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58183 Linköping, Sweden
E-mail: bom@ifm.liu.se

Herbert Venghaus
Fraunhofer Institut für Nachrichtentechnik
Heinrich-Hertz-Institut
Einsteinufer 37
10587 Berlin, Germany
E-mail: venghaus@hhi.de

Horst Weber
Technische Universität Berlin
Optisches Institut
Straße des 17. Juni 135
10623 Berlin, Germany
E-mail: weber@physik.tu-berlin.de

Harald Weinfurter
Ludwig-Maximilians-Universität München
Sektion Physik
Schellingstraße 4/III
80799 München, Germany
E-mail: harald.weinfurter@physik.uni-muenchen.de

Please view available titles in Springer Series in Optical Sciences
on series homepage http://www.springer.com/series/624



Cornelia Denz
Sergej Flach
Yuri S. Kivshar
Editors

Nonlinearities
in Periodic Structures
and Metamaterials

123

With 132 Figures



Professor Dr. Cornelia Denz
Westfälische Wilhelms-Universität
Institut für Angewandte Physik
Corrensstr. 2–4, 48149 Münster, Germany
E-mail: denz@uni-muenster.de

Dr. Sergej Flach
¨
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Preface

In nature, numerous systems with periodically modulated spatial parameters
are known. As a result, linear waves that propagate in such system exhibit
many common properties. For example, the same symmetry properties of
periodic potentials that restrict electrons and phonons in crystalline lattices
to specific energy bands, also limit light waves of a given frequency in the
photonic structures with periodic variations of the refractive index (photonic
crystals) to specific propagation directions. For a given propagation direction,
the frequency regimes of transparency and total reflection are analogous to the
energy bands and energy gaps of electrons in a lattice. The same is true for
the dynamics of Bose-Einstein condensates loaded on optical lattices where
matter waves experience Bragg reflection being characterized by the bandgap
spectrum, and for various plasmons in networks of Josephson junctions or
metal surfaces.

As the amplitude of the wave excitations is increased and the response of
the material becomes nonlinear, wave propagation in periodic and spatially
modulated structures becomes far more complex. Features as nonlinear reso-
nances, inelastic scattering, self-trapping, and dynamical localization influence
the transport properties significantly. In particular, stable monochromatic and
spatially localized excitations, which exist in nonlinear spatially periodic sys-
tems, are known as “intrinsic localized modes”, “discrete breathers” or “lattice
solitons”, depending on the particular implementation. These strongly non-
linear modes have no analogs in the linear theory and they arise as generic
solutions of the dynamics of nonlinear, spatially periodic continuous or dis-
crete Hamiltonian systems. They have been observed in various systems,
such as surface and bulk lattice vibrations of solids, excitations in layered
anti-ferromagnetic structures, Josephson junction networks, coupled nonlin-
ear optical waveguides, driven micro-mechanical cantilever arrays, and carbon
nanotubes grown in periodically organized arrays. More recent developments
and successful experimental observations involve one- and two-dimensional
photonic lattices and photonic crystals, localized matter waves, and vortices
in Bose-Einstein condensates loaded onto optical lattices. Quantization and
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subsequent tunnelling of gap solitons in Bose-Einstein condensates on optical
lattices is connecting recent experimental emphasis with current theoretical
research in the field of nonlinear localized excitations.

The effects mentioned above are mostly associated with the bandgap spec-
tra and resonant wave interaction with spatially periodic media. Another spe-
cific feature of these systems can be revealed in the limit when the wavelength
is much larger than the periodic structure, when the averaged macroscopic
properties of such a microstructured material may differ dramatically from
the properties of the components it consists of. Fascinating examples are mi-
crostructured metamaterials that demonstrate highly unusual properties.

In metamaterials, often associated with left-handed materials, both mag-
netic permeability and electric permittivity become simultaneously negative,
thus allowing the propagation of electromagnetic waves with the Poynting
vector anti-parallel to the wave vector and, therefore, with the basic feature
of light reversal. This leads to some very interesting effects such as the reversal
of the Doppler shift for radiation, and the reversal of Cherenkov radiation. In
addition, one of the most basic principles of optics, Snell’s law, is “reversed”
at the interface of a left-handed medium with a normal right-handed mate-
rial, so that the electromagnetic waves experience negative refraction. One of
the possible applications of left-handed materials is a flat lens made of a slab
of negatively refracting material: materials with negative refractive indices
would amplify evanescent waves thus retaining the information they contain
and achieving unprecedented resolution which overcomes the diffraction limit
of conventional imaging. The study of nonlinear effects in metamaterials gen-
erates many surprises and unpredicted results that are expected to reveal
many novel and fascinating phenomena.

The purpose of this book is to present theoretical, numerical, and ex-
perimental expertise in the study of nonlinear effects in seemingly different
types of periodic systems, and thereby to unite the fundamental concepts of
the different, but actually vastyl expanding fields. The book presents novel
theoretical and experimental approaches as well as techniques for analyzing
stable nonlinear excitations. Moreover, nonlinear wave propagation and in-
teraction in highly anisotropic and periodic structures are given, which are
characterized by the simultaneous existence of continuous and discrete modes,
including photonic lattices and photonic crystals in optics, optically trapped
Bose-Einstein condensates in atomic physics, and left-handed metamaterials
in the physics of microwaves.

The authors of the chapters are leading experts in these fields, they ad-
vance the nonlinear physics of periodic systems and facilitate key experimental
observations of many nonlinear effects predicted theoretically.

The book is aiming at an audience that is already familiar with the basics
of light propagation in optical systems. Especially, we address young, ad-
vanced scientists as well as scientists in research groups with experimental as
well as theoretical expertise. It will offer insights into the basic mathematical
principles of localization, wave scattering, transport, quantization methods as
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well as computational aspects and - most importantly - work out the common
grounds of the above listed seemingly different physical situations where the
apparatus is to be applied.

In particular, the chapters collected in this book discuss and study prop-
erties as well as control of nonlinear waves and localized excitations in all sys-
tems mentioned, including nonlinear effects in photonic lattices, Bose-Einstein
condensates in optical lattices, and the possibility of similar nonlinear excita-
tions in microstructural metamaterials that exhibit negative refraction. Spe-
cial attention is paid to the interplay between nonlinear and linear modes,
which result in a number of interesting resonant scattering and trapping
effects, and on quantum effects which are relevant for Bose-Einstein conden-
sates. We are confident that the joint gathering of contributions of experimen-
talists and theorists from each subfield who are working on these aspects so far
quite independently, will boost the implementation of ideas and experimental
techniques in all three fields of research.

The work on this volume was additionally promoted by the International
Seminar and Workshop “Nonlinear Physics in Periodic Structures and Meta-
materials”, held at the Max-Planck-Institute for the Physics of Complex Sys-
tems (Dresden) March 19–30, 2007. We also like to thank the Australian
Research Council, the German Academic Exchange Service, the German Re-
search Foundation, as well as the University of Münster for their continous
support.

A book like this one that compiles contributions of different authors is as
good as the authors’ contributions. Therefore, we thank all authors for their
excellent articles as well as their support of the edition process. We also like
to thank Patrick Rose for the perfect compilation of all articles.

Münster, Dresden, Canberra Cornelia Denz
December 2008 Sergej Flach

Yuri S. Kivshar



Contents

Part I Nonlinear Effects in Reduced-Dimensional Structures:
From Wave Guide Arrays to Slow Light

1 Nonlinear Effects in One-Dimensional Photonic Lattices
Detlef Kip, Milutin Stepić . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Linear properties and Waveguide Array Formation . . . . . . . . . . . . . . 4

1.2.1 Band-gap Structure and Floquet-Bloch Modes
of One-Dimensional Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Fabrication of Nonlinear Waveguide Arrays . . . . . . . . . . . . . . 6
1.3 Light Localization and Lattice Solitons . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Lattice Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Discrete Modulational Instability . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Discrete Vector Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Higher Order Lattice Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.5 Discrete Dark Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Interactions of Light Beams in One-Dimensional Photonic
Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Interactions with Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Blocker Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Collinear Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Nonlinear Optical Waves in Liquid Crystalline Lattices
Gaetano Assanto, Andrea Fratalocchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Photonic Lattices in Nematic Liquid Crystals . . . . . . . . . . . . . . . . . . . 22
2.3 Discrete Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Discrete Solitons in NLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Nonlinear Steering in NLC Lattices . . . . . . . . . . . . . . . . . . . . . 26

2.4 Lattice Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Multi-gap Lattice Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



X Contents

2.4.2 Light-driven Landau-Zener Tunneling . . . . . . . . . . . . . . . . . . . 31
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Nonlinear Optics and Solitons in Photonic Crystal Fibres
Dmitry V. Skryabin, William J. Wadsworth . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Supercontinuum Generation and Frequency Conversion:

Techniques and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Femtosecond Supercontinua . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Long-pulse Supercontinua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Solitons in Solid-core PCFs and Their Role in Supercontinuum
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Soliton Fission and Intrapulse Raman Scattering . . . . . . . . . 42
3.3.2 Resonant Radiation from Solitons . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Mixing of Solitons with Dispersive Radiation, Radiation

