoparticles and it is an efficient tool to make initial predictions. However, it is important to
understand the limitations of this approximation. Besides the restriction on the size of a modeled
nanoparticle, whose overall size should be much smaller than the ambient wavelength, the distance
between the scatterers is of great importance as well, as shown below and in Section .. The dipolar
model should not be used in the case of touching or very close particles, as in this case, the inter-
action of the multipolar fields of the particles becomes significant. In [], it has been shown that
the single dipolar model is appropriate when a ≤ d/, where a is the radius of a nanoparticle and
d is the center-to-center distance between nanoparticles. For the sake of illustration, in Figure .,
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FIGURE . Dispersion curves for surface-plasmon bands propagating along a chain of spherical nanoparticles
under a near-field approximation. Lines correspond to a full multipolar analysis. Open circles and squares represent
results of single dipole approximation. (a) a/d = ., (b) a/d = ., (c) a/d = ., (d) a/d = ., (e) a/d = .,
and (f) a/d = .. On the abscissa, instead of k (as in the original plot) there should be kd, the normalized longitudinal
propagation wave number. (Reprinted from Park, S.Y. and Stroud, D., Phys. Rev. B, , , . With permission.)
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a comparison of results obtained by the dipolar and multipolar approaches is shown, both evaluated
with the near-field approximation (where the light velocity is set to be equal to infinity, or alterna-
tively, the hosting material wave number, k = ω√εμ, is set to zero, where ε and μ are the permittivity
and permeability of the host medium) for a linear array (chain) of nanospheres with different ratios,
a/d. Although the near-field approximation used in [] leads to significant errors, this example is
useful to have an idea of the impact of the ratio, radius/distance, of the spheres on the accuracy of the
results. The dispersion curves in Figure . are represented in terms of the variable, s = εh/ (εh − εm),
where εm and εh are the relative permittivities of the sphere material and the host medium, versus
the normalized longitudinal propagation wave number k (the abscissa in the plot in the original
paper [] is k, though it should be kd, the normalized propagation wave number). The variable s can
be considered to be the frequency variable, as the relative permittivity of the metal εm is frequency
dependent. Note that the authors of [] use k for the longitudinal wave number (therefore k deter-
mines the propagation constant along the chain), whereas this symbol is commonly used, also in the
rest of this chapter, as for the wave number in the homogeneous material hosting the nanoscatterers.

The larger the radius a of the spheres (normalized with respect to the spheres’ distance d), the
larger the error of the single dipole approximation technique, and it becomes inadmissible when
a/d = ., which represents the case of almost touching spheres.

We consider now a few simplified models to account for the polarizability α and to evaluate the
local field Eloc

n , with the aim of finding the induced dipole moments of the nanoparticles or the modes
in periodic arrays of nanoparticles.

8.2.1 Polarizability Expressions for a Spherical Nanoparticle

The simplest quasistatic expression for polarizability of a spherical nanoparticle is given by the
Clausius–Mossotti (Lorentz–Lorenz) relation [,,–]:

α = πεεha ( εm − εh

εm + εh
) , (.)

where
a is the radius of the nanosphere
εm and εh are the relative permittivities of the metal and the host medium, respectively

Relative permeabilities of the metal and host media are assumed to be equal to unity. A simple
representation for the relative permittivity of metal is provided by the Drude model:

εm = ε
∞
−

ω
p

ω(ω − jγ) , (.)

where
ωp is the plasma radian frequency
γ is the damping frequency

The time harmonic convention, exp ( jωt), is assumed here and throughout the chapter. For several
purposes, the dimensionless parameter ε

∞
in Equation . does not need to be the real material

relative permittivity when ω tends to infinity. It can be different from unity and chosen together with
the frequency parameters, ωp and γ, to better fit the actual material permittivity [] in the frequency
range of interest.

When the dimensions of the nanoparticle are very small, the adoption of the Drude model, as in
Equation ., would not properly estimate the losses. Indeed, when the particle size becomes compa-
rable with the bulk mean free path l∞ of the conduction electrons, the scattering process is changed
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by the collision of the conduction electrons with the particle surfaces [,, p. ]. This process
increases the losses in the nanoparticles, and it can be taken into account by introducing the size-
dependent damping frequency, γ(a) = vF/l∞ + A(vF/a), in the Drude model (Equation .), where
vF is the Fermi velocity and the parameter A is a theory-dependent quantity of the order of  [,
p. ]. For example, some authors use A =  [,].

The accuracy of the polarizability expression (Equation .) depends on the amount of losses and
on the particle size. In the following, we discuss the accurate expressions of the polarizability α in
relation to the correct electrodynamic Mie theory, and we show how Equation . can lead to contra-
dictory results. We shall start by recalling some fundamental principles and energy constraints. The
energy conservation law for a single particle is written as

Cext = Csca + Cabs or Qext = Qsca + Qabs , (.)

where Cext , Csca, and Cabs are the extinction, scattering, and absorption cross sections, respectively [].
It is convenient to use the extinction Qext, scattering Qsca, and absorption Qabs efficiencies defined as
Q. . . ≡ C. . ./(πa), i.e., by normalizing the cross sections, C. . . , with the geometrical cross section, πa,
of the nanospheres. When the polarizability α of the nanoparticle is used in the dipolar approximation,
as in Equation ., for lossless or lossy nanoparticles, a direct integration of the dipolar fields provides
the following expressions for the scattering, extinction, and absorption efficiencies [, p. , ]:

Qsca =
k

 (εεhπa) ∣α∣
 , Qext = −

k
εεhπa Im (α) , Qabs = Qext − Qsca , (.)

where k = ω
√

εh/c is the wave number in the homogeneous material hosting the nanospheres.
When the quasistatic expression (Equation .) for the polarizability is used, a problem with the

energy conservation law (Equation .) is encountered, as explained in the following. Consider the
limiting case of a lossless nanosphere with Im (εm) =  and εm ≠ εh. In this case, according to
Equations . and ., Qsca >  and Qext = . To satisfy the energy conservation law (Equation .),
the absorption efficiency Qabs should be negative. This would imply that the energy is being cre-
ated within the nanoparticle, which is clearly a contradiction. If the quasistatic expression for the
polarizability of nanoparticles (Equation .) is used, the expression for the extinction efficiency in
Equation . is appropriate only when the scattering is small compared to the absorption [, p. ].

When the quasistatic polarizability (Equation .) is used, a good approximation for the scattering
and absorption efficiencies, for small spheres and small losses [, p. ], would be provided by the
expressions [, p. ]

Qsca =
k

 (εεhπa) ∣α∣
 , Qabs = −

k
εεhπa Im (α) . (.)

However, as already said, the direct integration of the dipolar fields gives values represented by
the expressions (Equation .). As a consequence, the quasistatic polarizability (Equation .) gives
wrong results when used in Equation ., if losses are small. And in this case, a better approximation
than Equation . for the polarizability should be used if one wants to use the correct expressions
(Equation .). The problem of using Equation . for small or absent losses is also encountered in a
variety of situations. As an illustrative example, in Section .., we show that when a planar periodic
array of nanoparticles with small or absent losses is illuminated by a plane wave, the estimated values
of the reflection and transmission coefficients can be larger than unity if the quasistatic polarizability
expression (Equation .) is used, which is clearly a contradiction.

The energy conservation problem is overcome by considering a slight modification of the formula
(Equation .):

α = πεεha ( εm + εh

εm − εh
+ j

 (ka)


)
−

, (.)
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where the additional imaginary term in the parentheses takes into account the radiation damping
[,]. With this value of polarizability, the energy conservation law (Equation .) is exactly satis-
fied for lossless particles [characterized by Im (εm) = ], as in the case of Equations . and . we
have, Qext = Qsca and Qabs = . In Section .., we provide some examples where we show that the
expression (Equation .) gives satisfactory approximations.

Some authors use the value of polarizability with radiation damping correction (Equation .) also
for lossy nanospheres [,,]. However, as it was noted in [], Equation . with the additional
radiation damping term that was obtained under the condition that Im (εm) = , gives an error of
the same order as Equation .. These concepts and approximations are clarified by considering the
more accurate polarizability obtained from the Mie theory []:

α = −πεεh j
k

mψ (mka)ψ′ (ka) − ψ (ka)ψ′ (mka)
mψ (mka) ξ′ (ka) − ξ (ka)ψ′ (mka) , (.)

where
ψ(ρ) = ρ j(ρ) = sin ρ/ρ − cos ρ, ξ(ρ) = ρh() (ρ) = ( j/ρ − )e− jρ are the Ricatti–Bessel

functions
m = km/k =

√
εm/εh is the relative refractive index

km = ω
√

εm/c is the wave number in the metal

Expanding α− in series with respect to the small parameter ka we have

α = πεεha [m + 
m − 

− 


m − 
m − 

(ka) + j


(ka) + O (ka)]

−

. (.)

The first item in the brackets of Equation . corresponds to the quasistatic polarizability
(Equation .) and the third one is equal to the radiation damping correction in Equation .. How-
ever, one should note that the second term is not included in Equation ., and that its order (ka) is
even lower than (ka) of the third term of Equation .. The second term may be identified with a
dynamic depolarization []. If Im (εm) =  (lossless spheres), this term is pure real and has no effect
on the extinction efficiency (Equation .). In realistic material parameters, losses should be taken
into account [Im(εm) ≠ ], and the second term in Equation . contains an imaginary part as well
and contributes a (ka) term to the extinction efficiency Qext. Therefore, the use of Equations .
and . implies an error of the order (ka) in the estimation of the extinction efficiency.

The exact formula for polarizability (Equation .) has been used, for example, in [,], and some
results are also provided in this chapter.

Note that the extinction efficiency, Qext, for a lossy spherical nanoparticle is of the order of (ka).
When considering the two higher spherical modes of the lossy spherical particle (magnetic dipole
and electric quadrupole) in the Mie series, provided that all scattering coefficients are calculated pre-
cisely, the estimated value of the extinction efficiency, Qext, is modified by a quantity of the order of
(ka) with respect to Equation .. This is exactly the order of the difference between the extinction
efficiencies, Qext, calculated by using Equation . or .. Thus, asymptotically, Equations . and .
are both expected to give errors of the order (ka) in the estimation of the extinction efficiency of
a lossy nanoparticle. However, the accuracy of Equation . is expected to be better since it already
includes the (ka) order, not included in Equation ., and the numerical results in Section ..
confirm this. Analogous considerations apply to the case of lossless nanoparticles; the error in Equa-
tion . with respect to Equation . is of the order of (ka). The error in Equation . with respect
to the inclusion of the higher order (magnetic dipole and quadrupoles) is of the order of (ka).

For what concerns the estimation of the scattering efficiency Qsca, instead, the inclusion of addi-
tional terms provided by the higher spherical (magnetic dipole and electric quadrupole) modes in
the Mie series modifies the order (ka) with respect to Equation ., in both the cases of lossy and
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lossless nanospheres. Note, also, that the scattering efficiency Qsca calculated as in Equation . with
Equation . misses the order (ka), which is instead included when using Equation .. In summary,
the error in the estimation of the scattering efficiency Qsca is (ka), when using the polarizability
from the Mie theory (Equation .), and (ka), when using the polarizability in Equation ..

8.2.2 Calculation of the Local Field

The calculation of the local electric field Eloc
n acting on the nth particle at rn depends on the type of

excitation and geometry. The local field

Eloc
n = Einc(rn) + Esc

n (.)

includes the external incident field, Einc(rn), and the scattered field, Esc
n , produced by all other

scatterers, except for the nth one, at position rn :

Esc
n =

N

∑
m = 
m ≠ n

G (rn , rm) ⋅ pm . (.)

Here,

G (rn , rm) =


εεh
[kG (rn , rm) I +∇∇G (rn , rm)]

= e− jkrnm

πεεh
[( k

rnm
− jk

r
nm
− 

r
nm
) I − ( k

rnm
−  jk

r
nm
− 

r
nm
) r̂nm r̂nm] (.)

is the symmetric electric-field dyadic Green’s function (GF) of the homogenous medium, rnm = rn −
rm , rnm = ∣rnm ∣ , r̂nm = rnm/rnm , and

G (r, r′) = e− jk∣r−r′∣

π ∣r − r′∣ (.)

is the scalar GF and I is the identity dyadic. The expression, ∇∇G(r, r′), denotes the Hessian of
G(r, r′), which acts on a vector p as∇∇G(r, r′) ⋅ p ≡ ∇[∇G(r, r′) ⋅ p]. In Cartesian coordinates, the
operator∇∇G(r, r′) is given by the matrix of the second derivatives of G(r, r′) with respect to the r
components x, y, and z.

8.2.3 Calculation of the Induced Dipole Moments of Nanoparticles

Once the polarizability (Equation .) and the local field (Equation .) are known, the induced
dipole moments pm of the nanoparticles are calculated by solving the linear system

N

∑
m=

Anm ⋅ pm = Einc (rn) , (.)

where n = , , . . . N , and

Anm =
⎧⎪⎪⎨⎪⎪⎩


α I, n = m,
−G (rn , rm) , n ≠ m.

(.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Single Dipole Approximation for Modeling Collections of Nanoscatterers 8-9

8.3 Periodic Arrangements of Nanoparticles

One of the most interesting cases is represented by arrays of nanoscatterers periodic in one, two, or
three dimensions. In this case, we often assume that the array of nanoparticles is linearly phased.
The phasing can be fixed as in the case of an array excited by a plane wave or when the resonant
frequencies of normal modes (with a real wavevector) are sought. Instead, if one is interested in deter-
mining modes with complex wavevectors, a real frequency is assigned and the complex wavevectors
are sought numerically.

The ASM [] is used when one is interested in modeling the effects of a single dipole excitation of
a periodic array. The ASM technique involves the evaluation of the fields generated by linearly phased
array of sources, with all possible phasings within the first Brillouin zone [–].

Various cases of arrays of nanoparticles periodic in one, two, or three dimensions are consid-
ered here. In the following, nanoparticles are modeled by dipole moments, pn , placed at positions,
rn = r + dn , where n can be a single, double, or triple index for problems periodic in one, two,
and three dimensions, respectively. For example, for D-periodic problems, dn = ndẑ, n ∈ Z; for
D-periodic problems, dn = ns + ns , n , n ∈ Z; whereas for the D-periodic case, dn = ns +
ns + ns , n , n , n ∈Z.

8.3.1 Quasiperiodic Excitation of Periodic Arrangements of Nanoparticles

Suppose that the array of nanoparticles is excited by a plane wave or by a quasiperiodic excitation
with wavevector kB . Accordingly, we assume that the array elements have dipole moments equal to
pn = pe− jkB ⋅dn .

The local field, Eloc(r, kB), acting on the nanoscatterer at position r is, thus, given by the sum

Eloc(r, kB) = Einc(r) +
⌣

G
∞

(r, r, kB) ⋅ p, (.)

where the regularized GF Ğ∞ (here, and in the following, the Mexican hat “⌣” denotes the regularized
GF) is defined as Ğ∞(r, r, kB) ≡ G∞(r, r, kB) −G(r, r), and

G∞ (r, r, kB) = ∑
n

G (r, r + dn) e− jkB ⋅dn (.)

is the electric-field dyadic GF for the periodically phased array of dipoles. The summation Σn
includes all periodic sources at locations, rn = r + dn . The regularized term, Ğ∞(r, r, kB), corre-
sponds to the dyadic GF in Equation . without the n = term (or n , n =, or n , n , n = for
D- or D-periodic structures), and thus it is not singular at r= r. After substituting Equation .
in Equation ., we have

p = α [Einc(r) +
⌣

G
∞

(r, r, kB) ⋅ p] , (.)

which leads to the linear system

A (kB) ⋅ p = Einc(r), (.)

where

A (kB) ≡

α

I −
⌣

G
∞

(r, r, kB) . (.)

Note that the dyadic function, A(kB), does not depend on r as, in fact, the GF, G∞(r, r, kB),
depends on the difference, r − r.
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The series (Equation .) is slowly convergent, and it is divergent in certain important regions of
the parameters k and kB : () when k is real and the components of the wavevector kB are complex,
() when kB is real and Im k > . Note that the second region corresponds to the time-decaying
modes. Therefore, the series (Equation .) cannot be calculated directly if physical normal modes
are investigated.

Various researchers have calculated the periodic GF considering the near-field (quasistatic)
approximation, which takes into account the terms dominating in the near-field static part of the
electric field [,]. According to this approximation, it is assumed that kd <<  and, after setting
k =  or, equivalently, c = ∞, in the right-hand side of Equation ., we obtain

G∞ (r, r, kB) =


πεεh
∑

n

e− jkB ⋅dn

∣r − r − dn ∣
[ (r − r − dn) (r − r − dn) − I]. (.)

The series in Equation . does not depend on the wave number k, and it is convergent in the second
region mentioned above. Therefore, the near-field approximation can be used to find modes with
the real wavevector and complex resonance frequencies. However, the series in Equation . is still
divergent for complex values of the wavevector kB . In summary, the near-field approximation does
not allow the search for complex modes.

Another simplification that was adopted in [,] and denoted as the “nearest-neighbor approx-
imation,” consists in considering the dipolar field contributions arising only from a few nearest
neighboring particles. In this case, the series in Equation . is truncated and there is no problem
with its calculation, though, possible important long range couplings would be neglected.

In a few published cases, the rigorous calculation of Equation . for complex wavevectors kB has
been used. Depending on the order of periodicity, this can be possible just by using a pure spectral
version of Equation ., for which D- and D-periodic systems correspond to a summation of plane
waves. When the periodicity is in one dimension, the pure spectral sum cannot be adopted, and some
authors used the representation of the periodic GF in terms of a polylogarithm [,,]. Here, we
suggest the use of the Ewald summation method [–], which provides an analytical continuation
of the series (Equation .) to the complex planes for D-, D-, and D-periodic systems. Besides
solving convergence problems (particularly, for D-periodic systems), the Ewald method provides
series with Gaussian convergence, and therefore extremely rapid convergence rates.

8.3.2 Periodic Arrangements of Nanoparticles Excited
by a Single Dipole Source

The problem of single dipole excitation of a finite array of nanoparticles can be very time-consuming
when many particles need to be considered [,,], because of the very large size of the matrix
equation (Equation .) to be solved, especially when the array is periodic in two or three dimen-
sions.

It is more efficient to analyze the single dipole excitation of a periodic infinite array. This analysis
can be performed by the ASM [,–]. The assumption of an infinite array also provides a neat
physical insight into certain wave excitation phenomena (modal excitation) that otherwise could be
altered by truncation effects.

Assume that an array has nanoparticles located at positions, rn = r + dn . According to the ASM,
the field, E(r, rs), at an arbitrary point r, produced by a single dipole source ps at rs , is given by the
kB-spectral integral

E(r, rs) =


AB

�
B

E∞(r, rs , kB)dB, (.)
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where
B is the first Brillouin zone
AB is its area

For D-periodic problems, AB = π/d; for D-periodic problems, AB = (π)/∣s × s∣; whereas for

D-periodic problems, AB = (π)/∣s ⋅ (s × s)∣. The field, E∞(r, rs , kB), is the total field produced
by the array of nanoparticles and a periodic array of source dipoles at positions, rs ,n = rs+dn , linearly
phased with wavevector kB :

ps ,n = ps e− jkB ⋅dn . (.)

In other words, we consider the superpositions of the array of sources, linearly phased [], as exci-
tations for the array of nanoparticles. The value of the total kB-dependent field, E∞(r, rs , kB), is
evaluated by the formula

E∞ (r, rs , kB) = G∞ (r, r, kB) ⋅ p∞ (kB) +G∞ (r, rs , kB) ⋅ ps , (.)

where p∞ (kB) is the electric dipole moment of the nanoparticle at the position r, induced by the
periodic array of exciting dipoles (Equation .), that is determined by solving the matrix equation
(Equation .).

Some numerical results for the excitation of D-periodic finite and infinite arrays of metallic
nanospheres by a single electric dipole and a couple of electric dipoles are given in [–] where
the superlensing and near-field enhancement properties of arrays of nanoparticles are investigated.

8.4 Illustrative Examples

8.4.1 Modes

The modes in a periodic arrangement of nanoparticles are determined by looking at the homoge-
neous matrix equation (Equation .), after setting Einc = . Numerically, the determinant of the
matrix in Equation . is set to vanish. Modes are classified as bound and leaky modes, depending
on their wavevector [].

To illustrate the degree of accuracy of the various approximations previously discussed, in
Figure . we report the dispersion curves for a linear array of silver nanospheres obtained in [],
where significant discrepancies are shown between the quasistatic analysis (using the near-field
approximation (Equation .) for the dipole fields and the quasistatic polarizability (Equation .))
and the fully retarded analysis (including all the retarded terms as in Equation . and the polariz-
ability with the radiation damping correction (Equation .)). The dispersion equations were solved
for the normal transverse and longitudinal modes, i.e., modes with induced dipole polarization direc-
tions orthogonal and parallel to the array axis, respectively. In this case, complex resonant frequencies
were sought for real propagation wave numbers k along the array (though, usually, in our chap-
ter we use a different symbol for the propagation wave number, and k represents the ambient wave
number).

The radius of the spheres is a =  nm, the period is d =  nm, and the assumed frequency
parameters of the Drude model (Equation .) are εω = , ħωp = . eV and ħγ = . eV.

Quasistatic solutions, including the near-field approximation and the polarizability (Equation .),
were calculated for an infinite chain and a finite -sphere chain. Both solutions are in perfect
agreement. However, a comparison between the fully retarded and the quasistatic solutions for the
finite -sphere chain has revealed quantitative and qualitative discrepancies especially for transverse
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FIGURE . Comparison of the quasistatic and fully retarded solutions of the dispersion equation for an array of
silver nanospheres. Solid thick lines correspond to the quasistatic solution for an infinite array of lossless nanospheres,
and the superposed circles are for the quasistatic solution for a finite chain of  lossless nanospheres. Triangles are for
the fully retarded solution for a finite chain of  lossless nanospheres. Squares are for the fully retarded solution for
a finite chain of  lossy nanospheres. (a) Transverse dipolar modes and (b) longitudinal dipolar modes. (Reprinted
from Weber, W. and Ford, G., Phys. Rev. B, , , . With permission.)

dipolar modes (Figure .). There is a dramatic deviation from the quasistatic result when the light
line intersects the dispersion curve of the transverse dipolar mode.

These results show the importance of considering all the retardation terms in the expression for
the electric dipole field, also when dealing with subwavelength distances and radii. Note that the fully
retarded solution for an infinite chain could not be found unless a special analytic continuation of the
Green’s function is applied, as for the polylogarithm and the Ewald methods. Even a purely spectral
representation of the periodic GF could not have been used for this particular case.

Other examples of modes for planar arrays of silver nanospheres, evaluated with the technique
proposed in this chapter, are included in [–]. There, we have assumed real frequencies and
determined real wave numbers for the case of lossless nanospheres.

8.4.2 Transmission

Here, we consider the excitation of a D-periodic array of silver nanoparticles by a plane wave with
the incidence orthogonal to the array plane. The periods of the array in the x- and y-directions are
equal to  nm. The parameters of the Drude model for silver (Equation .) are assumed as in [],
where ε∞ = , ωp = . ×  rad ⋅ s−, and γ = . ×  s−. We consider different expressions
(Equations ., ., and .) for the polarizability of a nanosphere, and different nanosphere radii,
a = , , and  nm. The results for the transmission coefficient T , the ratio between transmit-
ted and incident power, evaluated via the fully retarded formulation (Equation .) are compared
with a full-wave analysis performed with CST Microwave Studio. In Figures . through ., dashed
lines are for the results obtained with the quasistatic polarizability (Equation .), short dashed lines
are for the quasistatic polarizability formula (Equation .), which takes into account the radiation
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FIGURE . Transmission T through a D-periodic array of silver nanospheres with radius, a =  nm, and period,
d =  nm. Comparison between the single dipole approximation technique with polarizability expressions as in
Equations ., ., and ., and CST Microwave Studio.
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FIGURE . As in Figure ., with the difference that now the nanosphere radius is a =  nm. There is a
good agreement between the fully retarded solution with Mie polarizability (Equation .) and the CST Microwave
Studio result.
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FIGURE . As in Figure ., with the difference that now the nanosphere radius is a =  nm.
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damping, solid lines are for the Mie polarizability (Equation .), and dotted lines are for the CST
results. As was noted in [], the second term in the asymptotic formula (Equation .), included in
Equation ., causes a redshift of the resonant frequency with respect to the quasistatic polarizability
(Equation .). Indeed, here, in Figures . through . we observe the same phenomena, and the
results obtained with the Mie polarizability (Equation .) are in good agreement with those obtained
with CST, whereas results obtained with the quasistatic one in Equation . are shifted to higher fre-
quencies. Also note that the transmission coefficients calculated with the quasistatic polarizability
(Equation .) are larger than , which contradicts the energy conservation law, as we have already
discussed in Section ...

In Figure ., the single dipole approximation, using the polarizability expressions in Equations .,
., and ., is compared with the CST Microwave Studio for an array made of pairs of tightly cou-
pled nanospheres, also analyzed in []. Here, the periods of the array in the x- and y-directions
are  nm, and the nanosphere radius is a =  nm. We assume the same Drude model for silver,
as in Figure .. We considered two values of the center-to-center distance between the two paired
nanospheres: h =  and  nm. Note that the use of the quasistatic polarizability (Equation .)
leads to T > , which is in contradiction with the energy conservation law. We observe a good agree-
ment of the single dipole approximation that uses the Mie polarizability (Equation .) with the CST
Microwave Studio for the case of nanospheres’ distance’ h =  nm. Note that here, a = h/, and
as described above we expect good approximations from the single dipole technique. Instead, for
the smaller distance, h =  nm, between the paired spheres we notice a loss of accuracy of the sin-
gle dipole approximation, when compared with CST, though the degree of accuracy may be enough
for several purposes. When the two spheres are so close, higher order spherical harmonics or other
full-wave numerical models should be used for better accuracy.
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FIGURE . Transmission T through a D-periodic array made of pairs (aligned along z) of tightly coupled silver
nanospheres with radius, a =  nm, and period, d =  nm, along x- and y-directions. The distance between the
paired spheres is (a) h =  nm and (b) h =  nm. Comparison between the single dipole approximation technique
with polarizability expressions as in Equations ., ., and ., and CST.
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8.5 Conclusion

We have summarized and discussed the single dipole approximation for modeling finite and peri-
odic collections of nanospheres. We have put all cases within the same framework providing a unique
formulation. The single dipole approximation is an effective tool for an approximate analysis with a
degree of accuracy that depends on the nanoparticle size and the interparticle distance. The results in
this chapter, and several others not reported here, show a good agreement between full-wave numer-
ical techniques and the single dipole approximation when using the Mie polarizability expression
(Equation .) of a single nanosphere, which is easy to use and constitutes a better approximation
than the quasistatic polarizability (Equation .) and the quasistatic polarizability corrected with the
radiation damping term (Equation .).
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9.1 Introduction

This chapter provides a theoretical background for the prediction of macroscopic dielectric proper-
ties of materials. Dielectric mixing rules are algebraic formulas with which the effective permittivity
of the mixture can be calculated as a function of the constituent permittivities, their fractional vol-
umes, and possibly some other parameters characterizing the microstructure of the mixture. The
mixture can be discrete, which means that homogeneous inclusions are embedded in another homo-
geneous medium; otherwise the permittivity function can be continuous. The concept of effective, or
macroscopic, permittivity implies that the mixture responds to electromagnetic excitation as if it were
homogeneous. It may, however, be proper to remember that the dielectric constant (this term is often
used synonymously with permittivity) of a material is seldom constant with respect to temperature,
frequency, or any material property.

When a dielectric inclusion that is exposed to an electromagnetic field is small it can be safely
assumed that its momentary internal field is the same as in the problem with a static excitation. The
inclusion creates a perturbation to the field which to the lowest order, is that of an electric dipole.
The polarizability of the inclusion can be enumerated by solving the Laplace equation for the field
inside the scatterer; in other words, neglecting the dynamic wave processes altogether. It is not easy to
give an exact upper frequency limit for the validity of the concept of effective permittivity. However,
the following rule of thumb is often used: the size of an inclusion in the mixture must not exceed
a tenth of the wavelength in the effective medium. In fact, this criterion is an estimate towards the
conservative side.

The early history of dielectric mixing rules can be traced back to the mid-s [], and some of
the present-day formulas were already available in the beginning of the twentieth century []. For a
historical overview of homogenization principles, see [,]. Note that the historical developments in
the growth of understanding the dielectric properties of heterogeneous materials have left traces in
the terminology of dielectric mixture models. As will be seen in this chapter, mixing rules are called

9-1
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εi

εe

FIGURE . A simple mixture: spherical inclusions in a homogeneous background medium. The permittivity of the
inclusions is εi and that of the environment is εe.

with labels like Maxwell Garnett, Rayleigh, and Bruggeman, and still earlier investigators (Mossotti,
Clausius, Lorenz, and Lorentz) have their names attached to effective medium models.

9.2 Polarizability of Particles

A bottom-up type of approach to macroscopic modeling of heterogeneous media starts from the
response of a single scattering element. Let us assume that the mixture to be analyzed consists of a
background medium where spherical inclusions are embedded according to Figure .. The two com-
ponents composing the mixture are often called phases. The environment phase can also be termed
the matrix or host, and the inclusion phase as guest.

The polarizability of an inclusion is a measure of its response to an incident electric field. The polar-
izability of a particle α is the relation between the dipole moment p that is induced in the inclusion
by the polarization, and the external electric field Ee:

p = αEe (.)

For a sphere, the polarizability is easy to calculate. It is proportional to the internal field within the
inclusion, its volume, and the dielectric contrast between the inclusion and the environment. Since
the electric field Ei induced in a sphere in a uniform and static external field Ee is also uniform, static,
and parallel to the external field [, Section .],

Ei =
εe

εi + εe
Ee (.)

the polarizability can be written immediately:

α = V(εi − εe)
εe

εi + εe
(.)

where the permittivities of the inclusion and its environment are denoted by εi and εe, respectively.
The volume of the sphere is V . Note that the polarizability is a scalar. This is because the inclusion
material is isotropic and its shape is spherically symmetric.

9.3 Clausius–Mossotti and Maxwell Garnett Formulas

From the polarizability of a single sphere, the effective permittivity of a mixture can be calcu-
lated as a function of the density of the spheres in the background medium with permittivity εe.
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The effective permittivity is the relation between the external field and the average electric flux
density < D >:

< D > = εeff Ee = εeEe + < P > (.)
where the average polarization < P > is connected to the dipole moment density in the mixture:

< P > = np (.)

where n is the density of dipole moments p in the mixture. Note the dimensions of the quantities in
SI units: [D] = [P] = As/m, [p] = Asm, [Ee] = V/m, [α] = Asm/V, and [n] =m−.

In a mixture, especially when it is dense, one cannot assume the field exciting one inclusion to be
the external field Ee. The surrounding polarization increases the field effect and has to be taken into
account [, pp. –]. The field that excites one inclusion EL is often called the local field or the
Lorentzian field. It is dependent on the shape of the inclusion [], and for a sphere it is

EL = Ee +


εe
P (.)

where the coefficient / corresponds to the depolarization factor of the sphere. Combining this equa-
tion with p = αEL leaves us with the average polarization, and then the effective permittivity can be
written (see Equation .):

εeff = εe +
nα

 − nα
εe

(.)

The equation is often seen in the form
εeff − εe

εeff + εe
= nα

εe
(.)

This relation carries the name Clausius–Mossotti formula, although it deserves the label Lorenz–
Lorentz formula [] as well. The dilute-mixture approximation can be written by taking the limit
of small n:

εeff ≈ εe + nα (.)

In practical applications, quantities like polarizabilities and scatterer densities are not always the most
convenient to use. Rather, one prefers to play with the permittivities of the components of the mix-
ture. When this is the case, it is advantageous to combine the Clausius–Mossotti formula with the
polarizability expression (Equation .). Then we can write

εeff − εe

εeff + εe
= f

εi − εe

εi + εe
(.)

where f =nV is a dimensionless quantity, the volume fraction of the inclusions in the mixture. This
formula is called the Rayleigh mixing formula. Note that, because only the volume fraction and the
permittivities appear in the mixing rule, the spheres need not be of the same size if all of them are
small compared to the wavelength.

Perhaps the most common mixing rule is the Maxwell Garnett formula∗, which is the Rayleigh
rule (Equation .) written explicitly for the effective permittivity:

εeff = εe +  f εe
εi − εe

εi + εe − f (εi − εe)
(.)

∗The origin of this label for the mixing formula is due to J.C. Maxwell Garnett, who presented the result in  [], and
not due to the father of the Maxwell equations, James Clerk Maxwell [].
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FIGURE . The susceptibility ratio (εeff − εe)/(εi − εe) for the Maxwell Garnett prediction of the effective permit-
tivity of a mixture with spherical inclusions of permittivity εi in a background medium of permittivity εe, as a function
of the volume fraction of the inclusions f and the dielectric contrast εi/εe.

This formula is in wide use in diverse fields of applications. The beauty of the Maxwell Garnett
formula is in its simple appearance combined with its broad applicability. It satisfies the limiting
processes for the vanishing inclusion phase f → , giving εeff → εe, and for a vanishing background
f →  we have εeff → εi.

The perturbation expansion of the Maxwell Garnett rule gives the mixing equation for dilute
mixtures ( f ≪ ):

εeff ≈ εe +  f εe
εi − εe

εi + εe
+  f εe (

εi − εe

εi + εe
)


(.)

Figure . shows the prediction of the Maxwell Garnett formula for different values of the dielectric
contrast εi/εe. Shown is the susceptibility ratios,

εeff − εe

εi − εe

which vanishes for f = and is unity for f =, independent of the inclusion-to-background contrast.
The figure shows clearly the fact that the effective permittivity function becomes a very nonlinear
function of the volume fraction for large dielectric contrasts.

9.4 Ellipsoids and Multiphase Mixtures

A two-phase mixture with spherical inclusions was the simplest geometry that a mixture can take.
Therefore its generalization into more complicated heterogeneities is necessary. Consider a mixture
where the inclusion spheres are of different permittivities. Where above the total polarization was
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calculated from the individual dipole moments according to Equation ., now each guest phase
contributes one such term to a sum of many. The final result is (compare to Equation .)

εeff − εe

εeff + εe
=

N

∑
n=

fn
ε i ,n − εe

ε i ,n + εe
(.)

where
fn is the volume fraction of the inclusions of the nth phase in the mixture
ε i ,n is its permittivity

And of course this can be solved for the effective permittivity:

εeff = εe + εe

∑N
n= fn

ε i ,n − εe

ε i ,n + εe

 −∑N
n= fn

ε i ,n − εe

ε i ,n + εe

(.)

Here again, all inclusions of all phases are assumed to be spherical.
Also, the assumption of spherical shape for the inclusions needs to be relaxed because many media

possess inclusions of other forms. The polarizability of small particles can of course be calculated for
any shape, but in general this requires numerical effort. The only shapes for which simple analytical
solutions can be found are ellipsoids. Fortunately, ellipsoids allow many practical special cases, like
disks and needles for example.

The important parameters in the geometry of an ellipsoid are its depolarization factors. If the
semiaxes of an ellipsoid in the three orthogonal directions are ax , ay , and az (Figure .), the
depolarization factor Nx (the factor in the ax -direction) is

Nx =
ax ay az



∞�


ds

(s + a
x)
√
(s + a

x)(s + a
y)(s + a

z)
(.)

For the other depolarization factor Ny(Nz), interchange ay and ax (az and ax ) in the above integral.
The three depolarization factors for any ellipsoid satisfy

Nx + Ny + Nz =  (.)

A sphere has three equal depolarization factors of /. The other two special cases are a disk (depo-
larization factors , , ) and a needle (, /, /). For ellipsoids of revolution, prolate and oblate
spheroids, closed-form expressions for the integral (Equation .) can be found [].

az

ay

ax

FIGURE . An ellipsoid, determined by its semiaxes ax , ay , and az .

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

9-6 Theory and Phenomena of Metamaterials

Prolate spheroids (ax > ay = az) have

Nx =
 − e

e [ln(
 + e
 − e
) − e] (.)

and

Ny = Nz =


( − Nx) (.)

where the eccentricity is e =
√

 − a
y/a

x . For nearly spherical prolate spheroids, which have small
eccentricity, the following hold:

Nx ≃


− 


e (.)

Ny = Nz ≃


+ 


e (.)

For oblate spheroids (ax = ay > az),

Nz =
 + e

e (e − arctan e) (.)

Nx = Ny =


( − Nz) (.)

where e =
√

a
x/a

z − . For nearly spherical oblate spheroids,

Nz ≃


+ 


e (.)

Nx = Ny ≃


− 


e (.)

Figures . and . display the behaviors of the depolarization factors of these spheroids as functions
of the axial ratios of the ellipsoids.

For a general ellipsoid with three different axes, the depolarization factors have to be calculated
from the integral (Equation .). Osborn and Stoner have tabulated the depolarization factors of a
general ellipsoid [,], a great achievement despite the fact that today’s numerical software packages
like Mathematica [] give these factors with very easy input efforts.

Now consider a mixture where ellipsoids of permittivity εi are embedded in the environment εe.
Let all the ellipsoids be aligned. Then the effective permittivity of the mixture is anisotropic; in other
words, it has different permittivity components in the different principal directions. We can write the
following formula for this mixture, which generalizes the Maxwell Garnett mixing rule:

εeff ,x = εe + f εe
εi − εe

εe + ( − f )Nx(εi − εe)
(.)

and for εeff , y and εeff ,z , replace Nx by Ny and Nz , respectively. This formula is sometimes termed
after Bohren and Battan [,], and it was derived in  by Burger [].

If, on the other hand, all the ellipsoids in the mixture are randomly oriented, there is no longer
any preferred direction macroscopically. The mixture is isotropic and the effective permittivity εeff is
a scalar:
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FIGURE . The depolarization factors of a prolate spheroid as a function of the axis ratio az/ax . The axis of revo-
lution is x (the longest axis of the ellipsoid compared to the two others). Obviously, Nx + Ny + Nz = , regardless of
the axis ratio.

εeff = εe + εe

f
 ∑ j=x , y ,z

εi − εe

εe + N j(εi − εe)

 − f
 ∑ j=x , y ,z

N j(εi − εe)
εe + N j(εi − εe)

(.)

Figure . shows the Maxwell Garnett predictions of the effective permittivity of isotropic two-
component dielectric mixtures where the inclusion shapes are varied: they are either spheres, needles,
or disks. A random orientation of the inclusions guarantees that the mixture is isotropic and the per-
mittivity a scalar. The contrast between the inclusion and background phases is εi/εe = . There is a
clear effect of the shapes of the inclusions: spheres give the lowest permittivity, needles a larger per-
mittivity, and disks provide the largest effect. However, if the contrast between the phases is smaller,
the effect of the geometry decreases.

Finally, if the inclusions are neither aligned nor randomly oriented but rather follow an orienta-
tion distribution, the sums in Equation . have to be replaced by terms where the dipole moment
densities are weighted by the distribution function and integrated over all relevant spatial directions.

The mixture with homogeneous isotropic ellipsoidal inclusions was only one generalization of the
simplest mixture. The aligned ellipsoid case above, Equation ., was an example where the geometry
of the microstructure rendered the macroscopic permittivity anisotropic. But the mixing principles
can also be generalized to cases where one or several of the phases are anisotropic in the first place.
One of the elegant ways of achieving this goal is to generalize the Maxwell Garnett formula into
dyadic domain. See [] for details of this process.
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FIGURE . The depolarization factors of an oblate spheroid as a function of the axis ratio az/ax . The axis of revo-
lution is z (the shortest axis of the ellipsoid compared to the two others). Obviously, Nx + Ny + Nz = , regardless of
the axis ratio.

The previous results have been derived for discrete structures. The inclusions were assumed to
be dielectrically homogeneous. However, mixtures with inhomogeneous inclusions can certainly be
treated within the framework of Maxwell Garnett (and not only in the basic Maxwell Garnett case
but also for more complicated approaches) mixing. The challenge with nonhomogeneous scatterers
is the difficulty of calculating the polarizability of such inclusions. There are, however, certain shapes
for which analytical solutions can be found in the electrostatic problem.

A layered sphere is one example of such a special case. There is no restriction on the number of
layers, and even the case for a radially continuous permittivity profile of the sphere has been given a
solution []. (See also the results for mixtures with dielectrically inhomogenous ellipsoids [].) As
an example, the following is the generalization of the mixing rule (Equation .) for the case when
the inclusions are two-component spheres:

εeff − εe

εeff + εe
= f
(εl − εe)(εc + εl) +w(εc − εl)(εe + εl)
(εl + εe)(εc + εl) + w(εc − εl)(εl − εe)

(.)

The inclusion sphere consists of a spherical core with permittivity εc that is covered by a spherical
shell with permittivity εl. The parameter w = (b/a) is the fraction of the volume of the core from
the total inclusion volume (a is the radius of the inclusion and b is the radius of the core), and f is
the volume fraction of the inclusions in the mixture, as before.

If, on the other hand, the inclusions are of such a shape that they do not have a closed-form solution
for the dielectric polarizability, we cannot write down a simple Maxwell Garnett formula like in the
cases of spheres and ellipsoids. However, if the polarizability is known, for example, by numerical
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FIGURE . The effective permittivity of a mixture as a function of the volume fraction of inclusions. The inclusions
are randomly oriented spheres, needles, and disks. The inclusion permittivity is  times that of the environment.

enumeration, the result can be used as an input in the Lorenz–Lorentz formula (Equation .) to
calculate the effective permittivity. For example, very accurate results have been reported for the
polarizability of platonic solids (tetrahedron, cube, octahedron, dodecahedron, and icosahedron)
[]. These can be applied to model mixtures with more sharp-edged microstructures than the one
shown in Figure ..

9.5 Generalized Mixing Models

There is no exact result for the effective permittivity of a mixture with a random geometry. In the
analysis of random media, a major difficulty comes with the problem of how to correctly take into
account the interaction between the scatterers. For sparse mixtures, these effects of interaction are
small and can be included by surrounding the inclusion with the average polarization <P>, as was
done in the above derivation of the Maxwell Garnett rule. However, when dense mixtures are treated,
this approach may not be correct. In the present section, mixing rules are presented for mixtures that
predict different results compared to the Maxwell Garnett rule.

9.5.1 Bruggeman Mixing Rule

One important mixing rule goes under different names: Polder–van Santen formula [], also called
the Bruggeman formula [] or the Böttcher formula [], is very often encountered in material
modeling studies.
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The basic form of this formula for spherical scatterers is

( − f ) εe − εeff

εe + εeff
+ f

εi − εeff

εi + εeff
=  (.)

This Bruggeman formula has the special property that it treats the inclusions and the environment
symmetrically. The interpretation of Equation . is that the formula balances both mixing compo-
nents with respect to the unknown effective medium, using the volume fraction of each component
as weight ( f for the inclusions and  − f for the environment). This symmetry property of Equa-
tion . makes the radical distinction between the Maxwell Garnett rule and the Bruggeman rule.
The Maxwell Garnett approach is inherently nonsymmetric.

The Bruggeman formula for the case when the inclusions are randomly oriented ellipsoids is

εeff = εe +
f

(εi − εe) ∑

j=x , y ,z

εeff

εeff + N j(εi − εeff)
(.)

where now N j are again the depolarization factors of the inclusion ellipsoids in the three orthogonal
directions.

9.5.2 Coherent Potential Formula

Another well-known formula that is relevant in the theoretical studies of wave propagation in random
media is the so-called coherent potential formula [, p. ]:

εeff = εe +
f

(εi − εe) ∑

j=x , y ,z

( + N j)εeff − N jεe

εeff + N j(εi − εe)
(.)

This formula for spherical inclusions is

εeff = εe + f (εi − εe)
εeff

εeff + ( − f )(εi − εe)
(.)

It is worth noting that for dilute mixtures ( f ≪ ), all three mixing rules, Maxwell Garnett, Polder–
van Santen, and coherent potential, predict the same results. Up to the first order in f , the formulas
are the same:

εeff ≈ εe +  f εe
εi − εe

εi + εe
(.)

9.5.3 Unified Mixing Rule

A unified mixing approach [] collects all the previous aspects of dielectric mixing rules into one
family. For the case of isotropic spherical inclusions εi in the isotropic environment εe, the formula
looks like

εeff − εe

εeff + εe + ν(εeff − εe)
= f

εi − εe

εi + εe + ν(εeff − εe)
(.)

This formula contains a dimensionless parameter ν. For different choices of ν, the previous mixing
rules are recovered: ν =  gives the Maxwell Garnett rule, ν =  gives the Bruggeman formula, and
ν =  gives the coherent potential approximation.
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The unified mixing rule (Equation .) can be generalized to the case where the inclusions are
ellipsoids, all randomly oriented. Then, the scalar effective permittivity reads

εeff = εe + f (εi − εe)
∑

k=
εa

εa+Nk(εi−εe)

 − f (εi − εe)∑
k=

Nk
εa+Nk(εi−εe)

(.)

Different mixing models arise from this form by various choices of the apparent permittivity εa =
εe + a(εeff − εe):

• Maxwell Garnett: a = 
• Bruggeman/Polder–van Santen: a =  − Nk , k = , , 
• Coherent potential: a = 

9.5.4 Other Mixing Rules

Of the very large set of remaining mixing rules that are being used in the random medium theories
and practical applications, the following deserve to be introduced.

A widely used class of mixing models is formed by the “power-law” approximations:

εa
eff = f εa

i + ( − f )εa
e (.)

For example, in the Birchak formula [] the parameter is a = /, which means that the square roots
of the component permittivities add up to the square root of the mixture permittivity.

Another famous formula is the Looyenga formula [], for which a = /. One can also find in the
literature (see, for example, [, p. ]) the linear law:

εeff = f εi + ( − f )εe (.)

which corresponds to a =  in Equation .. This mixing rule can be given theoretical confirmation
if the mixture is formed of plates or other inclusions for which no depolarization is induced. If the
depolarization factor is Nx = , one can recover Equation . from Equation ..

Other models resulting from a differential analysis are

εi − εeff

εi − εe
= ( − f ) ( εeff

εe
)

/
(.)

which is sometimes called the Bruggeman asymmetric formula (to distinguish it from the symmet-
ric Bruggeman formula, Equation .), and its “complement” [], another applicable formula to
predict the effective permittivity of mixtures:

εeff − εe

εi − εe
= f ( εeff

εi
)

/
(.)

which have the common feature of one-third powers.
There are also formulas for mixtures with spherical inclusions in a cubic array in a background

matrix. These formulas can be seen as successive improvements to the classical Rayleigh result, Equa-
tion .. These have been presented by Runge []; Meredith and Tobias []; McPhedran, McKenzie,
and Derrick [,]; Doyle []; Lam []; and Kristensson []. However, these formulas are derived
for ordered mixtures, though not all necessarily for cubic-centered lattices, and from the point of view
of application to random media, they suffer from the disadvantage of predicting infinite effective
permittivities as the inclusions come into contact with each other.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

9-12 Theory and Phenomena of Metamaterials

Recently, numerical efforts also have been made to calculate the effective dielectric properties of
random mixtures. There is an indication [] that the macroscopic permittivity would fall between
the Maxwell Garnett and Bruggeman predictions, and closer to Maxwell Garnett if the inclusions
are forced to be separate from each other within the mixture. On the other hand, if the inclusions
are allowed to touch and overlap, thus forming clusters, the Bruggeman formula seems to be more
valid. These mixtures have been simulated by embedding spheres into random positions within the
background matrix.

Such is the case for positive-permittivity random materials. However, in the domain of negative-
permittivity inclusions, the plasmonic resonances cause particular complications in estimating the
effective permittivity. In this case, only for regular lattice of inclusions we may find strong results of
reliable predictions of mixing rules. For such cases the Maxwell Garnett mixing rule seems to predict
well the resonances of the effective mixture [].
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10.1 Introduction

The use of homogenization methods in characterizing the interaction of electromagnetic fields with
matter has a long history. An interesting review of the pioneering works of Lorentz, Planck, Ewald,
andOseen is given in []. Lorentz was the first to recognize that to properly describemolecular optics
it was necessary to incorporate atomic concepts into Maxwell’s equations, and take into account the
electric vibrations of the particles. He obtained a relation between the dielectric constant and the
density of the material at optical frequencies, and established the foundations of macroscopic elec-
tromagnetism. During the last century, the theory was further developed by studies that clarified
averaging procedures [], and took into account the resonant interaction of electromagnetic radia-
tion with dielectric crystals coupled via retarded dipole fields []. Classical molecular optics was also
extended to optically active media and to spatially dispersive media [,].

In recent years, there has been a renewed interest in homogenization methods due to their appli-
cation in the characterization of structured materials (metamaterials).These materials are formed by
properly shaped dielectric or metallic inclusions designed to obtain a desired effective response of

10-1
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the material. It has been demonstrated that metamaterials may enable anomalous phenomena, such
as negative refraction [], compression of waves through very narrow channels [], or subwavelength
imaging [–].

The simplest homogenization approach is based on the use of mixing formulas, such as the
Clausius–Mossotti formula []. The Clausius–Mossotti formula requires the volume fraction of the
inclusions to be small, in order that they can be accurately modeled as point dipoles. More general
homogenization methods have been developed over the years [–], but their applications are usu-
ally restricted to the quasistatic limit or to very specific geometries, or are limited by someother factor.

A key property of novel metamaterials is that the wavelength of light is only moderately larger
than the lattice constant a, typically – times. This contrasts markedly with propagation of radi-
ation in matter where the ratio, λ/a, is several orders of magnitude larger than that value, even
at optical frequencies. This property may impose some restrictions on the application of classical
homogenization theories to artificial materials []. In particular, the role of spatial dispersion in
microstructured materials has been underlined by recent works [–]. Spatially dispersive mate-
rials may have important applications, such as imaging with super-resolution [] or the realization
of impedance surfaces [].

The objective of this chapter is to present the state of art of homogenization methods for spa-
tially dispersive materials. First, in Section ., we discuss the definitions of the macroscopic fields,
averaging procedures, and constitutive relations in local media. In Section ., the homogenization
theory introduced in [] is described. This theory enables the calculation of the nonlocal dielec-
tric function, ε = ε (ω, k), of an arbitrary periodic, composite dielectric material. To illustrate the
application of such a homogenization approach, in Section . the dielectric function of a crystal
formed by electric dipoles is explicitly calculated. In Section ., it is explained how the homoge-
nization method can be numerically implemented using the method of moments (MoM). Then, in
Section ., the relation between the local effective parameters and the nonlocal dielectric func-
tion is discussed. Finally, in Section ., the problem of additional boundary conditions in spatially
dispersive media is studied. The time variation, e jωt , is assumed in this chapter.

10.2 Macroscopic Electromagnetism and Constitutive
Relations in Local Media

The homogenization theory is an attempt to describe the interaction of electromagnetic radiation
with very complex systems formed by an extremely large number of atoms, or in case of microstruc-
tured materials, formed by many inclusions. Typically, homogenization concepts may be applied
when the wavelength of radiation is much larger than the characteristic microscopic dimensions
of the considered system. In such circumstances, it is possible to average out the microscopic fluctu-
ations of the electromagnetic fields, and in this way obtain slowly varying and smooth macroscopic
quantities, which can be used to characterize the long range variations (propagation) of the electro-
magnetic waves. A key concept in the homogenization theory is the notion of spatial averaging. The
spatial average of a physical entity, F(r), with respect to a test function, f (r), is defined here as [,],

⟨F⟩ (r) =
�

F(r − r′) f (r′)dr′ (.)

where
r = (x , y, z) is a generic point of space
f (r) is a real-valued function, nonzero in some neighborhood of the origin, and such that its

integral over all space is unity

Itmay also be imposed that f is nonnegative, even though this is not strictly necessary.The support of
f (r) has a radial dimension R much smaller than the wavelength, and R is typically much larger than
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the characteristic length of the microscopic domain (e.g., the lattice constant). The average field is,
thus, given by the spatial convolution of the corresponding microscopic field with the test function.
The main advantage of the considered averaging procedure is that it preserves the structure of the
Maxwell equations, as detailed next.

To be specific, consider a material formed by nonmagnetic dielectric inclusions with relative per-
mittivity εr(r), and let E and B be the electric and induction fields in the material. These fields
are designated here by microscopic fields, exploring the close analogy with the propagation of
electromagnetic waves inmatter.The fieldsE andB satisfy the frequency domainMaxwell equations,

∇× E = − j ωB

∇× B
μ

= Je + εεr jω E (.)

where Je is the applied electric current density (source of fields).Themacroscopic fields, ⟨E⟩ and ⟨B⟩,
are obtained by averaging the microscopic fields using the operator (Equation .).The test function
f may be rather arbitrary, and does not need to be specified in detail. It can be easily verified that the
space derivatives commute with the averaging operator defined by Equation . [,]. Hence, the
macroscopic fields satisfy the following macroscopic equations:

∇× ⟨E⟩ = − jω ⟨B⟩

∇ × ⟨B⟩
μ

= ⟨Je⟩ + ⟨Jd⟩ + jωε ⟨E⟩ (.)

In the above, Jd = ε (εr − ) jω, E is the induced microscopic current relative to the host medium,
which is assumed vacuumwithout loss of generality.The space averaged applied current, ⟨Je⟩, and the
space averaged microscopic current, ⟨Jd⟩, are defined consistently with Equation .. By comparing
Equations . and ., it is clear that the structure of Maxwell equations is, indeed, preserved by the
averaging operator.

The classical theories of macroscopic electromagnetism are based on the decomposition of the
averaged microscopic currents ⟨Jd⟩ into dipolar and higher-order contributions [,],

⟨Jd⟩ ≈ jωP +∇ × M +⋯ (.)

where
P is the polarization vector
M is the magnetization vector

The terms that are omitted involve spatial derivatives of the quadrupole density and other higher-
order multipole moments. The classical definition of the (macroscopic) electric displacement vector
D and of the (macroscopic) magnetic field H is motivated by the decomposition (Equation .) of
the average microscopic current into mean and eddy currents. As is well known, D and H are related
to the fundamental macroscopic fields through the textbook formulas,

D = ε ⟨E⟩ + P

H = ⟨B⟩
μ

− M (.)

Thus, Equation . implicitly absorbs the effect of the microscopic currents into D and H, and so
the macroscopic Maxwell equations in the material have the same form as in vacuum, apart from
the relation between ⟨E⟩, D, ⟨B⟩, and H. For linear materials, P and M may be written as a linear
combination of ⟨E⟩ and H. Such materials form the general class of bianisotropic materials [,]
and are characterized by the constitutive relations,
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D = εεr ⋅ ⟨E⟩ +
√
εμ ξ ⋅H

⟨B⟩ =√
εμ ζ ⋅ ⟨E⟩ + μμr ⋅H (.)

where
εr(ω) is the relative permittivity
μr(ω) is the relative permeability
ξ(ω) and ζ(ω) are (dimensionless) parameters that characterize the magnetoelectric coupling

When the structure has a center of inversion symmetry the terms ξ and ζ vanish, and the material
can be described using uniquely permittivity and permeability tensors.

It is stressed that the above phenomenological model is meaningful only when the approxima-
tion, ⟨Jd⟩ ≈ jωP +∇ × M, holds, and the higher-order multipole moments are negligible. Moreover,
it is implicit that the medium is local in the sense that D and H at a given point of space can be
written exclusively in terms of ⟨E⟩ and ⟨B⟩ at the same point of space, as implied by Equation ..∗
Otherwise the medium is characterized by spatial dispersion [,]. In ordinary natural materials,
where the lattice constant, a ∼ . nm, is several orders of magnitude smaller than the wavelength of
radiation, the enunciated conditions are typically verified, and thus, the model (Equation .) usu-
ally describes adequately macroscopic electromagnetism. However, in common artificial materials
the lattice constant is typically only marginally smaller than the wavelength of radiation, and so the
nonlocal effects may not be negligible, and the approximation (Equation .) may not be accurate.
Moreover, the phenomenologicalmodel (Equation .)may also be inadequate to characterize natu-
ral media at optical frequencies, because, as argued in [], the “the magnetic permeability ceases to
have physical meaning at relatively low frequencies.” It is thus clear that more sophisticated homo-
genization methods and concepts are necessary to characterize novel materials. The objective of this
chapter is to present a fresh overview of these methods.

10.3 Homogenization of Nonlocal Media

Spatial dispersion effects occur when the polarization and magnetization vectors at a given “point”
of space cannot be related through local relations with the macroscopic fields ⟨E⟩ and ⟨B⟩. Nonlocal
effects have been studied in crystal optics, plasma physics, and metal optics [], and more recently in
artificial materials [–].

The goal of this section is to describe homogenization methods in spatially dispersive media. Our
analysis closely follows reference []. It is assumed that the artificial material is nonmagnetic and
periodic, with generic geometry as in Figure .. The medium is invariant to translations along the
primitive vectors a , a, and a. Hence, the permittivity of the inclusions satisfies εr(r + rI) = εr(r),
where rI = ia + ia + ia is a lattice point and I = (i , i , i) is a generic multi-index of integers.
The unit cell Ω of the periodic medium is Ω = {αa + αa + αa ∶ ∣α i ∣ ≤ /}. The permittivity
may be a complex number and depend on frequency. In addition, the unit cell may contain perfectly
electric conducting (PEC) metallic surfaces, which are denoted by ∂D, as illustrated in Figure ..
The outward unit vector normal to ∂D is ν̂.

∗Some authors consider that media with magnetoelectric activity are nonlocal, since such an effect may be regarded as
a manifestation of the first-order spatial dispersion. Here, we follow a slightly different definition, and consider that when it
is possible to relate the macroscopic fields through local relations in the space domain as in Equation ., the medium is by
definition local and linear.
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a3

a1

a2

ε = ε(x, y, z)

∂D (PEC)

Ω-cell

n›

FIGURE . Geometry of the unit cell of a generic metallic-dielectric periodic material with a dielectric inclusion
and a PEC inclusion. (Reprinted from Silveirinha, M.G., Phys. Rev. B, , , . With permission.)

10.3.1 Constitutive Relations in Nonlocal Media

In presence of strong spatial dispersion, the introduction of the effective permeability tensor μr, as
well as of ξ and ζ, is not meaningful []. The problem is that splitting the mean microscopic current
as in Equation . is not advantageous, because P and M cannot be related with the average fields
through local relations. Due to this reason, it is common to consider alternative phenomenological
constitutive relations, in which all the terms resulting from the averaging of the microscopic currents
are directly included into the definition of the electric displacement D, without introducing amagne-
tization vector. In this way, for a nonlocal medium we have the following definitions [,] (compare
with Equation .):

Dg = ε⟨E⟩ + Pg

Hg =
⟨B⟩
μ

(.)

where, by definition, Pg = ⟨Jd⟩/jω. We introduced the subscript “g” to underline that the electric
displacement and the magnetic field defined as in Equation . differ from the classical definition
(Equation .). In fact, as mentioned above, in this phenomenological model all the microscopic
currents are included directly in the definition of the electric displacement. From Equation ., it is
evident that

Pg = P +∇ × M/ jω +⋯ (.)

Thus, Pg is a generalized polarization vector that contains the effect of the dipolar moments, and in
addition, the effect of all higher-order multipole moments.

The effective parameters corresponding to Equation . are completely different from the local
effective parameters associated with Equation .. In fact, Dg cannot be related with the average field
⟨E⟩ through a local relation, since, in general, the polarization Pg at one point of space depends on
the distribution of the macroscopic electric field in a neighborhood of the considered point. Instead,
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for unbounded periodic linear materials, it is assumed that the macroscopic fields are related by a
constitutive relation of the form [,]∗

Dg(r) =
�
ε̂ (ω, r − r′) ⋅ ⟨E (r′)⟩dr′ (.)

where ε̂ is the dielectric function of the material in the space domain. This constitutive relation
establishes that the electric displacement is related to the macroscopic electric field through a space
convolution. The nonlocal character of the material is clear from such a formula.

The relation between the macroscopic fields is comparatively simpler in the Fourier transform
k-domain. The Fourier transform of the macroscopic electric field is, by definition,

˜⟨E⟩ (k) =
�
⟨E (r)⟩ e jk ⋅ rdr (.)

where
“∼” denotes Fourier transformation
k = (kx , ky , kz) is the wave vector

From Equations . and ., it is clear that in the spectral domain the following constitutive
relations hold:

D̃g ≡ ε ˜⟨E⟩ + P̃g = ε (ω, k) ⋅ ˜⟨E⟩

H̃g =
˜⟨B⟩
μ

(.)

where ε (ω, k) is the dielectric function of the material, which is given by the Fourier transform
of ε̂. The homogenized unbounded material is completely characterized by the dielectric function.
When using the constitutive relations (Equation .) it is not necessary to introduce a magnetic
permeability tensor: all the physics is described by ε (ω, k), including the effect of high order
multipoles.

The parameters ω and k in the argument of the dielectric function are independent variables. This
property should be obvious from the definition of ε []. Sometimes thismay be a source of confusion,
because for plane wave propagation, and in the absence of external sources, the wave vector becomes
a function of frequency, k = k(ω). However, the key point is that the dielectric function is defined
in its most general form even for ω and k that are not associated with plane wave normal modes.
Indeed, as it is discussed in Section .., to calculate the dielectric function the material must be
excited by an external source. This makes possible the generation of microscopic fields associated
with any independent values of ω and k.

10.3.2 Fields with Floquet Variation

Electromagnetic fields with Floquet periodicity are of special importance in the characterization of
periodic media. For example, the electromagnetic properties of dielectric crystals are completely
determined by the “band structure” of their Floquet eigenmodes. Thus, it is not surprising if the
dielectric function of a structured material is closely related to the Floquet fields. To establish this
connection in what follows, the macroscopic properties of electromagnetic fields with the Floquet

∗For spatially inhomogeneous bodies, which ultimately is the case of all crystals, the dielectric function cannot be written
as a function of r − r′, and is of the more general form ε̂ (ω, r, r′) [, p. ].
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property are characterized. It will be shown that under suitable conditions the macroscopic fields
may be identified with the amplitudes of the zero-order Floquet harmonics associated with the
microscopic fields.

It is assumed that the electric fieldE is such thatE (r) e jk ⋅ r is periodic, where k is the imposedwave
vector. The microscopic induction field B and the applied current Je have a similar property. Notice
that (E,B) are not necessarily associated with an electromagnetic mode of the periodic material,
because the applied current does not have to be zero.

In order to characterize themacroscopic fields in the spectral domain, the electric field is expanded
into a Fourier series,

E (r) = ∑
J

EJ e− jkJ ⋅ r , kJ = k + k
J

EJ = 
Vcell

�
Ω

E(r) e jkJ ⋅ rdr (.)

where
Vcell = ∣a ⋅ (a × a)∣ is the volume of the unit cell
J = ( j , j , j) is a multi-index of integers
k

J = jb + jb + jb
EJ is the coefficient of the Jth harmonic

The reciprocal lattice primitive vectors, bn , are implicitly defined by the relations, am ⋅ bn = πδm ,n ,
m, n = , , .
From the definition of the averaging operator (Equation .), it is clear that ⟨Ẽ⟩ (k′) = Ẽ(k′)

f̃ (k′), where Ẽ is the Fourier transform of the microscopic field and f̃ is the Fourier transform of the
test function. Hence, using Equation ., it is found that in the spectral domain

˜⟨E⟩ (k′) = (π) ∑
J

EJ f̃ (kJ) δ(k′ − kJ) (.)

Thus, the macroscopic electric field in the spectral domain consists of a superimposition of Dirac
δ-function impulses centered at points of the form, k′ = kJ. The amplitudes of the impulses depend
on the Fourier series coefficients of the microscopic field, as well as on the considered test function.

At this point it is convenient to analyze the properties of the test function f withmore detail. Since
f is normalized to unity, i.e., its integral over all space is unity, it follows that f̃ () = . In order to
average out the microscopic fluctuations of the fields, it is sufficient that the support of f in the space
domain contains the unit cell. Thus, f must be nearly constant inside Ω, and may vanish outside a
neighborhood of Ω. From the properties of the Fourier transform, in principle, this implies that f̃ (k)
verifies f̃ (k) ≈  outside the first Brillouin zone. For example, for the case of simple cubic lattice with
lattice constant a, the test function may be chosen equal to

f (r) = (πR)−/ e−r/R

f̃ (k) = e−(kR/) (.)

with R ≈ a. Such a test function verifies f̃ (k) ≈  for points such that k > π/a.
This discussion shows that it is safe to assume that for k, relatively close to the origin of the Brillouin

zone, f̃ (kJ) ≈  for J ≠  and f̃ (kJ) ≈  for J = . Thus, by calculating the inverse Fourier transform
of Equation ., it follows that

⟨E⟩ ≈ Eave− jk ⋅ r (.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

10-8 Theory and Phenomena of Metamaterials

where Eav is defined as the amplitude of the zero-order Floquet harmonic:

Eav =


Vcell

�
Ω

E (r) e+ jk ⋅ rdr. (.)

Proceeding along similar lines and using Equation ., it may be verified that themacroscopic fields,
⟨B⟩ and Dg, verify the formulas∗:

⟨B⟩ ≈ Bave− jk ⋅ r , Dg ≈ Dg,ave− jk ⋅ r (.)

where,

Bav =


Vcell

�
Ω

B(r) e+ jk ⋅ rdr (.)

Dg,av ≡ εEav + Pg,av = ε (ω, k) ⋅Eav (.)

and Pg,av is the generalized polarization vector:

Pg,av =


Vcell jω

�
Ω

Jd(r) e+ jk ⋅ rdr (.)

As mentioned in Section .., Pg,av is closely related to the classic polarization vector. Indeed, if the
exponential inside the integral is expanded in powers of the argument, the leading term corresponds
exactly to the standard polarization vector (i.e., the average electric dipolemoment in a unit cell).The
higher-order terms can be related to the magnetization vector and other multipole moments. When
the unit cell contains PEC surfaces, the polarization vector may be rewritten as

Pg,av =


Vcell jω
⎛
⎝

�
∂D

Jce+ jk ⋅ rds +
�

Ω−∂D

Jd e+ jk ⋅ rdr
⎞
⎠

(.)

where
∂D is the PEC surface
Jc = ν̂ × [B/μ] is the surface current density (see Figure .)

The previous results confirm that provided the test function is properly chosen, the macroscopic
fields are completely determined by the amplitudes of the corresponding zero-order Floquet har-
monics, as anticipated in the beginning of this section. Moreover, it is proven in Section .. that
the zero-order harmonics may be used to completely characterize the unknown dielectric function ε.

For future reference, it can be verified from the microscopic Maxwell equations (Equation .)
that the average fields satisfy exactly the equations:

−k × Eav + ωBav = 

ω (εEav + Pg ,av) + k × Bav

μ
= −ωPe,av (.)

where Pe,av = 
Vcell jω

�
Ω

Jee+ jk ⋅ rdr is the applied polarization vector.

∗Equations . and . become exact for k in the Brillouin zone if one chooses the test function such that f̃ (k) = 
inside the Brillouin zone and f̃ (k) =  outside the Brillouin zone. In such conditions the averaging operator is equivalent to
a low pass spatial filter, which retains uniquely the fundamental zero-order Floquet harmonic.
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10.3.3 Microscopic Theory

We now introduce a microscopic theory based on the constitutive relation (Equation .) that
enables the homogenization of arbitrary periodic nonmagnetic materials.

The key idea to retrieve the effective parameters of the periodicmedium for fixed (ω, k) is to excite
the structure with a periodic source Je that enforces a desired phase modulation in the unit cell, so
that the solution (E,B) of Maxwell equations (Equation .) has the Floquet property. Thus, it is
imposed that the applied Je has the Floquet property, i.e., Jee jk ⋅ r is periodic in the crystal, where k is
the wave vector associated with the excitation.

From the results of Section .. and Equation ., it is known that the dielectric function must
verify ε (ω, k) ⋅ Eav = εEav+Pg,av. Hence, for fixed (ω, k) the dielectric function ε can be completely
determined from the previous formula, provided Pg,av is known for three independent vectors Eav,
e.g., for Eav ∼ ûi , where ûi is directed along the coordinate axes. Remember that the generalized
polarization vector, Pg,av, can be computed from the induced microscopic currents.

The specific spatial variation of the chosen applied current Je, in principle, does not influence
significantly the extracted effective parameters, at least if the dimensions of the unit cell are much
smaller than the wavelength. However, in view of the hypotheses used in Section .. to obtain
Equations . and ., it is desirable that the applied current excites mainly the zero-order Floquet
harmonics, and excites as weakly as possible the remaining harmonics. Hence, it is convenient to
assume that the applied density of current Je is uniform, with Je = Je,ave− jk ⋅ r, where Je,av is a constant
vector independent of r. Using the definition of Pe,av, it is seen that the applied current can be written
in terms of the applied polarization vector:

Je = jωPe,ave− jk ⋅ r (.)

Thus, the recipe proposed here to calculate the dielectric function can be summarized as follows:

• For fixed (ω, k), solve the source-drivenMaxwell equations (Equation .) for an applied
current, as in Equation ., with Pe,av ∼ ûi , i = , ,  (or for another equivalent inde-
pendent set with a dimension three). This involves solving three different source-driven
problems.

• From the computed microscopic fields calculate the corresponding macroscopic electric
field, Eav, and the generalized polarization vector, Pg,av.

• Finally, using Equation ., obtain the desired dielectric function ε.

It is important to underline that the describedmethod is not based on the solution of an eigenvalue
problem, but instead only requires solving Maxwell’s equations under a periodic excitation. In parti-
cular, the described homogenization procedure can be used to obtain the effective parameters even in
frequency band gaps or in case of lossy materials. It should also be clear that the extracted dielectric
function is completely independent of the specific test function used to define themacroscopic fields.

In the following sections, it will be illustrated how the outlined method can be applied in practice,
and how it can be numerically implemented to homogenize a completely arbitrary microstructured
material.

10.3.4 Plane Wave Solutions

The dielectric function ε can be used to characterize the Floquet eigenmodes supported by the struc-
tured material. In fact, the pair (ω, k) is associated with an electromagnetic mode of the crystal,
if and only if, the Maxwell equations (Equation .) support a k-periodic solution in the absence
of an external source, i.e., with Je = . In such a case, the system (Equation .) has a nontrivial
solution for (Eav ,Bav) with an applied polarization vector such that Pe = []. Hence, substituting
Equation . into Equation ., it follows that the homogeneous system
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−k × Eav + ωBav = 

ωε ⋅Eav + k × Bav

μ
=  (.)

has a nontrivial solution, if and only if (ω, k) is associated with an electromagneticmode of themate-
rial. This result is exact and valid for arbitrary (ω, k), not necessarily in the long wavelength limit. In
particular, this remarkable property implies that the band structure information of an arbitrary perio-
dic material is completely specified by its dielectric function. Hence, the dielectric function defined,
as in Section .., can be used to obtain the dispersion diagram and average fields of an arbitrary
electromagnetic mode.

The nontrivial solutions of Equation . determine the plane wave normal modes supported
by the homogenized medium. From the previous paragraph, it is evident that there is a one-to-one
relation between the Floquet eigenmodes of a structured material and the plane wave normal modes
of the corresponding homogenized medium.

From Equation ., it can be proven that the average electric field verifies the characteristic
system []:

((ω
c
)
 ε
ε

+ kk − kI) ⋅Eav =  (.)

where
c = /√εμ is the speed of light in vacuum
k = k ⋅ k

After simple manipulations [], it can be verified that, provided the average field is not transverse,
i.e., provided k ⋅ Eav ≠ , the associated wave vector satisfies the characteristic equation:

− = k ⋅ ((ω
c
)
 ε
ε

− kI)
−

⋅k if k ⋅Eav ≠  (.)

The solutions, ω = ω(k), of Equation . yield the dispersion of the plane wave normal modes.The
macroscopic average field is given by

Eav ∝ ( ε
ε

− ck

ω I)
−

⋅ ck
ω

if k ⋅Eav ≠  (.)

10.3.5 Symmetries of the Dielectric Function

Some relevant properties of the dielectric function are enunciated next [,]. Below, the superscript
“t” represents the transpose dyadic and the superscript “∗” represents complex conjugation.

• ε (ω, k) = ε∗(−ω∗,−k∗).
• ε (ω, k) = εt(ω,−k).
• Let T represent a translation. Suppose that a givenmaterial is characterized by the dielec-
tric function ε, and that the metamaterial resulting from the application of T to the
original structure is characterized by the dielectric function ε′. Then, ε′(ω, k) = ε(ω, k).
In particular, the definition of the dielectric function is independent of the origin of the
coordinate system.

• Let S be an isometry (a rotation or a reflection): S ⋅ St = I. Suppose that a given mate-
rial is characterized by the dielectric function ε, and that the material resulting from the
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application of S to the original structure is characterized by the dielectric function ε′.
Then, ε′(ω, S ⋅ k) = S ⋅ ε(ω, k) ⋅ St.

• If a material is invariant to the application of an isometry followed by a translation T ○ S,
then its dielectric function satisfies ε (ω, S ⋅ k) = S ⋅ ε (ω, k) . St. In particular, if the
material has a center of inversion symmetry, i.e., the origin can be chosen such that the
material is invariant to the inversion S ∶ r → −r, then ε (ω, k) = ε (ω,−k).

10.4 Dielectric Function of a Lattice of Electric Dipoles

In order to illustrate the application of the homogenization method introduced in Section ., the
dielectric function of a periodic lattice of electric dipoles is characterized next. Besides being of obvi-
ous theoretical interest, this canonical problem can be solved in closed analytical form [], and thus
the study of this electromagnetic crystal gives important insights into the homogenization approach.
The analysis also yields the generalized Lorentz–Lorenz and Clausius–Mossotti formulas for spatially
dispersive media.

It is assumed that the medium consists of a three-dimensional periodic array of identical electric
dipoles characterized by the electric polarizability αe. The dipoles are positioned at the lattice points,
rI = ia + ia + ia, where a , a, and a are the primitive vectors of the crystal, and I = (i , i , i)
is a multi-index of integers.

The microscopic electromagnetic fields induce an electric dipole moment in each particle. The
dipole moment pe of the particle at the origin is given by

pe

ε
= αe (ω) ⋅Eloc (.)

where Eloc is the local electric field that polarizes the inclusion, which is given by the superimposition
of the fields radiated by the other particles and the external field.

To calculate the dielectric function of the periodic crystal, we need to solve the Maxwell equations
(Equation .) for an applied current of the form given in Equation .. For a lattice of electric
dipoles, Equation . may be rewritten as

∇× E = − jωB

∇× B
μ

= jωPe,ave− jk ⋅ r + Jdip + jωεE (.)

where Jdip represents the electric microscopic currents induced in the dipoles. Since the applied
source has the Floquet property, it is clear that the induced current is such that

Jdip = ∑
I
δ (r − rI) e− jk ⋅ rI jωpe (.)

where
pe is the electric dipole moment of the particle at the origin
rI represents a generic lattice point
δ is Dirac’s distribution

The solution of Equation . can be written in a straightforward manner in terms of the lattice
Green dyadic, Gp(r∣ r′) = (I + c

ω∇∇)Φp(r∣ r′), where Φp = Φp(r∣ r′; ω, k) is the lattice Green
function [,,], which verifies

∇Φp + (ω
c
)

Φp = −∑

I
δ (r − r′ − rI)e− jk ⋅ (r−r′) (.)
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In fact, it is simple to confirm that the solution of the problem is

E = (− jωμ)Gp(r∣) ⋅ jωpe + (− jωμ)VcellG av ⋅ jωPe,ave− jk ⋅ r (.)

where, by definition,

G av =


Vcell

�
Ω

Gp(r∣ r′) e+ jk ⋅ (r−r′)dr′ (.)

From [], the dyadic G av and the respective inverse are equal to

G av =


Vcell


(ω/c)

(ω/c)I − kk
k − (ω/c)

G−av = −Vcell [((ω/c) − k) I + kk] (.)

The first term on the right-hand side of Equation . corresponds to the field created by the induced
electric dipoles, and the second term corresponds to the field created by the applied source, Pe,av.

To obtain the full solution of Equation ., it is still necessary to determine the unknown, pe.
From Equation . it is obvious that the local electric field that polarizes the particle at the origin is

Eloc = (ω
c
)


G′p(∣) ⋅ pe

ε
+ (ω

c
)


VcellG av ⋅ Pe,av

ε
(.)

where, by definition,
G′p(r∣ r′) = Gp(r∣ r′) − Gf(r∣ r′) (.)

andGf(r∣r′) is the free-space Green-dyadic for a single electric dipole with the Sommerfeld radiation
conditions. The electric dipole moment pe can now be obtained as a function of the excitation by
substituting Equation . into Equation ., and solving the resulting equation for pe. This gives
the formal solution of the microscopic equations (Equation .).

To obtain the dielectric function of the crystal, it is necessary to link the polarization vector, Pg,av,
with the macroscopic field, Eav. The vector Pg,av can be obtained by substituting Equation . into
Equation .. As could be expected, the following relation holds:

Pg,av =
pe

Vcell
(.)

On the other hand, the induced average electric field can be related to the applied polarization vector
using the relations given in Equation .. Straightforward calculations demonstrate that

Pe,av

ε
+

Pg,av

ε
= c

ω


Vcell
G−av ⋅Eav (.)

Using the previous relations in Equation ., it is found that the local field can be rewritten as

Eloc = Eav + Ci(ω, k) ⋅ pe

ε
(.)

where the interaction dyadic Ci is, by definition,

Ci(ω, k) = (ω
c
)

(G′p(∣; ω, k) − G av(ω, k)) (.)
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Equation . relates the local field with the macroscopic field and the induced dipole moment.
This important relation is a generalization of the classical Lorentz–Lorenz formula []. It describes
the effect of frequency dispersion, as well as of spatial dispersion, which may emerge due to the
noncontinuous (discrete) nature of the material.

Using the generalized Lorentz–Lorenz formula, it is simple to obtain the dielectric function of the
composite material. Substituting Equations . and . into Equation ., it is found that

(I − αe ⋅Ci) ⋅
Pg,av

ε
= 

Vcell
αe ⋅Eav (.)

Solving the above equation for Pg,av and using Equation ., it clear that the dielectric function of
the lattice of dipoles is given by

ε (ω, k) = I + 
Vcell

(I − αe ⋅Ci (ω, k))− ⋅ αe (.)

This is an important result and also generalization of the classical Clausius–Mossotti formula [].
It establishes that the dielectric function can be written in terms of the electric polarizability of the
particles and of the interaction dyadic Ci . It is stressed that the above result is exact within the theory
described in Section .. In particular, the dispersion characteristic of the electromagnetic modes
may be obtained by substituting the dielectric function into Equation ., and by calculating the
values of (ω, k) for which the homogeneous system has nontrivial solutions.

It can be proven that in the quasistatic limit, the interaction dyadic of a simple cubic lattice is given
by []

Ci(ω = , k = ) = 
Vcell

I (s.c. lattice) (.)

In the general dynamical case, Ci has to be evaluated numerically. For more details the reader is
referred to []. The imaginary part of the interaction dyadic can always be evaluated in closed
analytical form. Detailed calculations show that []

Im{Ci(ω, k)} = 
π

(ω
c
)


I (.)

This property implies that if the particles are lossless, the dielectric function is real-valued. In fact, it is
known that in order that the balance between the power radiated by the electric dipole and the power
absorbed from the local field be zero, it is necessary that the electric polarizability verifies Im{α−e } =

π (

ω
c )


I (it is assumed without loss of generality that α e has an inverse).This property is sometimes

reffered to as the Sipe–Kranendonk condition []. Using this power balance consistency condition
and Equation ., it follows that in the lossless care the dielectric function may be rewritten as

ε (ω, k) = I + 
Vcell

(Re{α−e − Ci (ω, k)})− (.)

Thus, the dielectric function is real-valued, consistently with what could be expected for a lossless
medium with a center of inversion symmetry, and that supports electromagnetic modes that propa-
gate coherently with no radiation loss. An alternative proof of these properties is presented in [].
The application of the theory to a lattice of split-ring resonators is described in [].
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10.5 Numerical Calculation of the Dielectric Function
of a Structured Material

Here, it is explained how the homogenization approach introduced in Section . can be numerically
implemented to characterize arbitrary microstructured materials using computational methods. To
this end, we will derive an equivalent regularized formulation of the homogenization problem that
is suitable for the numerical implementation of the method using MoM.

10.5.1 Regularized Formulation

The direct homogenization approach described in Section .. may not be adequate for the numer-
ical extraction of the dielectric function. The problem is that when (ω, k) is associated with an
electromagneticmode of the periodicmedium, in general, the source-driven problem (Equation .)
cannot be solved because the corresponding homogeneous system (with Je = ) has a nontrivial solu-
tion. The physical reason for the lack of solution is that when the medium is excited with a source
associated with the same (ω, k) as an eigenmode, the amplitude of the induced fields may growwith-
out limit due to resonant effects. Thus, the direct approach of Section .. cannot be applied to
calculate the dielectric function when (ω, k) belongs to the band structure of the material. This is an
undesired property because the effective parameters of a composite medium are intrinsically related
to the electromagnetic modes.

Since ε (ω, k) is, in principle, an analytic function of its arguments, this problem could be solved by
calculating the dielectric function using a limit procedure. However, in general, the band structure
of the composite material is not known a priori, and even if it were known the calculation of the
dielectric function at points very close to the band diagram may be numerically unstable.

To circumvent this drawback, a regularized formulation of the homogenization problem is pre-
sented next. The basic idea is to tune the applied current Je in such a way that the microscopic
electric field has a given desired average value Eav, preventing in this way the excitation of a res-
onance when (ω, k) is associated with an eigenmode. This is possible because the amplitude of Je
becomes interrelated with the induced microscopic currents in the periodic medium, in such a way
that depolarization effects prevent the fields in the medium to grow without limit when a resonance
is approached.

To put these ideas into a firm mathematical basis, we will first relate the amplitude of Je with the
macroscopic field Eav. To this end, we use Equation . to find that the applied polarization vector
may be written in terms of the macroscopic electric field and of the polarization vector as

Pe,av

ε
= c

ω


Vcell
G−av ⋅Eav −

Pg,av

ε
(.)

where G−av is defined as in Equation .. It is convenient to rewrite the above equation in terms of
two auxiliary operators P̂ and P̂av. The polarization operator, P̂, transforms the electric field into the
corresponding (generalized) polarization vector, P̂ ∶ E → Pg,av = P̂(E), where

P̂(E)
ε

= 
Vcell

⎛
⎝

c

ω

�
∂D

ν̂ × [∇ × E] e+ jk ⋅ rds +
�

Ω−∂D

(εr − ) E e+ jk ⋅ rdr
⎞
⎠

(.)

In the above, [∇ × E] = ∇ × E+ − ∇ × E− stands for the discontinuity of the curl of E at the metallic
surfaces, and∇×E+ is evaluated at the outer side of ∂D (Figure .). It can be easily verified that the
above definition is consistent with Equation .. The second operator, P̂av, acts on constant vectors
(not on vector fields), P̂av ∶ Eav → P̂av (Eav), and is given by
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P̂av(Eav)
ε

= c

ω


Vcell
G−av ⋅Eav (.)

Equation . is thus equivalent to

Pe,av = P̂av(Eav) − P̂(E) (.)

Using the definition of Pe,av and Equation ., it is found that applied density of current is such that

Je = jω (P̂av(Eav) − P̂(E)) e− jk ⋅ r (.)

In particular, this formula shows that the applied current density can be regarded as a function of
the induced macroscopic field Eav. Thus, to impose the desired macroscopic field Eav, we can excite
the material with an applied current of the form given in Equation .. Notice that in such a case
Je is also a function of the unknown microscopic field E. Such a feedback mechanism prevents a
resonance from being excited when (ω, k) is associated with an electromagnetic mode.

To clarify the discussion, we substitute Equation . into Maxwell’s equations (Equation .)
to obtain

∇× E = − jωB

∇× B
μ

= jω (P̂av(Eav) − P̂(E)) e− jk ⋅ r + εεr jω E (.)

The above system is, by definition, the regularized formulation of the homogenization problem. Even
though it is closely relatedwith the original set of equations (Equation .), there are some important
differences. First of all, unlike the direct approach (Equation .), Equation . is an integral–
differential system, i.e., both differential operators (∇×) and integral operators (P̂(.)) act on the
electromagnetic fields. Note that P̂(.) yields the generalized polarization of the unknown field E,
which involves the integration of the electric field over the unit cell.

A fundamental difference between the direct and regularized formulations is that while in the
direct approach the source of fields is Je, in regularized formulation the source of fields is (from a
mathematical point of view) the constant vector Eav. Thus, the solutions of the homogeneous prob-
lem (Je = ) associated with the direct problem (Equation .) are different from the solutions of the
homogeneous system (Eav = ) associated with the regularized system (Equation .), i.e., the two
systems have different null spaces. In particular, the electromagnetic modes of the periodic medium
are, in general, associated with a nontrivial Eav and so, do not belong to the null space of the regu-
larized problem. Thus, the regularized formulation can be used to compute the effective parameters
of the composite medium even if (ω, k) is associated with an electromagnetic mode. In fact, when
(ω, k) is associated with a modal solution, we have, P̂av(Eav) = P̂(E), and thus, the amplitude of the
imposed current in Equation . vanishes, avoiding the excitation of the resonance. However, since
Eav is different from zero, Equation . still represents a well-formulated source-driven problem.

It is stressed that the effective parameters retrieved by solving the direct problem (Equation .)
are exactly the same as those obtained by solving Equation .. The only difference between the
two formulations is that the regularized formulation can be applied even when (ω, k) is associated
with an electromagnetic mode. The price that we have to pay for this property is the increased com-
plexity of integral–differential system (Equation .) as compared to the simpler differential system
(Equation .). However, as described in Section .., the regularized problem can be solved very
efficiently using integral equation methods.
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10.5.2 Integral Equation Solution

It can be verified that for given (Eav , ω, k) the solution of the regularized homogenization problem
(Equation .) has the integral representation []:

E (r) = Eave− jk ⋅ r +
�

∂D

Gp(r∣ r′) ⋅ (ν̂′ × [∇′ × E]) ds′

+
�

Ω−∂D

Gp(r∣ r′) ⋅ (ω
c
)

(εr(r′) − )E(r′) dr′ (.)

where Gp is the Green function dyadic defined by

Gp = (I + c

ω∇∇) Φp

Φp(r∣ r′) =Φp(r∣ r′) − 
Vcell

e− jk ⋅ (r−r′)

k − ω/c
(.)

and Φp is the lattice Green function that verifies Equation .. The integral representation (Equa-
tion .) establishes that themicroscopic field E can be written in terms of the inducedmicroscopic
currents and of the macroscopic electric field.

This is an important result and can be used to reduce the homogenization problem to a standard
integral equation with unknowns given by the microscopic currents, Jd=ε(εr − ) jωE, at the dielec-
tric inclusions, Jc = ν̂×[B] /μ, at the PEC surfaces. To illustrate this fact, it is considered next that the
periodicmedium is purely dielectric. In that case, the unknown of the integral equationmay be taken
equal to the vector field, f = (εr − )E. Notice that the vector density f vanishes in the host medium
and is proportional to the microscopic current Jd.The integral equation is obtained by imposing that
Equation . is verified at the dielectric inclusions:

f(r)
εr(r) − 

= Eave− jk ⋅ r + (ω
c
)
 �
Ω

Gp(r∣ r′) ⋅ f (r′) dr′ (.)

The above identity is valid in the dielectric support of the inclusions, {r ∶ εr(r) −  ≠ }. For a given
Eav, this integral equation can be discretized and numerically solved with respect to f using standard
techniques. In what follows, we briefly review the solution of the problem using MoM [].

To apply the MoM, f is expanded in terms of expansion functions w , w , . . . , wn , . . .:

f = ∑
n

cnwn (.)

The set of expansion functions is assumed complete in {r ∶ εr(r) −  ≠ }. From the definition it is
obvious that f is a Floquet field, i.e., f exp( jk ⋅ r) is periodic.Thus, in general, the expansion functions
must have the same property and, therefore, must depend explicitly on k, i.e., wn = wn ,k(r). The
dependence on k can be suppressed only if the inclusions are nonconnected [].

For a given Eav, the unknown coefficients, cn , can be obtained by substituting the expansion
Equation . into the integral equation (Equation .), and by testing the resulting identity with
appropriate test functions. Once f has been determined, we can compute the generalized polarization
vector using Equation ., and the dielectric function using Equation ..The details can be read
in []. It is found that the dielectric function can be written as

ε
ε

(ω, k) = I + 
Vcell

∑
m ,n

χm ,n ⎛
⎝

�
Ω

wm ,k (r) e+ jk ⋅ rdr
⎞
⎠
⊗
⎛
⎝

�
Ω

wn ,−k (r) e− jk ⋅ rdr
⎞
⎠

(.)
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where
⊗ denotes the tensor product of two vectors

χm ,n is an element of the infinite matrix [χm ,n], whose inverse [χm ,n] has a generic element given by

χm ,n =
�
Ω


εr(r) − 

wm ,−k(r) ⋅wn ,k(r) dr

−(ω
c
)
 �
Ω

�
Ω

wm ,−k(r) ⋅Gp(r∣ r′) ⋅wn ,k(r′) dr dr′ (.)

Since the expansion functions must vanish outside the dielectric inclusions, the integration domain
in the above integrals may be replaced by {r ∈ Ω ∶ εr(r) −  ≠ }. The above formulas are valid for
dielectric crystals with no PEC surfaces.

Equation . establishes that the dielectric function of the periodic material can be written
exclusively in terms of the expansion functions, wn ,k, and of the Green dyadic, Gp. This formula
is extremely useful for the numerical evaluation of the effective parameters of composite materials,
and its application is illustrated in the following sections.

In case the material contains only PEC surfaces and εr −  =  in the unit cell, the unknown of the
integral equation is taken equal to the vector tangential density, f = c

ω ν̂′ ×[∇′ × E], defined over the
metallic surface ∂D. The vector field f is proportional to the density of current Jc. As in the dielectric
case, the unknown is expanded in terms of the complete set of vectors w , w , . . ., except that now
the expansion functions form a complete set of tangential vector fields over the metallic surface. A
detailed analysis [] shows that the dielectric function of such a material is given by

ε
ε

(ω, k) = I + 
Vcell

∑
m ,n

χm ,n ⎛
⎝

�
∂D

wm ,k(r) e+ jk ⋅ rds
⎞
⎠
⊗
⎛
⎝

�
∂D

wn ,−k(r) e− jk ⋅ rds
⎞
⎠

(.)

χm ,n =
�

∂D

�
∂D

(∇s ⋅wm ,−k(r)∇′s ⋅wn ,k(r′) − ω

c
wm ,−k(r) ⋅wn ,k(r′))Φp (r∣ r′) ds ds′ (.)

where
∇s ⋅ represents the surface divergence of a tangential vector field
the matrix [χm ,n] is the inverse of [χm ,n]

10.5.3 Application to Wire Media

To illustrate the versatility and usefulness of the formalism derived in Section .., here we char-
acterize the dielectric function of a square array of metallic rods (wire medium). Such a material is
characterized by strong spatial dispersion, even in the long wavelength limit []. To give an intuitive
physical picture of this phenomenon and understand its origin, consider an arbitrary metallic wire
in an electromagnetic crystal. Since the wire is a good conductor, the current that flows along the
wire at a given point, depends not only on the microscopic electric field in the immediate vicinity
of the considered point, but also on the distribution of the electric field in the neighborhood of the
whole wire axis. In fact, since the electric current along the wire must be continuous, it is clear that
a localized fluctuation of the electric field may be propagated to a considerable distance from the
perturbation point by current carriers. Hence, the radius of action of the microscopic electric field
on the current along the wire may be much larger than the lattice constant, which defines the char-
acteristic dimension of the wire medium, and possibly comparable or larger than the wavelength of
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FIGURE . The wire medium is formed by a square array of infinitely long metallic rods oriented along the
z-direction. (Reprinted from Silveirinha, M.G., Belov, P.A., and Simovski, C.R., Phys. Rev. B, , , . With
permission.)

radiation.This phenomenon is, inmany ways, analogous to a slow diffusion effect, because the veloc-
ity of the current carriers is much slower than the velocity of photons. Since the polarization vector
P is proportional to the current along the wire, it follows that this long range slow diffusion effect is
the origin of the nonlocal properties of the wire medium.

In order to characterize the spatial dispersion effects in wire media, we consider the geometry of
Figure .. The lattice constant is a and the radius of the rods is R. We suppose that R/a ≪  so
that the thin-wire approximation can be used. Within such approximation, it is legitimate to assume
that the surface current is uniform in the cross section of the wires and flows exclusively along the
axes of the rods. Thus, since the structure is uniform along the z-direction, it follows that one single
expansion function is sufficient to describe the behavior of the induced surface current density, Jc,
for an excitation with Floquet spatial variation, as in Equation .. The expansion function may be
taken equal to

w,k(r) = e− jk ⋅ r

πR
ûz (.)

Using this expression in Equation ., it is found that the dielectric function of the wire medium is
given by

ε
ε

(ω, k) = I + 
Vcell

a

χ(ω, k) ûz ûz (.)

where χ is calculated using Equation ., and is given by

χ(ω, k) = (k
z −

ω

c
) 
(πR)

�
∂D

�
∂D

Φp(r∣ r′; ω, k) e jk ⋅ (r−r′)dsds′ (.)

and ∂D = {(x , y, z) ∶ x + y = R ,−a/ < z < a/} represents the surface of the metallic wire in
the unit cell. Substituting the above expression into Equation ., the dielectric function can be
rewritten as

ε
ε
(ω, k) = I −

βp
ω/c − k

z
ûz ûz (.)
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where the plasma wave number βp is such that


βp

= a
(πR)

�
∂D

�
∂D

Φp(r∣ r′;ω, k) e jk ⋅ (r−r′)dsds′ (.)

As it is manifest from the above expression, in general, the plasma wave number depends on both ω
and k, or more specifically, it depends on ω, kx , and ky (but not on kz). However, in the long wave-
length limit, it is an excellent approximation to assume that βp ≈ βp∣ ω=

kx=k y=
, which may be explicitly

evaluated in terms of Bessel functions as in formula (B) of []. Such a formula is equivalent to the
result reported in []:

(βpa) = π
ln ( a

πR ) + .
(.)

Equations . and . determine the dielectric function of the wire medium in the long wave-
length limit. Formore details about the electrodynamics of wiremedia and the effect of strong spatial
dispersion the reader is referred to [].

The previous analysis shows that the theory described in Section .. can be used to obtain in a
very straightforwardmanner the homogenizationmodel originally derived in [] using a less direct
approach.This demonstrates that the formalism of Section .. can be applied not only to calculate
the dielectric function using numerical methods, but also to derive approximate analytical models.
Such a potential is further demonstrated in [], where the dielectric function of a square array of
helical wires is calculated using similar analytical methods.

10.6 Extraction of the Local Parameters from the
Nonlocal Dielectric Function

Even though the formalism described in Section . deals with the characterization of spatially dis-
persive materials, it is possible to extract the local effective parameters associated with the model
(Equation .) (if meaningful) from the nonlocal dielectric function. Such ideas are developed in
this section.

10.6.1 Relation between the Local and Nonlocal Effective Parameters

In most of the works on metamaterials, the composite structures are characterized using an effec-
tive permittivity and an effective permeability. It is, thus, relevant to study the relation between the
nonlocal dielectric function and the local parameters. To derive such a relation, we remember that
the generalized polarization vector Pg can be expanded as in Equation .. Calculating the spatial
Fourier transform of that formula and using the nonlocal constitutive relations (Equation .), it is
found that

P̃g = (ε (ω, k) − εI) ⋅ ˜⟨E⟩ = P̃ − k
ω
× M̃ +⋯ (.)

where the symbol “∼” represents the Fourier transformation. The terms omitted on the right-hand
side of the second identity are related to the quadrupole moment and other higher-order multi-
poles, and thus, are in general negligible. In a local material the polarization and magnetization
vectors, P and M, can be easily related to the local effective parameters and macroscopic fields using
Equations . and .:
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P = ε (εr − I) ⋅ ⟨E⟩ + 
μc

ξ ⋅ μr
− ⋅ (⟨B⟩ − 

c
ζ ⋅ ⟨E⟩)

M = 
μc

μ−r ⋅ ζ ⋅ ⟨E⟩ + 
μ

(I − μr
−) ⋅ ⟨B⟩ (.)

Calculating the Fourier transform of the above expressions, using the relation ⟨B̃⟩ = k
ω × ⟨Ẽ⟩, substi-

tuting the resulting formulas into Equation ., and noting that the obtained equation must hold
for arbitrary ⟨Ẽ⟩, it is found that

ε
ε

(ω, k) = (εr − ξ ⋅ μr
− ⋅ ζ) + (ξ ⋅ μr

− × ck
ω

− ck
ω

× μr
− ⋅ ζ) + ck

ω
× (μr

− − I) × ck
ω

(.)

This expression gives the desired relation between the nonlocal dielectric function and the local
effective parameters. Thus, a local material can be characterized using the nonlocal constitutive
relations (Equation .) as well as using the local constitutive relations (Equation .) being
the corresponding effective parameters linked as in Equation .. For local materials, the two
phenomenological models are perfectly equivalent: they predict exactly the same dispersion char-
acteristic, ω = ω(k), for plane wave modes, and the same macroscopic fields, Eav and Bav. In
particular, it is clear that the dielectric function, ε(ω, k), of a local material is necessarily a quadratic
function of the wave vector k. This suggests that the local parameters are related to the first-
and second-order derivatives of ε(ω, k) with respect to k. This topic is further developed in
Sections .. and ...

The importance of the local effective parameters can be appreciated only in problems that involve
interfaces between differentmaterials. Only the local effective parameters can be used to solve bound-
ary value problems using the classical boundary conditions (continuity of the tangential components
of themacroscopic electric andmagnetic fields) at an interface [].The reason is clear: while the local
model (Equation .) is valid in the spatial domain, the nonlocal model (Equation .) is valid
only in the Fourier domain, i.e., for unbounded homogeneous materials. The solution of boundary
value problems involving spatially dispersive materials is difficult and involves the use of completely
different concepts and methods [,]. We return to this topic in Section ..

10.6.2 Spatial Dispersion Effects of First and Second Order

Equation . implies that in a local material the dyadics ξ and ζ that characterize bianisotropic
effects can be calculated from the first-order derivatives of the dielectric function, ε(ω, k), with
respect to k, and that the magnetic permeability is completely determined by the second-order
derivatives of the dielectric function. These properties suggest that it may be possible to extract the
local effective parameters of a generic composite material by expanding the dielectric function in a
Taylor series []:

ε (ω, k) ≈ ε(ω, ) +∑
n

∂ε
∂kn

(ω, )kn +

 ∑

n ,m

∂ε
∂kn ∂km

(ω, )kn km (.)

This expansion ismeaningful only in the case ofweak spatial dispersion.Otherwise, theTaylor expan-
sion is not accurate and local parameters cannot be defined. In the above, the indices of summation
are such that m, n = x , y, z.

Comparing Equations . and ., it is evident that the local parameters must verify

εr − ξ ⋅ μr
− ⋅ ζ = ε

ε
(ω, ) (.)
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On the other hand, from the symmetry property, ε(ω, k) = εt(ω,−k), enunciated in Section ..,
it is clear that the first-order derivatives, ∂ε

∂kn
(ω, ), are antisymmetric dyadics, whereas the second-

order derivatives, ∂ ε
∂kn ∂km

(ω, ), are symmetric dyadics. This implies that the first-order derivatives
can be completely specified by  independent parameters, whereas the second-order derivatives can
be completely specified by  independent parameters.

The dyadics ξ and ζ are chosen so that they satisfy the symmetry relation []∗

ξ = −ζt (.)

Imposing that the second terms on the right-hand side of Equations . and . are coincident,
it may be proven that ζ must be such that

ζ = μr ⋅
ω
c ∑

n
( jqnûn −




jqn ⋅ ûnI)

jqn =

 ∑m


ε

ûm ⋅ ∂ε
∂kn

(ω, ) × ûm (.)

where ûn is a generic unit vector directed along a coordinate axis. Thus, once the magnetic perme-
ability μr is determined, the remaining local parameters can be easily obtained using Equations .
through ..

To calculate μr, it is necessary to impose that the third terms on the right-hand side of
Equations . and . are equal for arbitraryk. However, it is simple to verify that, in general, there
is no solution for μr that ensures such a condition.This is a consequence of the second-order deriva-
tives of the dielectric function being characterized by  independent parameters. From a physical
point of view, it is possible to understand this limitation by noting that spatial dispersion of the second
order (third term in the right-hand side of Equation .) emerges not only due to the eddy cur-
rents associated withmagnetic dipole moments, but also due to the quadrupolemoment density [].
We remind that in Equation . the effects of the quadrupole density were neglected. Despite
the described difficulties, in some circumstances it may be possible to use symmetry arguments to
directly extract μr from the second-order derivatives of the dielectric function. This is illustrated in
the next section.

To illustrate the application of the described theory and the calculation of the dyadics ξ and ζ in
a material with strong magnetoelectric coupling, we consider next a medium formed by an array of
infinitely long metallic helices [] oriented along the z-direction, as illustrated in Figure .. We
restrict our attention to the case of propagation in the xoy-plane. Only in such conditions the effects
of spatial dispersion can be considered weak, and local parameters can be defined. In reference [],
the local parameters were extracted directly from the nonlocal dielectric function using ideas analo-
gous to those developed here. It was verified that to a good approximation, the local parameters are
such that εr = εt(ûx ûx + ûy ûy) + εzz ûz ûz , ζ = ζzz ûz ûz = −ξt, and μ

r
= ûx ûx + ûy ûy + μzz ûz ûz . In

Figure . the extracted effective parameters are plotted as a function frequency for a material with
radius of the helices R = .a, radius of the wires rw = .a, and helix pitch az = .a. It is seen that
the effective permeability is less than one, and is approximately independent of frequency. Likewise,
the transverse effective permittivity (not shown in the figure) is εt ≈ ., and is also nearly indepen-
dent of frequency. On the other hand, since the helical wires are assumed infinitely long, the effective
permittivity along z exhibits a plasmonic behavior being negative below a certain plasma frequency.

∗This is possible because the first-order derivatives of the dielectric function can be characterized using only nine
independent parameters.
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FIGURE . Geometry of a periodic array of infinitely long PEC helices arranged in a square lattice. (Reprinted
from Silveirinha, M.G., IEEE Trans. Antennas Propagat., , , . With permission.)

0.5 1

μzz

εzz

1.5 2 2.5 3

–3

–1

0

1

Ef
fe

ct
ive

 p
ar

am
et

er
s

ωaNormalized frequency, c

Im {ζzz}

FIGURE . Effective parameters (xoy-plane propagation) for amaterial withR = .a, rw = .a, and az = .a.
(Reprinted from Silveirinha, M.G., IEEE Trans. Antennas Propagat., , , . With permission.)

Interestingly, the chirality parameter Im{ζzz} has a resonant behavior near the static limit. This is a
very unusual property, since in general the magnetoelectric coupling is negligible in the quasistatic
limit. This property can be understood by noting that the length of the helical wires is infinite, and
thus the chiral effects can be greatly enhanced at low frequencies. This anomalous phenomenon is
also consistent with the analysis of [] based on a local field approach. The strong magnetoelectric
coupling characteristic of this microstructured material may be exploited to design a very efficient
and thin polarization transformer; which converts a linearly polarizedwave into a circularly polarized
wave [].
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10.6.3 Characterization of Materials with Negative Parameters

In what follows, the formalism developed in the previous sections is applied to characterize the local
parameters of complex structures formed by split-ring resonators andmetallic wires. It is well known
that suchmicrostructuredmaterials may have simultaneously negative permittivity and permeability
in a certain frequency range [].

As discussed in Section .., the local parameters can be obtained by expanding the dielectric
function ε(ω, k) in powers of the wave vector. In the examples considered here, the inclusions and
the lattice have enough symmetries so that the effective medium is nongyrotropic, i.e., the first-order
derivatives of ε(ω, k) with respect to k vanish at the origin, or equivalently (see Equation .), the
magnetoelectric tensors ξ and ζ are identically zero.This can be ensured by using a magnetic particle
formed by two parallel rings with splits: the broadside coupled split-ring resonator (BC-SRR). As
proven in [], such a magnetic particle does not permit bianisotropic effects.

It is assumed here that the metallic wires are oriented along the y-direction, and that the BC-SRRs
are parallel to the xoy plane (see the inset of Figure .). Due to symmetry, this implies that the
magnetic permeability of the artificial medium is of the form μr (ω) = ûx ûx + ûy ûy + μzz ûz ûz . Since
the magnetoelectric tensors must vanish, Equation . demonstrates that the local permittivity is
given by

εr (ω) =
ε
ε

(ω, ) (.)

On the other hand, substituting the formula for magnetic permeability into Equation ., it is
simple to verify that to obtain an identity it is necessary that

μzz(ω) =


 − ( ω
c )

 
ε

∂ ε y y

∂k
x
∣
k=

(.)

where εy y = ûy ⋅ ε ⋅ ûy . Hence, provided the considered metamaterial can be characterized using
a local homogenization model, its constitutive parameters are necessarily given by Equations .
and .. Consistently, with the discussion of Section .., the magnetic permeability is a function
of the second-order derivatives of the dielectric function with respect to the wave vector.

In the example considered here, it is assumed that the lattice spacings along the coordinate axes are
ax = ay ≡ a, and az = .a (the lattice is tetragonal). The BC-SRRs have a mean radius, Rmed = .a,
and an angular split of ○. To simplify the numerical implementation of the homogenizationmethod,
it was considered that the rings are formed by thin metallic wires with a circular cross section, and a
radius, .a.Thedistance between the two rings (relative to themid-plane of each ring) is d = .a.
The continuous metallic wires also have a radius, .a.

Using the Equations ., ., and ., the local effective parameters εr(ω) and μzz(ω) were
computed as a function of frequency.The numerical results were obtained using five expansion func-
tions wn = wn ,k(r) per wire/ring. The derivatives with respect to k in Equation . were evaluated
using numerical methods. The extracted effective permittivity εy y and effective permeability μzz are
depicted in Figure . for three configurations of themetamaterial.The permittivity along z, εzz = ,
is not shown in the figure. Consistently with the results of [], the extracted parameters predict that
there is a frequency window, . < ωa/c < ., where the effective permittivity and permeability
are simultaneously negative (curve (a)). If the continuous wires are removed and themetamaterial is
formed by only BC-SRRs (curve (b)) the effective permeability is nearly unchanged, while the effec-
tive permittivity becomes positive in the indicated frequency range. If the BC-SRRs are removed the
permeability becomes unity, while the effective permittivity remains negative, as shown in curve (c).

The extracted local parameters, εy y and μzz , were used to compute the dispersion characteris-
tic ω = ω(kx) of the metamaterial for propagation along the x-direction. The corresponding band
structure is depicted in Figure . (solid black lines). In order to confirm these results and check the
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FIGURE . Extracted effective permittivity (solid lines) and effective permeability (dashed lines) for a metamate-
rial formed by (a) continuous wires + BC-SRRs (medium thick light gray lines), (b) only BC-SRRs (thin black lines),
and (c) only continuous wires (thick dark gray line). (Reprinted from Silveirinha, M.G., Phys. Rev. B, , , .
With permission.)
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FIGURE . Band structure of a compositematerial formed bywires+BC-SRRs (geometry of the unit cell is shown
in the inset). The solid black lines were calculated using the extracted εy y and μzz . The discrete “star” symbols were
obtained using the full wave hybrid method introduced in []. (Reprinted from Silveirinha, M.G., Phys. Rev. B, ,
, . With permission.)

accuracy of the homogenization model, the full wave hybrid method introduced in [] was used to
compute the “exact” band structure of the composite material (star symbols in Figure .). It is seen
that the homogenization and full wave results compare very well, especially in the range ωa/c < ..
In particular, the frequency band where the material has permittivity and permeability simultane-
ously negative is predictedwith very good accuracy, even for values of kx near the edge of theBrillouin
zone. For frequencies above ωa/c = ., near the resonance of εy y , the agreement quickly deteriorates
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FIGURE . Band structure of a composite material formed by BC-SRRs (geometry of the unit cell is shown in
the inset). The legend is as in Figure .. (Reprinted from Silveirinha, M.G., Phys. Rev. B, , , . With
permission.)

and themagnetic permeability ceases to havemeaning.This can be explained by noting that εy y varies
fast near the resonance, and thus, the Taylor series of the dielectric function with respect to k fails
to describe accurately the dependence on the wave vector. Thus, spatial dispersion effects cannot be
ignored near the resonance.

Similar band structure calculations were made for the case in which the continuous wires are
removed, and thematerial is formeduniquely byBC-SRRs.These results are shown in Figure ., fur-
ther demonstrating the accuracy of the homogenization model. Consistently, with the results of [],
the frequency region where the composite material has simultaneously negative parameters becomes
a frequency band gap when the metallic wires are removed.

10.7 The Problem of Additional Boundary Conditions

At a sharp boundary between two different materials the macroscopic fields are, in general, discon-
tinuous due to the sudden change of the material parameters.The classical procedure to characterize
the fields near the interface is to provide certain jump conditions to connect the fields on the two
sides of the interface, and in this way obtain a unique solution defined in all space. For local materi-
als, the jump conditions correspond to the continuity of the tangential components of the electric and
magnetic fields. These boundary conditions are, in general, derived by considering a transition layer
of infinitesimal thickness, and by using an integral formulation of Maxwell’s equations []. Alter-
natively, for dielectric crystals, the classical boundary conditions can also be derived directly from
the expansion of the microscopic fields into Floquet modes using the concept of transverse averaged
fields []. The direct application of the classical boundary conditions to structured materials may
not yield satisfactory results when the wavelength of the radiation is only moderately larger than the
characteristic dimensions of the unit cell, say  times or less []. In these conditions, it may not be
possible to regard the material as continuous, characterized by the bulk effective parameters, since
its intrinsic granularity may not be neglected []. The discussion of strategies to overcome these
difficulties is out of the scope of this chapter and can be read in [,].

In spatially dispersive materials the situation is evenmore problematic. Even the solution of a sim-
ple plane wave scattering problem may not be a trivial task when spatially dispersive materials are
involved.The nonlocal character of the material response may cause the emergence of new waves, as

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

10-26 Theory and Phenomena of Metamaterials

compared to the ordinary case in which only two plane waves can propagate along a fixed direction
of space []. This implies that the classical boundary conditions are insufficient to relate the fields on
the two sides of an interface between a spatially dispersive material and another material. In order
that the problem has a unique solution it is necessary to specify also boundary conditions for the
internal variables that describe the excitations responsible for the spatial dispersion effects []. Or in
other words, to remove the extra degrees of freedom it is necessary to consider “additional bound-
ary conditions” (ABCs) [,]. The ABC concept has been used in the electromagnetics of spatially
dispersive media for many decades [–].

The simplest class of ABCs was proposed by Pekar [], which imposes that either the polarization
vector or its spatial derivatives vanish at the interface. Unfortunately, there is no general theory avail-
able to derive an ABC for a spatially dispersive material. This is a consequence of the ABCs being
dependent on the internal variables of the material. The nature of the ABC depends on the specific
microstructure of the material, and can be determined only on the basis of a microscopic model that
describes the dynamics of these internal variables.

The objective of this section is to briefly review the theory of ABCs for wire media. This canoni-
cal problem is particularly interesting since it can be treated using analytical methods, and perfectly
illustrates how ABCs can be derived and employed to characterize the refraction of waves by a spa-
tially dispersive material. Our analysis is based on the theory derived in [,,]. An alternative
“ABC-free” motivated approach has been reported in [].

10.7.1 Additional Boundary Conditions for Wire Media

In this section, the refraction and reflection of waves by a wire medium slab are investigated. The
wiremedium consists of an array of longmetallic parallel wires arranged in a periodic lattice, as illus-
trated in Figure .. The wires are oriented along the z direction and embedded in a host medium
with permittivity εh. As discussed in Section .., this material is strongly spatially dispersive, even
in the long wavelength limit [–]. As a consequence, it supports three different families of elec-
tromagnetic modes in the long wavelength limit: transverse electric to z (TEz) modes, transverse

z
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Einc

kinc

Hinc

εh

θ

FIGURE . A wire medium slab with thickness L is illuminated by a TMz polarized incoming plane wave. The
metallic wires are arranged in a square lattice with lattice constant a, and embedded in a dielectric material with
permittivity εh. (Reprinted from Silveirinha, M.G., Belov, P.A., and Simovski, C.R., Phys. Rev. B, , , .
With permission.)
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magnetic to z (TMz) modes, and transverse electromagnetic (TEM) modes []. The existence of
three different electromagnetic modes implies that the usual boundary conditions (continuity of the
tangential component of the electric andmagnetic fields) at an interface between the (homogenized)
wire medium and another material are not sufficient to solve unambiguously a scattering problem. It
can be easily verified that the associated linear system has one degree of freedom [], and thus the
need for an ABC is evident.

In order to derive the ABC, it is necessary to identify some property of the structure under study
that can be used to obtain some nontrivial relation between the macroscopic/electromagnetic fields.
In the case of the wire medium it is relatively simple to identify such a property. Supposing that the
wire medium is adjacent to a nonconductive material (e.g., air) and that the metallic wires are thin,
it is evident that the density of the electric surface current at the wires’ surface must vanish at the
interface:

Jc =  (at the interface) (.)

It was proven in [] that this property implies that the macroscopic electric field satisfies the
following ABC at an interface with air∗:

εh E ⋅ ûz ∣wire medium side = E ⋅ ûz ∣air side (.)

It is important to note that the above condition is not equivalent to the continuity of the electric
displacement vector, since the effective permittivity of the wire medium is not εh, but is instead given
by Equation .. The ABC is also valid in the case of wires with finite conductivity [], and when
the wires are tilted with respect to the interface with air [].

The ABC (Equation .) together with the classical boundary conditions can be used to charac-
terize the reflection and refraction of waves by slabs of wire media. To illustrate this property and the
accuracy of the described theory, in Figure . the amplitude of the reflection coefficient is plotted
as a function of the normalized frequency for plane wave incidence along θ = ○. The solid lines
correspond to full wave results obtained using the MoM, and the dashed lines represent the results
obtained using the homogenization model and the ABC (Equation .). The lattice constant is a,
the radius of the wires is rw = .a, and the wires are embedded in air, εh = . It is seen that the
agreement between the homogenization model and the full wave results is excellent, for both thin
and thick wire medium slabs, and for normalized frequencies as large as ωa/c = .. It was proven
in [,] that the proposed ABC may be used to characterize the imaging properties of wire media
slabs upto infrared frequencies.

The ABC (Equation .) is valid provided the material adjacent to the wire medium is noncon-
ductive. However, in several configurations of interest the metallic wires are connected to a ground
plane, as illustrated in Figure .. For example, textured and corrugated surfaces have important
applications in the design of high-impedance surfaces, impedance boundaries, and suppression of
guided modes [,,]. When the metallic wires are connected to a conductive material, it is not
true that the density of current Jc vanishes at the interface, and thus the ABC (Equation .) does
not apply.

Even though Equation . does not hold at an interface of a wire medium connected to a PEC
ground plane, it is relatively simple to obtain the boundary condition verified by the microscopic
electric current in a such scenario. More specifically, it can be proven that the electric density of
surface charge, σc, on the surface of a generic wire satisfies []

σc =  (at the interface) (.)

∗In this section, the macroscopic fields, ⟨E⟩ and ⟨B⟩ /μ, are simply denoted by E and H, respectively, to avoid
complicating the notations unnecessarily.
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FIGURE . Amplitude of the reflection coefficient as a function of the normalized frequency for incidence along
θ = ○ and different values of the slab thickness L (solid line: full wave results; dashed line: homogenization model).
The wires are embedded in air and have a radius rw = .a. (Reprinted from Silveirinha, M.G., IEEE Trans. Antennas
Propagat., , , . With permission.)
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FIGURE . A wire medium slab is connected to a ground plane. The metallic wires are arranged in a square
lattice with a lattice constant a. The wires may be tilted with respect to the interfaces (normal to the z-direction) by
an angle α.The structure is periodic along the x and y directions. (Reprinted from Silveirinha, M.G., Fernandes, C.A.,
and Costa, J.R., New J. Phys., , (–), . With permission.)

A detailed analysis demonstrates that this property, which is intrinsically related to the microstruc-
ture of the material, implies that the macroscopic fields verify the following ABC at the PEC
interface [],

(k
∣∣
⋅ ûα + ûz ⋅ ûα j

d
dz

)(ωεεh ûα ⋅E + ûα × (k
∣∣
+ ûz j

d
dz

) ⋅H) =  (.)

where
ûα is the unit vector along the direction of the wires (see Figure .)
ûz is the normal to the interface
k
∣∣
is the component of the wave vector parallel to the interface
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FIGURE . Reflection characteristic for a substrate formed by tilted wires (α = ○) connected to a PEC plane.
The wires are embedded in a dielectric with εh = . and thickness T such that T

√
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the wires, a, associated with each curve is indicated in the figure. The radius of the wires is rw = .a, and the length
of the wires is Lw = T sec α. The solid lines were obtained with the homogenization model, and the discrete symbols
were obtained using the commercial simulator CSTMicrowave Studio. (Reprinted from Silveirinha, M.G., Fernandes,
C.A., and Costa, J.R., New J. Phys., , (–), . With permission.)

This ABC together with the classical boundary condition, ûz × E = , completely character-
izes the reflection of waves by a wire medium slab connected to a ground plane. As an example
of the application of such a result, we consider the geometry of Figure . where an incom-
ing plane wave is reflected by a grounded wire medium slab. The reflection coefficient may be
computed using homogenization methods by matching the fields in the air and wire medium
regions at the interface z =  and using the ABC (Equation .) and the classical bound-
ary conditions, and by enforcing the ABC (Equation .) and ûz × E =  at the interface
with the conducting plane at z = −T []. The calculated reflection characteristic is depicted
in Figure . (solid lines) for different lattice spacings. The parameters of the microstructured
substrate are given in the legend of the figure. The discrete symbols correspond to data obtained
using the commercial electromagnetic simulator, CST Microwave Studio. It is seen that homog-
enization results compare very well with full wave simulations, both when the wires are very
densely packed (a = .Lw) and when the wires are loosely packed (a = .Lw), where
Lw = T sec α is the length of the metallic wires. It can be verified that in the limit in which a/Lw → ,
the wire medium behaves as a material with extreme optical properties, and the interface z =  may
be characterized by an impedance boundary condition []. Arrays of tiltedmetallic wires connected
to a ground plane have great potentials in the realization of high-impedance substrates.

Even though the results presented in this chapter deal exclusively with arrays of parallel wires, the
described ABCs can also be applied to other more complex topologies of wire media [,].
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11.1 Introduction

Correct extraction of effective material parameters (EMP) of a metamaterial (MTM) layer formed
by optically small resonant particles embedded in a dielectric matrix from the experimental data
or numerical simulations is very important for the design and optimization of MTM. For MTM
performed as regular lattices∗ it is usually done in terms of the plane-wave reflection (R) and trans-
mission (T) coefficients of the layer. This is probably an optimal way to find the EMP of the composite
medium with regular inner structure if the layer comprises the integer number of the lattice unit
cells. To retrieve EMP through exact plane-wave simulations of the regular layer is much more accu-
rate than through approximate analytical calculations involving electric and magnetic polarizabilities
of individual particles, mixing rules, or other approximate algorithms of averaging. It is not simple
to calculate EMP exactly using their definitions, that is, through accurate numerical averaging of
numerically simulated microscopic fields and microscopic polarizations. In spite of huge computa-
tion efforts and time expenses, the researcher encounters the problem of artificial magnetism. This
phenomenon in lattices of complex scatterers cannot be properly revealed using simple averaging
and requires special procedures that would take into account the peculiarities of the distribution of
the microscopic polarization currents in the cell [].

∗ In this chapter we consider only lattices of nonbianisotropic particles without resonant, higher multipole moments.

11-1
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Meanwhile, the plane-wave reflection and transmission in finite-thickness lattices evidently yield
a standard cell problem. Cell problems are, as a rule, efficiently solvable using commercial packages
such as the Ansoft HFSS or Microwave CST Studio. If the experimental sample of the MTM layer
is built, it is much easier to measure its R and T coefficients than to measure the purely electric
response of the sample to find its high-frequency permittivity or its purely magnetic response to the
high-frequency permeability. Therefore, we can assert that a procedure that would allow us to relate
EMP of finite-thickness lattices with R and T coefficients is of prime importance for the successful
design of MTM.

In [–] and many others, the authors claimed that composite slabs comprising arbitrary number
N of monolayers∗ possess the same EMP as those of infinite or semi-infinite lattices. It is, however,
clear that only in the case N ≫  the refraction of the obliquely incident wave is strongly affected by
lattice dipole particles, whereas in the case N =  the refraction is determined by the dielectric matrix
and is not influenced by dipole particles.

What is then the meaning of the refraction coefficient retrieved for a monolayer? In addition, if it
is senseless why EMP extracted for the composite layer with N =  turn out to be very often equal
numerically to EMP extracted for the layer of the same composite but with N = ? This coincidence
cannot be occasional, and a certain physical meaning is behind material parameters retrieved in cited
works, which are reviewed below.

The key point for the reader of this chapter is the insight that there is no unique mandatory method
to define the EMP for composite media. Material parameters replace an array of separate particles by
an “equivalent” continuous slab, and this procedure (homogenization) was never uniquely defined
in any classical book. At least two pairs of EMP called here† as Bloch’s and Lorentz’s EMP can be
extracted for many lattices from the same R and T coefficients. In fact, if one allows us to involve
also mesoscopic (N-dependent) EMP, we could extract more than two pairs of EMP from the same
experimental or numerical data.

Two different sets of N-independent EMP can correspond to the same R and T coefficients,
because only one set of EMP allows one to express R and T directly, that is, through ε, μ, the slab
thickness d = Na, and the frequency. The other one gives R and T only after involving additional
parameters. This difference becomes visible beyond the region of very low frequencies. Well below
the resonance of individual particles forming the lattice (the quasi-static limit), these two sets of EMP
numerically coincide.

The additional parameters one has to involve to express R and T through material parameters
ε, μ, the slab thickness d, and the frequency ω are related to the so-called transition layers whose
impact was explained in the s by P. Drude. Drude pointed out that when the lattice period a is
still small but already not negligible compared with the wavelength in the crystal (practically when
.λ > a > .λ) the approximation of a sharp boundary loses validity. In other words a finite-
thickness lattice of electric dipoles at these frequencies cannot be modeled as a uniform continuous
dielectric with unique ε filling the space d between two sharp boundaries. The same result can be
evidently expanded to magneto-dielectric lattices with both nontrivial ε and μ.

Following Drude, when the phase shift of the wave over a lattice unit cell is perhaps small but not
negligible we either should refuse the idea of homogenizing this lattice or homogenize it in a way
such that the interface of the effective continuous medium is spread.

P. Drude suggested to locate this transition layer at the interface of a semi-infinite crystal so that
it covers the edge unit cell of the lattice. Therefore, its thickness is (in Drude’s theory) equal to the

∗ A monolayer is a single D grid of particles placed in the host medium slab of thickness a, which can be treated as the
lattice unit cell length.
† This terminology is not commonly adopted; it is suggested by the author of this chapter.
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lattice period a. Following Drude the permittivity varies across a transition layer from its bulk value ε,
which is the permittivity of the unbounded lattice to its value in free space (or surrounding medium
if not free space). We can consider transition layers as uniform ones, since they are optically small,
and EMP of these layers take averaged values between EMP of unbounded crystals and material
parameters of the surrounding medium (e.g., free space). In this way, the finite-thickness lattice with
N ≫  is modeled as a three-layer structure with two pairs of EMP: those of the inner (thick) layer
and those of the transition (thin) layers. The last pair of EMP can be expressed through EMP of the
inner layer.

Taking transition layers into account in this way we will extract from R and T coefficients of the
slab the Lorentz material parameters of its central domain. Ignoring transition layers, that is, con-
sidering the real composite slab as a layer with a unique pair of EMP between sharp boundaries,
we extract another pair of material parameters (from the same R and T coefficients). They can be
dependent on N . However, there are lattices for which the pair of these directly retrieved EMP is
N-independent.

In this case (see [–]) these extracted EMP are equivalent to the Bloch (or Ewald–Bloch)
material parameters of the infinite lattice. The definitions of the Bloch EMP are given here. N-
independent directly retrieved EMP can be useful, though their physical meaning is rather specific.
They cannot be treated in terms of the electric (ε) or magnetic (μ) responses of the medium
unit cell. One of them qualitatively describes the electric (or magnetic) response of the unit cell
(however, with significant quantitative errors). Another material parameter does not describe this
magnetic (electric) response at all. This assertion refers to the lattices of electric or magnetic dipoles,
respectively.

There are MTM lattices for which the directly retrieved EMP are not equivalent to the Bloch mate-
rial parameters. These are lattices studied, for example, in [–] for which the directly retrieved
EMP are N-dependent and cannot be applied to any electrodynamic problem except finding R and
T coefficients for the same N . However, these coefficients must be known to extract EMP from them.
Only N-independent EMP extracted directly from R and T are useful.

11.2 Bloch Material Parameters Impedance: Lorentz Material
Parameters and Wave Impedance

We start from the discussion of the comparative importance of the Lorentz and the Bloch sets of EMP.
These sets of EMP are compared with respect to the so-called locality requirement. This requirement
determines the applicability of EMP in different boundary problems with conventional boundary
conditions. We see here that the violation of the locality by Bloch’s EMP restricts their applicability
by the only problem: reflection and transmission of a normally incident plane wave for a composite
slab.

The locality is equivalent (see, in Chapter , and also in []) to a system with the following
conditions:

• Passivity (for the temporal dependence e−iωt it implies Im(ε) >  and Im(μ) > 
simultaneously at all frequencies; for e jωt the sign of both Im(ε) and Im(μ) should be
negative).

• Causality (for media with negligible losses it corresponds to conditions ∂ (ωε) /∂ω > 
and ∂ (ωμ)) /∂ω > . This also means that in the frequency regions where losses are
small material parameters obviously grow versus frequency: ∂ (Re(ε)) /∂ω >  and
∂ (Re(μ)) /∂ω >  ).
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• Absence of radiation losses in arrays with uniform concentration of particles.∗

• Independence of the material parameters on the wave propagation direction. For given
frequency and plane incident waves this means the independence of EMP to be extracted
on the incidence angle.

It was shown in [] that the Bloch material parameters are in this sense nonlocal within the same fre-
quency ranges whereas the Lorentz EMP are local. This means that the nonlocality of retrieved EMP
in [–] does not obviously mean that there is spatial dispersion in those lattices. In the frequency
range where the spatial dispersion is absent, the local EMP can be introduced.

A simple procedure of the approximate extraction of Lorentz EMP for finite-thickness composite
layers [] is described here. It does not involve Drude layers. The procedure is based on the model of
electromagnetic interaction in lattices containing both electric and magnetic resonant scatterers. This
model was developed in [] and []. In the theory it was assumed that all resonant scatterers interact
as if they were point electric (p) and magnetic (m) dipoles. This approximation is accurate enough
for many practical structures in the frequency range under study.† The bounds of the dipole model
can always be verified by the exact numerical simulation of the plane-wave propagation in the lattice.
It allows us to avoid the difficult problem of averaging the microscopic polarizations of the lattice
unit cell. This difficulty (mentioned earlier) appears when the electric microscopic polarization leads
to the magnetic macroscopic one []. The dipole model of electromagnetic interaction needs only
electric and magnetic dipole moments of particles. Averaged electric and magnetic bulk polarizations
referred to the cell center are simply equal to p and m dipole moments, respectively, divided by the
cell volume V . Therefore, the averaging of the microscopic polarizations is not involved in the model.

Once the problem of averaging of microscopic polarizations is separated from field averaging,
the problem of lattice homogenization is determined by the procedure that defines the averaging
of microscopic E and H fields. The Lorentz homogenization corresponds to the simple averaging of
these fields over the unit volume around the observation points.‡ Unlike the Lorentz homogenization,
the Bloch homogenization§ corresponds to the treating of zeroth Bloch harmonics of E and H as if
E and H were averaged fields [].

Historically, P. Ewald was the first who shared the zeroth Bloch harmonic of a microscopic field in a
semi-infinite lattice illuminated by a plane wave and treated it as the averaged field. He did it in [,]
deriving the so-called extinction principle previously postulated by S. Oseen. This historical fact is
the reason why these EMP can be called in this chapter also as Ewald–Bloch material parameters. The
Ewald–Oseen extinction principle is an obvious condition for the homogenization of finite lattices
[,]. Ewald proved the extinction of incident plane waves in semi-infinite dipole lattices at low
frequencies. Recently, this principle was proved for arbitrary frequencies and lattices of arbitrary
dielectric inclusions, that is, expanded also to photonic crystals in []. The fact of the extinction
of incident waves in photonic crystals makes possible the discussion on the physical meaning of
homogenization models for MTM lattices at high frequencies where they become photonic crystals.
However, in this chapter we restrict the discussion to the frequency region ka < .

∗Though this principle is often attributed in the literature to a more recent work [], it was in fact postulated for periodic
structures  years ago in [], then proved for dipole lattices in [], and was discussed in [].
† Another approximation is neglecting the polariton waves excited at the interface of the composite layer due to its discrete
structure. The higher is N and the smaller as a/λ the smaller is the error in extracted EMP associated with neglected
polaritons.
‡ Perhaps, this procedure also implies the use of the so-called test or weight function F to which the microscopic field is
multiplied being integrated []. This function choice is rather arbitrary and its introduction should serve to the further
smoothing of the averaged field coordinate dependence. However, the practical influence of the test function to final results
for EMP is weak, and we pick for simplicity F ≡ .
§ This terminology is not commonly adopted, however this is exactly what is implied in classical books e.g., in [] when
one introduces the permittivity as a tensor whose component depends on the wavevector in crystals.
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The product of Lorentz permittivity εL and permeability μL equals the square power of the refrac-
tion index of the infinite lattice: εLμL = n. The same holds also for Ewald–Bloch EMP: εebμeb = n.
However, the ratio of Ewald–Bloch EMP determines the so-called Bloch impedance of the lattice
(here we consider this impedance normalized to that of free space). This is not the characteristic
(wave) impedance of the homogenized lattice. It is the parameter of the original discrete lattice.
The wave impedance that characterizes the equivalent homogenized medium is given by the ratio
of Lorentz EMP.

We have then:
μeb

εeb
= Z

B,
μL

εL
= Z

w.

The difference between the Bloch impedance ZB and the wave impedances Zw is well known for
periodically loaded transmission lines (PLTL). In [] it was emphasized that even if the PLTL can be
homogenized the reflection coefficient of this semi-infinite PLTL is related to the Bloch impedance
of the original PLTL and not to the wave impedance of the homogenized line. At least, it is so beyond
the quasi-static limit, where these impedances are not equivalent:

R∞ = ηZB − η

ηZB + η
≠ ηZw − η

ηZw + η
.

Here η and η are characteristic impedances of the host transmission line and of the line from which
the wave comes, respectively. The Bloch impedance of the PLTL is defined as the ratio of voltages U
and currents I at the input or output of any unit cell.

For dipole lattices ZB is the ratio of transversally averaged E and H fields calculated at central planes
of gaps between crystal planes. Transversal averaging procedure [] is defined by simple integrating
of true fields around the observation point over two lattice periods ax and ay , orthogonal to the
propagation axis z. The transversally averaged E and H are analogues, respectively, of the voltage and
the current in a PLTL.

The Lorentz EMP are related to the pair Zw and n and not to the pair ZB and n. The wave impedance
describes the ratio of volume-averaged E and H fields, where their averaging volume is centered by the
particle center. In the transmission line model this impedance corresponds to the ratio < U > / < I >,
where < U > and < I > are voltage and current, respectively, both averaged over the unit cell of the
loaded line.

11.3 Direct Retrieval of Effective Material Parameters

Let us discuss when and why it is really possible to obtain the Lorentz and the Ewald–Bloch material
parameters of an infinite lattice from plane-wave measurements of a real composite slab.

First, we discuss local material parameters. In [] it was proved (see also [–]) that not only
thick layers but a regular composite slab with any N , even N = ,∗ for all angles of incidence of a plane
wave can also be presented as a layer filled with a bulk homogeneous medium with two Drude transi-
tion layers at its interfaces. This result is not surprising. The locality of EMP (which implies passivity,
causality, and other features listed already) means, by definition, that the electromagnetic response of
the unit volume of the structure is determined by the proximity of the observation point. Practically,
if the local homogenization is possible the unit cell response should be completely determined by

∗However, in this case the description of the slab in terms of bulk EMP has little physical meaning, and the concept of
Drude layers, though it practically works, is not justified.
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this unit cell and independent of the surrounding. This speculation helps to understand the role of
transition layers better. These layers “protect” the electromagnetic susceptibility of the observation
point from the influence of the outer space, which is different from the medium of the slab. And the
electromagnetic response of any volume inside the finite slab after introducing the Drude transition
layers turns out to be the same as the response of this volume in the infinite structure. As a result,
Lorentz’s EMP can be extracted independently on the slab thickness d = Na and are applicable for
arbitrary N .

Second, we discuss EMP defined in the following formal way. Let the coefficients R and T of a
composite layer comprising N monolayers be known, where the wave is normally incident. Treating
(see e.g., in [,]) the composite slab as a uniform layer of continuous medium of same thickness d
and inverting the classical Fresnel–Airy formulas

R = R∞( − e− jk
√εeff μeff d)

 − R
∞

e− jk
√εeff μeff d , T = e− jk

√εeff μeff d( − R
∞
)

 − R
∞

e− jk
√εeff μeff d , (.)

we obtain

q = ± 
d

acos(  − R + T

T
) + πm

d
= k

√
εeff μeff , (.)

for the propagation factor and

Zc = ±
�
		
( + R) − T

( − R) − T =
√

μeff

εeff
, (.)

for the normalized “characteristic impedance” of this “effective medium.” In Equation ., coefficient
R
∞

is treated as the reflection coefficient from the “effective semi-infinite medium”:

R
∞
= (

√
εeff

μeff
− η

η
)/(

√
εeff

μeff
+ η

η
) . (.)

In these formulas k = ø√εμ is the free space wave number, and η =
√

μ/ε and η =
√

μ/εεm
are wave impedances of free space and of the slab host medium, respectively. Parameter m in
Equation . is the integer valued function of frequency. In the region ∣Re(qd)∣ < π/, it must be
m = . Also, parameter m can be found from the requirement of smoothness for the frequency depen-
dence of extracted parameters [] or from the requirement of the correct sign for the imaginary part
of εeff and μeff , as was suggested in []. Notice, however, that the requirement of the “correct sign” []
is senseless when applied to EMP, which are by definition nonlocal.

Formal material parameters defined by relations (Equations . and .) for the frequency range
qa > . ignore both Drude’s principle of the spread boundary and the difference between Bloch’s
and characteristic impedances. In the best case (of so-called Bloch lattices) they are equal to Ewald–
Bloch material parameters. In the worst case they are senseless.

In [] it was proved that Ewald–Bloch material parameters do not describe properly the electro-
magnetic response of the lattice unit cell except for the quasi-static limit qa ≪ . As a result, the
locality requirement does not refer to these EMP. It is not surprising that in [] this requirement led
to m ≠  even for optically thin layers, and for optically thick layers it leads to jumps of the deriva-
tive in the frequency dependence of Zc and refraction index n ≡ q/k. Moreover, this requirement,
though it attributes to the nonlocal EMP one of the features of local EMP, i.e., the apparent passivity,
does not avoid the violation of the causality.
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11.4 Bloch Lattices

The ABCD matrix (or transmission matrix) of the lattice unit cell F relates the transversally averaged
E and H fields at the input and output. Recall that we ignore nonreciprocal and bianisotropic lattices
and consider the case when the plane wave propagates along one of the lattice axes. Therefore, the
field ETA (as well as HTA) contains only one component. Then we can write

[ ETA()
ηHTA()] = [

A B
C D] [

ETA(a)
ηHTA(a)] , D = A, C =  − A

B
. (.)

We see that only two components of the transfer matrix of a symmetric and reciprocal unit cell are
independent []. These two components can be expressed through two EMP formally introduced
by relations (Equation .).

The electromagnetic interaction of particles exists in all lattices. However, in special lattices (here
called Bloch’s lattices) this interaction does not change the ABCD matrix of the unit cell. Then this
matrix for arbitrary N is fully determined by two scalar values.∗ These two values are Bloch’s or
Ewald–Bloch’s material parameters of the infinite (N = ∞) or finite (N = ,  . . . ) Bloch lattice.

Consider their extraction for a monolayer. The reflection and transmission coefficients of a
monolayer R() and T() uniquely determine the transfer matrix of the single monolayer:

[ − R()

 + R()
] = T() [ A B

−A

B A
] . (.)

The algorithm based on Equations . and . represents a real monolayer with transfer matrix F as
an equivalent continuous layer described by formal material parameters εeff , μeff keeping the same
thickness and the same ABCD matrix.

Now assume that the ABCD matrix FN of the slab with N ≠  (see Figure .) is equal to FN = F
N .

It is the same so as to assume that the ABCD matrix of any unit cell in a slab of thickness Na still
equals F.

However, it is easy to show that the ABCD matrix of the continuous slab of thickness Na with the
same material parameters εeff , μeff is also equal to FN = F

N . Therefore, the same equivalent material
parameters that were extracted from coefficients R() and T() of the single monolayer still determine
the ABCD matrix FN and coefficients R(N) and T(N) of the slab of thickness d = Na. It holds also
for N →∞.

In this case N-covariant case material parameters extracted directly from R(N) and T(N) for
arbitrary N = ,  . . . are the Ewald–Bloch EMP.

The concept of the Bloch lattice can be illustrated by analogy with a PLTL. In Figure ., left panel,
the composite monolayer containing p-dipoles and m-dipoles in the same plane is shown as a host
transmission line of length a comprising one load (a T-circuit). It is easy to prove that the response
of a dipole grid to transversally averaged fields E and H can be described in terms of shunt and serial
loads Y and Z. These loads determine the jumps of ETA (due to magnetic dipoles) and HTA (due
to electric dipoles), respectively. In the lossless case we have Y = − jG and Z = − jX, where G and
X are real. Formulas relating these grid parameters with individual electric (aee) and magnetic amm
polarizabilities of particles were derived in []:

Y =
jka

( ε εm V
aee

) − jk

πε εm
− B

, Z =
jka

( μ V
amm

) − jk

πμ
− B

. (.)

∗ Of course in anisotropic lattices the EMP determining the ABCD matrix must be two tensor values; however, for the
normal propagation only two components of these tensors are essential [].
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FIGURE . Extracting the Ewald–Bloch material parameters from R and T coefficients of finite-thickness lattices.
(a) A monolayer (N = ) and (b) a composite slab comprising N grids.

where
V is the unit cell volume
εm is the relative permittivity of the lattice host medium

B =


(cos kbs

kbs
− sin kbs) ,

if the lattice periods in two transverse directions are identical.
Here s ≈ . and b is the transverse lattice period. At very low frequencies (kb ≪ ) B ≈ ..

The Bloch lattice is a lattice in which the equivalent loads Y and Z are not affected by the elec-
tromagnetic interaction of lattice crystal planes. Therefore for arbitrary N , Y , and Z are the same as
those for a single monolayer: Y = Y, Z = Z. The meaning of Bloch’s EMP for these lattices is to
predict the reflection and transmission of the normally incident plane wave for composite slabs with
arbitrary N if they were extracted for a slab with N = N.

11.5 Nonlocality of Bloch’s Material Parameters

Now let us illustrate the violation of causality and passivity in Bloch’s EMP by explicit examples.
In [] and [] the equivalent EMP were extracted using Equations . and . for two lattices depicted
in Figure .. One of them was a square lattice of cylinders with high complex permittivity. In the
exact numerical simulations this permittivity was picked equal to ε i = + i (the time dependence
exp(−iωt)was used, and the imaginary part of the refraction index should be positive). The cylinders
were located in free space. The lattice period was equal to  mm and the cylinder diameter  mm.
An individual cylinder experiences the lowest (magnetic) Mie resonance at approximately . GHz.
The electric Mie resonance holds outside the frequency range of our interest. Though the lattice of
infinite cylinders is two-dimensional, all formulas derived here are valid (with the substitution of the
unit surface S = a instead of the unit volume V = a). Also, the magnetic polarizability amm is that
per unit length of a cylinder.

The other lattice shown in Figure . is a cubic lattice of doubled silver split ring resonators (SRRs)
paired so that to prevent the bianisotropy. The lattice period was equal to a =  nm, and the size of
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ε = 200 + i5

ε = 1

(a) (b)

q

FIGURE . (a) Lattice of cylinders from oxide ceramics and (b) lattice of silver SRRs resonating in the infrared
range.

the individual SRR was equal to  nm. These SRRs in simulations [] resonated at  THz. In []
(and some later works devoted to these SRRs) this resonance was claimed as a purely magnetic one.
However, in [] it was shown that the electric and magnetic resonances of coplanar doubled SRRs
overlap. The extraction of local EMP performed here allows us to see the electric resonance of SRRs
in the same frequency range as that of the magnetic resonance.

In Figure .a and b the results of the extraction of the equivalent refraction index n = q/k and
of the effective impedance Zc of the slab interface seen by the incident wave are shown. These results
were obtained in [] using exact numerical simulations of the reflection and transmission in the
slab of N =  monolayers. It was also claimed that the same results of extraction were obtained for
N = , , . This fact indicates that the lattice under study is the Bloch lattice.

The frequency region between . and . GHz corresponds to the high losses: Im(n) > . For a
lossless analogue of the structure these frequencies approximately correspond to the edges of the res-
onant stop-band (the dispersion diagram of the lossless analogue of this lattice, i.e., for ε i =  was
calculated in []). Therefore, in the frequency band .–. GHz (see in Figure .) the homog-
enization is not allowed. Outside this frequency region the structure can be homogenized. One can
see that Re(n) is a growing function of frequency, and the causality condition is satisfied at these fre-
quencies. Also, Im(n) >  and Im(Z) >  at all frequencies. Since the time dependence was chosen
as exp(−iωt), the equivalent refraction index and the equivalent characteristic impedance do not
violate the passivity condition.

In Figure .c and d the results of the direct extraction of EMP performed in [] are presented.
We see that both causality and passivity are violated in the equivalent permittivity. Therefore, it is not
only inside the stop-band region where the homogenization is not allowed. The permittivity decreases
versus frequency below the resonance and the sign of the electric losses is wrong everywhere.

In Figure . the analogous results are presented for the lattice of SRRs []. The violation of the
causality and passivity for the extracted permittivity outside the “stop-band region” in this example
is also evident.

If the grid parameters in the lattice are affected by the electromagnetic interaction (i.e., when the
lattice under study is not a Bloch lattice), the directly retrieved equivalent material parameters of
a finite-thickness slab are not Ewald–Bloch parameters. In this case these material parameters are
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FIGURE . (a) Refraction index of the array of cylinders extracted directly from simulations of the reflection and
transmission coefficients of a slab comprising N =  monolayers of ceramic cylinders. (b) Equivalent characteristic
impedance Z extracted from the same simulations. (c) Permeability directly extracted from the same simulations. (d)
Permittivity extracted from the same simulations. All curves repeat corresponding plots from []. Solid lines—real
part of material parameters, dashed lines—imaginary parts.

senseless. Being nonlocal they wrongly describe the medium electromagnetic response. Being differ-
ent for different N (there is no explicit dependence of these parameters on N), they cannot be used
for prediction of R and T coefficients. Using these equivalent material parameters one can calculate
only the same R and T from which these material parameters were extracted. The equivalent refrac-
tion index and the impedance extracted for finite-thickness non-Bloch lattices violate the causality
and passivity, because they are not equal to the refraction index and Bloch impedance of the infinite
lattice. The corresponding material parameters have more bizarre frequency behavior than that of the
Ewald–Bloch EMP, see e.g., [–]. Readers can observe a typical example of extracted “refraction
index” and “material parameters” of a non-Bloch layer with N =  and N =  in Figure ..

11.6 How to Distinguish Bloch Lattices?

The easiest way to understand which lattices are Bloch lattices is to compare the dispersion equation
derived in the theory of electromagnetic interaction of p–m lattices [,] and the dispersion
equation of the PLTL with shunt Y and series Z loads, assuming them to be equal Y and Z,
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FIGURE . (a) Refraction index of the array of optical SRRs extracted from exact numerical simulations of the
reflection and transmission coefficients of a slab comprising N =  or N =  monolayers of paired SRR. (b) Impedance
Z extracted from the same simulations. (c) Permeability extracted from the same simulations. (d) Permittivity extracted
from the same simulations. All curves reproduce corresponding plots from []. Solid lines—real part of material
parameters, dashed lines—imaginary parts.

respectively. The idea of an equivalent PLTL is illustrated by Figure ., which corresponds to two
possible designs of the p–m lattice when the same crystal plane contains both p and m dipoles. These
two designs are presented in Figure .a and b. Scatterers are depicted as spheres schematically. The
MTM based on magneto-dielectric spheres as in Figure .a were studied in [] and the MTM
based on paired dielectric spheres of different radius as in Figure .b were studied in [].

The dispersion equation of the electromagnetic theory reads as []

cos qa = cos ka − j sin ka (Y


+ Z


) ±

�
		
YZ


sin qa − sin ka (Y


− Z


)



. (.)

The sign in front of the square root must be picked so as to keep Re q >  for real solutions and
Im q <  for imaginary and complex solutions. The complex solution for lossless lattices is possible
in the resonant stop-band only. It takes the form qa = ±π + jImq. The sign of Imq depends on the
choice of the sign in Equation ..
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FIGURE . N-dependent and nonlocal material parameters extracted in []. Left, the case of a monolayer (N = ).
(a) Refraction index (real part n′ and imaginary part n′′), (b) ε′ = Re(εeff) and μ′ = Re(μeff). Imaginary parts are
not shown. Right, similar plots for N = . The region − nm is not shown. The sign of Im(εeff) is wrong at all
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FIGURE . Presentation of a lattice of electric and magnetic dipoles as a set of crystal planes. (a) Both electric and
magnetic moments are induced in every particle and resonate in the same frequency range. (b) Electric and magnetic
resonant scatterers are different particles but located in the same crystal planes.
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For polarizabilities of electric and magnetic dipole scatterers, the Lorentz dispersion model can be
written in the form (see e.g., in []):

aee =
AeεV

 − ( ω
ωe
)


+ jΓe ω

, amm = μVAmω

ω
m − ω + jΓe ω

, (.)

where normalized resonance amplitudes Ae , Am >  and resonant frequencies ωe,m (electric and
magnetic) can be found for explicit cases numerically or analytically. Dissipative losses that exist in
real structures are neglected in this stage to observe the band structure of the lattice, which is possible
only with a real-valued equation. Therefore, in this stage of the theory, parameters Γe,m describe only
the radiation damping of scatterers. Since no radiation losses exist in regular arrays, Γe,m do not
enter the dispersion equation. Really, after substituting relations (Equation .) into Equation .
the shunt imittance and series reactance of the individual crystal plane take the form of, respectively,
imittance and reactance of lossless parallel circuits:

G = − jY = ωCeff ( − ω
G

ω ) , (.)

X = − jZ =
ωLeff

( − ω

ω
X
)

. (.)

It is easy to derive the dispersion equation of the equivalent PLTL. Following the theory of PLTL
[,] it reads as cos qa = A, where A is the element of the ABCD matrix F determined by the
relation given in Equation .. It is easy to calculate this ABCD matrix as the product of the transfer
matrices of two host transmission lines of length a/ and the transfer matrix of the loading T-circuit:
F = FTLFloadFTL, where

FTL = [
cos(ka/) j η

η
sin(ka/)

− j η
η sin(ka/) cos(ka/) ] , Fload = [

 + Y Z
 Z ( + Y Z

 )
G  + Y Z


] . (.)

After algebraic calculations we obtain

cos qa = cos ka ( + Y Z

) + j


(Y + Z + Y Z


) sin ka. (.)

In the general case the loads Y and Z in Equation . cannot be identified with local admit-
tance and impedance Y, Z in Equation .. However, in the special case when 

√
∣YZ∣ ≪

sin(ka)∣Y − Z∣ the term containing the product YZ in the right-hand side of Equation .
becomes small. Then the right-hand side of the equation is weakly dependent on q. This is the case of
Bloch lattices when Y ≈ Y and Z ≈ Z (one of these values should be very small compared with the
other one). Then solutions of the “p–m-lattice” dispersion Equation . and the “PLTL” dispersion
Equation . are close to one another. Equations . and . perfectly coincide when Y =  (only
magnetic dipoles in the lattice) and when Z =  (only electric dipoles). Here we list possible cases
of Bloch lattices:

• Resonant p-lattices (the magnetic resonance of particles occurs outside the frequency
region under study or is very weak).

• Resonant m-lattices (the electric resonance of particles occurs outside the region under
study or is very weak).

• Some I–m-lattices (lattices formed by long perfectly conducting wires and magnetic
scatterers as in []).
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For the last case the approximation of Bloch lattices is applicable only within the resonance band of
magnetic scatterers (metal split rings) and only when the wave propagates in the plane orthogonal to
wires []. Then the wires are equivalent to inductive shunt loads, which are not resonant and weakly
dependent on frequency. Their interaction with magnetic scatterers influences only the losses [],
and if losses are negligible the structure can be considered as a Bloch lattice []. Notice that in small
particles possessing resonant magnetic and nonresonant electric response (for small D particles it is
quasi-static) the electric susceptibility of the lattice can be simply added to the permittivity εm of host
medium. Therefore, the MTM consisting of wires and SRRs can be considered as a resonant m-lattice
in the modified host dielectric medium.

When p-dipoles and m-dipoles resonate at close frequencies ωe ≈ ωm and the resonance ampli-
tudes are also close to one another (Ae ≈Am), the approximation of the Bloch lattice is hardly
adequate.

11.7 Extraction of Lorentz’s Material Parameters

As already noticed the Lorentz EMP are local material parameters that can be attributed to infinite as
well as to finite lattices if only the homogenization is allowed. They can be extracted from coefficients
R() and T() of a monolayer without involving Drude layers. The idea of this extraction is illustrated
by Figure .. The case when the grid of resonant particles is located in the middle of the host medium
slab is shown, but this is not mandatory, and the approach can be applied for arbitrary distances
from the grid of particles to the surface of the dielectric slab (if we know this distance). Knowing
the parameters k and η of host medium, we can extract the effective loads Y = Y and Z = Z
from R–T coefficients. Knowing parameters G = − jY and X = − jZ and using Equation ., we
can find individual polarizabilities aee and amm of particles. Then one can, for example, apply the
Lorentz–Lorenz formulas, i.e., find EMP in a usual quasi-static way.

Alternatively, after finding G and X we can solve the dispersion equation (Equation .), find the
refraction index of the infinite lattice, and find EMP from formulas relating the Lorentz EMP with
dispersion characteristics of the lattice. These formulas are given in []. The extraction in the present
symmetric geometry of the monolayer is based on Equations . and ., which after the inversion

(G = –jY, X = –jz)

aee amm

ε,μ

R

Z/2 Z/2η0 k0
η k η k

η0
k0Y
T

a

FIGURE . Idea of the extraction of Lorentz material parameters from R−T coefficients for a monolayer.
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of the ABCD matrix FTL gives the following result:

G = 
cos ka

( jηA
η

+ η
C cos(ka/) − ηB sin(ka/)

η


) , (.)

X = 
G

⎛
⎜
⎝

 −
A+ j η(B−C)

η sin ka

cos ka

⎞
⎟
⎠

, (.)

where components of the ABCD matrix A, B, and C are expressed through measured or simulated
R−T coefficients as follows:

A =  ±
√

(R()) + (T()) − 
T()

, B =  + R()

T()
+ A, and C =  − A

B
.

The same idea can be implemented for the case when the grid is located nonsymmetrically with
respect to the center of the host medium slab.

It is possible to extract the Lorentz EMP from R(N) and T(N) for arbitrary N if the composite slab is
a Bloch lattice. The easiest way to do it is to relate the Lorentz (wave) impedance of the homogenized
medium with the Bloch impedance ZB of the lattice. This was done in [] for the case when the host
medium is free space εm = . The formulas for the case when εm ≠  take the form []

εL =
n(n + Z

−
εm)

( + nZ
−
) , μL =

n( + nZ
−
)

(n + Z
−

εm)
, (.)

Z
−
=

ZB − j η
η

tan ( ka
 )

 − jZB
η
η

tan ( ka
 )

. (.)

Here n = q/k and Zc = ZB are results of the direct extraction defined by formulas (Equations .
and .).

Equations . and . allow us to use graphic data presented in Figure . to calculate the
Lorentz EMP for the array of oxide ceramic cylinders shown in Figure .. Using similar data
presented in Figure ., we can do the same for the lattice of SRRs. The results are presented in
Figures . and ..

In both these examples the result of the extraction of Lorentz’s EMP satisfies the locality require-
ments outside the “stop-band regions.” However, we should not attribute any physical meaning to
EMP extracted at the “stop-band” frequencies where the homogenization is not allowed. There is no
physical reason for a strong electric resonance in the lattice of cylinders at  GHz. And we can see in
Figure .b that the frequency behavior of εL below the lower edge of the “stop-band” (. GHz) is
quasi-static. The frequency variation of the extracted permittivity at .–. GHz is probably due to
the spatial dispersion appearing in the lattice from this frequency range.

For the lattice of SRRs we can observe in Figure . the resonance of the extracted local permittiv-
ity. It grows versus frequency below the resonant “stop-band” where the homogenization is definitely
allowed. The resonance of the permittivity of SRRs holds in the same frequency range as that of the
permeability. And it must be for SRRs of coplanar design [,]. The assertion in [] and [] that the
resonance of these SRRs is purely magnetic was never argued about in the literature. In fact the lattice
of such SRRs is the p–m lattice, and the approximation of Bloch lattices is not completely adequate
for it. However, in [] and [] it was claimed that the extracted material parameters turned out to be
almost the same for N =  and for N = . This probably means that the approximation of the Bloch
lattice holds with acceptable accuracy. We can observe in Figure . that the electric resonance is
twice as weaker as the magnetic one. This can be enough to neglect the influence of p-dipoles on the
dispersion and to consider this lattice as a Bloch lattice, too.
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FIGURE . (a) Lorentz permeability extracted for the array of cylinders. (b) Lorentz permittivity extracted for the
array of cylinders. Solid lines—real part of material parameters, dashed lines—imaginary parts.

11.8 Discussion

The use of the Lorentz EMP requires involving transition layers to calculate R and T coefficients
of slabs. However, these EMP as well as parameters of the transition layer do not depend on the
propagation direction. Once calculated we can apply them in the reflection problem for arbitrary
angles of incidence, for wave packages, and even for real sources positioned outside the composite
slab [].

The practical importance of material parameters extracted directly using Equations . and .
is much smaller. Being introduced through the refraction index and the Bloch impedance of semi-
infinite crystal, the Ewald–Bloch EMP give the correct value for R of a semi-infinite crystal without

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

On the Extraction of Local Material Parameters 11-17

6

4

2

0

–2
60

(a) (b)
70 80 90

Frequency, THz

μ r
L

Stop-band

60 70 80 90
0

1

2

3

Frequency, THz

Stop-band

ε rL

FIGURE . (a) Lorentz permeability extracted for the array of SRRs. (b) Lorentz permittivity extracted for the
array of SRRs. Solid lines—real part of material parameters, dashed lines—imaginary parts.

transition layers.∗ If the lattice under study can be approximated as a Bloch lattice, these parameters
also describe the reflection and transmission of the normally incident plane wave in a finite-thickness
lattice without involving transition layers. However, this is the only advantage of these material
parameters. These parameters are simple numbers and do not offer information on the eigenmodes
excited in the finite lattice. They can be, probably, introduced also for the oblique incidence but will
be definitely different for different angles of incidence.

The main restriction for the Ewald–Bloch EMP is that they are absolutely not applicable for
evanescent waves and for any package of plane waves. If we assume that the Ewald–Bloch material
parameters allow us to find the reflection coefficients for evanescent waves, we will come to the arti-
fact of perpetuum mobile. One of material parameters extracted in works [–] (see also Figures .,
.) has the imaginary part of the wrong sign.† Assume that we impinge the structure with negative
electric losses Im(ε) >  for time dependence exp( jωt) (or Im(ε) <  for exp(− jωt)) by evanescent
waves, for example, by the near field of an electric antenna or simply putting the sample into a capaci-
tor excited by alternating voltage at the frequency when the sign of the permittivity is wrong. Since the
electric field in this case strongly dominates over the magnetic one, the wrong sign of Im(εeff)means
the generation of the electric energy. The same artifact holds for packages of propagating waves. If we
put the sample with negative electric losses into a resonator where the maximum of the electric field
and the zero of the magnetic field hold at the same point, the electric energy will be also “generated.”

One has to conclude that EMP directly extracted using formulas (Equations . and .) cannot
be applied in boundary problems with evanescent waves and plane-wave packages even for Bloch lat-
tices. Recall that the effect of subwavelength imaging in doubly negative (left-handed) media is related
with evanescent waves []. It is therefore impossible to design the Pendry superlens [] using the
directly retrieved material parameters. If we want to design the Pendry’s perfect lens we must engineer
EMP that would be meaningful for the evanescent spatial spectrum. The Lorentz material parameters

∗ In fact, this is the approximation in which we neglect the so-called polaritons [–]. If the influence of polaritons is
not negligible, the Ewald–Bloch EMP give an error for R as well.
† The anomalous sign of the imaginary part for one of the EMP does not lead to a trouble if and only if we deal with an only
propagating plane wave. Then the losses are determined by the product of Ewald–Bloch parameters εeff μeff = (q/k) = n,
and this product is correct.
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are meaningful in this case. Another evident conclusion is as follows: in order to design the superlens
based on left-handed media one has to generalize the theory [] taking into account the influence
of Drude transition layers.

The same concerns boundary problems with packages of plane waves. To design the so-called
Engheta resonator []∗ we have to engineer doubly negative Lorentz EMP and take into account
the transition layers.
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12.1 Introduction

This chapter aims to provide a simple framework for field representation in infinite periodic struc-
tures that are excited by a single (nonperiodic) source. This chapter thus complements well the other
chapters in this book, since most artificial materials are periodic. For simplicity and for the sake of
brevity, we deal with the most common case of a structure that is periodic in two directions and com-
posed of one or more layered arrays of three-dimensional (D) elements. The case of D periodicity

12-1
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or the case of two-dimensional (D) or D elements with one-dimensional (D) periodicity is an
extension of what is treated here.

The use of periodic artificial materials (PAMs) has been investigated for antennas, microwave
devices [–], and many other applications in the optical regime. Examples include the creation
of artificial magnetism [–] and superlens devices (see Part I of Applications of Metamaterials),
as well as electromagnetic bandgap (EBG) materials that are used to suppress surface-wave propa-
gation [–]. A periodic wire medium has also been used as an artificial dielectric [–]. In other
applications, a PAM has been used to create an artificial magnetic conductor (AMC) (see [–] and
references therein), and placing an antenna near the AMC has been used to create low-profile anten-
nas [,]. Also, it has been demonstrated that a PAM can be used to create directed beams [–].
Enhanced directivity has been related to leaky-wave excitation, whereby a periodic leaky-wave
antenna is created, which is periodic and is excited by a simple source such as a dipole or line source
within the periodic structure [–]. Other applications of PAMs at microwave and optical frequen-
cies can be seen in most of the chapters of this handbook, and we suggest the reader to look at these
and their reference lists for completeness.

We aim at keeping this chapter as general as possible, so that the fundamental principles discussed
here can be applied to any problem involving the field due to a single (nonperiodic) source in the
presence of an infinite D PAM (including structures composed of metal or dielectric elements).
Some of the related numerical implementation issues are also discussed. Although the general case of
a skewed lattice could be treated, the discussion is limited here to a rectangular lattice with periods a
and b along the x- and y-axes, respectively. A typical periodic structure (with a metallic cross element
in the unit cell) is shown in Figure ., which presents the dipole source location r = (x, y, z)
and the observation point r = (x , y, z).

The discussion of field representations provided here has two purposes: to provide an efficient
numerical scheme for the field calculation and to gain physical insight into the field species in a PAM
excited by a source. Accordingly, we first review how the field produced by a dipole source in the
presence of an infinite PAM may be calculated by a direct plane-wave expansion method. Although
this method is well known and (as shown here) is not the most efficient method, it is useful as a
benchmark for comparison.

We also review the array scanning method (ASM) for calculating the field due to a single dipole
source near an infinite PAM. This method has been introduced previously and used in the analysis of

y

x

b

a

r

r0

FIGURE . D periodic structure made of a rectangular lattice of scatterers with a dipole source at r and an
observation point at r. (From Capolino, F., Jackson, D.R., Wilton, D.R., and Felsen, L.B., IEEE Trans. Antennas Propag.,
(), , June . With permission.)
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phased arrays [–] and also successively used in the context of EBG materials and metamaterials
[–]. The method has also been discussed recently in the context of analyzing the fields and their
properties near D or D PAM structures [–]. The ASM has been used in various applications in
recent years [–].

In the ASM method, the PAM (supposed here to be D periodic) is excited by an infinite periodic
array of dipole sources that have the same period as the PAM and which are phased with variable
transverse wave numbers (kx , ky). An integration in (kx , ky) (i.e., scanning the phased dipole array)
over the Brillouin region, −π/a < kx < π/a and −π/b < ky < π/b, recovers the field produced by the
single dipole source near the infinite PAM.

In addition to providing a very efficient method for calculating the field of a dipole source near a
PAM, it is shown how the ASM may be used to efficiently calculate the Fourier transform of the field
at any aperture plane of interest. This is useful for performing asymptotic analysis, since such analyses
often start with the assumption that the relevant integrals that describe the field are in the form of
an inverse transform integral (i.e., a spectral-domain representation). Having the field expressed in
this form is also useful for complex path deformations to identify the types of wave phenomena that
are present and to determine the launching amplitude of surface and leaky waves. The ASM provides
a more efficient calculation of the transform of the field than does the direct plane-wave expansion
method or an alternative reciprocity-based method [].

An understanding of the nature of the kx and ky planes in the ASM is important for an asymptotic
evaluation of the field along the interface of the PAM. It is shown that, due to the periodic nature
of the problem, there is an infinite periodic set of branch-point loci. Furthermore, there is also an
infinite set of periodic pole loci that lead to surface and leaky waves. A discussion of these issues is
given so that the numerical aspects in the implementation of the ASM can be understood.

Based on the discussion of the important singular points in the wave number plane, an asymptotic
description of the field near the PAM boundary excited by a single dipole source is given for large
source-observer distances. The field is composed of a spatial wave, similar to the field excited by
the source without the PAM, plus modal field contributions that can be bound or leaky (radiating)
modes. The modal field terms have either forward or backward propagation.

In this chapter, a time-harmonic variation exp( jωt) is assumed, unless otherwise stated (as in the
sections dealing with time-domain field expansions). If f (r) is a time-harmonic field value relative
to exp( jωt), the corresponding field value relative to exp(−iωt) is f ∗(r), where “∗” denotes phase
conjugation.

12.2 Quasiperiodic Fields in Periodic Structures

The standard Floquet (space harmonic) representation of the field in a PAM is briefly summa-
rized here, and this serves as a background for the succeeding sections. For simplicity, we consider
only the case of a PAM that is periodic in D; the D and D cases are analogous. Consider the
problem illustrated in Figure . where the PAM is periodic along the two directions x and y,
with periods a and b, respectively, and layered along the z-direction (i.e., there may be multiple
layers of the periodic elements). We start by assuming that a field is present in the PAM, either
excited by an incident plane wave or due to a guided mode on the structure. The electric field E
is “quasiperiodic,” which means that it is periodic except for an interelement phase shift, so that
E(r+ ax̂+ bŷ, kt) = E(r, kt)e− j(kx a+k y b), where r = xx̂+ yŷ+ zẑ is an arbitrary observation position.
(Here and in the following, boldface symbols are used to identify vector quantities and the caret “∧”
identifies unit vectors.) The terms kx and ky are the propagation wave numbers along the x- and
y-directions, and these constitute the transverse wave number vector kt as

kt = kx x̂ + ky ŷ. (.)
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It is easy to recognize that Ep(r, kt) ≡ E(r, kt)e j(kx x+k y y) is periodic along the x- and y-directions,
with periods a and b, respectively, and thus can be represented in terms of a Fourier series expansion.
Accordingly, the electric field E at any position is represented in terms of a superposition of “Floquet
spatial harmonics” as

E (r, kt) =
∞

∑
p=−∞

∞

∑
q=−∞

e− j(kx p x+k yq y)epq (z, kt) , (.)

where

kx p = kx + Fx p , Fx p =
πp

a
(.)

kyq = ky + Fyq , Fyq =
πq

b
. (.)

The terms kx p , kyq are the Floquet wave numbers, and epq (z, kt) is the amplitude of the pqth
harmonic that accounts for all the z-variation of the field. Analogous expressions hold for the
magnetic field and also for the potential fields. Usually, by convention, the transverse wavevector
kt = x̂kx + ŷky corresponds to the transverse wave number of the incident field.

12.3 Field Produced by a Single Source in the Presence of a
Periodic Medium: Standard Plane-Wave Expansion

The case of a PAM excited by a single dipole source, as shown in Figure ., is important for many
applications, and it provides physical insight into wave propagation in source-excited PAMs. The
PAM structure in Figure . is periodic along x and y, with periods a and b, respectively. The struc-
ture may also be periodic along z, truncated after a finite number of layers, thereby constituting a
slab of artificial material. In this case, the term “supercell” is used to denote a unit cell in the x-
and y-directions (which contains multiple conductors spaced along z). For simplicity, we treat here
only the case of electric dipole excitation. The impressed unit-amplitude electric dipole source at
r = xx̂ + yŷ + zẑ is represented by the direction vector p̂ (which may be x̂, ŷ, ẑ, or any other
direction), with units [Cm]. Mathematically, the dipole moment polarization density is represented as

Pi(r′) = p̂δ (r′ − r) , (.)

where δ(r′ − r) = δ(x′ − x)δ(y′ − y)δ(z′ − z).
In [], we have considered the analogous case of an electric current density excitation J [A/m]

that is related to the one in this chapter by the equivalence J = jωP with P [C/m], the volume dipole
polarization density.

In what follows, we represent a general observation point (which may be located in the (m, n)th
unit cell) as r +max̂ + nbŷ, where r is assumed to lie within the (,)th unit cell.

12.3.1 Calculation of the Field

The field in free space at r radiated by a single unit-amplitude dipole source at r without the pres-
ence of PAM is denoted by Einc(r, r), and it can be represented in terms of a standard plane-wave
superposition as

Einc (r, r) =
− j

π

∞�
−∞

∞�
−∞


kz

G (kt) ⋅ p̂e− j[kx(x−x)+k y(y−y)+kz ∣z−z ∣]dkx dky , (.)

G (kt) =

ε
[kI − kk] , (.)
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where k = kx x̂+ ky ŷ± kz ẑ, kz = (k − k
x − k

y)/, and kt = kx x̂+ ky ŷ is the transverse part of k. The
term I is the identity dyad. The square root that defines kz is chosen such that Im kz ≤ . For lossless
media kz can also be real, in which case the choice is Re kz ≥ . The plus (minus) sign is used when
the observation point is above (below) the source point. (We note here for the benefit of the readers
that in [, (–)] there are three sign errors.)

Assuming, for simplicity, that the dipole source is above the periodic structure, the incident field
from the dipole source that illuminates the periodic structure is a continuum of plane waves of
the form

EPW
inc (r, r, kt) = êinc (kt)Winc (kt , r) e− j[kx x+k y y−kz z] , (.)

with
Winc (kt , r) =

− j
π


kz

êinc ⋅G (kt) ⋅ p̂e j[kx x+k y y−kz z] . (.)

Each incident plane wave in the spectrum is polarized in a direction êinc (kt) = G (kt) ⋅ p̂/
∣G (kt) ⋅ p̂∣. The total field due to a unit-amplitude incident plane wave E

PW
inc (r, kt) = êinc(kt)

e− j[kx x+k y y−kz z] with transverse wave number kt is denoted as E
PW
tot (r, kt). (A bar over a quantity

is used here to signify that the quantity is either a unit-amplitude incident plane wave or is produced
by such an incident wave.) Similarly, the scattered field due to a unit-amplitude incident plane wave
is denoted as E

PW
sca (r, kt).

The scattered E
PW
sca (r, kt) or total E

PW
tot (r, kt) electric fields produced by a unit-amplitude incident

plane wave E
PW
inc (r, kt)may be found by using a full-wave method within the (m,n) = (, ) super-

cell. Several methods could be used, such as the method of moments (MoM) [,], the FDTD
method [,], or other techniques. Once a numerical procedure is applied, suppose that the dipole
moment density P

PW
D (r′ , kt) is found on the domain D comprising the scattering elements within

the (m, n) = (, ) supercell. The field scattered by the PAM is then given as (for isolated dipoles, the
integral should be replaced by a sum)

E
PW
sca (r, kt) =

�
D

G∞ (r, r′ , kt) ⋅ P
PW
D (r′ , kt)dr′ . (.)

The free-space periodic Green’s function is

G∞ (r, r′ , kt)=


 jab

∞

∑
p=−∞

∞

∑
q=−∞

e− j(kx p x+k yq y) 
kz pq

G (kt , pq) e+ j(kx p x′+k yq y′−kz pq ∣z−z′∣), (.)

where the dyad G(kt , pq) is given by Equation . with kt = kt , pq and the wavevector for each Floquet
wave is kpq = kx px̂ + kyq ŷ + kz pq ẑ, with a transverse wavevector

kt , pq = kx px̂ + kyq ŷ. (.)

The longitudinal Floquet wave number along z is

kz pq =
√

k − k
x p − k

yq , (.)

where k is the free-space wave number. We chose a representation that exhibits the singularity /kz pq
explicitly in Equation .. Branch points are defined by k

x p + k
yq = k, corresponding to kz pq = ,

and hence the branch-point singularity is evident in Equation ..
The scattered field E

PW
sca (r, kt) radiated by the scattering structure when illuminated by a unit-

amplitude incident plane wave can be expressed as a Floquet expansion as in Equation .:

E
PW
sca (r, kt) =

∞

∑
p=−∞

∞

∑
q=−∞

e− j(kx p x+k yq y)ePW
sca, pq (z, kt) , (.)
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where the terms

ePW
sca, pq (z, kt) =

− j
ab


kz pq

G (kt , pq) ⋅
�
D

P
PW
D (r′ , kt)e+ j[kx p x′+k yq y′−∣z−z′∣kz pq]dr′ (.)

are found by substituting Equation . in Equation .. Note that Equation . represents the
Floquet wave expansion of the scattered field. The term ePW

sca, pq physically represents the amplitude of
the (p, q)th Floquet mode scattered by the PAM due to a unit-amplitude incident plane wave.

The Floquet wave numbers kx p and kyq are given in Equations . and ., and the expression
ePW

sca, pq (z, kt) has an infinite set of branch-point loci defined by k
x p + k

yq = k. This is evident from
Equation .. An explicit expression for a PAM composed of perfect conductors may be found
in [] for D-periodic structures, and in [] for D-periodic structures.

The circular pq-branch-point loci in the real kx , ky plane are shown in Figure ..
From superposition, the total field produced by the single dipole source pi(r′) in the PAM envi-

ronment is evaluated by summing all the fields produced by each plane wave in Equation . as the
total field produced is

Etot (r, r) =
∞�
−∞

∞�
−∞

Winc (kt , r) E
PW
tot (r, kt)dkx dky (.)

and similarly for Esca. The total field produced by a unit-amplitude plane wave is found to be
E

PW
tot (r, kt) = E

PW
sca (r, kt) + E

PW
inc (r, kt). Besides the infinite set of branch-point loci, the integrand

in Equation . may also exhibit sets of real or complex poles in the complex kx , ky plane; some of
them represent the physical modes that are excited by the source.

When the total field is evaluated by a numerical analysis, quite a large numerical effort is required
to evaluate the D infinite integral in Equation . and the D infinite sum in Equation .. A
more efficient method for calculating the scattered field, using the ASM, is discussed in Section ..