Trapping and Short-wavelength Edge of Supercontinuum . . 44
3.3.4 Red Shifted Radiation and Soliton Self-frequency Shift

Cancelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.5 Other Soliton Effects in Solid-core PCFs . . . . . . . . . . . . . . . . 48

3.4 Pulse Compression in PCFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Nonlinear and Quantum Optics in Hollow-core PCFs . . . . . . . . . . . . 49
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Spatial Switching of Slow Light in Periodic Photonic
Structures
Andrey A. Sukhorukov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Dispersion and Tuning of the Speed of Light

in Nonlinear Periodic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Slow-light Switching in Waveguide Couplers . . . . . . . . . . . . . . . . . . . . 59

4.3.1 All-optical Switching in Bragg-grating Couplers . . . . . . . . . . 59
4.3.2 Tunneling of Slow Light in Photonic-crystal Couplers . . . . . 63

4.4 Slow Optical Bullets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Part II Nonlinear Effects in Multidimensional Lattices:
Solitons and Light Localization

5 Introduction to Solitons in Photonic Lattices
Nikolaos K. Efremidis, Jason W. Fleischer, Guy Bartal, Oren Cohen,
Hrvoje Buljan, Demetrios N. Christodoulides, Mordechai Segev . . . . . . . . 73
5.1 Introduction to Optical Periodic Systems . . . . . . . . . . . . . . . . . . . . . . 73



Contents XI

5.2 Optically Induced Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Coupled-mode Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Linear Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 One-dimensional Lattice Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Two-dimensional Lattice Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.7 Vortex Solitons in Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.8 Random-phase lattice solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Complex Nonlinear Photonic Lattices: From Instabilities
to Control
Jörg Imbrock, Bernd Terhalle, Patrick Rose, Philip Jander, Sebastian
Koke, Cornelia Denz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Optically Induced Lattices in Photorefractive Media . . . . . . . . . . . . . 102
6.3 Anisotropy in Nonlinear Photonic Lattices . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Orientation Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.2 Polarization Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Two-dimensional Discrete Solitons in Nonlinear Photonic Lattices . 108
6.5 Hybrid Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6 Multiperiodic Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7 Complex Beam Propagation in Complex Lattices . . . . . . . . . . . . . . . 115
6.8 Controlling Instabilities of Counterpropagating Solitons by

Optically Induced Photonic Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Light Localization by Defects in Optically Induced
Photonic Structures
Jianke Yang, Xiaosheng Wang, Jiandong Wang, and Zhigang Chen . . . . 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Optically Induced Lattices and Defects . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3 Linear Defect Modes in 1D Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4 Linear Defect Modes in 2D Square Lattices . . . . . . . . . . . . . . . . . . . . . 132
7.5 Linear Defect Modes in 2D Ring Lattices . . . . . . . . . . . . . . . . . . . . . . 135
7.6 Nonlinear Defect Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8 Polychromatic Light Localisation in Periodic Structures
Dragomir N. Neshev, Andrey A. Sukhorukov, Wieslaw Z. Krolikowski,
Yuri S. Kivshar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2 Polychromatic Light in Periodic Structures . . . . . . . . . . . . . . . . . . . . . 147
8.3 Nonlinear Localisation of Polychromatic Light . . . . . . . . . . . . . . . . . . 148



XII Contents

8.3.1 Collective Nonlinear Interactions in Media with Slow
Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3.2 Polychromatic Gap Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.4 Experimental Studies of Polychromatic Self-trapping . . . . . . . . . . . . 151

8.4.1 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.4.2 Nonlinear Spectral-spatial Reshaping . . . . . . . . . . . . . . . . . . . 153
8.4.3 Generation of Polychromatic Gap Solitons . . . . . . . . . . . . . . . 154
8.4.4 Interaction with an Induced Defect . . . . . . . . . . . . . . . . . . . . . 156
8.4.5 Spatial-spectral Reshaping by Interaction with a Surface . . 157

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Part III Periodic Structures for Matter Waves:
From Lattices to Ratchets

9 Bose-Einstein Condensates in 1D Optical Lattices:
Nonlinearity and Wannier-Stark Spectra
Ennio Arimondo, Donatella Ciampini, Oliver Morsch . . . . . . . . . . . . . . . . 165
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 Optical Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.3 Analysis of the Interference Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.4 Nonlinear Optical Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.5 Bloch Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.6 Landau-Zener Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.7 Resonantly Enhanced Quantum Tunnelling . . . . . . . . . . . . . . . . . . . . . 176
9.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10 Transporting Cold Atoms in Optical Lattices with
Ratchets: Mechanisms and Symmetries
Sergey Denisov, Sergej Flach, Peter Hänggi . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.2 Single Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10.3.1 Symmetries of a Periodic Function with Zero Mean . . . . . . . 183
10.3.2 Symmetries of the Equations of Motion . . . . . . . . . . . . . . . . . 184
10.3.3 The Case of Quasiperiodic Functions . . . . . . . . . . . . . . . . . . . . 185

10.4 Dynamical Mechanisms of Rectification:
The Hamiltonian Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.5 Resonant Enhancement of Transport with Quantum Ratchets . . . . 189
10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



Contents XIII

11 Atomic Bose-Einstein Condensates in Optical Lattices
with Variable Spatial Symmetry
Sebastian Kling, Tobias Salger, Carsten Geckeler, Gunnar Ritt,
Johannes Plumhof, Martin Weitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.2 Principle of Optical Multiphoton Lattices . . . . . . . . . . . . . . . . . . . . . . 196
11.3 Experimental Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
11.4 Measurements and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.5 Quantum Ratchets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

12 Symmetry and Transport in a Rocking Ratchet for Cold
Atoms
Ferruccio Renzoni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.2 Symmetries of a Rocking Ratchet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

12.2.1 The Dissipationless Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
12.2.2 Weak dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
12.2.3 Quasiperiodic Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12.3 Dissipative Optical Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
12.4 Rocking Ratchet for Cold Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

12.4.1 Biharmonic Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.4.2 Multifrequency Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Part IV Metamaterials: From Linear to Nonlinear Features

13 Optical Metamaterials: Invisibility in Visible
and Nonlinearities in Reverse
Natalia M. Litchinitser, Vladimir M. Shalaev . . . . . . . . . . . . . . . . . . . . . . . . 217
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
13.2 Optical Metamaterials: New Degrees of Freedom . . . . . . . . . . . . . . . . 219
13.3 A Route to Invisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

13.3.1 Transformation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
13.3.2 Cloaking Device: From Microwaves to Optics . . . . . . . . . . . . 222

13.4 Nonlinear Optics with Backward Waves in Negative Index
Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.4.1 Second-harmonic Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
13.4.2 Optical Parametric Amplification: Loss Compensation

in NIMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
13.4.3 Bistability in Couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
13.4.4 Bistability in Layered Structures . . . . . . . . . . . . . . . . . . . . . . . 234
13.4.5 Solitons in Resonant Plasmonic Nanostructures . . . . . . . . . . 235

13.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237



XIV Contents

14 Nonlinear Metamaterials
Ilya V. Shadrivov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
14.2 Nonlinear Response of Metamaterials: Theory . . . . . . . . . . . . . . . . . . 242

14.2.1 Nonlinear Magnetic Permeability . . . . . . . . . . . . . . . . . . . . . . . 243
14.2.2 Nonlinear Dielectric Permittivity . . . . . . . . . . . . . . . . . . . . . . . 246

14.3 Nonlinear Metamaterials: Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 246
14.4 Nonlinearity-controlled Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . 247
14.5 Electromagnetic Spatial Solitons in Metamaterials . . . . . . . . . . . . . . 250
14.6 Second-order Nonlinear Effects in Metamaterials . . . . . . . . . . . . . . . . 251
14.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

15 Circuit Model of Gain in Metamaterials
Allan D. Boardman, Neil King, Yuriy Rapoport . . . . . . . . . . . . . . . . . . . . . . 259
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
15.2 Negative Resistance Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
15.3 Diode Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
15.4 Discussion of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
15.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
15.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

16 Discrete Breathers and Solitons in Metamaterials
George P. Tsironis, Nikos Lazarides, Maria Eleftheriou . . . . . . . . . . . . . . . 273
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
16.2 Magnetic Breathers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

16.2.1 Hamiltonian Discrete Breathers . . . . . . . . . . . . . . . . . . . . . . . . 277
16.2.2 Dissipative Discrete Breathers . . . . . . . . . . . . . . . . . . . . . . . . . . 278

16.3 Magnetic Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
16.4 Electromagnetic Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
16.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289



List of Contributors

Ennio Arimondo
CNR-INFM and CNISM
Dipartimento di Fisica E. Fermi
Università di Pisa
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Università di Pisa
Via Buonarroti 2
I-56127 Pisa, Italy
morsch@df.unipi.it

Dragomir N. Neshev
Nonlinear Physics Centre
Research School of Physics and
Engineering
Australian National University,
Canberra, 0200 ACT, Australia
dragomir.neshev@anu.edu.au

Johannes Plumhof
Institut für Angewandte Physik
Universität Bonn
Wegelerstr. 8
53115 Bonn, Germany

Yuriy Rapoport
Physics Faculty
Taras Shevchenko Kyiv National
University
Prospect Glushkov 6
22 Kyiv, Ukraine
laser@i.kiev.ua

Ferruccio Renzoni
Department of Physics and
Astronomy
University College London
Gower Street
London WC1E 6BT, United
Kingdom
f.renzoni@ucl.ac.uk

internode.on.net



XVIII List of Contributors

Gunnar Ritt
Institut für Angewandte Physik
Universität Bonn
Wegelerstr. 8
53115 Bonn, Germany

Patrick Rose
Institut für Angewandte Physik and
Center for Nonlinear Science
Westfälische Wilhelms-Universität
Münster
Corrensstr. 2/4
48149 Münster, Germany
patrick.rose@uni-muenster.de

Tobias Salger
Institut für Angewandte Physik
Universität Bonn
Wegelerstr. 8
53115 Bonn, Germany

Mordechai Segev
Physics Department and
Solid State Institute
Technion-Israel
Institute of Technology
Haifa 32600, Israel
msegev@techunix.technion.ac.il

Ilya V. Shadrivov
Nonlinear Physics Centre
Research School of Physics and
Engineering
Australian National University
Canberra ACT 0200, Australia
ivs124@rsphysse.anu.edu.au

Vladimir M. Shalaev
School of Electrical and Computer
Engineering and Birck
Nanotechnology Center
Purdue University
West Lafayette, Indiana 47907, USA
shalaev@purdue.edu

Dmitry V. Skryabin
Centre for Photonics and Photonic
Materials, Department of Physics
University of Bath
Bath BA2 7AY, United Kingdom
d.v.skryabin@bath.ac.uk

Milutin Stepić
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1

Nonlinear Effects in One-Dimensional Photonic
Lattices

Detlef Kip1 and Milutin Stepić1,2

1 Institute of Physics and Physical Technologies, Clausthal University
of Technology, Leibnizstr. 4, 38678 Clausthal-Zellerfeld, Germany
dkip@pe.tu-clausthal.de

2 Vinča Institute of Nuclear Sciences, P.O.B. 522, 11001 Belgrade, Serbia
mstepic@vinca.rs

1.1 Introduction

Optical waves propagating in photonic periodic structures are known to ex-
hibit a fundamentally different behavior when compared to their homoge-
neous counterparts in bulk materials. In such systems the spatially periodic
refractive index experienced by light waves is analogous to the situation in
crystalline solids, where electrons travel in a periodic Coulomb potential [1].
Consequently, the propagating extended (Floquet Bloch) modes of a linear
periodic optical system form a spectrum that is divided into allowed bands,
separated by forbidden gaps, too, and the two different physical systems share
most of their mathematical description. Photonic band-gap materials, which
may be artificially fabricated to be periodic in three, two, or only one dimen-
sion, hold strong promise for future photonic applications like miniaturized
all-optical switches, filters, or memories [2]. Here novel opportunities are of-
fered when nonlinear material response to light intensity is taken into account.
When studying such nonlinear photonic crystals it turns out that light propa-
gation is governed by two competing processes: linear coupling among different
lattice sites and energy localization due to nonlinearity. For an exact balance
of these counteracting effects self-localized states can be obtained, which are
called lattice solitons [3–6].

Uniform one-dimensional (1D) waveguide arrays (WAs) may be under-
stood as a special case of 1D photonic crystals with a periodicity of the re-
fractive index scaled to the wavelength of light. These arrays consist of equally
spaced identical channel waveguides, where energy is transferred from one site
to another through evanescent coupling or tunnelling of light. Although such
arrays share many of their linear and nonlinear properties with other periodic
systems in nature, for example excitons in molecular chains [7], charge density
waves in electrical lattices [8], Josephson junctions [9], spin waves in antiferro-
magnets [10], or Bose-Einstein condensates in periodic optical traps [11], they
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have some advantages making them attractive candidates for studying gen-
eral nonlinear lattice problems: Due to the larger wavelength of light when
compared to, e.g., electrons, wave amplitudes can be directly imaged, thus
allowing for a full experimental control of input and output signals. The rel-
atively easy sample fabrication and compact experimental setups, together
with suitable working environments at room temperature without the need
for vacuum chambers, have put the optics domain at the forefront of research
on nonlinear periodic systems.

In this chapter we will provide a brief overview on light propagation and
soliton dynamics in 1D nonlinear WAs, and will discuss some recent exper-
imental results on the example of arrays in photorefractive lithium niobate
(LiNbO3). In the following section, we discuss some basic linear properties of
WAs like discrete diffraction, normal and anomalous diffraction, and meth-
ods to engineer tailored photonic band structures using different experimental
techniques and material systems. The third part is devoted to nonlinear light
propagation in 1D WAs. After discussing the instability regimes of extended
Floquet-Bloch (FB) modes in 1D lattices, which coincide with the occurrence
of discrete modulation instability, we give an overview of different types of
localized nonlinear excitations, for example multi-hump, dark, or vector lat-
tice solitons, that have been investigated in WAs. Finally, the last section is
devoted to the interaction of light with lattice defects and other light beams,
which may form the basic elements for novel applications in photonics.

1.2 Linear properties and Waveguide Array Formation

1.2.1 Band-gap Structure and Floquet-Bloch Modes
of One-Dimensional Lattices

In absence of nonlinear effects optical beams will spread in space because of
diffraction while pulses will experience temporal broadening due to dispersion.
Although diffraction is an omnipresent geometrical effect and dispersion is ma-
terial dependent and absent in vacuum, both effects occur because of different
rates of phase accumulation for different spatial or temporal frequencies. In
physics, the dispersion relation is the relation between the system’s energy (or
propagation constant) and its corresponding momentum (Bloch momentum).
The dispersion relation of linear waves in bulk or continuous media has a
parabolic form [12]. Consequently, in a 1D planar waveguide layer unlimited
transverse propagation of modes results in a continuous dispersion spectrum
with the same parabolic shape. A vivid example for a planar waveguide fabri-
cated in LiNbO3 is given in Fig. 1.1a. By a modified prism coupler setup [13]
the effective indices neff = βλ/2π have been measured (normalized to the
substrate index nsub) as a function of Bloch momentum, where β is the cor-
responding (longitudinal) propagation constant and λ is the light wavelength.
Having in mind analogies drawn between dispersion and diffraction [12, 14],
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Fig. 1.1. Experimentally measured band structures of (a) a planar waveguide and
(b) a 1D WA (grating period Λ = 8 μm). Symbols are measured propagation con-
stants. The dashed line in (a) is just a guide for the eye, whereas in (b) solid lines
show the corresponding calculated band structure

diffraction is determined by the curvature at the corresponding point of the
dispersion curve while the direction of propagation of light is normal to this
curve. As can be seen, in this example the diffraction coefficient is negative
(normal diffraction) for all propagating waves.

In media with a periodic index modulation a band structure arises with
allowed bands separated by gaps where light propagation is forbidden [12,15].
The form of the band-gap structure depends on system parameters such as,
for example, the distance between adjacent channels of the nonlinear WA and
the strength of the refractive index modulation, which can be fully controlled
in the fabrication process. To take up the previous example, an additional 1D
periodic index modulation can be formed in the planar waveguide of Fig. 1.1a
by two-beam holographic recording of an elementary grating [16]: Each refrac-
tive index maximum of the modulated pattern forms a single-mode channel
waveguide which is evanescently coupled to its first neighbors. An example
of the obtained band structure which shows the first two bands of a LiNbO3

WA is given in Fig. 1.1b. While diffraction in bulk media is always normal, in
periodic media diffraction can reverse its sign leading to regions of anomalous
diffraction, for example, within the first band for π/2<kzΛ < π and around
the center of the first Brillouin zone (BZ) in the second band. Here, kz stands
for the transverse component of the wave number, and Λ denotes the grating
period. Furthermore, diffraction may even vanish at certain points in the dis-
persion diagram (e.g., for kzΛ ≈ π/2 in the first band), allowing for almost
diffraction-free propagation of light.

Another example of a measured band structure with four guided bands
of a 1D WA with stronger modulation is given in Fig. 1.2a. Experimental
values of propagation constants are denoted by squares, whereas solid lines
correspond to numerically calculated bands. If the condition neff −nsub > 0 is
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Fig. 1.2. (a) Band-gap structure of WA with period Λ = 8 μm. (b) Intensity of FB
modes from different bands: numerical results (top) and experimental data (bottom)

fulfilled modes are guided, otherwise they are radiative. The implementation
of the prism coupling method [13] allows for the selective excitation of pure FB
modes of the periodic structure. Some illustrative examples of excited modes
are given in Fig. 1.2b. Numerical results shown in the upper rows correspond
fairly well to the experimentally obtained images measured at the samples’
output facet.