Re ky

Re kx

π/b

π/a

2π/a

2π/b
–π/a

k

k

–k

–k

k + Fy,1

–k + Fy,1

+

FIGURE . Periodic branch-point locus in the plane Re kx , Re ky . The area contained within the dashed line
represents the Brillouin zone, which is used in the ASM. (From Capolino, F., Jackson, D.R., Wilton, D.R., and Felsen,
L.B., IEEE Trans. Antennas Propag., (), , June . With permission.)
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12.3.2 Calculation of the Fourier Transform of the Field

The total field in Equation . may be put in terms of an inverse Fourier transform integral by
“collecting the spectrum.” That is, all of the plane waves that have a wave number kt are summed
together, as shown in [], which results in the following expression for the inverse Fourier transform:

Etot(r, r) =


π

∞�
−∞

∞�
−∞

e− j(kx x+k y y) Ẽtot (z, r , kt)dkx dky , (.)

where
Ẽtot (z, r, kt) = π

∞

∑
p=−∞

∞

∑
q=−∞

Winc (kt , pq , r) ePW
tot,(−p)(−q) (z, kt , pq) (.)

is the Fourier transform of the field at a specified z. The integrand term Ẽtot has an infinite set
of branch-point loci such that k

x p + k
yq = k, seen from the definition of the Winc function in

Equation . (see [] for more details).
It is numerically intensive to compute the Fourier transform of the field at any z-value via Equa-

tion ., since it requires the numerical solution of an infinite number of scattering problems
involving an incident plane wave (i.e., an infinite number of incidence angles corresponding to wave
numbers kt , pq). In Section ., a more efficient method for obtaining the Fourier transform using
the ASM is presented.

12.4 Field Produced by a Single Source in the Presence of a
Periodic Medium: The Array Scanning Method

Before representing the field via the ASM [–], we show how the single dipole source Pi(r′) in
Equation ., oriented along the direction p̂, can be synthesized using this technique, that is, by
synthesizing the single dipole source from a superposition of infinite phased arrays of identical point
sources located at rmn = r +max̂ + nbŷ, as shown in Figure .. In mathematical terms, the single
dipole can be obtained by integrating over the Brillouin zone, shown in Figure .:

pi (r′) = ab
(π)

π/a�
−π/a

π/b�
−π/b

pi ,∞ (r′ , kt)dkx dky . (.)

The phased array of dipole sources, with a phase-gradient kt , is represented mathematically as

pi ,∞ (r′ , kt) = p̂

∞

∑
m=−∞

∞

∑
n=−∞

δ (r′ − rmn) e− j(kx ma+k y nb) . (.)

The wave numbers kx and ky are the phasing gradients along the x- and y-directions, respectively.
Physically, Equation . represents the fact that when the phased-array currents pi ,∞ (r′ , kt) are
integrated in kt over the Brillouin zone, all of the dipoles located at rmn in the phased array integrate
to zero except the one that is located at (m,n) = (, ). This follows from the fact that an integral of
an exponential function of the form exp ( jkx ma) over the interval (−π/a, π/a) is zero unless m = .

Since the ASM representation in Equations . and . is valid for the dipole source, in a linear
PAM environment, the ASM is able to represent also the field produced by such a source. Accordingly,
we write

Etot(r, r) =
ab
(π)

π/a�
−π/a

π/b�
−π/b

E∞tot(r, r, kt)dkx dky . (.)
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FIGURE . Left, Periodic structure excited by an infinite array of phased dipole sources at locations rmn = r +
max̂+ nbŷ. The original dipole source is located at r. Right, The ASM integration over the Brillouin zone synthesizes
the single dipole source. (From Capolino, F., Jackson, D.R., and Wilton, D.R., IEEE Trans. Antennas Propag., (), ,
Jan. ; Capolino, F., Jackson, D.R., Wilton, D.R., and Felsen, L.B., IEEE Trans. Antennas Propag., (), , June
. With permission.)

More generally, we have

E(r, r) =
ab
(π)

π/a�
−π/a

π/b�
−π/b

E∞(r, r, kt)dkx dky , (.)

where E(r, r) denotes either Einc(r, r), Esca(r, r), or Etot(r, r) produced by the dipole source
at r. Any field E(r, r) is thus obtained by the spectral integration over the Brillouin zone of
E∞(r, r, kt), which denotes either the incident field E∞inc (r, r, kt), the scattered field E∞sca (r, r, kt),
or the total field E∞tot (r, r, kt) produced by the periodic phased array of sources pi ,∞ (r′ , kt).

The incident field generated by pi ,∞ (r′ , kt) is represented as E∞inc (r, r, kt) = G∞ (r, r, kt) ⋅ p̂,
where the periodic dyadic Green’s function G∞ (r, r, kt) is given in Equation .. The incident field
is thus rewritten as

E∞inc (r, r, kt) =
∞

∑
p=−∞

∞

∑
q=−∞

e− j(kx p x+k yq y)e∞inc, pq (z, r, kt) , (.)

with
e∞inc, pq (z, r, kt) =


 jab


kz pq

G (kt , pq) ⋅ p̂ e+ j(kx p x+k yq y−kz pq ∣z−z ∣), (.)

where the dyad G (kt , pq) is found from Equation .. The incident field representation exhibits an
infinite set of (pq)-indexed branch-point loci in the (kx , ky) plane defined by the equation k

x p+k
yq =

k. The scattered field can then be represented as a sum of scattered Floquet waves as
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E∞sca (r, r, kt) =
∞

∑
p=−∞

∞

∑
q=−∞

e− j(kx p x+k yq y)e∞sca, pq (z, r, kt) , (.)

where

e∞sca, pq (z, r, kt , pq) =


 jab


kz pq
G (kt , pq) ⋅

�
D

P∞D (r′ , r, kt)e+ j[kx p x′+k yq y′−∣z−z′∣kz pq]dr′ , (.)

and P∞D (r′ , r, kt) is the dipole moment density on the scatterer domain D within the (,) supercell,
when excited by the infinite phased array of dipoles. This dipole moment density may be obtained, for
example, from a numerical solution of the electric field integral equation on the (,) supercell using
a periodic moment-method code. The dipole moment density P∞D (r′ , r , kt) is a periodic function
of the spectral variable kt , with periods π/a and π/b in kx and ky , respectively, since the phased
array of dipole sources is periodic in kx and ky .

The field E∞tot (r, r, kt) = E∞inc (r, r, kt)+E∞sca (r, r, kt)may be conveniently represented as a sum
of Floquet waves, as

E∞tot (r, r, kt) =
∞

∑
p=−∞

∞

∑
q=−∞

e− j(kx p x+k yq y)e∞tot, pq (z, r , kt) , (.)

where
e∞tot, pq (z, r, kt) = e∞inc, pq (z, r, kt)+e∞sca, pq (z, r , kt) . (.)

The integrands E∞inc(r, r, kt), E∞sca(r, r, kt), and E∞tot(r, r, kt) in Equation . are periodic func-
tions of kx and ky with periods π/a and π/b, respectively. The singularities of the integrands, given
by Equations ., ., and ., are discussed in Section .; they are important to know for
proper numerical treatment of the integral in Equation .. (See [] for more details and [,]
for a similar problem with D periodicity.)

12.4.1 Fourier Transform of Aperture Field via the Array Scanning Method

It is possible to “unfold” the integration path from the Brillouin zone shown in Figure . to the entire
(kx , ky) plane. Doing so allows for a convenient identification and calculation of the Fourier trans-
form of the field at any fixed height z. The path unfolding is done by first substituting Equation .
in Equation . and then recalling that the term P∞D (r′ , r, kt), appearing in the expression for
e∞sca, pq (z, r, kt) in Equation ., is periodic in kx and ky . The shift of variables kx + Fx p → kx and
ky + Fyq → ky is applied for every (p, q) term of the sum, leading to

Etot(r, r) =
ab
(π)

∞�
−∞

∞�
−∞

e− j(kx x+k y y)e∞tot, (z, r, kt)dkx dky , (.)

where e∞tot, (z, r , kt) is calculated using Equation . along with Equations . and . and the
supercell dipole moment density P∞D (r′ , r , kt). By comparing Equation . with Equation .,
the Fourier transform of the total field is identified as

Ẽtot (z, r, kt) = ab e∞tot, (z, r, kt) . (.)

Equation . indicates that the Fourier transform of the aperture field is (within the constant ab)
the same as the amplitude of the (,) Floquet wave radiated by the PAM, when it is excited by the
phased array of dipole sources. It is straightforward to extract the amplitude of this fundamental
Floquet wave from a periodic moment-method solution, when a phased array of dipole sources is
used as the excitation.
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The same derivation holds for the incident and scattered fields, and in general

E(r, r) =
ab
(π)

∞�
−∞

∞�
−∞

e− j(kx x+k y y)e∞ (z, r, kt)dkx dky , (.)

where,
E(r, r) denotes either Einc(r, r), Esca(r, r), or Etot(r, r)
e∞(z, r , kt) denotes the field of the (,) Floquet wave for the incident, scattered, or

total field in the phased-array problem, denoted as e∞inc,(z, r, kt), e∞sca,(z, r , kt), or
e∞tot,(z, r, kt), respectively

12.4.2 Numerical Considerations

Various considerations arise when performing the numerical integration (Equation .) over the
Brillouin zone, depending on the integration rule used and the spectral singular points. Both branch-
point and pole singularities may be encountered. Branch points occur in the complex transverse
wave number kt plane at k

t = kt ⋅ kt = k
x + k

y = k. This gives rise to a periodic set of branch-
point circles in the (kx , ky) plane, as shown in Figure .. The circular branch-point loci in the
principal Brillouin zone are highlighted in Figure .. Following what has been reported in [,
], in Figure ., we summarize the behavior of the singularity that is present in the various field
terms (incident, scattered, and total) when the spectral wave numbers approach the branch-point
circle. One should note that the integrands (Equations . and .) for the incident and scattered
fields have a strong singularity on the branch-point circle at k

x + k
y = k, due to the kz , pq term

in the denominator of Equations . and .. The total field, being the sum of the two, as in
Equation ., also has a branch-point singularity but of a lower order, with the integrand remaining
finite at the singularity. The behaviors are shown in Figure .. The branch-point contribution to
the fields is called the “space-wave contribution” and is discussed in more detail later. As shown in
Section . and in the numerical results in Section ., the less singular behavior of the integrand
for the total field results in a faster rate of decay in the total space-wave field Esp

tot(r, r) compared
with the scattered space-wave field Esp

sca (r, r), as the horizontal radial distance ρ from the source

kx

ky
E∞

tot (r, r0, kt)     A+B A + B

k

Branch-point
singularity

Branch-point
singularity

–π/a π/a

–π/b

π/b

k2 – (kt . kt)
k2 – (kt . kt)

E∞
sca (r, r0, kt)

E∞
inc (r, r0, kt)

FIGURE . The Brillouin zone in the (kx , ky) plane, showing the branch-point circle that lies within this region.
The type of singularities present in the integrand of Equation . is shown for the calculation of the incident, scattered,
and total fields. Note that for observation points near the PAM boundary, the integrand for the total field calculation
is less singular than that for the scattered field.
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increases for a fixed value of z. In particular, as ρ = ∣ρ∣ → ∞, with ρ the transverse (in the x–y plane)
component of the vector r − r, the main singular terms in Equations . and . cancel out so
that the total space-wave field has a faster asymptotic rate of decay, behaving as /ρ instead of /ρ.
(There may also be guided waves present that are excited by the source; these are discussed later.)

When losses are present in the ambient (host) medium, the branch points in the complex kt plane
move from the real axes into the complex plane, and the numerical integration is easier in this case
because of a smoother integrand in Equation ..

In some applications, such as the superlens (see the book Applications of Metamaterials) or for
waveguides, a pole singularity may exist very near the real axis, posing a challenge for the numerical
integration. In this case, a path deformation in both variables is suggested, leading to the results
in [].

In general, various integration schemes can be used to numerically evaluate Equation .,
including integration path deformation in one or both variables. Here we mention that because the
integrand in Equation . is a periodic function, the trapezoidal rule is advantageous [] and
there is no particular advantage in using Gauss–Legendre rules, as demonstrated in [] through a
few simple numerical examples.

Recognizing that the trapezoidal rule is coincident with the “midpoint rectangle” integration rule
for periodic functions leads to an interesting physical interpretation of the error in the numerical
integration. Using this rule of integration, the integrand is sampled at the points

kx = ξp ≡ −
π
a
+ π

aP
(p − 


) , (.)

ky = ηq ≡ −
π
b
+ π

bQ
(q − 


) , (.)

with p = , . . . , P and q = , . . . , Q, that is, at the center of each of the (P, Q) intervals. It can be shown
that the error in approximating the field at a location r due to a dipole source at r, introduced via the
numerical integration with a finite number of sample points P and Q in kx and ky , is equivalent to
summing the field produced by an infinite number of dipole source “images” located at r +mPax̂+
nQbŷ for m, n = ±,± . . . . The numerical approximation of the integral is thus satisfactory when
the nearest images (those with m = ±, n = ±) are located sufficiently far away from the observation
point, that is, P and Q are large enough to result in a large spatial field decay from the nearest images
(Figure .). For a lossy host medium, there is exponential decay of the fields from the images, and
hence, P and Q need not be as large as in the lossless case.

As shown later in Section ., the field excited by a source is composed of the so-called spatial wave
Esp

tot (r, r) plus modal field terms Emode
n (r, r). Spatial waves decrease geometrically away from their

sources, and, therefore, spatial waves from the distant images generally do not contribute much to
the error in the numerical evaluation of Equation .. However, modes excited by their sources (the
images) may decay slowly along the structure; therefore, even distant images may significantly limit
the accuracy of Equation .. This physical picture is consistent with the mathematical fact that for
a lossy medium the branch points are located below the real axis of the (kx , ky) plane, and hence,
no singularities are encountered when integrating over the Brillouin zone of the (kx , ky) plane in
Figure ..

12.5 Relation between the ASM and the Plane-Wave
Superposition Method

The incident field E∞inc(r, r, kt) in Equation ., produced by the infinite phased array of dipoles
Pi ,∞(r′ , kt) in the ASM, can be viewed as a weighted superposition of plane waves. The rela-
tion between the scattered field E∞sca(r, r, kt), produced by pi ,∞(r′ , kt) and the field E

PW
sca (r, kt),
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FIGURE . Physical interpretation of the numerical error in evaluating Equation . when using a midpoint
rectangle rule of integration. For simplicity, we show only the xz plane cut. Due to the numerical integration with a
finite number of sample points, the field at a certain location is the superposition of the field due to the actual source
plus that due to “images” located at distances m(Pa), where P is the total number of spectral points used to perform
the kx integration in Equation ..

produced by a unit-amplitude incident plane wave, may be written as (assuming the dipole to be
above the structure)

E∞sca (r, r, kt) =
∞

∑
p=−∞

∞

∑
q=−∞


 jab

cpq

kz pq
E

PW
sca (r, kt , pq) , (.)

with
cpq = êinc (kt , pq) ⋅G (kt , pq) ⋅ p̂e+ j(kx p x+k yq y−kz pq z) . (.)

Similarly, the current P∞D (r′ , r, kt , pq) on the (,) supercell induced by pi ,∞(r′ , kt) is

P∞D (r, r, kt) =
∞

∑
p=−∞

∞

∑
q=−∞


 jab

cpq

kz pq
P

PW
D (r, kt , pq) . (.)

The scattered field calculated by the ASM may then be cast into the form

Esca (r, r) =
ab
(π)

π/b�
−π/b

π/a�
−π/a


 jab

∞

∑
p=−∞

∞

∑
q=−∞

cpq

kz pq
E

PW
sca (r, kt , pq) dkx dky . (.)

Mathematically, Equation . is equivalent to Equation ., since the integration over the Brillouin
zone of the infinite series of terms is equivalent to a single integration over the entire wave number
plane. More details are in [].

The integrand E∞sca(r, r, kt) in Equation . for the scattered field can, in principle, be calculated
using Equation .. However, doing so requires the solution of an infinite number of plane-wave
scattering problems. A much more efficient method is to directly calculate E∞sca(r, r, kt) by numer-
ically solving the problem of an infinite set of phased dipole sources above the periodic structure.
This numerical solution requires a periodic moment-method analysis, which is essentially no more
numerically intensive than that for a single plane-wave scattering problem.

The advantage of the ASM over the direct plane-wave superposition method is that Equation .
requires a spectral integration that is carried out only over the Brillouin zone, in contrast to Equa-
tion ., which requires an integration over the entire (kx , ky) plane. Furthermore, the ASM
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provides a much more efficient method for calculating the Fourier transform of the field at any
horizontal (constant z) plane of interest, as discussed in the next section. The calculation of the
transform of the field is important for performing asymptotic analysis and for identifying the
launching amplitude of surface and leaky waves.

12.6 Wave Species in Periodic Media: Spatial and Modal Waves

12.6.1 Total Field Representation

We show here that the total field at r excited by a source at r may be represented in terms of two types
of wave “species”: a “spatial wave” that is denoted as Esp

tot(r, r) and modal field terms Emode
n (r, r)

corresponding to guided waves [,]. That is,

Etot(r, r) = ∑
n

Emode
n (r, r) + Esp

tot(r, r). (.)

Although such a mathematical representation always exists, the physical interpretation of the two
types of wave fields is the most direct for observation points that are at least several wavelengths dis-
tant from the source. Equation . is an asymptotic representation of the total field derived from the
Fourier transform representation given in Equation . or (more efficiently) by that given in Equa-
tion .. The asymptotic representation is obtained by the following steps. As shown in Appendix
A, Figure .A.a, the original integration path on the real axis may be deformed around the singular
points in the wave number plane, that is, the branch points and poles, to highlight the space-wave and
modal contributions. The nth modal field Emode

n (r, r) arises from the residue evaluations at the nth
periodic set of poles, in which the residue at each pole location, followed by an asymptotic evaluation,
determines the amplitude of the corresponding Floquet mode contribution to the nth guided mode.

The space-wave field Esp
tot(r, r) arises from the evaluation of the integral around each branch

point in one variable (say kx ) followed by an asymptotic evaluation in the other spectral variable
ky . This involved procedure leads to an expression for both wave species in terms of Floquet spatial
harmonics. The field of a guided mode is represented as

Emode(r, r) =
∞

∑
p ,q=−∞

e− jkmode
t , pq ⋅ρemode

pq (z, kt) , (.)

where

kmode
t , pq = kmode

t + Fx px̂ + Fyq ŷ = kmode
x p x̂ + kmode

yq ŷ, (.)

kmode
x p = βx + Fx p , kmode

yq = βy + Fyq , (.)

and kmode
t = β − jα is the wavevector of the ()th harmonic that may have either real or complex

values, corresponding to a surface-wave type of mode or a leaky type of mode [,]. The final
asymptotic expression for the total spatial field at a point r along or near the interface of the periodic
structure is []

Esp
tot(r, r)


ρ

∞

∑
pq=−∞

e− jksp
t , pq ⋅ρ esp

pq (z, kt) , (.)

where

ksp
t , pq = kρ̂ + Fx px̂ + Fyq ŷ = ksp

x px̂ + ksp
yq ŷ, (.)

ksp
x p = k cos ϕ + Fx p , ksp

yq = k sin ϕ + Fyq , (.)
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y

x

p,q = 0, 0

φ

FIGURE . Wavevectors of the spatial harmonics that reach the observation point. The term (p, q) = (, ) is the
fundamental harmonic with wavevector kρ̂. The other wavevectors are present because of the periodicity.

and ρ = ∣ρ∣, with ρ the transverse (in the x–y plane) component of the vector r−r. Here, it is interest-
ing to note that even if the spatial wave is excited by a localized source, it is still represented in terms
of Floquet harmonics e− jksp

t , pq ⋅ρ with weights esp
pq . It is also interesting to note that all the pq-spatial

harmonics decrease with distance ρ with the same geometrical spreading factor /ρ. In Figure .,
we illustrate the harmonics of the spatial field Esp

tot impinging on the observer at r, produced by a
source at the origin. The arrows represent the directions of the wavefronts. The (p, q) = (, ) term
is the direct contribution that would exist even in a homogenous (nonperiodic) problem such as a
source over a dielectric layer, and the wavevector kρ̂ represents a direct propagation from the source
to the observer. All the other higher-order pq-harmonics are represented as wavefronts impinging
from other directions, produced by the scatterers surrounding the observation point. Locally, the
spatial field at the observation point behaves as a spatial wave propagating along the interface of a
homogeneous interface, with the periodic structure setting up high-order Floquet waves, produced
by the discrete nature of the scattering structure. The group velocity of all of the Floquet waves is in
the radial direction.

The total field
Etot(r, r) = Einc(r, r) + Esca(r, r) (.)

is the superposition of the incident field Einc, the field in the absence of the PAM produced by the
source at r, and of the scattered field Esca, which is the field produced by the PAM (more specif-
ically by the equivalent sources representing the PAM). The asymptotic total field representation
(Equation .) has been obtained via the asymptotic steps, a brief description of which follows
Equation . and is described in Appendix B, applied to the radiation integral (Equation .)
transformed as in Equation .. An analogous treatment could be performed for the scattered field,
also represented in Equation ., which would lead to the following asymptotic representation of
the scattered field:

Esca(r, r) = ∑
n

Emode
n (r, r) + Esp

sca(r, r). (.)
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The modal terms Emode
n in Equations . and . are exactly the same. After insertion of Equation

. into Equation ., and a comparison with Equation ., it is noted that the spatial field Esp
tot

in Equation . is made up of two contributions:

Esp
tot(r, r) = Einc(r, r) + Esp

sca(r, r), (.)

which is the sum of the incident field and the “spatial wave” part of the scattered field Esca. Mathe-
matically, the term Esp

sca arises from the asymptotic evaluation of the branch-point contributions of
the scattered field integrand in Equation .. Away from the source, and for observation points
not close to the interface of the PAM, all three terms Esp

tot , Einc, and Esp
sca decrease as / ∣r − r∣

away from the PAM, just as the fields do in a diffraction problem when the observation point is
located away from a shadow boundary [,]. Near the PAM, but far away from the source, the
/ ∣r − r∣ spreading factors of Einc and Esp

sca cancel out, and the total spatial field Esp
tot decreases as in

Equation . [,,].

12.6.1.1 1D Structure Excited by a Line Source

Although the preceding discussion was focused on a D periodic PAM excited by a dipolar source,
here, we briefly report the field representation when a y-directed line source excites a D periodic
structure of y-invariant scatterers that are periodic in the x-direction (i.e., we are considering a D
problem), as this important case also arises frequently in the excitation of periodic structures. For
this particular case, all the field expressions are analogous to those given previously in this chapter.
The total field representation (Equation .), in which the total field is represented as the sum of
a spatial wave plus modal fields, is still valid. Modal fields still have the expression (Equation .),
with one summation index suppressed. The spatial field for points far away from the source but not
too far from the PAM is now given by the expression []

Esp
tot(r, r)


x/

∞

∑
p=−∞

e− jksp
x p x esp

p (z, kx) . (.)

In this case, the spatial field has a different spreading factor than for the dipole case. Also, the incident
and scattered fields now decrease as /x /.

12.6.2 Leaky and Bound Modes

The modal field Emode(r, r) in Equation . at the observation point can be further classified into
a few cases depending on its complex propagation wave number, which is written as

kmode
t = β − jα, (.)

(when the exp(−iωt) time convention is used, the transverse wave number is defined as kmode
t =

β + iα, and all considerations on the sign of α are maintained.) The guided mode at the observation
point does not need to have the phase and attenuation vectors in the same direction, and in general,
neither one has to be in the radial direction. However, if the PAM acts approximately as a homogenous
material, then kmode

t = β − jα = (β − jα)ρ̂. The pqth Floquet wavevector of the guided mode in
Equation . can be written as

kmode
t , pq = βpq − jα, with βpq = β + Fx px̂ + Fyq ŷ. (.)

The z-directed pqth Floquet wave number is thus

kmode
z , pq =

√
k − (kmode

t , pq ⋅ kmode
t , pq )=βz , pq − jαz , pq . (.)
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TABLE . Properties of Physical Complex Waves, According to
Their Classification

Forward Wave β pq ⋅ α >  Backward Wave β pq ⋅ α < 

Slow wave ∣β pq ∣ > k
αz , pq > 

(proper, bound) ∣β pq ∣ > k
αz , pq > 

(proper, bound)

Fast wave ∣β pq ∣ < k
αz , pq < 

(improper, leaky) ∣β pq ∣ < k
αz , pq > 

(proper, leaky)

Depending on the value of the phase and attenuation constants, we distinguish among a few cases
categorized in Table .. Bound and leaky modes can be forward or backward, depending on whether
the phase vector βpq is in the same or opposite direction as the attenuation vector α, that is, when
βpq ⋅ α >  or βpq ⋅ α < , respectively.

Bound (nonradiating) modes are surface-wave-like modes that do not radiate into the upper
(z > ) and lower (z < ) regions, and, therefore, must have ∣βpq∣ > k for all pq Floquet indices;
their attenuation in the array plane (the transverse xy plane) is dictated only by the losses present in
the materials. For a bound mode on a lossless structure, α = . For a bound mode, all of the Floquet
waves decay exponentially away from the structure, so that αz , pq > .

Leaky modes are modes that radiate power away from the transverse plane containing the peri-
odic structure, because at least one Floquet wave has a phase velocity faster than that of light in the
surrounding medium, that is, ∣βpq∣ < k. In this case, it is important to note that the vertical wavevec-
tor kz , pq may be located on the bottom Riemann sheet of the complex kt plane, which is defined by
the improper (exponentially growing) choice of branch in Equation ., that is, αpq <, so that this
Floquet wave grows exponentially away from the periodic structure for increasing ∣z∣. A leaky mode
with one or more improper Floquet waves may be physical (discussed below). However, in this case,
an asymptotic analysis reveals that its region of existence is limited, and, indeed, we never have a
physical field that grows exponentially as z = ±∞ in a practical problem, where the guiding structure
is excited by a finite source. More details on the asymptotic analysis and the improper nature of leaky
modes can be found in [,–].

When solving for leaky guided modes on a structure, one may find various mathematical solutions,
but depending on the structure and the frequency range, the guided modes may be physical or non-
physical. We define a physical solution as one that can actually be significantly measured when the
structure is excited by an appropriate finite source located in proximity to the structure. The overall
mode is considered to be physical if all of its Floquet waves are physical. Otherwise, if one or more
Floquet waves are nonphysical, the overall mode is considered to be nonphysical.

All bound (surface-wave-like) modes with a real wave number are considered to be physical, but
leaky modes with a complex wave number may be either physical or nonphysical, just as for leaky
modes on D guiding structures (e.g., leaky-wave antennas). In the D case of propagation in the
x-direction on a periodic structure, where kx p = βp − jα, a forward Floquet wave is defined as one
where βp >  whereas a backward wave is one where βp <  (assuming here that α > , so that power
is flowing in the positive x-direction). A forward leaky Floquet wave is physical if it is a fast wave
( < βp < k) and it is improper (αz < ). A backward leaky Floquet wave is physical if it is a fast
wave (−k < βp < ) and it is proper (αz > ).

Extending the above discussion to the case of a D guiding structure such as a PAM, a forward leaky
Floquet wave is defined as one where βpq ⋅ α >  whereas a backward wave is defined by βpq ⋅ α < .
Table . presents a summary of the properties of physical Floquet waves for a leaky mode, depending
on the classification (slow or fast and forward or backward) of the wave, adopted from [].

Mathematically, in a spectral integral representation for the field radiated by a source near a peri-
odic structure, the physical modes are those for which the corresponding poles in the complex plane
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are captured in the path deformation from the original to the steepest descent path, as shown in
appendix. See [,,,,,] for more details.

12.7 Examples of Field Species in a PAM Excited
by a Single Source

Consider an array of scatterers made of perfectly conducting, x-directed, resonant strip dipoles with
length L = .λ and width W = .λ, where λ =  m is the free-space wavelength (corresponding to
a frequency of  MHz). Results for the electric field at any other frequency may be found by divid-
ing the results obtained at  MHz by λ. (Equivalently, the results for the electric field at  MHz
may be conveniently interpreted as being those for the normalized electric field at any arbitrary fre-
quency, where the normalized field is the product of the field and λ and has units of Vm.) In the first
example, for simplicity, the current on the strip dipoles is assumed to be x-directed, and only one
cosine basis function B(x , y) = cos(πx/L) for the x-directed current is used, with x ∈ (−L/, L/)
and y ∈ (−W/, W/). The array is a square lattice with element spacings a = b = .λ. The source
is an elementary x-directed electric dipole with unit amplitude (Il =  Am), which is located at
r = .λx̂ + .λŷ + .λẑ (the origin is at the center of one of the metal strip dipoles). Figure .
shows the magnitude of the total and scattered fields generated by the source, evaluated at locations
r+nbŷ, with n = , , , . . ., calculated via the ASM. The observer location is at r = .λẑ (close to
the metallic dipoles, directly above the dipole center). Both the total and scattered fields have been
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evaluated from Equation ., with the integration performed numerically with the “midpoint rule”
using P = Q =  (see Equations . and .), yielding a total number of P × Q = . × 

spectral sampling points. The large number of sampling points is required since we are observing
the field in lossless free space for large y, up to y = b = λ, and thus the exponential function in
Equation . or in Equation . is rapidly varying with ky , requiring a fine sampling. One should
note that the error in the evaluation of the scattered field is larger than that for the total field, for
the reasons explained in Section .. (the behavior of the integrands near the branch-point circle).
The purpose of Figure . is to show numerically the expected /n decay for the total field and /n
decay for the scattered field. In this example, modal fields are not excited, and the only field species
in Equation . is the spatial field. Furthermore, Figure . demonstrates the effect of the image
sources (explained in Section ..) that are responsible for the oscillations observed for large n (the
nearest image source is in cell n = ). The oscillations in the scattered field are larger than those of
the total field, because the scattered field produced by each image source decays as /D, where D is
the distance from the image source, as opposed to /D for the total field. If the plots were extended
to much larger distances, they would show that the calculated field actually repeats at n = , due
to the image source effect. (The exact field continues to decrease as the distance increases.)

In the second example, the same perfectly conducting dipole in the (,) unit cell is divided into 
rectangular subdomains of length d = .λ, and  rectangular rooftop basis functions are used. The
array is a square lattice with an element spacing that is now a = b = .λ. The source is an elementary
x-directed electric dipole with unit amplitude (I l =  Am) located at r = −.λx̂−.λŷ+.λẑ [the
origin is at the center of the (,) metal strip dipole]. The magnitude of the current I (in amperes)
is calculated on the metal dipoles at a distance d from the left end of each dipole for a free-space
wavelength of λ =  m (the results for the current I at any other frequency may be found by dividing
the results presented here by the corresponding free-space wavelength λ). Results are presented for
the current on dipole (, n) centered at (x , y) = (, nb), where n is varied. In Figure ., the current
is plotted over the first  metal dipoles along the y-direction (n varies from  to ). The field decay
follows the expected behavior /r as seen by the addition of the normalized /n curve. The curve has
noticeable oscillations, which in this case are not due to numerical error (P = Q =  is sufficient to
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guarantee accurate results). Evidently, this is due to interference between the main space wave and a
weaker mode (perhaps a leaky mode) propagating along the PAM interface. The field is also compared
with that obtained using P = Q =  and P = Q = . Using fewer integration points causes a loss of
accuracy away from the source. For P = Q =  points the effect of the nearest “image” source in cell
n =  is clearly visible. The null at n =  is caused by the cancellation of the field produced by the
source and this image.

Other examples of ASM field calculations are given in [,]. There, the field in a D array of plas-
monic nanospheres excited by a single dipole is shown, with the aim of determining subwavelength
resolution and near-field enhancement.

In Figure ., we show results for a D problem (invariant in y), namely, the excitation of an arti-
ficial material EBG slab consisting of three layers of periodic, infinitely long, perfectly conducting
cylinders with a normalized radius of .a in free space, where a is the period of the lattice in the
x- and z-directions. The structure is excited by a unit-amplitude, y-directed electric line source of
current I = A placed over it. The axes of the cylinders in the top row are located at z = . The source
is located at r = .a ẑ. In the MoM calculations, each cylinder has been discretized using  subdo-
main surface pulse basis functions. In Figure ., the operating frequencies correspond to a/λ = .,
., and .. The lowest frequency (a/λ = .) corresponds to the th bandgap ( < a/λ < .)
of the infinite EBG material [], whereas the second frequency (a/λ = .) is at the band edge, and
the third one (a/λ > .) is in the propagation band of the EBG material. The normalized total field
(normalized by multiplying by the period a) is plotted versus the distance from the line source paral-
lel to the EBG interface at points rn = nax̂+aẑ, with n denoting the supercell index. (The normalized
field does not depend on frequency, since dimensions have been specified in terms of wavelength.)
For a/λ = . and ., the total field is dominated by the spatial wave, and it, therefore, decreases as
/n/ (see Equation .) as clearly shown in Figure ., where the reference /n/ curve, properly
normalized, is shown with dots. This demonstrates that no significant modal fields are excited along
the structure. However, at the higher frequency a/λ = . a leaky mode propagates along the inter-
face, as can be seen from the interference between the spatial wave and the leaky wave in Figure .
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FIGURE . Spatial decay of the total field produced by a line source over a D periodic EBG material made of
three periodic layers of infinitely long conducting cylinders. The field is evaluated at points rn = nax̂ + aẑ, where n
denotes the supercell index. The fields match well with a simple /n/ factor (normalized to the exact fields for large n)
for the two lower frequencies. At the higher frequency, the spatial wave interferes with a leaky mode. (From Capolino,
F., Jackson, D.R., and Wilton, D.R., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)
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(the interference subsides for larger distances, due to the exponential decay of the leaky mode). The
presence of a leaky mode has been confirmed by a numerical search in the complex plane of the
zeros of the determinant of the MoM linear system, and it has been found that the wave number of
the leaky-wave pole (corresponding to the pole location in the zeroth Brillouin zone) is approximately
given by β = .k and α = .k.

When PAMs are properly designed, the field along the PAM is dominated by a leaky mode and the
spatial field is much weaker. This property is used to design leaky-wave antennas with very narrow
radiated beams [].

12.8 Conclusions

We have provided the field representation for a single dipole source in the presence of an infinite
periodic material (PAM) that is periodic in two dimensions (x and y) and finite in the third (z)
dimension. This has been done in two different ways: by employing a direct plane-wave expansion
and by using the array scanning method (ASM). In the ASM, a periodic “phased array” of dipole
sources is used to excite the PAM. The solution of the periodic phased array problem is efficient
since it involves the analysis of only a single unit cell, for example, using a periodic Green’s function
in a moment-method solution (although the ASM is not limited to a moment-method analysis).
The fields produced by the single dipole source in the presence of the PAM are then constructed by
numerically integrating the fields of the phased-array problem over the Brillouin zone of the wave
number (kx , ky) plane. As shown in [], the ASM is numerically much more efficient than the direct
plane-wave expansion method, since it requires an integration only over the Brillouin zone rather
than over the entire wave number plane.

For some purposes, such as asymptotic analysis and calculation of surface-wave and leaky-wave
excitation amplitudes, it is also important to be able to calculate the Fourier transform of the field
on an aperture plane. We have shown how the Fourier transform of the field at an aperture plane
z = constant can be evaluated via the direct plane-wave expansion and the ASM. Again, the ASM
is the more efficient method. In the ASM, the Fourier transform of the field is given directly by the
(,) Floquet wave in the phased-array problem and is thus relatively easy to numerically calculate,
involving a single periodic moment-method solution. In contrast, the direct plane-wave expansion
method requires the solution of an infinite number of plane-wave excitation problems (an infinite
number of different incident angles) to calculate the Fourier transform of the field for a fixed set of
transform wave numbers (kx , ky).

This chapter has also discussed some of the basic mathematical and numerical issues encountered
when implementing the ASM. It was shown that because of branch-point singularities in the com-
plex transverse wave number kt plane, a periodic set of “branch-point circles” appears in the (kx , ky)
plane. The integrand for the total field is less singular on these circles than is the integrand for the
scattered field, and, hence, it is numerically more efficient to calculate the total field. When numer-
ically implementing the ASM, a simple midpoint rectangle rule of integration works quite well for
evaluating the kx and ky integrals due to the periodic nature of the integrand. When using this simple
integration rule, it is possible to develop a simple physical interpretation of the error that is incurred
when using a finite number of sample points. This simple interpretation shows that the error is due to
an infinite number of periodically located “image” sources that appear further away from the original
source as the number of sample points increases. This interpretation makes it clear that the integrals
converge much faster in the case of a lossy medium due to the exponential decay of the fields from
the image sources.

This chapter has also summarized the basic field behavior for the field excited by a single source
located in proximity to a PAM. It has been shown that the total field consists of two parts, a spatial
field and a sum of guided modes that propagate outward from the source along the PAM. The spatial
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field arises from the branch-point circle, and it decays radially with distance ρ from the source along
the PAM as /ρ. In the far-zone region near the PAM, this field consists of a cylindrical wavefront
together with an infinite set of Floquet waves induced by the periodicity. The guided modes may
be of two types, bound modes and leaky modes. The bound modes are surface-wave-like modes for
which all of the Floquet waves (space harmonics) decay exponentially away from the PAM and the
wavevector of the guided mode is purely real. All the Floquet waves of the bound modes are slow
waves (phase velocity slower than the speed of light). In contrast, a leaky mode is a guided wave
for which at least one of the Floquet waves is fast with respect to the speed of light and hence is a
radiating wave. The leaky mode has a wavevector that is complex, due to the leakage. In order for
a leaky mode to be physical (and therefore significantly excitable by a practical source), all of the
constituent Floquet waves must be physical, which means that the correct choice of branch for the
vertical wave number must be used for each Floquet wave. The vertical wave number of a Floquet
wave is improper if the wave is a forward wave (the dot product of the phase and attenuation vectors
is positive) that is fast with respect to the speed of light.

Appendices: Spectral Singularities and Asymptotic Evaluation

We assume that the spectral integrals in Equation . or . are performed sequentially, and in
particular, we consider the kx integration to be performed first as the inner integral, followed by
the ky integration. Such integrations could be performed numerically to calculate the field or evalu-
ated asymptotically as in Section .. or Appendix B to highlight the physical nature of the excited
wave species. The classification in Section .. follows from an asymptotic evaluation. Here, we first
describe the critical spectral points, and then we summarize the steps in the asymptotic evaluation.

Appendix A: Spectral Singularities

The path for the kx integration stays on the top Riemann sheet of all the branch points, and the wave
number kz pq in Equation ., for real kx and ky , is chosen as either purely real and positive or purely
imaginary with a negative imaginary part. Physically, the location of the branch points for a given
value of ky is determined by the intersection of a horizontal line (constant ky) with the circles shown
in Figure .. Although the integrations in Equations . and . are equivalent (and the form
shown in Equation . is numerically more efficient, involving integrations with finite limits), the
form shown in Equation . is preferred here for a discussion of path deformation, since the limits
are infinite.

In performing the kx integration in Equation ., for each value of ky , branch-point singularities
may be encountered on the real axis of the kx plane. Branch points are defined by k

x p + k
yq = k,

corresponding to kz pq = . Therefore, for a fixed value of ky , there is a doubly infinite set of branch
points in the kx plane at

k±xb , pq(ky) = ±
√

k − k
yq − Fx p , (.A.)

x
Brillouin zone, defined as −π/a < Re kx < π/a, there are an infinite number of branch points along

In many practical cases the frequency is low enough so that kb < π, and there will be at most
one pair of branch points on the real kx axis within the integration region −π/a < kx < π/a; all the
others will lie on the imaginary kx axis. This is the case shown in Figure .A.a. The integration in
the complex kx plane in the region −π/a < kx < π/a can be deformed off the real axis to avoid the
branch points on the real axis. When ka > π, branch cuts may overlap on the real kx axis as shown
in Figure .A.b.
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FIGURE .A. The complex kx plane, for a fixed ky value. (a) Case for ka < π or equivalently a/λ < /. (b) Case
for ka > π. The poles (the x points below the branch cuts) and branch points are periodic in the kx plane, with period
π/a. The integration path in the kx plane is shown on the real axis (detouring around the branch-point singularities).
The path may be deformed around the branch points as shown in part (a), yielding vertical paths that represent the
harmonics of the spatial wave and poles whose residues represent the Floquet harmonics of the modal waves. (From
Capolino, F., Jackson, D.R., Wilton, D.R., and Felsen, L.B., IEEE Trans. Antennas Propag., (), , June . With
permission.)

As mentioned in Section .., in performing the integration in Equation . for observation
points along the PAM interface, the integrand E∞sca (r, r, kt) is more singular at the branch points
than is the integrand E∞tot (r, r, kt). Physically, this is because the scattered field from the source
decays more slowly with distance along the PAM than does the total field. The decay of the scattered
field is /ρ, which matches that of the incident field (the two must cancel on the conducting sur-
faces of the PAM). However, the total field has a more rapid decay of /ρ far away from the source,
typical of the behavior observed in any interface problem, including, for example, a source over a
dielectric layer. Hence, especially when evaluating the scattered field, care must be taken to integrate
accurately near the branch points or to deform around them if possible (easily doable for the case of
Figure .A.a). The behavior of the fields has been verified numerically in Figure ..

As described in Section .., there may also appear bound-wave poles if the PAM allows for the
guidance of such waves. In the absence of losses, they are located on the real axis, whereas with loss
present, they will be below the real axis. In the case of Figure .A.a, where ka < π, deforming the
path off the real axis will avoid such poles. In the case of Figure .A.b, where ka > π, it is not
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possible to deform the path entirely off the real axis. However, in this case, all guided modes must be
leaky modes [] because at least one Floquet wave is a radiating fast wave for all kx values within
the Brillouin zone. The leaky-wave poles will lie below the real kx axis.

mode poles are denoted by crosses; for one of them, Rekx < kxb ,, so that the (,) Floquet wave is
a forward wave that is improper (exponentially increasing vertically) and is located on the bottom
Riemann sheet of the (,) branch point but is physical. The pole is located on the top Riemann sheet
with respect to all the other branch points, so that only the (,) Floquet wave is improper. The leaky
modes may cause numerical difficulty in performing the integration if they are close to the real axis,
but this is an unusual situation unless the PAM has been specifically designed to form a leaky-wave
antenna type of structure.

Appendix B: Asymptotic Evaluation of the Spectral
Integral (Equation 12.31)

The analytic result (Equation .) for the wave species excited by a source within the PAM is
obtained by two sequential asymptotic evaluations of the integral (Equation .), first in the kx
plane (inner integral), followed by second in the ky plane. We limit our description to observation
points near the PAM interface; for locations not close to it, the procedure outlined below must be
changed, and the field representation requires the concept of shadow boundaries, which for periodic

analogous problem (fields arising at an array edge-truncation) where a detailed asymptotic analysis
has been carried out for the scattered fields.

When the observation point is not far from the PAM boundary and is electrically distant from the
source (ρ →∞), the kx integration path on the real axis, shown in Figure .A.a, is deformed onto
the vertical paths around the branch points. These are steepest descent paths that represent collec-
tions of plane waves arriving at the observation point with the same phase. Each steepest descent path
represents a certain wave species, since it provides a wave field that has a well-defined wave number.
In the kx -plane path deformation, certain poles may be encountered; their residues, which represent
modal excitation amplitudes, must be added to the total field. The sum of the steepest descent inte-
grations Ibranch

pq (ky) from the vertical paths descending from the branch points and the residues from
the integrations Ipole

pq (ky) around the poles leads to the following representation:

Etot(r, r) =
∞

∑
pq=−∞

∞�
−∞

[Ibranch
pq (ky) + Ipole

pq (ky)] e− jk y ydky . (.B.)

Each term of the pq-sum is thus split into two integrals that, when asymptotically evaluated via their
saddle-point contributions, lead to the final field representation in Equation ..
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13.1 Introduction

This chapter addresses modal properties of layered structures composed by metamaterials and their
basic applications in waveguiding and radiating devices.

In Section . an overview of results that appeared in the literature on this topic is presented, with-
out aiming for completeness, to provide the reader some background information. The attention is
then focused on a specific structure, that is, a grounded metamaterial slab, which, as is well known,
constitutes a basic building block in a variety of planar microwave components. This is described
in Section ., where the theoretical approach used for its analysis and the models adopted for the
metamaterial parameters are illustrated. In Section ., the surface-wave propagation on a grounded
metamaterial slab is discussed and simple sufficient conditions for surface-wave suppression are
given, showing their application to reduce edge-diffraction effects in planar antennas and to achieve
unimodal propagation in nonradiative dielectric waveguides. In Section ., complex (leaky) waves
supported by the same reference structure are studied, illustrating some of their peculiar radiative
properties.

13-1
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13.2 Background

The study of modal properties of layered structures characterized by possibly negative effective
parameters has been a topic of interest since the s: in [] the discrete spectrum of a slab with
plasma-like permittivity in air is investigated, including a discussion on contributions to the total
field arising from complex improper (leaky) waves. The analysis in [] is focused on surface waves
guided by an interface between air and a half-space filled with a uniaxial ferromagnetic and plasmonic
permittivity. In [] guidance properties are studied in a slab with negative permittivity surrounded
by double positive (DPS, i.e., with positive ε and μ) slabs and in a DPS slab surrounded by two
negative-permeability slabs.

More recently, within the frame of the great amount of research in the field of negative-index mate-
rials (NIMs), several analyses have been carried out about modal properties of layered media with
both electric and magnetic parameters assuming negative values (double negative, DNG) or with
only one negative parameter (single negative, SNG), with either ε <  (epsilon-negative, ENG) or
μ <  (mu-negative, MNG). Different models for these parameters have been considered: e.g., a
simple scalar plasma-like temporal-dispersive behavior, anisotropic effective media, and anisotropic
with both temporal and spatial dispersive features. New dispersive phenomena have been found, such
as monomodal propagation with an unusual range of physical or geometrical parameters and con-
tradirectional flows of power in media with different handedness. Moreover, different kinds of waves
(surface polaritons, surface plasmons, or surface evanescent waves []) are present with respect to
DPS slabs. These surface waves, previously known at a metal–dielectric interface, are attenuated in
both media at the boundary of the guiding interface.

Surface waves along the interface between an NIM and a DPS half-space are studied in []. The
effects of these waves on the performance of the perfect lens proposed in [] are discussed in [],
where it is shown that a realistic transition modeling the interface between a DPS and a DNG gives
rise to surface waves, which could deteriorate the perfect lens behavior. In [] it is found that the
spatial dispersion of the slab limits the achievable resolution in such a structure. In [], a graphi-
cal method is proposed to study evanescent surface waves along an NIM slab in a DPS medium.
In [] an NIM half-space is in contact with a DPS medium or with an SNG media (with either
ε <  or μ < ).

In [] the propagation of ordinary waves (attenuated only in air) for an NIM slab in air is studied;
in [] a DNG and an SNG slab surrounded by a DPS dielectric are studied, and relevant energy
issues are discussed. In [] the discrete spectrum of an NIM slab sandwiched between different DPS
dielectrics is considered.

Nonlinear effects in the propagation of surface waves along DNG–DPS interfaces between nonlin-
ear metamaterials are studied in [] through an ad hoc formulation of the electromagnetic problem,
with energy considerations similar to the linear case.

A rich collection of results on possible applications of layered metamaterial structures is given in
[]: several reference structures, here only briefly mentioned, are examined through both dispersive
and excitation analyses with details about energy propagation. For more details, the bibliography of
that chapter is suggested. A parallel-plate waveguide inhomogenously filled with two DPS/SNG/DNG
media is investigated. An ENG–MNG pair of slabs is seen to allow for a monomodal propagation of a
surface plasmon along the interface with an arbitrarily large waveguide section, thus improving cou-
pling with waves impinging on the waveguide. Furthermore, particular choices of the two media can
give rise to interesting dispersive behaviors: monomodal propagation can occur with an arbitrarily
thin distance between the metallic plates, or the fundamental mode can present an arbitrarily large
value of its wavenumber. These phenomena can lead to the possibility of miniaturized waveguides or
resonators. The case of a DNG slab in air is also treated: while the thinner is a DPS slab the larger is its
effective cross-section, a DNG slab can be made as thin as possible, thus increasing the confinement
of the field of its fundamental mode. Finally, a design of a backward coupler is shown by means of the
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well-known contradirectional power flow in media with different handedness, by properly placing a
DPS slab near a DNG slab.

In [] dispersive studies of a DNG slab in air are shown to be useful to investigate its reflection and
transmission properties. In [] surface waves at the interface between two general kinds of media
are studied: details on energy transport, inverse Cherenkov radiation, and Doppler shift are shown,
with results analogous to those obtained with bulk waves.

In [] the leaky regimes of the same structure are studied to characterize their spectral nature
and to show the possibility to obtain a leaky-wave antenna by exciting these leaky waves through
an elementary dipole source. A similar analysis has also been carried out in [] considering a line-
current excitation. In [] the spectrum of the surface waves of a grounded NIM slab in air is studied,
with the aim of deriving sufficient conditions for their suppression in a given range of frequency.
A dispersive analysis of a grounded metamaterial slab can also be found in [], with reference to
guided waves only. More details on these topics are given in the following sections.

Different models have been adopted for the parameters of the layers. In [] guided waves are stud-
ied in a grounded wire medium slab, taking into account its anisotropy and its temporal and spatial
dispersion. In [] it is shown that in such a structure the spatial dispersion surprisingly determines
an isotropic modal propagation along the slab, despite the inherent anisotropy of the microscopic
arrangement of the wires. For more details on antenna applications of wire media see Chapter  of
Applications of Metamaterials.

More complex structures are analyzed, for example, in [], where a discontinuity in DNG slabs
is studied with the mode-matching method. In [] the electromagnetic coupling is studied both
between DNG slabs and between a DNG and a DPS slab, surrounded by air. The dispersive prop-
erties of a surface-terminated photonic bandgap (PBG) are studied in [], where comparisons are
shown with the dispersion behavior of an infinite PBG. The surface evanescent waves of a multilayer
structure are investigated in [], with layers alternatively made by isotropic DPS and ferromagnetic
materials. The analysis is performed by means of the transmission-matrix formalism. The presence
of several interfaces allows for the propagation of different kinds of surface polaritons, which affect
the transmission properties of the structure.

13.3 Grounded Metamaterial Slabs: Structure Description

In the following sections the attention is focused on a specific reference structure, namely a grounded
metamaterial (isotropic) slab. A sketch of the structure is provided in Figure ., along with the
relevant transverse network representation from which the dispersion equation for transverse electric
(TE) and transverse magnetic (TM) modes (with respect to the transverse direction y) can easily be
derived.

Z0

Zs

y

PEC

z
h μr εr

FIGURE . The reference structure of a grounded metamaterial slab and its transverse equivalent network.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

13-4 Theory and Phenomena of Metamaterials

A time-harmonic dependence e jωt is assumed and suppressed throughout. No variation of the
electromagnetic field is assumed along the x direction, thus the two-dimensional nature of the prob-
lem allows us to study TE and TM modes separately. As is well known, a transverse equivalent
network in the y direction can be associated to each TE or TM mode [], as shown in Figure ..
The expressions of the relevant characteristic impedances for the two polarizations in the air and slab
regions (subscripts  and s, respectively) are as follows:

ZTE
 =

ωμ
k y

, ZTE
s =

ωμ μr
k ys

ZTM
 = k y

ωε
, ZTM

s = k ys

ωε εr
, (.)

where

ky =
√

k
 − k

z , kys =
√

k
s − k

z (.)

are the vertical wavenumbers in air and in the slab, respectively, with k
 = ωμε and k

s = k
μrεr.

The dispersion equation for TE and TM modes can be obtained by enforcing the transverse-
resonance condition, for example, at y = , on the relevant equivalent network. The result is

jZs tan(kysh) + Z = . (.)

The metamaterial slab will be assumed homogeneous, isotropic, and lossless, with permeabil-
ity μs = μμr and permittivity εs = εεr, where relative permeabilities and permittivities, μr and
εr, respectively, will be modeled as simple, scalar plasma-like, temporal-dispersive behaviors. In
particular, relative permeabilities will be chosen as in []:

μr(ω) =  −
ω

mp − ω
m

ω − ω
m

(.)

or as in []:

μr(ω) =  − Fω

ω − ω
m

, (.)

where ωm is the magnetic resonance angular frequency, ωmp is the magnetic plasma angular
frequency, and F is an adimensional factor, while relative permittivities will be chosen as in [].

εr(ω) =  −
ω

ep

ω , (.)

with ωep the electronic plasma angular frequency. These expressions will allow us to obtain either
DNG or SNG slabs in certain frequency ranges, provided that appropriate values are chosen for the
relevant resonance and plasma frequencies.

13.4 Grounded Metamaterial Slabs: Surface Waves

The problem addressed here is the study of guided modes supported by this structure, propagating
along the longitudinal z direction with a real propagation constant kz = βz . The dispersion equation
(Equation .) will be studied in Sections .. and .. for TE and TM modes, by considering
DNG and SNG slabs separately.
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Since the grounded slab is a transversely open structure, its modes can be either proper, that is,
attenuating at infinity in the transverse y direction (Im(ky) <  ), or improper, that is, diverg-
ing at infinity (Im(ky) > ) []. In particular, surface waves have a purely imaginary transverse
wavenumber in air, with ky = − jαy for proper surface waves and ky = + jαy for improper surface
waves (αy > ).

In addition to this, when one (or both) of the constitutive parameters is negative, two kinds of real
solutions, corresponding to surface waves supported by the structure, have to be considered, that is,
ordinary surface waves, with a real transverse wave number kys = βys inside the slab, and evanescent
surface waves, with an imaginary wave number kys = j αys inside the slab. It is known that ordinary
surface waves cannot exist in SNG slabs, whereas evanescent surface waves cannot exist in a grounded
DPS isotropic slab, although they are known to be present in SNG and DNG slabs [,], and in other
specific (anisotropic) structures, for example, ferrite slabs [,].

13.4.1 TE Surface Waves

Ordinary TE surface waves

In this case, the dispersion equation (Equation .) for proper real modes can be written as

tan(βysh) = 
∣μr∣

βys

αy
. (.)

By taking into account that α
y = (k

s − k
) − β

ys, Equation . becomes

tan(βysh) = 
∣μr∣

βysh
√

k
h(μrεr − ) − β

ysh
. (.)

The condition k < βz < ks implies that ordinary TE surface waves cannot exist if μrεr <  (which
would imply ks < k). Therefore, only the case μrεr >  has to be considered if this type of waves is
studied.

Evanescent TE surface waves

In this case, βz > ks and the dispersion equation (Equation .) for proper real modes can be written
as

tanh(αysh) = 
∣μr∣

αys

αy
= 
∣μr∣

αysh
√

k
h(μrεr − ) + α

ysh
. (.)

Both the cases μrεr ≶  have to be considered.

13.4.2 TM Surface Waves

Ordinary TM surface waves

In this case, the dispersion equation (Equation .) for proper real modes can be written as

tan(βysh) = −∣εr∣
αy

βys
= −∣εr∣

√
k

h(μrεr − ) − β
ysh

βysh
. (.)

As for the TE case, the condition k < βz < ks implies that ordinary surface waves cannot exist if
μrεr < . Only the case μrεr >  has to be examined.
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Evanescent TM surface waves

In this case, βz > ks and the dispersion equation (Equation .) for proper real modes can be written
as

tanh(αysh) = ∣εr∣
αy

αys
= ∣εr∣

√
k

h(μrεr − ) + α
ysh

αysh
. (.)

Both the cases μrεr ≶  have to be considered.

13.4.3 Surface-Wave Suppression in Grounded DNG Slabs

By means of a simple graphical analysis it can be shown that for each kind of proper surface wave
supported by a grounded DNG slab, conditions may be found that inhibit its propagation. However,
it is necessary to ascertain if simultaneous suppression of all kinds of such waves can be obtained. In
this connection, the cases of μrεr ≶  will be considered separately.

Sufficient conditions to avoid propagation of proper surface waves in the case μrεr <  are sum-
marized in Table ., where b = kh

√
 − μrεr. In particular, the condition reported for TE modes is

also a necessary condition, whereas the condition for TM modes is only sufficient.
By examining Table ., it can be concluded that, to inhibit the propagation of every kind of surface

wave (both ordinary and evanescent) when μrεr < , a sufficient condition is that the following set of
inequalities is satisfied:

{
∣μr∣ < 
∣εr∣ < 

(.)

provided that

b > tanh−(∣εr∣). (.)

In particular the last inequality can be satisfied, at a fixed frequency f , by choosing the slab thickness
h sufficiently large; in fact, the condition on b in Equation . can also be expressed as

h > tanh−(∣εr∣)
c

π f
√

 − μrεr
, (.)

where c is the speed of light in a vacuum.
Sufficient conditions to avoid propagation of proper surface waves in the case μrεr >  are collected

in Table ., where a = kh
√

μrεr − . In particular, the condition reported for TM evanescent waves
is also a necessary condition, whereas the other conditions are only sufficient ones. By examining the
alternative conditions for TE-mode suppression, it can be deduced that the only consistent pairs are

TABLE . Summary of Conditions for Suppression of Proper Surface
Waves of Different Kinds on Grounded DNG Slabs with μrεr < 

TE TM
Ordinary Evanescent Ordinary Evanescent

− ∣μr ∣ <  − {

∣εr ∣ < 
b > tanh−

(∣εr ∣)

Source: Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lampariello, P., Lovat, G.,
and Paulotto, S., IEEE Trans. Microw. Theory Tech. (), , . With
permission.

Notes: The condition for evanescent TE waves is necessary and sufficient; the
condition for evanescent TM waves is only sufficient. Ordinary waves cannot exist
in this case.
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TABLE . Summary of Conditions for Suppression of Proper
Surface Waves of Different Kinds on Grounded DNG Slabs with μrεr > 

TE
Ordinary Evanescent

(o)

⎧
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎩


a∣μr ∣

> 

a < tan−
(


∣μr ∣
)

(e)
⎧
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎩

∣μr ∣ < 

a <
√


∣μr ∣

− 

or or

(o)

�

�
�


∣μr ∣

+ (

π

)


< a < π (e)

⎧
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎩

∣μr ∣ > 

a > tanh− 
∣μr ∣

TM
Ordinary Evanescent

a <
π


∣εr ∣ > 

Source: Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lampariello, P.,
Lovat, G., and Paulotto, S., IEEE Trans. Microw. Theory Tech. (), , .
With permission.

Notes: The condition for evanescent TM waves is necessary and sufficient; the
other conditions are only sufficient.

(o)–(e) or (o)–(e). However, it can easily be seen that the only pair compatible with the reported
conditions for TM-mode suppression is the (o)–(e) pair.

Therefore, to inhibit the propagation of every kind of surface wave (both ordinary and evanescent)
when μrεr > , a sufficient condition is given by the following set of inequalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣μr∣ < 
∣εr∣ > 

a < tan−( 
∣μr∣
)

a <
√


∣μr∣

− 

(.)

which can also be written as

{
∣μr∣ < 
∣εr∣ > 

(.)

provided that

a < η =min{tan−( 
∣μr∣
),
√


∣μr∣

− } . (.)

In this case the condition on a can be achieved, at a fixed frequency f , by choosing the slab thickness
h sufficiently small; in fact, the inequality in Equation . can be expressed as

h < η
c

π f
√

μrεr − 
. (.)

Similar results can be obtained for grounded SNG slabs as reported in Table ..
For the case of grounded MNG slabs, surface-wave suppression is achieved if and only if ∣μr∣ < ,

without any additional condition on the slab thickness. For the case of grounded ENG slabs, a suffi-
cient condition to achieve surface-wave suppression is that ∣εr∣ < , provided that the slab thickness
h satisfies the inequality

h > tanh−(∣εr∣)
c

π f
√

 + ∣μrεr∣
. (.)
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TABLE . Summary of Conditions for Suppression of
Proper Surface Waves on Grounded MNG and ENG Slabs

MNG ENG
TE TM TE TM

∣μr ∣ <  − − {

∣εr ∣ < 
b > tanh−

(∣εr ∣)

Source: Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A.,
Lampariello, P., Lovat, G., and Paulotto, S., IEEE Trans. Microw.
Theory Tech. (), , . With permission.

In order to verify the possibility to achieve suppression of proper surface waves, numerical results
are presented for the dispersion properties of TE and TM modes supported by a grounded DNG slab
with thickness h =  mm and a metamaterial medium modeled as in [], with relative permeabilities
and permittivities given by Equations . and ., where ωm/π =  GHz, ωmp/π = . GHz,
and ωep/π =  GHz. The region of simultaneously negative permeability and permittivity in this
case ranges from f =  GHz to . GHz.

In Figure .a, the values of the relative permeability (solid line with circles) and permittivity (solid
line with diamonds) are reported in a frequency range from f =  GHz to  GHz, together with the
values of the product μrεr (light-gray solid line). For the considered medium model, when μrεr > ,
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FIGURE . Illustrations of material parameters. (a) Examples discussed in Section .. (From Baccarelli, P.,
Burghignoli, P., Frezza, F., Galli, A., Lampariello, P., Lovat, G., and Paulotto, S., IEEE Trans. Microw. Theory Tech. (),
, . With permission.). (b) Example discussed in Section .. (From Baccarelli, P., Burghignolli, P., Frezza, F.,
Galli, A., Lampariello, P., Lovat, G., and Paulotto. S., IEEE Trans. Microw. Theory Tech. (), , . With permission.)
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the conditions expressed in Equation . are never satisfied, whereas when μrεr <  the conditions
in Equation . hold in the range of frequencies from f = . GHz to . GHz, represented as a
shaded area in the figure. In order to have surface-wave suppression inside this range of frequencies,
the additional condition in Equation ., which fixes a lower limit for the slab thickness, has to be
satisfied. Such a limit is also reported in Figure .a as a function of frequency (dashed line). Since
the slab thickness has been chosen as h =  mm, by inspection of Figure .a it can be concluded
that, when the medium is DNG, the range of surface-wave suppression is the whole interval from
f = . GHz to . GHz.

In the same figure, the shown range from f = . GHz to  GHz is a part of the frequency interval
where the medium is ENG. According to the results reported in Table ., to achieve surface-wave
suppression a sufficient condition is that ∣εr∣ < , provided that the slab thickness is higher than the
lower limit expressed in Equation .. Such a lower limit has been also reported in Figure .a, and
it is seen to be the continuation of the lower limit valid for the DNG case. Therefore, since h =  mm
and the relative permittivity is less than one in absolute value in all the ENG range (although it is not
completely shown in Figure .a), it can be concluded that no surface waves may also exist in the
ENG range.

The condition of surface-wave suppression will be illustrated by means of the dispersion diagrams
of the relevant TE and TM modes. In Figure .a, the dispersion curves of three TE modes, con-
ventionally labeled TE, TE, and TE, are reported in a frequency range between f =  GHz and
f =  GHz, together with the line βz = ks; the shaded area represents again the predicted range
of surface-wave suppression for the DNG range. It has to be noted that the mode TE is improper
real [] below cutoff and proper real above cutoff. Moreover, the proper real branch of the TE mode
is ordinary at lower frequencies and evanescent at upper frequencies; its normalized phase constant
tends to infinity at f = . GHz.

In Figure .b, the dispersion curves of three TM modes, conventionally labeled TM, TM, and
TM, are reported in the same frequency range as in Figure .a, again with the line βz = ks and
the shaded area of predicted surface-wave suppression in the DNG range. The three modes have a
similar behavior, the only difference being that the proper real branch of the TM mode is evanescent,
whereas the proper real branches of the TM and TM modes are ordinary.
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FIGURE . Dispersion curves for (a) TE and (b) TM modes supported by a grounded metamaterial slab with slab
medium as in Figure .a and thickness h =  mm. The shaded area represents the predicted range of surface-wave
suppression for both TE and TM modes. Legend: Normalized phase constants βz/k: solid lines, proper real ordinary
waves; dotted lines, improper real ordinary waves; light-gray solid line, proper real evanescent wave, thin solid line,
βz = ks . (Adapted from Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lampariello, P., Lovat, G., and Paulotto, S.,
IEEE Trans. Microw. Theory Tech. (), , . With permission.)
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Finally, it can be observed that the region of surface-wave suppression, in the DNG range, is exactly
predicted, being limited on the left by the frequency f = . GHz at which the phase constant of one
evanescent TE mode tends to infinity, whereas on the right by the frequency f = . GHz, at which
the material ceases to be DNG, becoming SNG. In fact, with reference to Table ., the condition for
TE proper evanescent surface-wave suppression is a necessary and sufficient one.

13.4.4 Magnetic Dipole Excitation

In order to verify surface-wave suppression and to show its effects on radiation patterns, the far field
radiated by a point source in the presence of a finite-size DNG slab is considered. A magnetic dipole
source is assumed to be placed on the ground plane of a DNG slab along the x axis, to model radi-
ation from a short and narrow slot; the finite-size slab is assumed to be circular, with radius R (see
Figure .). Comparisons will be presented between the far fields radiated in the presence of an
infinite- and a finite-size DNG slab, whereas in the latter case the radiated field may be calculated
through a physical-optics approximation of the aperture field on the air–slab interface.

In Figure ., a DNG slab with physical parameters as in Figure . is considered; the radius of
the finite structure is R = λ, where λ is the free-space wavelength. In Figure . the radiation
patterns of the infinite (black line with diamonds) and of the finite (gray line) structures are presented
in the elevation plane ϕ = ○, where the far field is mostly due to TE waves. At f = . GHz the effect
of TE surface-wave diffraction at the edges of the finite structure is clearly evident, whereas at f = .
GHz no diffraction effects are found since neither TE nor TM surface waves are present.

13.4.5 Nonradiative Dielectric Waveguides

The basic analysis just presented for surface waves in metamaterial slabs can be useful to argue
novel behaviors also in other guiding structures: among them, we illustrate here some interest-
ing features concerning metamaterial nonradiative dielectric (NRD) waveguides. The “standard”
NRD guide [] is usually constituted by a nonmagnetic, dielectric, rectangular rod sandwiched
between wide metal plates, spaced at a distance that is less than half a free-space wavelength (see
Figure .).

φ

θ

x y

ρ

z

R
h

FIGURE . Truncated grounded metamaterial slab with relevant physical and geometrical parameters as in
Figure .. A finite-size slab is assumed to be circular with radius R = λ. (From Baccarelli, P., Burghignoli, P.,
Frezza, F., Galli, A., Lampariello, P., Lovat, G., and Paulotto, S., IEEE Trans. Microw. Theory Tech. (), , .
With permission.)
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FIGURE . Normalized radiation patterns (in dB) of a magnetic dipole placed on the ground plane of a DNG
slab along the x axis, in the elevation plane ϕ =  at (a) f = . GHz and (b) f = .. Physical parameters: as in
Figure .. Legend: infinite structure: black line with diamonds; circular finite structure (radius R = λ): gray line.
(From Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lampariello, P., Lovat, G., and Paulotto, S., IEEE Trans. Microw.
Theory Tech. (), , . With permission.)
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FIGURE . Cross-section of the metamaterial NRD guide considered here, with the relevant physical and geomet-
rical parameters. (From Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lampariello, P., and Paulotto, S., Microwave
Opt. Tech. Lett. , , . With permission.)

The operating mode is the so-called LSM, which is an odd mode with respect to the transverse
horizontal (x) direction (short-circuit bisection at x = ) and presents a half-wave variation with
respect to the vertical (y) direction (open-circuit bisection at y = a/). The structure is typically
aimed at reducing both ohmic and radiation losses in high-frequency applications (usually at the
higher microwave ranges and at millimeter waves). In fact, the operating mode, which has an elec-
tric field prevalently parallel to the metal plates, presents limited ohmic losses; moreover, due to the
suitably reduced spacing between the plates, each discontinuity that preserves the horizontal-plane
symmetry can furnish only a reactive effect and no lateral radiation occurs from the plates (such radi-
ation has to be avoided in guiding components but could be desired in leaky-wave structures []). In
standard NRD guides, the unimodal operation band can negatively be limited not only by the pres-
ence of higher-order modes of the same LSM type (e.g., the LSM) [,], but also by the possible
excitation of additional above-cutoff modes of LSE type (e.g., the LSE mode, if the horizontal-
plane symmetry is no longer preserved, and the LSE mode, when the vertical-plane symmetry is
broken). An original possibility of avoiding such band limitations in NRD guide is briefly illustrated
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here, based on the use of a metamaterial rod instead of a standard dielectric one []. Various other
investigations on the peculiarities of NRD guides based on metamaterials can be found in the refer-
ences of []. In the following, the above-introduced assumptions for the metamaterial models are
obviously maintained.

At first it should be reminded that, in general, a strict correspondence exists between the TE/TM
modal spectrum of a slab guide and the LSE/LSM spectrum of an NRD guide, since the NRD struc-
ture can be viewed as an equivalent slab, which is transversely limited by the pair of metal plates
at the distance a apart in the direction where the slab fields were assumed to be constant (i.e.,
along the x axis of the slab, according to the reference coordinate system presented in the previous
subsections, which corresponds to the y axis for the coordinate system chosen here in Figure .
for the NRD guide) [–]. For the same slab width (h) and NRD width (b = h), the eigenvalues
of the slab (k

t = k
y) correspond to the horizontal wavenumbers (here denoted k

x ) of the NRD guide;
thus, the presence of the metal plates in the NRD guide furnishes only an additional contribution to
the transverse wavenumber of the simple type k

y = (mπ/), with m = , , . . . (as said, m =  is
chosen on usual NRD applications): k

t ,NRD = k
t ,slab + (mπ/a). As a consequence, from the separa-

tion condition, the propagation constant kz for the NRD guide can easily be calculated, based on the
knowledge of the relevant slab wavenumbers; e.g., for the m =  case, it results in the following:

kz ,NRD =
√

k
z ,slab − (π/a) (.)

On this ground, the first step to furnish the wished suppression of NRD-guide undesired modes
can consist simply in the use of an ENG metamaterial slab, which, as seen in the previous subsections,
automatically avoids the propagation of any TE slab mode and consequently of any LSE NRD-guide
mode. Once the NRD-guide LSE modes are suppressed with the simple choice of ENG rods, the
remaining problem concerns with the possible achievement of a suitable band of unimodal LSM-
mode propagation.

The modal analysis in ENG slabs emphasizes that for εr <  (i.e., for f < fp) generally a pair of TM
modes is present (conventionally labeled as TM and TM), whose dispersion behaviors are strongly
dependent on the choice of the involved physical parameters. An example is illustrated in Figure .a
and b for two different (“high” and “low”) values of the slab width b, respectively.

From a simple analysis of the dispersion equations for ENG-slab TM modes with even/odd sym-
metries [], it is possible to show that the slab TM mode (which can give rise to the undesired
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FIGURE . (a) Dispersion diagram for TM modes supported by a slab in free space made of a plasma-like ENG
medium. Parameters: b =  mm, fp =  GHz. (b) Dispersion diagram for TM modes supported by a slab in free
space made of a plasma-like ENG medium. Parameters: b = . mm, fp =  GHz. (From Baccarelli, P., Burghignoli,
P., Frezza, F., Galli, A., Lampariello, P., and Paulotto, S., Microwave Opt. Tech. Lett. , , . With permission.)
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FIGURE . (a) Dispersion diagram for LSM modes supported by an NRD waveguide with a plasma-like ENG
medium. Parameters: a = . mm, b = . mm, fp =  GHz. (b) Fractional bandwidth of unimodal propagation as a
function of the slab width for different values of the plasma frequency. (From Baccarelli, P., Burghignoli, P., Frezza, F.,
Galli, A., Lampariello, P., and Paulotto, S., Microwave Opt. Tech. Lett. , , . With permission.)

NRD-guide LSM mode) cannot exist at all when ∣εr∣ <  (necessary and sufficient condition), that
is in the range between fp/

√
 and fp . On the contrary, in this range between fp/

√
 and fp , it is

possible to have propagation of the slab TM mode (which can give rise to the operating NRD-guide
LSM mode), provided that the metamaterial width b is sufficiently reduced []. In Figure ., it is
confirmed that, with a “high” value of b, both the TM modes exist in the range of f < fp/

√
; if b is

suitably decreased, only the TM can propagate in the range between fp/
√

 and fp , even though such
a mode generally presents the undesirable feature of possessing two different branches, which tend to
coalesce as frequency is increased (by further increasing frequencies, this mode assumes a complex
proper nature and is no longer purely bound). Nevertheless, these two TM branches typically show
rather different propagation (phase) constants in a wide frequency range; in the related NRD guide,
it is, therefore, possible to find a sufficiently low value of the metal-plate spacing (cf. Equation .)
that is able to change into an imaginary quantity the real contribution of the propagation constant of
only the TM branch with the lower longitudinal wave number (while maintaining real the contri-
bution to the propagation constant of the other branch with the higher longitudinal wavenumber).
In this way, the “lower” modal branch is suppressed (i.e., it becomes attenuated), and the desired uni-
modal propagation of the NRD guide (related to the “higher” modal branch) is achieved. For given
slab width and permittivity, it is always possible to find a maximum value of the thickness a of the
NRD guide, which gives the largest possible frequency band of unimodal propagation. An example
of such behavior is illustrated in Figure .a, where only one branch is now present between fp/

√


and fp , as desired for the unimodal NRD-guide LSM operation. The operating mode possesses in
this case a backward highly dispersive behavior and a transversely evanescent field configuration, as
is typical of ENG slab modes. The other parameters being fixed, the bandwidth of unimodal propa-
gation can be increased monotonically as b is decreased. An example is shown in Figure .b for the
maximal attainable fractional bandwidth (FBW) as a function of the width b for different values of
the metamaterial plasma frequency fp .

13.5 Grounded Metamaterial Slabs: Leaky Waves

In this section properties of leaky modes in grounded metamaterial slabs are discussed. As is well
known, leaky modes are complex modes, that is, their propagation wave number kz = β− jα is com-
plex. A nonzero attenuation constant α is present, also in lossless structures, due to radiation losses
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associated with the propagation of the mode in a transversely open environment. An important issue
in connection with leaky modes is their spectral character, which is established by their behavior at
infinity in the transverse plane: if a leaky mode satisfies the radiation condition at infinity, it is termed
proper, otherwise improper. This is in turn related to the nature of leaky-mode radiation, which is
backward for proper modes and forward for improper modes. We recall here that modal solutions
in waveguiding structures correspond to pole singularities of the waveguide Green’s function in the
complex plane of the relevant spectral variable (for grounded slabs, such a variable can be kz for D
modal propagation along the z axis or kρ for D propagation along the radial axis ρ); the spectral
Green’s function has also square-root branch points at the wavenumbers ±k of the air medium, and
the proper or improper character of a mode is related to the location of the corresponding pole in
different Riemann sheets with respect to that branch point [].

In lossless grounded DPS slabs complex proper modes cannot exist, whereas complex improper
modes do exist and they may come into play in a nonspectral, steepest-descent representation of
the field radiated by sources []; under appropriate conditions, a single, complex improper (leaky)
mode can provide an accurate representation of the continuous-spectrum part of the field at the
air–slab interface, thus affording a compact representation of the far field via a Fourier transform
[,,]. In grounded DNG slabs, it can be seen by inspection that the dispersion equations for
proper modes on a DNG slab are the same as those for improper modes on a DPS slab, and vice-
versa []. It can be concluded that, in grounded DNG slabs, only complex proper modes may exist,
whereas complex improper modes are forbidden. Considering now grounded SNG slabs, it can be
seen that for grounded MNG slabs, the dispersion equation for TE waves is the same as that for
DNG slabs, whereas the dispersion equation for TM waves is the same as that for DPS slabs. The
opposite is true for grounded ENG slabs. Therefore, it can be concluded that on grounded MNG slabs
proper complex TE waves and improper complex TM waves may exist, whereas on grounded ENG
slabs improper complex TE waves and proper complex TM waves may exist. The spectral properties
of complex modes for different kinds of lossless, metamaterial grounded slabs are summarized in
Figure ..

As is well known, the electric field at the air–slab interface may be represented as an inverse Hankel
transform of the relevant spectral Green’s function with respect to the spectral variable kρ. According
to the above discussion, the complex poles of the spectral Green’s function for a DNG slab may be
located only on the proper Riemann sheet defined by the Sommerfeld branch cut; in Figure . the
location of singularities in the complex kρ plane is illustrated, showing, for example, two complex
proper leaky-wave poles (LW and LW) and one proper real bound-wave pole (BW).
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FIGURE . Spectral properties of complex modes in grounded DPS, DNG, and SNG metamaterial slabs.
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FIGURE . (a) Singularities of the spectral Green’s function and path deformation that leads to the spectral rep-
resentation of the field at the air–slab interface. (b) Path deformation that leads to the nonspectral representation of
the field at the air–slab interface. (From Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lampariello, P., Lovat, G.,
and Paulotto, S., IEEE Trans. Microw. Theory Tech. (), , . With permission.)

Alternative field representations can be obtained by performing different deformations of the orig-
inal integration path along the real axis. For example, by adopting a path that runs along the two sides
of the Sommerfeld branch cut in the lower half plane and applying the residue theorem to take into
account the contribution of the captured poles, the spectral representation of the field at the air–slab
interface is obtained: the total field is thus represented as the sum of a discrete spectrum (sum of
the residue contributions of BW and of the pair (LW, LW), neglecting higher-order proper leaky
contributions) and a continuous spectrum (integral along the branch cut) (see Figure .a). On the
other hand, by deforming the integration path to the steepest-descent path (SDP) running vertically
along the two Riemann sheets through the k branch point, a nonspectral representation of the field
is obtained, in which the field is represented as the sum of the contributions of BW, LW, and the inte-
gral along the steepest descent path (SDP) (named residual wave (RW)) (see Figure .b). Under
suitable conditions, the BW and RW contributions to the radiated field may be neglected, so that an
accurate representation of the field is provided by only one complex proper leaky pole, responsible for
radiation at an angle in the backward quadrant, as observed in other structures, for example, a non-
reciprocal ferrite slab []; in the same fashion, improper leaky modes give rise to directive forward
radiation on DPS slabs [].

To illustrate the typical shape of dispersion curves in grounded DNG slabs, in Figure . disper-
sion diagrams (for normalized phase and attenuation constants vs. frequency) are reported for (a)
TE and (b) TM modes supported by a grounded slab modeled through Equations . and . (with
F = ., ω/π =  GHz, and ωp/π =  GHz, see Figure .b) and slab thickness h =  mm,
in a frequency range between f = . GHz and . GHz. At f = fc the metamaterial changes from
DNG to ENG; thus all the TE modes have to change their spectral nature from proper to improper,
that is, the associated poles in the kρ plane cross the Sommerfeld branch cut; this occurs by crossing
the imaginary axis as shown with arrows in Figure .a and b, so that the phase constants of the TE
modes simultaneously become zero and change their sign at fc (see Figure .a).

It can be observed that the normalized phase constants of all the shown leaky modes span the range
almost completely (, ) (in the case of TE modes this range is completely covered down to  because
the TE phase constants become zero at fc = . GHz). Moreover, the low values of the normalized
attenuation constants of the TE and TM modes give rise to radiation of a directive beam in a wide
angular range. However, the most striking feature of Figure . is that the phase constants of the TE
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FIGURE . Dispersion diagrams for (a) TE and (b) TM modes on a grounded metamaterial slab with parame-
ters as in Figure .b and thickness h =  mm. Legend: Normalized phase constants: real proper ordinary modes
(black solid lines); real proper evanescent modes (gray solid lines); real improper ordinary modes (black dotted lines);
complex proper modes (black dashed–dotted lines); complex improper modes (gray dashed–dotted lines). Normal-
ized attenuation constants: complex proper modes (gray dashed lines); complex improper modes (black dashed lines).
(From Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lampariello, P., Lovat, G., and Paulotto, S., IEEE Trans. Microw.
Theory Tech. (), , . With permission.)

and TE modes are almost superimposed to those of the TM and TM modes, respectively, in a very
wide frequency range. This TE–TM phase-constant equalization has been observed for various slab
thicknesses, becoming more pronounced and extending over wider frequency ranges, by increasing
the slab thickness.

In order to investigate the effects of the presence of the grounded metamaterial slab on radiation
properties, we have studied the beam-scanning features of the far field radiated by a finite source
as in Section .., namely, a horizontal magnetic dipole placed along the x axis on the ground
plane of an infinite metamaterial slab. Since the pointing angle of the beam in the E plane is known
to be primarily determined by TM leaky modes when the beam points off broadside, whereas the
pointing angle of the beam in the H plane is instead primarily determined by TE leaky modes [],
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a conical beam with almost equal pointing angles in all the elevation planes can be expected. This is
confirmed by the plots reported in Figure ., which represent the normalized radiation patterns at
two different frequencies on a gray-scale map for the same structure as in Figure .; in these plots,
the distance from the origin is proportional to the spherical angle θ (elevation), whereas the angular
coordinate is equal to the spherical angle ϕ (azimuth).
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FIGURE . Radiation of conical beams from a horizontal magnetic dipole in a grounded metamaterial slab at (a)
f = . GHz and (b) f = . GHz. (Adapted from Baccarelli, P., Burghignoli, P., Frezza, F., Galli, A., Lampariello, P.,
Lovat, G., and Paulotto, S., IEEE Trans. Microw. Theory Tech. (), , . With permission.)
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14.1 Introduction

Metamaterials are effective media [PHSY,PHRS,PHRS] that can provide an engineered
response to electromagnetic radiation that is not available from the range of naturally occurring
materials. They consist of arrays of structures in which both the individual elements and the unit
cell are small compared with the wavelength of operation; homogenization of the structures then
allows them to be described as effective media with the conventional electromagnetic constants of
permittivity (є) and permeability (μ) but with values that could not previously be obtained. For
example, material with simultaneously negative є and μ can be built to have a negative refractive index
[SPV+,SSS,PGL+], and much attention has been given to the behavior of such media [SPW].

Most of the work on metamaterials has been concentrated in the microwave regime and above
(gigahertz to terahertz frequencies), and the majority of these metamaterials has been constructed
from a combination of fine wire grids [PHSY,PHRS] to give a dielectric response and split
ring resonators (SRRs) [PHRS] to provide the magnetic response. These are simple to fabricate
[SRSNN] and are active in the microwave regime, providing negative permeability typically over
a bandwidth of some % [SSMS]. In the first examples (see Figure .), the fine wire grid was
constructed from a  μm diameter gold-coated tungsten wire [PHSY], which showed a plasma
frequency at  GHz, whereas the SRR array was made by etching a conventional FR circuit board
with patterns that were approximately  mm in diameter; these had a resonant frequency of about
 GHz.

14-1
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3.0 mm

(a) (b) (c)

FIGURE . Early examples of metamaterials: (a) schematic of the fine wire grid structure; (b) its implementation;
and (c) the split ring resonator structure.

In a seminal series of articles, Smith and coworkers [SPV+,SSNNS] combined the wires and
SRRs into a composite structure etched on a circuit board and were able to demonstrate negative
refractive index behavior [SSS]. More recent work has built on this approach, and metamateri-
als have now been made that operate at terahertz [YPF+], infrared [LEW+], and even optical
frequencies [EWL+]. These have all used the SRR structure or modifications thereof.

There is much to be gained, however, from working at lower frequencies—in the radiofrequency
(RF) regime [Wil]. The wavelength of the electromagnetic radiation is extremely long, so the condi-
tion that the structure should be much smaller than a wavelength is easily met. Moreover, all distances
are very small compared with the wavelength, so all measurements are made in the very near field,
where the electric and magnetic fields are essentially independent [Pen,Stra], thus simplifying
both the material requirements and the interpretation of measurements. Finally, there are potential
applications for these materials in magnetic resonance imaging (MRI), which operates at radiofre-
quencies (RF). At these lower frequencies, however, the SRR structure becomes impractically large,
and different structures are required; in particular, the so-called Swiss roll [PHRS] has proved to
be very effective.

In this chapter, we first review RF metamaterial development. We then consider how they can be
described by the effective medium approximation, develop the mean field description of how elec-
tromagnetic radiation propagates through them, and compare these predictions with experimental
results. We then describe how these materials can be used to produce high-resolution images with
RF radiation and conclude with an overview of some potential devices and applications.

14.2 RF Metamaterials Design

For metamaterials in the microwave regime and at higher frequencies, the building blocks have been
the SRR and fine wire structure, and much of the practical considerations have focused on making
these small compared with a wavelength. However, when working at lower frequencies (and we
select a frequency of about  MHz, the operating frequency of a . Tesla MRI system, as a spe-
cific example), a different set of issues arises. The concern that the structure is much smaller than the
wavelength, now≈ m in vacuo, becomes trivial, but the individual elements still need to be physically
small in order first that the materials can be handled in the laboratory and second that they may be
used in RF applications. Thus we need to drive the critical frequency of the components down with-
out making them physically larger. In the following sections, we discuss the suitability first of the fine
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wire structure and then of the SRR structure and its derivatives for use at RF. We then briefly discuss
the use of discrete capacitors within these structures and finally introduce the Swiss roll structure,
which turns out to be ideally suited to this frequency range.

14.2.1 Dielectrics

The plasma frequency ωp of the fine wire grid structure [PHSY] is given by

ω
p =

πc


a ln(a/r) (.)

where
r is the wire radius
a is the grid spacing
c is the speed of light in vacuo

so that  μm wires placed on a  mm grid show a plasma frequency of ≈. GHz [PHRS]. Using
Equation . as a scaling relation to design material active at  MHz shows that, once the wire
diameter is much smaller than the unit cell size (r ≪ a), the frequency depends most strongly on
the unit cell size a, so we would need to have very thin wires (say  μm diameter) spaced on a very
sparse grid (a ≈  mm), which would not constitute a feasible material.

Smith et al. [SVP+] suggested forming the wire into a loop in a plane normal to its length (see
Figure .): this increases the self-inductance and hence reduces the resonant frequency to

ω
p =

πc


a (ln(a/r) + (πR/l) [ln(R/r) − /]) , (.)

where
R is the radius of the loop
l is the length of the wire

2R

2r

a

FIGURE . Schematic diagram of the loop-wire dielectric structure: the self-inductance of the thin wire is
enhanced by forming a loop of radius R in the unit cell, thus reducing the effective plasma frequency.
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This lowers the resonant frequency significantly but not sufficiently to provide viable material in the
’s of MHz range. For example, taking the same  μm diameter wire as above and assuming that the
loop size is equal to the spacing (R = a/) and that there is one loop per unit cell (l = a), we require
a wire spacing of  mm. This is substantially smaller than the  mm found for the straight wire
but is still not a viable material option. Thus far, no dielectric metamaterial has been reported that
operates in this range. However, as pointed out earlier (see Section .), at RF frequencies and work-
ing in the very near field (i.e., at distances of a few cm), the electric and magnetic field components
are essentially independent, and so to manipulate the fields from magnetic sources, the most com-
mon requirement at RF, only requires control of the permeability. Thus good progress can be made
without having access to dielectric metamaterials.

14.2.2 Split Ring Resonators

The conventional SRR structure has a resonant frequency of [PHRS]

μeff =  −
πr

a

 −  l c


π ω r l n(w/d) + i  l σ
ωrμ

, (.)

where
d is the gap between the rings
w is the width of the rings
r is the radius of the inner ring
a is the size of the unit cell
l is the inter layer spacing

To obtain a resonant frequency of  MHz while maintaining a gap of . mm and ring width of
. mm requires a radius of  mm. Although this is still small compared with the wavelength of
 m, the element is impractically large. To make a viable element, we have to increase either the
self-capacitance or self-inductance of the structure or, ideally, both.

We consider several approaches. First, we note that the self-capacitance of the conventional, edge-
coupled SRR described above (Figure .a) is small; this can be increased by using the broadside
SRR (Figure .b), in which the two rings are on opposite sides of a (thin) membrane. This structure
has been discussed in some detail by Marques and coworkers [MMMM,MMREI], who show
that an element size of ≈λ/ can be achieved using a substrate of  μm thickness with permittivity
є =  at a frequency of  GHz. Thinner substrates are available, so this size could be further reduced.
Despite this, however, a structure to operate at, say,  MHz would be rather large ( mm radius),
albeit much smaller than the edge-coupled case discussed above, and so this structure will not be
further discussed.

14.2.3 Spiral Resonators

To increase the self-inductance of the resonator, a spiral structure can be considered for which
the self-inductance scales as approximately the number of turns in the spiral [MHBL]. Baena
et al. [BMMM,BJMZ] have considered two- and three-turn elements and have shown that the
frequency for a three-turn spiral is approximately 

√
 times smaller than that of a commensurate

SRR structure; however, even the three-turn structure is still resonant in the GHz regime for an ele-
ment size of ≈ mm, and so to achieve a  MHz response would require it to have ≈ mm radius.
Wiltshire [Wil] has considered a hexagonal, eight-turn double-spiral structure with an element
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r

(a) (b)
ε ε

r

t

FIGURE . Schematic diagram of split ring resonator structures: (a) the edge-coupled structure consists of two
concentric split rings on a dielectric substrate, whereas (b) the broadside-coupled form has the two rings disposed on
opposite sides of the (thin) substrate thus enhancing the self-capacitance of the structure.

size of ≈ mm, which is resonant at around  MHz. Thus using spiral structures does give a mag-
netic response from a planar structure in the required frequency range, but the elements are still too
big to be incorporated in a material.

14.2.4 Ring Resonators

Adding a discrete capacitance to the ring structure produces a simple LC resonant loop [SKRSa,
SKRSb] whose frequency and size can be selected at will. One such element, investigated by Wilt-
shire et al. [WSYS] consisted simply of two turns of  mm diameter copper wire, wound on a . mm
diameter Delrin rod, with a  pF capacitor connected across the ends of the wire to produce an ele-
ment that was resonant at ≈ MHz. In a similar way, Sydoruk et al. [SRZ+] connected  pF
capacitors to a  mm diameter split pipe to produce resonators at  MHz. Both these elements are
constructed macroscopically, but there is no a priori reason why circuit board technology cannot be
used to fabricate elements, and this was in fact done by Syms et al. [SYS], who constructed minia-
ture spirals combined with surface-mounted capacitors to produce  mm diameter elements resonant
at  MHz. The behavior of ring resonator structures is fully described in the chapters by Sydoruk
et al., and so will not be further discussed here.

14.2.5 Swiss Rolls

The Swiss roll structure [PHRS] (see Figure .) is particularly suitable for use at RF frequencies
up to ≈ MHz, because it has inherently large self-inductance and self-capacitance. The elements
consist of a number of turns N of insulated conductor wound onto a central mandrel. In practice,
this is achieved by using a metal–dielectric laminate that is wound spirally onto a dielectric rod. The
self-inductance is governed by the number of layers of conductor, whereas the self-capacitance is
determined by the thickness and permittivity of the dielectric. For a compact, low-frequency element,
we require the dielectric layer to be thin and of low loss.

The magnetic permeability of an array of such rolls is given by [PHRS]

μ(ω) =  −
πr

a

( − d c


π єr
(N − )ω ) + i ρ

ωrμ(N − )

(.)
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FIGURE . The Swiss roll metamaterial: (a) schematic diagram of an individual element, showing the spiral-
wound structure; (b) a photograph of an element; and (c) the measured permeability of a material designed to operate
near . MHz. Full line and left-hand scale show the real part; dashed line and right-hand scale show the imaginary
part.

where
N is the number of turns in each roll of diameter r
є is the (complex) permittivity of the dielectric between the conducing layers
ρ is the resistivity of the conductor

The rolls are packed with a unit cell spacing of a. Typical values for resonance at . MHz are r =
 mm, N = , using the material Espanex, which consists of a . μm polyimide sheet with 
μm of copper laminated to it, manufactured as a flexible printed circuit board (PCB) material. The
polyimide has a permittivity of є ≈ . and a loss tangent of ≈., and the resonance has Q ≈ 
[WHP+].

The frequency-dependent permeability (Equation .) is anisotropic and usually written
[WHP+]

μzz(ω) =  − F

( − ω


ω ) + i Γ
ω

, μx x = μy y =  (.)
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in which
F is the filling factor, given as πr/a in Equation .
ω is the resonant angular frequency, given by

ω =
�
		
 dc



πєr(N − ) (.)

and is determined by the construction of the element

Γ is the damping, and includes both the resistance of the conductive layer and the dissipative part of
the permittivity of the dielectric layer.

The damping plays a critical role in determining the performance of these materials: strong damp-
ing leads to broad resonances with low quality factor Q and weak magnetic effects. In the very first
system studied [WPY+], the metal layer was extremely thin and the resistivity term dominated
the loss. For all other systems, based on flexible PCB materials, the dielectric loss dominates. It has
therefore been important to seek flexible PCB systems that are adhesiveless and based on low-loss
dielectric. In most of the work discussed here, the Swiss rolls had a Q ≈  at a resonant frequency
near . MHz. An optimized Kapton base (Novaclad) can provide a Q ≈ , whereas a Teflon based
material (CuFlon) has a Q ≈ .

14.3 Effective Medium Description

There are two approaches to describe the behavior of ensembles of the metamaterial elements: the
microscopic and the macroscopic. In the microscopic approach the ensemble is considered as an
array of coupled resonators, each with a resonant frequency and coupled to neighboring elements
(or indeed to all other elements). The currents and voltages flowing in the elements can then be
calculated explicitly, given some excitation, and the resulting current distribution in the ensem-
ble found. It is found that there are wave-like solutions for the current equations, which describe
magneto-inductive waves [SKRSa,SKRSb,WSYS]. From this analysis, the field distributions
may be obtained for comparison with measurement [ZSS]. This approach is described in detail in
the chapters by Sydoruk et al. and will not be discussed further here.

In the macroscopic view, on the other hand, we assert that, since the element size is much smaller
than the wavelength at the frequency of operation, we can ignore the detail in the material and
describe it as a homogeneous, effective medium whose electromagnetic response is defined by an
effective permittivity and permeability whose values need not be confined to those available in nat-
ural materials. Based on these parameters within the effective medium approach, we investigate the
interaction of the medium with electromagnetic fields and calculate their behavior either analytically
or numerically.

14.3.1 Permeability

The effective medium prescription was given by Pendry et al. [PHRS] for a variety of structures,
and considered in more detail by Smith and Pendry [SP]. The effective medium parameters arise
from consideration of average fields:

Bave = μeff μHave and Dave = εeff εEave (.)

We write Maxwell’s equations in integral form:
�

C
H ● dl = + ∂

∂t

� �
S

D ● dS and
�

C
E ● dl = − ∂

∂t

� �
S

B ● dS, (.)
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where the line integral is taken along the curve C, which bounds the surface S. Then when the
magnetic fields are very inhomogeneous, and vary rapidly within the structure, the averages for
H and B are quite different so that μeff becomes significantly different from unity. This situation arises
in the resonant structures discussed here, and following this prescription, Pendry et al. [PHRS]
calculated the effective permeability of the Swiss roll structure to be that given in Equation ..

Whereas the permeability of SRR metamaterials has to be derived from the inversion of trans-
mission and reflection data in the microwave regime, it can be measured directly for the Swiss roll
structure because the elements are long, thin, needle-like elements. Accordingly, the demagnetiz-
ing factor (see e.g., [Strb]) for a single roll or a small bundle of long rolls is quite small and can be
approximated to that of an ellipsoid with the same axial ratio. The material is inserted into a solenoid,
and the change in its self-inductance and resistance is measured. The complex permeability is then
obtained by applying a volume correction and the demagnetizing factor. An alternative method is
to modify the mutual inductance between two loops by introducing a material sample along their
common axis. By this means, the effective permeability of the medium can be obtained and is shown
in Figure . for the material based on Espanex (see above). It is clear that this has the resonant form
of Equation ., and the values of ω and Γ can be obtained from a least-squares fit to the data. Fur-
thermore, by measuring samples with different numbers of turns, it is possible [WPY+] to deduce
both the permittivity of the dielectric (taken as unity in the theory above) and the effective radius of
the roll expressed as r = r + αN , where α is a parameter to take into account the thickness of the
laminate (the theory assumes that the layers are infinitesimally thin so that Nd << r, whereas in
reality the thickness of the winding Nd and the radius r may be comparable).

14.3.2 Propagation

We consider the behavior of electromagnetic fields in a highly anisotropic effective medium and
describe the fields by a Fourier expansion of the form [WHP+]:

E(r, t) = ∑
k

E(k) exp i [k ⋅ r − ωt] (.)

with an analogous expression for H. Maxwell’s equations for a monochromatic field with angular
frequency ω and wavevector k are

ik × E = iωμμH, ik ×H = −iωεεE. (.)

The medium is magnetically active but dielectrically inactive, so on eliminating E we find

−k × k ×H = ωc−
 μH or − k (k ⋅H) + kH = k

μH, (.)

where k is the free-space wavevector, ω/c.
The effective medium is isotropic in the x−y plane, so we can confine our calculations to the x−z

plane without loss of generality. It is convenient to rewrite Equation . in terms of B, whereupon
expanding gives

[ k
z/μx x −kx kz/μzz

−kx kz/μx x k
x/μzz

] [Bx
Bz
] = k

 [
Bx
Bz
] . (.)

The condition for solution is
k

x

μzz
+ k

z

μx x
= k

 =
ω

c


(.)

and the associated eigenvectors are

[Bx
Bz
] = [k

x/μzz − k


kx kz/μx x
] . (.)
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Equations . and . allow us to explore the behavior of fields both inside the medium and at its
interfaces. In free space, the eigenvalue equation becomes

k
x + k

z = k
 =

ω

c


(.)

so that kz =
√

ω/c
 − k

x , and only those fields with kx < k can propagate; for kx > k the fields
decay evanescently along the propagation direction, z.

Within the medium, however, consideration of Equation . shows that there are several
possibilities of interest:

. In what Smith et al. [SKS] have termed an indefinite medium, that is one with opposite
signs of μx x and μzz , propagation is not restricted to kx < k. If μzz < , Equation .
has real solutions for kz for all values of kx .

. In the very near field in an indefinite medium, when kx , kz >> k, Equation .
reduces to

kz =
kx√
∣μzz ∣

(.)

so that the fields propagate with a conical wavefront [Bal,BLK].
. In the limiting case on resonance, μx x =  and μzz→∞. Then the eigenvalues (Equation

.) reduce to

kz = ±k (.)

and the eigenvectors (Equation .) become

[Bx
Bz
] = [−k

±kx
] . (.)

We see that kz is now independent of kx , so all the transverse Fourier components of an
object propagate along the z-axis with the same relative phase: if we measure the intensity
we see a perfect image. In the electric field equivalent of this situation [RPWS], an
incident electric field distribution is transported through the material as if the faces of
the slab were connected by perfectly conducting wires. By analogy in the present case, we
can imagine magnetic “wires,” composed of a perfect magnetic conductor, transporting
the magnetic image information across the material slab.

14.3.3 Transmission

The eigenvectors from Equation . (after using Equation . and removing the redundant factors)
are found to be

[Bx
Bz
] = [−kz

kx
] , (.)

so we can match the fields at the boundaries between the prism and free space to obtain the interface
transmission and reflection coefficients, tkx and rkx , as a function of the transverse wavevector kx .
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Hence the transmission of a semi-infinite slab can be calculated in the conventional manner [PP]
to obtain

Bz(r, z) = π
∞�


[c+kx
J(kx r) exp(ikz (z − d))]dkx , (.)

where

c+kx
= [cos (kzd) + 


[μx x kx

kz
− kz

μx x kx
] sin(kzd)]

−

(.)

is the overall transmission coefficient of the semi-infinite slab as a function of kx and J(kx r) is the
zeroth-order Bessel function of the first kind.

To take into account the finite size of the sample, we note that there are internal reflections at the
entrance and exit surfaces and also at the sides of the material. For the square prism, this can be
treated by considering a unit cell with periodic boundary conditions and folding all the higher-order
components back into the central zone to deduce the total field. We combine this with Equations .
and . for the transmission coefficient to calculate the output pattern, which should consist of a
central ring whose radius is given by Equation . along with an additional structure arising from
internal reflections [WPWH,Wil].

14.3.4 Numerical modeling

No numerical modeling of the individual elements has yet been carried out. Unlike the SRR struc-
ture, where the minimum feature size (i.e., the gap between the rings or in the ring itself) is typically
/ of the wavelength and detailed modeling can be performed, in the Swiss roll, this ratio is
nearer /, and the gridding problem is formidable. Accordingly, the only simulations that can
be performed treat the sample as a homogeneous effective medium with an anisotropic, frequency
dispersive permeability. Numerical simulations can then be carried out using, for example, the tran-
sient solver of CST MicroWave Studio (MWS). Here, a short pulse of radiation is launched into the
model, whose time evolution is calculated. This is then Fourier transformed to provide the frequency
response of the system. The transverse permeabilities are set to unity, and the axial permeability can
be described using the Lorentzian dispersion in MWS, which sets

μ( f ) = μs +
(μs − μ

∞
) f 



( f 
 − f ) − i f γ

, (.)

where
μs and μ

∞
are the low-frequency and high-frequency limiting values, respectively, of the

permeability
f is the resonant frequency
γ is the damping

By comparing this with Equation ., we see that the metamaterial requires μs =  and μ
∞
=  − F;

the resonant frequency and the damping have the same values in both equations.
The source of the magnetic field in the calculation can be a plane wave or, to model realistic situa-

tions, a  mm diameter wire loop placed in the space behind the slab and excited by a current source
in the loop acts as a point source. The metamaterial is embedded in a background medium, typically
vacuum, and so-called “open”boundaries (i.e., perfectly matched layers) were placed approximately
λ/ away from the region of interest, this distance being set by the software itself. Although this can
lead to an extremely large model, the gridding is required to be fine only across the metamaterial
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region; away from the material, quite a coarse grid can be used so that the overall model is a
manageable size.

14.3.5 Comparison with Experiments in the Negative μ Regime

To explore the behavior of magnetic RF metamaterials in the regime above their resonant frequency,
when the permeability is negative, transmission experiments have been performed [WHP+,
WPWH]. In this work, Swiss rolls were assembled into either a square or a hexagonal prism, and
their transmission was measured by placing a small loop acting as a magnetic dipole point source
on one face while scanning a similar loop acting as a detector across the other face. It is clear from
the theoretical discussion here that the transmission is not just a simple number: it depends on the
transverse wavevector, and so a variety of field patterns are created on the output face. The challenge
for a mean field theory is to reproduce these.

Accordingly, detailed comparisons between measured, analytical calculations and numerical mod-
eling needs to be made [WPWH]. An early observation was that the calculated results showed
much finer detail than was observed experimentally. In part, this difference is a consequence of the
finite size of the elements in the metamaterial: no component of the field pattern with a spatial wave-
length smaller than the size of an element can be sustained, so there is an effective cutoff at high
transverse spatial frequency or wavevector. Moreover, the finite size of the prism itself leads to a
minimum for the transverse wavevector. Thus for accurate modeling, the range of wavevector needs
to be restricted. This can be implemented in the analytical model with some success, but it is not
possible to impose such limits directly in the numerical model, so the effect of the upper limit on the
wavevector was approximated by moving the source further away from the prism, thus making the
incident field pattern more diffuse and reducing the high spatial-frequency components of the field
on the input face.

14.3.5.1 The Square Prism

The measured results for the magnetic field patterns on the output face of the square prism are shown
in the central column of Figure ., starting at the highest frequency. The first point to note is
that in the negative μz regime, the boundary conditions at the edges of the prism require Hz = .
Thus, at the highest frequency (. MHz), where we observe a uniform mode, it has Hz =  at the
edges. As the frequency is reduced, all intensity fades and then a sequence of resonant patterns appear,
with first five and then nine high-intensity spots, and then increasingly complicated patterns evolve
as the frequency is reduced toward f. We also note in Figure . that the measured patterns have
a granularity: this is due to the size of the individual elements of the metamaterial, and we cannot
expect any calculation based on an effective medium model to reproduce this.

In the left-hand column of Figure ., we show the field patterns calculated using the analytical
theory of Section .., along with the periodic boundary conditions discussed there, implemented
for the situation when the source was taken to be  mm behind the rear face of the prism and the
wavevector integral in Equation . truncated at a spatial frequency corresponding to the roll diam-
eter. First, we note that this model does not produce a result at the highest frequency. Here μz ≈ , so
there is an extremely large mismatch between the medium and the vacuum and hence little field pen-
etration. Thus the predicted transmission in this frequency region is essentially zero. The correlation
between the other calculated and measured patterns is better than when the source lies  mm behind
the prism, and we can clearly see that the basic structure of the field patterns is correctly produced.
However, the agreement is not particularly good: overall, the features are rather smaller and sharper
than those observed.

In the right-hand column are the results of the numerical simulation, for the case when the source
is  mm behind the prism. Here we see an excellent agreement between the model and the measured
data: not only is the basic structure of the patterns correctly given but also the size and shape of the
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(a)

(b)

(c)

(d)

(e)

FIGURE . Comparison of (center column) the field patterns observed  mm from the exit face of the square
metamaterial prism at (a) . MHz, (b) . MHz, (c) . MHz, (d) . MHz, and (e) . MHz, with the
patterns calculated using the analytical model (left column) and the numerical model (right column).

high-intensity regions are well described. This model is able to calculate the correct pattern at the
high-frequency end (Figure .a, . MHz). Between the two highest resonances, however, some
extra structure was calculated except when a plane wave source was used. At the lower frequencies,
below  MHz, the agreement between the measured and calculated field patterns is extremely good,
and the whole progression from one pattern to another down and through the resonance frequency
is correctly described by the numerical simulation. The results are shown for ., ., ., and
. MHz as in Figure .b through d, respectively.

14.3.5.2 The Hexagonal Prism

Magnetic field patterns have also been measured for a hexagonal prism, for both the axial and radial
fields. At the highest frequency, . MHz, a simple drum-head-like resonance is observed, with Hz
being maximum at the center and zero at the edges of the prism. Conversely, the radial field is zero
at the center and maximum at the edges and points uniformly outward. As the frequency is reduced,
the intensity fades until the next resonance at . MHz, where a central peak and a ring of intensity
is seen in which the sign of Hz is reversed. In the radial field, we see the complementary pattern.
As the frequency is further reduced, additional “rings” of intensity, modulated by the hexagonal
symmetry of the prism, appear. The results are shown in Figure ., as the left-hand frames in each
set of data.
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29.7 MHz 24.7 MHz

23.2 MHz 22.6 MHz

FIGURE . Comparison of measured and modeled resonant field patterns for the hexagonal prism sample. In
each frequency group, the left frames are the measured patterns and the right frames are calculated. The upper pair of
frames in each case show the axial field amplitude, ∣Hz ∣, whereas the lower pair show the radial field amplitude, ∣Hrad ∣,
whose direction is shown by the arrows.

The right-hand frames of the data sets in Figure . show the results of the numerical simula-
tion, again with the source placed  mm behind the prism, as described in the previous section.
It is clear that the agreement between the measured patterns and the simulated results is extremely
good, both for the axial and radial field components. As for the square prism, in the high-frequency
regime, between the first two resonances (at . and .) the numerical simulation shows an addi-
tional structure that is not observed in the measurements. As pointed out earlier, this region is better
described by simulations using a plane wave source rather than a finite-sized loop source. As the
frequency is reduced toward the resonance of the individual rolls, however, the sequence of patterns
and the progression from one to another are well described by the numerical simulation.

14.3.6 Discussion

The results above show that a numerical simulation based on an effective medium description of a
magnetic metamaterial is able to give a very good description of the observed spatial resonances in
the field patterns around the material samples. However, this was achieved by modifying the actual
experimental layout: with the field source in its correct position, additional structure was present in
the calculations that did not appear in the measurements. This indicated that high spatial-frequency
components arising from the finite size of the source continued to be present in the calculation,
although they were not observed in the measurements. Clearly, spatial frequencies greater than that
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set by the unit cell cannot be sustained in the real material but are present in the model—there is
no cutoff mechanism in an effective medium model. To some extent, this restriction on high spatial
frequencies was simulated by moving the source further away from the sample, to a distance several
times the source diameter, so that the highest spatial components were attenuated before impinging
on the material. As shown above, this approach has been very successful in the lower-frequency
regime but less so between the first two resonances; here the plane-wave excitation (i.e., launching a
uniform magnetic field in the model) gives the best result.

We have also considered an analytical approach within the effective medium framework, but again
there is an additional, sharper structure in the calculation than is observed in experiment. Attempts
to impose a spatial frequency cutoff in the analytical models (e.g., by constraining the upper limit of
integration in Equation .) have been partially successful: the pattern details are indeed smeared
out, and the characteristic features of the spatial resonances are reproduced, but the details of the
patterns are not correct. Nevertheless, overall this simple model gives a surprisingly good account of
the experiments.

The alternative description of the Swiss roll medium as an array of coupled resonators has been
investigated by Zhuromskyy and coworkers [ZSS], using data extracted from a linear array of these
rolls [WSYS], and the response of a hexagonal prism as a function of frequency was calculated.
This calculation showed very similar features to those described here. In particular, as the frequency
is reduced from well above f, a first, uniform resonance is predicted. As the frequency is reduced,
the intensity falls, rising again at the next resonance; this has the central peak and a further ring of
intensity, as seen in our hexagonal prism at . MHz. There is no structure in the pattern between
these two resonances. Similarly, no extra structure is predicted between here and the next resonance,
corresponding to the measured pattern at . MHz. Thereafter, however, much detailed structure is
predicted: indeed, this persists below f, and this is not observed experimentally. Thus, the situation
regarding additional structure is reversed: whereas in the effective medium model this appears at the
higher frequencies and the behavior near f is correctly predicted, in the coupled resonator approach
the reverse is true.

A possible explanation for these observations may be seen by considering the dispersion relation,
which is plotted over the frequency region of interest as Figure ., for two values of the trans-
verse wavevector, kx , corresponding to the prism size and to the element size. This figure shows that
at a given frequency, a higher kx demands higher kz . However, one might expect that the effective
medium models would not be accurate for very large kz , especially for those values corresponding to
wavelengths much smaller than the thickness of the prism, that is, kz ≈  or π/., shown as the
dashed vertical line in Figure ..

Although the effective medium can certainly support large kz , the actual Swiss rolls probably
cannot: no variations in amplitude or phase were observed along the length of  mm long rolls
excited by a loop at one end as was done in [WPY+]. The impact of such a restriction is that the
effective medium model is good for the lower kz , and hence for the lower frequencies, but breaks
down at higher frequencies when there is no mechanism within the model to restrict the kz and
hence the kx . The converse appears to be the case for the coupled resonator description.

Finally, because the wavelength of electromagnetic radiation at these frequencies is so long com-
pared with any length scale in the experiment, we expect the electric and magnetic fields to be
essentially independent of one another. Accordingly, an equivalent dielectric model, with the same
dispersion parameters but with an electric dipole excitation, should show the same results. This sit-
uation, of course, corresponds to the better known plasmon resonances but on an interface that lies
between a dielectric (є positive) and a metal (є negative). We have carried out the MWS calculations
for such a system and indeed find that the results for the electric field are the same as those for the
magnetic system. Accordingly, we can think of the resonances that we measure in the field patterns
as caused by magnetic plasmons [PO].
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FIGURE . Dispersion curves of frequency vs. kz plotted for kx = π (full line) and π (dashed line), correspon-
ding to the two limiting values imposed by the roll diameter and the sample size. The vertical dashed line corresponds
to the prism thickness being half a wavelength.

14.4 RF Imaging

There are two approaches to imaging with RF metamaterials, which we denote as nonfocusing (the
endoscope) and focusing (the lens). In the former case, the material is used on resonance, so that
the permeability is very large, and signal is guided according to Equations . and . from one
face of the material to the other, so that the image of the flux pattern on the entrance face appears on
the exit face. In the second case, the material is used at the frequency where μ = −, the prescription
for the “perfect lens” [Pen], and an image (that would be perfect if the material were lossless) is
formed in free space at a distance from the object equal to twice the metamaterial thickness. Both
approaches have been reported and will be discussed below.

14.4.1 Flux Guiding—Initial Demonstration

In the first demonstration of Swiss rolls used for flux guiding [WPY+], the bulk material was made
up of a bundle of  rolls in a hexagonal close-packed array. These initial Swiss roll structures were
constructed using “ProFilm Chrome” [a proprietary aluminized mylar film, about  μm thick, with
a thermosetting glue layer], which was wound on mandrels  mm long, made of glass-reinforced
plastic (GRP) rod. Following initial characterization, a material was designed and made for use at
the . MHz operating frequency of a Marconi Medical Systems (Cleveland, Ohio) Apollo .T MRI
machine.

The coupling (S) between two short coils, linked by one of the Swiss rolls, was measured as a
function of their separation. Figure . shows the coupling between the coils (S) at . MHz, plot-
ted as a function of the separation of the two coils. The dashed line shows the result without the Swiss
roll present. When a Swiss roll was inserted so that the drive coil was  mm from the end of the roll,
the full line was obtained. It is clear that the Swiss roll acts as a flux-guiding medium, providing
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FIGURE . Measured coupling, S, as a function of the separation of two coils with a Swiss roll inserted between
them (solid line) and with the Swiss roll removed (dashed line). The fixed coil was placed  mm from one end of the
Swiss roll; the extent of the Swiss roll is indicated by the shading.
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FIGURE . The MRI imaging experiment: (a) Schematic of setup. A small coil (diameter  mm) acts as the
receiver, and a thumb is the object to be imaged. The water phantom provides a reference plane. The  mm space
between the phantom and the thumb is filled either with an inert plastic block (not shown) or with Swiss rolls.
(b) A reference image obtained with the “body coils” that are built into the structure of the magnet, showing the thumb
and the reference plane. (c) The image from the small receiver coil when the thumb is supported on an inert plastic
block. Only the phantom is visible. (d) The image from the same coil when the Swiss rolls are inserted. Now the image
of the thumb can be clearly seen.

linkage between coils that may be up to  mm apart in this case. Note that there is little flux
leakage along the length of the core, which is qualitatively different from what would be observed
for a conventional magnetic core with the same permeability of μ ≈ .

This Swiss roll metamaterial was then applied in the MRI environment [WPY+]. The bundle of
rolls was used to duct flux from an object to a remote detector; the results are shown in Figure ..
Since the metamaterial used in these experiments was lossy, all the positional information in the
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image was provided by the spatial encoding system of the MRI machine (see also Section ..).
Nevertheless, it was clear from this work that such metamaterials could perform a potentially useful
and unique function.

14.4.2 Flux Guiding—High-Performance Material

To improve the flux-guiding performance, a material with a lower loss is necessary. To achieve
this, a thicker metal layer is required, along with a low loss dielectric, and hence adhesiveless con-
struction. Very thin flexible PCB provides a good material for this purpose, and Swiss rolls have
been made with a Q ≈  at a resonant frequency near . MHz, by rolling approximately 
turns of the material Espanex SC----FR, which consists of an adhesiveless laminate of an
 μm copper sheet with a . μm polyimide layer, onto a  mm diameter Delrin mandrel. The effec-
tive permeability of the Swiss roll medium was determined as described in Section .. by inserting
a roll into a long solenoid and measuring the changes in the complex impedance that result. On reso-
nance the peak imaginary value of μ′′ =  was found. These rolls were assembled as a hexagonal array
in a balsawood box to create the prism of material whose behavior above resonance was described in
Section ...

At . MHz, the wavelength in vacuo is about  m, so the length scales are much less than
a wavelength and the losses will dominate in Equation .. At resonance, we can write the
permeability as

μz (ωres) = iβ. (.)

Assuming that k
x/β >> k

, Equation . gives

k
z ≈ ik

x/β. (.)

Thus for finite loss, kz has an imaginary component, and the material does not transport the image
perfectly: the higher Fourier components degrade faster with distance. For a material thickness d the
attenuation will become significant when Im(kz)d ≈  or, using Equation . , when kx(max) ≈
β/d. The resolution is therefore limited to

Δ ≈ /kx (max) ≈ d/β. (.)

In the present case, β ≈  and d =  mm, so that Δ ≈  mm, approximately equal to the diameter
of the individual rolls. Thus, we do not expect loss effects to degrade the resolution of any transmitted
structure beyond the intrinsic granularity of the Swiss rolls.

Figure . shows both the cross-section and the plane view of both the measured and sim-
ulated results. These plots demonstrate convincingly that the face-plate behavior is obtained in a
homogeneous (but strongly anisotropic) effective medium and is not just due to guiding through
the individual Swiss rolls. Moreover, in Figure .e, we plot a comparison of the measured pro-
file (dots) with an analytic calculation based on the effective medium formalism that we reported
previously (dashed line) and the profile obtained from the present numerical calculation (full line).
The detailed structure in the measured data arises because we sample discrete rolls, and flux is
trapped inside the individual elements. Clearly, this effect cannot be represented in an effective
medium approximation, so the comparison should be made between the envelope of the data points
and the calculated profiles. The agreement between the two calculated profiles is very good over a
wide intensity range (note the logarithmic scale), and both are accurate envelopes for the measured
points.

To test the two-dimensional (D) imaging performance of the material, an antenna was con-
structed from a pair of antiparallel wires, bent into the shape of the letter M (Figure .a). This
generated a line of magnetic flux, thus providing a characteristic field pattern for imaging. It was
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FIGURE . Axial magnetic field (∣Hz ∣) patterns from the hexagonal prism on resonance: (a) measured intensity
(dB) in the XZ plane; (b) amplitude in the XY plane,  mm above the prism; (c) modeled intensity (dB) in the XZ plane,
showing the jet of flux propagating through the material; (d) amplitude in the XY plane,  mm from the prism; and
(e) comparison of measured and calculated profiles: the points are measured data with the dotted line being a guide to
the eye, the dashed line the analytical profile, and the full line the profile from the numerical calculation.
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FIGURE . (a) The M-shaped antenna, constructed from two antiparallel wires held  mm apart, and (b) the field
pattern observed at . MHz in a plane approximately  mm above the surface of the metamaterial slab. The Swiss roll
structure is overlaid.
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placed horizontally, and the material was positioned on top of it. The transmitted field was measured
by scanning a small probe above the surface of the material, and the pattern thus observed at
. MHz is shown in Figure .b, in which the Swiss roll structure is overlaid on the field pattern
[WHP+].

Figure . clearly shows that the material does indeed act as an image transfer device for the
magnetic field. The shape of the antenna is faithfully reproduced in the output plane, both in the
distribution of the peak intensity and in the “valleys”that bound the M. These mimic the minima
in the input field pattern either side of the central line of flux. The upper-right arm of the M itself
was twisted, so that the flux pattern was launched with a much reduced vertical component. This is
reproduced in the weaker intensity observed in this region.

14.4.3 RF Focusing

To observe focusing effects [Pen], the material should be isotropic and have a refractive index
n = −. If we confine our attention to the (x , z) plane (where z is the direction of propagation and
x is a transverse direction), such material can be constructed by stacking alternate layers axially and
transversely to make a D log pile [WPH]. Moreover, it was also pointed out in [Pen] that when
all relevant lengths are much less than the wavelength, the electric and magnetic components of
electromagnetic radiation are decoupled. In this near field regime, therefore, a magnetic signal can
be focused using material with permeability μ = −, but materials with this property are not found
in nature, so this focusing has not previously been observed. However, using metamaterials allows
us to construct materials with the specified μ = −, and, by working at radiofrequency (RF), the
requirements that both the material elements and the measurement distance should be much smaller
than a wavelength are readily satisfied.

The resolution enhancement, R, that can be achieved with a negative index slab was calculated ana-
lytically in [PR,Ram,SSR+], where it was shown that the limit of resolution, Δ, is determined
by the loss in the material, which here is μ′′, and by the length of the sample, d, to be

R = λ
Δ
= − 

π
ln (μ′′/) λ

d
or Δ = πd

∣ln (μ′′/)∣ . (.)

Using the measured values, we obtain μ′′ = . when μ = −, so that Δ ≈  mm and R ≈ .
A log pile was made [WPH] from Swiss rolls, arranged so that the transverse and axial permeabil-
ities were equal. Magnetic field sources consisting of long thin loops that each generated a line of
magnetic flux were placed  mm behind the slab, and a similar loop was used to measure the
magnetic field, Hz , in the output space [WPH].

The experimental data were analyzed to determine the frequency at which μ′ = −; this was found
to be . MHz. The data were then plotted to show the spatial distribution of the magnetic field
in the image space. This is shown in Figure .. Here, Figure .a shows the distribution of ∣Hz ∣
arising just from the two sources, spaced  mm apart. We note that there is no discernible struc-
ture at  mm from the source plane. When the slab of metamaterial is introduced in the position
indicated, the fields in the image plane are enhanced by a factor of ≈ , and significant structure is
obtained (Figure .b). Near the surface of the metamaterial, there are strong fields with rapid spa-
tial variation—note that the intensity scale is the same in both frames. In the image plane, indicated
by a dashed line in Figure .a and b, distinct modulation can be seen. Plotting the field magnitude
as a function of position in the image plane shows two peaks (Figure .c). As the source separa-
tion is increased, the weakly modulated peak observed at the lowest value of  mm is split into two
peaks with appropriate spacing and increasing contrast. This confirms that the structure in the image
plane does indeed arise from imaging the sources.

The performance of an imaging system is defined by the transfer function, which describes the
(complex) transmission of the system as a function of the spatial frequency. The formula of [SSR+]
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FIGURE . Measured distributions of Hz field intensity (dB) at . MHz: (a) From two sources spaced  mm
apart in free space; (b) as (a) but with the metamaterial slab in place. In these frames, the position of the metamaterial
is indicated by the thin white line and the image plane by the dashed black line. (c) The variation of the field amplitude
in the image plane z =  mm without the metamaterial (full line, X) and with the metamaterial when the sources
are spaced  mm (dashed line),  mm (dotted line), and  mm (dash-dot line) apart. (d) Measured (points) and
calculated (lines) transfer function for a  mm slab of metamaterial with μ′ = − at . MHz: dashed line μ′′ = .,
full line μ′′ = ..

was used to calculate the transfer function using the predicted value of μ′′ = .. This is shown as the
dashed curve in Figure .d. The transfer function was measured and the resulting points were also
plotted in Figure .d. It is clear that the actual value of μ′′ is rather larger than that estimated from
measurements of a single element. A least-squares fitted value is μ′′ = ., and the transfer function
for this value is plotted as the full line in Figure .d. The Rayleigh criterion was applied to estimate
the resolution as ≈λ/, although the measurements actually display a rather higher resolution, as
indicated by the high spatial-frequency tail in Figure .d.

14.4.4 Discussion

The first point that should be noted for these imaging mechanisms is that the resolution Δ is inde-
pendent of the wavelength of operation; see Equations . and .. Thus by working at a long
wavelength in the RF, it is simple to achieve massively subwavelength resolution. The absolute reso-
lution (i.e., Δ itself) depends critically on the loss in the material: the smaller the loss, the better the
resolution. In the case of the flux guiding endoscope, the achievable resolution is also limited by the
finite size of the individual elements, because the image is formed at the surface of the material. In
the case of the lens, on the other hand, the image is removed from the surface, so that the effect of
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granularity, which only persists to a distance about equal to the element size, is smeared out. Thus,
to achieve improved performance of the endoscope, the material needs to be made from smaller ele-
ments with lower loss, whereas to improve the lens just needs lower loss in the material. However,
the improvement that can be achieved in the case of the lens is limited because of the logarithmic
dependence of the resolution on the imaginary part of the permeability.

It should also be noted that these mechanisms show focusing only in the transverse plane: there is
no focusing in the longitudinal direction, and conventional three-dimensional image formation does
not occur. This is self-evident in the case of the endoscope, in which the image is formed on the output
face. For the lens, the subwavelength features in the image arising from the presence of the evanescent
field components, which are “amplified” by the material in such a way that they combine to form the
image observed. Thus the field distribution between the lens and the image plane is complicated and
shows no longitudinal focusing. Such longitudinal focusing has been obtained [FM,MFMB],
but it relies on the detector perturbing the output field, which does not occur here, and, indeed, is
generally undesirable.

14.5 Applications

There are many potential applications of RF metamaterials, but the key feature that will govern how
well they perform is their dispersion: their permeability is a strong function of frequency. Therefore,
the most promising applications are those with narrow bandwidth demands. One possible use is
in antenna applications, where the ability to tailor the permeability of the substrate opens up a wide
range of novel antenna concepts; these are explored elsewhere in this handbook. Another application
area is magnetic resonance, where the signal bandwidth is small, but there are other magnetic fields
present that must not be perturbed. MRI is a particularly promising area in which metamaterial
components might be used.

In an MRI system, the main magnetic field (typically .– Tesla) needs to be homogeneous to
a few parts per million, thus ruling out the introduction of any conventional magnetic material.
Nevertheless, it would be very useful to have access to magnetic materials with which to manipulate
the RF signals (in the range – MHz). Functions such as guiding, focusing, and screening could
substantially enhance the performance of MRI systems. Metamaterials can achieve this, because they
offer a means of obtaining magnetic properties at RF (for example large positive or negative perme-
ability) without affecting the other magnetic fields in the system: here we describe work on a faceplate,
a yoke, waveguides, and flux compressors, all of which could have application in an MRI environment.

14.5.1 RF Endoscope/Faceplate

The first demonstration of RF metamaterials used in an MRI environment [WPY+] was described
earlier (Section ..). Further experiments on this concept have been carried out with the improved
material described in Section ... To do this, the M-shaped antenna was tuned and used to excite
localized field patterns in an NMR-visible polymer sheet (Spenco™), as shown in Figure .. The
NMR signal from the Spenco sheet was detected by using the M-antenna in transmit-receive mode.
In the control experiment (Figure .a), the RF excitation level was set so that signals were received
only from locations close to conductors, so that the conductor pattern was directly visualized in
the image using multislice spin echo imaging performed in planes parallel to the sheet surface,
and these revealed the expected flux patterns (Figure .c). When the metamaterial was placed
between the excitation coil and Spenco sheet (Figure .b), no change of RF excitation amplitude
was required to maximize the signal, and the flux pattern was directly transferred with geometry
preserved (Figure .d) [WPL+].
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Reference Through Swiss Rolls
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“Spenco”
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FIGURE . The MRI experiment with the metamaterial faceplate. (a) The reference layout with the “Spenco”
placed directly on the M-antenna; the measured image is shown in (c). (b) The Swiss roll prism is inserted between
the antenna and the “Spenco”; the image obtained using the M in a transmit-receive mode through the Swiss rolls is
shown in (d).

Behr et al. [BHJ] also used a Swiss roll as a flux guide in an NMR system. It was used to couple
a small solenoid that acted as both source and detector for the RF signal, in this case from the P
resonance at . MHz in a  T field. They found that the signal was transmitted with minimal prop-
agation loss, although there was a significant insertion loss. The potential advantage of using such a
guide is that the signal coils do not have to be optimized for each different sample geometry.

14.5.2 Yoke

A metamaterial yoke made of Swiss rolls could provide a low reluctance pathway, which might assist
in excitation delivery or signal reception in MRI and spectroscopy applications [WHYH].

A set of Swiss rolls designed to resonate at . MHz with a Q of ≈ were made with the Dupont
material Pyralux, and used in the first experiments. Preliminary tests were made on single rolls, by
injecting a signal through a coupling loop at one end and recording the detected signal through a
second loop that could be moved along the roll. As shown in Figure ., the detected signal was inde-
pendent of the position of the receiver. However, it did depend on the length of the roll, being smaller
for longer rolls. Thus the rolls act as good magnetic flux conductors, and the signal is determined by
the reluctance (i.e., the length) of the flux return path.

Joining the individual rolls together introduces extra loss, so a yoke constructed from butt-coupled
single rolls would not be viable. To reduce the corner losses, bundles of seven rolls of different lengths
were used, so that the corners were mitered at  degree, as shown in Figure .a. This arrangement
was much less sensitive to alignment and significantly reduced the corner losses, so that a full yoke
became viable.

The performance of the yoke was tested by using a remote receiver loop to detect flux circulating
through the metamaterial bundles from a source loop placed between the pole pieces. The reference
level was defined when the two loops were in a coplanar configuration without the metamaterial, and
the signal being guided around the yoke was then measured (Figure .b). At first sight, this result
shows perfect coupling, but it must be recalled that this is a resonant system, so we expect the signal
on resonance to be much higher than the reference. Therefore, although this result is encouraging, it
also shows that the device must be improved to be truly useful.
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FIGURE . (a) Schematic diagram of an RF yoke, constructed from bundles of Swiss rolls; the bottom arm con-
sists of two sets of pole pieces with the sample volume between them. The star in the sample volume denotes either the
source point or the required excitation volume within a sample, and the lines on the top and bottom arms represent
alternative positions for exciting or receiver coils. (b) The signal recorded by the remote detector demonstrates that the
flux is being guided from the source through the Swiss roll bundles.

TABLE . Comparison of Junction
Losses for Straight and ○ Joints in
Pyralux, Espanex, and Coupled Systems
Signal (dB) Straight Joint ○ Joint
Pyralux −. −.
Espanex . −.
Espanex + coupler −. −.

The higher-performance material described in Section .. has also been tested. This has a per-
meability and Q that are at least a factor of  higher than those in the Pyralux material above.
The signal down a  mm roll was increased, showing much improved flux ducting. However, the
losses at joints, while reduced compared with those in the Pyralux system, are still unacceptable (see
Table .), so the effect of additional couplers in the form of two connected loops that link the end
of one roll with the next was investigated. This significantly improves the flux linkage, as shown in
Table ., but further work is necessary to optimize this approach.

Allard et al. [AWHH] modeled the performance of such a yoke in an MRI system using an
effective medium model. These calculations showed that significant signal gain should be obtained
when the yoke cross-section is approximately the same as the width of the gap in the yoke, and the
permeability is as large as possible. With achievable values of the permeability (μ ≈ ), a signal gain
of – dB was predicted. In further work [AH], they used a finite difference time domain (FDTD)
approach to calculate the currents in a circuit model of the Swiss roll structure and concluded that
there would in fact be little gain due mostly to the finite Q of the rolls. They did point out, however,
that there is almost no leakage of magnetic flux from the rolls, a point noted in [WPY+] even for
low-Q material.
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14.5.3 Waveguides

The concept of the magneto-inductive waveguide was introduced by Shamonina et al. [SKRSa],
who derived the dispersion relations and considered the current distribution and power flow
through the line. The impact of unmatched ends and the coupling between two guides was treated
by Shamonina and Solymar [SS], and further waveguide device concepts were presented by
Syms et al. [SSS].

Syms et al. [SYS] discuss the performance of waveguides constructed from arrays of up to 
metamaterial elements, formed into a planar ring resonator at  MHz, and reduce the propagation
loss to . dB per element. Consideration also has to be given to the termination of such guides
[SSS], so that the insertion loss is minimized. Sydoruk et al. [SRZ+] built waveguide structures
from their split-pipe elements and considered the coupling between the lines. By assembling the
elements in a ring, Solymar et al. [SZS+] proposed a device with a rotational resonance, which
could be potentially used in the detection of NMR signals.

14.5.4 Flux Compressor

To use our metamaterials successfully in the MRI environment, it will be necessary to develop various
components that can be incorporated into the metamaterial assemblies. One such component, a flux
compressor, is intended to collect a signal from a significant area and output it to a much smaller one
or vice versa. A prototype device [WSSY], shown in Figure .a, was made from  turns of  mm
diameter wire, and wound on a tapered mandrel, with maximum and minimum diameters of  and
 mm, respectively. Its length was  mm. The compressor was tuned with . pF to give a frequency
of ≈ MHz. The quality factor was Q ≈ .

The compressor was tested by placing the wide end on a  mm diameter transmitter loop and
measuring the transmission to a receiver loop ( or  mm in diameter) at the other end. The dif-
ference between the  and  mm loop measurements at the compressor tip was only ≈ dB, whereas
the difference in reference signal in this plane was ≈ dB. Thus it is clear that the flux was confined
to the  mm exit diameter and the compressor concept is valid. On resonance, we see a significant
enhancement of the compressed signal, and such a device could play a role in coupling elements of
unequal size (for example coupling a pole piece to an MM yoke).

(a) (b)

FIGURE . Prototype flux compressors: (a) The tapered solenoid device and (b) the resonant ring structure.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

RF Metamaterials 14-25

An alternative device can be built from a sequence of resonant loops, wound on different diame-
ter formers and all tuned to the same frequency (see Figure .b). Coil–Coil interactions result in
magneto-inductive (MI) waves, which propagate along the coupled coils. Measurements show that
the device can operate over an appreciable bandwidth and that the overall transmission levels are
little affected by the precise spacing of the coils, so the design of these devices appears quite robust.

14.6 Conclusion

In this chapter, we have reviewed the development and properties of metamaterials in the RF band. At
these low frequencies, the wavelength of electromagnetic radiation is very long, so that the condition
for homogenization, that is, that the structure and its unit cell should be much smaller than the
wavelength, is easily satisfied. Moreover, because measurements can be performed in the very near
field, it is necessary to manipulate only the permeability of the material to control the behavior of RF
magnetic fields.

The basic magnetic element that is used at higher frequency, the split ring resonator, is not suitable
for use at RF, but an alternative structure, the Swiss roll, is ideal. It is compact, can be made to resonate
at frequencies as low as  MHz, and displays intense magnetic activity: when assembled into a bulk
material, the negative permeability region extends to a bandwidth Δω/ω ≈ %. Moreover, there
is a wide range of permeability, from large positive values through zero to large negative values, to
explore.

The applicability of the mean field or effective medium approach has been tested by measuring
the field patterns that are induced on the surface of metamaterial prisms when excited by a point
source on the opposite surface and comparing the data to those calculated assuming the prism to be
a homogeneous block of material with an effective permeability derived from measurements. At high
spatial frequency, mean field theory breaks down, because the material is granular and the theory
contains no mechanism for limiting the spatial frequencies that propagate. For all other cases, the
agreement between the measured and the calculated distributions is excellent.

The materials have been used to demonstrate subwavelength imaging, both as an endo-
scope/faceplate and as a lens. In the former case, the material is anisotropic and used on resonance,
when the permeability is large, and acts to transfer the field pattern from the input face faithfully to
the output face. The lens requires an isotropic material with a permeability of μ = − that focuses
both the propogating and evanescent waves to produce a “perfect” image. The performance of both
mechanisms is in accord with the theory and is dominated by the losses in the material.

Finally, possible applications in the fields of MRI have been explored, and potential device proto-
types have been tested, to show that metamaterials can indeed perform useful functions. However,
there is much work still to be done before fully practical devices can be realized.
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15.1 Introduction

The wire medium (or the rodded medium) consisting of a two-dimensional (D) or three-
dimensional (D) rectangular lattice of low-loss wire grids (Figure .) has been known for a long
time, and it has been extensively studied in microwave lens design [–] and for the synthesis of
surface reactance []. The grids of resistive wires were considered in []. The single-wire medium
(WM) (Figure .a) is usually described at low frequencies as a uniaxial material, whose relative
permittivity dyadic can be written as (the wires are in the z-direction)

є = єh(ux ux + uy uy) + єzuzuz , (.)

where єz is expressed by the plasma formula:

єz = єh ( −
ω

p

ωєh
) = єh ( −

k
p

k ) . (.)

Here єh is the permittivity of the host medium, k =ω/c√єh = ko
√

єh, and c is the speed of light. The
constant ωp (or the corresponding kp) is an equivalent “plasma frequency” that gives grounds to call
the wire medium as “artificial plasma.” Different models exist for the plasma frequency, which are
discussed Section ..

Interest in wire media was renewed at the end of the last decade in connection with engineer-
ing of materials with negative parameters, sometimes called double-negative materials (DNM).

15-1
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FIGURE . The wire media. (a) Two-dimensional lattice (a single WM), electric field in z-direction. (b) Three-
dimensional lattice (a double WM), electric field in y−z plane. (c) Three-dimensional lattice (a triple WM), arbitrary
polarization.

The first DNM proposed by Smith et al. consists of a lattice of long metal strips and split-ring
resonators []. Now the wire medium is a commonly used component of artificial metamaterials
for microwave and optical applications []. Despite the conventional Drude formula (Equation .)
examined experimentally in early works, only waves propagating normally to the wires were inves-
tigated. However, it has been shown that if the wave vector in a wire medium has a nonzero
component along the wires, the plasma model (Equation .) gives nonphysical results []. The
plasma model has been corrected introducing terms describing the spatial dispersion (SD) into
Equation ..

A series of works were devoted to three-dimensional lattices of wires as a continuation of inves-
tigations implemented in s. An artificial structure, composed of infinite wires arranged in a
cubic lattice joined at the corners of the lattice, was considered in []. Such a medium is expected
to behave as an isotropic electromagnetic crystal, with a negative permittivity at low frequencies
given by Equation .. This model does not take into account SD, which may be expected there
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in analogy with the D case. Also at the same time, a D wire mesh grid with covalently bonded dia-
mond structure was studied in []. Last years double and triple wire media formed of connected and
disconnected D lattices have been studied in [–], where wave properties and effects of SD were
investigated.

The chapter is organized as follows. In Section . we discuss a nonlocal model, which takes into
account SD. Important consequences of the SD are appearance of additional waves and necessity to
use additional boundary conditions (ABC) for solution of any boundary-value problems. We demon-
strate that application of the local model leads to appearance of nonphysical effects even for simple
cases. In Section . we consider electromagnetic properties of unbounded double-wire medium
(DWM) using effective medium (EM) theory. Applicability of this approach was repeatedly con-
firmed by numerical simulations for different situations. The Poynting vector and the group velocity
in DWM are discussed. In Section ., the spectrum of eigenmodes in a rectangular waveguide, filled
with WM, is considered, and in Section . we offer an overview of some applications of wire media.

Where it is possible, we use simple analytical models for description of structures, based on WM,
and consider their applicability comparing with results of numerical simulations. Details of special
numerical methods developed for WM can be found in referred articles.

15.2 Effective Medium Model and Strong Spatial Dispersion in
Wire Media

In this section we show that the Drude formula (Equation .) for effective permittivity leads to
unphysical results and must be substituted by a nonlocal dispersive relation [].

15.2.1 Plasma Frequency for Wire Media

The plasma frequency corresponding to collective oscillations of electron density is expressed as

ω
p =

ne

єmeff
, (.)

where n, e , and meff are the density, charge, and effective mass of the electron, respectively. For
metals ωp typically is in the ultraviolet region. It seems to be reasonable to reduce the plasma fre-
quency to the microwave range cutting thin wires, forming a D periodic structure, from a bulk metal.
Then we obtain collective oscillations of electrons along wires. The density of these active electrons
will be

neff = n
πr

a , (.)

where a and r are the lattice constant and radius of a wire, respectively. It turned out that in contrast
to the case of natural plasma, a restoring force acting on the electron not only has to work against
the rest mass of the electrons but also against self-inductance of the wire structure []. Moreover,
the effect of self-inductance considerably exceeds the effect of the rest mass, and one can neglect the
last one for high-conductive metals in the microwave range. After that both the electron density and
the effective mass drop from the final expression for the plasma frequency. The most generally used
formulas for the plasma frequency were proposed in [,,]:

. Formula from []:

k
p =

π
a ln(a/r) . (.)
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FIGURE . Plasma frequency fp in GHz, calculated using Equation .: dotted line, Equation .: solid line, and
Equation .: dashed line.

. Formula from []:

k
p =

π
a(ln(a/πr) + .) . (.)

. Formula from []:

k
p =

π
a


ln(a/r(a − r)) . (.)

Derivation of the first formula was outlined earlier, and this formula does not take into account inter-
action between wires. The second formula is derived from consideration of WM as a photonic crystal,
and in the third case a quasistatic model was used. Figure . illustrates comparison between the fp,
calculated using different formulas for thin wires (r/a <.) and a =  cm.

15.2.2 Spatial Dispersion

In fact, assuming that the medium can be described by the uniaxial dyadic (Equation .), the dis-
persion equation for extraordinary plane waves (Ez ≠ ) with the wave vector (qx , qy , qz)T in this
uniaxial dielectric reads [,]

єh(q
x + q

y) = є(k − q
z). (.)

On the other hand, these extraordinary waves correspond to the well-known TM (to z) set of modes,
allowed by the invariance of the boundary conditions along z. Thus, for any extraordinary wave
traveling with a phase constant qz along the z-axis, the Ez field must satisfy the Helmholtz equation:

{ ∂
∂x +

∂
∂y + (k

 − q
z)}Ez = , (.)
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with the boundary condition Ez =  on the wires. It is clear from this equation that any “plane”
extraordinary wave must satisfy

k(qx , qy , qz) =
√

k(qx , qy , ) + q
z . (.)

This result is incompatible with Equations . and ., as can be easily seen by substitution of
Equation . into Equation .. However, if we choose

є(k, qz) = єh ( −
k

p

k − q
z
) (.)

instead of Equation ., then Equation . becomes compatible with Equation ., giving the
following dispersion equation for the plane wave:

q ≡ q
x + q

y + q
z = k − k

p, (.)

where we have assumed that qz ≠ k (the case with qz = k is analyzed below). The above ratio-
nale suggests that the considered wire media can still be described by the permittivity dyadic
(Equation .), but the axial permittivity є must be a nonlocal parameter of the form given
in Equation .. The conventional expression (Equation .) would only be a particular case of
Equation ., valid for wave propagation in the x–y plane.

Note that Equation . was proposed first by Shvets []. The main difference between the local
uniaxial model, Equation ., and the nonlocal model, Equation ., for the parallel WM is that
the nonlocal model predicts a stop band (at frequencies below ω =ωp/

√єhμh) for extraordinary
waves propagating along any direction in the media. On the contrary, Equations . and . predict
propagation of extraordinary waves at any frequency provided qz > k =ω√єhμh. Thus, both mod-
els predict qualitatively very different behaviors, even near the cutoff plasma frequency ω, where
q →  i.e., a/λ → ). That is, the nonlocality of the proposed constitutive relations affects the elec-
tromagnetic response of the medium even in the very large wavelength limit, thus being important
for any values of the a/λ ratio inside the medium. Other relevant differences between the predictions
of both models are developed along this paper.

The rigorous proof of Equation . is based on the local-field approach, which is described in
detail in []. There it was shown that in the thin WM and for qz ≠ k, two sets of modes can propagate:
ordinary (with Ez =) and extraordinary (with Ez ≠ ) waves. The ordinary waves do not interact with
the wires and propagate in the host media. For extraordinary waves, an explicit dispersion equation
connecting the wave vector q =(qx , qy , qz)T with the wave number of the host isotropic matrix k has
been derived in [].

Let us consider the modes in WM, following from the EM theory. Assuming for simplicity
qx = (this restriction does not change the spectrum of modes) and substituting Equation .
into the Maxwell equations, we can separate them into two subsystems, describing ordinary and
extraordinary waves. For the ordinary waves, the equations are

−qz Hy +
k − q

y

kη
Ex = ,

qz Ex − kηHy = , (.)

(denoting η as the free-space wave impedance), which results in the propagation factor for the
ordinary wave: q

z = k − q
y . There are no effects due to wires for ordinary waves.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

15-6 Theory and Phenomena of Metamaterials

Assuming qz ≠  for the fields of extraordinary waves, which is the most interesting case, the
following equations are obtained:

qz Ey +
k

єz − q
y

kєz
ηHx = ,

qz Hx +
kєh

η
Ey = 

(.)

which give the wave equation for the magnetic field Hx after eliminating Ey and Ez :

[k −
q

y

єz
− q

z]Hx = . (.)

Since єz = єh ( − k
p/k − q

z), the wave equation reads

[k − q
z] [k − q

y − q
z − k

p]Hx = . (.)

Thus we have obtained two dispersion relations:

k = q
z , k = q

y + q
z + k

p, (.)

which determine two separate independent solutions, denoted by the TEM wave and the TM wave,
respectively. It follows from Equation . that propagation (or attenuation) of the TM mode is
isotropic in the y−z plane, which is rather surprising since the medium is strongly anisotropic
(according to its geometry). However, it can be shown from the very fundamental facts summarized
in Equations . and ..

Due to the presence of two waves with the same polarization, ABC are needed for the solution of
any boundary-value problem for TM-polarized waves. It was pointed out first by Pekar [] ()
that the well-known Maxwell’s boundary conditions (Equation .) are not sufficient to connect the
amplitudes of the incident and transmitted waves in adjoining media, if more than one independent
wave can propagate in any medium. Let us illustrate it with the simplest problem of a plane-wave
refraction at an air–WM interface. Assuming the y-component of the electric field of the incident
wave to be equal to unity and applying the continuity conditions for the tangential field components
results in following formulation of the reflection problem:

 + RE = E
+
+ E
−

( − RE)/Z = E
+
/Z
+
+ E
−
/Z
−

, (.)

where
RE is the unknown reflection coefficient for the electric field
E
+

, E
−

are unknown amplitudes of refracted waves in the wire medium
Z is the wave impedance (TM) in free space
Z
±

is the wave impedances of refracted waves

Obviously the system is undetermined. Thus the problem becomes similar to one appearing in
crystallooptics, where excitons arise and SD cannot be neglected []. Unfortunately, universal ABCs
are absent, and they should be derived in each particular case based on physical considerations.
ABCs for the WM were derived by Silveirinha from the condition of zero current on wires at the
interface []. This ABC is the continuity of єhEn at the interface, where En is the normal component
of the electric field.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Wire Media 15-7

d

Z

Y

FIGURE . Parallel-plate waveguide, filled with WM.

15.2.3 Inconsistence of the Local Model

Despite the model in Equation ., taking into account SD, was proposed in  and successfully
used in many publications on WM, there still appear works where the old local model is used and
it is even declared that the local model better describes some situations. Here we demonstrate how
the application of the local model predicts nonexisting effects and analyze the origin of unphysical
solutions.

First, consider the guidance of electromagnetic waves in a parallel-plate waveguide infinite in the
x- and y-directions and bounded by parallel, perfectly conducting planes orthogonal to the z-axis
(see Figure .). Separation between the conducting walls is d. We assume that this waveguide is
filled with a WM with the wires along the z-direction. We consider eigenwave propagation along the
x-axis (orthogonal to the figure plane) of the TMm mode (Hy , Ex , Ez ≠ ). For waveguides filled by
a local uniaxial dielectric with anisotropy axis along the z-direction, we have from Equation .

єhq
x = є (k − q

z) qx =
√

є
єh
[k − (mπ

d )
], (.)

where є is expressed by Equation .. Let m = . If є > , Equation . gives a cutoff for k < π/d and
propagation for k > π/d. In contrast, if є <, propagation is allowed when k < π/d (and forbidden for
k > π/d). Within this passband a backward wave (dq/dω <) propagates. Moreover, for high-order
“modes” the larger the m the lower the cutoff frequency! This amazing effect disappears if one fills
the waveguide with the analyzed nonlocal WM. Using Equation ., we have in this case

q
x + q

z = k − k
p qx =

√
k − k

p − (mπ
d )


, (.)

and we obtain the usual frequency behavior: cutoff of mth mode for k <
√
(mπ/d) + k

p and prop-

agation for k >
√
(mπ/d) + k

p. An increase in the cutoff frequency is observed compared with the
case when there is no filling medium.

Next consider a plane wave reflection from a grounded WM slab (see Figure .), and compare
the results given by the local and nonlocal models, taking into account SD and ABC. Parameters of
the WM slab are the following: a =  mm, r =. mm, d =  mm, and єh = . The incidence angle
equals ○. Then the plasma frequency of WM equals . GHz.

We do not give here trivial formulas describing this process in one-wave (local) theory but pay
attention to the normal component of a wave vector in the WM slab:

qz =
√

k − єh

є
q

y . (.)

It is important that qz →∞ if k → kp. It causes an infinite (countable) number of oscillations of the
phase of reflected wave near the plasma frequency (see Figure .). At the same time, the SD causes
propagation of TEM and TM waves where qz are expressed by formulas given in Equation .,
and both of them do not tend to infinity near the plasma frequency. Solution of the wave reflection
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FIGURE . Plane wave reflection from a grounded WM slab.
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FIGURE . Phase of the reflected wave. The solid curve corresponds to the local model and the dashed curve
corresponds to the nonlocal model.

problem using a nonlocal model and ABC is similar to the one described in [] for transmission
through a finite-thickness WM slab. The problem is reduced to a five-order system of linear equations
because TEM and TM modes are coupled at the interface with air only. The results given by local
and nonlocal models do not differ much at low frequencies, but oscillations are not obtained from
the nonlocal model. Of course, there may be a question: Which model gives more accurate results?
However, we do not see physical reasons for qz →∞ near the plasma frequency. The accuracy of the
nonlocal model was confirmed numerically for the problem of a wave transmission through a WM
slab []. Comparison of the results given by the nonlocal model and full-wave simulations for the
DWM, performed in [,,], shows applicability of this theory for even more complex media.

15.2.4 Nonlocal Model for a Periodic Array of є-Negative Rods

In the previous section, we discussed WM composed of perfectly conducting wires and exhibiting
negative є below the plasma frequency. The interesting question is about effective permittivity of
WM composed of rods whose єm is already negative. This class of materials includes periodic arrays
of metal rods in the optical range and metal wires with finite conductivity. Homogenization of such a
medium was implemented in Ref. [] (see also []). The following expressions have been obtained
for the effective permittivity dyadic components:
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єt = єx x = єy y =  + 


fV

єm+єh
єm−єh

− 
(.)

єzz(ω, qz) =  + 
єh

(єm−єh) fV
− k

−q
z

k
p

, (.)

where fV = πr/a is the volume fraction of the rods, kp is the plasma wave number defined for
perfectly conducting wires, and єm is defined by the Drude model:

єm(ω) = є (є
∞
− ω

m

ω − jωΓ
) . (.)

Here ωm and Γ are the plasma and damping frequencies of the material, respectively.
Substitution of this dyadic into Maxwell’s equations gives the following expression for wave

number in unbounded medium:

q
z =



{єh(k − k

∥
) + (k + β

c − k
p) ±
√
[єt(k − k

∥
) − (k + β

c − k
p)]


+ єtk

∥
k

p} , (.)

where

β
c = −

єhk
p

(єm − єh) fV
, k

∥
= єzz (k − q

z) . (.)

This expression determines two eigenwaves propagating in both directions, one of which may be
evanescent. The eigenwave, corresponding to the sign “+" in Equation ., can be referred to as a
quasi-TEM mode. It propagates at any low frequencies, but unlike proper TEM mode its propagation
constant qz depends on geometry, frequency, and transversal wave number k

∥
.

Figure . illustrates the dependence of the slow-wave factor on the propagation direction. Silver
is taken as a material at  THz (λ =  μm), єm =  and єm ≈ − − j, as in []. The imaginary
part grows with the slow-wave factor.
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FIGURE . Slow-wave factor of quasi-TEM mode qz/k versus the normalized transversal wave number qz a
calculated at a = . μm and different r/a. Real and imaginary parts of qz/k are shown by solid and dashed lines,
respectively.
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15.3 Effective Medium Theory in Unbounded
Double-Wire Medium

In the EM approach the dense D wire grid is considered as a homogeneous anisotropic medium
with SD. For considering a DWM let us take a case where the wires are along y and z directions
and are nonconnected. We consider waves in unbounded space filled with such medium, assuming
e j(ωt−qx x−q y y−qz z) space–time dependence of the fields. Because of the SD the crystal is anisotropic
in the yz-plane even for a square cell, i.e., the DWM is a biaxial crystal with the permittivity dyadic:

є = єhux ux + єyuyuy + єzuzuz , (.)

where [,–]

єy = єh ( −
k

p

k
−q

y
) , єz = єh ( −

k
p

k
−q

z
) . (.)

It is important to note that the model in Equation . works both for real and imaginary qy and qz ,
i.e., for propagating and evanescent waves, respectively [].

Considering an arbitrary direction of wave propagation in space, the wave vector is q= qx ux +
qyuy + qzuz . Substituting the expressions for the permittivity dyadic (Equations . and .) into
the Maxwell equations results in the following eigenvalue equation:

det =

��������������������

k − q
y − q

z qx qy qx qz

qx qy k ( − k
p

k
−q

y
) − q

x − q
z qy qz

qx qz qy qz k ( − k
p

k
−q

z
) − q

x − q
y

��������������������

= . (.)

The determinant in Equation . results in a fourth-order equation for k for a fixed set qx , qy , and
qz . To illustrate the dispersion surfaces we denote qx = q cos θ, qy = q sin θ cos φ, and qz = q sin θ sin φ.
The surface of the normalized frequency k/kp versus θ and φ consists of separate branches corre-
sponding to different propagating modes or passbands as illustrated in Figure .. Especially, at the
plane θ = π/ the lowest and two higher-order modes are the extraordinary modes and the second
one is the ordinary mode. It forms the second passband when qx ≠ . Both first and second modes
cannot propagate in the x-direction, i.e., at θ =, when the electric field vector lies in the plane of
wires. Also the first and the second mode cannot propagate at any θ if φ = or φ = π/, where the
vector of the electric field is parallel to the wires of one of the lattices. In these special cases the
eigenvalue equation reduces to k = q

x + q
y + k

p (propagation in the x y-plane) and k = q
x + q

z + k
p

(propagation in the xz-plane), respectively. Third and fourth passbands lie in the region above the
plasma resonance and are presented by surfaces, merged at φ = and φ = π/ for identical wire arrays
(having the same plasma frequencies).

15.3.1 Modes in the yz-Plane

Let us consider in more detail the propagation in the (yz-) plane. The wave vector is q = qyuy +
qzuz , and the determinant Equation . splits into two parts. This is also found when inserting the
permittivity dyadic in the Maxwell equations when they separate into two subsystems, describing
ordinary and extraordinary waves as presented Section .. For the ordinary wave the equation for
the propagation factor is q

z = k − q
y . There are no effects due to wires for the ordinary wave.

For extraordinary waves, which is the most interesting case, solving the eigenvalue equation using
the effective medium model, we have the permittivities (Equations . and .). In general,
the plasma numbers kp may be different due to different dimensions and placements of wires in
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FIGURE . Surface of the normalized frequency k/kp versus the angles θ and φ calculated for qa = .π and
kp a = .. (From Nefedov, I.S., Viitanen, A.J., and Tretyakov, S.A., Phys. Rev. E, , , . With permission.)

y- and z-directions. Here, for simplicity, we assume the same plasma numbers. After evaluating the
dispersion relation, we have a cubic equation for k:

k − (q
y + q

z + k
p)k + [(q

y + q
z + k

p) + q
y q

z]k − q
y q

z(q
y + q

z + k
p) = . (.)

Writing qy = q cos φ and qz = q sin φ, the cubic equation (Equation .) gives three different real
solutions for k, indicating three existing eigenwaves. One mode is at very low frequencies, and the
two other ones exist a little above the plasma frequency. The EM model is applicable both at low and
at quite high frequencies above the plasma resonance.

Figure . demonstrates the dispersion characteristics of the propagating modes, calculated using
the EM approach and compared with the results of []. Parameters of the WM are taken the same as
in []: the wire radius r =.a, q =.π/a, and δ = a/ where a is the lattice constant. The plasma
wave number calculated according to the model [] equals kpa ≈ . for this geometry (in []
kpa ≈ . is used).

15.3.2 Evanescent Modes

When considering the evanescent modes in the DWM we assume qy = jq cos φ and qz = jq sin φ with
q =.π/a. The EM equation (Equation .) gives three real solutions for k, which are illustrated in
Figure .a and b. In these figures the results are given using the EM and the full-wave theories. Two
modes were found a little below the plasma resonance (see Figure .b), and the third one within
the same spectral range as the lowest propagating mode (compare with Figures .a and .a).

Further, if we fix the normalized frequency k and calculate the corresponding propagation con-
stants qz and qy , the EM theory gives four solutions, two for each propagation direction. Figure .
illustrates such dependence, calculated at ka =.π and using both EM theory and the electrodynam-
ical models. One mode can propagate at very low frequencies under conditions qy > k, qx = []
(see Figure .), the curve marked by q′z (q′z = ∣Re(qz)∣, Im(qz)=). Since this solution is a real
one, the respective hyperbolic-type dispersion line can be called isofrequency. At the same time, the
second solution, shown by the curve q′′z (q′′z = Im(qz), Re(qz)=), is pure imaginary at qy > k.
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FIGURE . Dispersion of low-order propagating modes, calculated using electrodynamical and EM models in
comparison with numerical results []. Normalized frequency for the propagating modes versus the angle φ. The
solid curves correspond to our numerical results, the dashed curves correspond to the EM model, and the dotted
curves show results [] excluding the dispersionless mode. (a) The low-frequency mode and (b) the two modes above
the plasma resonance.

0.06

0.05

0.04

0.03

0.02

0.01

0.00

1.365
1.360
1.355
1.350
1.345
1.340
1.335
1.330
1.325

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

ka ka

(a) (b)/π /π

FIGURE . Dispersion of evanescent modes, electrodynamical calculation (solid curves), and the EM theory
(dashed curves).

At qy < k there are four complex solutions:

qz = q′z + jq′′z , qz = −q′z + jq′′z , qz = q′z − jq′′z , qz = −q′z − jq′′z , (.)

where q′z = ∣Re(qz)∣, q′′z = ∣Im(qz)∣. The real and imaginary parts of qz are shown in Figure ..
If we consider an eigenvalue problem, these four solutions are independent, but such solutions are
unphysical because the amplitude of the Poynting vector will increase or decrease along the propa-
gation direction, which is impossible in a lossless medium. However, if we combine the solutions in
the form of standing waves with complex amplitudes,

E(z) = ee−q′′z z cos q′zz, E(z) = ee−q′′z z sin q′zz,

E(z) = eeq′′z z cos q′zz, E(z) = eeq′′z z sin q′zz, (.)
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FIGURE . Dispersion diagram qz versus qy . The real and imaginary parts of qz calculated using the electrody-
namical model (solid curves) and the EM theory (dashed curves).

this difficulty disappears because the time-averaged Poynting vector is zero at any z. That is why
the basis in Equation . is more appropriate than the exponential one at least for the solution of
problems of wave reflection from an interface of DWM. These solutions also suggest a possibility for
existence of localized electromagnetic fields near inhomogeneities.

15.3.3 Propagation in the z-Direction

Let us consider an important case when k and qy are fixed real numbers and we have to determine the
respective qz . Such a problem arises when we solve the problem of wave reflection from a medium
interface. The propagation factor in the z-direction is obtained from Equation .. Solutions for q

z
have the form

q
z, =

k − kk
p − kq

y + k
pq

y + q
y ∓ qy

√
(q

y − k)((k
p + q

y) − k(k
p + q

y))
(k − q

y)
. (.)

Thus, there exist four solutions for qz , which are, in general, complex numbers describing propagating
or evanescent waves in the z-direction.

In the reflection from the interface of the WM, the wave vector component qy has the fixed value
qy = k sin θ, where θ is the incidence angle. Although the waves can propagate in the DWM at
very low frequencies, we always have the case qy < k and obtain complex solutions for qz . In this
example єh =  is assumed. Two waves propagating or attenuating in both directions follow from the
EM theory (Equation .). The conventional isotropic plasma model leads to only one wave for a
certain direction, namely, qz =

√
k

oє − q
y , where є = єh( − k

p/k
oєh).

Real and imaginary parts of qz versus the normalized frequency k/kp are presented in Figure .
for θ = π/. In the conventional model (dotted curve) qz is imaginary when k <K = kp/ cos θ, and
it is real when k > K. The solution of the conventional plasma model differs essentially from the
solution obtained from the EM theory between K and K, because it gives an imaginary value of qz
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FIGURE . Real and imaginary parts of qz , calculated using the electrodynamical model (solid curves) and the
EM theory (dashed curves). The dotted curve shows qz given by the conventional plasma model.

instead of a real one of the EM model. Analyzing Equation . one can see that there exist three
frequency regions, corresponding to different kinds of solution.

The first one is at the low-frequency band, k <K, where

K = kp

√


sin θ

√
 − cos θ

cos θ
. (.)

There the propagation constant qz is complex despite the fact that we have assumed the lossless
medium (Figure .). Actually, there are two complex conjugate solutions for each Re(qz) > .
The complex waves in lossless media do not transfer energy, and they are found in stop-band regions
of periodic structures, ferrite films, and other complex media.

The second frequency band is K < k <K. In this region the eigenwaves are propagating.
At point K one of the solutions is zero, and within the range K < k <K we have a forward wave and
a backward wave with respect to the interface that follows from the analysis of the isofrequencies,
presented in Figure . with the value θ = π/. It means that one wave has the negative projection
of the wave vector to the interface inner normal (i.e., the wave vector makes the negative angle to
the interface) and another wave has the positive projection of the wave vector to the interface inner
normal (i.e., the wave vector makes the positive angle to the interface). Directions of the refracted
waves can also be found from these isofrequencies. In both these waves the group velocity makes the
positive angle with the interface. Similar isofrequencies are presented in []. In the cases θ = π/
and θ = both a positive and a negative refraction takes place for different waves.

Finally, for k >K both waves are propagating forward waves. Electrodynamical calculations con-
firm the results of the EM theory with a high accuracy in a wide spectral range, including the regions
of evanescent and propagating waves as shown in Figure .. Note that point K corresponds to
the edge of the passband in the conventional plasma model. Thus, the model taking into account SD
leads to a considerably more complicated structure of eigenwaves than the conventional model of
isotropic plasma, and it is in very good agreement with the results of the full-wave analysis.
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FIGURE . Isofrequencies, calculated at k/kp = . and their sections by the lines qy = k sin θ are shown for the
different θ. Dashed and solid arrows show directions of the phase and group velocities, respectively.

15.3.4 Group Velocity and Poynting Vector in DWM

In this section we consider the group velocity and Poynting vectors of waves in the yz-plane in a
DWM. It is well known that the group velocity is defined as

vg = gradqω. (.)

The Poynting vector that determines the energy density flow in media with SD has the form []:

S = 


Re{EH∗} − ω


∂є i k

∂q
E∗i Ek . (.)

Because of SD, the Poynting vector, in addition to the conventional cross-product term, also has an
additional term with derivatives with respect to the wave vector components. The permittivity dyadic
components are expressed by Equation . for DWM. Their partial derivatives read []:

∂єx

∂qx
= ,

∂єy

∂qy
= −

k
pqy

(k − q
y) ,

∂єz

∂qz
= −

k
pqz

(k − q
z) . (.)

We apply this expression to find the Poynting vector of the two eigenwaves in WM. The Poynting
vector of each wave consists of the cross-product term (the first term):

S = ∣Hx ∣
ωєo

[
qy(k − q

z)
k − q

z − k
p

uy +
qz(k − q

y)
k − q

y − k
p

uz] (.)

and the spatial dispersive term (the second term)

Sd = ∣Hx ∣
ωєo

[
qy q

z k
p

(k − q
y − k

p) uy +
qz q

y k
p

(k − q
z − k

p) uz] . (.)

The group velocity describes the energy flow of the electromagnetic field. The direction of the group
velocity must coincide with the direction of the Poynting vector. It is shown that the direction of the
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FIGURE . Solid curves show the angle ψ between the group velocity and the z-axis versus qy . Dashed curves
show the angle between S and the z-axis versus qy . Dotted curves show the isofrequencies.

Poynting vector of each eigenwave coincides exactly with the direction of the group velocity when
the term due to SD is included. In framework of EM theory the group velocity and the energy density
w were found analytically. Strict accuracy of the identity vg =S/w was checked. Otherwise, the group
velocity vector and the Poynting vector are not parallel. The calculations in Figure . are done at
the frequency corresponding to k/kp = .. In Figure . it is also shown that disregarding the term
due to SD leads to a strongly incorrect result.

15.4 Eigenmodes in a Waveguide Filled with Wire Medium

Recently J. Esteban et al. [] have shown that if one inserts a WM sample into a rectangular waveg-
uide (see Figure .), the propagation of backward waves below TM mode cutoff becomes possible.
Thus, it is not necessary to be in the presence of a double-negative metamaterial; a negative per-
mittivity is sufficient. The following explanation, based on the EM model, was given in [] for the
existence of backward waves in such a structure. If mutually perpendicular wires are identical, the
medium inside the waveguide can be considered as a uniaxial crystal with permittivity dyadic compo-
nents єt = єx x = єy y , єzz = єh, where єt is expressed by the conventional Drude formula (Equation .)
and is negative at low frequencies. Then the known formula for the propagation constant γ of guided
TM modes in a waveguide filled with a uniaxial crystal is used:

γ = єt [k
 − (q

z + q
y)/єh] , (.)

where for a square cross-section and TM mode, qz = qy = π/a. Obviously, Equation . predicts
propagating waves below cutoff and plasma resonance. Moreover, it gives a countable spectrum of
propagating waves in any rectangular waveguide at low frequencies, which can be seen if one substi-
tutes qz =mπ/a, qy = nπ/a. For arbitrary low k, we can find m and n such that wave propagation
becomes possible, which looks weird.
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FIGURE . Double-wire medium in a square cross section waveguide. (From Nefedov, I. S., Dardenne, X., Craeye,
C., and Tretyakov, S. A., Microwave Opt. Technol. Lett., , , . With permission.)

This structure was examined by Nefedov et al. [] revising the explanation given by the authors
of [] for the effect of backward wave propagation. As was shown earlier, similar unphysical effects
disappear if one uses a nonlocal model that takes into account SD. Namely, application of
Equation . yields the following expression for γ, assuming that qy = qz = π/a []:

γ = k
єh − k

p ±
q

z k
p

k
єh − q

z
− q

z . (.)

This formula does not allow propagation of a countable spectrum of propagating modes, in opposi-
tion to Equation .. However, Equation . relates to the nonconnected geometry, and in [] the
connected topology was considered (see Figure of []). The applicability of Equations . and .
for both geometries as well as the difference between their spectra of modes is discussed hereunder.

We first consider a waveguide, loaded by wires as shown in Figure . (one lattice period within
the cross-section and the period d of the WM in the x-direction are the same, equal to a). The ratio
r/a =. leads to the plasma wave number kpa ≈ ., and the wires are assumed not to be con-
nected. In Figure . we compare the results given by Equation ., which was used by the authors
of [], with the results obtained in the framework of the corrected EM theory (Equation .) and
those of the Green’s function method, described in []. We can see a good agreement between the
results of the corrected EM and full-wave simulations. A similar structure was simulated by using
full-wave MoM []. In those simulations, the wires have been taken as thin strips whose width w
satisfies the condition w =r, which approximately gives the same plasma frequency for strip-based
WM as that for circular cross-section WM with the radius of wires r (in the case of thin wires and
narrow strips). Thus the strip-based WM with w/a =. is equivalent to the circular WM with
r/a =.. The obtained results are in good agreement with both the analytical and Green’s func-
tion [] methods for the two lowest modes (see Figure .b). What is drawn is the determinant
of the MoM impedance matrix. Dark lines correspond to low values and are denoting eigen-
modes, whereas white lines correspond to high values of the determinant. The black horizontal line
between the dispersion curves for the forward and backward modes corresponds to the cutoff of the
TE mode.
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FIGURE . (a) Spectrum of modes for circular wires and nonconnected geometry. Inset shows the cross-section
geometry. Dotted curve: dispersion, calculated using Equation . as in []; dashed curves: results obtained from
Equation ., solid curves: numerical results of Green’s function method. (b) Spectrum of modes for the strip-
based WM and nonconnected geometry. Map of the determinant of the MoM impedance matrix. Nulls are black
(eigenmodes), whereas peaks are white. The horizontal black line at ka = π represents the TE mode cutoff.

It is remarkable that two low-order passbands lie above the plasma wave number, which is equal
to ./a for the chosen parameters of the wires, though below the cutoff wave number, which is
equal to ./a for the TM mode. The first passband lies even below the cutoff for the domi-
nant TE mode at ka = π. In addition, under assumed parameters and geometry, the backward wave
belongs to the second passband and the lowest mode is a forward wave. Also two higher-order modes,
propagating above the cutoff, are shown in Figure .. On the other hand, the results, obtained from
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FIGURE . Spectrum of modes, calculated at different plasma frequencies: fp =  GHz (solid line);
fp = . GHz (dashed line). Dotted line shows dispersion of TE mode of the empty waveguide. ψ is the phase shift
per period.

Equation . (the curve marked ‘’), strongly differ from the ones described above and give a wave
propagating below plasma frequency.

Figure . illustrates how the plasma frequency of the WM, filling the waveguide, influences the
spectrum of modes. One can see that an increase in r, causing an increase in fp, broadens passbands
of all eigenmodes.

Connected wires, filling the waveguide, have also been considered in [] as well as two and three
wires of each direction in the waveguide cross-section. Experimental study of waveguides, filled with
DWM [], confirms the effects of the SD.

15.5 Applications of Wire Media

15.5.1 Coupling Reduction in Antenna Arrays

The problem of reduction of mutual coupling between radiating elements in antenna arrays remains
very important for many applications despite much work done for its solution. Spurious coupling
can be caused by the following carriers: near (electrostatic) fields; TM-polarized waves; TE-polarized
waves; and surface waves (if the radiating elements are placed on a substrate). Utilization of electro-
magnetic band gap (EBG) [or photonic band gap (PBG)] structures is considered now as one of the
most promising ways for antenna element decoupling. An approach, alternative to EBG (PBG) struc-
tures and based on a WM slab, was proposed by Nefedov et al. []. Figures . and . illustrate
reduction of the mutual coupling using the WM slab. The Parameters of the structure are the fol-
lowing: r =. mm, a =  mm, the thickness of WM slab is the same as the distance between patches
and ground plane, h =  mm, the distance between patches equals  mm, and the space between
patch and WM equals  mm. We have achieved a reduction of the mutual coupling to − dB for TM
and to − dB for TE excitation. It is important that a single WM slab effectively reduces coupling
for the TM excitation but, at the same time, considerably increases the coupling for TE excitation.
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FIGURE . Geometries of decoupling structures for TM excitation (a). S-parameters (b): curve —S for the
structure without WM; —S, with WM; —S , without WM, —S , with WM. (From Nefedov, I. S., Tretyakov,
Säily, J., Xu Liangge, Mynttinen, T., and Kaunisto, M., “Application of wire media layers for coupling reduction in
antenna arrays and microwave devices,  Loughborough Antennas and Propagation Conference, Loughborough,
United Kingdom, – April , pp. –. With permission.)

Therefore, we connect vertical wires by horizontal arches. Actually we use D mesh similar to that
studied in []. It allows to suppress a parasitic coupling for the TE polarization and even improve
it for the TM polarization. It is interesting that the nonlocal model that takes into account coupled
TM and TEM modes predicts the existence of guided waves in a WM slab []. The nonlocal model,
which neglects the TEM mode, does not give propagating waves, which [] is in agreement with
above-described results. This problem needs in further study.

Thus, WM can be efficiently used for decoupling of antenna elements. In contrast to other known
EBG structures WM has the following explicit advantages:

• Nonresonant nature of a stop-band gap and, hence, a much wider operational frequency
band

• Relative simplicity in implementation
• Capability to use for any polarization
• Insensibility to deviation of parameters. It is enough if the plasma frequency exceeds

operating frequencies but not too much

Results of numerical simulations were confirmed experimentally for both polarizations [].
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FIGURE . Geometries of decoupling structures for TE excitation (a). S-parameters (b): curve —S for
the structure without wires; —S, wires with D top grid; —S, wires with two-level grids, —S with and
without WM. (From Nefedov, I. S., Tretyakov, S. A., Säily, J., Liangge Xu, Mynttinen, T., and Kaunisto, M., Application
of wire media layers for coupling reduction in antenna arrays and microwave devices,  Loughborough Antennas
and Propagation Conference, Loughborough, – April , pp. –, United Kingdom. With permission.)

15.5.2 Antenna Lenses and Other Applications

Besides first applications of WM in antenna lenses [,], new ideas have been developed in recent
years. Hereafter we give a brief description of two of them. One is based on capacitively loaded WM
[,], which exhibits a positive permittivity. Strip-like wires can be printed on a thin low-
permittivity substrate (see Figure ., taken from []). Parameters of WM, taken from [,],
provide effective relative permittivity –, which depends on an angle of transmission. An antenna
lens made of such a medium has a light weight compared with a similar one made of a bulk
dielectric.
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FIGURE . Photograph showing the implemented prototype with the wide lens. (From Ikonen, P., Simovski, C.,
and Tretyakov, S., Microwave Opt. Technol. Lett., (), , . With permission.)