1.2.2 Fabrication of Nonlinear Waveguide Arrays

One-dimensional WAs have been fabricated in quite different materials rang-
ing from semiconductors [4,17] and photorefractives [18,19], to polymers [20],
glasses [21], and liquid crystals [22]. WAs in the semiconductor AlGaAs have
been formed by, e.g., reactive-ion etching of adequate wafers with epitaxially
fabricated layers. This semiconductor crystal possesses an instantaneous Kerr-
like focusing nonlinearity for optical wavelengths in the infrared, and typical
optical powers required to obtain suitable nonlinearites are in the range of
102–103 W. In silica-based glasses either ion exchange in molten salts or di-
rect writing using femtosecond lasers has been used. WAs in polymers have
been fabricated by UV lithography, whereas in liquid crystals a set of reg-
ularly spaced transparent electrodes has been used. In photorefractive crys-
tals, where nonlinearities are based on light-induced space charge fields and
the electrooptic effect, two different methods for WA formation have been
used so far: induction of index gratings by illumination of the crystal with
light [18], or permanent index changes due to indiffusion of titanium stripe
patterns [19]. Light-induced lattices are based on the interference of two or
more writing laser beams propagating inside the bulk sample. Such lattices
are both rewritable and dynamically tunable. One may control the coupling
between channels by adjusting the intensity of the recording light while Bragg
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reflection is defined by the angle between the interfering beams. However, the
achievable refractive index modulations are rather limited and clumsy equip-
ment is required to stabilize the interference patterns. On the other hand,
there exist several methods to fabricate permanent waveguides and struc-
tures in photorefractive crystals [23]. In LiNbO3 the method of in-diffusion
of titanium has been used to form permanent WAs with lattice periods rang-
ing from 2 to 20 microns. Furthermore, in-diffusion of impurities like iron or
copper may be used to tailor the photorefractive properties of the material.
Besides its wide use in nonlinear optics, for example for frequency conversion
and fast optical modulation of light, LiNbO3 possess a rather high nonlinear
index change at very low light intensities. However, this material is also sen-
sitive to holographic light scattering and has a rather long build-up time for
nonlinear index changes in the range of seconds or even minutes.

1.3 Light Localization and Lattice Solitons

1.3.1 Lattice Solitons

Lattice solitons are localized structures which exist due to the exact balance
between periodicity and nonlinear effects. They comprise both discrete and
gap solitons. Discrete solitons exist in the first (semi-infinite) band-gap due
to total internal reflection. Near the top of the first band, which is located
at the center of the first BZ (see Fig. 1.1b), where beam diffraction is nor-
mal, unstaggered (adjacent elements are in-phase) discrete solitons may exist
provided that a self-focusing or positive nonlinearity is present [4,24–27]. The
prediction of the existence of fundamental optical lattice solitons in WAs dates
back to 1988 [3], and ten years later the group of Silberberg succeeded in the
experimental observation of such solitons in a Kerr-like focusing medium [4],
which has stimulated intense research in this field [28–30].

Gap solitons [5,7,31–33] are yet another type of stable nonlinear structures
that can be observed in periodic media. Due to a nonlinear index change the
propagation constant of these solitons is shifted inside the gap in-between
two allowed bands. Fundamental gap solitons may be excited either from the
top of the second band at the edge of the first BZ (normal diffraction) in
lattices with self-focusing nonlinearity [34], or from the first band at the edge
of the first BZ (anomalous diffraction) in lattices exhibiting self-defocusing
nonlinearity [33]. In the latter case, soliton structures are of staggered form
(adjacent elements are out-of-phase) [35–37].

A recent example of discrete gap soliton formation in a LiNbO3 WA with
defocusing nonlinearity is given in Fig. 1.3a. The top image of the output
facet is taken immediately after light is coupled in and monitors linear discrete
diffraction inside the array. With increasing recording time the nonlinearity
builds up and finally the light is trapped predominantly in a single channel.
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Fig. 1.3. Gap soliton formation in a LiNbO3 WA with period Λ = 7.6 μm at the edge
of the first BZ of the first band. (a) Output intensity for single-channel excitation
with input power Pin = 30 μW. (b), (c) Related BPM simulations for the linear (b)
and nonlinear (c) case

The inset shows the corresponding interferogram of the output light with
a superimposed plane wave, which represents an experimental proof for the
staggered amplitude of the formed soliton. A numerical simulation (based on
a beam propagation method (BPM)) which corresponds to the case of discrete
diffraction is presented in Fig. 1.3b, while Fig. 1.3c shows the nonlinear case
of stable soliton propagation inside the gap.

1.3.2 Discrete Modulational Instability

Experimentally, discrete and gap solitons may be obtained through the mech-
anism of modulational instability (MI) of a wide input beam. Discrete MI
represents a nonlinear phenomenon in which initially smooth extended waves
of the periodic system (FB modes) disintegrate into regular soliton trains un-
der the combined effects of nonlinearity and diffraction. It has been predicted
that FB modes exhibiting anomalous diffraction become unstable in the pres-
ence of self-defocusing nonlinearity while modes exhibiting normal diffraction
break up under the effect of a self-focusing nonlinearity [3,35,38–40]. Experi-
mentally, this has been proven for the first time in AlGaAs arrays exhibiting a
focusing cubic nonlinearity [41], followed later by related experiments in both
quadratic [42] and defocusing WAs [43].

An example of numerical and experimental evidence of discrete MI in
LiNbO3 in the first and second band is presented in Fig. 1.4 [44]. The experi-
mental pictures on the top consist of 75 intensity line scans each, which have
been taken from the output facet every minute, mimicing the time evolution
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Fig. 1.4. Discrete MI in a defocusing WA: Comparison of experimentally measured
and simulated light intensity at the output facet. (a) Edge of the first BZ in the first
band for Pin = 10 μW (top) and related numerical simulation (bottom), and (b) at
the center of the first BZ in the second band for Pin = 21 μW (top) and related
numerical simulation (bottom)

of light intensity. Discrete MI may be observed only for a limited region of
in-coupled light power in-between lower and upper MI thresholds [39]. Here
the upper threshold arises from saturation of the nonlinearity, which stabi-
lizes the system by decreasing the nonlinear gain and increases the threshold
for the onset of MI.

1.3.3 Discrete Vector Solitons

Vector solitons [45] are composite structures that consist of two or more com-
ponents which are individually incapable to form stable structures, but which
mutually self-trap in a nonlinear medium. Discrete vector solitons (DVS) in 1D
WAs are yet another, more complex class of vector solitons which have been
investigated both theoretically [46–49] and experimentally [50,51]. Recently it
has been recognized that both complex vector structures whose components
stem from different bands [52–54] and composite band-gap solitons [55, 56]
may be found in nonlinear periodic systems, too.

First experiments on DVSs in 1D media have been performed by Stege-
man’s group using AlGaAs WAs with cubic nonlinearity [50], where both TE
and TM components have a single-hump structure. Whereas in these me-
dia a separation of four-wave mixing processes and cross-phase modulation
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Fig. 1.5. Discrete vector soliton formation. (a) Stationary profiles of TE (lhs)
and TM modes (rhs). Diamonds, squares, triangles and stars correspond to ν =
−5, −1, 0 and 1.1. (b) Measured stationary output of a DVS for mutually incoher-
ent input beams with power ratio PTE/PTM = 1.5, both components together (top),
TE (middle) and TM component alone (bottom, amplified 8 times)

is possible, these two terms are non-separable in arrays with saturable non-
linearity [51]. Here the power of the dominating TE mode grows in a similar
fashion as the on-site mode from Ref. [57], giving rise to speculations that such
iso-frequency DVSs could be moved and routed across the array. Interestingly,
the TM mode exhibits a splitting into a two-hump structure. Fig. 1.5 shows
results obtained for a LiNbO3 WA with saturable defocusing nonlinearity.
Numerically obtained stationary profiles of TE and TM modes for different
values of soliton parameter ν are presented in Fig. 1.5a. The shape of the DVS
slightly changes for different power ratios PTE/PTM, however, the center is
mostly TE polarized while tails have dominant TM polarization. An experi-
mental example for mutually incoherent input beams is given in Fig. 1.5b. As
predicted, a dominating single-hump TE polarized component and a weaker
double-humped TM component are observed [51].

1.3.4 Higher Order Lattice Solitons

It is well known that even 1D lattices support a wide spectrum of various
strongly localized modes. Except the most often studied on-site and inter-site
solitons (modes A and B, respectively) [58–64], various forms of lattice solitons
such as twisted [36,61,65], quasi-rectangular [66], multi-hump solitons [67–70],
and higher-order soliton trains [71] have been studied as well. Higher order
lattice solitons are complex structures which may be intuitively viewed as a
nonlinear combination of on-site solitons residing in adjacent channels. Such
multi-hump structures are stable above a critical power threshold which can
be estimated by linear stability analysis [68].

Recently, higher order lattice solitons have been observed experimentally
in a Cu-doped LiNbO3 WA using simultaneous in-phase excitation of two
or three channels. Stationary profiles of such multi-humped solitons are pre-
sented in Fig. 1.6a. Experimentally observed images of an even two-hump
soliton, which has been excited by two individual in-phase Gaussian beams,
and a three-soliton train, which has been excited by a single super-Gaussian
beam, are shown in Fig. 1.6b. The corresponding numerical results are given
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Fig. 1.6. Higher-order solitons in a WA. (a) Stationary profiles of an even two-hump
soliton (lhs) and a three-soliton train (rhs). (b) Experimental images on the output
facet for input power Pin = 10 μW. (c) BPM results showing stable propagation of
two- and three-channel input excitations

in Fig. 1.6c. Generally, the performed investigations indicate that the here
used excitation of multi-humped solitons is quite efficient even in rather short
arrays and confirm the possibility of dense soliton packing in form of soliton
trains.

1.3.5 Discrete Dark Solitons

As noted in Ref. [59], the modes A and B can be seen as two dynamical states
of a single mode moving across the array. The difference in their energy is
related to the Peierls-Nabarro (PN) potential, which represents a barrier that
has to be overcome in order to move a discrete soliton half of the lattice period
aside. In media with cubic self-focusing nonlinearity the PN potential grows
with increase of mode power, thus disabling stable propagation of mode B and
free steering of large amplitude solitons [60,62]. On the other hand, in arrays
with saturable nonlinearity it has been discovered that the PN potential can
vanish and reverse its sign [36,63,72]. Therefore stable propagation of mode B
becomes possible and solitons may be steered through the lattice. Numerical
evidence of stable propagation of bright inter-site modes were presented for
both saturable [63] and cubic-quintic nonlinearities [73].

Beside bright solitons 1D lattices may support also dark discrete soli-
tons [74–77]. Such solitons have one or more dark elements on a constant bright
background and possess a π phase jump across the center of the structure. In
LiNbO3 arrays it has been demonstrated both analytically and experimentally
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mode Aa) mode Bb)

Fig. 1.7. Formation of discrete dark solitons. (a) Phase profile of unstaggered on-
site dark soliton, formation of stable soliton state and guiding of a weak probe beam,
respectively. The inset shows the corresponding interferogram. (b) The same for the
unstaggered inter-site dark soliton

that the dark mode B can propagate in stable manner, too [64,76]. Experimen-
tal results on dark soliton formation in a LiNbO3 WA are given in Fig. 1.7 [76].
On the lhs the situation for mode A with a phase jump located on-channel is
monitored. The first row shows linear discrete diffraction of the dark notch,
while in the nonlinear case (second row) a narrow dark soliton with staggered
phase profile (see inset) is formed. The rhs shows the analogue situation for
mode B, where the tailored input light pattern has been shifted by half a
lattice period to locate the phase jump in-between channels. The lowest rows
show the guiding of weak probe beams that are launched after the pump light
was turned off. Here for mode A a single waveguide is formed while for mode
B a two-channel-wide guiding structure is obtained.

1.4 Interactions of Light Beams in One-Dimensional
Photonic Lattices

Among the most interesting properties of spatial optical solitons is the non-
linear interaction that takes place when solitons intersect or propagate close
enough to each other within the nonlinear material [78]. Especially in discrete
media like coupled WAs, a realization of all-optical functions would strongly
benefit from the inherent multi-port structure of the array. Therefore, optical
lattice solitons are prominent candidates to become main information carri-
ers in future all-optical networks, and many new applications like all-optical
switching [79–83], steering [6,7,21,63,84–87], and amplification [88] have been
proposed.

1.4.1 Interactions with Defects

Having in mind that perfectly periodic media do not exist, several groups
have investigated the interaction of lattice solitons with various structural
defects. Generally, defects can be created by changing the spacing of two
adjacent waveguides in an otherwise uniform array [89], by variation of the
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effective index or the width of a single channel [90, 91], or by optical induc-
tion techniques [92]. Defects can either attract or repel solitons, and soliton
trapping has been investigated in the presence of both linear and nonlinear
defects [93]. In modulated arrays additional defects can be used for Bloch wave
filtering [91], and the number of bounded modes in an array can be dynami-
cally controlled [90]. On the other hand, uniform linear WAs with nonlinear
defects have been proposed as suitable candidates for the observation of Fano
resonances [94].

1.4.2 Blocker Interaction

Weak probe beams launched into a lattice will spread quickly in transverse
direction because of evanescent coupling of energy among adjacent sites. How-
ever, diffraction may be considerably reduced if the beam is launched at an
angle corresponding to diffraction-less propagation [13]. Recently, interactions
of such low-power (linear) probe beams with both coherent [95] and incoher-
ent bright blocker solitons [96] have been studied in Kerr-like semiconductor
WAs. In defocusing and saturable LiNbO3 arrays both bright and dark blocker
solitons were used for probe beam deflection [97]. It has been also realized that
such nonlinear processes, of which an example is presented in Fig. 1.8, are suit-
able for the realization of all-optical beam splitters with adjustable splitting
ratios.

1.4.3 Collinear Interaction

Interactions and collisions of discrete solitons have been investigated mainly
numerically [7, 98–101]. Depending on the relative phase between the beams,
their amplitude and the type of nonlinearity, soliton repulsion, fusion, and
fission as well as energy transfer and oscillatory behavior have been observed.
In arrays exhibiting a cubic nonlinearity and, in most experimental realiza-
tions, also in saturable arrays, strong soliton beams are pinned to a certain
channel. Therefore, mostly interactions of co-propagating parallel beams have
been investigated experimentally [102, 103]. Fig. 1.9 presents an example of
co-propagating solitons launched in-phase into two channels of a LiNbO3

WA [103]. Fig. 1.9a depicts a comparison between experimentally (top) and
numerically (bottom) obtained results in the linear case of discrete diffraction.
In the lower power regime (Fig. 1.9b) soliton fusion in the central channel is
observed, a process that does not occur in cubic media [102]. In the region
of higher power (Fig. 1.9c) an almost independent soliton-like propagation
(pinning) of the two beams is found. Interestingly, in the case of out-of-phase
beams in discrete media with self-defocusing nonlinearity, a pure oscillatory
behavior of beams is found by means of numerical simulations [103].

Interactions of counter-propagating solitons in 1D WA have been exper-
imentally investigated in both LiNbO3 [104] and strontium-barium niobate
crystals [105]. Main result is the experimental confirmation of the existence
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Fig. 1.8. (a) Interaction scheme of a weak probe beam with a counter-propagating
bright blocker soliton. (b) Experimental setup (for notation see Ref. [97]).
(c), (d) Temporal evolution of the intensity on the output facet when a low-power
probe beam and a bright soliton beam of higher power intersect. (e), (f) BPM sim-
ulation of steady-state propagation of probe beam (propagation downwards) and
bright soliton (propagation upwards), respectively

of three dynamical regimes predicted theoretically [106]. For low input power
a regime of stable propagation of counter-propagating beams is found where
vector solitons are formed. As this stable co-existence of counter-propagating
beams does not exist in bulk media, this proves the stabilizing effect of the
lattice on soliton propagation. However, when the input power is increased, in-
stability occurs also in the lattice leading to discrete beam displacements, and
finally a regime of high optical power is reached showing chaotic dynamics.

Beside in uniform WAs, various nonlinear effects have been investigated in
engineered arrays [83, 107], binary arrays [108], double-periodic lattices [17],
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Fig. 1.9. Comparison of in-phase interaction of two collinearly propagating beams
for different input powers in a defocusing lattice. Experimental output on endfacet
(top) and BPM simulation (bottom). (a) Discrete diffraction, (b) fusion of solitons
at low power, and (c) soliton-like propagation for higher input power

chirped arrays [109] and arrays of curved waveguides [110]. Some other types of
lattice solitons such as incoherent solitons [111], random phase solitons [112],
polychromatic solitons [113] and surface solitons [114] will be covered in detail
in other chapters of this book.
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2.1 Introduction

Liquid crystals (LC) are molecular dielectrics encompassing several properties
of both liquids and solids; in particular, they are often characterized by an
order parameter which can be employed to distinguish among possible LC
phases. In the nematic phase, liquid crystals show a significant degree of
orientational order, their elongated organic molecules being aligned in a mean
direction in space, as described by a vectorial field n called director. Since most
nematics are derivative of benzene, they feature “cigar-like” molecules; hence,
the macroscopic system can be regarded as an optically uniaxial crystalline
fluid. The dielectric tensor

←→
ε(r), describing the optical polarization of the

medium, can be expressed as←→ε =
←→
R † ·←→ε NLC ·

←→
R , with←→ε NLC = [ε⊥, ε⊥, ε‖]·

I, Iij = δij (δij is the Kronecker delta) and
←→
R (n) a rotation tensor. The

steady-state director configuration is obtained as an extremal point of the
action integral I =

∫
Ldxdy dz, whose density L defines the energy spent

by the molecular system to hold a specific director configuration (Frank free-
energy formulation) [1]. The energy density L can be further expanded into
elastic Lel and electromagnetic Lem terms: L = Lel + Lem. The contribution
Lel can be evaluated in the framework of the elastic continuum theory and,
in the single constant approximation [2], reads:

Lel =
1
2
K

[
(∇ · n)2 + (n · ∇ × n)2

]
, (2.1)

with K accounting for elastic deformations ([K] = N). The electromagnetic
contribution can be calculated by considering that the electric field induces
dipoles on the nematic liquid crystal (NLC) molecules; the latter are then
subjected to a torque and change their angular orientation towards a mini-
mum energy configuration (e.g., parallel to the applied field). The contribution



22 G. Assanto and A. Fratalocchi

describing such reorientation process is [2]:

Lem = −Δε
2
〈n ·E〉 , (2.2)

being Δε = ε‖ − ε⊥ the NLC birefringence and 〈. . .〉 denoting a square time
average. The balance between field-induced reorientation and elastic interac-
tions gives rise to the steady state distribution n, found as an extremal of the
action integral δL = 0.