The second idea is creation of a metamaterial for directive emission []. If a source is placed in a
slab of metamaterials whose є or μ is positive but close to zero, then all points of the slab interface
are excited in phase, and high directive emission can be obtained. The simplest way to realize near-
zero permittivity is to use wire media near the plasma frequency. This approach was studied in many
articles; see, for example, [–].

Capacitively loaded DWM is promising for the creation of controllable microwave devices and
antennas []. A controllable phase shifter, based on a metal waveguide, filled with capacitively loaded
WM, was proposed in []. A similar structure can be a base for an electrically controllable leaky-
wave antenna [].

A series of articles, where the idea of transfer of images with subwavelength resolution by the
TEM modes in WM is developed, have been published during the last  years [,,,]. We do
not discuss them here, because this topic is the subject of a special chapter in this book.

15.6 Conclusion

The authors were not able to refer to and discuss all articles devoted to wire media, published during
recent years, so a choice of selected material for this overview relates to the scientific interests of
authors. The most important result, achieved in this area is the understanding of the role of SD in
electromagnetic properties of WM. The main consequence of the SD is that the TM and the TEM
waves with similar polarizations can propagate in WM, and they can be coupled at interfaces of
WM and other media. However, we have no certain answers to some questions. One is the appli-
cability of the local model to very thin layers of WM especially embedded into a high-permittivity
substrate. Next one concerns SD in double and triple WM with connected wires. Effects of SD are
predicted in [] for waves propagating in all directions in double and triple WM with connected
wires. However, numerical simulations, implemented in [] for DWM, did not show the influence
of the SD on wave propagation in a plane of wire lattices. At the same time, dispersion characteristics
for the waves, propagating orthogonally to the wires, certainly are in agreement with the nonlocal
model [].
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16.1 Introduction

Diamagnetic properties of conducting rings have been known for long. In , W. Weber invoked
Faraday’s law to suggest that natural diamagnetism could be produced by currents induced in micro-
scopic conducting closed loops, which would be present inside matter []. In fact, it can be easily
shown that a single and lossless metallic ring presents a negative magnetic polarizability given by

mz = αmm
zz Bext

z ; αmm
zz = −

πr

L
, (.)

where
z has been assumed to be the ring axis
r is the ring radius
L is the ring inductance

Thus, a random or periodic arrangement of closed metallic rings will exhibit a diamagnetic behav-
ior provided the wavelength of the incident radiation is much smaller than periodicity. However,
this negative polarizability is not very high and is not enough to provide an effective negative
permeability. In  S.A. Shelkunoff proposed to introduce a capacitor to enhance the magnetic
response of the ring []. Still neglecting losses, this would lead to a magnetic polarizability given by

16-1
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FIGURE . The split ring resonator (SRR) configuration proposed in [] for magnetic metamaterial design.
Metallizations are in white and dielectric substrate is in gray. Charges and currents induced at resonance on the upper
and lower SRR halves are sketched.

αmm
zz =

πr

L
ω

ω
 − ω , (.)

where ω = /
√

LC is the frequency of resonance of the LC circuit. It is apparent from the above
formula that introducing a capacitor results in a strong magnetic response near the resonance, which
is paramagnetic/diamagnetic below/above this resonance. Although this proposal works at low fre-
quencies, at higher frequencies (for instance at microwave frequencies), low-loss chip capacitors may
become unavailable, and the task of mounting hundredths or perhaps thousands of these capacitors
to manufacture a metamaterial may become unapproachable. At such frequencies it may be better
to substitute the wire ring by a strip ring photo etched on a dielectric board and the chip capacitor
by a distributed capacitance. This was essentially the proposal made by Pendry et al. in  [] for
manufacturing artificial magnetic media at microwave frequencies. The split ring resonator (SRR)
proposed in [] consists of two concentric split rings etched on a dielectric circuit board and sepa-
rated by some distance, as shown in Figure .. Although there can be found some precedents in the
scientific literature of this and other similar designs, this was the first time that this configuration was
proposed as the basic “atom” for building up magnetic metamaterials at microwave frequencies.

Along this contribution, the physics and the main characteristics of SRRs and other related config-
urations are analyzed. We start by describing the behavior of SRRs at microwave frequencies, where
metals can be considered good conductors. A circuit model is developed for this analysis, and closed
expressions for the frequency of resonance and polarizabilities of such structures are derived. The
main advantages and disadvantages of the different SRR geometries proposed in the literature for
metamaterial design, including the “complementary” SRR [], will be discussed. Finally, the behavior
of SRRs at infrared and optical frequencies is analyzed. More information on these and other related
topics can be found in [].

16.2 Nonbianisotropic SRR

Before analyzing Pendry’s SRR design, it will be convenient to analyze the simpler structure shown
in Figure .. It is a small modification of Pendry’s SRR proposed in [] in order to avoid SRR
bianisotropy (see below, Section .). Figure . shows the equivalent circuit as well as a sketch
of currents and voltages on a non-bianisotropic SRR (NB-SRR) operating near the first resonance.
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FIGURE . Nonbianisotropic split ring resonator (NB-SRR). As in Figure ., metallizations are in white and
dielectric substrate is in gray. NB-SRR parameters (not shown in the figure) r, rext, c, d, and t are defined as in
Figure ..
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FIGURE . Quasi-static circuit model for the NB-SRR; (a) Equivalent circuit for the determination of the fre-
quency of resonance (L is the NB-SRR self-inductance and C is the capacitance across the slots on the upper and lower
halves of the NB-SRR). (b) Plots of the angular dependence (ϕ is the angle with the x-axis) of currents on the rings
(dashed and dash–dotted lines), and of the total current on both rings (solid line). (c) Plots of the angular dependence
of the voltage on the rings (dashed and dash–dotted lines).

For electrically small NB-SRR, currents on each ring vary linearly from zero (the capacitance of the
gaps on the rings can be neglected in a first-order approximation) to a maximum value, as shown in
Figure .b. However, the total current on the whole NB-SRR (i.e., the summation of currents on
both rings) is uniform (i.e., angle independent) around the NB-SRR []. In order to maintain this
uniform total current around the NB-SRR, current must pass from one ring to another through the
slot between them, as an electric displacement current. Therefore, the slots between the rings act as
distributed capacitances, and the equivalent circuit for the NB-SRR first resonance is that shown in
Figure .a, where C is the capacitance of each slot. Voltage distribution around the rings is shown
in Figure .c. The capacitance of the slots C can be calculated as C = πrCpul, where r is the aver-
age radius of the NB-SRR and Cpul the per unit length capacitance through the slots. Therefore, the
frequency of the NB-SRR first resonance is given by
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ω =
√


LC
=
√


πrCpulL

, (.)

where L can be approximated as the inductance of a closed ring of average radius r and width c [,].
Closed expressions for the evaluation of Cpul and L can be found in [] or in [].

Let us now examine the NB-SRR polarizabilities. These polarizabilities are defined by the tensor
equations:

p = =α
e e
⋅ Eext + =α

em
⋅ Bext (.)

m = =α
me
⋅ Eext + =α

mm
⋅ Bext , (.)

where
p and m are the electric and magnetic moments induced on the NB-SRR by the external fields

Eext and Bext

=

α
e e

,
=

α
em

,
=

α
me

, and
=

α
mm

are the NB-SRR tensor polarizabilities.

From Onsager symmetry relations it can be deduced that []

=

α
e e
= (=α

e e
)

t
(.)

=

α
mm
= (=α

mm
)

t
(.)

=

α
em
= −(=α

me
)

t
, (.)

where the subscript (⋅)t indicates “transpose.” That is,
=

α
e e

and
=

α
mm

are symmetic tensors, whereas
=

α
em

and
=

α
me

are related through Equation .. For lossless systems the whole (×) tensor polarizability
must be hermitian. Therefore, for lossless NB-SRRs

=

α
e e

and
=

α
me

are real tensors, whereas
=

α
em

and
=

α
me

are purely imaginary quantities. It may be worth mentioning that the above equations are completely
general and valid for any linear polarizable system.

Regarding the NB-SRR, the number of nonvanishing elements of the above tensor polarizabilities
are drastically reduced due to particle symmetries. First of all, the NB-SRR has inversion symmetry.
Since the sign of electric quantities (p and Eext) changes after inversion, whereas magnetic quantities
(m and Bext) remain unchanged [], any tensor relating these quantities must vanish in systems
invariant by inversion. Thus, the NB-SRR cross-polarizability tensors

=

α
em

and
=

α
me

vanish. On the
other hand, since the NB-SRR is a planar particle, only electric moments along the x- and y-axis
(px and py) and magnetic moments along the z-axis (mz) are allowed. That is, only the polarizabilities
αmm

z ,z , αe e
x ,x , αe e

x , y , and αe e
y , y can be different from zero.

Once the effect of particle symmetries on the tensor polarizabilities has been analyzed, these polar-
izabilities will be calculated. When an external magnetic field Bext

z illuminates the particle, an external
electromotive force − jωπrBext

z acts on the equivalent circuit of Figure .a. Therefore, the equation
for the total current on the NB-SRR is

( 
jωC
+ jωL + R) I = − jωπrBext

z , (.)

where R is the NB-SRR resistance (which can be estimated as in []). From this equation and from
mz = πrI, the magnetic polarizability of the NB-SRR can be found as

αmm
zz =

πr

L
( ω

ω
 − ω + jωR/L) . (.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Split Ring Resonators and Related Topologies 16-5

Since the magneto-electric polarizabilities
=

α
me

vanish, no other dipolar moment is associated with
the NB-SRR first resonance. That is, the only resonant polarizability of the particle is the magnetic
polarizability (Equation .).∗ The nonresonant electric polarizabilities can be estimated as those
of a metallic disk with the same external radius as the NB-SRR:

αe e
x x = αe e

y y = ε



r
ext , (.)

αe e
x y = , (.)

where rext = r + c + d/.
The NB-SRR is perhaps the simpler SRR configuration providing a resonant magnetic polarizabil-

ity near its first resonance. Since no cross-polarization effects are present in the NB-SRR, this particle
provides metamaterials with a resonant magnetic response only. This property simplifies the design
and the interpretation of the experimental results and usually can be considered as an advantage.
However, this does not imply that the nonresonant electric polarizabilities (Equation .) are not
important for the final characterization of the metamaterial. They usually take non-negligible values,
providing a nonvanishing electric susceptibility for the metamaterial.

16.3 Other SRR Configurations with Inversion Symmetry

As shown in Section ., the frequency of resonance of SRRs depends on the SRR self-inductance
L and on the per unit length capacitance between the rings Cpul. The self-inductance of the SRRs
cannot be substantially increased without increasing its size: it is always L ∼ μr. For the analyzed
NB-SRR, as well as for the original Pendry’s SRR design, the per unit length capacitance cannot be
made very high, due to the edge-coupling between the metallic strips making the SRR. Thus, the
electrical size at the resonance of this configuration can hardly be made smaller that λ/. Therefore,
the ratio between wavelength λ and periodicity a of metamaterials made with these atoms cannot
be made very high.† By comparing with the values of this ratio for natural materials at optical fre-
quencies, λ/a ∼ , it becomes apparent that SRR-made magnetic metamaterials are in the very
limit of applicability of the continuous medium approximation. However, the SRR per unit length
capacitance can be easily increased by substituting the edge coupling by a broadside coupling as well
as a thin substrate of high dielectric constant. This broadside coupling SRR (BC-SRR) was proposed
in [] and is shown in Figure .. It can be easily realized that the BC-SRR equivalent circuit as
well as its current and voltage distributions are still given by Figure .. Moreover, as the NB-SRR,
this BC-SRR configuration also shows inversion symmetry. Therefore, there are no cross-polarization
effects in such a design. In summary, the frequency of resonance and polarizabilities of the BC-SRR
shown in Figure . are still formally given by Equations ., ., and .. However, in prac-
tice, the per unit length capacitances Cpul of BC-SRRs can be made much higher than those of the
NB-SRR. Therefore, electrical sizes one order of magnitude smaller than those of the NB-SRR can be
achieved by using commercial microwave dielectric substrates [], and even smaller electrical sizes
could be achieved by using more specific technologies, such as ferroelectric substrates or thin-layer
technologies.

There are many other modifications of Pendry’s original design showing inversion symmetry. For
instance, by adding two additional cuts to the design shown in Figure ., a new SRR structure
invariant can be obtained by inversion. This double-split SRR (-SRR), along with its equivalent

∗This statement is valid only for the first NB-SRR resonance. Higher-order NB-SRR resonances can be associated to other
polarizabilities (electric or magnetic) [] that will not be analyzed here.
† See [] for a more complete discussion on this topic including the role of the internal wavelength.
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FIGURE . Broadside-coupled split ring resonator (BC-SRR).
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FIGURE . Sketch of a double-split SRR (-SRR) and its equivalent circuit.

circuit is shown in Figure .. In this circuit C is now the capacitance of a quarter of circumference
C = πrCpul/. Therefore, the frequency of resonance of the -SRR is twice the frequency of resonance
of the NB-SRR of the same size and characteristics. Since the -SRR exhibits inversion symmetry, its
polarizabilities are still formally given by Equations . and .. However, the electrical size at
resonance for the -SRR is twice than that for the NB-SRR of similar size and design. Thus, this con-
figuration is not by itself of much practical interest. However, the broadside-coupled version of the
-SRR has been useful for the design of isotropic three-dimensional SRR configurations [] with
small electrical sizes.

16.4 Bianisotropic Effects in SRRs

The SRR configuration shown in Figure . is topologically equivalent to the NB-SRR configuration
shown in Figure .. Therefore, its frequency of resonance is still given by Equation ., and cur-
rents and voltages across the SRR are still described by Figure .. However, the SRR of Figure . is
not invariant by inversion. Therefore, cross-polarization effects can be present in this structure [].
Nevertheless, the SRR symmetries substantially reduce the number of nonvanishing cross-
polarizabilities. First of all, as the NB-SRR, the SRR is a planar configuration. Therefore, only electric
moments along the x- and y-axis (px and py) and magnetic moments along the z-axis (mz) are
allowed. This reduces the possible nonvanishing polarizabilities to αmm

z ,z , αe e
x ,x , αe e

x , y , αe e
y , y , αme

z ,x = −αem
x ,z ,

and αme
z , y = −αem

y ,z . Moreover, the SRR is invariant by reflection on the y =  plane. Since, by this
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symmetry, the sign of Bext
z changes whereas px remains invariant, it results in αme

zx = . This finally
reduces the possible nonvanishing polarizabilities to αmm

z ,z , αe e
x ,x , αe e

x , y , αe e
y , y , and αme

z , y = −αem
y ,z .

If the SRR is excited by an external magnetic field, the equation for the total current is Equa-
tion .; therefore, the magnetic polarizability of the SRR is the same as that for the NB-SRR and
is given by Equation .. However, a careful consideration of the SRR behavior shows that the SRR
also exhibits a resonant electric dipole when it is magnetically excited. In fact, when the SRR is excited
at resonance, charges in the upper half of the EC-SRR must be the images of charges at its lower half,
as sketched in Figure .. Therefore, two parallel electric dipoles directed along the y-axis are gen-
erated on each SRR half. The total electric dipole induced by the external field component Bext

z can
be computed as

py = 
π�



prr sin ϕ dϕ = r pr , (.)

where pr is the radial per unit length electric dipole created along the slot between the rings in the
upper SRR half. This quantity can be written as pr = qtdeff , where qt is the per unit length total charge
(i.e., free and polarization charge∗) on the outer ring, and deff some effective distance deff ≃ c + d.
The radial per unit length electric dipole can now be estimated as

pr = qtdeff = C,pulVdeff , (.)

where C,pul and V are the “in vacuo” per unit length capacitance and the voltage difference across
the slot between the outer and the inner rings, respectively. This voltage can be calculated from V =�

E ⋅ dl, where the field integral is taken along a path going on the rings and passing from one to
another ring across the slots. From Faraday’s law V = − jω(LI +πrBext

z )+RI. Therefore, taking into
account Equations . and .,

py = − jωrC,puldeff(LI + πrBext
z ), (.)

and taking into account Equation .,

py = − j
rdeff

ωL
(

C,pul

Cpul
)( ω

ω
 − ω + jωR/L) Bext

z , (.)

which directly gives the cross-polarization αem
yz .

Let us now consider the behavior of the SRR under an electric excitation. The equation for the total
current is now

( 
jωC
+ jωL + R) I =  <V ext>, (.)

where <V ext > is the average voltage created by the external field on one of the SRR halves. This
external voltage can be estimated as†

<V ext>= 
π

π�


(
C,pul

Cpul
)Eext

y deff sin ϕ dϕ = 
π

deff (
C,pul

Cpul
)Eext

y . (.)

∗ See [] for a more complete discussion on this topic.
† The factor C,pul/Cpul appears because the voltage induced by an external electric field Eext in a capacitor partially filled
by a dielectric is approximately given by C/C Eextd, where d is the distance between the plates. See [] for a more complete
discussion of this topic.
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After substitution in Equation ., the total current on the SRR can be found as

I = j
deff

πωL
(

C,pul

Cpul
)( ω

ω
 − ω + jωR/L) Eext

y . (.)

This current creates a magnetic moment mz = πrI, which can be written as

mz =  j
rdeff

ωL
(

C,pul

Cpul
)( ω

ω
 − ω + jωR/L) , (.)

which together with Equation . satifies the Onsager symmetry (Equation .). Moreover, when
the EC-SRR is under this excitation, the resonant current generated around the rings also creates an
electric moment, due to the radial polarization (Equation .) along the slots. It is easier to obtain
the per unit length total charge on the outer ring from the current on this ring and from charge
conservation:

jωqt = −(
C,pul

Cpul
) 

r
dIout

dϕ
, (.)

where Iout is the current on the outer ring. Since, according to the model sketched in Figure .b,
there is a linear dependence of Iout on ϕ, and Iout takes a maximum Iout = I at ϕ = , and a minimum
Iout =  at ϕ = π, the derivative in (Equation .) can be evaluated as dIout/dϕ = −I/π. Therefore,
taking into account Equation .

qt = (
C,pul

Cpul
) I

jωπr
= deff

πωrL
(

C,pul

Cpul
)



( ω

ω
 − ω + jωR/L) Eext

y . (.)

The resonant electric dipole on the SRR is evaluated by substitution in Equations . and .:

py =
d

eff

πωL
(

C,pul

Cpul
)



( ω

ω
 − ω + jωR/L) Eext

y . (.)

Finally, the nonresonant polarizabilities (Equation .) are still present in the SRR. Therefore, the
final SRR polarizabilities can be written as

αmm
zz =

πr

L
( ω

ω
 − ω + jωR/L) (.)

αe e
x x = ε




r
ext (.)

αem
yz = −αme

z y = − j
rdeff

ωL
(

C,pul

Cpul
)( ω

ω
 − ω + jωR/L) (.)

αe e
y y = ε




r
ext +

d
eff

πωL
(

C,pul

Cpul
)



( ω

ω
 − ω + jωR/L) . (.)

Cross-polarization effects produce a bianisotropic behavior in metamaterials made from SRRs [].
These effects can be considered as small corrections in some cases. However, in other cases, they are
crucial for the understanding of the physics of the metamaterial. SRR-made metasurfaces [] are an
example of this last possibility.
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16.5 Chirality in SRRs

Bi-isotropic and racemic mixtures of resonant particles [–], as well as mixtures of chiral par-
ticles with wires [] or other elements, are of interest for the development of negative refractive
index metamaterials. A small modification of the NB-SRR (Section .) proposed in [] fulfills
these requirements. This particle is shown in Figure .. It is the broadside-coupled version of the
NB-SRR. Here it will be called chiral-SRR (Ch-SRR). Since the Ch-SRR has no inversion symmetry,
cross-polarization effects are present in it. However, the Ch-SRR still has symmetries that substan-
tially reduce the number of nonvanishing polarizabilities. First of all the Ch-SRR is invariant by
rotation of ○ around the z-axis. From this symmetry it directly follows that α⋅⋅zx = α⋅⋅z y = . The
Ch-SRR also has ○ rotation symmetry around the x-axis, which implies that α⋅⋅x y = . Therefore,
all polarizability tensors in Equations . and . are diagonal.

Since the Ch-SRR is only a modification of the basic topology of the NB-SRR, its equivalent circuit
as well as the current and voltage distributions on the rings are still described by Figure .. The
main Ch-SRR polarizabilities can be obtained following a similar procedure as that already followed
in Section .. The final result is []

αmm
zz =

πr

L
ω

ω
 − ω + jωR/L (.)

αem
zz = ± j

πr t
ωL
(

C,pul

Cpul
) ω

ω
 − ω + jωR/L (.)

αe e
zz =

t

ωL
(

C,pul

Cpul
)

 ω

ω
 − ω + jωR/L (.)

αe e
x x = αe e

y y = ε



rext , (.)

where the sign in Equation . depends on the helicity of the Ch-SRR.
From Equations . through . it follows that

αmm
zz αe e

zz + (αem
zz ) =  , (.)

y

x

z

FIGURE . Chiral-SRR (Ch-SRR). The substrate has been removed for a better understanding of the
configuration. In practice, besides the substrate between the rings, the connections can be substituted by holes.
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which is a general property arising from the LC nature of the model []. In order to obtain
metamaterials with wider left-handed bandwidths, it is convenient a balanced design for the
particle []:

αe e
 = μεαmm

 . (.)

This condition is satisfied provided

tλ =
Cpul

C,pul
(πr) , (.)

where λ is the wavelength at the resonance.

16.6 Spirals and Helices

Spirals are well-known designs, widely used in planar microwave circuits as small-size inductors
and resonators. They have also been succesfully used for metamaterial design []. The frequency of
resonance of a two-turns spiral is approximately half the frequency of resonance of an NB-SRR or
SRR of the same size, and further reduction in the frequency of resonance can be achieved by adding
more turns to the spiral []. Therefore, spiral resonators can provide an useful alternative to SRRs if
smaller electrical sizes are required. However, spirals are low-symmetry structures and, in particular,
they do not show inversion symmetry. Therefore, in spite of the fact that a quasi-static analysis does
not predict them, bianisotropy and other cross-polarization effects can be present in metamaterials
made from spiral resonators. This fact has been confirmed by experiments [] and may preclude the
use of spirals as metamaterial elements if these effects are not desired. Moreover, the reduction in the
electrical size achieved by spiral resonators is not comparable with the reduction that can be obtained
from the BC-SRR already analyzed in Section ..

The broadside-coupled version of the two-turns spiral is the quasi-planar helix analyzed in [,].
This design is obviously a chiral particle, so as a racemic and a bi-isotropic mixture of these parti-
cles can provide a negative refractive index metamaterial [,]. In fact, the diagonal terms of the
polarizability tensors of this design show a behavior very similar to that reported in Section . for
the Ch-SRR []. However, owing to its low symmetry, the polarizability tensors of the helix are not
diagonal.

16.7 Complementary SRRs

The complementary SRR (CSRR), shown in Figure ., is the complementary screen [] of the SRRs.
Babinet principle [] imposes the condition that the behavior of SRRs and CSRRs must be approx-
imately dual (small deviations from this duality may arise from the effects of the dielectric substrate
on which the SRR and the CSRR are printed). We have already shown in Section . that, in the
most general case, when it is illuminated by some external fields E, B, a single SRR shows a set of
electric and magnetic dipolar moments given by

mz = αmm
zz B

z − αem
yz E

y (.)

py = αe e
y y E

y + αem
yz B

z , (.)

px = αe e
x x E

x , (.)

where the polarizabilities in Equations . and . are given by Equations . through .. The
effect of an incident electromagnetic field on a single SRR is illustrated in Figure .a. The magnetic
and electric dipolar moments (Equations . through .) are generated in the SRR, and they
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rext

d
c

FIGURE . Complementary SRR (CSRR).

E E0+E΄–~
B B0+B΄–~

(a)

m
p

z < 0 z > 0

Ec Eć–~

Bc Bć–~

Ec E0
c + E0

c
,r + Eć–~

Bc B0
c + B0

c
,r + Bć–~

p–p

(b)

m

–m

z < 0 z > 0

FIGURE . Illustration of the behavior of an SRR (a) and a CSRR (b) when they are illuminated by an external
field E; B (a) or E

c = cB; B
c = −(/c)E (b) incident from z < .

produce the scattered fields E′ and B′. The total fields are the superposition of the incident and
the scattered fields. Let us consider the complementary screen, that is, the complementary resonator
(CSRR). If the screen is a perfect conductor of negligible thickness, and the effects of the dielectric
substrate are ignored (or it has a negligible dielectric susceptibility), the behavior of this CSRR can
be deduced from classical diffraction theory and the Babinet principle []. The CSRR behavior when
it is illuminated by the complementary fields is as follows:

E
c = cB; B

c = −(/c)E, (.)

where c is the velocity of light in vacuum, incident from the left (z < ) as illustrated in Figure .b.
At the right-hand side of the screen (z > ), the fields are those produced by the electric and magnetic
dipoles m and p. These electric and magnetic dipoles are given by

pz = βe e
zz E

z − βem
yz B

y (.)

my = βmm
y y B

y + βem
yz E

z (.)

mx = βmm
x x B

x , (.)
where, from the Babinet principle [] and from the well-known expressions for the electromagnetic
fields of the electric and magnetic dipoles, it follows that []

βmm
x x = −cαe e

x x (.)
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βmm
y y = −cαe e

y y (.)

βem
yz = −αem

yz (.)

βe e
zz = −


c αmm

zz . (.)

According to the diffraction theory [], the fields at the left-hand side of the screen (z < ) are
the superposition of the incident field (Equation .), the field that would be reflected by a perfect
metallic screen at z =  (E,r

c , B,r
c ), and the field created by some magnetic and electric dipoles, which

are the opposite of Equations . through .. Note that this change of sign for the induced dipoles
at the right- and left-hand sides of the screen ensures that both the total magnetic polarization parallel
to the screen and the total electric polarization perpendicular to the screen vanish, as it must be for
a plane screen. Therefore, CSRRs will not be useful for three-dimensional negative-ε metamaterial
design. However, CSRRs and related geometries (such as the complementary of the NB-SRR) can be
useful for the design of one- and two-dimensional negative-ε metamaterials []. They can be also
useful for the design of planar frequency-selective surfaces [,]. When the effect of the dielectric
circuit board that supports the SRR and the CSRR is not neglected, Equations . through . are
only approximate, although the qualitative behavior of the CSRR still remains the same. The main
quantitative difference between Equations . through . and the actual CSRR behavior is a
small change in the frequency of resonance, which can be obtained from the equivalent circuit models
reported in [].

16.8 SRR Behavior at Infrared and Optical Frequencies

At infrared and optical frequencies metals cannot be characterized as good conductors but as
lossy solid-state plasmas, with a complex dielectric permeability of negative real part. This complex
permittivity is given by

ε̂ = ε ( −
ω

p

ω(ω − j fc)
) , (.)

where
ωp is the plasma frequency
fc is the collision frequency of the electrons

Near the plasma frequency, which for most metals is in the ultraviolet, it is ∣ε∣/ε ∼ , and the analysis
of the electromagnetic behavior of SRRs becomes a very complex electromagnetic problem. However,
at infrared and, in many cases, also at optical frequencies, most metals satisfy the inequalities ∣ε∣/ε ≫
 and ∣Re(ε)∣ ≫ ∣Im(ε) []. When these conditions are satisfied, it is still possible to develop a circuit
model for the SRR, similar to that devoloped in the previous sections [,]. Now we consider the
simplified SRR geometry shown in Figure ., which is probably the simpler SRR configuration
invariant by inversion. However, the analysis developed in this section can be applied to many other
similar configurations. If ∣ε∣/ε ≫  (Equation .) can be approximated as

ε̂ ≃ −ε
ω

p

ω(ω − j fc)
. (.)

Also, from the continuity of the normal component of jωε̂E at the metal–air interface, it directly
follows that n ⋅ ESRR ≈ , where ESRR is the electric field inside the SRR and n the unit vector normal
to the SRR boundary. Thus, the electric lines of force are strongly confined inside the SRR, forming
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h

r

d

FIGURE . Split ring resonator made from a wire with two capacitive gaps, the simpler SRR configuration with
inversion symmetry. The electric field lines of force at infrared/optical frequencies are also sketched. Note the field
confinement in the SRR and the change of sign of the electric field in the gap, due to the change of sign in the
permittivity.

closed loops, as illustrated in Figure .. Therefore, it makes sense to define a total current inside the
ring as

It = jωε̂ESRR S , (.)

where S is the SRR wire section. This current includes both ohmic and displacement currents and
is approximately uniform along the SRR. Therefore, it is still possible to define the ring magnetic
inductance, Lm, as usual, i.e.,

Lm ≡
Φ(It)

It
, (.)

where Φ(It) is the magnetic flux across the ring. Since the magnetic flux is related to the total current
through Ampère’s law, Lm is approximately given by []

Lm = μr [ln( d
r
) − 


] , (.)

where
r is the SRR radius
d is the diameter of the wire

Taking into account Equations . and ., the electromotive force around the ring E =
�

E dl ≃
πrEr can be written as []

E ≃ ( 
jωC
+ R + jωLk) It , (.)
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where
C is the total capacitance provided by the series connection of the gaps (i.e., C = Cg/, where

Cg is the capacitance of each gap)
R is the ohmic resistance of the SRR

R = πr fc

Sω
pε

, (.)

Lk is a magnitude with dimensions of inductance given by

Lk =
πr

Sω
pε

. (.)

This inductance can be interpreted as caused by the kinetic energy of the electrons []. Therefore,
the final equation for the current It on the ring is

{ 
jωC
+ R + jω(Lm + Lk)} It = − jωπrBext

z , (.)

where Bext
z is the external magnetic field. Therefore, as far as ∣ε∣/ε ≫  and ∣Re(ε)∣ ≫ ∣Im(ε), the SRR

can still be described by the equivalent circuit shown in Figure ..a, provided the kinetic inductance
Lk is added to the magnetic inductance Lm []. From Equations . and ., it follows that []

Lm

Lk
∼ πS

λ
p

, (.)

where λp = πc/ωp is the plasma wavelength, i.e., the free-space wavelength at the plasma frequency.
In particular, the magnetic polarizability of the ring is

αmm
zz = α (

ω

ω
 − ω + jωγ

) ; α =
πr

Lm + Lk
, (.)

where
ω =

√
/(Lm + Lk)C is the frequency of resonance

γ = R/(Lm + Lk).

This equation differs from Equation . only by the presence of the kinetic inductance Lk.
Let us now consider the behavior of the SRR polarizability (Equation .) when the SRR is scaled
down to increase its frequency of resonance without changing its electrical size. Since according to
Equation . Lk scales as Lk ∝ /r, for small SRR sizes it dominates over Lm, which scales as
Lm ∝ r. On the other hand, C scales as C ∝ r. Therefore, for sufficiently small ring sizes Lk ≫ Lm,
the frequency of resonance saturates [] to the value

ω =
√


LkC

, (.)

which does not depend on the SRR size. Also, the loss factor saturates to

γs =
R
Lk
= fc . (.)

Finally, the amplitude of the magnetic polarizability scales down as []

α →
πr

Lk
= ω

pεrS ∝ r . (.)
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Since the magnetic susceptibility of a bulk metamaterial is proportional to the polarizability and to
the specific volume per particle VSRR ∝ r−, Equation . implies that the amplitude of the mag-
netic susceptibility scales down as r. The above discussion shows that scaling down SRR media to
achieve a negative magnetic permeability at infrared and optical frequencies has two main limita-
tions: saturation of frequency of resonance and decrease in the magnetic response.∗ Such effects
appear when the key parameter S/λ

p becomes small, which, according to Equation ., makes the
kinetic inductance dominant over the magnetic one.

16.9 Synthesis of Metamaterials and Other Applications of SRRs

SRRs have been succesfully used as magnetic metamaterial elements at microwave frequencies.
Combined with wires [,] or with metallic waveguides [] or plates [], they provide left-handed
effective media in one, two, and three dimensions. Usually, the well-known Lorentz local field theory
provides adequate homogenization formulae for magnetic SRR media []. In [] explicit expressions
for the computation of metamaterial parameters in some relevant cases are given. These expressions
make use of the polarizabilities developed in the previous sections, combined with Lorentz local
field theory. It must be stressed that, in general, SRR-based magnetic metamaterials are bianisotropic
media [], thus showing the most general linear constitutive relations:

D ≡ εE + P = ε( +
=

χe) ⋅ E + j
√

εμ
=

κ ⋅H (.)

B ≡ μ(H +M) = − j
√

εμ (
=

κ)T ⋅ E + μ( +
=

χm) ⋅H . (.)

Nevertheless, SRRs can be arranged to provide small magnetic resonators with an isotropic response
[], thus opening the way to the design of isotropic magnetic effective media with negative
permeability. When combined with conventional transmission lines, SRRs provide one- and two-
dimensional metamaterials with negative parameters, including left-handed transmission line meta-
materials []. As already mentioned, unlike SRRs, CSRRs do not provide a net polarizability in three
dimensions. Therefore, they are not useful for the design of bulk three-dimensional metamaterials.
However, they are useful for the design of one- and two-dimensional structures with negative electric
permittivity. In particular, when combined with conventional planar transmission lines they provide
effective negative-ε and left-handed metamaterials []. An alternative and interesting path to the
design of negative refractive index metamaterials is the use of racemic and bi-isotropic mixtures of
chiral SRRs and other related geometries (Sections . and .). This possibility has been theoreti-
cally explored in [,]. The most relevant advantage of such designs is that negative refraction can
be obtained in metamaterials made from a single kind of inclusion. Wide negative refractive index
bandwidth and good matching to free space are additional advantages of bi-isotropic mixtures of
chiral SRRs [].

The equivalent circuits of SRRs and CSRRs coupled to microwave transmission lines have been
developed in [], opening the way for the design of miniaturized planar microwave circuit compo-
nents, such as filters, couplers, diplexers, and controllable transmission lines, as well as antennas and
other microwave devices (see [] and references therein). Linear chains of SRRs, as well as two- and
three-dimensional SRR arrays support magneto-inductive waves [], which are useful for the design
of miniaturized slow-wave waveguides [], delay lines [], and superlenses []. Electro-inductive
waves are also supported by chains of CSRRs etched on metallic plates []. Two-dimensional arrays
of SRRs and CSRRs show promising frequency and polarization-selective characteristics [], which

∗ In the RF and microwave range, however, since Lm scales down as r, the amplitude of the magnetic polarizability scales
down as r, and the amplitue of the magnetic susceptibility does not vary substantially when the structure is scaled down.
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can be useful for the design of frequency-selective surfaces, radomes, and polarization converters.
The resonant magnetic activity of SRRs has also been detected at terahertz and infrared frequen-
cies [,]. However, practical applications of SRRs at infrared and optical frequencies are limited
by the considerations made in Section ..

16.10 Conclusion

SRRs provide a simple and effective way for designing magnetic metamaterials with negative param-
eters. At microwave and millimeter wave frequencies they can be effectively characterized by a
quasi-static LC circuit model which provides analytical expressions for the SRR first frequency of
resonance and polarizabilities. This analysis can be extended to other related topologies, including
complementary (CSRRs) and chiral (Ch-SRRs) configurations. Although SRRs are highly anisotropic
configurations (actually bianisotropic in most cases), isotropic arrangements of SRRs can be designed
to develop three-dimensional magnetic metamaterials with an isotropic response. SRRs and related
topologies can be combined with conventional transmission lines to provide negative-є, negative-μ,
and left-handed transmission line metamaterials with interesting applications in microwave technol-
ogy. Other SRR applications may come from the ability of SRR arrays of guiding magneto-inductive
slow waves and from the frequency and polarization selectivity of SRR and CSRR arrays. Finally, the
behavior of SRRs at infrared and optical frequencies can be obtained from a straightforward exten-
sion of the aforementioned LC circuit model. The main effects at these frequencies are the saturation
in the SRR frequency of resonance and a strong decrease in the SRR magnetic response. These effects
appear when the SRR wire/strip section approaches the square of the plasma wavelength.
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17.1 Introduction

Left-handed materials (LHMs) or negative index materials (NIMs), i.e., materials with simultane-
ously negative electrical permittivity, ε, and magnetic permeability, μ, and therefore negative index
of refraction, n∗, (over a common frequency range) have received considerable attention over the
last years; this is mainly due to their novel and unique properties, which provide a huge potential

These properties include backward propagation (i.e., opposite phase and energy velocities), negative

∗The negative real part of n results by requiring a positive imaginary part, i.e., an attenuated rather than an exponentially
growing wave e i(ω/c)nz , where z is the propagation direction.

17-1
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FIGURE . Two of the major designs employed for the achievement of negative permeability response: the SRR
(a) and the pair of slabs (b). The SRR design of panel (a) is the original design proposed by Pendry et al. The figure
shows also the direction of the incident electromagnetic field which excites the negative permeability response in the
designs shown.

refraction, reversed Doppler effect; and Cherenkov radiation, evanescent wave amplification [],
etc.; and open new ways in applications such as imaging, lithography, antenna systems, transmission
lines, and various microwave components and devices, etc.

Although many of the theoretical capabilities of LHMs have been described long ago [], the first
practical implementation of an LHM came only in  [], by Smith et al., following ideas by Sir
J. Pendry et al. [,]; this first LHM was a periodic combination of metallic rings with gaps (see
Figure .a), known as split-ring resonators (SRRs), providing negative permeability [], and
continuous wires, providing negative permittivity [].

Since Smith’s demonstration of the first LHM, several left-handed (LH) structures have been
demonstrated (see e.g., [–]), most of them being combinations of SRRs and wires, operating in
the microwave regime, and intensive efforts to understand their behavior, to optimize them (as to
achieve a wide LH band with high transmittance), and to raise their frequency of operation were
carried out. Moreover, alternative ways to achieve LH behavior were investigated, such as employing
photonic crystals [], chiral media [], polaritonic media [], etc.

Although some of those ways look promising and constitute a subject of intense further investiga-
tions, still the most common way to achieve LH behavior is to follow Smith’s approach of combining
resonant permeability elements (for the achievement of negative permeability response), such as
SRRs, with negative permittivity elements, such as thin metallic wires.

The resonant permeability elements are all characterized by the generation of resonant loop-like
currents, under the influence of an external alternating magnetic field. These loop currents lead to
a resonant magnetic dipole moment and thus to a resonant permeability in a collection of such
“magnetic dipoles,” which has the form [,]

μ = μ ( − Fω

ω − ω
m + iωγm

) , (.)

where
ωm is the frequency of the magnetic resonance,
γm is a factor representing the losses,
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the parameter F, determining the strength of the magnetic resonance and the width of the
negative permeability regime, is a geometrical factor that is approximately equal to the
volume fraction of the loop-current element within the system unit cell.

Since the loop-current element is a resonant electromagnetic system, it is very often described as an
inductor–capacitor (LC) circuit, with the frequency ωm given as ωm = /

√
LC.

The resonant permeability (loop-current) elements that have received most attention up to now are
the SRR (of various designs—the original (Pendry’s) one is shown in Figure .a) and the slab-pair
design [,], i.e., a pair of two parallel slabs (or stripes or wires), like the one shown in Figure .b.
This slab pair is characterized by a resonant current mode with antiparallel currents in the two slabs
of the pair, which generate a resonant magnetic moment, thus making the pair to behave like an SRR
(it can be seen as a modification of a single-ring SRR with two gaps). The slab-pair design presents cer-
tain advantages compared with the SRR (see Section .), especially in small-length-scale structures
aimed to give THz and/or optical LHMs.

Concerning the negative permittivity structures, the most common one is the periodic system of
thin metallic wires. Thin metallic wires behave as a dilute free electron plasma (whose kinetic energy
is greatly enhanced by the addition of the magnetic energy), described by a Drude type ε, of the form
(in lossless case)

ε = ε ( −
ω

p

ω ) , (.)

which is characterized by a broad negative regime terminated at a reduced plasma frequency [],
ωp. ωp depends on the geometrical system parameters, namely the cross-section of the wires and the
periodicity of the medium. For mm scale wires the frequency fp = ωp/π falls in the few GHz regime.

Although there are additional negative permittivity elements that have been proposed in the litera-
ture (e.g., see []), in most of them the negative permittivity results from a Lorentz-type permittivity
resonance. Thus they are characterized by a narrow negative ε band and relatively high losses. There-
fore, the thin continuous wires still remain the optimum negative permittivity component for the
creation of left-handed materials.

Since both SRRs and metallic wires have been described in detail elsewhere in this handbook (see,
e.g., Chapters  and ), we do not proceed here to a detailed analysis of their properties; we comment
only on the aspects of their behavior that are essential for their use as components of LHMs, which
is the central topic of this chapter.

Specifically, in this chapter we discuss some of our efforts to understand the behavior of metama-
terials composed of SRRs and wires, slab pairs, and slab pairs and wires (in both GHz and optical
regimes) and to arrive at conditions for the achievement of optimized LHMs, both planar and two
dimensional (D) or three dimensional (D), employing those structures. The properties of the dif-
ferent media discussed here have been examined and analyzed by transmission (T) and reflection
(R) simulations and/or measurements and, when required, by inversion of the transmission and
reflection data to obtain the effective material parameters ε, μ, refractive index, n, and impedance,
z =
√

μ/ε. For the inversion of the R/T data the standard retrieval procedure [] has been employed,
which treats a metamaterial as a homogeneous effective medium.

The chapter is organized as follows: In Section . we examine the conditions to achieve LH
behavior in combined systems of SRRs and wires; in addition, we present some considerations
related to the presence of SRR asymmetries or with the resonant electric, dipole-like SRR response.
We also present a criterion to unambiguously identify the LH regimes in SRRs and wire trans-
mission spectra, which is based on the above considerations. Employing the results described in
Section ., we examine in Section . the conditions for the achievement of a homogeneous-
like, D LH material employing SRRs and wires, and we propose SRR designs appropriate for the
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achievement of D LHMs. We note here that many of the proposed applications of LHMs (especially
superlensing applications) require D isotropic, homogeneous-like structures.

Since many of the conclusions of our study have been obtained through the retrieval procedure
based on the homogeneous effective medium (HEM) approach, which is fully justified if the charac-
teristic units of the structures are of deep subwavelength scale, a condition that is not always fulfilled
in the SRRs and wire media (and even less in slab pairs and wires media), we comment on the appli-
cability of this approach in Section .. Specifically, we discuss the artifacts appearing in the form
of the HEM-obtained effective ε(ω) and μ(ω) due to the influence of the periodicity; these artifacts
have been analyzed and understood mainly by comparing the HEM results with those of a periodic
effective medium approach.

Finally, closing the first part of this chapter, which concerns SRR-based LHMs, we discuss in
Section . the possibility to achieve optical SRR-based LH materials and the frequency limitations
of the LH behavior in SRR systems.

One of the most common approaches for obtaining optical LH materials is scaling-down known
LH microwave designs. SRRs, though, do not offer an optimized solution in that respect due to the fact
that negative permeability response requires in-plane propagation and thus multistack SRR samples.
A better solution is offered by the slab-pair design, which exhibits a negative permeability response
for incidence normal to the plane of the pairs. For that reason, in the second part of this chapter
we discuss slab pairs and slab-pair-based LH materials, mostly in microwaves but also in THz and
optical frequencies. In Section . we discuss the possibility to obtain LH behavior using only slab
pairs and exploiting the simultaneous presence of resonant magnetic and resonant electric response
in the pair at neighboring frequencies. In Section . we examine LH materials based on slab pairs
and continuous wires, emphasizing the so-called fishnet design, i.e., wide slab pairs, connected with
wires. Finally, in Section . we discuss the properties of the slab-pair-based designs as the designs
are scaled down to give optical LHMs.

17.2 One-Dimensional Microwave Left-Handed Materials
Employing SRRs and Wires

Since in an LH material of SRRs and wires the major element for the achievement of negative μ it is
the SRR while for the achievement of negative ε it is the wires, the only condition that was sought
in the construction of the first and many of the subsequent LHMs was “the negative μ regime of the
SRRs to be within the negative ε regime of the wires”; thus, the negative μ and ε regimes of the SRRs
and wires, respectively, have been determined by measuring the transmission properties of the SRRs
alone and of the wires alone (the lowest frequency dip in the SRR transmission spectra was considered
as originating from a negative μ response, while the first transition from zero to high transmission
in the wires system was considered as the transition from negative to positive ε response).

This approach does not provide any safe way to identify unambiguously the presence of negative μ
and, moreover, it neglects any effects coming from the interaction of SRRs and wires or any additional
effects that may result from the complexity (e.g., bianisotropy) of the SRR particles [].

Such effects, which are discussed below, are (a) the influence of the electric dipole-like response of
the SRRs on the effective ε of the SRR and wire systems, and (b) the effect of the SRR asymmetries
on the LH behavior of an SRR and wire medium.

17.2.1 Electric Response of the SRRs and Its Role in the Electric
Response of LHMs

SRRs have been widely studied and used up to now as magnetic elements. Apart from their mag-
netic response though, they also present a resonant electric-dipole-like response, such as all metallic
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FIGURE . Frequency dependence of the effective permittivity, ε, of a system of infinitely long wire (a) (Drude-
type response, characterized by a “plasma-like” frequency ωp = ωp−w), and of a system of lossless short wires or SRRs,
(b) (Lorentz-type response, characterized by a resonance frequency ωe and a “plasma-like” frequency ωp = ωp−SRR).
In panel (c) the ε(ω) resulting from the addition of the ε of panels (a) and (b) is shown. Note that the new plasma
frequency ω′p is lower than the wires’ plasma frequency, ωp−w.

systems that are finite along the external electric field direction. This resonant electric response, which
can be described with a Lorentz-type effective permittivity involving also negative permittivity val-
ues, is associated with strong homoparallel currents at the external electric field parallel to the (E)
sides of the SRR.

In the cases where the magnetic response of the SRR is not in the deep sub-wavelength regime,
like, e.g., in simple SRR designs or multigap SRRs, the electric response frequency of the SRR is not
far above its magnetic resonance frequency and contributes to the low-frequency electric response
of the combined system of SRRs and wires. Detailed studies of this contribution [] have shown that
the total effective ε of an SRR and wire medium is the one resulting from the addition of a Drude-
like ε response (coming from the wires—see Figure .a) with the a Lorentz-like ε response (coming
from the SRRs—see Figure .b) and has the form shown in Figure .c.

The result of this addition that is more relevant for the construction of an LHM is a downward shift
of the effective plasma frequency of the system, ω′p, compared with that of only the wires, ωp. This shift
poses stringent requirements for the achievement of LH behavior: for an SRR and wire medium to be
LH the magnetic SRR resonance frequency, ωm, should lie not only below ωp but also below the new
cutoff frequency, ω′p. (Note that if ωp < ωm < ω′p, a case very common in practical implementations,
ignoring the SRR electric response and its effect, it may result in wrong identification of the character
of the transmission peaks [].)

Another observation of great practical importance is the following: By closing the gap/gaps of the
SRR, its magnetic response is switched off (since the resonance of the loop-like currents is destroyed),
but the electric SRR response is entirely preserved [,,] (this is valid though only for SRRs with
mirror symmetry with respect to the external electric field). Therefore, the closing of the SRR gaps
can lead to the identification of both the negative μ and the negative ε regimes of an SRR system, as
shown in Figure .a, and also of an SRR and wire system, as shown in Figure .b, offering hence an
easy way to unambiguously identify the LH regimes. This way is extremely valuable in experimental
studies, as it provides an easy to apply criterion to unambiguously conclude if a structure is LH or not.
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FIGURE . (a) Simulated (solid line) and measured (dashed line) transmission amplitude (S) of a -unit cell
(uc) along propagation direction periodic arrangement of square SRRs. The dotted line shows the simulated S after
closing the gaps of the SRRs. Notice that by closing the SRR gaps the dip at ∼ GHz disappears whereas the rest of the
spectrum remains unaffected. This indicates that the ∼ GHz dip is magnetic in origin, whereas the dip after  GHz
is due to negative ε behavior. (b) Simulated (solid line) and measured (dashed line) transmission (S) spectra of a
left-handed material composed of SRRs (like the ones described in panel (a)) and wires, in a periodic arrangement (
uc). The dotted line shows the S of the combined material of closed-SRRs and wires (CCMM) and the dotted-dashed
line the S for the wires only. Notice than the plasma frequency of the CCMM (at ∼ GHz) is much lower than the
plasma frequency of wires only, which is at ∼ GHz. Notice also that the only difference between the transmission of
LHM and CCMM is the left-handed peak at ∼ GHz, showing that the CCMM carries all the electric response of the
LHM. The geometrical parameters of the system are: uc size . × . × . mm, l =  mm, d = w =. mm, t = .
mm (see inset), metal depth =  μm, wires width = . mm. The SRRs and wires are printed on opposite sides of a FR-
dielectric board of thickness . mm and ε = .. The wires are placed symmetrically to the SRRs, along the imaginary
line connecting the two SRR gaps. (From Kafesaki, M., Koschny, Th., Zhou, J., Katsarakis, N., Tsiapa, I., Economou,
E.N., and Soukoulis, C.M., Physica B, , , . With permission.)

17.2.2 Bianisotropy of SRR and Its Influence on the LH Behavior

Investigating the effect of the SRR orientation on the LH behavior of an SRR and wire system, for
various SRR types [,], we found that another aspect of the electromagnetic response of the SRR,
which is crucial for its ability to create LHMs, comes from its bianisotropy [,], which gives the
possibility of excitation of its magnetic resonance (i.e., the resonant oscillation of the circular currents
around its rings) by the external electric field, E. This electric field-induced excitation of the magnetic
resonance (EEMR effect) occurs whenever the SRR does not present mirror symmetry with respect to
E, as shown and explained in Figure .b; it occurs even for incidence normal to the SRR plane [].
One result, among others, of the resonant circular currents excited in the asymmetric SRR is the
nonzero average polarization induced, which is translated to a resonant permittivity response (in a
homogeneous effective medium description) at the magnetic resonance frequency [–].

A resonant permittivity response at the magnetic resonance frequency can be detrimental for
the achievement of LH behavior in SRR and wire systems, as it imposes strong positive ε regimes
where negative ε is required. The effect is even more detrimental in two-dimensional (D) and three-
dimensional (D) SRR and wire systems designed to create LHMs, where one requires that the SRRs
that do not contribute to the magnetic response of the medium to be also electrically inactive. In such
systems, especially in D, EEMR can be avoided only by employing symmetric SRR designs, like, e.g.,
multigap SRRs []. (Note that in D or even D systems the effect can be avoided by orienting the
SRRs properly.)
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FIGURE . Simple drawing for the charge and current for a symmetric (a) and a nonsymmetric (b) single-ring
SRR in an external electric field, E (pointing upward). The interior of the ring shows simulation data for the
polarization current component J∣∣E at a fixed time for normal incidence; white color indicates upward current and
black downward current. The asymmetry of the SRR in the case of panel (b) leads to different electric-field-induced
charges at the two top and bottom corners of the SRR and thus to a potential difference, which is compensated by a
circular current. (From Katsarakis, N., Koschny, T., Kafesaki, M., Economou, E.N., and Soukoulis, C.M., Appl. Phys.
Lett., , , . With permission.)

Despite the detrimental influence of the EEMR effect on the achievement of LH behavior in SRR
and wire systems, this effect presents an important advantage in the study of small (micrometer and
nm scale) SRR systems, since it offers an indirect way to trace the SRR magnetic resonance regime
in transmission experiments, i.e., by using normal incidence in one or few SRR layers. This advan-
tage has been exploited very extensively recently, as it was used to demonstrate experimentally the
occurrence of a magnetic SRR resonance in the  THz [],  THz [], and . mm [] regimes.

17.3 Two-Dimensional and Three-Dimensional Left-Handed
Materials from SRRs and Wires

Since many of the proposed applications of LHMs, such as the superlensing-based applications,
require D or D isotropic, homogeneous-like materials, many attempts have been made to realize
such metamaterials (see e.g., [–]). Besides the practical problems though in such a realization,
there are many fundamental considerations that should be taken into account for the achievement
of a D homogenous-like and isotropic LHM using SRRs and wires.

One impeding factor, which was discussed in the previous section, is the presence of the SRR’s
asymmetries, which produce electric resonances (resonances in ε) at the magnetic resonance
frequency regimes, destroying the negative ε response required for the achievement of LH behavior.
Therefore, for the achievement of D and mainly D LHMs it is essential to employ fully symmetric
SRR structures. An example of such a structure is a symmetric four-gap SRR, as the one shown in
Figure .a []. The presence of many gaps though, as in the design of Figure .a, leads to an upward
shift of the magnetic resonance frequency [,] (gaps act like capacitors in series, reducing the total
capacitance of the structure and thus increasing the magnetic resonance frequency, ωm = /

√
LC);

as a result, it is difficult for the magnetic resonance frequency to fall in the negative ε regime of the
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(a) (b)

(c)

FIGURE . The design of a fully symmetric unit cell (uc) for a one unit-cell-thick slab of an isotropic four-gap
SRR (a) and an LHM (b). The uc interfaces are parallel to the left and right SRR. The SRR gaps are filled with a material
of high dielectric constant (light-gray) to reduce the magnetic resonance frequency. An alternative way to reduce the
magnetic resonance frequency is to design extensions in the SRR gaps, as shown in panel (c), which increase the gap
capacitance. (From Koschny, Th., Zhang, L., and Soukoulis, C.M., Phys. Rev. B, , , . With permission.)

system, although it may be pushed close to the periodicity-induced band gaps; hence, design modifi-
cations are essential in this structure. Such modifications can be achieved through the introduction of
a high-index material in the SRR gaps (as in the case of Figure .a) [] or through the introduction
of proper extensions in the gaps [], so as to increase the gap capacitance (e.g., overleaf capacitors,
extra branches—see Figure .c, etc.) or by using, instead of single rings, ring pairs with broad-side
(face to face) coupling.

Apart from the requirement of symmetric and of subwavelength-scale SRR structures though,
there are additional conditions required for a structure to approach the isotropic, homogeneous,
effective medium behavior. Such conditions, which are described in detail in [], are the inversion
symmetry of the unit cell along propagation direction, the inversion symmetry in at least one of the
two directions perpendicular to that of the propagation (to avoid cross-polarization effects), and a
proper choice of the relative position of SRRs and wires an to minimize the cross-talk between them;
such optimum position was found to be the one in Figure .b, with the wires aligned in the middle
of the SRRs.

17.4 Effects of Periodicity in the Homogeneous Effective
Medium Retrieved Parameters in SRRs and Wire
Metamaterials

Most proposals for applications based on the unique physical properties of LHMs rely on the
homogeneity of the material, in addition to specific values and dispersion of the metamaterial’s
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impedance and refractive index. For instance, a perfect lens, even with exact parameters n = −
and z = , will only amplify evanescent wave components with momenta smaller than the inverse
unit cell size of the LHM []. Similar restrictions apply to all super resolution imaging and even
cloaking applications of metamaterials.

Homogeneous-like effective medium behavior occurs in metamaterials when the structural length
scale of the material becomes much smaller than the wavelength of the electromagnetic radiation
propagating through it. Under this condition the metamaterial will behave like a homogeneous
medium characterized by just two (in the absence of magnetoelectric coupling) frequency-dependent
parameters: the effective permeability, μ(ω), and the effective permittivity, ε(ω). (Both of them may
be tensors if the material is anisotropic.)

One of the key benefits of metamaterials is that we have—in principle—full control over both their
magnetic and electric response, such that achieving an LHM with large wavelength to unit cell size
ratio becomes possible (current state of the art is about – for microwave metamaterials).

If homogenization of a metamaterial, i.e., the description as an effective homogeneous medium, is
possible, we expect the effective parameters μ(ω) and ε(ω) to be only functions of the frequency and
not of the wave vector. The effective parameters then can be derived by a simple retrieval procedure
[,], essentially equating the plain wave scattering amplitudes of a metamaterial slab with those
of a finite homogeneous slab of same thickness and solving for the μ(ω) and ε(ω) or, equivalently,
refractive index, n(ω), and impedance, z(ω), of the slab. If these parameters can be chosen indepen-
dent of the length of the metamaterial, they constitute effective homogeneous medium parameters
describing the scattering properties and the propagation inside the metamaterial.

Early microwave metamaterials and all recent metamaterials in the THz and optical regime suf-
fer from the difficulty in reducing the structural size to vacuum wavelength ratio beyond the range
of –, while maintaining reasonable response amplitudes and losses. In this region, the effective
parameters retrieved for the metamaterials show strong artifacts [], which were not expected
from the simple analytic theory. They indicate the beginning of the breakdown of the homogeneous
medium behavior and the transition into a multiple scattering dominated regime, as in a photonic
crystal. These artifacts include the following: (a) the resonant index of refraction is cut off close to
the resonance, at values for which the wavevector inside the material approaches the Brillouin zone
edge; (b) the discontinuities marking the position of the resonance as retrieved from the effective
refractive index and impedance (or ε and μ) do not coincide but are shifted in frequency; (c) the
expected Lorentzian shape of the magnetic resonance is strongly deformed, usually with the positive
part cut off; (d) an unexpected antiresonant behavior in ε(ω) is found whenever μ(ω) is resonant,
and vice versa; and (e) seemingly unphysical negative imaginary parts occur in the effective medium
parameters μ(ω) and ε(ω).

All those artifacts can be understood and quantitatively predicted taking the inherent periodicity
of the metamaterial into account []. In the long wavelength limit all of these artifacts vanish (except
in very close proximity to a strong, low-loss resonance) and the expected behavior of a Lorentz-like
resonant μ(ω) and a smooth plasmonic ε(ω) are recovered. For a typical microwave SRR and wire
LHM this would require a wavelength to unit cell ratio of the order of .

These periodicity artifacts are usually strongly detrimental to the desired metamaterial proper-
ties, and their avoidance constitutes an additional constraint for metamaterial design. Further, also
the symmetry of the unit cell and the metamaterial sample places some constraints on the effective
medium behavior [] (see Section .), which need to be accounted for in LHMs design.

17.5 SRRs and Wire Metamaterials toward Optical Regime

The novel and unique properties of LHMs, which result in new capabilities in the manipulation
of EM waves, have as a result a strong effort worldwide to achieve such materials not only in the

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

17-10 Theory and Phenomena of Metamaterials

microwaves, where they were initially demonstrated, but also in the THz and optical regimes [],
targeting applications such as imaging, security, sensing, and lithography, etc.

One of the most straightforward approaches to achieve THz and optical LHMs is the scaling of
established microwave LH structures, like the SRRs and wires structures. Although the properties of
the metal, which is the main constituent of most of today’s metamaterials, are drastically different in
the optical regime compared with those in the microwaves (there, the metal practically behaves as a
perfect conductor), scaling of the structures is not expected to always produce proportional scaling of
the resulting properties; thus a detailed examination of the scaling behavior of both SRRs and wires
is essential.

Such an examination of the scaling properties of the SRRs [,] revealed that by scaling the
structures the magnetic resonance frequency, which in microwaves scaled inversely proportional to
the structure size, close to the optical regime saturates to a constant value (see Figure .a), which
depends mainly on the SRR design (geometrical characteristics). Moreover, the magnetic permeabil-
ity resonance becomes weaker and weaker as we approach the submicron scale, and after some length
scale it ceases to reach negative values (see Figure .b). Both of these effects can be explained by
taking into account the kinetic energy of the current-carrying electrons inside the SRR rings, besides
the magnetic energy produced by those current-carrying electrons. This kinetic energy, which in
microwaves is negligible compared with the magnetic energy and is usually ignored, in higher fre-
quencies becomes more and more important, mainly due to the large reduction of the magnetic
energy as the SRR becomes smaller and smaller.

Considering the electrons, kinetic energy through an equivalent inductance, Le, (added to the
magnetic field inductance, L) in an LC circuit description of the SRR [–] and examining the
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FIGURE . (a) The scaling of the simulated magnetic resonance frequency, fm = ωm/π, as a function of the linear
size, a, of the SRR unit cell, for single-ring SRRs of one, two, and four gaps (cuts). Up to lower THz region the scaling is
linear. The maximum attainable frequency is strongly increased with the number of gaps in the SRR ring. The hollow
symbols and the vertical line at /a = . μm− indicate that no negative μ is reached beyond this value. For the SRR
designs employed the unit cell has dimensions a×a in the SRRs plane and .a perpendicular to it. The SRR is made
of Aluminum, simulated with a Drude-type permittivity. (b) Simulated Re μ for a single-ring four-gap SRRs system,
for unit cell sizes a =  nm (solid line),  nm (dashed line),  nm (dotted-dashed line), and  nm (dotted line).
(From Zhou, J., Koschny, Th., Kafesaki, M., Economou, E.N., Pendry, J.B., and Soukoulis, C.M., Phys. Rev. Lett., ,
, . With permission.)
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scaling behavior of Le (resulting to be ∝ /size), L (∝ size), and C (∝ size), one obtains for the
magnetic resonance frequency the form

ωm =
√

(L + Le)C
∝ √

size + const.
, (.)

which leads to a constant value as the SRR size tends to zero.
Accurate numerical simulations employing practically achievable SRRs [,,] have demon-

strated this saturation behavior and have shown negative permeability up to  THz ( nm) (in
four-gap SRRs—see Figure .b), i.e., the visible range, indicating the possibility of achieving LHMs
even in the visible range, by employing SRRs.

If one also takes into account the potential energy of electrons inside the SRR [], it can be con-
cluded that the theoretical absolute upper limit for the magnetic resonance frequency (assuming
the “optimum” SRR design) is the plasma frequency of the bulk metal. In practical cases though,
the upper limit that can be achieved is much below that frequency. We have to mention finally
that the saturation of the magnetic resonance frequency in nm-scale SRRs has also been demon-
strated experimentally [], for a single-ring, single-gap SRR system.

17.6 Slab Pairs and Slab-Pair-Based Left-Handed Materials

Although the SRR and wire geometry proposed by Pendry has become very widely used in the
microwaves regime, this topology presents certain disadvantages in the THz and optical regime
requiring micron and submicron length-scale structures. Its major disadvantage comes from the fact
that the negative permeability SRR response is achieved for propagation parallel to the SRR plane
(so as to have magnetic field perpendicular to that plane), which makes essential the fabrication of
multilayer samples, somehow difficult to achieve with the current technological limitations.

An alternative design that overcomes the above impediment is the slab-pair design (see
Figure .b), which was proposed by the Purdue group in  []. As can be concluded from
Figure .b, the slab-pair design responds as a resonant magnetic dipole for propagation normal to
the plane of the structure, which makes possible the demonstration of negative permeability response
with a single or very few structure layers. Moreover, the design is very simple and relatively easy to
be fabricated in the micro- and nano-scale.

Besides the resonant magnetic mode associated with resonant antiparallel currents at the two slabs
of the pair, the slab-pair design also allows a resonant electric mode, associated with parallel cur-
rents at the slabs, resulting in a resonant electric dipole moment. Therefore, besides the resonant and
negative permeability response, there is also a strong resonant (and with negative values) permittiv-
ity response in slab-pair systems, which can occur in frequencies close to the magnetic resonance
frequency.

The simultaneous existence of negative ε and μ at nearby frequencies in slab-pair systems has led
to many attempts to achieve LH behavior employing only slab pairs [] and tuning properly the
negative μ regime to fall within the negative ε regime (which is much broader, due to the stronger
electric resonance []).

Detailed theoretical studies, though [], have shown that such a “coincidence” can be achieved
only under very extreme conditions, whereas it is impossible for isolated pairs (where the magnetic
resonance frequency is always below that of electric resonance). The factor that makes a “coinci-
dence” possible in a periodic system of pairs is the capacitive interaction of neighboring pairs along
the electric field direction, which can lead to a large downward shift of the electric resonance, bring-
ing it below the magnetic one. Modifications of the slab-pair design to increase this interaction give
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additional possibilities for the achievement of LH behavior using only slab pairs. Such design modi-
fications (T-shape extensions) have been exploited recently for the demonstration of LH behavior in
slab pairs at the GHz regime [].

The difficulty in achieving electric and magnetic resonances at nearby frequencies in only slab-pair
systems is based to a large degree on the fact that both the electric and the magnetic resonances result
from the splitting of a “single particle dipole resonance” (single-slab resonance), due to the interaction
of the slabs of the pair. This is confirmed further by the fact that the dominant parameter determin-
ing both resonance frequencies (in GHz slabs) is the length of the slabs. The magnetic resonance
frequency, in particular, seems to be almost independent of all the other geometrical parameters,
i.e., slab width, thickness of metal, and separation of the slabs []. (This result that can be easily
explained through an LC description of the system.)

Closing this section, we have to mention that the achievement of LH behavior only from slab pairs,
besides the disadvantage of being possible only under very extreme conditions, has the additional
disadvantage that it stems from the involvement of two resonances, which is associated with large
induced losses.

17.7 Left-Handed Behavior from Slab Pairs and Wires—The
Fishnet Design

Another approach for the achievement of LH behavior that seems to overcome the above-mentioned
disadvantages of the slab pair-only LHMs is to combine the slab pairs with continuous wires, as
shown, e.g., in Figure .a, using only the resonant magnetic response of the pairs and making use
of the broad negative ε regime offered by the wires. This approach has been exploited recently for the
demonstration of LH behavior in both the GHz and the THz regimes [–].

E E

k H
H

x

y

(a) (b) (c)

FIGURE . (a) The unit cell of an LH metamaterial design based on combination of slab pairs and continuous
wires. The picture also shows the orientation of the external electromagnetic (EM) field that excites the left-handed
response of the structure. (b) One unit cell of the fishnet design. The external EM field for the excitation of the LH
behavior of the design is as shown in panel (a). (c) The magnetic field component Hx at the magnetic resonance fre-
quency of the fishnet design. The field is plotted at the x−y (or H–E) plane, which lies in the middle (along the z
direction) of the two metallic sheets of the structure. Dark color indicates large field amplitude and light color, low
amplitude. (From Kafesaki, M., Tsiapa, I., Katsarakis, N., Koschny, Th., Soukoulis, C.M., and Economou, E.N., Phys.
Rev. B, , , . With permission.)
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Despite the fact that the addition of wires offers an easier and safer approach compared with the
only-slabs one, certain considerations should be taken into account here, stemming mainly from the
presence of the electric resonance of the slabs at frequencies close to that of the magnetic resonance.
As described in Section . for SRRs and wires, in slabs and wire systems the electric response of the
slabs modifies the effective permittivity of the system (compared with that of only the wires), leading
to a new plasma frequency, ω′p, below that of the wires and below the electric resonance frequency
of the slabs, ωe. The influence of the slab’s electric resonance though, besides the dramatic in some
cases lowering of the plasma frequency in some cases, also results in a very abrupt ε dispersion close
to the new plasma frequency. This comprises a serious impediment for the achievement of a good
impedance match of the structure with its environment and thus for the achievement of LH behavior
with high transmittance.

Studying in detail the dependence of the characteristic frequencies of the system on the various
system parameters [], it can be seen that to ensure a negative μ regime below the new plasma
frequency ω′p, one needs relatively isolated slabs (i.e., short slabs compared with the corresponding
unit cell side), to ensure magnetic resonance below the electric one.

Moreover, to minimize the destructive influence of the electric resonance on the system’s
impedance one needs to push the electric resonance not just above the magnetic one but at fre-
quencies as further up as possible. Examining the dependence of the electric resonance frequency
on the various system parameters it was found [] that a large upwards shift of the electric reso-
nance without affecting much the magnetic resonance frequency can be achieved by widening the
slabs, reducing thus their inductance. (This widening, despite the fact that it does not affect the mag-
netic resonance frequency, has a positive influence on the magnetic resonance strength, reinforcing
it—due to the increase in the volume available for the induced magnetic field.)

Another factor that leads to upward shift of ωe is to physically connect the slabs with the wires,
as shown in Figure .b, which results in a design known as fishnet [–]. Fishnet design, which
is described here, seems to offer an optimized solution for the achievement of LH behavior, both in
microwaves [] and the optical regime [,].

17.7.1 The Fishnet Design

The fishnet design [–], shown in Figure .b, combines strong magnetic response and high
enough electric (ε) resonance frequency, due to the wide slabs and the physical connection of slabs
and wires.

Detailed numerical simulations [] and corresponding experiments for the fishnet design in the
GHz regime [,] have shown LH behavior with high transmittance for a wide range of geomet-
rical parameters, making it an optimized design for the achievement of LH behavior. The superior
performance of the design has been revealed also in the optical regime, where fishnet has given the
highest in frequency [] and the highest in transmittance levels of [] LHM up to now.

The strong magnetic response (as a result of the wide slabs) seems to be responsible for this superior
performance of the fishnet, combined with the smooth, Drude-like electric response (as a result of the
high electric resonance frequency) []. This smooth electric response results in a good impedance
match with the environment for a wide range of geometrical parameters of the structure and thus to
high LH transmittance (if the material losses are also low).

The high electric resonance frequency together with all the other characteristics of the structure
behavior can be understood through examination of the current and the electric and magnetic fields
at the resonances of the structure. Such an examination has revealed a strong inductive response not
only at the slabs of the pair but also at the joints connecting the neighboring slabs along the external
E direction (see Figure .c). This response, taken into account through an equivalent inductance,
parallel to the slab’s inductance, can account for all the aspects of the behavior of the structure. Taking
into account the joint’s inductance and employing simple analytic formulas for the capacitances and
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inductances of the structure, one can reproduce and explain the dependence of both the magnetic
and electric resonance frequency from all the geometrical and material parameters of the fishnet
design [].

Another characteristic of the fishnet worth mentioning is the slightly higher magnetic resonance
frequency compared with the magnetic resonance frequency of only the slabs. This feature, which can
also be explained through the joints’ loop inductance, although it is not desired in the GHz regime
(as it makes the structure less subwavelengh in scale), is highly desired in the optical regime, as we
discuss below.

17.8 Slab-Pair-Based Systems toward Optical Regime

As it has been mentioned in Section ., where we discussed the scaling behavior of SRRs, the
nonscalability of the metal properties as one goes from microwaves to the optical regime results to
nonscalability of the properties of the artificial magnetic and of the LH structures.

This nonscalability observed in the SRRs is repeated (as is expected) also for the structures based
on slab-pairs [,], including the fishnet design.

Figure .a shows the magnetic and the electric resonance frequency for a pair of relatively narrow
slabs (as the ones of Figure .a—without the wires) and Figure .b the same frequencies, with the
addition of the plasma frequency, fp = ω′p/π, for the fishnet design. Both results show the saturation
of all the characteristic metamaterial frequencies. Calculations of the magnetic permeability close to
the saturation regime show also here the weakening of the permeability resonance going to higher
and higher frequencies [].
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FIGURE . The scaling of the simulated magnetic resonance frequency, fm = ωm/π, and the electric resonance
frequency, fe = ωe/π, as a function of the inverse unit cell size, a, (a here is the unit cell side along propagation direc-
tion) for a system of slab pairs (panel (a)) and for a fishnet structure (panel (b)—for the design see Figure .b). Panel
(b), in addition, shows the scaling of the “plasma” frequency, fp = ω′p/π (i.e., the frequency of the first transition from
negative to positive real part of the structure permittivity) for the fishnet design. The structures have been simulated
using the Drude model for the permittivity of the metallic components, with the Aluminum parameters for the plasma
frequency ( THz) and the collision frequency (. THz), while the dielectric spacer between the metallic elements
has been chosen to be glass, with a permittivity of .. The unit cell parameters are .a×.a× a, along the external
E, H, and k direction, respectively (for the designs and axes see Figure .), the slab’s thickness is .a, the width
(along H) of the joints is .a, the board thickness (along k) is .a, the slab’s length is .a and the narrow-slab’s
width is .a. (From Penciu, R.S., et al., Slab-pairs and fishnet design: Limits of size scaling (in preparation).)
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Both the saturation of the magnetic and the electric resonance frequencies as well as the weak-
ening of the resonance strength can be explained, like for SRRs, through the “kinetic inductance”
of the electrons inside the metal. (Note that the involvement of the kinetic inductance results in the
involvement of additional geometrical parameters in the determination of the magnetic resonance
frequency, which in the gigahertz range was found to be determined almost exclusively by the length
of the slabs.)

Comparing the saturation values of the magnetic resonance frequency of the pairs with those of
single-ring single-gap SRRs, one can observe higher saturation values for the pairs. This is due to the
decreased capacitance (because of the two gaps) and inductance (because of the reduced area) of the
pair compared with single-ring, single-gap SRR.

From Figures . it is worth mentioning also that

. Fishnet maintains the observed in microwaves of higher magnetic resonance frequency
(compared with only slab pairs) also close to the saturation regime.

. Electric resonance frequency, both for slab pairs and fishnet, maintains its higher values
compared with magnetic resonance frequency in all frequency ranges, including the
saturation regime.

. The plasma frequency for the fishnet, fp, although it is higher than the magnetic reso-
nance frequency in the microwaves, does not maintain its higher values in the saturation
regime; thus design modifications are required for the structure to maintain its LH behav-
ior as it is scaled down. This shows that an optimized LH microwave design is not
necessarily the preferred LH design at the optical regime.

Finally, we have to mention that consideration of the kinetic inductance of the slab electrons can
explain all the above features and can give simple approximate analytical formulas for the various
saturation values [], which can be very useful for structure optimizations.

An overall structure optimization, though, should take into account not only the effects associated
with the kinetic inductance but also the other important factor for the achievement of functional
optical LH materials: the minimizations of the resistive losses, unavoidable in such materials. The
proposed solutions for such a minimization include not only changes in designs [] and optimiza-
tion of the quality of the constituent materials (e.g., using silver for the metallic components) but also
incorporation of gain media into LHMs, to compensate for the losses []. This last solution has been
studied extensively recently and might constitute one of the most promising ways for achievement of
functional optical LHMs.

17.9 Conclusions

The unique properties and capabilities of LHMs have led to a widespread recognition of them and to
exponentially increasing research efforts devoted to their study and exploitation. In this chapter, we
attempted a summary of basic design considerations aiming at the achievement of optimized LHMs
in one-, two-, and three dimensions and in frequency regimes ranging from microwaves to optics.

This kind of structures will be capable of fully demonstrating all the unique properties and abilities
of LHMs, such as (a) the ability to match the vacuum impedance, which is a unique property of LHMs
with many applications (e.g., in stealth technology); (b) the possibility of coupling with the magnetic
component of an electromagnetic field without the presence of any magnetic material (this is a new
capability of fundamental importance, especially in the terahertz region where no natural magnetic
materials exist); (c) the possibility of miniaturizing devices and components such as antennas and
waveguide structures, leading to very important potential system weight and size savings; and (d)
the negative refraction and the subwavelength resolution capability, which open up the possibility of
new applications in optics and communications.
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18.1 Introduction

In recent years, left-handed metamaterials (LHMs) have become a remarkable research area and have
received a considerable amount of interest due to their exotic electromagnetic properties that are not
attainable from common materials. The left-handed media phenomenon was brought to the attention
of the scientific community by Veselago four decades ago [] and has received great attention in recent
years since the first experimental demonstration of LHMs by Smith et al. [,].

The dielectric permittivity (ε) and the magnetic permeability (μ) are both positive for natural
materials. In fact, it is possible to obtain negative values for ε and μ by using proper designs of
metamaterials. An array of split ring resonators (SRRs) exhibits negative effective permeability (μeff)
values for frequencies close to the magnetic resonance frequency (ωm) of the SRRs []. Combining
negative permittivity media together with negative permeability media results in a metamaterial with
a negative refractive index provided that the negative values of permittivity and permeability coincide
at certain range of frequencies []. Metamaterials offer novel properties, such as negative refraction,
subwavelength imaging, and cloaking.

In this study, we review our research efforts in the field of metamaterials and report on the trans-
mission, reflection, refraction, and imaging properties of two-dimensional (D) LHMs composed
of SRRs and thin-wire media. A left-handed transmission band is observed within the frequency
region where both ε and permeability μ are negative. The refractive index is verified to be negative at
these frequencies by using three independent measurement methods, such as refraction from prism-
shaped LHMs, slab-shaped LHMs, and phase measurements. Consequently, imaging and resolution
beyond the diffraction limit are observed for a D LHM superlens.

18-1
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18.2 Left-Handed Metamaterial

The response of materials to the incident magnetic field is determined by magnetic permeability.
Magnetic permeability is positive in usual materials. The absence of the negative values of magnetic
permeability provided little motivation for studying negative-index materials (NIM). Pendry et al. []
proposed SRR structures to obtain negative permeability values. The resonant behavior of SRRs is due
to the capacitive elements (gaps and splits), which in turn result in rather high positive and negative
values of permeability near the magnetic resonance frequency (ωm).

SRRs under investigation are built from concentric metal rings on a dielectric printed circuit
board with a thickness of . mm and ε = . []. To obtain negative permeability, we arranged
SRR structures periodically with the parameters given in Ref. [].

Figure . displays the measured and simulated transmission spectra of periodic SRRs. Two band
gaps are observed throughout the frequency range of interests. The first band gap is between . and
. GHz, and the second gap is from . to . GHz. The simulation results validate the experi-
mental data as seen in the figure. In order to check the reason for the band gap formation, we proposed
a test structure in which the splits are no longer present. The resulting structure is two complete rings
without the splits, which we name as closed ring resonator (CRR) []. The splits in the SRR structure
play a key role in obtaining magnetic resonance. Removing the splits prevents the current from flow-
ing between the inner and outer rings, and, therefore, the magnetic resonance is no longer present.
The measured transmission data are also given in Figure . with a black dotted line. The first band
gap is not present for the CRR structure; however, the second band gap remains. We can claim that
the stop bands of SRR media cannot be assumed as a result of “negative μ” behavior. Some of the
observed gaps (such as the second band gap in this measurement) in the transmission spectra could
also originate from the electrical response of the SRRs or from Bragg gaps due to periodicity. The
band gap between . and . GHz is due to the magnetic response of SRRs. However, the stop
band .–. GHz appeared due to the electrical response of the concentric rings.

We then combined SRR media with a proper thin-wire media, which provides the negative per-
mittivity that is required for left-handed type of propagation []. Figure . shows the measured
transmission spectra of SRR array (dashed line), wire array (dashed-dotted line), and LHM array
(solid line). The wire array does not transmit EM waves at the frequency range of interest. This is
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FIGURE . Measured and simulated transmission spectra of SRR and CRR arrays.
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FIGURE . Measured transmission spectra of periodic SRR (dashed line), wire (dashed-dotted line), and LHM
(black line) arrays.

to the negative values of dielectric permittivity. The plasma frequency of wire media is . GHz (not
shown here), and below that frequency the dielectric permittivity becomes negative. One should
observe a transmission band within the frequency region where both permittivity and permeabi-
lity are negative. It is worthy of note that the effective plasma frequency reduces down to . GHz,
when wire arrays are combined with the SRR arrays []. As seen in the figure, a transmission band
is observed between . and . GHz, where the effective permeability and effective permittivity
of LHM are simultaneously negative. The peak value within this transmission band is −. dB. This
measurement was performed for an LHM with three layers along the propagation direction.

We also measured transmission from a five-layer LHM. The result is given with a dashed line in
Figure .b. The peak value reduces to −. dB for LHM with five layers. The reduction in the
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FIGURE . Measured transmission (dashed line) and reflection (solid line) spectra of (a) three-layer and
(b) five-layer D LHM.
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transmission peak could be attributed to the increased loss that is caused by the increased amount of
metal and lossy substrate in the system.

We also measured reflection from three- and five-layered LHMs. The reflection spectra of three
and five layer LHMs are shown by solid lines in Figure .a and b, correspondingly []. For both
structures, we observed a dip in the reflection spectra at . GHz. The reflection is very low around
− dB, which means that the incident EM waves do not face significant amount of reflection at the
LHM surface.

The low reflection from the surface can be attributed to either matched impedance at the interface
or to the thickness resonance of the slab. Since the frequency for lowest reflection did not change
for three- and five-layered LHMs, such a behavior could not be due to the thickness resonance. The
effective parameters of the LHM structure are calculated in a recent work, and impedance is found
to be matched with that of free space [].

18.3 Negative Refraction

For materials with a negative refractive index, the phase velocity points toward the source, i.e., the
phase velocity and energy flow are antiparallel inside an LHM []. By measuring the transmis-
sion phases for LHMs with varying thicknesses, one can verify that the phase velocity is indeed
negative. We have constructed four different D LHM slabs with , , , and  layers. The trans-
mitted phases are plotted in the frequency range .–. GHz, which is within the left-handed
transmission region. It has been recently shown that increasing the number of layers of LHM results
in a decrease at the phase of the transmitted EM wave. This is a typical left-handed behavior [].
We measured the average phase shift between LHMs with the consequent number of layers.

The index of refraction in terms of wavelength, phase shift, and change in the length of left-handed
material is given by []

n = Δϕ
ΔL

λ
π

.

We constructed a prism-shaped D composite metamaterial (CMM) structure (with a wedge angle
of θ = ○) for negative refraction. Figure . shows the transmission spectrum as a function of
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FIGURE . Measured effective refractive indices as a function of frequency, which are obtained from the
phase-shift experiments (black line) and wedge experiments (●).

frequency and refraction angle. The transmitted EM waves are refracted toward the negative side
of the surface normal within the frequency range of .–. GHz. At lower frequencies, the EM
waves are refracted at higher negative refraction angles, which results in a higher negative refractive
index. On the other hand, the refraction index is lowered with increasing frequencies. By employing
Snell’s law (nCMM sin θi = nair sin θr), an effective refractive index can be defined for the CMM. At
f = . GHz, the incidence angle is θi = ○ and EM wave is refracted at an angle of θr = ○; then
from Snell’s law, we obtain neff = −. ± . at . GHz.

Figure . shows the measured refractive index values calculated by using the phase shift between
the consecutive numbers of negative index material (NIM) layers that are reported in []. The symbol
(●) corresponds to the refractive indices obtained from wedge experiments at some other frequencies
(data not shown here). There is a good agreement between the results obtained from the two different
methods.

At f = . GHz, the wavelength of the EM wave is λ = . cm. The average phase shift per unit
cell (ΔL = . mm) obtained from the experimental results is ΔΦ = −. ± .π. Inserting these
values in Equation ., the index of refraction at . GHz is found to be neff = −. ± ..

18.4 Subwavelength Imaging

A perfect lens is one of the most important applications of materials with a negative refractive index.
The term, perfect lens, was coined by Pendry owing to the ability of such lenses to reconstruct a
perfect image by recovering the evanescent components of EM waves []. In conventional optics, the
lenses are constructed from positive-index materials and require curved surfaces to bring EM waves
into focus. Positive-index lenses suffer from the diffraction limit and can only focus objects with sizes
in the order of or greater than a half-wavelength.

The imaging measurements are performed at . GHz, where the reflection is considerably low
and the losses due to reflection are negligible. The impedance is matched at . GHz for perpen-
dicular normal incidence; however, the reflection will still affect the performance of LHM superlens
for oblique incidence. In the imaging experiments, we employed monopole antennae to imitate the
point source. The exposed center conductor acts as the transmitter and receiver and has a length of
 cm (∼ λ/). First, we measured the beam profile in free space that is plotted in Figure . with
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FIGURE . The measured power distributions at the image plane with three- and five-layer LHM superlenses.
Gray dashed-dotted line corresponds to the power distribution in free space. Normalized intensity in free space is
multiplied with ..

a dashed line. The full width at half maximum (FWHM) of the beam is . cm (.λ). Then, we
inserted LHM superlens and measured the spot size of the beam as .λ, which is well below the
diffraction limit. The LHM superlens consists of three layers along the propagation direction. The
source is located ds = . cm away from the first boundary, and the image forms di = . cm away
from second boundary of the superlens. The intensity of the electric field at the image plane is scanned
by the receiver monopole antenna with Δx =  mm steps.

We also performed additional measurements to check the influence of the lens thickness on the
resolution of the superlens. The thicker LHM superlens has higher losses due to the increased amount
of lossy substrate and the metal. Thus, one would expect the resolution to decrease for a thicker
superlens. We performed imaging measurements for five-layer superlens, and the beam profile at the
image plane is plotted within Figure . (–o–). As seen in the figure, the resolution is decreased and
the FWHM of the beam is measured as .λ.

18.5 Conclusions

In conclusion, we have successfully demonstrated a left-handed transmission band for D LHM in
free space. Impedance matching condition is satisfied at a certain frequency regime where a sharp dip
in the reflection spectra of LHMs is observed. Refractive index is calculated to be negative at the fre-
quency region where both permittivity and permeability are negative. Phase shift and therefore the
phase velocity are shown to be negative. Finally, an impedance-matched, low-loss, negative-index
metamaterial superlens is demonstrated, which is capable of resolving subwavelength features with a
record-level .λ resolution. This is the highest resolution achieved from a negative-index metama-
terial superlens. Moreover, two sources separated with a distance of λ/ are clearly resolved. The effect
of thickness on the subwavelength resolution is also verified, where a thicker superlens substantially
reduced the resolution down to .λ.
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19.1 Introduction

In this chapter we describe the development of a few negative refractive index (NRI) metamateri-
als with periodic structure whose unit cells are based on the concept of pairing two suitably shaped
conductors, for microwave and optical frequencies. Such configurations are shown to support both
antisymmetric (magnetic) and symmetric (electric) resonance modes, whose interaction, when prop-
erly engineered, results in simultaneous negative permittivity and permeability, and, accordingly,
NRI. The presented metamaterial structures can be considered as generalizations of the short-wire
or strip-pair design, which have been demonstrated to provide a magnetic response and negative
permeability and to constitute an effective alternative to split ring resonators (SRRs).

19-1
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The organization of the chapter is as follows. In Section . the state of the art in the field of NIMs
is briefly summarized, without aiming for completeness, to provide the reader some background
information. Then, the designs of a few fully planar metamaterial media suitable for microwaves and
millimetre-wave frequencies are presented. These fully printed designs using a single dielectric sheet
are very simple to fabricate and constitute alternative implementations for either single-polarization
or isotropic left-handed materials (LHMs). Furthermore, as a main advantage, the presented geome-
tries provide several parameters to control the electric and magnetic resonances. In the second part
of this chapter, the attention is focused on metamaterials based on plasmonic nanostructures. In par-
ticular, we analyze the properties of certain metamaterials whose constitutive unit cell simply consists
of a pair of nanospheres or a cluster of four nanospheres. We show that one of the local resonance
modes of these closely packed nanospheres constituting the metamaterial unit cell is associated with
a magnetic dipole and thus can lead to artificial magnetism.

19.2 Background

Realization of NRI materials loomed as a challenge since the late s when Veselago analyt-
ically investigated the electrodynamics of substances exhibiting simultaneous negative dielectric
permittivity and magnetic permeability, showing that in such media waves behave in a reversed
manner and exhibit many peculiar effects, including negative refraction, reversed Doppler shift,
and Cherenkov radiation []. Indeed, a main obstacle to the practical implementation of meta-
materials was represented by the fact that at microwave frequencies the magnetic susceptibility
of all natural materials tails off and losses start to be significant. To overcome such fundamen-
tal limitations, the original approach proposed by Pendry et al. [] was to exploit the inductive
response from structured nonmagnetic materials to obtain high-frequency magnetism. This con-
cept has found successful implementations through the use of arrays of copper SRRs which generate
an effective magnetic response at frequencies up to hundreds of terahertz [–]. In this range of
frequencies, SRRs combined with wires have been used as the constituent particles of artificial
media in which NRI can be observed for plane waves with fixed polarization impinging at certain
angles [–].

However, the direct scaling of the demonstrated SRR microwave media to visible-light frequen-
cies, where one can expect most exciting applications, appears to be impracticable because of both
technological issues (structures with critical features and extremely small sizes) and different elec-
tromagnetic responses of materials to visible light and microwaves, including the impact of inherent
losses, which were predicted to limit the SRR approach to frequencies well below optical []. Further-
more, a major disadvantage of SRR-based materials is that to achieve a LH behavior one has to employ
an incident magnetic field perpendicular to the SRRs’ plane and thus a propagation direction paral-
lel to the SRRs’ plane; this requires multilayer samples that must be assembled in a nonplanar way,
with very tight tolerances. Therefore, the manufacturing of such material faces enormous difficulties,
especially at terahertz and optical frequencies. Accordingly, a great deal of effort has been recently
focused on the development and fabrication of increasingly more efficient metamaterial media, and
the search of novel physical structures of the constituent particles still remains an acute problem,
especially at optical frequencies.

Indeed, a variety of designs have been devised to overcome the technological impairments related
to the fabrication and assembling of SRRs. Many of these alternative approaches are summarized
in this handbook; for instance, in [,] an example of metamaterial at microwave frequencies
made by a planar assembly of metallic disks or holes in metallic screens is presented; moreover,
see [] (and references therein) for a description of a class of metamaterials using electrically dense
spheres.
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In the rest of this chapter we restrict our focus to a class of metamaterials that exploit the occurence
of an antisymmetric resonance mode (the so-called magnetic resonance mode) in pairs of tightly
coupled particles, at both microwave and optical frequencies.

19.3 From SRR and Wire Media to Planar Metamaterials:
Short-Strip Pairs and Related Structures

An alternative to the SRR and wire design that seems to overcome most of the aforementioned
impairments is based on a simplified structure composed by a pair of short wires or strips [–]
(Figure .). The capability of a pair of metallic nanorods to provide a diamagnetic response and,
most importantly, NRI was first demonstrated in [,]. As illustrated in Figure ., a magnetic field
oriented perpendicularly to the plane of the rods causes antiparallel currents in the two rods, which
in turn provide a resonant magnetic response of the system analogous to that of the SRRs. A similar
mechanism works also for strip pairs. This substantial equivalence between the magnetic response of
wire or strip pairs and SRRs is further clarified in Figure .a through c, which shows how by contin-
uous transformation an SRR can be reduced to a pair of aligned strips separated by a dielectric spacer.
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FIGURE . (a) Schematic for the array of nanorod pairs supporting antiparallel current modes. (b) Field-emission
scanning electron microscope images of the fabricated nanorod pairs array where a negative refractive index is achieved
at telecommunication wavelengths. (c) Elementary cell. (Reprinted from Shalaev, V.M., Cai, W., Chettiar, U.K., Yuan,
H.-K., Sarychev, A.K., Drachev, V.P., and Kildishev, A.V., Opt. Lett., (), , . With permission.)
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FIGURE . The two-cut single metallic SRR (a) can be transformed to a pair of parallel metallic bars separated
by a dielectric; (b) view in (E , k) plane; (c) view in (E , H) plane. Adding continuous wires results in design (d) [view
in (E , H) plane], which can be modified to (e) a fully connected one on both sides of the thin dielectric board. The
dashed squares define unit cells with dimensions ax (parallel to H), ay (parallel to E), and az (parallel to k). (Reprinted
from Zhou, J., Economon, E.N., Koschny, T., and Soukoulis, C.M., Opt. Lett., (), , . With permission.)

Differently from SRRs, the antisymmetric or loop mode in the strip pairs can be excited by an inci-
dent EM field propagating perpendicularly to the layer where such pairs are printed, as also indicated
in Figure ., such that a strong magnetic response and demonstration of negative permeability can
be obtained with only one layer of short-strip pairs. In addition to this magnetic mode, short-strip
pairs also support a symmetric mode, corresponding to parallel currents in the strips associated with
a resonant electric response and a negative permittivity regime. Accordingly, as a further advantage
of using pairs of finite-length wires or strips, besides replacing the SRRs as magnetic resonators, one
could simultaneously obtain a negative permittivity in the same frequency range, and, therefore an
NRI, without the need for additional continuous wires.

However, it must be pointed out that the condition for obtaining simultaneous negative permeabil-
ity and negative permittivity by pairs of short metallic strips is subject to some restrictions [,].
Indeed, the difficulty of obtaining NRI with short-strip pairs originates from the fact that the electric
resonance is generally stronger and wider than the magnetic one; thus, if the electric resonance of the
strips is well above the magnetic resonance frequency, simultaneous negative permittivity and per-
meability cannot be achieved. As a consequence, one usually needs to locate the magnetic resonance
within the negative permittivity region (unless the region of negative permeability can be made wide
enough to overlap, at least partially, the negative permittivity region). Yet employing simple short-
strip pairs, the separate tuning of these two resonances to achieve an NRI is not feasible, because
the frequencies of both the electric and magnetic resonances are controlled by a single geometrical
parameter, i.e., the length of the wires (both frequencies are approximately proportional to the inverse
length) [].

A convenient approach to achieve LH behavior from short-strip pairs is to combine them with
continuous wires (cf. Figure .d), which provide a large negative permittivity band due to their
plasmonic response, and one can exploit only the negative permeability produced by the pair [,].
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FIGURE . (a) Schematic representation of one unit cell of the wire-pair structure. (b) Photograph of fabricated
microwave-scale wire-pair sample. (b) Extracted refractive index n of a periodic array of wire-pair unit cells, using the
simulated (solid curves) and measured (dotted curves) transmission and reflection data. The black and gray curves
show the real and imaginary parts of n, respectively. (Reprinted from Zhou, J., Koschny, T., Zhang, L., Tuttle, G., and
Soukoulis, C. M., Appl. Phys. Lett., (), . /–, . With permission.)

A further possibility to accomplish an electric resonance lower than the magnetic one is to increase
the interparticle capacitance by reducing the distance between the pairs or increasing the width
of the strips at their ends as shown in Figure ., that is, by choosing for each strip an “H” shape
(in the following also referred to as “dogbone” shape), as first suggested in [].

The same concept of pairs of strips or slabs underlies the so-called fishnet structure, which was
originally introduced in []. Indeed, the fishnet design can be thought of as obtained from the
strip-pair and continuous-wire design by increasing the width of the strips until they join the infi-
nite wires, thus producing a continuous connected network that can be constructed by opening
periodically placed rectangular or circular holes in uniform metallic films covering both sides of
a dielectric sheet [,–]. The fishnet has been proven as one of the effective structures for
obtaining NRI behavior; however, its properties are described in detail elsewhere in this hand-
book [], and, therefore, they will not be repeated herein. Instead, in this chapter we focus on
the description of metamaterials featuring alternative configurations of the constitutive resonant
particles.
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It is noted that most of successful designs for NRI materials at both microwaves and optical
frequencies have so far used the idea of creating a negative magnetic permeability by means of the
excitation of antisymmetric currents in pairs of either rods or strips, following the original idea in [].
The negative permittivity in such structures originates from resonant or off-resonant oscillations of
electrons in metals.

As a generalization of this design approach, we have developed a few sample metamaterials with
periodic structure whose unit cells are based on the concept of pairing two substantially arbitrarily,
though suitably, shaped conductors. Analogously to short-strip pairs, such configurations are shown
to support both antisymmetric (magnetic) and symmetric (electric) resonance modes, whose inter-
action, when properly engineered, can reflect in simultaneous negative permittivity and permeability,
and, accordingly, NRI behavior.

The main reason prompting this investigation is that modifications of the basic structures pre-
viously recalled and materials with significantly different geometries, though based on the same
coupled-particle approach, may lead to NIMs with altered and possibly improved NRI properties.

In particular, the tightly coupled particle pair concept is first applied to the development of planar
metamaterial designs, also taking inspiration, in the choice of the unit cell configuration, from the
geometries elaborated in the context of frequency selective surfaces []. These fully printed struc-
tures using a single dielectric sheet are simple to fabricate and provide alternative implementations
for single polarization and isotropic NIMs. The NRI properties of these planar metamaterials are
demonstrated at microwave frequencies. These structures present the same level of complexity of sim-
ple cut-wire pairs, which have already found experimental confirmations at optical wavelengths [],
therefore, extension to terahertz and optical frequencies is conceivable provided that the change of
the metal behavior from lossy conductors at gigahertz frequencies to lossy, negative permittivity
dielectrics in the higher terahertz region is adequately taken into account. Then, in the second part of
this chapter, we focus on metamaterials for optical frequencies based on plasmonic nanostructures.
In particular, we analyze the electromagnetic response of certain metamaterials whose constitutive
unit cell simply consists of a pair of nanospheres or a cluster of four nanospheres. We show that
one of the local resonance modes of these closely packed nanospheres constituting the metamate-
rial unit cell is associated with a magnetic dipole and thus can lead to artificial magnetism at optical
frequencies.

The properties of the different media discussed here have been examined through transmission (T)
and reflection (R) simulations and, when required, by inversion of the transmission and reflection
data to obtain the effective material parameters є, μ, refractive index, n, and impedance, z =

√
μ/є.

For the inversion of the R/T data a standard retrieval procedure [] has been employed, which treats
a metamaterial as a homogeneous effective medium.

19.4 Negative Refractive Index Behavior from Loaded
Strip Pairs: The Dogbone-Pair Design

As mentioned above, independent tuning of the electric and magnetic resonances of a short-strip
pair medium may become possible by strengthening the interaction of the pairs belonging to the
neighboring unit cells along the electric field direction []. The additional interpair capacitance,
resulting from this enhanced interaction, has more effect on the electric resonance frequency than
the magnetic one, when the pair distance H is small. Instead, the magnetic resonance is strongly
affected by the capacitance between the top and bottom conductors. In summary, the modification
of the cut-wire topology by the adoption of the dogbone shape, whose lateral arms contribute to both
these capacitances, leads to the possibility of separating the control of the electric and magnetic reso-
nance frequencies as required for the achievement of a LH behavior. Indeed, the achievement of NRI
behavior by adopting dogbone-shaped conductor pairs in place of simple short-wire pairs has been
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FIGURE . (a) Perspective view of a layer of the metamaterial formed by a periodic arrangement of tightly coupled
pairs of dogbone-shaped conductors printed on a dielectric substrate. (b) Metamaterial elemental particle (unit cell)
with geometrical parameters quoted. The polarization of the incident electric field is along the x-direction. (From
Markley, L. and Eleftheriades, G.V., Antennas Wireless Propagat. Lett., (), , . With permission.)

demonstrated in Ref. [], from which the sample result of Figure .b is taken. The dogbone par-
ticle configuration also exhibits the attractive feature of a reduced unit cell size due to the additional
capacitive loading provided by the dogbone lateral arms.

19.4.1 The Dogbone-Pair Design

The objective of this section is to introduce a planar doubly periodic structure, which has the potential
to act as an effective anisotropic NRI medium. The constitutive periodic unit cell of this metamaterial
structure consists of a pair of tightly coupled dogbone-shaped conductors, as illustrated in Figure ..
Such resonant particles are arranged in a regular rectangular lattice that is illuminated by a normally
incident (along the z-axis) plane wave with the electric field polarized along the x-direction, parallel
to the central segment of the dogbones.

The mechanisms of the resonance formation and field interactions in this periodic structure have
been thoroughly investigated [], and extensive parametric analyses have been carried out to high-
light the influence of various geometrical and electrical features of the dogbone unit cell on the
response of the metamaterial; major findings that emerged from these analyses are summarized in
the following section.

19.4.2 Phenomena Involved in Dogbone Pairs

The resonance properties of a periodic array of dogbone conductor pairs have been investigated
through numerical simulation of the field transmission coefficient ∣T ∣ by using the commercial soft-
ware Ansoft HFSS []. The accuracy of the obtained results was verified through comparison with
a further set of simulated data calculated by CST Microwave Studio [], which were found to be in
good agreement with HFSS results.
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For the sake of simplicity, we first consider the dogbone particles in free space, i.e., we assume
that the dielectric substrate between the top and bottom conductors of the pair has permittivity
єr = . Moreover, since we aim at discovering the basic operation features of the dogbone-pair struc-
ture, such as resonance frequency locations and NRI capability, conductors are assumed lossless and
infinitesimally thin, which is a reasonable approximation at microwave frequencies.

Simulations were performed at a few different values of the unit cell size along the x-direction
A, namely A = ., ., . mm, to gain a first insight into the structure resonances. The remaining
geometrical parameters (quoted in Figure .) are set to the following default values (in millimeters):
B = ., B = , A = ., B = ., A = ., and H = .. The simulated field transmission coefficient
∣T ∣ for a doubly periodic layer of dogbone particles with such unit cell configuration is shown in
Figure .a. These plots illustrate the first two resonances in the considered structure. The highest
resonances at f ≈ .–. GHz appear to be very slightly affected by variations of A, thus indicating
that the fields are confined to the close proximity of the dogbone pairs and are loosely coupled to the
adjacent cells. This resonance is usually referred to as the magnetic resonance; its frequency fm mainly
depends on the dogbone-particle dimensions and is associated with the so-called transmission line
(TL) mode, which creates an equivalent magnetic dipole moment. The other resonance, denoted as
electric resonance, is associated with a dipole-like symmetric mode, which creates an electric dipole
moment. It exhibits a much wider stopband, and its frequency fe (≈., ., . GHz) more strongly
depends on the lattice constant A. This implies that the capacitive coupling between the dogbone
particles in the adjacent cells dominates similarly to that in the frequency selective surfaces (FSS) of
capacitive type, made, for example, of dipoles or Jerusalem crosses [].

In order to verify such a definition of the resonant modes, the same dogbone particle was simulated
when its lateral arms were short circuited (see inset, Figure .b). Comparison of the correspond-
ing plots in Figure .a and b shows that the magnetic resonance at .–. GHz is suppressed
in the structure with the short-circuited arms, whereas the electric resonance at fe remains nearly
unchanged. This confirms that the resonance at .–. GHz in Figure .a is indeed the magnetic-
type resonance produced by the antisymmetric mode, with oppositely directed currents flowing on
the top and bottom parts of each dogbone pair, and these currents are strongly affected when the
arms are short circuited. Conversely, the electric resonance at fe is weakly perturbed by the short
circuits, because it is produced by a symmetric mode whose currents flow in the same direction on
both the top and bottom parts of the dogbone particle.

The proposed interpretation of the resonance modes has also been supported by the simulation
results for variable cell size B (the period along the y-axis), which is found to similarly influence
the structure resonances (although the shift of the electric resonance associated to variations of B is
smaller than that observed for variable A, because the particle mutual coupling in the y-direction is
weak as long as (B − B) >> H []).

To further illustrate the features of the electric and magnetic resonances, the current distribu-
tions on the top and bottom conductors of the unit cell of the dogbone structure considered above,
with the period along x, A, set to . mm, is presented in Figure . at the frequencies f ≈  GHz
and f ≈ . GHz, that is, near the electric fe and magnetic fm resonances, respectively. These plots
clearly demonstrate that the currents on the top and bottom conductors are antisymmetric at the
magnetic resonance, thus justifying the TL model associated with the magnetic dipole discussed in
Section ... Conversely, near the electric resonance, the currents are in-phase on both conductors
and no artificial magnetism can be produced. Note also that the currents on the central parts of the
dogbone conductors have more or less the same intensity. At frequencies above fe, the symmetric
mode stores magnetic energy (also due to elements intercouplings), whereas electric energy prevails
at low frequencies.

Once the resonance types have been identified and the lattice constant effect is understood, we have
evaluated how the resonance frequencies are affected by the dielectric layer parameters, to which the
magnetic resonance is expected to be particularly sensitive []. The transmission characteristics in
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FIGURE . Field transmission coefficient versus frequency for a doubly periodic layer of dogbone particles
(Figure .) in free space at different values of the unit cell size along x (A = ., ., . mm). (a) The broad electric
resonance occurs at fe ≈ ., ., . GHz; the magnetic resonance is at fm ≈ ., ., . GHz; (b) dogbone par-
ticles with short-circuited arms in free space (“closed dogbone”, in the inset): the electric resonance is still present at
fe ≈ ., ., . GHz, whereas the magnetic resonance at fm ≈ .–. GHz was suppressed by the short circuits.

Figure .a are simulated for different values of the dielectric substrate permittivity єr, whereas the
geometrical parameters of the dogbone unit cell are set to the default values A = ., B = ., B =
, A = ., B = ., A = ., H = . (in millimeters) reveal that variation of єr causes interchange
of the magnetic and electric resonance positions with respect to each other. Both types of resonances
shift toward lower frequencies at higher єr, albeit fe and fm vary with substantially different rates.
Indeed, the magnetic resonance appears to be more sensitive to єr, because its fields are predom-
inantly confined to the dielectric spacer between the dogbone conductors. The electric resonance
is less affected, because the electric field of the symmetric mode is mainly located outside the thin
dielectric substrate.

Finally, Figure .b demonstrates the effect of the separation H between the top and bottom dog-
bone conductors. Simulations refer to the same unit cell configuration of Figure .a, except that
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(a) (b)

FIGURE . Current distributions on a pair of tightly coupled dogbone conductors: (a) symmetric current distri-
bution at f =  GHz, near the electric resonance fe; (b) antisymmetric current distribution at f = . GHz, near the
magnetic frequency fm. Note that the distance between the conductors is not shown to scale in order to improve the
clarity of the representation (in the simulation H = . mm).

H is a variable parameter (H = ., ., ., . mm) and A is fixed to A = . mm. As apparent, fm
decreases with H and also fe undergoes considerable changes. Namely, at small H (.–. mm)
fm > fe, and the magnetic resonance is readily identifiable. But when H further increases to
.–. mm, it not only becomes fm < fe but also the magnetic resonance exhibits a lower Q-factor.

These changes of the magnetic resonance behavior cannot be explained in terms of a single-
mode model, because the capacitive coupling between the top and bottom conductors in a pair
may become weaker than capacitive interaction with the particles in the adjacent cells. Under these
circumstances, the coupling between contiguous dogbone particles also affects the magnetic reso-
nance as the distance between the contiguous conductors (A − A) = . mm becomes significantly
smaller than the separation H between the top and bottom parts (in this geometry A = . mm and
A = . mm). Moreover, with larger H, the fringing field effects also become more significant as the
stripe separation of H = . mm is even larger than the stripe widths A =  mm or B = . mm.

It is noted that for this free-space configuration the size of the induced magnetic dipoles, at the
magnetic resonance frequency fm ≈  GHz, is less than A = B = λ/.. In spite of the absence of
a dielectric substrate, the cell size miniaturization, with respect to the wavelength, still represents a
dogbone cell with size considerably smaller than the free-space wavelength, owing to the capacitive
coupling between the top and bottom parts of the dogbone particle. Of course, by adopting a denser
dielectric substrate, the electrical size of the unit cell can be further reduced [].

The presented analysis (and additional results in []) has demonstrated that the dogbone parti-
cles provide for the capability of control over the positions of the electric and magnetic resonances.
This property is of particular importance for the implementation of an artificial medium with NRI.
In Section .. we show that dogbone pairs can be used to realize a medium supporting backward-
wave propagation in a frequency band near fm. If homogeneization is allowed, backward-wave
propagation occurs when both the effective permittivity and permeability are negative. This double-
negative requirement can be satisfied near fm, as long as fm > fe, because the magnetic resonance is
generally much narrower than the electric one. (However, as Figure .b shows, the magnetic res-
onance becomes broader for larger H, and in this case the condition fm > fe may not be strictly
required for obtaining an NRI.) To fulfill the condition fm > fe, it is necessary either to increase fm
or to decrease fe. The fe can be reduced either by increasing the capacitance between the contiguous
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FIGURE . Field transmission coefficient versus frequency for a double periodic layer of dogbone particles
(Figure .) at the default geometrical parameter values (in millimeters): A = ., B = ., B = , A = ., B =
., A = .. In (a) the curves correspond to different values of the permittivity єr of the dielectric substrate sup-
porting the conductor pairs (єr = , , , ), whereas the substrate thickness is fixed to H = . mm. In contrast in
(b) the spacing H between the top and bottom conductors is a variable parameter (H = ., ., ., . mm), whereas
the substrate permittivity is assumed to be єr =  (dogbone particles in free space).

dogbones or by making the dogbones longer (cf. Figure .a). Alternatively, fm can be increased
by thinning the dogbone lateral arms or by using thinner or lower permittivity dielectric spacers
between the top and bottom parts of the dogbone particles (Figure .a and b). In order to qual-
itatively evaluate the physical structures suitable for realization of the dogbone particles with the
required characteristics, a TL model of the dogbone pairs has been developed and is discussed in
Section ...

19.4.3 Approximate Transmission Line Model for Magnetic Resonances

We provide here an approximate method to predict the magnetic resonances fm based on a TL model
of the antisymmetric mode in the pair of dogbone conductors.
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FIGURE . (a) TL model for the antisymmetric current distribution on a single dogbone-pair particle. (b) Cross-
section of the TL. The stripes have width w = B or w = A and are separated by a dielectric slab of permittivity єr and
thickness H.

The dogbone “arms” are represented as open-circuited (OC) stubs with characteristic admittance
Yc y and wave number βy , where the subscript “y” is used to denote propagation along the y-direction
(Figures . and .). When using the time convention exp( jωt), these stubs provide the shunt
admittances Yst = jYc y tan(βy B/), at the reference ports where they are connected to the TL seg-
ment of length D = (A−A) along the x-direction, with the characteristic admittance Ycx and wave
number βx (cf. Figure .). The length D of the central TL segment is defined as the distance between
the two mid points in the arms of the dogbone.

To evaluate the characteristic admittances Yc and wave numbers β of the TLs and stubs, it is
convenient to express them in terms of the capacitance Cl and the inductance Ll per unit length
(subscripts x , y are temporarily omitted here since the same expressions are used for both the central
TL and stubs):

Yc =
√

Cl

Ll
, β = ω

√
Cl Ll = ω

vp
, (.)

where
ω is the angular frequency
vp = /

√
Cl Ll is the phase velocity of the quasi-TEM (transverse electric and magnetic) wave

(purely TEM when the dielectric substrate has єr = )

Then, Cl and Ll can be evaluated for the TL with the cross-section shown in Figure .b by using
the standard approximations for microstrip lines with quasi-TEM waves []. For the quasi-TEM
wave, vp is alternatively defined as vp = c/

√
єeff

r , where c = /√εμ is the speed of light in free space,
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є and μ are the permittivity and permeability of free space, and єeff
r is a relative effective permittivity

of the equivalent homogeneous medium filling the TL cross-section, which may differ for a TL along
the x- or y-direction. For a quasi-TEM mode traveling along the TL shown in Figure .b, єeff

r can

єeff
r ≈ єr + 


+ єr − 


√

 + /r
, (.)

where
r = w/H is the TL aspect ratio
w is the width of stripe conductors
H is the separation between them, as shown in Figure .b
w is either B (for a TL along x) or A (for a TL along y)

Making use of the effective permittivity єeff
r , the capacitance per unit length Cl is represented as

follows:

Cl ≈ єeff
r єC , (.)

where C is the capacitance per unit length of the stripe conductors in free space, normalized to


expressions with relative error less than ±% at any aspect ratio r is used:

C ≈
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r + . − .
r

+ 

( − 

r
)


, r ≥ ,

π
ln (/r + r/) , r ≤ .

(.)

The inductance per unit length Ll is expressed in terms of C making use of Equations . and .:

Ll = 
v

pCl
= μ

C
. (.)

Then the characteristic admittance Yc takes the form

Yc =
√

Cl

Ll
≈

√
єeff

r

η
C , (.)

where η =
√

μ/є = π Ω is the free-space impedance, and the parameters єeff
r , C are given by

Equations . and ..
The resonance fm associated with the TL circuit shown in Figure . is found by evaluating the

total input admittance
←→
Y = ←�

Y + �→
Y at a certain location on the composite TL, where

←�
Y and

�→
Y are

the admittances of the TL facing opposite directions from the reference port (at the center of the
dogbone

←�
Y = �→

Y for symmetry reasons). Here we are interested in the lowest resonance fm , whose
mode has a maximum current at the center of the dogbone TL that maximizes the strength of the
magnetic dipole moment. Therefore, at this resonance

←→
Y = ∞, which requires the denominator of

←→
Y to vanish, so that the magnetic resonance can be determined by solving

Ycx + Yst j tan(βx D/) = , (.)

whose solutions can be obtained either numerically or approximately as detailed here. Note that
in this model we neglect fringe capacitances at open circuits at the TL ends and reactances at the
TL bends and junctions. In most cases such approximations are found to be satisfactory and give
adequate results.

© 2009 by Taylor and Francis Group, LLC

be approximated as follows cf. []:

є . Several approximations are available to calculate C, cf. [,], and the following closed-form
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Approximate Resonance Condition

The above equations can be simplified to determine approximate values of fm . In the case of βx D/ ≪
π/ and βy B/ ≪ π/, with D = A − A, we use the following approximations: tan(βx D/) ≈
βx D/ and Yst ≈ jYc y B βy/. Accordingly, the resonance condition (Equation .) takes the form
Ycx − Yc y βy βx B D/ = , which gives the magnetic resonance angular frequency:

ωm =
�
���Cx

C y

√


B D
. (.)

It is interesting to note that this same result could be obtained by using electrostatic and magnetostatic
approximations for the capacitance and inductance of the dogbone []. The former is associated
with the charge accumulated on the dogbone lateral arms, whereas the latter can be approximated
by assuming that the current on the central part of the dogbone is uniform. As a result, we have the
following approximations for the capacitance and inductance of the dogbone:

Ceff = єєeff
r , y

A B
H

, Leff = μ
H
B

D, (.)

where we have neglected the fringing effects (this is a satisfactory approximation for w >> H).
Then, taking into account the capacitive contributions of both dogbone arms, the magnetic resonance
frequency is given by

ωm = √
Leff Ceff/

= c√
єeff

r , y

√
 B√

B A D
, (.)

which is identical to Equation . when the characteristic impedances are equal, Ycx = Yc y (and thus
B = A) and vp ,x = vp , y .

Accuracy and Limitations of the TL Model

The relative accuracy and applicability of the TL approximations developed earlier to evaluate the
magnetic resonance fm of the dogbone particle have been carefully examined, especially in connec-
tion with the dependence of fm on the parameters of the dielectric substrate, namely, its permittivity
єr and thickness H [].

In Figure ., fm was calculated at several values of permittivity єr , whereas the dogbone geo-
metrical parameters assumed the default values (in millimeters): A = B = ., C = , B = , A =
., B = ., A = , H = .. The reference data for fm (black curve) have been retrieved from
the transmission response of a doubly periodic array of dogbone particles simulated numerically at
єr = , , , , , . The other curves represent the fm estimates obtained from Equations ., .,
and .. It appears that for the considered configuration with a small separation between the top
and bottom conductors in the dogbone particle, all the approximations based on a TL model of the
antisymmetric mode provide an accurate prediction of the magnetic resonance frequency. Further-
more, they exhibit the same trend previously observed in Figure .a of fm rapidly decreasing with
єr , thus reconfirming the fact that the fields of the antisymmetric mode are tightly confined to the
dielectric substrate between the dogbone conductors.

However, it must be pointed out that when the distance H increases, the estimates of fm provided
by the TL formulas tend to be less accurate []. This is indeed not surprising since these approximate
formulas completely neglect the fringe capacitances at the TL ends and bends and the capacitance
between contiguous dogbone particles. Yet, for larger H, the fringing effects and coupling between
adjacent cells become even more pronounced. The latter interaction affects not only the electric but
also the magnetic resonance in the case of large separation H between the top and bottom conduc-
tors compared with the distance (A − A)/ between contiguous conductors. Thus, at large values

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Metamaterials Based on Pairs of Tightly Coupled Scatterers 19-15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2

3
4
5
6
7
8
9

10

11
12
13

M
ag

ne
tic

 re
so

na
nc

e (
G

H
z)

Dielectric permittivity, εr

From simulations
Using Equation 19.7

“       Equation 19.8
“       Equation 19.10

FIGURE . Magnetic resonance frequency fm versus permittivity of the dielectric substrate supporting the dog-
bone particle (thickness is fixed to H = . mm). Data obtained from rigorous numerical simulations (assuming a
periodic structure) are compared with the approximate formulas (Equations ., ., and .) based on the TL
model for the dogbone antisymmetric mode.

of H, because the rapid variation of fm cannot be explained in terms of a simple TL model for a
single isolated particle since the fringing effects and coupling between particles strongly influence
the collective response of the whole array.

In spite of this limitation, the results presented in Figure . allow one to conclude that, for a broad
range of dogbone configurations, the developed approximate analytical models provide an adequate
qualitative description which can be instrumental in the initial design of the constituent dogbone
particles when the magnetic resonance at a particular frequency is required.

19.4.4 Transverse Equivalent Circuit Network

A more accurate description of the behavior of a metamaterial made of a periodic arrangement of
dogbone conductor pairs, or, more generally, of a metamaterial layer made of pairs of conductors, can
be derived in the context of a plane-wave transmission line model, which is an effective tool to predict
propagation through a number of layers. Indeed, by postprocessing the field reflection and transmis-
sion coefficients of a metamaterial layer obtained by simulations, a lumped element network can be
synthesized, which exhibits the same frequency response when inserted in the plane-wave equiva-
lent transmission line. The presence in the metamaterial response of both an electric (symmetric)
and a magnetic (antisymmetric) resonance finds its correspondence in two respective resonant L–C
groups arranged in an equivalent balanced X-network. This equivalent network is useful for a quick
numerical characterization of the layer, but it also provides a neat physical description in terms of
transmission lines and lumped elements of the operating mechanism of the metamaterial dictated by
particle interactions. Furthermore, this network description offers the possibility to evaluate Bloch
wave numbers and characteristic impedances and to match metamaterials formed by stacked layers
to the free-space impedance.

For the sake of simplicity, we consider here reflection and transmission through just one layer
of dogbone pairs, and we assume that the metallic conductors are separated by air (dielectric spacer

© 2009 by Taylor and Francis Group, LLC
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FIGURE . (a) Reflection and (b) transmission coefficients versus frequency for a layer of dogbone pairs: the
magnetic resonance is at f =  GHz, whereas the electric resonance is at f = . GHz. Data from a numerical analysis
are compared with those from the synthesized equivalent network in Figure ..

with єr = ). The various geometrical parameters characterizing the unit cell of the considered
metamaterial (cf. Figure .) are as follows (in millimeter): A = ., B = ., A = ., B = , A =
., B = ., H = .. The field reflection and transmission coefficients ∣R∣ and ∣T ∣ as obtained by
numerical simulations are plotted in Figure .. As can be inferred from the examination of these
plots and in accordance with the dogbone-pair particle phenomenology previously discussed, the
magnetic resonance occurs at f =  GHz, whereas the electric resonance is at f = . GHz.

We derive here a z-transmission line model that is able to predict propagation through a layered
structure along the z-direction by replacing the thin pairs by an equivalent network of lumped cir-

ambient; therefore, we use only L–C elements. We already know that the magnetic resonance should

is described by an L–C series resonance. We synthesize the equivalent X-network in Figure .b for

© 2009 by Taylor and Francis Group, LLC

cuital elements, as shown in Figure .a. We assume absence of losses in the metals and in the

be described by an L–C resonator (cf. Section ..) and that the usual stop band of capacitive FSS
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FIGURE . (a) Plane-wave equivalent z-transmission line with interposed metamaterial diaphragm. (b) Synthe-
sized symmetric X-network reproducing the metamaterial layer frequency response, which comprises two L–C groups
associated to the metamaterial electric and magnetic resonances.

the two-port circuit in the z-TL model in Figure .a. The impedances appearing in the synthesized
network are simply expressed as

Za = 

jωCm + 
jωLm

= jωLm

 − ωCm Lm
, Zb = jωLe + 

jωCe
=  − ωCe Le

jωCe
, (.)

where Cm = . pF, Lm = . nH, Ce = . pF, and Le = . nH. The L, C values are found by
data matching, and one can see in Figure . that reflection and transmission in the z-transmission
line model perfectly match the numerical results.

19.4.5 Backward-Wave Propagation in Media Formed by Stacked
Dogbone Particle Layers

Here we show that metamaterials composed of stacked layers of dogbone particles made of tightly
coupled pairs of conductors, as shown in Figure ., can support backward-wave propagation in
certain frequency bands. In particular, we consider as an example the case of dogbone particles
printed on the opposite faces of a dielectric substrate with permittivity єr = ., such as commer-
cial microwave laminates Rogers RT/Duroid  or Taconic TLY-. The dogbone dimensions (in
millimeters) are A = B = ., B = , A = ., and A = B = .. The simulated magnitude of
the field transmission coefficient ∣T ∣ of a single layer of particles made of such paired dogbone con-
ductors is shown in Figure .a, for two different values of the separation H between the top and
bottom conductors, which coincides with the thickness of the dielectric substrate. A narrow pass-
band, which corresponds to the magnetic resonance of the dogbone pair and strongly depends on H,
is clearly seen in the plots.

The dispersion diagrams for an infinite periodic arrangement along z, with period C =  mm, of the
stacked layers of the arrayed dogbone particles printed on opposite faces of the dielectric substrate,
with two different thicknesses of H = . and  mm are presented in Figure .b. The negative slope
of the dispersion curves indicates backward-wave propagation along the z-axis, for both considered
substrate thicknesses. The passband associated with the magnetic resonance is narrow and further
decreases at higher permittivity and/or smaller thickness of the dielectric substrate.

© 2009 by Taylor and Francis Group, LLC
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FIGURE . (a) Amplitude of the field transmission coefficient ∣T ∣ for a doubly periodic layer of dogbone particle
arrays printed on a dielectric substrate with permittivity єr = .. The thickness of the dielectric substrate H is a variable
parameter (H = .,  mm). The conductor dimensions are A = B = ., B = , A = ., and A = B = . (in mm).
(b) Dispersion curves for a wave with the propagation constant kM in the infinite periodic stack (period C =  mm) of
layers made of the tightly coupled dogbone pairs from Figure ., printed on a dielectric substrate with permittivity
єr = . and of variable thickness H = .,  mm.

19.5 Planar 2D Isotropic Negative Refractive Index
Metamaterial

Most of the previously designed NIMs are anisotropic, i.e., their properties are polarization depen-
dent. For example, in cut-wire pairs the aforementioned magnetic and electric resonances are
observed only for an incident electric field parallel and magnetic field perpendicular to the plane con-
taining the two wires. Such polarization dependence of the effective medium is undesired in potential
applications, such as, for example, the perfect lens.

© 2009 by Taylor and Francis Group, LLC
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FIGURE . (a) Schematic representation of the unit cell of the structure presented in []. (b) Extracted refractive
index n and scattering parameters from the experimental data relevant to the same metamaterial structure at horizontal
polarization (lines) and diagonal polarization (markers). (Reprinted from Markley, L. and Eleftheriades, G.V., Antennas
Wireless Propagat. Lett., (), , . With permission.)

Fully printable NIMs responsive to arbitrary linear incident polarization have been recently pro-
posed in [], as an extension of the cut-wire pair structure, and in [,] by modification of the
“fishnet” design introduced in []. The unit cell configuration for the metamaterial proposed in []
is shown in Figure . along with experimental data confirming the NRI behavior.

A further structure suitable for arbitrarily polarized incident waves has been developed in []
starting from the dogbone-pair design, which was presented in [,] and is summarized in Section
... In the following, we discuss in detail the characteristics of this latter D isotropic NIM that,
similarly to the dogbone-pair structure from which it is descended, provides enhanced control of the
particle resonances as compared with the simple cut-wire pair topology and its extension to couple
with incoming plane waves of any linear polarization [].

The original dogbone-pair particle can be converted into a symmetrical configuration by sim-
ply combining two orthogonal “dogbone” pairs, thus forming a pair of tightly coupled Jerusalem
crosses. By virtue of this symmetric arrangement of the unit cell, the resulting material exhibits an

© 2009 by Taylor and Francis Group, LLC
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LH behavior for any linear polarization of the incident wave, in contrast to [], where the compos-
ite medium is sensitive to a single polarization only. The effect of substrate losses is also examined,
showing their negligible effect unless the magnetic resonance is very narrowband.

19.5.1 The Jerusalem-Cross-Pair Design

The proposed metamaterial structure is composed of a doubly periodical arrangement of pairs of
face-coupled Jerusalem crosses, as illustrated in Figure .. Owing to its unit cell symmetry, such
metamaterial provides an isotropic response to any linearly polarized incident wave. The conductor
pairs are made of  μm-thick copper foils deposited on both sides of a dielectric substrate with
permittivity єr = . and loss tangent ., such as commercially available microwave laminates
Rogers RT/Duroid  or Taconic TLY-. The constitutive periodic unit cell has a square cross-
section with side length A = B = . mm, whereas the size C in the longitudinal direction as well as
the thickness H of the dielectric substrate are variable parameters. The default values of the remaining
geometrical parameters used for the design are A = B = . mm, A = . mm, and B =  mm.

Since the pair of Jerusalem crosses can be seen as the superposition of two dogbone-shaped
conductor pairs [], the phenomenology of the particle response is substantially similar in both
structures except the polarization sensitivity. Indeed, at any orientation of the incident magnetic
field, its components perpendicular to the area between the central arms of the Jerusalem crosses
induce a current loop closed by the displacement currents at the external arms. These loops, associ-
ated with antiparallel currents in the pair of stacked crosses and opposite sign charges accumulated
at the corresponding ends, give rise to the magnetic resonance, which in turn results in an effective
permeability of the patterned substrate. The cross pairs also exhibit an electric resonance due to the

y

xz
A

(a) (b)

B

x

B2

A2

A1

B1

y

FIGURE . (a) Perspective view of a layer of the D isotropic metamaterial formed by a periodic arrangement of
tightly coupled pairs of Jerusalem crosses, which exhibit an antisymmetric (magnetic) resonance for both orthogonal
incident linear polarizations. (b) Top view of the metamaterial unit cell with geometrical parameters quoted. In all
simulations, we have set A = B = . mm, A = B = . mm, A = . mm, and B =  mm.
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excitation of parallel currents in the central stripes and charges of the same sign accumulated by the
external arms. This latter resonance can be associated with an effective negative permittivity, and
when it is superimposed with the above-mentioned magnetic resonance, the composite medium is
expected to exhibit an effective NRI behavior in a certain frequency band.

19.5.2 Left-Handed Transmission in Jerusalem-Cross-Pair Media

The properties of the metamaterial whose unit cell particle consists of the Jerusalem cross-pair of
Figure . have been simulated with the aid of the commercial software CST Microwave Studio.
The reflection and transmission characteristics of a layer with periodically arranged particles were
modeled using a single unit cell with double periodical boundary conditions in the layer plane, x y.
In the numerical analysis we considered a single linear polarization along the x-axis because, due
to the structure symmetry, the response to the orthogonal y-directed polarization is identical, and
arbitrarily linearly polarized waves at normal incidence can be represented as a superposition of two
waves with orthogonal polarizations. The magnitudes of the simulated reflection and transmission
coefficients at normal incidence for three different values of H (H = ., , and  mm) are shown
in Figure . for both the cases of lossy and lossless structures. Resonance transmission peaks can
be observed, which, similarly to those in the “dogbone” pairs [], are attributed to the magnetic-
type resonance. As apparent with thicker substrates, the transmission resonance occurs at lower
frequencies and its bandwidth increases.

It is noted that the transmission is slightly lower and attenuation is slightly higher in the structures
with thinner substrates, which is the result of a stronger concentration of the electric field between
the conductors that in turn causes an increased absorption of the incident wave by the lossy dielec-
tric substrate. Away from the magnetic resonance, the transmission characteristics of the lossy and
lossless structures are almost coincident. Therefore, for the sake of simplicity, both dielectric and
conductor losses are not considered in the subsequent analyses.

In Figure ., we show the surface current distribution on the conductor pairs of the unit cell of
the structure presented in Figure ., with C =  mm and H =  mm, calculated at the frequency
f = . GHz, just above the transmission peak occurring at . GHz (cf. Figure .). This plot clearly
demonstrates that the currents on the two conductors are antisymmetric at the resonance, thus form-
ing a current loop that can be represented by an equivalent magnetic dipole moment. This magnetic
moment is responsible for the artificial magnetism of the structure, and, therefore, such a resonance
is referred to as a magnetic resonance, similarly to the case of dogbone pairs [].

In the subsequent simulations we have examined the effect of tilting the incoming plane wave
to off-normal incidence on the transmission properties of the Jerusalem cross-pair structure of
Figure . with C =  mm and H = . mm. A transverse-electric (TE) polarized wave was con-
sidered under incidence angles ranging from θi = ○ to θi = ○, and the results are displayed in
Figure .. It can be seen that the transmission characteristics barely change at increasingly off-
normal incidence and the only effect seems to be a low reduction of the resonance bandwidth; this
implies that the structure can still provide an NRI behavior when illuminated at skew incidence
angles.

Effective Material Parameters

In order to obtain further evidences that the transmission characteristics presented above are associ-
ated with a backward-wave phenomenon, the effective material parameters describing the behavior
of the Jerusalem cross-pair structure in Figure . at normal incidence have been determined by
following the procedure proposed in []. The effective impedance Z, refractive index n, permittivity
є, and permeability μ retrieved from the simulated transmission and reflection characteristics for one
layer of Jerusalem cross-pairs are shown in Figure .. These results correspond to the same set of
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FIGURE . Simulated reflection and transmission coefficients versus frequency for a layer of periodically
arranged Jerusalem cross-pairs (Figure .); various curves correspond to different thicknesses H of the dielectric
substrate supporting the top and bottom conductors, whereas the size of the unit cell along the propagation direction
is fixed to C =  mm. Solid and dashed lines correspond to lossy and lossless structures, respectively.

different substrate thicknesses H considered in Figure ., whereas the size of the unit cell along
the propagation direction is fixed to C =  mm. The plots show that the real part of the permittivity
is negative over most of the simulated frequency range (for f > .–. GHz) for all thickness values.
Contrastingly, the real part of the permeability is negative only over a resonance band that becomes
more narrow at smaller substrate thicknesses. (The imaginary parts of both the permittivity and per-
meability are zero due to the assumption of absence of losses). At any rate, the magnetic resonance
always falls within the negative region of є; as a consequence, in the frequency band just above the
magnetic resonance the metamaterial presents a double-negative behavior and the extracted real part
of the effective refractive index is found to be negative. This confirms the LH nature of the transmis-
sion peaks observed in Figure .. The NRI bands, which are highlighted by different shaded areas in
Figure ., are separated from the relative transmission bands with positive refractive index at low
frequencies by a band gap where transmission is forbidden. As apparent, the frequency extension
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FIGURE . Surface current distribution on the top and bottom conductors (left- and right hand side plots, respec-
tively) of the Jerusalem cross-pair structure of Figure . (C =  mm, H =  mm) at the frequency f = . GHz just
above the magnetic resonance fm = . GHz. The illuminating plane wave is normally incident on the structure with
the electric field horizontally polarized.
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FIGURE . Simulated field transmission coefficients versus frequency for a layer of periodically arranged
Jerusalem cross-pairs (Figure .) illuminated by a TE-polarized plane wave at off-normal incidence angles θi =
○ , ○ , ○, and ○. The thickness of the dielectric substrate is H = . mm, and the size of the unit cell along the
propagation direction is C =  mm.

of these bandgaps gradually reduces for larger substrate thicknesses, whereas the NRI bandwidths
increase.

Modal Dispersion Analyses

The existence of an effective NRI band can be further demonstrated by calculating the dispersion
characteristics of the eigenmodes in the infinitely extended metamaterial formed by stacking with
period C along the z-axis the structure of Figure . with the same parameters as in Figure .
(H = ., , and  mm). Figure . shows the calculated one-dimensional dispersion diagram ω
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FIGURE . Effective material parameters for the Jerusalem cross-pair structure of Figure . under normal
incidence and fixed polarization calculated at different thicknesses H of the dielectric substrate supporting the top
and bottom conductors. The size of the unit cell along the propagation direction is set to C =  mm. The real and
imaginary parts of the effective parameters are plotted in solid and dashed lines, respectively. Shaded areas high-
light double-negative, i.e., NRI transmission, frequency bands for the considered dielectric substrate thicknesses.
(a) Effective impedance; (b) effective refractive index; (c) effective permittivity; and (d) effective permeability.
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FIGURE . Dispersion curves for a wave with the propagation constant kM in the infinite periodic stack (period
C =  mm) of layers made of the pairs of tightly coupled Jerusalem crosses from Figure .. (From Gunnarsson, L.,
Rindzevicius, T., Prikulis, J., Kasemo, B., Kall, M., Zou, S., and Schatz, G., J. Phys. Chem. B., (), , . With
permission.)
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versus the Bloch wave number kM along the z-direction, normalized with respect to the period
C =  mm; the light line ω = kc (dashed-dotted line), where c is the speed of light and k denotes the
free-space wave number, is also plotted in Figure . for reference. The negative slope of the disper-
sion curves at frequencies above . GHz conclusively confirms backward-wave propagation for all
three thicknesses H. The passband associated with the magnetic resonance decreases for smaller H.
In particular, for H =  mm, predictions of the dispersion characteristics are fully consistent with
the retrieved refractive index in Figure .b. The central frequency and the percentage width of
the NRI transmission band deduced from these dispersion diagrams are plotted in Figure . ver-
sus H and for a few values of C. As apparent from these plots, the transmission band progressively
shifts toward lower frequencies for a larger H, it has its lowest values for H = C/, and it moves
toward higher frequencies for even larger values of H. It is found that H ≈ C/ generally corre-
sponds to the optimal NRI bandwidth in addition to the lowest frequency of the magnetic resonance.
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FIGURE . Center frequency and percentage width of the left-handed transmission band for the structure of
Figure . versus thickness H of the dielectric substrate supporting the Jerusalem cross-pairs at a few values of the
unit cell size C along the propagation direction. (From Gunnarsson, L., Rindzevicius, T., Prikulis, J., Kasemo, B., Kall,
M., Zou, S., and Schatz, G., J. Phys. Chem. B., (), , . With permission.)
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This is clearly illustrated in Figure .b, which also shows that as long as H ≈ C/ the percentage
width of the NRI band steadily increases for increasing lengths C of the unit cell in the propagation
direction.

Finally, it is important to note that in the NRI frequency band, the ratio of wavelength to the lattice
constant A is of the order of λ/A = .

19.5.3 The Tripole-Pair Design

As a further demonstration of the concept of using pairs of tightly coupled conductors as elemental
constituents of a periodic medium exhibiting an NRI behavior, in this section we present another
fully printable metamaterial design. The developed structure is composed of a double periodical
arrangement of pairs of face-coupled, loaded tripoles as shown in Figure .. Due to its threefold
symmetry, such metamaterial provides an isotropic response to any linearly polarized incident wave,
and one could expect that its transmission properties would be somehow preserved when the inci-
dent plane wave is tilted far from normal incidence. As for the case of the Jerusalem cross-pairs, the
conductor pairs are made of  μm thick copper foils deposited on both sides of a dielectric sub-
strate with permittivity єr = . and loss tangent .. The constitutive periodic unit cell has a
hexagonal cross-section with side lengths A =  mm; the size C in the longitudinal direction is fixed
to C =  mm, whereas the thickness H of the dielectric substrate is a variable parameter. The default
values of the remaining geometrical parameters used for the design are A = . mm, B = . mm,
A = . mm, and B =  mm.

19.5.4 Left-Handed Transmission in Tripole-Pair Media

The electromagnetic behavior of the tripole-pair metamaterial from Figure . has been char-
acterized by calculating its reflection and transmission spectra and then analyzing the dispersion

y

x

(a) (b)

z

A2

A

B1

A1
B2

FIGURE . (a) Perspective view of a layer of the D isotropic metamaterial formed by a periodic arrangement of
tightly coupled pairs of loaded tripoles, which exhibit an antisymmetric (magnetic) resonance for any incident linear
polarizations. (b) Top view of the metamaterial unit cell with geometrical parameters quoted. In the simulations, we
have set A =  mm, A = . mm, B = . mm, A = . mm, and B =  mm.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Metamaterials Based on Pairs of Tightly Coupled Scatterers 19-27

properties of the eigenmodes in the infinitely extended structure formed by stacking the layer of
Figure .a with period C along the z-axis. The magnitude of the simulated field transmission
coefficient ∣T ∣ at normal incidence for two different values of H (H =  and  mm) is plotted in
Figure .a. In close analogy with corresponding results obtained for the Jerusalem cross-pair
structure (cf. Figure .), the resonance transmission peaks are attributed to the magnetic type or
antisymmetric mode resonance and are associated with backward-wave propagation. Furthermore, it
appears again that for thicker substrates the transmission resonance occurs at lower frequencies and
its bandwidth increases. A definite assessment of the nature of the transmission peaks in Figure .a
can be made by examining Figure .b, which shows the calculated one-dimensional dispersion
diagram ω versus the Bloch wave number kM along the z-direction, normalized with respect to the
period C =  mm. In fact, the negative slope of the dispersion curves at frequencies above . GHz

3.5 4
(a)

4.5 5 5.5 6 6.5
–35

–30

–25

–20

–15

–10

–5

0

Frequency (GHz)

|T
| (

dB
)

H = 1 mm

H = 1 mm
H = 2 mm

H = 2 mm

3.0

3.5

4.0

4.5

5.0

5.5

6.0

(b)
100 1200 20 40 60 80 140 160 180

kMC (deg)

Fr
eq

ue
nc

y (
G

H
z)

H = 1 mm
H = 2 mm

Li
gh

t l
in

e

FIGURE . (a) Simulated field transmission coefficients versus frequency for a layer of periodically arranged
=  and  mm of the dielectric

substrate supporting the top and bottom conductors, whereas the size of the unit cell along the propagation direction
is fixed to C =  mm. (b) Dispersion curves for a wave with the propagation constant kM in the infinite periodic stack
(period C =  mm) of layers made of the pairs of tightly coupled tripoles from Figure ..
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y

x
z

FIGURE . Surface current distribution on the unit cell of the tripole pair structure of Figure . (C =  mm,
H =  mm) at the the magnetic resonance fm = . GHz. The illuminating plane wave is normally incident on the
structure with the electric field polarized along the y-axis.

confirms backward-wave propagation for both the considered substrate thicknesses H; moreover, it
is noteworthy that the width of the NRI passband decreases for a smaller H, as previously noticed
also for the Jerusalem cross-pair design.

In Figure ., we show the surface current distribution for the unit cell of the tripole pairs
in Figure ., with H =  mm, calculated at the frequency f = . GHz, corresponding to the
transmission peak observed in Figure .a. As expected, the currents on the two conductors are
antisymmetric at the resonance and form a loop, which can be represented as an equivalent magnetic
dipole moment. This magnetic moment is responsible for the artificial magnetism of the structure,
which in turn results in an effective negative permeability of the substrate printed with the pairs
of tripoles. This magnetic resonance is superimposed with the electric resonance corresponding to
the excitation of a symmetric mode on the two tripoles, which is associated with an effective negative
permittivity; this superimposition yields the effective NRI behavior of the composite medium in the
frequency bands highlighted by the transmission and dispersion plots of Figure ..

Finally, it is important to note that in the NRI frequency band the ratio of wavelength to the lattice
constant A is of the order λ/A ≈ .. Thus, the NRI band should not be confused with the usual high-
order Brillouin zones of a photonic crystals, because the latters do not usually satisfy the A << λ
condition.

19.6 Plasmonic Nanopairs and Nanoclusters

Gold and silver nanoparticles have been used since Roman times to embellish stained glass windows,
ceramics, enamel pottery, and clothes with brilliant red and yellow colors []. However, it was not
until the middle of the nineteenth century that first insight into the underlying mechanisms that
give rise to the spectacular colors of small metal particles was provided by the pioneering work of
Faraday []. Then came the results of Maxwell Garnett [,] explaining the scattering effects and
color changes, and Mie’s theory [] quantitatively describing the size-dependent optical properties
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of metal spheres, which is still of great importance because it is the only simple exact solution to
Maxwell’s equations relevant to particles.

The field of metallic nanoparticles has recently witnessed a strong resurgence of interest due to
the development of nanofabrication techniques, such as electron-beam lithography (EBL), ion-beam
milling, nanochemistry, and self-assembly, together with modern nanocharacterization techniques,
such as dark-field and near-field optical microscopies and the emergence of quantitative electromag-
netic simulation tools. Advances in particle synthesis and nanofabrication technology have made it
possible to produce well-defined metal nanostructures. Sample transmission electron microscopy
(TEM) images of pairs of particles of two different sizes prepared by EBL are shown in Figure .a.

These progresses have generated the expectation that metallic nanoparticles will play a crucial
role in the development of several new applications and devices, especially in the field of photonic
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FIGURE . (a) TEM images of pairs of particles of two different sizes prepared by EBL []. The particle diameter
is  nm for the upper pairs and lower-left pair and  nm for the pair at the lower-right corner. The particle separation
(gap) is  nm for the upper pairs and approximately  nm for the pair at the lower-right corner. The particles at the
lower-left corner are in contact instead. (b) Scattering spectra from isolated pairs of oblate spheroids with a diameter of
 nm and height of  nm at variable separations in parallel and perpendicular polarizations, as indicated by arrows.
The separations (gaps) between particles are , , , , and  nm for particle pairs A, B, C, D, and E, respec-
tively. Spectrum F from a single particle is included for comparison. (Reprinted from Gunnarsson, L., Rindzevicius,
T., Prikulis, J., Kasemo, B., Kall, M., Zou, S., and Schatz, G., J. Phys. Chem. B., (), , .)
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circuitry and optical communications, where they could enable the creation of radically new, metal-
based, subwavelength, optical components with broad technological potential and miniaturized size
dimensions [].

The fascinating optical properties of metallic nanoparticles arise from the excitation of localized
surface plasmon (LSP) resonances, which can be interpreted as collective resonant oscillations of all
the conduction electrons of the nanoparticle in response to an incident optical field. A nanoparticle
supports a range of LSPs, but the optical response is usually dominated by dipolar modes. LSPs lead to
increased absorption and scattering cross-sections for electromagnetic waves as well as to a strongly
enhanced near field in the immediate vicinity of the particle surface []. It is the combination of these
properties with the tunability of plasmon resonances by varying the particle constituent material,
size, geometry, and the dielectric function of the surrounding host from which most of the promis-
ing applications of metal nanoparticles stem, such as optical waveguides [–], biosensors [],
subwavelength imaging [], and surface-enhanced Raman scattering [,].

A significant amount of research effort has been devoted to using metal (gold or silver) nanopar-
ticle chains as subwavelength optical waveguides in which wave propagation is mediated by coupled
plasmonic resonances [,]. At the same time, there have also been some interesting experimen-
tal [,] and theoretical [] results on two-dimensional (D) arrays of nanoparticles or dipolar
scatterers. In particular, a red shift of the dipole coupled mode has been observed when the elec-
tric field is oriented along the interparticle axis and a blue shift of the dipole coupled mode when
the electric field is perpendicular to the pair axis [,]. This is illustrated in Figure . showing
scanning electron microscopy (SEM) images and the scattering spectra from individual particle pairs
measured in the two orthogonal polarization configurations. As apparent, the dipolar LSP resonance
observed for the parallel polarization case (E field parallel to the pair axis) shifts dramatically to the
near-infrared region when the interparticle distance is decreased.

Arrays of metal nanoparticles can also provide the opportunity of developing new NRI metamate-
rials operating at optical frequencies. Indeed, at near-infrared and visible frequencies, the design of
NRI metamaterials with both negative dielectric permittivity and negative magnetic permeability is a
rather intricate matter and involves several challenges. The direct scaling to visible optics of the NRI
media demonstrated in the microwave range [] is nearly infeasible. In fact, at microwaves frequen-
cies the realization of an NIM is usually accomplished by embedding in a host medium some suitably
shaped metallic resonant inclusions with both electric and magnetic responses. Yet the electromag-
netic behavior of metals drastically changes from microwaves to visible frequencies: at microwaves
metals possess a very high (imaginary) permittivity and behave as nearly perfect conductors, whereas
at optical frequencies their permittivity can be comparable to that of the host material. Moreover, the
extension of the above approach to higher frequencies also raises technological issues, as previously
mentioned. Since negative permittivity is inherent to plasmonic structures at resonance, efforts have
recently focused on developing structures with a strong magnetic response. Means to achieve arti-
ficial magnetism with negative permeability at visible frequencies in nanostructure assemblies have
recently been suggested, for example, in [,]. In [] a simple plasmonic system composed of a pair
of gold nanodisks illuminated in the end-fire configuration has been shown to provide a magnetic
response due to the excitation of a magnetic dipole resonance. In [] the design of subwavelength
inclusions exhibiting a negative effective magnetic dipole moment at optical frequencies is addressed
by exploiting the collective resonance of an array of plasmonic nanoparticles arranged in a circular
pattern. It is noteworthy that resonant inclusions synthesized at higher frequencies usually exploit
the resonance of the circulating displacement current rather than of the conduction current. Further
alternative concepts for NRI materials in the visible range using ensembles of metallic nanospheres
have been proposed and analyzed in [,].

Basic ingredients for an NRI material recipe at optical frequencies are as follows []: (a) ease of
fabrication, (b) inversion symmetry (to avoid bianisotropy), (c) availability of both magnetic and
electric resonances close to each other in frequency, and (d) small unit cell electrical size. Bearing in
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mind these considerations, and somewhat inpsired by promising results from [], we investigated
a particular class of metamaterials, whose constitutive elements simply consist of either a pair of
tightly coupled silver nanospheres or a cluster of four nanospheres. We show that due to interparticle
coupling these structures support an antisymmetric (or loop) electromagnetic oscillation, which is
associated with a magnetic dipole and thus can lead to artificial magnetism. This oscillation is initially
revealed from the analysis of the resonance modes of an isolated pair or cluster of nanospheres by
using an approximated dipolar model for the particles and then for periodical structures of coupled
silver nanospheres through finite-difference simulations [].

19.6.1 Resonance Modes of a Pair of Tightly Coupled
Metallic Nanospheres

To understand the electromagnetic coupling between resonant nanoparticles, it is advantageous to
investigate first the basic coupled structure, a pair of nanospheres. The two nanospheres are supposed
to be made of silver, a noble metal that at optical frequencies exhibits a negative real part of dielectric
permittivity. Specifically, in this range of frequency the permittivity of silver can be described by the
Drude model:

єm = є
∞

−
ω

p

ω (ω + iγ) , (.)

where the parameters can be defined by matching experimental data in the interested frequency
range. Here є

∞
= , the plasma angular frequency ωp and the damping angular frequency γ are

chosen as ωp = . ×  rad/s and γ = . ×  s−, respectively, following [,].
Previous investigations of coupled particle dimers have shown that there are several different

behavior regimes based on the separation between particles [,]. When the pair of particles are
illuminated by a beam and they are widely spaced apart, they respond to the field independently, and
the only effect of their interaction is the oscillatory variation of the dimer response with interparticle
distance due to interference between the two nanoparticles. As the particle separation is reduced, it
was observed that for illumination by a plane wave with the electric field parallel to the dimer axis the
dimer far-field scattering response redshifts, whereas the far-field intensity initially weakens, because
the effective dipole of the coupled particles is diminished, due to localization at the dimer gap of the
charge induced by the incident field []. For even smaller separations, the scattering response of
the dimer continues to redshift, there is a strong buildup of charge at the gap, near-fields in the gap
are enhanced, and the far-field scattering begins to increase again []. Two additional regimes of
distinctly different behavior occur when the particles are separated but nearly touching and when
the nanoparticles overlap []. At very small separations, the multipoles associated to each sphere
become important, and fully retarded calculations in large neighboring spheres could be performed
by using multiple multipole methods [].

Here we are interested in examining the case of nanospheres with relatively small radius rp and
finite separation d between them. Therefore, to investigate the interparticle coupling we can resort
to the single dipole per particle approximation (SDA), which is a simplified approach consisting in
modeling each particle with just one electric dipole (see, for example, [,] and references therein).
Dipole interactions among particles are modeled correctly, and the SDA is accurate for particles that
are small and well separated, in which case the field of each particle at any of its nearest neighbors
is well represented by a dipole field. Proper implementation of the method requires an appropriate
choice of the dipole polarizability expression for each particle [].

We aim at finding the resonance modes and resonance frequencies of the isolated nanosphere
pair system illustrated in Figure .. In the SDA, this corresponds to finding the eigenvalues of the
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FIGURE . Configuration of the isolated nanosphere pair.

following system of two coupled equations (electromagnetic fields are assumed to be time harmonic
with an e−iωt time variation):

E(r) = G (r , r) ⋅ p ,
E(r) = G (r , r) ⋅ p ,

(.)

with the information that p, = αE(r,). Here, boldface symbols denote vectors, whereas dyads
are underlined; therefore, r, r denote the position vectors of the nanospheres, which are treated
as electric dipoles with dipole moments p and p, respectively; G (r , r) is the dyadic Green’s
function:

G (r , r) = [cI + cΨ (r)] , (.)

where
I is the identity dyad
Ψ (r) is the dyadic

Ψ (r) = 
r rr , (.)

and

c = e i kr

πєєh
( k

r
+ ik

r − 
r ) , c = − e i kr

πєєh
( k

r
+ ik

r − 
r ) , (.)

with r = ∣r∣; єh and μh are the relative permittivity and permeability of the host media and k =
ω
√

єh/c = k
√

єh is its wave number; k is the free-space wave number. Furthermore, α is the scalar
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sphere polarizability, which may be given in closed form as a function of silver permittivity by the
expression [,]

α = [ єm + єh

єєhπr
p (єm − єh)

− i
k

πєєh
]
−

. (.)

We anticipate that the interesting frequency range is one in which the first plasmon resonance in
each sphere is excited, which implies that the relative permittivity єm of each nanosphere is such that
єm ≈ −єh . Indeed, as it is clear from the expression of the polarizability (Equation .), in this
frequency range each nanosphere produces a strong electric dipole when excited by an electric field.
Combining the equations (Equation .) one obtains

p = αG (r , r) ⋅ p ,
p = αG (r , r) ⋅ p .

(.)

It can be easily shown that this system admits independent antisymmetric (p = −p) and symmetric
solutions (p = p), which leads to two sets of solutions of the equation:

[G (r , r) ± I
α
] ⋅ p = , (.)

where ± signs hold for antisymmetric and symmetric solutions, respectively. The eigenvectors associ-
ated to the four possible resonance configurations are shown in Figure .. The eigenfrequencies ft ,
and ft , are associated to the two transverse (with respect to the particle pair axis) resonances shown
in Figure .a and b, respectively. The two eigenfrequencies fℓ , and fℓ , are relevant to the two
longitudinal (parallel to the particle-pair axis) resonances shown in Figure .c and d, respectively.
The real and imaginary parts of the four resonance frequencies are plotted against spheres radius rp
(Figure .), keeping the distance between the spheres fixed at d =  nm.

It appears that ft , and fℓ ,, the resonances of the symmetric modes in Figure .b and d, have a
larger imaginary part than ft , and fℓ , , the resonances of the antisymmetric modes in Figure .a
and c. This is because of the larger radiation losses for the symmetric modes, as the pair of spheres
radiate like two parallel dipoles. Instead, the radiation associated to an antisymmetric mode is weaker
than the previous symmetric case, which results in a lower imaginary part of the resonant frequency.
Indeed, the radiations of the two dipoles tend to cancel each other, and the antisymmetric dipole pair
tends to radiate like a quadrupole. Equivalently, the antisymmetric mode is associated to a current

(a) (b) (c) (d)

x

y
z

p2

ft1

p2 = –p1

p1

ft2

p2 = p1

fℓ1

p2 = –p1

fℓ2

p2 = p1

FIGURE . Nanosphere pairs and resonance configurations: two resonance modes are along the direction
orthogonal to the particle-pair axis (transverse resonance modes), whereas two other resonance modes are oriented
parallelly to the particle-pair axis (longitudinal resonance modes). The vectors on each particle indicate the electric
dipole moments.
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FIGURE . (a) Real and (b) imaginary parts of the four resonance frequencies for a pair of nanospheres, in
a glass host (єh = .), with varying radius rp , and for a fixed distance between the spheres d =  nm, evaluated
using (.).

loop, and it is a classic result of antenna theory that a small loop radiates less than a small dipole.
It is also noted that the antisymmetric resonance ft , is smaller than the symmetric one ft ,, for all
the considered cases; generally, the resonances are ordered as fℓ , < ft , < ft , < fℓ , , as shown in
Figure .. Moreover, for large distance-to-radius ratios d/rp the real part of the four resonance
frequencies tends to be similar due to the reduced coupling between spheres.

19.6.2 Quasistatic Resonance Modes of Two Coupled
Metallic Nanospheres

If the particles are small compared with the wavelength of light, then it is possible to replace some
electrodynamic terms by electrostatic ones. In SDA calculations, this is equivalent to setting k =  in
Equation . (see also []) but keeping the correct frequency-dependent dielectric constant. The
electrostatic approximation is especially useful in the treatment of particles with special shapes such
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FIGURE . Quasi-static resonance modes of two interacting nanospheres as derived from the eigenfrequencies
of the two-particle SDA equations. The mode frequencies are given by the formula at the bottom, with values of f ,
depending on the radius of the particles rp and their center-to-center separations d, shown on the right-hand side.

as spheroids, since it can provide an analytical solution to the Laplace’s equation. This approximation
applies specifically to the dynamics of a single particle, but it can also be combined with the SDA
method to describe the electromagnetic behavior of a particle cluster [].

Here we are interested in deriving the analytical expressions of the nanosphere pair resonances,
estimated in Section .. by solving Equation . numerically. After neglecting the dynamic terms
in Equation ., and by taking into account that γ ≪ ωp , Equation . is solved analytically for
the resonant angular frequencies, leading to the expressions

ωt ≈
ωp√

є
∞

+ єh

�
���  − r

p/d

 − KC M r
p/d − i

γ


(.a)

ωt ≈
ωp√

є
∞

+ єh

�
���  + r

p/d

 + KC M r
p/d − i

γ


(.b)

for the transverse modes and

ωℓ ≈
ωp√

є
∞

+ єh

�
���  + r

p/d

 + KC Mr
p/d − i

γ


(.c)

ωℓ ≈
ωp√

є
∞

+ єh

�
���  − r

p/d

 − KC Mr
p/d − i

γ


(.d)

for the longitudinal modes. Here, KC M denotes the Clausis–Mossotti factor KC M =(є
∞

− єh)/
(є
∞

+ єh) []. By choosing єh = , these expressions are found to coincide with those given in [].
The quasi-static modes of two interacting nanospheres are illustrated in Figure .. These expres-
sions are particularly useful for an initial design of the pairs, when one needs to have a preliminary
guess of the particle dimensions.
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19.6.3 Array of Pairs of Tightly Coupled Nanospheres

Now that certain properties related to an isolated pair of nanospheres have been shown, we analyze
some characteristics of an array of such pairs, which is sketched in Figure .. It consists of an
infinite, two-dimensional periodic distribution, in the x y plane, of pairs of tightly coupled spheres.
In other words, each array element is made of a pair of nearby metallic spheres, like that shown in
Figure .. The lattice constants of the array are a and b along x and y, respectively. The origin of
the coordinate system coincides with the position of a sphere in the lower array. The positions of the
lower spheres are thus ρmn = max̂ + nb ŷ, with m, n = , ±, ±, . . . . Those in the upper array are
located at a distance d, from the lower one.

We now analyze certain properties pertaining to an array of pairs of tightly coupled spheres, assum-
ing a plane wave coming from the positive z-direction, as shown in Figure .. The magnitude of the
field reflection R and transmission T coefficients shown in Figure ., for d =  nm, rp =  nm,
and a = b =  nm, are obtained by finite-difference simulations []. For symmetry reasons, only
the transverse resonance modes of Figure .a and b are excited. Indeed, the sphere pair array
shows two distinct resonances around f =  and  THz, corresponding to the antisymmetric and
symmetric modes, respectively. The values of the resonances are approximatively related to the reflec-
tion/transmission peaks, though their exact values should be determined via an eigenvalue numerical
analysis. The absorption −∣T ∣−∣R∣ is also shown in Figure ., which peaks in the proximity of the
magnetic resonance. It is noteworthy that these values of the resonance frequencies are in satisfactory
agreement with the estimates provided by the quasi-static expressions of the antisymmetric and sym-
metric mode resonances given in Section .., which read as ft =  THz and ft =  THz. To
further strengthen this classification of the resonances, we have looked at the field locally, for a single
pair, which is illustrated in Figure .. These plots confirm that a normally incident plane wave at
f =  THz excites antiphase currents flowing mostly along the x-axis (the arrows in Figure .a),
which is characteristic of the antisymmetric mode. A current loop is effectively created in the yz-
plane, which in turn generates strong magnetic fields, shown also in the figure with gray tones, in the
region between the spheres and produces a substantial magnetic moment contributing to an effective
permeability.

In Figure .b we also show that an incident plane wave at f =  THz excites currents mostly
in-phase, flowing along the x-direction, which are regarded as a symmetric mode, similar to that in
Figure .b, and do not produce a significant enhancement of the magnetic field.
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FIGURE . Doubly periodic array of pairs of tightly coupled spheres.
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FIGURE . Field reflection and transmission through a periodic array of silver nanosphere pairs, in a glass host
(єh = .), with rp =  nm, center-to-center vertical distance d =  nm, and transverse periods a = b =  nm. The
absorption  − ∣T ∣ − ∣R∣ is related to the nanospheres losses and peaks in the proximity of the magnetic frequency.
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FIGURE . Current (arrows) and magnetic field amplitude (gray tones) distributions for an array of sphere pairs,
in a glass host (єh = .), with rp =  nm, d =  nm, and a = b =  nm: (a) antisymmetric resonance mode at
f =  THz; note the strong magnetic field between the two spheres; (b) symmetric resonance mode at f =  THz.

19.6.4 Effective Magnetic Permeability for a Two Coupled
Nanosphere System

Since we have shown that a pair of nanospheres is able to generate a magnetic moment, we estimate
here the artificial magnetism produced by a collection of pairs, neglecting their interaction. To this
aim, we use here the formula

α−
mm = єєh

k(d/) α− − i [k

π
− k

π(d/) ] − 
πk(d/) (.)
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FIGURE . Effective relative magnetic permeability μeff for a bulk periodic medium of silver nanosphere pairs
with the following parameters: rp = , ,  nm, d = , ,  nm, respectively, and Nd = ( nm)−. The permit-
tivity of silver is described by the Drude model in Equation . with the same parameters specified above [,].
The background material is glass with єh = ..

which is a specialization of the general expression for the magnetic polarizability of a loop of spherical
particles developed in [,] to the case of only two nanospheres (we recall here that k = k

√
єh).

The polarizabilty is used to determine the magnetic dipole moment associated to a pair, as a function
of the local magnetic field as m = αmm H loc, with m and H along a direction orthogonal to the pair
axis. Then, the effective permeability of a D periodic arrangement of nanopair inclusions can be
obtained through the effective medium theory [] and can be expressed as

μeff =  + 
N−

d [α−
mm + ik/(π)] − /

, (.)

where Nd is the number density of nanosphere pairs per unit volume. Figure . shows the behavior
of μeff for a periodic lattice of silver nanopairs embedded in a glass host with єh = .. The density
of inclusions is Nd = ( nm)− and the particle pair geometry is characterized by the sphere radius
rp = , ,  nm and distance d = , ,  nm, respectively. It can be seen that the material presents
a significant magnetic response and that the strength of the magnetism is larger for increasing
particle size.

It is also noted that the prediction of the frequency at which magnetism is exhibited, provided
by the analytical model (Equation .), is blue-shifted when compared with the magnetic response
calculated by the full-wave simulations previously discussed. However, this shift is due on the one side
to the fact that the spheres are in very close proximity and thus they may interact in a more complex
manner than described by the SDA [,]; furthermore, a better agreement between theory and
simulations could be obtained by using in place of Equation . an alternative expression of the
electric dipole polarizability as determined through the Mie theory [,]. In this referenced work,
it has been shown that the use of the quasi-static polarizability expression causes a blue shift.

19.6.5 Electromagnetic Modes of Four Coupled Metallic Nanospheres

We consider here an isolated cluster of four silver nanospheres placed at the vertices of a square
with side length d, as illustrated in Figure .. This nanoparticle configuration exhibits several
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FIGURE . Configuration of the isolated cluster of four silver nanospheres.

resonances that in the context of an SDA for the considered nanosphere system can be schematically
described as shown in Figure .. It is pointed out that the dipoles in the resonance modes from
Figure .b, c, f, and g are not necessarily oriented at ±○ directions, but their orientations rather
depend on the specific geometrical and material parameters characterizing the cluster configuration,
and they are simultaneously rotated by a given angle, as suggested by the superimposed rotating
arrows.

As already stated in [], clusters made by several nanospheres may lead to stronger artificial
magnetism than the structures based on pairs shown in the previous sections, besides providing a
more isotropic performance. We are particularly interested in the resonance configuration shown in
Figure .e, since it is the one that is associated with artificial magnetism, as can be envisaged from
the loop disposition of the dipoles. Following the same procedure described in Section .., where
the electrodynamic terms have been dropped, and by taking into account that γ ≪ ωp , a quasi-static
approximation for the resonance angular frequency relative to the magnetic mode in Figure .e is
given by

ωloop = ωp

�
����  d − ( +

√
) r

p

[ d + ( +
√

)r
p ] єh + [ d − ( +

√
) r

p) є
∞

− i
γ


, (.)

which provides a useful initial design tool for the dimensions of such a cluster when a specific oper-
ational frequency is desired. Similar expressions can be derived also for the resonant frequencies
corresponding to the other resonance modes of the four-sphere system tabulated in Figure ..

In the next section, we show that when the nanosphere cluster of Figure . is used as the con-
stitutive element of a D periodic metamaterial, the excitation of the above loop resonance mode
by means of an incident wave with a suitable polarization clearly affects the reflection and trans-
mission properties of the composite metamaterials and provides the opportunity to realize artificial
magnetism, as first elaborated in [].

19.6.6 Array of Four Tightly Coupled Nanospheres

We consider here certain electromagnetic properties of a periodic array whose unit cell is made by a
cluster of four nanospheres with radius rp =  nm, placed in the xz-plane by the vertices of a square
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FIGURE . Resonance modes of four spheres arranged in the double-symmetric configuration shown in
Figure ..

with side length d =  nm (Figure .). The array is periodic along the x and y directions with
periods equal to  nm.

In Figure . we show the magnitude of the field transmission T , reflection R, and absorption
 − ∣T ∣ − ∣R∣, relative to such an array computed with CST Microwave Studio. As apparent, there
are two resonant frequencies of maximum reflection ( f =  and  THz) and two resonant fre-
quencies of maximum transmission ( f =  and . THz). In the inset of Figure . are shown
the directions of the electric dipoles modeling the nanospheres at the first frequency of maximum
reflection f =  THz. Note that the electric field direction at each sphere mainly coincides with the
orientation of the dipole modeling the sphere. The reflection arises because the current loop creates
a magnetic mismatch for the incoming plane wave, which can be explained in terms of equivalent
transmission lines.

To confirm the identification of the loop (magnetic) resonance, we have examined the local field
distribution in the unit cell, which is illustrated in Figure .. This graph confirms that a nor-
mally incident plane wave at f =  THz excites a circulating current (arrows) and produces a
strong magnetic field enhancement, shown with gray tones in the inside region of the cluster. In this
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FIGURE . (a) Perspective view of a layer of the metamaterial formed by a periodic arrangement of four tightly
coupled silver nanospheres. (b) Metamaterial elemental particle (unit cell). The polarization of the incident electric
field is along the x-direction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (THz)

M
ag

ni
tu

de

500 525 550 575 600 625 650 675 700 725 750 775 800

|R|
|T|
|A|

FIGURE . Frequency response of an array of four tightly coupled nanospheres in the x−z-plane with rp =  nm
and d =  nm: magnitude of transmission T , reflection R, and absorption A = − ∣T ∣ − ∣R∣ versus frequency. In the
inset is shown the orientations of the dipoles modeling the nanospheres at the first resonance frequency f =  THz,
corresponding to a maximum of reflection.

antisymmetric oscillation of the four-nanosphere array, the electric dipole moments form a displace-
ment current loop corresponding to an equivalent magnetic dipole oriented along the y-direction,
parallel to the incident magnetic field. This phenomenon could be interpreted as artificial magnetism,

noted that absorption is relatively small for this configuration.
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z
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FIGURE . Current density (arrows) and magnetic field amplitude distribution (gray tones) for the array of four
silver nanospheres shown in Figure ., with rp =  nm, d =  nm, and periods along the x- and y-directions
a = b =  nm, and at the first frequency of maximum reflection f =  THz. The particles are embedded in a host
glass with єh = .. Note the strong magnetic field at the center of the cluster.

The quasi-static approximation (Equation .) provides an estimate of the loop resonance
frequency of f =  THz, which is higher than the actual loop frequency f =  THz, shown
in Figure .. Analogously to what was discussed for the pairs of nanospheres, the disagreement
is based on the fact that the nanospheres are very close to each other, and so the minimum distance
requirement implied by the SDA is not satisfied for this case, and that a more accurate polarizability
expression should be used []. Nevertheless, the quasi-static resonance formula (Equation .) is
a useful tool for an initial design also for this particular case. The quasi-static formula is expected to
be accurate when the center-to-center distance between the spheres is at least rp and the spheres are
much smaller than the wavelength.

The realization of such clusters is made possible by recent developments in the field of nanochem-
istry [,]. Indeed, it has been shown that it is possible to make clusters of metallic nanospheres
around a central nanoparticle of a different material. Here we consider an illustrative example consist-
ing of an array distribution of clusters made of four nanospheres with radius rp =  nm, supported
by a central silica particle with radius . nm and єr = . (Figure .). The nanoparticles are
embedded in free space. The electromagnetic response of this metamaterial to a normally incident
plane wave with the electric field polarized along the x-direction is shown in Figure .. As appar-
ent, the response of this array configuration is analogous to that illustrated in Figure . apart
from the shift of the resonances toward higher frequencies. Accordingly, the very same phenom-
ena discussed above are expected to underlie such an electromagnetic behavior: the cluster exhibits
a strong magnetic field created by the current loop around f =  THz, parallel to the incident
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FIGURE . (a) Perspective view of a layer of the metamaterial formed by a periodic arrangement of four tightly
coupled silver nanospheres supported by a central silica particle (єr = .). (b) Metamaterial elemental particle (unit
cell). The polarization of the incident electric field is along the x-direction.
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FIGURE . Frequency response of an array of four tightly coupled silver nanospheres, with rp =  nm and
d =  nm, supported by a central silica particle єr = .: magnitude of transmission T , reflection R, and absorption
A =  − ∣T ∣ − ∣R∣ versus frequency.

magnetic field, which may be interpreted as artificial permeability. The loop resonance frequency
is now higher because in the previous case the spheres were embedded in a dielectric host with
єh = ., whereas in this case, besides the presence of the central nanosphere, the host is assumed to
have єh = .
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19.7 Conclusions

We have presented a few NRI metamaterial designs based on the concept of pairing two suitably
shaped conductors. Such configurations have been demonstrated to support both antisymmetric and
symmetric resonance modes, whose interaction can lead to simultaneous negative permittivity and
permeability, and, accordingly, to an NRI. This design approach can be considered as a generaliza-
tion of the short-wire or strip-pair designs; however, as a major advantage of this approach, it has
been shown that an appropriate choice of the resonant inclusions can provide additional degrees of
freedom to control the separation of electric and magnetic resonances, in contrast to simple short-
strip-pair media, where these resonances are mainly determined by the length of the wires or strips
so that the achievement of an NRI behavior is more difficult.

The ease of fabrication of the presented designs is expected to facilitate their scaling to achieve
an NRI response in the terahertz region, provided that the change of the metal behavior from lossy
conductors at gigahertz frequencies to lossy, negative permittivity dielectrics in the higher terahertz
region is adequately taken into account. Furthermore, extension to the optical range is also conceiv-
able, as the developed metamaterials present the same level of complexity of simple cut-wire or strip
pairs, which have already found experimental confirmations at optical wavelegths [].

Materials based on coupled-particle arrangements with significantly different geometries may lead
to negative index materials as well. In particular, the tightly coupled particle pair concept proposed
here can be profitably applied to the development of novel metamaterials by taking inspiration from
the choice of the unit cell configuration from the plenty of geometries that have been developed in the
context of frequency-selective surfaces to address specific electromagnetic responses []; indeed,
simply pairing such kinds of structures may constitute the starting point to accomplish a range of
metamaterial designs with enhanced capabilities.

Furthermore, in the second part of this chapter we have investigated the properties at optical
frequencies of certain plasmonic metamaterials whose constitutive unit cell generally consists of a
cluster of metallic nanospheres. We have shown that macroscopic effects in the response of these
metamaterials are caused by the electromagnetic coupling between the metallic nanospheres closely
packed in the metamaterial unit cell. As a consequence of such coupling, these structures sup-
port antisymmetric or loop modes. From an electromagnetic point of view, these modes could
be interpreted as effective magnetic dipoles, oriented perpendicularly to the plane containing the
nanospheres, and could be used in designing metamaterials that support backward propagation or
have equivalent high/low characteristic wave impedance.
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20.1 Introduction

Composite electromagnetic media have long been the subject of interest for a variety of theoretical
and practical reasons and in a variety of physical realizations as amorphous mixtures, ordered media,
frequency-selective surfaces, photonic crystals, etc. A wide range of interesting physical phenomena
is revealed in several of these realizations, most importantly frequency-modulated reflection and
transmission.

In this chapter, we present the newly defined metamorphic materials, which are artificial metallo-
dielectric structures composed of passive elements and switches, and which exhibit bulk electro-
magnetic transitions among a set of dinstinct electromagnetic states, each characterized by a specific
range of values of the reflected electromagnetic field. According to the interconnect topologies of the
metallic inclusions, a metamorphic material behaves, at a single frequency, as an electric conductor,
a passive or active magnetic conductor, an absorber, or an amplifier.

Early investigations of electromagnetic scattering from objects and interfaces characterized by an
equivalent variable surface impedance [,] reveal the presence of a set of universally defined, distinct
electromagnetic states at a given frequency. For smooth curvilinear scatterers, backscattering is dom-
inated locally, within a factor accounting for curvilinear effects, by the reflection coefficient from a
planar interface of the same material composition []. Further, by applying the Whittaker–Shannon
Theorem, the surface impedance continuum can be replaced with a discrete array of elements with the
same locally variable electromagnetic properties, thus yielding the same result. This may be a discrete
array of antennas terminated at a variable impedance load []. As a corollary, bulk reflection from a

20-1
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homogeneous medium as well as reflection from printed photonic crystals may also be described by
a similar formula. Given this universal set of metamorphic states, it is interesting to develop practi-
cal electromagnetically metamorphic structures that realize a number of these states. In the present
overview, we realize this with the use of photonic crystals.

A formal statement that allows us to unify these properties and define generally the metamorphic
states of a scattering object when this scatterer is modeled as a terminating obstacle that reflects a
propagating mode of characteristic impedance Z follows by casting the reflection coefficient in the
form of a transmission line equivalent:

Γ = Z − Z

Z + Z
=

R
Z
+ i

X
Z
− 

R
Z
+ i

X
Z
+ 

(.)

where, the load impedance is Z = R+iX. Similarly, a half-space filled with homogeneous material that
can be described in the bulk by relative permittivity and permeabilitty functions εd = εr

d + iεi
d , μd =

μr
d + iμi

d has a corresponding reflection coefficient for normal plane-wave incidence:

Γ
∞
= ηd − η

ηd + η
=

ηd

η
− 

ηd

η
+ 
= Re (η) + iIm (η) − 

Re (η) + iIm (η) + 
, (.)

where
η =
√

μ/ε = πΩ is the wave impedance of air
ηd is the wave impedance of the dielectric material
η is the relative complex wave impedance of the material

Equations . and . are otherwise identical, and we imagine a material in which we can
vary Re{η} for fixed Im{η}. The corresponding circuit analogy in Equation . is that we vary
the load resistance. The induced variation on the reflection coefficient is shown in Figure ., where
Im{η} is varied parametrically. The region Re{η} < corresponds to an active material (amplifier)
for which ∣Γ∞∣ > .

In accordance with Figure ., we define metamorphic materials as composite materials whose
bulk reflection coefficient Γ (or slab reflection coefficient S for physical realizations) can transition
under electromagnetic excitations, among two or more values from Table . [].

One main issue we address in Sections . through . is how to physically realize artificial
materials that exhibit transitions between these electromagnetic states using electronic reconfigura-
bility. We show that metallo-dielectric photonic crystals can be used to realize several metamorphic
states [] depicted in Figure .. The metamorphic material should perform these transitions at
the same frequency, without changing the geometry of the scatterers or any other geometrical fea-
tures. The only agent creating these transitions should be a lattice of switches affecting the topology
of the conducting path of the induced currents between the scatterers. The switch lattice can be
electronically reconfigured, but the physical size of the switches should have negligible scattering
cross-section. In this chapter, we examine several realizations of such materials as metallo-dielectric
photonic crystals, where the metallic scatterers form a lattice. On this lattice, we envision a second lat-
tice of switches, to be realized in practice as solid-state or micro-electro-mechanical (MEM) switches,
that can be on or off and otherwise with negligible physical size. In this chapter, we cover only pas-
sive metamorphic states. A complete set of metamorphic states, including active ones, may be realized
by employing an actively loaded perfect electric conductor (PEC) circular ring array within a lossy
host material []. In [], a negative index of refraction metamaterial is achieved as a subclass of a
metamorphic material.
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FIGURE . Variation of the real part of bulk reflection coefficient according to the theoretical variations of the
relative complex wave impedance. Im{η} is varied parametrically at values ±. (thick black), ±. (thick gray), ±
(thin black), and ± (thin gray). (From Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos, N.G., J. Opt. Soc.
Am. A, (), , November . With permission.)