2.2 Photonic Lattices in Nematic Liquid Crystals

An optical lattice can be realized in NLC by exploiting the electro-optic re-
orientational response, e.g., by embedding a layer of the material into an
electromagnetic lattice (Fig. 2.1). This is obtained by confining a thin film of
NLC between two glass plates, properly treated to provide planar anchoring in
the direction z of light propagation. The mean angular orientation of the NLC
molecules (i.e., the molecular director) is conveniently described by the angle
θ with the axis z in the plane (y,z), as sketched in Fig. 2.1b. If n2

a = n2
‖ − n2

⊥
is the NLC optical birefringence (with n‖ and n⊥ along or orthogonal to the
director, respectively), an electric field (static or low frequency) applied across
x, constant in z and periodic along y, can reorient the director and determine a
one-dimensional optical lattice with index modulation along y for x-polarized
waves. To model such a medium, we begin by calculating the steady state
director distribution, assuming a director field n = [sin θ, 0, cos θ]T . The ap-
plication of the variational derivative to L gives [3]:

K∇2
xyθ +

ΔεRF|Ex|2
2

sin(2 θ) = 0 , (2.3)

Fig. 2.1. Example of an optical lattice in a cell of thickness d filled with nematic
liquid crystals. (a) Front view, (b) side view, (c) an actual NLC sample in the
laboratory, the wires allow to bias the cell through the electrodes
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being ΔεRF = ε‖ − ε⊥ and Ex the x-component of the static electric field E.
The static electric field distribution E due to the applied voltage V can be
calculated from Maxwell’s divergence equation ∇ ·D = 0 [3]:

∂

∂x

[
(
n2
⊥ + n2

a sin2 θ
) ∂V
∂x

]

+ n2
⊥
∂V

∂y
= 0 , E = −∇V . (2.4)

The presence of an optical-frequency field can be accounted for by adding the
term ε0n

2
a|Ax|2 sin(2 θ)/4 to Eq. (2.3), being Ax the x-component of the optical

envelope A. Finally, the refractive index seen by an x-polarized optical wave is
obtained from the xx-component of the dielectric tensor←→ε xx = n2

⊥+n2
a sin2 θ.

Equations (2.3)–(2.4), together with Maxwell’s equations, model nonlinear
wave propagation in NLC lattices. They can often be reduced to a form of the
discrete nonlinear Schrödinger equation, the most general model of discrete
optical lattices [4, 5].

The NLC reorientation depends on the strength of the field Ex; hence, the
lattice index modulation can be tuned by acting on the input bias V . This
property has important consequences on the periodic system, as revealed by
its band-gap spectrum. The latter is obtained from the self-adjoint eigenvalue
problem [6]:

LΨnky = k2
zΨnky , L =

∂2

∂2x
+

(
∂

∂y
− iky

)2

+
ω2n2

c2
. (2.5)

Equations (2.5) yield the band-gap spectrum (kz as a function of ky) and
the corresponding Floquet-Bloch (FB) modes Ψnky . We numerically solved
Eqs. (2.5) and (2.3)–(2.4) with state-of-the-art numerical methods. Figure 2.2
shows our results for a cell with Λ = d = 6 μm and bias 0.7 V ≤ V ≤ 2.0 V,

Fig. 2.2. Floquet-Bloch analysis of a dielectric photonic array in PCB: (a) band-
gap diagram (V = 0.9 V), (b) width of gap 1 versus bias in NLC. The cell had a
thickness d = 6 μm and a transverse period Λ = 6 μm. (Adapted from Ref. [7] with
permission)
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Fig. 2.3. Tuning curves of the voltage-controlled NLC array of thickness d = 6 μm.
Coupling distance LC versus (a) period Λ and (b) bias V . (Adapted from Ref. [18]
with permission)

filled with a standard NLC known as PCB [7]. A characteristic band-gap
spectrum is displayed in Fig. 2.2a. It consists of bands separated by gaps
(gray areas) in which FB eigen-modes are forbidden. As the bias V increases,
the reorientation of the NLC molecules becomes stronger and the resulting
index modulation grows. Thereby, in this regime, the width of each band-
gap increases (Fig. 2.2b for V ≤ 1.3 V). This behavior is counteracted by
long-range molecular interactions (or spatial nonlocality [7–9]) which tend to
reduce the index contrast between neighboring channels. As a result, above
a certain bias the gap shrinks again (Fig. 2.2b for V > 1.3 V). Such a gap
tunability has important consequences on the propagation of lattice solitons
(see Sec. 2.4.1).

Another important quantity to describe the lattice tunability is the cou-
pling distance LC, defined as the distance upon which a complete exchange
of energy occurs between neighboring channels. We evaluate LC for variable
bias V and lattice period Λ (Fig. 2.3). Similar to the case of 1D coupled
slab-waveguides [10], LC evolves exponentially with guide spacing and bias
(Fig. 2.3a–b, respectively). It is apparent that the NLC array exhibits sig-
nificant electro-optic tunability, inasmuch as the coupling distance (hence
discrete difraction) can be adjusted by acting on the external voltage, as
visible in Fig. 2.3b. For Λ = 8 μm, LC < 1 mm for an external voltage
0.7 V ≤ V ≤ 0.8 V.

2.3 Discrete Dynamics

2.3.1 Discrete Solitons in NLC

Discrete solitary waves in NLC lattices can be studied either via asymp-
totic expansions and Lagrangian analysis [11] or by numerical methods, as
we will discuss here. Such analysis is performed by coupling Eqs. (2.3)–(2.4)
to the paraxial equation describing light propagation [3]. Figures 2.4a–d show
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Fig. 2.4. Nonlinear light propagation in an NLC lattice for various input powers.
(a) P = 0.2 mW, (b) P = 0.4 mW, (c) P = 0.8 mW, (d) P = 1mW. The PCB
lattice parameters are Λ = 8 μm and d = 6 μm

some representative results of our numerics for an NLC lattice defined by
V = 0.74 V in a PCB-filled cell with Λ = 8 μm and d = 6 μm. In the linear
regime (Fig. 2.4a for P = 0.2 mW), power discretely diffracts along the waveg-
uide array, as predicted by coupled mode theory [12]. As the optical excitation
grows, light starts reorienting the liquid crystals in the input waveguide(s)
thereby detuning them from synchronous coupling and quenching discrete
diffraction (Fig. 2.4b–c). The nonlinearity, in fact, alters the propagation con-
stants βn of the guiding channels and breaks the resonant condition in the
lattice (originated from the phase-matching between each site), thereby de-
creasing the coupling across neighboring waveguides. When the power carried
by the beam is large enough, the single input waveguide is completely detuned
(i.e. electromagnetically isolated) from the rest of the array and supports a
discrete soliton confined at one site (Fig. 2.4d).

The experiments are carried out with a near infrared (λ = 1.064 μm)
Nd:YAG laser source, imaging the light scattered out of the yz-plane with a
high resolution CCD camera. Figure 2.5 shows results for an NLC lattice with
Λ = 8 μm, thickness d = 6 μm and bias V = 0.74 V. In the linear regime (input
power P = 1 mW before the cell), light initially coupled to the fundamental
mode of a single waveguide propagates forward and diffracts in a discrete
fashion (Fig. 2.5a). By acting on the applied voltage V , the system can be
driven from continuous (1D bulk) diffraction (Fig. 2.5b leftmost portion) to
discrete diffraction (Fig. 2.5b above 0.7V), the latter being completely tunable
down to nearly no coupling (Fig. 2.5b rightmost portion). As the input power
increases and for a constant bias (V = 0.74 V), conversely, the all-optical
shift in propagation constant mismatches the excited waveguide, decreasing
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Fig. 2.5. Experimental response of the PCB lattice with Λ = 8 μm and d = 6 μm.
(a) Discrete diffraction in (y,z) for P = 1mW, transverse light spreading at the
segment 1.40 mm ≤ z ≤ 1.55 mm, (b) versus bias for P = 1mW and (c) versus input
power for V = 0.74 V, (d) discrete soliton excited by P = 10 mW for V = 0.74 V
and propagating along the input channel. (Adapted from Ref. [6] with permission)

the (evanescent) coupling between neighbors and, therefore, the amount of
discrete spreading (Fig. 2.5c). When the optical excitation is large enough
(input power P = 10 mW), light gets trapped in the launch channel and a
discrete soliton is generated in the array, in perfect agreement with theory
(Fig. 2.5d) [3, 12, 13].