TABLE . Definition of Metamorphic States
Definition of Metamorphic States

Γ Re{η} Function
− + i  Perfect electric conductor
+ + i +∞ Perfect passive magnetic conductor
+ + i −∞ Perfect active magnetic conductor
 + Passband filter/absorbera

−∞ − + δ Perfect electric amplifier
+∞ − − δ Perfect magnetic amplifier
Source: Kyriazidou, C.A., Contopanagos, H.F., and
Alexopoulos, N.G., J. Opt. Soc. Am. A, (), ,
November . With permission.

a The functions passband filter/absorber are
distinguished for a slab by the transmission coefficient.

The second main issue concerns the extraction of an effective description of these materials, which
we address in Sections . and .. Each metamorphic state realized corresponds to a certain artifi-
cial periodic lattice of metallic scatterers, i.e., a distinct photonic crystal. In general, a photonic crystal
may be characterized in the bulk by an effective parameter theory that yields equivalent effective
response functions similar to homogeneous dispersive materials [–]. Such approaches are covered
extensively, in Part I of this book, but we briefly summarize an alternative view on the subject of power
loss. Further, we use the resonant inverse scattering approach [] to extract the effective parameters
of the specific metamorphic materials we present. This is useful to reclassify the metamorphic struc-
tures in terms of transitions among fundamental values of their effective parameters, instead of just
their backscattering response presented in []. In this sense, it promotes the physical intuition and
application space and simplifies the design of metamorphic crystals. The effective description makes
each metamorphic state equivalent to a metamaterial state; hence, a metamorphic material is an elec-
tronically reconfigurable collection of metamaterials. A time-harmonic dependence exp (−iωt) is
assumed throughout this chapter.
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20.2 Physical Realization of Metamorphism through
Babinet Complementarity

In this work, metamorphism is achieved by taking advantage of the frequency dependence and the
highly resonant behavior of the reflection coefficient of metallo-dielectric crystals. The switch lattice
will then modulate that frequency dependence according to certain complementarity principles of
electromagnetic scattering of metallic targets. To be specific, we apply Babinet’s principle of com-
plementary screens to achieve a fundamental two-state metamorphism in the reflection coefficient.
We first start with the disk medium, which has been solved analytically in [,,]. In [,], we
have shown that the analytical solution agrees well with finite-element numerical simulations per-
formed with the commercial full-wave simulator HFSS (high-frequency structure simulator) and
with measured prototypes. Given the validation, we use HFSS for most of the analysis.

Two main ideas lead us to the development of our metamorphic medium. The first is the antic-
ipated electromagnetic inversion that follows from the Babinet principle. When we compare, at a
specific frequency, the response of a lattice of printed elements to that of its dual printing, we expect
a maximal metamorphic inversion. For instance, at a specific frequency where we have an electric
wall, characterized by large effective permittivity and negligible effective permeability values, in the
dual system we expect a magnetic wall, characterized by near-zero effective permittivity and large
effective permeability values. The second notion is that the basic characteristics of the frequency
response do not change for small variations in the shape of the implants. In this section, we derive
these properties focusing on a specific set of design geometries Di j , summarized in Table ..

Each entry Di in Table . has a Babinet-complementary structure Di, and we show specific
metamorphic relations in the electromagnetic response of each pair. As a second step, it has been
shown [] that the second and third entries in a given column show the same metamorphic behav-
ior as the first entry of the opposite column, i.e., the structures {D , D , D} and {D , D , D}

TABLE . Summary of Geometries Used and Their Complementarity
Properties
Composite Medium Babinet-Complementary Medium
D : Circular metal disks D : Metal screen with circular holes
D : Overlapping metal disks D: Metal screen with overlapping holes
D : Metal disks connected with metal strips D : Metal screen with connected holes
Source: Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos, N.G., J. Opt. Soc. Am. A,
(), , November . With permission.

b

ca
(a) (b)

FIGURE . (a) D : Circular metal disks. (b) D: Metal screen with circular holes. (From Kyriazidou, C.A.,
Contopanagos, H.F., and Alexopoulos, N.G., J. Opt. Soc. Am. A, (), , November . With permission.)
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(a) (b)

FIGURE . (a) D: Overlapping metal disks. (b) D: Metal screen with overlapping holes. (From Kyriazidou,
C.A., Contopanagos, H.F., and Alexopoulos, N.G., J. Opt. Soc. Am. A, (), , November . With permission.)

(b)(a)

FIGURE . D: Metal disks shorted with metal strips. (b) D: Metal screen with connected holes. (From
Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos, N.G., J. Opt. Soc. Am. A, (), , November . With
permission.)

in Table . have similar electromagnetic response. It is clear that the third row of entries can be
realized by electronic switching of the first row, as it involves metallization with localized electri-
cal connectivity, which can be accomplished by either open or closed electrical switches. Hence, it
follows that the two behaviors of the sets {D , D , D} and {D , D , D} in Table . can be
realized by electronic switching of either D or D without any further change in the photonic crys-
tal geometry. In Section ., we illustrate how this works in practice, for a specific set of designs
reflecting the structures of Table . and shown in Figures . through .. In Figure ., the
shorting metal strips have been chosen to have a negligible cross-section, and their electromagnetic
function is equivalent to a point-like connector (short), which can be realized by an electronic switch.

20.3 Realization and Design of a Two-State Metamorphic
Material

We choose a host material, unit cell dimensions, and disk size identical to those in [], which pro-
duced optimized passband filtering properties in the Ka frequency band, and was also validated by
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FIGURE . Normal plane-wave incidence on D (disk medium): (a) Reflected (black) and transmitted (gray)
power and the first two PBG regions. (b) Real (black) and imaginary (gray) parts of the reflection coefficient. (From
Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos, N.G., J. Opt. Soc. Am. A, (), , November . With
permission.)

prototype measurements. The passive lattice consists of an orthogonal unit cell (a, b, c) =
(. mm, . mm, . mm) of host dielectric relative complex permittivity ε = .( + i.)
in which the size of the circular scatterers (metal disks or holes) is r/a = ..

In Figure ., we summarize the properties of the power spectrum and reflection coefficient of
three layers of design D, i.e., the disk medium, obtained analytically or through HFSS simulations
and the results being in excellent agreement, [,].

. At DC and low frequencies the material is a homogeneous dielectric slab, and the
reflection coefficient is that of a Fabry–Perot resonator.

. At the first electromagnetic band gap (EBG), which is the left shaded area, the reflection
coefficient starts as an electric wall in the first half of the band gap and transforms to a
magnetic wall in the second half of the band gap.

. At the second band gap (right shaded area), the material transitions in the opposite sense:
First it becomes a magnetic wall and then an electric wall.

. The frequency region between two successive magnetic walls is a “zero reflection region,”
where the material can operate as a passband filter. It can also operate as a perfect
absorber, if the host loss tangent is increased.

In Figure ., we show the corresponding response for the Babinet-complementary material D.
Contrasting this with Figure ., we see that the material behaves as a perfectly reflecting screen at
DC and low frequencies, because the holes have negligible size at these long wavelengths. Further, in
the frequency region where D has its first EBG, D has a passband, whereas in the higher frequency
region where D has its passband, D has its second band gap [,].

In Figure ., we show the response of material D, which is made of disks interconnected by
very thin metal strips. We have checked that the strip width is of negligible cross-section as the same
response is obtained by strips of half the width as well as a quarter of the width shown. These strips can
be realized as connectors operated by electronic switches or MEMs switches. Notice that despite the
fact that designs D and D are geometrically very different, they are topologically similar, and the
corresponding responses are also very similar all the way up to the second photonic band gap. Design
D shows a behavior very similar to D. Hence, topology predetermines metamorphic properties
much more than specific scatterer shapes (of comparable electrical size).
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FIGURE . Normal plane-wave incidence on Babinet-complementary material D. (a) Reflected (black) and
transmitted (gray) power. (b) Real (black) and Imaginary (gray) parts of S . (From Kyriazidou, C.A., Contopanagos,
H.F., and Alexopoulos, N.G., J. Opt. Soc. Am. A, (), , November . With permission.)
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FIGURE . Normal plane-wave incidence on material D. (a) Reflected (black) and transmitted (gray) power.
(b) Real (black) and imaginary (gray) parts of S . (From Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos,
N.G., J. Opt. Soc. Am. A, (), , November . With permission.)

In Figure ., we show the two-state metamorphic transitions (shaded bands) between D (disks)
and D (shorted disks). D has a broadband passband at around  GHz and can be reconfigured to
an electric conductor by shorting the disks and becoming D. The reverse metamorphic transition at
the much lower frequency of  GHz is observed between the media D and D as a consequence of
Babinet’s principle. This is important for applications where low-frequency metamorphism for small
electrical sizes is desired. We note also a narrow-band transition at  GHz, where the magnetic wall
state is not close to perfect. Its value can approach + by increasing the number of layers. A behavior
identical to the above and at the same frequencies (– GHz) can be observed for the designs D
(holes) and D (“shorted” holes) as Figures . and . indicate, but the metamorphic states are
reversed [].
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FIGURE . Two-state metamorphic material under normal plane-wave incidence. The two electronically recon-
figurable states are D (black) and D (gray). (From Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos, N.G.,
J. Opt. Soc. Am. A, (), , November . With permission.)

20.4 Realization and Design of a Three-State Metamorphic
Material

In this section, we summarize how to physically realize a three-state metamorphism in a similar
manner []. In Figure ., we show the design of a third reconfigurable state complementing the
two-way metamorphism of Figure .. We observe that in the frequency region of  GHz and with
an appreciable bandwidth, the system of Figure . behaves as a magnetic conductor while D is a
passband filter (or an absorber) and the shorted disk medium is an electric conductor. Notice that this
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FIGURE . Three-state metamorphic material. The three electronically reconfigurable states are D (thin
black), D (Figure ., thick gray), and this figure (thick black). (From Kyriazidou, C.A., Contopanagos, H.F., and
Alexopoulos, N.G., J. Opt. Soc. Am. A, (), , November . With permission.)
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TABLE . Active Lattice of Switches Applied on Design D (Metal Disk
Medium) and Corresponding Metamorphic States at  and  GHz
Switch State (Active Lattice) Metamorphic State at  GHz Metamorphic State at  GHz
(,,) Layer  Open Magnetic conductor

Layer  Closed
Layer  Open

(,,) Layer  Open Passband filter/absorber Electric conductor
Layer  Open
Layer  Open

(,,) Layer  Closed Electric conductor Passband filter/absorber
Layer  Closed
Layer  Closed

(,,) Layer  Closed Magnetic conductor
Layer  Open
Layer  Closed

Source: Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos, N.G., J. Opt. Soc. Am. A,
(), , November . With permission.

system also shows a narrowband two-way metamorphism (an electric-to-magnetic wall transition) at
the very low frequency of . GHz, providing a metamorphism with a material of very small physical
thickness ≈ λ/ or an optical thickness ≈ λ/.

We can describe in general the three-way transitions implemented with electronic or MEMs
switches in Table .. The first three rows of the table describe the switch states corresponding to the
metamorphism of Figure .b. In the last row of this table, we have also included a different con-
figuration, where a switch state (,,) indicates that the terminating layers are D (shorted disks),
whereas the middle layer is D. This also presents a three-way metamorphism at the much lower

20.5 Metamaterial Characterization of Photonic Crystals and
Their Metamorphic States

In this section, we describe the bulk material characterization of metamorphic structures in terms
of a pair of complex functions {η (ω) , n (ω)} (effective or intrinsic wave impedance and refractive
index) or in terms of a pair {ε (ω) , μ (ω)} = { n(ω)

η(ω) , n (ω) ⋅ η (ω)} (effective permittivity and perme-
ability). Apart from being simply a restatement or an alternative description, the reduction of each
photonic crystal, and in the present context each metamorphic state, to a pair of basic parameters
is useful to reveal unusual dispersive properties not found in natural media, such as permittivities,
permeabilities, and refractive indices less than one or negative. In this sense, it promotes the phys-
ical intuition in the design of metamorphic crystals targeting specific applications. The method has
been used to characterize photonic crystals and extract their metamaterial properties, even in the
resonant regime. For structures that can be solved analytically, it provides analytical expressions for
the effective parameters in terms of the polarizabilities of the metallic scatterers [,,]. For general

scattering method. The resonant inverse scattering method allows us to distinguish the structures
that have a bulk description as well as to obtain their unambiguous characterization regarding its
electromagnetic parameters as follows:

First, we assume that a structure is equivalent to a macroscopically homogeneous medium. Conse-
quently, it may be described in terms of dispersive effective response functions. In such systems, the
scattering parameters (S , S), i.e., the reflection and transmission coefficients for a slab, assume
the form of the corresponding formulas for a macroscopically homogeneous medium. S and S
are the inputs in this approach and may be obtained through analytical solutions, simulations, or
measurements. We treat structures that are electromagnetically symmetric, i.e., S = S, and hence
the illumination side is immaterial.

© 2009 by Taylor and Francis Group, LLC
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Second, we invert algebraically the system of equations for the complex quantities S , S, in accor-
dance with the experimental extraction of material parameters []. In this manner, we obtain a pair
of effective parameters.

The question may arise, however, whether the derived parameters provide an effective description
of the medium, for the specific metal scatterer shapes/topologies used in simulations or measurements,
which may be quite complicated. Not every complex structure accepts an effective description, and
moreover, those that do may not maintain it for the entire frequency regime. This leads us to formulate
a third step, which should be viewed as a general criterion.

Consistency criterion: A periodic or random structure does have a bulk description in a specific
frequency regime, only when it yields the same effective parameters for a slab of any thickness. A suc-
cessful homogeneous description of a slab of any thickness is, in our view, the most fundamental
and physically transparent phenomenological description of a composite material, because it involves
the most fundamental aspects of macroscopic scattering, i.e., (a) transmission through the bulk, (b)
diffraction by two terminating interfaces, and (c) a three-way power balance (reflection, transmis-
sion, and loss). If the effective parameters are uniquely determined, independently of the slab thickness,
then, obviously, they represent the correct effective parameters of the system. What we do in prac-
tice is to take two cuts of the various structures we treat []. Given that the input S-parameters for
these two cuts are extremely different and still yield identical parameters, the chance that the bulk
description does not hold for some other cuts is really minimal. Equivalently, we may produce the
effective parameters for one specific slab, use them to predict the scattering matrix for a slab of differ-
ent thickness, and finally compare these to measured or simulated results. This criterion is therefore
a consistency test, functioning as a necessary and sufficient condition, which will obviously reject the
structures that do not accept a bulk description. For periodic structures, the slab thickness, d, should
be an integer multiple of the monolayer period, c, i.e., d = N × c.

The starting point is the slab reflection and transmission complex coefficients under normal inci-
dence, which assume the form of the corresponding formulas for a macroscopically homogeneous
medium:

S =
η − 
η + 

 − x

 − (η − 
η + 
)



x

, S =
ηx
(η + )



 − (η − 
η + 
)



x

, x = exp (ikdn) . (.)

This is an algebraic system of two equations with two unknowns: the wave impedance η and the
refractive index n. The known inputs are the complex quantities S , S obtained through analytical
solutions, simulations, or measurements. Exact algebraic inversion of the system (Equation .)
provides the effective parameters:

η =  + A
 − A

=, A = V ±
√

V  − , V =  + S
 − S



S
, Re{η} >  (.)

n = arccos(Re{x}/∣x∣)
kd

− i
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, x = S
 + R − ASR

, S = S + S , R = S

S
. (.)

The inversion formulas of Equations . and ., although exact, will only be as accurate as the fun-
damental inputs, which will carry measurement or computational uncertainties. For further details
on the method and many results, the reader may consult []. In this report, we illustrate the method
as applied on the photonic crystal of the hole medium D of Figure .b or the equivalent meta-
morphic state D of the shorted disk medium, Figure .a. The hole medium can also be solved
analytically [], based on Booker’s formulation of Babinet’s principle [] and our analytical solu-
tion for the disk medium [,]. The results are in excellent agreement with the HFSS simulations of
Figure ., (see []), just as they were for the disk medium within the same frequency range [].

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Theory and Design of Metamorphic Materials 20-11

7
6
5
4
3
2
1
0

–1
–2
–3
–4
–5
–6
–7 0

0 5 10 15 20
f (GHz)

25 30 35 40

1

2

3

4

5

6

0 5 10 15 20
f (GHz)(a) (b)

W
av

e i
m

pe
da

nc
e

Re
fra

ct
ive

 in
de

x

25 30 35 40

FIGURE . Wave impedance (a) and refractive index (b) under normal plane-wave incidence. Real parts, black;
imaginary parts, gray. (From Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos, N.G., Effective description and
power balance of metamaterials, in ACES  Conference Proceedings, Verona, Italy, March –, , pp. –.
With permission.)

For the plots below, we use the S-parameters of Figure .a but generated analytically with a very
dense frequency sweep ( points). All functions appearing below are analytic, i.e., smooth at their
extrema (which have been examined by local magnification) and differentiable at all points in these
regions. The corresponding results using HFSS-generated S-parameters are in [].

We see from Figure .b that the hole medium behaves as a metal from DC up to  GHz, as the
huge values of the imaginary part of the refractive index reveals. This is also evident from the trans-
mittivity of Figure .a. For these frequencies, the holes are too small for the field to pass through.
Near  GHz, we have a transition to transparency, and the hole medium behaves as a low-loss
dielectric, while the first band gap appears centered at  GHz, as revealed again by Figure .b.

In Figure .a, we see that the permittivity has a negative real part up to  GHz, where it
reaches zero. This is obviously an artificial plasma frequency, above which the material becomes
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FIGURE . Permittivity (a) and permeability (b) under normal plane-wave incidence. Real parts, black; imagi-
nary parts, gray. (From Kyriazidou, C.A., Contopanagos, H.F., and Alexopoulos, N.G., Effective description and power
balance of metamaterials, in ACES  Conference Proceedings, Verona, Italy, March –, , pp. –. With
permission.)
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black; (,,), thick gray; (,,): thick black. (From Alexopoulos, N.G., Kyriazidou, C.A., and Contopanagos, H.F., IEEE
Trans. Microw. Theory Tech., (), , February . With permission.)

very transparent, as seen in Figure .a. The physical diameter of the holes at that frequency is
≈ λ/, whereas the optical diameter in the host dielectric is ≈ λ/.. We therefore see very high
transmission at substantially subwavelength holes, consistent with earlier work [–] and expla-
nations based on an artificial plasma frequency []. The reason we have a broadband passband in
Figure .a, rather than isolated transmission resonances, is because we have optimized the design
of the material so that stacked monolayers provide such a passband. The design shown is ideal for
passband filter applications.

In Figure ., we have extracted the effective parameters for the three-state metamorphic mate-
rial shown in Figure .b and Table .. As expected, the results show the possibility of very strong
modulation of the effective parameters with the underlying electronic reconfigurability. We notice
in particular the metamorphic effective permeability of Figure .b. We see that very high reso-
nant permeability values develop for all three metamorphic states of the photonic crystal, despite
the fact that the constituent materials are nonmagnetic, as had been observed some time ago [,].
The resonant permeabilities indicate magnetic wall behavior in the corresponding reflection coeffi-
cients of Figure .b. In particular, we emphasize the low-frequency resonant permeability at around
 GHz [] exhibited by the (,,) metamorphic state of Figure .a, which provides an electron-
ically reconfigurable magnetization realized for a very thin metamaterial slab, as discussed at the
beginning of Section ..

20.6 Power Balance, Loss, and Usefulness of the Resonant
Effective Description

We conclude this chapter with a few remarks regarding the signs of the effective parameters one
obtains for such periodic structures and their relation to the power balance of any macroscopic slab of
material. As has been shown in early publications [,] and can be verified from Equation ., Re{η}
must be positive for the medium to be passive, because the wave impedance is directly connected to
the reflectivity of a semiinfinite bulk medium, which must be less than unity. Im{η} can alternate
in sign [,], signifying an inductive (negative) or capacitive (positive) medium. It was also shown
early on for the disk medium [], and later for other structures [,], that one can obtain negative
Im{ε} and/or Im{μ}, something that is not found in natural materials, and further, that the negative
behavior of these quantities is multiplexed in frequency. More specifically [], the disk medium has

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Theory and Design of Metamorphic Materials 20-13

Im{ε} > , Im{μ} <  in the first band gap, Im{ε} < , Im{μ} >  in the second, etc. The hole
medium behaves analogously, as shown in Figure . where the only first EBG above the plasma
frequency is shown.

Questions have been raised about the physical meaning of such results, as they may lead to negative
power-loss density, which would be an unphysical result for passive media [,,]. The reader may

section, we would like to justify the use of the above effective description and offer a more different
outlook than that suggested by the above objections, on how to interpret these effective parameters
in the frequency regimes questioned. We consider our approach both physically and mathematically
straightforward and, further, useful at all frequencies including the resonant regimes. This outlook
was indeed built in [] where the issue, to the best of our knowledge, appeared first.

Our view is that these effective parameters have to be interpreted as characterizing a slab
of the material, and their meaning should not be extrapolated to local densities and point-like,
submonolayer scales. To illustrate this view explicitly, imagine a laterally infinite slab of a material or
a metamaterial, such as the ones in Figure ., with z the stacking (finite thickness) direction, under
monochromatic normal plane-wave incidence. The material or metamaterial can be arbitrarily dis-
persive, but let us assume that it is described by scalar (effective) parameters, as the issue can be fully
discussed within this framework. Let us consider the field density term existing at any point z inside
the slab, for “monochromatic” normal incidence []:

P ≡ iω [we −wm] = iω (εε∗ ∣E∣ − μμ ∣H∣)/, (.)

where E, H are the total fields at that point and the star denotes complex conjugation. For single-
frequency (time-harmonic) fields, this is the only term that provides dissipation even for a dispersive
material [,], where derivative terms in the general field density are traditionally included.
This dissipation is quantified as the time-average power-loss density inside the material, which is
provided by

Re{P} = ω (ε Im{ε} ∣E∣ + μ Im{μ} ∣H∣)/. (.)

The objection to having effective parameters for a metamaterial where Im {ε} <  or Im{μ} < 
for a certain frequency ω is related to Equation .. As we scan the interior slab coordinate z,
we may (and will) find regions within the slab where the sum of the two terms above, i.e., the total
power-loss density, becomes negative. Some researchers may also find that even a single term in the
sum of Equation . being negative is intolerable, as they tend to ascribe a precise magnetic and
electric physical meaning to the two loss terms separately. In any case, our argument applies to either
objection. Before we discuss this issue, we stress that regarding the effective parameters extracted, in
addition to having Re {η} > , we also have Im{n} >  in the disputed frequency regions, which
shows attenuation and therefore a passive medium. However, our discussion applies to the physical
interpretation of the field density in Equation ., which involves the total field at any point inside
the slab, which is the sum of a left-going and a right-going wave.

Imagine a cylindrical pillbox whose axis is aligned with the z-axis running perpendicularly to the
slab interfaces and which terminates exactly on them. Taking the real part of the sourceless time-
harmonic Poynting Theorem applied on this pillbox, we get

�
V

Re{P}dr +
�
S

Re{S ⋅ n}dS = , (.)

where
S = E ×H∗/ is the time-harmonic Poynting vector
n is the unit pillbox surface outward normal
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If we number the incidence region, slab region, and output region by , , and , respectively, we
can write the solution of Maxwell’s equations in these regions as

E() = x̂ (Ee i k z + E()
−

e−i k z) , H() = ŷ


η
(Ee i k z − E()

−
e−i k z)

E() = x̂ (E()
+

e ink z + E()
−

e−ink z) , H() = ŷ


ηη
(E()
+

e ink z − E()
−

e−ink z)

E() = x̂ (E()
+

e i k z) , H() = ŷ


η
(E()
+

e ink z) , (.)

where
{n, η} are the (effective) dispersive complex refractive index and relative wave impedance,

respectively
E, E( j)

±
are constant complex amplitudes

The Poynting vector is along ẑ everywhere, and the fields only have z-variation; hence,
Equation . becomes

d�


Re{P}dz + (Re{S ⋅ n}∣z=d + Re{S ⋅ n}∣z=) = . (.)

We can consider the two pillbox faces that sit on the two interfaces as having the fields of regions 
and . Even if we considered the two faces as having the limiting values of the fields of region , con-
tinuity of the fields at those two interfaces, which follow from the boundary conditions of Maxwell’s
equations, would guarantee the above fact. Therefore,

S∣z=d =



x̂E()
+

e i k d × ŷ


η
E()

∗

+
(e i k d)∗ = 

η
ẑ ∣E()

+
∣


(.)

S∣z= =



x̂ (E + E()
−
) × ŷ


η
(E − E()

−
)
∗

= 
η

ẑ [∣E∣ − ∣E()− ∣

− iIm{EE()

∗

−
}] . (.)

Now, by definition of the complex reflection and transmission coefficients for the whole slab, we have

E()
−
≡ SE, E()

+
≡ SE (.)

and Equations . and . become

S∣z=L =


η
ẑ ∣E∣ ∣S∣ , S∣z= =


η

ẑ ∣E∣ ( − ∣S∣ + iIm{S}) . (.)

Therefore, Equation . is equivalent to

d�


Re{P}dz = ∣E∣

η
( − ∣S∣ − ∣S∣). (.)

According to Equation ., no matter what the individual signs of Im {ε} , Im{μ} and therefore
Re{P} are the integral of Re{P} throughout the whole slab thickness and will always have the sign of
the dimensionless normalized quantity PL ≡ −∣S∣−∣S∣. Hence, an average power-loss density (in
this one-dimensional case per unit thickness) defined through this total integrated point-like power
loss (by dividing by the total slab thickness) would be both the following: A meaningful effective
characterization of the loss of the slab and also would be positive definite, provided PL > .
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Equation . stands to reason since the quantity PL =  − ∣S∣ − ∣S∣ would be exactly the
percentage power loss deriving from energy conservation, for any slab of passive material, when the
slab is viewed macroscopically and quite independently of any effective characterization. We think
that the above statement is quite uncontroversial, since it is hard to imagine anyone disagreeing with
the statement that the total slab loss (in this configuration) is what is missing from the total reflec-
tivity and transmittivity collected outside the slab, independently of any slab details or any theory
attempting to characterize it (the slab can be considered a black box, i.e., an unknown passive two-
port network). Any correct measurement or calculation of PL for a slab of passive composite medium
of any thickness should produce a positive result.

Focusing on the effective description of passive photonic crystals, we have summarized here, for
example, for the hole medium in Figures . and ., the average power loss for a slab of an
arbitrary number N of monolayers, defined through the integral (Equation .), which would be
positive if the S-parameters given in Equation . and fed by the effective parameters of that material
provide PL >  ∀N . In all the instances we have examined, this turned out to be the case. We remind
the reader that according to our consistency criterion, the effective parameters will be extracted just
once, for a slab of a fixed number N of monolayers, whereas PL >  has to follow for any arbitrary
number of monolayers. Therefore, the procedure is not cyclical. We illustrate this in Figure .,
where we plot PL for a slab of  monolayer (thick black),  monolayers (gray), and  monolayers
(thin black), using effective parameters extracted from  monolayer. In Figure .a, the input is
obtained analytically from [], whereas Figure .b contains HFSS inputs. All curves are posi-
tive for the whole frequency range; hence, the corresponding effective parameters do not lead to
unphysical power loss, if that quantity is interpreted in an average sense over the bulk of the whole
metamaterial slab. For completeness, let us compare directly a -monolayer HFSS simulation to the
corresponding analytical methods of [,,]. This comparison, shown in Figure ., has noth-
ing to do with the effective description; it simply examines the analytical approach. We see that the
agreement is excellent, as alluded to in Section ..

Let us compare the above approach to one that belongs to the objecting literature and is often
quoted, for example, []. The authors of [] impose the condition that Im{ε} > , Im{μ} >  as a
constraint to their extraction of effective parameters. This results in their inability to obtain effective
parameters for a resonant metamaterial (the SRR material) wherever this condition is not satisfied,
which they term as the “resonant” region. Such an approach clearly does not have analytic effective
parameters that could be used to predict the reflectivity and transmittivity spectrum of a slab for all
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parameters extracted from one-monolayer S-parameter inputs.
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FIGURE . Power loss for a -monolayer hole medium slab calculated monolithically: HFSS (black) versus
analytical (gray) calculations.

frequencies, including band edges and band gaps, since it explicitly excludes the “resonant” regions.
For photonic crystals, it is precisely near the band edges and inside the band gaps that one would be
interested in having an effective description. Further, if one has a resonant metamaterial that does not
exhibit the negativities objected to, the authors would presumably claim their approach valid. How is
the latter resonance fundamentally different from the former “resonance,” except for the tautological
feature of having the good signs and therefore being acceptable?

In the end, accepting or rejecting an effective description such as the one we presented in
Section . depends on the decision to either interpret it microscopically beyond the validity scale
this description intended (i.e., to demand a positive definite point-like loss density, Equation .) or
not. In the latter case, the macroscopic result of Equation . restores a valid physical interpretation
within the length scales intended in the first place. However, we believe the resonant effective descrip-
tion we summarized here has some additional distinct advantages. It still provides on average useful
physical interpretation of properties of arrayed materials that can create valid theoretical intuition,
including effective resonant magnetization, without preconditioning which resonances are “appro-
priate.” Are there any additional practical advantages? The answer is that it can predict the whole
reflection and transmission spectrum, i.e., the macroscopically relevant observable quantities for a
metamaterial composed of an arbitrary number of monolayers. It is also interesting to notice that the
extraction of effective parameters from these observable quantities imposes the following hierarchy:
The wave impedance and refractive index are directly extracted from the observed S-parameters. In
this sense, these should be considered as the fundamental effective parameters as opposed to ε and μ,
which are derived at a secondary level from η and n.

Let us demonstrate explicitly this predictive power, with an example we hope the reader will find
entertaining: Let us assume that there exists a scientist who is interested in making a photonic crystal
using the hole medium, Figure .b, but has no idea where the first EBG is or how to design the
monolayer in order to have an EBG tuned to the frequency band one desires. Let us also assume
one cannot afford many expensive and time-consuming prototypes involving many stacked mono-
layers and sensitive corresponding measurements (a situation not impossible to imagine) but instead
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a single monolayer, in order to decide on the final design. Finally, the scientist cannot afford a good
expensive computer.∗ The scientist can proceed as follows:

. Take one monolayer, for example, from Figure .b.
. Simulate on an inexpensive computer or measure a prototype of this single monolayer.

Note that, because there is only one monolayer, the S-parameters (obtained numerically,
analytically, or by direct measurements) do not by inspection provide any clue of whether
there exists a band gap; see Figure .a. This is unlike Figure .a for three monolay-
ers, where the band gap has already formed around – GHz, but even then it is not
clear where the band edges are.

. Extract the effective n (ω) using the approach presented here, for one monolayer. The
scientist will obtain Figure .b. By immediate inspection of Im{n (ω)} he/she will
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FIGURE . (a) HFSS S-parameters for a one-monolayer hole medium slab; (b) S-parameters for a -monolayer
slab obtained from the homogeneous formulas and the effective parameters extracted from analytical one-monolayer
S-parameters; (c) S-parameters for a -monolayer slab obtained from the homogeneous formulas and the effective
parameters extracted from HFSS -monolayer S-parameters, Figure .a; and (d) HFSS simulation results for a
-monolayer slab.

∗Regarding full-wave simulators, this is not simply a joke but hinges on numerical convergence issues.
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notice not only that there is a band gap but also its precise band edges, located at .
and . GHz, respectively. Now the scientist knows that stacking several monolayers
will always prohibit transmission in that band. Note that even if one could obtain results
for three monolayers, without the effective description but based only on Figure .a,
one might consider the band gap to be more broadband, extending up to  GHz. Can one
produce a precise prediction of the S-parameters for any number of monolayers?

. Take Equation ., insert the extracted {η(ω), n(ω)} for one monolayer (d = c in
Equation .) and use a total slab thickness dslab = Nc with N an arbitrary num-
ber of monolayers. Now, the scientist can predict the spectra and performance of the
corresponding designs for any number of stacked monolayers by writing a simple script.

We demonstrate this procedure in Figure .b, where a -monolayer spectrum has been produced,
using, in step , analytical one-monolayer S-parameter inputs ( points). The EBG band and band
edges are now clearly formed and are found exactly as predicted by Figure .b. In Figure .c,
we reproduce the same -monolayer spectrum using, in step , HFSS one-monolayer S-parameter
inputs ( points). The agreement between the results of Figure .b and c is quite excellent. The
predictive power of the procedure is apparent by the excellent agreement between Figure .b, c
and d, which depicts the results of a direct HFSS simulation for the -monolayer material. Notice also
that this simulation is computationally very intensive, requiring , tetrahedra for a convergence
better than  × −,  Mb of memory, and a CPU time of  h on a Pentium IV processor. For
comparison, the computational requirements for generating the results of Figure .a for the one
monolayer were  tetrahedra,  Mb of memory, and  min of CPU time.

20.7 Conclusions

We have summarized the features and functionalities of a new category of composite electromagnetic
materials according to their ability to change the value of their reflection coefficient at the same fre-
quency by electronically reconfiguring the interconnection of the conducting implants within them.
We have shown how this can be designed in practice and provided physical realizations of materi-
als exhibiting transitions of the reflection coefficient among two and three states and have shown
the corresponding electrical functionality of such systems, in a variety of frequencies. Many more
designs and functions are possible. We have further extracted their effective parameters through a
resonant inverse scattering formalism and have presented a macroscopic physical meaning of the
various ranges of values of these parameters as they relate to the total material power loss.
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21.1 Introduction

Media with single-negative (SNG) permittivity or SNG permeability and simultaneously negative
permittivity and permeability, which is called double-negative (DNG) media, are under relent-
less interest of physicists and microwave engineers [–]. These artificial materials are known as
metamaterials. It has been shown that application of SNGmaterials can sufficiently improve the char-
acteristics of many microwave devices. However, more interesting properties can be realized using
DNG structures. In a limited frequency band, such materials exhibit anomalous properties: lens-
ing beyond the diffraction limit, wave propagation in subwavelength guiding structures, resonant
enhancement of the power radiated by electrically small antennas, etc.

21-1
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Most theoretical and practical investigations in this area are related to one-dimensional (D)
or two-dimensional (D) structures. The well-known metamaterial structure suggested in [] and
experimentally examined in [] is a combination of two lattices: a lattice of split-ring resonators
(SRRs) and a lattice of infinitely long parallel wires. The wires produce the effective negative permit-
tivity, and the SRRs are responsible for the effective negative permeability. A combination of SRRs
and metal wires provides an artificial material with simultaneously negative effective permeability
and permittivity [,,]. This structure is anisotropic and reveals the negative permittivity and per-
meability, if the propagation direction of the electromagnetic wave is orthogonal to the axes of the
wires and belongs to the plane of the SRRs. The unusual electromagnetic properties originate from
these artificial structures rather than arising directly from the materials. It is interesting and useful
for practical applications to realize a DNG medium using the intrinsic electromagnetic properties of
artificial inclusions forming the material. In many cases, isotropic DNG structures are very attrac-
tive for practical uses. For this purpose, structures with embedded three-dimensional (D) resonant
inclusions are very promising.

Different ways to create a D and D isotropic DNGmedium based on a regular lattice of resonant
inclusions are discussed in this chapter: (a) SNGorDNGmetamaterial formed as a rectangular lattice
of cubic unit cells of plane resonant particles on the faces of the cube; (b) a DDNGmedium formed
as an array of dielectric cylindrical resonators; and (c) a D DNGmedium formed as a regular lattice
of spherical resonant inclusions.

The characteristic feature of the structures considered is the isotropy of the effective permittiv-
ity and permeability. In the case of the cubic symmetry pertaining to the class mm, the second
rank tensors of electromagnetic parameters of the media are diagonal [,]. Thus, the permittivity
and permeability tensors of particles arranged in the cubic structure are scalars, εeff and μeff . Body-
centered and face-centered structures are characterized by the same forms of the second-order tensor
as the simple cubic structure. Hence, the D isotropic metamaterial can be realized as artificial struc-
tures designed in form of a regular array of particles.The symmetry class of the unit cells arranged in
the periodical structure provides the isotropy of the metamaterial.

In this chapter, we discuss isotropic D and Dmetamaterials, which differ in the properties of the
constitutive resonant particles. The following isotropic structures are under consideration:

. SNG and DNG metamaterial formed by a rectangular/random lattice of isotropic cubic
unit cells of particles: SRRs, Ω-particles, and a combination of the SRRs and wire/dipole
particles

. D DNG metamaterial based on transmission lines (TL)
. DDNGmedium formed by an array of dielectric resonators (DRs), providing excitation

of the electric and magnetic dipoles
. D DNG medium formed by a regular lattice of spherical resonant inclusions, providing

excitation of the electric and magnetic dipoles

21.2 Two-Dimensional and Three-Dimensional Isotropic
Metamaterials Formed by an Array of Cubic Cells with
Metallic Planar Inclusions

The first D SNG magnetic structure with high isotropy was described in []. An array of single
cells composed of two intersecting SRRs normal to each other is suggested to demonstrate isotropic
metamaterial.The single cell is formed by crossed SRRs (CSRRs). Each SRR ismade of two aluminum
(Al) strips deposited on the inner and outer faces of the foam ring made from the dielectric with low
permittivity. The dielectric foam has a form of strip of mm width; the inner radius is mm and
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the outer radius is mm, and the separation between the inner and outer Al strips is t = mm. It is
machined from a foam plate to obtain two open rings that are then fitted into each other. The mm
wide Al strips are cut from the mm thick self-adhesive Al foil. The gaps at the extremities of the
two CSRRs are located at the same pole of the spherical structure. The width of these gaps is mm.
Rotating the CSRR in the waveguide around its z-axis does not affect the transmission coefficient S
measured.The structure is isotropic in the plane perpendicular to the z-axis. A possibility to obtain a
material with effective isotropic magnetic properties by building up an array of CSRRs with periodic
or random orientations was experimentally confirmed.

The idea of using cubic cells with planar metallic inclusions on the cube faces is very promising.
Each unit cell is formed by printing perfectly conducting plane resonant particles on the faces of
a cubic unit cell: SRRs [], Ω-particles [], spider dipoles [], and a combination of SRRs and
dipoles [].

The symmetric SRR was suggested to be used as part of D isotropic structure, which can be
considered as an isotropic μ-negative material (Figure .a) []. The single cell is made of six
planar SRRs exhibiting ○ rotational symmetry, placed on the faces of the cube so that the whole
particle is invariant with respect to ○ rotations around all Cartesian axes. The unit cell provides a
distinctmagnetic SNG response.The isotropy is experimentally confirmedby themeasurement of the
transmission coefficient of the waveguide loaded with one D particle in different orientations. The
experimental investigation confirmed the isotropy of the μ-negativematerial (Figure .a) [,–].

The same symmetry exhibits the cubic structure based on spider dipoles (Figure .b) providing an
ε-negative response. A periodical spatial arrangement of the cells forms the bulk of the isotropicmag-
netic or electricmetamaterials.The negative permeability/permittivity of the singlemagnetic/electric
particle placed in a rectangular waveguide was extracted from the measured scattering parameters.
The D regular arrangement of the cubic particles is a sophisticated technological problem.The con-
cept of randomly distributed magnetic particles was therefore checked first on D and then on D
structures [].The experiments demonstrated that better isotropy and a wider frequency band of the
metamaterial can be achieved by a quasiperiodical location and a higher density of the particles [].

The electrical dipole loaded by a loop inductance (inset in Figure .c) was suggested to provide
effective negative permittivity of themedia.The isotropy of one D cubic unit cell with a single dipole
is documented by its measured transmission coefficient (Figure .c). Experiments with random
distributions of these particles also exhibited promising results. Measured transmission coefficients
of  particles inserted in the polystyrene slices consecutively rotated by ○ provided very good
isotropy of the cubic sample, as follows from the small dispersion shown in Figure .d.

(a) (b)

y

xz

FIGURE . (a) Volumetric μ-negative particles composed of C-SRRs and (b) volumetric ε-negative particles
composed of C-dipoles. (Taken from Baena, J.D., Jelinek, L., Marques, R., and Zehentner, J., Appl. Phys. Lett., ,
, . With permission.)
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FIGURE . (a) Transmission through the waveguide loaded by quaternary split spirals; (b) transmission through
 cubic samples and its dispersion when the resonators are in the nodes of the squared net and are randomly oriented;
(c) measured transmission coefficient of one cubic unit cell with the electric dipoles in the parallel plate waveguide for
different orientations; and (d) transmission coefficients of  periodically distributed and randomly oriented electric
SNG particles.

In order to integrate the SRR and wire in one particle, Ω-particles can be introduced []. The
DNG metamaterial is formed by a rectangular lattice of isotropic cubic unit cells of Ω-particles
(Figure .). Each isotropic cubic cell is made by putting six Ω-shaped perfectly conducting particles
on the cube faces. A single cubic cell can be described approximately as an isotropic resonant scatterer.
The effective permittivity εeff and permeability μeff of themedia are calculated from electric andmag-
netic polarizabilities by an analytical model. The dispersion diagram for the cubic lattice of isotropic
scatterers shows negative dispersion within a limited frequency range between two stop bands. The
frequency range, in which both the effective permittivity and the permeability are negative, cor-
responds to the mini band of backward waves (BWs) within the resonant band of the individual
isotropic scatterer.

The Ω-particles-based, D isotropic structure has been investigated experimentally [].The elec-
tromagnetic properties of D homogeneous structures can be described by a set of averaged effective
parameters, such as the electric permittivity and the magnetic permeability. The measurements were
done in free space, with two dipole antennas, one used as a point source and the other as a probe.The
source was placed at a distance less than the thickness of the layer to verify the possible “super” lens
properties of the device: the thickness was mm, corresponding to six unit cells across the layer.
The transmission coefficient of the structure reveals a narrow pass band between . and .GHz,
which corresponds to the superlensing effect of the slab (Figure .c).
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FIGURE . (a) Geometry of a cubic unit cell of Ω-particles. For graphic clearness, only one pair of Ω-shaped per-
fectly conducting particles is shown on two opposite faces of the cubic unit cell. (b) A rectangular lattice of isotropic
cubic unit cells of Ω-particles. (From Simovski C.R. and He, S., Phys. Lett. A, , , . With permission.)
(c) Mini pass band between . and .GHz for four different distances of the source. (Taken fromVerney, E., Sauviac,
B., and Simovski, C.R., Phys. Lett. A, (–), , October . With permission.)

(a) (b)

FIGURE . The design of a fully symmetric unit cell for a one-unit-cell thick slab of an isotropic SRR (a) and a
left-handed (b) metamaterial. The interfaces are parallel to the left and right SRRs. (Taken from Koschny, Th., Zhang,
L., and Soukoulis, C.M., Phys. Rev. B, ,  (R), . With permission.)

The DNG metamaterial based on the D configuration of SRRs and the continuous wires
(Figure .) is another D isotropic metamaterial []. The isotropic unit cell is based on the four-
gap SRRs (Figure .a). The SRR gaps are filled with a high permittivity dielectric with a relative
permittivity εgap =  to lower the magnetic resonance frequency.

The design of this type ofmetamaterial minimizes themutual interaction of SRRs andwires, a cou-
pling of the electric field to the magnetic resonance, and the cross-polarization scattering amplitudes
and effects of the periodicity. The transmission and reflection coefficients for a slab of the isotropic
SRR and the corresponding isotropic left-handed metamaterial (LHM) of - and -unit-cell thick-
ness have been calculated. The simulated transmission coefficients for  unit cell and a slab of  cells
have been plotted for different incident angles θ and polarizations φ (Figure .). Despite the square
shape of the SRR, the absolute independence of the scattering amplitudes on the orientation φ of
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FIGURE . Transmission spectra T = ∣t(ω)∣ for a -unit-cell thick slab of the SRR and the LHM metamaterial
for various angles of incidence (θ) and polarizations (φ, TE and TM modes). (Taken from Koschny, Th., Zhang, L.,
and Soukoulis, C.M., Phys. Rev. B, ,  (R), . With permission.)
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the incidence plane for both the transverse electric (TE) and transverse magnetic (TM) modes, arbi-
trary θ, SRR, and LHM metamaterial slabs of any thickness is confirmed. Analysis of the -unit-cell
thick slab of the SRR and the LHM metamaterial revealed the isotropic behavior.

21.3 TL-Based Metamaterials

Among other kinds, the metamaterials based on TLs are of high interest. The use of loaded TL net-
works allows the realization ofwide-band and low-loss BWmaterials in themicrowave region [,].
D isotropic, TL-based, BW materials have been proposed in [–].

In [], a rotated TL method (TLM) scheme [] was used to produce a unit cell of isotropic
metamaterial. In the TLM representation of discrete electrodynamics, a -port scattering matrix,
representing the TLM cell, contains all the information of the discretized Maxwell’s equations. The
-port cell can be decomposed into two independent six-port cells by a coordinate transformation.
The two independent half-cell six ports described by scattering matrices S and −S [] are called
“A” and “Ā” cells, respectively. A TLM cell that completely samples the electromagnetic field can
be established by either nesting the six-port structures of the A and Ā half-cells or by a cluster of
eight half-cells with alternating A and Ā cells. The lumped-element circuit for an A cell contains
series elements Z and shunt elements Y . An elementary metamaterial cell may be conceived on the
basis of rotated TLM cells by inserting reactances in series to the six cell ports and four admittances
connecting the series reactances at a central node, forming a virtual ground. Both half-cells can be
connected at the virtual ground.

In the general case, the unit cell is composed of composite right-/left-handed (CRLH) TL sections.
In a CRLH unit cell, the impedance Z is a series resonator (LR, CL), whereas Y is a parallel resonator
(LL, CR). The right-handed components account for unavoidable parasitics []. The corresponding
unit cell for the rotated TLM metamaterial is shown in Figure .a.

The proposed realization of the CRLH rotated TLM metamaterial, corresponding to the lumped-
element network of Figure .a, is depicted in Figure .b. Shunt inductors are implemented
by wires connected to a common center point, and series capacitors are implemented by metal–
insulator–metal (MIM) plates located between the adjacent unit cells. Figure .b shows a cluster of
×× nested unit cells.The plate capacitors are realized in printed circuit board (PCB) with patches
on both sides of the substrate, which ensures accurate CL values. The inductors are realized by rigid
wires. The unit-cell length is  cm, the substrate is Rogers B mil, and the left-handed values
are LL ≈ . nH and CL ≈ . pF.

Figure .c shows the unit-cell prototype of the CRLH rotated TLMmetamaterial.This prototype
was measured with a two-port vector network analyzer through baluns (microstrip to parallel-strip
transitions) connected at two arbitrary nonaligned ports, whereas the remaining ports are termi-
nated with the resistors. The dispersion diagram depicted in Figure .d shows a good agreement
with circuit simulation results up to .GHz. The expected two left-handed and two right-handed
frequency bands are clearly visible, therefore verifying the behavior of the rotated TLMmetamaterial.
A simplified planarized implementation, preserving the same network topology, can also be realized
for practical applications.

The idea of a superlens based on the TL-metamaterial has been discussed in []. The proposed
structure of a D super-resolution lens consists of two forward-wave (FW) regions and one BW
region. The D FW networks can be realized with simple TLs and the D BW network with induc-
tively and capacitively loaded TLs. One unit cell of the BW network is shown in Figure . (the unit
cell is shown by the dotted line). In the D structure, there are impedances Z/ and TLs also along
the z-axis (not shown in Figure .). In view of potential generalizations, the loads are represented
by series impedances Z/ and shunt admittances Y , although for the particular purpose of realizing
a BW network, the loads are simple capacitances and inductances. The unit cell of the FW network
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FIGURE . (a) CRLH rotated, TLM metamaterial, half-unit cell []; (b) D CRLH rotated, TLM metamaterial
realization, complete ×× structure; (c) D CRLH rotated, TLM unit cell with its input and output baluns required
for the differential excitation of the measurement setup; (d) dispersion diagram: measured (solid line) and simulated
(dashed line). (Taken from Zedler, M., Caloz, C., and Russer, P., Circuital and experimental demonstration of a D
isotropic LHmetamaterial based on the rotated TLM scheme, Microwave Symposium,  IEEE/MTT-S International,
Honolulu, HI, June –, , pp. –. With permission.)

is the same as in Figure . but without the series impedances Z/ and shunt admittance Y . In a
simplified case, Z = / jωC and Y = / jωL.

The derived dispersion equations and analytical expressions for the characteristic impedances for
waves in the FWandBWregionsmake it possible to find the condition for a design of such structures.
The full-wave simulations revealed the subwavelength resolution characteristics of a realizable design
with commercially available lossymaterials and components.There is a special problemof impedance
and refraction index matching of the FW and BW regions. From the derived dispersion equations,
it has been seen that there exists such a frequency at which the corresponding isofrequency surfaces
for FW and BW regions coincide. Theoretically, this can provide distortionless focusing of the prop-
agating modes, if the wave impedances of the FW and BW regions are also well matched. Impedance
matching becomes evenmore importantwhen the evanescentmodes are taken into account.Theoret-
ically, it was shown that the wave impedances can be matched at least within % accuracy or better, if
the characteristic impedances of the TLs are properly tuned. However, from a practical point of view,
accuracy better than % is hardly realizable. It has been shown that decreasing the thickness of the
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FIGURE . Unit cell of a D BW TL network (enclosed by the dotted line). The TLs and impedances along the
z-axis are not shown. TLs have the characteristic impedance Z and the length d/ (d is the period of the structure).
(Taken from Alitalo, P., Maslovski, S., and Tretyakov, S., J. Appl. Phys., , , . With permission.)

BW region reduces the negative effect of the impedance mismatch, whereas the amplification of the
evanescent modes is preserved.

In [], the design and experimental realization of a D superlens based on LC-loaded TLs were
presented. A D prototype was designed (Figure .a). The structure was excited by a coaxial feed
(SMA connectors) connected with the edge of the first FW region, as shown at the bottom of
Figure .b. To change the position of the excitation, four SMA connectors were soldered to the
structure.

The measured electric field distributions on the top of the structure are shown in Figure .. The
maximum values of the amplitude occur at the back edge of the BW region (as expected from the
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FIGURE . (a) D prototype of TL-based metamaterial; (b) D prototype of TL-based metamaterial. (Taken from
Alitalo, P., Maslovski, S., and Tretyakov, S., J. Appl. Phys., (), . With permission.)
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FIGURE . Measured amplitude of the vertical component of electric field on top of the D structure at
f = MHz. Fields are normalized to the maximum value. (a) Symmetrical excitation by two sources at x = mm,
z = −.mm, and x = mm, z = −.mm. (b) One source at x = mm, z = −.mm. (Taken from Alitalo, P.,
Maslovski, S., and Tretyakov, S., J. Appl. Phys., (), . With permission.)

theory). In Figure .b, the point of excitation is displaced from the middle to show that the effects
seen are not caused by reflections from the side edges. It is clear that both propagating and evanescent
modes are excited in the structure, because the fields do not reveal a significant decay in the first FW
region (evanescent modes decay exponentially). There is a remarkable growth of the amplitude in
the BW region, since only evanescent modes can be “amplified” in a passive structure like this. The
experiment did not show any noticeable reflections at the FW/BW interfaces, which implies a good
impedance matching between the two types of networks.

To realize a D structure, a combination of two and three previously observed D structures was
manufactured. To connect these layers,  vertical sublayers of height .mmwere soldered between
them. In Figure .b, the geometry of the structure is presented: only  bottom horizontal layer and
 vertical sublayers are shown. The resulting D structure is isotropic with respect to the waves
propagating inside the TLs.The distance between adjacent horizontal and vertical nodes remains the
same, and the vertical microstrip lines are also loaded with capacitors in the BW region.

The experiments with prototypes show BW propagation and amplification of evanescent waves in
the TL-based structures.

21.4 Two-Dimensional Structure of DNG Metamaterial Based
on Resonant Inclusions

Attempts to create an isotropic metamaterial resulted in the idea of using resonant inclusions as
constituent particles arranged in a regular structure [–]. A medium composed of a periodic
lattice of resonant particles considered as scatterers generates dielectric polarization and magnetiza-
tion according to the distribution of the scatterers and their polarizabilities. A mixture consisting of
an array of scatterers embedded in a host media is an effective medium relative to the propagating
wave. When the size of the scatterers is small compared with the wavelength in the host material
and is not small in the material of the scatterers, the effective medium parameters become frequency
dependent. Within a limited frequency range, electric and/or magnetic polarizabilities of inclusions
exhibit a characteristic resonant behavior, and the media yield effective negative permittivity and
permeability.
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As a D isotropic metamaterial, a regular array of dielectric rods is considered. In order to obtain
dielectric andmagnetic dipoles, one has to excite electric andmagnetic resonances into the DRs [].
The D isotropic DNG material consists of an array of dielectric rods with different radii, so that two
different types of resonances lead to the DNG response of the medium. The magnetic resonance is
excited in the roads of smaller diameter, which behave as magnetic dipoles. The electric resonance is
excited in the roads of larger diameter, which behave as electric dipoles.The simplified structure of the
regular array of the DRs placed between the perfect magnetic walls (PMW) and the perfect electric
walls (PEW) is shown in Figure .a.The dispersion diagram has been calculated by analytical full-
wave simulation (Figure .c). The negative slope of the dispersion characteristic demonstrates the
DNGproperties of the designedmedium.The transmission coefficient of the structure (Figure .b)
reveals a pass band in a limited frequency range conditioned by the resonant characteristics of the
two cylindrical resonators.

Dielectric cylinders can also be placed in a cutoff parallel plate waveguide []. In this case, the
collective macroscopic behavior of the DR lattice under TE resonance gives negative effective per-
meability, whereas the parallel plate waveguide below the cutoff frequency for the fundamental TE
modes shows negative effective permittivity, which leads to the left-handedness. The D triangu-
lar prism of the proposed left-handed waveguide that is sandwiched by the right-handed parallel
plate waveguides provides the numerical and experimental demonstrations of the negative refraction
for the propagated waves. Dispersion diagrams obtained show the D isotropic and left-handed
propagation characteristics of the proposed structure.

Resonance phenomena in metamaterials constructed as an array of dielectric rods are studied
in [] by means of numerical modeling using the finite-difference time-domain (FDTD) method.
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FIGURE . (a) Cross-section of simulation domain. (b) Numerically calculated S-parameters of a lattice of cylin-
ders [εp = ( − j. × −), εh = , a = .mm, a = .mm, lattice constant s = mm]. (c) Dispersion
curves for a lattice of cylinders calculated for different numbers of cylinders (N).
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f = 16.9 GHzf = 16.0 GHz

Positive beam refraction Negative beam refraction
εp = 77, εh = 7,8

FIGURE . Wave propagation through the prism formed by a regular array of dielectric cylindrical resonators.
(Taken from Semouchkina, E.A., Semouchkin, G.B., Lanagan, M., and Randall, C.A., IEEE Trans. Microwave Theory
Technol., , , April . With permission.)

The authors suggested that coupling between the resonators could affect the EM response of the
metamaterial in a way similar to that observed at the BW propagation in DNG media. Coupling
between resonators causes resonant mode splitting and promotes the channeling of electromagnetic
energy by coupled fields, which contributes to the formation of the bands with enhanced transmis-
sion.The all-dielectric metamaterial consists of closely positioned dielectric cylinders embedded in a
low-permittivity matrix. The ability of the all-dielectric metamaterial to provide negative refraction
has been demonstrated by EM simulation of the wave propagation through the prism of metama-
terial with a rhombus lattice at frequencies close to the first higher-order resonance of the DRs
(Figure .): the negative beam refraction is observed at f = .GHz.

There is one more way to provide simultaneous negative effective permittivity and permeability
of artificial media: mutual constitutive particle interaction []. As an example, the clustered dielec-
tric particle (CDP) metamaterial, constituted by the periodic repetition of a molecule-like cluster of
dielectric atom-like particles, is explored. The structure consists of clusters of coupled DRs (cubes,
for example) arranged along a periodic lattice. The clusters may be seen as molecules, whereas the
DRs may be seen as atoms or particles, by analogy with natural materials. It is therefore expected
that this CDP structure could exhibit some properties identical to those of natural materials, such as
electromagnetic homogeneity, and in addition metamaterial properties, such as negative refraction,
under appropriate design conditions.

21.5 Three-Dimensional Isotropic DNG Metamaterial Based
on Spherical Resonant Inclusions

Isotropy of a DNG structure is provided by the symmetry of the structure and by the symmetry of
the components constituting the structure.

21.5.1 Symmetry of the Bispherical DNG Structure

Let us consider two sets of the spherical particles arranged in the NaCl structure (Figure .). This
structure is a member of the cubic system of symmetry and pertains to the class mm. In the case
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FIGURE . A cell of the periodic composite medium consisting of two sublattices of dielectric spherical particles
with different radii embedded in a host.

of cubic symmetry, the second-rank tensors of all physical parameters of the media are diagonal and
characterized by the components of the same values []. Thus, the permittivity and permeability
tensors have the following forms:

ε =
�������������

εeff  
 εeff 
  εeff

�������������
, μ =

�������������

μeff  
 μeff 
  μeff

�������������
, (.)

where the subindices “eff” are introduced to stress that the permittivity and permeability are obtained
as a result of averaging the electric and magnetic polarizations of spherical particles embedded in
the matrix. Body-centered and face-centered structures are characterized by the same form of the
second-order tensor as the simple cubic structure []. For averaging the polarization of spherical
particles embedded in the matrix, one needs to find the volume of the matrix falling on each particle
considered. For a lattice of cubic symmetry, the volume of the unit cell is evaluated as s, where s is
the distance between the nearest neighbors of the two-component “crystal lattice” (Figure .).

We should stress that the isotropy of themedia considered is valid only for the second-rank tensors.
If one considers phenomena like dielectric nonlinearity or electrostriction, which are described by
fourth-rank tensors, the specific anisotropy of themedia formed by the embedded spherical particles
should be taken into account.

The idea of using magnetodielectric spherical particles as constitutive particles for artificial meta-
material belongs to Holloway []. The modeling of the electromagnetic response of spherical
inclusions embedded in a hostmaterial (Figure .a) is based on the generalized Lewin’smodel [].
The spherical particles with radius a are arranged in a cubic lattice with the lattice constant s.

The incident electromagnetic plane wave with wavelength λ propagating in the host material
excites certain modes in the particles. These modes are not strongly eigenmodes of spherical DRs,
but they can be specified as H or E modes at the frequencies that are close to the spherical cavity
eigenfrequencies.

In , the isotropic structure suitable for a practical realization was introduced in []
(Figure .b). It was suggested that the artificial material is composed of two sets of dielectric
spheres embedded in a host dielectric material. The spheres are made from the same dielectric
material and have different radii. The dielectric constant of the spherical particles is much larger
than that of the host material. The wavelength inside the sphere is comparable with the diameter of
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FIGURE . (a) Composite structure containing magnetodielectric spherical particles; and (b) isotropic media
composed of dielectric spheres with different radii.

the sphere, and at the same time the wavelength outside the sphere is large compared with the sphere
dimensions. By combining two sets of spheres with suitable radii, different modes can be simulta-
neously excited in the spheres: the magnetic resonance mode in one set of spheres and the electric
resonance mode in the other set.

21.5.2 DNG Medium Composed of Magnetodielectric Spherical Inclusions

The model introduced by Holloway is based on Lewin’s derivation of expression for the effective
properties of an array of spherical particles embedded in a background matrix []. Let us consider
the spherical particles with radius a arranged in a cubic lattice with the lattice constant s. The inci-
dent electromagnetic wave propagating in the host material is the plane-polarized wave. The relative
effective permittivity εeff and effective permeability μeff of such a structure are written as

εeff = εh
⎛
⎜
⎝
 + ν

F(θ)+Ke
F(θ)−Ke

− ν

⎞
⎟
⎠
, (.)

μeff = μh

⎛
⎜
⎝
 + ν

F(θ)+Km
F(θ)−Km

− ν

⎞
⎟
⎠
, (.)

where
F(θ) = (sin θ−θ cos θ)

(θ
−) sin θ+θ cos θ

vf = 


πa

s is the fraction volume defined as the ratio of the volume of particles in the mixture
and the total volume of the mixture

θ = ka√εpμp, k is the wave number in free space
Ke = εh

εp

Km = μh
μp

εp and μp are the relative permittivity and relative permeability of the inclusions
εh and μh are the relative permittivity and permeability of the host (matrix) medium
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FIGURE . (a) εeff and μeff for vf = ., εh = μh = , εp = , μp = . The dashed-dotted lines are the
asymptotes. (b) εeff for vf = ., εh = μh = , εp = , μp = . (Taken from Holloway, C. and Kuester, E., IEEE Trans.
Antennas Propag., , , October . With permission.)

The function F(Θ) has a resonance nature. It becomes negative at some frequencies and in some
ranges of Θ. Negative values of function F(Θ) are necessary (but not sufficient) demand for εeff and
μeff to be negative (for real values of ε and μ of thematrixmedia and spheres in them) (Figure .a).
Decreasing the inclusion volume fraction vf has the effect of narrowing the band of frequencies, for
which εeff and μeff become negative. Besides vf , the product of εp and μp influences the bandwidth
and location of the resonance. By making this product smaller, the first resonance of εeff and μeff is
moved to larger values of the product k ⋅a and the frequency bandwidth over which the permittivity
and permeability are negative increases.

Losses in material of particles decreases the effect of resonance behavior on the composite. This
effect is shown in Figure .b. In this figure, the dependence of the real part of the effective permit-
tivity on a normalized frequency is shown for several different values of the dielectric loss tangent
of the inclusions defined as tan δ = ε′′p

ε′p
. The dielectric loss tangent of the matrix as well as the mag-

netic loss tangents of both materials are taken to be zero. Notice that, for this example, the real part
of the effective permittivity can still be negative for loss tangents of the inclusions, as large as ..
However, for larger values, the resonance is damped out and the real part of the effective permittivity
remains positive. This shows that if the inclusion (i.e., the spherical particle) becomes too lossy, the
DNG properties cannot be realized.

21.5.3 DNG Medium Composed of Dielectric Spheres with Different
Radii (Garnet–Maxwell Mixing Rule)

Theparticles used in artificial isotropicmedia on electromagnetic resonance spheres [] are imprac-
tical because of their simultaneous high values not only of permittivity but of permeability as well.
Another model suitable for practical realization has been introduced by Vendik and Gashinova [].
In that case, two types of spheres were used with different radii but made from the same material
(Figure .b). In such a structure, one can observe the resonance of the TE mode in one type of
spherical particles and the resonance of the TM mode in other types of spherical particles at the

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

21-16 Theory and Phenomena of Metamaterials

same given frequency. In this case, it is possible to realize the negative dielectric permittivity as a
result of a contribution of the resonance of the TM mode and the negative magnetic permeability
as a result of a contribution of the resonance of the TE mode.The diameters of the spheres must be
much smaller than the wavelength in the matrix (host material) but comparable to the wavelength in
the material of the spheres. Ferroelectric single crystal or ceramic samples with dielectric constants
– can be used as a material for manufacturing the spherical particles.

The numerical simulation of two-lattice structures by eigenmode analysis and FDTD analysis
has also been implemented in []. The resonant behavior of a single sphere embedded in a host
material was investigated. The cell under simulation with two pairs of PEW and PMW bounding
a propagation region is shown in the inset of Figure .. The field pattern of the exiting plane
wave is equivalent to a waveguide excitation of the structure. This definition of the elementary cell
allows us to obtain a scattering parameter (Figure .a and b) of a two-port device. Extraction
of the effective dielectric permittivity and magnetic permeability is based on the transformation
of Z-parameters of such an effective TL section. The DNG behavior is observed at f =.GHz
(Figure .c and d).

In [,], Lewin’s equations were applied directly to the system of two sets of spheres, and the
electric polarizability of spheres in the magnetic resonant mode was not taken into account. How-
ever, the electrical properties of these spheres can have a significant effect on the effective permittivity
of the composite. This affects especially the low-frequency limit, which then approaches the classi-
cal Maxwell–Garnett mixing rule. In [], a new model was presented, which takes this effect into
account. Equations are validated both analytically and numerically. Scattering from a single sphere
was calculated both analytically from the full Mie theory and numerically.
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An effective medium model for a composite consisting of two sets of resonating spheres is
defined by

εeff − εh
εeff + εh

= fe
εh
(
εh + εpF (θ)
εh − εpF (θ)

) + fm
εh
(
εh + εpF (θ)
εh − εpF (θ)

) , (.)

μeff − 
μeff + 

= fm (
 + F (θ)
 − F (θ)

) , (.)

fe =


πa



s

, fm =


πa



s

, (.)

F(θ) = (sin θ − θ cos θ)
(θ − ) sin θ + θ cos θ

, (.)

where
θ = ka

√εpμp
θ = ka

√εpμp
a is the radius of spheres with the electric resonance
a is the radius of spheres with the magnetic resonance
fe and fm are the volume fractions for the corresponding spheres

In Figure ., an example of effective permittivity as a function of the volume fraction of spheres
is shown. The solid line represents εeff given by Equation ., and the dashed line, ε′eff , is calculated
using the method in [,], where the electric polarizability of spheres in the magnetic resonance
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FIGURE . The effective permittivity εeff as a function of the frequency calculated by Equation . compared
with the effective permittivity ε′eff calculated without taking into account the electrical polarizability of spheres in
the magnetic resonance. In this case, the second term on the right-hand side of Equation . is zero. εp = 
( − j. ⋅ −), εh = , fe = ., fm = ., a = . ⋅ − mm, a = . ⋅ − mm. (Taken from Jylhä, L.,
Kolmakov, I., Maslovski, S., and Tretyakov, S., J. Appl. Phys., (), –-, . With permission.)
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mode is not taken into account. It can be seen that the resonant frequency slightly shifts when the
improved mixing equation is used.

21.5.4 DNG Medium Composed of Dielectric Spheres with
Different Radii (Electromagnetic Wave Diffraction Model)

A numerical analysis of a bispherical structure [] revealed that the interference of the adjacent
spherical particles is negligibly small. This makes it possible to solve the electromagnetic problem
for each sphere independent of the influence of all others. We consider the diffraction of a plane
electromagnetic wave on a dielectric sphere using the approach of Stratton []. Some results of
solving this problem as applied to the bispherical structure were presented in [,].

Let us consider the diffraction of a plane electromagnetic wave with the amplitude of electric field
E linearly polarized along the x-axis. The wave propagates along the z-axis (Figure .):

�→
E (z, t) = �→e x E ⋅ e i(ωt−k z),

�→
H(z, t) = �→e y

k

ωμo
E ⋅ e i(ωt−k z). (.)

The wave number k is defined later.
In order to fulfill the boundary conditions on the surface of the spherical particle with respect to

the tangential components of the electric andmagnetic fields, expansion of the incident planewave in
terms of the spherical function is used.The sphericalmodes inside the sphere and the sphericalmodes
propagating in open space outside the sphere are taken into consideration as well.The boundary con-
ditions give rise to two pairs of nonhomogeneous equations with respect to the complex amplitudes
of the spherical functions inside and outside the spherical particle.

The fields inside the spherical particle are presented in the following forms:

�→
E (in) = Ee iωt

∞

∑
n=

in n + 
n(n + ) (a

(in)
n
�→m o/n − ib(in)n

�→n e/n) , (.)

�→
H (in) = − k

ωμ
Ee iωt

∞

∑
n=

in n + 
n(n + ) (b

(in)
n
�→m e/n + ia(in)n

�→n o/n) , (.)

where�→m o/n ,m ,n and�→n o/e ,m ,n are spherical wave functions (odd and even) []. As far as the incident
wave in open space is linearly polarized, the number m =  is taken in Equations . and ..
The wave numbers are defined as

k = ω√εεpμ, k = ω
√

εεhμ, (.)
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FIGURE . Spherical particle in the field of a linearly polarized electromagnetic wave and field distribution in
the equatorial plane. (a) Dipole momentum of electric polarization of the particle P and dipole momentum of mag-
netization of the particle M. (b) Mode charts of the dominant TE and TM modes in a spherical resonator with
magnetic walls. Solid and dashed lines show the magnetic and electric field lines, respectively.
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where ε and μ are the dielectric permittivity and permeability of free space. The diffracted field
outside the spheres is given in [].

The solutions of the system of equations specified by the boundary conditions define the ampli-
tudes of the waves inside the spherical particle in the following forms:

. For the waves of magnetic (transverse electric) type (Er = , Figure .b, left),

a(in)n = − jn(ρ)[ρh()n (ρ)]′ − h()n (ρ)[ρ jn(ρ)]′

jn(Nρ)[ρh()n (ρ)]′ − h()n (ρ)[Nρ jn(Nρ)]′
(.)

. For the waves of electric (transverse magnetic) type (Hr = , Figure .b, right),

b(in)n = − jn(ρ)[ρh()n (ρ)]′ − h()n (ρ)N[ρ jn(ρ)]′

N jn(Nρ)[ρh()n (ρ)]′ − h()n (ρ)[Nρ jn(Nρ)]′
(.)

where
ρ = ka, a is the radius of the spherical particle
jn(z) is the spherical Bessel function
h()n (z) is the spherical Hankel function of the first order
the sign []′ means the differentiation with respect to ρ or Nρ
N = k/k

Figure . represents the distribution of the electromagnetic field components in line with
Equations . through . for the spheres with the dielectric permittivity εp =  surrounded
by the air (εh = ). Diagrams were plotted for values of polar angles θ = π/ and φ = π/.

Analysis of Equations . and . is followed by the two important conclusions:

. At certain frequencies, the modulus of the denominators of the fractions (Equations .
and .) become minimum and corresponds to the resonance phenomena, but because
of the complex nature of the Hankel functions, they do not lead to singularities.

. The imaginary components of the Hankel functions determine the quality factor of the
resonator, which is finite even in the case of lossless material of the spheres. Physically
this can be explained by the loss caused by the radiation of the diffracted waves outside
the sphere.

21.6 Effective Permittivity and Permeability
of the Bispherical Lattice

For the model of a DNG composite arranged from the magnetodielectric spherical inclusions
introduced by Holloway, the effective permittivity and permeability are determined on the effective
medium theory of the electromagnetic response of inclusions embedded in a host material devel-
oped by Lewin (see Section ..). In Section .., the effective permittivity and permeability
were found by application of the classical Maxwell–Garnet mixing rule. Now, we consider the frame-
work of the electromagnetic wave diffraction model. The effective permittivity and permeability of
the bisphere lattice are determined.
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FIGURE . (a) Electromagnetic field components distribution for magnetic type waves; Er =  inside the sphere.
(b) Electromagnetic field components distribution for electric type waves; Hr =  inside the sphere.

21.6.1 Electric and Magnetic Dipole Moments of Spherical Resonators

The spherical particle electric dipole momentum D(E)x oriented along the x-axis and the magnetic
dipole momentum D(M)y oriented along the y-axis (Figure .a) are calculated as follows:

D(E)x = εεp
�

Vsph
(�→E (in)(r, θ, φ) ⋅ �→ex − E)dv , (.)

D(M)y = μ

�
Vsph
(�→H (in)(r, θ, φ) ⋅ �→ey −

k

ωμ
⋅ E)dv . (.)

While integrating the scalar product of basis vectors e⃗r , e⃗θ , and e⃗φ, e⃗x and e⃗ y should be taken into
account.

The averaged macroscopic magnetization and averaged macroscopic electric polarization can be
found as the corresponding dipole momentum divided by the volume of the cell containing the
dipoles []. Thus, one obtains the relative effective permittivity and permeability:

ε(eff)r (ω) = D(E)x (ω)
sεE

+ εh , (.)

μ(eff)r (ω) =
D(M)y (ω)

sE
k
ω

+  (.)
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After calculating the integrals in Equations . and . in accordancewithEquations . and .,
where the spherical wave functions should be used [], one obtains

ε(eff)r (ω) = 

πa

 ⋅

s

εp ⋅ b(in) (ka) ⋅ I(ka), (.)

μ(eff)r (ω) = 

πa

 ⋅

s
√εp ⋅ a(in) (ka) ⋅ I(ka). (.)

Here, I(ξ) is the result of integration over the volume of the particle, a and a are radii of the parti-
cles, a > a. The function I(ξ) has been approximated in the region < ξ <  by the following simple
formula:

I(ζ) = .(. − ζ) + .( − ζ) . (.)

The frequency dependence of the wave amplitude for the excited modes a(in) and b(in) determines
the frequency dependence of ε(eff)r (ω) and μ(eff)r (ω). Considering the structure composed by two
sublattices of the dielectric spherical particles with different radii, we can adjust these radii to obtain
the same resonant frequencies for the H mode in the smaller sphere and the E mode in the
larger sphere. Figure . presents the simulated frequency dependence of ε(eff)r (ω) and μ(eff)r (ω)
for a =.mm, a = .mm, s =mm, dielectric permittivity of the particle εp = and tan
δ = −, and permittivity of the matrix εh = .

One may see that at the frequency slightly above f = GHz both the permittivity ε(eff)r and the
permeability μ(eff)r are negative. Thus, in the rather narrow frequency band around f = GHz, the
existence of isotropic DNG has been theoretically substantiated. A negative refraction bandwidth
depends on the permittivity of the spherical particles. The smaller the value of permittivity of the
dielectric spherical particles, the wider is the frequency range, where both the effective permittivity
and permeability are negative. The dependence of the negative refraction index bandwidth on the
permittivity of the material constituent particles is presented in Figure ..

21.6.2 Comparison of the Effective Permittivity and Permeability
Obtained with Different Models

Different analytical models for the DNG medium description were introduced to describe the
structures with sets of spherical particles [,,,,,]. The modeling of the electromagnetic
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FIGURE . Dependence of negative refractive index bandwidth on spherical particle permittivity for two
resonance frequencies, f = GHz f = GHz, and different loss levels.

response of spherical inclusions embedded in a host material [,,] is based on the generalized
Lewin’s model []. Originally, the Lewin’s model has been specified only for spherical particles with
the same radius a arranged in a cubic lattice with the lattice constant s. The spheres are assumed
to resonate either in the first or second resonance mode of the Mie theory []. Expansion of the
model for the case of two sublattices of dielectric spherical particles with different radii makes pos-
sible the description of the DNG media [,]. The properties of DNG media required could be
observed in the frequency region, where the resonance of the E mode in one set of particles and the
resonance of the H mode in another set of particles are excited simultaneously. The improved model
of the bispherical structure was presented in []. The effective permittivity εeff for a material with
two types of inclusions having two different electric polarizabilities was calculated from the general-
ized Claussius–Mossotti relation, taking into account the electric polarizabilities of the spheres in the
magnetic resonance and in the electric resonance mode. Consideration of the remaining static elec-
tric polarizability of spheres in the magnetic resonance modes, which is not equal to zero as in [],
is important.

Let us compare the frequency dependences of both the effective dielectric permittivity and the
effectivemagnetic permeability calculated by using differentmodels. Figure . presents an example
of effective permittivity and permeability as a function of the frequency for three different analytical
models: () Lewin’s model [], () the improved mixing rule model [], taking into account the
electrical polarizability of spheres in the magnetic resonance, and () the diffraction model [].

The parameters of the constituent materials are εp =, εh = , tan δ = −, μp = μh = , a =
. mm, a = .mm, and s =mm. The results are in general similar, but they differ in the
resonant frequency and the magnitude of effective electromagnetic parameters of the medium. The
resonant frequency is slightly shifted in comparison with Lewin’s model when the improved mixing
equation is used and is shifted more remarkably for the diffraction model.

21.6.3 Results of the Full-Wave Analysis

After analytical calculations based on the diffractionmodel, the structure was simulated by full-wave
analysis []. The simulated structure consists of quarters of spheres placed in the dielectric material
(Figure .). In the case of appropriate boundary conditions, simulation of this model should give
the same results as those for the infinite D structure. Four quarters of the spheres of different radii
were placed in a hostmediumwith the permittivity and the permeability equal to unity boundedwith
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FIGURE . (a) The effective permittivity as a function of the frequency for three different analytical models:
() Lewin’s model [] εeff ; () the improved mixing rule model (taking into account the electrical polarizability
of spheres in the magnetic resonance), [] εeff; and () the diffraction model. (b) The effective permeability as a
function of the frequency for the three different analytical models: () the mixing rule model [,], μeff ; and ()
diffraction model, μeff. The parameters of the constituent materials are as follows: εp = , tan δ = − , εh = ;
μp = μh = , a = .mm, a = .mm, and s = mm.
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=

s

FIGURE . Single cells of single spherical and bispherical structures. Boundary conditions are two PEWs and
two PMWs on opposite sides: (a) large spheres, (b) small spheres, and (c) mixed structure.

two PEWs and two PMWs on the opposite sides, respectively. First, four quarters of the larger sphere
(radius r = .mm, permittivity of particle εp = , and loss factor tan δ = .) and then
four quarters of the smaller sphere (r =.mm, εp =, tan δ =.) were modeled. Then,
the structure consisting of sets of spheres of two radii was modeled.

The results for scattering matrix elements ∣S∣ and ∣S∣ are shown in Figure .. The stop band
is observed near the frequency GHz in case of negative permittivity or permeability only. For the
mediumwith the set of both spheres, a narrow pass band near the frequency GHz is observed.The
frequency range of the electromagnetic wave with an enhanced transmission coefficient corresponds
to the DNG characteristics of the structure. The resonance frequency has the same value as the one
calculated analytically.

Field patterns inside the unit cells are presented in Figure ..Themagnetic field distribution on
the side plane of the structure (Figure .a) and the electric field distribution on the top plane of
the structure (Figure .b) represent the TM mode in a larger sphere (electric dipole momentum)
and the TE mode (magnetic dipole momentum) in a smaller sphere.
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FIGURE . Field patterns inside the unit cell of a structure: (a) magnetic field distribution on the side plane
(magnetic dipoles) and (b) electric field distribution on the top plane (electric dipoles).

21.6.4 Results of the Experiment

In order to verify the resonance behavior of the spheres, an experiment was conducted []. The
Network Analyzer Agilent ES was used for the measurement of S-parameters of the spheres.
A spherical particle was placed inside the rectangular waveguide. Different samples were used in the
experiment (two large spheres with radius .mm and two small spheres with radius .mm).The
results of the experiment were compared with the data obtained previously by modeling. The trans-
mission and reflection coefficients for the small sphere (Figure .) reveal the resonance behavior
at the frequency . GHz. Here, the gray solid and dashed lines represent the measured S() and
S() parameters, and the black line corresponds to the simulated results. The transmission and
reflection coefficients for the large sphere exhibit two resonances (Figure .): magnetic resonance
at the frequency .GHz and electric resonance at .GHz.
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In the experiment, the magnetic resonance frequency in the small sphere does not coincide with
the electric resonance frequency in the large sphere, because the radii were not adjusted accurately,
and the possible DNG behavior of the structure consisting of these samples was not observed. Never-
theless, the experiment proved the validity of an analytical diffractionmodel describing the resonance
behavior of the dielectric spheres [].
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21.6.5 Influence of Distribution of Size and Permittivity of Spherical
Particles on DNG Characteristics

Let us consider a DNG medium composed of dielectric spheres with different radii described by
the Maxwell–Garnet mixing rule (see Section ..). It has been shown in [,] that the random
distribution of the spherical particle sizes caused by manufacturing inaccuracy may affect the values
of the effective permittivity and permeability of the DNG medium.

In order to take into account the random size distribution of the spheres, one should rewrite
Equation . in the form []

εeff − εh
εeff + εh

= 
εh
(

K

∑
k=

fek

G(θk)
+

L

∑
l=

fml

G(θ l)
) , (.)

where
k is the number of spheres in the electric resonance
l is the number of spheres in the magnetic resonance, G(θ) = εh−εpF(θ)

εh+εpF(θ)

This is the solution for the effective permittivity of the structure with two sets of spheres, where
one set of spheres is in the magnetic resonance and the other set is in the electric resonance. The
effective permeability can be calculated in a similar way.

An example of how a normal size distribution, N = 
σ
√

π
exp ( (r−r′)

σ ) of spheres with half-
value widths σ = σe and σ = σm and expectation values r′ = a and r′ = a affects the effective material
parameters is presented in Figure .. The left-hand side of Figure . describes the spheres
that are normally distributed with the half-value widths σm = σe =  μm. The expected values of the
sphere radii are a = .mm and a = .mm. The size distribution N for σe is also shown. On the
right-hand side, everything is the same, except the half-value widths σe = σm =  μm.

The half-value width σe = σm =  μm (Figure ., left) does not increase the loss factor of the
structure significantly, but in the case of the half-value width of σe = σm =  μm (Figure ., right),
the imaginary part becomes remarkably larger and μeff does not exhibit negative values.
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FIGURE . The effective permittivity as a function of the frequency calculated using Equation . with εp =
 ⋅ ( − j. ⋅ −), εh = , and filling ratios fe = %, fm = %. (Taken from Jylhä, L., Kolmakov, I., Maslovski, S.,
and Tretyakov, S., J. Appl. Phys., (), –-, . With permission.)
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Now, we consider the influence of the size distribution for the DNG medium model using the
model of the electromagnetic wave diffraction on dielectric spheres with different radii. According
to Equations . and ., the spherical particle radius influences the values of the effective permit-
tivity and permeability. Dielectric sphere radius variation affects the value of the resonance frequency,
which corresponds to the low-frequency threshold of the negative index range. Let us estimate how
the resonant frequency depends on the radius of the constituent spherical particles. The electrical
radius of the sphere was defined previously as

Nρ = ka, (.)

where k = ω√εεpμ is the propagation constant. Let us rewrite Equation . in this way:

f = Nρ
π ⋅ a ⋅ √εεpμ

, (.)

where f is the frequency of the electromagnetic wave.
Values of the electrical radius of the resonant spheres can be calculated from Equations .

and . for the minimum modulus of the denominator in Equations . and .. For a given a,
the values of the electrical radius providing magnetic or electric resonance the resonance frequency
can be calculated using Equation ..

Dependence of the resonant frequency on the sphere radius is shown in Figure .. This graph
represents the dependence of the resonant frequency on the spherical particle radius for two values
of particle permittivity,  and . According to Figure ., the negative index bandwidth for
a DNG medium with spherical inclusions permittivity equal to  should be MHz for a GHz
resonant frequency. This implies that the spherical particle radius accuracy should be ±. μm in
this case.

In line with Equation ., the resonance frequency is also influenced by the permittivity of the
dielectric material of the particles. Figure . represents the dependence of the resonant frequency
on the spherical particle permittivity for two different values of radii,  and .mm. To avoid fre-
quency spreading beyond the negative index bandwidth of MHz, the tolerance of the permittivity
of material should be ±.%.

With regard to the possibility of the practical realization of such an artificial metamaterial, we
should mention that recent technologies allow the production of dielectric spheres with accuracy
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FIGURE . Dependence of resonance frequency on sphere radius for particles with εp =  and
εp = , Δ f = MHz, Δr =  μm.
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Δr =  μm. At the same time, the achievable accuracy of permittivity of the dielectric material with
εr >  is about %–%. Despite this, it is really possible to select samples with desired values of
permittivity among a large number of manufactured samples.

21.6.6 Isotropic Medium of Coupled Dielectric Spherical Resonators

When dielectric spherical resonators are placed close to each other, they begin to interact. The
coupling between resonators leads to the formation of new electromagnetic field distribution in the
media outside the spheres. It becomes possible to get electric and magnetic dipole responses using
only one type of sphere. The magnetic dipole comes from the first Mie resonance in a dielectric
sphere.The electric dipole is formed by the sphere interaction. Electric andmagnetic dipole existence
provides a DNG response of the media [].

A D plane structure consisting of  closely positioned dielectric spheres has been modeled.
If the distance between the spheres is large, there is no wave propagation on a resonant frequency
(Figure .a). By decreasing the spacing between the spheres, splitting of the resonance curve
occurs (Figure .b). The pass band appears near the resonant frequency.

Figure . represents the phase diagram of the structure considered. The transverse magnetic
field component in the free space is shown on the left side of the picture.The right side represents the
magnetic field pattern for the structure containing the regular array of dielectric spheres. It is clearly
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seen from themagnified part of the picture that the phase response of the propagated electromagnetic
inside the array of the spheres is positive, whereas the phase response outside the structure is negative.
This means that there is BW propagation in the structure considered.

21.7 Metamaterials for Optical Range

Definitely, one of the most challenging problems is producing a metamaterial for the optical fre-
quency range. Invisibility, superlenses, and light rays manipulation—these properties in the optical
range are extremely promising. A model of metamaterial that can exhibit a negative refractive index
band in excess of % in a broad frequency range from the deep infrared to the terahertz region, has
been investigated in []. The favored realization of the structure considered is a “periodic” crystal
wherein polaritonic spheres and Drude-like or plasma spheres are arranged on two interpenetrating
“simple cubic” lattices. When the differences between the spheres are ignored, the resulting structure
is a face-centered cubic structure. The sublattice of polaritonic spheres possesses negative magnetic
permeability in certain frequency regions, whereas the sublattice of the Drude-like spheres possesses
negative electric permittivity. Both phenomena are the results of the strong single-sphere Mie res-
onances. By a suitable choice of materials and parameters, a common region can be found, within
a broad frequency range from the deep infrared to the terahertz region, where both functions are
negative and the structure exhibits a negative refractive index band in excess of the % bandwidth.

A new concept of metafluids—liquid metamaterials based on clusters of metallic nanoparticles
or artificial plasmonic molecules (APMs)—has been introduced in []. APMs comprising four
nanoparticles in a tetrahedral arrangement have isotropic electric and magnetic responses and are
analyzed using the plasmon hybridization method, an electrostatic eigenvalue equation, and vecto-
rial finite-element, frequency-domain, electromagnetic simulations. It has been demonstrated that
a colloidal solution of plasmonic tetrahedral nanoclusters can act as an optical medium with very
large, small, or even negative effective permittivity, εeff , and substantial effective magnetic suscepti-
bility, χeff = μeff − , in the visible or near-infrared bands. The electric and magnetic responses of the
tetramer allowone to construct an effectivemediumwith a completely isotropic electric andmagnetic
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response. Electromagnetic simulations indicate that achieving εeff < and μeff < in colloidal solu-
tions of “artificial molecules” should be possible using either sufficiently high concentrations of gold
clusters or materials with low-loss negative permittivity.
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22.1 Introduction

In this chapter we show that space-discretizing algebraic schemes describing discrete fields can be
considered the unifying framework behind metamaterials. Physical realizations of these schemes
lead to either Drude or Lorentz dispersion with their immanent properties and hence limitations.
Next, this perspective on metamaterials being physical realizations of space-discretizing schemes is
extended to two-dimensional (D) and three-dimensional (D).

So far five different topologies for D, left-handed, isotropic metamaterials have been proposed:
A finite-differences-derived (FDTD)-derived structure independently proposed in Refs. [,], a
structure derived from the rotated transmission-line-matrix (TLM) scheme [,], a structure con-
sisting of dielectric spheres [], a D extension of the wire/split-ring approach [,], and a scalar

22-1
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D structure [,] in shunt configuration. The latter was the first D, left-handed, metamaterial
demonstrated experimentally.

This contribution is organized as follows: Section . shows that a unifying framework for meta-
materials can be given on the basis of network models and their topological structure. These results
are then used in Section . and . to present D and D scalar metamaterials. Section . also
contains a novel scalar D structure, which can be physically implemented obeying inversion sym-
metry. Section . presents a vectorial, D metamaterial structure that was first proposed by the
authors of this chapter in Ref. [] and experimentally verified in Ref. []. Section . considers
the crucial point in D metamaterials, i.e., how to build these structures. Section .. proposes a
decomposition of the metamaterial cells into polyhedrons, allowing for fabrication techniques such
as (-component)-injection molding, D-molded interconnect device technology (D-MID), hot
embossing, plasma activation and printing, physical vapor deposition, laser direct structuring, and
rapid prototyping. Section .. discusses topology-invariant planarizations of the two D metama-
terial structures, yielding anisotropic behavior along one axis but offering compatibility with standard
planar fabrication techniques.

22.2 Topological Description of Discrete Electrodynamics

Metamaterials are compound artificial materials tailored to achieve a particular type of dispersion
for permittivity and/or permeability. In the following subsections we show that due to these prop-
erties metamaterials can be more easily derived by dividing the task of finding a structure yielding
the desired metamaterial behavior into four subtasks: First a suitable topology, i.e., a network, is
deduced using symmetry considerations []. Next, the desired type of dispersive behavior is chosen.
Then, a physical realization for this desired network is synthesized. Finally, the physical realization is
characterized using group-theoretical considerations for determining (bi/an)isotropy [,].

The advantage of first making topological analyses is that the search for new physical realizations
of metamaterials becomes comparatively easy, as will be shown in Section . and Section ..

22.2.1 One-Dimensional Metamaterials

In order to deduce a topological analysis of metamaterials let us first examine Maxwell’s equations in
the one-dimensional (D) case within a homogeneous, uniform medium describing an x-polarized
wave propagating in the +z-direction

∂z Ex(z) = − j ωμμr Hy(z) ∂z Hy(z) = − j ωєєr Ex(z). (.)

The network-theory analogous to Equation ., which constitutes the step for a topological descrip-
tion, is

∂zV(z) = −Z′ I(z) ∂z I(z) = −Y ′ V(z), (.)

which is the step for a topological description and is considered a formal substitution within the
scope of this chapter. A rigorous analysis of the relationship between the field description and the
network description can be performed using structure functions.∗ Obviously the network theory

∗A derivation and detailed analysis of structure functions can be found in Ref. []. Within this approach propagation
of transverse electric (TE) and transverse magnetic (TM) waves is considered separately. The transverse fields of each
mode are factored into a complex scalar amplitude—which depends only on the direction of propagation—and a field
distribution—which depends only on the transverse coordinates. Written formally the ansatz is E = V(z) ⋅ e(x , y),
H = I(z) ⋅ h(x , y). The transverse field distributions of each mode are called structure functions. e(x , y) and h(x , y)
form a bi-orthonormal system. Structure functions fulfill the Helmholtz equation, allowing for a transformation of the
Helmholtz equation in E , H into the transmission line equation in V , I. Power transmission properties are unchanged,
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analogon does not reduce the manifold of solutions to the wave equation. Both Equations . and
. have continuous translation symmetry as they describe wave propagation in a homogeneous,
uniform medium. The impedance per unit length Z′ and the admittance per unit length Y ′ obey

Z′ ∝ j ωμr Y ′ ∝ j ωєr . (.)

Hence Z′ and Y ′ are proportional to the—possibly dispersive—material parameters and can thus
model dispersion, too. A first-order space-discretizing numerical scheme for Equation ., resulting
in discrete translational symmetry, is

V(z + Δz) − V(z) = −Z ⋅ I(z) I(z + Δz) − I(z) = −Y ⋅ V(z), (.)

with Z = Z′Δz and Y = Y ′Δz. The corresponding circuit for Equation . is depicted in Figure .a.
For structures with continuous translational symmetry Equation . is an approximation. For
metamaterials, however, these equations are exact, because metamaterials are composite artificial
structures of finite size and hence with inherent discrete translation symmetry. From Equation .
the resulting dispersion relation and Bloch impedance of the symmetrized cell are

sin χ

= 

 ZY . (.a)

ZBloch =
√

Z/Y ⋅
√

 + 
 ZY =

√
Z/Y ⋅ cos

χ


, (.b)

with the phase shift across a unit cell χ = kΔz. For the metamaterial frequency range, where the unit
cell is small compared with the wavelength, i.e., ∣χ∣ ≪ , the dispersion relation reads χ = −ZY
(Figure .a).

22.2.1.1 Implementation of Dispersion Models

The choice of the series element Z and shunt element Y determines the type of dispersion, Drude
dispersion or Lorentz dispersion being the two most common types. This is shown in Figure .b.

(a)

Z

Y

(b)

Z:

LR CL

Y:

LL

CR

Z:

LR CL

LP

Y:

LL

CR(c)

FIGURE . (a) Unit cell due to the first-order discretization of the telegrapher’s equation, (b) unit cell elements
implementing Drude dispersion (CRLH) for both єr and μr and (c) unit cell elements implementing єr following
Drude dispersion, μr following Lorentz dispersion, as, e.g., in split-ring resonator (SRR)/wire-grid arrangements.

(continued)
�

E × H∗ dA = Z−
F

�
∣E∣ dA = ZF

�
∣H∣ dA = V I∗ = Z−

F ∣V ∣ = ZF ∣I∣, using the characteristic
impedance ZF for both the field description and the network description.

In the case of plane wave propagation in free space as described by Equation ., the structure functions reduce to
e(x , y) = h(x , y) = . For the TE/TM wave propagation one obtains that the longitudinal field components are expressed
in the equivalent network topology by effective Z′ and Y ′ with ∂

ωω Z′ ≠  and/or ∂
ωω Y ′ ≠ . Comparing this result with

the remainder of this section, this behavior describes dispersion.
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Using series resonators for Z and parallel resonators for Y results in the composite right/left-
handed (CRLH) approach [–], yielding Drude dispersion for both the effective permeability and
permittivity []

Z = j ωμr ,eff = j ωμ
∞
( − ω

,μ/ω) (.a)

Y = j ωєr ,eff = j ω є
∞
( − ω

,є/ω), (.b)

where
μ∞ and є

∞
are the permeability and permittivity for ω →∞, respectively

ω,μ and ω,є denote the magnetic and electric plasmon resonance frequencies, respectively

The correspondence between Equation . and Figure .b is

μ
∞
= LR є

∞
= CR ω

,μ LRCL =  ω
,є LLCR = . (.)

The motivation to use the terminology of Equation . is that dispersion of effective material
parameters is treated in this chapter.

For the synthesis of physical structures it is possible and common to directly incorporate the net-
work, as in Figure .a and Figure .b, using lumped elements, i.e., series capacitors connected
to shunt inductors. These elements together with their unavoidable parasitics then physically realize
double-Drude dispersion. It shall be emphasized that with this type of structure incident free-space
waves can also interact. In the case of a free-space wave setup it needs to be ensured that at the
operational frequency the metamaterial structure is monomodal [], see also Section ...

Apart from these lumped element physical realizations, structures based on purely distributed ele-
ments have been proposed. Examples are the mushroom structure [] and a structure consisting of
stacked thick metallic screens operating below cutoff [], with the holes realizing the shunt induc-
tance [] and the interplate capacitance the series capacitance in the double-Drude topology. Details
of wave propagation in double-Drude metamaterials are given in, e.g., Refs. [,].

Lorentz dispersion for the permeability and Drude dispersion for the permittivity result in

Z = j ωμr ,eff = j ωμ
∞
( −

ω
,μ

ω − ω
∞,μ
) (.a)

Y = j ωєr ,eff = j ω є
∞
( − ω

,є/ω). (.b)

The network elements to Figure .a modeling this type of dispersion are shown in Figure .c.
Their relation to Equation .a modelling is

μ∞ = LR ω
,μ LRCL =  ω

∞,μ LPCL = . (.)

As expected, Lorentz dispersion passes into Drude dispersion for ω
∞
→∞ and hence in the

equivalent circuit of Figure .c for LP→.
Physical realizations of Lorentz/Drude dispersion are, for example, the split-ring resonator (SRR)/

wire-grid configuration as well as Mie-resonant dielectric resonators [,].
An illustration showing the correspondences between the contents of the SRR/wire-grid unit cell

and the related equivalent circuit is shown in Figure .. This equivalent circuit is valid only in the
quasi-static approximation, i.e., the unit cell is small compared with the wavelength. The electric field
of an incident wave is parallel to the wire grid, which loads the effective permittivity inductively with
LL. The SRR is modeled by C ′L, L′P. This resonator is probed by the magnetic field, which is paral-
lel to the SRR plane normal vector. Due to the coupling of the magnetic field with the resonator,
the effective permeability is modified. Last, the free space between the split rings is modeled by a
ladder network with the elements LR and CR. The equivalent circuit of Figure .b shows a direct
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WireWire SRRSRR Free space

Incident wave

(a)

LR

CĹ

LṔ

LL CR

(b)

LR

CL

LP

LLCR
Y(ω)

Z(ω)

(c)

FIGURE . Wave traveling through an SRR/wire-grid metamaterial: (a) Correspondence of unit cell contents with
network elements. (b) equivalent circuit, and (c) simplified equivalent circuit.

LP

CL

LR
CR

LL

CP

Y (ω)

Z(ω)

FIGURE . Equivalent circuit of a metamaterial where the dispersion of both the permittivity and the permeability
are of Lorentz type.

correspondence to Figure .a. The coupling of the magnetic field to the resonator is modeled by
an ideal transformer. Simplifying and rearranging the network in Figure .b yields Figure .c.
Here the elements C ′L and L′P are transformed into the elements CL and LP by virtue of the trans-
former ratio. The resulting network is of the type shown in Figure .c, which describes mixed
Lorentz/Drude dispersion.

Reexamining Equation .a it is desirable to enlarge ω
∞,μ while keeping ω,μ and the unit cell

size constant in order to improve the bandwidth of a left-handed operation. This translates into the
requirement of solely reducing LP, which can unfortunately be achieved only to a small degree with
the SRR approach. Further, the resonance within the SRR is particularly prone to losses.

If SRR are combined with cut wires this yields Lorentz dispersion for the permittivity and the
permeability. This can be seen from Figure .a by substituting the inductance LL with a series
resonator, where the series capacitance is modeling the capacitive gap between the cut wires. The
corresponding equivalent circuit is shown in Figure ..

Similar to the above discussion, one obtains Drude dispersion for the permeability and Lorentz
dispersion for the permittivity with the complementary SRR configuration []. In this configuration
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Cp0

Lp1

Cp1

Lp2

Cp2

Lpn

Cpn Lp∞

(a)

Ls0

Ls1

Cs1

Ls2

Cs2

Lsn

Csn

Cs∞

(b)

FIGURE . Canonical Foster equivalent circuit: (a) Foster impedance representation and (b) Foster admittance
representation.

the SRR geometry is etched periodically into a ground plane and forms the metamaterial together
with a microstrip line with periodic series gap capacitors.

Arbitrary types of dispersion can be obtained by performing the canonical fractional expansion
representation of the one-ports Z , Y . These Foster representations of Z and Y are given by [–]

Z(ω) = 
j ωCp

+
∞

∑
n=



j (ωCpn − 
ωLpn
)
+ j ωLp∞ (.a)

Y(ω) = 
jωLs

+
∞

∑
n=



j (ωLsn − 
ωCsn
)
+ j ωCs∞ . (.b)

The lumped element equivalent circuits of Foster impedance and admittance representations are
shown in Figure .. The advantage of this type of dispersion-engineering approach based on equiv-
alent circuits and thus on networks is that causality is unconditionally preserved, which may pose a
problem in other formulations [,,].

22.2.2 Scattering Matrix Representation of Metamaterial Cells

Although in Section .. the discretization by means of a finite-difference scheme to the wave
equation was carried out to derive the foundation of metamaterials, now a scattering matrix-
based approach is presented. This approach will prove useful for the extension to multidimensional
metamaterials.

The scattering matrix of a transmission line segment of length Δz normalized to its characteristic
impedance Z is

S = exp(− jϕ) ( 
 ) = exp(− jϕ) ( − I), (.)

where
ϕ is the phase shift across a unit cell
I denotes the unity matrix
 is a matrix with all elements equal to 
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Its impedance matrix representation is

Z = − jZ (


tan ϕ


sin ϕ


sin ϕ


tan ϕ
) . (.)

The aim is to find network circuits realizing Equation .. The circuit depicted in Figure .a
models a segment of a D material. We note that such a D material is equivalent to a transmission
line. Symmetrizing Figure .a to a “T” form, the circuit has the impedance matrix

Z = 
 Z ⋅ I + 

Y
⋅ . (.)

Comparing Equations . and . yields

Z/Z = j tan 
 ϕ Y ⋅ Z = j sin ϕ. (.)

A first-order expansion in ϕ ∝ ω of Equation . yields the expected result of a series inductance
and a shunt capacitance. This is the well-known ladder-network approximation of a short piece of
transmission line. Certain types of dispersion, which, for example, yield metamaterial behavior, can
then be implemented as discussed in Section ... In summary, a scattering matrix-based approach
enables an abstract view on network topologies for metamaterial cells.

22.3 Two-Dimensional Metamaterials

In Section . we showed that a scattering matrix-based representation of a metamaterial cell can
be used to find metamaterial structures. Let us now consider the D case: The scattering matrix of a
symmetrical, reciprocal, and lossless D metamaterial has the form

S = 
 exp(− jϕ) ( −  ⋅ I) . (.)

In fact, Equation . is the foundation of the D space-discretizing numerical scheme TLM [].
Like in the previous Section .., a lumped element representation can be obtained by converting
to impedance or admittance matrix representation and doing a first-order expansion in ϕ. Doing so
yields two network topologies, shown in Figure .: The shunt node describes the TM polarization
in D space, and the series node describes the TE polarization []. The impedance and admittance

1
2Z

1
2Z

1
2Z

1
2Z

3

Y

(a)

1
8 Z

1
8 Z

1
8 Z

1
8 Z

1
8 Z

1
8 Z

1
8 Z 1

8 Z

1
2 Y

1
2Y

1
2 Y

1
2 Y

(b)

1

4

4

2
1

3

2

FIGURE . Lumped element implementations of the D TLM scattering matrix: (a) Shunt node and (b) series
node [].
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representations are, respectively

Zshunt node = 
 Z ⋅ I + 

Y
⋅  (.a)

Yseries node = 
 Y ⋅ I + 

Z
⋅ , (.b)

leading to the same dispersion relation for both types of nodes

sin χ

+ sin η


= 

 ZY . (.)

Similar to the D case the dispersion relation reads for the case if the metamaterial cell is small com-
pared with the wavelength χ + η = −ZY , i.e., the metamaterial is isotropic. Physical realizations of
the shunt-node structure yielding Drude dispersion are, e.g., mushroom structures [,] and their
derivatives, including anisotropic variations []. The series-node structure was analyzed in Ref. [].
Both types of structures can be stacked to yield a “volumetric” metamaterial []. Two-dimensional
arrangements of split-ring/wire-grid setups [] are physical realizations of Lorentz dispersion for
the permeability within the shunt-node configuration.

In summary, the D materials proposed in the literature so far can be considered physical
realizations of a scattering matrix-based discretization scheme.

22.4 Three-Dimensional Scalar Isotropic Metamaterials

In analogy to the derivations in the D case, let us consider a symmetric, reciprocal scattering matrix
describing a lossless system for a scalar D scattering matrix. It has the form

S = 
 exp(− jϕ) ( −  ⋅ I) . (.)

Conversion to impedance and admittance matrices yields

Zshunt = 
 Z ⋅ I + 

Y
⋅  (.a)

Yseries = 
 Y ⋅ I + 

Z
⋅ , (.b)

leading to the same dispersion relation for both types of nodes

sin χ

+ sin η


+ sin ξ


= − 

 ZY . (.)

If the metamaterial cell is small compared with the wavelength, the dispersion relation simplifies to
χ+η+ξ = −ZY , i.e., the metamaterial is isotropic. The realization proposed in Ref. [] implements
Equation .a. It has two extra series elements attached to the shunt element of the shunt-node TLM
configuration (see Figure .). These are then routed to the top and bottom. The drawback of this
approach is that its physical realizations cannot be symmetric, as this would require an inductance
of zero spatial extension.

A topological network representation of Equation .b is shown in Figure . []. It is a series
configuration of shunt elements 

 Y and series elements 
 Z along a closed loop. Ports ➀ to ➅ span

across the shunt elements. This loop of elements is wrapped around a cube symmetrically, exposing
the ports at the faces of the cube. Coupling to adjacent cells is accomplished through these ports.

A physical realization yielding Drude dispersion for є and μ is shown in Figure .. It consists of
six partially metallized pyramids, each having a thin strip running diagonally along a pyramid’s base,
realizing 

 Y , and two plates, which are separated by a gap. Each plate forms with the neighboring
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yz

1 2

53

6 4

FIGURE . Shunt-node configuration of the scalar D metamaterial. Shunt element Y shown filled in gray, series
elements 

 Z shown unfilled.

x

y

z

6

2

4

5

3

1

FIGURE . Series node configuration of a scalar D metamaterial implementing Equation .b. Shunt elements

 Y shown in gray and series elements 

 Z interconnecting shunt elements shown as white boxes. Two adjacent cells
are connected at the ports spanning over the shunt elements, denoted by circled numbers.

pyramid’s plate a capacitance, realizing 
 Z. The structure’s geometry fulfills the symmetry of the point

group Th [], following Schoenflies notation. This point group is defined as having inversion sym-
metry and x ⋅ y symmetry, where np is the n-fold rotation around the p-axis, describing rotations
along diagonals of the cube. The Th symmetry ensures isotropic behavior of the cell [].
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FIGURE . Realization of a scalar D metamaterial in series configuration; three of six partially surface-metallized
pyramids shown, the remaining three pyramids are determined by inversion symmetry. Port labels ➀ to ➅ and axis
definitions correspond to Figure .. Metal shown as dark gray. Dielectric shown as transparent light gray.
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FIGURE . Dispersion diagram obtained by full-wave eigenmode simulation using the commercial FEM package
HFSS. Each dot represents a numerical solution.

Full-wave simulations were carried out using the commercial FEM package HFSS. The geometry
parameters used in the simulation are unit cell size  mm, capacitor plate distance  μm, inductor
strip width  μm, and separation gap between capacitor plates  mm. No dielectric was included
in the simulation, and conductors have copper conductivity . ×  S/m.

Full-wave eigenmode results for the Γ–X part of the Brillouin zone are shown in Figure .. The
lowest two eigenmodes correspond to perturbed plane wave modes [], which have their origin
at (k = , f = ). A left-handed band, i.e., a band with negative effective refractive index, extends
from  MHz up to the electric plasmon resonance frequency  MHz, yielding a  % relative
bandwidth of left-handed operation. At the magnetic plasmon resonance frequency of  MHz,
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a right-handed band starts, extending up to  MHz. An additional mode not predicted by net-
work theory spans the right-handed mode, but the frequency range of the left-handed operation is
monomodal. Quality factors of the left-handed eigenmodes are ≈ . For the frequency range of the
left-handed operation the unit cell size is smaller than λ/, fulfilling the common metamaterial def-
initions [,,]. The Th symmetry of the structure ensures isotropic behavior for operation in the
vicinity of the Γ-point.

It is important to note that this D isotropic metamaterial supports only one polarization, as can
be seen both from the derivation as well as the full-wave simulations, in which the left-handed and
right-handed modes are not degenerate. Anisotropy of the structure can easily be achieved by varying
the strips and plates of each of the six pyramids making up a unit cell or by compressing the unit cell
unevenly along different principal axes.

22.5 Three-Dimensional Vectorial Isotropic Metamaterial
Based on the Rotated TLM Method

While Section . discusses scalar D metamaterial structures, this section treats a vectorial struc-
ture, i.e., one in which two polarizations independently propagate. The foundation of this structure
is the symmetric condensed-node TLM representation of discrete electrodynamics, which contains
all the information of the discretized Maxwell’s equations [,–]: Space is discretized into cubes,
and at each face the tangential fields are sampled at the center of each cube surface. Hence each
face has two electrical and two magnetic field components, which can be formulated as two inci-
dent and two scattered waves per cubic face [,,]. The scattering can therefore be described as
a -port depicted in Figure .. It can be represented by a scattering matrix S; its structure is well
known and was, e.g., derived by the method of moments []. In Ref. [] it was also shown that

10

9

12

11

1

2
3

4

6

5

8

7

z

x

y

FIGURE . General space-discretizing TLM -port. (From Zedler, M., Caloz, C., and Russer, P., IEEE Trans.
Microw. Theory Technol., IMS Special Issue, (), , . With permission.)
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using only symmetry, reciprocity, and losslessness considerations one can also derive the symmetric
condensed-node TLM scattering matrix

S = exp(− j ϕ)
⎡⎢⎢⎢⎢⎢⎣

 SA ST
A

ST
A  SA

SA ST
A 

⎤⎥⎥⎥⎥⎥⎦
with SA =




⎡⎢⎢⎢⎢⎢⎢⎢⎣

   −
  − 
   
   

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (.)

In order to be able to synthesize a metamaterial, i.e., a physical realization of the computing scheme,
a transformation of the symmetric condensed-node TLM scheme needs to be applied. The -port cell
can be decomposed into two independent six-ports S̃ and−S̃ by the coordinate transformation [,]

PT ⋅ S ⋅ P = [S̃ 
 −S̃] P =

⎡⎢⎢⎢⎢⎢⎣

Pa   Pb  
 Pa   Pb 
  Pa   Pb

⎤⎥⎥⎥⎥⎥⎦
(.a)

PT
a = [

  − 
   ] PT

b = [
   
   −] . (.b)

This corresponds to a rotation of the polarizations by °, as shown in Figure .. The transformed
scattering matrix is given by

S̃ = exp(− j ϕ)
⎡⎢⎢⎢⎢⎢⎣

 S̃ S̃T


S̃T
  S̃

S̃ S̃T
 

⎤⎥⎥⎥⎥⎥⎦
S̃ = 

 [
− −

 ] . (.)

In this contribution the two independent, half-cell six-ports described by S̃ and −S̃ are called “A” and
“Ā” cells, respectively. A TLM cell that represents both polarizations at each surface can be established
by either nesting the six-port structures of the “A” and “Ā” half-cells or by a cluster of eight half-cells
with alternating “A” and “Ā” cells [].

An elementary metamaterial cell may be conceived on the basis of rotated TLM cells, by inserting
reactances in series to the six cell ports and four admittances connecting the series reactances at a

‘‘A”-cell

z
x

y

‘‘A’’-cell

1

5

4

2
1

5

4

2

3

6

3

6

FIGURE . Rotated TLM half unit cells implementing S̃. The complete unit cell is constituted by the merging of
both half-cells. (From Zedler, M. and Russer, P., International Microwave Symposium Digest, San Francisco, CA, ,
pp. –. With permission.)
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FIGURE . Lumped element model of a rotated TLM half unit cell implementing the structure shown in
Figure .. Shunt elements Y are shown in gray, and series elements denoted are by Z . (From Zedler, M., Caloz,
C., and Russer, P., IEEE Trans. Microw. Theory Technol., IMS Special Issue, (), , . With permission.)

central node, as shown in Figure .. The formal proof of equivalence between this topology and
the topology required by Equation . was given in Ref. []. Further details can be found in Ref. [].

22.5.1 Dispersion Behavior

The dispersion relation of a rotated TLM metamaterial consisting of only “A”-cells is []


 ( − cos χ cos η − cos χ cos ξ − cos η cos ξ) = ( + ZY) . (.)

For small wave numbers the left-hand side of Equation . simplifies to (χ + η + ξ)/, i.e.,
the metamaterial is isotropic. Comparing the dispersion relation of Equation . with that of a
D/D/scalar D metamaterial (Equations .a, ., and .), one notes that the right-hand side
in the rotated TLM case contains terms Z and Y , which leads to a doubling of the number of
frequency bands. The Bloch impedance of the rotated TLM cell equals that of the D double-Drude
(CRLH) cell

ZBloch =
√

ZY−


√
 + ZY . (.)

This shows that there is no angular dispersion, as Equation . is independent on χ, η, and ξ. This
property is unique to D TLM and FDTD schemes and is not achievable with scalar discretizations.

Using a double-Drude unit cell (see Section ...) one obtains the unit cell for the rotated
TLM metamaterial as shown in Figure .. Its dispersion diagram is depicted in Figure . for
the resonance-balanced and resonance-unbalanced cases, yielding two left-handed and two right-
handed bands. A discussion of the frequency behavior of the Bloch impedance for these two cases
can be found in Ref. [].
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FIGURE . Double-Drude-rotated TLM metamaterial half unit cell. (From Zedler, M. and Russer, P., Interna-
tional Microwave Symposium Digest, San Francisco, CA, , pp. –. With permission.)
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FIGURE . Dispersion diagram for the D, double-Drude-rotated, TLM metamaterial for the balanced-
resonance case (solid line) and unbalanced-resonance (dashed line) case. (From Zedler, M., Caloz, C., and
Russer, P., IEEE Trans. Microw. Theory Technol., IMS Special Issue, (), , . With permission.)

22.5.2 Physical Realization of the Rotated TLM Metamaterial

The proposed realization of the double-Drude-rotated, TLM metamaterial, corresponding to the
lumped element network of Figure ., is depicted in Figure .. Shunt inductors are imple-
mented by wires connected to a common center point, and series capacitors are implemented by
metal–insulator–metal plates located between adjacent unit cells. Figure .a shows the two half
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x y

z

1st ‘‘A’’-cell 2nd ‘‘A’’-cell

(a) (b)

FIGURE . D, double-Drude-rotated, TLM metamaterial realization. (a) “A”-type half unit cells and (b) a com-
plete × ×  structure. (From Zedler, M., Caloz, C., and Russer, P., IEEE Trans. Microw. Theory Technol., IMS Special
Issue, (), , . With permission.)

unit cells in the proper orientation to be then nested. Figure .(b) shows a cluster of  ×  × 
nested unit cells.

22.5.3 Parasitic Modes

Unconnected metamaterial structures may allow the wave propagation of an additional mode within
the structure, usually referred to as the perturbed plane wave mode [] and sometimes also referred
to as “acoustic branch” due to analogy with solid-state physics. In order to avoid mode splitting and
coupling to this parasitic mode, the unit cell can either be scaled appropriately to have the metama-
terial mode and the parasitic mode reside at different frequencies [,]. In D configurations it is
also possible to inhibit the parasitic mode by appropriate modifications to the unit cell [].

22.5.4 Signal Propagation through the Cell

The unit cell is a balanced structure: It has a virtual ground that is a zero voltage point due to the
symmetry of the structure rather than due to physical connection to a physical ground. It consists of
two nested cells, the two cells shown in Figure .a. These two cells are electromagnetically decou-
pled in the sense that they support electromagnetic waves of independent orthogonal polarizations
in each of the directions of space, x, y, and z.

To explain wave propagation through the structure, let us consider in some detail the example of
a −xz-polarized (electric field along the z = −x direction) plane (transverse) wave propagating along
the y-direction and incident on the structure at the level of a unit cell.

Consider the first “A” half-cell (left-hand side of Figure .a), displayed in Figure .. In this
cell, the incident plane wave produces a symmetric voltage difference (+V and −V ) between the
two patches at the input face of the half-cell (left-hand side of the structure in Figure .a). These
two patches form capacitors, with the patches printed on the opposite faces of the thin substrate
slabs, which store electric energy and provide the required series capacitance CL corresponding to
negative permeability. Due to these capacitors, the incident transverse electric field becomes locally
longitudinal between the two plates of the capacitors. The voltages at the plates inside the structure
are V ′ = V − ZI, where I is the current flowing into the incident port. From this point, the wave
“sees” the wire environment. Due to the symmetry of the structure and the symmetrical incident
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FIGURE . Signal Propagation through the cell. (From Zedler, M., Caloz, C., and Russer, P., IEEE Trans. Microw.
Theory Technol., IMS Special Issue, (), , . With permission.)

voltages, propagation is prohibited along the straight (y) direction, since the field is short-circuited
at the center node (virtual ground), consistently with the fact that the scattering parameter s̃ is zero
in Equation ..

Although propagation in the axial direction is not allowed, off-axis propagation occurs through
the four lateral faces of the unit cell, along the positive and negative x- and z-directions. Figure .
shows how this is realized in the D cell as a result of the differential voltages and symmetry of the
structure, which lead to the voltage difference ±V ′ at the off-axis ports. Since the wave is deflected
toward the four lateral faces in the unit cell, the magnetic flux circulates around the two wire branches
extending from the corner voltage points to the virtual ground point, which corresponds to magnetic
energy storage and generates the required shunt inductance LL corresponding to negative permit-
tivity. Note that the directions of the fields indicated in Figure . correspond to the other four
independent scattering parameters of Equation ..

Consider next the second “A” half-cell (right-hand side of Figure .a). In this cell, the
incident −xz-polarized electric field does not encounter any metallization at the input plane of the
cell, which is therefore transparent to it. The plates with the same polarization at the output plane
belong to the next “A” half-cell.

When many cells are nested, “A-A” are cascaded along the three directions of space. Plane wave
propagation is obtained by meander-like scattering between unit cells, which is in agreement with
the scattering-type propagation in the numerical technique TLM.

22.5.5 Experimental Verification

The proposed unit cell prototype was fabricated as shown in Figure .. Plate capacitors are realized
in PCB technology with patches on both sides of the substrate, which ensures accurate CL values.
Inductors are realized by rigid wires. The unit cell edge length is  cm, the substrate is Rogers B
 mil, and the left-handed values are LL ≈ . nH and CL ≈ . pF.

This unit cell prototype was measured using a two-port vector network analyzer connected via
baluns (microstrip to parallel-strip transitions) to two arbitrary nonaligned ports, whereas the
remaining ports are terminated with ZL =  Ω resistors. Note that this excitation corresponds
to wave propagation through the structure, because the rotated TLM structure is a network with
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FIGURE . D double-Drude-rotated TLM unit cell with the input and output baluns required for the differential
excitation of the measurement setup. (From Zedler, M., Caloz, C., and Russer, P., IEEE Trans. Microw. Theory Technol.,
IMS Special Issue, (), , . With permission.)
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FIGURE . Dispersion diagram for propagation along a principal axis extracted from a measurement of the
setup shown in Figure .. Solid line: measurements, dashed line: circuit simulator results using lumped elements
only. (From Zedler, M., Caloz, C., and Russer, P., IEEE Trans. Microw. Theory Technol., IMS Special Issue, (), ,
. With permission.)

well-defined ports. On the basis of the rotated TLM metamaterial, it suffices to verify experimentally
that the metamaterial cell indeed acts like the lumped circuit of Figure .. Under this assumption
the behavior of the entire structure can be inferred from the response of a single unit cell; details on
the extraction procedure can be found in Refs. [,].

A comparison of the measured dispersion relation and that of a lumped element circuit model
is depicted in Figure .. It shows good agreement, with circuit simulation results up to . GHz.
The expected two left-handed and two right-handed frequency bands are clearly visible, therefore
verifying the behavior of the rotated TLM metamaterial.

The interested reader can find further information on the rotated TLM metamaterial in Refs. [,
]; in the former full-wave simulation results of a finite slab consisting of  ×  ×  illuminated
by a Hertzian dipole are presented, the latter describes an efficient approach to simulate large-scale
structures containing “normal” materials and metamaterials.
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22.6 Fabrication of 3D Metamaterials

Three-dimensional metamaterials are challenging to fabricate; on one hand the unit cells are more
complex compared with the D and D case, and on the other hand the number of cells required
for a setup increases: Assuming ten metamaterial cells per wavelength and a structure size of five
wavelength, this yields  = ,  cells. In order to overcome these problems we present two
approaches: decomposition of the unit cell into polyhedrons and topology-invariant planarization.

22.6.1 Decomposition into Polyhedrons

Three-dimensional metamaterials proposed so far in the literature all use cubic cells to discretize
space [,–,]. These unit cells can be decomposed into polyhedrons [] so that all metal parts lie
on polyhedron surfaces. These structures can be fabricated with technologies such as (-component)-
injection molding [], D-molded interconnect device technology (D-MID) [], hot embossing
[], plasma activation and printing [], physical vapor deposition [], and laser direct structuring
[]. For prototyping D printers can be used. As shown subsequently, the polyhedrons are primarily
a mechanical supporting structure. Electric field penetration into the polyhedrons is low, making the
metamaterial behavior insensitive to substrate losses within the polyhedrons. The above mentioned
fabricational approaches limit the achievable cell size to the order of millimeters, but one may also
envision polyhedron decomposition for micro/nanostructuring.

In the following we present decomposition into polyhedrons for the rotated TLM structure [],
the Kron structure [], and the scalar D structure in series configuration (see Section .).

22.6.1.1 Rotated TLM Unit Cell

The unit cell depicted in Figure . can be decomposed into pyramids (see Figure .) and com-
pounds of pyramids (see Figures . through .). Each of these offer specific advantages and
disadvantages:

• A single pyramid offers the simplest casting mold (see Figure .).
• Two compound pyramids offer a simple casting mold and require solely planar metalliza-

tion techniques (see Figure .).

y

(e) (f)

xz z x

y

FIGURE . Decomposition of a rotated TLM unit cell into pyramids. Spacing between cells achieved through,
e.g., thin dielectric sheets and a mechanical press fit.
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FIGURE . Compound polyhedron consisting of two pyramids.

(j)

y

z x

(i)

FIGURE . Compound polyhedron consisting of three pyramids, yielding a mechanically self-aligning structure.

• Three compound pyramids forming a half-cell, offering a self-aligning structure when
two half-cells are set into each other (see Figure .).

• Merging half-cells to form a half-cell line (see Figure .), with intercell capacitive cou-
pling realized using capacitive coupling patches. The latter approach is described in detail
in Section ...
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z x

y

FIGURE . Half-cells as in Figure . merged to yield a half-cell line.

FIGURE . Several half-cell lines mechanically connected by dielectric element connected to form a half-cell
plane.

• Merging half-cell lines to half-cell planes, as shown in Figure .. In this figure the
additional dielectric elements compared with Figure . are shown in a darker shade
of gray. These extra elements serve only mechanical connection purposes.

• Inductive connections may be lay out as a meander to decrease the magnetic plasma
frequency (see Figure .).
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FIGURE . Variations of inductive connections.
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FIGURE . Pyramidal decomposition of the scalar D metamaterial cell in series configuration.

22.6.1.2 Scalar 3D Metamaterial Cell in Series Configuration

A physical realization of the scalar D metamaterial in series configuration is shown in Figure ..
This geometry has inversion symmetry and can be decomposed into pyramids. Different from the
rotated TLM structure, six pyramids forming a unit cell need to be assembled with a thin spacer in
order not to short cut the capacitive coupling.

22.6.1.3 Kron’s Unit Cell

Another vectorial metamaterial was proposed in Ref. [] which is based on Kron’s equivalent circuit
representation of free space []. The inverted configuration yielding left-handed behavior is shown
in Figure .a, and its physical realization is shown in Figure .b. Wires along the edges of the
unit cell implement inductors, which are interconnected by diagonal plate capacitors. Although this
unit cell is seemingly highly complicated, in fact a shift of the unit cell boundaries by half a cell along
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FIGURE . Decomposition of Kron’s cell into polyhedrons. (a) Kron’s cell-based metamaterial, (b) physical
implementation of Kron’s cell. Inductors along the edges implemented by wires and capacitive coupling between induc-
tors by diagonally oriented plate capacitors, (c) identical structure to Figure .b, but unit cell boundaries shifted
along all directions by half a cell, (d) decomposition of Kron’s unit cell elementary polyhedron consisting of two half
pyramids. (Reprinted from Grbic, A. and Eleftheriades, G., J. Appl. Phys., ,  –, . With permission.)

all directions yields the simpler appearing structure shown in Figure .c. This structure can be
decomposed into polyhedron as shown in Figure .d, which is a symmetrically cut octaeder. On
the cut face rests an inductive strip, connecting the tips of the half pyramids. The remaining faces of
the cut octaeder are metallized, leaving a gap between the half pyramids. Another approach is a fully
surface metallized octaeder with a drilled metallized hole connecting the tips.

22.6.2 Topology-Invariant Planarization

Although fully D fabrication, as proposed in Section .., offers the highest level of isotropy
and design flexibility, planar fabrication techniques are much more widespread. In Refs. [,,]
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FIGURE . Cross-sectional view of the planarized double-Drude-rotated TLM metamaterial. є: low permittiv-
ity; є: high permittivity; h as thin as possible. Vertical thick lines: buried via. Via distance dvia as small as possible. mi

denotes the metallization layers in the unit cell. If multiple cells are stacked then the adjacent top and bottom layers m

and m can be merged into one layer. (From Zedler, M., Caloz, C., and Russer, P., IEEE Trans. Microw. Theory Technol.,
IMS Special Issue, (), , . With permission.)

topology-invariant planarized geometries of the rotated TLM metamaterial were proposed and ana-
lyzed numerically as well as algebraically, yielding design guidelines for this geometry. These are
presented here and extended to also cover the novel scalar D structure described in Section ..

22.6.2.1 Rotated TLM Structure

Figure . shows the cross-sectional view of the planarized, rotated, TLM metamaterial cell.
Figure .a shows the corresponding metal layers. The layers m and m at the bottom and top
correspond to the patches in the cell corners in Figure .. Layer m is identical with layer m of
the overlying cell. Each of the four patches of the layers m and m, respectively, is continued into the
four neighboring cells at every corner. These patches produce the capacitive coupling with the neigh-
boring cells via the patches of layers m and m. In the layers m and m the strips are connected to
the patches with insets that increase the inductance. Together with the through-connections through
layers d and d these strips produce the required inductive coupling. The vertical capacitive coupling
is achieved through two series capacitances m → m → m′ (where the prime denotes the next unit
cell). In-plane capacitive coupling is achieved through two series capacitances m → m → m′.

An alternative configuration requiring no metal–insulator–metal patches is depicted in
Figure .b: Here the vertical capacitive coupling is m → m′. The in-plane capacitive coupling
is achieved by interdigital capacitors m → m′. In addition to the advantage of requiring less layers
per unit cell, this configuration also alleviates fabrication tolerances with respect to dielectric layer
thicknesses, as the two layers d/d are merged into one layer. This advantage comes at a cost; both
CL and LR of the vertical plate capacitors and the in-plane interdigital capacitors need to be carefully
matched.

22.6.2.2 Scalar 3D Metamaterial in Series Configuration

The network topology of the scalar D metamaterial in series configuration is shown in Figure ..
A planarized physical realization of this topology yielding Drude dispersion for the permeability and
permittivity is depicted in Figure .: Layer m provides the in-plane elements of the D scalar
series configuration (see also Figure .b). Black parts denote metallization, hatches denote inter-
digital capacitors, and red circles are connection points of vias. The stubs connecting to the edge
of the unit cell form half of the shunt inductance, IDC the series capacitance. Two vias located in
the bottom left connect to layer m, and the two vias in the top right connect to the above cell
layer m. In layer m vias connect to metal plates. These form together with plates in layer m two
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FIGURE . Exploded top view of the different metal layers for the structure of Figure .: (a) MIM capacitor
implementation and (b) interdigital capacitor implementation. (From Zedler, M., Caloz, C., and Russer, P., IEEE Trans.
Microw. Theory Technol., IMS Special Issue, (), , . With permission.)

series plate capacitors. In layer m inductive coupling is implemented by a thin strip, shown in red
for clarity. Metallic plates in layer m form a series capacitance with those in layer m toward the
next cell located below the current cell. There two vias connect to the next cell’s layer m in the
top right.

The shape of the metallic layers m , m, and m can be varied to tune the shunt inductance of
layer m and the vertical series capacitance. Thus together with the choice of layer dielectrics and
layer thicknesses, the anisotropy of the planarized structure can be well controlled.
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FIGURE . Top view of layer m/m of  ×  cells of the structure depicted in Figure .a. (From Zedler, M.,
Caloz, C., and Russer, P., IEEE Trans. Microw. Theory Technol., IMS Special Issue, (), , . With permission.)

FIGURE . Top view of layer m/m of × cells of the structure depicted in Figure .a. The coupling patches
provide the series capacitive coupling between in-plane adjacent cells. (From Zedler, M., Caloz, C., and Russer, P., IEEE
Trans. Microw. Theory Technol., IMS Special Issue, (), , . With permission.)
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FIGURE . Top view of layer m/m of  ×  cells of the structure depicted in Figure .b. (From Zedler, M.,
Caloz, C., and Russer, P., IEEE Trans. Microw. Theory Technol., IMS Special Issue, (), , . With permission.)
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FIGURE . Planarized realization of the scalar D metamaterial in series configuration.
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22.7 Conclusions and Outlook

In this chapter we presented a network-based topological framework for the systematic study of meta-
materials, derived from the assumption that metamaterials are compound structures implementing
dispersion.

It was shown that the synthesis of metamaterial structures can be subdivided into four steps:
topological analysis, choice of dispersion type, synthesis of physical realization, and last, group theo-
retical analysis. Structures presented so far in the literature are shown to be covered by this approach.
In addition a novel scalar (single polarization supporting) D metamaterial was derived using this
approach. A physical realization of the new topology with inversion symmetry and implementing
Drude dispersion for the permeability and permittivity was presented.

A vectorial, i.e., two polarizations supporting D isotropic metamaterial, was discussed. It was
derived from the topological analysis of the discretized D space supporting two polarizations, essen-
tially rederiving the TLM computational scheme and its network representation. A symmetrical
physical realization was synthesized and experimentally verified.

Last, fabrication aspects of D metamaterial structures were discussed. A polyhedron decom-
position approach and its application to the rotated TLM cell, the Kron cell, and the scalar series
configuration cell were presented. Using this decomposition scheme, D fabrication techniques and
rapid prototyping techniques can be used.

A second fabrication approach based on topology-invariant planarization was presented as an
alternative to polyhedral decomposition. Using the network topology of the unit cell, a physical real-
ization is synthesized, which offers compatibility with planar fabrication techniques at the price of
anisotropic behavior.

The theoretical framework and the fabricational approaches presented in this chapter allow one
to use the various applications proposed for D metamaterials, including imaging systems [] and
novel antenna concepts [,,]. The topology-based concept as well as the polyhedral decomposi-
tion and the topology-invariant planarization can be extended to achieve anisotropic graded material
parameters, enabling D, radar cross-section modifications [].
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23.1 Introduction

The research on negative refraction has considerably grown in the past several years, as extensively
discussed in this handbook and in recent books, special issues, and reviews [–]. This is mainly
due to the recent interest in the unconventional properties of composite “metamaterials” with both
negative permittivity and permeability, also known as left-handed (LH) or double-negative (DNG)
materials []. In particular, the theoretical possibility of subwavelength focusing and perfect lens-
ing has fostered this sudden increase in interest, starting from the seminal work of Pendry on this
topic []. It is clear how a major breakthrough in the metamaterial technology will be experienced
when these concepts are readily applied to the visible frequencies, for which subwavelength focusing
and imaging are primary applications [–].

In the microwave regime, negative-index metamaterials have been constructed in two distinct
ways: (a) by embedding arrays of metallic split-ring resonators (SRRs) and wires in a host medium
(see, e.g., []) and (b) by realizing loaded dual transmission lines with backward-wave behavior (see,
e.g., [,]). In both cases, some of the predicted anomalous properties of negative-index materials
have already been experimentally demonstrated in this regime of frequency.

In the near-infrared (IR) and visible regimes, however, synthesizing such LH materials poses rele-
vant challenges, mainly due to the fact that in these frequency regimes, the magnetic polarization due
to the microscopic molecular currents in a natural material tends to be negligible, and therefore, the
corresponding magnetic permeability in these frequency regimes approaches that of free space [].
The electric permittivity of materials, on the other hand, may become naturally resonant at these
frequencies, and a relatively wide range of plasmonic and polaritonic materials are known at THz,
IR, and visible frequencies [].

23-1
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In this sense, the straightforward scaling of the metallic SRR in order to induce a suitable resonant
permeability, as the first of the previous options for realizing negative permeability down to the opti-
cal wavelength, encounters related challenges []. In addition to the problems in nanofabrication
of ring or loop resonators and small gaps, it should be mentioned that the electric conductivity of
metals, upon which the resonance of SRR at microwave frequencies depends, behaves differently as
the frequency is increased in the IR and visible domains.

Similarly, loading optical nanotransmission lines with lumped inductors and capacitors at these
high frequencies may be limited by current technology, since the same conventional definition of
circuit elements practically loses its standard meaning at these frequencies, where the conduction
properties of materials are modified in such a way as to forbid the presence of a significant conduction
current flowing across the elements.

Following these issues, several novel ideas have been put forward by other researchers to achieve
LH materials in the IR and visible regimes. They include the possibility of using coupled plasmonic
parallel nanowires and nanoplates [–], coupled nanocones [], anisotropic waveguides [],
modified SRR in the near-IR region [–,], closely packed inclusions with negative permittivity
and their electrostatic resonances [], and defects in regular photonic band gap structures [].

Our group has also offered and developed various ideas, concepts, and proposals for overcom-
ing the current limitations in the realization of negative refraction at optical frequencies. One of
the ways we have proposed to realize optical metamaterials with negative permeability, and more
in general negative refraction, follows the techniques that employ resonant inclusions, proposing a
novel design of a macroinclusion in the shape of a loop (or ring) composed of properly arranged
nanoparticles, which may resemble the behavior of an SRR at these high frequencies. In this sense,
some theoretical results have been proposed in Refs. [,]. As a different way of realizing negative
refraction at visible frequencies, we have proposed to extend the concepts of loaded transmission
lines to the visible frequencies, envisioning backward-wave nanotransmission lines in the form
of plasmonic planar nanolayers [] and periodic arrays of nanoparticles in one [] and three
dimensions [].

All these solutions rely on, and may be explained in terms of, the nanocircuit paradigm, which we
have recently presented in Refs. [,] and properly extended in Ref. [–]. In the framework of
this paradigm, the role of conduction current Jc = σE (σ being the local material conductivity and
E the local electric field), which is at the basis of the functionalities of circuits at lower frequencies,
but which is less available at optical frequencies, may be replaced (or dominated) by the displacement
current Jd = jωεE (ε being the local permittivity, under an e jωt time convention). In this case, the role
of inductors and capacitors may be taken by nanoparticles with negative and positive real part of the
permittivity, respectively, whereas the role of “good” or “bad” conductors (connectors and insulators,
respectively) is taken by materials with large or near-zero permittivity, respectively. The flexibility in
design that optical materials may exhibit in their permittivity at IR and optical frequencies may be
exploited for tailoring the functionalities of nanocircuits. As we have extensively shown in our recent
articles, such concepts may be employed to realize the typical functions of circuit elements at IR and
optical frequencies, i.e., nanofiltering [], nanoguiding optical signals [], and loading and tuning
optical nanoantennas [].

As we review and discuss in the following sections, these same concepts may turn out to be essential
in understanding and explaining our ideas, concepts, and proposals for achieving negative refraction
at optical frequencies. This would allow us to draw some analogies among the different concepts that
we discuss in the following sections, as interpreted through nanocircuit concepts.

However, the distinctions among the different solutions we propose are evident, and their indi-
vidual limitations are related to the different ways in which they have been conceived. For instance,
when resonant nanoloops (i.e., nanorings) with dominant magnetic response are embedded in an
optical metamaterial, as described in Section ., some limitations in the bandwidth of opera-
tion are expected, similarly to the analogous drawbacks that SRR metamaterials show at microwave
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frequencies. These limitations may be overcome, or reduced, by employing the transmission-line
concepts, applied in Sections . and ., for which the operation, both in our concepts at optical
frequencies and in the microwave regime, shows wider bandwidth and more robustness to losses.
These features are described in more detail in the following sections of this chapter, underlining
analogies of and differences in these different techniques and providing insights into these concepts
in terms of our nanocircuit interpretation.

The results reviewed here may open interesting doors to the realization of LH metamaterials at
optical frequencies, with potential applications in imaging and nanooptics.

23.2 Nanocircuit Elements at IR and Optical Frequencies

Extending the concept of lumped circuit elements, i.e., capacitors, inductors, and resistors, to IR and
visible wavelengths, as already anticipated in the introduction, is possible in terms of our nanocircuit
paradigm [,]. Here, we review the main concepts associated with this theory, which would be
useful for the discussions in the following sections.

Following the results of Ref. [], an isolated nanoparticle illuminated by a uniform electric field
E may be regarded as a lumped nanocircuit element with complex impedance Znano, as depicted
schematically in Figure ..

Such nanoimpedance Znano may be defined, analogously to the classic concept of impedance in
circuit theory, as the ratio of the optical voltage V across the “ends” (or the “terminals”) of the nanoele-
ment and the total displacement current Ipol circulating across it. Such impedance is a fixed quantity,
depending only on the geometry of the particle and its constituent materials and possibly on the

E0

E0

Iimp Ipol

Znano

Ifringe

FIGURE . A nanoparticle illuminated by a uniform electric field E (thicker arrows) may be viewed [] as
a lumped impedance Znano excited by the impressed current generator Iimp and loaded with the fringe capacitance
associated with its fringe dipolar fields (thinner arrows). (From Alù, A., Salandrino, A., and Engheta, N., Opt. Exp.,
(), , October . Copyright () by the optical society of America.)
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orientation of the applied field in the case of nonsymmetric particles. Following the calculations
reported in Ref. [], we obtain, for a spherical nanoparticle, the expressions

Znano = (−iωεπR)−

Iimp = −iω (ε − ε) πR ∣E∣
Zfringe = (−iωπRε)− , (.)

where
ε is the nanosphere permittivity
R is the radius
ε is the background permittivity

This description is consistent with the circuital model of Figure ., and it implies that a nonplas-
monic (plasmonic) isolated nanoparticle may act as a lumped nanocapacitance (nanoinductance)
due to the positive (negative) sign of the real part of its permittivity (see Equation .). In this
analogy, the presence of material loss corresponds to a nanoresistor.

These concepts may be easily extended to a more complex shape for the nanoparticles, whose polar-
izability affects the expression and the isotropy of the corresponding impedance. The expressions for
an ellipsoid nanoparticle, for instance, have been evaluated in Ref. [].

In the case of isolated particles, the three basic lumped elements of any linear circuit, R, L, and
C, which are at the core of a complex circuit board, may therefore be considered available at IR and
optical frequencies following this paradigm due to the abundance of plasmonic and nonplasmonic
materials in these frequency regimes.

Clearly, however, the complexity of a full circuit board requires much more efforts than just estab-
lishing the nanocircuit theory for an isolated nanoparticle, particularly because, as Figure . shows,
the behavior of the lumped nanoelement is strictly related to the external dipolar fields induced by
the excitation. According to the discussion in the previous section, the displacement current flow-
ing across the element closes itself in the dipolar fields outside it, and this is very distinct from what
usually happens in a classic lumped circuit.

As a first attempt to generalize this theory to a more complex situation in which multiple nanocir-
cuit elements are closely put together, we developed an analytical model to take into account the
coupling among closely spaced nanoparticles. This may be rigorously done in terms of controlled
(i.e., “dependent”) generators, extending the circuit model in Figure . to an arbitrary configuration
of nanoparticles. For the case of two nanoparticles, the corresponding circuit scheme is reported in
Ref. []. Although viable, this technique has two main drawbacks: its inherent complexity, for which
the number of dependent sources would grow large when the closely spaced nanocircuit elements
grow in quantity, and the corresponding lack of intuitive functionality. The advantage of classic radio-
frequency (RF) circuits is in that the connections among different elements may be easily achieved
by metallic wires and thus “printed” on the circuit board, obtaining complex functionalities with a
simple application of standard circuit formulas.

As we anticipated in the introduction, however, the nanocircuit paradigm is based on the formal
analogy between the classic circuit theory and our nanocircuit paradigm, for which the conductivity
σ is conceptually substituted by the factor jωε, which takes into account the functional equiva-
lence between conduction and displacement currents. Where does the functional difference between
classic circuits and optical nanocircuits, which seems to make difficult the analysis of a complex
nanocircuit board, reside then? The answer is fairly straightforward: conventional background mate-
rials, i.e., free space or simple dielectrics, in classic circuits are inherently poorly conductive (σ ≃ )
with respect to the lumped elements, whereas in the analogous nanocircuit the background permit-
tivity is not necessarily different from that of the lumped elements that reside in the background
material. This implies that the displacement current may easily “flow” or “leak” anywhere in the
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nanocircuit board, coupling the elements that should not be necessarily coupled and not ensuring
good connection among elements that should be placed in a specific series or parallel combination.

To solve these issues, in the design of our nanocircuit boards, we introduced the presence of ε-near-
zero (ENZ) materials with the role of nanoinsulators, ε-very-large (EVL) materials with the role of
nanoconnectors [], and optical “shorting” nanowires for connecting relatively distant nanocircuit
elements with low voltage drops and phase delay [].

Moreover, we have fully envisioned the configurations for obtaining series and parallel combina-
tions of nanocircuit elements, which are different from the classic circuit theory and are strongly
affected by the orientation of the optical electric field vector with respect to the pair of elements. In
particular, two adjacent nanoparticles may be considered in “series” when the electric field is normal
to their common interface, so that the displacement current flowing in one element flows into the
adjacent one, as ensured by the boundary conditions, whereas they may be considered in “parallel”
if the electric field vector is parallel with their common interface, ensuring that the voltage drop at
their terminals is the same []. These conditions allow further degrees of freedom in the realization
of a nanocircuit board, with the possibility of modifying the functionality of the connection of two
or more elements by varying the polarization of the field. On the other hand, a wise use of nanoinsu-
lators and nanoconnectors allows the possibility of tailoring the desired connection among relatively
distant elements at will.

Figure ., as an example, shows the design of an interconnection between a lumped nanoin-
ductor and a lumped nanocapacitor. It is evident how the proper use of EVL and ENZ materials
allow us to confine the displacement current flow through the nanoelements, ensuring an oppositely
directed electric field at the resonance in the two series elements, as expected in an LC resonant series
(oppositely signed voltage drop across the elements and same current flow).

ENZ

EVL

FIGURE . An example of series interconnection between a lumped nanoinductor and a lumped nanocapacitor.
In this case, the proper use of connectors and insulators ensures a proper series connection whatever the polarization
of the impinging field. The figure shows the electric field distribution in the nanocircuit at the LC resonance.
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Combining all these results, we recently presented some designs for more complex functionalities,
to show the inherent possibility of nanofiltering at optical frequencies [] and of loading optical
nanoantennas for tuning and matching purposes []. In the next sections, using these tools, we
show how proper combinations of nanoinductors and nanocapacitors may constitute a viable way
to design negative-refractive metamaterials at optical frequencies and to interpret their anomalous
electromagnetic features.

23.3 Negative Permeability and DNG Metamaterials
at IR and Optical Frequencies

As mentioned in Section ., various groups have offered several different approaches to achieve neg-
ative refraction at IR and optical frequencies [–]. Here, we review our different method that relies
on the design of subwavelength nanoloops exhibiting a “pure” magnetic dipolar resonant response
and thus provide the possibility of having negative effective magnetic dipole moment, at optical fre-
quencies [,]. We highlight some of the inherent advantages of this geometry for the inclusion
compared with the other recent attempts to realize optical negative-refractive materials.

Our idea is based on the collective resonance of a circular array of plasmonic nanoparticles
arranged in a specific pattern (e.g., in a circular pattern) to form a single subwavelength “ring inclu-
sion.” As in the nanocircuits described in the previous section, in this nanoring the conventional
conduction current (as also in the SRR at microwave frequencies) does not produce the magnetic
dipole moment, but instead the plasmonic resonant feature of every nanoparticle induces a circu-
lating resonant “displacement” current around the nanoloop. Unlike the case of the conventional
metallic loops or SRRs at the microwave frequencies, here the size of this loop does not directly
influence the resonant frequency of the induced magnetic dipole moment, but rather the plas-
monic resonant frequency of each nanoparticle is the main determining factor for this resonance to
happen.

Consider the geometry depicted in Figure ., i.e., N identical nanoparticles with radius a
arranged to have their centers located symmetrically on a circle of radius R. The figure refers to two
different possible excitations of the array: a magnetic excitation with a uniform magnetic field at the
center of the loop (Figure .a) and an electric excitation (Figure .b). The nanospheres are small
compared with the wavelength, and they are characterized by a complex permittivity ε, whose real
part may be negative when plasmonic materials are employed, and a permeability equal to that of
free space μ. The material in which the particles are embedded has permittivity εb. Such a setup is
realistic at IR and optical frequencies within the limitations of current nanotechnology.

The electric and magnetic polarizabilities of this nanoloop may be extracted by evaluating its
response to the two different types of excitation. A local magnetic field, as in Figure .a, is in fact
expected to induce a magnetic response from the nanoloop, since the electric dipoles induced on
each particle are expected to cancel out their electric response for symmetry. On the other hand,
one expects to have a strong electric response to an electric excitation, and therefore the complex
response of the nanoloop may be conveniently described in terms of its complex electric and magnetic
polarizabilities. The details of our results can be found in Refs. [,].

The magnetic polarizability of the nanoloop is obtained by evaluating its response to a uniform
magnetic field excitation Himp = Himpẑ directed along the axis of the loop. Since we are assum-
ing that each nanosphere is small compared with the wavelength, we may conveniently describe its
electromagnetic behavior in terms of its electric polarizability αp. The hypothesis of describing the
electromagnetic interaction of the particles composing the loop only through their electric polar-
izability is justified by the subwavelength size of each of the particles and by the fact that they are
nonmagnetic at optical frequencies. This implies that each of the particles responds solely to the
local electric field Eloc impinging on it and not directly to Himp.
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H0

(a)

E0

(b)

x̂ x̂

ŷŷ

FIGURE . A circular array of equi-spaced nanospheres in the x–y plane excited by (a) a local time-varying mag-
netic field directed along z, (b) a local time-varying electric field directed along y. The vectors on each particle indicate
the induced electric dipole moments in the two cases. (From Alù, A., Salandrino, A., and Engheta, N., Opt. Exp., (),
, February .)

Integrating Maxwell equation ∇ × Eimp = − jωμHimp under the assumption of a uniform quasi-
static (but time-varying) magnetic field over the volume occupied by the loop and subwavelength
dimensions, we find that at the location of the particles the following relation holds:

Eimp =
− jωμRHimp


φ̂. (.)

Notice how Equation . derives the amplitude of the electric field impressed on each particle,
relating the magnetic response of the loop in its entirety to the local variation, i.e., the curl, of the
impressed electric field on each constituent of the nanoloop. This is consistent with the sketch in Fig-
ure .a. In Ref. [], we derived the same result as that in Equation . by launching a bunch of
plane waves, each impinging in the direction of one of the nanoparticles and with phases chosen in
such a way as to excite a local quasi-uniform magnetic field on the nanoloop. In the limit R ≪ λ,
which is required for employing the nanoloop as the basic inclusion for an optical metamaterial, the
results of these two approaches yield the same quantitative value.

It is interesting to note how Equation . relates the electric response of each of the nanoparticles
to the magnetic form of excitation—the first step to obtain the magnetic polarizability of the nanoloop
structure is by showing that the induced electric dipole moments on each particle collectively lead to
an overall magnetic effect. This is a clear consequence of tailoring the weak spatial dispersion, inher-
ent property of the nanoloop, to achieve at these high frequencies a nonnegligible magnetic response
from a nonmagnetic subwavelength inclusion. This is consistent with the more general discussion on
the magnetic response in optical metamaterials provided in Ref. [].

As formally derived in Ref. [] and consistent with Equation ., each of the nanoparticles com-
posing the loop is excited in this case by an impressed electric field directed along the tangent to the
loop and proportional to the uniform magnetic field on the loop. Owing to the symmetry of geometry
and excitation, the electric dipoles induced over the particles are also directed along φ̂, as sketched in
Figure .a. The induced dipole amplitude is proportional (through the proportionality factor αp)
to the local electric field at each particle when its self-polarization contribution is not considered,
which is Eloc = Eimp + ∑ j≠ j′ E j j′ = Elocφ̂. In this expression E j j′ is the electric field induced by the
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dipole j on the position where the particle j′ is placed. Each one of the N particles, therefore, can be
represented as an effective dipole moment p = pφ̂ = αpElocφ̂. Since E j j′ = pQ j j′ ⋅ φ̂(r j′), where

Q j j′ =
e− jkb ∣r j−r j′ ∣

πεb ∣r j − r j′ ∣

⎧⎪⎪⎨⎪⎪⎩
k

b [I − D j j′] +
⎛
⎝



∣r j − r j′ ∣
 + jkb

∣r j − r j′ ∣
⎞
⎠
[D j j′ − I]

⎫⎪⎪⎬⎪⎪⎭
(.)

is the D dyadic Green’s function as usually defined [], with D j j′ =
r j−r j′

∣r j−r j′ ∣

r j−r j′

∣r j−r j′ ∣
, I being the identity

dyadic, kb = ω√εbμ = π/λb, and φ̂(r j′) is the spherical unit vector φ̂ at the location r j′ , and the
final closed-form expression for p is given by

p =
− jωμRHimp/

α−
p −

N−
∑
j≠ j′

Q j j′ ⋅ φ̂ (r j) ⋅ φ̂ (r j′)
. (.)

As descried in detail in Ref. [], the quasi-static multipole expansion of the total current density
J = jωp∑N−

j= φ̂(r j)δ(r − r j) induced by this form of excitation gives rise to electric and magnetic
multipoles of order n with the following unusual properties:

• Electric multipoles are zero for any order n ≤ N − .
• Amplitude of the residual, nonvanishing, higher-order, electric multipoles is proportional

to Rn−.
• The electric multipoles of order N +  are identically zero, and for even N , all the odd

electric multipoles vanish.
• Magnetic multipoles are zero for any order n ≤ N .
• Odd magnetic multipoles are always nonzero, proportional to NRn .
• Even magnetic multipoles are all identically zero when N is even.

In particular, the dominant magnetic dipole moment, the one that is of more interest for the present
discussion, has the amplitude

m()H = jωpNR


ẑ. (.)

The result represented by Equation ., consistent with the derivations in Refs. [,], confirms
analytically to which extent the magnetic response of the nanoloop may be considered effectively a
magnetic dipolar response when its geometrical parameters are varied. It is clear that, by increasing
N and reducing R, more multipoles may be canceled or diminished, and therefore, the ratio between
the nonvanishing multipole amplitudes and the magnetic dipole moment may be made sufficiently
small to be neglected.

In particular, it is worth underlining that when the particles related to the nanoloop are only two, as
in the cases usually considered in the literature, the field scattered by this nanopair is dominated not
only by the magnetic dipole moment, with the expression given by Equation ., i.e., m()H = jωpRẑ,
but also by an electric quadrupole moment p()H = pR(x̂ŷ + ŷx̂), as expected from the geometry.
The two contributions are of the same order with respect to R, and therefore, the quadrupolar con-
tribution cannot be reduced by changing the size of the nanoloop. This should be clearly taken into
account when such pairs are embedded in a bulk metamaterial, as many recent articles have proposed
in realizing optical metamaterials [–,–]. As we show in the following paragraph, this directly
affects the magnetic response of the metamaterial by introducing extra scattering losses.

Following the previous analysis, it may be underlined that when the number of particles is low
and/or the loop is not electrically very small, so that higher-order multipoles weigh significantly on
the purity of the magnetic dipole response of the inclusion, it is preferable to employ an even number
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of particles, rather than an odd one—a choice that cancels the contribution from even magnetic and
odd electric multipoles.

The corresponding magnetic polarizability αm of the nanoloop of Figure ., which satisfies the
relation m()H = αmHimp, reads, after comparing Equations . and .:

α−
m = εb

N (kbR)

⎡⎢⎢⎢⎢⎣
α−

p −
N−

∑
j≠ j′

Q j j′ ⋅ φ̂ (r j) ⋅ φ̂ (r j′)
⎤⎥⎥⎥⎥⎦

. (.)

It is interesting to underline how a careful consideration of the imaginary part of this expression
αmloss, which should be properly taken into account to design an inclusion robust to absorption and
radiation losses, gives rise to the following expression []:

αmloss =
εbαloss

N (kbR) + k
b

π
+ o (kbR) for N = ,

αmloss =
εbαloss

N (kbR) + o (kbR) for N > , (.)

where αloss = Im [α−
p ], taking into account the material absorption in each particle.

This expression shows how intrinsically the pair of nanoparticles is characterized by higher radi-
ation losses, represented by the contribution k

b/π, due to the quadrupole radiation, whereas the
robustness to absorption can be improved in both cases with a larger loop or a larger number of
nanoparticles.

A resonant magnetic dipole moment may be obtained when Re [α−
m ] = , which happens near

the resonant frequency of each of the particle composing the nanoloop (arising at Re [α−
p ] = ),

but slightly shifted by the coupling term represented by the summation in Equation .. It is worth
emphasizing that this magnetic resonance depends mainly on the resonant characteristics of the plas-
monic particles composing the loop, rather than on the loop geometry, implying that a subwavelength
magnetic resonance can, in principle, be achieved independently of the total size of the nanoloop.
This is of particular importance for synthesizing a subwavelength inclusion to be embedded in a
metamaterial for homogenization purposes.

We can interpret this anomalously resonant magnetic response in terms of the nanocircuit
paradigm discussed in the previous section: in order to have each nanoparticle near its reso-
nance, we certainly need to have plasmonic nanoparticles composing the loop in this subwavelength
regime. The gaps between the two neighboring nanoparticles, which are essential in this geometry,
provide “series” nanocapacitances, due to the specific orientation of the electric field, that may pro-
vide a lumped resonance with the nanoinductance of the plasmonic nanoparticles. It is clear how,
under proper conditions, the nanoloop may enter into resonance independently of the size of the
nanoring, in some ways analogous to a resonant SRR. Here, however, the circulating displacement
current is responsible for such resonance, rather than the conduction current circulating in the SRR
geometry.

In order to verify numerically these predictions and the applicability of this circuit interpreta-
tion, we conducted some numerical simulations for this problem, using CST Microwave Studio [].
Figure . reports some plots of our numerical simulation, which clearly shows the resonant behav-
ior of a nanoring of four particles at the resonant frequency. The figure shows the field distributions
for a -nanosphere ring, for the same geometry simulated analytically in Ref. [] (Figure .b) at the
frequency of  THz. In this case, the structure has been excited by two counterpropagating plane
waves with frequency near the resonant frequency predicted by our analytical models (the slight shift
between this frequency in our full-wave simulations, and the resonant frequency predicted by our
analytical model is clearly due to the fact that the spheres, due to their close proximity, may inter-
act in a slightly more complex way than just with a simple dipolar field contribution. However, our
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FIGURE . Field distributions for a magnetic excitation of a nanoring with geometry following Ref. [], Fig-
ure .b, i.e., R =  nm, a =  nm, N = , and Nd = − nm for silver particles with realistic permittivity
dispersion. Parts (a) through (e) are described in the text.
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model works reasonably well and accurately predicts the magnetic resonance verified here with full-
wave simulations). Figure .a shows the electric energy density, which relates to the distribution of
the “displacement” current around the ring, confirming the phenomenon that our analytical model
predicts. The following figures depict for the same geometry the distribution of the instantaneous
electric field vector (Figure .b), of the magnetic field amplitude (Figure .c), of the magnetic
energy density (Figure .d), and of the scattering radiation pattern (Figure .e). All these plots
confirm numerically the analytical predictions of a strong magnetic resonance present around the
nanoloop, caused by a circulating resonant displacement current, and the circuit interpretation that
we just provided.

Once the magnetic polarizability of the nanoloop is evaluated, the effective permeability of a
composite made of an infinite D lattice of such inclusions can be calculated with the classic
Clausius–Mosotti homogenization formulas. For instance, in the case of a regular cubic lattice,
whose periodicity compensates the radiation losses due to the magnetic dipole radiation from each
nanoloop, the effective permeability is given by

μ(p)
eff = μ

⎛
⎝

 + {N−
d [α−

m + i ( k


π
)] − 


}
−⎞
⎠

, (.)

with Nd being the density of loops in the lattice.
The electric response of the nanoinclusion of Figure . may be calculated by exciting the inclu-

sion with a “quasi-uniform” time-varying electric field, i.e., with the excitation of Figure .b. In
order to do that, in this case, we may launch two oppositely directed plane waves that sum their elec-
tric fields in phase at the center of the nanoloop, canceling their magnetic field contribution at that
point. In this case, we are able to isolate the electric response of the nanoloop for evaluating its electric
polarizability. The composed excitation, following, Ref. [], has the expression

E = E cos (kbx) ŷ

H = − jE sin(kb x)
ηb

ẑ. (.)

For small loops, the induced total electric dipole moment is proportional to the electric polariz-
ability αy

ee of the loop. In the cases in which there is a lack of symmetry, the loop exhibits an
anisotropic response for its electric polarizability even in the x–y plane. By increasing the number
N of nanoparticles composing the loop, however, this planar anisotropy diminishes.

The dipole moment induced on the nth sphere may be evaluated through the vectorial relation:

pn = αEloc = α [E (rn) +
N

∑
l≠n

Qln ⋅ pl] . (.)

A system of N (Equation .), for n = ⋯N , may be solved numerically to derive the induced
dipole moments pn , as proposed in Ref. []. In the limit kbR ≪ , the multipole expansion of such
a distribution is dominated by the effective dipole moment p()E = ∑N

n= pn , which, due to the sym-
metry, is parallel to the applied field E. The induced dipole distribution for this case is sketched in
Figure .b. The related polarizability factor αy

ee, which satisfies the relation pE = αy
eeE(), may be

straightforwardly calculated numerically, and analogous results may be obtained for the quantity αx
ee,

for an electric field excitation polarized along x̂. The two quantities are expected to be the same for N
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as a multiple of four and increasingly more similar for higher values of N . The effective permittivity
for the bulk medium is given by Clausius–Mosotti expressions analogous to Equation ..

Several numerical simulations for this nanoloop geometry have been reported in Refs. [,],
showing how a metamaterial composed of regular collections of nanoloops may support effective
negative permeability and permeability. A judicious design for obtaining the resonant response
for the two parameters in the same range of frequencies may yield a negative index of refrac-
tion at optical frequencies. Here, we report some additional numerical simulations that under-
line the functionalities of this negative-index optical metamaterial and highlight how a vari-
ation in the background substrate may be employed to tune the resonance frequency of the
metamaterial.

Figure ., as a first example, shows the dispersion of the effective parameters for a regular
cubic lattice with the number density Nd = ()− nm of nanoloops of radius R =  nm made
of silver nanospheres with radius a =  nm in a glass (SiO) background medium. In the calcula-
tions, realistic ohmic losses and frequency dispersion of the silver have been considered, following

a Drude model with εAg = ε (ε
∞
− f 

p

f ( f− jγ)) and ε
∞

= , fp =  THz, γ = . THz, and

f = ω/π. The number of nanoparticles per loop in this geometry is N = , which is the mini-
mum number to achieve cancellation of the quadrupolar electric moment with an even number of
particles. An advantage of few particles per loop, as in this case, resides in the possibility of mak-
ing the nanoparticles relatively large for a given nanoloop size, which increases the robustness to
losses.

In particular, the figure shows how we can achieve simultaneously the resonant electric and mag-
netic polarizability for the nanoloop of Figure ., obtaining a negative index of refraction at optical
frequencies with realistic materials. It is evident how the resonance of the effective permeability is
shifted by the mutual coupling between the particles composing the loop, as predicted by Equa-
tion ., and the magnetic resonance is drastically enhanced by an increase in the number of
particles composing the loop. Employing just a pair of particles for each loop in this geometry would
create a weak magnetic resonance around the antisymmetric resonant frequency of the pair, but the
effective permeability would not yield negative values for the parameters we considered above and
would be mainly dominated by losses (as a sum of the ohmic losses of silver and the scattering losses
due to quadrupole radiation from each pair). If the number of particles per loop is increased, the
situation drastically changes and the sensitivity to losses is reduced, together with a corresponding
increase in the frequency range where the effective permeability of the composite may have a negative
real part.

Figure . shows a similar geometry, but obtained with silver nanoparticles in a silicon car-
bide background, in order to shift the resonance frequency downwards (in this case, in fact, εSiC =
.ε). The other parameters for this case are Nd = − nm, R =  nm, a = . nm, and N = .

It is interesting to see how the resonant frequency of the nanoring and, consequently, the region
of negative refraction for the metamaterial may be tuned by varying the background permittivity for
the same material composing the ring.

The metamaterials studied numerically in Figures . and ., as some of those designed in
Refs. [,], show a range of visible optical frequencies over which both effective permittivity and
permeability simultaneously have negative real parts. This happens due to the fact that the small
number of nanospheres per loop (four in the example) does not sensibly shift the resonance frequency
for the magnetic permeability. Therefore, the two resonances might happen around the plasmonic
resonance of the single nanospheres (around ε = −εb for the sphere). This overlapping of the two
resonances provides us with the possibility of synthesizing an effective DNG (or LH) material in this
frequency regime. We notice how there is a range of frequency in which this metamaterial may have
negative refraction with reasonably low losses.
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FIGURE . Magnetic (a) and electric (b) polarizability of a single nanoloop and effective permeability (c),
permittivity (d), and index of refraction (e) for a metamaterial with Nd = − nm, R =  nm, a =  nm, and N = .

23.4 Optical Nanotransmission Lines as One-Dimensional and
Two-Dimensional Photonic Metamaterials with Positive
or Negative Index of Refraction

Although the technique described in the previous section may indeed provide an interesting way to
achieve negative index of refraction at optical frequencies, such behavior may be limited in bandwidth

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

23-14 Theory and Phenomena of Metamaterials

2.5
Re (μ)

Re (ε)
Im (ε)

Im (μ)2.0

1.5

1.0

0.5

0.0

8

Real part
Imaginary part

6

4

2

0

–0.5

–2

–4

–20

–10

0

Ef
fe

ct
ive

 re
lat

ive
 p

er
m

itt
ivi

ty
 ε/

ε g

Ef
fe

ct
ive

 re
lat

ive
 p

er
m

ea
bi

lit
y μ

/μ
0

Ef
fe

ct
ive

 re
lat

ive
 in

de
x o

f r
ef

ra
ct

io
n 

n/
n g

10

20

30

300 350 400

Frequency (THz)

Frequency (THz)
500450 550 600

300 350 400 500450 550 600

FIGURE . Effective constitutive parameters for a metamaterial made of silver nanorings embedded in a SiC
background. In this case, Nd = − nm, R =  nm, a = . nm, and N = .

and robustness to losses by the inherent resonances of the small nanoparticles involved. In order to
overcome these limitations, we have investigated the possibility of applying the transmission-line
concepts to the optical frequencies, as highlighted in Section ., which may avoid the necessity to
rely on individual nanoresonances.

Extending the findings of the transmission-line metamaterials at microwave frequencies devel-
oped in the groups of Eleftheriades, Caloz, and Itoh [,], the goal is to design an LH transmission
line supporting backward propagation at optical frequencies. The circuit model of a “right-handed
(RH)” (standard) transmission line, depicted in Figure . (top row, left column), consists of the
cascade of distributed series inductors and shunt capacitors. It is well known that interchanging
the role of inductors and capacitors, one may synthesize an LH transmission line, as depicted in
Figure . (top row, right column). This circuit supports LH (backward-wave) propagation, which
constitutes an alternative route to design negative-refraction metamaterials. By cascading nanoinduc-
tors and nanocapacitors, one may have an analogous behavior at optical frequencies, as Figure .
(middle row) suggests. Consistent with what we have shown in the previous section, the role of the
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FIGURE . Synthesis of RH and LH nanotransmission lines at optical frequencies. Top row, conventional cir-
cuit model of RH and LH lines using distributed inductors and capacitors; middle row, plasmonic and nonplasmonic
nanoparticles may play the role of nanoinductors and nanocapacitors; bottom row, closely packed nanoparticles, in the
limit, become plasmonic and dielectric layers, which may be employed in a way similar to that of a nanotransmission
line. A sketch of the voltage (V) and current (I) symbols along the lines is also depicted. (From Alù, A., Engheta, N.,
J. Opt. Soc. Am. B, (), , .)

nanocapacitors may be even taken by the background gaps between plasmonic particles, provided
that the electric field has the correct orientation. This is consistent with what we found in our exact
analysis of arrays of plasmonic nanoparticles [], which we review in detail in the next section.

In this section, however, we analyze a simpler situation, considering the fact that arrays of closely
spaced nanoparticles eventually resemble stacks of planar layers of dielectric and plasmonic materials
(bottom row in Figure .), which correspond to the simple planar geometry. As we have reported
extensively in Ref. [], under the proper polarization of the field, such stacks of plasmonic and non-
plasmonic materials may constitute effective, layered, negative-refractive, optical metamaterials in
the form of LH nanotransmission lines.

The geometry in the last row of Figure . may be easily analyzed theoretically, as in Ref. []. If we
consider a planar slab with permittivity εin(ω) and thickness d sandwiched between two half-spaces
with permittivity εout(ω), the guided modes of this structure propagating along the x direction with
a factor e− jβx may be split into even and odd modes with respect to the transverse variation along
the y axis and into transverse electric (TE) and transverse magnetic (TM) modes with respect to the
direction of propagation. In this case, all quantities are therefore independent of the z variable.

The dispersion relations for such modes, as derived in Ref. [], are given by

even∶ tanh [
√

β − ωεinμ
d

] = − εin

εout

√
β − ωεoutμ√
β − ωεinμ

odd∶ coth [
√

β − ωεinμ
d

] = − εin

εout

√
β − ωεoutμ√
β − ωεinμ

. (.)

The TE mode equations may be easily obtained by duality.
In the limit at which the thickness of the inner layer is small compared with the wavelength (this is

an important requirement to apply the “quasi-static” analysis required for the nanocircuit interpre-
tation), this structure still supports a guided mode, even if its wave number may become very high,
corresponding to a slow-mode operation. In this case, approximate forms for the TM-guided wave
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number are given by the following formulas:

even∶ ∣β∣ = − 
d

tanh− εin

εout

odd∶ ∣β∣ = − 
d

coth− εin

εout
. (.)

We note from Equation . that, since d >  and β is real, in this subwavelength lossless case
the constraint − < εin/εout <  for even modes and εin/εout < − for odd ones holds. Even in
the case of moderate ohmic losses (of interest here), similar considerations hold on the real part
of the permittivities involved. This implies that in any case it is necessary to involve in this setup both
plasmonic and nonplasmonic materials to achieve subdiffraction propagation in the sense described
in Figure ..

As far as the power flow along these layers is concerned, it may be rigorously shown, as reported
in Ref. [], that the guided modes support an anomalous power flow composed of two oppositely
directed power channels in the oppositely signed materials composing the waveguide. For positive
β, i.e., phase velocity parallel to the positive x axis, it may be shown that sgn Pout = sgn εout and
sgn Pin = sgn εin, where Pin and Pout are, respectively, the integrated power flows inside and outside
the slab. This shows how the two fluxes flow in opposite directions (since sgn εin = −sgn εout).

The net power flux evidently consists of the algebraic sum Pnet = Pin + Pout, which in magnitude is
less than max (∣Pin∣ , ∣Pout ∣). For positive β, when we get Pnet > , the corresponding mode is a forward
mode, since its phase velocity is parallel with the net power flow (and thus with its group velocity); if
instead Pnet < , we are dealing with a backward mode, with antiparallel phase and group velocities.

As rigorously shown in Ref. [], a positive group velocity, and therefore a forward mode, is
obtained when εENG < −ε, and a backward mode is supported for −ε < εENG <  for both
even and odd modes. This is justified by the fact that when ∣εENG∣ > ε, the mode is less dis-
tributed in the epsilon-negative (ENG) material and more “available” in the double-positive (DPS)
layer, independent of their relative position. As a result, the negative power flow present in the ENG
material is also less than the positive one in the DPS and the net power remains positive, i.e., par-
allel to the phase velocity. For backward modes, the situation is reversed, since ∣εENG∣ < ε. This
interesting feature confirms our heuristic prediction based on nanocircuit analogy of Figure .,
following which we envisioned this planar geometry. In particular, the transmission-line model of
Figure . holds directly for the even mode, due to the electric field polarization consistent with
the voltage and current orientations in the figure, since the electric field polarization in this mode
places in “series” configuration the outer layer and in “parallel” the inner layer. In this case, we
indeed require − < εin/εout < , and therefore, a metal–insulator–metal waveguide would have
εENG < −ε, and therefore, a forward-wave behavior as predicted by Figure .a, whereas an
insulator–metal–insulator waveguide will have −ε < εENG < , and therefore, a backward behav-
ior, as in Figure .b. As described in Ref. [], and consistent with the slow-wave features of these
modes, in these subwavelength structures the field distributions are very much concentrated around
the interfaces y = ±d/, in some sense indeed resembling a transmission line made of conducting
wires running along y = ±d/ at lower frequencies. The odd modes behave in a dual way, due to the
different orientation of the electric field, consistent with our intuitions in Ref. []. This is consistent
with the discussion by Shvets [] for the plasmonic–air–plasmonic waveguide supporting an odd
backward mode.

It is interesting to notice that the modal propagation along the planar interfaces that we have just
described provides an “effective” index of refraction, which may be positive or negative depending
on the properties of the excited mode, i.e., on the forward or backward nature of the corresponding
power flow. This opens the possibility to develop the concept of a “flatland” nanooptics, for which
the concepts of negative-refractive materials may be translated into the plane of propagation. The
advantage of this configuration, which is analogous to the planar transmission-line propagation at
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microwave frequencies analyzed in Refs. [,], relies just on the combinations of plasmonic and
nonplasmonic layers, consistent with our nanocircuit paradigm.

Varying the geometrical parameters of the waveguide along the direction orthogonal to the plane
of propagation directly affects the effective properties in the flatland plane, and, in particular, the
effective index of refraction. It is worth underlining an important property of these planar metama-
terials: unlike the other common ways of constructing LH metamaterials with resonant inclusions,
like the one suggested in Section ., here these effective D planar metamaterials do not rely
on an individual resonant phenomenon, similar to their microwave counterparts synthesized with
printed microstrip lines and lumped circuit elements [,]. This allows better robustness to losses and
larger bandwidth of operation, i.e., better possibility for demonstrating some of the unconventional
loss-sensitive features of negative-index metamaterials in the IR and visible frequency domains.

In Ref. [], we defined a proper metric for describing the propagation properties of this opti-
cal transmission-line metamaterials. In particular, it is possible to define effective (i.e., equivalent)
permittivity and permeability for the propagating mode. In the even operation, which is the one
consistent with Figure . and with the nanocircuit analogy, the effective constitutive parameters
“sensed” by the modes are given by the following formulas []:

εeven
eff ≡ εin

μeven
eff ≡ μ +

∂Ex/∂y∣y=

iω Hz ∣y=
. (.)

In other words, the longitudinal component of the electric field (which is interestingly the one associ-
ated with the circulating displacement current) directly affects the effective permeability of the meta-
material, providing the possibility of having effective DNG properties and therefore negative-index
propagation, for εin < .

In order to provide some insight into the equivalence between the transmission-line propagation
and this optical nanotransmission-line metamaterial, Figure . sketches the displacement current

I I

V V

FIGURE . Analogy between current and voltage in a standard transmission line and those flowing in the
nanotransmission-line metamaterials at optical frequencies. The panel on the left plots the displacement current distri-
bution in the layered nanotransmission line of Figure ., highlighting the roles of current and voltage flow along the
line, analogous to those in a low-frequency transmission-line segment modeled with lumped inductors and capacitors.
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flow in such a metamaterial, comparing it with the currents and voltages flowing along a standard
transmission-line model. It can be seen how the even mode of operation resembles the same function-
alities as the transmission-line counterpart, noticing however that there are differences in supporting
two oppositely directed power and current flows at the two sides of the plasmonic interfaces. The fig-
ure supports also our heuristic intuition in terms of the nanocircuit paradigm for the realization of
optical positive-index and negative-index metamaterial, consistent with Figure ..

In the dispersion of these optical nanotransmission-line metamaterials, an important role is taken
by the necessary frequency dispersion of the involved plasmonic material. Supposing to employ the
Drude model (including realistic losses) for silver, as the one we already used in the previous sec-
tion, we have derived in Ref. [] some important plots showing the dispersion of forward and
backward modes versus frequency for glass–silver combinations. Fixing the core slab thickness at
d =  nm and assuming glass with εSiO = .ε as the insulating material, Figures . and .
show the plots of the variation of Re[β] and Im[β] versus frequency for even and odd modes in the
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FIGURE . Dispersion plots taking into account the Drude model for silver (including loss): (a) the positive slope
confirms a positive index of propagation (in the even mode this corresponds to the structure of Figure .a); (b) the
negative slope indicates negative-index behavior (consistent for the even mode with Figure .b). (From Alù, A.,
Engheta, N., J. Opt. Soc. Am. B, (), , .)
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FIGURE . Damping factors (Im β) corresponding to the dispersion plots of Figure ., due to the presence of
absorption in silver. (From Alù, A., Engheta, N., J. Opt. Soc. Am. B, (), , .)

two configurations of SiO–Ag–SiO and Ag–SiO–Ag waveguides. The slope of these plots again
confirms our prediction regarding the RH and LH behavior of the modes, depending on the value
of the real part of the permittivity as a function of frequency (as indicated at certain selected
frequencies).

In particular, Figures .b and .b refer to the behavior of these layered metamaterials as
negative-index optical metamaterials. At high frequencies, the permittivity of silver is indeed higher
than −εSiO , and therefore, in this regime, the SiO–Ag–SiO waveguide operates in its negative-
refractive even mode, as predicted in Figure .b, whereas the dual geometry has its backward
operation with an odd mode. We note that in the even case, for which the background region allows
propagation, there are two possible modes supported at the same frequency, one backward and one
forward. This is consistent with our general findings for propagation along periodic arrays of plas-
monic particles, for which the propagation in the background region adds a spurious forward mode
with phase velocity close to that in the background. This mode is not described by our nanocircuit
analogy and is not of interest for the present purposes.

The imaginary part of β, reported in Figure . for the corresponding cases, represents the damp-
ing factor for these modes, due to the material losses in the silver. In the figure, the sign of Im β is
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positive for the forward modes and negative for the backward modes, since in Figure . we con-
sidered solutions with positive Re β in the +x direction [and therefore for the backward case, one
should have a power flow in the opposite direction (i.e., −x direction)]. Considering that we used
realistic values for material losses and that the cross-section of the guided beam is very small (the
core thickness is just  nm), this example shows that highly confined guided modes can propagate
along this structure without diffraction for some noticeable distance both in the even and odd mode
of operation. The effective index of refraction for these modes may attain negative values and main-
tain a reasonably low level of absorption, arguably better than that achievable with the geometry of
Section . or any other solution involving resonant inclusions. This is due to the inherent robust-
ness achievable with the transmission-line concepts, since the negative refraction is not achieved
by individual resonances of electrically small inclusions, but rather by the distributed resonance
of the whole metamaterial. This solution, analogous with the microwave transmission-line meta-
material counterparts, ensures larger bandwidth and more robustness to losses, as clearly seen in
Figure ..

The corresponding effective parameters for this geometry, as calculated from Equation ., are
reported in Figure .. The possibility of obtaining effectively negative permittivity and permeability
is clearly shown, confirming the results of Figures . and . and our previous discussion.
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FIGURE . The effective material parameters for the geometry of Figures . and ., calculated following
Equation .. (From Alù, A., Engheta, N., J. Opt. Soc. Am. B, (), , .)
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In Ref. [], we have applied these concepts to prove negative refraction and subwavelength
focusing in this flatland geometry. Our full-wave simulations, obtained with a mode-matching
technique, demonstrate that it is indeed possible to build two matched metamaterials at optical fre-
quencies with positive-index and negative-index properties and experience highly subwavelength
focusing and negative refraction. Experimental results, obtained by the Atwater group, although for
a nonmatched interface, have recently shown the realistic possibility of obtaining negative refraction
at optical frequencies [], following similar considerations and employing silver and gold plasmonic
layers.

23.5 Three-Dimensional Optical Negative-Index Metamaterials

As we have pointed out in the previous section, for a linear array of plasmonic nanoparticles (the D
analog to the planar array of nanoparticles as in the middle row of Figure .), when excited with an
electric field vector orthogonal to the array axis, one may expect to see, under proper conditions, a
confined guided mode with negative index of refraction supported by this array. As we have reported
in our full-wave analysis of this D problem [], this is indeed the case: linear plasmonic arrays of
nanoparticles may support a transmission-line mode consistent with the heuristic interpretation of
Figure ., as another interesting possibility to realize backward-wave materials at optical frequen-
cies exploiting plasmonic effects. It is interesting to note that the transverse polarization is required
to achieve backward-wave propagation in this D setup, consistent with the field distribution inside
a transmission line at lower frequencies (see Figure .).

In the nanocircuit analogy, each plasmonic nanoparticle would correspond to a lumped nanoin-
ductor, and the free-space (or dielectric) gaps between and around them correspond to the nanoca-
pacitors. Such a cascade of inductors and capacitors is capable of guiding and transmitting the
wave energy []. Even though such linear chains may represent an alternative route for real-
ization of backward-wave propagation at optical frequencies, it is evident that to realize negative
refraction we need the D materials, and the ideal situation would be to have an isotropic D
response.

To this end, we have proposed an optical metamaterial that generalizes our D chain results to a
D geometry, showing how it may indeed be possible to obtain an isotropic metamaterial, at least
in the two dimensions, but possibly also in three dimensions, with negative-refraction properties.
The D LH nanotransmission-line metamaterial introduced in Ref. [] is therefore envisioned as
a metamaterial composed of plasmonic nanoparticles, of polarizability α, interleaved by gaps in a
background medium with permittivity ε > . Once again, as in Section ., due to the small dimen-
sions of the inclusions and their nonmagnetic nature, we assume that their electromagnetic response
is adequately described by the polarizability model.

As shown rigorously in Ref. [], a regular lattice of densely packed and properly designed plas-
monic particles may indeed support a nanotransmission-line propagating mode in three directions
and thus may act as an effective negative-index metamaterial, even though no direct magnetic
response is present in the materials of each nanoparticle under consideration (i.e., at the frequencies
of interest all the magnetic permeabilities of the constituent materials are equal to free-space perme-
ability μ, and due to the small size of the inclusions the magnetic polarizability of each of them is
negligible). Following the same analogy described in the previous section, for the same transverse
polarization of the electric field, the dual lattice, i.e., a dense array of “voids” in a plasmonic host
medium, would correspond to a DPS metamaterial with forward-wave behavior.

The dispersion properties of such a metamaterial have been obtained analytically in Ref. [] by
considering the eigenvalue problem associated with this crystal lattice and searching for the self-
sustained solutions for the phase vector β = βx x̂ + βy ŷ + βz ẑ.
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The dispersion relation for these modes is given by the following equation []:
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α/(πε), and di are the
lattice distances in the three directions and λ is the wavelength in the background host. This real-
valued (in the lossless limit, as shown in Ref. []) and completely general dispersion relation, which
is written in terms of normalized dimensionless quantities, relates the propagating modal solutions
for a lattice of particles embedded in a transparent background to the normalized geometrical and
electromagnetic properties of the lattice. In the limit of closely spaced (but not touching) particles,
this dispersion relation may be simplified by assuming that the main interaction among the parti-
cles happens in the nearest-neighbor limit. In this case, a good approximation for Equation . is
given by
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In this scenario, consistent with the D results, it may be shown that Equation . implies backward-
wave propagation for the transverse polarization, i.e., the transverse electric waves supported by this
collection of closely spaced plasmonic nanoparticles, under proper conditions on the polarizability
of the particles, supports negative-refractive properties.

Two important requirements have been found to be essential for obtaining this LH propagation
in an optical metamaterial composed of regular lattices of plasmonic nanoparticles: () the particles
should be relatively close to their individual resonance and () the distance among them should be
electrically small, i.e., that the optical metamaterial is densely packed. The latter condition ensures
the “transmission-line” condition on the collection of lumped nanoinductors constituting the D
transmission line, in some sense analogous to the D metamaterial at microwave frequencies [].
The first condition requires the nanoparticles to be plasmonic and relatively close to their resonance.
The interesting point that arises from our analysis, however, is that the tight and strong coupling
among the individual nanoresonances widens enormously the bandwidth of operation when com-
pared with the individual resonances of the single nanoparticle. This is consistent with the inherent
transmission-line behavior: even in its basic circuit model, an infinitely long cascade of infinitely
small LC cells has, in the limit, an infinite bandwidth of operation, even though the basic cell itself
would represent a filter with a small bandwidth.

This concept is clear in the theoretical result shown in Figure ., which reports the regions of
operation for a metamaterial made of homogeneous nanoparticles with permittivity ε as a function
of the center-to-center distance among them. It is evident how for narrow spacing (which indirectly
implies a smaller size for each individual nanoparticle) the bandwidth of operation, in terms of the
allowed values of permittivity, increases, even though it is well known that the resonant condition
for an individual nanosphere narrows down dramatically around the value ε = −ε when its radius
gets smaller and smaller.

The result is a relatively broad range of permittivities for which backward-wave propagation is
possible, and this value saturates to a finite range of permittivities even when the single particle size
tends to zero (of course at some point, approaching the atomic size, quantum effects should be con-
sidered in the description of the particle interaction, and this classic approach would not be adequate
any more).
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FIGURE . Regions of negative-index operation in terms of the permittivity of the spherical particle and their
relative spacing factors in the three directions. (From Alù, A. and Engheta, N., Phys. Rev. B, ,  ( pages),
January .)

As we have shown with rigorous analytical proof in Ref. [], the robustness to losses is also much
higher than that of a single individual nanoresonance, again due to the tight coupling among the
closely spaced plasmonic nanoparticles. This provides a clear advantage with respect to the scenarios
for negative refraction at optical frequencies employing resonant inclusions, as those proposed in
Section . and in the referenced literature.

As an example of the proposed LH metamaterial employing simple homogeneous silver particles,
we show here some numerical simulations, as reported in Ref. [], using realistic data for the per-
mittivity of bulk silver, including material dispersion and realistic material losses in the material.
Figure .a shows the frequency dispersion for a lattice of silver particles of radius a =  nm and
center-to-center spacing between the particles dz = dy =  nm and dx = dy in a glass background
(εSiO = .ε). In this case, the resonance Re α− =  is for f ≃  THz, λ ≃  nm, and the
spacing is d y = . at this frequency, which is in the range of minimum losses, as optimized with
fully analytical proofs in Ref. []. The solid lines report real (darker) and imaginary (lighter) parts
of the wave number βy . The dashed lines also show the behavior that such dispersion curves would
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FIGURE . Dispersion plots of the negative-index operation versus frequency for a metamaterial made of silver
particles, using silver material parameters (including losses) from experimental data for its bulk properties in a glass
background (εSiO = .ε). The solid lines correspond to realistic data with losses, the dashed lines neglect the
losses in the silver, and the thin dotted lines bound the region of backward-wave operation in the ideal lossless case.
(a) a =  nm, dz = dy =  nm, and dx = dy ; (b) a =  nm and dz = dy = . nm; (c) the backward-wave mode for
(b) is compared with the forward-wave mode, showing the difference in the sensitivity to losses in the two cases. In
(a) and (b), the forward-wave mode, although present, is not shown here to avoid crowding the plots. (From Alù, A.
and Engheta, N., Phys. Rev. B, , , . Copyright () by the American Physical Society.)

have had, if the silver losses in the particles had been neglected. The thin red dotted lines plot the
ideal boundaries that limit such dispersion curves, i.e., π/d y and βmin, as defined in Ref. [].

For comparison, Figure .b also includes the results for the same setup but for hypothet-
ically much smaller particles (a =  nm), maintaining the same aspect ratio with the spacing,
i.e., dz = dy = . nm. In this case, d y = . at the central frequency. As one can see when comparing
the two cases, the smaller spacing has definitely increased the bandwidth of backward-wave behavior
for this setup, together with a corresponding increase in its loss factor, as predicted in the previous
section. In addition, the real part of β has increased, giving rise to a slower phase propagation, due
to the reduced distance between neighboring particles. The level of losses in this configuration is
lower than any other solutions proposed in the literature involving resonant nanoinclusions, consis-
tent with our previous discussion. The price to be paid is the simultaneous presence of another mode
of propagation, forward in nature, that coexists at the same frequency and for the same polariza-
tion, consistent with the results of the previous section. This is related to the strong spatial dispersion
inherently present in such densely packed arrays of plasmonic particles. Figure .c, for complete-
ness, reports the dispersion of this extra forward mode, which is not of interest to our purposes. We
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and dx = dy ; (b) a =  nm and dz = dy = . nm. (From Alù, A. and Engheta, N., Phys. Rev. B, ,  ( pages),
January .)

are currently studying configurations and solutions to overcome the presence of this spurious mode
and isolate the negative-index response for this optical metamaterial.

Figure . shows analogous results obtained with a silicon carbide background (εSiC = .ε).
In this case, the frequency of operation is shifted down, since Re α− =  for f ≃  THz, λ ≃
 nm. In Figure .a, the radius of each particle is fixed at a =  nm and spacing between
the particles dz = dy =  nm and dx = dy . The normalized spacing in this case is again around
d y = ., ensuring minimum attenuation for this configuration. Employing smaller particles, as in
Figure .b, i.e., a =  nm, dy = . nm, and d y ≃ ., the bandwidth is sensibly increased, but the
attenuation factors are higher, consistent with the previous section and Figure ..

The numerical results reported here all refer to D optical metamaterials that are isotropic in two
dimensions in the y–z plane since dz = dy ≠ dx , eventhough in Ref. [] we have also studied the
case of D isotropy. The major limitation of a fully isotropic metamaterial resides in the fact that
the tight coupling in the direction of polarization of the electric field actually deteriorates the per-
formance of the metamaterial, both in terms of bandwidth and robustness to losses. In other words,
full isotropy may be obtained only at the expense of an increase in the Q factor of the structure,
which may not be desirable for these configurations. At least for the isotropy in two dimensions,
this solution, however, provides a viable and interesting way to obtain negative-refraction behavior
at optical frequencies within the limitations of natural plasmonic materials. In Ref. [], applying
these concepts and exploiting the anomalous dispersion features of these D optical metamaterials,
we have presented some full-wave numerical simulations producing subwavelength focusing in the
canalization regime.

As a last numerical result, which summarizes the main features of the nanotransmission-line solu-
tion to the design of negative-index metamaterials, Figure . shows a comparison between the
planar waveguide of the previous section and the D lattice metamaterial of this section in terms of
robustness to ohmic losses in their negative-index regime.

Figure . shows the distance that a negative-index beam may travel before its field amplitude
reaches e− of the original value for a cross-section of the planar waveguide, or of the cylindri-
cal array of particles along which the mode is traveling, with a =  nm. In the lattice case, the
longitudinal period has been assumed to be .a. The figure compares four cases: the two modal dis-
tributions (even and odd) for the planar waveguide, which following the previous section supports
backward-wave propagation respectively for the insulator–metal–insulator case (named regular in
the caption) and metal–insulator–metal (named dual in the caption) and the two lattice configu-
rations, i.e., the regular one made of plasmonic nanoparticles and the dual one made of insulating
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FIGURE . Comparison of the attenuation length traveled by a negative-index mode along planar layers or lat-
tices, consistent with our results in this section and the previous one. In both cases, we assume the plasmonic material
to be silver with realistic parameters and the insulating material to be free space. The thickness of each layer or planar
array composing the lattice is a =  nm.

voids in a plasmonic background. These last two geometries support backward-wave propagation for
transverse and longitudinal electric modes, respectively.

Figure . shows how it is possible to guide backward modes with subwavelength cross-sections
over a relatively long distance, providing some hope for the possible methods of experimental veri-
fication of these results. The possibility of enlarging the modal distribution (which anyway poses a
limit to the transverse resolution of these devices when used as super-resolving lenses) and/or using
lower loss materials may represent a viable way to improve these performances. It is interesting to
see how the two pairs of curves are strictly related to each other in their functionalities and field
polarization, consistent with the nanocircuit analogy that drew us to envision both geometries.

23.6 Conclusions

In light of our recently proposed theory for extending the circuit concepts to optical frequencies,
here we reviewed our recent results on multiple scenarios and possibilities for designing negative-
refraction metamaterials in the IR and visible domain. We focused on three of our theoretical
proposals in this regard: the use of properly designed nanoinclusions made of loops of plasmonic
nanoparticles that may exhibit a resonant magnetic response, the use of plasmonic nanolayers,
and the use of periodic lattices of nanoparticles. All these geometries have been shown to poten-
tially guide backward-wave modes and provide a negative-refraction behavior at optical frequen-
cies exploiting naturally available plasmonic materials. Our nanocircuit interpretation explains all
these different mechanisms, showing how plasmonic materials are essential to provide the required
compact resonances in these different geometries. These results may provide interesting possibil-
ities for subwavelength focusing, compact waveguiding devices, and enhanced imaging at optical
frequencies.
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24.1 Introduction

In a broad sense, the word composite means made of two or more different parts. The different natures
of constituents allow us to obtain a material in which the set of performance characteristics is greater
than that of the components taken separately. The properties of composite materials result from the
properties of the constituent materials, the geometrical distribution, and their interactions. Thus to
describe a composite material it will be necessary to specify the nature of constituents, the geometry
of the distribution, and macroscopic response. In the field of electrical engineering, the electro-
magnetics in composite materials are more important, since the electromagnetic behavior of rather
complicated structures has to be understood in the design of new devices or in the exploration of new
findings. In the last few years, there has been an increasing interest in the research community in the
modeling and characterization of negative-index materials. Negative-index materials are a class of
composite materials artificially constructed to exhibit exotic electromagnetic properties not readily
found in naturally occurring materials. This type of composite materials refract light in a way that is
contrary to the normal right-handed rules of electromagnetism. Researchers hope that the peculiar
properties will lead to superior lenses and might provide a chance to observe some kind of negative
analog of other prominent optical phenomena, such as reversal of the Doppler shift and Cerenkov
radiation. When the dielectric constant (є) and magnetic permeability (μ) are both negative, waves
can still propagate in such amedium. In this case, the refractive index in the Snell’s law is negative, an
incident wave experiences a negative refraction at the interface, and we have a backward wave whose
phase velocity is in the direction opposite to the direction of the energy flow.

24-1
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The first study of general properties of wave propagation in such a negative-index medium (NIM)
has been usually attributed to the work of Russian physicist Veselago []. In fact, related work can be
traced up to when physicist Lamb [] suggested the existence of backwardwaves in amechanical
system. However, the first person who discussed the backward waves in electromagnetics was Schus-
ter []. In his book, he briefly notes Lamb’s work and gives a speculative discussion of its implications
for optical refraction. He cited the fact that within the absorption band of, for example, sodium vapor
a backward wave will propagate. However, because of the high absorption region in which the disper-
sion is reversed, he was pessimistic about the applications of negative refraction. Around the same
time, Pocklington [] showed that in a specific backward-wave medium, a suddenly activated source
produces a wave whose group velocity is directed away from the source, while its velocity moves
toward the source. Several decades later, negative refraction and lens application (not perfect yet)
was rediscovered [–]. However, it is the translation of Veselago’s paper into English that brought
about the revival of the negative-index materials, which are also referred to as left-handed material
(LHM) or metamaterials. Very influential were the papers by Pendry [–]. The interest was fur-
ther renewed due to the arrival of existence of NIM was experimentally confirmed by Smith and
Shelby [–]. A further boost to the field of NIM came when the applicability of lensing was pro-
posed to avoid the diffraction limit [] by using both periodic and evanescent electromagneticwaves.
The field keeps expanding owing to the fact that the Maxwell equations are scalable; thus, practically
the same strategies can be employed in the microwave and optical regions.

24.2 Fundamentals of NIM

In order to realize the negative refraction [,], the composite material must have effective per-
mittivity and permeability that are negative over the same frequency band. When the real parts of
permittivity and permeability possess the same sign, the electromagnetic waves can propagate. If
those two signs are opposite, waves cannot propagate unless the incident wave is evanescent. Histor-
ically, the development of artificial dielectrics [] was the first electromagnetic NIM by the design
of a composite material. If both є and μ are negative, the refractive index of the given composite is
defined as

n =
√
∣є∣∣μ∣
√

e jπ = −
√
∣є∣∣μ∣. (.)

More detailed investigation on the causality of negative-index materials can be found in Ref. [].
Usually, the solution of n <  consists of waves propagating toward the source, rather than plane
waves propagating away from the source. Since such a solution would normally be rejected by the
principles of causality, the physical proof of the solution of n <  can be supplied by the concept
average work []. The work done by the source on the fields is

P = ΩW = π μ
cn

j , (.)

where
Ω and j represent the oscillation frequency and magnitude of the source current
W is the average work done by the source on the field

It can be found that the solution of n <  leads to the correct interpretation that the current per-
forms positive work on the fields because of μ <  for negative-index materials. Because the work
done by the source on the fields is positive, energy propagates outward from the source, in agreement
with Veselago’s work [].

No known material has naturally negative permittivity and permeability, and hence NIM has to
be a composite of at least two kinds of materials, which individually possess є < and μ < in an
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overlapped frequency band. In order to create negative permittivity at the microwave region, the
approach of an array of metallic rods with the electric field along with the axis is used []. Such
structures act as a plasma medium, and if the frequency is below the plasma frequency, the per-
mittivity is negative. The Drude–Lorentz model can be used to characterize the wire medium with
periodic cuts

є(ω) =  −
ω
p − ω

e

ω(ω + jΓe) − ω
e
, (.)

where ωp, ωe , and Γe denote plasma frequency, resonant frequency, and damping constant, respec-
tively. If the wires are continuous, the resonant frequency ωe = .

Pendry proposed the resonant structures of loops of conductors with a gap inserted to realize the
negative permeability [].The gap in the structure introduces capacitance and gives rise to a resonant
frequency determined only by the geometry of the element. It is also known as the split-ring resonator
(SRR), which could be described as

μ(ω) =  − Fω

ω(ω + jΓm) − ω
m

, (.)

where F, Γm , and ωm are the filling fraction, resonant damping, and resonant frequency, respectively.
New designs of SRR medium have been explored numerically and experimentally to overcome the
narrow-band property, such as broadside SRR, complementary SRR, omega SRR, deformed SRR,
and S-ring SRR [–]. Current designs can yield a large bandwidth, low loss, and small size, which
make the application of SRR wider.

The combination of wire medium and SRR medium would present negative refraction due to
the electric and magnetic responses [,–]. However, such designs are normally anisotropic or
bianisotropic, and the bianisotropic role and extraction of those bianisotropic parameters are thus
discussed [,]. Efforts to create isotropic composite NIM are made by ordering SRRs in three
dimension [], and the design is further scaled to IR frequencies []. However, at the wavelength
approaching the optical region, the inertial inductance caused by the electron mass and the currents
through SRRs determines the plasma frequency and becomes dominant for scaled-downdimensions,
which further makes the negative effects of permittivity and permeability totally disappear []. To
overcome this, it is proposed to add more capacitive gaps to the original SRR []. Among the most
recent results of experimental NIM structures with near-infrared response are those on NIM meta-
materials for . nm range with a double periodic array of pairs of parallel gold nanorods [], with
a negative refractive index of about −..

It is true that the conventional SRR’s resonant structures are lossy and narrow-banded, and
alternative approaches apart from exploring new designs may be of particular interest. Thus, the
transmission line (TL) approaches are proposed by a group in the University of Toronto to support
negative refraction and backward waves [–]. Their basic idea is to use a two-dimensional TL
network with lump elements to achieve a high-pass filter, in which the backward wave can prop-
agate. Thus, effective negative permittivity and permeability can be realized by suitable changes in
configuration. The group in UCLA has further explored the TL approaches to realize the composite
right- and left-handed structures [–]. The TL approach may provide a broader band for nega-
tive refraction than SRR and wire medium, but obviously it is more difficult to be implemented in
practical application than the latter.

Another approach to generate negative refraction is to use photonic or electromagnetic bandgap
structures (PBGs or EBGs) [–]. PBGs or EBGs, first initiated by Yablonovitch [] in , are
constructed typically from periodic high dielectric materials and possess frequency band gaps elim-
inating electromagnetic wave propagation. Under certain circumstances, the Bloch/Floquet modes
will lead to negative refraction. However, the negative-refraction behavior is different from that of
the negative-index materials, in which the group velocity and phase vector are exactly antiparallel.
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Electrically tunable nonreciprocal bandgap materials in the axial propagation along the direction of
magnetization were considered in Ref. [] to study cubic lattices of small ferrimagnetic spheres.
Electromagnetic crystals (ECs) [,] operating at higher frequencies exhibit dynamic interaction
between inclusions. ECs are artificial periodical structures operating at the wavelengths comparable
with their period, whereas artificial dielectrics [] operate only at long wavelengths compared with
the lattice periods. In the optical frequency range they are called photonic crystals (PCs) []. In
some particularly designed PCs, negative refraction is present [–], and the application of open
resonators with PCs of negative refraction [–] is also proposed in Ref. [].

24.3 Material Routes to NIMs via Chiral/Bianisotropic Media

Although the method of stacking metal resonators to achieve NIMs would macroscopically exhibit
themagnetoelectric couplings and bianisotropy due to the periodicmetalmicrostructures in the arti-
ficial media, this section focuses on the exploration of thematerial physics of chiral and bianisotropic
media as promising candidates for NIMs, not only in the microwave but also in optical regions.

Composite materials may suffer bulkiness and difficulty in fabrication, which is a limiting factor
in electromagnetic applications. Composites with the ability for magnetoelectric coupling may help
alleviate some of those problems. The magnetoelectric composites are characterized by the cross-
coupling between electricity and magnetism inherently from the optical activity, and composites
can be isotropic or anisotropic, which depends on the existence of external biased fields. The phe-
nomenon of optical activity was first discovered via experimentation by French scientists. In ,
Arago found that quartz crystals rotate the plane of polarization of linearly polarized light, which is
transmitted in the direction of its optical axis []. Later, this property was further demonstrated by
various experiments by Biot [,], and it was found that optical activity is not restricted to crystal
solids but exhibits in other materials such as boiling turpentine. Formal discussion of the concept of
polarization was proposed in  by Fresnel [] who constructed a prism of rotatory quartz to sep-
arate two circularly polarized components from a linearly polarized ray. The time dependence e jωt

was used but suppressed.

24.3.1 Isotropic Chiral Materials

In contrast to the argument that the optical activity was due to molecules, recent studies have used
microwaves and wire spirals (Figure .) to achieve a macroscopic model for such phenomenon
instead of using light and chiral molecules [].

From amacroscopic view, a chiral medium can be regarded as a continuous medium composed of
chiral composites, which are uniformly distributed and randomly placed. It is a subclass of bian-
isotropic (magnetoelectric) composites. Scientists have made extensive research efforts to study
bi-isotropicmaterials, such as thewave properties and interaction [–], light reflection and propa-
gation through chiral interfaces [], novel structures exhibiting cross-coupling [],mixing formula
to get effective parameters [], and chiral patterns for antennas []. However, it appears that the
application of chiral materials may be limited to the case of polarization converters, which can be
used as polarizator shields and absorbing coating in RCS reduction such as Salisbury screens. More
recently, there has been a renewed interest in the community of chiral materials, especially in the
realm of negative-index materials. Pendry proposed a chiral route by wounding a metal plate into
coils stacked by log pile [].

Based on thework by the scientists inHelsinki, chiralmaterials have been proved to be a good alter-
native approach to realize negative refraction, since the backward wave could be supported [,].
The negative refraction can be easily obtained by properly mixing chiral particles [] and arrang-
ing dipoles to minimize electric/magnetic response []. More recently, the negative reflection in a
strong chiral medium and huge gyrotropy in planar chiral metamaterials were discovered [,].
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Inclusions

Matrix

D << λ

d << D

FIGURE . The typical configuration of a chiral medium composed of the same handed wire-loop inclusions
distributed uniformly and randomly.

Two definitions are widely used to describe chiral media: Post’s relations

D = єP E + jξc B (.a)

H = jξc E + (/μP)B (.b)

and Tellegen’s relations
D = єTE + jκ

√
μєH (.a)

B = − jκ
√
μєE + μTH, (.b)

where
є/μ is the permittivity/permeability in free space
P/T denotes the permittivity and permeability under Post/Tellegen constitutive relations
κ/ξc is the chirality used in the Post/Tellegen constitutive relations

These two constitutive relations were found to be applicable to chiral media composed of short
wire helices as well as reciprocal chiral objects of arbitrary shape.

In order to force chiral materials to fall in the backward-wave regime, one only needs to make
either permittivity or permeability resonant, which will produce a very small value of the product of
єμ. On the other hand, the effect of the chirality should be another solution, where the big chirality
also favors the realization of backwardwaves and negative refraction.The optical activity and circular
dichroism has been studied for chiral media, and the chirality of the medium’s molecules can be
seen as the cause of optical activity. Born [] put forward the interpretation of optical activity for
a particular molecular model, in which a coupled-oscillator model was used. Condon [] gave a
single-oscillator model in dissymmetric field for optically active material, based on the molecular
theories of Drude, Lorentz, and Livens. The constitutive relations were suggested as follows:
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D = єE + jωα
c

H

B = − jωα
c

E + μH, (.)

where
c is the light velocity in free space
α is the rotatory parameter

The parameter of α for rotatory power is frequency dependent:

α(ω) ∼ ∑
b

Rba

ω
ba − ω + jωΓba

(.)

where
a, b stand for quantum states
ωba is the frequency of the light absorbed in the jump a → b
Rba means the rotational strength of the absorbed line
the damping term of Γba has been included for the consideration of the absorption

Finally, by comparing Tellegen’s relations and Condon’smodel, the dispersion of the dimensionless
chirality κ can be expressed in such a way that

κ(ω) = ωωc

ω
c − ω + jdcωωc

, (.)

where
ωc represents the characteristic frequency
dc means the damping factor

Note that Equation . is valid for the one-phase transition, in which only one rotatory term in
Equation . is counted due to the assumption that each transition between quantum states lies far
off the others. Using the wavefield theory [], a chiral medium can be characterized as two sets of
equivalent dielectric parameters є± and μ

±
, given as

є
±
(ω) = є( ±

κ(ω)√μє√μє ) (.a)

μ
±
(ω) = μ( ±

κ(ω)√μє√μє ). (.b)

The imaginary parts of (є
±
, μ
±
) are also studied but not included, which are almost zero over the

whole region except in the vicinity of ωc. From Figure ., one can find that (є
+
, μ
+
) becomes a

double-negative (DNG) material in the frequency band [, .]GHz. When the frequency drops
below ωc or exceeds, it turns to a double-positive (DPS) medium. In Figure ., such DNG–DPS
reversion also happens. In the frequency band of [., .]GHz, the negative refraction occurs to
+ and − effective mediums, alternatively.

Hence, the electromagnetic fields within the chiral media can be obtained by the superposition of
components as follows:

E = E+ + E
−

H =H
+
+H

−
, (.)
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FIGURE . The frequency dependence of relative (є+ , μ+) in the range of [, ]GHz, the chirality’s characteristic
frequency ωc = π(rad/s), dc = ., є = є, and μ = μ.
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FIGURE . The same as Figure ., for the frequency dependence of relative (є− , μ−).

where ± fields correspond to the results calculated from two separate sets of effective materials
(є
+
, μ
+
) and (є

−
, μ
−
), respectively. Interestingly, if we consider the case of a plane wave impinged

upon an air–chiral interface, two frequencies where no chirality is actually present are particular: ()
if fl = .GHz, the chiral medium is only characterized by the + equivalent medium composed of
(є
+
, μ
+
), which results in that only half of the power can be transmitted from the air to the chiral

medium; and () if fh = . GHz, only the pair of (є
−
, μ
−
) remains. It can be observed that their

geometrical mean is the characteristic frequency of chirality (i.e., fc = ωc/π), demonstrating the
symmetric relation:

fl fh = f c . (.)

To summarize, the chirality dispersion in Condon’s model, based on the molecular theory for quan-
tum mechanics, can lead to negative-index media (i.e., n

±
= Re[√є

±

√μ
±
]) at certain frequency
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bands. One, however, has to mind that n
±
cannot be simultaneously negative within the region of

( fl , fh).The plus andminus signs of refractive indices will be exchangedwhen theworking frequency
oversteps resonant frequency fc .

In view of Equations . and ., both constitutive relations are applicable to reciprocal
media only. When the nonreciprocity is present in chiral magnetoelectric materials, the constitutive
relations are expressed for Post’s relations

D = єPE + ( jξ − ν)B
H = ( jξ + ν)E + (/μP)B (.)

and for Tellegen’s relations

D = єTE + (χ + jκ)√μєH
B = (χ − jκ)√μєE + μT H, (.)

where χ and ν denote the nonreciprocity parameters used in these two commonly used constitutive
relations. The conversion between these two relations is given as follows:

єT = єP + μP(ξ + ν)
χ = μPνc
κ = μPξc

μT = μP. (.)

In particular, we consider only the Tellegen’s relations as a nonreciprocal example, since such a condi-
tion can be transformed to Post’s relations in an isotropic case. The dispersion of nonreciprocity has
not been clearly worked out independently so far, but from general considerations it can be envi-
sioned that the dispersion relation of χ and κ in Equation . would be a similar alteration of
Condon’s model:

χ(ω) = dcωω
c

ω + ω
c − ( − d

c )ωω
c

(.a)

κ(ω) = (ω
c − ω)ωωc

ω + ω
c − ( − d

c )ωω
c
. (.b)

The refractive indices can be expressed by reading from the corresponding eigenwave

n
±
=
√
єμ/єμ − χ ± κ. (.)

The frequency dependence and the role of damping are shown in Figure ., noting that the indices
for “−” effective medium carries a similar fashion by mirroring the curves of “+” medium along
the vertical line at f = GHz. When the damping factor dc = , the refractive index varies limit-
edly against the frequency even in the characteristic frequency of ωc, and it can be proved that high
damping of the chiral material will hold back the power rotatory and the curve appears more flat
(approaching

√
 over all frequencies), which means that the chirality does not resonate for chiral

media of high damping. When the damping factor becomes smaller, more power is rotated and the
resonant phenomenon becomes fairly clear. The resonance will further induce negative refraction of
eigenmodes within certain frequency bands. Those negative-index bands are inversely proportional
to the damping factor.

Due to the wide application potentials of chiral materials in negative refraction, planar structures
and focusing devices, magnetoelectric composites, including but not limited to chiral materials, are
receiving further investigation, not only in theory but also in application. Zheludev’s group has made
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FIGURE . The frequency dependence of refractive indices for “+” effective medium in the range of [, ]GHz,
with the same parameters as in Figure . except dc .

intensive study on the planar chiral metamaterials, such as light transmission/focusing through chi-
ral holes in a metallic screen [], planar chiral metastructures for optical application [], and chiral
fish-scale structures to break the polarization symmetry []. Another stream in the chiral meta-
material study is to tailor the conventional numerical techniques to computation needs of the chiral
metamaterials, such as the bi-FDTD [] and new uniaxial PML [].

24.3.2 Gyrotropic Chiral Materials

As suggested by Zhuledev’s findings of symmetry break and giant gyrotropy in chiral structures,
we find that the gyrotropic chiral composites are found to be a better candidate than normal chiral
composites according to the following merits: () negative index of refraction in a gyrotropic chiral
medium can be realized with less restrictions, while chiral material requires a small permittivity at a
working frequency to obtain negative-refractive index; () two backward eigenwaves are found due
to the effects of the gyroelectric and gyromagnetic parameters; and () all parameters in permittivity
and permeability tensors as well as chirality admittance can be positive when negative refraction
occurs.

The optical rotation exhibited by the chiral composites can be called natural optical activity, and
there is another similar phenomenon of rotation by gyrotropic chiral compositeswith differentmech-
anism, which is called Faraday rotation, induced by external biased fields.The former is independent
of the propagation direction and invariant under time reversal, whereas the latter is dependent on
propagation and invariant under spatial inversion. A biased magnetic field leads to the gyrotropy
in permeability, and crossed external electric and magnetic fields perpendicular to the direction of
propagation create gyrotropy in both permittivity and permeability. In this section, instead of concep-
tual bianisotropic materials whose parameters are manually set, those gyrotropic chiral composites,
which can be practically manufactured, are studied.

The constitutive relations of gyrotropic chiral materials in Post formalism are shown as
D = є ⋅ E + jξcB (.a)

H = jξc E + μ− ⋅ B. (.b)
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The permittivity and permeability tensors are

є =
⎡⎢⎢⎢⎢⎢⎣

є − jg 
jg є 
  єz

⎤⎥⎥⎥⎥⎥⎦
(.a)

μ =
⎡⎢⎢⎢⎢⎢⎣

μ − jl 
jl μ 
  μz

⎤⎥⎥⎥⎥⎥⎦
, (.b)

where g and l are the electric and magnetic gyrotropic parameters, respectively. This kind of mate-
rial includes a chiroplasma consisting of chiral objects embedded in a magnetically biased plasma
or a chiroferrite made from chiral objects immersed into a magnetically biased ferrite. Substituting
Equation . into Maxwell equations, one finally has

∇ × [α ⋅∇ × E] − ωξc∇ × E − ωє ⋅ E = jωJ , (.)

where J is the current excitation

α = μ− =
⎡⎢⎢⎢⎢⎢⎣

αt jσ 
− jσ αt 
  αz

⎤⎥⎥⎥⎥⎥⎦
(.)

and

αt =
μ

μ − l 
(.a)

σ = l
μ − l 

(.b)

αz =

μz

. (.c)

Assuming waves of the form Ee− jk⋅r (where k is the wave vector), plane wave propagation in
gyrotropic magnetoelectric composites can be examined by setting J zero. Under these conditions,
the electric field satisfies

Φ ⋅ E = , (.)

with [Φ] defined as
[Φ] = [Φ Φ Φ ] , (.)

where

[Φ] =
⎡⎢⎢⎢⎢⎢⎣

ωє − αz k
y − αt k

z
jωg + αz kx ky + jσk

z +  jξcωkz
αt kx kz −  jξcωky + jαz ky kz

⎤⎥⎥⎥⎥⎥⎦
(.a)

[Φ] =
⎡⎢⎢⎢⎢⎢⎣

− jωg + αz kx ky − jσk
z −  jξcωkz

ωє − αz k
x − αt k

z
αt ky kz +  jξcωkx − jαz kx kz

⎤⎥⎥⎥⎥⎥⎦
(.b)

[Φ] =
⎡⎢⎢⎢⎢⎢⎣

αt kx kz + jσky kz +  jξcωky
αt ky kz − jσkx kz −  jξcωkx

ωєz − αt k
x − αt k

y

⎤⎥⎥⎥⎥⎥⎦
. (.c)
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Equation . has only nontrivial solutions if the determinant of [Φ] is zero. Note that the
obtained polynomial expression for k is tedious to solve. However, a certain case can still be solved,
which gives much insight into the physical properties of the magnetoelectric composites. Consider-
ing the waves are propagating along z-direction, one can solve detΦ =  and obtain the wavenumbers
supported by the medium. By reducing Equation ., one finally obtains

kp± = ω
±ξc +
√
ξc + (αt ∓ σ)(є ± g)

αt ∓ σ
(.a)

ka± = ω
∓ξc −
√
ξc + (αt ± σ)(є ∓ g)

αt ± σ
, (.b)

where p and a represent the parallel and antiparallel directions of energy flow (i.e., real part of the
Poynting’s vector) and the ± signs refer to the right-circular polarization (RCP) and left-circular
polarization (LCP), respectively. Note that the kp− and ka− could represent the wavenumbers for
backward eigenwaves under some situations as shown in Table ., which is discussed later. The
helicity and polarized state of each wavenumber can be obtained by inserting Equation . into
Equation .. It can be found that the helicity of kp+ and ka− is positive and the helicity of kp− and
ka+ is negative, provided that negative helicity is defined as left-handedness to positive z-direction
and right-handedness to negative z-direction. The refraction indices of kp− and ka− are obtained:

nR =
c
(αt + σ)[

√
ξ + (αt + σ)(є − g) − ξ] (.a)

nR =
c
(αt − σ)[

√
ξ + (αt − σ)(є + g) − ξ], (.b)

where
c is the light’s velocity in vacuum
the subscript of R denotes RCP
the subscripts of  and  correspond to kp− and ka−, respectively

The chirality under Post’s relations appear twice in the final expressions of refractive indices. By
amplifying the gyrotropic parameter or increasing the chirality, negative refraction can be achieved.

24.3.2.1 Chiroplasma

The constitutive relations of chiroplasma are shown:

D = єєr
⎡⎢⎢⎢⎢⎢⎣

є − jg 
jg є 
  єz

⎤⎥⎥⎥⎥⎥⎦
⋅ E + jξcB,

H = jξcE + 
μμr

B

(.)

where

є = ( −
ω
p(ω + jωeff)

ω[(ω + jωeff) − ω
g]
) (.a)

g =
ω
pωg

ω[(ω + jωeff) − ω
g]

(.b)

єz =  −
ω
p

ω . (.c)
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where ωeff , ωg, and ωp represent collision frequency, electron gyrofrequency, and plasma frequency
[], respectively. Such gyroelectric chiral media can be managed by distributing chiral objects
into a controllable biasing magnetic field, which is applied externally. The wave equations can be
expressed as

k × (k × E) +  jωμrμξck × E + k
μrєr

⎡⎢⎢⎢⎢⎢⎣

є − jg 
jg є 
  єz

⎤⎥⎥⎥⎥⎥⎦
⋅ E = , (.)

where k represents the wavenumber in free space. Algebraically, wavenumbers corresponding to
parallel and antiparallel eigenmodes for two mutually perpendicular polarizations can be obtained
from nontrivial solutions in terms of a quartic polynomial, which would be cumbersome to solve.
Thereafter, to yield some physical insight, longitudinal waves with respect to the external biasing field
are consideredwith the interest in backwardwaves and negative phase velocity. For the longitudinally
propagating eigenwaves along the biasing plasma, one can obtain four wavenumbers corresponding
to eigenmodes

k

= ω[∓μμrξc ±

√
μμr ξc + μμrєєr(є ∓ g)] (.)

k

= ω[±μμrξc ±

√
μμr ξc + μμrєєr(є ± g)]. (.)

With reference to the energy transportation direction, eigenwaves corresponding to eigen wavenum-
bers k and k may become backward waves, because the handedness of these two eigenwaves will
change within certain frequency bands. Note that the k eigenwave is parallel to the energy trans-
portation while k eigenwave is opposite, and in backward-wave frequency bands both eigenwaves
are right-circular polarized []. In particular, the phase velocity against the frequency is studied to
observe characteristics of LHM. In Figure .a, it can be observed that when no magnetoelectric
coupling is present the phase velocity of k eigenmode is always negative and that of k eigenmode
is positive. Substituting those two eigenmodes into Equation ., one can note that negative phase
velocity in Figure .a does not mean backward-wave phenomenon. Instead, when ξc = , negative
phase velocity represents that k eigenmode is left-handed with reference to the opposite direction
of the external magnetic field, and positive velocity shows that the k eigenmode is left-handed along
the direction of the external field. When slight magnetoelectric coupling exists (e.g., ξc = − in
Figure .b), backward-wave phenomena arise for both k and k eigenmodes, in which resonances
can be observed. In what follows, a gyroelectric chiral medium is considered with bigger magneto-
electric coupling effect as shown in Figure .c. Compared with the case shown in Figure .b,
one can note that the shift of resonant frequencies is neglectable, whereas resonant amplitudes in
Figure .c are drastically enhanced. In both weak-coupling and strong-coupling cases, it can be
found that backward-wave regions arise before respective resonances. After passing the resonant
frequency, the handedness and polarization status of those eigenmodes become an analogy to the
nonmagnetoelectric case.

24.3.2.2 Generalized Gyrotropy

Generalized gyrotropy can be either regarded as a generalization of the gyrotropic (chiral) media
without the assumption of H ∶ H = B [,] or an advancedmixture of chiroplasma and chiroferrite
due to the crossed biased fields.

● Wave impedance:

One parallel LCP (i.e., kp−) and one antiparallel LCP (i.e., ka−) can backward propagate with oppo-
site directions of phase and energy velocities.The directions of the energy velocities are identical with
those of Poynting’s vectors, which can be verified using the Maxwell equations:
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FIGURE . Phase velocities for backward-wave eigenmodes as a function of frequency near plasma frequency,
with parameters ωp =  × rad/s, ωeff = . × rad/s, and ωg =  × rad/s under different degrees of
magnetoelectric couplings: (a) decoupling plasma ξc = ; (b) ξc=.; and (c) ξc = ..

Sp+ = ẑ
∣E∣
η

(.a)

Sa− = −ẑ
∣E∣
η

(.b)

Sp− = ẑ
∣E∣
η

(.c)

Sa+ = −ẑ
∣E∣
η

, (.d)

where η and η denote the wave impedances of the positive and negative helicities, respectively.
In view of the above equations, the z-axis component of the Poynting vector can be shown as

Sz =


[Ex H∗y − Ey H∗x ], (.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

24-14 Theory and Phenomena of Metamaterials

where the transverse magnetic fields can be obtained

[Hx
Hy
] =
⎡⎢⎢⎢⎢⎢⎣

j(ξc + kz
ω σ)Ex − kz

ω αt Ey

j(ξc + kz
ω σ)Ey + kz

ω αt Ex

⎤⎥⎥⎥⎥⎥⎦
. (.)

Before solving η and η, one condition should be noted

(ξc +
ω
kz

g + kz

ω
σ)



= ( ω
kz

є − kz

ω
αt)



. (.)

Substituting Equation . into Equation . with the aid of the solution in Equation ., we
finally obtain

η =
√

ξc + (αt − σ)(є + g)
= √

ξc +
є + g
μ + l

(.a)

η =
√

ξc + (αt + σ)(є − g)
= √

ξc +
є − g
μ − l

. (.b)

Alternatively, by applying the Beltrami fields [], є
±
and μ

±
of the eigenmodes can also be obtained

as below:

є
±
=
√

ξc +
є ± g
μ ± l
[ ± ξc(μ ± l)

+
√
[ξc(μ ± l)] + (є ± g)(μ ± l)] (.a)

μ
±
=
 
!!" μ ± l

ξc(μ ± l) + є ± g
[ ± ξc(μ ± l)

+
√
[ξc(μ ± l)] + (є ± g)(μ ± l)]. (.b)

Thus, the wave impedances of those eigenmodes can be verified by using η
±
=
√
μ
±
/є
±
, which agrees

with the η and η, respectively.
These findings are of importance in phase compensation and compact resonator [], since a good

impedance matching can be achieved at the interface between a gyrotropic chiral slab and the adja-
cent spaces. Note that the elements in the permittivity and the permeability tensors involve frequency,
plasma frequency, electron gyrofrequency, gyromagnetic response frequency, and saturation mag-
netization frequency [,], and the realization of the backward wave depends on the frequency
selection.Within certain frequency ranges, kp− and ka− could be wavenumbers of the backward wave
simultaneously or only one of them could. Configurations of conventional and subwavelength cav-
ity resonators are proposed using gyrotropic chiral slabs, when the working frequency is properly
chosen to arrive at the negative-refractive index.

In Figure ., it can be seen that, if a plane wave propagates in the direction penpendicular to
the interfaces at a certain frequency range, its phase increased in the conventional medium can
be decreased by the gyrotropic chiral medium, which falls into the backward-wave region. It is
noted that, the backward eigenmodes possess two impedances. Hence, by properly controlling the
parameters and the external biased fields, η+ = η or η− = η could be chosen to match the wave
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FIGURE . Compact resonator formed by a -layer structure consisting of air and gyrotropic chiral media backed
by two ideally conducting planes.
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FIGURE . Equivalent configuration of -D cavity resonator made of gyrotropic chiral materials.

impedance η of the air, which means that two kinds of cavity resonators can be created as shown in
Figure ..

The resonance condition for a cavity takes the following form []:

n

μ
tan(nkd) +

n

μ
tan(nkd) = , (.)
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where the subscripts of  and  correspond to the layer on the left-handed and right-handed side,
respectively. As in the case shown in Figure .a when the η

+
is matched, it turns out to be the

conventional cavity resonator, and thus Equation .a becomes

n
+

d + d =
m

λ, m = , , ..., (.)

where λ is the wavelength in the air.
Of particular and practical interest is the case of subwavelength cavity resonators, in which

the arguments on the tangential functions can be assumed small. If η− is matched as shown in
Figure .b, the resonant condition in Equation . is reduced to

d

d
≅ ∣ μ− ∣∣ μ ∣

. (.)

It can be observed that to have simultaneously negative permittivity and permeability is not necessary
to satisfy the above condition, because only the first term in the Taylor expansion in tangent function
is kept for the thin layer on metal surfaces. The definition of n± is given in the following part.

● Negative refraction:

The kp− and ka− are of particular interest because they represent the properties of backward waves
under specific cases, as shown in Table .. The quantities є and g given in Ref. [] are as follows:

є = є( −
ω
p(ω + jωeff)

ω[(ω + jωeff) − ω
g]
) (.a)

g = є
ω
pωg

ω[(ω + jωeff) − ω
g]
, (.b)

where ωp, ωg, and ωeff are the plasma frequency, electron’s gyrofrequency, and the collision frequency
of the electrons, respectively.

It should also be noted that the positive/negative helicity is defined as right-/lefthandedness to
positive/negative z-axis. The helicity and polarized states can be found by inserting Equation .
into Equation .. When kp− or ka− becomes backward waves, the handedness changes.

A collisionless case is considered here (i.e., ωeff = ). Two quantities are introduced first.

ωc =


[ − ωg +

√
ω
g + ω

p] (.a)

ωc =


[ωg +
√

ω
g + ω

p]. (.b)

As shown in Table ., in order to realize the backward eigenmode ka−, one can see that є + g < 
should be satisfied (i.e.,  < ω < ωc should be held). To form the backward eigenmode kp−, it shows
g > є, which means ωg < ω < ωc. Note that if

ωp <
√
ωg

TABLE . Helicity and Polarization States of kp− and ka− in
Three Cases, under the Conditions of ∣l ∣ < μ and ξc > 

g < −є −є < g < є g > є
HEL POL HEL POL HEL POL

kp− ⊖ LCP ⊖ LCP ∗

⊖
∗RCP

ka−
∗

⊕
∗RCP ⊕ LCP ⊕ LCP

ω (, ωc) — (ωg, ωc)
∗Backward wave regions.
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is satisfied, there is no overlapping of the two intervals regarding the frequency condition in
Table .. If one chooses

ωp >
√
ωg,

then both kp− and ka− are backward wavenumbers, and two impedances will be presented in any
one layer of slabs in Figure .. In that case, it would be impossible to match those two impedances
simultaneously at the material–air interface. However, we can choose one impedance equal to that of
air, and correspondingly the backward wave associated with that impedance can propagate through
the slabs as shown in Figure ..

One can further split the external dc magnetic field into two parts as

Bd c = μ(Hd c +Md c), (.)

where M denotes the magnetic moment in the whole volume occupied by gyrotropic chiral mate-
rial, and the H field has taken into account the demagnetizing field. Then the permeability tensor in
Equation .b can be characterized

μ = μ( −
ωωM

ω − ω

) (.a)

l = μ
ωωM

ω − ω

, (.b)

where

ω =
e

me
μHd c (.a)

ωM =
e

me
μMd c . (.b)

Therefore, it can be shown that the restriction ∣l ∣ < μ (as stated in Table .) can be maintained by
choosing a proper external dc magnetic field and the number of electrons. Further study reveals that
l + μ >  as always. Thus the restriction l < μ becomes

ωM

ω − ω
< . (.)

With the conditions clearly stated, the negative refractive indices of a generalized gyrotropic chiral
medium can be obtained. Taking into account Equation ., for respective polarization states and
helicities, one can finally obtain two refraction indices for those backward eigenwaves:

n
±
= c
(αt ∓ σ) [

√
ξc + (αt ∓ σ)(є ± g) − ξc] , (.)

where plus and minus signs refer to as ka− and kp−, respectively.
It can be seen that n

+
is negative when g < −є and n

−
possesses a minus sign when g > є (which

means that a backward wave propagates in such a medium). It also shows that a negative-refraction
index may be easily achieved even if the chirality admittance ξc is very small. Note that one can use
all positive parameters (i.e., є, g, μ, w, and ξc) to achieve a negative index of refraction (i.e., n

−
).

In addition, g > є can be realized with some advanced technology in future based on the theory of
off-diagonal parameter amplification in artificially gyrotropic media.
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In what follows, Equation . is analyzed in detail to discuss the possibility of backward waves.
We can further rewrite Equation . as

n± = c[
√
(μ ±w)ξc + (μ ±w)(є ± g) − (μ ±w)ξc]. (.)

It is found that the negative-refractive indices may be easily achieved if є ± g < , and it has been
pointed out how the frequency shall be selected so as to give rise to negative refraction indices in
Figure ..

Then what is of particular interest turns out to be the case of n
±
=  (i.e., є ± g = ). It follows that

this case can be realized at two specific frequencies as given below:

ω = −
ωg


+
√
(
ωg


)

+ ω

p (.a)

ω =
ωg


+
√
(
ωg


)

+ ω

p (.b)

where ω = ω and ω = ω lead to є + g =  and є − g = , respectively.
Therefore, one can come up with an equivalent cover for patch antennas (Figure .a) with

zero refractive index and a positive wave impedance /ξc which is composed of a gyrotropic chi-
ral medium. Only normal incident waves are transmitted into the slab, and the phases in any planes
between z =  and z = d will be kept unchanged. Hence, potential application includes a radome
of antennas, which will greatly enhance the directivity of the antennas. No reflected waves interfere
with antennas if impedance matching at the material–air interface has been done. In addition, the
existence of the slab has no influence on the phase of the propagating waves.

Alternatively, in Figure .b, if some sources are placed in such a substratemade from a gyrotropic
chiral slab, which has n =  and finite impedance, all the transmitted waves will be perpendicular
with the upper surface no matter what the form of the source would be. This property is attributed
to the Snell’s law when one of the material has zero refractive index. Due to the property of zero or
nearly zero refractive index, gyrotropic chiral materials at two particular frequencies provide poten-
tials in quantum devices because the discrete quantized field will be greatly enhanced. For instance,
the critical field is assumed to be Ec . If the field strength has the same order of magnitude of Ec or
less than Ec , the field can be viewed as a quantized one or a fluctuation of quantum vacuum. It is
obvious that the critical field strength becomes very large when the refractive index is almost zero.
Hence, the quantum vacuum fluctuation field becomes strong.

X

Z ε0

ε0

 ξc

 ξc

μ0

μ0

d
φ = φd, Z = d

φ = φ0, Z = 0
μ
=

ε
=

(a) (b)

ε0 μ0 ε0 μ0μ
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ε
=

Arbitrary
source

FIGURE . Application of a gyrotropic chiral slab with zero index but finite impedance.
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24.3.3 Chiral Nihility Routes

As is known, theNIMs in themicrowave region have beenmeasured and confirmed.However, realiz-
ing negative permeability frommetallic structures as well as achieving low-loss negative-indexmedia
at much higher frequencies is a very difficult task. Negative values can even be obtained simultane-
ously for the real parts of the permeability and the permittivity without achieving a negative index
of refraction due to high values of the imaginary part of the permeability in the visible region [].
Hence, the impact of NIM would be more far-reaching if negative refraction is realized at optical
frequencies. In this connection, chiral composites have been proposed as a potential candidate to
acheive negative refraction [] in the optical region, since it is not necessary to create artificial mag-
netic media any more. In chiral materials with long helices, backward wave can be excited along the
helix that acts as a delay line. An electric or magnetic excitation will produce simultaneously both
the electric and magnetic polarizations.

However, the chirality cannot be very large in nature so as to satisfy the backward-wave con-
dition √єrμr − κ < . Thus, a special type of chiral materials with extremely small permittivity
and permeability (termed as chiral nihility (CN) firstly by Tretyakov et al.) helps a lot in enlarging
the impact of chiral materials in the realm of negative-index materials. As a complementary coun-
terpart of gyrotropic chiral materials that make use of gyrotropic parameters to reduce refractive
indices, CN is based on the suppression of permittivity and permeability by appropriate wire-loop
models [].

Initially, the concept of nihility was conjectured by Lakhtakia [] for the mixtures of DPS and
DNG dielectric materials, which gives null parameters to the permittivity and permeability of the
mixture. It can be found that this nihility is not physical since the Maxwell equations have no
nontrivial solutions. However, this concept is still of use, based onwhichCN is generalized.The phys-
ical definition of CN is that the two eigenwaves have the opposite propagation constants and that the
wave impedance is a finite number. In such exotic materials, the electromagnetic wave propagates
and negative refraction occurs. By the model in Figure . ordered in arrays, it has been validated
that CN is realizable if the radius of the loop and the length of the dipole are advisably chosen.

In contrast to previous studies on CN, the original work in this section focuses on themacroscopic
characterization of electromagnetic wave interaction with CN. First, the wave scattering and trans-
mission through an air–CN interface are characterized, which yields many exciting phenomena such
as a wide range of Brewster angle and power transport control. Next, we tend to explore different
mechanisms of CN and how to realize those CN. Previously, the CN is for isotropic reciprocal chi-
ral materials. In the following parts, different medium formalisms for such CN are discussed to find
discrepancy. Furthermore, nonreciprocal CN and gyrotropic CN are proposed, and chirality control
is studied to meet the conditions of respective nihilities.

24.3.3.1 Brewster Angles and Chirality Effects in Semi-Infinite Chiral Nihility

A plane wave incidence upon the interface between a dielectric and a chiral medium is considered
as shown in Figure ..

The homogeneous reciprocal chiral material has been defined in Equation ., with only slight
changes in notations here (i.e., єT → єrє and μT → μrμ). The wavenumbers of the two eigenwaves
in the chiral medium then read

k, = k(
√
μrєr ± κ), (.)

which corresponds to two eigenmodes respectively

E = E(ex + jey)e− jkz (.a)

E = E(ex − jey)e− jkz . (.b)
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FIGURE . Orientation of the wave vectors at an oblique incidence on a dielectric–chiral interface.The subscripts
∥ and ⊥ respectively stand for parallel and perpendicular with respect to the plane of incidence.

The refractive indices are thus given as

n, =
√
μrєr ± κ. (.)

Potential applications in phase compensator and quantum devices can also be envisaged similarly as
the gyrotropic cases. In order to study the reflected power at the interface between the dielectric and
the chiral medium, the boundary condition has to be satisfied.

ẑ × [Einc + Er] = ẑ × [E + E] (.a)

ẑ × [Hinc +Hr] = ẑ × [H +H] (.b)

from which the method to retrieve Fresnel reflection and transmission coefficients [] is adopted
and further transformed into the Tellegen formalism. In Figure ., the reflected power is drawn
versus the angle of incidence for two different configurations.

The first case deals with a chiral medium where the permittivity is greater than that of the dielec-
tric. It then has a Brewster angle for an incidence at about ○ for the parallel polarization, as shown
in Figure .a. For the second case (Figure .b), the chiral medium has a lower permittivity
compared with that of the surrounding dielectric. For the value of κ = ., no Brewster angle can
be observed for either polarization of the incident field. However, when θ = ○, the reflected power
of Ppa has a minimum, which is close to zero. The total reflection starts from ○ incidence for both
Ppa (∥) and Ppe (⊥) polarizations. Further investigation shows that the permittivity ratio (i.e., per-
mittivity of dielectrics over permittivity of chiral medium) plays an important role in the zero and
total reflection characteristics. As for the zero reflection, it only occurs in parallel polarization, which
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FIGURE . Reflected power as a function of the incidence with unit permeability, same chirality but different
permittivity.
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FIGURE . Reflected power as a function of the incidence with different cases of chiral nihility: (a) є = μ = ,
є = e − , μ = e − , and κ = .; (b) є = μ = , є = μ = e − , and κ = ..

is consistent with the results of the conventional dielectric–dielectric interface. It is interesting to
observe that the total reflection happens over a wide range of incidence angles, and a secondary
total-reflection angle at θ = ○ appears for perpendicular polarization.

Next, the energy transport from the dielectric to the CN is investigated, where some interest-
ing phenomena arise. Two cases of CNs are considered (i.e., with/without impedance matching to
the air).

Comparing Figure .a with Figure .a, it is seen that zero-reflection angle occurs in per-
pendicular polarization rather than parallel polarization, which is in contrast to the situation for
normal chiral or dielectric materials. It is shown that the reflected power dependence on the inci-
dent angle varies drastically within a certain range. The zero-reflection angle at ○ is quite close to
the lowest total reflection angle at ○, which means that this range is quite angle sensitive. More
surprisingly, the dependence of reflected power on the incidence becomes identical for both polar-
izations when the impedance of CN is matched to that of the free space. In this special case as shown
in Figure .b, the Breswter angle is a range rather than a single angle, and total reflection happens
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FIGURE . Reflected power as a function of the incidencewith samepermittivity and permeability as Figure .
but with higher chirality: (a) є = μ = , є = e − , μ = e − , and κ = ; (b) є = μ = , є = e − , μ = e − , and
κ = .

when the incidence angle is greater than ○ though the impedance matching is achieved. It is due
to the mismatch of the refractive indices.

As one can see, the chirality in each case in Figure . is doubled in Figure ., keeping other
parameters unchanged. As such, the chirality effects in CN can be presented. In Figure ., the
reflected powers of both polarizations carry similar dependence on incidence, while the magnitude
of reflected power significantly differs from that in Figure .. In Figure ., the value is quite
stable over thewhole region except at ○. If the impedance of CN ismatched, the valuewill be further
reduced to zero (Figure .b), whichmeans that the Brewster angle almost covers thewhole range of
incidence angles.Therefore, under such circumstances, all the energy will be transmitted to the CN if
the incident angle is smaller than ○. It may be of great importance to realize imaging characteristics
withoutmuch loss of information of a point source or a line source, since one of the refractive indices
of CN is very close to −.

Figure . shows the reflected power versus the chirality for the two same configurations as above
at an oblique incidence of ○. When the chiral medium is denser than the dielectric (Figure .a)
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FIGURE . Reflected power as a function of the chirality for a θinc = ○ oblique incidence.
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FIGURE . Reflected power as a function of the chirality for a θinc = ○ oblique incidence in different cases of
chiral nihility.

and for a perpendicular polarization of the incident field, the reflected power shows amaximumof .
for κ =  and tends to stable value of . for κ > . Concerning the parallel polarization, twomaxima
are obtained (Pr = .) at κ = . and κ = ., respectively. In order to have a good transmission
through the interface, the chiralitymust be either lower than . or greater than ..On the contrary,
when the dielectric is denser than the chiral medium (Figure .b), total reflection is observed
for both polarizations for chirality smaller than .. Concerning the case of parallel polarization,
the reflected power decreases to a stable value of . as chirality increases. For the perpendicular
polarization of the incident field, a minimum is first observed for κ =  and then a maximum for
κ = .. For κ > , the reflected power tends to .. If one further increases the mismatch of the
permittivity between the dielectric and the chiral medium, the plots observed in Figure . shift to
the right (higher values of chirality) and the amplitude of the reflected power increases.

In contrast to the normal chiral slab, CN slabs for an oblique incidence are also studied in
Figure .. Similarly, particular values of chirality will lead to zero reflection, which is the so-called
critical chirality κc. In Figure .a, κc ≈ ., which exists only for perpendicular polarization. If
the chirality is lower than κc, total reflection happens and no power can be transmitted to the CN
slab. When the chirality is sufficiently large, the reflected powers are approaching their respective
stable values, and it is found that the stable reflected power of Ppa is about seven times larger than
that of Ppe. If the chirality nihility slab has its impedance matched to the free space, both Ppa and Ppe
have identical performance against chirality, and κc can be observed for both cases. It suggests that a
bigger chirality would be a better choice if energy transport is desired.

24.3.3.2 Constraints and Conditions of Isotropic/Gyrotropic Chiral Nihility

Since the CN is so promising in realizing negative refraction, it is of particular interest to explore
the physics of CN and the conditions to satisfy not only isotropic CN but also the nonreciprocal and
gyrotropic CN.

● Isotropic chiral nihility:

. Tellegen:
Tellegen’s formalism has been given in Equation .. When єTμT → , the nihility condition of

isotropic chiral media can be represented by

k
±
= ω(√єTμT ± κ

√
єμ) → ±kκ, (.)
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where k is the wave number in free space. Hence, one of the waves becomes a backward wave and
has the negative refractive index of n = −κ.

In the meantime, the wave impedance of the chiral medium η =
√
μT/єT should remain finite,

which means

lim{μT/єT} → const ≠ ,∞. (.)

The combination of this relation with the nihility condition implies that єT →  and μT → .

. Post:
In the Post’s notation, the constitutive relations are shown in Equation ..Themapping relations

between Tellegen and Post formalism are given below:

μP = μT (.a)

єP = єT −
єμ
μT

κ (.b)

ξc =
√єμ
μT

κ. (.c)

The eigenwave numbers in Post formalism are found to be

k
±
= ω (
√

μPєP + μPξc ± μPξc) . (.)

Thus, the nihility condition is

μPєP + μPξc → . (.)

The condition in Equation . is satisfied if єTμT → , because the terms containing the chirality
parameter κ cancel out.

The impedance

η =
√
μPєP + μPξc
єP + μPξc

(.)

remains finite if

єP + μPξc → . (.)

Substituting the Post parameters expressed via the Tellegen parameters, one sees that if the nihility
condition in the Post formalism Equation . is satisfied, then the Tellegen permittivity

єT = єP + μPξc → , (.)

which is consistent with the CN requirements in terms of the Tellegen parameters.

. Drude-Born-Fedorov:
The Drude-Born-Fedorov (DBF) constitutive relations are

D = єDBF(E + β∇ × E) (.a)

B = μDBF(H + β∇ ×H), (.b)
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where β denotes the chirality in DBF formalism.The wavenumbers obtained for the two eigenmodes
are given by

k
±
=
ω√єDBFμDBF ± ωєDBFμDBFβ

 − ωєDBFμDBFβ
(.)

and the wave impedance

η =
√
μDBF/єDBF. (.)

In this case, the conditions of CN look the same as in the Tellegen notation:

єDBF → , μDBF →  (.)

However, if Equation . is satisfied, then k
±
=  unless the DBF chirality parameter β → ∞.

This is, however, consistent with the known relation between the chirality parameters in the Tellegen
notation and the DBF formalism:

єT =
єDBF

 − k
DBFβ

(.a)

μT =
μDBF

 − k
DBFβ

(.b)

κ = ωμDBFєDBFβ√єμ( − k
DBFβ)

, (.c)

where k
DBF = k

єDBFμDBF. Apparently, if μDBFєDBF → , κ can remain finite only if β →∞. Inversely,
if Tellegen’s nihility is fulfilled (єT → , μT → ), we will have zero μDBF and zero єDBF. Thus, the
Tellegen chirality κ will be forced to zero in Equation .c, which is also the reason why such
є = μ = e −  instead of zero is set.
Therefore, Tellegen and Post notations are equivalent and equally convenient to describe isotropic

CN, whereas the DBF formalism is less suitable due to the requirement of β →∞.

● Nonreciprocal condition:

The constitutive relations for general bi-isotropic nonreciprocal chiral media in Tellegen’s notation
can be written in the following form:

D = єTE + (χ + jκ)√єμH (.a)
B = μTH + (χ − jκ)√єμE , (.b)

where χ is the nonreciprocity parameter. Let us see how the introduction of the nonreciprocity
parameter would modify to the nihility condition. The expression of the propagation constants of
the two eigenwaves is found to be []

k± = ω(
√
єTμT − χєμ ± κ

√
єμ). (.)

Thus, the nihility condition is

√
єTμT − χєμ → . (.)
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When this condition is satisfied, then

k
±
= ω(
√
єTμT − χєμ ± κ

√
єμ) → ±kκ. (.)

Apparently, the nonreciprocal nihility is easier to achieve than the CN єTμT →  due to the role
of the nonreciprocity parameter, which further reduces the value of the product of permittivity and
permeability.

The wave impedances for a bi-isotropic nonreciprocal medium are found to be

η
±
= μT√

єTμT − χєμ ∓ jχ√єμ
, (.)

which are independent on the chirality parameter κ. If the CN condition Equation . is satisfied,
then the expressions of the impedances reduce to

η
±
= ± j

μT
χ√єμ

= ± j
μT
єT

, (.)

which is a purely imaginary number for lossless media.
It is also found that if Equation . is exactly zero, the effective permittivity and permeability

seen by the LCP and RCP waves also become purely imaginary numbers (for lossless media)

μ±T = jμT
κ
χ

(.a)

є±T = −
μ
μT

jκχє. (.b)

Let us now consider the case of dispersive bi-isotropic media with a single-resonance dispersion.
The expressions of the permittivity and permeability in Equation . read

єT(ω) = є[ −
ω

pe

ω(ω + jΓeωpe)
] (.a)

μT(ω) = μ[ −
ω

pm

ω(ω + jΓmωpm)
], (.b)

where the plasma frequency and damping terms are assumed to be equal for both polarization and
magnetization: ωpe = ωpm = ωp and Γe = Γm = Γ.The nonreciprocity parameter and the chirality can
be described in terms of a quantum mechanical model analogue to the classical lossy Drude model:

χ(ω) = Γcωω
c

ω − ( − Γc )ωω
c + ω

c
(.a)

κ(ω) = (ω
c − ω)ωωc

ω − ( − Γc )ωω
c + ω

c
, (.b)

where ωc is the characteristic frequency for the single-resonance model, and the damping term Γc
is consistent with the one for polarization/magnetization (i.e., Γc = Γ). Let us call the real part of√
єT(ω)μT(ω)/єμ − χ(ω) the nonreciprocal nihility parameter (NNP).
In Figure ., it appears that for ω = . ×  rad/s, NNP is of the order of − only; the

nonreciprocal CN would then be realized. On the other hand, the imaginary part for NNP is of the
order of . at this frequency. As a consequence, the forward and backward waves propagating in
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FIGURE . Nonreciprocal nihility parameter versus frequency for nonreciprocal chiral material: ωp =  ×
 rad/s, ωc =  ×  rad/s, and Γ = ..

the medium would be decaying waves. Thus, the nonreciprocity parameter χ might be used as an
additional parameter to achieve CN. It is also worth noting that if the bi-isotropic medium has no
dispersion and is lossless, the limiting case of χ = √єTμT/

√єμ implies that this medium carries
zero power []. However, due to the dispersion, the lossy chiralmedium can still convey some power
even if the NNP is very close to zero. Thus, it can be concluded that dispersive nonreciprocal CN
material has properties that are quite different from that of the reciprocal CN media.

● Gyrotropic chiral nihility:

Although the nonreciprocity parameter in general bi-isotropic media offers an additional degree
of freedom to achieve CN, the nihility condition is still a challenge to satisfy in practice due to the
difficulty of realizing artificial nonreciprocal bi-isotropic media. In this section, another possibility
of creating CN is investigated. It concerns gyrotropic chiral media with gyrotropy [,,], either
in permittivity/permeability or in magnetoelectric parameters. Introduction of certain anisotropy or
gyrotropy may provide methods to control chirality. This category of chiral media has three subsets:
() Ω–medium, () chiroplasma medium, and () chiroferrite medium. Although the Ω–medium
can exhibit negative refraction and most probably nihility, the investigation is mainly restricted to
chiroplasma and chiroferrite []. Chiroplasma can be realized by embedding chiral inclusions in a
magnetically biased plasma, which results in the gyrotropic tensor in permittivity, while chiroferrites
can be made from chiral inclusions immersed into ferrites with biased magnetic fields, which leads
to a gyrotropic tensor in permeability. An example of such media is the generalized form of Faraday
chiral media.

Based on the viewpoint of practical application, Post notations are employed to describe such
media as Equation . and the parameters are defined as Equations . and .. Looking back
into the result of refractive indices as shown in Equation ., one can further rewrite as

n± = c[
√
ξc(μ ± l) + (є ± g)(μ ± l) − ξc(μ ± l)]. (.)

Therefore, the condition for achieving gyrotropic nihility is

ξc = −(є ± g)/(μ ± l). (.)
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for gyrotropic chiral material at different electron collision frequencies: ωp =  × rad/s, ωg =  × rad/s, ω =
. × rad/s, and ωM =  × rad/s.

The off-diagonal elements (i.e., g and l) can be both modified to achieve the nihility condition.
By a proper choice of the off-diagonal elements (i.e., g and l), the gyrotropic CN condition of
Equation . can be achieved even for media with a low degree of chirality ξc.The frequency under
the solid lines in Figure . is the valid range to meet the gyrotropic CN.

It can be shown from Figure . that the electron collision frequency ωeff plays an important
role in achieving gyrotropic nihility. For high values of ωeff , for instance, for ωeff = . × rad/s,
a much higher chirality is needed to match the requirement of gyrotropic nihility compared with
the case when ωeff = . × rad/s. The smaller the collision frequency is, the higher the chirality
needed to satisfy the nihility condition. Therefore, the electron collision in the plasma is found to
facilitate the chirality control of gyrotropic nihility. It is due to the fact that self-spin and the collision
of electronsmay strengthen the degree ofmagnetoelectric coupling in gyrotropic chiralmedia, which
compensates the nihility requirement for chirality.

Therefore, in order to satisfy the condition of gyrotropic nihility, the frequency should be chosen
within a specific range, apart from which gyrotropic CN can never be realized no matter how the
chirality is controlled. Once the gyrotropic nihility is satisfied, the refractive indices become

nnih
+
= −c(μ + l)ξc (.a)

nnih
−
= c(l − μ)ξc. (.b)

It can be found that nnih
+

is negative because of μ + l >  (Equation .). Of particular interest is
the negative refraction for nnih

−
, which has resonance in the vicinity of ferromagnetic frequency ω.

At the frequency range  < ω < ω− ∪ ω + ωM < ω, negative refraction occurs in nnih
−

.

24.3.4 Bianisotropic Routes

Bianisotropy is conceived as a physical concept describing composites that possess intrinsic mecha-
nisms of magnetoelectric coupling, which includes chiral, bi-isotropic, and gyrotropic chiral media.
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The concept of a bianisotropic medium was coined in  by Cheng and Kong [] defining a
medium with the most general linear constitutive relations. It was supposed that such generalized
constitutive relations may unify two separate branches of research on electrodynamics and magne-
toelectric crystals. In the previous section, gyrotropic chiral materials (chiroplasma and chiroferrite)
are very close to the definition of the bianisotropic material in the sense of constitutive relations.
Interestingly, new trends of realization of NIMs by using bianisotropic materials will be revisited.

The constitutive relations of a bianisotropic medium are classified as

D = є ⋅ E + ξ ⋅H (.a)

B = ζ ⋅ E + μ ⋅H, (.b)

where
є/ μ denotes permittivity/permeability dyadics

ξ/ζ represents the cross-coupling dyadics. For decades, electromagneticians adopt this postulation
of the most general linear magnetoelectric medium. People find that such relations do not violate
Maxwell equations, assuming the electric and magnetic dipoles induced in the particles are coupled
pairwise. However, in a rigid sense, the constitution should be derived through an averaging process
in a microscopic view, which is beyond the scope of the current chapter. In what follows, let us focus
on two practical aspects of the bianisotropic role in NIMs.

Bianisotropics is closely correlated with themetamaterial research because small metallic resonant
particles may show certain bianisotropic (magnetoelectric) effects. The role of bianisotropy would
even result in non-left-handedness in some particular ring resonators []. An analytical model
thereby was proposed to remove the bianisotropy as well as to reduce the resonant frequency and
the electric size, by mirroring the ring at the backside of the substrate with a ○ rotation [].

Usually, the bianisotropy (magnetoelectric coupling) might be regarded as an undesired property
by the majority of researchers in the community of NIMs, hence some symmetrical split-ring struc-
tures are proposed []. The backward-wave regimes are realized when both the permittivity and
permeability have negative real parts in the design of magnetodielectrics.

However, it has been proved that backwardwaves and negative refraction can exist in bianisotropic
materials, for instance, chiral media [,,,] and gyrotropic chiral media [,,]. It will be
shown how the bianisotropy is used to realize NIMs. From the practical point of view, a general
bianisotropic medium, a reciprocal uniaxial Ω-medium, can simply be realized by a composite with
wire inclusions, defined by the following constitutive relations:

D = є

⎡⎢⎢⎢⎢⎢⎣

єt  
 єt 
  єz

⎤⎥⎥⎥⎥⎥⎦
⋅ E + i
√
єμ

⎡⎢⎢⎢⎢⎢⎣

 −K 
K  
  

⎤⎥⎥⎥⎥⎥⎦
⋅H (.a)

B = μ

⎡⎢⎢⎢⎢⎢⎣

μt  
 μt 
  μz

⎤⎥⎥⎥⎥⎥⎦
⋅H + i
√
єμ

⎡⎢⎢⎢⎢⎢⎣

 −K 
K  
  

⎤⎥⎥⎥⎥⎥⎦
⋅ E , (.b)

where K denotes the magnetoelectric coupling.
Since the Ω-medium has been modeled in microwave frequency and checked by experiments

[], this approach is believed to be realistic and reliable, which also provides the possibility of
extending current applications frommicrowaves to the optical wavelength. Traditionally, the creation
of a negative permeability in optical wavelength is quite difficult, which restricts the application of
metamaterials. Interestingly, the Ω-medium, as proposed in Ref. [], does not require the permit-
tivity and permeability to have negative real parts. Instead, once the condition of Re{єt + μt} <  is
satisfied, negative refraction could arise, which is easier to achieve apparently.
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This point is especially valuable to the composites with negative permittivity in optics, because the
negative real part in permittivity would compensate the contribution of permeability through mag-
netoelectric coupling. It is due to the fact that the magnitude of resonant magnetoelectric coupling
has an order higher than that of resonant magnetic polarizability. By introducing a second ensemble
of identical Ω-particles with the stems along x-axis and the loops in x−z plane, this type of struc-
ture can futher perform uniform operation for linearly polarized waves of any polarization direction.
Backward waves can be generated by the bianisotropy within certain frequency bands, in which the
permeability is positive.

24.4 Conclusion

In this chapter, the electromagnetic properties of chiral and bianisotropic (magnetoelectric) com-
posites are intensively investigated, with the particular interest in realization of backward-wave and
negative-index regimes. Wide applications in resonator, phase compensator, directive antennas, and
quantum devices are also reported. Different medium formalisms of isotropic and gyrotropic mag-
netoelectric composites are discussed, and it is found that for isotropic magnetoelectric cases the
formalisms are all equivalent while for gyrotropic magnetoelectric cases each formalisms have pros
and cons in the viewpoints of NIM realization and practical application. The gyrotropy parameters
also favor the realization of negative refraction because they will make the wave propagate backward.
The eigenmodes at backward-wave regime and their frequency ranges are discussed for dispersive
gyrotropic magnetoelectric composites. Based on that, the negative refraction can be achieved by
selection of working frequency.

As a more interesting case, the CN, isotropic and gyrotropic, is examined. The energy trans-
port in CN is extensively examined. The effects of magnetoelectric coupling in the energy transport
are characterized through numerical studies. A wide range of Brewster angles is discovered and
electromagnetic wave through a CN slab is studied. In the following, general nihility routes for mag-
netoelectric composites to NIMs are proposed for isotropic, nonreciprocal, and gyrotropic chiral
composites, where the requirements to meet respective nihility condition such as frequency con-
trol and chirality control are also presented. For the isotropic CN, the DBF formalism is proven to
be inappropriate due to the lack of physics. A nonreciprocal CN is thus shown, which makes the
nihility condition easier to fulfill. Furthermore, the gyrotropic CN, based on the previous study
on gyrotropic chiral composites, is investigated and one can find that it provides more degrees of
freedom to meet the nihility condition due to the contributions of gyrotropic parameters. Chirality
control is presented and it reveals that more of electron collision in plasma could alleviate the chiral-
ity requirement for gyrotropic CN. Finally, the bianisotropy is discussed in two separate branches of
the metamaterial research. One is to minimize the bianisotropic effects in the design of metal inclu-
sions, which could result in an isotropic negative-index material. On the contrary, the bianisotropic
routes to backward-wave regimes are revisited making use of the bianisotropy of certain particular
structures (i.e., Ω-medium). In conclusion, magnetoelectric coupling in chiral or generalized bian-
isotropic media provides the researchers a new avenue to achieve the negative-index materials, with
a wide range of exciting potentials in optical region.
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25.1 Introduction

Bianisotropic media are linear materials characterized by the most general linear relationships
between the four field vectors [], which can be written as

D = εε ⋅ E + a ⋅H, (.)

B = b ⋅ E + μμ ⋅H. (.)

Magnetoelectric coupling, measured by the two dyadic parameters a and b, appears either due to
spatial dispersion in the medium (these terms model spatial dispersion of the first order in terms of
the ratio of the inhomogeneity size to the wavelength) or due to nonreciprocity of the material. In
reciprocal bianisotropic materials the coupling coefficients satisfy

b = −a
T

, (.)

where T denotes the transpose operation (in addition, in this case the permittivity and permeability
dyadics are symmetric). Thus, the reciprocal magnetoelectric coupling can be described by only one
dyadic coupling coefficient, say, a = κ. This dyadic can always be written as

κ = κI + N + J , (.)

25-1
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where
I is the unit dyadic
N is a symmetric trace-free dyadic
J is an antisymmetric dyadic

According to the classification given in Ref. [], reciprocal bianisotropic media split into classes of
chiral media, when κ = trace{κ} is nonzero (κ is called the chirality parameter), pseudochiral media
when κ = , N ≠ , J = , omega media κ = , N = , J ≠ , and their combinations.

Nonreciprocal magnetoelectric coupling effects are measured by the nonreciprocity dyadic

χ = a + b
T

. Similar classification using the representation

χ = χI + N + J (.)

defines Tellegen media with χ ≠ , pseudo Tellegen media with N ≠ , and moving media with
J ≠ . Note that metamaterials can “emulate” magnetoelectric coupling in moving media although
the samples are at rest.

Electromagnetic phenomena in bianisotropic media are very rich, and they have been studied in
a large number of publications (see monographs [,]). In the following sections, we briefly review
some recent results on backward waves and negative refraction phenomena in bianisotropic media.

25.2 Backward Waves in Chiral Media

The constitutive relations for isotropic chiral media read []

D = εεE − jκ
√

εμ H, (.)

B = jκ
√

εμ E + μμH. (.)

Here κ is the chirality parameter, measuring the magnetoelectric coupling, which, due to the
first-order spatial dispersion effects, allowed for media with mirror-asymmetric microstructure. The
eigenwaves in isotropic chiral media are left- and right-circularly polarized plane waves with different
propagation constants

β = (n ± κ)k, (.)

where
n = √єμ is the usual refraction index
k is the free-space wave number

From the above formula it is obvious that if the effect of chirality is very strong or the refraction
index is very small, one of the propagation constants can have a negative real part. This means that
one of the eigenwaves in this case is a backward wave, like in isotropic nonchiral media with negative
material parameters.

A possibility for such an effect was noted for the first time probably in Ref. [], published in . In
Ref. [], a spiral model for a chiral optical molecule and the Lorentz dispersion model for the permit-
tivity were used. A formula for the frequency range of negative refraction was derived. Single-phase
chiral substances were considered, and magnetic properties of the medium were neglected. However,
for a long time this contribution remained largely forgotten, probably because in naturally occurring
chiral materials chirality is a very weak effect, so such exotic regimes were not possible to realize.
More recently, with the metamaterial technology emerging, backward waves in chiral materials were
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theoretically rediscovered by several authors [–]. The existence of backward waves in strongly
chiral media with positive permeability and negative permittivity was shown in Ref. [].

25.2.1 Possible Routes to Realization

There are two known possible approaches to realization of the backward-wave regime in artificial
chiral media: the use of a mixture of helixes and resonant dipoles [] and the use of a composite
of only helices [,]. In the first approach, the hypothesis [] is that in the vicinity of the resonant
frequency of electric-dipole inclusions the effective permittivity can be very small (the real part can
cross zero), whereas the chirality effect (provided by small helical inclusions) remains strong enough,
so that the backward-wave condition Re{n} < Re{κ} would be satisfied.

Both possibilities were studied in detail and compared in Ref. []. In Ref. [], the methods
described in Refs. [,] were used to derive mixing equations for the effective material parameters
of double-phase chiral mixture, which take into account the coupling between dipoles and helixes.
Next, numerical examples were calculated with the use of an introduced general dispersion law for the
polarizabilities of helical particles, based on the antenna model of chiral inclusions []. This model
enables the study of particles with different shapes and electrical sizes.

It has been shown that once the coupling between helices and dipoles is taken into account, there is
a stop band in the frequency region where negative refraction is expected to occur following the sim-
ple hypothesis of Ref. []. However, the negative refraction can still occur in “chiral nihility” materials
as has been suggested in Ref. []. Backward waves can exist at frequencies higher than the resonant
frequency of chiral particles. The role of chirality was seen in widening the backward-wave frequency
band and in opening a way to realize new physical effects and possibly create new microwave and
optical devices.

25.3 Chiral Materials with the Effective
Refraction Index n =−1

As follows from analytical models of small-particle polarizabilities (e.g., Ref. []), the axial electric
and magnetic polarizabilities of small chiral inclusions are proportional to each other, and the pro-
portionality coefficient slowly depends on the frequency []. As was noted in Refs. [,], this can
allow us to create artificial materials with nearly equal permittivity and permeability close to the res-
onance of the particles. Moreover, there exist “optimal” shapes of helices [,] for which all three
axial polarizabilities are equal, that is, the normalized electric polarizability, magnetic polarizability,
and the magnetoelectric coupling coefficient are all equal.

For the “optimal” shape of helices we have є = μ =  ± κ (different signs exist for the opposite
handedness of the spirals) []. At a certain frequency near the fundamental resonance of the helices,
the real parts of the permittivities cross zero:

Re{є} = Re{μ} =  ⇒ Re{κ} = ∓. (.)

The refraction indices of the two modes read

n+ =  − j (
√

є′′μ′′ − κ′′) , (.)

n
−
= − − j (

√
є′′μ′′ + κ′′) , (.)

where κ′′ >  for the considered helicity. We see that one of the eigenmodes has the unit refraction
index and very low losses, because for the optimal spirals є′′ ≈ μ′′ ≈ κ′′.

Composite materials formed by such inclusions have many interesting properties. In particular,
the effective permittivity is approximately equal to the permeability, allowing matching of composite
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slabs to free space (this property is also required for the ideal operation of so-called “invisibility
cloak”). Furthermore, in the regime of chiral nihility, one of the two circularly polarized eigenmodes
behaves as a wave in free space, with unit effective refraction index and compensated losses. The real
part of the refraction index for the other eigenmode equals−. A linearly polarized wave incident on a
slab of such material will split into two circularly polarized components, one of which will propagate
as in free space, but the other will refract negatively and suffer enhanced absorption.

25.4 Using Bianisotropic Effects

Bianisotropic materials are characterized by the most general linear relations between the four vectors
of electromagnetic fields (e.g., Ref. []):

D = є ⋅ E + a ⋅H, B = μ ⋅H + b ⋅ E. (.)

Here є and μ are the permittivity and permeability dyadics (in matrix form each of which can be
represented in terms of nine complex scalar parameters), and a and b are the magnetoelectric cou-
pling dyadics. Magnetoelectric coupling in linear media can result from spatial dispersion and from
nonreciprocity of the composite. Bianisotropic media can be classified [] as chiral and omega media
(reciprocal magnetoelectric coupling) and Tellegen and moving media (nonreciprocal coupling).

Among reciprocal bianisotropic materials, omega composites have been found of interest with
respect to the realization of backward-wave propagation and negative refraction []. Considering in
particular the uniaxial omega material (the unit vector along the optical axis is z), the constitutive
relations can be written as

D = є ⋅ E + j
√

εμKJ ⋅H, B = μ ⋅H + j
√

εμKJ ⋅ E, (.)

where the permittivity and permeability dyadics have the form:

є = ε (εt I t + εzzz) , μ = μ (μt I t + μzzz) . (.)

It is the two-dimensional unit dyadic defined in the plane orthogonal to z: It = xx + yy. The
magnetoelectric dyadic is antisymmetric: J = z×It . A complex dimensionless parameter K measures
the magnetoelectric coupling effect.

Eigenwaves in such media are linearly polarized plane waves, similar to simple magneto dielectrics.
For waves propagating along the axis both eigenwaves have the same propagation constant []

β = k
√

εt μt − K , (.)

where k is the free-space wave number. The characteristic admittances, however, are different for
the waves traveling in the positive and negative directions of the axis z (denoted as Y

+
and Y

−
,

respectively):

Y
±
= Y

√
εt

μt

⎛
⎜
⎝

�
��� − K

εt μt
∓ j

K
√εt μt

⎞
⎟
⎠

. (.)

Here Y =
√

ε/μ is the free-space wave admittance.
Interesting effects in slabs made of such materials were described in Ref. []: it was shown that

omega composites can be used to realize absorbing layers, which are matched to free space. Indeed,
one can notice that if the material parameters satisfy the condition

K = j

(μt − εt) , (.)
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the relationship (Equation .) gives Y
+
= Y. Then the reflection coefficient from one side of the

slab of an arbitrary thickness d equals R =  and the transmission coefficient reads T = exp(− jβd).
Note that the matching condition can be satisfied for arbitrary permittivity and permeability values,
provided one can control the coupling coefficient K.

In Ref. [] it was shown that it is possible to design a bianisotropic material in such a way that
it supports linearly polarized backward waves, and a slab made of this material is perfectly matched
to free space for the normal direction of propagation. Indeed, if the condition (Equation .) is
satisfied, the propagation constant of the eigenwaves in the medium reads (Equation .)

β = k


(εt + μt) . (.)

This result shows that the magnetoelectric coupling not only allows one to match the slab to free
space but also makes it easier to realize the backward-wave regime. From formula (Equation .)
we see that the refractive index in a matched Ω-slab is negative when

Re{εt + μt} < , (.)

which is easier to satisfy than the usual conditions

Re{εt} < , Re{μt} < . (.)

In particular, it is not necessary to realize negative permeability, which can be more difficult at
the optical frequencies, than to satisfy Equation .. Composites with negative permittivity and
acceptable losses, on the contrary, are available in optics and can be obtained, for example, using
dilute arrays of metal nanoparticles embedded in a dielectric matrix. An example of a microwave real-
ization as a composite formed by a lattice of conducting wires and an overlying lattice of Ω-shaped
particles was given in Ref. [].

25.5 Conclusions

Bianistropic media exhibit a number of very interesting and practically useful effects, ranging from
optical activity to simulating electromagnetic phenomena in moving media. Many of them have been
known for a long time and explored in practical devices, both in optics and in the microwave region.
However, not all physically possible magnetoelectric effects exist in natural materials, and, more-
over, if they exist, they are often very weak (for instance, chirality in the visible range). Metamaterial
technology allows one to realize effects not found in nature, tune the effects for specific applications,
and realize strong (resonant) magnetoelectric phenomena in the optical region. The last challenge
requires further development of nanotechnologies, as it requires manufacturing of complex-shaped,
three-dimensional, nano-sized structures.
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26.1 Introduction

Metamaterials are media with unexpected and complicated macroscopic responses. The simplest
response in a medium is the plain isotropic dielectric response. There are, however, grounds to
claim that all reactions in the material that exceed such behavior could in some sense be termed
metamaterial-type effects.

In this chapter the medium response is characterized using bianisotropic material relations.
Bianisotropy is defined and various classifications of such media are presented using the con-
cepts of dissipation, reciprocity, isotropy, and magnetoelectric coupling, as well as the mathematical
properties of the material parameter dyadics.

In addition, the recently discovered concept of perfect electromagnetic conductor (PEMC) is intro-
duced and analyzed. A PEMC medium possesses remarkable properties and is indeed an excellent
example of a metamaterial. The main effect of the PEMC medium as a boundary is to rotate the
plane of polarization of the reflected wave, which may find interesting applications in antenna and
microwave technologies.

The characterization of bianisotropic materials requires four dyadic parameters. The constitutive
relations relate the electric (E) and magnetic (H) field strength quantities to the electric (D) and
magnetic (B) flux densities. A general linear material response, which can be anisotropy and contain
magnetoelectric coupling at the same time, is called bianisotropic response.

The constitutive relations for bianisotropic materials read

D = є ⋅ E + ξ ⋅H (.)

B = ζ ⋅ E + μ ⋅H. (.)

In these relations, the four material parameter dyadics are permittivity є and permeability μ and two
magnetoelectric dyadics ξ and ζ, allowing for dependence of the response on the spatial direction of
the excitation. The most general bianisotropic material requires  parameters for a full constitutive
electromagnetic description. However, lacking any preferred direction in the material, the medium

26-1
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is bi-isotropic and the amount of free parameters decreases to four. In the following sections, let us
divide these materials into relevant classes.

26.2 Classes of Bianisotropic Media

The domain spanning the full description of bianisotropic media is indeed large. There are several
ways to find order in this space. One important criterion is the amount of spatial symmetry. Let us
start with the distinction between isotropic and anisotropic materials. Isotropic media do not possess
any special direction in their structure, meaning that the electromagnetic response (and any other
response, for that matter) does not depend on how the material is rotated with respect to the field.
If this symmetry is broken, the medium is anisotropic. On the level of constitutive parameters, this
means that a dyadic description is necessary. For isotropic media, the material parameter dyadics are
multiples of the unit dyadic, and scalar multiplications suffice instead of matrix products.

Another important property of certain bianisotropic materials is magnetoelectric coupling, mean-
ing that the parameters ξ and ζ in relations (Equations . and .) are nonzero. A magnetic field
creates electric polarization in the medium, and vice versa, an electric excitation brings forth mag-
netic response. This motivates us to draw Table ., which shows a four-field division of bianisotropic
materials into subclasses when the criteria are isotropy–anisotropy and whether the medium displays
magnetoelectric coupling. Note the concept of bi-isotropy, which means that spherical symmetry is
connected with magnetoelectric coupling.

The limitation to dyadic material parameters (vector-to-vector relations) means that higher-order
multipole effects are not contained in this phenomenological description of matter response. For
a more inclusive discussion on the balance between the various electric and magnetic multipole
contributions, see Ref. [].

Another way of making distinctions between various materials is through certain physical restric-
tions. These set conditions to the material dyadics. If no dissipation is allowed, the medium is lossless.
Applied to bianisotropic media and time-harmonic fields, this condition means that the following
applies:

є = є
†
, μ = μ

†
, ξ = ζ† (.)

where the Hermitian operator † denotes a complex conjugate of the transpose.
Another important concept in the electromagnetic material response is reciprocity. Reciprocity

means an invariance of a system when the transmitter and receiver are interchanged [, Section
.], [, Section .]. If the medium is reciprocal, the conditions for the material parameters are
[, Section .] as follows:

є = є T, μ = μ T, ξ = −ζ T (.)

where T denotes the transpose of the dyadic. For reciprocal media therefore permittivity and
permeability are symmetric dyadics, and the magnetoelectric cross-dyadics each other’s negative

TABLE . Classes of Bianisotropic Materials and the Number
of Free Material Parameters in Their Full Characterization

Direction Direction
Independence Dependence

No magnetoelectric (є, μ) (є, μ)
coupling (isotropic) (anisotropic)

Magnetoelectric (є, μ, ξ, ζ) (є, μ, ξ, ζ)
coupling (bi-isotropic) (bianisotropic)
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transposes. Hence a full characterization of reciprocal bianisotropic materials requires  (complex)
parameters.

Nonreciprocal effects are contained in two different places in these dyadics: in addition to the
antisymmetric parts of є and μ, also both symmetric and antisymmetric parts of the magnetoelectric
dyadics can be nonreciprocal. This fact calls for another description of the magnetoelectric dyadics,
which separates the reciprocal and nonreciprocal parts:

D = є ⋅ E + (χT − jκT) ⋅H (.)

B = (χ + jκ) ⋅ E + μ ⋅H. (.)

The two magnetoelectric dyadics are connected to the previous ones through the following relations:

χ = ζ + ξT


, κ = ζ − ξT

j
. (.)

Of these two dyadics, the dyadic κ is termed the chirality dyadic, and it is responsible for the recip-
rocal magnetoelectric phenomena. χ is the nonreciprocal cross-polarization dyadic. Time-harmonic
dependence of the fields brings forth complex-valued quantities with the convention exp(jωt). With
the definitions of Equations . and ., the dyadics κ and χ are real for lossless materials.

Materials whose internal structure is handed are examples of materials with κ ≠ . A mixture of
handed elements leads to a medium which is also called chiral []. Omega medium is a composite
of planar Ω-shaped elements that are aligned in uniaxial arrangement [], and the corresponding
chirality dyadic is antisymmetric. On the other hand, a uniformly moving medium is an example
of a nonreciprocal magnetoelectric medium []. In Table . bianisotropic materials are classified
according to the principles of symmetry and reciprocity.

Figure . shows some basic mechanisms responsible for the magnetoelectric coupling. If many
chiral elements such as the helix of the type in the figure—all of the same handedness—are mixed
with random orientations to form a mixture, the macroscopic electromagnetic parameters are equal
to scalars, and the chirality parameter κ is not zero []. A mirror image of such a medium would leave
everything else unchanged except that κ changes sign (the elements switch handedness). Likewise,
the nonreciprocity parameter χ is not equal to zero if the microstructure of the material contains
coupled permanent electric and magnetic moments, again all with the same type of coupling. The
sign of χ is determined whether this coupling is parallel or antiparallel.

Bianisotropic media span a very wide spectrum of material responses sections. In the following
sections, let us concentrate on a particular, and still interesting, example of such metamaterials.

TABLE . Bianisotropic Material Classification According to the Symmetry Properties of the Parameter
Dyadics with Material Examples

є μ κ χ
Symmetric (Reciprocal) (Reciprocal) (Reciprocal) (Nonreciprocal)
part: Dielectric Magnetic Chiral Chromium
( parameters) crystal crystal medium sesquioxide
Antisymmetric (Nonreciprocal) (Nonreciprocal) (Reciprocal) (Nonreciprocal)
part: Magneto- Biased Omega Moving
( parameters) plasma ferrite medium medium

Source: Sihvola, A. and Lindell, I.V., Annalen der Physik, (–), , .
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(b)

N

S

+

−

(a)

FIGURE . (a) A chiral (handed) element, which leads to a nonzero chirality parameter κ in the material relations.
Changing the handedness of the element changes the sign of κ. (b) Electric and magnetic dipoles glued together form
an element that leads to a nonzero magnetoelectric χ parameter in the material relations. This parameter changes sign
if the coupling is opposite (the electric and magnetic dipole moments are antiparallel).

26.3 PEMC Medium

The concept of PEMC medium was introduced in  []. To gain understanding of the fundamental
character of PEMC, it is illuminating to make a slight detour through four-dimensional formalism
of electromagnetism. For a full treatment, see Ref. [].

The three-dimensional (spatial) electric and magnetic one-forms E, H and two-forms B, D can be
combined as the following two-forms:

Φ = B + E ∧ dτ (.)
Ψ = D −H ∧ dτ, (.)

where
τ = ct as the normalized time variable
∧ is the wedge (outer) product
dτ is the time-like one-form

Then the Maxwell equations can be written compactly as

d ∧Ψ = γ (.)
d ∧Φ = . (.)

To follow the notation in Ref. [], the electromagnetic two-forms Ψ and Φ are six-dimensional quan-
tities. The source three-form γ combines the spatial electric charge three-form ρ and the spatial
electric current two-form J into

γ = ρ − J ∧ dτ. (.)

To describe the response of matter in this formalism, we need an additional equation in the form

Ψ = M∣Φ. (.)

Here M is the medium dyadic. In a given basis it can be represented by a × matrix. To connect with
the discussion in the previous section, we identify M as an algebraic quantity, which in the general
case involves  parameters. The bar ∣ denotes the necessary product operation [].
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The relation (Equation .) is quite formal, and the medium dyadic certainly contains compli-
cated relations. However, if this relation is distilled to a single scalar, one could say that we have found
the simplest medium:

Ψ = MΦ. (.)

This is called PEMC. What does it mean? A medium obeying the response of the type in
Equation . is invariant in any affine transformations, including the Lorentz transformation. The
consequence is that the medium appears the same for any observer traveling with constant velocity.
One could say that this is the only truly isotropic medium, since the medium dyadic is invariant in
any linear transformation of the fields.

Let us write the relation (Equation .) between the electric (E) and magnetic (H) fields and
electric (D) and magnetic (B) displacements. This leaves us with

D = MB (.)

H = −ME. (.)

The only remaining reference to the medium is M, which is a real scalar admittance-type quantity. The
dimension of M corresponds to the units amperes/volt in the SI system. More exactly, the parameter
M is a pseudoscalar []. As a terminological observation, the identification in the four-dimensional
Minkowskian representation of PEMC is axion [].

Very interesting is the fact that the PEMC medium is a generalization of perfect electric and
magnetic conductors (PEC, PMC). The PEC is the idealization of a good conductor []

/є → , μ → . (.)

Analogously, the PMC is the dual of PEC:

/μ → , є → . (.)

PEC and PMC make absolute boundaries in the sense that no electromagnetic power can pene-
trate through them. PEC and PMC are extremely useful concepts in antenna applications. Even
if PEC can be approximated fairly well with high-conductivity metals, neither PMC material nor
anything resembling it can be found naturally. Several composite structures have been studied and
suggested to simulate PMC. These are known as “artificial magnetic conductors” or “high-impedance
surfaces” [].

In light of the special cases of PEC and PMC, the acronym PEMC is a natural choice to describe a
medium with conditions (Equations . and .). In every point within PEMC, a linear combi-
nation of fields is zero (H+ME = ) as also a combination of displacements vanishes (D−MB = ),
which is obvious from Equation .. The special case /M =  leaves us with PEC: (E = , B = )
and we arrive at PMC when M = : (H = , D = ).

Equations . and . also lead to the conclusion that the Poynting vector flux E × H
vanishes inside the PEMC medium. In other words, PEMC does not carry electromagnetic energy
momentum [].

For electrical engineers, the constitutive relations (Equations . and .) are not the most
familiar. A more common way than Equations . and . to represent the material relations
in engineering literature is the one when the D and B are response vectors, like in (Equations .
and .)

( D
B ) = (

є ξ
ζ μ )(

E
H ) , (.)
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where the material matrix C contains the four scalars є, ξ, ζ, and μ, valid for bi-isotropic media. The
units of the material parameters are As/(Vm) (є), Vs/(Am) (μ), and s/m (both ξ and ζ).

Equation . can be written as

( D
H ) =


μ
( єμ − ξζ ξ
−ζ  )(

E
B ) , (.)

with ξ = χ− jκ and ζ = χ+ jκ. Therefore, we can write for the bi-isotropic PEMC constitutive relations
(compare Equation . with Equations . and .)

( є χ
χ μ ) = q( M 

 /M ) , with ∣q∣ → ∞. (.)

Because of the symmetry of the bi-isotropic constitutive relations in the material parameter matrix
(Equation .), it follows that PEMC belongs to the class of nonreciprocal bi-isotropic media.
This class is also called as Tellegen media [] since Tellegen in  [] suggested a corresponding
nonreciprocal circuit element, a gyrator.

To further relate PEMC with nonreciprocal bi-isotropic media, it is worth noting that the PEMC
medium is an “extreme” form of the Tellegen material. Whereas all bi-isotropic media with any
nonzero value for the magnetoelectric pseudoscalar χ are Tellegen media, the character of PEMC
requires that its magnitude has to satisfy the relation χ = єμ, and hence PEMC is a subclass of Telle-
gen media. Note also from the symmetry of the matrix (Equation .) that the chirality parameter
is zero for PEMC. The connections of the PEMC parameter to the bi-isotropic material parameters
are M = √є/√μ and χ = √μє, and in addition, є, μ, and χ tend to infinity.

One interesting observation regarding PEMC is that it has a connection to the so-called Post con-
straint [, Eq. (.)]. In the recent literature this restriction refers to the requirement that the totally
antisymmetric part of the four-dimensional constitutive tensor of a general (bianisotropic) linear
medium has to vanish. Applied to bi-isotropic media, this is equivalent to the condition χ = . Such
a condition would not allow the Tellegen parameter. Nonreciprocal bi-isotropic media would be for-
bidden. The controversy over the Post constraint has been intense in recent years [–]. It is perhaps
fair to say that the critical study of the nature of the magnetoelectric modulus of antiferromagnetic
crystals [] has conclusively shown that media exist that conflict with the Post constraint.

In conclusion, the characterization of bianisotropic media through the constitutive relations
(Equations . and .) allows much flexibility and certainly encompasses a large variety of
metamaterials. The PEMC medium, belonging to the subclass of magnetoelectric and bi-isotropic
materials, forms one interesting example of such metamaterials.
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27.1 Introduction and Background

The study of wave interactions with ordered structures represents a classical problem of long-
standing interest in electromagnetics (EM) and optical engineering, which has recently received
a renewed interest in view of its relevance to the design of metamaterials, photonic crystal (PC)
devices, frequency-selective surfaces, artificial impedance surfaces, etc. For the simplest conceivable
form of “order,” intrinsically associated with the concept of periodicity, the arising wave phenomena
are well-understood and accurately predictable via rigorous and powerful modeling tools based on
Bloch–Floquet theory.

The EM properties of random geometries, at the opposite extreme of the “order” scale, have
also been extensively studied, and stochastic/statistical modeling is typically used in complex (e.g.,
urban) propagation environments where deterministic approaches and observables would be of little
meaning.

Although the above extrema of the “order” scale seem to be well characterized, the “gray zone”
in between, which encompasses a broad range of hierarchical order types (from “quasiperiodic”
to “quasirandom”), turns out to be still largely unexplored. Although the concept of aperiodicity
has traditionally been tied to the concept of amorphousness, the discovery, in , of “quasicrys-
tals” [,] has significantly changed this view. Quasicrystals are metallic alloys whose x-ray diffraction
spectra exhibit bright spots (typical of crystals), yet display unusual rotational symmetries (e.g.,
-fold) that are known to be incompatible with spatial periodicity. This apparent puzzle and the
growing awareness of the important role played by aperiodic order in solid-state physics have

27-1
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motivated the study of aperiodic structures from a different perspective, in many fields of science
and technology.

In this chapter, we review, at an introductory level, some basic aspects pertaining to wave interac-
tions with aperiodically ordered structures, with special emphasis on photonic quasicrystals (PQCs).
It should be noted that, in what follows, we use the term “quasicrystal” to describe a rather general
deterministic aperiodic arrangement, although the formal definition of the term is still not settled [].
Starting from a brief description of the geometrical (Section .) and modeling (Section .) aspects,
we proceed with a compact review of results and applications from the technical literature (Section
.) and illustrate a number of selected prototype two-dimensional (-D) examples (Sections .
and .).

The reader is referred to Refs. [,] for recent reviews on the subject, to Ref. [] for a comprehensive
account of the mathematical background, and to [] for an up-to-date bibliography database. More
specific application-oriented aspects are detailed in a chapter in Vol. II of this handbook [].

27.2 The Geometry of Aperiodic Order

27.2.1 Generalities

The simplest one-dimensional (-D) examples of aperiodically ordered structures are provided by
aperiodic sequences, such as Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro, etc. [,],
which exhibit diverse representative behaviors ranging from quasiperiodic to quasirandom. In what
follows, we focus on the more complicated two-dimensional (-D) case, intrinsically tied with the
theory of “aperiodic tilings” [,] and directly relevant to the examples illustrated in Sections .
and .. We start, for simplicity, from the periodic case, consisting of an infinite repetition of a given
unit cell according to a -D lattice

rnm = np +mq, n, m = ,±,±, ..., (.)

with p and q denoting two basis vectors of the -D vector space R
. It is well known that the possible

rotational symmetries∗ of such a lattice depend on the unit cell geometry and on the lattice basis
vectors p and q and cannot be arbitrary. According to the crystallographic restriction theorem [,],
the only possible rotational symmetries for a -D periodic lattice are of the order K = , , , or
. Thus, for instance, square lattices with square unit cells exhibit twofold and fourfold rotational
symmetries, but fivefold and eightfold symmetries are not compatible with spatial periodicity [,].

27.2.2 Aperiodic Tilings

A -D aperiodic tiling consists of an arrangement of polygonal shapes (“tiles”) devoid of any
translational symmetry and yet capable of covering a plane without overlaps or gaps [,]. Most
of the -D concepts illustrated in this section are generalizations of -D concepts related to aperiodic
sequences [,] and can be in turn generalized to the three-dimensional (-D) case on replacing
polygons by polyhedra. The theory of aperiodic tilings is an inherently multidisciplinary subject,
which involves branches of applied physics (crystallography, solid-state physics) and pure and applied
mathematics (computational logic, discrete geometry, group theory, and ergodic theory) [,,]. In
what follows, we review some qualitative and semiquantitative aspects necessary to understand the
basic aperiodic-order-induced wave phenomena.

∗ By K-fold rotational symmetry we mean the invariance with respect to rotations of angles π/K about a point (and thus,
in view of translational invariance, about infinitely many points).
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FIGURE . Penrose tilings in the “kite and dart” (a) and “thick and thin” (b) versions. Both sets of tiles are obtained
by proper juxtaposition of two isosceles triangles (see inset) with angles ○ , ○ , ○ and ○ , ○ , ○, respectively;
τ = ( +

√
)/ is the Golden Mean. Two possible labeling schemes are shown for the matching rules that need

to be enforced to prevent the creation of periodic (or other uninteresting) patterns. For the kite and dart configura-
tion, vertices marked with the same letters (“H” or “T”) must go together. For the thick and thin configuration, two
adjacent vertices must both be blank or colored, and two adjacent edges must both be blank or have an arrow point-
ing in the same direction. (Extracted from Pierro, V., Galdi, V., Castaldi, G., Pinto, I.M., and Felsen, L.B., IEEE Trans.
Antennas Propagat., , , . With permission.)

The first examples of aperiodic tilings have been known since the s, within a computational
logic context [,], and consisted of more than , tile shapes, thereby constituting no more
than mathematical oddities. In , Penrose devised an aperiodic set consisting of two tiles only [],
which constitutes one of the most intriguing and extensively studied paradigms of aperiodic order.
In fact, a recent fascinating theory [] argues that similar patterns were already known and used
in medieval Islamic architecture. Figure . illustrates two examples of a Penrose tiling, with ref-
erence to its two most popular versions known as “kite and dart” (Figure .a) and “thick and
thin” (Figure .b). Although aperiodic, Penrose tilings display substantial order and symmetry,
and their characteristic scale is strictly related to the Golden Mean []. Both sets of tiles are
derived by proper arrangement of two isosceles-triangle proto-tiles with internal angles ○, ○ , ○
and ○, ○ , ○, respectively. These sets of tiles can cover the plane aperiodically in infinitely
many ways, distinguishable only over an infinite plane []. In order to prevent the formation of
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ordinary periodic (or other uninteresting) patterns, “matching rules” need to be enforced typically
by edge-labeling-and-matching schemes (see Figure .).

The reader is referred to Refs. [,] for an atlas of known aperiodic tilings which, through various
types and degrees of order and symmetry, provides a representative sampling of the realm of “orderly
disorder.”

27.2.3 Generation Algorithms

Aperiodic tilings can be generated using various algorithms based essentially on four main strategies:

. Juxtaposition of basic tiles with enforcement of suitable local “matching rules.” This
apparently obvious algorithmic approach, which consists of starting with a single tile
and adding tiles according to local matching rules (like a jigsaw-puzzle), is not the most
systematic and straightforward [].

. “Cut-and-projection” schemes, where, starting from higher-dimensional periodic lat-
tices), one cuts a certain “slice” out and projects it onto a lower-dimensional domain
[,]. For instance, the Penrose tilings in Figure . can be generated via projection
of a -D periodic lattice onto a planar surface. Figure . shows the so-called Ammann–
Beenker octagonal tiling, another popular example of quasiperiodic tiling that can be
generated via cut-and-project schemes.

. “Dual-grid” schemes, which translate into very simple computer codes [].
. Implementation of substitution rules, based on tile decomposition and suitable rescaling

(inflation) [,], which can be applied to the generation of tilings featuring hierarchi-
cal structure. For example, Figure . illustrates the substitution rules pertaining to the
so-called binary tiling [], whereas Figure . illustrates the so-called Stampfli inflation
rules [] for the construction of a square-triangle dodecagonal tiling.

The above construction strategies are neither necessarily equivalent nor applicable for all categories
of tilings. For instance, while Penrose tilings can be equivalently generated by any one of them, certain

FIGURE . Example of Ammann–Beenker octagonal tiling generated via a cut-and-projection scheme [,].
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(a) (b) (c)

FIGURE . Initial stage (a) and first two iterations (b, c) of the binary tiling [].

FIGURE . Illustration of the Stampfli inflation rules for the construction of a square–triangle dodecagonal tiling
[]. The construction, to be iterated up to the desired tiling extension, starts from a dodecagon made of square and
equilater-triangle tiles (thick solid line), which is first scaled-up by an inflation factor

√
 +  (thick dashed line) and

subsequently substituted at each vertex of the inflated version.

tilings can only be generated via matching rules or substitution. The reader is referred to Refs. [,,
] for more theoretical and implementation details as well as computational aspects and tools.

27.2.4 Order vs. Symmetry

In order to understand the key properties of aperiodic tilings, one needs to generalize the traditional
concepts of order and symmetry, which are intuitively tied to the concept of periodicity. In aperiodic
tilings, order can show up in diverse forms, including the following:

. Repetitiveness, i.e., occurrence of any bounded region of the whole tiling infinitely often
across the tiling []. For instance, in Penrose tilings, given any local pattern having a
certain diameter, an identical pattern can be found within a distance of two diameters [].

. Statistical frequency of occurrence of the individual tiles across the tiling. Again, in
Penrose tilings, the fractions of kite and dart (or thick and thin) tiles approach the Golden
Mean in the infinite-tiling limit [].
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. “Forbidden” (noncrystallographic) rotational symmetries in local and/or weak (e.g., sta-
tistical) forms. For instance, Penrose tilings display arbitrarily large regions with centers
of fivefold rotational symmetry []. This local property can be extended globally only
in a statistical sense since every finite pattern of tiles can be shown to appear across the
tiling in ten (and only ten) different rotational orientations, all with the same statistical
frequency [].

. Hierarchial structure, i.e., the appearance of certain patterns at different scales, typical of
tilings generated via the above-mentioned substitution rules [,].

27.3 Theoretical and Computational Tools

As previously mentioned, the study of wave interactions with periodic structures, and of the broad
variety of bandgap, waveguiding/confinement, refraction/transmission, filtering, and emission effects
attainable, can be addressed using well-established tools and concepts such as Bloch–Floquet theorem,
unit cell, Brillouin zone, equifrequency surfaces, and Poisson summation, etc. For instance, the Poisson
summation formula [] provides a very powerful systematic tool for recasting wavefield observables
as superpositions of either individual or collective contributions. Typical departures from perfect
periodicity in realistic structures, such as truncation (finiteness) and weak perturbations in the spatial
periodaswellas intheexcitation(tapering),canbeaddressedbymethodssuchasthoseinRefs. [–].

By comparison, the study of aperiodically ordered structures entails significant complications,
from both theoretical and computational viewpoints. For the simpler case of -D structures, cap-
italizing on a body of theoretical results from discrete geometry and solid-state physics [–],
analytic parameterization of typical radiation/scattering observables can be addressed in terms of
the well-known Floquet–Bragg-type discrete spectral constituents which are typically encountered
in the study of strictly or weakly perturbed periodic structures (see, e.g., Refs. [–]), plus other
(singular continuous and absolutely continuous) spectral constituents that have no counterpart in
periodic structures. In this framework, a generalized Poisson-type summation has been applied to
several radiation/scattering prototype configurations [–]. Concerning the study of the bandgap
properties of -D PQCs (in the form, e.g., of dielectric multilayers or stub-loaded transmission lines),
the trace-map formalism from solid-state physics [–] provides a powerful analytic framework.

Generalization of the above tools/results to -D nonseparable tiling-based PQC geometries,
although possible in principle, is not straightforward. In this connection, approaches to the study
of the bandgap properties have been proposed, relying, e.g., on periodic approximants [–], on
extended-zone schemes in the reciprocal space [], and on a direct generalization of Bloch–Floquet
theory []. However, in many applications one is necessarily led to study finite-size structures (e.g.,
arrays of dielectric rods) via full-wave techniques, such as the scattering-matrix method (based
on Fourier–Bessel multipolar field expansions) [] or the finite-difference-time-domain (FDTD)
method []. In this framework, bandgap observables based on transmission coefficients are gener-
ally ill-defined and not necessarily meaningful, and a physically sound observable can be defined by
considering the active power (per unit length) radiated by a line source located inside the structure,
in a way that closely resembles the definition of the local density of states (LDOS) [] in solid-state
physics.

27.4 Compact Review of Results and Applications
Available in the Literature

During the past decade, several numerical and experimental studies have explored the properties of
PQCs. The compact review below, far from being exhaustive, addresses some representative results
and applications. The reader is referred to Refs. [,,] for further details and references.
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Starting from -D structures, Fibonacci-type PQCs (typically in the form of multilayers) have been
extensively investigated since the mid s, in connection with their bandgap properties [,] as
well as the fractal (Cantor) nature of their eigenspectra and the critical localization of their wave-
functions [,]. More recent investigations have focused on application-oriented issues, including
filtering properties (e.g., see Refs. [–]), broad omnidirectional reflection (e.g., see Refs. [–]),
symmetry-induced perfect transmission [,], pulse compression [], and band-edge resonances
[]. A considerable body of theoretical, numerical, and experimental results are also available for
other PQCs based on different types of aperiodic sequences, including the Thue-Morse (e.g., see
Refs. [–]), period-doubling [,], Cantor [–], and Rudin-Shapiro [].

Moving to -D structures, most configurations are based on arrays of dielectric or metallic cylin-
drical rods located at the tile vertices (or centers) of aperiodic tilings. In the first studies, particular
interest was devoted to geometries based on the octagonal (e.g., see Refs. [–]), Penrose (e.g.,
see Refs. [–]), and dodecagonal (e.g., see Refs. [,–]) tilings, highlighting the possibil-
ity of achieving bandgap, waveguiding, and localization effects and investigating the role of various
geometrical and constitutive parameters (symmetry order, filling factor, dielectric contrast, and inci-
dence angle, etc.). Further results on the same (or related) geometries are available in Refs. [–],
and comparative studies have also been carried out (e.g., see Refs. [,] and Section ..).
Among the other geometries explored, it is worth mentioning the so-called “circular” PCs (e.g., see

of Fibonacci [] and Thue-Morse [] sequences, and those based on Archimedean [] or other
periodic [,] approximants.

From the phenomenological viewpoint, several studies have been devoted to the comprehension
of the mechanisms underlying the formation of bandgap in PQCs, highlighting the role played by
single-rod resonances [], Bragg-type and multiple scattering, and short-range interactions (e.g.,
see Ref. []). Moreover, attention has also been focused on the study of localization phenomena in
defected [,,] and defect-free [–] configurations (see also Section ..) as well as the
possible coupling effects (e.g., see Refs. [,]).

Among the exceptions to the above rod-based -D configurations, there are three examples that
are worth mentioning: (a) Planar PQC geometries in Refs. [,] (see also Section .), con-
sisting of mushroom-type metallic protrusions laid on a grounded dielectric substrate, which were
found to exhibit artificial-magnetic-conductor (AMC) behavior (i.e., in-phase reflection) and strong
attenuation of surface waves; (b) arrays of subwavelength holes in metallic screens [–], for
which enhanced transmission effects were observed; and (c) arrays of metallic nanoparticles [],
which were found to exhibit enhanced localized plasmon modes.

Concerning -D structures, only a limited number of results are available, due to the consider-
able complications in both (theoretical and numerical) modeling and experimental characterization.
In particular, PQCs with icosahedral geometry [] have been fabricated via stereolithography and
experimentally characterized at microwave frequencies []. Advances in laser-based fabrication
technology have recently allowed the construction of silicon PQC structures working at infrared
frequencies [], thereby paving the way to a deeper understanding of the underlying
phenomenologies [].

Fabrication and technological issues are also of great interest, but their treatment falls beyond the
scope of this Chapter; the reader is referred to Refs. [,,–], and the references therein, for a
sparse sampling.

Concerning possible applications to EM and optical engineering, aperiodic tilings have recently
been proposed as potentially useful geometries in the design of antenna arrays [,–]. More-
over, judicious exploitation of the inherent richness of degrees of freedom, typical of aperiodic
geometries, has been proposed within the framework of “bandgap engineering” [–]. In this
connection, the availability of electrically switchable PQC structures (e.g., see Ref. []) opens
up interesting perspectives to the design of novel reconfigurable devices and components. Also
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worthy of mention are the applications to microcavities and lasers [,–], enhanced stimulated
emission [], add-drop filters for wavelength-division-multiplexing [,], negative refraction
and “superlensing” [,], and directive emission []. Finally, the applications to nonlinear optics
appear particularly intriguing (e.g., see Refs. [–] for a sparse sampling), where one can exploit
the inherently superior suitability of PQCs to phase matching for a variety of effects, such as frequency
conversion.

As a partial conclusion, from the above results and applications, the most interesting observations
can be summarized as follows:

. Spatial periodicity does not seem to constitute an essential ingredient to obtaining com-
plete bandgaps and other peculiar waveguiding/confinement, refraction/transmission,
filtering, and emission effects. Similar properties have been observed in PQC
structures.

. The mechanisms underlying the bandgap formation and other effects in PQCs are very
complex and can involve single-element resonances, short- and long-range interactions,
as well as multiple scattering phenomena.

. As compared with their periodic counterparts, PQCs offer potential advantages (e.g.,
larger bandgaps, lower and/or multiple frequencies of operation, higher isotropy, richer
and more wavelength-selective defect states, and easier achievement of phase-matching
conditions) via a judicious exploitation of the additional degrees of freedom typically
available in aperiodic geometries.

In what follows, we illustrate some representative examples of -D PQCs, with focus on two specific
configurations: (a) arrays of dielectric rods and (b) planar structures.

27.5 Examples of 2-D PQCs

27.5.1 Geometry

We consider -D PQCs composed of parallel infinitely long dielectric circular rods, with identi-
cal radius r and relative dielectric permittivity єr , and excited by a transverse-magnetic EM field
(i.e., electric field parallel to the rods) with implied time-harmonic exp( jωt) dependence.

Figure . displays the prototype PQC (cross-sectional) geometries of interest, generated by
placing the cylindrical rods in free space at the tile vertices within a square patch of selected ape-
riodic tilings, representative of various types and degrees of order and symmetry. Size and scaling
are chosen so as to maintain the total size and number of rods identical to that of a reference peri-
odic PC constituted of a square arrangement of  ×  rods, as shown in Figure .a. Besides
the already described “thick-and-thin” Penrose tiling in Figure .b (fivefold symmetric) and the
octagonal tiling in Figure .e (eightfold symmetric), the binary tiling in Figure .c is also char-
acterized by a fivefold symmetry, while the tilings in Figure .d and f exhibit sevenfold and
ninefold symmetry, respectively. With the exception of the binary, all tilings are characterized by
a purely discrete, quasiperiodic, spatial spectrum (indicative of long-range order) and are gen-
erated by algorithms amenable to cut-and-project schemes (see Section ..). Conversely, the
binary tiling is generated via the substitution scheme in Figure . and exhibits a spatial spec-
trum with singular continuous character indicative, of a less-orderly spatial distribution. For all
the PQC geometries in Figure ., the same rods radius is chosen, so as to maintain the same
filling factor (defined as the ratio between the total area of the rods and the area of the host
square).
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(d) (e) (f)

(a) (b) (c)

FIGURE . PC and PQC representative geometries (N =  dielectric rods): (a) Periodic (period= a);
(b) Penrose “thick-and-thin” (fivefold symmetric); (c) Binary (fivefold symmetric); (d) sevenfold symmetric; (e)
Octagonal (eightfold symmetric); and (f) ninefold symmetric. (Extracted from Della Villa, A., Galdi, V., Capolino,
F., Pierro, V., Enoch, S., and Tayeb, G., IEEE Antennas Wireless Propagat. Lett., , , . With permission.)

27.5.2 Bandgap Properties

As mentioned previously, a physically sound observation to ascertain the bandgap properties of
finite-size PC or PQC structures can be defined in a similar way as the LDOS [] in solid-state
physics. Specifically, we consider the active power (per unit length) Pa radiated by a nonphased
unit-amplitude electric line-source located inside the structure and identify the bandgaps as those
frequency ranges where radiation is strongly inhibited. In the lossless case, for the -D scalar case of
interest here, we obtain from the Poynting theorem [, p. ]

Pa(r, ω) = − 


Re{E(r; ω)} = −ωμ


Im{G(r, r; ω)}, (.)

where E(r; ω) denotes the electric field (directed along the longitudinal direction of the rods) radi-
ated by the unit-amplitude line-current at r, and G(r, r; ω) denotes the pertinent Green’s function
evaluated at the source position. For convenience, we define as “radiativity” the normalized radiated
power as

ρ(r, ω) = Pa(r, ω)/P(r, ω), (.)

where P = ωμ/ [W/m] is the active power radiated by the unit-amplitude line-source in free space,
so that ρ(r, ω) =  in the absence of the PQC. In our investigation, the computation of the Green’s
function in Equation . is performed via the scattering-matrix method in Ref. [].
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FIGURE . Radiativity in Equation . computed at the center of the structure vs. normalized frequency a/λ

for the quasicrystal geometries in Figure . with r = .a (i.e., filling factor=.%). Continuous curves: єr = ;
dashed: єr = . (Extracted from Della Villa, A., Galdi, V., Capolino, F., Pierro, V., Enoch, S., and Tayeb, G., IEEE
Antennas Wireless Propagat. Lett., , , . With permission.)

For the PQC geometries in Figure ., we carried out a comprehensive parametric study of the
radiativity response, for several combinations of the rods’ permittivity and filling factor values and
at various positions r, aimed at gaining some insights into the underlying aperiodic-order-induced
bandgap phenomena. Some representative results, extracted from Ref. [], are shown in Figure .,
for ∼ % filling factor and two values of the relative permittivity єr = , . In these plots, the radia-
tivity in Equation . (computed at the center of the structure, r = ) is displayed as a function
of the normalized frequency a/λ, with a denoting the period of the reference PC in Figure .a
and λ denoting the free-space wavelength. Bandgaps, identified by deep minima of the radiativity,
can be observed for both permittivity values, though considerably more pronounced for the higher-
contrast case (єr = ). As compared with the PC reference case, the PQCs tend to exhibit a generally
richer bandgap structure, which typically entails a main bandgap (moderately deeper than the peri-
odic counterpart) plus certain secondary bandgaps at lower and higher frequencies. Moreover, as the
symmetry order is increased, several in-band peaks (attributable to localized modes) tend to appear
(cf. Figure .d and f).

The wave mechanisms underlying the formation of the various bandgaps are rather complex and
generally involve both long- and short-range interactions as well as multiple scattering phenomena.
For the Penrose PQC in Figure .b, we carried out a more detailed investigation of the first three
bandgaps [], from which the central and the higher-frequency bandgaps (see Figure .b) turned
out to be related to Bragg-type conditions in the Fourier spatial spectrum of the PQC, whereas the
lower-frequency bandgap turned out to stem from multiple scattering phenomena (see Ref. [] for
more details). Similar mechanisms, currently under investigation, are expected to take place for the
other PQCs.

27.5.3 Localized Modes

As already highlighted (see Section .), another interesting characteristic of PQC structures is the
wealth of localization phenomena achievable in both defected [,,] and defect-free [–]
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FIGURE . (a) Penrose PQC made of  dielectric rods (of radius r = .a and relative permittivity єr = ).
(b) Radiativity response computed at x = y = . (Extracted from Della Villa, A., Enoch, S., Tayeb, G., Capolino, F.,
Pierro, V., and Galdi, V., Opt. Expr., (), , . With permission.)

configurations. In defected PQC configurations, a richer and more wavelength-selective modal spec-
trum is typically observed [,,] as compared with their periodic PC counterparts. In Ref. [],
the stimulated emission in a defect-free, Penrose-type, PQC laser was studied, and the modes were
found to be localized, at variance to the typical extended modes of the band-edge PC lasers. In
Ref. [], we investigated in detail the nature of these modes, which appear in the transparency
bands, and show that they stem essentially from the local arrangement of rods.

Figure . shows a Penrose PQC made of  rods (of radius r = .a and relative permittivity
єr = ) and the radiativity response (calculated at the central point) as a function of the normal-
ized frequency a/λ normalized frequency, qualitatively similar∗ to that in Figure .b. Focusing on
the behavior of the modes within a transparency band, at certain frequencies one can observe local
resonances, which clearly exhibit the fivefold symmetry order of the PQC. Among the several possi-
ble examples that were observed, Figure . shows the radiativity map at the normalized frequency
a/λ = ., above the main bandgap shown in Figure .b.

In order to investigate the process of formation of the localized modes, we modified the struc-
ture by removing parts of the PQC outside the resonant region. Figure . shows some examples of
radiativity maps (computed in the same region as in Figure .b) pertaining to increasingly smaller
PQCs, obtained by progressively removing certain rods outside the region displayed. Interestingly,
while the amplitude of the radiativity associated with the mode slightly changes (∼ %), the spatial
distribution does not. This behavior suggests that the modes have indeed a highly localized nature,
as clearly visible from the last example (Figure .c), where, despite the very small structure extent
(only  rods left), a behavior similar to that of the larger structures is observed. The reduction in
the radiativity amplitude can be mainly attributed to a resonance frequency shift rather than a real
decrease in the resonance strength.

∗ Note that here, at variance to Figure .b, the parameter a is defined as the sidelength of the rhombus tiles in the
Penrose tiling.
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FIGURE . (a) Radiativity map in gray-scale (dark=high; light=low) pertaining to the upper region of the PQC in
Figure .a, at a normalized frequency a/λ = .. (b) Zoom of a region (dashed square) where a fivefold symmetry
is clearly visible. All spatial scales are normalized with respect to a. (Extracted from Della Villa, A., Enoch, S., Tayeb,
G., Capolino, F., Pierro, V., and Galdi, V., Opt. Expr., (), , . With permission.)

(a) (b) (c)

FIGURE . As in Figure .b but for PQCs of different sizes. (a)  rods; (b)  rods; and (c)  rods. (Extracted
from Della Villa, A., Enoch, S., Tayeb, G., Capolino, F., Pierro, V., and Galdi, V., Opt. Expr., (), , . With
permission.)

The above results confirm the existence of localized modes observed in previous studies and show
that these modes likely originate from interactions among a small number of rods, rather than from
undesired fabrication-related defects, and should accordingly be considered as an inherent property
of PQC geometries. Indeed, the observed localized modes are only slightly affected by the removal
of several rods around (and even relatively close to) the localization region. These conclusions are
nontrivial and somehow counterintuitive, as it is well known that band-edge modes in periodic PCs
are not localized and that long-range interactions may be involved in the bandgap formation in PQCs
(e.g., see Ref. []).

Further studies on the nature and properties of modes supported by defect-free PQC slabs are
presently under consideration; the reader is referred to Ref. [] for some preliminary results.
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27.6 Examples of Planar PQCs

As a second illustrative example, we consider a planar PQC structure in the form of a tex-
tured (mushroom-type) high-impedance surface (HIS). Such structures have recently received
considerable attention and are proposed as effective ground planes for improving the electrical and
radiative responses of low-profile planar antennas in view of their potential capabilities, within cer-
tain frequency ranges, of exhibiting AMC-type behavior (i.e., in-phase reflection), and suppressing
the surface-wave (SW) propagation [].

Nearly all available examples are based on periodic geometries, for which the EM response is well
understood (e.g., see Ref. []). Recently, a novel geometry was proposed in Ref. [], based on the
quasiperiodic octagonal (Ammann–Beenker) tiling (cf. Figure .). Experimental and numerical
studies of this structure revealed a very interesting EM response, in terms of multiple frequencies
of operation, highly directive radiation from a small electric dipole laid on it, and broadband sup-
pression of the transverse-electric SW. In Ref. [], we carried out a comparative study of various
HIS configurations based on representative categories of aperiodic tilings, aimed at exploring to what
extent the intriguing results observed in Ref. [] were restricted to that particular (octagonal) geom-
etry or instead whether they were representative of intrinsic properties of rather generic aperiodically
ordered configurations. In what follows, we briefly review the results obtained.

(cf. Figure .), and dodecagonal (cf. Figure .) tilings. As a reference configuration, we also con-
sider a standard periodic (square) geometry, whose EM response is well known []. The structures
are obtained by cutting suitably sized regions of the tilings (preserving the local symmetry centers)
and placing metallic (copper) tile-shaped patches on top of a metal-backed dielectric substrate with
relative permittivity єr = . (RT/duroid ) and thickness . mm. The patches, suitably scaled so
as to guarantee a constant . mm gap between them, are finally connected to the ground plane by
metallic vias of diameter . mm. In order to facilitate direct comparison with our results (at least
for the octagonal geometry), the patch characteristic sizes are chosen as in Ref. [], whereas the
total structure sizes are set by our current computational resource limitations. All structures fea-
ture the same spacing between the metal patches and a comparable number of patches. Figure .a
through d shows the top view of the four HIS configurations under analysis; a -D view pertaining
to the octagonal case is also displayed in Figure .e.

In order to ascertain the possible AMC behavior, we study the radiation characteristics of a small
electric dipole, laid parallel to the surface at a very close distance. Recalling basic image theory, the
dipole will radiate very poorly when the surface is acting as standard (electric) ground plane and
much more efficiently when the surface is acting as an AMC, resulting in a low return loss (RL) [].
In our simulations, a  mm long electric dipole is placed parallel (x-directed) and very close to
the surface (x = y = , z = . mm, i.e., right above its local symmetry center), and the RL (∣S∣)
spectra for the various configurations are computed via a full-wave commercial software package
[]. Figure . shows the frequency responses within the range – GHz. For each geometry,
one observes some (more or less pronounced) dips in the RL spectrum, corresponding to AMC-type
behavior. The results for the octagonal HIS (Figure .a) agree fairly well with those observed in
Ref. [], with three main dips at frequencies ∼ , ., and  GHz. Qualitatively similar behaviors,
with less pronounced and frequency-shifted dips, are observed for the dodecagonal (Figure .b)
and the Penrose (Figure .c) geometries, whereas the periodic HIS (Figure .d) turns out to
exhibit more pronounced, but narrower, dips.

We then studied the radiation characteristics around those frequencies yielding AMC behavior.
Periodically textured HIS ground-planes have been proposed for the suppression of the SW propa-
gation, which can yield significant improvements in the radiation pattern quality of planar antennas
[]. Figure .a through d shows some representative radiation patterns observed for the  mm
long electric dipole laid on the four HIS ground planes, at frequencies (marked as arrows in
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FIGURE . HIS geometry and parameters: (a)–(d) Top view; (e): Three-dimensional view (octagonal). Metallic
(copper) patches of sidelength apatch are laid with a . mm gap on a metal-backed dielectric substrate of thickness
. mm and relative permittivity єr = . and are connected to the ground plane by metallic vias with diameter . mm.
Also shown are the Cartesian and spherical reference coordinate systems, with the origin at the local symmetry center.
(a) Octagonal (asquare = . mm, arhombus = . mm, total size:  ×  mm); (b) Dodecagonal (asquare = . mm,
atriangle = . mm, total size: ×  mm); (c) Penrose (athick = . mm, athin = . mm, total size: ×  mm); (d)
Periodic (asquare = . mm, total size:  ×  mm). (Extracted from Gallina, I., Della Villa, A., Galdi, V., Pierro, V.,
Capolino, F., Enoch, S., Tayeb, G., and Gerini, G., IEEE Antennas Wireless Propagat. Lett., , , . With permission.)

Figure .) chosen so as to provide a reasonable tradeoff between high broadside directivity and
low RL. As expected, one observes rather clean patterns in the forward direction, with low backward
radiation (≲ − dB), thereby qualitatively confirming the results in Ref. [].

Finally, as in Ref. [], we consider the SW propagation, for both transverse electric (TE) and
magnetic (TM) polarizations. As a meaningful observation, we consider the transmission (∣S∣)
spectra between two small antennas (y-directed  mm long electric dipoles for the TE case;
z-directed  mm long monopoles for the TM case) placed at two opposite ends of the HIS. Results are
shown in Figure . (with the simulation schematics illustrated in the insets) for the four geometries
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RL=−. dB); and (d) periodic (. GHz, RL=−. dB). Solid curves: ϕ = ○ plane; dashed: ϕ = ○ plane. (Extracted
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Wireless Propagat. Lett., , , . With permission.)
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FIGURE . SW transmission (∣S ∣) spectra for the HIS configurations in Figure . for TE (a) and TM (b) polar-
izations (simulation schematics are illustrated in the insets). Solid curves: octagonal (probe separation:  mm); dashed:
dodecagonal (probe separation:  mm); dotted: Penrose (probe separation:  mm); dash-dotted: periodic (probe sep-
aration:  mm). (Extracted from Gallina, I., Della Villa, A., Galdi, V., Pierro, V., Capolino, F., Enoch, S., Tayeb, G., and
Gerini, G., IEEE Antennas Wireless Propagat. Lett., , , . With permission.)

under study. In the TE case (Figure .a), the aperiodic HIS configurations exhibit several bandgaps
characterized by strong SW attenuation, whereas the periodic HIS exhibits only one bandgap with
significant SW attenuation. In the TM case (Figure .b), several dips and similar attenuation levels
are observed for all the geometries.

To sum up, our results confirm those already observed in Ref. [] (in connection with the octago-
nal geometry) and reveal the inherent suitability of more general PQC geometries to HIS applications.
The availability of further and still largely unexplored degrees of freedom in the lattice geometry could
open up new perspectives in the HIS design. Indeed, PQC HIS structures seem potentially capable
of yielding multiple AMC bands, strong attenuation of TE and TM SW propagation, and directive
broadside radiation.
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27.7 Quasi-Conclusions

In this chapter, we have attempted a presentation, at an introductory level, of the basic properties and
applications of PQCs, starting from the geometric aspects, proceeding with a compact review of the
topical literature, and the illustration of a series of selected prototype examples.

It is worth stressing, once again, that the presentation here is far from exhaustive, and some of the
relevant issues involved are as yet unsettled or not completely understood. It is our hope to moti-
vate the reader to further explore this subject, which is not only intriguing but also has potentially
interesting applications in EM and optical engineering.
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28.1 History

28.1.1 Artificial Dielectrics and Metamaterials

The roughly two decades including and following the Second World War saw a flurry of research
into the realization and characterization of “artificial dielectrics,” low-loss and lightweight structures
designed to mimic the macroscopic electromagnetic response of natural dielectrics. These structures
consisted of discrete electromagnetic scatterers (e.g., electrically small metallic inclusions in spher-
ical or wire-like form) arranged into periodic, ordered arrays with lattice constants typically in the
millimeter or centimeter range; at RF wavelengths, these dimensions are electrically small enough
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that the collective macroscopic response of these scatterers is akin to that of the atoms and molecules
in a conventional crystal lattice.

The term “artificial dielectric” was, itself, coined by Winston Kock [–], who, in the process of
developing them to supplant large and bulky aircraft-mounted lens aerials, formulated a comprehen-
sive and general theory illustrating the direct analogies that artificial dielectrics shared with natural
media. For example, at wavelengths on the order of the lattice constant, these structures, like solids,
exhibited diffraction effects, and at longer wavelengths, an effective refractive index could be defined
(see the works listed in Ref. [] for an excellent review of the early literature in artificial dielectrics).

The term “metamaterials” denotes artificial materials with properties not available, or not eas-
ily obtained, in nature. Thus, rather than aiming to mimic the response of conventional materials,
metamaterials seek to transcend the gamut of available material properties by applying established
artificial-dielectric techniques. Metamaterial research is a relatively new field, spanning just a few
years, but already enjoys a great deal of attention in both the physics and engineering communities,
which have slowly but largely come to accept their tremendous potential for application, particularly
in the variety with a negative-refractive index (described in the following sections).

28.1.2 The Left-Handed Medium

In the late s, the Russian physicist Victor Veselago published a theoretical paper considering the
electrodynamics of hypothetical materials in which permeability and permittivity were simultane-
ously negative []. He showed that such media supported wave propagation, but of a very peculiar
type: the electric and magnetic field vectors, along with the wave vector, formed a left-handed (LH)
triplet instead of a right-handed (RH) triplet. This led him to designate these materials as “left-
handed (LH)” (an unfortunate choice in hindsight, as these materials have no necessary relationship
to chiral/optically active materials bearing the same designation; nevertheless, the term is nicely
consistent with the phenomenology). An interesting consequence of their “left-handedness” is the
fact that these waves exhibit phase and group velocities that are oppositely directed, a phenomenon
recognized later on in the electrical engineering community as the well-known backward wave. How-
ever, Veselago’s most striking and far-reaching conclusion was that simultaneously negative material
parameters also implied that the refractive index of an isotropic LH material (LHM) would necessar-
ily be negative, leading not only to negative refraction (i.e., a negative angle of refraction predicted
by Snell’s Law) but also the focusing of the rays emanating from a point source across the planar
interfaces between an LHM slab and the surrounding air. Thus, such a material was, inherently,
also a lens.

It should be noted that the ideas of simultaneously negative material parameters, backward waves,
and the implications of a negative refractive index had been briefly and variously considered as early
as the turn of the twentieth century (see, for example, Refs. [–]); however, it was Veselago’s general
and comprehensive treatment in the open literature, although it lay obscure for over three decades,
that laid the foundation for the present intense research activity in metamaterials.

28.1.3 Negative Refraction

It is easily shown through Snell’s Law that the angle of refraction inside a medium with a negative
refractive index, when interfaced with a medium with a positive refractive index such as air, must
also be negative. Consider the homogeneous and isotropic material interface shown in Figure ..
Conventional (positive) refraction (θr >) is shown by case . Negative refraction (θr <) is shown
in case , in which the normal component of k is directed toward the interface in accordance with
the conservation of its tangential component (phase-matching); nevertheless, the power given by
the Poynting vector S continues to flow away from the interface. Thus, this simple depiction of
negative refraction, combined with the physical requirement for phase matching (conservation
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M1, n> 0 M2

k1t
S1 S2
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x

k2t
case 2

FIGURE . Phase matching at a two-medium interface. When the medium supports backward waves (case ),
negative refraction takes place. (From Iyer, A.K. and Eleftheriades, G.V., Negative refractive index metamaterials sup-
porting D Waves, In IEEE MTTS International Microwave Symposium Digest, vol. , Seattle, WA, June –, , pp.
–. With permission.)

of the wave momentum) and power conservation, suggests that wave propagation inside a homo-
geneous and isotropic medium M exhibiting a negative refractive index necessarily describes a
backward wave.

28.1.4 Focusing

By way of the plane-wave expansion of sources, we may consider, as did Veselago, the outcome of
placing a point source in front of an LHM slab. As shown in Figure ., the rays emanating from
the source are negatively refracted at the lens interfaces and produce foci both inside and outside the
slab. It is also clear that the LHM slab is not a lens in the conventional sense, because it does not
have a unique optical axis, and as such, cannot focus plane waves impinging on it from infinity.

RHM, nRHM > 0 LHM, nLHM < 0

S1 f1 f2

d

θi θt

RHM, nRHM>0

Source Image

FIGURE . Rays focused inside and outside an LHM slab embedded in an RH materiel (RHM) by way of neg-
ative refraction. (From Iyer, A.K. and Eleftheriades, G.V., Negative-refractive-index transmission line metamaterials,
in Negative Refraction Metamaterials: Fundamental Principles and Applications, Eleftheriades, G.V. and Balmain, K.G.
(Eds.), Wiley-IEEE Press, New York, July , pp. –. With permission.)
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However, this can be advantageous for many reasons, including the ability to separately focus two ver-
tically displaced sources. The figure illustrates focusing for a pair of rays incident at a particular angle.
Depending on the refractive indices of the LHM slab and the surrounding medium, nonparaxial rays
generally experience spherical aberration. However, Veselago showed that an LHM slab embedded
in vacuum (nRHM = +), which possesses a refractive index nLHM = −, causes all incident and trans-
mitted angles ∣θ i ∣ and ∣θ t ∣ to become equal, and all the constituent rays are focused to the same point.
Furthermore, for nLHM = −, the slab thickness d, source distance s, and external focal length f
in Figure . are related through d = s + f. This means that, as the source is moved toward the
first interface, the external focus moves away, and vice versa. It also describes the principle of phase
compensation inherent in the LHM slab: the phase lag incurred in the RH material (RHM) regions
between the source and external focus is exactly compensated by the phase advance incurred in the
LHM slab. In this way, the phase of each propagating spectral component of the source is completely
restored at the image plane.

Although its implications are many, the discussion about phase restoration of propagating waves
is only half the story of the negative-refractive-index LHM lens. The other half is, of course, the
fate of the evanescent spectrum of the source. These spectral components, which contain the finest
spatial features of the source, cannot propagate in the medium surrounding the source (vacuum
in the present discussion) and instead suffer a rapid decay in their amplitude, evanescing within
distances from the source of fractions of a wavelength. In fact, the unavailability of these evanescent
components is the reason why no conventional lens, regardless of its transverse size or numerical
aperture, can focus the image of a point source to a spot much smaller than a wavelength, a constraint
known as the “diffraction limit.”

It was not until many decades after Veselago’s ideas were published that it was realized that in this
respect, too, the LHM flat lens excels. It was shown by John Pendry [] that the LHM flat lens, when
designed to have єLHM = −єRHM and μLHM = −μRHM (which guarantees that nLHM = −nRHM but
also that the LHM is impedance-matched the surrounding RHM), is able to restore both the phase of
the propagating components of the source and the amplitude of its evanescent components, provided
inter alia that the lens is placed in the near field of the source. Just as phase compensation implied
phase advance in the LHM, amplitude restoration implies the growth of the evanescent components
inside the LHM, such that their subsequent decay in the RHM restores their amplitude at the focal
plane. Thus, an ideal LHM lens designed according to the above (as it turns out, very stringent) con-
straints, should be able to produce an image of a source down to its finest features. In this sense, the
Veselago–Pendry lens is, indeed, a superlens. The superlens is especially relevant in this chapter, since
it was first realized and experimentally demonstrated using a transmission-line (TL) based metama-
terial [], and a more comprehensive treatment of lenses and superlenses based on TL metamaterials
can be found in Chapter  of Applications of Metamaterials.

28.1.5 Transmission-Line-Based Artificial Dielectric Realizations

The familiar lumped-element model of the transmission line is determined by applying quasi-static
field conditions to Maxwell’s Equations and obtaining the circuit equations; hence, the analogies
between permeability, inductance, permittivity, and capacitance are easily drawn (see Ref. [] for
a concise treatment). That natural media could be represented by distributed L–C circuit networks
was recognized in the s by Kron [], who spatially discretized Maxwell’s equations to arrive
at Kirchhoff ’s voltage and current laws for three-dimensional (D) media, and by Whinnery and
Ramo [], who treated two-dimensional (D) media. The captivating elegance of the distributed
L–C circuit network representation lies in the fact that the capacitive and inductive elements directly
determine the constitutive parameters—the desired permittivity and permeability, respectively—of
the effective medium.
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Of the more exotic (but still conventional) materials examined in the artificial-dielectric
community were plasmas. Plasmas are particularly interesting in the present context, because they
can possess an isotropic negative permittivity at frequencies below their plasma frequency, ωp . In
, Bracewell proposed that an isotropic plasma could be represented by a TL model in which an
inductor was placed in parallel with the shunt capacitance (representing the free-space permittivity),
such that their resonant interaction yields a capacitance at high frequencies (representing a posi-
tive permittivity) and an inductance at low frequencies (representing a negative permittivity) [].
Soon afterward, artificial microwave plasmas were realized using arrays of thin metallic wires (see,
for example, Ref. [] and some more recent work in Refs. [,] ), which can, in the context of
Bracewell’s work, be seen to inductively load free space.

Attempts at producing magnetic responses using artificial dielectrics were few and far between;
first, the main purpose of artificial-dielectrics research was often to design specific refractive indices,
of which the simplest property to manipulate was the permittivity; second, the use of simple metallic
inclusions could not generate any appreciable magnetic behavior beyond the typical diamagnetic
response. However, one very notable suggestion to create unnaturally large artificial permeabilities
was offered by Schelkunoff and Friis []: it was suggested that a small inductive loop (akin to a
magnetic dipole) be loaded in series with a lumped capacitor. The resulting resonant response of the
magnetic polarizability results in arbitrarily large positive permeabilities below the series resonance.
It would be many years later, however, before the community would reinvent these ideas and see
beyond the resonance. An electrodynamic argument for the above results is presented in Section ..

28.1.6 The First LH Metamaterial

In the quest to synthesize a negative-refractive-index LH medium, the problem of realizing an
isotropic negative permittivity was not really a problem at all, since there was a well-established elec-
tromagnetic precedent in plasmas at frequencies below the plasma frequency. Furthermore, to realize
an effectively negative permittivity at microwave frequencies, it was shown that one needed only cre-
ate a cut off condition by loading free space with thin inductive wires. Realizing an isotropic negative
permeability at microwave frequencies, on the other hand, was a much more elusive goal, since such
a property does not naturally occur.

In , Pendry independently introduced the split-ring resonator (SRR), a resonant particle
amounting, essentially, to Schelkunoff ’s capacitively-loaded metallic loop []. However, the SRR
was introduced not only for its strong positive permeability below resonance but also for its strong
negative permeability above resonance. The timing of its resurrection was ideal in that the commu-
nity was searching for an artificial-dielectric “magnetic” microwave plasma that could be assembled
with the well-known wire medium to materialize Veselago’s vision of the LH medium.

It was not long before the wire and SRR arrays, respectively exhibiting a negative permittivity and
negative permeability over a particular range of frequencies, were combined into a composite meta-
material by Shelby, Smith, and Schultz at the University of California in San Diego (UCSD). Needless
to say, their landmark experimental work (Ref. []) succeeded in verifying the phenomenon of neg-
ative refraction and motivated many other important advances in the field of metamaterials. Thus,
under the guise of metamaterials, the artificial dielectrics of half a century ago have experienced a
remarkable resurgence of interest.

28.2 Transmission-Line Theory of LH Media

Following the seminal and inspiring works of Veselago, Pendry, and the UCSD group, other real-
izations of the negative-refractive-index LH metamaterial were considered. The development of the
wire metamaterial and SRR metamaterial was based on concepts in the physics community, largely
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independent of the work in artificial dielectrics carried out in the electrical engineering community
many decades earlier. In particular, the very important work done by Kron, Ramo, and Whinnery in
the TL modeling of natural dielectric media went unexplored for its potential in describing behav-
iors not found in nature, in spite of the very hallowed position that TL models occupy in the gamut
of electrical engineering techniques. This is mainly because the distributed L–C network represen-
tation was meant to be a model for the analysis of natural dielectrics, rather than the synthesis of
artificial dielectrics (in fact, it was only four years later that Kock introduced the term “artificial
dielectric”). However, distributed L–C networks can be directly synthesized in periodic form using
discrete inductors and capacitors; therefore, if TL models of exotic media, like LH media, could
be developed, then it is possible that such media could also be realized using TL techniques. The
development of such a model is the subject of this section.

28.2.1 Transmission-Line Network Topologies

Let us consider D structures for the moment. Kron’s work suggests that we may model unbounded
wave propagation in conventional dielectrics as TEM propagation in a TL network of the type
shown in Figure .a, where the series impedance Z(ω) and shunt admittance Y(ω) represent the
permeability and permittivity, respectively, through the following relations []:

μ(ω) = 
g
⋅ Z(ω)/d

jω
(.)

є(ω) = g ⋅ Y(ω)/d
jω

. (.)

Here, g is a constant that enables the comparison of the characteristic impedance of the TL network
Z to the wave impedance of the effective medium η as follows:

Z =
�
���Z(ω)

Y(ω) = g

�
���μ(ω)

є(ω) = gη. (.)

C
y

x

z

L/2

L/2

L/2
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FIGURE . D TL unit cells describing media with (a) simultaneously positive, constant parameters and (b)
simultaneously negative, dispersive parameters. (From Iyer, A.K. and Eleftheriades, G.V., Negative-refractive-index
transmission line metamaterials, in Negative Refraction Metamaterials: Fundamental Principles and Applications,
Eleftheriades, G.V. and Balmain, K.G. (Eds.), Wiley-IEEE Press, New York, July , pp. –. With permission.)
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It is clear that Kron’s topology for conventional dielectrics with Z(ω) = jωL and Y(ω) = jωC results
in positive, constant material parameters, as predicted. However, this entitlement to specify the per-
meability and permittivity through the total series inductance and shunt capacitance prompts us to
ask whether these parameters can be made negative. Indeed, from the perspective of impedance and
admittance, negating jωL and jωC simply exchanges their reactive and susceptive roles (due to the
relationship − j = / j), so that the series inductor L becomes a frequency-dependent series capacitor
C(ω), and the shunt capacitor C becomes a frequency-dependent shunt inductor L(ω). The unit
cell of the resulting dual structure is shown in Figure .b; its topology is immediately recognized
as that of a D high-pass filter network, for which the series impedance and shunt admittance are
Z(ω) = ( jωC)− and Y(ω) = ( jωL)− respectively.

In the continuous limit (i.e., d/λ → ), the voltage wave equation (Vy between the grid lines and
ground) is

∂Vy

∂x +
∂Vy

∂z + βVy = , β = ±
√
−Z′Y ′ , (.)

where the propagation constant β is expressed in terms of the total distributed series impedance
Z′ = Z(ω)/d and shunt admittance Y ′ = Y(ω)/d in each case. The ω–β dispersion curves of
Figure . represent the dispersion relations of the two unit-cell topologies of Figure . and depict
the variation of the propagation constant along a particular axis of propagation in the x–z plane
as a function of frequency. The phase velocity at a particular coordinate (ω, β) can be obtained
as the magnitude of the slope of the line from the origin to that point or, equivalently, as the ratio
vϕ = ω/β. The group velocity is defined as the slope of the tangent to the ω–β curve at (ω, β),
taken in the direction of increasing frequency, which is given by vg = (∂β/∂ω)−.

28.2.2 The Conventional (Low-Pass) RH Topology

It is evident from Figure .a that the propagation constant of conventional isotropic RHM, mod-
eled as in Figure .a by a distributed series inductance and shunt capacitance (L′ = L/d [H/m]

−β0 + β0(a)

ω0

β

ω

νp

νg

−β0 + β0

ω0

β

ω

νp

νg

(b)

FIGURE . Dispersion relations for media with (a) simultaneously positive, constant parameters and (b)
simultaneously negative, dispersive parameters. (After Iyer, A.K. and Eleftheriades, G.V., Negative-refractive-index
transmission-line metamaterials, in Negative Refraction Metamaterials: Fundamental Principles and Applications,
Eleftheriades, G.V. and Balmain, K.G. (Eds.), Wiley-IEEE Press, New York, July , pp. –.)
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and C′ = C/d [F/m], respectively), varies proportionally with frequency, which is the characteristic
of conventional dielectrics at low frequencies. It is also clear from Figure .a that the resulting
phase and group velocities (vp and vg, respectively) are parallel and equal (assuming it is also a
dispersionless medium) and are given by

vp =
ω
β
= √

L′C′
= ( ∂β

∂ω
)
−

= vg. (.)

The choice of the positive root in Equation . or, equivalently, the positive branch of the ω–β curve,
is a convention that establishes the sign of the phase velocity relative to the direction of positive power
flow (or group velocity in this case) away from the source. According to this convention, the phase
velocity in conventional RH media is positive, and the refractive index, which can be defined as the
ratio between the speed of light in vacuum and the phase velocity in the medium, is also positive:

n = c
vp
=
√

L′C′
√μє

. (.)

The wave impedance of the effective medium is positive and is related to the characteristic impedance
of the lossless TL network as follows:

ηRH =
�
���μ(ω)

є(ω) =

g

√
L′

C′
= Z/g . (.)

28.2.3 The Dual (High-Pass) LH Topology

Let us now consider the dual network of Figure .b. Applying Equations . and . to obtain the
effective permittivity and permeability represented by this topology results in

μ(ω) = 
g
⋅ / jωCd

jω
= − 

g
⋅ 

ωC′
(.)

є(ω) = g ⋅ / jωLd
jω

= −g ⋅ 
ωL′

, (.)

where the distributed parameters L′ = Ld and C′ = Cd are defined in the peculiar units [H⋅m] and
[F⋅m], respectively; their meaning is intuitively clear when the parameters are instead represented as
/L′ = (/L)/d and /C′ = (/C)/d.

Thus, in the case of the dual network, the effective material parameters are both negative and func-
tions of frequency. This type of frequency dispersion turns out to be necessary, so as to avoid the
violation of causality that would result from negative, time-averaged, stored electric and magnetic
energies [,].

The propagation constant associated with the dual structure, found through the application of
Equations . and ., boasts an inverse relationship with the frequency that is consistent with its
high-pass nature:

β = −
√
−Z′Y ′ = − 

ω
√

L′C′
. (.)

Its corresponding ω–β curve in Figure .b illustrates that the dual medium’s phase and group
velocities are antiparallel:

vp =
ω
β
= −ω

√
L′C′ = −( ∂β

∂ω
)
−

= −vg, (.)
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where the choice of the negative root in Equation . has resulted in a peculiar negative phase
velocity, but has, more importantly, ensured a positive group velocity corresponding to the direction
of power flow, in accordance with the adopted convention. This implies that the index of refraction
must also be negative:

n = c
vp
=
−
√

μ(ω)є(ω)
√μє

= − 
ω
√

L′C′μє
. (.)

However, the wave impedance of the effective medium is still positive and, in fact, identical to that
corresponding to the conventional network topology:

ηLH =
�
���μ(ω)

є(ω) =

g

√
L′

C′
= Z/g . (.)

This suggests that such dual networks may be impedance-matched to their conventional counter-
parts and brings forward the notion of an interface between the two types of effective media. These
interfaces are of interest when arrangements for negative refraction and focusing are considered.

The antiparallel relationship between the phase and group velocities was suggested in the previous
discussion on the backward wave in the context of negative refraction and is, moreover, consistent
with the well-known fact that periodic high-pass filters support a fundamental backward-wave spatial
harmonic []. Thus, the simple dual high-pass network provides a simultaneously negative effective
permeability and permittivity, the necessary and sufficient conditions for left-handedness and nega-
tive refraction, as well as the numerous intriguing applications in lensing and components emerging
therefrom.

28.3 Electrodynamics of Negative Material Parameters

The properties of conventional materials are the macroscopic interpretation of field interactions at
the atomic or molecular level. The electrodynamics of materials are quite well understood by classical
arguments treating electrons in an ac electric field as driven, damped oscillators; although an under-
standing of the magnetic properties of materials strictly requires a quantum mechanical treatment,
classical models of ac magnetic fields causing electrons to orbit their nuclei, thereby yielding a mag-
netic moment, may apply under certain circumstances, particularly in the analysis of metamaterials,
in which magnetic moments are produced directly through current loops.

This section begins with a review of the standard methods of determining permittivity and per-
meability, followed by a set of analogous arguments that show, intuitively, how negative permittivity
and permeability may come about.

28.3.1 Determination of Permittivity

The application of an electric field to a dielectric medium results in the polarization of its con-
stituent positively and negatively charged particles, which can be modeled by an equivalent dipole
whose charges +q and −q are displaced by a distance lav, yielding an electric dipole moment
dp= qlav. When all the dipoles in the medium (volume density of electric dipoles Ne ) are aligned,
the total dipole moment per unit volume can be expressed as p=Ne dp=Ne qlav. This is illustrated in
Figure ..

One of the standard methods of determining the macroscopic permittivity of homogeneous
dielectrics is to measure the change in capacitance that results when a sample of the dielectric is
inserted between the plates of a parallel-plate capacitor. Figure . illustrates the arrangement,
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FIGURE . Polarization due to the application of an electric field Ea , modeled as an equivalent electric dipole
consisting of charges ±q separated by a distance lav.
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FIGURE . Determination of the permittivity of a dielectric inserted into a parallel-plate capacitor by measuring
the change in capacitance. The source maintains a voltage Va across the plates.

which consists of a partially filled parallel-plate capacitor, whose plates are maintained at a poten-
tial difference Va by an external voltage source. The purpose of the vacuum region within the plates
is to allow the externally applied field, Ea, to be clearly discerned. This applied field polarizes the
bound charges in the dielectric (which we assume can be aligned) so that each dipole has an average
dipole moment of dp. However, the adjacent polarized charges oppose each other and so cancel each
other in the dielectric region. What remain are the bound charges on the surface of the dielectric,
which can be described by a bound surface charge ρsp [C/m]; this is numerically equal to the net
electric polarization P, which is directed with the applied field: D = єEa +P. The permittivity of the
dielectric єS [F/m] is defined by the relationship D = єSEa and can be obtained by expressing P in
terms of the applied field, Ea, as follows: P = єχe Ea, where the constant of proportionality χe is the
electric susceptibility. Thus, єS = є( + χe).

28.3.2 Determination of Permeability

The atomic model of a magnetic material can be regarded to consist of a negatively charged electron
orbiting a positively charged nucleus, which can, in turn, be perceived as a current flowing around
a loop of area ds (in the direction opposite to the electron motion since current is defined as the
direction of positive-charge flow), as shown in Figure .. This appears as a small magnetic dipole
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FIGURE . Magnetization due to the application of a magnetic flux Ba , modeled as an equivalent magnetic dipole
consisting of a current I flowing around a loop of area ds.

Ba

Bm

Ia

Jms

dm

Air
region

Magnetic
material

FIGURE . Determination of the permeability of a magnetic material inserted into a solenoid by measuring the
change in inductance. The source maintains a current Ia in the windings.

with a magnetic dipole moment dm = Ids. The application of a magnetic field, or equivalently,
a magnetic flux density Ba, aligns the magnetic dipoles with the fields, such that the total mag-
netic dipole moment is in the direction of the applied field and given by a net magnetization
M = Nmdmav = Nm(Ids)av. In analogy to the partially dielectric-filled parallel-plate capacitor of
Figure ., consider the solenoid of Figure . partially filled with a magnetic material whose
permeability we would like to measure. The current source maintains a current Ia in the solenoid
windings; this current establishes the applied magnetic field Ha, which we associate with total mag-
netic fluxes Ba in the vacuum region and Bm in the magnetic-material region. The applied field
induces small current loops (magnetic moments dm). However, the adjacent currents between loops
travel in opposite directions and so cancel each other out. The remaining currents are confined to
the outer edge of the solenoid and can be described by a surface current density Jms = M × n̂∣surface
[A/m], which is related to a bound volume current density Jm = ∇ ×M [A/m]. The total magnetic
flux in the magnetic-material region can be expressed as Bm = μ(Ha +M), and we can define the
permeability of the material μS through the relationship Bm = μSHa by expressing the proportional-
ity between the net magnetization M and the applied magnetic field Ha, M = χmHa, where χm is the
magnetic susceptibility. Thus, μS = μ( + χm) [H/m].
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28.3.3 Positive Permittivity

Since the polarization vector P in polarizable dielectrics in the quasi-static limit is aligned with, and
in phase with, the applied field Ea, the surface charges appearing on the upper and lower faces of the
dielectric (coming into contact with the plates of the capacitor) neutralize some of the charge on the
capacitor plates, which tends to reduce the field in the dielectric region. To maintain a field of Ea,
the source Va must deposit more charge on the plates, which implies that the dielectric permits us
to store more energy in the system. The positive permittivity єS = є( + χe) is guaranteed by the
positive electric susceptibility, arising from a positive P aligned with, and in phase with, Ea. This is
seen by writing Ampère’s Law in the dielectric in time-harmonic differential form:

∇×H = jωD = jωєEa + jωP = jωєEa + jωєχe Ea = jωєSEa . (.)

28.3.4 Negative Permittivity

As noted previously, a negative permittivity is not uncommon in nature; plasmas (electrically neutral
collections of mobile charged particles) can possess isotropic, naturally negative permittivities below
their plasma frequency, ωP. Common examples of plasmas include the Earth’s ionosphere and noble
metals at ultraviolet wavelengths.

In an electrical plasma, the free electrons drift according to a drift current density Jdrift. Assuming
the plasma is collisionless, and that only the electrons are mobile,

Jdrift = Ne(−e)v, (.)

where Ne , −e, and v are the electron density, electron charge, and electron drift velocity, respectively.
Now, F = me a = (−e)Ea, where me is the electron mass, and a is the acceleration given by the
derivative of v, a = jωv. This implies that

Jdrift = Ne(−e) a
jω
= Ne(−e)

jω
F

me
= Ne(−e)

jω
−eEa

me
= Ne e

jωme
Ea . (.)

Therefore, whereas the displacement current Jdisp = jωD lags Ea in quadrature, the drift current Jdrift
evidently leads Ea in quadrature; thus, the two processes are out of phase with each other. Writing
Ampère’s Law in the plasma,

∇×H = jωDa + Jdrift = jωєEa +
Ne e

jωme
Ea = jω(є −

Ne e

ωme
)Ea . (.)

Thus, the effective permittivity inside the plasma is given by

єS = є ( −
ω

p

ω ) , ωp =
√

Ne e

єme
. (.)

This permittivity is negative for ω < ωp. An intuitive explanation based on Figure . can also
be made [] and is shown in Figure .. The motion of the negative charges alone in the plasma
has been represented more generally in Figure . as the opposite motion of both negative and
positive charges. Keeping in mind that the charges in the plasma are free charges, the -degree
phase relationship between the Jdisp and Jdrift terms suggests that the plasma charges drift opposite
to the tendency of the applied field to produce a displacement. However, since the charges are not
bound, they will naturally deposit themselves on the capacitor plates, which tends to increase the
field between the plates. In order to maintain a field of Ea between the plates, the source Va must
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FIGURE . Free charges in a plasma (motion of mobile negative charges generally represented as opposite motion
of both negative and positive charges) drift opposite to the applied field and enhance the field between the plates,
requiring the source to absorb charge in order to maintain a voltage Va .

actually absorb the excess charge. If the drift current deposits a charge on the plates equal to that
initially supplied by the source to maintain Ea, then the source must withdraw all of its charge, since
this field is now being supported entirely by the plasma. In this case, the source can be removed,
and the plasma is in a self-sustained state of oscillation (at its plasma frequency ωp, where єS = ).
Below its plasma frequency, the plasma supplies more charge to the plates than does the source, and
to maintain the field Ea, the source must actually supply a negative charge. In the last two cases,
the medium appears to the source much unlike a capacitor; in fact, it behaves very much akin to an
inductor, returning a current to the source under Lenz’s Law when excited, a result that is reminiscent
of Bracewell’s conclusion. This is explicitly seen by considering the effect on the TL model shunt
admittance, Y , when a capacitor (with a parallel-plate area-to-height ratio /q) is filled with a plasma
whose permittivity is given by Equation .. Therefore,

Y = jωєS

q
= jωє

q
( −

ω
p

ω ) = jωєq +
ω

pєq
jω

, (.)

in which Bracewell’s parallel shunt connection of a capacitor Cp = єq (representing free space) and
an inductor Lp = /єω

pq (representing the plasma) is evident.

28.3.5 Positive Permeability

The sign of the magnetic susceptibility χm, hence the sign of the magnetization vector M, decides
whether the permeability of a magnetic material is less than or greater than μ. Materials in which μS
is (typically only slightly) greater than μ are either paramagnetic or antiferromagnetic; materials in
which μS is less than μ are called diamagnetic. For simplicity, let us consider an artificial magnetic
medium consisting of electrically very small conducting loops, each as shown in Figure .a, and
imagine that such a medium now partially fills the solenoid of Figure .. For generality, the series
impedance around each loop (which may include its parasitics and any other lumped loading) has
been represented as a single lumped ZL and indicated in the diagram by a square block. Now, the
magnetic dipole moment of a single loop is dm = Ids. If the loops are assumed circular, then ds =
πr

n̂, where r is the radius and n̂ is a unit vector normal to the plane of the loop defined according to
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FIGURE . (a) Generalized magnetic medium whose elemental particle consists of a loop whose total series
impedance is lumped into ZL; (b) Field orientations for ZL >  (inductive loop); and (c) Field orientations for ZL < 
(capacitive loop).

the right-hand rule. Thus, the magnetization produced by a single loop is dm = Iπr
n̂ = χmHa/Nm =

χmBa/μNm, which can be rewritten as μIπr
n̂ = χmBa. Now, Faraday’s Law gives

�
E ⋅ dl = − d

dt

�
B ⋅ ds = − d

dt
(Baπr

) = Vemf, ind . (.)

In time-harmonic differential form, − jωBaπr
 = Vemf,ind = IZL. However, substituting Ba =

μNmIπr
/χm, we arrive at the following expression for the magnetic susceptibility:

ZL =
− jωμNm(πr

)

χm
⇒ χm =

− jωμNm(πr
)

ZL
. (.)

This yields a magnetization contribution dm given by

dm = χmHa/Nm = − jω(πr
)μHa/ZL = − jω(πr

)Ba/ZL. (.)

When considered as a sum over Nm loops, we have a total magnetization

M = − jω(πr
)BaNm/ZL. (.)

This corresponds to an effective permeability given by

μS = μ( − jωμ(πr
)Nm/ZL). (.)

Here, the negative sign in the second term is indicative of Lenz’s Law in action. However, since the
sign of M ⋅ Ba is also dependent on the sign of XL = ZL, we shall examine the cases of XL >  and
XL = ZL <  separately.

28.3.5.1 Case 1: Inductive Loop

The condition XL >  implies that the loop impedance is inductive. If we let ZL = jωL, then

dm = − jω(πr
)Ba

jωL
= −Ba

L
(πr

) . (.)

Summing over Nm such loops, we have

M = −Ba Nm

L
(πr

) (.)
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and

μS = μ ( − μNm
(πr

)

L
) . (.)

Equation . suggests that M opposes Ba. In this case, the fields in the vicinity of the loop are as
shown in Figure .b. However, ∣M∣ is typically much smaller than ∣Ba∣, and so μS is only marginally
smaller than μ as a result of M being negative. This can be shown by further expanding the loop
inductance L in terms of the loop area πr

. This is a typical, and typically weak, diamagnetic response,
commonly seen in artificial dielectrics with metallic inclusions. In this case, the magnetic surface
current produced due to the magnetization M opposes the source current Ia, and the source must
deliver more current to maintain the field in the material.

28.3.5.2 Case 2: Capacitive Loop

The condition XL <  implies that the loop impedance is capacitive. If we let ZL = / jωC, then

dm = − jω(πr
)Ba

/ jωC
= ωBaC(πr

) . (.)

Summing over Nm such loops, we have

M = ωBaNmC(πr
) (.)

and

μS = μ( + ωμNmC(πr
)). (.)

Equation . suggests that M and Ba are codirected. In this case, the fields are as shown in
Figure .c. Again, ∣M∣ is typically much smaller than ∣Ba∣, so μS is only slightly larger than μ
due to the positive nature of M. This is typical of a paramagnetic response, for which the source must
absorb the surface current to maintain Ba.

28.3.6 Negative Permeability

It is clear that the permeability typically remains near μ in both of the previous cases. Here, following
the suggestion of Schelkunoff and Friis [], we consider a resonant case.

28.3.6.1 Case 3: Capacitively Loaded Inductive Loop

Let us now consider the loop to possess a total impedance with both inductive and capacitive parts,
such that ZL can be expressed as ZL = jωL + / jωC = jωL( − ω

/ω), where ω = /
√

LC is the
angular loop resonance frequency. Therefore,

dm = − jω(πr
)Ba

jωL( − ω
/ω) =

−Ba

L
(πr

) 
( − ω

/ω) . (.)

Summing over Nm loops,

M = − Ba Nm(πr
)

L( − ω
/ω) (.)

and

μS = μ ( − μNm(πr
)

L( − ω
/ω)) . (.)
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Now, the sign of M ⋅ Ba in Equation . varies with frequency. For ω >> ω, M ⋅ Ba is negative,
reducing to case , and for ω << ω, M ⋅ Ba is positive, reducing to case . However, as ω → ω− ,
μS → +∞. That is, M ⋅ Ba is strongly positive, and the source is required to supply a nearly infinite
current orbiting in the clockwise direction to maintain the field. As ω → ω+ , μS → −∞. In this
case, M is strongly negative, and the source supplies a nearly infinite current orbiting the loop in a
clockwise direction. It should be added that the currents are infinite because of the absence of loss in
the development, which are easily lumped directly into ZL.