2.3.2 Nonlinear Steering in NLC Lattices

The introduction of discreteness is often accompanied by breaking of one or
more symmetries, resulting in novel effects. In the case of optical lattices, dis-
creteness breaks the translational symmetry of the medium along y. From a
physical perspective, this implies that the lattice can sustain different types
of nonlinear waves (each of them with a characteristic energy and a specific
spatial configuration) as the site n is shifted by non-integer values. When a
one-site discrete soliton tries to propagate obliquely in the lattice, it would
have to jump from site to site. Assuming that the system Hamiltonian H
is bound from below [14, 15], there should be (at least) one stable solitary
wave with energy minimizing H , while all the others (stable, unstable) would
necessarily require a higher energy to be formed. As a result, any discrete soli-
ton jumping to a different site needs to overcome the energy barrier towards
the new configuration. Such a barrier plays the role of an effective nonlinear
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potential, known in literature as Peierls-Nabarro [16]. As the soliton energy in-
creases, the Peierls-Nabarro barrier increases as well and, beyond a threshold,
it forbids soliton motion across n, blocking the self-localized wave around its
most stable configuration [6,17,18]. In summary, for solitons of small enough
size (size decreases as power increases) a lattice – lacking translational symme-
try – cannot sustain discrete solitons propagating with transverse momentum
(i.e., a phasefront tilt).

Nonlinear light propagation in the array can be investigated by BPM nu-
merical simulations. Figure 2.6 displays some results for a PCB cell with
Λ = 8 μm, d = 6 μm and a bias V = 0.77 V. We launch a tilted gaussian
beam with a 2 μm-waist across x and a 10 μm-waist across y. At low power
Pin = PL = 100 μW, for a tilt angle of λ/4Λ = 1.90 degrees (which ensures
minimum discrete diffraction in the plane), the beam travels across the array
coupling from waveguide to waveguide (Fig. 2.6a). When the beam carries
enough power, however, it reorients the NLC molecules, thereby detuning
the input channel from the others; hence, the output beam shifts sideways
at the output. Figure 2.6b shows the output intensity distribution versus y
for increasing input power (vertical axis). Beam diffraction and tilt reduce
until light self-confines in the launch channel for a 2 mW power, forming a
discrete soliton with zero transverse velocity (Fig. 2.6c): light is guided by a

Fig. 2.6. Numerical experiments on nonlinear beam steering in NLC lattices.
(a) Linear (PL = 0.1 mW) discrete diffraction of a gaussian beam (ω0x = 2 μm,
ω0y = 10 μm) initially tilted by 1.90 degrees in the yz-plane, (b) transverse intensity
distribution in the output segment 1.9 mm ≤ z ≤ 2.0 mm versus y for various input
powers Pin (vertical axis), (c) discrete soliton propagation for Pin = PH = 2mW,
(d) output intensity profiles in z = 2mm for Pin = PL and Pin = PH, respectively.
(Adapted from Ref. [18] with permission)
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Fig. 2.7. Experiments. (a) Collated photographs showing discrete propagation of
a tilted (1.90 degrees) gaussian beam launched at Pin = PL = 1mW, (b) light
distribution in 1.9 mm ≤ z ≤ 2.0mm versus y for various excitations (vertical axis),
(c) collated photographs displaying nonlinear propagation for Pin = PH = 7mW,
(d) transverse intensity profiles in z = 2mm for Pin = PL and Pin = PH, respectively.
(Adapted from Ref. [18] with permission)

single channel despite the initial tilt and propagates (straight) along it. Such
steering is visble in Fig. 2.6d as a transverse displacement (with reshaping).

Figure 2.7 summarizes our results for an input gaussian beam (10 μm-waist
along y) launched with a tilt of Ψ = 1.90 degrees in an NLC lattice defined by
V = 0.77 V and realized in PCB. In agreement with our simulations (Fig. 2.6),
light diffracts in a discrete fashion at low power (Pin = PL = 1 mW) and
obliquely travels through the array. As the power is raised, a nonlinear beam
shift is observed across the plane (y,z). Figure 2.7b displays the beam intensity
versus y in a propagation segment between z1 = 1.9 mm and z2 = 2 mm (to
be compared with Fig. 2.6b). For Pin = PH = 7 mW, the all-optical detuning
is large enough to trap the injected light into a single channel, giving rise
to a discrete soliton with zero transverse momentum (Fig. 2.7c). Such light-
driven steering after 2 mm (Fig. 2.7d) is in excellent agreement with numerical
predictions (Fig. 2.6d). It should be underlined that the quoted powers are
measured in front of the cell, i.e. they are not purged of Fresnel, scattering
and coupling losses.

This power-dependent discrete beam steering opens the possibility to re-
alize all-optical switching and routing devices for optical signals. We evaluate
transmission T and crosstalk X for applications in switching or multiport
routing. Using a finite aperture of the size of a single channel, we estimate
TL = 0.86 and TH = 0.99, XL = −8.1 dB and XH = −8.2 dB for low (L)
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and high (H) excitations, respectively. Such figures show the great potential
afforded by this novel design for all-optical information processing.

2.4 Lattice Dynamics

2.4.1 Multi-gap Lattice Solitons

A single gap in the dispersion diagram of a periodic medium is known to
support gap solitons. The latter are solitary waves which originates from the
nonlinear superposition of Floquet-Bloch modes belonging to distinct bands
and close to band-edges [19–23]. Hereby we study multi-gap lattice solitons,
i.e. gap solitons originating from two (or more) different gaps and with propa-
gation constants close to the corresponding gap-edges [7]. The resulting local-
ized wave, encompassing distinct propagation constants βi, has the oscillatory
character of a multigap breather . For the sake of simplicity, we focus on two-
gap solitons.

Using (2+1)D simulations, we investigate breather propagation in the NLC
array by exciting superimposed FB modes in distinct bands (Fig. 2.8). Modes
of band 1 possess amplitude maxima in the waveguide-core regions (Fig. 2.8a,
top) and can be excited by a wide (waist ωy = 8 μm across y) gaussian beam
launched on-axis. In this case, light propagating for P1 = 0.2 mW (Fig. 2.8b,
top) exhibits the typical discrete diffraction pattern. Modes of band 2, con-
versely, have maxima between waveguide cores (Fig. 2.8a, bottom) and can

Fig. 2.8. Numerical experiments on multigap breathers. (a) FB profiles (density
plots) with corresponding index distributions (contour lines) for V = 1V (contour
lines) and ky = ±π/Λ in band 1 (top) and band 2 (bottom), (b) light propagation
for modes belonging to band 1 (top) or band 2 (bottom) for P1 = P2 = 0.2 mW,
(c) multi-gap breather generated by superimposing the previous excitations in band
1 and band 2 with a total P = P1 + P2
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be excited by a narrow gaussian input (P2 = 0.2 mW) which is centered be-
tween two neighboring channels (Fig. 2.8b, bottom). When co-launched with
a total power P = P1 + P2 = 0.4 mW, the FB modes couple via cross phase
modulation (XPM) and generate a symmetric breather which oscillates along
z in a periodic fashion (Fig. 2.8c).

We perform experiments on an array with Λ = d = 6 μm. To ensure an
adequate spatial overlap of modes in bands 1 and 2, we employ a single gaus-
sian beam of waist ωy = 5 μm centered between neighboring waveguides. In
this configuration, the overlap between the input and band 2 modes is larger,
because the intensity peaks between sites. Figure 2.9 shows our results. At low
power (P = 0.2 mW) we observe diffraction across the array (Fig. 2.9a) as in
the simulations (Fig. 2.8b, bottom panel). As the excitation grows, the higher
refractive index in the waveguide core improves the spatial superposition of
input beam and band 1 modes. When the power coupled to band 1 is large
enough, a multigap breather is formed via XPM and propagates in the array
(Fig. 2.9b). The oscillation period of the multigap breather, depending on the
small difference between the propagation constants of the sourcing FB modes,
can be precisely controlled by tuning the width of gap 1 via the input bias V.
Figure 2.9c shows the calculated width of gap 1 and the measured period ver-
sus applied voltage V . Since the gap-width has a maximum in V = 1.3 V (solid
line), for that bias the breather period exhibits a minimum (dotted line). For
V > 1.3 V the NLC nonlocal response introduces molecular reorientation even
between neighboring waveguides, thereby reducing the lattice modulation and
shrinking the gap once again (see Fig. 2.2b) with a corresponding increase in
oscillation period (Fig. 2.9c (dots)).