In the frequency region in which μS < , M and Ba are oppositely directed, but ∣M∣ > ∣Ba∣. This
implies that the magnitude of the magnetic surface current due to M is greater than the current being
supplied by the source. In order to maintain the field, the source must actually generate a stronger
positive current; for example, when the surface current produced by M becomes equal to the source
current, the only way for the source to maintain Ba is to double its supplied current. In this case, the
source appears to “charge" the system. Thus, in the μS <  region, the system of loaded loops inside
the solenoid behaves like a charging capacitor, wherein the source continuously couples energy into
the loops.

28.3.7 Equivalent Circuit

In Bracewell’s equivalent circuit for a plasma, the inductive component of the shunt branch was
revealed by replacing the vacuum inside the distributed capacitance representing free-space propaga-
tion with a plasma. In analogy, we now consider the effect of filling the free-space distributed series
inductor with a magnetic material possessing the permeability function of Equation .. Repre-
senting the TL equivalent lumped series impedance as Z = jωμSd/q, where /q is a factor dependent
on the geometry of the equivalent TL system and d is the unit-cell length, we have

Z = jωμd
q
( − μNm(πr

)

L( − ω
/ω))

= jωμd
q
+ ωNm(μπr

)d/q
jωL + / jωC

= jωLs −
( jωLM)

ZL
. (.)

The new symbols introduced in the last line of Equation . reveal that Z is, in fact, the image
impedance of the free-space lumped series inductance Ls = μd/q coupled to the ring impedance
ZL = jωL + / jωC via a mutual inductance LM = μπr



√
Nmd/q. Thus, when this system of loaded

rings is placed in free space (with a permittivity represented by the shunt capacitance Cs and neglect-
ing the electrical response, if any, of the rings), the TL equivalent circuit representing propagation
through the system is as shown in Figure ..

28.4 Transmission-Line Metamaterials and the Split-Ring
Resonator Connection

28.4.1 The Recipe for Broadband, Low-Loss Left-Handedness

Figure . is a variant of the TL model of the wire/SRR medium presented in [,], in which the
shunt branch additionally contains an inductive contribution, serving to negate the permittivity. In
the last reference, it was shown that the frequency region in which the effective permeability function
of Equation . assumed negative values corresponds the frequency region in which the series
branch of Figure . is capacitive, as dictated by the TL model of NRI metamaterials. However,
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Cs Y

Ls

L

C

LM

Z

FIGURE . TL equivalent circuit representing a medium achieving a negative permeability through an L–C
resonance mechanism.

this necessary series capacitance is obtained between two (often closely spaced) resonances, which
implies that the mechanism by which this is achieved is inherently narrowband and lossy unless
steps are taken to maximize the available bandwidth. This is very much unlike the TL metamaterial,
which exhibits inherently broadband and low-loss negative material parameters, in spite of its L–C
topology, and so it should be interesting to consider how or whether the two can be related.

The TL model of conventional dielectrics possesses a “low-pass” topology, and the dual LH model
possess a “high-pass” topology. However, it is clear that neither ideal transmission line possesses
any cutoff frequency; in fact, in this “continuous” limit, they are infinitely broadband, as shown in
Section .. This attribute is a result of the fact that the individual L–C resonators (unit cells) com-
prising the lines are so tightly coupled by virtue of electrical connection to their adjacent counterparts
that their local resonance property is converted into a propagation phenomenon. To illustrate, con-
sider the one-dimensional (D) periodic array of loops (period d) shown in Figure .a. As before,
the loops possess a self-inductance L and are loaded by a lumped capacitance C described by a total
loop impedance ZL, and they can, without too great a loss of generality, be regarded as circular loops
of radius r. As discrete resonators, the loops provide a negative effective permeability within a well-
defined (typically narrow) bandwidth. However, consider the limit in which d → r; in this limit,
the loops can no longer be regarded as discrete resonators since their mutual coupling becomes sig-
nificant. Indeed, as shown in Figure .b, it can be appreciated intuitively that the isolated loops
become conjoined and form what appears to be an LH transmission line, where the capacitive load-
ing C appears in series and the inductance of the loops L = L/ appears in shunt. Thus, it appears
that it may be possible to produce left-handedness from capacitively loaded loops alone, provided
that the loops are tightly coupled to each other. This conclusion, as well as portions of the following
analysis, can be found in Ref. [].

As an approximation to the full mutual coupling problem implicating all loops in the infinite D
array, we apply here a nearest-neighbor approximation that describes the magnetic moment of the
nth loop, mn , in terms of the (quasi-static) z-directed magnetizing fields produced by the (n − )th
and (n + )th loops alone. That is,

mn = χm{Hz
n ,n− +Hz

n ,n−}, (.)
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FIGURE . (a) D array of mutually coupled capacitively loaded inductive loops and (b) unit cell for a continuous
LH transmission line, formed by connection of loops in (a).

where χm is the magnetic susceptibility of an isolated loop. Assuming the loops are small, the in-plane
static fields produced by the (n ± )th loop a radial distance r away is given by

Hz
n ,n± = −

mn±

πμ∣r∣
. (.)

We may also insist that mn is a periodic function such that

mn∓ =mn e± jβd , (.)

which suggests the desired traveling-wave solutions with propagation constant β. Substituting
Equations . and . into Equation . and using the expression for χm given previously in
Equation ., the dispersion equation is determined to be

cos(βd) = − L
Mc

( − ω


ω ) , Mc = −μ
(πr

)

πd , (.)

where Mc can be regarded as the mutual inductance linking adjacent loops and the factor p =
−L/Mc can be called the normalized coupling coefficient. This type of dispersion bears interesting
similarities to two others described in the literature: the first is the dispersion of the magnetoinduc-
tive surface wave [] supported by a chain of coplanar loops, and the second is the dispersion of
the continuous D dual transmission line, which we have described as the limiting case of connected
coplanar loops, from which p is absent. Both types of dispersion describe LH wave propagation. In
fact, it can be seen that the dispersion of the continuous D dual transmission line is akin to that of the
magnetoinductive wave when p = , which suggests a “perfect” coupling between loops by virtue of
their connection. Figure . shows the dispersion diagram as a function of p. Indeed, the structure
possesses a broad LH bandwidth that increases with p; i.e., as the discrete-resonance property of the
rings gives way to their mutual coupling. A measure of the bandwidth of the LH region is given by
the following expression:

BWp = ω
 p/(p − ), (.)

from which it can be seen that as the normalized coupling coefficient p → , the left-handed band-
width BWp → ∞. Conversely, when the loops are completely decoupled (p → ∞), the left-handed
bandwidth is diminished to zero.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Fundamentals of Transmission-Line Metamaterials 28-19

−3 −2 −1 0 1 2 30.5

1

1.5

2

βd (rad)

Fr
eq

ue
nc

y (
G

H
z)

p = 1
p = 1.5
p = 2
p = 4

FIGURE . Dispersion diagram illustrating bandwidth enhancement as the mutual coupling coefficient p =
−L/Mc → . (From Eleftheriades, G.V., IEEE Microw. Wireless Comp. Lett., , , . With permission.)

Losses may be introduced by representing the resonance frequency as complex, i.e., ω → ω( +
j/Q), where Q is the quality factor describing the resonance. In the low-loss regime, the resulting
decay component, αd, of the now complex propagation constant can be expressed as follows:

αd ≅ (p/Q)(ω/ω)
√

 − p[ − (ω/ω)]
. (.)

Figure . illustrates the loss as a function of frequency for various values of p. It is clear that the loss
associated with a particular Q is minimized as p → , the same condition that yielded a maximum
bandwidth. Thus, it is not the absence of resonators that makes TL metamaterials simultaneously
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FIGURE . Dispersion of attenuation factor illustrating that minimum loss is achieved as the mutual coupling
coefficient p = −L/Mc → . (From Eleftheriades, G.V., IEEE Microw. Wireless Comp. Lett., , , . With
permission.)
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broadband and low loss; rather, it is the tight coupling between their constituent lumped resonant
sections.

For completeness, the previous analysis may be repeated taking into account retardation effects
that appear in practical, periodic implementations of the dual TL metamaterial, employing a host
(RH) TL medium. These effects can be shown to impose further constraints on bandwidth and loss,
which may be mitigated by minimizing their electrical length (the interested reader is referred to
Ref. [] for further details). The effect of the requisite host medium on the dispersion properties of
the dual TL is discussed in Section ..

28.4.2 Free-Space Coupling to a Transmission-Line-Based Metamaterial

The structure shown in Figure . describes magnetoinductive surface wave-like propagation along
a tightly coupled array of loops, resembling a D TL metamaterial, which inherently supports LH
propagation. However, this is limited to D and so does not offer any insight into coupling into such
a metamaterial from free space. On the other hand, Figure . describes coupling between free
space and isolated loaded loops resulting in a frequency region of negative permeability, but requires
a negation of the permittivity (e.g., using wires) to produce LH propagation. It should be interesting
to consider the propagation characteristics of a bulk mode coupling from free space into a tightly
coupled array of loaded loops, specifically to determine whether such a system could also produce
large LH bandwidths and low losses, and whether additional wires would be needed. For this purpose,
consider the unit cell shown in Figure .. The mutual impedance coupling the host free-space
transmission line (represented as a π-model with impedance Zh and admittance Yh) to the array of
loaded loops is ZMh, and the mutual impedance coupling each loop to its neighbors is ZML. Invoking
the Floquet–Bloch boundary conditions shown in Equation . yields the dispersion of the complex
propagation constant γ shown in Equation .:

ZL

Zh

ZMh

ZMLZML

Yh/2 Yh/2

I1 I2Ih

+

V1

−

+

V2

−

Ir0
Ir+Ir−

d

FIGURE . Unit cell modeling coupling from free space (represented as a π-network with impedance Zh and
admittance Yh) to a TL metamaterial represented as an array of tightly coupled rings.
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V = Ve−γd

I = Ie−γd

Ir− = Ire+γd

Ir+ = Ire−γd (.)

[cosh γd − ( + YhZh


)] [cosh γd − ZL

ZML
] = YhZ

Mh

ZML
. (.)

The host transmission line and the loop array may be regarded to be decoupled when ZMh = , which
renders the right-hand side of Equation . null. In this case, the dispersion equation is satisfied
by the existence of two decoupled modes:

cosh γd =  + YhZh


= cosh γhd (.)

cosh γd = ZL

ZML
= cosh γLd. (.)

To properly interpret these results, let us consider the typical case in which the mutual impedances
ZMh and ZML are inductive. In this case, Equation . describes propagation through free space,
unloaded by the loop array, where the free-space inductance and capacitance embedded in Zh and
Yh, respectively, are positive; Equation . is identical to Equation . in the lossless case for
γ = jβ and describes LH propagation in the coupled loops, where Z−

ML can be interpreted as the shunt
inductance required to produce a negative permittivity, and where the series capacitance required for
a negative permeability is obtained directly from the ring capacitance C embedded in ZL. Hence, we
can rewrite (.) in a simpler form:

[cosh γd − cosh γhd] [cosh γd − cosh γLd] = Yh Z
Mh

ZML
, (.)

which illustrates that this is a system of coupled modes in which the free-space bulk mode is forward
(RH) and the coupled-loop mode is backward (LH). The right-hand side of Equation . can be
regarded as the coupling constant, and the frequency at which the coupling is strongest is obtained
from the condition cosh γLd = cosh γhd.

To test these ideas, let us denote that ZMh and ZML correspond to inductances LMh and LML. Fur-
thermore, we insist that C = pF and L = .nH, so that the loop resonance frequency ω = GHz
and that the per-unit-length inductance and capacitance of the host transmission line Lh and Ch are
equal to the free-space permeability and permittivity, respectively (i.e., Z = η in this case). We shall
also assign the periodic structure a period of d = mm, which is one-fifteenth of the free-space wave-
length at the loop resonance frequency. The discussion that follows examines various combinations
of the mutual coupling factors LMh and LML.

28.4.2.1 Case 1: Decoupled System

It was shown that the host transmission line and loop array may be decoupled by setting ZMh = .
In this case, we expect to see a forward-wave (RH) dispersion curve representing free-space prop-
agation and a backward-wave (LH) dispersion curve whose bandwidth depends on the mutual
inductance LML between adjacent loops. Accordingly, setting LMh =  and choosing LML from the
case −L/LML = p = . examined previously in Figure . for the isolated coupled-loop array, we
obtain the dispersion curves shown in Figure . (dark curves, propagation constant; light curves,
decay constant). Indeed, the backward-wave curve corresponds to that in Figure . for p = . and
does not interact with the forward-wave dispersion of the host transmission line.
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FIGURE . Dispersion diagram showing the solutions to Equation . when the host transmission line
and coupled-loop array are decoupled (LMh = ), but the loops are coupled to their nearest neighbors, for −L/LML =
p = . (dark curves, propagation constant; light curves, decay constant).
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FIGURE . Dispersion diagram showing the coupled dispersion curves of the host transmission line and
coupled-loop array when LMh = .Lh, for −L/LML = p = . (dark curves, propagation constant; light curves,
decay constant).

28.4.2.2 Case 2: General Coupled System

We now examine a more general case in which the host transmission line and coupled-loop array
are coupled by a mutual inductance (chosen to be LMh = .Lh), and once again we consider only
the case −L/LML = p = .. The resulting dispersion curves are shown in Figure . and pos-
sess a number of very interesting features. First, the forward wave and backward wave interact most
strongly where their dispersion curves intersect (i.e., where the modes are phase-matched); away
from the point of intersection, the two coupled dispersions approach their isolated values, and at
any given frequency they can be described as either propagating (γ = jβ) or evanescent (γ = α).
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However, inside the region of interaction, both modal solutions are complex, in that they possess
both propagating and evanescent features. Such complex solutions are observed whenever there is
coupling between backward and forward waves, as in conventional leaky-wave antennas operating
on negative (backward-wave) spatial harmonics [] and their TL metamaterial counterparts oper-
ating on a fundamental negative spatial harmonic [,], the dispersions of the shielded Sievenpiper
high-impedance surface [], and in the operation of high-directivity TL metamaterial coupled-line
couplers []. Indeed, the model of Figure . can be used to represent any of these systems in the
quasi-static limit (a more detailed and accurate treatment could be achieved using multiconductor
TL analysis, which would account for both inductive and capacitive coupling between the lines as
well as their electrical length—for example, see Ref. []).

28.4.2.3 Case 3: Isolated L–C Resonator Limit

The other interesting case to consider is that in which ZMh remains finite, but ZML → , suggesting
that, although there is coupling between the host transmission line and individual loops, the loops
in the array do not couple to their adjacent neighbors and so appear as isolated L–C resonators.
From Equation ., we see that this results in cosh γLd → ∞, and it can be shown that the only
propagating solution for γd is as follows:

cosh γd =  + 


Yh (Zh −
Z

Mh

ZL
) . (.)

Expectedly, this is the dispersion relation corresponding to the unit cell of Figure ., and the factor
Zi = Zh − Z

Mh/ZL is the image impedance of the isolated loop seen via the mutual impedance ZMh.
We know that Zi <  corresponds to a negative effective permeability. Setting LMh = .Lh and
LML =  (p →∞) in Equation ., we produce the dispersion curves shown in Figure .. Here,
the solutions in all frequency regions are either propagating or attenuating (as in Figure .), and the
inherent backward-wave bandwidth observed when the loops were tightly coupled has diminished to
zero. Instead, the dispersion flattens out at the loop-resonance frequency, ω, leading to a stopband
(containing evanescent solutions only), which, according to Equation ., represents a frequency
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FIGURE . Dispersion diagram showing the coupled dispersion curves of the host transmission line and loop
array (LMh = .Lh) when the loop-to-loop mutual inductance LML =  (darkly shaded curves, propagation constant;
lightly shaded curves, decay constant).
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region of negative effective permeability. Propagation is restored at a frequency ωP > ω at which the
free-space series inductance Lh dominates and the effective permeability is once again positive.

The solution to the condition cosh γLd = cosh γhd represents the frequency of intersection
of the forward-wave and backward-wave dispersions, and it is straightforward to show that, as
LML → , the intersection frequency approaches ω. Thus, although the coupling phenomena shown
in Figures . and . appear to be different, the above development proves that they are funda-
mentally one and the same; indeed, the stopband present in both cases is the result of the coupling
between the host transmission line and loop array, and this stopband generally contains complex
solutions for any degree of loop-to-loop coupling, which may, at times, contain evanescent-only solu-
tions. The differences lie in their dispersion characteristics outside the stopband; when the loops are
tightly coupled to one another, the propagation characteristics are dominated by the coupled-loop
array, which is akin to a dual LH transmission line possessing a simultaneous negative permittiv-
ity and permeability; accordingly, a broadband and low-loss region of left-handedness is produced,
but it is interrupted in the vicinity of the stopband. However, it is clear that weakening the cou-
pling between loops in the array gives way to a dispersion akin to that of an isolated SRR, which is
described by a negative permeability alone, and for which external wires are additionally required to
restore left-handedness. Thus, it may be concluded from this analysis that, for a given LMh describ-
ing the loading of free space by the loop array, the property of left-handedness built inherently into
the system of tightly coupled loops supporting an LH TL mode is necessarily compromised by the
requirement of coupling to such a mode from free space. That is, in general, the dispersion prop-
erties of the coupled system are a hybrid between those described by the unit cells in Figures .
and ., the former of which requires external wires to restore an uninterrupted, broadband LH
passband, and the latter of which requires external wires to produce LH at all. The requirement for
external wires is strengthened in the application of broadband metamaterials to free-space lensing or
superlensing, where the frequency of operation is identically equal to the frequency of intersection
between the backward-wave and forward-wave dispersions, the latter of which follows the light line.

28.5 Periodically Loaded Transmission-Line Metamaterials

The unique properties of the dual LH topology described in Section . were obtained in the con-
tinuous limit (d/λ → ), in which the topology represents what may be described as a “purely” LH
material. However, any practical realization of such a structure, as in the case of the SRR/wire meta-
material, is a periodic one, and as such, must contain some RH component to its dispersion. In the
case of the SRR/wire metamaterial, this RH contribution is provided by the air or dielectric separating
the wires and resonant inclusions. Similarly, in an L–C-based periodic implementation, the period-
icity is provided by a host TL medium, which may be appropriately loaded using lumped inductors
and capacitors. This model, known as the negative-refractive-index transmission-line (NRI-TL), is a
hybrid model that rigorously accounts for the distributed effects of the host medium and the lumped
nature of the series-capacitive and shunt-inductive loading. As a result, its validity is not limited
to the continuous, or homogeneous, limit, although this is often the regime of greatest interest and
accordingly, much of this section will be devoted to it. It will be shown that the NRI-TL model is
a most general and complete description of the RH- and LH components of LH dispersion, and it
can be applied to any periodic electromagnetic structure, including SRR-based metamaterials (as
exemplified by the model of Figure .) as well as optical/plasmonic implementations [,].

The NRI-TL metamaterial can be implemented as a D structure, modeling TEM propagation in
a transmission line filled with an NRI material (or equivalently, plane-wave propagation for a single
direction in an unbounded NRI material); in D form it is a planar structure akin to a parallel-plate
waveguide filled with an NRI material; finally, as a D structure, the NRI-TL metamaterial resembles
a bulk NRI material. Each implementation has its own rigorous formulations for extracting its disper-
sion and impedance properties; however, on-axis TEM-mode propagation in any of these structures
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FIGURE . Symmetric NRI-TL unit cells in the (a) shunt, and (b) series NRI-TL topology.

often reduces to a D unit cell. Accordingly, the following analysis will concentrate on the D struc-
ture, which represents a desirable compromise between mathematical complexity and intuition, in
that it intuitively supports the notions of refraction and focusing; moreover, the discussion shall be
limited to propagation on-axis, for which a D unit cell can be obtained and a great deal of intuition
gained. An analysis of the D NRI-TL structure is also justified by the fact that the first realizations
of NRI-TL metamaterials involved planar structures supporting D waves [,]. There exist two D
NRI-TL metamaterial topologies, shown in Figures .a and .b, which are known respectively
as the shunt node and the series node; the terminology, which is borrowed from the TL matrix (TLM)
method of time-domain modeling, is appropriate, since these unit cells are constructed, respectively,
by the shunt and series interconnection of D NRI-TLs. As a result, the topology of Figure .a is
excited by quasi-TM fields (predominantly y-directed electric fields), whereas that of Figure .b
responds to quasi-TE fields (predominantly y-directed magnetic fields). The reader will note that
the series capacitors (shunt inductors) of the shunt node (series node) have been represented as C
(L) to render the unit cell symmetric. We shall restrict the following analysis to the shunt node;
the analysis for the series node proceeds in a similar manner and can be found in Ref. []. The con-
stituent D NRI-TLs consist of a cascade of lumped series capacitors and shunt inductors arranged
in a dual topology distributed as shown over the (finite) length of a host TL medium. The TL seg-
ments (characteristic impedance Z = Y−

 ) each have a length d/ and can be represented by a
phase shift, θ/ = kd/, where k is the propagation constant in the medium filling the segments. The
microstrip transmission line is a most appropriate host RH medium for the planar NRI-TL imple-
mentation discussed here, and we shall assume it to possess positive material parameters єP and μP,
such that k = ω√єPμP and Z = g

√
μP/єP, where g is a constant related to the geometry of the

microstrip (including its height h, width w, and relative permittivity єr) determined from a quasi-
static mapping of the fields. Figure . depicts examples of microstrip-based NRI-TL metamaterials
employing discrete lumped loading (e.g., with chip inductors and capacitors []) and printed lumped
elements (e.g., vias and interdigitated capacitors [,]).

The × transmission (ABCD) matrix of the unit cell of Figure .a is obtained by cascading the
× transmission matrices of the constituent elements. The periodic structure is then constructed by
cascading an infinite number of such unit cells. A periodic analysis of the NRI-TL structure links the
terminal field quantities (voltages and currents) by applying the Floquet–Bloch boundary conditions
along the two axes, which yield traveling wave solutions with an effective NRI-TL propagation

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

28-26 Theory and Phenomena of Metamaterials

L0

2.C02.C0

+

V1

–

+

V2

–

θ/2, Z0θ/2, Z0 I2I1

βd

2YOC

Z–
FBZ+

FB

FIGURE . Equivalent circuit for axial propagation along a D periodically loaded NRI-TL metamaterial. (From
Iyer, A.K. and Eleftheriades, G.V., Negative-refractive-index transmission line metamaterials, in Negative Refraction
Metamaterials: Fundamental Principles and Applications, Eleftheriades, G.V. and Balmain, K.G. (Eds.), Wiley-IEEE
Press, New York, July , pp. –. With permission.)

constant (or Floquet–Bloch wave vector), β, that see an effective NRI-TL characteristic impedance
(or Floquet–Bloch impedance), ZFB. The full D periodic analysis can be found in Ref. []. In this
section we treat the simpler, but highly intuitive, case of on-axis propagation in which the D struc-
ture can be reduced to the unit cell depicted in Figure ., where the additional shunt admittance
Yoc is produced by open-circuit conditions in the transverse direction []. The resulting dispersion
equation from which β is determined is shown in Equation ., and the Floquet–Bloch impedance
is given in Equation .:

(a) (b)

FIGURE . NRI-TL medium employing a microstrip host medium loaded using (a) discrete inductors and capac-
itors and (b) vias and printed gaps. (From Iyer, A.K. and Eleftheriades, G.V., Negative-refractive-index transmission
line metamaterials, in Negative Refraction Metamaterials: Fundamental Principles and Applications, Eleftheriades, G.V.
and Balmain, K.G. (Eds.), Wiley-IEEE Press, New York, July , pp. –. With permission.)
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cos βd = {cos θ − 
ωLC

cos θ
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ω
( 

CZ
+ 

LY
) sin θ}

− sin
θ

( sin

θ

− 

ωCZ
cos

θ

) (.)

Z±FB = ±
Z tan

θ

− 

ωC

tan
βd


. (.)

28.5.1 Dispersion Characteristics

The dispersion of the continuous LH transmission line depicted in Figure .b illustrated that its LH
bandwidth was infinite. A similar result can also be obtained from Equation . as the electrical
length of the interconnecting TL segments θ →  (the continuous limit), adjusted for the D nature of
the medium. However, these electrical lengths contribute the necessary retardation component that
permits a practical, periodic realization of NRI-TL metamaterials. Thus, it is of great interest to know
the effect of the TL segments on the dispersion relation when their electrical length is not negligible,
for this is unavoidable in practice.

Figure . depicts the frequency response of the propagation constant determined from Equa-
tion . for the representative loading values L = . nH and C = . pF, and period d =  mm;
θ and Z are computed from the microstrip and substrate parameters єr = ., h = . mm,

−π −π/2 0 π/2 π
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FIGURE . Dispersion relation for a representative NRI-TL medium obtained through periodic analysis. The
lowest left-handed (LH) passband is enclosed by frequencies ωB and ωC,. (From Iyer, A.K. and Eleftheriades, G.V.,
Negative-refractive-index transmission line metamaterials, in Negative Refraction Metamaterials: Fundamental Prin-
ciples and Applications, Eleftheriades, G.V. and Balmain, K.G. (Eds.), Wiley-IEEE Press, New York, July , pp. –.
With permission.)
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and w = . mm, using standard formulas []. It is evident that the inclusion of the TL segments
has significantly enriched the dispersion features; specifically, while the insistence on periodicity has
retained the LH nature of the lowest passband, its bandwidth has been rendered finite by a lower
bound, ωB, and an upper bound ωC, due to the onset of a stopband inside which β is complex. The
stopband forbids propagation between frequencies ωC, and ωC,, and RH propagation is restored
beyond ωC,. In fact, the pattern of successive alternating LH and RH passbands separated by stop-
bands repeats ad infinitum and is due to the periodic phase properties of the interconnecting TL
segments. Each set of bands represents higher-order spatial harmonics (Floquet–Bloch modes) asso-
ciated with the period chosen; nevertheless, the most important feature of Figure . is the fact
that the fundamental spatial harmonic is LH. This is in stark contrast to conventional RH mate-
rials as well as photonic crystal- or electromagnetic bandgap-type metamaterials, in which any
backward-wave-type behavior is limited to higher-order negative spatial harmonics.

Here, the lower bound ωB corresponds to the Bragg reflection condition βd = π (i.e., one-half
wavelength per period). It can be shown that ωB is predominantly affected by the loading elements
L and C, since the interconnecting transmission lines are electrically very small at such low fre-
quencies, and consequently the NRI-TL cascade behaves like a simple high-pass filter at resonance.
The reader will recall that, in conventional RH materials, the large phase shifts and small guided
wavelengths leading to Bragg conditions are achieved at high frequencies due to the direct propor-
tionality of β and ω; conversely, in NRI-TL metamaterials, these large phase shifts and small guided
wavelengths are achieved at low frequencies due to the inverse relationship between β and ω. Phrased
another way, the effective wavelength in the NRI-TL metamaterial λeff = π/β varies directly, rather
than inversely, with frequency. Furthermore, λeff and the wavelength in the (RH) host TL medium
λ vary inversely. These fundamental properties of NRI-TL metamaterials suggest a wide range of
possibilities in the miniaturization of distributed structures.

28.5.2 The Effective Medium Limit: Determining the Effective Permittivity
and Permeability

When βd = , we have encountered the edge of the stopband, ωC,. However, in the frequency region
of propagation approaching ωC,, it is possible that both θ and βd are electrically very small, and the
effective wavelengths λeff and λ are comparably much larger than the period d. Indeed, this limit is
known as the effective medium limit, in which the periodic structure appears homogeneous to waves
propagating inside it, and it is in this regime that we may attribute to the structure effective properties
such as permittivity, permeability, refractive index, and wave impedance. At such low frequencies, θ
is sufficiently small that we may apply a Taylor expansion on the terms sin θ and cos θ that retains
only the first two terms. The resulting approximation of Equation . is as follows:

cos βd =  − θ


− 

ωLC
+ 

ω
( 

CZ
+ 

LY
) θ − θ


(θ − 

ωCZ
) . (.)

Finally, if we restrict ourselves to the region in which βd → , we may apply a similar expansion to
the term cos βd, which directly produces βd:

(βd) ≈ {(θ − 
ωCZ

)(θ − 
ωLY

)} + θ (θ − 
ωCZ

)

= (θ − 
ωCZ

)(θ − 
ωLY
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By expressing θ and Z in terms of the host TL permittivity єP, permeability μP, and geometry-
dependent constant g, the axial propagation constant in the effective medium limit is given to be

β = ±ω

�
���(єP −

g
ωLd

)(μP −
/g

ωCd
) = ±ω

√
єN(ω)μN(ω), (.)

which has also been represented in terms of єN(ω) and μN(ω), the effective material parameters that
we seek. Of course, an expression for β alone cannot produce isolated equations for these parameters,
and so we must apply our assumptions to the Floquet–Bloch impedance ZFB as well:

ZB =
ωμPg − 

ωC d

β
= g

�
���� μP − /g

ω C d

єP − g
ω L d

= g

�
���μN(ω)

єN(ω)
. (.)

Using these two expressions, the effective constitutive parameters of the NRI-TL metamaterial in the
effective medium limit are determined to be

μN(ω) = μP −
/g

ωCd
(.)

єN(ω) = єP −
g

ωLd
. (.)

Whereas the effective material parameters in the continuous case were negative over all frequencies,
the imposed periodicity causes each of єN(ω) and μN(ω) to contain both a positive contribution
due to the host transmission line and a negative, dispersive contribution due to the periodic loading
(corresponding to a negative effective susceptibility). Consequently, the material parameters are only
negative where the loading elements C and L dominate the frequency response. It can be shown
that the factor of  before the relative permittivity єP of the host medium is a direct consequence of
the transverse (capacitive) loading of the axial propagation characteristics due to the D nature of
the medium [,]. Accordingly, as in an unloaded D microstrip grid, the characteristic impedance
seen by a wave propagating axially through the D NRI-TL structure is less than that seen in a D
transmission line by a factor of

√
.

It is clear from the form of Equations . and . that the NRI-TL effective material param-
eters are strongly negative at low frequencies and positive at high frequencies. The LH passband of
NRI-TL metamaterials represents the frequency region in which єN(ω) and μN(ω) are simultane-
ously negative, and the RH passband at higher frequencies is formed where both material parameters
are positive. In the intervening stopband, one of the two parameters is negative, whereas the other
remains positive. The zeros of Equations . and . represent the frequencies at which the transi-
tion from negative to positive values is made and correspond to the edges of the stopband. These may
also be regarded as the “plasma frequencies” of the effective medium and possess the following form:

ωC , =
√


C gμPd

, μN(ωC ,) =  (.)

ωC , =
�
��� 

L
єPd

g

, єN(ωC ,) = . (.)

Since the plasma frequencies depend inversely on the period d of the metamaterial, the stopband
cutoffs are pushed to infinity as the period d is reduced, arbitrarily widening the bandwidth of the
LH passband and essentially restoring the continuous case [,]. This observation represents a very
important feature of NRI-TL metamaterials–that the close packing of the periodic inclusions pro-
duces large LH bandwidths–and is reminiscent of the developments in Section . leading to the

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

28-30 Theory and Phenomena of Metamaterials

same conclusion. Moreover, it suggests that the dispersion characteristics of the NRI-TL metamaterial
are inherently controllable.

One subtle point in the above development is that the geometrical factor g was factored in ZFB as
it was factored in the characteristic impedance Z of the host transmission line; thus, Equations .
and . essentially suggest that the propagation characteristics of the periodically loaded NRI-TL
metamaterial in the homogeneous limit are equivalent to those obtained by replacing the material
filling the original transmission line (єP, μP) with the NRI-TL effective constitutive parameters єN(ω)
and μN(ω), which assumes that the original field mapping (hence g) is maintained.

28.5.3 Closure of the Stopband

In conventional periodic structures, stopbands are frequency regions in which propagation is for-
bidden as a result of the interaction between two spatial harmonics carrying power in opposite
directions, and the degree of coupling between these harmonics (which determines the size of the
stopband) is largely determined by the strength of the periodic perturbation. Thus, the only way to
eliminate a stopband in a conventional periodic structure is to remove all perturbation; of course,
this obviates any notion of periodicity, and so is not an option for all practical intents and purposes.

Now, consider Equations . and ., describing the edges of the first stopband. It appears that
the size of the stopband can be diminished to zero simply by setting ωC , = ωC ,. This is satisfied by
the following condition:

√


C gμPd
=
�
��� 

L
єP d

g

⇒
√

L

C
= g
√

μP

єP
=
√

L′

C′
= Z, (.)

which is an impedance-matched condition described by a host-medium characteristic impedance
equal to that of the underlying purely LH distributed medium consisting of the loading elements
alone. Furthermore, the impedance-matched condition is independent of both frequency and the
period d, provided that we are within the effective medium regime. The condition of closing the
stopband in a TL-based NRI metamaterial (Equation .) was originally reported in Equation 
of Ref. [] and subsequently adopted by Sanada et al. [], who have referred to it as a “balanced”
condition.

Thus, we can guarantee closure of the stopband by selecting the loading element values L and
C according to Equation .. Beginning with the dispersion relation of Figure . and choos-
ing L =  nH to comply with Equation ., the resulting dispersion relation is presented in
Figure . (of course, Equation . could have also been satisfied by decreasing the loading capac-
itance C). The absence of a stopband also suggests that the impedance-matched condition permits,
at least in theory, the restoration of a nonzero group velocity at the point β = . In fact, it has been
shown in Ref. [] that the closure of the first stopband through Equation . guarantees that all
stopbands at each one of the infinitely many β =  points are also closed.

Another way to express Equation . is as follows:
�
���� μP − /g

ω C d

єP − g
ω L d

=
√

μP

єP
⇒ ηN RI−T L = ηTL . (.)

Phrased this way, it appears that the impedance-matched condition also guarantees that the wave
impedance of the periodically loaded D NRI-TL metamaterial matched to the effective wave
impedance of an unloaded D TL grid. This is an important result, because it provides a prescrip-
tion for the design of interfaces between positive-refractive-index (PRI) effective media and NRI-TL
metamaterials, which are essential to the demonstration of negative refraction, focusing, and per-
fect lensing. Equation . tells us that a D NRI-TL metamaterial is ideally interfaced with a
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FIGURE . Dispersion relation describing an NRI-TL medium with a closed stopband, as obtained through
periodic analysis. Closure of the stopband is achieved through the application of Equation .. (From Iyer, A.K. and
Eleftheriades, G.V., Negative-refractive-index transmission line metamaterials, in Negative Refraction Metamaterials:
Fundamental Principles and Applications, Eleftheriades, G.V. and Balmain, K.G. (Eds.), Wiley-IEEE Press, New York,
July , pp. –. With permission.)

D unloaded TL host grid, and owing to its frequency insensitivity, their impedance match can be
maintained everywhere within the effective medium regime.

28.5.4 Equivalent Unit Cell in the Effective Medium Limit

Just as it was possible to extract an effective permeability and permittivity from the series impedance
and shunt admittance of the continuous LH TL unit cell, respectively, it is also possible to produce an
equivalent lumped-element unit cell from the effective material parameters describing the periodic
NRI-TL structure in the effective-medium limit. The series impedance Z and shunt admittance Y of
this equivalent unit cell, which correspond to the effective parameters of Equations . and .,
respectively, are obtained as follows:

Z = jωgμN(ω)d = jωL′d + 
jωC

(.)

Y = jω

g

єN(ω)d = jωC′d + 
jωL

, (.)

where the quantities L′ = μPg/d and C′ = єP/g d, describing only the host medium, can be recognized
as the D TL distributed inductance and capacitance, respectively, related to the host medium param-
eters by the geometric constant g. Thus, as depicted in Figure ., the series branch of the equivalent
unit cell consists of an inductor, contributed by L′ over the length d in series with a capacitor pro-
vided by the loading, and the shunt branch consists of a capacitor, contributed by C′ over the length
d of the unit cell, in parallel with an inductor provided by the loading. This topology also reveals from
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FIGURE . Unit cell for the practical NRI-TL network describing axial propagation in the homogeneous limit.
(From Iyer, A.K. and Eleftheriades, G.V., Negative-refractive-index transmission line metamaterials, in Negative Refrac-
tion Metamaterials: Fundamental Principles and Applications, Eleftheriades, G.V. and Balmain, K.G. (Eds.), Wiley-IEEE
Press, New York, July , pp. –. With permission.)

another perspective that the host medium contributes positively to the material parameters, whereas
the loading contributes negatively []. In the absence of loading, the material parameters degener-
ate to those of the host medium, modeled in Figure . by an inductor and capacitor arranged in
a low-pass topology. When the loading is dominant, the material parameters become negative, and
the equivalent unit cell is restored to the dual topology. Thus, it is seen that the equivalent unit cell
of Figure ., along with the dispersion relation from which it was derived, includes the complete
RH and LH responses of the periodically loaded NRI-TL metamaterial []. Thus, the NRI-TL model
is a general model that can be reduced to the unit cell of Figure . in the homogeneous limit,
in which it has also been referred to as a composite right-/left-handed (CRLH) metamaterial. This
topology also accounts for the magnetic and electric plasma frequencies (Equations . and .),
which are, respectively, equal to the series and shunt resonance conditions in Figure .. This per-
spective also reveals that the closure of this stopband by way of the impedance-matched condition of
Equation ., in fact, causes the series and shunt branches of Figure . to resonate at the same
frequency, at which the equivalent circuit represents a direct connection from input to output (see
also Ref. []). Thus, in this regime, the periodicity of the NRI-TL unit cell is effectively removed,
and the metamaterial appears perfectly homogeneous.

28.6 Conclusion

Distributed L–C network topologies have long been used to describe the electromagnetic proper-
ties of homogeneous media, particularly in the lumped-element modeling of transmission lines.
In conventional materials, a series inductor and a shunt capacitor, respectively, describe positive
permeability and permittivity. In this chapter, it has been shown that, by reversing the positions
of these two elements, their impedance and admittance are effectively negated; in the effective-
medium regime in which the wavelength is much longer than the period of the structure, this is
tantamount to negating the effective parameters of the medium represented by the network. With
simultaneously negative permittivity and permeability, such a “dual” medium possesses the property
of “left-handedness,” indicated by its support of backward waves and, in D and D, a negative index
of refraction. Electrodynamic arguments based on the motion of charges in an electrical plasma and
on the effective-medium properties of capacitively loaded resonant loops were also presented and
support an intuitive understanding of the “dual” TL topology.

Although other metamaterials, particularly those based on split-ring resonators (SRRs), have suc-
cessfully demonstrated left-handedness by way of resonant behaviors, the transmission-line (TL)
based metamaterial has distinguished itself by large left-handed bandwidths and low losses. In this
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chapter, it was shown that it is not the absence of resonators in TL metamaterials but the tight coupling
between individual resonators that leads to their broadband and low-loss properties. A study of cou-
pling between a TL metamaterial and free space was also presented and reveals that the broadband
dual TL behavior and resonant SRR behavior are two ends of a continuous spectrum in which a stop-
band (containing generally complex solutions to the propagation constant) is formed in the region of
coupling. In both the dual TL and SRR cases, external wires may be required to restore left-handed
propagation in this region. These results may be of importance in the design of broadband, low-loss
volumetric and D metamaterials for free-space excitation, which are further discussed in Chapter 
of Applications of Metamaterials.

Finally, the problem of realization of the continuous dual TL is addressed by the negative-
refractive-index transmission-line metamaterial, which is based on the idea that such a material
can be synthesized by periodically loading a host transmission-line medium with lumped induc-
tors and capacitors in the dual configuration. The essential dispersion features of the practical
NRI-TL metamaterial reveal that it shares the broadband and low-loss properties of its continuous
counterpart.
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29.1 Introduction

Metamaterial transmission lines were recently introduced [–] as structures supporting left-hand
(LH) propagation [–] in addition to the conventional right-hand (RH) propagation. Realizations
and applications for composite right-/left-handed transmission lines were surveyed in Ref. [], where
some devices of improved response or more compact design were proposed. Among all guided-
wave structures, waveguides are characterized by their low losses, high power handling capability,
and absence of leakage and other extraneous phenomena due to their closed geometries. Examining
the LH propagation phenomena in these structures is thus in order. Recently, periodically loaded
rectangular waveguides were shown to exhibit backward-wave propagation [–]. In particular, in
Ref. [] it has been shown that periodically loaded split-ring resonators (SRR) in hollow waveguide
create a LH propagation even if the transverse dimensions of the waveguide are much smaller than
the free-space wavelength. SRR and complementary SRR (CSRR) have been proposed in Refs. [,]
in the design of compact waveguide filters based on the subwavelength self-resonance properties
of SRR and CSRR. In Ref. [], an equivalence between waveguide propagation below cutoff and

29-1
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Rectangular
waveguide

Dielectric-filled
corrugations

FIGURE . Infinite rectangular waveguide with dielectric-filled corrugations.

effective parameters of “electric and magnetic plasma” has been studied theoretically and experi-
mentally. Waveguide miniaturization with the use of periodically loaded SRR has been discussed in
Ref. [] with the experimental verification of backward-wave propagation below the cutoff.

In this chapter, the modal and dispersion characteristics of rectangular waveguides with dielectric-
filled corrugations depicted in Figure . are studied to investigate the possibility of their supporting
backward waves, i.e., waves that exhibit phase advance in the direction of propagation. The proposed
structure is analyzed using a number of approaches: equivalent circuit modeling, spectral analysis,
and analysis using asymptotic boundary conditions. Results are compared with those obtained using
several commercial software packages.

29.1.1 Corrugated Waveguides

Conventionally, corrugated waveguides have been used in horn antenna applications [], where
the corrugated surface serves as a high-impedance surface required to support hybrid modes that
improve the radiation characteristics. A new function for the corrugated surface may, however, be
sought to support backward waves in the waveguide, viz. a capacitive immittance surface. For LH
waves to propagate, the guiding structure should provide series capacitance and shunt inductance
within some frequency range. Since evanescent transverse electric (TE) modes of traditional waveg-
uides are known to have inductive nature and the corrugations can introduce series capacitance with
the proper choice of the corrugations parameters, then it is expected that LH propagation can be
allowed to occur below the cutoff of the TE dominant mode of the noncorrugated waveguide. Among
the parameters that can be varied for the corrugations are the length, width, depth, dielectric mate-
rial, and period as well as the position on the broad wall as the corrugations are not necessarily of
wall-to-wall extent.

29.1.2 Equivalent Circuit Model for TE and TM Modes
in Rectangular Waveguides

Expressing the transverse electric and magnetic fields for a rectangular waveguide mode using the
vector modal functions and the modal voltage and current [], circuit models shown in Figure .a,
c, and d can be constructed for propagating TE and transverse magnetic (TM) modes, evanescent TE
mode, and evanescent TM mode, respectively. The circuit model in Figure .b corresponds to LH
propagation, which does not normally occur in conventional waveguides.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Corrugated Rectangular Waveguides 29-3

(a)

L

L

L

L

C

C

C

C

(b)

(c) (d)

FIGURE . Equivalent circuit model for a differential transmission line section: (a) RH propagation, (b) LH
propagation, (c) evanescent TE mode, and (d) evanescent TM mode.

29.1.3 Why Corrugated Waveguides as Left-Handed Guided-Wave
Structures?

To accommodate LH propagating waves, the equivalent circuit model of the waveguide should be
of the form depicted in Figure .b. Since evanescent TE modes have inherent shunt inductance,
then to create a medium with an effective negative refractive index, only a series capacitance is
required to overcome the effect of the line series inductance.

For rectangular waveguides, transverse slots are known to be series discontinuities. For the slot
to have an overall capacitive immittance, it can be loaded by a short-circuited waveguide stub with
depth greater than a quarter guided wavelength and less than half a guided wavelength. However, for
this to be true, the slot waveguide must have a real characteristic impedance, i.e., it should operate
above cutoff. This can be guaranteed if it is filled with a dielectric to bring down the cutoff frequency
of the stub waveguide. The periodic slots with the dielectric-filled stubs can be simply viewed as
dielectric-filled corrugations. It is important to emphasize that these corrugations do not serve as a
high-impedance surface (soft surface) as they are commonly used, but rather as capacitive immittance
surface.

29.2 Analysis Techniques

29.2.1 Equivalent Circuit Model

The equivalent circuit model for a period p in the waveguide with dielectric-filled corrugations is
depicted in Figure .. The waveguide is assumed to have a characteristic impedance Zg for the
dominant mode, the corrugation aperture (the slot) is modeled as a resonant LC circuit, and the
corrugation (the waveguide stub) is assumed to have a characteristic impedance Zs and depth d.

For sufficiently narrow slots and a sufficiently small period of the corrugations, the effective
per-unit-length inductance and capacitance of the transmission line (TL) model of the corrugated
waveguide may be found using

C′eff = C′ , L′eff = L′ − j
ωpYcorr

. (.)
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FIGURE . Equivalent circuit model for a period in a waveguide with dielectric-filled corrugations.
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model. The scale of the inductance and capacitance is not the same.

where

L′ = μ
b
a

, C′ = ε
a

b
( − ( fc/ f )) ,

Ycorr = jωCs +


jωLs
+ cot(βsd)

jT
s Zs

. (.)

Within some frequency range higher than the stub cutoff and lower than the main waveguide
cutoff, and with the proper choice of the corrugation depth and period, C′eff and L′eff are negative
corresponding to a shunt inductance and a series capacitance, respectively. The typical behavior of
the per-unit-length effective parameters is depicted in Figure .. It is clear that below the cutoff
frequency fc of the dominant mode of the corresponding smooth-walled waveguide, C′eff is negative
yielding a shunt inductance. Within the frequency range f < f < f where the contribution of the
capacitance provided by the corrugation exceeds that of the waveguide inductance, a series capaci-
tance is achieved, and thus LH propagation can be supported. Whereas Figure . shows the case
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where f < f < fc, and different dimensions may result in f < fc < f. The propagation constant β
may thus be computed in the different frequency ranges using

β =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω
√

L′eff C′eff , f > fRH

−ω
√

L′eff C′eff , f < f < fLH

− jω
√
∣L′eff C′eff ∣, elsewhere

, (.)

where
fRH =max{ fc , f}
fLH =min{ fc , f}

In Equation . the first and second branches correspond to RH and LH propagation, respectively,
and the third branch corresponds to evanescence occurring when the per-unit-length parameters
have opposite signs. Alternatively, the propagation constant may be obtained using the Bloch–Floquet
theorem as

β = 
p

cos− ( − ω pL′eff C′eff


). (.)

It is important to notice that for relatively electrically long slots that have wall-to-wall extent, the
effect of the slot admittance is dominated by the stub waveguide admittance. Moreover, the trans-
former turns ratio is unity. This facilitates the analysis of the structure even more, alleviates the need
for determining the slot circuit parameters, and hence helps speed up the design procedure using the
circuit model.

29.2.2 Spectral Analysis

A more rigorous analysis technique may be sought by solving the source-free problem of propagation
in the corrugated waveguide. This may be done by invoking Floquet’s theorem to reduce the problem
to the analysis of one period. A typical procedure is followed [] to obtain the dispersion relation and
the modal field distribution. As expected, the dispersion relation turns out to be the result of matching
two admittances on both sides of the corrugated interface with some averaging factor related to the
corrugation width-to-period ratio. This is very similar to the transverse resonance method [].

29.2.3 Asymptotic Boundary Conditions

Another approach that is less sophisticated than the spectral or modal analysis is the use of the asymp-
totic corrugation boundary conditions (ACBCs) []. Application of the ACBCs in the analysis of
planar and cylindrical surfaces was studied in Refs. [–]. The ACBCs were also used in the anal-
ysis of cylinders with arbitrary cross-section in the frequency domain and time domain as well as
the analysis of longitudinally corrugated bodies of revolution []. Though approximate, the use of
the ACBCs tremendously simplifies the solution procedure of corrugated surfaces. For a sufficiently
electrically small period, the ACBCs provide solutions with good accuracy while taking into account
the effect of the corrugation width-to-period ratio.

Simply put, the ACBCs require that the electric field component along the corrugations vanish
whereas the tangential components orthogonal to the corrugations on both sides of the corrugated
surface be related by the width-to-period ratio.

If only one wall of the waveguide is corrugated, enforcing the ACBCs yields a dispersion relation
that can be viewed again as a transverse resonance phenomenon. This can be neatly modeled as shown
in Figure ..

The power and simplicity of using the ACBCs is manifested in the more complicated problem of
a waveguide with corrugated opposite walls. Though more involved than the one-walled case, the
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FIGURE . Rectangular waveguide with one dielectric-filled corrugated wall: (a) transverse cross-section and
(b) equivalent network model. (From Eshrah, I.A. and Kishk, A.A., IET Proc. Microw. Antennas Propag., , , .
With permission.)
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FIGURE . Rectangular waveguide with two dielectric-filled corrugated walls: (a) transverse cross-section and
(b) equivalent multiport network model. (From Eshrah, I.A. and Kishk, A.A., IET Proc. Microw. Antennas Propag., ,
, . With permission.)

ACBCs yield the dispersion relation and the field expressions in the waveguide and corrugations
in a straightforward manner. The dispersion relation in this case can be modeled as shown in
Figure ..

29.2.4 Green’s Function Approach

If the source is present in the solution domain as shown in Figure ., the previous techniques will
not be able to determine the behavior of the excited structure. Although commercial software pack-
ages may be used to obtain a solution for such problem, the simulation time and memory might be
prohibitively large due to the minute details in the problem, viz., the narrow corrugations. The Green’s
function method is a powerful tool used in the analysis of a variety of canonical problems. Invoking
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FIGURE . Cross-section in the rectangular waveguide with dielectric-filled transverse corrugation: (a) longitu-
dinal view and (b) transverse view. The cross indicates that the source is in region  (the waveguide). (From Eshrah,
I.A. and Kishk, A.A., IEEE Trans. Microwave Theory Tech., , , . With permission.)

the surface equivalence principle [] to solve problems of radiation and/or scattering in regions with
known Green’s functions reduces the problem to that of discretizing the surface of the object in the
background medium. The solution procedure using the surface integral equation for such problems
is usually much faster in terms of computational time and more manageable in terms of memory
storage requirements compared with other full-wave techniques that require the discretization of the
whole region.

For closed-boundary (waveguide) problems Green’s functions can be obtained in the form of
the eigenfunction expansion as the solution of corresponding dyadic wave equations subject to
appropriate boundary conditions on a waveguide surface. A framework of dyadic Green’s functions
for multilayered rectangular waveguides has been developed in Refs. [–] for the analysis of
microstrip structures and spatial power combining applications. In Ref. [], a procedure for devel-
oping dyadic Green’s functions based on the eigenfunction expansion method has been described for
various waveguide problems.

The eigenfunction expansion method can be used to obtain the Green’s function for the rectangular
waveguide with dielectric-filled corrugations. The goal of deriving the Green’s function for this struc-
ture is to be able to speed up the analysis procedure for finite sections of the corrugated waveguide,
design transitions and matching sections to and from conventional waveguides, and most impor-
tantly analyze the scattering properties of obstacles in this metaguide and the coupling to external
loads or radiators, such as dielectric resonator antennas excited by waveguide probes as studied in
Ref. [] for conventional waveguides.

The following approach is used in the derivation: The spectral domain representation of the
Green’s function is adopted to reduce the problem to a one-dimensional problem in the trans-
verse direction perpendicular to the corrugated surface. Then the inverse Fourier transform (IFT)
is used to obtain the spatial domain expressions on determining the poles in the spectral parame-
ter complex plane. To simplify the derivation, the ACBCs are used to characterize the corrugated
interface.

29.2.4.1 Development of Green’s Functions

The ACBCs are first mapped from the electric and magnetic fields to the electric scalar and mag-
netic vector potentials to determine the boundary conditions imposed on the potentials as well as
the nonzero components of the Green’s dyadics. For sufficiently narrow corrugations, the electric
scalar potential vanishes inside the corrugations and on the corrugation interface. Thus, the poten-
tial within the waveguide will be subject to homogeneous Dirichlet boundary conditions on the PEC

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

29-8 Theory and Phenomena of Metamaterials

walls as well as the corrugated wall. Using the eigenfunction expansion method [], the electric
scalar potential Green’s function can be obtained [,].

For the magnetic vector potential, the ACBCs are enforced and mapped to the potential, and then
the Fourier transform is invoked to obtain the spectral representation of the corrugation Green’s
function. Applying the boundary conditions in the spectral domain determines the solution of the
spectral domain Green’s function.

The transformation from the spectral to the spatial domain is then carried out using an IFT proce-
dure, which requires the determination of the poles of the spectral Green’s function in the complex
wave number plane. The expressions readily exhibit the occurrence of two sets of poles. The first set
of poles represents the contribution of the conventional (smooth-walled) waveguide modes. The sec-
ond set of poles corresponds to the resonances of the admittances on both sides of the corrugated
interface.

On determining the poles of the spectral domain representation, the IFT is applied to obtain the
spatial domain expressions []. It is worth mentioning that the residue integrals involve remov-
able singularities but no branch cuts. This corresponds to propagation in an equivalently closed
structure with no direct radiation. The Green’s functions for a semiinfinite waveguide or a cavity
can be obtained using similar modifications to those in Ref. [].

29.2.4.2 Applications

.... Probe Excitation
The derived Green’s function can be used to analyze problems where an impressed or equivalent elec-
tric source exists in the waveguide region. A simple problem that can be used to verify the derived
expressions is the probe excitation problem depicted in Figure .. The method of moments (MoM)
is employed to solve for the unknown probe current and determine the input impedance seen by
a delta-gap source at the probe end. Following the same procedure as that described in Ref. []
for a probe in a smooth-walled waveguide yields the required expressions for the MoM matrix and
excitation vector. Subsequently, the input impedance is computed on inverting the MoM matrix
(Figure .).

y

x

2r0

x = x0

z

(b)(a)

y

xz

z = z0

l0

FIGURE . Probe excitation of the corrugated waveguide. (From Eshrah, I.A. and Kishk, A.A., IEEE Trans.
Antennas Propagat., , , . With permission.)
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FIGURE . Geometry of the problems used to verify the derived Green’s functions: (a) T-junction and (b) waveg-
uide transition. The metaguide is infinite (matched) in the T-junction problem. (From Eshrah, I.A. and Kishk, A.A.,
IEEE Trans. Microwave Theory Tech., , , . With permission.)

.... Series T-Junction
To verify the derived Green’s functions, the simple example of a series or E-plane T-junction is con-
sidered. In the geometry depicted in Figure .a, the dominant mode of the narrow feed waveguide
(denoted as region ) is incident at port . Invoking the surface equivalence principle [], the prob-
lem may be solved by considering the equivalent problem where the aperture is shorted out, and
unknown magnetic currents are introduced on both sides of the surface S.

.... Waveguide Transition
The transition from a conventional waveguide to the corrugated waveguide is another interest-
ing example that can be solved using the derived Green’s functions. For the geometry shown in
Figure .b, both waveguides, the corrugated and noncorrugated, have equal cross-sectional dimen-
sions. The corrugated section has a length of L. The noncorrugated waveguides are filled with a
dielectric. In view of the equivalence principle, the cavity and the short-circuit waveguide Green’s
functions are used to analyze the corrugated section and the noncorrugated waveguide ports, respec-
tively. The modifications to the derived Green’s functions to obtain its cavity counterpart can be found
in Ref. [].

29.3 Results, Observations, and Phenomena

29.3.1 Experimental Verification

To verify the wave propagation below the cutoff, a prototype of the corrugated waveguide was real-
ized as shown in Figure .. The corrugations were built by stacking rectangular pieces milled off
a Rogers high-frequency laminate (RO) with a dielectric constant of . and thickness of .
mm. The rectangles have dimensions of  and . mm. An artificial wall was inserted in a stan-
dard X-band waveguide section of length . mm to reduce the width to  mm and raise the cutoff
frequency to . GHz. Figure . shows the measured insertion loss with and without the corru-
gations. Experimental results are compared with those obtained using QWD []. The waveguide
is excited using standard X-band adapters connected to an HP Network Analyzer.

The discrepancies between the experimental and simulation results are attributed to the imper-
fections in the hand-assembly manufacturing process of this simple prototype, namely, the air gap
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FIGURE . Manufactured corrugated waveguide prototype showing the artificial conducting wall, the corruga-
tions inserted in the waveguide, and some pieces of the laminate before stacking them to form the corrugations. (From
Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans. Microwave Theory Tech., , , . With
permission.)

between the laminate pieces and the bottom wall of the waveguide, which is very crucial in the opera-
tion of the structure since it is based on the fact that the corrugations are short circuited. The effect of
the air gap on the transmission coefficient is also shown in Figure ., where the simulation results
with and without an air gap of . mm are depicted. Other sources of discrepancy include the possible
nonuniform air gap between the corrugations and the artificial wall inserted in the waveguide and
the air gaps between the corrugations themselves.

It is worth mentioning that the effect of the dielectric and conductor losses was taken into con-
sideration in the finite-difference time-domain (FDTD) simulation. That is why the transmission in
the LH band experiences some attenuation, which is dominated by the dielectric losses (a loss tan-
gent of . at  GHz). For a lossless dielectric, the total transmission is observed in the LH band.
The ripples in the transmission bands are due to the mismatch between the waveguide ports and the
corrugated waveguide section, which results in standing waves that vary the response of the system
with frequency.

To verify the phase advance phenomenon within the LH propagation band, the method suggested
in Ref. [] is employed, where the phase of the transmission coefficient S for a reference waveguide
section is compared with that obtained for slightly longer sections that have  and  more cells. The
phase advance over a portion of the LH band is plotted in Figure . as obtained from the simula-
tion. Notice the linear increase in phase with the increase in the number of cells at every frequency
point.

29.3.2 Dispersion Characteristics for Dominant Mode

To act as a capacitive immittance surface, the corrugations should be from a quarter guided-
wavelength to a half guided-wavelength deep. In the following results, the corrugation depth is chosen
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FIGURE . The insertion loss for a rectangular waveguide with and without the corrugations. The simulation
results are plotted for the cases with and without an air gap between the corrugation and the bottom wall. (From
Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans. Microwave Theory Tech., , , . With
permission.)

to satisfy this condition within a frequency range below the cutoff frequency of the main waveguide.
Figure . depicts the dispersion diagram for a reference case where the corrugated waveguide has
the following parameters: cross-section  mm×. mm, wall-to-wall corrugations of width, depth,
and period of ., ., and . mm. The waveguide is air-filled, whereas the corrugations, dielectric
constant is .. Four bands are distinguished in the figure: an RH pass band above the cutoff fre-
quency fc of the TEz

 mode of the noncorrugated waveguide (R[kz] >  and I[kz] = ), an LH
pass band in the frequency range f < f < f (R[kz] < and I[kz] = ), two stop bands in the ranges
f < f < fc and f < f where the waves are evanescent (R[kz] =  and I[kz] < ). The curve in Fig-
ure . was obtained by solving the dispersion relation. The comparison with a high-frequency
structure simulator (HFSS) [] exhibits an excellent agreement.

The waveguide characteristic impedance of the dominant mode is real and positive in the LH and
RH propagation bands and assumes positive imaginary values (inductive) elsewhere, as shown in
Figure ..
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FIGURE . Comparison between the phase of the transmission coefficient S of a reference waveguide section
and a longer section. (From Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans. Microwave Theory
Tech., , , . With permission.)
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FIGURE . Dispersion characteristics of the dominant TEx
 mode. Lines: present theory (solid: real part and

dashed: imaginary part), dots: HFSS, and pluses: circuit model (L = . nH, C = . fF, and T = .). (From
Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans. Antennas Propagat., , , Nov. . With
permission.)

The effective per-unit-length capacitance and inductance of the equivalent transmission line model
of the waveguide assume negative values in the LH pass-band range, where the former is nega-
tive due to the evanescence condition and the latter is dominated by the capacitance offered by the
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FIGURE . Characteristic impedance of the dominant TEx
 mode (solid: real part and dashed: imaginary part),

symbols: circuit model (L = . nH, C = . fF, and T = .). (From Eshrah, I.A., Kishk, A.A., Yakovlev, A.B.,
and Glisson, A.W., IEEE Trans. Antennas Propagat., , , Nov. . With permission.)

corrugations. Figures . and . also compare the values of the propagation constant and char-
acteristic impedance estimated using the equivalent circuit model to those obtained using the present
theory. It can be seen that the circuit analysis succeeds in predicting the dispersion behavior of the
structure with very good accuracy, except in the range where kz assumes relatively high values. This
is expected since the validity of the circuit model was based on the assumption that the period is
much less than the guided wavelength; a condition that is violated for high values of kz.

29.3.3 Parametric Studies and Bandwidth Control

Since the evanescence region extends below the cutoff frequency fc, it can be inferred that the band-
width of the LH propagation is controlled by the corrugations, viz., the frequency range where the
series capacitance of the corrugations overcomes the series inductance of the waveguide. Thus a study
of the effect of the corrugation parameters is important to assess their impact on the LH propagation
bandwidth.

First, the effect of reducing the waveguide width a is investigated. For wall-to-wall corrugations,
i.e., l/a = , Figure . shows the variation of the propagation constant kz with the waveguide
width a. The results show that the LH propagation can be supported while reducing the wave-
guide width as long as the corrugations support propagating waves below the cutoff of the main
waveguide. Since the corrugations are filled with a dielectric that has εrd > , then the width can be
arbitrarily reduced with this condition satisfied. Reducing the other dimension, i.e., the waveguide
height b, has a significant effect on the propagation constant as depicted in Figure .. As the wave-
guide height decreases, the upper frequency f increases, whereas the lower frequency f remains
almost unchanged, thus yielding an overall increase in the LH propagation bandwidth. Indeed, at
a certain value of b (in this case b = . mm), f is equal to fc. Below this value of b, f becomes
greater than fc, and the RH propagation occurs for f > f as observed in the case with b = . mm
in Figure .. In general, the RH propagation starts at f > fRH and the LH propagation occurs in
the range f < f < fLH, where fRH =max{ fc , f} and fLH =min{ fc , f}. The same result was reached
and understood in terms of the equivalent circuit model.
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FIGURE . The effect of reducing the waveguide width a on the propagation constant kz. (From Eshrah,
I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans. Antennas Propagat., , , Nov. .
With permission.)
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FIGURE . The effect of reducing the waveguide height b on the propagation constant kz (a =  mm). (From
Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans. Antennas Propagat., , , Nov. . With
permission.)

Next, The effect of the corrugation length l on the dispersion characteristics is studied. Fixing a at
 mm, the curves in Figure . are generated for values of l from  mm to  mm. As the corruga-
tion length decreases, the cutoff of the corrugation waveguide increases yielding a longer corrugation
wavelength and thus an electrically shorter corrugation. This results in a positive shift in the LH prop-
agation band where the corrugations regain the electrical depth necessary for the capacitive surface
behavior. It is interesting to notice that the balanced condition for the composite RH/LH waveguide,
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FIGURE . The effect of the corrugation length to the waveguide width ratio l/a on the propagation constant
kz (a =  mm). (From Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans. Antennas Propagat.,
, , Nov. . With permission.)
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FIGURE . The effect of the corrugation width-to-period ratio w/p on the propagation constant kz (w =
. mm). (From Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans. Antennas Propagat., ,
, Nov. . With permission.)

viz., f = fc, can be achieved with the proper choice of the corrugation dimensions as observed in
Figures . and ..

Another important design parameter is the corrugation width-to-period ratio. As predicted by
the equivalent circuit model, the higher the value of w/p, the wider the LH propagation bandwidth,
due to the increase in the average capacitance offered. This is illustrated by the curves depicted in
Figure .. For a fixed w/p ratio, however, variations in the corrugation period have virtually no
effect on the dispersion characteristics.
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FIGURE . Electric field distribution in the XY plane (z = ) of the TEx
 mode in the LH band: (a) vector field

plot, (b) ∣Ew
x ∣, (c) ∣Ew

y ∣, and (d) ∣Ew
z ∣. (From Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans.

Antennas Propagat., , , Nov. . With permission.)

29.3.4 Modal Field Distribution for Dominant Mode

Field plots for the dominant mode in the LH pass band are depicted in Figures . and . for
the electric and magnetic fields, respectively, in the cross-sectional plane in the main waveguide. In
comparison to the modal distribution of the TEz

 mode of the conventional waveguide, this mode
is characterized by the longitudinal component of the electric field, which peaks in the vicinity of the
corrugation interface (the capacitive surface).

29.3.5 Asymptotic Boundary Conditions

Figure . compares between the dispersion characteristics obtained using the ACBC and those
obtained using the modal solution for the same width-to-period ratio but different physical values of
the period p. Whereas excellent agreement is noticed for w/p approaching unity and small values of
p, discrepancies start to appear between both solutions for small w/p and increases as p increases. Still
the maximum relative frequency shift in the case of w/p = . is less than .%. The results depicted
in the figure focus on the range where the propagation constant is negative, i.e., the LH pass band.
The RH propagation characteristics in the RH pass bands are almost identical to the conventional
smooth-walled waveguide and are thus not shown here.

Using the same dimensions for the two-walled corrugated waveguide, Figure . depicts the
dispersion characteristics for identical corrugations showing the even and odd modes for w/p = ..
The increase in bandwidth for the odd mode is due to the effective reduction in the waveguide height
to half the physical value as pointed out before. The RH even mode is beyond the frequency range
under consideration and is thus not shown in the figure. Notice that there is a gap between the LH
and RH pass bands in this case, which is usually referred to as an unbalanced condition []. This
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FIGURE . Magnetic field distribution in the XY plane (z = ) of the TEx
 mode in the LH band: (a) vector field

plot, (b) ∣Hw
x ∣, (c) ∣Hw

y ∣, and (d) ∣Hw
z ∣. (From Eshrah, I.A., Kishk, A.A., Yakovlev, A.B., and Glisson, A.W., IEEE Trans.

Antennas Propagat., , , Nov. . With permission.)

gap (or stop band) results in the frequency range where the corrugations are not capacitive and the
frequency is below the cutoff of the corresponding smooth-walled waveguide; these two conditions
do not allow the waveguide to support LH or RH propagation. A balanced condition may be achieved
as shown in Figure ., where the LH and RH cutoff frequencies coincide, when corrugations of
different depths are used. Thus, an improved bandwidth may be achieved with the proper tuning of
the corrugation parameters as predicted by the equivalent circuit model in Ref. [].

29.3.6 Complete Dispersion Diagram for Transverse Wave Number

Solving the dispersion relation for the metaguide modes results in the values for the transverse wave
number κml and subsequently the propagation constant βml . The curves in the dispersion diagram
pertain to a specific mode if the transverse field distribution has the same features as the frequency
varies. According to this criterion, Figure . defines what values of κm correspond to which mode.
The dominant mode (m =  and l = ) has the real values of κm always bounded by  and π/ whereas
the imaginary values range from  to∞. By examining the behavior of the fields in the y-direction,
one can readily see that for this range of real values of κm or for any value of the imaginary values of
κm , the cosine (sine) distributed field components have no nulls (maxima) in the range  < y < b.
The next high-order mode (m =  and l = ), for which κm is always real and bounded by π/ and
π/, has one null (maximum) for the cosine (sine) distributed field components. Thus, the index
l has the same meaning as in conventional waveguides, viz., the number of nulls (maxima) of the
field components along the y-direction. It is interesting to observe the deviation of the normalized
transverse wave number κml b relative to its PEC waveguide counterpart kynb, which assumes integer
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FIGURE . Dispersion characteristics of a one-walled corrugated waveguide obtained using the ACBC and the
full-wave modal solution in Ref. [] for a fixed width-to-period ratio and different physical values of the period: (a)
w/p = . and (b) w/p = .. (From Eshrah, I.A. and Kishk, A.A., IET Proc. Microw. Antennas Propag., , , .
With permission.)

values of π. At the frequencies where the corrugated surface acts as a high-impedance surface (PMC
surface), the curve for κb splits into two branches that start from odd multiples of π/.

The corresponding curves for the normalized propagation constant βml /k are shown in
Figure .. Notice that only the positive solutions of the real and imaginary parts are shown. In
the range between .π and π for ka, the  mode exhibits LH propagation as was shown in Ref. []
since both the effective per-unit-length inductance and capacitance are negative. The other ranges
where β/k is real or imaginary correspond to RH propagation or evanescence, respectively. The
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FIGURE . Dispersion characteristics of a two-walled corrugated waveguide with identical corrugations. (From
Eshrah, I.A. and Kishk, A.A., IET Proc. Microw. Antennas Propag., , , . With permission.)
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FIGURE . Dispersion characteristics of a two-walled corrugated waveguide with different corrugations: d =
. mm and d = . mm. (From Eshrah, I.A. and Kishk, A.A., IET Proc. Microw. Antennas Propag., , , .
With permission.)

asymptotic behavior of the  mode characteristics occur at the frequencies where the corrugated
surface acts as a high-impedance surface. Notice that the normalized cutoff wave number of the 
and  modes of the PEC waveguide are π and .π, respectively. The shown dispersion curves are
obtained for a =  mm, b = . mm, d = . mm, w/p = ., ε = ε, ε = .ε, and μ = μ = μ.
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(From Eshrah, I.A. and Kishk, A.A., IEEE Trans. Antennas Propagat., , , . With permission.)
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FIGURE . The normalized propagation constant βml /k vs. the normalized frequency k a for the m = , l = , 
modes. Only the positive solutions are shown. (From Eshrah, I.A. and Kishk, A.A., IEEE Trans. Antennas Propagat.,
, , . With permission.)

29.3.7 Input Impedance of a Probe Exciting the Metaguide

The input impedance of a probe extending from a coaxial line into the waveguide through the
noncorrugated broad wall is computed as outlined in Section ... The results obtained using the
MoM incorporating the present theory are compared with those obtained from an FDTD simula-
tor QuickWave-D [], where the actual physical structure (not the asymptotic one) was modeled.
Therein, the following parameters were used: w =. mm, p=  mm, d = . mm, l =  mm, and
r = . mm. For a probe centered with respect to the broad wall, i.e., x = a/, the input resistance
and reactance are plotted in Figure .. The input resistance decreases as the probe is offset from
the center as shown in Figure . for a probe at x = a/. In Figures . and ., the input
impedance exhibits a nonzero real part between  and  GHz (ka = .π and .π, respectively) and
a peak at the cutoff of the RH propagation at . GHz (ka = π).
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FIGURE . The input impedance at the base of a centered probe. (From Eshrah, I.A. and Kishk, A.A., IEEE
Trans. Antennas Propagat., , , . With permission.)
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FIGURE . The input impedance at the base of a probe at x = a/. (From Eshrah, I.A. and Kishk, A.A., IEEE
Trans. Antennas Propagat., , , . With permission.)

The oscillation in the FDTD results is due to the incomplete absorption of the waves at the wave-
guide ports by the Mur or the PML absorbing boundaries. The highly oscillatory nature of the
structure as well as the fine mesh used in FDTD make the comparison in terms of the computa-
tional time and memory requirements in favor of the MoM solution. This can be easily understood
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since only the probe is discretized in the MoM solution, and the zeroes of the dispersion relation are
computed and stored before the matrix filling and inversion starts.

29.3.8 Waveguide Discontinuities and Transitions

Another comparison of the present theory with FDTD simulations using QuickWave-D [] is
conducted for the waveguide discontinuities and transitions. Figure . depicts the reflection
coefficient for the T-junction problem of Figure .a. The oscillations in the results of the FDTD
simulator are due to the imperfect absorption of the absorbing boundaries at the ends of the
corrugated waveguide [].
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FIGURE . Reflection coefficient for the T-junction of Figure .a. (From Eshrah, I.A. and Kishk, A.A., IEEE
Trans. Microwave Theory Tech., , , . With permission.)
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FIGURE . Scattering parameters of the waveguide transition of Figure .b: (a) ∣S ∣ and (b) ∣S ∣. (From
Eshrah, I.A. and Kishk, A.A., IEEE Trans. Microwave Theory Tech., , , . With permission.)
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The scattering parameters for the waveguide transition of Figure .b are given in Figure ..
The results were obtained using a one-term approximation for the magnetic currents, which suggests
that the interaction with the high-order modes is not significant in this case. The absence of the
absorbing boundary conditions (waveguide ports are used) in this case yields excellent agreement
between both results [].
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30.1 Introduction to Frequency Selective Surface
and Electromagnetic Bandgap Structures

Since the suggestion that creating a periodicity in dielectric materials could prevent the propagation
of electromagnetic waves at certain frequencies in  [], there has been much work, both theoret-
ical and experimental, in the field of photonic crystals to create a so called photonic bandgap (PBG)
material, generally termed as electromagnetic bandgap (EBG)
A photonic crystal is a structure with a periodic arrangement of high dielectric constant cavities

embedded within a low dielectric region; these will introduce “gaps” into the energy band structure
for the photon states at Bragg planes and provoke a range of forbidden energies for the photons [,].

30-1
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This range of forbidden frequencies is called the photonic bandgap in which propagation is forbidden
in certain directions. For cases at certain frequencies, the photonic crystal will prohibit propagation
of an electromagnetic wave at any incident angle, direction, and polarization; this is termed as the
absolute photonic bandgap.
Photonic crystals of two and three dimensions are being investigated intensively []. -D photonic

crystals will have lattice periodicity in three dimensions and at frequencies in the absolute photonic
bandgap region, thereby prohibiting propagation in any direction. Figure .a shows an example of
a -D square lattice photonic crystal surrounded by air. In some cases, it can also be surrounded by
a low dielectric material. Fabrication of such a photonic crystal lattice is still a challenge at present.
A -D photonic crystal is easier to fabricate; it possesses periodicity only in the x−y plane and

is finite in the z-direction. Figure . shows an example of a -D square lattice photonic crystal
surrounded by air. Frequencies in its absolute photonic bandgap region will be prohibited for any
in-plane propagation (perpendicular to the x−y plane) for any polarization and any direction along
the x−y plane. Propagation in the z-direction will not see any bandgap since there is no dielectric
variation in the z-direction [–].

(a)

x

z

(b)

FIGURE . (a) Part of a -D square lattice photonic crystal. (b) Part of a -D square lattice photonic crystal
surround by air.

(a) (b)

x

z
θk

Reflected

Incident

z
Transmitted

x

y
Dielectric substrate

FIGURE . (a) Part of an FSS array as a -D planar metallodielectric PBG crystal. (b) Perspective of a crossed
dipole periodic array.
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Recent years have also seen potential applications for photonic crystals, which have been investi-
gated primarily in the microwave frequency region. One of the applications is an optimized dipole
antenna on a photonic bandgap crystal. By fabricating the antenna on the EBGmaterial with the driv-
ing frequency in the stopband, no power would be allowed to transmit into the EBG material, thus
most of the power would be radiated in the desired direction [–]. Another application utilizes the
PBG as a band reject filter within a waveguide [].
EBG materials have also been investigated for microstrip circuit applications and have exhib-

ited very high suppression in the stopband [,]. It has also been shown that EBG structures can
suppress surface waves from microstrip antennas and also improve their directivity [,].

30.2 Two-Dimensional Planar Metallodielectric Arrays and
Frequency-Selective Surface

Original EBG research was done in the optical region [], but EBG properties are scaleable and appli-
cable to a wide range of frequencies. In recent years, there has been an increasing interest in the
microwave and millimeter-wave applications of EBG structures. However, contributors working in
the field of PBG structures in the microwave and millimeter-wave regions still retain the “photonic
band gap” terminology.This terminology has caused some controversy in themicrowave community.
A recent paper byOliner [] has tried to clarify that the terminology is inappropriate and such struc-
tures should be classified under “microwave periodic structure.” However, the “photonic bandgap”
terminology is adapted at the beginning of this chapter and subsequently used throughout.
Currently, research has also extended to metallodielectric EBG, which is replacing the periodic

high dielectric constant cavities of the photonic crystal with periodicmetallic elements. Inmicrowave
and millimeter-wave regions, such structures exhibit a much larger electromagnetic stopband than
the PBG [,]. The -D planar version of metallodielectric photonic crystal is in effect a type of
frequency-selective surface (FSS).
FSSs are D periodic arrays of metallic elements or apertures that exhibit stopband and passband

characteristics when excited by an electromagnetic wave at an angle arbitrary to the plane of the
array (Figure .). For example, a periodic array of conductors will reflect polarized incident waves
at some frequencies (stopband) and remain transparent to these waves at other frequencies.
If the incident angle θ is increased to ○ from the normal, the incidence will be along the plane of

the FSS array. When exploring the propagation mode along the plane of the FSS array, this structure
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FIGURE . Typical frequency response of an FSS.
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can be regarded as a planar version of a -D metallodielectric EBG structure, and it will exhibit
bandgap properties in the plane of the array. If the bandgap extends throughout the irreducible
Brillouin zone (Section .), an absolute photonic bandgap is achieved.
The unique properties and practical uses of FSSs realized overmany years have produced an exten-

sive body of work in both academic and industrial sectors []. Historically, the essential behavior
of these surfaces stems from mesh and strip grating concepts exploited in the optical region. At
microwave frequencies, the applications of FSSs are predominantly for antenna systems in fixed as
well as mobile services; see [–]. Published reports of basic properties of simple structures in the
cm-wave region go back as far as  [,], albeit the name FSS was not used until much later
on. Accuracy in the modeling of their electromagnetic properties began to take shape during the
late s [,] when a lot of experience was gained from the phased array work of that era [].
With the advent of digital computers, efficient analyses, and broadband measurement techniques,
the understanding and sophistication in the FSS design and fabrication has steadily grown [–].
Notwithstanding the fact spacecraft missions and satellite antennas have successfully utilized FSS
technology.
FSSs are essentially array structures that consist of a plurality of thin conducting elements, often

printed on a dielectric substrate for support. Figure .b shows part of an array of conducting
dipoles in a cross-arrangement, otherwise known as the crossed dipole element. Frequently, these
arrays take the form of periodic apertures in a conducting plane, Babinet’s complement of the former.
They behave as passive electromagnetic filters. Figure . shows a typical transmission coefficient
response of an array of conductors, whereby polarized incident waves are reflected by the surface
at some frequencies (reflection band or stopband), while the surface is transparent to these waves
at other frequencies (transmission band or passband). fR is the resonant frequency and the center
of the stopband, and fT is the beginning of the passband. The bandwidths are normally defined by
the − dB level in reflection and −. dB level in transmission. For the conducting array case, the
resonance is due to high element currents induced, which are small near the passband.The surface is
acting as a metallic sheet at resonance. If an array of apertures were to be used, the plot in Figure .
would be its reflection coefficient response. This perforated screen is mostly reflective and exhibits a
passband at resonance which results from strong fields in the apertures.The elements are periodically
arranged on a certain lattice geometry. This may be a simple square or off-axis triangular lattice with
unequal sides.
This chapter concentrates on the analysis of doubly periodic metallic arrays (on dielectric sheets)

to obtain a bandgap from such a structure. The control of the bandgap is governed by array param-
eters such as the type of element, physical dimension, lattice parameters, and dielectric constants of
the substrates. It lays out the theory and techniques used in the analysis of FSS.The analysis of prop-
agation along the surface is achieved by evaluating the propagation constant within the irreducible
Brillouin zone to predict the propagationmodes. Section . also explores the properties and effects
of the reciprocal lattice and its irreducible Brillioun zone from its respective direct lattice and array
element.
Section . discusses the use of a dipole array with the aim of achieving a bandgap in a certain

direction of illumination. It incorporates the study of propagation and bandgap properties of surface
waves present on such structures with arrays printed on them.

30.3 Array Analysis

In this section, the modal analysis of an infinite planar array of a single-layer FSS in a multiple-
dielectric substrate is presented.The approach here is based on the total fields from an array structure
of a periodic nature where the tangential field transverse electric (TE) and transverse magnetic (TM)
components can be expanded in terms of Floquet modes [].
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This modal analysis method was applied originally by Chen [] for induced current on the
conducting plates of a -D array in free space. Montgomery [] included a dielectric substrate on
which a periodic array of thin conductors was printed.
This section describes the theory of Floquet’s theorem using the periodicity of the FSS. In fact,

Floquet’s theorem is an adaptation of the Fourier series theorem for periodic functions. It enables a
modal description for the field in terms of a complete, orthogonal set of modes (Floquet modes) in
the vicinity of each element of the array, which is excited uniformly in amplitude but with a linearly
varying phase [].
The array element is assumed to be infinitely thin and perfectly conducting. This array is sand-

wiched in between the first two dielectric layers, followed by four dielectric layers behind the
array. The fields near the surface in each layer are expanded in terms of Floquet modes for dif-
ferent dielectric media. Using the standard electromagnetic boundary conditions, the fields are
matched at the boundaries to derive an integral equation in terms of the unknown induced cur-
rent on the conducting elements []. Using the method of moments (MOMs) [,], the integral
equation is reduced into a linear system of simultaneous equations. These equations are solved
for the induced current, and then, the reflected and transmitted field amplitudes can be deter-
mined. With the reflected and transmitted fields, the reflection and transmission coefficients can be
derived.
For the modal analysis of FSS, presented first, the polarized incident plane wave is at an arbitrary

direction with the angle θ to the z-axis and the FSS array in the x–y plane (Figure .).
To determine the stopband or photonic bandgap characteristic of the FSS array, the propagation

of the incident wave should be in the x–y plane (θ = ○) at any arbitrary direction with angle ϕ,
with respect to the x-axis (Figure .). The array with periodicity in two dimensions will exhibit
a stopband in the plane of the double periodicity. The method used here to explore the possible
bandgap for such an array is similar to the modal analysis of FSS. So in the first part of this chapter,
the modal analysis used for FSS is presented in detail in Sections . through .. The difference
in the analysis of bandgap for the array in the x–y plane is presented in Section ..
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FIGURE . (a) Geometry of a square lattice array. (b) Side view of the FSS array.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

30-6 Theory and Phenomena of Metamaterials

To determine the completed bandgap for a structure, it is necessary to evaluate the propagation
modes in all directions within the -D plane. This is achieved by exploring the propagation mode
within the irreducible first Brillouin zone (Section .).
In Section ., the reciprocal lattice and its respective Brillouin zone are presented [–].

It has been discovered that the symmetrical relationship of the first Brillouin zone and the array
elements do play a part in determining the irreducible first Brillouin zone.

30.4 Modal Analysis of Planar FSS

In this section, the modal analysis of a single FSS array in a multiple-dielectric substrate is presented.
With the periodic placement of the elements of the array, the modal analysis of Floquet’s theorem is
used to describe the fields which are expanded in terms of Floquet modes [,].
When the array is illuminated by an incident plane wave, currents will be induced on the con-

ducting elements. By matching the fields at the different boundaries, an integral equation for the
unknown currents is obtained. Using the MOMs [,], the integral equation can be reduced to a
linear system of simultaneous equations.The unknown current is expressed as a series of basis func-
tions.With a numerical algorithm group (NAG) routine [] which utilizes Crout’s factorization, the
unknown coefficients of the basis functions are obtained.The current coefficients allow one to obtain
the reflected and transmitted field amplitudes. Thus, from the total reflected and transmitted field,
the reflection and transmission coefficients are calculated.
TheFSS array is assumed to be infinite and each element is located in a unit cell, which is distributed

in a periodic configuration. The conducting elements are printed on a dielectric substrate, and the
conductors are assumed to be infinitely thin and perfectly conducting.
The array on the dielectric substrate is considered to lie in the x–y plane, and it is excited by a

linearly polarized plane wave incident in an arbitrary direction with angle θ to the z-axis and ϕ to
the x-axis (Figure .). The lattice vectors Dx and Dy specify the two periodicity axes on which the
conducting elements are arranged.
For an arbitrary lattice (Figure .), the element is placed along arbitrary axes û and v̂ vectors.

The arbitrary lattice vectors Du and Dv with α as the angle between Du and Dv and α as the angle
between Du and the x-axis

Du = Du(cos α x̂ + sin α ŷ)
Dv = Dv(cos α x̂ + sin α ŷ) (.)

where
α = α + α
Du = ∣Du ∣, Dv = ∣Dv ∣

30.4.1 Modal Field Representation

Themodal representation of the field of the array in scalar Floquet modes [] is given as

Ξpq (x , y, z) = Ψpq (x , y) e± jβpq Z (.)

where the Floquet indices are p, q =,±,±,±, . . .
The negative j term denotes propagation in the positive direction, and the positive j term denotes

propagation in the negative direction
where

Ψpq (x , y) = e− jk t pq .r (.)
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FIGURE . An FSS array on an arbitrary lattice.

Thus, from Equations . and .

θ pq (r, z) = ψe− jk t pq .r e± jβpq Z (.)

where r = xx̂ + y ŷ
and

kt pq = ktx x̂ + kt y ŷ

kt pq = kt + pk + qk
= (kx + pkx + qkx) x̂ + (ky + pky + qky) ŷ (.)

and

kt = kx + ky

= k sin θ cos ϕx̂ + k sin θ sin ϕ ŷ

where

k = π
λ

k = −π
A

ẑ × Dv k = −π
A

ẑ × Du A = ∣Du × Dv ∣

where A is periodic unit cell area.
Using the relationship given, k and k can be shown to be

k = kx + ky k = kx + ky A = Du Dv sin α

kx = π
Du

sin α
sin α

kx = − π
Dv

sin α
sin α

ky = − π
Du

cos α
sin α

ky = π
Dv

cos α
sin α
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The propagation constant is given as

βpq =
√

k − kt pq ⋅ kt pq (.)

where k = ko
√
εr.

For the propagating wave, k > kt pq ⋅ kt pq and

βpq =
√

k − kt pq ⋅ kt pq

where βpq is real and positive.
For the evanescent wave, k < kt pq ⋅ kt pq and

βpq = − j
√

kt pq ⋅ kt pq − k

where βpq is imaginary and negative.
The tangential electromagnetic field in the plane of the array can be expressed in terms of both TM
and TE vector Floquet modes.
The subscript m that has the values  and  denoting TM and TE modes, respectively.
The TM vector has its magnetic component parallel to the plane of the array (Hz pq =).
The transverse component of the TMmodes are

Et pq =
kt pq

∣kt pq∣
Ψpq = κpqΨpq (.)

Ht pq = ηpq ẑ × κpqΨpq (.)

The TE vector has its electric component parallel to the plane of the array (Ez pq = ).
The transverse component of the TE modes are

Et pq = κpqΨpq (.)

Ht pq = ηpq ẑ × κpqΨpq (.)

where ηpq and ηpq are the modal admittance of TM and TE modes, respectively.

TM ∶ ηpq = kη
βpq

(.)

TE ∶ ηpq =
βpqη

k
(.)

where η =
√
ε/μ, and ε and μ are the permittivity and permeability of the medium, respectively.

E (r, z) = ∑
pq

(apq Epq (r, z) + apq Epq (r, z))

= ∑
pq

(apqΨpq (r) κpq e± jβpq z + apqΨpq (r) κpq e± jβpq z)

Thus, the tangential field can be expressed as a combination of the vector TM and TE Floquet modes.
For example, the electric field can be written as

E (r, z) = ∑
m pq

am pqΨpq (r) κm pq e± jβpq z (.)

where apq and apq are the amplitude of the TM and TE modes.
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And similarly, the magnetic field

H (r, z) = ± ∑
m pq

ηm pq am pqΨpq (r) e± jβpq z ẑ×κm pq (.)

30.5 Formulation of Scattering from an FSS with
Multiple Dielectrics

30.5.1 Fields at Different Interfaces

Figure . shows the cross-sectional view of an FSS array embedded in five layers of dielectric sub-
strates surrounded by air. The different dielectric substrates will modify the admittance seen by the
wave when traveling through it. The superscript presented here in the equation denotes the differ-
ent dielectric layer substrates, with Sn as the thickness, ηn as the modal admittance, and T n , with
negative z dependence, as the field amplitude of the forward traveling waves. Likewise Rn with
positive z dependence would be the field amplitude of the backward traveling waves.
For this example, the FSS array is assumed to be sandwiched between the first and second layer

[]. With the incident field E inc, the modal tangential electromagnetic field for each region is as
follows.
For Z ≤ Z

E− (r, z) = E inc + ∑
m pq

R−m pq e+ jβpq zΨpq (r) κm pq (.)

H− (r, z) = H inc − ∑
m pq

ηa
m pq R−m pq e+ jβpq zΨpq (r) ẑ × κm pq

FSS
array

S1

Rr

Ei

η1

T1

R1 R2 R3 R4 R5

T 2 T3 T 4 T 5

T t

Z = 0 Z = 1 Z = 2 Z = 3 Z = 4 Z = 5
η2 η3 η4 η5

ηaηa

β0

β1 β2 β3 β4 β5
βa

Air

S2 S3 S4 S5

Dielectric substrates

Air

FIGURE . A single FSS array embedded in between the first two dielectric layers.
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For Zn ≤ Z ≤ Zn+ (for layer n = , , , )

En (r, z) = ∑
m pq

(T n
m pq e− jβn

pq zn
+ Rn

m pq e+ jβn
pq zn

)Ψpq (r) κm pq

Hn (r, z) = ∑
m pq

ηn
m pq (T n

m pq e− jβn
pq zn

− Rn
m pq e+ jβn

pq zn
)Ψpq (r) ẑ × κm pq (.)

For Z ≥ Z

E+ (r, z) = ∑
m pq

T+m pq e− jβpq zΨpq (r) κm pq

H+ (r, z) = ∑
m pq

ηa
m pq T+m pq e− jβpq zΨpq (r) ẑ × κm pq (.)

For a single FSS structure, the incident field is given in terms of the zeroth order Floquet mode
(p, q =) as

E inc (r, z) =


∑
m=

T inc
me− jβzΨ (r) κm

H inc (r, z) =


∑
m=

ηa
mT inc

me− jβzΨ (r) ẑ × κm (.)

However, the prediction program for propagation constants (βx , βy) along the x–y plane does not
have any incidence fields; the incidence fields and scattered fields are combined as the total fields (see
Section .).
With the modal tangential electromagnetic fields for each dielectric layer defined in

Equations . through ., boundary conditions are applied by matching or equating the fields
between two layers at their common boundary.Working backward from the last layer toward the first
boundary, an expression of the reflected amplitude, R−m pq , in terms of the surface current density, J,
can be derived.
The field amplitudes can be formed using themode orthogonality in Equations . and . and

matching at boundary Z = Z.
Magnetic field:

η (Te− jβpq z − Re+ jβpq z) = ηa T+e− jβa
pq z (.)

Electric field:
Te− jβpq z + Re+ jβpq z = T+e− jβa

pq z (.)

Placing the magnetic field Equation . over the electric field Equation . at boundary Z, an
expression can be obtained that relate the reflective field to that of the transmitted field for that
boundary.
Magnetic field/electric field:

η (Te− jβpq z − Re+ jβpq z)

(Te− jβpq z + Re+ jβpq z)
=
ηa

m pq T n
m pq e− jβpq z

T n
m pq e− jβpq z

R = (η
 − ηa

η + ηa ) e+ jβpq zT

R = ρm pqT (.)
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Likewise at boundary Z = Z,matching the fields and equating the magnetic field over the electric
field using Equation . gives

η (Te− jβpq z − Re+ jβpq z)

(Te− jβpq zRe+ jβpq z)
=
ηT (e− jβpq z ρe+ jβpq z)

T (e− jβpq z + ρe+ jβpq z)

η (Te− jβpq z − Re+ jβpq z)

(Te− jβpq z + Re+ jβpq z)
= ηω

R = ρm pqT (.)

For all boundaries,

ρn
m pq = (

ηn
m pq − ωn+

n ηn+
m pq

ηn
m pq + ωn+

n ηn+
m pq

) e+ jβn
pq zn (.)

where ωωn+
nm pq is denoted as ωωn+

n
and

ωn+
n =

e− jβn
pq zn− − ρn

m pq e+ jβn
pq zn−

e− jβn
pq zn− + ρn

m pq e+ jβn
pq zn−

(.)

At the last medium (Z ≥ Z), ωωa
 = .

Working toward Z = Z, where the FSS array is located, the electric field is continuous.
(E = E): The magnetic field is continuous except on the conductors where it is discontinuous;

H–H = ẑ × J where J is the unknown surface current density.
At Z = Z (magnetic field)

H (r, z) − H (r, z) =
Jm pq

A

η (T e− jβpq z − Re+ jβpq z) − η (Te− jβpq z − ρe+ jβpq z) =
Jm pq

A

Electric field:

T e− jβpq z + Re+ jβpq z = T (e− jβpq z − ρe+ jβpq z)

Likewise working with the magnetic and electric fields at Z = Z,

R
m pq = ρm pqT 

m pq − e− jβpq z

(ηm pq + ω ηm pq)
J̃m pq

A
(.a)

where
α = e− jβpq z

(ηm pq+ω η

m pq)

J̃m pq = ⟨J(r) ⋅ κm pq , Ψpq(r)⟩
A′

= J̃ pq ⋅ κm pq

With some algebraic manipulation,

R
m pq = ρm pq T 

m pq − (e− jβpq z + ρm pq e+ jβpq z) τm pq
J̃m pq

ηm pq A
(.b)
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where n > 

τn
m pq =

e− jβn
pq zn + ρn

m pq e+ jβn
pq zn

e− jβn
pq zn− + ρn

m pq e+ jβn
pq zn−

(.a)

τm pq =
e− jβpq z + ρm pq e+ jβpq z

ηm pq
(.b)

Similarly working at Z, the reflected field amplitude, R−m pq , can be arrived at

R−m pq = δpδqρmT inc
m − τm pqτ


m pq

J̃m pq

A
(.)

Having attained the reflected field amplitude for the transmitted field amplitude, work at Z = Z with
R

m pq from Equation .a

T e− jβpq z + Re+ jβpq z = T  (e− jβpq z − ρe+ jβpq z) − α
J̃m pq

A
e− jβpq z (.)

Working toward Z = Z with some algebraic manipulation, the transmitted field amplitude [] can
be arrived at

T+m pq e− jβpq z = ττττ τ (δpδqe jβpq z ( + ρm) T inc
m − ωm pq

J̃m pq

A
) (.)

where

ωm pq = τm pqτ

m pq e jβpq z + e jβpq S − e− jβpq S

ηm pq
(.)

30.5.2 Electric Field Integral Equation

With the boundary condition, that is, the electric field will vanish over the perfect conductor at
Z=Z:

E (r, z) =  r ∈ A′

∑
m pq

(T 
m pq e− jβpq z + R

m pq e+ jβpq z)Ψpq (r) κm pq =  (.)

Working with Equation ., substitute T 
m pq into T−m pq and express it in terms of R−m pq using

Equation .:

T 
m pq e− jβpq z + R

m pq e+ jβpq z = τm pq (δpδqe jβpq z ( + ρm) T inc
m − ω

J̃m pq

A
)

Substituting in Equation .

∑
m pq

[τm pq (δpδqe jβpq z ( + ρm) T inc
m − ω

J̃m pq

A
)]Ψpq (r) κm pq = 

Therefore, the electric field integral equation (EFIE) is

∑
m pq

Cscat
m pq J̃m pqΨpq (r) km pq =



∑
m=

Cnsc
mT inc

m Ψ (r) κm (.)
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where

Cscat
m pq =

τm pqωm pq

A
(.a)

Cnsc
m = e jβz τm ( + ρm) (.b)

30.6 Method of Moments

TheMOMused here is to solve the integral equation by reducing it to a linear system of simultaneous
equations [,].
Thepurpose is to approximate the unknown current induced on the conductors within the unit cell

in terms of an infinite series of N orthogonal basis functions. But, the solution converges as N → ∞.
Therefore, for computational efficiency, a certain N is chosen when the results converge. Although
the approximation of the induced current will be better if N is increased, this is at the expense of
computation time and resources. To save computation time and resources, a finite N is chosen such
that when N is increased the result will only differ by a very small amount.
With N series of basis functions, the induced current can be expressed as

J (r) =
N

∑
n=

cn hn (rn) rn ∈ A′ (.)

where
A′ is the conducting area of the unit cell
hn(rn) are the current bases functions
cn are the complex amplitude of the currents

The computation of the bases function depends on the type of conductor (dipole, tripole). The
calculation of bases function for each type of conductor will be dealt with in Section ..
By substituting Equation . into the EFIE Equation . and taking the inner product with

the weighting functions, hi , according to Galerkin’s method, the result is a set of equations that can
be written in matrix form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z Z ⋅ ⋅ ZN
Z Z ⋅ ⋅ ZN
⋅ ⋅ Zin ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

ZM ZM ⋅ ⋅ ZMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
c
⋅
⋅

cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽnsc


Ẽnsc

⋅
⋅

Ẽnsc
M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(.)

where
Ẽnsc

i is the excitation vector (Equation .)
ZMN is a matrix M × N and is independent of the excitation (Equation .)
cn is the unknown coefficient of the bases function

and

Ẽnsc
i =



∑
m=

Cnsc
mT inc

m h̃∗ (kt pq) (.)

Zin = ∑
m pq

Cscat
m pq h̃∗i (kt pq) h̃n (kt pq) (.)
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Here, the weighting functions are the same as the basis functions, calculated using a method known
as the Ritz–Galerkin method.
Therefore, to obtain the unknown coefficients cn in Equation ., a matrix inversion of [ZMN ]

is performed that utilizes Crout’s factorization in a NAG routine [] from the NAG Library.

[cn] = [ZMN]− [ Ẽnsc
i ] (.)

With cn coefficients computed, the unknown induced current can be determined (Equation .).
Substituting the induced current Equations . and ., the reflected and the transmitted field
amplitudes can be determined. In Section ., using the reflected and the transmitted fields, the
reflection and transmission coefficients are derived.

30.7 Reflection and Transmission Coefficients

Substituting the reflected field amplitude Equation . in the electric field Equation . and taking
only the total reflected field at Z = Z

Er
t (r, z) = ∑

m pq
R−m pq e+ jβpq zΨpq (r) κm pq (.)

With the zero-order mode being the dominant mode and always propagating, the total reflected
electric field is

Er
t (r, z) = ∑

m
δpδqρmT inc

mΨ (r) km − ∑
m pq

τm pqτ

m pq

J̃m pq

A
Ψpq (r) κm pq (.)

and the total tangential transmitted electric field at Z = Z is

E t
T (r, z) = ∑

m pq
T+m pq e− jβpq zΨpq (r) κm pq (.)

Likewise, substituting the transmitted field amplitude Equation . into the total tangential
transmitted electric field Equation .

Et
T (r, z) = ταm pq ∑

m pq
δpδqe jβpq z ( + ρm) T inc

mΨ (r) κm − ∑
m pq

ωm pq
J̃m pq

A
Ψpq (r) κm pq

(.)

where ταm pq = τm pqτm pqτm pqτm pqτm pq .
The total reflected electric field at Z = Z and total transmitted electric field at Z = Z can also be

expressed in terms of

ErT (r, z) = (Rr
x x̂ + Rr

y ŷ + Rr
z ẑ) e jβpq zΨpq (r) (.)

where

Rr
x = R−m pqκmx (.a)

Rr
y = R−m pqκmy (.b)

Rr
z = −

(Rr
x sin θ cos ϕ + Rr

y sin θ sin ϕ)
cos θ

(.c)
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The total transmitted electric field at Z = Z

EtT (r, z) = (T t
x x̂ + T t

y ŷ + T t
z ẑ) e− jβpq zΨpq (r) (.)

where

T t
x = T+m pqκmx (.a)

T t
y = T+m pqκmy (.b)

T t
z = −

(T t
x sin θ cos ϕ + T t

y sin θ sin ϕ)
cos θ

(.c)

The copolar components of the total reflected and transmitted field are obtained by projecting them
onto the total incident field direction Bi

Erc (r, z) = Erc (r, z) Binc (.)

where Erc (r, z) = ErT (r, z) ⋅ Binc and for the copolar component of the transmitted electric field

Etc (r, z) = Etc (r, z) Binc

where

Etc (r, z) = E tT (r, z) ⋅ Binc (.)

For a given FSS with a plane wave incident at an arbitrary direction with the angle θ to the z-axis; the
reflection and transmission coefficients in the copolar direction are given as

Rcpo
coeff =

Erc (r, z)
ETinc (r, z)

= Rr
x Bincx + Rr

y Bincy + Rr
z Bincz (.)

Tcpo
coeff =

Etc (r, z)
ETinc (r, z)

= T t
x Bincx + T t

y Bincy + T t
z Bincz (.)

30.8 Propagation along the Surface (x–y Plane)

The purpose of this research is to determine if there exists any bandgap (stopband) that appeared
in the D plane of periodicity. Thus, it is essential to explore all possible propagation modes that
exist along the D of the array. For the analysis of propagation along the x–y plane, the angle θ from
Equation . is set to ○ giving

kt pq = kt + pk + qk (.a)

where

kt = kx + ky

= kcos ϕ x̂ + ksin ϕ ŷ (.b)

For a lossless case, kx = βx , ky = βy .
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FIGURE . Propagation mode determined from a plot of characteristic determinant.

The analysis is similar to that of the derivation in the planar FSS problem until the methods of
moment in Equation .. The incident field is not specified and Equation . becomes

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z Z ⋅ ⋅ ZN
Z Z ⋅ ⋅ ZN
⋅ ⋅ Zin ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

ZM ZM ⋅ ⋅ ZMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c
c
⋅
⋅

cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣



⋅
⋅


⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(.)

which is

[ZMN] [cn] = [] (.)

For this set of homogeneous linear equations to have nontrivial solutions [], the determinant of
the matrix [Z] must be zero. This is known as the characteristic determinant of [Z]. The elements
of matrix [Z] are shown in Equation .. By varying β from  to the boundary of the irreducible
Brillouin zone (see explanation in Section .), all the corresponding characteristic determinants
of [Z] are plotted out for each β. From the characteristic determinant plot, all the true set minima
obtained correspond to each individual propagation mode.
In Figure ., a graph of computed characteristic determinants is shown. In this case, β is varying

from  to π/a (boundary of the irreducible Brillouin zone). The graph shows that there is a propa-
gation mode for β normalized values ., ., ., ., and . at frequencies , ., , ., ,
and .GHz, respectively.
By exploring the whole -D irreducible Brillouin zone, all the possible modes that exist on the x–y

plane could be found. The range of frequencies where there is an absence of any propagation mode
is considered a bandgap (stopband).

30.9 Direct and Reciprocal Lattices in Two Dimensions

A direct lattice describes the way the physical elements are arranged []. Usually, it is a periodic
array in which the identical elements are spaced at equal distances from one another along two lines

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Frequency-Selective Surface and Electromagnetic Bandgap Theory Basics 30-17

b1

b2

α a2

a1

FIGURE . Direct triangle lattice.

intersecting at an arbitrary angle α. This type of lattice is also called a Bravais lattice. In other words,
it is an array with an arrangement and orientation that appears exactly as the normalised β from
whichever point the array is viewed. From the triangular lattice shown in Figure ., taking a and
a as basis vectors drawn from the element chosen as the origin of the lattice, the vector coordinate
of any element in the lattice is then given by

Rnn = na + na (.)

where n and n are integers.
From the direct lattice, the vectors a and a are written in their matrix Cartesian coordinates as

row vectors:

A = [ aX aY
aX aY

] (.)

The concept of reciprocal lattice is found in many solid-state physics textbooks. From the example
above, the reciprocal lattice which is transposed from the matrix Awill arrange its vectors b and b
as column vectors:

B = [ bX bX
bY bY

] (.)

For the given direct lattice with vectors a and a, a reciprocal lattice can be defined with its own
basis vectors b and b given by the Equation ..

(ai .bk) = δ i k (.)

where
i = ,  k = , ,
δ i k is the Kronecker δ symbol, defined by
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δ i k =  i = k
=  i ≠ k

(.)

Therefore, the matrix product of the direct lattice and the reciprocal lattice are

A ⋅ B = [ aX aY
aX aY

] [ bX bY
bY bY

]

= [ aX bX + aY bY aX bX + aY bY
aX bX + aY bY aX bX + aY bY

]

= [ (a ⋅ b) (a ⋅ b)
(b ⋅ a) (a ⋅ b)

] (.)

From Equation .,

A ⋅ B = [  
  ] = δ (.)

where δ is the unit matrix. From this it follows that

B = A−

B = 
∣A∣ ∗ CT (.)

where CT is the adjoint of matrix A and matrix C consists of cofactors of the elements in A.
One can conclude from the above equation that a is perpendicular to b and a is perpendicular

to b (see Figure .).The components of the reciprocal lattice can be obtained from the direct lattice
by the relationship given by Equation . []:

bX = aY

aX aY − aY aX
bX = −aY

aX aY − aY aX

bY = −aX

aX aY − aY aX
bY = aX

aX aY − aY aX
(.)

With the hexagonal direct lattice based on the vectors a and a with an angle α, which is π/ between
them, the respective reciprocal lattice is another hexagonal lattice, turned thought an angle π/ with
vectors b and b.
The parallelogram formed by b and b defines the unit cell of the D reciprocal lattice Figure ..

The reciprocal lattice is also a periodic array with its elements are spaced at equal distance from one
another along two lines b and b intersecting at a arbitrary angle which in this case is also equal to α.
However, it is more convenient to build a unit cell of the same area but is symmetric with respect

to the elements of the reciprocal lattice Figure . [].This is defined as the D first Brillouin zone.
The first Brillouin zone, also known as the Wigner–Seitz cell [] of the reciprocal lattice, states that
the region of space in the reciprocal lattice that is closer to the lattice element than any other is known
the first Brillouin zone.
For each element, there exists higher-order zones and each of these zones covers an area equal to

that of the first zone.
Any individual zone can be reduced to the first zone by taking its sections and giving them a

translation parallel and equal to one of the vectors of the reciprocal lattice. This is obvious for the
second zone in Figure .. For the third zone, by a mosaic arrangement, the different sections can
be exactly put together to cover the first one given the necessary translation.
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FIGURE . (a) The direct lattice and (b) its respective reciprocal lattice.

Reciprocal lattice element

First zone

Second zone

Third zone

Fourth zone

Fifth zone

b1

b2

FIGURE . The reciprocal lattice of Figure . and its zone distribution.

First Brillouin zone

Irreducible Brillouin zone

FIGURE . The irreducible first Brillouin zone.

Due to symmetric and periodic properties within the first Brillouin zone, the smallest region (the
shaded portion in Figure .) of the first Brillouin zone is irreducible. Thus, it will be sufficient to
just consider only the irreducible zone as the rest are just mirror reflections of it.
Another example for a D square direct lattice, the corresponding reciprocal lattice, is also a square

lattice with its vector b as shown in Figure .b.
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Irreducible Brillouin zone
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Second zone
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Fourth zone

FIGURE . (a) Square direct lattice, (b) the respective reciprocal lattice, and (c) its irreducible first Brillouin
zone.

30.9.1 Irreducible Brillouin Zone and the Array Element

It has been discovered in the course of this research that the irreducible Brillouin zone also depends
on the circular symmetric nature of the array element. The angles between lines of symmetry for the
array element and the first Brillouin zone must be taken into consideration.
The larger angle of the two is chosen for the irreducible Brillouin zone provided that the smaller

angle is a factor of it. If not, a next larger angle is chosen as the irreducible Brillouin zone, which is a
factor of the two angles.
As in Figure ., if the array element is assumed to have circular symmetric properties like a

dot or a circle, the irreducible Brillouin zone will be determined by the angle between the lines of
symmetry of its first Brillouin zone. In Figure .a, for triangular lattice, the angle between the
lines of symmetry of its first Brillouin zone is ○. For the square lattice in Figure .b, the angle
will be ○.
In the case of a dipole as the array element, it has only two lines of symmetry (Figure .a),

thus the dipole is only quarterly symmetric (○), whereas the angle of symmetry for the first Bril-
louin zone of a square and triangular lattice is ○ and ○ (Figure .), respectively. Therefore, the
irreducible Brillouin zone must cover at least ○ of the first Brilliouin zone.
For the tripole array element, the response depends on the contribution of the current in each of

the three legs of the tripole.The response would be the same in the direction A and A′, B and B′, and
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Irreducible Brillouin zone Irreducible Brillouin zone

(a) (b)

FIGURE . (a) Line of symmetry in the first Brillouin zone of a triangular lattice. (b) Line of symmetry in the
first Brillouin zone of a square lattice.

Irreducible Brillouin
(a) (b) (c)

Irreducible Brillouin

FIGURE . (a) Line of symmetry of the dipole. (b) Irreducible first Brillouin zone of a dipole in a square reciprocal
lattice. (c) Irreducible first Brillouin zone of a dipole in a hexagonal reciprocal lattice.
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FIGURE . Lines of symmetry for a tripole and the first Brillouin zone of a triangular lattice.

C and C′. Thus, the angle of symmetry for the tripole array is ○; coincidentally the first Brillouin
zone of the triangular lattice is also ○ (Figure .). So the irreducible Brillouin zone will be ○.
For a tripole in a square lattice, the angle of symmetry for its first brillouin zone is ○ and the angle

of symmetry for the tripole array is ○. The angle ○ cannot be chosen as the irreducible Brillouin
zone because ○ is not a factor, thus, the next higher angle is chosen. In this case, it is ○ in which
both angles are its factor (Figure .).

30.10 Planar 2D EBG Using a Dipole Conducting Array

From Section ., the complex coefficient of the basis functions, which represented the current
distribution on the dipole conductor, is needed for the calculation of Zmn (Equation .),
assuming the width of the dipole element is small compared to the length and does not contribute
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FIGURE . The irreducible Brillouin zone of a tripole in a square lattice.

to the computing of the basis functions. Thus, the current induced in the dipole elements will
be predominantly along its length. The bases functions are sinusoidal and are in an arbitrary
direction v̂ [].

hc
n = √

NR
cos

nπv
L

(.a)

hc
n = √

NR
sin

nπv
L

(.b)

where n is the number of the basis function
NR=WL/ is the normalization factor due to the orthogonality of these bases.
For example, assuming five basis functions across the conductors (n = ), which would consist of

cosine terms n = , ,  and sine terms n = , . In Figure ., the conductor is aligned along the
y-axis( ŷ = v̂).
Assuming the width of the dipole to be small, the contribution to the bases functions will

come from the length of the dipole (which is position along the y-axis). The Floquet transform of
Equation .a and b are

h̃
c
n = h̃c

ny ŷ (.a)

h̃
s
n = h̃s

ny ŷ (.b)

and

h̃c
ny = m̃x(p̃ny + q̃ny) (.a)

h̃s
ny = jm̃x(−p̃ny + q̃ny) (.b)

where

p̃ny =
sin [( nπ

L + ky) L
 ]

( nπ
L + ky) L



q̃ny =
sin [( nπ

L − ky) L
 ]

( nπ
L − ky) L



and

m̃x =
√
NR

sin (kx
W
 )

kx
W


For the cross-dipole, eight basis functions are applied; four basis functions will represent the vertical
conductor element as in the dipole element case (Figure .) and another four basis functions will
represent the horizontal element (Figure .). The Floquet transform of the basis functions for the
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FIGURE . Dipole with five bases functions along the y-axis: (a) cosine terms and (b) sine terms.

(a) (b)

FIGURE . Cross-dipole with another four bases functions representing the horizontal element: (a) cosine terms
and (b) sine terms.

horizontal element can be readily obtained from Equations . and . with changes made for
the contribution from the x-axis.

30.11 Dipole Array Results and Discussion

The process of modeling is to scan the phase constants (β) for each frequency and obtain the
respective characteristic determinant of the matrix [Z] in Equation .. The whole range of the
characteristic determinants for each frequency is plotted out. From the plot, all minima are recorded
and this is repeated for the whole range of frequencies. Finally, the corresponding phase constants
(β) for all the true minima are plotted out against frequency to determine the location of the
bandgap.
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The process of determining the minima of the characteristic determinant Equation . while
scanning the irreducible Brillioun zone is a tedious and time-consuming task. The condition for
selection is that the minima should be of a sharp and deep nature. But, due to the effect of the con-
ductor, sometimes the minima might not be obvious. A few selection criteria have to be taken into
consideration to determine a true set of minima that represent a propagation mode. First, the min-
ima would preferably be of a sharp and deep nature. Second, true minima will shift as the frequency
increases.Third, the set of trueminimawill continue when the Brillouin zone scan change directions.
Fourth, when the Brillouin zone scan ends in a closed loop, the set of minima must meet at the same
frequency that the scan began.
Finally, caution has to be taken to discard the minima that correspond to the transverse electro-

magnetic mode which will also appear as a true set of minima in the simulation result.
The step size used for the frequency and phase constants (β) have to be tested to ensure if all the

propagating modes are recorded.This is a case of accuracy at the expense of computational time and
resources. The usual step size used is .GHz (frequency) and . (propagation constant, β) but
in cases of ambiguity that arise, finer step sizes are taken to extract the solution.
The dipole arrays are modeled with different lattice and element dimension. The array discussed

in this section has its -D lattice of periodicity D =  and mm, the dipole length L = . and mm,
and width W =.mm.

30.12 Dipole Dimension D = 10 mm, L = 7.5 mm

The square lattice has its element spaced out periodically on two axes separated by an angle α = ○.
The two arrays modeled have a dielectric constant (εr) . and thickness (s) .mm. Due to the
symmetric and periodic properties of the first Brillouin zone and the dipole element (Section ..),
the shaded region is determined as the irreducible Brillouin zone (Figure .b). Propagation in
this region is the same as the other three quadrants and this has been verified from the modeling.
The maximum phase constant (βx and βy) in the direction of x- and y-axes within the irreducible
Brillouin zone is π/a.
For the graph in Figure ., the horizontal axis represents the phase constant of the propa-

gation mode in various directions, and the vertical axes are both normalized and nonnormalized
frequency.
For the dipole array in Figure ., with εr = ., thickness s = .mm, the first mode, that is,

the surface wave, starts at zero frequency. In the direction (Γ–X) in which the plane of propagation
is parallel to the dipole, the surface wave ceases at . GHz. This is the beginning of the band gap
along the x-direction which starts at . GHz and ends at . GHz. As the propagation direction
moves from x-axis toward the y-axis, the stopband narrows until it meets at . GHz, and in the
y-direction, it ceases to have a stopband. Thus, from the modeling, it shows that there is no absolute
bandgap for this dipole array.
Figure . shows a measurement carried out in three different directions with respect to the

dipole element array. At ○, which is propagation in the x-axis, the beginning of the bandgap is
measured to be . GHz. As the propagation direction changes to ○ the bandgap closes up to  GHz
from . to . GHz. Finally, at ○, which is the y-direction, there is full propagation.
It is observed that there is a gain of  dB before the stopband in the x-direction; this is because

the dipole array behaves as guiding elements for the transmitting Vivaldi antenna. In the passband
frequencies, it concentrates the fields on the dielectric slab in the direction of the receiving antenna.
Naturally, in the y-direction where the dipole is aligned along the propagation direction, the gain
diminishes.
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From the measurements, it agrees well with the modeling prediction that there is no bandgap in
the y-direction. The predicted bandgap of this array for all the planar directions from the modeling
also coincides well with the measurements.

30.13 Dipole Dimension D = 8 mm, L = 6 mm

The second dipole array (Figure .) has a square lattice of mm and a dipole length of mm
with the same dielectric constant and thickness as described in Section .. The bandgap starts at
. GHz in the x-direction for this array. Likewise the bandgap narrows as the propagation direction
changes toward the y-axis. Finally, when the propagation direction is along the length of the dipole,
there is full propagation. The reason that the dipole does not have an absolute bandgap is because
the width of the dipole is small, thus the contribution will come from the length of the dipole. With
respect to the length of the dipole along the y-axis, the propagation in the x-axis will evidently achieve
the largest bandgap.
It is observed that as the lattice and dipole dimensions get smaller, the bandgap frequency shifts

up. The beginning of the stopband for x-direction shifts up from . to . GHz between these
two dipole arrays. In the y-direction, the bandgap narrows to end at . and .GHz for the two
dipole arrays. From these examples, different arrays can be designed to control the desired frequency
stopband for a dielectric slab.
Measurements for this dipole array are also presented in three directions with respect to the dipole

element (Figure .). At ○ where propagation is in the x-direction, the beginning of the bandgap
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is measured to be . GHz. At ○ the bandgap starts to narrow at . GHz and ends at . GHz
before surface wave propagation at ○ (y-direction).
The measurements agree well with the modeling of the bandgap frequency for this array in all the

planar directions.

30.14 Conclusion

This chapter has described the theory of FSS and planar EBGs. It discussed the propagation of
electromagnetic fields in all planar directions within the bandgap frequencies.
The analysis has been modeled to enable calculation of propagation modes in the plane of the

array. By means of an example, the bandgap for dipole arrays were investigated and the effects of
lattice configuration, dielectric constant, and element parameters on the bandgap width and location
have also been demonstrated. Selection criteria are established to enable the analysis of propagation
modes along the plane of the array.
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31.1 Introduction

The concept of impedance was initially introduced by Heaviside () in the context of currents
and voltages, in order to describe the constant ratio V/I in AC circuits. In the s, the notion of
impedance was generalized by Schelkunoff, who recognized that the impedance concept could be
used to describe the ratio of the transverse electric field over transverse magnetic field, since this
depends solely on the host medium of propagation for each electromagnetic mode []. The con-
cept of surface impedance follows as a model to describe the interaction of electromagnetic waves
with interfaces between materials or thin sheets (e.g., [–]). In the context of complex surfaces, that
typically consist of periodic (or quasiperiodic) arrangements with low profile compared to the wave-
length, the use of the term impedance implies homogenization; the complex surface is modeled by
an equivalent uniform surface, which is characterized by an effective impedance value. The reader is
referred to [,] for further references on these techniques.

The term high-impedance surface (HIS) was introduced in [] in order to describe complex .D
surfaces (i.e., planar surface that includes via connectors to the ground). The term HIS in this context
reflects the following two properties:

. In-phase full reflection of incident plane waves
. Suppression of all propagating surface waves

31-1
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It is straightforward to see that an ideal surface with very high surface impedance (Zs → ∞) will
fully reflect incident waves in phase for all angles of incidence and will not support any surface waves.
In practice, the equivalent surface impedance is a function of both the frequency and the transverse
wavenumber (and hence the incidence angle). Therefore the two general properties of HIS mentioned
above in general do not coincide in the frequency domain and for all angles of incidence [,]. The
surface that exhibits the former is also referred to as artificial magnetic conductor (AMC), reflecting
the duality of this property to that of the perfect electric conductors (PEC) [–]. Surfaces that sup-
press all propagating surface waves are also termed as Electromagnetic Band Gap (EBG) structures,
in accordance with the term photonic bandgap (PBG) introduced by [,] to describe periodically
modulated structures that do not support real solutions to Maxwell equations.

Since the introduction of HIS in [], several authors have investigated complex structures that
produce either or both of the above mentioned HIS properties. The term HIS has been employed to
describe a variety of geometries. Often, these consist of a doubly periodic aperture [] or metallic []
array printed on a grounded dielectric slab. In order to simplify the fabrication, several authors have
omitted the grounding vias [–]. The structures resemble frequency selective surfaces (FSS) []
printed on grounded dielectric substrates and planar reflect arrays []. Other realizations include
the volumetric topologies that do not require metallic ground plane [,], multilayer arrays [], as
well as convoluted and other complex geometries [,] for miniaturized designs.

The topic of HIS has attracted significant attention []. Among the first applications proposed
for these surfaces were as ground planes for low-profile dipole-type antennas []. The zero reflection
phase guarantees a  dB gain enhancement for a horizontal source located in close proximity to the
HIS surface, rather than distractive interference predicted by the image theory for perfect electric
conductors. Several other practical applications were suggested, including the suppression of surface
modes in reflector backed patch arrays [], transverse electromagnetic (TEM) waveguides [,],
profile reduction of resonant cavity antennas [], design for mobile phones [], and others (see
Part II of this book).

In this chapter, we review recent works on HIS. Commencing from the definitions and the
experimental evidence of the effects associated with HIS, we proceed to review proposed variations
of HIS, analysis techniques, performance characteristics, synthesis considerations and an overview
of proposed applications of HIS.

31.2 Definitions and HIS Topologies

In this section, we provide the definitions of the phenomena associated with HIS. The term EBG is
introduced in relation to the surface waves traveling along interfaces. The term AMC is introduced
in the context of reflection from metamaterial surfaces. The necessary background required by the
nonexpert to follow is outlined. Subsequently, some common HIS are reviewed, with emphasis on
the first HIS that was proposed.

31.2.1 Electromagnetic Bandgap Surfaces

Interfaces between dielectric and/or metallic elements typically support waves, with fields that are to
a greater or lesser extend confined to the interface. This type of waves is often referred to as “surface
waves,” as they are typically bound to interfaces (these are an analogy to the optical surface plasmons
[]). In the limit case of a PEC in free space, the fields extend an infinite distance into space, and
therefore surface waves do not exist in the limit of infinite conductivity. Practical metallic surfaces
(free-standing or insulated by a thin dielectric slab) conduct finite AC currents and support surface
waves []. Similarly, interfaces between dielectrics with a contrast in the permittivity can be shown to
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support surface waves []. For a more detailed treatment on surface waves and their properties, the
reader is referred to [].

In the context of HIS, the properties of the surface waves can be found by assigning an equiv-
alent surface impedance []. Consider a surface characterized by an isotropic equivalent surface
impedance Zs and associated with unit vector n. For surface waves, according to the broad definition
of the surface impedance the following boundary condition is satisfied []:

Et = Zsn ×H (.)

where
Et is the tangential electric field
H is the magnetic field on the surface

The solution of Maxwell equations is typically obtained as two independent sets of solutions, namely,
transverse electric (TE) and transverse magnetic (TM) waves []. In the usual terminology, TE waves
have zero electric field in the direction of propagation, while TM waves have zero magnetic field in
the direction of propagation. For the sets of TE and TM waves, the surface impedance definition
above suggests that []:

TM waves ∶ Ex = ZsHy

TE waves ∶ Ey = −ZsHz

High value of the surface impedance (Zs → ∞) therefore implies that surface waves cannot propagate
along the surface, since the surface is approximated by an open circuit. Although smooth interfaces
between real materials typically support surface waves [], it is possible to suppress those within a
frequency band by introducing a periodic patterning and exploiting the EBG.

EBG materials represent a class of artificial periodic metamaterials that prohibit propagation of
electromagnetic waves within a particular frequency band. They have emerged as a direct microwave
analogue to PBG materials (photonic crystals) used in the optical regime [,], and were investi-
gated extensively in recent years with regard to applications in RF, microwave and millimeter-wave
frequencies (see also other chapters of this book). Like photonic crystals, EBG materials are in gen-
eral periodic arrangements. The larger scale of the wavelength and the reduced losses of metals allows
for more flexibility in the realization of microwave EBG structures, which often include metallic and
resonant elements in the unit cell (e.g., [,]). In the context of HIS, the EBG property refers to
two-dimensional (D) low profile periodic arrangements. EBG surfaces composed of periodic metal-
lic elements on dielectric substrates were studied [–] as an alternative to D photonic crystals
formed by inhomogeneities in a dielectric host medium. Extending the techniques used in the anal-
ysis of FSS arrays, dispersion curves of the propagation constant along the substrate’s surface can be
obtained, and hence the properties of the HIS can be examined for specific array geometries.

31.2.1.1 Leaky and Surface Waves

Traditionally, the term surface waves was used to describe waves bounded at the interface [,], with
field strength that decays exponentially away from it. These waves are characterized by tangential
wavenumbers larger than that of free-space plane waves and are therefore termed as slow waves,
since their phase velocity is less than the speed of light. However, it is also possible to excite “fast”
waves at an interface; those have wavenumbers less than that of free-space plane waves. In unshielded
environments, fast waves match the free-space plane wavenumber at a certain angle and hence they
radiate. Due to their property of “leaking” energy to free-space as they propagate along the surface,
these waves are also termed as leaky waves [,].

When discussing the surface waves along an interface and the EBG, a broad definition includes
bandgap for all TE and TM slow and fast waves. For several applications, such as component isolation
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(see Chapter  of Applications of Metamaterials), it can be justified to include suppression of leaky
waves as a requirement of a HIS, as these can indeed contribute toward unwanted coupling. However,
since leaky waves decay exponentially due to radiation, various authors refer to surface wave EBG
with a more strict definition of slow waves [].

31.2.1.2 Dispersion Diagrams

Dispersion diagrams associated with guiding structures are graphical representations of the
wavenumber variation with frequency. For free space, the dispersion is represented by a straight line
that obeys

k =
π f

c
(.)

where f is the frequency and c =  ×  m/s. This line, often referred to as “light line,” is known to
separate the (k, f ) plane into two semi-infinite planes of slow and fast waves. For guiding structures,
dispersion diagrams contain useful information regarding the properties of propagation.

According to the above, a HIS exhibits an EBG, i.e., a frequency range where no real solution satis-
fies Maxwell equations. EBGs are conveniently represented in dispersion diagrams []. Most of the
common HIS realizations involve D periodic arrays. For such structures, the Irreducible Brillouin
Zone (IBZ) (i.e., the range of wavenumbers that correspond to physically distinct waves—see also
discussion below) defines the unit cell in the reciprocal (wavenumber) space. A full characterization
of the surface waves along an infinite periodic structure involves mapping each point of the IBZ to its
corresponding frequency. Such a mapping is known as dispersion diagram. Bandgaps are identified as
those frequency bands that do not correspond to any real wavenumber solution (in the lossless case).
Although a complete dispersion characterization requires the mapping of all wavenumbers in the
IBZ, for HIS it is common to show the dispersion around the contour of the IBZ. In Section ....,
the terms BZ and the IBZ are discussed in some more detail.

.... Brillouin Zone and Irreducible Brillouin Zone
As mentioned above, for infinite periodic structures, all possible wavenumbers can be reduced to
values within the IBZ. Although a rigorous description of reciprocal lattices and definitions of the
BZ and IBZ are out of the scope (the reader is referred to e.g., []), in this section we provide an
illustration for the one-dimensional (D) case and some practical examples for the D case.

By definition, any periodic structure consists of an infinite arrangement of a minimum unit cell.
The fact that the arrangement is infinite and that all unit cells are identical, suggests that they are also
indistinguishable. This gives rise to the fact that electromagnetic fields are repeated at unit cell edges
apart from a phase shift. The electric field of a propagating wave in a lossless D structure, periodic
along z and with Dz being the length of the unit cell (periodicity), can therefore be written as

E (x , y, z + Dz) = e− jβDz ⋅ E (x , y, z) (.)

In Equation ., β is the wavenumber characteristic to the propagation within the periodic structure.
Note that for periodic structures the usual wave propagation term e jβz is meaningful only at discrete
points along z, at equal distances Dz . As a consequence of Equation ., the electric field in an infinite
periodic structure can be described by a solution of the form:

E (x , y, z) = e− jβz ⋅ Ep (x , y, z) (.)

where Ep is a periodic function of z with period Dz :

Ep (x , y, z + nDz) = Ep (x , y, z) (.)

for n integer. Mathematically this is known as the Floquet theorem [].
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According to this description, the value of the phase difference between the fields at the two edges
of a unit cell is obtained by βDz . This can always be reduced within the range [−π, π]. This limits the
possible values of the wavenumber to values in the range [−π/Dz , π/Dz]. For the D case employed
here as an example, this range represents the BZ corresponding to the periodicity Dz , which yields all
possible mathematically different values of the wavenumber corresponding to the periodic structure.
Hence all other wavenumber values relevant to the propagation within a periodic structure can be
reduced to values within the BZ. In other words, the BZ contains all physically distinct wavenumbers
for an infinite periodic structure.

The symmetry of the structure under consideration with respect to the ±z-axis suggests a fur-
ther reduction of the BZ while still maintaining all physically useful information; waves propagating
in the positive or negative z-direction (with wavenumbers ±β), apart from the different direction,
share identical characteristics. Hence all physical information included in the BZ [−π/Dz , π/Dz]
can be summarized in the range β ∈ [, π/Dz]. The IBZ is defined as the BZ reduced by all possible
symmetries.

The above can be generalized for the D periodic case. In the following, three practical examples
of a rectangular, a square, and a hexagonal lattice of the direct lattice are given. For each case, the
direct lattice, the reciprocal lattice, the BZ and IBZ as well as the light line around the contour of the
IBZ are presented (Figures . through .).
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FIGURE . Unit cell in the direct and reciprocal space and light line for a D periodic arrangement of linear dipoles
in a rectangular lattice.
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FIGURE . Unit cell in the direct and reciprocal space and light line for a D periodic arrangement in a hexagonal
lattice.

31.2.1.3 Experimental Testing of EBG

Several arrangements were reported in the literature for the experimental testing of D EBG struc-
tures. The target is to launch surface waves at one end of a (finite) surface and detect the relative field
strength at the other end. The levels of the signal strength at the receiving end vs. frequency typically
reveals the EBG frequency range. A complete characterization of surface waves typically requires two
different configurations, for TE and TM modes, respectively, as these two sets of surface waves modes
are typically orthogonal.
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(a) (b)
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FIGURE . Schematic representation for the excitation of (a) TE and (b) TM surface waves in order to identify the
associated EBGs. (From Sievenpiper, D., Lijun, Z., Broas, R.F., Alexopoulos, N.G., and Yablonovitch, E., IEEE Trans.
Microw. Theory Tech., (), , Nov. . With permission.)

FIGURE . Photograph of an experimental setup employed to identify EBG of HIS using a pair of horn antennas
and a tunnel formed by absorbers.

A setup suggested in [] is schematically represented in Figure .. A pair of short monopoles
is positioned at the two ends of the surface under test (SUT). Depending on the orientation of the
monopoles, TM and TE modes can selectively be excited and detected. TE modes require monopoles
parallel to the SUT, while for TM modes the monopole is normal to the surface.

Another configuration is based on introducing the SUT in a “tunnel” formed between absorbers
(Figure .). The tunnel is then illuminated by a horn antenna and another horn antenna in line with
the launching employed as detector. TE/TM bandgaps can be detected by rotating the antennas so
that the polarization is parallel/normal to the surface.
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31.2.2 Artificial Magnetic Conductor

Surfaces that fully reflect incident waves with a ○ reflection phase are referred to as a perfect mag-
netic conductors (PMC), due to this property being complementary to perfect electric conductor
(PEC). Since free magnetic charges are not known to exist in nature, there is not any material that
produces scattering properties that resemble those of a PMC. A complex layered structure that upon
illumination from an incident wave performing as an equivalent AMC was initially reported in [].
Apart from any thermal losses, this structure fully reflects incident waves with a ○ reflection phase.
In practice, the reflection phase of AMCs cross zero at just one frequency. It is a custom to define the
useful bandwidth of an AMC as the frequency range where incident waves are reflected with a phase
that varies between +○ and −○, since these phase values would not cause destructive interference
between direct and reflected waves [].

The obvious assumption that HIS has a low profile compared to the wavelength is clearly important
for AMCs. In practice, AMC is often realized as metallic periodic arrays printed on a grounded dielec-
tric substrate, with or without vias that connect the metallic elements to the ground plane [,,–].
For these structures, the above assumption suggests that the thickness of the dielectric slab is in
principle small compared to the wavelength. Moreover, it is interesting to note that the AMC effect
typically refers to reflection properties in the far field.

31.2.2.1 Reflection from an HIS

The reflection coefficient experienced when a guiding medium of characteristic impedance Z is
terminated at an impedance ZL is given by []

R = ZL − Z

ZL + Z
(.)

For high termination impedance (ZL → ∞), the reflection coefficient is +, i.e., the reflection phase
introduced by a very high impedance termination is identically zero for all frequencies. A more real-
istic model of a practical HIS suggests a dispersive (i.e., varying with frequency) impedance [,,].
Simple first-order approximation lumped element models for HIS [,] suggest that for frequencies
in the vicinity of the AMC operation the dispersion of the surface can be modeled by LC resonators.
A more accurate (semianalytical) approximation for the surface impedance of HIS consisting of peri-
odic metallic arrays in close proximity of a ground plane [] employs Foster’s theorem, which suggests
that for practical scenarios impedance zeros alternate with impedance poles. In both cases, it appears
that away from the frequency where a plane wave incident on a practical HIS experiences a high
impedance value, the surface exhibits low surface impedance for plane waves with the same properties
(polarization and incidence angle).

A typical reflection response by a practical HIS is given in Figure .. As shown in Figure .,
the AMC operation occurs exactly at a single frequency point. Note that in the ideal lossless case,
the reflection magnitude is identically equal to unity. In practical scenarios that include losses, some
energy is dissipated as ohmic and dielectric (thermal) losses and therefore the reflection coefficient is
less than . As will also be discussed in Section ., the resonant nature of the AMC effects suggests
the excitation of strong currents on the metallic elements and strong fields in the dielectrics. As a
result the reflection magnitude exhibits a local minimum at the AMC frequency. Similar to FSS [],
the reflection characteristics from a periodic metallic (or metallodielectric) array also vary with the
angle of incidence as well as the polarization. This is true also for practical AMC surfaces. In terms
of homogenized impedance, this suggests a variation of the impedance with the angle of incidence as
well as with the incidence polarization [,,]. In general, although the reflection phase curve from
the same HIS surface will always resemble that of Figure ., the center frequency and the bandwidth
will vary for different polarizations and/or angles of incidence.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

High-Impedance Surfaces 31-9

12
–180

–90

0

90

180

13 14 15
Frequency (GHz)

Simulation-phase
Measurement-phase
Magnitude

Ph
as

e (
de

g)

16 17 18
–20

M
ag

ni
tu

de
 (d

B)

–15

–10

–5

0

FIGURE . Typical reflection characteristics of a HIS. (From Feresidis, A.P., Goussetis, G., Wang, S., and
Vardaxoglou, J.C., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)

Min Max

FIGURE . Simulated distribution of the E-field tangential to the side walls for the first-order resonance of a cavity
formed between two metal surfaces (left) a metal surface and a practical AMC surface (right).

A practical illustration of the effect of an AMC is shown in Figure . depicting the distribution
of the electric field tangential to the parallel plates of a D resonant cavity for the first-order resonant
mode. For a resonator formed between two infinite metallic parallel plates, the tangential electric field
is zero at the metallic surfaces (assuming no ohmic losses) and maximum in the center following a
sinusoidal distribution. This is shown in the left of Figure .. Basic electromagnetic theory predicts
that a magnetic conductor along the symmetry plane, where the tangential electric field is maximum,
would not affect the resonant characteristics, i.e., the field distribution or the resonant frequency.
Figure . on the right shows full-wave results [] of the field distribution for a cavity with half the
profile, where one of the two metal side walls was substituted by a practical AMC surface that consists
of square patch array []. The latter is designed to reflect with zero phase at the resonant frequency.
The reduced profile of the cavity (for the same resonant frequency) as well as the field distribution
shown in Figure . illustrate in practice the performance of AMCs.
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.... Grating Lobes
The interaction of electromagnetic waves with periodic arrangements is conveniently modeled,
expanding the fields in a finite truncation of the complete set of Floquet space harmonics [,].
The free-space TEM wave corresponds to the fundamental zeroth-order Floquet space harmonic.
Higher-order harmonics have larger wavenumber components tangential to the periodic surface,
and therefore have reduced phase velocity along the surface. For far-field incidence, only a free-space
TEM wave with phase velocity equal to the speed of light needs to be considered and therefore typi-
cally the incidence can be expressed as the fundamental zeroth-order harmonic. However, rigorous
modeling requires that in the vicinity of the array higher-order harmonics are considered. For lower
frequencies, all the associated higher-order harmonics are slow waves. In this regime, they are surface
waves confined to the surface and decay exponentially away from it. This is translated into imaginary
values of the propagation constant normal to the surface and imaginary reflection angles. In this case,
while a rigorous full-wave treatment requires consideration of higher-order harmonics in the vicinity
of the array, in the far field they are typically ignored.

With increasing frequency, it is possible that some higher-order space harmonics become fast
waves along the plane of the array (although still “slower” than the zeroth-order), i.e., their tangential
wavenumber is less than the TEM wavenumber in free space (although still larger than the tangen-
tial wavenumber of the zeroth-order). These harmonics, could then “match” a free-space wave and
they become propagating away from the surface. Simple wavenumber matching [] suggests that in
this case they will appear in the far field at an angle different from the zeroth-order harmonic, i.e.,
at an angle different from the reflection of the incidence. As a result, the magnitude of the reflec-
tion coefficient at the angle of incidence will be less than unity even in the lossless case, since some
energy is directed at different angles. In the FSS literature, the reflection lobes produced by radiating
higher-order Floquet harmonics are known as “grating lobes.” It is out of the scope of this chapter
to expand further on this topic, which is well covered in the literature of FSS [] and phased arrays
antennas []. Attention of the reader is drawn to the fact that for increasing frequency, most HIS
(which involve D periodic structures) will produce grating lobes. Grating lobes are often unwanted
in this context, and avoiding those is then another design consideration.

.... TE and TM Polarization
In referring to the polarization of the wave incident to the HIS, a common terminology involves the
use of two orthogonal sets, the TE and TM polarizations. These abbreviations for transverse electric
and transverse magnetic refer to the polarization of the wave with respect to the surface. Hence, the
TE wave incidence has zero electric field component normal to the surface, while the TM incidence
has a zero magnetic field components normal to the surface. Any plane wave incident to a surface can
be decomposed into a TE and a TM component. A graphical example of the TE and TM incidence
on dipole HIS is shown in Figure ..

31.2.2.2 Experimental Testing of AMC

The experimental validation of the AMC property involves measuring the reflection phase of inci-
dent waves from the surface. According to the previous discussion, the reflection phase from practical
HIS varies with the angle as well as the polarization of the incident wave. This implies that the mea-
surement of the AMC property is made in the far-field (ensuring plane-wave incidence) and for
well-defined polarization as well as angle of incidence.

Another implied fact when considering reflection from an HIS is related to the reference plane
where reflection is considered to take place. While physical interfaces between materials can indeed
be assumed planar, HIS are complex surfaces with a finite profile. The surface approximation of prac-
tical HIS suggests that the profile is typically low compared to the wavelength. Nevertheless, the
wave experiences a phase shift as it propagates through the finite height of the HIS and therefore
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FIGURE . Example of TE and TM incidence on an HIS consisting of a periodic dipole array. (From Maci, S.,
Caiazzo, M., Cucini, A., and Casaletti, M., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)

FIGURE . Experimental setup for testing the AMC performance.

the reflection phase in the far field depends on the reflection reference plane; the dependence is
stronger for HIS involving thicker dielectric substrates.

The most generic technique for experimentally assessing the AMC operation of HIS involves a
setup graphically depicted in Figure .. Two antennas point at the SUT at an equal angle either
side from the normal. The experimental measurement is set up within an anechoic environment
in order to avoid unwanted noise. One antenna acts as a transmitter, while the other as a receiver.
The antennas are located at sufficient distance from the SUT, so that the latter interacts only with
the far field. Horn antennas are often preferred since they are simple solutions offering directive
beams as well as polarization purity. The antennas are connected to the two-ports of a vector network
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analyzer. The experiment is based on measuring the complex S between the two ports, which is an
indication of the reflection from the SUT. In order to normalize for the phase shift undergone along
the path from the antennas to the SUT and back, an identical measurement is taken where the SUT
is substituted by a flat metal surface. The reflection phase and magnitude from the SUT can then be
obtained by normalizing the two measurements, assuming that the reflection from the solid metal
plane is −.

An alternative method for measuring the reflection from a HIS that involves a waveguide ter-
minated at the SUT was reported []. The procedure is essentially the same: the other end of the
waveguide is connected to a VNA port and the reflection (as obtained from an S measurement)
is normalized with a reference involving an identical measurement with a metal plane termination.
While this method ensures an anechoic environment and is accurate, it is somehow limited in the
range of polarizations and incident angles of the incoming plane wave. For the case of the usual rect-
angular waveguides operating in the fundamental mode, this technique yields the reflection for TE
waves at angles that are specified by the frequency and the wavenumber [].

31.2.3 Sievenpiper (Mushroom) Structure

HIS were first introduced by D. Sievenpiper et al. in  in UCLA [], where a so-called “mushroom”
type structure was proposed. The impetus behind this work was to realize an artificial metallic surface
that, unlike normal conductors, would reflect incident waves with zero phase shift and, at the same
time, it would stop propagation of surface waves within a forbidden frequency band. Thus, the surface
would behave as an effective magnetic conductor, with vanishing tangential magnetic field and very
large impedance values according to Equation ..

The cross section of the mushroom structure is shown in Figure .. Metallic patches are printed
on a dielectric substrate backed by a metallic ground. The patches are connected to the ground with
vertical metallic posts or so-called vias in PCB technology. Figure . shows a perspective view of
the “mushroom-type” HIS with square shaped metallic patches. Similar implementations were also
presented using hexagonal metallic patches on a triangular lattice [].

31.2.3.1 Reflection Properties

Upon plane-wave incidence, the mushroom-type HIS exhibits an AMC response. It is interesting to
note that, assuming normal plane-wave incidence, the vertical vias do not affect the reflection phase
response. A simple analytical model that was used initially as a rough approximation describes the
structure as an effective parallel LC-circuit and is shown in Figure .. In this model, the inductance
L is associated with the current flowing between two successive mushrooms, while the capacitance
C is associated with the fields polarized between two successive patches.

FIGURE . Cross-section and bird’s eye view of the first HIS proposed by Sievenpiper et al. (Sievenpiper, D., Lijun,
Z., Broas, R.F., Alexopoulos, N.G., and Yablonovitch, E., IEEE Trans. Microw. Theory Tech., (), , Nov. .
With permission.)
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FIGURE . Schematic representation of the current induced in the mushroom HIS and equivalent circuit.
(Sievenpiper, D., Lijun, Z., Broas, R.F., Alexopoulos, N.G., and Yablonovitch, E., IEEE Trans. Microw. Theory Tech.,
(), , Nov. . With permission.)
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FIGURE . Equivalent surface impedance and reflection phase for the HIS of Figure . calculated by the equiv-
alent circuit of Figure .. (From Sievenpiper, D., Lijun, Z., Broas, R.F., Alexopoulos, N.G., and Yablonovitch, E., IEEE
Trans. Microw. Theory Tech., (), , Nov. . With permission.)

According to this model, the impedance of the surface can be approximated by the impedance of
the parallel LC-circuit, consisting of the sheet capacitance (C) and sheet inductance (L):

Z = jωL
 − ωLC

(.)

L and C can be calculated using quasistatic approximations and well-known analytical formulas,
depending on the geometries and dimensions of the structure []. The surface impedance varies
as shown in Figure .a, with a resonance frequency of ωo = /

√
LC. At resonance the impedance

becomes infinite, thus approximating the infinite impedance of a HIS, which in turn corresponds
to a ○ reflection coefficient (Figure .b). At lower frequencies the impedance is inductive and at
higher frequencies it is capacitive.

31.2.3.2 Band Structure

The dispersion diagram for the mushroom structure demonstrated in [] is reproduced in
Figure .a. Full-wave finite element method was used to obtain the dispersion diagram. The D
EBG for bounded surface waves is marked with grey. Note that this is an absolute bandgap, i.e., for
all polarizations (TE and TM) and all directions of propagation (leaky wave modes are excluded).
In particular, the highlighted EBG region lies below the first-order TE surface mode and above the
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FIGURE . (a) Dispersion diagram of the mushroom structure proposed by [] (From Sievenpiper, D., Lijun, Z.,
Broas, R.F., Alexopoulos, N.G., and Yablonovitch, E., IEEE Trans. Microw. Theory Tech., (), , Nov. .
With permission.). (b) Dispersion diagram for the same structure in the absence of vias. (From Sievenpiper, D.,
High-impedance electromagnetic surfaces, PhD thesis, UCLA, Los Angeles, CA,  (available online at
http://www.ee.ucla.edu/ labs/photon/thesis/ThesisDan.pdf).)

first-order TM mode (the identification of the modes is not evident from this figure but can be done
either by observing the fields in a full-wave simulator or experimentally as discussed above). It is
interesting to note that although the printed square patch array is responsible for the EBG of the TE
modes, the TM bandgap occurs as a result of the vertical vias. This is evident in Figure .b, showing
the dispersion diagram of the same structure in the absence of vias. As shown the low frequency TM
bandgap disappears in the absence of the vias.

The above can be illustrated using the equivalent circuit of Figure .. At low frequencies, the
surface impedance is inductive and therefore a fundamental TM mode is supported with zero cut-
off frequency and follows the light line []. When the periodic HIS structure starts resonating, an
additional TM backward wave is supported. As the frequency increases, the two TM modes (forward
and backward) intersect and coupling of fields with opposite directions occurs resulting in a stop
band, which is referred to here as a bandgap [].

The lowest TE mode has a cut-off (it is not supported at lower frequencies where the surface
impedance is inductive []), which corresponds to the resonant frequency of the structure (see pre-
vious section). At this point, TE standing waves are excited, oscillating across the surface at the LC
resonant frequency. Increasing the frequency, the TE mode behaves as a leaky wave with increas-
ing phase constant and finally crosses the light line at which point it becomes a bounded surface
wave. Since the E-field has no vertical component for TE modes, this mode remains largely unaf-
fected by the presence of the vertical vias. Therefore, the fundamental TE mode is essentially the TE
mode supported by the proposed structure without the vertical conducting posts, as it is shown in
Figure .b.

31.2.3.3 Measured Performance

The measured performance of a HIS consisting of a triangular array of hexagonal patches connected
to the ground plane with vertical vias was obtained using the measurement set-up described in Sec-
tion .... The HIS has a periodicity of . mm and a gap of . mm between the patches. The
thickness of the board is . mm, and the dielectric constant is . []. The bandgap is evident in the
two measurements of Figure ., showing both TM and TE surface wave transmission responses.
The bandgap is measured between the TM band edge at approximately  GHz and the TE band edge
at approximately  GHz. The reflection phase for normal plane wave incidence (Figure .) crosses
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FIGURE . Measured reflection coefficient. (From Sievenpiper, D., Lijun, Z., Broas, R.F., Alexopoulos, N.G., and
Yablonovitch, E., IEEE Trans. Microw. Theory Tech., (), , Nov. . With permission.)

zero at the resonant frequency of the structure. Within the range of phase values π/ and −π/,
plane waves are reflected in-phase rather than out-of-phase. This range coincides with the measured
TM/TE surface-wave bandgap, with the TM and TE band edges falling approximately at the points
where the phase crosses through π/ and −π/, respectively.

31.2.4 Uniplanar HIS

Grounding vias complicate the fabrication of AMC surfaces, particularly at upper microwave and
millimeter-wave frequencies. In order to simplify the fabrication, several research groups have
worked on implementing AMC surfaces without vias in a completely planar (also mentioned as “uni-
planar”) configuration [,,,,]. These structures are essentially periodic FSS [], printed on
grounded dielectric slabs. The first uniplanar HIS was reported in []. The authors termed this sur-
face as uniplanar compact photonic bandgap (UCPBG). A schematic layout of the UCPBG structure
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(a) (b)

FIGURE . (a) Schematic representation of the uniplanar compact photonic band gap (UCPBG) proposed by
Fei-Ran et al. [] (From Fei-Ran, Y., Kuang-Ping, M., Yongxi, Q., and Itoh, T., IEEE Trans. Microw. Theory Tech., (),
, Aug. . With permission) (b) Schematic representation a uniplanar HIS involving an array of conducting
elements. (From Goussetis, G., Feresidis, A.P., and Vardaxoglou, J.C., IEEE Trans. Antennas Propag., (), , Jan.
. With permission.)

is shown in Figure .a. Essentially, this is a periodic array of apertures shaped in Jerusalem crosses
on a conducting metal sheet [], printed on a grounded dielectric slab. The reflection phase proper-
ties as well as the dispersion diagram of the UCPBG are reported in [] and [], respectively. Other
authors [,,] have suggested periodic arrays of conducing elements, such as the square patch array
shown in Figure .b.

It is important to note that the presence of vias in this mushroom-type structure imposes an
electromagnetic bandgap at the same frequency range as the AMC property. In other words, the
mushroom structure exhibits high surface impedance for both normally incident and surface waves
at the same frequency band. Hence, it reflects a normally incident plane wave with zero phase shift,
therefore behaving as an AMC, and at the same frequency does not support surface waves, therefore
behaving as an EBG. In studies reported in [,], it was demonstrated that in the absence of vias, the
EBG does not normally coincide with the AMC frequency band. This can deteriorate the benefits of
AMC surfaces in certain applications, where surface wave suppression is advantageous.

31.3 HIS: Operating Principles and Physical Insight

In this section the physical phenomena and the mechanisms underlying HIS operation are discussed.
The discussion is limited for HIS without vias (uniplanar). For the case of HIS with vias, the reader is
referred to the discussion in the previous section as well as to []. Initially a resonant cavity model
based on ray optics is presented [], which gives insight into the AMC operation of HIS. Subse-
quently, the resonant phenomena occurring in uniplanar HIS are studied in detail [] using full-wave
simulations and the AMC and EBG operation are discussed.

31.3.1 Doubly Periodic Metallic Arrays (FSS)

Although a rigorous treatment of doubly periodic arrays of either conducting electrically isolated
elements or perforated apertures in a conducing sheet is out of the scope of this chapter, those features
required in the following discussions are presented for completeness. Such structures were extensively
studied in the context of FSS and the reader is referred to the relevant literature for an in-depth
analysis (e.g., [,]).

The transmission and reflection response (in the far-field) of doubly periodic planar arrays of elec-
trically isolated conducting elements excited by incident plane waves in general resemble the one
depicted in Figure .a. This is a generic response; in practice, the transmission and reflection
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FIGURE . Generalized transmission and reflection response for (a) capacitive array of conducting elements and
(b) inductive array of perforated apertures. The insets show simple LC circuits that produce a similar response as well
as examples of unit cells for linear polarization (also shown).

are dependent on the geometry, angle of incidence, polarization and as mentioned above will also
produce grating lobes. However the general features are evident. Doubly periodic arrays of con-
ducting elements in general are characterized by a resonant frequency, at which they perform as
conducting sheets. In the vicinity of the resonance, they perform as partially reflective screens (PRS),
with associated transmission and reflection magnitude and phase characteristics. This response is
similar to that of a series LC resonator in shunt, as shown in the inset of Figure .a. For frequen-
cies below the resonance, they have predominantly capacitive characteristics, and therefore this type
of arrays are also referred to as capacitive screens. An example of a capacitive screen is a dipole array,
with two unit cells shown in the inset of Figure .a together with the required polarization of the
incident field.

The dual structure of the dipole array is that of dipole slots perforated in an all-metal sheet. The
unit cell is shown in the inset of Figure .b together with the required polarization of the incident
field. Duality suggests that this structure will share similar characteristics but, instead of a bandstop
response, will produce a bandpass response. At resonance, doubly periodic arrays of perforated slots
in all-metal surfaces are transparent to incident plane waves. Their far-field response shares the char-
acteristics of a shunt LC resonator in shunt topology as shown in Figure .b. As before, this is
just a generic response. The response of practical arrays will vary with incidence angle, polarization,
element geometry, and lattice and will also produce grating lobes above a certain frequency.

31.3.2 Resonant Cavity Model for AMC Operation

In order to get physical insight into the mechanisms underlying the AMC operation, a simple ray
optic model can be employed. This model assumes an AMC consisting of a D periodic array printed
on a grounded dielectric slab. Consider the case where a radiating source is placed in free space
and adjacent to the periodic array (Figure .). The periodic array in the absence of the ground
plane is essentially a FSS []. Incident plane waves on the array are partially reflected and partially
transmitted with an associated phase shift []. In this context, the periodic array is termed as PRS.
Following the paths of the direct and the reflected waves and taking into account the various phase
shifts introduced to them, the resonance condition of the cavity formed between the periodic array
and the ground plane can be easily derived. The PEC introduces a phase shift of π. The PRS introduces
a phase shift equal to the phase of its transmission coefficient, φT. If φ − φ is the phase difference
between direct and reflected waves, the resonance condition is written as follows:

ϕ − ϕ = ϕT −
π
λ

S − π = Nπ, N = , ,  . . . (.)
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FIGURE . Resonant cavity model for AMC operation: schematic representation of the cross section of an HIS
consisting of a periodic array in proximity to an all-metal ground plane. (From Feresidis, A.P., Goussetis, G., Wang, S.,
and Vardaxoglou, J.C., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)

where S is the distance between the PRS and the PEC ground plane. This resonant cavity behaves
as a PMC (at normal incidence) since it reflects normal incident waves with zero phase shift. Con-
sequently, placing a simple point source in close proximity to the PRS would result in constructive
interference between direct and reflected waves at the cavity resonance. According to this ray model,
a cavity formed by a PEC and a PRS and having external excitation, performs as an AMC when the
resonance condition (Equation .) is met. Hence, considering Equation . as the condition for
AMC operation (assuming normal incidence), a relationship between the transmission phase of the
PRS, the substrate thickness, and the center (or PMC) operating frequency is obtained.

The relation between the PRS characteristics and the functioning of the AMC cavity is demon-
strated by means of an example which shows that two different periodic arrays having same reflection
and transmission characteristics at frequency f are interchangeable in an AMC cavity that operates
at f. Figure .a shows the reflection coefficient (magnitude and phase) of two periodic arrays of
square patches. The geometries of the two arrays are L = . mm, D = . mm for the first screen
named PRS and L = . mm, D = . mm for the second screen named PRS, where L and
D is the length of the square patch element and the square unit cell, respectively. PRS resonates
(i.e., is fully reflective) at . GHz and PRS at . GHz. The reflectivity and transmission phase at
. GHz is identical for the two screens. Figure .b shows the full-wave simulation results for two
AMC cavities of the same thickness S employing PRS and PRS, respectively. The thickness S was
determined from Equation . so that the AMC cavities operate at . GHz. In order to have good
agreement between the ray model and the full-wave results, we are working at the second (N = )
rather than the first (N = ) resonant mode of the cavity (see Equation .). As predicted by the ray
model, the full-wave AMC responses are centered at the same frequency . GHz, where the trans-
mission phase values are common. For different cavity thickness, each PRS results in different AMC
center frequency.

It is worth noting that according to Equation ., the second resonant mode of the AMC cavity
lies at a frequency approximately three times that of the first resonant mode. Thus, the resonant cavity
model provides a new explanation for the large separation between the first and second AMC fre-
quencies of grounded square patch arrays that was also studied in []. Moreover, the low reflection
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FIGURE . (a) Simulated transmission magnitude and phase for two different free-standing periodic arrays
PRS and PRS (b) AMC reflection responses for same cavity with PRS and PRS, respectively. (From Feresidis, A.P.,
Goussetis, G., Wang, S., and Vardaxoglou, J.C., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)

magnitude observed at the second AMC frequency can be explained by the fact that for increasing
N the side lobes of the resonant cavity radiation pattern increase, as described in [,].

31.3.3 Resonance Phenomena in Uniplanar HIS

In this section, we investigate the resonant phenomena occurring in uniplanar HIS, and in particular,
in a surface comprising of a doubly periodic array of metallic elements in proximity to a ground plane
[]. The investigation is largely based on studying the currents excited on the metallic elements of the
array. The discussion commences with the resonant phenomena of a free-standing periodic array (i.e.,
in the absence of ground plane) upon illumination with a normally incident plane wave. Capacitive
arrays (i.e., arrays of electrically isolated conducting elements) of course require a dielectric substrate
to support them. However in the following discussion and in order to maintain simplicity, the array is
considered free-standing in vacuum, illuminated by a normally incident plane wave while no ohmic
losses are assumed. Having obtained insight from the free-standing case, we proceed to study the
physics in a similar scenario but when the array is in proximity to a ground plane. The outcome of
this study is in good agreement with the resonant cavity model presented above. Finally the AMC
and EBG effects of uniplanar HIS are discussed in relation to the resonant phenomena observed.

31.3.3.1 Free-Standing Doubly Periodic Array of Metallic Elements

Free-standing doubly periodic arrays of metallic elements were studied for many years in the context
of FSS and their behavior is well understood []. The incident polarization is assumed to be suitable
to excite the metallic elements—i.e., in the case of linear dipole elements the electric field to have a
component parallel to the direction of the dipoles. It is well known that for incidence at the resonant
frequency of the array, the latter performs as a fully metalized screen; incident waves are fully reflected
with a phase reversal []. Moreover, at resonance the current is in phase with the incident field, i.e.,
the impedance seen by the incident wave is purely ohmic (real), since the capacitive and inductive
parts cancel out. In addition, a maximum current magnitude is excited on the elements.

The above are briefly demonstrated here by means of an example based on a free-standing square
patch (of length . mm) array arranged in a square lattice (periodicity . mm). Full wave simulation
results are obtained using a Floquet modal analysis of the unit cell, which leads to the formulation
of an integral equation (IE) and its solution using Galerkin method of moments (MoM) []. The
method was extensively described in the literature and is known to be a fast and accurate technique for
the characterization of such structures. Figure .a shows the transmission and reflection response
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FIGURE . Plane wave normally incident on free-standing square patch (of edge length . mm) array with peri-
odicity . mm: (a) transmission and reflection response and (b) currents excited on the elements. (From Goussetis,
G., Feresidis, A.P., and Vardaxoglou, J.C., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)

of the capacitive FSS illuminated with a normally incident plane wave. Figure .b shows the mag-
nitude and phase of the currents excited on the elements, assuming incident field of magnitude  V/m.
The array resonance occurs at . GHz, where the current phase is ○.

31.3.3.2 FSS in Proximity to a Ground Plane

For periodic arrays in close proximity to a ground plane some subtle differences emerge. Due to the
ground plane, incident waves are fully reflected at all frequencies. However in this type of structure,
careful investigation reveals that two distinct resonant phenomena occur for a normally incident
wave. In the following, we assume a free-standing array in proximity to an all-metal ground plane
illuminated as above by a normally incident wave.

As above, we can identify the array resonance at the frequency where the currents excited on the
array are in phase with the incident wave (i.e., zero current phase). At this frequency, the incident
wave is reflected from the periodic array with a phase reverse, as in the case of the free-standing
array resonance. However, it can be found that there also occurs a Fabry–Perot type of resonance
at the cavity formed between the ground plane and the array [,,]. The Fabry–Perot resonance
occurs at frequencies different from the array resonance. This strong cavity-type resonance excites
maximum currents on the elements (which in general are out of phase with the incident wave) and
the incident wave is reflected with a zero phase shift.

These resonance phenomena are demonstrated by means of an example. The periodic array of
Figure . is considered at distance . mm from an infinite ground plane. The structure is initially
illuminated with a normally incident plane wave of amplitude  V/m. Figure . shows the reflection
phase of the normally incident plane wave and the excited current (magnitude and phase) on the
elements. As in the free-standing case, the array resonance is identified by the zero current phase. This
resonance shares the same characteristics with the resonance of the free-standing case. It occurs at
the same frequency and the currents excited are of equal magnitude and phase to the current excited
in the free-standing case (Figure .b). However at around . GHz the Fabry–Perot resonance
occurs, indicated by the nearly maximum current magnitude excited on the elements. The current
phase however is not zero but around ○, i.e., a capacitive phase of the periodic array is observed []
indicating that the array itself is not at resonance. The normally incident wave “sees” a high surface
impedance (open circuit) and is reflected with zero reflection phase.

As the angle of the TE incident plane wave moves from normal to grazing incidence, the frequency
characteristics of the two resonances (Fabry–Perot and array resonance) vary. Figure .a shows
the reflection phase response of the structure of Figure . as the incident angle varies from ○
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FIGURE . Dispersion relation for the array of Figure .. (From Goussetis, G., Feresidis, A.P., and Vardax-
oglou, J.C., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)

(close to normal incidence) to .○ (almost surface wave). The current phase and magnitude are
shown in Figure .b and c, respectively. Note that while the Fabry–Perot resonant frequency (and
the AMC operation) remains nearly constant due to the periodicity being small compare to the wave-
length (see Section ... and []), the array resonance shifts to significantly lower frequencies. At
○ incidence, the plane wave response is not a valid description any more. Instead the structure
is characterized by the dispersion relation of surface waves along the contour of the BZ, shown in
Figure .. The MoM formulation for the derivation of the dispersion diagrams is similar as for
normal incidence, only now the excitation is set to zero, the tangential wavenumbers are set to cor-
respond to a particular point on the x-axis of the dispersion diagram and the eigen frequencies are
specified so that the homogenous problem accepts real solutions []. A TE bandgap emerges along
the ΓX direction at about . GHz. This frequency corresponds with a very good accuracy to the
frequency where the array resonates for .○ incidence (zero current phase in Figure .b). This
is a good indication that the array resonance is the underlying physical mechanism of the EBG.

Further validation for the resonant cavity model for AMC operation comes by considering the
effect of increasing the substrate thickness. Indeed the resonant cavity model predicts that thicker
substrates (i.e., larger distance between the PRS and the all-metal ground plane) produce larger cav-
ities that resonate at lower frequencies. This is indeed validated by numerical results []. These are
presented in Section ... and Figure ..

31.3.3.3 AMC and EBG Operation

Based on the above study, we can now relate each of the AMC and EBG properties with one of the
two distinct resonant phenomena observed. The AMC operation emerges by virtue of the resonance
of the cavity formed between the periodic array and the ground plane. To a ray optics approximation,
the cavity resonance critically depends on the thickness of the cavity and the value of the transmission
phase ϕT provided by the periodic array, according to the following resonance condition:

ϕT = kz ⋅ S − (N + ) ⋅ π


, N = , ,  . . . (.)

where kz is the propagation constant along the normal to the surfaces. Equation . is derived from
ray optics, and hence is more accurate for the higher values of N (N ≥ ) but the basic physics is the
same for a thin AMC (N = ).
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The EBG emerges as a result of the array resonance and the array periodicity. The surface waves in
a periodic structure below the bandgap are a superposition of traveling and standing waves []. At
the lower EBG cutoff frequency, the half-guided wavelength becomes equal to the periodicity and a
standing wave is formed. Successive elements are, in this case, out of phase and a bandgap emerges.
At the higher cutoff of the bandgap, there is a similar standing wave, only now the spatial locations
of energy maximums and nulls are interchanged. The upper cutoff frequency is typically defined by
the periodicity of the lattice. The EBG bandwidth occurs due to the variation of the spatial location
of energy concentration in these two limit cases.

31.4 Analysis Techniques

The analysis of HIS refers to ways of modeling the interaction of electromagnetic properties of those
structures. Analytical techniques were reported in order to produce the equivalent impedance of
a periodic surface (e.g., [,,,,]). Alternatively, semianalytical methods were reported, which
are based on extraction, interpolation, and analytical extrapolation of the impedance (admittance) of
doubly periodic surfaces []. The technique is based on approximation of the impedance (admittance)
function as a rational function, whereby the problem reduces to the estimation of its poles and zeros.
The most rigorous (and usually computationally intensive) family of techniques are rigorous full-
wave techniques. Following a simple ray-optics model for the AMC operation proposed in [], this
section presents an overview of these methods.

31.4.1 Analytical Methods

Here we present a summary of analytical expressions describing the interaction of a plane wave with
dense doubly periodic arrays printed on a thin grounded dielectric slab. The interaction with an
incident plane wave (that produces an effective AMC) and the propagation of surface waves (that
yields an EBG) is treated separately in the following.

31.4.1.1 Analytical Models: Incident Plane Wave (AMC)

Analytical techniques can be applied to model the reflection of incident plane waves from a variety
of printed HIS structures. The technique is based on extracting an equivalent surface for the HIS,
which allows transforming the rigorous electromagnetic problem into a circuit problem. The model
is based on the full-wave solution of a scattering problem in the quasistatic limit, and enables one
to accurately capture the physics of plane-wave interaction with HIS structures by modeling a single
unit cell of a periodic grid with a single Floquet mode. It is based on the homogenization of grid
impedance in terms of effective inductance and capacitance obtained from the averaged impedance
boundary condition.

Specific examples for an array of printed patches and Jerusalem crosses will be considered to
demonstrate a methodology for analytical modeling. The geometry of an HIS structure realized by
an array of D periodic printed patches on a grounded dielectric slab with an obliquely incident uni-
form plane wave is shown in Figure .a. The parameters of the grid (Figure .b) are such that
the grid period is much smaller than the effective wavelength (described below) and strip width is
much smaller than the grid period. These constraints are critical in the design of dense HIS structures
with desired characteristics (wideband response of the reflection phase and stable resonance proper-
ties for oblique incidence) and at the same time enable to homogenize the grid surface impedance in
terms of effective circuit parameters with the application of transmission line network schematically
shown in Figure ..
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FIGURE . (a) Geometry of HIS structure realized by an array of D periodic patches printed on a grounded
dielectric slab with an obliquely incident uniform plane wave. A plane of incidence is shown, where k is the wave vector
in the propagating direction and θ is the angle of incidence; (b) FSS grid of printed patches. All dimensions are in mm:
D = , w = ., and h = . Permittivity of substrate is ..
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FIGURE . Transmission line network analysis of HIS structure characterized by surface impedance Zs obtained
as a parallel connection of grid impedance Zg and grounded dielectric slab impedance Zd. Here, η is the characteristic
impedance of free space.

Following the formalism presented in [,], the HIS surface impedance Zs is obtained as a parallel
connection of grid impedance Zg and grounded dielectric slab impedance Zd,

Zs =
ZgZd

Zg + Zd
(.)

resulting in the parallel resonance condition, Zd + Zg = . In the lossless case, this condition sug-
gests a capacitive nature of the grid in order to compensate an inductive impedance of the grounded
dielectric slab leading to a high surface impedanceZs.

For obliquely incident TE-polarized plane wave, the impedance of the grounded dielectric slab Zd
is obtained as [],

ZTE
d (ω, θ) = jη√

εr − sinθ
tan (kndh) (.)

and for an obliquely incident TM-polarized plane wave,

ZTM
d (ω, θ) = jη√

εr − sin θ
tan (kndh)( − sin θ

εr
) (.)
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where knd = ω√εμ

√
εr − sin θ is the wavenumber in the dielectric slab in the normal direction.

The reflection coefficients of the TE and TM-polarized obliquely incident plane waves are obtained
from an equivalent transmission line model (Figure .), as follows []:

ΓTE = ZTE
s cos θ − η

ZTE
s cos θ + η

, ΓTM = ZTM
s − η cos θ

ZTM
s + η cos θ

.

Below we present a summary of expressions for grid impedance Zg of an array of printed patches and
Jerusalem crosses, which are obtained in the quasistatic limit of full-wave scattering problems via
the averaged impedance boundary condition and expressed in terms of effective circuit parameters
(inductance and capacitance) as homogenized surface grid impedance.

.... Array of Printed Patches
The expressions of homogenized grid impedance of the patch array on the air–dielectric interface
are obtained by first considering the strip mesh with square holes and then applying the approximate
Babinet principle [], resulting in the capacitive grid impedance of the complementary structure (i.e.,
array of patches) [],

ZTM
g = − j

ηeff

α
ZTE

g = − j
ηeff

α ( − 
 (

kz
keff
)


)

(.)

where ηeff = η/
√

εeff , εeff = (εr + ) /, keff = k
√

εeff , kz = k sin (θ), and α is the grid parameter
of an electrically dense array of ideally conducting strips (with the period much smaller than the
effective wavelength)

α = keff D
π

ln(csc(πw
D
)) (.)

Here, D is the period of patch array and w is the gap width, such that w << D [].
The self-resonant grid model agrees very well with the full-wave analysis for normal and oblique

incidence for both the TE and TM polarizations of plane waves. The results for the reflection phase of
printed patch HIS structure (with geometry and dimensions shown in Figure .) with the TE and
TM-polarized oblique plane-wave excitation are shown in Figures . and ., respectively, and
compared with those generated by the full-wave commercial software program (EMPiCASSO [])
showing a good agreement in a wide frequency band (in [] the behavior of reflection phase with
respect to the angle of incidence is also compared with Ansoft HFSS [], Fourier modal method,
and the MoM showing a good agreement).

.... Array of Printed Jerusalem Crosses
The geometry of an HIS structure realized by the D periodic printed Jerusalem cross FSS is shown
in Figure .. The grid impedance of the series resonance grid is obtained in terms of an effec-
tive inductance Lg and effective capacitance Cg, and for TM and TE-polarized oblique plane-wave
excitation is given by

ZTM
g = jωLg ( − ( kz

keff
)



) + 
jωCg

ZTE
g = jωLg +


jωCg

(.)

where the inductance is that of the strip grid of period D and strip width w (w << D) [],

Lg =
ηeff α
ω

(.)
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FIGURE . Comparison between the analytical and full-wave results for the reflection phase of printed patch
HIS structure with the TE-polarized oblique plane wave excitation: (a) analytical results and (b) simulation results
(EMPiCASSO []).

Here, α is the grid parameter given by Equation ., and ηeff , εeff , keff are the parameters of the
effective medium described above.

The effective capacitance between Jerusalem crosses was derived in [] in the solution of scattering
from a thin capacitive diaphragm in rectangular waveguide,

Cg =
εεrd

π
(ln cosec( πg

D
) + F) (.)

where F = Qu/ ( + Q ( − u)) + (du (u − ) /λ) , Q =
√

 − (d/λ), u = cos (πg/d),
λ = π/k

Figures . and . demonstrate the analytical and full-wave results for the reflection phase of
Jerusalem cross HIS structure (with geometry and dimensions shown in Figure .) with the TE
and TM-polarized oblique plane-wave excitation. It can be seen that analytical results agree well with
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FIGURE . (a) Geometry of D periodic Jerusalem cross HIS structure printed on a grounded dielectric slab;
(b) FSS grid of printed Jerusalem crosses. All dimensions are in mm: g = ., d = ., t = w = ., D = , and h = .
Permittivity of substrate is ..

the full-wave results obtained by commercial software EMPiCASSO [] for a wide range of variation
of incidence angle within the frequency band of interest.

It should be noted that the frequency bandwidth of the printed patch and Jerusalem cross HIS
structures (wherein the reflection phase changes between +○ and −○) significantly varies with
respect to the incidence angle. For the TE-polarized plane wave excitation the bandwidth decreases
as the incidence angle increases (see Figures . and .), and for the TM-polarized excitation
the bandwidth increases with increase of the incidence angle (see Figures . and .). Later
in this chapter, we will discuss HIS configurations with a more complicated FSS pattern (based on
complementary patch/slot unit cell) in order to achieve a wideband AMC performance and stable
resonance properties with respect to the angle of incidence.

31.4.1.2 Analytical Models: Surface waves (EBG)

At a grazing angle of incidence (θ = ○) the solution of the plane-wave problems considered above is
no longer valid, and the analysis turns into the characterization of surface modes in the D periodic
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FIGURE . Comparison between the analytical and full-wave results for the reflection phase of Jerusalem cross
HIS structure with the TE-polarized oblique plane wave excitation: (a) analytical results and (b) simulation results
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HIS structure with the TM-polarized oblique plane wave excitation: (a) analytical results and (b) simulation results
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FSS grid printed on a grounded dielectric slab. In this section, two analytical models for the analysis
of natural modes of HIS structures are discussed []. In the first model, the surface waves are studied
for propagation along the impedance surface obtained as a parallel connection of grid impedance and
impedance of the grounded dielectric slab. The second model is based on the implementation of a
two-sided impedance boundary condition in the boundary-value problem for a grounded dielectric
slab. It should be noted that both models result in the same dispersion equations for surface waves.

.... Model I
A transmission line network of an HIS structure is shown in Figure ., wherein the surface
impedance Zs is obtained as a parallel connection of grid impedance Zg and grounded dielectric
slab impedance Zd, enables one to formulate the problem for natural modes of impedance surface as
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FIGURE . Surface waves propagating along the impedance surface characterized by the surface impedance Zs .

demonstrated in Figure . []. The impedance surface characterized by Zs supports TMz and TEz

surface waves.
The solution of Helmholtz’s equations for Hx (TMz-modes) and Ex (TEz-modes) components

subject to the impedance boundary condition,

E = Zs ŷ ×H at y =  (.)

where for TMz-even surface-wave modes,

Ez = −ZTM
s Hx at y =  (.)

and for TEz-odd surface-wave modes,

Ex = ZTE
s Hz at y =  (.)

results in the following dispersion equations for the propagation constant kz of TMz and TEz modes,
respectively,

kTM
z = k

�
��� − (ZTM

s

η
)



(.)

kTE
z = k

�
��� − ( η

ZTE
s
)



(.)

where η and k are the characteristic impedance and wavenumber of free space, respectively. It
should be noted that the expressions for the surface impedance of HIS structures Zs derived in the
solution of plane-wave problems are functions of the propagation constant kz .

.... Model II
Consider geometry of a grounded dielectric slab with a periodic planar grid structure positioned at
the air–dielectric interface and characterized by the surface impedance Zg (Figure .).

By solving Helmholtz’s equations in the air and dielectric regions for Hx (TMz-modes) and Ex
(TEz-modes) components subject to appropriate boundary conditions on the ground plane (at y = )
and infinity, and by implementing a two-sided impedance boundary condition for the grid at the
air–dielectric interface,

E = E = Zg ŷ × (H −H) at y = h (.)

where for TMz-even surface-wave modes,

Ez = Ez = −ZTM
g (Hx −Hx) at y = h (.)
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FIGURE . Geometry of a grounded dielectric slab with FSS grid on the air–dielectric interface.

and for TEz-odd surface-wave modes,

Ex = Ex = ZTE
g (Hz −Hz) at y = h (.)

the dispersion equations for TMz-even and TEz-odd modes of the structure depicted in Figure .
are obtained,

ky tanh (kyh) = −ZTM
g

jωεky

jωεZTM
g + ky

(.)

μ

μ
ky + ky coth (kyh) = − jωμ

ZTE
g

(.)

Here, ky i =
√

k
z − k

i , ki = ω√ε i μ i , i = , . For HIS structures with the grid positioned on the air–
dielectric interface, ε = ε, ε = εr ε, and μ = μ = μ. The wavenumber ky induces branch points
in the complex kz-plane at kz = ±k. Proper modes (above cutoff) reside on the proper Riemann sheet
where Re (ky) >  (wave dependence is of the form e−k y y), and improper modes (below cutoff)
reside on the improper Riemann sheet where Re (ky) < . Branch cuts which separate proper and
improper Riemann sheets are defined by Re (ky) = , leading to the hyperbolic branch cuts,

Im (kz) =
Im (k)Re (k)

Re (kz)
, ∣Re (kz)∣ < ∣Re (k)∣ (.)

It should be noted that the dispersion equations of Model II can be derived from the dispersion equa-
tions of Model I, by substituting the expressions of dielectric impedance obtained in the solution of
the plane-wave problem. These models utilize the expressions of surface grid impedance obtained
in the quasistatic limit of the full-wave scattering problem via the averaged impedance boundary
condition in terms of effective circuit parameters. It appears that the Model I is a more general
one since it enables to integrate more complex substrates in the dispersion equations, such as wire
medium and dielectric slab with spherical inclusions (in the assumption that these metamaterials are
properly homogenized). However, Model II gives a better physical insight for proper and improper
surface-wave solutions and can be used for the calculation of fields in the slab region.

.... Surface Waves in Square Patch and Jerusalem Cross Arrays
The analysis of surface waves was performed for arrays of patches and Jerusalem crosses printed on
a grounded dielectric slab. In the first example of HIS composed of a patch array on a grounded slab
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FIGURE . Surface impedance Zs of the patch HIS (Figure .) “seen” by the surface-wave modes.

(with geometry and dimensions shown in Figure .), the dispersion behavior of TM and TE
surface-wave modes, including proper real and improper real and complex solutions, is shown in
Figure ., and compared with the full-wave solution obtained both by the IE method as in []
and by HFSS []. A good agreement between the analytical and full-wave results is observed at low
frequencies within the limits of homogenization of HIS structure. Some disagreement is noticed for
improper (real and complex) solutions and for proper solutions at higher frequencies. Figure .
demonstrates the dispersion behavior of surface impedance of the HIS structure Zs “seen” by the
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surface-wave modes in Figure .. An interesting observation is that in the HIS structure composed
of printed patches (with grid period much smaller than effective wavelength) no stopband occurs
between TM and TE surface-wave modes at low frequencies, wherein the structure experiences AMC
properties.

In the second example of the HIS structure realized by the array of Jerusalem crosses printed on
a grounded dielectric slab (with the geometry and dimensions shown in Figure .), the results
of analytical modeling are demonstrated in Figure . for the dispersion behavior of TM, TE,
and TE surface-wave modes (proper and improper real and complex solutions), showing good
agreement with the full-wave results of [].

It can be seen that the physics of surface-wave behavior of proper and improper solutions is cap-
tured by the analytical model. However, the analytical model does not predict correctly the bandstop
behavior at higher frequencies associated with Bragg’s diffraction in the first BZ (stopbands of TM
and TE modes, indicated as proper complex solutions in Figure .a, []).

Figure . demonstrates the dispersion behavior of surface impedance of the Jerusalem cross
HIS structure “seen” by the surface-wave modes in Figure ..

31.4.2 Semianalytical Methods

Although analytical techniques can be very efficient for the modeling of HIS geometries such as
those considered here, the equivalent surface impedance is limited to a family of array geometries.
Some geometrical characteristics can be parameterized (e.g., square patch width or periodicity), but
different element geometries would require new analytical expressions that are not always avail-
able. One technique based on full-wave modeling to obtain a general expression for the equivalent
impedance of doubly periodic arrays was proposed in [] and termed as “pole-zero” method. This
technique uses a small number of full-wave simulations of the reflection from the HIS under consid-
eration to produce a general expression of the impedance (admittance) of the array. The latter can be
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FIGURE . Surface impedance Zs of the Jerusalem cross HIS “seen” by the surface-wave modes.

used to produce general reflection characteristics (e.g., at different angles of incidence) and also the
dispersion characterization of the surface waves.

The equivalent surface impedance concept implies the homogenization assumption as above. As
in the previous section, the impedance model is valid for one propagating Floquet space harmonic at
any angle. Moreover, the impedance description is not valid in the vicinity of the surface, where
higher-order (evanescent) Floquet space harmonics have not decayed to a negligible level. How-
ever it is important to note that the “pole and zero” method does not necessarily require small unit
cells compared to the wavelength and is indeed valid for arrays with periodicity comparable to the
wavelength []. In the following it will be outlined for the case of a capacitive array.

The technique commences with the observation that in the absence of losses, the equivalent array
admittance, which in general is a function of both frequency and the tangential wavenumber, is purely
reactive. Moreover, it can be demonstrated that the reactance respects the Foster’s theorem for every
real tangential wavenumber []. As a result of Foster’s reactance theorem, the reactance function pos-
sesses the same pole-zero analytical properties as a passive “driving point” LC-function of frequency.
These properties imply that the frequency function can be well approximated by a rational function
with poles and zeros located along the real axis. An array of electrically isolated conductors (capacitive
array), in the quasistatic limit behaves like a shunt capacitance in the transmission line, and therefore
the admittance exhibits a zero at the origin. On the basis of the above, the equivalent admittance for
a capacitive array is approximated as a ratio of polynomials for the TE and TM case [].

The task of extracting the expressions for the admittance now reduces in extracting the poles and
zeros, which in general are wavenumber dependent. Central aspect of the method is the identifica-
tion of poles and zeros in the ω-plane starting from full-wave data. A full-wave simulator is employed
to model the reflection characteristics of the uniplanar HIS under consideration. Subsequently the
reflection phase is compared with that of the substrate in the absence of the array. The points where
the two curves cross each other correspond to the array being transparent to the incident wave.
According to Figure ., this suggests an open circuit for the array impedance, i.e., an admittance
null. Similarly, the admittance poles are the points where the reflection phase from the HIS is ○.
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At these points the reflection occurs as a result of the resonance of the periodic array, which performs
as an open circuit. This is graphically illustrated by means of an example in Figure ..

The key aspect of this technique is that although the admittance of the array is very dispersive, the
poles and zeros vary smoothly with the wavenumber. This allows for interpolation and extrapolation
(in the case of slow waves) of the poles with low-order polynomials []. This only requires a few full-
wave simulations for the reflection phase for different angles of incidence, to provide poles and zeros
for few different wavenumbers. The admittance value obtained can then be utilized for other angles
of incidence or for dispersion characterization [].

31.4.3 Numerical Methods

There is a variety of full-wave techniques that were employed for the rigorous modeling of HIS.
Both frequency-domain and time-domain techniques were reported to accurately predict the reflec-
tion phase from HIS. In all cases, in order to obtain the AMC characteristics, the HIS structure is
illuminated with a plane wave and the phase of the reflected wave is extracted. For dispersion char-
acterization in spectral domain methods, the eigenvalue problem is formed by setting the excitation
to zero and solving a homogeneous problem. In time-domain methods, a wideband excitation is set
within the unit cell and the resonances of the structure (obtained after inverse Fourier transforming
to the frequency domain) are identified as the supported modes [,]. Rigorous description of the
full-wave techniques can be found in the literature (e.g., [,–] and references within) and is out
of the scope of this chapter.

31.5 Performance Characteristics

In this section, we discuss performance characteristics of HIS. In particular, we commence by
reporting studies on simultaneous AMC and EBG characteristics for uniplanar HIS (without vias).
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Subsequently we proceed to discuss techniques to improve AMC features, such as bandwidth and
angular stability. This section concludes with reports of miniaturized HIS.

31.5.1 Simultaneous AMC and EBG Characteristics for Uniplanar HIS

In this section we study the AMC and EBG characteristics of uniplanar periodic metallic arrays
printed on grounded dielectric substrate and we present a method to control the spectral position of
these two properties. In particular, we investigate the effect of the array parameters on both the EBG
and AMC frequency bands and we show that we can tailor the spectral position of the two properties
almost independently by altering the periodicity of a square patch array. From a practical point of
view, this allows the flexibility to design uniplanar arrays with either one or both of these properties,
depending on the requirements of the application. Based on this study, it is revealed that with varying
array periodicity, the AMC band moves opposite to the FSS resonance in frequency. On the contrary,
it is shown that the EBG frequency follows the trend of the FSS resonance. Finally numerical and
experimental results for a uniplanar surface with both EBG and AMC operations are presented.

31.5.1.1 Tailoring the EBG and AMC Using Array Periodicity

In this section, we study the AMC and EBG properties of a practical structure consisting of a capac-
itive array over a grounded dielectric substrate (Figure .b). It is demonstrated that in the absence
of vias, the AMC and EBG bands do not in general coincide in the frequency domain. We have con-
sidered an array of square patches of size L = . mm, and square unit cell with periodicity D. The
dielectric substrate permittivity is εr = . and the thickness . mm. Four different arrays are stud-
ied with periodicities (D) ., ., ., and . mm, respectively. In all the four cases, the grating lobe
region lies well above the resonance of the array.

.... AMC Characteristics
Figure . shows the reflection phase of a normally incident plane wave of strength  V/m for the
four structures under consideration. The magnitude and phase of the currents excited on the ele-
ments are also shown. The smallest periodicity, . mm, yields an AMC frequency of . GHz, which
increases to . GHz for the largest periodicity, . mm. This trend is in contrast with the array res-
onance, which is indicated by the zero current phase in Figure . and reduces as the periodicity
of the array increases. Therefore the spectral separation between the AMC frequency and the array
resonance reduces as the periodicity of the metallic array increases (Figure .). This observation
is important for our discussion later on.

As in Figure ., the current levels at the Fabry–Perot resonance are nearly three times higher
than those in the array resonance. The current magnitude levels are lower for more closely packed
elements. According to Lenz’s law in a quasistatic approach, this is due to the increasingly opposing
mutual inductance between neighbor colinear elements with cophase currents.

.... Electromagnetic Bandgap Characteristics
Figure . shows the dispersion curves for the four structures under consideration. Only bounded
surface-wave modes are presented. Due to the presence of the dielectric, TM modes have a stronger
horizontal electric field component and a TM bandgap also emerges in the ΓX direction. As shown,
the common TE/TM surface-wave bandgap cutoff drops from around  GHz for array periodicity
. mm to around . GHz for periodicity . mm. Investigation of the fields in the full-wave simula-
tion revealed that for the smaller periodicity (. mm) the TM mode has a cutoff at higher frequency
than the TE. However, in the case of the array with large periodicity (. mm) the cutoff of the TE
mode occurs at higher frequencies than the TM. The common TE/TM bandgap in the ΓX direction
extends from  to  GHz for the array with periodicity . mm and from to . to . GHz for the
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FIGURE . Plane wave normally incident on square patch (element size L = . mm) array with periodicity (a)
D = . mm, (b) D = . mm, (c) D = . mm, (d) D = . mm and printed on grounded dielectric of thickness
S = . mm and permittivity εr = .: reflection phase for normally incident plane wave (thick black line) and current
excited on the elements; thin black line: phase, thin grey line: magnitude. (From Goussetis, G., Feresidis, A.P., and
Vardaxoglou, J.C., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)

array with periodicity . mm. The bandgap becomes slightly narrower along the XM path of the
Brillouin contour.

The analysis of this subsection suggests that the lowest cutoff frequency of the bandgap drops for
larger periodicity of the array. This trend follows the reduction of the resonant frequency of the array
over the grounded dielectric (i.e., zero current phase) shown in Figure ..

.... Emerging Trends
Following the investigation on the AMC and EBG characteristics of a metallic periodic array on
grounded dielectric substrate, the emerging trend is that as the array periodicity is increased the
AMC frequency goes up, while the EBG frequency drops. These trends are illustrated and quantified
in the diagram of Figure ., where the AMC and EBG bandwidth for the four arrays under inves-
tigation are presented. Here the AMC bandwidth is defined as the frequency range where the fields
are reflected with a phase between −○ and ○. Figure . shows the upper and lower frequency
for AMC operation and the EBG in the ΓX direction for varying array periodicity, as obtained with
full-wave MoM method.

As the periodicity of the array increases, the EBG frequency drops. In particular, it is evident that
the upper cutoff drops with the periodicity linearly. The lower cutoff also drops almost linearly, but for
higher periodicities, the TE mode surpasses the TM mode, resulting in narrower common TE/TM
bandgap. Although the array resonance decreases, the AMC operation goes up in frequency for larger
unit cells. Assuming a fixed thickness for the dielectric substrate, the transmission phase value ϕT that
satisfies Equation . goes up in frequency for larger array periodicity. This explains the AMC trend.
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As shown in Figure ., there is a range of periodicities of the array where the two pairs of curves
overlap. This area corresponds to simultaneous AMC and EBG operations in the frequency domain.

.... Experimental Results
To validate our conclusions and demonstrate an AMC surface without vias exhibiting surface wave
EBG, the array with unit cell . mm was etched on a dielectric substrate of thickness . mm and
εr = .. The overall array consisted of  ×  elements. The AMC and EBG properties of the fabri-
cated prototype were measured. For the EBG measurement, the structure was positioned between
absorbing materials. Two horn antennas are used as the transmitter and receiver on either side
of the surface, as shown in Figure .. The measured EBG responses are shown in Figure .a.
The TM mode has a cutoff at . GHz and the TE mode at . GHz. A common TE and TM
bandgap is found between . and . GHz in the ΓX direction and is highlighted in Figure ..
The absolute bandgap is somewhat narrower, .–. GHz as shown in the dispersion diagram
(Figure .d). Very good agreement between measurement and simulation is observed.

The reflection characteristics of the same structure were also measured for normal incidence. The
periodicity is small enough for the grating lobe region to be well above  GHz. The reflection phase
of the AMC is taken in the far field using horn antennas and is then normalized with respect to
an identical measurement in the absence of the array. The simulated and measured AMC responses
of this structure are shown in Figure .b. Note that there are two pairs of curves for the AMC
measurement and simulation. This is due to the finite thickness of the AMC structure and hence the
two different possible definitions of the reflection reference plane. This can be either the plane of the
array or the ground. Thus, one result is taken assuming reflection at the array plane (REF: ARRAY)
and another assuming reflection at the ground plane (REF: GROUND). In both cases, very good
agreement between simulated and experimental results is observed. The AMC band (−○ to ○) lies
between .–. and .–. GHz, respectively. The measured bandgap region is highlighted in
the graph. Simultaneous AMC and EBG (ΓX) operation of . GHz (∼.%) bandwidth was achieved.

31.5.2 AMC Bandwidth

Both Foster’s theorem for the admittance of periodic arrays [] and the resonant cavity model
for AMC operation [] suggest that AMC bands are separated by frequency points of reflection
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FIGURE . (a) Measured EBG performance for square patch array. In mm: patch ., unit cell ., dielectric
thickness . (εr = .). Shaded is the Bandgap region (ΓX). (b) Measured AMC response for square patch array. In
mm: patch ., unit cell ., dielectric thickness . (εr = .). Shaded is the Bandgap region (ΓX). (From Goussetis,
G., Feresidis, A.P., and Vardaxoglou, J.C., IEEE Trans. Antennas Propag., (), , Jan. . With permission.)
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with phase reversal. This imposes fundamental limits in the AMC bandwidth of HIS. One sug-
gestion to overcome this limit is to produce multiple AMC bands closely located in the frequency
and then introduce thermal losses on the surface as means to introduce degeneracy between these
modes []. This was indeed demonstrated to increase the AMC bandwidth, at the cost of power
loss []. In the following, we investigate further the bandwidth of AMC operation for the lossless
case based on the resonant cavity model of Section ...

31.5.2.1 Effect of Transmission Response of the PRS

According to Equation . and for a wideband AMC, an optimum periodic array would require its
transmission coefficient phase to linearly increase with frequency with a gradient of πS/c, where S is
the thickness of the HIS and c the speed of light in the dielectric medium [,]. This would result in a
wideband cavity that would satisfy the resonance condition (Equation .) for all frequencies. While
increasing transmission phase with frequency is not feasible for a capacitive screen, this conclusion
suggests that among two screens with equal reflectivity, greater AMC bandwidth will be observed
for the one with slower varying transmission phase. This is demonstrated using full-wave results in
the example mentioned in Section .. (Figure .). PRS has slower transmission phase variation
with frequency compared to PRS (Figure .a). The AMC bandwidth for PRS is % wider than
that of PRS, for the same substrate thickness (Figure .b).

For simple element geometries, such as dipoles, tripoles or square patches [], a slower trans-
mission phase variation with frequency is produced by more closely packed arrays. As a general
conclusion according to the above we can say that more closely packed arrays produced larger AMC
bandwidths compared to more sparsely packed arrays of the same element.

31.5.2.2 Effect of Substrate Thickness

The resonant cavity AMC model predicts that for a fixed periodic array with an approximately
frequency independent phase, the AMC frequency decreases as the dielectric thickness increases
(see Equation .). Furthermore, from Figure . it is evident that away from the array reso-
nance, the PRS phase variation with frequency is slower, which in turn corresponds to broader
AMC bandwidth. Therefore, in general, with increasing substrate thickness the AMC frequency
decreases and the bandwidth is improved. This is also consistent with the analysis of reflect array
antennas [].

The effect of substrate thickness is demonstrated here in Figure ., using full-wave analysis. A
parametric study of the AMC response for a fixed square patch PRS with lattice periodicity  mm
and element of  mm is presented. The dielectric constant of the substrate is .. The reflection
phase for AMCs printed on substrates of thickness (noted here as t) equal to ., ., and . mm
is shown in Figure .. Thicker substrates produce AMC response at lower frequencies in agree-
ment with the resonant cavity model for AMC operation (see Section .). Moreover, as the AMC
operation shifts to lower frequencies, the variation of the transmission phase through the capacitive
array becomes less rapid. This can be seen from the generic response of a capacitive array shown in
Figure .a. Hence the AMC bandwidth becomes larger, as predicted by Equation . and is
shown in Figure .. We can generalize this conclusion to the claim that thicker substrates typically
produce AMC with larger bandwidths.

31.5.3 AMC Angular Stability

In this section, we present two designs of HIS configurations based on the use of complementary
(patch/slot) array elements in the unit cell in order to achieve a wideband AMC performance and
stable resonance properties with respect to the incidence angle []. A study on the angular stability
of single layer AMCs is presented in [,].
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FIGURE . HIS structure composed of complementary patch/slot in conjunction with L-shaped split rings:
(a) FSS grid, (b) unit cell. All dimensions are in mm: D = ., L = ., L = P = ., t = w = .. Substrate
thickness is . mm and substrate permittivity is ..

Design I
In the proposed HIS design (with geometry and dimensions shown in Figure .), the unit FSS cell
is composed of square patch with a cross slot in conjunction with the L-shaped split rings. Also, split
cross FSS elements are used in the design (as it can be seen in Figure .a). The proposed com-
plex HIS structure consists of D symmetric grid as a combination of complementary FSS elements,
which simultaneously interact with the TE and TM-polarized electromagnetic fields and control the
resonance properties of HIS structure. At normal incidence, the proposed HIS structure exhibits a
wide AMC frequency band ranging from . to . GHz.

In the case of oblique incidence with the angle of plane wave excitation varying from ○ to ○,
the HIS structure exhibits stable resonance characteristics for both the TE and TM polarizations,
resulting in a deviation of .% (shift in the resonance frequency from . to . GHz) for TE
polarization and .% of deviation in the case of TM polarization (shift in the resonance frequency
from . to . GHz) as shown in Figure ..
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FIGURE . HIS structure composed of split cross FSS elements in conjunction with patches and L-shaped split
rings: (a) FSS grid, (b) unit cell. All dimensions are in mm: D = ., L = , P = , L = ., S = ., t = w = ..
Substrate thickness is . mm and substrate permittivity is ..

Design II
In the second example, the HIS structure (with geometry and dimensions shown in Figure .) is
realized by split cross FSS elements in conjunction with patches and L-shaped split rings. At nor-
mal incidence, the proposed HIS structure resonates (no phase reversal in the reflection phase) at
. GHz and results in the AMC bandwidth of .% ranging from . to . GHz.

In the case of oblique incidence with the angle of plane-wave excitation varying from ○ to ○,
the HIS structure exhibits stable resonance characteristics for both the TE and TM polarizations,
resulting in a deviation of .% (shift in the resonance frequency from . to . GHz) for TE-
polarized excitation and .% of deviation in the case of TM polarization (shift in the resonance
frequency from . to . GHz) as shown in Figure ..
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FIGURE . Stability of resonance frequency and wideband characteristics of the HIS structure (Design II) with
respect to the angle of plane wave incidence: (a) TE polarization, (b) TM polarization.

31.5.4 Miniaturization

Miniaturization of microwave components and antennas has become increasingly important in
recent years. Modern wireless communication terminals require small microwave elements which
are pertinent to high level of integration into compact light-weight systems. In this context, miniatur-
ization of EBG structures is an important consideration for the microwave engineer. Miniaturization
of a resonant element can be achieved by reducing the resonant frequency maintaining its maximum
physical dimension, i.e., by fitting a longer effective electrical length in a fixed physical space. These
techniques were applied in the past in small antennas and compact microwave circuits []. In the
context of Metallodielectric Electromagnetic Band Gap (MEBG) structures, the length of a dipole
or dipole-type element can be reduced in a similar fashion using reentrant or convoluted geome-
tries leading to miniaturized array elements []. Multilayer topologies were also reported, whereby
a significant reduction of the resonant frequency of MEBG arrays is achieved [].

In the following, the miniaturization of EBG surfaces using closely coupled array topologies is
initially presented by means of dispersion diagrams as well as measurements for linear dipole ele-
ments and tripole elements. In addition, complex geometries such as convoluted and periodically
loaded tripoles are investigated for printed elements on a single dielectric substrate. A combination
of the two techniques is implemented and experimental results are presented for closely coupled com-
plex element arrays resulting in further size reduction of the unit cell. The proposed techniques are
subsequently applied to the miniaturization of AMC structures using the same family of elements.
Finally, by means of an example, the application of miniaturized MEBG surfaces in the performance
enhancement of a mobile handset antenna is presented.

31.5.4.1 Miniaturized MEBG Structures

Two techniques for the miniaturization of MEBGs are discussed. The first method is based on two
arrays positioned in close proximity with appropriate shifts relative to each other, in order to achieve
maximum element coupling and increase the miniaturization factor. This technique is presented in
Section .... by means of full-wave dispersion diagrams validated by experimental characteriza-
tion. The second technique is based on the principle that complex element geometries can increase
the resonant current path, packing more electrical length in a fixed physical space. The concept is
presented in Section .... by means of examples based on tripole type arrays. The two methods
are combined to achieve further miniaturization. A large part of this work is based on characterizing

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

High-Impedance Surfaces 31-43

the EBG of periodic arrays on ungrounded dielectric slabs. According to the definition of HIS given
at the beginning of this chapter, these are not HIS, as they do not fully reflect incident waves at all fre-
quencies and all angles. However the miniaturization techniques discussed here mainly refer to EBG
features, which are shared between grounded and ungrounded arrays. Moreover, similar techniques
can be applied for the case of grounded arrays. This is shown in Section ...., which presents
the miniaturization techniques for AMC surfaces consisting of printed metallic arrays on grounded
dielectric substrates are described.

.... Close Coupling
Dipole element arrays printed on a single dielectric substrate are employed here as an example
(Figure .). The IBZ is also shown in Figure . for the dipoles arranged on a rectangular lattice.
Assuming small width w, the dipoles only impose a boundary condition on electric field compo-
nents along y-axis. Among the surface-wave modes supported by the dielectric slab, only those with
an electric field component parallel to the y-axis can excite currents on the dipoles. The effect of the
periodic dipole array is hence evident only on those modes and at the vicinity of the resonance. In
general, those are TE modes for propagation along the x-axis (ΓX part of the IBZ), TM modes for
propagation along the y-axis (YΓ part of the IBZ), and hybrid TE/TM modes for oblique direction of
propagation (X → M → Y in the IBZ). For typical values of permittivity and thickness of the dielec-
tric substrates, TM modes have very weak longitudinal electric field component. Hence conducting
arrays printed on typical substrates exhibit slow wave region and EBGs for TE modes only.

Figure .a shows the dispersion diagram for a single layer dipole MEBG printed on grounded
dielectric substrate of thickness Ssub = . mm and permittivity εr = .. Floquet modal analysis and
Galerkin MoM were used for the formulation of the homogeneous problem for deriving the disper-
sion curves. The EBG in the ΓX direction emerges in the TE mode at . GHz. At this frequency, the
half free-space wavelength is . mm. This suggests a λ/ resonance for the single layer dipole array,
with some variation attributed to the permittivity of the substrate, the mutual impedances between
the dipole elements and the fringing capacitances at the edges of each dipole. The TM mode simply
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FIGURE . Layout of closely coupled dipole array in a rectangular lattice: (a) unit cell, (b) reciprocal lattice and
(c) cross-section. (From Feresidis, A.P., Apostolopoulos, G., Serfas, N., and Vardaxoglou, J.C., IEEE Trans. Antennas
Propag., (), , . With permission.)
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FIGURE . Dispersion diagram of (a) single layer dipole MEBG with Dy = . mm, Dx =  mm, L = . mm
and W = . mm printed on substrate with Ssub = . mm and εr = . (b) double layer CCMEBG with separation
distance S =  μm and εr = .. (From Vardaxoglou, J.C., Goussetis, G., and Feresidis, A.P., IEE Proc. Microw.
Antenna and Propag.,(), ,  (special issue on Metamaterials). With permission.)

follows the light line and is not shown here. In the XM and MY parts of the dispersion diagram, the
resonant mode that excites the dipoles and produces the bandgap is a hybrid TE/TM mode. In YΓ,
the dispersion is very similar to the unperturbed case (without the array), with the fundamental TM
mode following the light line.

In an equivalent circuit approach, the bandgap emerges by virtue of the resonance of an equivalent
LC-circuit [,]. The inductance emerges from the currents induced on the dipole elements and the
capacitance is formed in the inter-element space. Therefore, reduced frequency can be achieved by
increasing the capacitance value. This in turn can be achieved by careful coupling of two arrays,
leading to closely coupled arrays. For the dipole geometry, miniaturization arising from the close
coupling of the two arrays is maximized by shifting the second layer with respect to the first by Dy/
[]. Here the two arrays are assumed on either side of a dielectric surface of thickness  μm and
permittivity εr = , and the two-layer structure lies on the same substrate as above (Figure .c). The
dispersion diagram for the closely coupled MEBG (CCMEBG) structure is shown in Figure .b.
The EBG for the TE modes emerges at . GHz, suggesting a miniaturization of .:. Due to the
asymmetrical geometry of the unit cell, the cutoff frequency increases rapidly as the wave vector
along the y-axis is introduced. However, the effect of close coupling is now also evident in the first
harmonic of the TM mode in YΓ.

In order to validate the accuracy of the above dispersion diagrams, the arrays were fabricated
and the bandgap was experimentally assessed. Two antipodal Vivaldi antennas printed on a com-
mon substrate (Ssub = . mm, εr = .) were used as receiver and transmitter []. The measured
transmission normalized with respect to the transmission in the absence of the array is shown in
Figure .. The - dB cutoff for the single layer array is at . GHz, which is in very good agree-
ment with the dispersion diagram. For the double layer case, the cutoff is measured at . GHz, still
in good agreement with the prediction from the dispersion diagram. The variation of less than %
in this case is attributed to the inaccuracy of the thin dielectric parameters, and particularly its thick-
ness. The apparent positive transmission below the bandgap is due to the fact that the shown result
is normalized to an identical measurement in the absence of the array, and indicates an antenna gain
increase in the slow wave region of the array.

Due to their geometry, dipole arrays are highly polarization dependent. In order to achieve a TE
bandgap throughout the IBZ, tripole elements are employed. Figure . shows the measured surface
wave transmission response for a closely coupled tripole array []. Here the dimensions are L =
. mm, W = . mm, periodicity D = . mm and the thickness of the dielectric between the two
arrays is  μm. Owing to the small separation of the layers and the increased width of the tripoles,
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FIGURE . Experimental measurement of the transmission of surface wave through a closely coupled tripole
array (layout as in Figure .), with D =  mm. (From Vardaxoglou, J.C., Goussetis, G., and Feresidis, A.P., IEE Proc.
Microw. Antenna and Propag., (), ,  (special issue on Metamaterials). With permission.)

the associated capacitance increases resulting in the cutoff dropping below  MHz. The electrical
size of the unit cell is in the order of λ/.

.... Complex Elements
An alternative technique for reducing the physical dimension of MEBG structures is based on the
use of complex elements geometries within the unit cell. In this section, the miniaturization achieved
from complex element geometries is presented by means of comparative examples. The cutoff fre-
quencies of arrays with fixed lattices (fixed unit cell) are compared for simple element geometries
and more complex (loaded) variations.

The EBG properties of periodically loaded, interdigital and convoluted tripole element arrays are
presented. The unit cell is hexagonal with D = . mm (see Figure .). Figure . shows the
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measured TE surface wave bandgaps for the arrays with unit elements shown as insets. Two horn
antennas were used as transmitter and receiver, positioned on either side of a tunnel formed by
absorbers, where the MEBG array lies. By rotating the horns appropriately, TE surface wave polar-
ization is obtained. The EBG response of the unloaded tripole array on the same lattice is shown
for comparison. The convoluted tripoles are more compact with a miniaturization factor of :,
whereas the interdigital tripoles have a better bandwidth (∼% fractional bandwidth). Periodically
loaded tripoles were also implemented using fractal loadings yielding similar performance with the
uniformly loaded tripoles. Other fractal elements reported in the literature include Peano curves
and interwoven element [,,], such as those shown in Figure ., achieving similar levels of
miniaturization.

The two techniques studied thus far can be combined. Figure . shows the measured response
of a CCMEBG that comprises a layer of interdigital tripole elements and a second layer with sim-
ple tripoles, with relative shift and rotation as shown in Figure .. For comparison, the measured
response of the single layer interdigital tripole array is also shown.

.... AMC Responses
When printed on a grounded dielectric substrate, MEBG arrays fully reflect incident plane waves.
Furthermore, within a frequency range, on the grounded MEBG the reflection occurs with zero or
near-zero degrees phase. This behavior is the dual of an electric conductor, hence the term AMC
surface. The miniaturization concepts presented above for the dispersion characteristics of surface
waves can also be applied for the miniaturization of AMC surfaces.

Closely coupled arrays were demonstrated to reduce the FSS resonant frequency of periodic arrays
[]. According to the resonant cavity model, this would lead to miniaturized AMC response. This
is demonstrated here by means of numerical simulations. Figure ., shows the reflection phase
of normally incident plane waves to single and closely coupled dipole arrays printed on the same
substrate with the addition of a ground plane backing. The dimensions of the unit cell, as shown in

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

High-Impedance Surfaces 31-47

N = 3(a) (b)N = 4
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y

x

N = 2

FIGURE . (a) Peano curves for miniaturized elements of HIS reported in [] (From McVay, J., Engheta, N.,
and Hoorfar, A., IEEE Microw. Wireless Compon. Lett., (), , . With permission.) and (b) interwoven ele-
ments reported in [,] (From Huang, F., Batchelor, J.C., and Parker, E.A., Electron. Lett., (), , . With
permission.)
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FIGURE . Measurement of the single layer and closely coupled interdigital tripole MEBG of Figure .. For
CCMEBG separation distance S = . mm, εr = .. (From Vardaxoglou, J.C., Goussetis, G., and Feresidis, A.P., IEE
Proc. Microw. Antenna and Propag., (), ,  (special issue on Metamaterials). With permission.)

Figure . are Dy = . mm, Dx =  mm, L = . mm and W = . mm. Floquet modal analysis
and the MoM were used for the simulation []. As shown the AMC frequency drops from GHz
to .GHz, corresponding to a miniaturization factor of about :.

Defining the AMC bandwidth as the frequency range with reflection phase −○ to +○, the
single layer array performs as an AMC between . and . GHz, corresponding to .% frac-
tional bandwidth, while the CCMEBG array between . and . GHz, corresponding to a fractional
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FIGURE . Reflection phase response for single and closely coupled dipole (length . mm width . mm) AMCs
with unit cell . ×  mm on substrate of thickness . mm and εr = . (From Vardaxoglou, J.C., Goussetis, G.,
and Feresidis, A.P., IEE Proc. Microw. Antenna and Propag., (), ,  (special issue on Metamaterials). With
permission.)
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FIGURE . Calculated derivative of the transmission phase against frequency for the two free-standing FSSs of
Figure .—circles denote the AMC operating frequency. (From Vardaxoglou, J.C., Goussetis, G., and Feresidis, A.P.,
IEE Proc. Microw. Antenna and Propag., (), ,  (special issue on Metamaterials). With permission.)

bandwidth of %. The relative reduction in the AMC bandwidth occurs due to the rapid phase
variation of the array in the vicinity of the AMC response, in accordance with the resonant cavity
model. To quantify this, Figure . shows the derivative of the transmission phase with respect to
the frequency for the single and double layer arrays without the dielectric support. The zero reflec-
tion phase frequencies of the corresponding AMCs are noted with circles on this curve. As shown,
in the vicinity of the AMC frequency the array’s phase variation is almost twice as fast for the closely
coupled array case as compared with the single layer case. Taking into account the resonant cavity
model, this explains why the fractional bandwidth of the closely coupled array is nearly half of that
in the single layer case.
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FIGURE . Measurement of the AMC response produced by the single layer unloaded tripole and fractal arrays
of Figure . on substrate of thickness . mm and εr = .. (From Vardaxoglou, J.C., Goussetis, G., and Feresidis,
A.P., IEE Proc. Microw. Antenna and Propag., (), ,  (special issue on Metamaterials). With permission.)

A miniaturized AMC surface can also be produced using arrays of complex element geometries.
Figure . shows the simulated and measured response for the fractal-type of tripole arrays (shown
as inset). For comparison, the measured and simulated AMC response of the unloaded tripole array
is shown in grey. The AMC frequency drops from about  GHz to  GHz, corresponding to a minia-
turization factor of .:. As in the CCMEBG case, the fractional bandwidth also reduces from .%
to % (Figure .).
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This chapter takes a detailed look at research carried out in the area of tunable surfaces. The reader
will be introduced to a number of different tuning techniques that were developed over the years.

32.1 Introduction

32.1.1 Why Have Tunable Surfaces?

Traditional electromagnetic bandgap (EBG) materials were always bound to a fixed frequency
response. Conducting elements normally etched on substrates maintain fixed geometric patterns,
and these types of surfaces were limited in their frequency performance. It would be advantageous
for devices that function at a fixed frequency to have the ability to adapt, making it possible to operate
at a number of different frequencies without replacing the hardware. This is especially true in deep-
space applications or where the cost of regularly accessing the equipment is prohibitively high. In
such cases, there are obvious advantages in having the ability to remotely reconfigure the operating
characteristics.

With advances in electronics and the continuous creation of new applications, tunable surfaces
have become a reality. At first, tunable frequency-selective surfaces (FSS) provided a method for
dynamically controlling the transmission and reflection characteristics of an incident wave. It became
possible to reduce the size of the unit cell, improve the bandwidth, and shift the operating frequency
in real-time.

As the number of surface designs grew, more and more applications emerged where the tunable
surface was one part of a complex structure. Today, tunable surfaces can play a key role in multi-
banding reflector antennas, tunable filters, and phased arrays. Designs that show frequency tunability
while also maintaining good frequency stability for increasingly larger angles of incidence for both
horizontal and vertical polarizations are emerging. Applications were found in low profile antennas

32-1
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and beam steering antennas. When tunable surface is used in combination with reconfigurable
antenna, the ability to tune the surface makes it possible for the operating frequency of the antenna
to be tracked by the supporting surface. This allows dynamic control of surface waves at different
frequencies. This also allows a low-profile antenna to maintain zero degree phase shift at the high
impedance surface (HIS) for different frequencies. Such novel designs illustrate the versatility of tun-
able surface designs, and this will no doubt lead to improvements in current applications and the
development of many more in the future.

32.1.2 Basics of How to Achieve Tuning

Tunable surfaces mainly rely on the principle of changing the surface impedance of a periodic array
through novel control methods. Over the past few decades, research groups around the world have
developed new techniques, each with their own unique features, advantages and disadvantages, for
changing the characteristics of tunable surfaces. In the case of EBGs, the tuning may involve the
addition/removal of a bandpass/stop response at a particular frequency or even the shifting of the
bandpass/stop from one frequency to another. For HISs, the phase of the reflected wave could
be controlled or the frequency at which the reflected wave has zero phase could be tuned.

Control of tunable surfaces can be achieved through a number of stimuli. Changing the dielec-
tric properties of the substrate through ferroelectric control [–] and varying the positions and
dimensions of the cell elements through physical manipulation [–] were some of the earliest
methods of tuning. Active devices such as PIN diodes [–], Varactor diodes [–], and micro-
electromechanical systems (MEMs) [–] were more recently incorporated onto surfaces. Novel
techniques using photoconductivity were also demonstrated [–]. Other interesting techniques
include using a changeable liquid as the substrate [], generating the elements in an array using a
controllable plasma [], and using liquid crystals as a substrate []. Section . examines these
different techniques in more detail.

32.2 EBG Tuning Techniques

32.2.1 Ferrite and Ferroelectric Substrates

The permeability of a ferrite substrate can be changed by biasing the material with a magnetic field. If
an EBG is printed on a ferrite substrate, the ability to change the permeability of the substrate makes
it possible to tune the operating frequency of the EBG. Some of the earliest techniques developed for
tuning FSS were based on biasing ferrite substrates with a DC magnetic fields [–].

Substituting a ferroelectric material instead of a ferrite-based material as the substrate allows the
permittivity to be tuned using a biasing electric field [,]. Tuning the permittivity of the substrate
also gives control over the resonance frequency of the periodic structure. The use of ferroelectric
material is covered in more detail in this chapter.

32.2.2 Mechanical Tuning

In many ways, mechanical tuning can be seen as a very simple method for tuning frequency character-
istics of surfaces. As there is no need for biasing lines and electrical motors needed to physically move,
various surfaces can be placed at a safe distance and electromagnetic interference and unwanted
coupling can be minimized.

A mechanically tunable HIS is presented in []. The HIS made from patches in a mushroom con-
figuration has a second layer of patches placed on top with a DC insulating dielectric between the two
layers. Mechanically generated lateral movements of the top layer with respect to the fixed bottom
layer adjust the overlap area between the plates and thus change the capacitance between neighboring
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cells. This tunes the resonance frequency of the surface and also tunes the reflection phase for a fixed
frequency.

In [], Lockyer et al. presented a mechanically reconfigurable FSS made of two closely coupled
adjacent dipole arrays. Small lateral displacement of one array compared to the other perturbs the
strong fields in their separation region and so provides a method of controlling the FSS resonant
frequency. The prototype in Figure .a shows a computer-controlled micropositioning test-bed with
two dipole arrays, each printed on a thin dielectric substrate, initially positioned parallel and in close
proximity to each other. While their separation distance (S) is held constant, the stepper actuator
moves the second array (FSS) such that the overlap (DS) is changed.

When FSS is lined up with FSS, i.e., DS = , the incident plane wave would effectively see a single
FSS because FSS would be mostly masked by FSS. Increasing the displacement DS laterally shifts
FSS with respect to FSS, so that the apertures in the surface are gradually covered up. An incident
plane wave sees an actual increase in the dipole elements’ lengths, along with a change in the coupling
between the arrays. This control of the elements’ lengths allows the frequency response of the surface
to be tuned. When FSS is fully displaced, the apertures are closed and the surface becomes an array
of strips. Detailed analysis of the coupling between elements on two layers is given in [].

The dipoles in each surface were arranged on a square lattice, D =  mm and were printed on a
. mm thick dielectric substrate of dielectric constant . The dipole lengths were L = . mm
and L = . mm for FSS and FSS, respectively.

Figure .b shows the effect of changing DS on the frequency response of a normal incidence
plane wave. The separation distance S was set to  μm in the predictions. Varying DS between  and
 mm, the resonance frequency of the FSS layers can be tuned by  GHz from  to  GHz.
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FIGURE . (a) Cross-sectional view of reconfigurable FSS jig using dipole arrays. (b) Effect of different DS values
on plane wave response. Key: –, predicted; ●, DS =  mm; ∎, DS =  mm; and▲, DS =  mm. (From Lockyer, D.,
Moore, C., Seager, R., Simpkin, R., and Vardaxoglou, J.C., Electron. Lett., (), , . With permission.)
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A mechanically tunable FSS is presented in [] with good frequency stability for oblique angles
using a double-layer FSS with square-loop slot elements. It uses a similar technique to the previous
designs whereby one FSS layer is laterally displaced with respect to the other. The actual tunable range
covers .–. GHz.

32.2.3 PIN Diodes

PIN diodes have found considerable use in RF circuits and devices due to their ability to act as fast
switches. In contrast to the standard PN diode, a PIN diode has a wide near intrinsic layer sandwiched
between the n-type and p-type layers. When reverse biased, the diode has a very high resistance in
parallel with a capacitance. When forward biased, the diode has a very low resistance.

In [], Chang et al. use pin diodes to switch transmission through an active FSS on and off at
. GHz. The construction of the unit cell and its equivalent circuit is shown in Figure .a through c.
A unit cell has a square metallized island loading a square aperture and a PIN diode connecting the
square island to the top part of the aperture.

Figure .e and f shows the equivalent circuits for a PIN diode when reverse and forward biased,
respectively. L accounts for the lead inductance of the diode package and is constant in both modes
of operation. Equations for the FSS surface impedance with the PIN diodes in both on and off states
were derived as follows []:

ZOFF =
jωL

 − ωLC
(.)

ZON =
−jωLLC −  jωLLC + jωL

ωLLCC − ωLC − ωLC − ωLC + 
(.)

Chang use lumped elements in an EM simulation software to model the on and off states of the diodes.
The presented results show good agreement among modeled, calculated, and measured results. At
. GHz, switching the diodes on achieves an insertion loss greater than  dB, while with the diodes
switched off, the FSS has almost near perfect transmission at this frequency.

Following a similar theme of loaded apertures, in [] Kiani et al. use circular aperture elements
with four PIN diodes per element to achieve FSS stopband control for oblique as well as normal
TE incidence at . GHz. The front and back of the unit cells is shown in Figure .. The PIN
diodes are modeled as lumped RLC elements in an EM simulation software package. Transmission
and reflection results show good frequency stability for incident angles of ○–○.

L1L1 L1L1 C1

C1
L1C1

C2C2
L1

L2

C0

(a) (b) (c) (d) (e) (f)

L1 C1 C1
C2

L2 L2

Rr
Rr

L1 L1

L1 C1 C1
L1 L1

FIGURE . Simple model of FSS unit cell (a) with squared aperture, (b) with squared loop with island loading,
and (c) with squared loop connected to metal plates. Equivalent circuit model of (d) active FSS unit cell with PIN diode,
(e) the reverse bias equivalent circuit, and (f) the forward equivalent circuit. (From Chang, K., Kwak, S.-I., and Yoon,
Y.J., Equivalent Circuit Modeling of Active Frequency Selective Surfaces, IEEE Radio and Wireless Symposium, ,
pp. –. With permission.)
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FIGURE . The layout of a unit cell. (a) Front side and (b) reverse side. (From Kiani, G.I., Esselle, K.P., Weily, A.R.,
and Ford, K.L., Active Frequency Selective Surface Using PIN Diodes, IEEE Antennas and Propagation International
Symposium, , pp. –. With permission.)

Kiani et al. [] has also extended the design to a square aperture loops with four PIN diodes
per unit cell, compared to Chang’s one PIN diode in Figure .. Biasing feed lines are printed on
the reverse side in a diagonal fashion so that both horizontally and vertically polarized wave couple
equally. This design shows good frequency stability for both parallel and perpendicular polarizations
for incidence angles up to ○.

Martynyuk et al. [] use the loading of ring slot resonators with PIN diodes to achieve frequency
control of a FSS. Two diodes, one at the top of the ring slot and the other at the bottom, connect
the metallic island to the surrounding sheet. When the diodes are reverse biased (− V), the FSS
is nearly transparent to the incident wave near resonant frequency of . GHz. Conversely, when
forward biased with  mA, the FSS behaves more like a metallic sheet and most of the energy is
reflected, giving a transmission coefficient of about − dB. The “on” diode was modeled as a .Ω
resistor, whereas the “off ” diode was modeled as a  kΩ resistor and a . pF capacitor in parallel.

In [], Chang et al. present a tunable FSS constructed from segmented half-square loops. As shown
in Figure ., two PIN diodes are inserted in each unit cell to connect the upper and lower segments
together.

When the diodes are forward biased (on), a low resistive path connects the square segments and the
surface looks like an infinite periodic array of square loops. When the diodes are reverse biased (off),
they act predominantly as an extra capacitive load between the half squares and the array resonates
at a higher frequency, but at the original frequency, the surface is transparent to the incident waves.
Hence, it can be made either reflecting or transmitting, according to the applied bias.

The equivalent circuit for the square loop is a series LC circuit. Cd and Rd are PIN diode capacitance
and resistance, respectively. When the diode is forward biased, Cd is short circuited. Measured and
calculated results show that when the PIN diodes are forward biased with  V, there is a stop band at
. GHz. When the biasing is removed, the stop band moves to  GHz leaving full transmission for
the array at . GHz.
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FIGURE . (a) Active square loop array geometry including bias lines. (b) Equivalent circuit for active array.
(From Chang, T.K., Langley, R.J., and Parker, E.A., IEEE Microw. Guided Wave Lett., (), , . With permission.)

Tennant and Chambers [] have used PIN diodes and an FSS to design a novel single-layer active
microwave absorber with a controllable frequency response between  and  GHz. Having based
their topology on a conventional Salisbury Screen [], the traditional resistive layer was replaced by
a periodic grid of bow-tie dipole elements controlled by PIN diodes. The overall thickness of the active
absorber was less than  mm including the back-plane,  mm thick Rhocell  foam (εr=., tan δ =
.), and the “face-down” active FSS circuit board. With only . mA forward bias current of the
PIN diodes, a reflectivity level less than − dB is achieved between . and . GHz.

Further examples of the use of PIN diodes in active FSS to control transmission are demonstrated
in [,]. As in the previous examples, the transmission through the FSS is blocked by forward
biasing the diodes. This ability to remove the bandpass is the most common control achieved through
PIN diodes on FSS.

32.2.4 Varactor Diodes

Varactor diodes have found many uses in RF applications, especially in tunable devices. Varying levels
of reverse bias voltage across the varactor diode gives varying amounts of capacitance. In applications
where control of the surface impedance is important, this ability to change the surface reactance was
utilized in many novel designs.

The equivalent circuit of the varactor diode is shown in Figure . []. The diode is assumed
to have a junction capacitance Cv, a series resistance rv, a package capacitance Cp, and a parasitic
inductance Lp. Varactor diodes are normally employed in regions where variable capacitance would
have a large impact on the surface impedance and thus change the operating frequency of the surface.

Cv rv

Cp

Lp Lp

Cd

Ceff

rd

rd

FIGURE . Equivalent circuit of the varactor diode. (From Mias, C. and Haur Yap, J., IEEE Trans. Antennas
Propag., (), , . With permission.)
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A number of novel designs were proposed that use varactor diodes to achieve frequency control and
some of these will be examined next.

Sievenpiper et al. [] introduced varactor diodes between square metal plates of a HIS to tune the
capacitance between the mushroom-shaped conducting elements. The resonance frequency and the
reflection phase of a HIS can be controlled by tuning the capacitance and/or the inductance. The sheet
inductance is related to the magnetic permeability and the thickness of the substrate. Other than by
magnetically tuning of a ferrite substrate or mechanically tuning the thickness of the substrate, it is
difficult to change the inductance. The capacitance, on the other hand, is easier to control. This can
be achieved by changing the geometry and arrangement of the metal plates [] or by adding tunable
lumped capacitors as shown in Figure .. There are two . mm thick RD substrates sand-
wiched between three layers of metallization. The top layer contains the square patches, the middle
layer the ground plane, and the bottom layer has the biasing network for the varactor diodes.

By changing the voltage applied to the varactor diodes between  and  V, the resonance frequency
can be tuned over a range of about .–. GHz. Reflection magnitude results for the tunable surface
are shown in Figure .. Higher resonance frequencies can be achieved by alternating between two
voltages on every other row. This effectively doubles the lattice period and extents the top frequency
to nearly  GHz.

9.2 mm 10 mm

1.6 mm

Bias voltages

V1 V2 Va

Varactor diodes

FIGURE . Electrically tunable impedance surface, with varactor diodes between neighbouring pairs of plates.
Half of the plates are grounded, and the other half are attached to control wires on the back of the surface. The diodes
are oriented in opposite directions in each alternate row. (From Sievenpiper, D.F., Schaffner, J.H., Song, H.J., Loo, R.Y.,
and Tangonan, G., IEEE Trans. Antennas Propag., (), , . With permission.)
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FIGURE . Reflection magnitude for various voltages. The solid lines correspond to a uniform voltage ranging
from  to  V, which provide a tuning range of .–. GHz. For the dashed lines, two different voltages were applied
to alternate rows, which double the effective period, splitting the resonance in two, and pushing the upper resonance to
nearly  GHz. (From Sievenpiper, D.F., Schaffner, J.H., Song, H.J., Loo, R.Y., and Tangonan, G., IEEE Trans. Antennas
Propag., (), , . With permission.)

Mias [] used varactor diodes in a tunable FSS structure consisting of vertical and horizontal
convoluted dipole elements. A FR substrate is used (thickness = . mm, εr = .) with one half of
the convoluted dipole printed on each side. The structure is designed with a novel resistive lumped-
element biasing grid. The specially designed highly resistive biasing grid suppresses unwanted
resonances and improves the surface’s frequency response. The top and bottom surfaces of the FSS are
shown in Figure .. This particular design is able to block both vertically and horizontally polarized
waves with the stop band tunable from . to . GHz. The FSS transmission responses for different
varactor biasing voltages are shown in Figure ..

Other surface tuning techniques using varactor diodes are given in [,–].

32.2.5 Microelectromechanical Systems

As a relative newcomer to the filed of reconfigurable devices, RF MEMS have quickly found favor
in many research laboratories world wide. As mechanical contact switches, MEMS provide high iso-
lation when open and low insertion loss when closed. MEMS are actuated using static voltages that
draw very little current. They are also used in configurations that provide a variable capacitance rather
than a simple on–off switch.

In [], Schoenlinner et al. demonstrated a switchable FSS operating around  GHz using RF
MEMS bridges on a  μm thick glass substrate. To ensure polarization independence, ○ rota-
tional symmetry is achieved using four-legged loaded elements as unit cells. Figure .a and b
shows the unit cell of the FSS with (a) showing the locations of the MEMS bridges and (b) show-
ing the biasing bridges connecting the tips of neighboring unit cells. Four RF MEMS per unit cell
are arranged symmetrically around the center of the cross dipole as this is where the electric field is
strongest and the variable capacitance offered by the MEMS bridges can be most effectively applied.
The complete FSS is composed of  unit cells and  MEMS bridges.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Tunable Surfaces: Modeling and Realizations 32-9

Upper biasing grid
(positive
polarity)

Surface mount
resistors

Conductive
vias

Convoluted
half-dipole

Unit cell
(dashed

line)

(a) (b)
L

w

q

dg

2r h
pL

Varactor
diodes

h

Convoluted
half-dipole Surface mount

resistors

Lower biasing grid
(negative
polarity)

Unit cell
(dashed

line)
Conductive

vias

t

s

u
v

t

s u v

FIGURE . (a) Upper metallization layer of the FSS and (b) lower metallization layer of the FSS. L =  mm, G =
 mm, q = . mm, w =  mm, d =  mm, h =  mm, p =  mm, r =  mm, v =  mm, u =  mm, s =  mm, t =
 mm. The dashed-line square indicates the periodic unit cell of the FSS. (From Mias, C. and Haur Yap, J., IEEE Trans.
Antennas Propag., (), , . With permission.)
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Tamijani, A., Kempel, L.C., and Rebeiz, G.M., IEEE Trans. Microw. Theory Tech., (), , . With permission.)
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FIGURE . Measured transmission and reflection coefficients of the FSS versus frequency in comparison with the
HFSS simulation: (a) with MEMS bridges in the up- and (b) downstate positions (V =  V). (From Schoenlinner, B.,
Abbaspour-Tamijani, A., Kempel, L.C., and Rebeiz, G.M., IEEE Trans. Microw. Theory Tech., (), , . With
permission.)

Figure .a and b shows the transmission and reflection coefficients of the FSS with the MEMS
bridges in the up- and downstates, respectively. In the upstate, the FSS resonates at . GHz and
has a low insertion loss of  dB in its bandpass region. With the application of  V to the MEMS,
the bridges are forced down and the capacitive loading of the cross-dipoles are effectively changed.
The change in surface impedance removes the bandpass at . GHz. In the downstate, the FSS has a
transmission less than −. dB.
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FIGURE . Ferromagnetic microactuators with stabilizing torsional flexures, driven by off-chip magnetic fields.
(From Zendejas, J.M., Gianvittorio, J.P., Rahmat-Samii, Y., and Judy, J.W., J. Microelectromech. Syst., (), , .
With permission.)

In [], Zendejas et al. applied a magnetic field to control ferromagnetic microactuators acting as
dipole elements in a FSS array. As shown in Figure ., the magnetic field causes the dipole elements
to be tilted away from the supporting substrate surface so that an incident RF plane wave is presented
with an effectively shortened dipole element. As the tilt angle effectively controls the visible length
of the dipoles, the operating frequency of the FSS can be adjusted by changing the magnetic field
strength.

The measured results for different dipole element tilt angles are shown in Figure .. Transmis-
sion coefficients better than − dB can be achieved for tilt angles up to ○. The operating frequency
of the FSS can be usefully tuned between  and  GHz.
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FIGURE . A family of measured frequency responses for a reconfigurable MEMS FSS illuminated by a normally
incidence source. (From Zendejas, J.M., Gianvittorio, J.P., Rahmat-Samii, Y., and Judy, J.W., J. Microelectromech. Syst.,
(), , . With permission.)
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FIGURE . (a) Single FSS unit cell with MEMS structures. (b) Crossover bridge which provides DC isola-
tion between the overlapping grids. (c) Two-state MEMS switched capacitor. (d) Simulated S-parameters for MEMS
switches up and down. (From Coutts, G.M., Mansour, R.R., and Chaudhuri, S.K., A MEMS-Tunable Frequency-
Selective Surface Monolithically Integrated on a Flexible Substrate, IEEE/MTT-S International Microwave Symposium,
, pp. –. With permission.)

In [], Coutts et al. presented a MEMS-tunable FSS integrated onto a flexible substrate. As shown
in Figure .a, the FSS consists of two overlapping grids of patches, with the patches in one grid
larger than the patches in the other. Each patch on both grids has its own interconnecting tracks that
connect the patch to its four neighboring patches in the same grid. DC isolation between the two
grids is maintained by using crossover bridges where the interconnecting tracks cross. These bridges
are shown in Figure .b. Capacitive coupling between patches on both grids are strongest at the
corners due to their close proximity to each other. MEMS capacitors are integrated into the corners
of all patches (see Figure .c) so that the capacitance between the patches can be tuned.

Simulated results for the tunable FSS are given in Figure .d. They show that when the MEMS
switch capacitors are in the upstate, the FSS resonates at . GHz with an insertion loss of . dB.
When the capacitors are in the downstate, the resonance frequency shifts to . GHz with an
insertion loss of . dB. Preliminary measured results show good correlation with simulations.

MEMS switchers are used to provide a variable capacitance for a tunable HIS in []. The supply
voltage to the MEMS changes the separation gap between two layers of DC isolated patches and
so tunes the capacitance of the HIS. Changing the impedance of the surface allows the phase of the
reflected waves to be tuned. Further use of MEMS in a tunable metamaterial is presented in []. Since
their introduction, MEMS have improved their reliability, and as they consume very little power the
number of switches that can be used on a tunable surface designs is no longer a constraining factor.

32.2.6 Photonic Control of FSS

Optical control of a metamaterial unit cell consisting of a split ring resonator (SRR) was demonstrated
theoretically and experimentally in [] by Degiron et al. Their design incorporates a small lightly
doped silicon dice fixed in the gap of a  ×  mm SRR. The dice is illuminated with an  nm laser
diode through a multimode optical fiber which increases the conductivity of the silicon by generating
electron–hole pairs. This changes the properties of the unit cell from that of a SRR to a square loop.
The design of the SRR is shown in Figure .. A simplified model is used to describe the effects of
illumination.

As the electron–hole plasma is generated mainly at the surface of the silicon, the dice is treated
as a bilayer structure whose first  μm under the surface are uniformly illuminated. Equations that
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FIGURE . (a) Geometry of the controllable SRR (length  mm, height  mm, and thickness . mm) and cross-
sectional view of the simulated piece of silicon. (b) Simulated transmission coefficient (S parameter) as a function
of frequency for increasing levels of photodoping. The data are normalized against the transmission of the unloaded
waveguide. (From Degiron, A., Mock, J.J., and Smith, D.R., Optical Control of Metamaterial Unit Cells at Microwave
Frequencies, International Symposium on Signals, Systems and Electronics, , pp. –. With permission.)

link the permittivity to the carrier density are used to characterize the top layer. The bottom layer is
treated as dark silicon.

Figure .b shows the change in the transmission coefficient with increasing silicon conductivity.
The SRR has a resonance at about . GHz which is completely destroyed by the conducting silicon
bridging the gap.

A photoinduced inductive grid array generated in a silicon wafer was suggested by Lockyer et al.
[]. A silicon wafer is totally illuminated with near infrared light through an optical mask hav-
ing the desired dimensions of the grid as shown in Figure .. The mask ensures that only the
desired sections of the silicon wafer are exposed to the light. Although silicon in the dark state acts
as a dielectric, the generation of a plasma of electron–hole pairs due to photon absorption in the
exposed areas reduces its dielectric permittivity and increases its conductivity. When the illumina-
tion is removed, the electron–hole pair density is reduced because of recombination and silicon wafer
returns to its original dielectric state. So, the device can be seen as a temporal grid of pseudometallic
elements.

Microwave transmission properties of the device can be controlled by varying the intensity of
the incident light source and the exposure time. Numerical simulation of the plasma generated
through optical excitation of silicon can be done through a system of equations presented in []. The
equations include photon absorption, carrier recombination, and diffusion and also take account of
temperature increase in the wafer. This allows the plasma density to be calculated as a function of
time and depth. In Figure ., the simulated effect of an incident  ns light pulse on the reflection
coefficient of the FSS surface is shown at a number of time intervals.

Following the same principle of illuminating the entire silicon wafer, Lockyer et al. have also shown
bandpass control using an array of printed [] and doped [] aperture dipoles. Aluminium was
deposited on the silicon wafer creating a FSS of printed dipoles with a bandpass at  GHz. A similar
effect was achieved by highly doping the wafer with a dipole array pattern and a FSS bandpass was
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FIGURE . Array generation using an optical mask. (From Lockyer, D.S., Vardaxoglou, J.C., and Kearney, M.J.,
IEEE Trans. Microw. Theory Tech., (), , . With permission.)

10 15 20 25 30 35 40

–20

–18

–16

–14

–12

–10

–8

–6

–4

–2

0

Re
fle

ct
io

n 
co

ef
fic

ien
t (

dB
)

Frequency (GHz)

t = 0 ns
t = 1 ns
t = 2 ns
t = 10 ns

FIGURE . Reflection coefficient of the photogenerated grid illuminated by a single exciting pulse with pulse
width  ns, wavelength  nm, and intensity  W/cm as a function of time (grid dimensions are D =  mm and
W =  mm).

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Tunable Surfaces: Modeling and Realizations 32-15

achieved at  GHz. When illuminated with near infrared light, the silicon surfaces were flooded with
an electron–hole plasma creating a near metallic state. In this configuration, the bandpass regions
were blocked and most of the incident RF energy was reflected.

A theoretical study in [] suggests the use of optically controlled photoconducting silicon switches
in a FSS made of an array of dipole and cross-dipole elements. Each of the unit cells are connected
to their neighboring cells using these silicon switches. Using a genetic algorithm, certain activation
patterns have been shown to tune the bandpass of the FSS. Such a system would require individual
control of all the switches.

32.3 Conclusion

This chapter has introduced the reader to a number of popular surface-tuning techniques. Tunable
surfaces have already found use in a number of applications including beam steering antennas, tun-
able phase shifters, and filters. Tuning allows for the unit cell size to be reduced and can provide
improvements in the bandwidth. In most cases, frequency and/or phase characteristics are tuned over
a fixed range by gaining control over the capacitance between conducting elements in the periodic
structure. In some designs, the resonant structures are transformed into near complete metallic walls
by shorting out the unit cells and thus blocking the transmission of incident waves. Active devices
such as PIN diodes, varactor diodes, and MEMS have been used in many novel designs. Equivalent
circuits have been derived for PIN and varactor diodes, and often, lumped elements are used in EM
simulation software to model these devices in tunable surfaces. Other techniques have also included
control of the substrate characteristics using magnetic and electric fields, mechanical movement of
one periodic structure with respect to another, and the use of photoconductivity to generate grids on
silicon wafers.
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33.1 Introduction

At the present time, ferroelectric materials are under interest for practical applications at microwave
technique. The characteristic features of the ferroelectric materials are high value of the dielectric
constant and dependence of the dielectric constant on applied biasing field. The ferroelectric inclu-
sions are used as tunable components in multifunctional metamaterials.The traditional devices such
as phase shifters for steerable antenna arrays, tunable resonators and tunable filters for telecommu-
nication, and radar systems form the area of practical applications of the ferroelectric materials.
Being comparedwith ferrites and semiconductor, the devices based on ferroelectricsmight be advan-
tageously distinguished by more simple fabrication technology, smaller controlling circuit energy
consumption, and good compatibility with high temperature superconductors (HTS).

The first attempts of practical applications of ferroelectrics were connected with experimental real-
ization of harmonic generator [], phase shifter [], andmicrowave parametric amplifies [,]. Careful

33-1
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investigations of the microwave dielectric properties of ferroelectric bulk samples were fulfilled by
K. Bethe at Philips Research Laboratory []. The rectangular waveguide partially filled with a fer-
roelectric slab was considered as a possible version of a waveguide phase shifter. Realizations of
waveguide structures with bulk ferroelectric slabs led to difficulties in matching because of a large
value of the bulk dielectric constant.

The essential progress was achieved when thin ferroelectric films on dielectric substrate had been
used as a part of ferroelectric microwave devices [–]. A set of planar structures were realized
and investigated: planar capacitor, coplanar- and slot-line waveguides, and rectangular waveguide
loaded with a thin ferroelectric film covered by conducting strips for delivering the biasing volt-
age. The first real success in microwave applications of the ferroelectric materials was realization
and examining of a low noise parametric amplifier based on a thin-film SrTiO planar capacitor.
A widespread of ferroelectric microwave devices was predicted [,]. One can remember that at
the same time new semiconductor microwave devices had been developed: low noise parametric
amplifier, low noise transistor amplifier, p–i–n diode phase shifter. Those devices were based on a
well-mastered semiconductor fabrication technology. At that period, ferroelectrics failed the compe-
tition with semiconductors because ferroelectric devices needed developing a new technology and
could not provide considerably better characteristics than semiconductor devices. Concurrently, it
emerged that the insertion loss of the ferroelectric films at microwave frequencies was much higher
than the loss of a good quality single crystal of the same composition. The films deposited on a
dielectric substrate have a defected structure. The quality of the film deposition technique had to
be improved.

In , HTSs have been discovered. Great efforts have been applied to develop the HTS film tech-
nology. Fortunately, the chemical nature and the crystallographic structure of HTS and ferroelectric
materials are similar, and a success inHTS technology was used for a progress in the ferroelectric film
technology.The epitaxial compatibility of HTS and ferroelectric films provides a possibility to realize
some favorable designs based on low loss HTS transmission lines and tunable ferroelectric compo-
nents. The interest in HTS applications at microwaves led to practical developing of the microwave
cryoelectronics at liquid nitrogen temperature. The microwave dielectric losses of ferroelectrics like
SrTiO and KTaO at liquid nitrogen temperature are smaller than the losses of other ferroelec-
tric materials suitable for applications at room temperature. Thus, developing the HTS technology
spurred up the new interest in ferroelectrics at microwaves [–].

The progress in the ferroelectric film technology and industrial demands for microwave tunable
subsystems like phased array antennas and electronically tunable filters support the effort to develop
room temperature ferroelectric components with relatively small microwave insertion loss. Some
experts wrote that there was no reason to assert that such components will not be developed in the
immediate future [,].

In recent publication, one can find descriptions of some prototypes of microwave components
based on ferroelectric film structures. Going from laboratory prototypes to commercial produc-
tion of such components is a challenge to microwave engineers who are required now to master
the principles of applications of ferroelectric components at microwaves. One should pay attention
to possibility to design and manufacture ferroelectric phase shifters as monolithic microwave inte-
grated circuits [,], which are promising for a realization of phased-array antennas based on the
ferroelectric phase shifters as low cost mass production.

During some years, the devices based on transmission lines with anomalous dispersion are under
great interest [–]. The conventional transmission line with the positive phase velocity can be
referred to as the right-handed transmission line (RHTL). One can consider such a transmission
line as a network formed by a combination of series inductors and shunt capacitors. If the capacitors
and inductors are interchanged (the dual transmission line), the phase velocity becomes negative and
such line is referred to as the left-handed transmission line (LHTL). The combination of RHTL and
LHTL is referred to as the composite right/left-handed transmission line (CRLH TL). The tuneable
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capacitors can be used as the components of such lines.The ferroelectric phase shifters based on com-
bination of transmission line sections with negative and positive dispersion can be used for designing
miniature microwave devices operating in a wide frequency range, and may be considered as a novel
version of the microwave devices.

The goal of this chapter is to deliver the physical foundations of ferroelectricity and to describe
main properties of the ferroelectrics at microwave frequencies. Designing some microwave compo-
nents based on ferroelectrics films are discussed. Phenomenological models [–] of a dielectric
response and microwave losses [,,,] of the ferroelectric samples were used for deriving
correct and simple formulas, which can be used for a design of the ferroelectric microwave com-
ponents [–]. The formulas are used for developing CAD of ferroelectric microwave devices and
subsystems.

33.2 Main Items of Ferroelectricity Physics

The goal of this section is to give the definition of ferroelectricity and to describe dielectric proper-
ties of the ferroelectric materials: appearance of spontaneous polarization, large value of dielectric
constant, and dependence of the dielectric constant on temperature and applied voltage.

Dielectric response and the loss factor of a ferroelectrics will be considered for a bulk sample and
for a thin-film sample.

Displacive type of ferroelectrics will be considered.The typical representatives of this type of ferro-
electrics are SrTiO, BaTiO, and their solid solutions. Just these materials are used in the microwave
technology. Two groups of the displacive type of ferroelectrics should be distinguished: conventional
ferroelectrics and incipient ferroelectrics. The conventional ferroelectrics exhibit ferroelectric phase
transition, which is characterized by the spontaneous polarization at the temperature below the tem-
perature of the phase transition. Incipient ferroelectrics have no spontaneous polarization; however,
they exhibit the strong temperature dependence of dielectric permittivity and remarkable dielectric
nonlinearity.

33.2.1 Spontaneous Polarization

In Figure ., the typical hysteresis loop of a ferroelectric sample is presented. Two characteristic
parameters of the hysteresis loop should be distinguished: the residual spontaneous polarization Ps
and the coercive force EC. An observation of the hysteresis loop can be realized with a simple circuit
including an oscilloscope (Figure .). The voltage across the ferroelectric sample containing an
electric charge Q(t) is applied to the horizontal plates of the oscilloscope. The voltage across the
linear capacitor UC(t) is proportional to the polarization of the ferroelectric sample and is applied
to the vertical plates. Such a scheme was presented by Sawyer and Tower in Ref. []. See also Kittel’s
Introduction to Solid State Physics [].

The spontaneous polarization is a function of thermodynamic temperature T and is zero, if T > TC
(Figure .). Appearance of the spontaneous polarization at T < TC is an effect of the phase transi-
tion, which separates two states of the material with the different symmetry: ferroelectric state (T <
TC) and paraelectric state (T > TC). The temperature TC is called the Curie temperature of the
ferroelectric phase transition.

Distinguishing features of ferroelectrics are () spontaneous polarization, () very high value of
dielectric permittivity, () dependence of dielectric permittivity on temperature, and () dependence
of dielectric permittivity on biasing voltage.

In order to discuss the appearance of the spontaneous polarization and the dielectric nonlinearity
of a ferroelectric, one should consider the phenomena in the crystal lattice of thematerial.The crystal
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ferroelectrics demonstrating the second-order phase transition (b).
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FIGURE . Oxygen sublattice (a) and titanium sublattice (b).

lattice cell of a typical ferroelectric, barium titanate (BaTiO) is shown in Figure .. The crystal
structure of barium titanate is called the perovskite crystal structure. The perovskite is a mineral
CaTiO, which has the same structure as BaTiO, but is not a ferroelectric. Polarization of the bar-
ium titanate is a result of displacement of Ti and O sublattices. That is why BaTiO is called the
displacement type ferroelectric. The structure of Ti and O sublattices is shown in Figure ..

Mutual displacement of Ti and O sublattices is followed by a formation of an electric dipole
(Figure .) and polarization of the crystal. The polarization is defined as

P = q x/Vc , (.)

where
q is the charge
x is the displacement
Vc is the volume of the crystal cell

In order to give rise to the mutual displacement of Ti and O sublattices, the energy should be
applied. The potential energy as a function of the mutual displacement of Ti and O sublattices x is
illustrated in Figure ., where three different forms of the potential energy diagram are presented:

(a) Ferroelectric state: T < TC

(b) Nonlinear paraelectric state: T ≅ TC

(c) Linear dielectric state: T > TC
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In the case (a), the potential energy diagramhas twominima and consequently two equilibrium states
of the crystal lattice, which correspond to the different signs of the spontaneous polarization.

In the case (c), the potential energy diagram fits the Hook’s law:

U(x) = kx . (.)

In this case, the force between sublattices is proportional to the displacement (deformation):

F(x) = kx . (.)

That means that the polarization is proportional to the applied electric field, that the dielectric
response of the material is linear.

In the case (b), the potential energy diagram does not obey Hook’s law and the dielectric response
of the material is nonlinear.

33.2.2 Second-Order Phase Transition

For authentic description of appearance of the spontaneous polarization in a ferroelectric sample, the
Landau theory of the second-order phase transition should be used.Themain concepts of the theory
are as follows:

. Order parameter is introduced as a main feature of the phase transition.
. Order parameter of a ferroelectric is the spontaneous polarization.
. Free energy density of a sample is taken as a power series with respect to the polarization:

F(P, T) = 


a(T) P + 


b(T) P, (.)

where a(T) and b(T) are the expansion coefficients.
Equation . for free energy density, as a function of a ferroelectric polarization, is known as the

Ginzburg–Devonshire equation.
The system is in equilibrium, if

∂F(P, T)/∂P = .

That is followed by the equation:
P[a(T) + b(T)P] = .

The solution to the equation is

P(T) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

 for a(T)
b(T) > 

±
√
− a(T)

b(T) for a(T)
b(T) < .

(.)

The dependence of the polarization on temperature described by Equation . corresponds to the
graph presented in Figure .a. Appearance of the polarization in the point T = TC is an exhibition
of the second-order phase transition.

The dielectric permittivity of a ferroelectric sample can be found in the following way.The electric
field strength and the inverse dielectric susceptibility are presented as follows:

E(P, T) = ∂F(P, T)
∂P

; χ− = ∂E(P, T)
∂P

.
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For a ferroelectric sample with a high permittivity, the inverse dielectric susceptibility is practically
equal to the inverse permittivity. Thus, the permittivity can be found as

ε(T) = [∂F(P, T)
∂P ]

−

. (.)

Taking after Landau, we suppose that

a(T) = αT(T − TC), αT = /CC, (.)

where CC is the Curie constant.
And next:

b(T) = β = const. (.)

On substituting Equation . into Equation . and using the solution (Equation .), we find:

ε(T)− =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩


CC
(T − TC) for T > TC

− 
CC
(T − TC) for T > TC

. (.)

This is so-called Curie–Weiss law.The dependence of the dielectric constant on temperature in form
(Equation .) is adequate to the perfect defectless ferroelectric crystal. Such dependence is shown
in Figure .a for the case of a high-quality ceramics sample of solid solution BaxSr−xTiO (BSTO).

33.2.3 Incipient Ferroelectrics

As distinct from BaTiO, the crystals of SrTiO and KTaO do not manifest the spontaneous polar-
ization at any temperature although they demonstrate a very high dielectric permittivity and a strong
nonlinear dielectric response.The crystals of SrTiO andKTaO are called the incipient ferroelectrics.

Behavior of the incipient ferroelectrics at low temperature is determined by the quantum oscil-
lations of the crystal lattice []. The quantum consideration was used by Barrett, who derived the
following formula for the temperature dependence of the dielectric constant:

ε(T) = CC

TCη(T)
; η(T) = 


T

TC


tanh(T/T) − , (.)

ε(
T
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FIGURE . Temperature dependence of inverse dielectric permittivity of (a) typical ferroelectrics (BSTO) and
(b) incipient ferroelectrics (SrTiO).
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where T is a characteristic temperature, which selects out the low temperature region where the
quantum effects are important and the Curie–Weiss law is not fulfilled.

Later, the equation for η(T) was derived in the form of Debye integral [,,]:

η(T) = (θF
Tc
) Ψ ( T

θF
) − , (.)

where

Ψ(z) = 

+ z

/z�


x/[exp(x) − ]dx , z = T
θF

. (.)

θF = hνF/kB is an analog of the Debye temperature for the sublattice oscillations, which are responsi-
ble for the ferroelectric polarization, νF is the cut-off frequency for the Debye spectrum of the crystal
sublattice mentioned.

Using reasonable approximation, Equation . can be rewritten in the more simple form [,]:

η(T) = θF
Tc


��� 


+ ( T

θF
)


− . (.)

In the temperature region  ≤ (T/θF) ≤ , approximation error in comparison with the Debye
integral is less than .%.

The dependence of inverse dielectric permittivity on temperature for single crystal of SrTiO is
illustrated in Figure .b.

In the case of room temperature ferroelectric (T≫ θF), Equations . through . are trans-
formed into the following simple formula:

η(T) = T
TC
−  for T > TC. (.)

The Curie constant of the sample of solid solution BSTO is a function of the composition factor x
(relative concentration of Ba). Figure . shows TC of BSTO as a function of x. The data presented
were obtained by many groups of investigators [,–]. Alongside with the high-quality single
crystals, samples of ceramics of the same compound are frequently used. Experimental data obtained
for different samples of BSTO ceramics show that TC of ceramics is a little bit higher than TC of the
BSTO high-quality single crystals (Figure .). Ceramics are characterized by the fluctuations of
composition. Grains of a ceramic sample can have different stoichiometry, which means that the
distribution of Ba and Sr ions along the sample is inhomogeneous. This is followed by the presence
of pores and cavities and by some extension of grains. The extension of the grains in the ceramic
sample is followed by increasing the Curie temperature of the material. The same can be said about
partially defected crystals. It is remarkable that Curie temperatures of a higher quality single crystal
and partially defected crystal or ceramic samples coincide at x =  and x = , but diverge at x = ..

33.2.4 Dielectric Response of a Ferroelectric Sample

Figure . shows a sandwich capacitor formed as a planar layer of a ferroelectric with normal metal
or superconducting electrodes. The thickness of the electrodes as well as fringing fields is not taken
into account. Ordinary experimental technique consists of applying to the capacitor small “ac” and
large “dc” voltages simultaneously. The ac voltage is used for measurement of the dielectric charac-
teristics under the dc bias. Let us take into account that in the case of zero volume charge density the
displacement D(x) does not depend on the coordinates. Thus:

D = Ddc + Dac , (.)
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FIGURE . Dependence of Curie temperature of BSTO on barium concentration. The following references were
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FIGURE . Parallel-plate capacitor as a simplified general structure, , electrodes; , ferroelectric layer.

where the terms Ddc and Dac are connected with the components of the charge Qdc and Qac on the
capacitor electrodes constant and alternating in time respectively:

Ddc =
Qdc

S
, Dac =

Qac

S
, (.)

where S is the area of the capacitor electrodes.
For the ac components of the polarization, one has

Pac(x) =
Qac

S
− εEac(x). (.)

Let us find Qdc as a function of the dc voltage UB applied to the electrodes of the capacitor. In order
to do so, the Ginzburg–Devonshire Equation . should be used. Taking derivative with respect to
P, one obtains

Q + Qε(T)
(DNS) = εε(T)

SU
h

, (.)

where DN is the normalizing displacement; Equation . is taken into account.
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It is well-known that the free energy minima correspond to the roots of the cubic equation with
respect to the ferroelectric polarization. For dimensionless variables, Equation . can be written
as follows:

y + η(T)y − ξ (E) = , (.)

where

y = Qdc

DNS
√
ε, (.)

ξ(E) =


���( E

EN
)

+ ξS, (.)

EN =
DN

ε(ε)/
. (.)

Here, y is the reduced polarization, which is a function of the temperature T and the biasing field
E. Parameter η(T) is introduced with Equation . or .. The additional model parameters are
used: ε is the analog of the Curie constant; EN is the normalizing biasing field; ξS is the statistical
dispersion of the biasing field.

A short comment about the parameter ξS is given in Ref. []. Real (defected) crystals and ceramic
samples are characterized by the presence of built-in electric field and mechanical strains, which are
generated by defects, nonhomogeneities, and structure damages. The effects caused by the defects
can be quantitatively described by the parameter ξS, which may be considered as a characteristic of
the material quality. For single crystals ξS = ., . . ., ., and for ceramic samples ξS = ., . . ., ..

33.2.4.1 Dielectric Response in Ferroelectric and Paraelectric States

If the following inequality is fulfilled

ξ(E) + η(T) ≥ . (.)

Equation . has one real root, which gives a simple relation between y and ξ under the given η.
From the physical point of view, the single root to Equation . corresponds to the absence of the
spontaneous polarization and the presence of the polarization induced by the biasing field. In other
words, the inequality (Equation .) determines the conditions under which the sample is in the
paraelectric state.

Under the condition:
ξ(E) + η(T) < . (.)

Equation . has three real roots. One of the roots is connected with an unstable state and therefore
has no physical sense.

For ξ =, the roots corresponding to the stable ferroelectric and paraelectric states of the sample are

y, = ±
√
−η(T).

y = . (.)

The roots y, correspond to the spontaneous polarization. Existence of the spontaneous polarization
determines the ferroelectric state of the sample.
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Let us take the normalized polarization as a root of Equation . for the paraelectric state. The
square of the normalized polarization is read as

y (E , T) = [(ξ(E) + η(T))/ + ξ(E)]/

+ [(ξ(E) + η(T))/ − ξ(E)]/ − η(T)
. (.)

Differentiating Equation . with respect to U , one obtains the capacitance of the bulk capacitor
with respect to the small alternating voltage:

C(U) = (εS/h) [(ε(T))− + Qdc


(DNS) ]
−

. (.)

Using the notations (Equation . and .), one can rewrite Equation . as follows:

C(U) = ( εεS
h

) [η(T) + y]− , (.)

or taking into account Equation ., one obtains C in the form:

C(E , T) = ε εS/h

[(ξ(E) + η(T))/ + ξ(E)]
/
+ [(ξ(E) + η(T))/ − ξ(E)]

/
− η(T)

. (.)

Thus, the effective dielectric constant of the ferroelectric in the paraelectric state is read as a follows:

ε(E , T) = ε
G(E , T) , (.)

where

G(E , T) = [(ξ(E) + η(T))/ + ξ(E)]/ + [(ξ(E) + η(T))/ − ξ(E)]/ − η(T), (.)

when the condition (Equation .) is fulfilled.
The solution to Equation . was found under the condition (Equation .) by using Cardano’s

formula for one real root of the cubic equation. For the sample in the ferroelectric state under the con-
dition (Equation .), there is no such simple analytical equation for the solution to Equation ..
The numerical solution to Equation . was approximated by the following formula:

G(E , T) = ξ(E)/ + 

[ξ(E) + η(T)]ξ(E)/ − η(T), (.)

when the condition (Equation .) is fulfilled.
Figure . illustrates the dependence of the dielectric permittivity of a ferroelectric sample

BSTO for x = . and ξS =  as a function of temperature and biasing field simulated with Equa-
tions . through ..The typical values of themodel parameters for BSTO samples are presented
in Table ..

33.2.4.2 Stationary (dc) Ferroelectric Polarization

In the frame of the model considered, the stationary ferroelectric polarization is presented as

P(E , T) = 

εε(x)EN(x)y(E , T), (.)

where y(E , T) is a normalized value of the ferroelectric polarization.
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FIGURE . Temperature dependence of dielectric permittivity for biasing field E =  (),  kV/cm (), and
 kV/cm ().

TABLE . Model Parameters for BSTO Samples
x TC (K) θF (K) DN (C/m ) EN (kV/cm) ε ξS
   .   .
.   .   .

In accordance with Equations . through ., the normalized value of the ferroelectric
polarization is given by the following equation:

. For the case a(E , T) ≥ 

y(E , T) = (a(E , T)/ + ξ(E))/ − (a(E , T)/ − ξ(E))/ . (.)

. For the case a(E , T) < 

y(E , T) = 


a(E , T)ξ(E)/ + ξ(E)/ − η(T). (.)

One can see from Equations . and . that for ξ > , the averaged polarization is not equal to
zero at any temperature even under zero-biasing field. That kind of polarization should be consid-
ered as the residual ferroelectric polarization in the ferroelectric sample in a paraelectric state [,].
Dependence of the averaged stationary ferroelectric polarization of the solid solution BSTO on tem-
perature for different values of composition parameters x is shown in Figure .. The residual
polarization of a sample in the paraelectric state shown in Figure .a is caused by the charged
defects. In Figure .b, simulation of the polarization in ferroelectric state of the BaTiO(x = )
as a function of temperature is shown in comparison with the experimentally obtained data [].
Fracture of the experimental curve corresponds to the phase transitions between the different crys-
tallographic structures of BaTiO. In the case of the solid solution BSTO for x < ., the polarization
curve becomes smooth and near to the form of the simulated curve.
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FIGURE . Temperature dependence of residual polarization for SrTiO (a): curves , , and  correspond to
ξS = ., ., .; and spontaneous polarization for BaTiO (b): simulation (curve ) and experimental data (curve ).

33.2.5 Curie Temperature and the Maximum Dielectric Permittivity
Temperature

Three temperature points are important for characterization of the properties of a ferroelectric sam-
ple: () the Curie temperature, () temperature of the maximum dielectric permittivity, and ()
ferroelectric phase transition temperature.

The point at the temperature scale, in which the spontaneous polarization turns into zero, is the
point of the phase transition. This point determines the Curie temperature of the sample of the per-
fect crystal structure. For a real (slightly defected) crystal or ceramics, all three mentioned above
temperatures are different.

33.2.5.1 Curie Temperature

For a bulk ferroelectric sample (defected crystals, ceramics, incipient ferroelectrics) of different
quality, for the case T ≫ TC, θF, one may write the following equation:

ε−(T) = ε− (
T
TC
− ) . (.)

Equation . describes the tangential to the curve ε−(T) depicted in the region T≫TC, θF. The
point of crossing the tangential and the temperature axis determines the Curie temperature. The
described procedure is a standard way of the experimental determination of the Curie temperature.
However, in order to obtain an acceptable accuracy, one should measure ε−(T) up to a considerably
higher temperature.

33.2.5.2 Temperature of the Maximum Dielectric Permittivity

Themaximum dielectric permittivity temperature Tm of a defected crystal or ceramics can be found
from the solution to equation dε(T)/dT = :

Tm = TC


����[( 


ξ(E))

/
+ ]



− ( θF
TC

)


. (.)
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In the case of x > ., one has TC > θF and (Equation .) can be rewritten in the form:

Tm = TC [ + (


ξ(E))

/
] . (.)

The external biasing field, as well as the built-in electric field and themechanical strains, displaces the
temperaturemaximumof the dielectric permittivity.Maximumof the dielectric permittivity of BSTO
samples takes place at the temperature higher than the Curie temperature of the material (Tm ≥ TC).
The equality (Tm = TC) can take place only in the case of a perfect crystal. For a high-quality incipient
ferroelectric crystal (x = ), one can observe Tm = .

33.2.5.3 Ferroelectric Phase Transition Temperature

It can be shown that for the case ξ ≠  spontaneous polarization appears as a jump.The application of
an external field transforms the second-order phase transition into the first-order phase transition.
The temperature of the phase transition as a function of the external or built-in biasing field can be
found under the condition ξ(E) + η(T) = , which gives

T ′C = TC


���( − ξ/) − ( θF

TC
)


. (.)

For x > .:

T ′C = TC( − ξ/). (.)

Summarizing the results exhibited in Equations . through ., one can write the following line
of inequalities:

T ′C < TC < Tm, (.)

where
T ′C is the temperature of the phase transition in a real slightly defected sample
TC is the Curie temperature of a perfect crystal
Tm is the temperature of the maximum of the dielectric permittivity

The line of inequalities (Equation .) is illustrated by Figure ..

33.2.6 Nonlinearity of the Dielectric Response

Ferroelectric materials are under great interest due to its dielectric nonlinearity. Both typical fer-
roelectrics and incipient ferroelectrics demonstrate strong nonlinear dependence of the dielectric
permittivity on the applied electric field (see Figure .). Under the applied field, the dielectric per-
mittivity decreases and the maximum of permittivity is shifted to higher temperatures. Nonlinearity
of ferroelectrics allows building electrically tunable microwave devices.

33.3 Dielectric Response of Thin Films (Size Effect)

33.3.1 Size Effect

When the characteristic size of a sample of some material (the thickness of the film or the size of
polycrystalline film grains) turns out to be smaller than some critical value, the properties of material
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50 T ć TC Tm 380 490

T (K)

FIGURE . Temperature dependence of inverse dielectric permittivity of a real ferroelectric sample.
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FIGURE . Dielectric permittivity of SrTiO as a function of dc biasing field at different temperatures: T =
.K(), T = K(), T = K(), T = K() for ξS = .(a) and dielectric permittivity of Ba. Sr. TiO as
a function of dc biasing field at different temperatures: T = K(), T = K(), T = K(), T = K() for
ξS =  (b).

change significantly [].This phenomenon is called size effect. In the case of ferroelectric materials,
the dependence of dielectric permittivity of the sample on its size (especially the thickness of a ferro-
electric film) is of primary interest (Figure .). The simplest explanation of the size effect is based
on a supposition about existence of strongly defected or chemically alien region between principal
ferroelectric layer and electrode.

In this section, the interface between ferroelectric and electrodematerial will be taken into account
as a pure separation between two different crystal lattices without specific inclusions or chemical
impurities. In the framework of the pure interface between the ferroelectric and electrodematerial in
parallel-plate capacitor, various reasons were suggested to explain the size effect phenomenon: () the
correlation of the ferroelectric polarization and freezing of the dynamic polarization on the electrode
surface [,,], () the formation of a thin subelectrode layer of a nonferroelectric polarization
(so-called “dead” layer model) [], () the contribution of the semiconductor Schottky barrier near
the electrode to the field distribution. In agreement with some previous considerations [], no
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FIGURE . Effective dielectric constant of a thin film Ba. Sr. TiO at room temperature as a function of the
film thickness. The curve is simulated by formula (Equation .); the points are taken from Ref. [].

charge transfer through the interface between the ferroelectric and electrodematerial in parallel-plate
capacitor will be taken into account.

33.3.1.1 Correlation of the Ferroelectric Polarization

The correlation model is based on the concept of the spatial correlation of the dynamic polarization
inside a ferroelectric sample, which is followed by a nonlocal connection between the electric field
and the ferroelectric polarization. The parameter responsible for the manifestation of the size effect
is the correlation radius, which is generally found from the dispersion relation for the ferroelectric
mode determined by neutron inelastic scattering. The experimental dependencies (points) of the
frequencies of the longitudinal and transverse optical modes on the wave number at T = K are
shown in Figure . [].

As follows from the equation of motion of the ion-polarization vector, the spatial dispersion of
the longitudinal and transverse modes in a medium of arbitrary symmetry is determined by the
correlation tensor of rank  [].

The dispersion equation for the optical modes in a cubic medium has the form [,]:

{[ω
OT(, T) − ω + st] (atk − ω) − kv

t }


×{[ω
OL(, T) − ω + sL] (aLk − ω) − kv

L} = 
, (.)

where

st =


A(T)λω

OT(, T), sL =

ε
∞
(ε(T) − ε

∞
)

ε(T) (ε
∞
+ ) λω

OL(, T),

v
t =


A(T) ⋅

ε
ρr

ω
OT(, T)θ, v

L =
ε
∞
(ε(T) − ε

∞
)

ε(T) (ε
∞
+ ) ⋅ ε

ρr
ω
OL(, T)θ . (.)

at =
c
ρr
; aL =

c
ρr
; A(T) = (ε

∞
+ )

(ε(T) − ε
∞
) . (.)
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FIGURE . Dependence of the frequency of the longitudinal (curve ) and transverse (curve ) optical modes
on the wave number k[] at T = K for SrTiO.

Here,T is temperature; ε(T) (see Equations . through .) and ε
∞
are the values of permittivity

corresponding to the frequencies ω ≪ ω i , ω ≫ ω i , respectively (ω i is the eigenfrequency of the
ionic component of polarization); ε is permittivity of free space; ρr is the density of material; θ
and θ are the tensor components responsible for the relationship between nonuniform mechanical
displacement and polarization; c and c are the elasticity–tensor components.

The components λ, λ, and λ are referred to as the correlation parameters of a material. They are
the nonzero components of the correlation tensor for amediumwith a cubic structure (towhich a fer-
roelectric crystal in a paraelectric phase belongs). The connection of λ, λ, and λ with components
of the fourth-order correlation tensor for the medium is as follows:

λ = λx x x x = λy y y y = λzzzz , λ = λx xzz = λy yx x = λzz y y = λzzx x = λx x y y

= λy yzz , λ = λx yx y = λyz yz = λzxzx .

Excluding from Equations . through ., the connection between the acoustic and optical
branches (νt → , νL → ) [,], we obtain the dispersion equations for the transverse (ωOT) and
longitudinal (ωOL) optical modes for the crystallographic direction [] of the vector k:

ωOT (k, T) =
√

ω
OT (, T) + ω

OT (, T)A−(T)λ k

ωOL (k, T) =
√

ω
OL (, T) + ω

OL (, T)A−(T)ε
∞
ε(T)−λ k

. (.)

The curves in Figure . are plotted by using Equation .. The values of the correlation param-
eters for the longitudinal (λ) and transverse (λ) waves used in the calculation were determined by
processing the experimental data on the dependence of the transverse mode frequency on the wave
vector (circles) and the temperature dependence of the permittivity of SrTiO [–]. The value of
ε
∞

was determined from the refractive index n. At optical frequencies, n ≅ . and ε
∞
= n ≅ .

The values of correlation parameters for ferroelectric materials are presented in Table ..
The spatial distribution of the polarization in a ferroelectric layer is described by a second-order

differential equation derived from the expansion of the free energy in the order parameter (polar-
ization in the case under consideration). In accordance with Landau theory of phase transitions, the
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TABLE . Correlation Parameters of Ferroelectrics
Material λ (Å) λ(Å)
SrTiO [] . .
KTaO [] . .

free energy density of a ferroelectric can be written in the following form []:

F(P, T) = 


a P + 


b P + δ ∣gradP∣ . (.)

The spontaneous polarization is determined in Equation . as a function of coordinates. Being a
function of coordinates, the polarization must obey boundary conditions.

For one-dimensional (D) approach, Equation . without the term responsible for the nonlin-
earity of the material can be transformed as follows [,]:

−λ
dP(x)
dx + P(x)

ε(T) = εE(x), (.)

where
P is the polarization
ε(T) = ε/η(T) is the permittivity of a bulk material in the case of uniform polarization
η(T) is given by Equation .
E is the biasing field

A solution to Equation . for a medium infinite in the direction x, i.e., with the boundary
conditions

dP(x)
dx

∣x→∞ =  ;
dP (x)
dx

∣x→−∞ =  (.)

can be written in the integral form:

P(x) =
∞�
−∞

K (x − x′)E (x′)dx′ (.)

with the kernel

K (x − x) = K exp(−∣x − x′∣
ρ(T) ) , (.)

where K = εε(T)/ρ(T) and ρ(T) is the correlation radius:

ρ(T) =
√
ε(T)λ. (.)

Figure . shows the mutual shift of the titanium and oxygen sublattices, which is responsible for
the ferroelectric polarization in displacement type ferroelectrics such as BSTO. The relative shift of
the sublattices is associated with the formation of a softmode.Themode is soft, because the elasticity
of the structure formed due to the relative shift of the sublattices is small. The rigidity of the sub-
lattices themselves is much higher than the rigidity counteracting their mutual shift. The rigidity of
the sublattices determines the spatial correlation of the polarization and, accordingly, the correlation
radius.The correlation radius for the transverse wave ρ

(T) T =
√
ε(T)λ is significantly smaller than

that for the longitudinal wave ρL(T) =
√
ε(T)λ. Apparently, the reason is that the rigidity of the

titanium and strontium sublattices with respect to the compression and extension (Figure .a) is
much higher than their rigidity with respect to shear strains (Figure .b).

Equation . describes the nonlocal connection between the polarization P(x) and the electric
field E(x). The nonlocal connection is illustrated in Figure ..
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FIGURE . Spatial distribution of biasing field and polarization: (a) longitudinal mode; (b) transverse mode.

33.3.1.2 Boundary Conditions for Dynamic Polarization on the Interface between
Ferroelectric Layer and Electrodes

The principal role belongs to the boundary conditions for the dynamic ferroelectric polarization.
Firstly, we consider the specific boundary conditions on the interface between the ferroelectric layer
and the electrode, which are defined as a blocking of the dynamic ferroelectric polarization. The
blocking of the ferroelectric polarization was experimentally observed by electron diffraction exper-
iment as a consequence of the distortion of the periodicity of the ferroelectric crystal []. This
experimental result was in agreement with a numerical simulation, which revealed the existence of a
strong electric field appearing as a result of the distortion of the lattice near the crystal surface. This
field takes place in a thin layer with the thickness of a few lattice constants [,]. The blocking of
the dynamic ferroelectric polarization was called “zero” boundary conditions []. If the periodicity
of the crystal lattice is not distorted on the boundary of the ferroelectric crystal, the blocking of the
ferroelectric polarization does not exist and the size effect is suppressed. This situation is referred to
as the “free” boundary conditions. Such a situation can be realized, for example, in a parallel-plate fer-
roelectric capacitor with conducting electrodes made from material with the crystal structure being
close to the perovskite structure []. As a suitablematerial for the electrode, theHTSYBa Cu O−x
or stontium rutinate SrRuO (SRO) can be selected.The suppression of the size effect was experimen-
tally demonstrated in SRO/SrTiO/SRO parallel-plate capacitor [,]. This experimental result is
in agreement with the spatial correlation model with free boundary conditions for the dynamic fer-
roelectric polarization. Suppression of the blocking of the ferroelectric polarization in BaTiO in the
case of the free boundary conditions was theoretically approved by first-principles investigation of
ultrathin BaTiO films with SRO electrodes [].

Let us take into account that

D = P(x) + εE(x),
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then the solution to Equation . for the case divD =  and the “zero” boundary conditions for P(x)
gives the distinctive polarization distribution across the ferroelectric layer inside the parallel-plate
capacitor [,,,]:

Pac(x) ∣x=±h/ = , (.)

Pac(x) = Pmax × ( −
cosh(αx)

cosh (αh/)) , (.)

Pmax =
Qac

S
[ − 

ε(T)] , (.)

α = /
√
λ. (.)

where
Qac is the charge on the capacitor electrodes
S is the electrode area

Example of this polarization distribution is shown in Figure .a.
Blocking of the polarization is followed by the appearance of the depolarizing electric field near the

capacitor electrodes (Figure .b). As it was shown above (see Equation . and Figure .), the
polarization is nonlocally connected with the electric field inside the ferroelectric layer. Integration
of the field gives the voltage drop across the capacitor. Using surface charge density on the electrodes
(QSur = D) and the voltage drop one can find effective permittivity of the film, which now is a func-
tion of the film thickness (size effect).The effective dielectric constant of the filmwith zero boundary
conditions is described as


εeff

= 
ε f (T)

+ 
αh

, (.)

where h is the thickness of the film. For SrTiO α = . ×  /m.
For BSTO correlation parameter depends on the composition factor x. In general case, the size-

effect parameter α of the displacive ferroelectric BSTO can be found from dielectric measurements
or from inelastic neutron scattering on the ferroelectric lattice oscillations []. Figure . shows
the dependence of α on Ba concentration [,].

Pac(x)

–h/2 0 h/2 x
(a) (b)

E(x)

–h/2 0 h/2 x

FIGURE . Distribution of the polarization (a) and electric field (b) inside parallel-plate capacitor.
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FIGURE . Dependence of the parameter α on the concentration of Ba in the compound BSTO.

33.3.1.3 Effective Dielectric Constant of a Thin-Film Sample

Theeffective dielectric constant of a thin-film sample can be simulatedwith formula (Equation .),
if the size-effect parameter α, the film thickness, and the bulk permittivity of the material are known.

The size effect manifests itself differently at different orientations of the ferroelectric-polarization
vector with respect to the boundaries of the ferroelectric layer [,]. Figure . shows the fer-
roelectric structures with different orientations of an external field. In the structures shown in
Figure .a and b, the dynamic polarization can be conditionally considered as a standing lon-
gitudinal wave and a transverse wave, respectively. To calculate the size effect in a parallel-plate
(sandwich) capacitor (Figure .a), the correlation parameter for a “longitudinal wave” λ should
be used. To calculate the size effect in a planar capacitor (Figure .b), the correlation parameter
for a “transverse wave” λ should be used.

Pac(x)

Pac(x)Pac

Pac

Eac

Eac

x1

1

2

2

(a) (b)

h/2

h/2

–h/2

–h/2

FIGURE . Ferroelectric structures with different orientations of an external field: (a) structure with a standing
longitudinal wave, (b) structure with a standing transverse wave. , electrodes; , ferroelectric layer.
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FIGURE . Distribution of polarization inside parallel-plate capacitor in the case of intermediate (a) and free (b)
boundary conditions.

33.3.1.4 Suppression of the Size Effect

Boundary conditions (Equation .) are not always satisfied: for example, in the structure in which
a ferroelectric is adjacent to a high temperature superconductor YBaCuO−δ (YBCO), polarization
can partially penetrate the electrode (Figure .a). The penetration depth of the polarization in
the YBCO electrode is determined by the YBCO permittivity and the correlation parameter. For
example, for a longitudinal wave, the penetration depth of the polarization in the electrode is about
 nm [,]. This case corresponds to the so-called intermediate boundary conditions.

In this case, the effective thickness of the ferroelectric layer heff may be introduced. When a ferro-
electric contacts a material with the same crystal structure, for example, SrRuO (SRO) [,,],
free boundary conditions (Equation .) should be implemented. That is followed by a uniform
distribution of the polarization in the film, independent of its thickness (Figure .b).

Obviously, the relationship between the effective (heff ) and geometric (h) thickness of the ferro-
electric layer depends on the boundary conditions. Zero, free, and intermediate boundary conditions
correspond to heff = h, heff →∞, and h < heff < ∞, respectively.

33.3.2 Nature of So-Called “Dead Layer” in a Parallel-Plate Capacitor

Thedead layer model is based on the supposition of existence of layer with nonferroelectric polariza-
tion near the electrodes of the parallel-plate capacitor.The dielectric film is supposed to be consisting
of three layers: principal layer with the dielectric constant ε f and the thickness h, separated from the
electrodes on each side by nonferroelectric “dead layers” with the dielectric constant εd and the thick-
ness hd.The dead layer model was first mentioned in  [,] and described using some different
procedures but up to now the origin of dead layer is not well understood [,].

33.3.2.1 Primary Model of the “Dead Layer”

In the case of a parallel-plate capacitor with the dead layer (see Figure .), the effective dielectric
constant is described as follows []:


εeff(T)

= 
ε f (T)

+ hd

εdh
, (.)
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FIGURE . Model of the dead layer: , ferroelectric layer; , dead layer; , electrode.

where
εeff(T) is the effective dielectric constant of the film
ε f (T) is the dielectric permittivity of ferroelectric as a function of temperature

For the “dead layer” model, the dependence of dynamic ferroelectric polarization in the sample on
coordinates can be described as follows:

P(x) =
⎧⎪⎪⎨⎪⎪⎩

Pmax for ∣x∣ ≤ ( h
 − hd)

 for ( h
 − hd) < ∣x∣ ≤ h


. (.)

The dynamic ferroelectric polarization is supposed to be equal to zero in the dead layer, at the same
time the nonferroelectric polarization exists in the dead layers. The layer with the nonferroelectric
polarization is characterized by the dielectric constant εd, which is not yet defined and will be later
discussed. The nature of disappearance of the ferroelectric polarization in the “dead layer” will be
explained later as well.

Figure . illustrates run of the dielectric polarization in a parallel-plate capacitor for twomodels
considered: curves  and  correspond to Equations . and . accordingly.

Comparison of Equations . and . is followed by the conclusion that the thickness of the
dead layer is

hd =
εd
α
. (.)

The numerical value of εd was found as a result of extension of the experimental curve: εexp = f (/T)
for perovskite type crystals for the limit T →∞ []: εexp → εd ≅ . As it was mentioned above, εd
is the dielectric permittivity of the nonferroelectric modes of the crystal lattice oscillations.

On substituting εd ≅  and the correlation parameter α ≅ ×  /m (x = ., Figure .) into
Equation . one obtains for BSTO parallel-plate capacitor the following parameters of the dead
layer hd ≅ nm.Thus:

εd ≅ , hd ≅ nm. (.)
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FIGURE . Normalized polarization in the correlation model (solid line) and in the model of dead layer
(dashed line).

These values are confirmed by the experimental data [], obtained for a thin-film Ba. Sr. TiO
parallel-plate capacitor. In this work the hd/εd ratio and the product hd × εd were obtained through
the measurements of the capacitance–voltage and the current–voltage characteristics. Combin-
ing these data, the dead layer thickness and dead layer dielectric constant were experimentally
estimated as

εd = ., hd = . nm. (.)

These values are in a good agreement with the result obtained above (see Equation .) on the
known value of the parameter α.

33.3.2.2 Real (Nondefected) Nature of the “Dead Layer”

The values εd and α are fundamental parameters of the material, which are determined by the
properties of nonferroelectric and ferroelectric phonon modes of the crystal and are unrelated with
defect or chemical structure of the interface region. The thickness of the dead layer is a secondary
parameter, which can be considered as a coherence length of formation of the order parameter of the
ferroelectric phase transition, characterized by the soft mode oscillation. The eigenfrequency of the
ferroelectric and the soft mode space dispersion are strongly connected with the temperature of
the ferroelectric phase transition Tc. The conformity of hd with Tc is illustrated by Table ..

Onemay compare the ferroelectric phase transitionwith the superconducting one. Table . illus-
trates the conformity of the coherence length of the superconducting state ξ with the superconducting
phase transition temperature Tc [].

TABLE . Curie Temperature and Dead Layer Thickness of
Ferroelectrics
Material Tc (K) hd(nm)
SrTiO  
Ba. Sr. TiO  
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TABLE . Characteristics of Superconducting
Materials
Material Tc (K) ξ (nm)
Ta . 
Nb . 
NbSn  
YBa Cu O−x  

Confrontation of the data from Tables . and . confirms affinity of the nature of two phase
transitions considered.

The above mentioned first-principles investigation of ultrathin BaTiO films with SRO electrodes
[] in confrontation with the discussed model of the correlation of the ferroelectric polarization
may be considered as confrontation of the Bardeen, Cooper, and Schrieffer theory of the super-
conductivity and the Ginzburg–Landau phenomenological theory of superconductivity. In order
to support this confrontation, the scheme of the Abrikosov vortex and the scheme of the dead
layers near the electrodes are shown in Figure .. In the both examples, the solution to the
Ginzburg–Landau equation (superconducting phase transition) and Ginzburg–Devonshire equa-
tion (ferroelectric phase transition) for the order parameters of the phase transitions (see captions
to the figures) are followed by the formation of the models, in which the coherence length plays the
decisive role.

One should take into account that the description of the size effect is based on the correlation of the
ferroelectric polarization in conjunction with the zero boundary conditions. It should be reminded

ns(r) Ps(r)

ns(r)

r

r

r

r0

00

0hd
2ξ

(a) (b)

Ps(r)Non-FE-state

FE-state
S-state

N-state

FIGURE . Spatial distribution of order parameter: (a) in a super conducting film (density of “super electrons”);
(b) in a ferroelectric capacitor (spontaneous polarization). The solid lines on the top pictures present the solutions
to the Ginzburg–Landau equation (a) and the Ginzburg–Devonshire equation (b). The filled area on the bottom pic-
tures corresponds to the N-core of the Abrikosov vortex (a) and the “dead layers” in the parallel-plate ferroelectric
capacitor (b).
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that under the relevant boundary conditions the “dead layers” in a ferroelectric parallel-plate
capacitor do not exist and the size effect is suppressed [,,].

The dead layer model could be useful as a basis of the simulations for practical use.

33.4 Microwave Properties of Ferroelectrics

In this section, the main physical phenomena responsible for dissipation of the microwave energy
in the ferroelectric material will be described. Some simple formulas will be presented which can be
used for a simulation of the loss-factor of ferroelectric material at microwave frequency as a function
of temperature and the biasing field.

33.4.1 Dielectric Response of STO and BSTO as a Function of Temperature,
Biasing Filed, and Frequency

Response function of a ferroelectric can be written in the form of dielectric susceptibility [,]:

χ(ω) = χ()ω
c

ω
c − ω − iωγ + δ

+iωτ

, (.)

where
ω is the frequency
ωc is the eigenfrequency of the ferroelectric mode
γ is the intrinsic dissipation factor of the ferroelectric mode
τ is the relaxation time of an additional relaxation mechanism responsible for the dissipation

of the ferroelectric mode oscillation energy
δ is the coupling coefficient of the relaxation mechanism and the ferroelectric mode

33.4.1.1 Eigenfrequency of the Ferroelectric Mode of Crystal Lattice Oscillation

When temperature of the ferroelectric crystal is near to the Curie temperature, elasticity of the sub-
lattice displacement becomes softer. That leads to increase in the dielectric permittivity ε f (T) and
decrease in value of the eigenfrequency of the ferroelectric mode of crystal lattice oscillation ωc(T).
The well-known Lidden–Sakse–Teller relation [] claims that

ω
c(T)ε f (T) = const. (.)

The smaller ωc, the higher is permittivity and tunability of the ferroelectric material. Because of a
small value of elasticity of the sublattice displacement responsible for the value of the eigenfrequency,
the ferroelectric mode is called the soft mode. Figure . illustrates the temperature dependence
of ω

c(T) of SrTiO.
In the case, when there are many relaxation mechanisms, the behavior of the dielectric response

in the frequency region near to the eigenfrequency of the ferroelectric mode ω ≅ ωc becomes com-
plicated []. Fortunately the goal of this section is investigation of the loss factor in the microwave
frequency region f ≤ GHz. That allows to exclude the frequency region f > GHz and sim-
plify the problem. One may assume that in Equation . ω = . Some years ago the assumption
was applied [] that contributions into loss factor given by all loss mechanisms in general are pro-
portional to the frequency. Now, we may say that detailed consideration of a few relaxation processes
leads to the specific dependence of the loss factor on the frequency in themicrowave frequency range.
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FIGURE . Temperature dependence of soft mode eigenfrequency of SrTiO.

33.4.1.2 Complex Dielectric Permittivity of a Ferroelectric Material

Let us generalize Equation . for the case ω ≪ ωc. Take into account that for the high dielectric
permittivity of a ferroelectric material, the permittivity may be supposed to be equal to susceptibility.
Thus we have

ε(E , T , ω) = ε

G(E , T) +

∑
q=

Γq(E , T , ω)
, (.)

whereG(E , T) is the real part of the Green function for a dielectric response of the ferroelectrics. For
a description of the real part of theGreen function, a simple and correctmodel is used.Themodel was
described in Section ..: Equations . through .. In Equation ., the notation presented
by Equations ., ., and . was used.

In accordance with the above-formulated conditions, ω ≪ ωc, G(E , T) does not depend on the
frequency. Γq present the loss contribution of qth loss mechanisms and are the complex functions of
the frequency.

The loss factor is defined as follows:

tan δ(E , T , ω) = Im[ε(E , T , ω)]
Re[ε(E , T , ω)] . (.)

In the frame of the model considered, the stationary ferroelectric polarization P(E , T) is used. The
stationary ferroelectric polarization is presented by Equation ., where y(E , T) is a normalized
value of the ferroelectric polarization.

We consider BSTO with arbitrary value of composition factor x (relative concentration of bar-
ium). The agreement of the model presentation with respect to the experimental dependence of the
dielectric permittivity on temperature and biasing field was demonstrated earlier [,].

In the frequency range ω < GHz, the typical displacement type of ferroelectrics STO and BSTO
has small frequency dispersion of dielectric permittivity.The frequency dependence of the dielectric
permittivity of BSTO is illustrated in Figure . for the case T= K, x = ., ξS = ., and two
values of the biasing field E =  and E =  kV/cm.

Now, we will concentrate on the frequency dependence of the imaginary part of the dielectric
permittivity or of the loss factor of the material.
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FIGURE . Frequency dependence of the dielectric permittivity of Ba. Sr. TiO at T = K, E =  (curve ),
and E =  kV/cm.

33.4.2 Fundamental Loss Mechanisms in a Perfect Ferroelectric Crystal

We consider a perfect ferroelectric crystal without mechanical strain and built-in electric field gener-
ated by charge defects. The dissipation of the soft mode oscillation energy is caused by the scattering
of the mode on the thermal oscillation of the crystal lattice without the biasing field or under the
influence of a homogeneous external biasing field.

33.4.2.1 Multiphonon Scattering of the Ferroelectric Soft Mode

The fundamental channel of the soft mode energy dissipation is a nonlinear interaction between soft
mode oscillations and thermal oscillations of the crystal lattice. It is so-called multi-phonon inter-
action, which was considered by many authors [,–]. The nonlinear interactions of the optical
phonons are responsible for the ferroelectric phase transition and for revealing a high value of dielec-
tric constant of the ferroelectrics. It means that the interactions between the soft mode oscillations
and thermal oscillations of the crystal lattice, which are responsible for the dissipation, determine at
the same time the ferroelectric nature of the material. That is why this loss mechanism is called the
fundamental one. The numerical characteristics of the fundamental loss are described by the same
qualitative parameters, which are responsible for the ferroelectric properties of the crystal.

In accordance with the Lidden–Sakse–Teller relation, the eigenfrequency of the soft mode is

ωC (E , T) = ω
√

G(E , T). (.)

Moreover, the maximum frequency in the spectrum of optical phonons in the crystal ωM should be
involved. For that, one may use the frequency corresponding to the Debye temperature responsible
for the formation of the ferroelectric response of the incipient ferroelectrics:

ħωM = kBθF. (.)

For further consideration, the formula for dissipation of the soft mode in the incipient ferroelectrics
from Refs. [,,] is used. That gives

Γ(E , T , ω) = −i
π

ω

ω
M
( T

Tc
)


G−/(E , T)ω. (.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

33-30 Theory and Phenomena of Metamaterials

The coefficient ω(x), ωM can be found from inelastic neutron scattering: ω(x) = .(+ x) ×
/s; ωM = . × /s, where x is Ba concentration.

33.4.2.2 Contribution of the Quasi-Debye Scattering

The origin of the quasi-Debye mechanism of loss is the relaxation of the crystal phonon distribu-
tion [,]. The application of “dc” field to a centrosymmetric crystal causes the time modulation
of the phonon distribution function by the “ac” field. The change of the phonon distribution func-
tion leads to change of the dielectric response of the crystal. The dielectric response is inevitably
delayed for a certain time interval, which is called the relaxation time. The relaxation of the phonon
distribution function gives rise to the dielectric loss in a similar way as the relaxation of the gas
of dipoles gives rise to the loss in the Debye theory. It is why the loss mechanism considered is called
the quasi-Debye one.

The contribution of the quasi-Debye mechanism into the dielectric response of the sample was
found [] in form:

Γ(E , T , ω) = A

( + iω/π f)
y(E , T)
[ + ξ(E)] , (.)

where
f = GHz [] is the inverse relaxation time of change of the phonon distribution function
A(x) = .( + x)− is a coefficient characterizing the rate of the contribution of the

mechanism considered.

33.4.3 Losses in a Real Ferroelectric Crystal

The properties of real ferroelectric samples differ from an ideal single crystal sample dramatically.
The presence of charged defects results in additional losses in material. Using the ferroelectrics in a
planar capacitor as a thin film leads to excitation of loss mechanism associated with transformation
of energy into high frequency acoustic waves.

33.4.3.1 Contribution of Charged Defects

In many cases, the ferroelectric crystal comprises some charged defects. The electrostriction under
the static electric field produced by the charged defects leads to an induced piezoelectric effect and
is followed by the excitation of acoustic vibrations in the sample. The frequency dependence of the
energy dissipation has a character of the relaxation process.The relaxation time is determined by the
characteristic size of the defect configuration, which depends on the growing process of the sample.
The contribution of the charged defects into losses in ferroelectrics was investigated in Ref. []. The
result of the investigation can be presented as follows:

Γ(E , T , ω) = AξS
 + i (ω/π f ) . (.)

Integrating the wide experimental information, we may suppose the most reasonable value of the
inverse relaxation time is f ≅ GHz. The contribution rate of the mechanism considered is pro-
portional to the density of the charged defects. In Equation ., ξS was substituted instead of the
defect density reasoning that parameter ξS as a characteristic of the crystal quality is connected with
the defect density. On the basis of comparison results obtained with the formulas developed and the
numerical estimations given in Refs. [,], one may suppose that A ≅ ..

It is reasonable to stress the difference between the quasi-Debye and charge defect mechanisms
of losses. In the case of the quasi-Debye loss, the energy of the microwave field is immediately
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transformed into the heat of the crystal lattice. The higher is polarization, being spontaneous or
induced by applied voltage, the higher is the energy dissipation through the quasi-Debye mecha-
nism. In the case of the charge defect mechanism, the microwave field is transformed first into the
high frequency acoustic waves. And then the acoustic waves are dissipated by the crystal lattice. The
intensity of the induced piezoelectric transformation does not depend on the applied voltage or polar-
ization. The applied voltage suppresses the inverse dielectric permittivity and as a result of that, the
higher the applied voltage, the smaller is the contribution of charge defect mechanism to losses.

33.4.3.2 Contribution of an Acoustic Wave Emission in Thin-Film Planar Structure

Emission of high frequency acoustic waves from the gap of a planar structure due to electrostriction
transformation [,] can be observed in a planar ferroelectric capacitor:

G(E , T) = ε(E , T)
ε

. (.)

Experimental data on the microwave losses of a thin-film ferroelectric planar structure in this case
were presented in Ref. [].

33.4.3.3 Low-Frequency Relaxation

Experimental investigations of BSTO samples [] have shown the diffused maximum of loss tangent
around the frequency f = MHz. The nature of that was not properly explained. Phenomenologi-
cally, it can be attributed to a relaxation process and described by the following formula:

Γ(ω) =
A

 + iω/(π f)
, (.)

where
ω is the frequency at which the dielectric characteristics of the material are measured
A and f are the parameters of the model: A = ., f = MHz.

33.4.4 Total Microwave Losses in a Perfect and Real (Defected) Ferroelectric
Crystal as a Function of Frequency, Temperature, and Biasing Field

In this section, the features of loss-factor of a perfect and real (defected) ferroelectric crystal as a
function of frequency, temperature, and biasing field are considered.

In Figure ., the result of simulation for a high-quality single crystal (ξS = .) of SrTiO
(x = ) at T = K is presented.

layer of BSTO (x = ., ξS = .) is presented. All simulated curves are in a good agreement with
experimental data.

33.5 Ferroelectrics in Tuneable Metamaterials

As it was written above (Chapter ), electromagnetic metamaterials are defined as artificial struc-
tures with specific properties, which cannot be observed in natural materials. Properties of such
artificial structures depend on dielectric and/or magnetic characteristics of components, which
are used for formation of the structure. If ferroelectric components are used as ingredients of the
structure, the characteristics of the structure can be changed due to change of the dielectric permit-
tivity of the ferroelectric component as a result of applying the biasing voltage to the component.
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Thus, the metamaterial structure becomes a tuneable one. The tunability of metamaterial structures
or metamaterial devices is very promising for expansion of practical application of such structures
or devices.

In the most general case, the metamaterial structure is required to be three-dimensional (D) and
isotropic. As we know, there is no suggestion about a possible way to design a D tuneable metamate-
rial structure. In this section, we consider a version of a D tuneable metamaterial structure. The D
tuneable metamaterial is referred to as a tuneable metasurface. The metasurface was suggested and
investigated by Sievenpiper et al. []. Sievenpiper described a tuneable metasurface based on appli-
cation of tuneable semiconductor varactors. We will consider a version of a tuneable metasurface
based on application of ferroelectric tuneable capacitors.

A wide interest is called forth by a combination of transmission lines with forward electro-
magnetic waves and backward electromagnetic waves. In the transmission lines with the forward
electromagnetic waves, the electric field, the magnetic field, and the propagation vector form the
right-handed triad. Therefore, the transmission lines with the forward electromagnetic waves are
called the “RHTL.” The lines with the backward electromagnetic waves are characterized by the left-
handed triad and consequently are called the “ LHTL.”Themajority of transmission lines (microstrip
line, coplanar line, etc.) have properties of the RHTL. In order to realize the LHTL, one needs to use a
special combination of reactive components, which can be considered as the metamaterial structure.
Thus, LHTL is the D metamaterial. Both RHTL and LHTL can be designed as specific tuneable D
metamaterial structure.

33.5.1 Tuneable Metasurface Based on Ferroelectric Tuneable Capacitors

Scheme of a tuneablemetasurface is presented in Figure ..The characteristic feature of ametasur-
face is its surface impedance. In order to find the surface impedance of themetasurface, the reflection
coefficient of the electromagnetic wave normally incident on the surface should be found.The space,

UB

FIGURE . Scheme of a tuneable metasurface.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

33-34 Theory and Phenomena of Metamaterials

Z0

C

L/2

r/2

L/2

r/2

FIGURE . Scheme of the resonant cell connected with the elementary waveguide.

in which the incident wave propagates in the direction to the metasurface, can be divided into ele-
mentary waveguides. Each elementary waveguide is loaded by the resonant cell that consists of a
capacitor and a short-circuited transmission line section. This transmission line section can be con-
sidered as an elementary inductance.The scheme of the resonant cell connected with the elementary
waveguide is shown in Figure ..The characteristic impedance of the waveguide is denoted as Z.
Impedance of the resonant cell is determined by the following equation:

Zcell( f ) = [(iX f / f + r)− + (−iX f/ f )−]− , (.)

where
f is the operational frequency
f is the resonant frequency
X is the characteristic impedance of the resonant circuit
r is the real part of the resonant circuit impedance, which is determined by the quality factor

Q: r = X/Q.

Reflection coefficient is read as follows:

Γ( f ) = Zcell( f ) − Z

Zcell( f ) + Z
. (.)

The phase shift (in degrees) and the attenuation (in dB) of the reflected wave with respect to the
incident wave are read as follows:

φ( f ) = arg(Γ( f )) 
π

, L( f ) =  log(∣Γ( f )∣). (.)

It is reasonable to suppose: Z = Ohm (the characteristic impedance of free space) and to consider
the characteristic impedance of the resonant circuit to be determined by a sheet capacitance C, with
units of [F/square], and a sheet inductance L, with units of [H/square]: X = (L/C)/.

Let us consider the case when f = GHz, X = Ohm (C =. pF/square), Q = .
Figure . illustrates the simulation of the phase shift (in degrees) and the attenuation (in dB) in
accordance with Equation .. Three curves on the graph correspond to three capacitances of the
tunable capacitors  – .,  – ., and  – . pF.

The most interesting point on the graph in Figure .a is the resonant point, in which the phase
shift of the reflected wave is equal to zero. At this point, the incident wave is reflected from the meta-
surface as from “magnetic wall.” Along the “magnetic wall,” the tangential component of themagnetic
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FIGURE . Frequency dependence of phase shift (a) and the attenuation (b) of the wave reflected from
resonant cell.

field is equal to zero. The “magnetic wall” forms the complementary boundary condition for the
boundary condition of the conventional “electric wall.” Such complementary boundary conditions
make it possible to successfully solve a set of problems in engineering electrodynamics. Unfortu-
nately, the “magnetic wall” retains its favorable properties in a restrained frequency band near the
resonant frequency of the cell. From the graph of Figure .a, onemay find that the deviation of the
phase shift of the reflected wave is not more than ±○ from zero in the frequency band, which is not
more than .GHz. In a much higher frequency band, the metasurface can be used, if the resonant
frequency of the metasurface cell can be changed due to tunability of the capacitors. The graphs in
Figure .a show that in the case of the capacitor tunability n =  (n = Cmax/Cmin), the operational
frequency band of a metasurface used as a good “magnetic wall” comes up to GHz. Thus applica-
tion of ferroelectric tunable capacitors as constituents of a metasurface sufficiently expands the area
of the practical use of the metasurfaces in the microwave engineering.

33.5.2 Composite Right/Left-Handed Transmission Line

The typical CRLH TL section is shown in Figure .. The section is formed by parallel and series
resonant circuits.

The impedance of the series circuit reads as

Z( f ,C) = iωL( − iQ−) + [iωC( − i tan δ)]− . (.)

C1

C2

C1L1 L1

L2

FIGURE . Section of CRLH TL.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

33-36 Theory and Phenomena of Metamaterials

The impedance of the parallel circuit reads as

Z( f ,C) = [iωC( − i tan δ) + [iωL( − iQ−)]−]− . (.)

The energy dissipation in the section is described by the loss factor of the capacitors tan δ and quality
factor of the inductors Q. In the next section, the capacitors C and C will be presented as tuneable
ferroelectric varactors.

For a description of the scattering parameters of the section, the ABCD matrix can be used. The
ABCDmatrix is convenient for investigation of cascade connection of the sections.TheABCDmatrix
of the section showed in Figure . is

A( f ,C ,C) =
⎡⎢⎢⎢⎢⎣

 + Z( f ,C)

Z( f ,C)

Z( f ,C)⋅[Z( f ,C)+Z( f ,C)]

Z( f ,C)


Z( f ,C)

 + Z( f ,C)

Z( f ,C)

⎤⎥⎥⎥⎥⎦
. (.)

The ABCDmatrix (Equation .) can be converted into S-matrix and the scattering parameters of
the section can be obtained. Now, for an example, we use the following selection of the filter compo-
nent: L = . nH, L = . nH, Q = , C = . pF, C = . pF, tan δ = .. All resonators being
a part of the section have the same resonant frequency f = .GHz, and different characteristic
impedance:

√
L

C
= .Ohm,

√
L

C
= .Ohm. (.)

The scattering parameters of the T-section are shown in Figure .. One can see that the section
is a typical third-order band pass filter. The phase response is zero at the frequency corresponding
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FIGURE . Frequency dependence of scattering parameters of the section shown in Figure ..
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to the central peak of the transmission and reflection characteristics of the filter ( f = .GHz).
At the frequency below f, the section is an LHTL and at the frequency above f the section
is an RHTL.

33.5.3 Tuneable Zero-Order Resonator on CRLH TL

Let us consider the section shown in Figure . with the following filter component: L =  nH,
L =nH, Q = , C =. pF, C =. pF, tan δ = .. All resonators being a part of
the section have the same resonant frequency f = .GHz and the following characteristic
impedance:

√
L

C
= Ohm,

√
L

C
= Ohm. (.)

The scattering parameters of the T-section simulated for Z = Ohm are shown in Figure ..
As in the previous example, the phase response is zero at the frequency corresponding to the central
peak of the transmission characteristic of the filter. One may number the peaks of the transmission
characteristic shown in Figure .a in the following way −, , +. The central peak corresponds to
the zero phase response.This peak is usually named as the peak of zero-order resonance [,].The
zero-order resonant frequency can be tuned by changing the capacitance of the capacitors C and C.
Let us take for the example C = C, C = C, and the capacitance C is changed under the biasing
voltage in the range .–. pF. Figure . illustrates the position of the zero-order resonance
peaks for three values of the capacitance C: ., ., and . pF.

One may conclude that, if CRLH TL section is equipped with ferroelectric tuneable capacitors, it
can be used for designing different kinds of tuneable filters.
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FIGURE . Layout of coplanar line phase shifter.

33.5.4 Phase Shifter on CRLH TL

Let us consider a CRLH TL structure as cascaded sections schematically shown in Figure ..
Figure . illustrates the phase shifter comprising four such sections []. The scattering parame-
ters of the phase shifter can be formed throughABCDmatrix of cascaded sections. On the involution
matrix presented by Equation ., one obtains

Aph-sh( f ,C) = [A( f ,C ,C)]m , (.)

where m is number of sections.
In Equation ., the following equality was used

C = C , C = C . (.)

The series capacitors shown in Figure . have capacitance in half of C. Thus

C∗ = C . (.)

The capacitance of all capacitors C is tuneable and can be changed in the range .–. pF. The
coplanar line was designed as a layered structure on silicon substrate containing ferroelectric film
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TABLE . Layers of the Structure andTheir Characteristics
Layer Thickness (μm) Dielectric Constant
Pt/Au . —
Ba. Sr. TiO (BSTO) . 
Pt/Au . —
SiO . 
Si  .

(BSTO) []. The layer parameters are presented in Table . []. The series capacitors C∗ and the
shunt capacitors C are formed as parallel-plate structures using the ferroelectric layer.The inductors
are implemented as coplanar line sections. The size of the phase shifter is . × . × .mm. The
tunability of the ferroelectric film is n =  for V of biasing voltage.

The phase shifter provides the tuneable phase shift in frequency range –.GHz. Figure .
illustrates the scattering parameters and the phase shift simulated as function of the biasing voltage
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at different frequencies for the phase shift comprising six T-sections. The insertion loss shown in
Figure .a was simulated for loss factor of the ferroelectric film tan δ = . at zero-biasing
voltage.

A monolithic CRLH TL phase shifter based on ferroelectric varactors using the four T-sections
described above was demonstrated by group of Gevorgian []. It was shown that CRLH TLs may be
used for a realization of phase shifters providing a differential phase shift with flat frequency depen-
dence around the center frequency. The prototype presented was really the first example exhibiting
the metamaterial structure in combination with ferroelectric varactors as a basis of planar integrated
phase shifter. Unfortunately, the measured parameters of the four section phase shifter (the phase
shift Δφ = ○ and the insertion loss – dB) may not be considered as a final solution of the prob-
lem. The significant improvement of the phase shifter parameters can be reached by moving up in
two directions: () increasing of the commutation quality factor of the varactor [], () improvement
of the conducting quality of the copper film used in the device [].
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34.1 Introduction

In recent years, the idea of artificial composite materials (metamaterials) has received significant
attention in both physics and engineering. Metamaterials are designed to demonstrate the physical
properties, which are not usually found in nature.The first “magnetic metamaterials” were fabricated
by combining lattices of metallic split-ring resonators placed on dielectric substrates. The lattices of
resonant elements are capable of producing strong magnetic response at radio, microwave, and opti-
cal frequencies. Due to this capability, such composites are commonly calledmagneticmetamaterials
(see, e.g., [–]).

To separate this notion from the case of magnetic metamaterials, which are considered in this
chapter, we use the name “magnonic crystals” by analogy with man-made photonic crystals [–].
This novel class of metamaterials is composed from the constituent elements that are magnetic
(ferromagnetic, ferrimagnetic, antiferromagnetic) by themselves. Such artificial crystals represent
magnetic media in which the magnetic properties are varied periodically. The simplest type of one-
dimensional (D) magnonic crystals is a multilayered periodic structure composed of magnetic

34-1
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layers with different magnetization or an array of thin ferromagnetic films separated by nonmagnetic
spacers. Years ago, before the term “metamaterials” became universal, such periodic magnetic-
thin-film layered structures were called magnetic superlattices [–]. Their properties have
been extensively studied in connection with possible applications in optics and microwaves (see,
e.g., [,]).

Until now, several different layered structures of magnetic and nonmagnetic materials have been
fabricated. Examples of these include multilayers constructed by alternating layers of ferromagnets
with nonmagnets (Ni/Mo, Fe/Si, Gd/Y, Co/Ru, Co/Cu), ferromagnets with ferromagnets (ferro-
magnetic interfacial coupling—Fe/Ni and antiferromagnetic interfacial coupling—Fe/Gd, Co/Gd),
ferromagnets with helimagnets (Gd/Dy), and ferromagnets with antiferromagnets (Fe/Cr). There
are also structures with alternated helical or conical magnets with nonmagnets (Dy/Y, Ho/Y, Er/Y)
and antiferromagnets with antiferromagnets (FeF/CoF, FeO/NiO). For more details see refer-
ences in []. The variety of magnetic materials used as building blocks in multilayers has led to
an enormous range of the resulting magnetic behavior. Moreover, some exotic spin configurations
found in multilayered systems can lead to anomalous field and temperature behavior (i.e., phase
transitions) [].

A survey of the literature shows that it is still too complicated to fabricate multilayered structures
with rigorous periodicity. Due to this and due to the simplicity in the fabrication technology, D-
and two-dimensional (D)-patterned structures (e.g., arrays of stripes [–], wires [–], dots
[–], and holes []) based on ferromagnetic films became more preferential.

Another type of the magnetic periodic structures, which should be mentioned here, is made from
a continuous magnetic film with periodically varied properties. Such structures could be created by
varying any parameter that influences the dispersion characteristics of spin waves. Similar systems
were extensively studied in literature [–].

Magnetic multilayered, patterned and other magnetic periodic structures have attracted signifi-
cant attention because of a wide range of fascinating properties. The properties of such composite
systems can be significantly different from those of any of its initial components. Spin-wave propa-
gation through such structures is prohibited within some restricted bands. Such magnonic crystals
operating at the microwave frequency range should compliment the photonic crystals operating at
the light frequency band.

It is to be emphasized that contrary to the photonic crystals the response parameters of magnonic
crystals can be easily tuned by changing the bias staticmagnetic field. In other words, magneticmeta-
materials are electrically tunable [,]. Moreover, a rich variety of new effects appear in magnonic
crystals, which do not exist in the photonic crystals. This is related to the specific properties of the
eigen excitations (spin waves) in the magnonic crystals. Due to the possible nonreciprocality of the
dispersion relations, strong surface and bulk anisotropy and the presence of exchange boundary
conditions at all interfaces of the system such as magnetic structures suppose unique propagation
characteristics of spin waves. In addition, the inhomogeneity of the internal static magnetic field
inside each element of the metamaterial leads to the existence of new quantum states.

One of the most interesting effects, which have already found a practical application, is giant mag-
netoresistance (GMR). The appearance of GMR in multilayered structures is due to the changes in
the conduction electron scattering mechanism. For example, in Fe/Cr multilayered system, the resis-
tivity of the metallic structure can be changed by over % at room temperature under the influence
of a magnetic field.

Another novel behavior was observed in Co/Pt- and Co/Pd-multilayered structures, where the
perpendicular uniaxial anisotropy energy is significantly enhanced with the decrease of the Co layer
thickness []. Using this multilayered structure enables one to prepare a macroscopic bulk sample
with properties determined by the large surface anisotropy energy at the Co/Pt interfaces.

In multilayered and patterned structures, collective effects can play a significant role [,,].
Even in layered magnetic–non magnetic systems, one may have a new collective excitation because
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the magnetic films interact via long-range dipolar fields. Of course, in the magnetic/magnetic
structures, spins interact via both the short-range exchange interaction and the long-range dipo-
lar fields. A combination of these interactions leads to new dispersion properties of the system [].
Thus, the periodicity introduces band gaps in the dispersion relations for the fundamental excitations
in the structure. Besides, new dynamic modes and new static configurations appear in the periodic
structures.

Multilayered and patterned structures have very wide applications. They could be used to design
various microelectronic devices such as electronically tuned bandstop and bandpass microwave
filters, microwave switches, and microwave signal processing devices [,,,,]. Magnetic peri-
odic structures are already used in magnetoresistive heads and magnetic and for magneto-optical
recording [].The structures that exhibitGMRare promising as the newgeneration of spin valve sen-
sors. A special configuration of alteredmagnetic layers could also be used to fabricate a nonreciprocal
magnonic crystal with one-directional transparency or to obtain the structures with anisotropic
conversion of SWMs (magneto-photonic crystals) [,,,].

For several decades, when the magnetic metamaterials have attracted special attention, various
theoretical approaches have been elaborated and used to consider the problem of multilayered and
patterned structures. The first calculations were restricted to the dipolar limit [–]. Next, volume
anisotropy contributions were included []. This early work neglected exchange contributions as
well as the possible influence of magnetic interface anisotropies on the spin-wavemodes (SWMs). At
the same time, pure exchangemodes inmultilayers have been considered by several authors [,,,
–].The first attempts to include all interactions and apply various exchange boundary conditions
were presented in the papers [,,].

It should be noted that a rigorous theory of the magnonic crystals is very cumbersome due to
ferromagnetic resonance (FMR) and spin-wave phenomena. Existence of spin waves significantly
modifies the metamaterial response as compared to the nonmagnetic media. Even a rigorous spin-
wave theory for a single magnetic thin film is rather complicated [,–]. Now, it is clear that
the theories, which consider pure dipole or exchange modes, cannot adequately describe most of
the processes in such complicated systems. Only the dipole-exchange theoretical technique, which
includes surface and bulk anisotropy, is suitable in this case.This common approachwill be presented
here in the chapter as well as a brief review of several other techniques will be given.

During the last decade, the problem of spin-wave propagation in ferromagnetic film-structures
with periodically andweakly varied parameters draw new attention due to the fabrication technology
and the appearance of novel materials. This problem was analyzed in various limiting cases and for
different structures (see [,,,,,,–] and references therein). Even some exotic periodic
structures were considered by several authors [,,,,,,–].

On the other hand, magnetic periodic structures have been extensively investigated experimen-
tally. Various experimental techniques, for example, the Brillouin light scattering (BLS) spectroscopy
[,,], magneto-optic Kerr microscopy [], ferromagnetic resonance spectroscopy [], polar-
ized neutron reflectometry [,], and others have been elaborated and used for these investigations.
A goodmany of the investigations have been performed bymeans of the BLS spectroscopy because it
provides the possibility to retrieve information on the distribution of dynamicmagnetization on each
element of the periodic array [,–] and on spin-wave dispersion of the periodic structure as a
whole [,,]. Otherwise, similar data can be obtained by means of the Kerr microscopy [,]
or by the micro-BLS technique [,], which simultaneously ensures a submicron spatial resolution
and a high resolution in temporal frequencies. An exhaustive review of the experimental work on
magnetic periodic structures can be found in Refs. [,,].

This chapter provides a review of the basic theoretical work concerned with the magnetic peri-
odic structures (magnonic crystals).The general role of magnetic tunablemetamaterials is discussed.
A brief report of existing theoretical approaches used in this area is presented. A detailed descrip-
tion of SWM approach is given for multilayered and patterned magnetic structures. This theoretical
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approach includes dipole–dipole and exchange interactions as well as electrodynamics and exchange
boundary conditions. The energy of bulk and interface anisotropies is taken into account. The
theory is based on the tensorial Green’s function method and spin-wave normal mode expansion
technique previously elaborated for a single ferromagnetic film. Exact and approximate dispersion
relations for some particular cases of fundamental and technological interest are derived, ana-
lyzed, and discussed. Special attention is paid to the fundamental role of the periodicity in such
structures. Band theory is constructed for multilayered structures. Peculiarities of dipole-exchange
spin waves in the multilayered nano-structures are considered. A role of the additional structur-
ing in the dynamic magnetic properties of metamaterials is discussed. Basic pattern geometries
such as arrays of micro- and nano-patterned stripes and planar arrays of nano-dots are consid-
ered. Formation of collective modes on arrays of nano-objects is discussed. A physical picture of
the formation and transformation of spin-wave spectrum for the multilayered and patterned struc-
tures is given for two types of structures, namely, magnetic/nonmagnetic and magnetic/magnetic
multilayers.

34.2 Dipole-Exchange Spin Waves in Multilayered Structures

After pioneerworks ofDamon andEshbach [] andHerring andKittel [] in the early s, a lot of
articleswere publishedwhere the experimental data concerning the spinwaves in ferromagnetic films
were objectionably described by either dipole or exchange interaction taken into account separately.
Later, a considerable discrepancy between the theory and experiment forced a newwave of theoretical
investigations in this field, and since thenmany andmore articles appeared where different analytical
and numerical methods were suggested for solving the problems. These articles were taking into
account both dipole–dipole and exchange interactions. In this chapter, we will consider the general
case of the dipole-exchange spin waves. Since our main treatment concerns multilayered structures,
another type of interaction called interlayer interaction has to be taken into account.This interaction
can also have the dipolar and exchange nature. We will include these types optionally. So, one should
accurately distinguish between intra- and interlayer interactions.

In this section, we give a closed picture of the problemunder consideration and emphasize possible
difficulties in solving it. A brief review of present situation in theoretical investigations in this field is
done.We will concentrate our attention on themethod suggested by Kalinikos et al. [,,–,]
because of the clarity of the physical description and the relative simplicity of analytical solutions that
can be obtained by this method.

34.2.1 Formulation of the Problem

To make our consideration more general, let us consider an infinite stack of layers with arbitrary
spatial andmagnetic properties. Ferromagnetic layers are assumed to be magnetized to saturation by
a static bias magnetic field H of an arbitrary direction, which is determined by angles θ and ϕ (see
Figure .). Saturation magnetization of ferromagnetic films Mi has arbitrary values, but always
directed along zi-axis in each layer. The type and strength of anisotropy in ferromagnetic layers can
also differ. Index i, here and below, numbers the layer in the stack. Sometimes without loosing the
generality, we drop this index to expel unnecessary complexity of the equations.

The Landau–Lifshitz equation of motion for magnetization Mi in i-layer in most common form
can be written as [,]:

∂Mi(r, t)
∂t

= − ∣g∣ μ [Mi(r, t) ×Heff
i (r, t)] − λ i M × (M ×H) (.)
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FIGURE . Geometry of the problem and orientation of coordinate axes.

where
Heff

i is a total effective magnetic field inside each ferromagnetic layer
∣g∣ is the modulus of the gyromagnetic ratio for electron spin
μ is the permeability of vacuum

The term containing the relaxation frequency λ i is taken in the form suggested by Gilbert []. As
far as we are not interested in the effects related with relaxation, in further calculations the last term
will be omitted.

We introduce usual linearization in terms of the deviation m(r, t) from equilibriummagnetization
M.We assume that fluctuations in M and H associatedwith the spinwaves are small compared to the
static values.This condition is almost always fulfilled for thermally driven spin waves at temperatures
considerably less than Tc. We split M and H into frequency-independent static parts M and H and
dynamic parts h and m:

Mi(r, t) = Mi +mi(r, t), ∣m∣ ≪ ∣M∣
Hi(r, t) = Hi + hi(r, t), ∣h∣ ≪ ∣H∣ (.)

Then, the effective magnetic field is assumed to be a sum of the internal static magnetic field, the
variable dipole and exchange fields, and a variable field of magnetocrystalline anisotropy:

Heff
i (r, t) = Hs

i + hex
i (r, t) + hd

i (r, t) + ha
i (r, t) (.)

The internal static magnetic field in the presence of anisotropy can be found as

Hs
i = Hi +Hd

i +Ha
i (.)

where
H is an external bias magnetic field
Hd is the macroscopic constant demagnetization field
Ha is the constant field of magnetocrystalline anisotropy

The direction of the resulting internal magnetic field Hs coincides with the direction of the
constant magnetization M. The demagnetization field Hd is due to the shape anisotropy and
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usually can be found through effective demagnetization factors of the corresponding sample shape.
Demagnetization factors for ellipsoidal and nonellipsoidal samples were calculated by Osborn []
and Joseph and Schlomann [], respectively.

The variable exchange field in its most general form within a continuum approach is found from
Gibbs free energy functional as

hex
i (r, t) =

�
dr′ J(∣r − r′∣) ⋅Mi(r′ , t) (.)

where J(∣r − r′∣)is the exchange integral of the magnetic material. This general form of exchange
term is needed for the case of strong exchange interaction between layers in the stack, when the
exchange interaction appears to be necessarily nonlocal in the main equation of motion as well as in
the exchange boundary conditions (Hoffmann’s boundary conditions). Such situation appears when
different magnetic layers are in contact or if the nonmagnetic spacer is very thin (d < 

○

A) (e.g.,
see [,]). Variable exchange field measures the exchange torque density due to any nonuniformity
in the orientation of M and in the case of local direct exchange interaction it can be found as

hex
i (r, t) = Ai

μM
i
∇mi(r, t) (.)

where A is the exchange stiffness constant. In most of the particular cases under consideration, this
rough expression is quite enough for calculations.

The next term in Equation . is the time- and position-dependent dipole field hd , resulting from
traveling spin waves. The variable dipolar field has an important effect on the spin-wave spectrum,
since it gives rise to a coupling of SWMs in different layers of a multilayer across the nonmagnetic
spacer. This effect becomes small only if the in-plane spin-wave propagation wave vector tends to
zero, i.e., for nearly standing spin waves, or if the in-plane propagation wave vector becomes very
large so as the stray dipolar field is confined to the magnetic layers.

The dipole field is a result of the nonlocal electromagnetic interaction between all spins in the
magnetic film thusMaxwell’s equations should be involved in the consideration to find the dipole field
in explicit form. In the absence of electric and magnetic charges and currents, Maxwell’s equations
can be written as []

∇×H = ∂D
∂t

, ∇ ⋅ (H +M) = 

∇× E = −μ
∂(H +M)

∂t
, ∇ ⋅D =  (.)

Their solutions must satisfy usual electrodynamic boundary conditions:

n × (H −H)∣s =  n × (E − E)∣s = 
n ⋅ ((H +M) − (H +M))∣s =  n ⋅ (D −D)∣s =  (.)

In microwave calculations, we usually utilize the solution of this problem in the magnetostatic
approximation. But in some special cases, for example, when the electromagnetic wavelength is of the
order of sample size (in the limit of small k) or if we study magneto-optic effects, the magnetostatic
approximation does not work any longer, hence we should solve the full set of Maxwell’s equations.
As a result of solving Maxwell’s equations, a connection between the variable magnetization and the
dipole field should be found. In the frame of the Green’s function formalism considered here, this
relation can be obtained in integral form (see below).
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The last term in Equation . is the effective field of magnetocrystalline anisotropy ha(r, t). It can
be calculated if the expressions for the density of anisotropy energy are known:

ha
i (r, t) = −∇MU ani (.)

where U ani is the usually defined magnetic volume anisotropy energy density.
For the linear problem, when the condition m(r, t)≪M is fulfilled, we can calculate the effective

magnetic field associated with magnetocrystalline anisotropy using the method of effective demag-
netization factors of anisotropy. In the framework of this method, the effective magnetic field of
anisotropy Ha(r, t) is represented as

Ha
i (r, t) = Ha

i + ha
i (r, t) = −Na

i Mi −Na
i mi(r, t) (.)

where Na
i is the tensor of effective demagnetization factors of magnetocrystalline anisotropy for ith

layer. The components of this tensor can be demagnetization factors of any type of anisotropy or the
sum of demagnetization factors of different types of anisotropy taken into account simultaneously.
For example, the calculation of the components of Na

i for the case of a ferromagnetic ellipsoid having
cubic and uniaxial anisotropy and the arbitrary direction of the crystallographic axes with respect to
its geometrical axes is presented in papers [,–].

The last question, which should be cleared up is the determination of the equilibrium orientation
of the saturation magnetization Mi in the anisotropic film. The equilibrium orientation of Mi is
characterized by angles φ = φ i and θ = θ i (see Figure .). They are usually determined from
the condition of minimization of the magnetic energy density in each ferromagnetic film separately
[,].

In principle, we have to find the static equilibrium orientations of the magnetizations for the lay-
ered system before calculating the spin-wave frequencies. Due to interface anisotropies and exchange
coupling effects, the static equilibrium magnetization direction might differ from the bulk one.
It should be noted that in general case the direction of the magnetization is a function of the position
in each magnetic layer of multilayered structure. In the absence of anisotropy, the external magnetic
field H and the saturationmagnetization M always have the same value of angle φ (φ = φ) and thus
lie in one vertical plane, but with different θ and θ (see Figure .). In the presence of anisotropy,
in addition to different θ, we have also different φ and φ, i.e., now H and M lie in different vertical
planes. But in any case, the direction of the internal static magnetic field Hs always coincides with
the direction of the constant magnetization M. We also stress here that in general case Hi , θ i , and
φ i are different for all ferromagnetic films formed the structure.

Now making use of linearization procedure, we apply relation (Equation .) to the equation of
motion (Equation .) with (Equation .). Since m(r, t) and h(r, t) are both assumed to be small
in magnitude compared with the static field components, in the linearized equation, we neglect the
quantities of a second order and for variable magnetization we arrive to the following equation of
motion:

∂m(r, t)
∂t

+ ∣g∣ μ [m(r, t) ×Hs(r, t)] + ∣g∣ μ [M × (hex(r, t) + ha(r, t))]

= − ∣g∣ μ [M × hd(r, t)] (.)

Substituting Equations . through . and hd from the system (Equation .), we obtain
the Landau–Lifshitz equation of motion for the dynamic magnetization in the form of integro-
differential equation:

∂mi(r, t)
∂t

+ ∣g∣ μmi(r, t) × (Hi −Nd
i Mi −Na

i Mi) + ∣g∣ μMi

×( Ai

μM
i
∇mi(r, t) −Na

i mi(r, t)) = − ∣g∣ μMi × hd
i (r, t) (.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

34-8 Theory and Phenomena of Metamaterials

This equation while written for all components of vector m(r, t) and for all layers in the structure
gives us the coupled system of N integro-differential equations []. This system includes variable
dipole and exchange fields in each layer, as well as static demagnetization field and Zeeman energy,
with the constant and variable field of magnetocrystalline anisotropy also taken into account. As a
result of introducing of the Green’s function formalism, this system already includes the interlayer
long-range dipole coupling between all layers in the structure through the nondiagonal terms of
hd

i (ξ, kζ).
As follows from Equation ., the exact solution of the linearized integro-differential equation

of motion for the variable magnetization cannot be obtained without imposing additional “bound-
ary” condition due to the exchange energy term∇M. Thus, the electromagnetic field in a magnetic
material must satisfy not only the usual boundary conditions of the Maxwell theory, but also the
“exchange boundary condition” which arises from the Landau–Lifshitz equation of motion. Physi-
cally the introduction of the exchange boundary condition is caused by the difference of surface and
bulk forces affected on the atomic magnetic moments. We can take this difference into account by
applying an additional “boundary” condition, instead of implementing the complex mechanism of
an exact account of the influence of surface on the bulk variable magnetization.

From the variation of Landau–Lifshitz equation of motion with respect to M(r, t), we obtain the
condition that the sum of all surface torques must be zero at each interface. So the indirect exchange
boundary condition in the most common form reads:

A
M

S
M(r, t) × (n ⋅ ∇)M(r, t) − δ

MS M′S(gμB)
��

dx′dy′ Jeff(∣r − r′∣)M(r, t) ×M(r′ , t)

+ 
MS

M(r, t) × ∇MUSurf =  (.)

with n = ±uξ being the surface normal of the films, r refers to the surface of one magnetic layer, r′ is
the surface of the neighboring magnetic layer, so that ∣ξ − ξ′∣ = d.

In the exchange boundary condition (Equation .), the first term gives the contribution from
the anisotropy of the exchange interaction on the surface of the film, the second term determines
the nonlocal exchange interaction between two adjacent layers, and the last one gives the contri-
bution from the surface anisotropy energy USurf . In this form, the coupling of the two layers is
interpreted as a torque exerted by themagnetization at the surface of one layer on themoments at the
surface of the other one across the nonmagnetic medium. Obviously, for finite interlayer thickness,
one has to take into account a nonlocal character of the exchange coupling across the nonmagnetic
spacer.

Opposite to the single-film case, it should be noted that the exchange boundary conditions for
multilayered structures have to include an additional torque resulting from the exchange interaction
between the magnetic films in addition to the usual surface anisotropy term. The necessity of this
term was first demonstrated by Hoffman et al. [,].

Considering the case of uniaxial surface anisotropy and taking into account only the first
anisotropy constant, we arrive to the surface anisotropy energy density in following form:

USurf = −
K

M
S
(M ⋅ n) and HSurf = ∇M USurf =

K

M
S
(M ⋅ n)n (.)

where n is a unit vector normal to the surface, directed out of the surface.
When the two adjacent layers are in close contact or if the spacer thickness is negligibly small,

one can use the local type of exchange coupling between layers and we arrive to so-called Hoffmann
boundary conditions with the interface anisotropy included []:
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[Ks

M
n

Mn(r, t) × (nn ⋅Mn(r, t))nn +
A
M

n
Mn(r, t) × ∂Mn(r, t)

∂n
]∣

ξ=Ln

− A

Mn Mn′
Mn(r, t) ×Mn′(r, t)∣

ξ=Ln′−

= 

[ Ks

M
n′

Mn′(r, t) × (nn′ ⋅Mn′(r, t))nn′ −
A

M
n′

Mn′(r, t) × ∂Mn′(r, t)
∂n′

]∣
ξ=Ln′−

− A

Mn Mn′
Mn′(r, t) ×Mn(r, t)∣

ξ=Ln

=  (.)

Here ∂/∂n is a partial derivative with respect to the surface normal unit vector. The latter points
from the interface out of the magnetic layer. Symbol Ln refers to the upper surface of the lower of
two adjacent layers with number n, while Ln′− indicates the lower surface of the upper layer n′.
(n′ = n + ). In Equation ., A is usual ferromagnetic exchange constant and A is a constant
describing the exchange coupling between themagnetic layers across the interlayer.Here, we consider
the case of ferromagnetic exchange coupling, i.e., A > . Obviously, the value of both exchange
constants must depend on the direction of the surface plane relative to the crystallographic axes of
ferromagnet.

Recently, the Hoffmann exchange boundary conditions have been reexamined and small correc-
tions have been shown to be necessary [,]. Additional terms are included to resolve difficulties
with these boundary conditions in some limiting cases (for example, in the case of all equivalent lay-
ers when d → ). Mills co-workers [,] give both the microscopic and macroscopic evidences of
the additional terms in the Hoffman boundary conditions.

In the case of the magnetic/nonmagnetic layered structure for d >
○

A, the exchange coupling
between neighboring layers can be neglected and so-called Rado–Weertman boundary condition
has to be fulfilled [].

If we perform all our calculations for variable magnetization in the linear limit, we must also lin-
earize the exchange boundary conditions. In the frame of our consideration in the long-wavelength
limit, the linearized version of the Rado–Weertman boundary condition reads

M ×
∂m
∂n

+ Ks

A
[(n ⋅m)n ×M + (n ⋅M)n ×m] =  (.)

Let us introduce here so-called spin pinning parameter η = Ks/A [cm−] characterizing the ratio of
surface anisotropy energy and nonuniform exchange energy. ηmay be positive or negative depending
on the sign of Ks , i.e., depending on whether the easy plane of the magnetic crystal is parallel or
perpendicular to the surface.

For real materials, any possible combination of parameters A, Ks , and A can be realized. More-
over, in multilayered systems, all these parameters can vary from layer to layer in the stack and even
A and η can be different for different surfaces of the same film.

In practical calculations, several limiting cases are usually utilized. For instance, it is well known
that for permalloy (Py) films the case of free surface spins is often experimentally found. Thus,
in this case the so-called Ament–Rado exchange boundary conditions can be used as a good
approximation []:

∂m
∂n

∣
ξ=± d



=  (KS = ) (.)

Due to the present growth technique, the spin pinning parameter now can be controlled almost in all
materials by the ion implantation technology. So for special purposes, the films with totally pinned
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surface spins can be easily obtained. In this case, Kittel’s exchange boundary conditions can be used
for regular calculations []:

m∣ξ=± d

=  (KS = ∞) (.)

We emphasize that the applicability of all these limiting cases should be estimated in each particular
case not only by the value of the material parameter η, but also by the velocity of variation of the
dynamic magnetization in the direction normal to the surface.

The most complicated case in calculations of spin-wave spectrum of the magnetic multilayer
appears when the interlayer nonmagnetic spacer is very thin (d < 

○

A) or tends to zero (if we
consider the multilayer stack of alternating ferromagnetic and/or antiferromagnetic layers with dif-
ferent magnetic properties). Both of these cases need to account all of the interactions including
the exchange coupling between the magnetic layers. Thus, the full Hoffmann boundary conditions
should be applied for each interface and the system of exchange boundary conditions for all layers
become coupled.The solution of this system of N equations determines the normal modes and cor-
responding transverse wave numbers kn of SWMs. The allowed values of wave numbers kn should
be obtained from the condition of vanishing determinant of N three-diagonal matrix of the coupled
exchange boundary conditions.

34.2.2 Analytical Approaches

An understanding of the full spin-wave spectrum of magnetic structures is the key to solving many
fundamental and applied problems in this field. A lot of theories and approaches were developed for
solving this problem in numerous particular cases.This part of our chapter is not intended to be a full
review of such a vast subject, but we will give a brief introduction to the present situation in this field.

The description of spin-wave processes in multilayered and patterned structures is based, in
general, on the consideration of two aspects: interactions in the spin-system of each element
formed the structure, and the coupling between elements. Each of these contributions is formed
by the long-range dipole–dipole interaction, short-range exchange interaction, and surface and bulk
anisotropy.

Various theoretical and computer techniques were elaborated: plain (or partial) waves approach
[,,,,,], transfer matrix technique [–,,,], spin wave modes (SWM) approach
[,,,–,,], variational method [], effective medium approach [,,], magnon scat-
tering [], a dynamical matrix approach [] (dots), conformal mapping approach using the
extinction theorem [] (wires), spin-wave operator technique, and the Hamiltonian formalism
[,,,,,,,], micromagnetic simulations, etc.

All these methods were developed for one purpose alone—to calculate the spin-wave spectrum
in different magnetic structures. The authors used “a macroscopic continuum theory” as well as “the
microscopic technique.” First is based on the simultaneous solution of Maxwell’s equations (usually
without retardation, in magnetostatic limit) with the linearized Landau–Lifshitz equation of motion
for magnetization, together with appropriate exchange (or the surface spin pinning) and electro-
dynamics boundary conditions. The last one utilizes the microscopic Hamiltonian of the magnetic
system [,,,,,,].

From the early days, macroscopic and microscopic approaches to the theory of magnetic struc-
tures were elaborated in parallel. In some cases concerned with the effect of exchange interaction,
we cannot do without microscopic theory. For instance, the nonlocal exchange interaction in thin
films, Hoffmann exchange boundary conditions, the effects of RKKY oscillations and GMR cannot
be explained in the frame ofmacroscopic theory alone. But as soon aswe are not dealt with themicro-
scopic theory here, so we will present the review of the various theories elaborated in the frames of
the macroscopic approach only.
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FIGURE . Schematic illustration of two main approaches.

Twomain approaches for solvingmacroscopic eigenvalue boundary problemmay be distinguished
in the phenomenological dipole-exchange theory: the plane (or partial) wave (PW) technique and the
SWMapproach. Both of them are dealt with solving the Landau–Lifshitz equation ofmotion formag-
netization simultaneously with Maxwell’s equations with appropriate exchange and electrodynamic
boundary conditions and both of them finally give the same result, which was shown in Ref. [].
But, the fundamental difference between them lies in the sequence of calculation. Figure . shows
the principal way of calculations in PW and SWM approaches.

34.2.2.1 Plane Wave Approach

The most popular among the macroscopic theories albeit not the best is the “plane (or partial) wave
approach.” The calculation procedure according to this approach is as follows [,,,,,,
,,]. Solving the magnetostatic Maxwell equations together with the Landau–Lifshitz torque
equation of motion (sometimes by introducing of the scalar magnetic potential for describing the
dipole magnetic field and then expanding this potential in the series of plane waves), we arrive to a
secular equation, which, for given k, is a dispersion relation between the spin-wave frequency ω and
k
�
-in-plane component of wave vector. The six solutions of this sixth-order dispersion equation give

the coefficients for the system of boundary conditions, formed from Maxwell’s boundary conditions
and exchange boundary conditions (Hoffman or Rado–Weertman upon your taste). In order to fulfill
the boundary conditions simultaneously for all interfaces in themultilayered system, the determinant
of the system of  + N + (N − ) linear equations must be equal to zero (here N is the number of
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magnetic layers in the structure). So one should solve numerically the dispersion relation together
with the bicubic characteristic equation. But for given k, ω, and evaluated from the sixth-order
secular equation k

�
, the value of the boundary condition determinant can differ from zero. So in a

root finding routine ω is varied and the boundary condition determinant is calculated until the value
of the boundary condition determinant fulfills a convergence criterion.

Thus, the investigation of the nature of the roots of the sixth-order characteristic equation and
their dependences on the structure parameters and the external magnetic field is the main aspect of
the PW approach. Actually, it is well-knownHolstein–Primakoff andHerring–Kittel problem, which
cannot be solved in an explicit form. Moreover, these partial waves each taken separately cannot be
observed.Only appropriate combination of thesewaves, which give the distributions hd(z) and m(z)
could be observed and have a physical meaning in this sense [].

Indeed, the dispersion equation together with the characteristic equation, represents exact solu-
tions of the corresponding boundary problem. But, the dispersion properties of dipole-exchange spin
waves in this case are hidden in the transcendental dispersion relations.Thus, the final result accord-
ing to this approach can be obtained only by direct numerical calculations except several very simple
limiting cases.

It is worth noting that recently the PW approach was adopted for calculations of the spin-wave
spectra of multilayer systems, see Refs. [,,,].

34.2.2.2 Transfer Matrix Technique

The transfer matrix formalism is one of the simplest ways to extend the single layer theory on
multilayer case [,–,,,,]. The equation, which appears in this approach, is an ordinary
matrix equation, which occurs often in linear circuit analysis. The ratio of the electric to magnetic
fields gives the surface impedance of the sample and the real part of the surface impedance can be
related to the sample ferromagnetic resonance (FMR) absorption.

Various modifications of the transfer matrix formalism have been widely used for the anal-
ysis of electromagnetic properties of stratified media in acoustic and optics [,], and later
they were applied to the magnetic structures [,,,,,]. Ordinary transfer matrix T relates
the amplitudes of internal electric and magnetic fields at all interfaces (include first and last sur-
faces of the stack). It is derived from usual electrodynamics boundary conditions for the tangential
components of the microwave E and H fields, taken simultaneously with the spin boundary con-
ditions for magnetization, which follows from Landau–Lifshtz equation of motion. The relation
between variable magnetization and internal magnetic fields is given through Maxwell’s equa-
tion. The detailed discussion of this method applying to the magnetic superlattices can be found
in numerous works [–,,]. Here, we only point out several important features of this
method.

The main advantage of the transfer matrix approach lies in the fact that based on the set of the
transfer matrices Tm obtained for individual constitutive layers, one can immediately obtain the
spectrum of an arbitrary complex stack. Since we successively eliminate variables using the boundary
conditions at each interface, we never have to workwith a systemwithmore than six linear equations.
The additional layers do not increase the number of final equations. Moreover, using this method,
one can easily calculate the response of the semi-infinite and finite superlattices where new surface
modes appear [].

Unfortunately, this method is successively used only in the cases of “pure” exchange [] or
“pure” dipolar modes [], and usually it gives only FMR spectrum. In more complicated cases, the
applicability of this approach is mostly ambiguous and the calculation results are quite difficult for
physical interpretation.While applying this method to different cases, one should clearly understand
at any stage of calculations how to select correct physical solutions, what additional conditions (for
example, the energy conservation for reciprocal case) should be required to exclude nonphysical
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stray solutions. In some cases such complexity may lead to a confused result. Here, instead of the
complexity of calculations, we meet with the complexity of the result interpretation.

Moreover, usually the transfermatrix approach includes only the ground state of the ferromagnetic
system.The ground state in this consideration is a spatially uniformmagnetization in each layer with
no spin reconstruction at the interfaces. But in real systems, the local magnetization at the interfaces
may differ from corresponding bulk one and this can lead to spin reconstructions at the interfaces.
But these effects are not considered by transfer matrix theory. However, this method gives a unique
opportunity for simple inclusion of the defects in infinite structures and to consider periodic systems
with constitutive elementary unit (two to three different layers in elementary unit) [].

The first real attempt to combine transfer matrix approach with SWM technique was done by
Rojdestvenski et al. in Ref. [] for the interpretation of BLS experiments. The authors used a tradi-
tional transfermatrix formalism to derive the spectrum of dipole-exchange spin waves in infinite and
semi-infinite magnetic multilayers consisting of identical magnetic layers separated by nonmagnetic
spacers.

34.2.2.3 Effective Medium Approximation

The effective medium approximation is a relatively simple approach, which correctly gives the fre-
quencies of the surface and k

∥
T =  bulk modes (here T is a period of the structure). In this case, the

superlattice is described as a single effective medium. Authors of Ref. [] applied this method to the
superlattices in Voigt geometry, and in Ref. [] the effective medium approximation was adapted for
the description of canted multilayers.

The essence of this method is as follows. The dynamic response of each magnetic layer is written
in terms of the dipolar fields in each layer via the Landau–Lifshitz equation of motion. Next, an
average fluctuating magnetization m is defined as the sum of the fluctuating magnetizations created
by the two sets of spins of adjacent films.The boundary conditions on normal fields introduce “filling
factors” into the poles of the susceptibilities, which shift the resonance frequencies according to the
relative thickness of the magnetic and nonmagnetic films. Primarily this method of field continuity
arguments was used by Agranovich and Kravtsov []. Spatial averaging gives mean values of the
field components Bx , Hy , and Hz and the effective-medium permeability μe is the tensor that relates
these three to the other three continuous components Hx , By , and Bz :

μe =
⎛
⎜
⎝

μe
x x iμe

x y 
−iμe

yx μe
y y 

  μe
zz

⎞
⎟
⎠

(.)

where μe
x x = (( f/μ) + f)−, μe

x y = μe
yx = ( fμ�)/( f + fμ), μe

y y = fμ + f − ( f fμ
�
)/( f + fμ),

μe
zz = . (this case also includes uniaxial antiferromagnets). Here μ and μ

�
are the two independent

components of the permeability tensor μ of the starting magnetic material, f and f are the volume
fractions (or filling factors) of the magnetic and spacer material, respectively. f = d/T and f =
d/T . Then, the derivation of the dispersion equation for the Damon–Eshbach (DE) mode proceeds
in a standard way with this effective-medium permeability μe .

This approximation works when QT ≪ (T is the period of superlattice, Q is the Bloch wavevec-
tor) is satisfied, so that the wavelength is much larger than the period T , the observed modes are
near the center of the mini zone (Brillouin zone) so that the stop-band reflections do not occur. The
second condition requires that the modulation depth be larger compared with the penetration depth
of DE mode in the superlattice.

Since the superlattice can be described as a single effective medium, then the calculation of the
DE mode properties becomes an exact problem. It should be noted that in general case the effective
medium calculation of the surface-mode frequency gives the same result as an expansion to first
order in k

∥
T of the dispersion relation obtained using the transfer matrix method.
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Another way to treat the periodic structure as an inhomogeneous medium with periodic prop-
erties (e.g., the array of cylinders) was suggested by Puszkarski and Krawczyk and others [,]. This
approach can be used not only formagnetic/nonmagnetic structures, but also formagnetic/magnetic
structures with different parameters.

A theoretical model includes the following quantities: spontaneous magnetization Ms and Ms,
and exchange constants A and A homogeneous in one or two directions but varying with the posi-
tion in the directions of periodicity.The introduction of variables Ms(r) and A(r) leads to the other
form of the exchange magnetic field:

hex(r) = ∇ A
μM

s
∇M(r) (.)

instead of Equation ..
Ms and A are the functions of r, they can be expanded in the Fourier series by the Q reciprocal

lattice vector, and then using Bloch’s theorem for m(r)we arrive at the infinite set of linear equations
for the Fourier expansion coefficients m and m. Then the system should be solved numerically.

The advantage of this method is that the composite structure is considered as an infinite medium
with periodic parameters, so there is no need in any boundary condition neither electromagnetic nor
exchange. Obviously, the number of reciprocal lattice vectors should not be very huge especially in
the expansions of Ms and A, because the number of the terms in Fourier expansion determines the
sharpness of the interface between two materials, more terms give more sharpness. But, in fact, due
to the diffusion, the real interface never has been an ideal plane so some blur is quite useful here.
Thus, this “approximation” seems to be more accurate and close to reality than the exact theory.

34.2.2.4 Method of Tensorial Green’s Functions

The Green’s function method concerns only the representation of the dynamic dipole field in the
integral form. It can be considered as a first stage of the SWM approach (see Figure .), when one
should solve Maxwell’s Equation . to obtain the relation between the dynamic dipole field and
variable magnetization in integral form. However, the final integro-differential equation of the whole
problem can be solved by any other analytical or numerical method. This form of representation of
the dynamic dipole field is very comfortable for further derivings and calculations.

In particular case of the linear problem, the solution of Maxwell’s Equation . in each separate
layer of the stack (see Figure .) can be written in the form of plane waves:

mi(r, t) = mi(ξ, kζ)e− jkζ ζ+ jωt , hd
i (r, t) = hd

i (ξ, kζ)e− jkζ ζ+ jωt (.)

Here and below, we assume that the in-plane wave vector kζ is always positive. mi(ξ, kζ), hd
i (ξ, kζ)

are Fourier-amplitudes of variable magnetization and variable dipole field, correspondingly.
Since we consider the multilayered structure, we must include the nonlocal effects of the

dipole fields of all ferromagnetic layers formed the structure. Due to the linearity of the problem
(Equation .), the Fourier amplitude of the resulting dipole field can be represented as the
superposition of the Fourier amplitudes of the dipolar fields of all ferromagnetic layers:

hd(ξ, kζ) =
N

∑
j=

hd
j (ξ, kζ) (.)

This is one of the central ideas of this approach. Physically, it reflects the dipole–dipole interaction
in a spin-system of a film as well as coupling between ferromagnetic films through their “individual”
dipole fields.

In each film, the relation between the Fourier amplitudes of variable dipole field hd
i (ξ, kζ) and

variable magnetization can be defined in integral form through generalized tensorial Green function
Gξρζ(ξ, ξ′; kζ) of a single layer problem (see, e.g., [,]):
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hd
j (ξ, kζ) =

�
Gξρζ(ξ, ξ′; kζ)m j(ξ′ , kζ)dξ′ (.)

The tensorial Green function has the same form for all layersmade of onematerial.We should note
that the generalized tensorial Green function (opposite to the classic Green function of the equation)
depends on the chosen coordinate system and particular sample geometry (through the boundary
conditions). However, for many cases, it can be found in closed form.

For example, a single-film tensorial Green function of Maxwell’s equations in magnetostatic limit
(i.e., without retardation) in the Cartesian coordinate system ξηζ has the following form []:

Gξρζ(ξ, ξ′ , kζ) =
⎛
⎜
⎝

GP − δ(ξ − ξ′)  − jGQ

  
− jGQ  −GP

⎞
⎟
⎠

(.)

where the components of matrix elements are

GP = kζ


e−kζ ∣ξ−ξ

′

∣ , GQ = GPsign(ξ − ξ′)

Here sign(ξ − ξ′) = { , when ξ − ξ′ ≥ 
−, when ξ − ξ′ < 

We should note that the tensorial Green function depends strongly on the symmetry of the initial
Maxwell’s equations. For the simplicity of further calculations, one should use a proper coordinate
system (spherical, cylindrical, or other instead of Cartesian). For example, in the problem of infinite
cylindrical wire, the tensorial Green function in cylindrical coordinate system has all nine elements,
but only four of them are independent.

Thus, the tensorial Green function can be quite different for different cases and is strongly distin-
guished from the single-film one. Moreover, for multilayered systems you cannot use the tensorial
Green function of bulk material and in some cases even single-film Green function does not match.
The form of the components of the tensorial Green function depends not only on the properties of
the ferromagnetic material, but also on the interface geometry and the properties of the surrounding
media.This influence always presents at electrodynamics boundary conditions andfinally determines
the behavior of the tensorial Green function. For instance, if we consider the problem of the infinite
stack of three-layered structures—metal–ferromagnetic–dielectric—we should utilize the general-
ized Green function of such three-layered sandwich system. Some information about the tensorial
Green function for the plane sandwiched structures can be found in Refs. [,,,]. We stress
that in each specific case one should solve first the appropriate electrodynamics problem and get the
proper form of the integral relation between variable dipole field and variable magnetization.

While searching the tensorial Green function, we assume ζ-axis of the coordinate system ξρζ to
be oriented along the direction of propagation of spin waves in the structure (see Figure .). For
the convenience of further analysis, we now introduce for each ferromagnetic film a new coordinate
system xi yi zi in which the axis zi is parallel to the direction of saturation magnetization Mi of the
film. The transition from the coordinate system ξρζ to the coordinate system xi yi zi can be done by
means of orthogonal transformations of rotation through angles φi and (θ i − π/). The matrices of
these transformations are of the form:

Tφ =
⎛
⎜
⎝

  
 cos φ i − sin φ i
 sin φ i cos φ i

⎞
⎟
⎠
, T

θ−π/
=
⎛
⎜
⎝

sin θ i  − cos θ i
  

cos θ i  sin θ i

⎞
⎟
⎠

(.)

More information about orthogonal coordinate transformations can be found in Ref. [].
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The application of coordinate transformations (Equation .) to the tensorial Green function
(Equation .) in following way:

Gi
x yz(ξ, ξ′ , kζ) = T

θ i−
π
/

Tφ i
Gi

ξρζ(ξ, ξ′ , kζ) (Tφ i
T

θ i−
π
/
)

T
(.)

results in the equation for tensorial Green’s function Gi
x yz(ξ, ξ′ , kζ) in each layer of the stack in new

coordinate system xi yi zi .

34.2.2.5 SWM Approach

All above-mentioned macroscopic theories cannot be called pure analytical, since at a particular
stage all of them include numerical calculations. But numerical modeling usually gives the results
only for several specific cases and cannot give the whole picture. Truly, analytical among all methods
can be called only the SWM technique. Hence, from here and below we devote our discussion to the
detailed description of this analytical approach.

The SWM approach with reference to the multilayer problem is based on the solution of the
integro-differential equation for variable magnetization in each layer of the system, which follows
from the initial system of equations consisting of linearized equation of motion for the magnetiza-
tion,Maxwell’s equations, and the electrodynamics and exchange boundary conditions (Figure .).
In these integro-differential equations, the exchange and magnetostatic dipole–dipole interactions
as well as the surface and bulk anisotropies are taken into account. In general case, the calculations
are performed for arbitrary magnetized multilayers. By means of a tensorial Green function for the
solution of Maxwell’s equations, dispersion laws for the collective SWM frequencies can be derived
in a form suitable for physical interpretation and for comparison with experiments. To solve these
integro-differential equations, an expansion of the variable magnetization in the infinite series of
SWMs is used. SWMs form a complete set of vector functions satisfying the exchange boundary
conditions.

Thismethod allows one to derive the exact dipole-exchange spin-wave dispersion relation, in terms
of a vanishing infinite determinant or an infinite convergent series. One of the useful features of
SWM approach is the possibility of deriving an approximate dispersion relation within a perturba-
tional approach for a wide range of particular cases in simple explicit form. This allows one to give
a clear physical picture of the dipole-exchange spin-wave spectrum for complicated systems and its
dependence on each structure parameter.

For the treatment of an infinite stack of periodic multilayers, Bloch’s theorem can be easily incor-
porated into this approach for the description of the band structure of the spin-wave energies and
in the frames of perturbational approach then may be applied a tight binding approximation. Spin
waves in such multilayers are coupled via their long-range magnetostatic dipole fields and nonlocal
interlayer exchange interaction, thus they form a characteristic new mode and the new structure of
energy spectrum appear.

Since our consideration will be closely connected with the implementation of this method for
different applications, we presume to present here in Figure . the general scheme of calculations
in the frames of this approach. According to this scheme, we find that a few separated problems arise
in the process of calculations such as the determination of the components of the tensorial Green
function, obtaining the effective demagnetization factors, the eigenvalue problem for the differential
operator with appropriate exchange boundary conditions, and the determination of the approximate
dispersion relation bymeans of perturbation theory. Some of themwere already discussed above and
other will be considered below in this chapter.

All these separate problems can be solved independently and bymeans of anymathematical meth-
ods you prefer. But at the end, we always get one system of linear algebraic equations where all
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General scheme of obtaining the solution in the framework of spin-wave mode approach. 

Problem 1 

Transformation of linearized the Landau–Lifshitz equation of motion for magnetization to the form: 

Solving the magnetostatic problem of
determination of the direction of the
equilibrium magnetization in
ferromagnetic film (finding angles θ
and   ) in the presence of different types
of anisotropy 

= 0
UmagM ×
M

For the linear problem.
Determination of the components of the
tenzor Na . Na  is the tensor of effective
demagnetization factors of all types of
anisotropy taking into account
simultanously

ha (r,t) = –Na m (r,t)
All angles must be taken in appropriate
coordinate system 

The Landau–Lifshitz equation of motion for 
magnetization

Determination of all components of  Heff to be included
into the equation and consideration of their form according
to made definitions Hint, hex, hd, ha.

Linearized equation of motion 

Problem 2 

Consider the relation between the Fourier
components of variable magnetization and
dipole magnetic fiald through the integral 
relation:

Determination of the components of
tensorial Green function G  for given
geometry of the problem from Maxwell
equations with appropriate
electrodynamics boundary conditions. 

hd (ξ,kζ) = Gξρζ (ξ,ξ΄,kζ)m(ξ΄,kζ)dξ΄

Application of orthogonal transformation
according to the chosen coordinate system. 

t
M (r,t) = – |g|μ0[M (r,t) × Heff(r,t)]

t
m (r,t) + |g|μ0[m (r,t) × H0

int(r,t)] + |g|μ0 [M0 × (hex (r,t) + ha (r,t))] = – |g|μ0[M0 × (hd (r,t)]

(F + T + N) mk (ξ,kζ) = Σ   Geff (ξ,ξ΄,kζ)mk (ξ΄,kζ)dξ΄ 

Gxyz = Tθ T   Gξρζ  (T  Tθ)

j

∞

–∞ xy

FIGURE . The main steps in solving boundary value problem through SWM approach.
(continued)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

34-18 Theory and Phenomena of Metamaterials

Obtain the infinite system of algebraic equations for the SWM vector amplitudes 

The condition of vanishing determinant of this system gives the exact dispersion relation for
given problem  

Problem 4 

The approximate dispersion relation can be determined
by means of perturbation theory if we rewrite our system
in the form:  

Now the problem reduces to the transformation of the
3N × 3N  matrix to block-diagonal form.  

Let us now find the solution of the linearized Landau–Lifshitz equation of motion for
magnetization in the form: 

Problem 3 
Formulation of the eigenvalue problem for the differential operator F + T+ N or its part F + T   or
maybe only diagonal part F  with chosen exchange boundary conditions:

FSn(ξ,kζ) = Fn Sn (ξ,kζ)

where Sn are the eigenfunctions, Fn is the eigenvalues of the problem.  Sn form a complete set of
orthogonal vector functions satisfying the exchange boundary conditions.

The exact solution can be
determined by straight computer
calculations of the determinant
of an infinite 3N × 3N block
matrix.

det    = 0

Selection of the appropriate exchange boundary conditions. 
Try to choose the simplest variant of boundary conditions suitable for the given
problem according to the physical point of view.

mk(ξ) = M0 mp
nSp

n(ξ)Σ
∞

n
Σ
2

p=1

p = 1

Σ Rii    ,mi , + m jΣ Σ = 0Dii    mi
n + Lij

ń≠  n j inm mnmnm mn  ≠

Hii    ,mi , + mjΣ Σ = 0Wij
j inm mnmmn  

FIGURE . (continued) The main steps in solving boundary value problem through SWM approach.

interactions and physical effect are already taken into account. Moreover, the results of solving these
separate problems can be used then for calculations in other cases with similar conditions.

Thus, the main feature of SWM approach is that in spite of the fact that for each special case we
choose different accuracy of calculations and use different approximations for solving intermedi-
ate problems, but finally we always obtain a physically perfect and clear solution. The illustration
of the successful implementation of this method in numerous cases as well as the comparison with
experimental data can be found in Refs. [,,,–,,,,] and references therein.
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34.2.3 Spin-Wave Normal Mode Expansion Technique

Let us now, following the scheme Figure ., obtain the spin-wave spectrum in the frames of SWM
approach. One of the central problems of SWM approach is the selection of proper functions as the
normal modes for SWM expansion technique. It should be noted that the problem of the selection of
a set of appropriate functions for expansion is closely related with the problem of the optimal choice
of exchange boundary conditions. In most cases, we are forced to take as normal modes the eigen-
functions of pure exchange operator due to the complexity of the exchange boundary conditions,
since the selected functions should satisfy the appropriate micromagnetic boundary conditions.

In this chapter, we will give the most common approach to a wide class of problems thus on the
first stage we will not use Bloch’s theorem, but instead calculate the SWMs for finite number of layers,
since this approach bears more relevance to most experimental investigations. Bloch’s theorem will
be applied in the next sections.

As it was mentioned above, the SWM approach can be applied to a large variety of magnetic struc-
tures, but here we restrict to the case of multilayered structure consisting of an arbitrary number of
ferromagnetic layers separated by a nonmagnetic spacer (Figure .), all parameters of the ferro-
magnetic films can differ. Note that the model includes both dipole and exchange interaction as well
as electrodynamic and exchange boundary conditions with the interlayer exchange coupling and
anisotropy of the ferromagnetic media also can be taken into account if it is needed. Various ways
could be suggested for the selection of trial functions for solving the system of integro-differential
Equation . with appropriate exchange boundary. However, we can outline several options how
to do this better. Some of probable functions are already suggested in Ref. [,,–].

Owing to the linearity of the problem, the solution of the system consisting of N equations of
motion for magnetization followed from Equation . can be written in the form of plane waves
(Equation .), where axis ζ is assumed to be parallel to the direction of propagation of spin wave.
These expansions account for the fact that the translation invariance holds in the ζ−ρ-planewhere the
films are assumed to be unbounded, but not along the ξ-direction. Here kζ is the in-plane component
of the full wavevector of the spin waves. For the convenience of future analysis, we will write the
equation of motion for each layer in new coordinate system xi yi zi , in which axis zi is parallel to the

ρ

0
i = –1

i = 0

i = 1

i

yi

ξi

ξ

xi

n

θi

  i

zi Li
diM0i

d0 = 0

T = L + d

kζ

ξ1

ξ–1

ξ0
ζ

FIGURE . Geometry of magnetic multilayered structure and orientation of the coordinate axes.

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

34-20 Theory and Phenomena of Metamaterials

direction of the saturation magnetization Mi . Due to the above-introduced transformations, vector
of variable magnetization becomes D:

mi(ξ, kζ) = ux i mx
i (ξ, kζ) + uy i m

y
i (ξ, kζ) = (

mx
i

my
i
) (.)

where ux i and uy i are unit vectors. We use index i to indicate parameters of the ith layer, but when
appropriate this index is omitted for an improved clarity of the equations.

These calculations lead to a system of N coupled homogeneous integro-differential equations for
the Fourier amplitudes of variable magnetization:

F
i
mi(ξ − ξ i , kζ) + T

i
mi(ξ − ξ i , kζ)

= −N
i
mi(ξ − ξ i , kζ) +

∞

∑
j=−∞

L j�


Gi j
x y(ξ − ξ i , ξ′ − ξ j , kζ)m j(ξ′ − ξ j , kζ)dξ′ (.)

here ξ i is an absolute coordinate of i-layer:

ξ i = −sign(i)L


− sign(i) + 


L
− +

i

∑
l=
[sign(i)dl +

sign(i) + 


Ll− +
sign(i) − 


Ll] (.)

and mi(ξ, kζ) is the vector Fourier amplitude of the plane spin wave. Here d ≡, and

sign(i) =
⎧⎪⎪⎨⎪⎪⎩

, when i ≥ 
−, when i < 

F
i
is the linear matrix-differential operator:

F
i
= ωHi

ωMi
− Ai

μM
i
(∇

ξ − k
ζ)(

 
  ) (.)

T
i
includes nondiagonal terms:

T
i
= i

ω
ωMi

(  −
  ) (.)

and N
i
represents bulk anisotropy:

N
i
= ( Nx x

i Nx y
i

Nyx
i Ny y

i
) (.)

here ωHi = ∣g∣ μHi , ωMi = ∣g∣ μMi .
The solution of this integro-differential equation, satisfying the appropriate exchange boundary

conditions, gives the full spectrum of dipole-exchange spin waves in a ferromagnetic film.
To solve the set of integro-differential Equation ., we apply the expansion of the Fourier ampli-

tudes of the spatially varying magnetization mi(ξ, kζ) in an infinite series of complete orthogonal
vector functions Sp

ni(ξ), the so-called SWMs, in each layer separately:

mi(ξ, kζ) = Mi

∞

∑
n



∑
p=

mp
inSp

in(ξ) (.)

where mp
in are the SWM amplitudes, and the normal modes Sp

ni(ξ) are found as the eigenvectors of
the differential-matrix operator with appropriate exchange boundary conditions.
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The problem of determination of the eigen-functions of linear differential operator with corre-
sponding boundary conditions is a particular case of general Sturm–Liouville problem and may be
formulated as follows:

Fi Si(ξ) = Fi Si(ξ)
Bi Si(ξ) = , when ξ = ξ i + Li

Bi Si(ξ) = , when ξ = ξ i (.)

Since the SWM Sp
ni(ξ) are the eigenfunctions of the Sturm–Liouville problem, they should form a

complete set of the orthogonal functions, which must satisfy the condition of the orthonormality
over the interval of their existence Ω:�

Ω

dξ Sp
ni(ξ)Sp′∗

n′ i′(ξ) = Lδnn′δpp′δ i i′ (.)

where δ is the Kronecker delta.
Vector functions Sp

ni(ξ) can be expressed as a product of eigen-vector of the linear differential
matrix operator and eigenfunctions Φp

ni(ξ), which should satisfy appropriatemicromagnetic bound-
ary conditions. The eigenfunctions Φp

ni(ξ) give the spin-wave magnetization distribution across the
film in the standing spin-wave regime (kζ = ) for corresponding problem, with n the number of
half wavelength of a standing wave within one film thickness.

It should be noted that in different situations vector functions Sp
ni(ξ) and eigenfunctions Φp

ni(ξ)
can be quite different. This fact depends mostly on the form of spin-pinning conditions, rather than
the form of differential-matrix operator. If we omit the interlayer exchange interaction, the Rado–
Weertman (Equation .), Kittel’s (Equation .), or Ament–Rado (Equation .) exchange
boundary conditions can be applied. Such model is applicable when the distances between ferro-
magnetic films in magnetic/nonmagnetic structure are large compared with the length of effective
exchange coupling. This situation usually occurs in such structures.

In the case of Rado–Weertman exchange boundary conditions, the solutions become rather com-
plex. Due to this complexity, the normal modes should be found as the eigen-functions of pure
exchange operator (or sometimes as the eigen-functions of the whole diagonal part of the full oper-
ator F

i
+ T

i
+ N

i
). In this case, operators of boundary conditions in Equation . according to

Equation . in considered coordinate system have the following form []:

B
i
=

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂ξ

+ ηi cos θ i 


∂
∂ξ

+ ηi cos θ i

⎤⎥⎥⎥⎥⎥⎥⎦

B
i
=

⎡⎢⎢⎢⎢⎢⎢⎣

− ∂
∂ξ

+ ηi cos θ i 

 − ∂
∂ξ

+ ηi cos θ i

⎤⎥⎥⎥⎥⎥⎥⎦

(.)

where ηi and ηi are the pinning parameters on the upper and lower surfaces of the filmwith number
i. ηi and ηi are related with the phenomenological constant of surface anisotropy. (η = Ksurf/A).
Here, we also take into account the direction of surface normals.

We should emphasize that this form of mixed exchange boundary conditions was derived for the
case of uniaxial surface anisotropy []. Deriving the solution of eigenvalue problem for the diagonal
operator of Equation ., we obtain vector eigenfunctions Sp

ni(ξ) in following form:

S
ni(ξ) = (

Φx
ni(ξ)
 ) , S

ni(ξ) = (


Φy
ni(ξ)

) (.)
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the functions Φp
ni(ξ) which satisfy the exchange boundary conditions . can be found as

Φp
ni(ξ) = Ap

ni [cos (k p
ni (ξ − ξ i)) +

ηp
i

k p
ni

sin (k p
ni (ξ − ξ i))] (.)

Quantities k p
ni as in previous case may be interpreted as SWM transverse wave numbers, but they are

determined by the equations:

[(k p
ni)

 − ηp
iη

p
i] tan (k p

ni Li) = k p
ni (η

p
i + ηp

i) (.)

where ηx
, = η, cos θ, η

y
, = η, cos θ, η, are the pinning parameters on upper and lower surfaces

of the film (without loss the generality we omit here the layer indices i).
Constants Ap

ni for this case of exchange boundary conditions may be obtained from the normal-
ization condition (Equation .) for the SWM. For more detailed discussion and exact form of
constants Ap

ni see Ref. [].
The eigenvalues F p

ni of the considered boundary problem are given by

F p
ni =

ωHi

ωMi
+ Ai

μM
i

k
ζ +

Ai

μM
i
(k p

ni)


(.)

in the case without including anisotropy term, and

F p
ni =

ωHi

ωMi
+ Ai

μM
i

k
ζ +

Ai

μM
i
(k p

ni)
 + N pp

i (.)

with the bulk anisotropy taken into account.
The solutions of the transcendental Equation . have been extensively discussed in literature,

especially in the connectionwith the phenomenonof spin-wave resonance (SWR), because physically
the solutions (Equation .) describe the distributions of magnetization of standing spin waves
(kζ =) across the film thickness.This equation has the infinite number of real solutions for arbitrary
values of pinning parameters. These solutions correspond to the bulk modes of SWR. Besides, this
equation may have one or two imaginary solutions corresponding to hyperbolic or surface SWR
modes. The areas of different number of imaginary solutions with the appropriate conditions on
ηp
 , η

p
 are presented in Ref. [].

The SWMs for the simple cases of Kittel’s and Ament–Rado exchange boundary conditions and
their applicability are discussed in numerous works (see, e.g., [,,] and references therein). It
was shown that such solutions give excellent results for more particular cases of interest and coincide
with experimental data quite well.

More complicated case occurs when we try to include the interlayer exchange interaction in the
magnetic structure. The application of the Hoffmann exchange boundary conditions is undoubtedly
necessary in the case of magnetic/magnetic multilayers. In this situation, we have no choice but to
take the eigenfunctions of pure exchange operator as a set of normal SWMs and for defining allowed
values k p

ni we should solve the system of N (N is the number of layers in the multilayered system)
coupled Hoffmann exchange boundary conditions.

A full set of SWMs represents the orthogonal basis in which the integro-differential Equation .
has a block-diagonal form. Following SWM approach, any combination of eigen functions of differ-
ential operator can be taken as a set of normal modes. But in some special cases, we can outline the
rules for selection of the most convenient functions.

For example, in the papers [–] distributions of the variable magnetization corresponding to
the spin-wave resonance frequencies were utilized. They were found as eigenfunctions of the differ-
ential operator in the SWR regime (kζ = ). A similar choice of normal modes for the expansion of
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mi(ξ, kζ) may be convenient for a specific geometry (specific direction of the bias magnetization)
since we utilize the exact solution of Equation . in the important regime of standing spin waves
kζ = . However, in the case of an arbitrary direction of bias magnetization when we want to find the
dispersion equation describing the angular dependence of the spin-wave spectrum, it is convenient
to use as the normal modes the eigenfunctions of the pure exchange operator.

Fortunately, a large number of ferromagnetic resonance experiments in thin films can be explained
in terms of a single cosinusoidal or single decaying exponential function. However, this is not the
case in general, especially where intensities are concerned, and it is important to distinguish between
“pinned modes” and modes with “pinned intensities.” The former have m =  at the surfaces, and the
latter have intensities corresponding to single cosinusoidal functions with m =  at the surface [].

34.2.4 General Dispersion Relation

Now, we come to the determination of the dispersion characteristics for spin waves in the layered
magnetic/nonmagnetic structure. We proceed to consider the structure consisting of N anisotropic
ferromagnetic films separated by nonmagnetic layers.The thickness of the ferromagnetic films along
ξ-direction is Li(i = , , . . . , N) and for separating layers it denotes di . The films are magnetized to
saturation by a uniform external magnetic field of an arbitrary direction. The saturation magnetiza-
tions Mi have arbitrary values in each film and, in general case, the anisotropy of all ferromagnetic
layers can also be different. Thus, following the scheme in Figure ., we arrive to the “Problem .”
According to SWM approach for the case of an infinite layered system (Figure .) with mixed
exchange boundary conditions (Equation .), that could be different at all interfaces, we obtain
the infinite system of algebraic equations for vector Fourier amplitudes of a variable magnetization
(Equation .).

Substituting expansion (Equation .) for the mi(ξ) into Equation . and using the orthog-
onality condition for SWM, we obtain the infinite system of ( ⋅ N ⋅ ∞) coupled linear algebraic
equations for SWM amplitudes mp

in and after some simple transformations it can be rewritten in
most general matrix form:

Di i
nnmi

n + ∑
n′≠n

Ri i
nn′m

i
n′ +∑

j≠i
∑
m

Li j
nmm j

m =  (.)

The indices i, n, p correspond to the layer i and indices j, m, r numbered the same functions in
the layer j.

Here Di i
nn and Ri i

nn′ are the square matrices, which describe the dipole and exchange interactions
inside layer i and also take into account the influence of anisotropy:

Di i
nn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fx
ni + sin θ i +Ai(Px x

nn )i i + (N a
x x)i

Ci(Px y
nn )i i + (N a

x y)i(T x y
nn )i i

− j ( ω
ωMi

(T x y
nn )i i −Di(Qx y

nn)i i)

Ci(P yx
nn )i i + (N a

yx)i(T yx
nn )i i

+ j ( ω
ωMi

(T yx
nn )i i +Di(Q yx

nn)i i) F y
ni + E(P y y

nn )i i + (N a
y y)i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ri i
nn′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai(Px x
nn′)i i + jBi(Qx x

nn′)i i
Ci(Px y

nn′)i i + (N a
x y)i(T x y

nn′)i i

− j ( ω
ωMi

(T x y
nn′)i i −Di(Qx y

nn′)i i)

Ci(P yx
nn′)i i + (N a

yx)i(T yx
nn′)i i

+ j ( ω
ωMi

(P yx
nn′)i i +Di(Q yx

nn′)i i) Ei(P y y
nn′)i i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(.)
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Here, the angle functions are

Ai = cos φ i − sin θ i ( + cos φ i) ; Bi = − cos φ i sin θ i ;
Ci = 

 cos θ i sin φ i ; Di = − sin φ i sin θ i ; Ei = sin φ i

and F p
ni are the eigenvalues of the boundary problem (Equations . and .) for differential

operator F
i
and are given by Equation .; k p

ni is the transverse component of the full spin-
wave wavevector, which is determined by Equation .; n, n′ = , , , . . . , N ; p, p′ = , ; i, j =
−∞, . . . ,−,−, , , , . . . , ∞.The expressions for the effective demagnetization factors of anisotropy
Npp′

i in several cases of interest are presented in Refs. [,,,] and references therein.
The matrices Li j

nm in Equation . include the influence of the dipole fields from all other layers
of the system on the considered layer i, and in general case Li j

nm have the following form:

Li j
nm =

ωM j

ωMi
[ a j(Pxi x j

nm )i j + jb j(Qxi x j
nm )i j u j(Pxi y j

nm )i j + js j(Qxi y j
nm )i j

c j(P yi x j
nm )i j + jd j(Q yi x j

nm )i j h j(P yi y j
nm )i j + jt j(Q yi y j

nm )i j ] (.)

where
a j = A j f(θ) +C j f(φ) f(θ) + F j f(φ) f(θ); b j = B j f(θ) +D j f(φ) f(θ) +G j f(φ) f(θ)
u j = C j f(θ) + E j f(φ) f(θ) +H j f(φ) f(θ); s j = D j f(θ) + I j f(φ) f(θ)
c j = C j f(φ) − F j f(φ); d j = D j f(φ) −G j f(φ)
h j = E j f(φ) −H j f(φ); t j = −I j f(φ)

Here f(x) = sin (xi − x j) ; f(x) = cos (xi − x j)—the angle functions, which arise due to the
transformations from coordinate system of j-layer to the coordinate system of i-layer, and

F j =


sin θ j ( + cos φ j) ; G j = cos φ j cos θ j ; Hi = −



sin θ j sin φ j ; I j = − sin φ j cos θ j

If we consider all layers with one type and same orientation of anisotropy, we should put θ i = θ j and
φ i = φ j .

Matrix elements (P pp′

nn′ )i j and (Q pp′

nn′)i j in Equations . and . represent dipole–dipole inter-
action between SWMin each layer and between all layers in system; therefore, wewill call themdipole
matrix elements. They are given by

(P pr
nm(kζ))

i j = (Pr p
mn(kζ))

ji = 
Li

Li�


Φp
ni(ξ − ξ i)

L j�


GP
j (ξ − ξ i , ξ′ − ξ j , kζ)Φr

m j(ξ′ − ξ j)dξdξ′

(Q pr
nm(kζ))

i j = −(Qr p
mn(kζ))

ji = 
Li

Li�


Φp
ni(ξ − ξ i)

L j�


GQ
j (ξ − ξ i , ξ′ − ξ j , kζ)Φr

m j(ξ′ − ξ j)dξdξ′

(T pp′

nn′ )
i i
= (T p′ p

n′n )
i i
= 

Li

Li�


Φp
ni(ξ − ξ i)Φp′

n′ i(ξ − ξ i)dξ (.)

The physical meaning of the matrix elements (P pr
nm(kζ))

i j
and (Q pr

nm(kζ))
i j

is as follows. When the
exchange boundary conditions are symmetrical on two surfaces of the films formed structure, the
elements (P pr

nm(kζ))
i j
describe dipole interaction of the SWMhaving one and the same type of sym-

metry, and the elements (Q pr
nm(kζ))

i j
describe dipole interaction of the SWM having opposite types
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of symmetry. But if we take the asymmetrical type of the exchange boundary conditions or include
the anisotropy, the broken symmetry of the whole problem leads to the dipole interaction of all
SWMs in the structure. One useful property of the dipole matrix element (Q pr

nm(kζ))
i j
follows from

this statement—(Q pp
nn(kζ))

i i ≡  always for equal indices in the same layer. For the matrix element

(T pp′

nn′ )
i i
, we have (T pr

nm)
i j ≡  for all indices corresponding to the different layers. Matrix element

(P pr
nm(kζ))

i j
as a function of dimensionless longitudinal wave number kζLi always varies in the range

 < P pr
nmi <  when  < kζLi < ∞.

It should be noted that when the films formed the structure are moved apart, the matrix elements
(P pr

nm(kζ))
i j

and (Q pr
nm(kζ))

i j
tend to zero for i ≠ j and the system of Equation . splits into N

uncoupled infinite systems of equations describing the wave processes in separate films. In the long-
wave limit (kζLi ≪ ), a very simple expression for (P pr

nm(kζ))
i j

and (Q pr
nm(kζ))

i j
can be obtained

(see Ref. []).
At first glance, the system of equations for the SWM amplitudes, Equation. looks complicated

and fairly difficult to grasp. But owing to the symmetry properties in particular cases (for example,
in perpendicularly or tangentially magnetized films with totally pinned or totally unpinned surface
spins), the appropriate solutions, both exact and approximate, could be found in a comparatively
simple form.

In general case, the infinite system (Equation .) gives the exact dispersion of the linear spin-
wave processes in anisotropic magnetic/nonmagnetic multilayered structures and enables us to
obtain the expressions for the spin-wave spectrum and the distribution of the variable magnetization
of eigenwaves across the film thickness.

The infinite system of homogeneous algebraic Equation . has a simple physical interpretation.
The condition of vanishing the determinant of this system yields the exact dispersion relation for the
dipole-exchange spin waves, propagating in anisotropic ferromagnetic structure with an arbitrary
value of kζ :

det
11111111111
Di i

nn + ∑
n′≠n

Ri i
nn′ +∑

j≠i
∑
m

Li j
nm

11111111111
=  (.)

The zeroes of this determinant give the eigenfrequencies of the multilayered structure under
consideration. It is worth noting that due to Equations . and . the infinite matrix system
(Equation .) is always Hermitian. Therefore, the dispersion equation for dipole-exchange spin
waves obtained from Equation . always gives real values for the spin-wave eigen-frequencies.
In other words, the problem of determination of the exact dispersion law ω(kζ) for spin waves in
anisotropic layered structure is reduced to the problem of calculating the eigenvalues of the block
matrix of the infinite system (Equation .). The eigenvalue problem can be solved by differ-
ent methods. One of these, which allow us to obtain the approximate analytical solution, is the
perturbation theory approach.

Without presenting here the results obtained in Refs. [,,–], we point out that the infi-
nite system of the homogeneous Equation . can be solved exactly in many cases. In doing so,
the amplitudes of all the SWMs as well as the spin-wave spectrum can be found. Presented theory
describes spin-wave branches of the dispersion spectrum for any value of n >  (not only for n = ),
as well as it covers the whole region of the wave vectors kζ (not only the regions of kζ =  and
kζ >  cm−, as usual). Moreover, the competing effects of the exchange and dipolar interactions
are interpreted correctly in the frames of this method.

It should be emphasized that the system of homogeneous equations for the SWM amplitudes
(Equation .) was derived with simultaneous regard for both dipole and exchange interactions,
as well as electromagnetic and exchange boundary conditions. This system rigorously describes the
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wave process in the magnetically biased magnetic/nonmagnetic multilayers and it may be used for
the precise analysis of the dipole-exchange spin-wave spectrum as well as the spectrum of purely
dipolar spin waves (in the limit A = ). Besides, the exact dispersion relation obtained in the frames
of SWM approach may be written in different forms, namely, in the form of an infinite series and in
the form of the infinite determinant. The dispersion relation in the form of the infinite series is most
convenient in the direct numerical calculations especially in some particular cases, while the form of
an infinite determinant is very useful for the deriving the approximate solution in the frames of the
perturbation theory [,,,].

As wasmentioned above, themain feature of the SWMapproach is the universality of the obtained
results. We can consider any type of ferromagnetic structure with any number of layers (finite or
infinite) and using Equation . we immediately arrive to the exact solution of the considered
problem, which is convenient for further numerical calculations.

It is worth noting that the dispersion relation in the form of infinite determinant (Equation .)
suits almost for any possible case because the form of eigen-functions Φp

ni(ξ) is not determined here.
Thus according to the particular boundary conditions, the appropriate functions Φp

ni(ξ) can be sub-
stituted in the dipole matrix elements (P pr

nm(kζ))
i j

and (Q pr
nm(kζ))

i j
, and the particular dispersion

relation will be obtained from this general form (Equation .). Moreover, very small changes are
needed to transform this equation to the case of another geometry of the problem. For example, in
the case of an infinite array of cylindrical wires, only the components of the tensorial Green function
should be replaced by the corresponding ones from the solution ofMaxwell equations for a single fer-
romagnetic wire and the expansion of variablemagnetization should be taken by the Bessel functions
rather than cosines functions.

Finally, we note that the general results of the present part can be used as the starting point inmore
sophisticated analyses.

34.2.5 Approximate Dispersion Relation

To obtain the approximate solution in explicit form, let us slightly reorganize matrix Equation .
and bring it to the proper form for applying perturbation theory method. We consider the diagonal
part of the infinite determinant as an unperturbed operator and the non diagonal part as an operator
of perturbation. After simple transformations, we arrive to the system (Equation .) in matrix
form:

Hi i
nn mi

n + ∑
n′≠n

Wi i
nn′mn′ +∑

j≠i
∑
m

Yi j
nm m j

m =  (.)

where

Hi i
nn = Idet Di i

nn , Wi i
nn′ = (Di i

nn)
−

Ri i
nn′ det Di i

nn , Yi j
nm = (Di i

nn)
−

Li j
nm det Di i

nn (.)

and (Di i
nn)
−

is defined through the relation (Di i
nn)
−

Di i
nn = I, I is a unitmatrix.Thephysical interpre-

tation of the operators Wi i
nn′ and Yi j

nm is as follows. Operator Wi i
nn′ describes the interaction between

SWMs of different types (n ≠ n′) inside one layer i, and is caused by the nondiagonal part of the
magnetic dipole–dipole interaction (Rpp

nn′)
i i
, while Yi j

nm includes the long-range dipole interaction
between SWMs taken in different films of multilayered structure, which is due to the influence of
variable magnetic field from all ferromagnetic layers in stack with i ≠ j and is determined by matrix
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elements (Lpr
nm)

i j
.We emphasize that the exchange interaction, the diagonal part of the dipole–dipole

interaction, and the diagonal part of volume anisotropy are described by the unperturbed diagonal
operator Hi i

nn .
Now, we may represent the infinite system . in the form of the matrix equation:

Lm =  (.)

where
operator L is an infinite block-matrix whose elements are square matrices (Equation .)
m is an infinite column vector consisting of SWM vector amplitudes of all layers.

The dispersion equation for dipole-exchange SW eigen-waves in this notation may be expressed as

detL =  (.)

In general case of an arbitrary surface anisotropy and arbitrary direction of magnetization, the prob-
lem of evaluation of the dispersion relation may be reduced to the problem of diagonalization of the
block matrix L and may be solved approximately using classical perturbation theory [].

We represent the block matrix L as a sum of two matrices consisted of its diagonal Hi i
nn and non

diagonal Wi i
nn′ , Yi j

nm parts. In the zero-order approximation, the dispersion relation of the entire
multilayered system consists of the independent sets of the dispersion curves typical for separate
(uncoupled) layers of the system. Thus, no interaction (i.e., no repulsion) between the dispersion
branches is taken into account here. As it was shown in Ref. [], the matrix equation for variable
magnetization (Equation .) in zero-order approximation gives following dispersion equation:

(ωni(kς)
ωM

(T yx
nn )

i i + Di (Q yx
nn)

i i)


= (Fx
ni + sin θ i + Ai (Px x

nn )
i i + (N a

x x)
i)

(F y
ni + Ei (P y y

nn )
i i + (N a

y y)
i) − (Ci (P yx

nn )
i i + (N a

yx)
i (T yx

nn )
i i)


(.)

This dispersion relation for each layer i describes the propagating spin wave with number n in the
assumption that there is no crossing points between any modes from any two or more films. Since
this condition is fulfilled, the dispersion relation (Equation .) remains true in the first-order
approximation too.

In the case when both components of the magnetization vector m (mx and my) are pinned uni-
formly ηx

, = ηy
, = η,, but still differently on different sides of the films (ηp

 ≠ ηp
), the dispersion

Equation . can be rewritten in the form of a well-known dispersion equation for the spin wave
in the unlimited ferromagnetic media (see Ref. []):

ω
ni(kς) = ωMi Fni [ωMi Fni + ωMi ((Fnn)i + (Fa

nn)i)] (.)

where

(Fnn)i = sin θ i − (Pnn)i i sin θ i cos φ i + (Pnn)i i [cos θ i +
ωMi

Fni
( − (Pnn)i i) sin φ i sin θ i]

(.)

(Fa
nn)i = (N a

x x)i + (N a
y y)i + ωMi

Fni
[(N a

x x)i(N a
y y)i + (N a

y y)i sin θ i − ((N a
x y)i)]

+ ωMi (Pnn)i i

Fni
{(N a

y y)i [cos φ i − sin θ i ( + cos φ i)]

+ (N a
x x)i sin φ i − (N a

x y)i cos θ i sin φ i} (.)
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In the isotropic limit Fa
nn = , Equation . reduces to the approximate dispersion equation for

spin waves in isotropic ferromagnetic film.
This equation can be easily used for practical calculations of dispersion characteristics of either

dipole-exchange spin waves or magnetostatic waves (Ai = ) in ferromagnetic films. In particular,
numerical calculations show that in the long-wave part of the spectrum (kζL ≪ ) in the case of
unpinned surface spins and without anisotropy, Equation . gives the results which coincide very
accurately with the results obtained from the non-exchange dispersion equations (see Ref. []).

In practice, it is interesting to have the approximate dispersion equations in the explicit form
for the particular cases of definite orientations of crystallographic axes and bias magnetic field in
the anisotropic films. Several useful cases were derived in Ref. []. More detailed discussion and
approximate dispersion relations for other particular cases can be found in Refs. [,,].

As it was mentioned above, in the zero-order approximation, we take into account the whole diag-
onal part of the dipole-exchange operator, and thus in the first-order approximation the obtained
relation remains in force. But, the analysis shows that the dispersion curves corresponding to the dif-
ferent numbers n ≠ m and different layers i ≠ j of the system may cross each other, i.e., there may be
frequency degeneracy in some points of the spin-wave spectrum (detDi i

nn = detD j j
mm). If such cross-

ing points arise, then the situation yields a secular dispersion equation, which will lift this degeneracy
by taking into account the dipole–dipole hybridization of the “interacting” dispersion branches.

In multilayered structure, there are two types of the dipole–dipole “interaction”: the hybridization
between SWMs inside one ferromagnetic film and the interlayer dipole interaction, i.e., hybridiza-
tion between the SWMs from different films. Thus, we have two possible cases, which are illustrated
qualitatively in Figure .. First, when the dispersion branches inside one ferromagnetic film cross
each other (Figure .a). Second, when the dispersion branches of different films have the common
energies (Figure .b). In these cases, we should use different secular equations to lift the degeneracy.
The question, what case should be chosen in the problem under consideration, should be cleared up
in each particular case by the zero-order approximation dispersion. For the first case (Figure .a),
the secular equation is

det [ Di i
nn Ri i

nn′

Ri i
n′n Di i

n′n′
] =  (.)

n = 4

n = 4

n = 3
n = 3n = 2

n = 2

n = 1

n = 1

n = 0
m = 0

m = 1

kζ kζ(a) (b)

m = 1

m = 2ω ω

FIGURE . Two possibilities of dipole–dipole interaction between the dispersion branches of two ferromagnetic
films: (a) hybridization of SWMs for one and the same film and (b) hybridization between SWMs for different films.
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And the form of the secular equation for the second case (Figure .b) has the form:

det
⎡⎢⎢⎢⎢⎣

Di i
nn Li j

nm

L ji
mn D j j

mm

⎤⎥⎥⎥⎥⎦
=  (.)

Obviously, the difference between these two cases lies in the form of the nondiagonal matrix
elements,whichshouldbeusedtoaccountforthecorrespondingdipole–dipoleinteraction.Hybridiza-
tion of the crossing dispersion branches leads to the formation of dipole “gaps” in the dipole-exchange
spin-wave spectrum. The decrease of the spin-wave group velocity in the spectral regions of hybridi-
zation causes an increase in the spatial attenuation of propagating spin waves in these regions. In
experiments, this effectmanifests itself in the formof oscillations in thepropagation loss characteristic
and can be observed in perpendicularly as well as tangentially magnetized structures [–].

For the particular cases of perpendicularly and tangentially magnetized ferromagnetic films with
pinned and unpinned surface spins and for mixed exchange boundary conditions, the explicit form
of the zero-order dispersion relations and the form of secular equations can be found in Refs. [,
–].

Since the dispersion Equations . through . remain in force in the first-order approxima-
tion of the perturbation theory, the first nontrivial correction to the dispersion law in non-generate
case appears only in the second-order approximation of the perturbation theory.

The detailed discussion of the frames of applicability of the first-order approximation and the
higher-order terms of the dispersion relation can be found in Ref. [].

34.3 Periodic Structures as Metamaterials: Band Theory
of Infinite Film Stack

In previous sections, we consider the multilayered structure with arbitrary parameters, and derive
exact and approximate dispersion relation by means of SWM technique and perturbation theory
approach. Let us now apply the same methods to the array of identical ferromagnetic films sepa-
rated by equal nonmagnetic layers. Such periodic multilayered systems can be called metamaterials,
because of their especial behavior, different from multilayered structures with arbitrary parameters.
As we know from quantum theory of solid state, the periodic structure shows the unique propagation
behavior for waves and excitations in it.

Rapid progress in such techniques as molecular beam epitaxy or metal-organic chemical vapor
deposition enables to grow the systems with predetermined film thicknesses and with sharp inter-
faces. Such systems seem to provide a new type of material, which does not exist naturally. Accord-
ingly, it is now possible to investigate the properties of very accurately defined stacks of alternating
magnetic and nonmagnetic thin films. Spin waves of magnetic multilayers have been the first gen-
uinely collective effect studied in these new materials []. Ferromagnetic films in such structures
are always coupled via their long-range magnetostatic dipolar fields, thus forming characteristic new
modes of the stack—collective SWMs. These modes arise in a range of wavevectors experimentally
accessible by BLS techniques.

As in any periodic structure, the collective modes in such magnetic metamaterials are character-
ized by a periodic dispersion curve comprised of Brillouin zones, in case the spin waves propagate in
the direction of periodicity (perpendicular to the film surfaces). Stop and allowed bands appear in the
spectra of spin waves propagating in the direction of periodicity due to the reflection near boundaries
of the Brillouin zone. In the case when the excitations propagate in the film plane (i.e., in the direc-
tion perpendicular to the direction of periodicity), the effect of the formation of the collective modes
manifests itself through splitting of the initial discrete dispersion spectra into the set of bands. Both
of these situations can be described in the frames of SWM approach.
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Let us build a band theory of the magnetic metamaterial by analogy with electron band structure
in solid states. For the treatment of an infinite stack of periodic multilayers, we introduce Bloch’s
theorem to describe the resulting band structure of the spin-wave energies. A well-known example
of excitations in a periodic system is the allowed energy states of a D Kronig–Penney model. The
resulting collective excitations are Bloch wave eigen states and are the excitations in the individual
wells modulated by a function that has the periodicity of the lattice. The Bloch wave vector is pro-
portional to the inverse of a wavelength that specifies the relative phase between the standing-wave
functions in neighboring potential wells. The case of an infinite periodic structure of identical ferro-
magnetic layers separated by nonmagnetic spacer will then correspond to the analogue case of the
approximate electronic band theory named tight binding model [].

The SWM formalism can be easily extended on the spin-wave band theory of an infinite multilay-
ered structure. As it was mentioned above, the same formalism can be applied to the cases of parallel
and perpendicular propagation of the resulting excitations (spin waves) relative to the direction of
periodicity in such structure. We consider here the case of the in-plane propagation of the resulting
excitations in the infinite stack of identical ferromagnetic films of thickness L separated by non-
magnetic layers of thickness d Figure .. To describe the variable magnetization in ξ-direction the
Bloch theorem should be applied []. In general form variablemagnetization of the whole structure
is given by a Bloch-type function:

mstack(r, t) = μ(r, t)e jQξ (.)

where the Bloch wave vector −π/T ≤ Q < π/T and μ(r, t) necessarily should be a periodic function:

μ(ξ, ρ, ζ, t) = μ(ξ + nT , ρ, ζ, t) (.)

Evidently, μ(r, t) =  in all nonmagnetic regions of the stack.
Here we shall consider the case where the magnetostatic coupling between different layers is

weak compared to the dipolar interactions within each layer. In a perturbational approach we
then may apply a tight binding approximation (in analogy with the tight binding approximation in
electron-band theory or in the theory of Frenkel exitons). Expanding the periodic function μ(r, t)
in the series by the initial single-film eigenmodes and inserting the whole solution mstack(r, t) into
Equation . we can obtain the expanding coefficients:

μ(ξ, ρ, ζ, t) =
+∞

∑
j=−∞

e− jQ(ξ−ξ j)m(ξ − ξ j , ρ, ζ, t) (.)

It should be noted that the periodic part in Equation . μ(r, t) in itself is not a solution of the
eigenmode problem (Equation .) but the whole function mstack(r, t)) with μ(r, t) in the form
of Equation . already satisfies the boundary problem (Equation .).

It is clear that now mstack(r, t) will have the following form:

mstack(r, t) =
+∞

∑
j=−∞

e jQξ j m(ξ − ξ j , ρ, ζ, t) (.)

Thus, the resulting collective modes mstack(r,t) are the modes of the single films modulated by a
function that has the periodicity of multilayered structure.

The single layer magnetization m(r, t) now corresponds to the lattice periodic part μ(r, t) of the
Bloch function. Therefore m(kζ , ξ− ξ j) is identical for all layers j. The coefficients mp

in of the expan-
sion in terms of SWMs do not depend on the layer number j, in contrast to the above case of a finite
multilayer treated by Equation ..
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In the case of the electron band theory the condition of applicability of the tight binding approxi-
mation (i.e., when we take only one term in the sum over all states for each single atom) includes the
condition of small overlapping of the electron wave functions from different atoms (quantum wells).
In the case under consideration functions m(r, t) represent the eigen modes of dynamic magneti-
zation in different layers of the structure. Thus here the tight binding approximation is fairy good,
because the dynamicmagnetizations m(r, t) from different layers cannot directly overlap each other,
they can interact only through the dynamic dipole fields. Thus the condition of applicability of tight
binding approximation always works. Moreover for the highest modes this condition is satisfying
better, since for these modes the magnetic fields are confined inside the ferromagnetic layers, thus
the SWMs from different layers cannot interact even through the stray fields.

Moreover, the other condition of applicability of the tight binding approximation is that the
allowed zones should be much less than the energy interval between two neighboring spectral lines.
This condition in the case of thin films is satisfied for all modes, but better for higher modes due to
the exchange interaction, since the spectral lines at higher frequencies are rare and the splitting for
higher modes is much less (due to less interaction between modes at higher frequencies).

In a manner analogous to the above cases we now obtain the algebraic equations for spin-wave
amplitudes mp

in by setting the number i of the arbitrary chosen reference layer to zero:

⎡⎢⎢⎢⎢⎢⎣
Di i

nnmi
n + ∑

j≠i
n=m

Li j
nmm j

m

⎤⎥⎥⎥⎥⎥⎦
+ ∑

n′≠n
n′=m′

⎡⎢⎢⎢⎢⎣
Ri i

nn′m
i
n′ +∑

j≠i
Li j

nm′m
j
m′

⎤⎥⎥⎥⎥⎦
=  (.)

The exact solution of the infinite system (Equation .) can be obtained following the same lines
as for multilayered structures before.

Obviously due to the periodicity of the structure the dispersion in each block of the block diago-
nal matrix L will have the same form. Thus in our approximation we can take one block to describe
the dispersive characteristics of the whole system. Applying the condition of vanishing determi-
nant of this system we arrive to the exact dispersion equation for an infinite stack of identical
ferromagnetic films.

As we see in the case of an infinite layers stack, the magnetic field inside the film with num-
ber j is created by a series of N =∞ ferromagnetic layers arranged with the period T = L + d. In
this case the contribution from variable magnetic fields of all layers of the system can be taken into
account via summation over corresponding SWMs taken with the corresponding phase shift e jQ( jT)

in corresponding layers of the system. According to the perturbation theory method in the diagonal
approximation the dispersion equation one can easily obtain the dispersion relation of an infinite
stack in explicit form.

For a simple case of a perpendicularly magnetized periodic multilayered structure with totally
unpinned surface spins on the surface of ferromagnetic films (Ament–Rado exchange boundary con-
dition Equation .) in the zero-order approximation the dispersion equation have the following
form []:

ω
n(kζ) = Ωnk (Ωnk + ωMPi i

nn) −ΩnkωM


 + δn

k
ζ ⋅ e−kζ T

(k
ζ + (kni))


 − (−)n ch(kζL)

kζL

×
(cos(QT) − e−kζ T)

 − e−kζ T cos(QT) + e−kζ T (.)

where Ωnk = ωMF p
ni and F p

ni is the eigen value of the considered boundary problem (Equations .
and .).
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This form of dispersion equation is very suitable for a discussion of the physically relevant effects.
It consists of two terms. The first represents the well-known approximate dispersion relation for
one ferromagnetic film []. This term includes the contribution of the exchange interaction and
of Zeeman gap due to the applied magnetic field, the contribution of the magnetostatic fields to the
spin-wave energies in a bulk ferromagnetic medium, and also it describes the interaction of different
SWMs via the dipole fields surrounding each film and takes into account the finite thickness L of
the film. The second term represents the dipole coupling between spin waves in the different films of
the stack.

Sincewe consider the systemof all identical ferromagnetic layers with equal spacers between them,
then the new collective modes arises and the dispersion curves of spin-wave spectrum split into
bands, i.e., allowed zones appear for each eigen mode. Substituting Q =  and Q = π/T one can
calculate for each SWM the top and the bottom of the corresponding allowed zone of the spectrum
ωn(kς).

For a multilayer consisting of N ferromagnetic films, each branch n of the corresponding single-
film spectrum splits into N branches due to the formation of the coupled modes of the stack. In the
infinite periodic structure the spectrum represents the series of allowed zones. The splitting of the
branches, i.e., the band width, decreases with increase of the total wave vector K = k

ζ + k
n because

for short wave-length of the spin wave the nonlocal nature of the dipolar interaction has an averaging
effect, thus reducing the influence of the magnetostatic contribution, and the exchange interaction
within each layer becomes dominant. Moreover, the frequency width of the allowed zone results in
the splitting of the dispersion modes of an individual film due to dipolar coupling, and it decreases
with increasing nonmagnetic spacers because of a corresponding decrease in the interlayer coupling.
This evolution is qualitatively illustrated in Figure .. Here the transition from a single film to a
double layer and to an infinite stack is shown.

The above discussion in this chapter concerns the case when the direction of the periodicity of the
structure and the direction of the spin-wave propagation are perpendicular to each other. In order
to eliminate misunderstanding it is worth mentioning that in this special case, although applying
Bloch’s theorem, we never obtain any Brillouin zones in the dispersion spectrumof spinwaves and no

N = 1

Single layer Double layer Multilayer

N = 2

M, L
M1 = M2

Mi = Mj

N ∞

Li = Lj
di = dj

Collective
modesCoupled

modes

L1 = L2
L>> d

ω

ωH ωH ωH

ω
ω

kζkζkζ

FIGURE . Qualitative illustration of the formation of the dipole-exchange spectrum starting from single-film
spectrum through double-layer coupled modes to the band structure of the collective modes in the infinite multilayer
in the presence of the interlayer dipole–dipole interaction.
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effects like full reflection can appear in such configuration. Here the periodicity of the structure can
produce only the simplest spectrum transformations, such as splitting of initial spin-wave branches
into continuous bands of a finite width. There are no propagating spin waves in the direction of
periodicity thus the formalism of Brillouin diagrams and the conception of forbidden and allowed
zones is meaningless in this case. We should underline that in the problem under consideration only
standing spin waves can arise in the direction of the periodicity.

The opposite situation occurs if we consider the propagation of the spin waves in the direction
of the structure periodicity. Now applying Bloch’s theorem and deriving the dispersion relation
we obtain fundamentally new spin-wave spectrum, where each initial mode consists of a series of
allowed and forbidden bands which are comprised in a first Brillouin zone. These SWMs of cou-
pled multilayers cannot be explained in terms of modified single film properties, because these are
new states—collective modes. But, this is a separate complicated problem, which is out of present
consideration. However, we can point out some articles and books dealing with this question.

The detailed discussion of a vast amount of periodic structures and the wave propagation in them
can be found in a review paper by Elachi []. Author gives a detailed analysis of a general solution
for the wave equation in a symmetry periodic medium in both the Floquet and the coupled waves
approach.

Another work [] is concerned with the periodic multilayered magnetic structure, consisting of
altering ferromagnetic layers of same thickness but different magnetization. The main feature of the
dispersion plots in this work is the presence of the stop band caused by the periodicity of the structure
and reflection of the SWs at the boundaries. It is to be emphasized that unlike the photonic crystal
bands the magnonic bands can be tuned by an external magnetic field.

Finally, it should be noted that the case of periodic multilayered structures is mostly exotic and
technologically difficult for implementation. But, using this simple example, we can demonstrate
the main features of the whole variety of periodic structures and develop a common approach to a
theoretical investigation of such structures. From the aspect of applicability, the periodic planar and
volume structures seemed to be more interesting, because propagating spin waves are easily excited
in such structures and their band structure can be investigated experimentally.

Recently, several papers reported about highly ordered D, D, three-dimensional (D) magnetic
periodic structures. Let us mentioned here some of the traditional periodic configurations. Among
planar D structures, we select the array of rectangular stripes. A lot of work was devoted to such
patterned structures made of different magnetic materials [,,,–]. Moreover, arrays of
double-layer [,] and tri-layered wires [] were investigated both experimentally and theo-
retically. Two dimensional-patterned structures are represented by the arrays of square [,,]
and circular dots [,,,], as well as by the nets of holes (antidot arrays) [], arrays of elliptical
permalloy dots [],NiFe/Cu/NiFe tri-layered circular dots [], permalloy square ring arrays [],
array of NiFe rectangular prisms [], etc. The theory of band structure in such systems was
elaborated in Refs. [,].

Among the D periodic composites, we should note the arrays of magnetic cylindrical nanowires
(rods) embedded in magnetic or nonmagnetic substrate. The theory of the collective spin waves in
such structures [,,,] and several experimental papers [–,,–] were published in
the past  years.The possibility to develop D periodic magnetic structures (magnonic crystals) was
discussed in Refs. [,].

It is appropriate to mention here some interesting, even exotic, samples of periodicity which
are represented in literature. For example, authors [] consider the magnetic multilayer system
in which thin ferromagnetic films are separated by nonmagnetic spacers following a Fibonacci
sequence. The obtained results show the splitting of the frequency bands in the dipole-exchange
spin-wave spectrum and the fractal aspect of the spectrum induced by the non-periodic aspect of
the structure.Thus, we see that different periodic structures attract a great interest in various fields of
application.
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34.4 Dispersion Properties of Spin Waves in Thin Films
and Multilayered Structures

The discussion is now given for several general principles of the spin-wave spectrum formation in
different magnetic metamaterials. Generally, a large variety of magnetic (periodic) structures can be
now fabricated due to the considerable progress in the growth technology. Here, we suggest some
simple classification of various types of magnetic periodic structures:

. Bulk structures
a. Multilayers

i. Infinite
ii. Semi-infinite
iii. Finite

b. D arrays of magnetic nanowires
i. Circular cross section
ii. Rectangular cross section
iii. Other geometry

c. D arrays of magnetic elements (superlattices)

. Planar patterned structures
a. Arrays of identical magnetic stripes
b. D, D arrays of planar magnetic elements

i. Circular dots (elliptical)
ii. Rectangular dots
iii. Other geometry

c. Magnetic quantum nets or D, D arrays of antidotes (holes)

Another classification can be given according to the peculiarities of the spectrum formation. We can
divide allmagnetic periodic structures into two groups. “Thefirst group” in this classification includes
the structures made of one magnetic material with nonmagnetic spacer between elements. These
structures may have different geometry, for example, multilayers, arrays of wires or dots, D and D-
arrays of different elements. Their common feature is that the magnetic elements are surrounded by
nonmagneticmedia.The properties of such structures can be varied through altering the geometry of
the structure as well as the direction and value of the bias magnetic field. “The second group” consists
of two or more magnetic materials periodically alternated in space. Again, the form of alternating
elements can be quite different and sometimes exotic. The properties of such compositions may be
considerably different from those of initial bulk materials formed the structure.

The proposed classification is conditional because even the nonmagnetic spacer in the structures
of the first type can govern the magnetic properties of metamaterial (as in Gd/Y superlattices the
antiferromagnetic coupling exist between ferromagnetic films due to the presence of Y as nonmag-
netic spacer) or can improve the interlayer interaction (as in the case of metallic spacer: the exchange
interaction would be much stronger and Hoffmann exchange boundary conditions should be used
even when spacer is relatively thick). On the other hand, in the magnetic/magnetic structures, some
spacer between magnetic layers always exists due to the technology of fabrication or due to the
crystallographic and physical properties of the surfaces in contact. Moreover, some structures may
contain as a spacer different passive and active materials: ferroelectrics, semiconductors, nonlinear,
and nonreciprocal media. But such special cases are beyond the scope of this chapter.
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One more interesting class of the artificial materials, which can be called the second group, is
the magnetic quantum nets. One of the examples of such type of metamaterial is the magnetic film
with circular (or other) holes arranged in D array (array of antidots) []. In some cases, such net
materials can contain the wires or bubbles of nonmagnetic material incorporated into the bulk mag-
netic (D nets). Obviously, if the inclusions are made of another magnetic material, we arrive to the
particular case of the second group in our classification. But even when the holes are filled by the
nonmagnetic material, we cannot treat such systems by the theoretical approach of the first group. It
should be noted that such systems are very similar to sonic crystals [] or photonic crystals [],
with spin waves instead of sound or electromagnetic (light) waves. Here, the spin waves propagate in
periodically inhomogeneous (or perturbed) medium.

So our classification is basedmostly on the difference of interface conditions and dominated inter-
actions in each type of the structure. For example, when we consider the structures of the first group
(magnetic/nonmagnetic structures) in most cases of interest, the interlayer exchange interaction can
be neglected due to the relatively large distances between magnetic elements (i.e., d ≫ Rexchange).
Thus, the Rado–Weertman exchange boundary conditions can be applied at the interfaces of the
structure. Vice versa, in the case of magnetic/magnetic structures, the interlayer exchange interac-
tion dominates and one should use the full Hoffmann exchange boundary conditions for calculation
of the dispersion spectrum in such systems.

Fortunately, the same separation we find in the classification of areas of application for such arti-
ficial magnetic materials. Magnetic/nonmagnetic structures are mainly applied in signal processing
(for both optic and microwave frequencies), while magnetic/magnetic structures are used in data
storage and read/write magnetic devices (due to the effect of GMR).

In further analysis, we will concentrate our attention on the multilayered and later D-patterned
structures (arrays of magnetic stripes). The spectrum of the magnetic excitations in such artificial
structures presents many unique features, which are absent in bulk and single-film systems. But to
describe them, one should first discuss the basic features of the SWMs in a singlemagnetic film.Thus,
it will be helpful to recall briefly some certain principles of the formation of single-film spin-wave
spectrum and then to draw an analogy between similar cases for the compound systems.

34.4.1 Single-Film Spectrum

In Figure ., themost important features of single-film spectrum formation are illustrated [,].
It should be noted that it is impossible to draw a general system of dispersion curves for dipole-
exchange spin waves in anisotropic ferromagnetic film of arbitrary thickness and for arbitrary
direction of external magnetic field (as it can be done in non-exchange case Figure .a), but we
can point out some basic tendencies of the dispersion modifications, which allow us to predict the
evolution of the whole spectrum in most special cases.

34.4.1.1 Perpendicular Magnetization

Let us start from the simplest case of perpendicularly magnetized ferromagnetic film (Figure .).
For small kζ , the dependence ω(kζ) is principally due to dipole effects; for big kζ the exchange energy
dominates the dipole energy. For rather large kζ , a quadratic kζ dependence (usual for exchange SW)
in dispersion law takes over. The main branch has the biggest initial slope, i.e., the main SWM has
the biggest group velocity. In the non-exchange limit (A = ), the spectrum consists of the disper-
sion branches beginning at ω = ωH (Figure .a). When the exchange interaction is incorporated,
it shifts up the higher branches with n > . The value of the frequency shift increases with increasing
eigen-wave number and with decreasing film thickness L. This frequency shift may cause the cross-
ing of the dispersion curves corresponding to the higher spin waves with the dispersion curve of
the main spin wave (Figure .b [ and ]). In the crossing points of the dispersion branches, the
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FIGURE . Qualitative illustration of single film spectra: (a) spin-wave spectrum in non-exchange limit and
(b) formation of the dipole-exchange spin-wave spectrum for three different film thickness L > L ≫ L.

dipole–dipole brunch repulsion takes place and dipole “gaps” in the spin-wave spectrum are formed
(Figure .b).

The dipole–dipole repulsion causes the decrease of the spin-wave group velocity in the regions of
hybridization, which leads to an increase in the spatial attenuation of propagating spin wave in these
regions. In experiments, this effect manifests itself in the form of oscillations in the propagation loss
characteristic of the experimental device (delay line) [], and can be observed in perpendicularly
as well as tangentially magnetized ferromagnetic film.

Analysis shows that the values of the dipole gaps depend heavily on the film thickness and sur-
face spin pinning conditions (surface anisotropy). This phenomenon was exhaustively investigated
in Ref. [].

The decreasing of the film thickness L leads to the increasing of the frequency distances between
the dispersion branches:

((ωn+ − ωn) ∼
A

μM
s
(n + ) (π

L
)

)

and at the same time to the decreasing of the slopes of the dispersion curves. So, at some L even the
lowest brunch has such a low slope that it does not give any crossings in the dipole-exchange area of
the spectrum (Figure .b). This case is usually realized in multilayered structures.
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FIGURE . Transformation of the dipole-exchange spin-wave spectrum for different directions of static magne-
tization: (a) transformation of spectrum for tangentially magnetized ferromagnetic film with pinned surface spins for
various azimuth angles; (b) dispersion curves for the lowest SWM(n = ) propagating in the filmwith totally unpinned
surface spins for various polar angles; and (c) sketch of the dipole-exchange dispersion surfaces for a tangentially
magnetized film.

34.4.1.2 In-Plane Magnetization

For the case of the in-planemagnetization, calculations show that the form of the SWMs symmetry is
distorted when the direction of spin-wave propagation deviates from the direction of the static field,
so we can speak only about quasi-symmetric and quasi-antisymmetric spin waves (opposite to the
previous case of the perpendicular magnetization).Themost pronounced distortion from the “pure”
type of symmetry is exhibited by transverse spin waves, the lowest type of which has a surface-like
character of mk(ξ) (see Figure .a). This “mixed” symmetry is a distinguishing characteristic of
spin waves in a tangentially magnetized film. All the waves with mixed form of symmetry demon-
strate field-displacement nonreciprocity, i.e., their distributions mk(ξ) are reversed from one film
surface to another with the change of the bias field direction to the opposite one.

Longitudinal spin waves. Thedipole-exchange spectrumof longitudinal spinwaves (θ =○, ϕ =○)
is always described by noncrossing dispersion branches. A distinctive feature of the dipole-exchange
spectrum is the presence of two zones corresponding to spin waves with negative and positive dis-
persion. With decreasing film thickness L the minimum value of the spin-wave eigen-frequency at
the sag point increases and at some L can completely disappear.

Transverse spin waves. In the Voigt configuration, i.e., when M perpendicular to kζ (θ =○,
φ =○), the dispersion branches in the dipole-exchange spectrum also may cross each other. The
brunch repulsions now take place between all modes because of their mixed type of the symmetry.
But in thin films, due to the large frequency shift, the repulsions again may not exist at all.
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When φ increases the uniformmode transforms for some range of propagation directions into DE
surface mode, the amplitude of which varies exponentially across the film.This is accompanied by an
increasing in the mode frequency. Thus, DE-modes at some angles φ begins to cross the bulk-type
modes (Figure .a) and hybridized with them.

It should be stressed that in general case the behavior of the dispersion branches due to the change
of external magnetic field direction is rather complicated and depends strongly on the particular
choice of film parameters. So, we shall mention here only some features. If we consider the rotation
of the system when θ =○, φ is any (Figure .c), the in-plane rotation of the external field causes
the transformation of spin-wave spectrum with the negative slope to the positive one.

Another effect is produced by the rotation in vertical plane (θ is changed and φ = constant)—
the origins of the dispersion branches move along the frequency axis owing to the variation of the
demagnetization factors (see Figure .b). So, now as we consider the rotation in two planes sepa-
rately, it is possible to imagine qualitatively the reconstruction of the spectrum due to the arbitrary
variation of bias field. But these considerations are too general and it is necessary to provide direct
calculations to detect all details of the spectrum in each separate case.

34.4.1.3 Influence of the Magnetocrystalline Anisotropy

The experiments [] showed that the form of dipole-exchange spin-wave spectrum and particularly
the width of dipole “gaps” depends significantly on the orientation of the crystallographic axis of the
filmwith respect to the orientation of the bias magnetic field. Later, the theoretical treatments [,]
revealed that the inclusion of the magnetic anisotropy does not change the number of modes in
the dipole-exchange spin-wave spectrum but leads to the uniform frequency shift of the dispersion
branches and to the modification of the group velocity of the dipole-exchange spin waves, especially
of the lowest branches. Spin waves with negative group velocity arise in the presence of the uniaxial
anisotropy, for example. It was shown in Ref. [] that the sign of the effect (negative or positive
slope of dispersion curves) for the volume SWMs in a tangentially magnetized ferromagnetic film is
determined by following conditions:

N a
x x − N a

y y ≠ ; N a
x y ≠  (.)

In the case when the first condition is fulfilled and the second is not, the sign of the group velocity
of these volume waves coincides with the sign of the difference N a

x x − N a
y y . When both condi-

tions are fulfilled, the anisotropy leads to the occurrence of two new families of dispersion branches
corresponding to positive and negative dispersion.

Moreover, the anisotropy even in a perpendicularly magnetized film can lead to the dependence
of the spin-wave eigenfrequency on the angle φ (i.e., on the direction of wave propagation in the
film plane) when the ellipticity of polarization of propagating spin waves is broken in the presence of
anisotropy. In Ref. [], one can find the result of numerical calculations of the description spectrum
for two types of magnetocrystalline anisotropy (uniaxial and cubic) and the detailed analysis is done
there for several particular cases of orientation of the external magnetic field and crystallographic
axis relative to the surface plane. In further discussion, we will omit the influence of bulk anisotropy,
but it can be easily taken it into account in the framework of the above-declared theory.

34.4.1.4 Surface Anisotropies

Another factor, which can considerably change the spin-wave spectrum, is the presence of surface
anisotropies. Surface anisotropies strongly influence the spin-wave frequencies especially for small
film thickness and for nonzero wave vectors different surface anisotropies on each side of the film
imply changes in the spin-wave frequencies upon the inversion of propagation direction.

The surface anisotropies Ks (or in otherwords spin-pinning parameters η, η) influencemostly on
the symmetry of SWMs. Different pinning parameters on the two surfaces of the film break the pure
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symmetry ofmodes even in the case of perpendicularlymagnetized film thus leading to a repulsion of
all crossing branches in the dipole-exchange spin-wave spectrum (opposite to the case when η = η
and crossing brancheswith different symmetry do not interact).The difference of pinning parameters
on two sides of the ferromagnetic film can lead to the additional nonreciprocity of spectrum in Voigt
configuration.

It should be noted that surface anisotropies may be uniaxial as well as unilateral (nonreciprocal).
More complex case when the easy plane is a conical surface with the axis parallel to interface normal
is also available.

As one can see, the single-film dipole-exchange spectrum can be rather complex and quite differ-
ent. Rich variety of the dispersion spectrum arises due to the difference in geometric and magnetic
properties of the films under consideration. Since the single-film problem is not a subject of this
book for more detailed information, we refer the reader to the classical works of following authors:
Kalinokos et al. [,–], Hillebrands [], Vayhinger andKronmuller [,], and Sparks [,],
where the peculiarities of a single-film dipole, exchange and dipole-exchange spectrum in ferromag-
netic films and single-film structures are described and numerous examples are presented. Also,
vast amount of works can be suggested on close themes [,,,], as well as many excellent
reviews [,–].

34.4.2 Magnetic/Nonmagnetic Multilayered Structures

For simplicity and clarity of further narration, we will consider themultilayers composed of very thin
magnetic films, in other words the initial layers must be thin enough to form a non-crossing dipole-
exchange spectrum (see Figure .b()). This assumption is done because the excessive complexity
of the initial spectrum will hide the substantial features of interlayer interaction under our consid-
eration. So, we will take the simplest case, which can be easily extended on more complex cases of
initial spectrum.

It has to be noted that generally the formation of the dipole-exchange spectrum in any type of
the magnetic system goes under the competition between the dipole–dipole interaction, the inho-
mogeneous exchange interaction, and the influence of magnetocrystalline and surface anisotropy.
To elucidate the role of these forces, we consider them acting independently on the initial spectrum
and show this process gradually.

The sketches in Figure . qualitatively illustrate the successive transformation of the spin-
wave spectrum of an isolated ferromagnetic film (Figure .a) through the double-layer system
(Figure .b through d) to an infinite multilayered structure (Figure .c through e). All the
spectra are given for the case of out-of-plane magnetization and without including the influence of
magnetocrystalline anisotropy. (As it was mentioned above, we take the spectrumwith non-crossing
modes, so there is no dipole repulsion of initial branches.)

Figure .a through c show the influence of the interlayer dipole–dipole interaction on the for-
mation of the band of the collective modes, while Figure .a, d, and e series represents the effect
of the interlayer exchange interaction (here we consider ferromagnetically coupled magnetic layers
A > ). The influence of these two forces can be shown independently in the assumption that
one of them is much greater than the other, and such situations are frequently occur in practice.
Let us discuss this phenomenon in detail first considering the multilayered “magnetic/nonmagnetic
structure” (according to our classification), since in most experimentally investigated structures the
ferromagnetic films are separated by some nonmagnetic spacer.

34.4.2.1 Influence of the Dipole Interlayer Interaction

The basic features of the dipole-exchange modes in superlattices and multilayers are similar to those
of SWMs in bilayers, as it was thoroughly analyzed in Refs. [,,,,,]. Thus, let us first
consider interaction of two identical ferromagnetic films with the multimode spectrum.
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FIGURE . Qualitative picture for the dipole-exchange spin-wave spectrum formation inmultilayered structures
starting from single-film spectrum (a) through double-layer coupled modes to the band structure of the collective
modes: (b), (c) in the presence of the dipole–dipole interlayer interaction and (d), (e) exchange interlayer interaction
only.

The process of the formation of the spin-wave spectrum for the structure of two identical ferro-
magnetic films separated by a nonmagnetic spacer but coupled via their long-range magnetostatic
dipole fields (Figure .b) can be qualitatively described as follows.The precessingmagnetic dipoles
generate a macroscopic magnetic field with the frequency and wavevector of the spin wave. If there
is another film at a distance d, it will couple to the field generated by the propagating mode. The
coupling modifies the spectrum of excitations, which now are collective states of both films. This
magnetostatic coupling produces two effects: a redistribution of the dynamic magnetization on each
element and a corresponding frequency shift of the dispersion curves.

If the structure has very thick spacer, we have a doubly degenerate single film spectrum
(Figure .a). While bringing films together the strong dipole interaction arises and, as a result,
the degeneracy of initial branches of identical films is lifted (Figure .b). Due to the nature of the
dipole interaction, the branch lowest in energy is always that for which the transverse moment at the
surface of the adjacent layers is ○ out of phase.Thus, two new characteristic modes appear for each
branch of spectrum—“antisymmetric mode (AS),” which has a lower frequency than initial branches
and “symmetric mode (S)” with the dispersion branch at higher frequency than that for a single film.
This statement remains true for multilayer systems also (Figure .c). Here, we use terms “symmet-
ric” and “antisymmetric” not in the sense of the symmetry of SWMs in separate films (in general
case of exchange boundary conditions and in the presence of anisotropy, there are no pure symmet-
ric and antisymmetric single-film solutions), but to outline the symmetry of the final coupledmodes,

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Spin Waves in Multilayered and Patterned Magnetic Structures 34-41

which can be really symmetric or antisymmetric due to the symmetry of the three-layer sandwich
(two identical ferromagnetic layers and nonmagnetic spacer between them, if have a luck).

As the number of magnetic films in the stack increases, the spin-wave spectrum becomes more
complicated and in general case one finds as many branches filled in between the symmetric and
antisymmetric modes as many ferromagnetic films are contained in the structure. Obviously, due
to the interlayer interaction, the dispersion relation in magnetic multilayer systems is significantly
modified from that of a single layer one. Finally, for the infinite superlattice, separate modes form a
band of bulk modes, which are collective states of the whole stack (Figure .c). The highest branch
(the top of the band) corresponds to the symmetric distribution of the variable magnetization in
adjacent layers of the structure—“uniform precession” and the lowest one (the bottom of the band)
corresponds to the antisymmetric distribution of m(ξ) in the neighboring layers.

In an infinite stack, the modes for each n form a band governed by the Bloch wave vector
Q = . . . π/T . The density of states for each band diverges at the band edges and shows the
asymmetric energy dependence over the bandwidth. For small kζ , the density of states is greatest
near the bottom of the band. For larger kζ , the density of states becomes more uniform across the
band [].

It should be noted that in the infinite multilayer structures, consisting of equal ultrathin ferro-
magnetic films separated by equal nonmagnetic spacers, the lowest manifold of energy levels, which
develops from the single-film uniformmodes, can be described by ignoring higher levels only for rel-
atively weak interlayer coupling. For strong interlayer coupling and/or for film thicknesses at which
the level separation is not great enough, one has to include the internal dynamics of the films, i.e.,
the influence of higher modes should be accounted [,,–,].

The strength of the frequency splitting of the initially degenerated modes depends on the distance
between films, on the mode number (n) and on the spin-wave wavelength (kζ). This dependence
becomes clear from the character of the dipolar interaction across the nonmagnetic layer.

The dynamic magnetization induces the stray dipole field outside the magnetic, through which
films can interact.Themain feature of this field is that it vanishes when kζ tends to zero and becomes
very weak for large kζ (kζ ≥  cm−). It means that for kζ =  the degeneracy holds on and the
origins of spin-wave dispersion branches of the layered film structure are SWR frequencies of the sep-
arate films formed structure. (This is true only if we neglect the interlayer exchange interaction, i.e.,
A = .)Thus, the dipolar collectivemodes exhibit their unique properties only for small but nonzero
wave vectors (kζLi ∼ .). For the case of large kζ , the dipole (stray) field is localized near the film
surface and, therefore, has small effect on the neighboring films. Moreover, the dynamic dipole field
for the higher modes (n > ) is also confined in the ferromagnetic film and the stray field outside it
again is very small (see Refs. [,,]). Although the dipole interaction shows themaximum repul-
sion for the lowest (dipole) modes and becomes negligible for exchange modes with large number
n, the exchange-dominated spin-wave branches are also affected by magnetostatic interlayer cou-
pling.This fact is demonstrated in Figure .b.The frequency splitting of all dipole-exchangemodes
decreaseswith increasing nonmagnetic spacer d because of a corresponding decrease in the interlayer
coupling.

In the case of transverse (kζ8Hi), in-plane wave propagation fundamental modes of initial film
have quasi-surface nature. So, it is clear that in this case the nonreciprocity of spin-wave disper-
sion characteristics with the change of the direction of the bias magnetic field will occur. Since
the strength of coupling of the initial SWMs depends on the amplitude of the field in the non-
magnetic layers, thus the strongest coupling due to dipolar interactions occurs between the surface
waves of individual magnetic films. In the infinite multilayer systems, the surface modes can form
a collective “bulk” wave, in which the envelope function over the whole stack is periodic with
a significant phase and/or amplitude shift of the magnetic moments from one layer to the other
(see Figure .a). The excitations in each magnetic film are surface modes and are localized
to one surface of the film. But, the collective modes are oscillatory and therefore form the bulk

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

34-42 Theory and Phenomena of Metamaterials

(a) (b)
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FIGURE . Transverse distribution of variable magnetization across the structure thickness. (a) Bulk collective
modes formed by single-film surface modes; (b) bulk collective modes formed by single-film uniform modes; (c) bulk
collective modes formed by single-film exchange-type modes; and (d) surface collective modes formed by single-film
surface modes.

modes of a multilayer [,]. The collective modes can exist also on semi-infinite superlattices
and finite multilayers and can be localized to the outermost layers of a structure as “surface” modes
(Figure .d).

For thick magnetic films with L > nm, more complex initial spectrum with crossing disper-
sion curves can occur. In a crossover regime, the dipolar-type modes and exchange-type modes mix
their character and the dipole interaction between them leads to a repulsion of initial branches, thus
dipole “gaps” are formed. When several films with such complex initial spectrum are brought in
contact in the crossover region, a dipole repulsion occurs between different branches of the spec-
trum. Due to the combined influence of dipolar and exchange energies, splitted dipolar-type modes,
which are now intersected and hybridized with exchange-type modes of higher values of n, show a
characteristic mode repulsions in crossing points, which lead to a pronounced frequency gap. The
calculations of such complex dipole-exchange spectrum for multilayered structures were presented
in Refs. [,,].

As it was mentioned above, the value of the dipole gaps depends heavily on the film thickness and
interface anisotropy. Although in the thick-layer regime the energetic contribution of the interface
anisotropies is very small, the gap width is determined primarily by Ks . For negative values of Ks ,
the gap width shrinks virtually to zero and then increases for even small values of Ks . For very small
magnetic layer thickness (d < 

○

A), the interface anisotropy contributions become dominant and
the dipolar-type modes exhibit a characteristic increase in frequency, also they become bulk mode-
like in each layer, with minor stray fields in the spacer layer, thus their coupling reduces and the
spectrum become degenerate. For the exchange-type modes, a weak but significant dependence of
their frequencies on the interface anisotropy constants was established [].

A detailed discussion of the influence of different parameters on the formation of the dipole-
exchange spin-wave spectrum for double-layered and multilayered structures plotted for several
types of initial single film spectrum can be found in Refs. [,,].
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34.4.2.2 Influence of the Exchange Interaction

An important issue is the possible role of interlayer exchange coupling in “magnetic/nonmagnetic”
multilayers.The influence of the exchange interaction on the processes inmultilayers was extensively
studied last decade by means of neutron reflectometry [,]. But due to the complex nature of
nonlocal exchange interaction, it is difficult to make a direct theoretical calculation of the spectrum
of infinite multilayered system. We will try here to predict some evident modifications in the dipole-
exchange spectrum, which are caused by the exchange interaction between the adjacent layers, based
on some calculations made for the double-layered systems in Refs. [,]. In other words, we will
simply interpolate these results on the infinite number of layers to build a qualitative picture of the
effect under consideration.

Exchange coupling between the films, contrary to dipolar coupling, is very sensitive to the thick-
ness of the spacer, which is almost insensitive in the discussed range of thicknesses (–Å). The
nature of the interlayer exchange interaction can be roughly described as follows. The spins at the
surface of one ferromagnetic layer, assumed to act as well-localized magnetic moments, produce a
magnetic polarization of the conduction electrons of the adjacent nonmagnetic metal. Because of
the high degree of delocalization of the conduction electrons, this polarization will propagate with
some decay over the thickness of the nonmagnetic layer and will finally interact with the spins at
the surface of neighboring ferromagnetic film. The result is an effective coupling between the spins
at the surface of two magnetic layers, which, of course, is nonlocal.

For simplicity, we will consider that indirect exchange coupling can be either ferromagnetic or
antiferromagnetic and we neglect possible RKKY-oscillations.The exchange coupling constant A is
assumed to be proportional to exp(−d/d) where d is the thickness of the nonmagnetic spacer and
d is the characteristic decay length (d = Å), i.e., the Ornstein–Zernicke form of the exchange
integral is taken here [,]. Thus for d > Å, the interlayer exchange will be negligible.

In Figure .d, we sketch the dispersion curves for the double-layer structure, in which the
exchange interlayer interactions prevail over the dipole interaction between films. One can see that
due to the exchange interaction, the initial degeneracy is lifted for all modes. But, now themode with
lower energy corresponds to the magnetization vectors resonating in-phase in different films. (We
suppose here the interlayer exchange interaction of ferromagnetic type.)This dispersion branch is the
same as the uniform mode of a single layer system. This is due to the fact that the exchange energy
does not produce any dynamic contribution to the resonance condition. For the higher mode, now
resonating out-of phase, the exchange energy introduces an extra field to the dispersion relation.
Here, as everywhere before the interlayer exchange coupling constant A >  for ferromagnetic
coupling between the adjacent layers and A <  for antiferromagnetic coupling. So, if the two fer-
romagnetic layers are parallel coupled, the exchange energy increases as the magnetization vectors
deviate from the parallel orientation and therefore the antisymmetric mode is observed at the higher
frequency than the symmetric one. But if antiferromagnetic coupling arises, the antisymmetricmode
shifts to the lower frequency region and the uniform mode again stay unchanged.

Also, we assume here that the magnetization M in both layers is still aligned parallel by strong
external field Hext and in any case out-of-phase coupling yields a modification in frequency while
the in-phase coupling does not.

It is interesting to follow the transformations of the form of the transverse dynamic magnetization
profiles, with increasing of the interlayer exchange coupling. In Figure ., we present the smooth
transition from double-layer system to the film of double thickness (for kζ =  and in the case of
unpinned). These qualitative sketches illustrate the transformation of the transverse magnetization
profiles under the influence of growing interlayer exchange constant A (which is equivalent to the
reducing of interlayer spacer, as we assume the exponential dependence of A from d). Thus, reduc-
ing the interlayer spacer, we increase the value of A till it becomes equal to the bulk exchange
constant A—this is the condition of the full contact of coupling films. For the infinite layered system
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FIGURE . Dispersion of the low-lying modes of double-layer system for two types of the interlayer exchange
interaction: ferromagnetic A >  and antiferromagnetic A < .

in the limit A = A (and d = ), the stack becomes simply equivalent to an infinite homogeneous sys-
tem.The gaps between the bands vanish andwe arrive to the spectrum of a continuous ferromagnetic
material.

As we see from Figure . for double-layer system, when kζ = , there are the symmetric-like
solutions which are almost eigenvalues for standing spin waves in a single film of thickness L and
in addition there appear the antisymmetric-like modes, which are energetically higher because the
ferromagnetic exchange coupling favors a parallel alignment of the spins at the two inner surfaces
of the magnetic layers relative to each other. Therefore, the spin-wave magnetization ∣m(k, ξ)∣ is
reduced toward these surfaces, causing an increase in bulk exchange energy. We use here the names
“symmetric-like” and “antisymmetric-like” since the symmetry is slightly broken by the presence of
the dipolar interaction. Going from infinite separation (d → ∞) to vanishing distance (d → )
between the magnetic films (which is equivalent to the increase of A), we find a smooth transition
from the standing spin wave of a single film of thickness L to that of combined film of thickness L.
Such smooth transition can be achieved only if the interlayer exchange interaction is taken into
account. In the case when we take only the dipole–dipole interlayer interaction and neglect the
exchange interaction (i.e., we use Rado–Weertman boundary conditions instead of Hoffman ones),
a transition from single-film solutions to the double-thick ones is impossible.

Simultaneously, as A increases (with decreasing d), the degeneracy of initially uncoupled modes
is lifted and the antisymmetric-likemodes shift up on the energy scale and finally converge to the fre-
quencies of the odd exchange modes of the layer of double thickness. Thus, in the full coupling limit,
i.e., when the interlayer coupling A becomes equal to that inside the films A, the bilayer becomes
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equivalent to a single homogeneous film with doubled thickness. The symmetric-like modes, on the
other hand, are insensitive to the interlayer coupling. This behavior is the consequence of the fact
that symmetric-like modes in such bilayer are continuous at the interface and the antisymmetric-
like modes have discontinuous profiles at the interface and thus are strongly affected by the interlayer
coupling. We mention here that in the absence of interlayer exchange coupling the discontinuity of
the transverse magnetization at the interface is much larger for exchange modes than for the dipolar
mode, thus the splitting of the higher modes is much larger (Figure .d).

It should be noted that the nonlocal exchange interaction integrates over the region of order of
penetration depth, and if the spin-wave wavelength in the film plane is much smaller than this region
the averaging will have an annihilating effect so for large kζ the effect of exchange coupling became
much smaller and reduces to the effect, which is equivalent to a strong surface spin pinning.

The splitting of the spin-wave branches depends on the indirect exchange coupling constant and
the penetration depth. Both of these parameters depend on the choice of the nonmagnetic metal
and on the quality of the interfaces between the magnetic and nonmagnetic layers. Generally, the
dependence of the value of splitting on both parameters shows saturation behavior. Obviously, in the
wavevector region kζ > , the dipolar fields will also have a strong influence on the final spectrum.
But the exchange interaction still plays the crucial role in the limit of d → .

Due to the interlayer exchange coupling, the dispersion relation in magnetic multilayer systems is
significantly modified from that of a single layer system. Besides the uniform mode observed (or the
acoustic mode) in a single layer system, there also exist a number of exchange coupled bulk modes in
multilayer structures each of which corresponds to a nearly uniformprecessionwithin eachmagnetic
layer but a significant phase and/or amplitude shift of the magnetic moment from one layer to the
other (see Figure .b).

For weakly coupled systems, the first-order bulk mode (n = ) is the dominant mode, while for
strongly coupled systems, the surface mode normally has the larger intensity in the FMR spectra (in
perpendicularly magnetized structures). In the infinite multilayered systems, the initially degenerate
single-filmmodes split into bands due to the interlayer exchange interaction.The bottom of the band
has the same frequency as the degenerate mode and the top shifts to the even numbered modes of
the film of sum thickness of all layers (Figure .e) for the case of ferromagnetic coupling.

For the case of “antiferromagnetic coupling” (A < ), the antiparallel alignment of the magnetic
moments at the inner surfaces of the two adjacent layers is favored. If we assume that the magneti-
zation M in layers is still aligned parallel by a strong external field, the symmetric modes are still
unchanged, but now the antisymmetric SWMs are lowered in energy (see Figure .). In the case of
Voigt configuration, the lowest branches have a surface character, different fromall othermodes.They
form damped waves in ξ direction with complex wave vector. The lowest (surface) branch appears
only for filling factor f > ..

In the structures of alternating ferromagnetic/nonmagnetic layers with antiparallel alignment of
the films magnetization, the most interesting feature in the Voigt configuration is the nonreciprocity
of the spin-wave spectrum. For the symmetrical bilayers with parallel (ferromagnetic) coupling, the
wave spectrum is reciprocal, but for similar bilayers with antiparallel alignment of the film magne-
tizations, the corresponding spin-wave spectrum is nonreciprocal. In Figure ., the two lowest
modes of an exchange-coupled bilayer are shown versus the interlayer exchange constant for two
opposite wave vectors kζ . The discontinuity of the wave spectrum at A =  results from the change
of the ground state configuration from parallel at A >  to antiparallel at A < .

This effect can be observed for DE-modes in the symmetricmultilayered structures with antiferro-
magnetic exchange coupling, as well as for all modes in the structures with asymmetric unit cell. The
nonreciprocity is a simple consequence of some asymmetry in the wave propagation. The modes
of given wavevector are localized, say, at the internal surfaces, whereas the modes with opposite
wavevectors propagate on external surfaces of the bilayer. Because of the lack of rotational symmetry,
the appropriate spin-wave spectrum is nonreciprocal even if the structure is symmetric but displays

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

34-46 Theory and Phenomena of Metamaterials

ω

–10 0 10
A12

A12 < 0

A12 > 0

kζ > 0

kζ < 0

FIGURE . Two lowest modes of an exchange-coupled bilayer vs. the interlayer exchange constant for kζ > 
(full lines) and for kζ <  (dash lines).

antiferromagnetic interlayer exchange coupling. In this case, the nonreciprocity also occurs for all
multilayers containing a finite number of complete elementary bilayers. For a structure with the last
unit incomplete, rotational symmetry is restored and the spectrum becomes reciprocal.

One can find a lot of interesting effects in multilayered structures simply changing the parameters
of this periodic spacer, for example, in quasiperiodic layered structures. Quasiperiodic systems, like
Fibonacci sequences, are intermediate between completely periodic and completely random systems.
They have a particularly interesting excitation spectrum in the form of a Cantor set [,,].

34.4.3 Magnetic/Magnetic Multilayered Structures

In the case of magnetic/magnetic structures, all above-mentioned interlayer coupling mechanisms
act in the same way but due to the difference of the initial single film spectrum there are some
pecularities.

It is useful to consider first the structure consisting of two ferromagnetic films with different
parameters. Here, two principal situations are possible. First, the initial dispersion branches of
ferromagnetic films-formed layered structure do not cross each other. For such non-symmetrical
double-layer, there is no degeneracy of initial dispersion branches (except an accidental one) and
consequently no level splitting occurs. In this case, the dipole and exchange interaction between fer-
romagnetic films causes only the variation of the shape of dispersion branches. Second, the initial
spectra of ferromagnetic films-formed layered structure cross each other. In this case, the dipole
interaction in crosspoints causes the repulsion of spin-wave dispersion branches and the exchange
interaction leads to the additional increase in frequency for repulsing branches. This repulsion leads
to the appearance of dipole “gaps” in spin-wave spectrum, similarly, as it was discussed in the single-
film case. The width of these gaps depends on the parameters of the structure and the symmetry of
interacting SWMs []. In both cases, the arisen modes are neither even nor odd. Consequently, all
modes depend on the interlayer coupling, contrary to the symmetrical bilayer when the even modes
are insensitive to the interlayer coupling.

Let us consider now “magnetic/magnetic multilayered system” consisting of the unit cells com-
posed of two magnetic films with different magnetic properties. The infinite number of such unit
cells form the periodic structure with a period T = L + L. Different magnetic parameters can be
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FIGURE . Qualitative illustration of the formation of coupled modes in five-layered structure under the
influence of the interlayer exchange interaction.

altered in such structures: saturation magnetization, g factor, interface anisotropies, etc. The SWMs
of eachmagnetic layer in this structure are coupled to those of adjacent layers both by the dipolar cou-
pling mechanism as well by interlayer exchange. The strong coupling between the different magnetic
layers via an indirect exchange mechanism leads to the splitting of the initially degenerate modes
(even at kζ = ). In the limit of an infinite number of layers, the multilayered structure gains new
properties as a metamaterial, and the eigen states form a band of the collective SWMs.The frequency
splitting of dipole-exchange modes again strongly depends on the interlayer exchange constant A,
but now with increasing interlayer exchange the modes of one magnetic material show strong mode
repulsion from the other material’s modes. This increases the frequencies of the first material much
more than the frequency splitting due to the lift of degeneracy does (see Figure .). For the lowest
modes, we have the same situation as in previous case. There are two initially degenerate dipolar-
type modes corresponding to different magnetic materials, which are splits to a band for A ≠ . But
for semi-infinite structure in Voigt configuration, we will have also one dipolar stack surface mode,
which is insensitive to exchange.

The main peculiarities of spectrum formation of two-magnetic structure can be easily observed
in Figure .. Here, we present the qualitative picture of the spectrum formation in a five-layer
stack. Two layers of ferromagnetic material M and three layers made of material with M. Two
groups of dispersion curves can be related with sublattices M and M. It is well seen that except
splitting of initial modes the dispersion curves of the material M are shifted up from the initial
state due to the interlayer exchange interaction (if the interlayer exchange interaction assumed to be
ferromagnetic-type).

It should be noted that when the structure is rotated relative to the direction of the external mag-
netic field, the origins of the dispersion branches are moving along the frequency axis owing to the
variation of the demagnetization factors. If we consider the rotation when φ = ○ and θ is any,
the origins of the dispersion branches of different films moved to each other due to the different
demagnetization fields of the films. So, there are such values of θ when the origins of the different
modes coincide.These values θ dependon the structure parameters andon the number of dispersion
branches.
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34.4.4 Formation of Band Structure in Multilayers

In the periodic structures (or in superlattice), the additional translational symmetry in the direction
of periodicity causes the significant changes in the dispersion characteristics []. New periodicity
induces the formation of Brillouin zones in energy spectrum of the magnetic structure [], stop and
allowed bands appear (see below Figure .a).

From the critical value of filling factor fc, any periodic structure transforms to a new type of the
material (metamaterial or artificial material), i.e., the composed structures exhibit new features and
formanewband structure different from that of single components.This is the common feature for all
periodic structures and superlattices [], photonic [–], phononic [], sonic [], magnonic
crystals [,,,], etc.

Such new hand structure usually is built applying the Bloch function formalism. However, the
spectrum band structure comprised of Brillouin zones appears usually for media, where the direc-
tion of periodicity coincides with the direction of eigen excitations progagation. In multilayers, such
new band structures exist in the direction perpendicular to the usual in-plane wave propagation;
therefore, the new behavior of the system should be investigated mostly through the modifications
in general dipole-exchange spin-wave spectrum, although thermal spin waves can be excited in
any direction. Here, we note that even in D-structures (like multilayers), the new band structure
undoubtedly exists in the direction of periodicity and we can calculate it using the common Bloch
function approach. The opposite situation appears in patterned structures where the direction of the
spin-wave propagation and the direction of periodicity coincide and belowwe consider the spectrum
formation in such structures.

The above given qualitative illustration of some features of the formation of the spin-wave spec-
trum elucidates the general role of interlayer exchange and dipole interactions, but it only briefly
outlines the main problems in this field. Obviously, more sophisticated analysis required in each
special case.

34.5 Planar Patterned Metamaterials

Thephysics of nano-patternedmagnetic structures has driven extensive research in recent years, both
static and dynamic behavior having been investigated. The applied aspect of these studies should not
be underestimated, either. A rapid increase of processor speeds in modern computers has led to the
necessity of writing gigabits of information in a fraction of a second. The latter means that the mag-
netic system is excited at gigahertz rates and the inevitable generation of spin waves will strongly
influence the response of magnetic recording media. With this respect, it is necessary to prevent
the mutual influence of adjacent magnetic elements through inevitable coupling via dynamic dipo-
lar magnetic fields of individual elements. The key parameter governing such coupling is the spatial
separation of elements. To minimize the overall size of the structure, it must be kept as small as
possible. On the other hand, if the elements are brought too close together, spurious “collective”
magnetostatic modes will be excited through this increased coupling. In the case of nanodots, where
the fundamental magnetic state corresponds to a vortex configuration, this leads to a considerable
mutual influence between the dots during the magnetization reversal [], as well as to a magneto-
static coupling [] between the dynamic modes of individual vortices []. Similarly, in the case of
nanowires of cylindrical cross section, both in theory [] and in experiment [], collectivemodes,
due to the interplay between individual wires, were reported.

On the other hand, the coupling between individual magnetic elements can be used to advantage
in magnonic structures on the basis of patterned YIG films [,]. In this case, it plays a positive
role and is instrumental in the formation of collective purely magnetostatic modes in such low-loss
structures. By appropriately choosing the patterning geometry, one can realize tailor-made dispersion
characteristics, which are extremely important for the applications in microwave signal processing.
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To investigate the main properties of the confined objects, two different cases are discussed here
in details. We consider a multilayered stripe (vertical architecture) to clear up the role of interlayer
dipole and exchange interaction in the confined systems and their role in the formation of the cou-
pled standing-wave modes. Then, in order to study the basic properties of the collective SWMs on
a periodic nanostructure, we have restricted our analysis to an ideal model object: a D array of fer-
romagnetic stripes (horizontal architecture). Thus, simple and efficient numerical procedures can be
developed, backed by analytical expressions providing for more physical insight. Special attention
will be paid to a transition from individual modes localized on separate stripes to collective modes
existing on arrays of stripes coupled by the long-range dipole interaction. The latter are described by
Bloch type solutions and demonstrate the features characteristic of wave processes in periodicmedia,
such as formation of stop bands and Brillouin zones.

34.5.1 Direct Space Green’s Function

The long-range dipole interaction is instrumental in the formation of collective modes on arrays of
ferromagnetic objects. Besides, its role is of primary importance in the description of the behavior
of the modes existing within each individual stripe, especially in the most interesting case of the
fundamental mode. Since the translational symmetry is no longer observed in a patterned film along
the patterning direction, the Fourier space Green’s function proposed in previous sections is to be
redefined in the direct space, as it has been proposed by Guslienko et al. [].

To construct the Green’s function in the confined system, we start with the simplest geometry of a
monolayer film confined in one direction (Figure .). We again assume the Green’s function as a
relation between dipole magnetic field and the dynamic magnetization:

h(k, x , z) =
L�


dz′
w�


dx′G(k, x , x′ , z, z′)m(x′ , z′) (.)

But to distinguish g this one from those introduced in previous sections, we will call Green’s func-
tion (Equation .) “direct space” Green’s function. Here, we use the fact that the element is infinite
in y-direction and that the distribution of themagnetization along y can be represented in the formof
a propagating plane wave. In other words, from Maxwell’s equations in magnetostatic limit, we now
seek a “mixed” Green’s function, which is direct-space along x and of Fourier type in the y direction.

In practical calculations, we use the fact that the “aspect ratio” of the element is small p = L / w ≪ ,
which makes the dependence of the dipole field and the dynamic magnetization on z irrelevant, i.e.,
the element thickness L is small enough in order to push the first exchange mode out of the range of
existence of the lowest, the so-called “magnetostatic,” mode.The latter allows one to reduce the initial
Dproblem to a Dproblemby averaging Equation . across the film thickness L, sincewe assume

z

L

H
ky

y

x
–w/2 w/2

FIGURE . Single-stripe geometry.
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that the spins on the upper (z = L) and lower (z = ) surfaces of the element are unpinned, which
is well confirmed by the BLS measurements of spin-wave spectra in patterned metallic magnetic
films []. Such an approach for the patterned structure was first suggested in Ref. [].

If we take now k = , then we arrive to the Green’s function first obtained by Guslienko et al. in
order to describe transverse spin-wave resonances in thin metallic magnetic stripes []:

Gα,β(r, r′) = − 
π

∂
∂α

∂
∂β′


∣r − r′∣ (.)

where α, β = x , y, z.
Applying Equation . to Equation ., one arrives at a D tensorial Green’s function described

by a  ×  matrix with the following nonzero elements:

Gzzk(x − x′) = −
∞�


( 
a
− 

b
)cos(ky)

πL
dy,

Gx x k(x − x′) = −
∞�



b [y (a − b) − p(x − x′)

a
]cos(ky)

πL
dy − δ(x − x′)

Gy yk(x − x′) = −δ(x − x′) −Gx x k(x − x′) −Gzzk(x − x′)

Gyx k(x − x′) = −Gx yk(x − x′) = −
∞�


 j
b [b − a − L

a
] y(x − x′) sin(ky)

πL
dy (.)

where b =
√
(x − x′) + y , a =

√
b + L, and δ(x − x′) is the Dirac delta function. All other com-

ponents of Green’s function vanish. Physically, the expressions (Equation .) describe an average
dipole field of a stripe, placed at the point x′. The stripe is infinitesimally thin in the direction x,
infinitely long in the direction y, and has a width L in the direction z.The average dipole field strength
is “measured” at the point x at any z between  and L. In particular, for w = ∞ and m independent
from x, Equation ., averaged across the film thickness L, reduces to the dipole element P used
in the previous chapters.

34.5.2 Coupled Standing-Wave Modes on a Multilayer Stripe

Exchange coupled multilayers, characterized by the effect of giant magneto-resistance, are of par-
ticular interest, both for fundamental science and technology. That is why they are extensively
investigated, theoretically and experimentally, due to their numerous important applications to
information storage and processing.

To study the basic properties of coupled standing-wave modes in multilayered stripe, let us con-
sider the geometry given in Figure ., where N ferromagnetic layers of different thickness Li are
placed parallel at a distance di from each other. The external magnetic field assumed to be directed
along y-axis. In this case, coupled modes of the structure should be described by a system of N
linearized Landau–Lifshitz equations, where long-range dipole interaction between all the layers is
taken into account:

∑
β

A(i)
αβ (ω)m(i)

β (x) = ∑
β

N

∑
j=

G(i j)
αβ (x , x′) ⊗ m( j)

β (x′) (.)

In this equations, ⊗ sign denotes convolution in the sense of Equation . but already averaged
over z, ωH = ∣g∣μH and ωM = ∣g∣ μMs , as in previous sections, and
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FIGURE . Multilayered magnetic stripe geometry.
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Greek characters here correspond to two coordinates, i.e., α = x , z and β = x , z. The summing over j
implies taking into account the dipole contribution of all N ferromagnetic layers to the field in layer
“i.” Green’s functions G(i j)

αβ (x , x′) includes the diagonal elements, describing the intralayer dipole
fields for i = j, as well as the interlayer dipole interaction when i ≠ j.

If we restrict our analysis to a simple case of a ferromagnetic bilayer which consists of two layers
with thicknesses L and L, which are placed at a distance d in the direction z, the tensorial Green’s
functions for intralayer dipole fields can be taken in form (Equation .) and the components of
Green’s function describing the dipole coupling between layers, which are first derived in Ref. [],
have the following form:

LG
()
x x (x − x′) = LG()x x (x − x′) = −LG

()
zz = −LG()zz (x − x′)

= − ln
[(d + L) + (x − x′)][(d + L) + (x − x′)]
[d + (x − x′)][(d + L + L) + (x − x′)]

LG
()
xz (x − x′) = −LG

()
zx (x − x′) = −LG()xz (x − x′) = LG()zx (x − x′)

= (atand + L + L

x − x′
− atan

d + L

x − x′
− atan

d + L

x − x′
+ atan

d
x − x′

) (.)

Here, G(i j)
αβ describes the α-component of the dipole field in the ith layer, which is induced by

the β-component of the magnetization profile in the jth layer. The dipole field is averaged across the
thickness of ith layer and the dynamic magnetization in both layers is assumed to be homogeneous
along z and y, thus k = .

It should be noted that all nonvanishing components of Green’s function (Equation .) for
k =  are symmetric with respect to x − x′. This results in a set of eigenmodes which consists of
purely symmetric m(x) = m(−x) and purely antisymmetric m(x) = −m(−x) resonances [].
As one sees from Equation ., the diagonal components G(i j)

x x and G(i j)
zz (i , j= , ; i ≠ j) are also

symmetric.Thus, they should preserve the symmetry of the eigenmodes, when twomonolayer stripes
become coupled by themagnetostatic interaction. However, the anti-diagonal component G(i j)

xz (s) is
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antisymmetric in x−x′.This should result, in the general case, in a break of symmetry; an admixture
of an antisymmetric contribution to previously symmetric eigenmodes and vice versa, when two
monolayer stripes become coupled.

Hopefully, the calculation shows that the symmetry maintaining contribution of the components
of Green’s function (Equation .) prevails mix-symmetry ones for the whole range of mode num-
bers n. To estimate these contributions to the overall magnetostatic field penetrating from one stripe
into another, we involve matrix elements:

Pi j
αα(n) = 

w

w/�
−w/

sin(πx
w

)dx
w/�
−w/

G(i j)
αα (x − x′) sin(πx′

w
)dx′

Q i j
αβ(n) = 

w

w/�
−w/

cos(πx
w

)dx
w/�
−w/

G(i j)
αβ (x − x′) sin(πx′

w
)dx′ (.)

Pi j
αα(n) gives the contribution of the diagonal components to the magnetostatic energy of anti-

symmetric modes of the initially uncoupled stripes due to coupling. Q i j
αβ(n) gives the contribution

to the energy due to admixture of symmetric states to the previously antisymmetric resonances.This
fact allows us to neglect the anti-diagonal components of Green’s function (Equation .) in the
equations for the magnetization dynamics and to obtain simple equations describing resonances in
symmetric structures.

Neglecting the anti-diagonal components of the Green’s function, we arrive to purely symmetric
and purely antisymmetric solutions. This allows one to reduce the number of equations. Assuming
the solutions mxs(x) = εs mzs(x), mx a(x) = εa mza(x), one obtains from the Landau–Lifshitz equa-
tion ofmotion two identical algebraic equations for the frequencies of the symmetric and asymmetric
modes:

(
ωns(a)

ωM
)

= (ωH

ωM
+  + λns(a))(

ωH

ωM
− λns(a)) (.)

where λns(a) is the n th solution of the eigenvalue problem:

λs(a)m(x) =
w/�

w/

Gs(a)
zz (x − x′)m(x′)dx′ (.)

And the coefficients εs and εa represent the ellipticity ofmagnetization precession in the symmetric
and antisymmetric modes, respectively.

Figure . shows the results of a numerical solution of Equation . with Equation . for a
symmetric bilayer stripe with the thickness L = L = L =  nm and width w =  nm, and the
distance between magnetic layers d =  nm. Their saturation magnetization for each stripe (πMs)
is  kg. The magnetic field applied along the stripe is  Oe. One clearly sees that the frequencies
of antisymmetric resonances are smaller than those of symmetric ones. The physical reason for such
behavior is as follows. Let us consider the in-plane component of the dynamic magnetization mx
in a symmetric bilayer stripe L = L. We see that for small thicknesses of the nonmagnetic spacer,
the dipole field of the symmetric (acoustic) mode on a bilayer stripe is close to that of a monolayer
stripe of double thickness L. A larger thickness means a larger aspect ratio p and a larger effective
magnetic charge at the lateral stripe edges x = ±w/. Furthermore, the magnetostatic field of the
first layer penetrating the second layer (see Equation .) is contra-directed with respect to the
dynamic magnetization in it. Therefore, the magnetostatic energy of the symmetric mode and thus
its frequency should be larger than those of the mode with the same number on a monolayer stripe
with thickness L.
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FIGURE . Spectrum of resonances on a symmetric tri-layered structure, calculated numerically. The open
circles show the symmetric (acoustical) resonances (curve ) and the filled ones show antisymmetric (optical) ones
(curve ). For comparison, the spectrum of a monolayer stripe of the same thickness is also shown in the figure.

Now let us consider an antisymmetric mode. The mx component is of opposite direction in the
layers in this case. It creates effective charges of opposite sign at the edges of layers. The dipole field
of a layer penetrating another layer of the structure is now of the same direction with the dynamic
magnetization in this layer which decreases the overall magnetostatic energy compared to the case
of noninteracting layers.Therefore, the frequency of the antisymmetric (optical) mode on the bilayer
stripe should be smaller than that of the monolayer stripe with the thickness L.Thus, our considera-
tions show that the frequency of the symmetricmode should be higher than that of the antisymmetric
mode, as one sees from Figure ..

Obviously, Figure . can be regarded as a dispersion curve, ω as a function of a wave number
kx , whose values are quantized nΔkx ( < n < ∞) due to the finite width of the stripe. In the limit
case of an infinite film p = , when w tends to infinity, the wave number step Δkx becomes infinites-
imal thus transforming the dependence ω (nΔkx), otherwise discrete into a continuous curve. Note
that the “curvature” of this dispersion curve varies with the aspect ratio p, since the ratio of the
cross-section area of the edge zones (of order L), where the effective magnetic charges deform the
originally sinusoidal wave profile, to the overall layer cross-section area L ⋅w varies with p.

In Refs. [,], the theory outlined above was verified by experiments on BLS of light by thermal
magnons. The experimental results are in a good agreement with the theory.

34.5.3 Role of the Interlayer Exchange Interaction

It can be showed that the main effect of the interlayer exchange interaction between the layers of a
metallic magnetic bilayer film is a substantial inhomogeneity of the profile of the dynamic magne-
tization along the z direction. The inhomogeneity results in a noticeable contribution of intra-layer
exchange stiffness to the effective magnetic field of layers. The main manifestation of this is a shift
of spin-wave dispersion branches, as a whole, to higher or lower frequencies depending on the
sign of the constant of the interlayer exchange interaction. For weakly exchange-coupled layers, the

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

34-54 Theory and Phenomena of Metamaterials

inhomogeneity of the z -profile of dynamic magnetization is strong enough to produce a noticeable
exchange frequency shift, but still small to introduce a significant variation of the structure of the
dynamic dipole field within the interacting layers. If so, any in-plane inhomogeneous spin-wave
oscillation will have the same exchange frequency shift as the in-plane homogeneous precession.
Then, the frequency shift due to the interlayer exchange coupling may be introduced directly into
final expressions for spin-wave dynamics using the substitution H → H+αMs k

z , where kz is obtained
from solution of the boundary-value problem for the exchange-field operator with Hoffmann inter-
layer exchange boundary conditions []. In this expression, H is the internal static magnetic field,
Ms is the saturation magnetization, and α is the exchange constant of layers (assumed to be the same
in all layers).

This simplified approach proved to be efficient for the description of real in plane confined
multilayer structures [].

34.5.4 Formation of Collective Modes and Brillouin Zones

In this part, we analyze the “horizontal geometry”: formation of collective Blochmodes on an infinite
array of monolayers. The latter is rich in interesting physical phenomena, such as creation of stop-
bands and Brillouin zones, typical of periodic magnonic structures.

Let us consider an infinite array extending in the direction x consisting of parallel dipole-coupled
magnetic stripes (Figure .).The dipole field in each particular stripe is a sum of the fields induced
by dynamic magnetizations in all other stripes:

h(k, x) =
∞

∑
n=−∞

∞�
−∞

dx′G(k, x − x′)mn(k, x′) (.)

The magnetization motion in this case represents a collective wave. That is why k is the same in all
stripes.

As far as the structure is periodic along the x-axis, therefore the dynamic dipole field and the
dynamic magnetization can be described in the frames of Bloch’s waves formalism. In the similar
form, as it was done earlier (see Equations . through .), we represent dynamic dipole mag-
netic field as a product of the Bloch wave and a periodic part h̃(x , kx , ky) and in the reduced zone
scheme we have:

h̃(kx , ky , x) =
w�


dx′G̃(kx , ky , x − x′)m̃(kx , ky , x′) (.)
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FIGURE . Infinite array of dipole-coupled magnetic stripes.
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Green’s function of a periodic structure in the reduced zone scheme reads:

G̃(ky , kx , x − x′) =
∞

∑
n=−∞

G(ky , x − x′ + nT) exp (ikx(nT − (x − x′))) (.)

where G(ky , x − x′) is given by Equation ..
Since φ = arctan(ky/kx) is the propagation angle of the collectivemode, Equations . and .

together with the linearized Landau–Lifschitz equation allow one to describe dynamics of spin-wave
eigen-excitations propagating in an arbitrary direction on a periodical array of parallel magnetic
stripes. In this expression, ky can take any real value, whereas kx can be limited to the first Brillouin
zone −(π/T) < kx ≤ (π/T).

If we consider now aparticular case of a collectivemode propagating along the x-axis, i.e., ky =. In
this case, Green’s function (Equation .) has the same form as Green’s function of a single stripe
[]. Therefore, the same algebraic Equation . remains valid. The corresponding eigenvalue–
eigenfunction problem is now for the integral operator, as follows:

λ(kx) m̃z(kx , x) =
w�


dx′G̃zz(kx , x − x′)m̃z(kx x′) (.)

where G̃zz(kx , x − x′) is a corresponding component of G(ky , x − x′).
The integral operator (Equation .) has an infinite set of discrete eigenvalues λn which contin-

uously depend on kx . The transition from a continuous film to a structured one is characterized by
creation of stop-bands and Brillouin zones, typical of periodic photonic, phononic, and magnonic
structures. The periodicity of the dispersion ωn(kx), known as Brillouin’s zone structure, is another
important feature of Bloch’s type modes on a periodic structure. The width of each Brillouin’s zone is
equal to π/T . In the middle of the first Brillouin’s zone kx =  and the expression (Equation .)
reduces to

G̃
↑↑
(s) =

∞

∑
n=−∞

Gzz(s + nT) (.)

This expression reveals the trivial fact that for kx =  the magnetization vector in all stripes
precesses in phase. Similarly, at the edge of the first Brillouin zone kx = ±(π/T), one has

G̃
↑↓
(s) =

∞

∑
n=−∞

(−)nGzz(s + nT) (.)

which shows that the neighboring stripes are now in anti-phase.
The most practically interesting case is the lowest-frequency collective mode. Obviously, it is

formed by coupling of lowest resonances across independent stripes. Therefore, the profile of the
dynamic magnetization across stripes in this mode should be quasi-homogeneous. Keeping in mind
that in the limiting case Δ = , one should retrieve a homogeneous precession of themagnetization in
an unstructured film, the profile of dynamic magnetization across the stripes on an array of coupled
stripes should be more homogeneous than for an independent stripe. This is why the dipole field of
each stripe penetrates its neighboring stripes making the spatial variation of the field along x smaller.
The profile of dynamicmagnetization follows the profile of the dipole field, mathematically described
by Equation ., which makes m(x) smoother than in independent stripes. The magnetostatic
field penetrating the neighboring stripes appears to be codirected with the dynamic magnetization
in them; therefore, the coupling decreases the overall magnetostatic energy. As a result, the frequency
decreases compared to the case of individual stripes. At the edge of the first Brillouin zone, the
dynamic magnetization in neighboring stripes points in opposite directions (see Equation .).
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In this case, the dipole field induced by the magnetization in each stripe is contra-directed to both
the dynamicmagnetization in the stripe itself and the dynamicmagnetization in neighboring stripes.
Thus, the overall magnetostatic energy is in this case larger than for uncoupled stripes. Therefore, at
the edge of the Brillouin zone, one has the largest frequency for the lowest mode.

For the second mode and all other even modes, the situation is opposite. For kx =, the dynamic
magnetization in neighboring stripes points in opposite directions at the edges of the gap.This results
in the highest frequency for these modes. At the edge of the first Brillouin zone, the magnetization
at the both edges of the same gap is of the same direction; therefore, the frequency at kx =(π/T) is
minimum and the dispersion of even modes between kx = and kx =(π/T) is negative.

Formation of Brillouin zones is illustrated in Figure .a. The eigenvalues can be easily cal-
culated numerically. In Figure .b are given the results of such numerical estimations for a
periodic D array of permalloy stripes with thickness of nm and width w =  nm. The spacing
was equal to Δ=  nm which corresponds to a period of T = nm and, consequently, the
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FIGURE . Formation of band structure in the infinite array of magnetic stripes: (a) qualitative theoretical spec-
trum, (b) experimental and calculated dispersion of the spin-wave frequency modes for an infinite array of permalloy
wires. The continuous curves were calculated using the theoretical model described in the text. Dotted lines are the
calculated frequencies for the resonant spin modes for an isolated wire.
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upper limit of the first Brillouin zone is equal to kx = . ×  cm−. The continuous curves were
calculated using the theoretical model described in the text. Dotted horizontal lines are the calcu-
lated frequencies for the resonant spin modes for an isolated wire. Experimental results in the range
< kx < .× cm− obtained using the BLS technique are given with filled circles [].They extend
well beyond the upper limit of the first Brillouin zone. One sees that the spectrum represents a set
of modes separated from one another in frequency by stop-bands, manifesting the above-described
features.

Since the dipole field outside the stripes decreases with n, coupling of stripes decreases with an
increase in mode number. As a result, the modes become less dispersive with an increase in n. As
one sees from Figure ., the higher-order modes are practically dispersionless.

34.5.5 Microwave Properties of Planar Patterned Metamaterials

Let us now discuss peculiarities of microwave properties of the planar metamaterials in the form
of coupled metallic magnetic stripes. As one sees from Figure ., the periodic medium with the
geometry of Figure . possesses a number of frequency stop bands. Since the array is periodic
only in one direction, the stop bands exist only for the wave propagation directions for which kx

component of the full in-plane vector k =
√

k
x + k

y does not vanish. Elsewhere, it will be shown
that for k = ky the gaps collapse.

Thewidth of stop bands depends on the stripe dipole coupling.The latter in the first place depends
on the stripe separation Δ/w and the mode number. The smaller the stripe coupling, the larger the
stop bands.

An important property of such metamaterial is that the central frequencies of pass bands can be
tuned by varying the applied static magnetic field. For Δ/w ≪ , the lowest frequency of the lowest
collective mode ωn=(kx = ) is close to the lower frequency boundary of the spin-wave band in
an unstructured monolayer film ω

�
=
√

ωH (ωH + ωM). Therefore, with an increase in the static
field, the lowest pass band shifts in frequency with the slope which decreases with Hi : ∂ω/∂Hi =
 ∣g∣ μ

√
ωM/ωH .

Obviously, the increase in the stop-bandwidth with the increase of the stripe separation Δ is due to
a decrease in the slope vgn(k) = ∂ωn(k)/∂k of dispersion branches. The smaller is vgn , the smaller
is the frequency range of existence of the mode Δωn ≈ vgn(kx = ) π/T . On the other hand, the
slope vgn represents the collective mode group velocity. The calculation shows that the dependence
vgn(kx) is almost linear for small kx values. Thus, the group velocity can be controlled by adjusting
Δ, which allows one to design a microwave delay line with a necessary delay time.

In this section, we have considered in detail the basic geometry of patterned planar metamaterials:
an array of D stripes with the external magnetic field applied along the axis of the stripes. In this
case, the distribution of the static magnetization inside the stripes is homogeneous. This assumption
has made it possible to arrive at important results by means of purely analytical calculations, which
provide deeper physical insight.

However, if the magnetic field is applied in any other direction, the interior static magnetization
can becomehighly inhomogeneous.The latter gives rise to strongly localized dipole-exchangemodes,
existing in so-called spin-wave wells, first discovered experimentally and explained qualitatively in
Ref. []. Detailed quantitative description, relying on numerical simulations and analytical calcula-
tions, has been provided, correspondingly, in Refs. [] and [,]. It should be noted that in the
case of less straightforward configurations application of numerical approaches becomes more and
more justified. For example, the numerical technique based on the finite element method [] has
proved efficient forNiFe/Cu/NiFe tri-layered stripes [] and permalloy stripes coupled to a permal-
loy continuous film [], subjected to a perpendicular magnetic field. In the latter case, numerical
simulations have been backed up with analytical calculations.
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Alternative numerical techniques for simulations of spin-wave behavior on patterned metama-
terials include an ad hoc code elaborated on the basis of the finite difference approach [] and
straightforward application of the object-oriented micromagnetic framework (OOMMF) []. In
the latter case, the spin configuration resulting frompurely static calculations is used as an initial state
for the dynamic calculation. To obtain the dynamic response, the system is excited by a short pulse
(see, e.g., []).Though being extremely powerful, numerical methods are very time consuming. For
this reason, they lack in efficiency compared to analytical approaches for theoretical description of
collective modes that are not localized on a single stripe.

34.6 Conclusion

In conclusion, we note that the deliveredmethod of tensorial Green function and SWMapproach can
be used not only for ferromagnetic–dielectric structures, but also for any structures containingmetal
screens, semiconductor layers, and for pure ferromagnetic structures. The SWM approach has been
successfully used in the theory of response functions for dipole-exchange spinwaves in ferromagnetic
layered structures, in the theory of impedance of spin-wave transducers, in the theory of parametric
instability of spin waves, and in the theory of spin-waves envelope solitons.Thus, the SWM approach
could be successfully used for solving various problems on the linear and nonlinear dynamics of
spin-wave and multiwave processes in magnetic metamaterials.

Due to the numerous variations in the composition of magnetic structures and different magnetic
field orientations, the amount of work that has been done over the past several years is enormous.
It is, therefore, quite difficult to give a comprehensive overview of the whole work associated with
magnetic multilayered and patterned media.

The problems discussed in this section are not merely those we face while considering excitations
in artificialmagnetic structures. Our discussionwas restrictedmostly to periodically layered and pat-
terned structures, though this is not the only possibility. With the growing fabrication technology,
one can now produce layered systems with arbitrary designed parameters, strictly controlled dur-
ing the fabrication process. Some important classes of layered systems (quasiperiodic and randomly
layered structures) were mentioned above very shortly.

Also, it is worth mentioning that the stepwise character of the magnetic properties at the interface
between films is not only one opportunity for such structures. More realistic cases are sinusoidal-like
or trapezoid-like variation of the appropriate properties and parameters. It should be emphasized that
there are several other problems, which are not discussed here due to limited space, and undoubtedly
the additional ones will arise as new structures appear.
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35.1 Introduction

With the rapid progress in the field of metamaterials over the course of last years, it is not surpris-
ing that we came across the idea of nonlinear metamaterials as soon as the basics for macroscopic
description have been developed and close analogy to optical crystals revealed. Pioneering publica-
tions [,] on the new subarea date back to , reporting two approaches to proceed with nonlinear
effects in metamaterials. As we shall see below, the two approaches are the same in essence, yet differ-
ent analysis methodologies were developed, each proving advantageous depending on the problem
under consideration.

It is clear that nonlinear optics, on the one hand, and microwave engineering with nonlinear com-
ponents on the other, proved fruitful over more than half a century; metamaterials allowed then for
an efficient synthesis of knowledge gained in both research areas.

Later on, the subject attracted attention of many research groups [–], and we will next address
in detail some of particular research achievements in these and numerous further publications.

35.2 Providing Nonlinearity

The wide variety of methods providing metamaterials with nonlinear response can be divided,
conceptually, into three approaches, which are schematically introduced in Figure ..

The first one is, structurally, a most straightforward one, following directly from the analogy to
optical crystals. In crystals, various intrinsic nonlinearities (mostly on the atomic level) naturally
provide nonlinear response starting from moderate intensities. In metamaterials, with the structural

35-1
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(a)

(c)

ε μ χ

(b)

FIGURE . Providing nonlinearity to metamaterials (conceptual illustration): (a) insertion, (b) immersion, and
(c) extreme intensity; theoretical description in terms of metamacroscopic parameters.

units being artificially assembled, the response (up to very high amplitudes of the fields and currents)
is essentially linear as long as the effective contour comprises linear components (basically, induc-
tance, capacitance, and resistance). A very natural way to achieve nonlinearity is, therefore, to add a
nonlinear component (such as a diode) to the linear contour, that is, to insert it into the structural
element, and that was suggested in  giving birth to the whole subject []. Now we call this an
insertion method (Figure .a).

General logic underlying the first approach, however, was not really new. A long time before meta-
materials came into play, in , Kalinin and Shtykov considered [] an amorphous medium built
with randomly oriented dipoles each being loaded with a diode. The goal there was to achieve phase
conjugation at microwave frequencies in wave-only scheme. The authors found, however, that the
emerging third-order nonlinear susceptibility is suppressed by dissipation so that the efficiency of
that particular design remained doubtful at that time.

The second approach is quite natural as well, aiming to complement linear response of meta-
material elements with nonlinear properties of the host medium, in which the fields, resonantly
enhanced within metamaterial elements, become nonlinearly coupled. We now call that an immer-
sion method (Figure .b). This alternative suggestion followed shortly in  [] and stimulated
rapid development of this research direction.

The grounding idea of this approach dates back to  [] and in essence it suggests to exploit
advantageous properties of metamaterials: individual elements can be specifically designed and it
is, in particular, possible to achieve highly inhomogeneous electromagnetic fields distribution with
the structural unit, so that the fields become enhanced remarkably. So placing an external nonlinear
medium within the areas of enhanced field eventually leads to overall nonlinear response.

However different the two approaches might appear, there is, in fact, much in common between
them. Indeed, as it was just mentioned, when metamaterial element is immersed into nonlinear host,
the nonlinear response of the latter occurs at most within certain areas where fields are enhanced.
For instance, for a ring resonator, electric field is by many orders of magnitude stronger within the
gap so the nonlinearity is, in essence, the same as if it was provided by a nonlinear device placed there
in the contour. This similarity holds as long as the wavelength is much larger than the element size,
so, as long as metamaterial concept is valid. Therefore, basic phenomenological description can be
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the same for both the methods, while further details must be taken into account for more specific
analysis of particular implementations for various nonlinear phenomena.

The difference between the insertion and immersion roads lies rather in the area of implementa-
tion. Insertion allows for a very detailed design with any available device being placed at any point
in the structure unit, depending on specific needs, so it is somewhat more precise. However, this way
becomes increasingly difficult as the intended frequency grows and elements must become smaller.
For small elements, it is more feasible to use any variety of immersion, e.g., by printing nanostructures
on a nonlinear substrate. Roughly speaking, insertion is therefore more appropriate for microwave
range while immersion may prove efficient for infrared and optics.

We should say a few words also on the third approach (Figure .c), which is however much less
developed in theory as a rigorous description here is hindered by severe complications that numer-
ous effects of different scale and origin come into play. The logic here is that with the amplitudes and
frequencies of incident waves being high enough, intrinsic nonlinearity of metal surface, scattering
phenomena on edges, and even quantum effects may add to the mechanisms described above. At
the same time, the importance of any specific design in the sense outlined above, becomes dimin-
ished. In practice, this situation also often implies that the element size is not much smaller than the
wavelength (as it is currently in optical range). Consequently, it is hardly feasible to provide a trans-
parent theory—at least, not a generally applicable one—for such cases, and research attempts rather
follow an empirical method, trying and failing. This direction is so far predominantly experimental;
it can be traced back to  [] in metamaterial context. At the same time, earlier works on related
subjects [] may help to provide more theoretical insight into underlying phenomena.

From the theoretical point of view, all the approaches finally aim to provide a universal description
of possible nonlinear processes in terms of effective medium parameters (linear є and μ) including
nonlinear susceptibilities of required order (Figure .). Therefore, theoretical work splits into two
directions, one pursuing rigorous analytical derivation of nonlinear properties starting from very
detail of metamaterial internal structure (being thus a metamacroscopic theory), while the other
concentrating on the description of particular phenomena departing from phenomenological effec-
tive parameters as predefined ones. Although the latter saves effort required for analyzing particular
structure, it should be exercised with more care than in optics, as there are much more peculiarities
in metamaterials which might be crucial for the description.

A close way to practical implementation is to employ nonlinear devices within transmission-line
realizations of metamaterials [,]. This approach is addressed in more detail in Part VI of this
handbook.

35.3 Metamacroscopic Theory for Low Nonlinearity

As we mentioned above, the theoretical basics for description of both the insertion and immersion
approaches—apart from specific features added by any particular configuration—must be essentially
the same. Taking into account the importance of these general basics, in this section we will describe
in detail how metamaterials featuring nonlinearity can be analyzed for a case of low amplitudes: when
nonlinear contribution is small with respect to linear response. For the ease of explanations, however,
we assume by default that the nonlinearity is provided using insertion approach.

Below, we show how the macroscopic properties of metamaterial can be controlled by the param-
eters of the structure elements, their arrangement, and the characteristics of nonlinear insertions.

35.3.1 Macroscopic Description of Metamaterials: Basic Principles

It is important to note that, properties of metamaterials with respect to electromagnetic waves can
be described in terms of macroscopic permittivity and permeability, if the wavelength inside the
medium is much larger than both the element size and the distances between neighboring elements.
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For magnetic metamaterials, considered in this section, we shall focus on the magnetic properties,
described with (linear) permeability and nonlinear magnetic susceptibilities.

In agreement with the macroscopic theory [–], the resonance frequency of the permeability
is not determined solely by structure element characteristics, but depends markedly on the lattice
parameters as well.

In most cases, when the dimensions of the element are much smaller than the wavelength, it can be
described in terms of an effective electric contour, characterized with effective resistance R, induc-
tance L, and capacitance C. To this end, we assume that the current, magnetically induced in the
contour, is the same along the contour line.

The simplest example of such an element is a split conductive ring, for which contour parameters
can be easily estimated theoretically. Various complex elements, like split ring resonators [,], also
can be represented by effective contours, provided that the current cross-section is small enough com-
pared to the element size [,,]. Should the effective contour parameters escape from analytical
treatment, they can be easily determined experimentally by studying resonant properties of a sin-
gle element []. Accordingly, below we consider resonant elements in general, turning to particular
examples where necessary.

We suppose such flat elements to be arranged so that their planes are parallel (normal to the z-
axis) and the elements form a kind of regular lattice. As in the local response theory [,], we
postulate that the response is formed at distances much smaller than the wavelength, i.e., we can
neglect retardation while considering interactions of the individual elements. This quasistatic limit
allows us to separate magnetic effects from electric ones so that only the magnetic field affects the
magnetization of the medium, defining the permeability. In a quasistatic approximation, the problem
can be reduced to the behavior of metastructure in an external homogeneous oscillating magnetic
field.

35.3.2 Split Ring with In-Series Nonlinear Insertion

Considering nonlinear coupling in metamaterials, we are interested in the relationship between the
magnetization of metamaterial and the macroscopic magnetic fields inside it, at all the frequencies
involved. We have seen that magnetization is determined by the currents, induced in individual ele-
ments by the fields of propagating waves. Should the response of an element be nonlinear, a coupling
between these currents arises. Obviously, mutual interaction of elements remains linear and is not
relevant at this stage. Consequently, in the metamaterial of split rings with nonlinear insertions, wave
coupling is provided on the level of structure elements. Thus we are first looking for the relationship
between currents and voltages, induced at all the interacting frequencies, analyzing a single element,
subjected to oscillating magnetic field.

Supposing the time dependence of fields and currents to have the oscillating form e−iωt , one can
write the electromotive force En in the nth element, induced by the external fieldH, as

En = iωμSH, (.)

where S is an effective area of the contour, which determines the magnetic flux via element.
The linear properties of each element are defined by the same self-impedance so that we can write

Z = −iωL + i
ωC
+ R, (.)

where we treat the self-inductance L, the capacitance C, and the resistance R, as predefined.
The DC current–voltage characteristic of an insertion at low voltages can be approximated by

I = 
R
(U + γU ), (.)
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where
I is the current through the insertion to which the voltage U is applied
R is the ohmic resistance of insertion
γ is a parameter standing for the nonlinearity

Here the voltage should be much smaller than Ũ ∼ /γ.
In the AC case, it is necessary to account for frequency dispersion, which is easier to do

if one deals with Fourier components. Accordingly, we substitute all the time dependencies by
sums of monochromatic components, so that, e.g., the time dependence of the current is I(t) =
∑ϑ I(ωϑ)e−iωϑ t , ϑ = ±,±, . . . , where we use the notation with ω

−ϑ ≡ −ωϑ , I(ω
−ϑ) ≡ I∗(ωϑ),

which includes automatically the complex conjugates.
Due to the nonlinear term in Equation ., Fourier components at combinational frequencies will

be coupled. Keeping up to bilinear in I terms, we can represent the voltage–current characteristic as
the following:

U(ωϑ) = Z(ωϑ)I(ωϑ) +

∑η

γ(ωϑ ; ωη , ωϑ − ωη)

× Z(ωϑ − ωη)Z(ωη)I(ωϑ − ωη)I(ωη), (.)

where
γ(ωϑ ; ωη , ωϑ − ωη) is generally complex
Z(ω) is the linear impedance of the insertion, i.e., Z → R at ω → 

Clearly, the response of the whole element depends on the particular position and connections of
the insertion, implemented into the split ring. However, for a reasonable arrangement, the element
with insertion can be still described by effective contour. If the nonlinearity is low, the current in the
element with insertion under the action of external e.m.f. is determined by

(Z(ω) + Z(ω))I(ω) +U()(ω) = E(ω), with (.)

U()(ω) = 
∑η

ζ(ωϑ ; ωη , ωϑ − ωη)I(ωϑ − ωη)I(ωη), (.)

where U() is the nonlinear part of the response. Here the nonlinear properties of insertion are
described with the parameter ζ, which generally depends on the insertion characteristics (γ and Z)
as well as on the way of inserting. For example, if the insertion is implemented in-series into a split
conductive ring:

ζ(ωϑ ; ωη , ωυ) = γ(ωϑ ; ωη , ωυ)Z(ωυ)Z(ωη). (.)

Now we are ready with the response of a single element.

35.3.3 Quadratic Magnetic Susceptibility

Turning to analysis of the whole metamaterial, we follow the macroscopic approach, developed for
magnetic metamaterials [].

Let the centers of the metamaterial elements be located at the points rn . These points are assumed
to form a regular spatial lattice so that each element has the same surrounding. We suppose the
material of the structure elements to be nonmagnetic so that the magnetization is only due to the
currents induced in the contours. Though in general one should consider the full tensor of the per-
meability, from the chosen geometry it is obvious that the magnetization has only z-component,
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i.e., only μzz differs from unity. Therefore, only the z-component of the magnetic field is impor-
tant, and the problem becomes scalar. Further we omit all appearing z and zz indices for the ease of
notation.

In linear case, using the multi-impedance matrix allows to write

En = ZIn + ∑
n′≠n

Znn′ In′ , (.)

where
In is the current induced in the nth element
Z is the self-impedance
Znn′ is the mutual impedance between the elements n and n′

In order to take the insertions into account, we extend the impedance equation (Equation .) in
accordance with Equation ., arriving at system

(Z(ω) + Z(ω))In(ω) + ∑
n′≠n

Znn′(ω)In′(ω) +U()n (ω) = En(ω), (.)

where En(ω), the same for all the elements, is given by Equation .;

E(ω) = iμSωH(ω). (.)

We remind that in the homogeneous metamaterial all the currents, induced by e.m.f. (Equation .),
are equal, and so the system (Equation .) is reduced to the equation

[Z(ω) + Z(ω) + ∑
n′≠n

Znn′(ω)]I(ω) +U()(ω) = E(ω). (.)

For the ease of notation, we combine all the impedances involved, into

ZΣ(ω) = Z(ω) + Z(ω) + ∑
n′≠n

Znn′(ω). (.)

Rewriting Equation . for multiple frequencies, with the help of Equation . we obtain a system:

ZΣ(ωϑ)I(ωϑ) = E(ωϑ) +

∑η

ζ(ωϑ ; ωη , ωϑ − ωη)I(ωϑ − ωη)I(ωη). (.)

The system (Equation .) shows that the current component at each frequency is determined not
only by the e.m.f. at that frequency, but also by the current components induced at two other fre-
quencies, so that a three-wave interaction occurs. Accordingly, we consider below ω, ω, and ω,
such that ω + ω = ω. Then from Equation . we get for the current induced at ω:

ZΣ(ω)I(ω) = E(ω) + ζ(ω; ω, ω)I(ω)I(ω). (.)

For the linear in ζ approximation we can substitute I(ω) and I(ω) in the right-hand side of Equa-
tion . for the expressions, obtained from Equation . written for ω, ω, neglecting the terms
with ζ. Then we can express I(ω) via E(ω), E(ω), and E(ω).

The averaged media magnetization, defined as the magnetic moment density, is given by

M = ℵSI, (.)
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where the volume concentration ℵ is introduced. Thus, for the magnetization at ω we get

M(ω) =
iℵμSω

ZΣ(ω)
H(ω) −

ζ(ω; ω, ω)ℵμ
Sωω

ZΣ(ω)ZΣ(ω)ZΣ(ω)
H(ω)H(ω), (.)

where we used relations (Equations . and .).
The total microscopic magnetic field (in the sense of being microscopic with respect to metama-

terial properties) at the point r is given by the sum of the external field and the contribution of the
separate elements:

Hmic(r) = H +∑
n

Hl(r − rn), (.)

where the function Hl(r′) is defined as the value of the z-component of the magnetic field induced
by the element, located at the coordinate origin, at the point r′. According to the Biot-Savart’s law
Hl(r′) can be presented as an integral along the contour:

Hl(r′) =
I

π

� [d l × (r′ − s)]z
∣r′ − s∣

, (.)

where the vector s is the radius vector of that point of the contour, where d l is taken.
Since all the unit cells are identical, the field distribution is the same in all the cells. Therefore, the

macroscopic averaging can be performed over the volume Vm = ℵ− of one unit cell with any num-
ber m. The averaged value of the microscopic magnetic field (Equation .) yields the macroscopic
induction:

B = μ⟨Hmic⟩ = μH+
μ

Vm
∑

n

�
Vm

dr Hl(r − rn). (.)

The radius vector (r − rn) passes all the cells with centers at (rm − rn), where m takes all possible
values. The summation over all n in Equation . provides the result which is independent of the
particular number m so that we can write

B = μH+ℵμ∑
n′

�
Vn′

drHl(r) = μH+ℵμ

�
V

drHl(r). (.)

The integration in the last term is to be performed over the large macroscopic volume V of the whole
medium. We take the latter as the limit of a large sphere O, centered at the coordinate origin, with
the radius rs tending to infinity. Using the relation

lim
rs→∞

�
O

dr
r′ − s
∣r′ − s∣

= −π


s, (.)

it is easy to obtain �
O

drHl(r) =



SI = 


M
ℵ , (.)

which enables us to conclude that generally

B = μ (H +



M) , (.)

notwithstanding the structure element’s peculiarities.
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With the general definition B = μ(H +M), we can express

H = H + 


M . (.)

Using this relation, we can solve Equation . for M(ω). In the linear approximation we obtain
M(ω) = χM(ω)H(ω), where the factor

χM(ω) =
μℵSω

− 
 μℵSω − iZΣ(ω)

. (.)

stands for the linear part of the magnetic susceptibility.
The sum of the matrix elements is determined by the mutual inductance between elements. For

example, in the limit of thin wires it is given by the double integral along the contours:

Znn′ = iω
μ

π

� (d ln ⋅ d ln′)
∣sn − sn′ ∣

. (.)

Thus, the sum can be represented as

∑
n′≠n

Znn′(ω) = −iωμrΣ, (.)

where
r is some characteristic dimension of the element
Σ is a dimensionless parameter which depends only on geometry (lattice metastructure) and

can be calculated numerically (see [] for some examples)

One can see that the relation (Equation .) is affected by the lattice order via the sum Σ only.
This summation is performed over all the elements, i.e., over the macroscopic volume. This volume
should be the same as for the averaging procedure, and we use the same spherical limit. Actually, it is
necessary to perform the summation only over a finite and relatively small number of elements that
are located in the volume near the nth one. Further increase in the radius rs does not influence the
summation result. For a good numerical accuracy of a few percent it is sufficient to set rs to be only six
times larger than the lattice constant. This satisfactory value of the distance rs can be considered as a
characteristic length of the local response Lresp. Although for different lattice types and various lattice
constants Lresp differs in magnitude, it is, as a rule, of the order of several interelement distances. The
length Lresp is the parameter the wavelengths and sample dimensions should be compared with to
make the macroscopic effective response approach valid.

Note that, the corresponding permeability μ(ω) =  + χM(ω), upon algebraic conversion, can be
rewritten in the general resonance form:

μ(ω) =  − Aω

ω − ω
r + iΓω

, (.)

with the resonance amplitude and width

A = μSℵL− ω
r

ω


, Γ = RL− ω
r

ω


, (.)

and the resonance frequency of the medium

ωr = ω ( + μrΣL− + 


μSℵL−)
−/
= ω (

LΣ

L
+ 


μℵS

L
)
−/

, (.)
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where we introduced a combined mutual and self-inductance LΣ = L + μrΣ, using relation
(Equation .).

Consequently, χM(ω) shows resonance behavior with the resonance frequency (Equation .).
Returning to the first order nonlinear consideration and keeping the terms linear in ζ, we express

finally M(ω) in a form which is analogous to the polarization of a medium with quadratic dielectric
nonlinearity:

M(ω) = χM(ω)H(ω) + χ()M (ω; ω, ω)H(ω)H(ω) (.)

with the quadratic nonlinear susceptibility

χ()M (ω; ω, ω) =
ζ(ω; ω, ω)

iμSω
ℵ− χM(ω)χM(ω)χM(ω). (.)

Analyzing the structure of Equation ., it is easy to notice that the first factor is completely
determined by the single element properties. Its multiplication with the linear susceptibilities taken
at the frequencies of interacting waves performs a kind of renormalization and can be treated as the
result of the influence of the surroundings. This kind of renormalization appears, for instance, in the
derivation of nonlinear dielectric susceptibility in optical materials [,]. Like the optical nonlin-
earity, the nonlinearity of the magnetic metamaterial increases resonantly as one of the frequencies
involved approaches the resonance of the linear susceptibility.

35.3.4 Practical Estimates for Low Nonlinearity

To estimate the macroscopic characteristics of the nonlinear metamaterial of the presented type,
we consider an example of metastructure based on split rings with radius r =  mm and wire
diameter rw = . mm, arranged with the density ℵ ∼ r−

 . Among numerous diode types, back-
ward diodes were reported to possess the best sensitivity and the highest nonlinearity [,]. Such
a diode insertion, having a cross-section, similar to the wire, is characterized [] by γ ≈  V−

and Z ≈ R ≈  Ω. Although diodes might allow for higher nonlinearity, Equation . is valid
only under the assumption that the nonlinear contribution is much smaller than the linear one. They
become comparable when the current reaches characteristic value Ĩ(ω)∼(∣γZ(ω)∣)−

, which corre-
sponds to the magnetization M̃(ω) = nSĨ(ω). Accordingly, the magnetic field in the metamaterial
must be much lower than H̃(ω) = M̃(ω)/χM(ω). Assuming that the pump frequency is ω, and
H(ω) ∼ .H̃(ω), using Equation ., we can estimate the maximal amplitude of the nonlinear
modulation of the magnetic susceptibility as

χ()M (ω; ω, ω)H(ω) ∼ .
Z(ω)

μℵSω
χM(ω)χM(ω). (.)

For frequencies not close to the resonance, we can assume χM(ω)χM(ω) ∼ , which provides a
noticeable nonlinear contribution of the order of . with the pump field limited by about . A/m.

The nonlinearity can be further enhanced by either decreasing the diode cross-section (that raises
Z), or choosing the frequencies closer to the resonance. However, both of these ways are accompanied
by the increase of dissipation losses in the media. For practical purposes one has to ensure that the
losses do not exceed the nonlinear contribution. To remain in the transparency region Re[χM(ω)] ≫
Im[χM(ω)] the condition ∣ − ω

r /ω∣ ≫ R/ωL must be fulfilled (the overall ohmic resistance R
of the whole element is build mostly by the diode resistance R). Then the figure of merit for this
metastructure takes a simple form:

χ()M (ω; ω, ω)H(ω)
Im[χM(ω)]

∼ ∣Z(ω)∣
R

 − ω
r /ω



 − ω
r /ω


, (.)
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and its larger values are favorable. This relation shows that choosing one of the frequencies closer
to the resonance one can win in the parameters at one frequency, but inevitably loose at the other.
The ratio (Equation .) appears to be independent of the diode cross-section. Nonlinearity and
losses grow equally as the diode gets smaller. Therefore, the only way to improve (Equation .) is
to increase the ratio ∣Z(ω)∣/R. As in backward diodes the linear impedance is mostly concerned
with the ohmic losses, ∣Z(ω)∣ ∼ R, their usage can be limited by significant damping.

The above estimates show that in the limit of low nonlinearity a remarkable modulation of the
susceptibility is accompanied by substantial dissipation. Certainly, applying higher pump fields will
provide higher nonlinear contribution. However, high nonlinearity would make the susceptibility
expansion in the form (Equation .) inapplicable, and the corresponding analysis requires an
extended approach, described in the next section.

The theory outlined above provides general phenomenology which is applicable for any type of
nonlinear insertion or surrounding host medium, so that effective magnetization is determined by
magnetic fields expanded in a power series (see Equation .), and nonlinear susceptibilities of
required order can be found, given any particular element characteristics.

Expression (Equation .) shows a clear analogy to the relationship between electric polarization
and electric fields, well-known in nonlinear optics [,,]. Therefore, in spite of the completely dif-
ferent physical background, one can deal with the nonlinear interaction of electromagnetic waves in
the proposed metamaterial using the well-developed apparatus of the nonlinear optics. The gene-
ral symmetry of Maxwell equations with respect to the magnetic field–electric field transposition
allows to expect that the whole variety of known nonlinear optical processes can have corresponding
analogy in metamaterials.

35.4 Nonlinear Phenomena and Processes

Below we will briefly overview the current progress in analyzing various nonlinear phenomena and
peculiarities of nonlinear processes available in metamaterials.

35.4.1 Frequency Conversion

It has been clearly shown that for the interaction of waves being relatively weak, nonlinear frequency
conversion is described with the apparatus fully analogous to nonlinear optics [,]. Moreover, it is a
specific advantage of metamaterials that the unusual linear properties of metamaterials, e.g., negative
refraction, may result in interesting peculiarities of wave interaction.

For example, when the pump wave propagates in backward regime inside nonlinear metamaterial,
it is possible to achieve second harmonic (SH) generation in the direction of reflected wave []. In a
case that a SH wave is a backward wave, dispersion relations ensure that the material is opaque with
regards to the pump, and thus generation commences in a thin surface layer. This provides a possibil-
ity to realize subwavelength imaging at a doubled frequency []. Furthermore, one can combine two
or more different structural elements within metamaterial, with the resonant frequencies so chosen
that all the interacting waves would match the vicinity of medium resonances. This way, a resonant
enhancement of nonlinear interaction can be achieved so that in thin samples, the intensity of SH
wave can be enhanced by more than one order in magnitude [].

Recently, peculiar features associated with phase-locked harmonic generation, and interesting
spatio temporal pulse propagation effects were reported [].

For example, for a pump incident onto nonlinear metamaterial with negative parameters, if the
interaction occurs outside of phase-matching conditions, the pump generates a reflected SH signal,
part of which is able to immediately leave the medium, while part of it is generated just inside the
medium, but is not able to escape as it becomes trapped by the pump.
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Figure . shows a few snapshots of the SH generation in a negative-index metamaterial (NIM)
slab divided into linear and nonlinear regions. It can be seen that the first pulse is generated backward,
while two pulses are seen to depart from the entry surface, one downward, which refracts according
to material dispersion and Snells law, one upward, phase-locked and trapped by the pump pulse.
The authors show that although the index of refraction at the SH frequency is positive, nevertheless,
the signal refracts negatively, following the pump pulse. Once the pulse reached the interface that
separates a linear from a nonlinear NIM, the SH pulse is freed from the pulse, and is retro reflected
in the direction whence it came [].

Specific features of nonlinear metamaterials become clearly evident as the intensity of the inter-
acting waves grow. For a strong pump wave H(ω), nonlinear magnetization can be expressed in a
generalized form:

M(ω) = χM(ω)H(ω) + Y(ω; H(ω); ω , ω)H(ω), (.)

where the nonlinear modulation Y depends on H(ω) in a complicated way determined by the
characteristics of nonlinear insertions []. Varying these characteristics, one can obtain a peaking
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FIGURE . SH generation (oblique incidence of the pump; undepleted regime) on a negative-index metamaterial
(NIM) which is divided into linear and nonlinear portions. Upper series: snapshots of the pump propagation. Lower
series: corresponding snapshots of the generated pulses. In snapshot “” three SH components are visible: reflected
pulse; normal pulse (which refracts downward); and phase-locked pulse that follows the same trajectory as the pump.
(Reproduced from Roppo, V., Centini, M., de Ceglia, D., Vicenti, M.A., Haus, J.W., Akozbek, N., Bloemer, M.J., and
Scalora, M., Metamaterials, (–), , . With permission.)
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FIGURE . Nonlinear modulation of magnetization depending on pump wave amplitude, insertion-type
nonlinearity. (a) Peaking pattern is typical for backward diodes; various patterns owe to different voltage–current
characteristics. (b) Threshold growth pattern is observed with varactors or ferroelectric films; specific curve pattern is
determined by particular varactor characteristics [].

(Figure .a) or an abruptly growing (Figure .b) patterns of nonlinear modulation dependence
over the pump intensity, so that the wave interaction is dramatically enhanced, respectively, in a
certain narrow range of field amplitude, or above certain threshold value. This provides an impor-
tant practical advantage, allowing for efficient control over nonlinear coupling through subtle pump
amplitude alterations.

Further detailed aspects and particular designs for achieving parametric amplification and SH
generation are discussed in many other groups [,].

It is pleasant to note that the early idea of microwave phase conjugation which we already
mentioned [] was eventually revisited with a promising design based on periodic lattice of
varactor-loaded dipoles [].
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35.4.2 Nonlinear Wave Propagation, Multistability, and Solitons

When phase-matching conditions for various frequency-converging processes are not fulfilled, wave
propagation in nonlinear metamaterials occurs in a monochromatic regime. In certain frequency
range however, conditions of propagation depend crucially on the signal amplitude. For example,
bistability of wave propagation is predicted for the frequencies being close to zero-points or to the
resonances of magnetic permeability [,]. Switching between the propagation regimes occurs with
a hysteresis-type pattern, showing some analogy to the critical phenomena in nonlinear optics and
to the phase transition thermodynamics.

Alike most nonlinear media, metamaterials can support solitons, resulting in the propagation
of stable signals with an essentially inhomogeneous intensity distribution. For the time being, an
impressive variety of soliton types and propagation regimes is described [,–]. More spe-
cific effects are expected in the vicinity of permeability resonance. It was shown that, for a signal
with amplitude high enough, no stationary wave propagations takes place. Under these conditions,
observed when the signal frequency is close to the resonant one, reflected signal intensity fluctuates
with time, while the wave inside metamaterial is transformed into periodic solitary set (Figure .)
[,].

It is well-known that nonlinearity may drastically affect the spectrum and propagation of sur-
face waves, moreover, may even cause the surface states to cease []. Similar phenomena were
analyzed when studying surface wave propagation along the boundary of nonlinear metamateri-
als, showing qualitative analogy to the effects known in solid-state physics []. At the same time,
certain novel phenomena were described, in particular, arising from the counterpropagating energy
flows at the two sides of the boundary, caused by negative refractive index inside metamaterial [].
Figure . shows that the energy flow associated with surface wave, may occur along the wave
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FIGURE . Instabilities observed in metamaterial (immersion-type nonlinearity): intensities of the incident (dash
line) and reflected (solid line) wave (a) varying with time (measured in wave oscillation periods); spacial distribution
of the magnetic (b) and electric (c) field amplitudes. Thin metamaterial layer is shown as a grey area. (Reproduced
from Zharova, N.A., Shadrivov, I.V., Zharov, A.A., and Kivshar, Y.S., Opt. Express, , , . With permission.)
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distributions in the surface wave. (Reproduced from Shadrivov, I.V., Sukhorukov, A.A., Kivshar, Y.S., Zharov, A.A.,
Boardman, A.D., and Egan, P., Phys. Rev. E, , , . With permission.)

vector as well as in the opposite direction. Subtle variations of the wave intensity affect the field
distribution of the surface mode and therefore allow for efficient switching of the energy trans-
fer direction. Analogous switching opportunities were also predicted for nonlinear metamaterial
waveguides [].

Quite recently, interesting forms of dispersion- and diffraction-management and their impact
upon soliton behavior have been considered, for metamaterials having negative phase behavior and at
the same time being both active and stable [,]. With the nonlinear diffraction suggested, it should
be possible to reduce the distance otherwise wasted just to create a stable usable beam (Figure .).
This can be achieved in a regular structure, or by introducing an exotic kind of inhomogeneity into
the metamaterial. Diffraction-management can be evaluated as an average effect over the whole
structure. In such systems, accumulation of phase can be made to vary in sign, and it is possible,
in principle, that diffraction could be made extremely small. This could lead to very narrow solitons
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FIGURE . Diffraction-managed soliton. Evolution of the intensity distributions for an initial input, that has a
random signal imposed upon it, modulating its amplitude by %: (left) with no correction for nonlinear diffraction,
(right) with nonlinear diffraction at % level. (Reproduced from Boardman, A.D., King, N., Mitchell-Thomas, R.C.,
Malnev, V.N., and Rapoport, Y.G., Metamaterials, (–), , . With permission.)
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that will then be controlled by nonlinear diffraction—so narrow that it can be used to increase data
capacity and enhance magneto-optical storage possibilities [].

35.4.3 Nonlinear Effects with Magnetoinductive Waves

Nonlinear effects in metamaterials in connection with magnetoinductive waves are discussed in
Chapter  of this handbook, and here we shall only provide a few general remarks and key references.

Generally, involvement of the quasistationary modes in nonlinear processes appears to be quite
fruitful owing to low velocities of magnetoinductive waves, leading to the short range of nonlin-
ear interaction. On the other hand, phase matching for the waves of different frequencies proves
to be hardly possible as the magnetoinductive spectrum is rather narrow []. A class of processes
available for a uniform metamaterial this way, refers to parametric interaction of magnetoinductive
waves of the same frequency with the “light” modes having wavelengths many orders of magnitude
larger. Similar phenomena are long known in ferrites with excited magnons []. In metamaterials,
an emerging parametric instability of the “light” modes may also occur at certain frequencies and/or
amplitudes.

Phase-matching problem, however, can be efficiently solved with multiresonant metamaterials,
which offer several branches of dispersion curves []. This way, one can easily adjust the necessary
parameters so as to satisfy phase-matching conditions for nonlinear interaction of magnetoinductive
waves related to different dispersion branches.

In experiment, significant progress is achieved with parametric amplification using rotational
resonance of magnetoinductive waves [].

35.4.4 Tuning and Switching

Apart from various explicitly nonlinear phenomena outlined so far, nonlinear metamaterials open
a way to tune the linear properties, allowing for wave propagation control with external fields of
waves. As it was shown experimentally [], biasing a varactor included into metamaterial element,
it is possible to change the resonant characteristics remarkably. Detailed theoretical analysis suggests
that nonlinear metamaterials can be efficiently tuned [].

In particular, it is possible to tune metamaterial permeability using an additional wave propagating
inside nonlinear metamaterial (or, alternatively, using external varying magnetic field). Such wave
causes homogeneous variation of the refractive index, which can be controlled by adjusting the wave
amplitude and/or frequency.

On the metamicroscopic level, tuning wave affects resonant frequency and quality factor of
individual elements, which in turn affect the resonant frequency and resonance width of the metama-
terial permeability. The latter determines the band gap and controls the propagation of weak signal
waves through the medium. Consequently, metamaterial can be switched between transmitting,
reflecting, and absorbing states.

Particular tuning capabilities depend strongly on the type of nonlinearity. For instance, use of
insertions with variable resistance enables tuning of the material transparency (switching between
transmitting and absorbing states), in a wide frequency range. Variable capacitance insertions offer
control over position of the metamaterial resonance. Shifting the resonance one can switch the whole
medium between all the three states with respect to a signal wave at a given frequency.

It was shown that in this way, relatively thin slab (of the order of one wavelength thickness) provides
very efficient tuning (Figure .).

Experimental work in this direction [–] is well in progress (Figure .).
A related promising research direction is concerned with compensating dissipation with nonlinear

[] or even active metamaterials [].
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FIGURE . Tuning efficiency for a thin slab of nonlinear metamaterial. (a) Relative change of slab transmittance
for the -fold (lower line), -fold (middle line), and -fold (upper line) decrease of the quality factor induced by tun-
ing wave. (b) Tuning of the slab transmittance with a % shift of the band gap induced by tuning wave. Transmittances
of the nontuned slab (lower grey line), of the slab with shifted resonance (upper grey line), and resulting transmission
modulation (black line) are shown [].

There are several chapters within this handbook (see Part VI), tackling other approaches to tunable
and active metamaterials.

35.5 Concluding Remarks

It is important to note that, the majority of publications on nonlinear metamaterials tend to
treat macroscopic characteristics as predefined ones, merely using the resulting parameters for the
description of nonlinear phenomena. Such an approach does no take into account specific influence
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FIGURE . Experimental observations on tuning a single metamaterial element. (a) Split-ring resonator with
inserted varactor (optionally) shunted with an inductive coil to prevent zero-harmonic “memory” effect (courtesy of
the authors of Ref. []). (b) Shift of the resonant frequency of such split-ring resonator vs. diode biasing voltage,
(i) predicted analytically without (solid line) and with (dash line) coil, (ii) calculated numerically without (○) and with
(+) coil, and (iii) measured without (×) and with (◻) coil. (Reproduced from Powell, D.A., Shadrivov, I.V., Kivshar, Y.S.,
and Gorkunov, M.V., Appl. Phys. Lett., , , . With permission.)

of the internal (microscopic) structure of metamaterials, which cannot be always neglected. This
imposes evident limitations on the validity of the obtained results. For example, it is clear that the
effects of the transition layer forming the boundary of metamaterials, are crucially essential for the
surface waves; that strong spatial dispersion must be taken into account for the analysis of solitons;
that magnetostatic excitons are important for the nonlinear processes around resonance frequencies,
that the effects of microscopic disorder prove to be rather remarkable [], and so on.

Obviously, correct interpretation of the future experiments, as well as further development, require
consistent accounting for the peculiarities of the microscopic metamaterial structure in the spirit
outlined in the first sections.
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36.1 Introduction

It has been known for quite a long time that chains of magnetically coupled resonators can support
waves. Their properties were studied, for example, for applications in filters, slow wave structures,
and proton accelerators [,,]. In , Shamonina et al. [] pointed out that the same magnetoin-
ductive (MI) waves propagate on chains of resonant elements constituting magnetic metamaterials.
Experimental verification [] and generalization for two and three dimensions [] followed shortly
afterward.

In this chapter, we present the basic theory of MI waves. We start in Section . with the magnetic
coupling between two elements. We proceed with infinite lattices in Section . and finite arrays in
Section ..

We aimed here at covering a wide range of topics concerned with MI waves, introducing concepts
possibly briefly. Those looking for details are encouraged to resort to original publications whose list
is given at the end of the chapter. This chapter is followed by Chapter  of the book “Applications of
Metamaterials” where we discuss potential applications of MI waves for signal guiding and process-
ing, subwavelength imaging and focusing, detection, and amplification of weak signals in magnetic
resonance imaging.

36.2 Magnetic Coupling between Resonant Elements

Although in general quite complicated, the properties of metamaterial elements can be in many cases
described by only three parameters: self-inductance, L; self-capacitance, C; and self-resistance, R. The
inductance and capacitance determine the resonant frequency:

36-1
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r

FIGURE . Capacitively loaded loop.

ω =
√
LC

(.)

and the resistance characterizes losses, which are also often described by the quality factor:

Q = 
R

√
L
C

. (.)

We assume that the elements are circular loops made up of metallic wires, and that currents along the
elements are uniformly distributed.∗ Capacitively loaded loop, shown schematically in Figure .,
is the simplest practical realization. The radius of the loop and the cross-section of the metallic wire
determine the inductance. The resonant frequency can be varied then by changing the value of the
load capacitance.

A current-carrying loop produces a magnetic field. If two such loops are put close to each other
then the magnetic field of the first loop can create a nonzero flux through the surface of the second
one. This is the mechanism of magnetic coupling between the elements. Its quantitative measure is
the mutual inductance, M, defined as [,]

M = Φ

I
= Φ

I
, (.)

where
Φ is the magnetic flux from the first element through the surface of the second one
Φ is the magnetic flux from the second element through the surface of the first one
I and I are the currents in the first and second element, respectively

If the wavelength is small enough to neglect retardation effects, M is purely real. For identical
elements we shall often use a normalized quantity, the coupling constant, defined as

κ = M
L

. (.)

The sign and the absolute value of the mutual inductance depend on the form, relative position,
and orientation of the elements. The expressions for the mutual inductance for circular loops avail-
able in literature [,] can be easily generalized for the case of arbitrary radiuses and orientations.
Let us consider several configurations that we will use later. The elements chosen are two identical
loops of radius r =  mm made of metallic wires of circular cross section of radius  mm. Their
self-inductance is then found as L =  nH.

In our first example, the elements are in the axial configuration: their centers lie on an axis that
is perpendicular to the planes of both elements as shown in the inset to Figure .a. The value of

∗ It is true if the circumference of the loops is much smaller than the electromagnetic wavelength.
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FIGURE . Coupling constant between a pair of circular loops for different configurations: axial (a), planar (b),
and mixed (c).

the coupling constant, κ, as a function of the distance between the elements’ centers, h, is shown in
Figure .a. It can be seen that the coupling constant is positive and it decreases with h.

In the second example, the elements are in the planar configuration: they lie in the same plane as
shown in the inset to Figure .b. The value of the coupling constant as a function of the distance
between the elements’ centers, Δ, is shown in Figure .b. Now κ is negative; its absolute value is
larger for smaller separation between the loops.

In the third example, the elements are in a mixed configuration: they lie in two parallel planes with
the separations h and Δ between the centers as shown in Figure .c. The distance h is fixed at the
value h = r. The value of the coupling constant as a function of Δ is shown in Figure .c. Its behavior
is now more complicated: the coupling constant is positive for Δ < r and negative for Δ > r.

36.3 Infinite Lattices

Infinite lattices of interacting elements may support waves. A prominent example, known from most
undergraduate courses in solid-state physics, is a chain of particles connected by mechanical springs.
This is the simplest model leading to propagation of acoustic waves and to the dispersion of phonons
in solid. Analogously, the coupling between magnetic metamaterial elements leads to propagation of
MI waves. We shall start the discussion of their properties with one-dimensional arrays for which
interaction between only nearest neighbors is present. Then we generalize the treatment, first, by
including higher-order interactions and, second, by considering two- and three-dimensional arrays.

36.3.1 Dispersion for One-Dimensional Arrays

Schematic presentations of an axial and a planar one-dimensional array of metamaterial elements
are shown in Figure .a and b. As shown in Section ., the value of the mutual inductance
between two elements declines fast as the distance between them increases. One can, therefore,
account only for coupling between the nearest-neighbors in an array. The corresponding equiva-
lent circuit is shown in Figure .c. For harmonic variation of signals with the frequency ω we can
write Kirchhoff ’s equation for the voltage drop in the nth element as

( jωL + 
jωC
+ R) In + jωM(In+ + In−) =  , (.)
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FIGURE . Schematic presentation of an axial (a) and planar (b) one-dimensional arrays supporting MI waves
and their equivalent circuit (c).

where
In , In+, and In− are the currents in the nth, (n + )th, and (n − )th elements, respectively
j is complex unity

The solutions are in the form of a traveling wave

I = I exp(− jka) , (.)

where
k is the wave number
a is the period of the array

Substituting Equation . into Equation . the dispersion relation for MI waves is obtained in
the form

jωL + 
jωC
+ R +  jωM cos ka =  . (.)

In the presence of losses, k is complex and can be written in the form k = β− jα with the propagation,
β, and the attenuation, α, coefficients. For low losses

ω = ω√
 + κ cos βa

, (.)

and

αa = 
Qκ sin βa

. (.)

As follows from Equation ., MI waves can propagate in the frequency region:

√
 + ∣κ∣

< ω
ω
< √

 − ∣κ∣
. (.)

© 2009 by Taylor and Francis Group, LLC



Filippo Capolino/Theory and Phenomena of Metamaterials _C Finals Page  -- #

Magnetoinductive Waves I: Theory 36-5

0
(a) (b)

0.25 0.5
βa/π

ω/
ω 0

αa/π
0.75 1

0.5

0.75

1

1.25

1.5

0.001 0.01 0.1 1
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FIGURE . Dispersion of MI waves for a planar array: propagation coefficient (a) and attenuation coefficient (b).

Figure . shows the dispersion for an axial array. For the elements we have taken loops
described in the previous section with self-inductance L =  nH. The period of the array is a =  mm,
yielding κ =.. The resonant frequency ω/(π)=. MHz is obtained by taking C =  pF. The
quality factor is . In axial arrays, MI waves are forward waves.

Figure . shows the dispersion curves for a planar array. The inductance, capacitance, and
quality factor are the same as in the previous example. For the period of the array, which cannot
be now smaller than the diameter of the loop, we take a =  mm yielding κ =−.. MI waves are now
backward waves. Since the absolute value of the coupling constant is here smaller than in the previous
example, the pass band for MI waves is narrower (compare Figures . and .).
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36.3.2 Dispersion in the Case of Higher-Order Interactions

For small separation between the elements, higher-order interactions may also play a role. Interaction
between the element m and the element n in an array is characterized by the coupling constant of pth
order, κp with p= ∣m − n∣. Note that nearest-neighbor coupling constant is the first-order one in this
notation. The generalization of the dispersion equation is straightforward []. Its simplest form is

ω = ω	


� +

∞

∑
p=

κp cos pβa

. (.)

This equation is more difficult to analyze than Equation . for nearest neighbors only, and therefore,
it is recommended to fabricate arrays with negligible higher-order couplings. A possible solution is
to use elongated elements, as suggested in Ref. []. A detailed experimental and theoretical study of
the higher-order interactions can be found in Ref. [].

36.3.3 Dispersion for Two- and Three-Dimensional Lattices:
Negative Refraction

A two-dimensional configuration is shown schematically in Figure .a. The elements are arranged
into a square lattice with the period a. Along the y-axis the elements are in the axial configuration
with the positive coupling constant between the nearest neighbors, κy . Along the x-axis they are
in the planar configuration with the negative coupling constant, κx . For simplicity, we shall neglect
higher-order mutual inductances and assume lossless elements. The dispersion equation then takes
the form

ω = ω√
 + κx cos βx a + κy cos βy a

. (.)

The first Brillouin zone, reflecting the symmetry of the system, has a square shape. The corresponding
dispersion diagram is shown in Figure .b by isofrequency curves (a =  mm, κx = −., κy =.,
and the remaining parameters taken from the previous examples).
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FIGURE . Schematic presentation of a two-dimensional array (a) and the corresponding dispersion of MI waves
(b). The numbers on the isofrequency curves are the ratio ω/ω.
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FIGURE . Negative refraction of MI waves at the boundary of two-dimensional arrays. Schematic presentation
of a configuration (a) and the direction of the group velocity in the right-hand side and left-hand side arrays for ω =ω

and βleft a/π =(−., .).

A boundary between two two-dimensional arrays is shown in Figure .a. Structurally both arrays
are identical but the array on the right-hand side is rotated by ○. A MI wave incident on the bound-
ary (say, from the left-hand side) will refract; the refracted wave should satisfy the boundary condition
βy left = βy right. The relation between βx left and βx right is then determined by the dispersion equation.
Let us take a wave at the frequency ω that in the array on the left-hand side has the propagation con-
stant βleft a/π =(−., .). The group velocity is perpendicular to the corresponding isofrequency
curve; its direction is shown by the arrow on the left-hand side diagram in Figure .b. To satisfy the
boundary conditions the refracted wave in the array on the right-hand side should have the propa-
gation constant βright a/π =(., .). The angle between the group velocities determines the angle of
refraction, and it is negative in Figure .b. A more detailed study of positive and negative refraction
of MI waves can be found in Ref. [].

36.3.4 Coupled Arrays

In the discussion above, we have everywhere assumed identical elements. A unit cell, however, can
contain an arbitrary number of elements []. The simplest, but nevertheless important, example is
arrays with two resonant elements per unit cell. Suggested from the analogy between MI waves and
acoustic waves in solids, they got the name “diatomic arrays” [].

General “diatomic” configurations can be formed by two coupled arrays. A schematic presentation
of two coupled arrays is shown in Figure .a. A unit cell consists of two elements, one exactly above
the other. The mutual inductance between the elements in a unit cell, M, is, therefore, positive. Both
the upper and lower elements are coupled to the elements from the neighboring unit cells. In the
simplest case, it is sufficient to take into account a single mutual inductance, M, between nearest
neighbors in the top and bottom lines. Since the elements of the top and of the bottom lines are in
the planar configuration, M is negative.

The corresponding MI wave dispersion relation can be written as []:

( jωL + 
jωC

+ R +  jωM cos ka)( jωL + 
jωC

+ R +  jωM cos ka) = −ω M . (.)

The elements have the same form and, hence, equal self-inductances, but note that the capaci-
tances of the elements in the top, C, and bottom, C, lines can be different, yielding two different
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FIGURE . Schematic presentation of two coupled arrays (a): propagation (b) and attenuation (c) coefficients for
MI waves.

resonant frequencies. The resistances of the elements from the top and bottom lines are denoted by
R and R, respectively. Equation . is in the form of coupled wave equations with the cou-
pling coefficient −ω M. If M = then the expressions in the brackets on the left-hand side are
independently equal to zero giving the dispersion relations for MI waves in uncoupled arrays.

The dispersion curves of the coupled arrays of Figure .a are shown. The parameters of the
elements are, as in previous examples, L =  nH, C =C =  pF, Q =Q = . The vertical sepa-
ration between the lines is  mm giving κ = M/L =., and the period of the array is  mm giving
κ = M/L = −.. The dispersion has now two branches that originate from two identical uncoupled
dispersion curves (see Figure .) shifting upwards and downwards from their initial position.

Changing the resonant frequency of the elements and the coupling between them it is possible
to tailor the dispersion of MI waves in coupled arrays. In particular, conditions for phase matching
between a signal and pump MI waves, required for parametric amplification, can be satisfied. We
shall return to this problem in Chapter  of Applications of Metamaterials.

Note also that the coupling coefficient in Equation . is constant. In the general case, it can
depend on the value of ka leading to more complicated dispersion (for more detail, see Ref. []).

36.3.5 Experimental Verification

Theoretically predicted dispersion relations were verified in a number of experimental studies. In
, Wiltshire et al. [] investigated one-dimensional planar and axial arrays made up by capaci-
tively loaded loops. In , they studied experimentally the propagation of MI waves in arrays made
up of Swiss rolls []. In another experimental study concerned with higher-order interactions [],
a dispersion curve has been successfully obtained from measurements on a -element array.
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FIGURE . Experimentally determined (circles and squares) and theoretically predicted (solid lines) dispersion
relation for a diatomic array.

Propagation of MI waves in coupled arrays was studied experimentally in Refs. [,] for a
number of configurations. Experimental and theoretical dispersion curves for the configuration of
Figure .a are shown in Figure .. The elements were split pipes loaded by bulk capacitors.
The resonant frequency of the elements was ω/(π)=.±. MHz, and the quality factor Q = ±
. The period of the array was a =  mm, and the distance between the top and bottom lines was h = 
mm, yielding the mutual inductances in Equation . as M =−.L and M =.L. The experi-
mental dispersion was determined from the values of currents in six neighboring elements in order
to take reflections into account.

36.4 Finite Arrays

As we have seen above, the properties of MI waves in infinite arrays can be exhaustively described
by a dispersion relation. Practical realizations are, of course, finite giving rise to the boundary and
excitation problems. In principle, any excitation (e.g., in form of an external voltage source) can be
imposed on arbitrary elements of an array. Consequently, there are no traveling waves in the general
case, and the dispersion relation cannot be used to determine the currents.

36.4.1 Impedance Matrix

The currents in finite arrays can be determined by resorting to an impedance matrix which is con-
structed as follows []. For all elements of an array, it is possible to write Kirchhoff ’s equations similar
to Equation . taking the external voltages into account. They all can be written in a compact
matrix form:

ZI = V , (.)

where
I is a vector of currents in the elements
V is the vector of the corresponding voltages
Z is the impedance matrix
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Its main diagonal contains the self-impedances of the elements and the off-diagonal elements
contains the mutual impedances:

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Zself  Zmut , . . . Zmut ,m . . . Zmut ,N
Zmut , Zself  Zmut , . . . Zmut ,n ⋮
Zmut , Zmut , Zself  Zmut , . . . ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ . . . . . . ⋱ ⋱ Zmut (N−),N

Zmut ,N . . . Zmut m ,N . . . Zmut (N−),N Zself N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (.)

where
Zself n = jωLn + /( jωCn) + Rn and Zmut m ,n = Zmut n ,m = jωMmn (m, n =  . . . N)
N is the total number of elements

This form of the impedance matrix can be applied for one-, two-, and three-dimensional arrays; it
takes coupling between all the elements into account. For a given excitation, the currents are found
by inverting Equation .:

I = Z−V . (.)

36.4.2 Boundary Conditions: Terminal Impedances

In one-dimensional waveguides, the power is transferred from the first to the last element. It will
be totally absorbed in the last element if there is no reflection from the end, or in other words, if
there is a traveling MI wave of the form In = I exp(− jka). If only nearest neighbors are taken into
account then the last element should be loaded by a matching impedance, ZT, whose value can be
found as []

ZT = jωM exp(− jka) . (.)

The value of the matching impedance is generally complex (it is purely resistive only at the res-
onant frequency, for which βa = ± π/) and frequency dependent. The current distributions for
the properly matched axial and planar arrays consisting each of  elements with the parameters
from Section .. are shown in Figure .a and b. The value of the propagation constant chosen
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FIGURE . Current distributions in the axial (a) and planar (b) arrays of  elements.
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is ∣β∣a = π/. It can be seen that the current distributions are spirals corresponding to lossy trav-
eling waves. The losses for the planar array are larger than for the axial one, in accordance with
Figures . and ..

For significant higher-order interactions a single matching impedance cannot satisfy conditions
for traveling wave propagation; for interactions up to pth order, matching impedances should be
inserted in the last p elements of the array. Since it is not easily realizable in practice, reflections from
the end should be taken into account [].

36.5 Interaction with Electromagnetic Waves

We have so far considered MI waves independently of electromagnetic waves. The excitation was
in the form of voltage sources put in one or several elements of an array. What happens if an
electromagnetic wave is incident upon a magnetic metamaterial supporting MI waves?

Interaction of electromagnetic waves with magnetic metamaterials was considered in a number of
recent studies. The customary approach is based on an effective medium theory, where the interaction
is described in terms of an effective magnetic permeability. The magnetic permeability is usually fre-
quency dependent and may reach both positive and negative values. We shall, however, resort here to
a different approach based on transmission line theory [] and look at the simplest, one-dimensional,
case. A schematic presentation of an electromagnetic wave incident upon a planar metamaterial array
is shown in Figure .a. The magnetic field is perpendicular to the plane of the loops allowing for
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FIGURE . (a) Schematic presentation of an electromagnetic wave propagating along a planar array of
metamaterial elements; equivalent circuit of a transmission line loaded by metamaterial elements without (b) and with
(c) interaction between the resonant elements.
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the excitation of current; the wave vector is directed along the array. The electromagnetic wave is
presented by an LC transmission line in Figure .b and c. The values of the inductance, Lt, and
capacitance, Ct per unit length are

Lt = μa and Ct = εa , (.)

where
μ and ε are the permeability and permittivity of free space
a is the period of the array

The metamaterial elements are presented by resonant LC circuits in Figure .b and c (the losses
are neglected). The coupling between the electromagnetic wave and the elements is presented by the
mutual inductance M′:

M′ = πr
μ

a
, (.)

where r is the radius of an element.
We shall consider here two cases. In the first one, shown in Figure .b, the individual elements

are uncoupled, and, consequently, MI waves are not supported by the array. The dispersion equation
has in this case the form []

[ω − ω
] [ω − ω

t sin ka

] = qω , (.)

where ω is the resonant frequency of the metamaterial elements:

ωt =
√

LtCt
,

and

q = M′√
LtL

.

In the second case, shown in Figure .c, the metamaterial elements are coupled to each other
via the mutual inductance, M. The dispersion equation then takes the form

[ω( + κ cos(ka)) − ω
] [ω − ω

t sin ka

] = qω. (.)

The difference between Equations . and . is the term “ + κ cos(ka)” in the left-hand
side bracket of Equation .. It is responsible for the magnetic interaction between the elements. If
q = then Equation . yields two waves propagating independently of each other: one is the pure
electromagnetic wave and the other is the MI wave.

We shall now plot the dispersion relations given by Equations . and . using the numerical
parameters from Section .. (see Figure .) yielding q =. and ωt/ω = .. The dispersion
curves are shown in Figure .. Figure .a shows the Brillouin zone up to ka/π = .. It can be
seen that coupling of the electromagnetic wave to the resonant elements leads to stop bands in both,
coupled and uncoupled, cases. The stop band for the coupled case (solid lines) moves up in frequency
compared to the uncoupled case (dotted lines). Another difference can be seen from Figure .b,
where the full Brillouin zone is shown. For high values of ka, the dispersion curve for the uncoupled
case degenerates into a line ω =ω, whereas the dispersion curve for the coupled case follows the
trend of a backward MI wave. There is a point around ka = .π, where the group velocity is zero for
the coupled case. It also should be noted that the dispersion relations (Equations . and .)
have been obtained in the quasistatic approximation neglecting retardation effects.
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FIGURE . Dispersion diagrams predicted by Equation . (dotted lines) and Equation . (solid lines):
(a) the first Brillouin zone up to ka/π = ., (b) the full first Brillouin zone. Also shown is the light line (dashed line).
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