Fig. 2.9. (a) Low power P = 0.2 mW and (b) high power P = 7 mW light prop-
agation after launching a gaussian beam of waist ωy = 5 μm between waveguides,
(c) measured breather period (dots with error bars) and calculated width of gap 1
(solid line) versus bias V . (Adapted from Ref. [6] with permission)
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2.4.2 Light-driven Landau-Zener Tunneling

In a famous paper dated 1932, Clarence Zener disclosed tunneling between
energy levels in linear quantum Hamiltonian systems [24]. This phenomenon
was originally discussed in the case of a two-level biological system subject to
an external acceleration. Zener demonstrated that, if the imposed acceleration
was non adiabatic, different eigenfunctions of the system could connect, in spite
of their distinct properties and features, allowing the crossing of energy levels.

In photonic lattices, such tunneling can occur between FB bands, provided
a non-adiabatic acceleration (e.g. a refractive index gradient is impressed). In
this regime, optical energy initially coupled to a specific band can be tranferred
to another, altering properties such as the position of intensity maxima [25]
and/or the direction of propagation [26, 27].

We investigate Landau-Zener light tunneling by impressing an all-optical
acceleration on a one-dimensional NLC lattice. Figure 2.10 sketches the con-
cept: an intense gaussian beam (the pump) is launched straight along the
guides (Fig. 2.10 right) and produces a refractive index decrease via reori-
entation, defining two transition regions (Fig. 2.10 left). These regions can
provide a non-adiabatic acceleration to a second beam (the probe) (Fig. 2.10
right) which, having initially coupled light to a specific FB band, crosses FB
levels and transfers energy to a lower band. To tunnel light from an upper
to a lower band, a negative index change is required (Fig. 2.10 left), i.e., a
self-defocusing nonlinearity.

We refer to a sample as in Fig. 2.1, with d = 6 μm and Λ = 4 μm.
After some lengthy algebra [24], the set of equations describing the NLC

Fig. 2.10. Optically induced Landau-Zener tunneling in an array. An intense pump
beam is launched straight into the nonlinear lattice (right), giving rise to an index
change which forms two transition regions with non-adiabatic acceleration (left). A
probe, initially coupled to an upper FB band, can undergo acceleration in one of
the transition regions and tunnel to a lower band. (Adapted from Ref. [26] with
permission)
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thermo-optic response can be reduced to a dimensionless “accelerated”
Schrödinger like equation:

i
∂ψ

∂Z
+

[
1
2

(
∂

∂Y
+ iZα

)2

+ V (Y )

]

ψ = 0 , (2.6)

with periodic potential V (Y ) = V (Y + ΛY ). We then Fourier-expand the pe-
riodic term V (Y ) in a series V =

∑
n vn cos(2nY/ΛY ), retaining only the

first term v1 cos(2 Y/ΛY ). By writing the field ψ as a sum of counterpropagat-
ing plane-waves ψ = a1(Z) exp(iY/ΛY ) + a2(Z) exp(−iY/ΛY ) and projecting
them on Eq. (2.6), we finally obtain the original Zener model [24]:
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and Θ(Z) = −δZ. Equation (2.7) predicts tunneling between bands at the
exponential rate exp(−πv2

1/4 δ).
To verify that tunneling has occurred, the standard practice requires to

check the intensity distribution (position of the maxima) of the excited FB
modes. In each band, in fact, FB modes possess peaks in characteristic spa-
tial positions; hence, a close inspection of light distribution can reveal tunnel-
ing [25]. Such approach, however, cannot be effectively pursued when period
Λ and wavelength λ are comparable, as in our case. To overcome this problem,
we exploit the dispersion of the periodic lattice and monitor the transverse
velocity of the signal before and after its interaction with the accelerated
region. Since each Floquet-Bloch band exhibits a maximum in propagation
angle (the normal in the band-gap spectrum, see Fig. 2.11a, black arrows),
such maximum increasing with band-number (-order), after tunneling to a
higher-order band light can travel at a larger angle (with respect to z in the
plane (y,z)) than imposed by excitation. To elucidate this idea we numerically
solve Eq. (2.6) for V (Y ) = sin2(Y ), V0 = 1 and δ = 0.5. Figure 2.11b displays
the propagation of a beam (a linear superposition of FB modes) belonging
to band 1 at the maximum transverse velocity. As it reaches the accelerated
region, Landau-Zener tunneling to band 2 occurs and the angle of propagation
increases (Fig. 2.11c). This observable deviation unambiguously demonstrates
band-to-band tunneling.

We used samples with Λ = 4 μm, d = 6 μm filled with PCB, injecting
mutually incoherent pump and probe beams at λ = 1.064 μm. We obtain a
self-defocusing response by exploiting the PCB thermal nonlinearity near its
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Fig. 2.11. (a) Bandgap diagram of Eq. (2.6) for Vp = 0, V0 = 1 and δ = 0.5,
the black arrows indicate the maximum transverse velocities, (b) mode in band 1
propagating at the maximum transverse velocity, (c) Zener tunneling from band 1 to
band 2. The dashed line refers to the location of the pump. (Adapted from Ref. [26]
with permission)

Fig. 2.12. Beam propagating in the NLC lattice for V = 1.19 V. Discrete diffraction
in the (a) linear regime for a launched power P = 1.0mW and (b) self-defocusing
regime for P = 6.0 mW. (Adapted from Ref. [26] with permission)

phase-transition temperature [2,28]. To avoid saturation of the camera due to
the intense pump, the latter was modulated on/off and the CCD synchronized
in order to acquire images of the (cw) probe only when the pump is blocked.
In a preliminary series of experiments we characterize the lattice response by
injecting light in a single channel. Figure 2.12 displays beam propagation at
low (P = 1 mW) and high (P = 6 mW) power. In the second case thermal self-
defocusing reduces the index modulation and the beam widens in propagation
(Fig. 2.13b). Finally, the photo sequence displayed in Fig. 2.13a–b shows all-
optical Landau-Zener tunneling using a gaussian pump of y-waist wy = 15 μm
and Rayleigh distance of about 900 μm (much longer than the observation
window). When Ppump = 0 mW, probe light initially coupled at the maximum
transverse velocity in band 1 (with Pprobe = 1 mW) discretely diffracts and
propagates obliquely in the array plane (y,z). As the pump power increases
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Fig. 2.13. Experimental results in a cell biased at V = 1.19 V. Discrete probe
propagation for Pprobe = 1mW and (a) Ppump = 0mW, (b) Ppump = 25mW,
(c), (d) Ppump = 30mW. Zener tunneling is apparent in (c) and (d) as an increased
propagation angle with respect to the maximum allowed in band 1 (black arrows).
Figure (d) is the enlarged detail of (c). (Adapted from Ref. [27] with permission)

above Ppump = 25 mW an all-optical acceleration is impressed on the lattice
and tunneling of the probe takes place, forcing it to propagate at a larger angle
(Fig. 2.13b–d). Since the light remaining in band 1 is hardly distinguishable
from the background, the power transfer can be considered highly efficient.

2.5 Summary

We have reported recent progress, theoretical and experimental, on nonlin-
ear light propagation and localization in one dimensional voltage-controlled
optical lattices realized in nematic liquid crystals. These structures, taking
advantage of both electro-optic and all-optical responses of a reorientational
molecular material, exhibit large tunability and enable us to study the transi-
tion from bulk to discrete diffraction and to discrete solitons [29]. Using such
a versatile system, we have achieved discrete solitons and nonlinear discrete
beam steering, the latter enabling broadband all-optical steering and efficient
multiport routing at mW inputs. We have been able to generate symmetric
multi-gap lattice solitons and to tune their period over several oscillations. Fi-
nally, we have investigated all-optically induced Zener tunneling, proving how
it can be revealed by observing the angle of propagation (transverse velocity)
of a probe across the array; this is a novel approach to all-optical switching
in a periodic lattice.
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3.1 Introduction

The fibre optics revolution in communication technologies followed the 1950’s
demonstration of the glass fibres with dielectric cladding [1]. Transmission
applications of fibre optics have become a dominant modern day technol-
ogy not least because nonlinearities present in – or introduced into – glass
and enhanced by the tight focusing of the fibre modes allow for numerous
light processing techniques, such as amplification, frequency conversion, pulse
shaping, and many others. For these reasons, and because of the rich fun-
damental physics behind it, nonlinear fibre optics has become a blossoming
discipline in its own right [1]. The 1990’s witnessed another important devel-
opment in fibre optics. Once again it came from a new approach to the fibre
cladding, comprising a periodic pattern of air holes separated by glass mem-
branes forming a photonic crystal structure [2, 3]. This prompted the name
Photonic Crystal Fibres (PCFs). The fascinating story behind the invention
of PCF and research into various fibre designs can be found, e.g., in [4]. Our
aim here is to review the role played by PCFs in nonlinear and quantum
optics, which is becoming the mainstream of the PCF related research and
applications. Our focus will be on the areas where PCFs have brought to life
effects and applications which were previously difficult, impossible to observe
or simply not thought about.

There are currently two main PCF types. One has a solid silica core with a
periodic air-glass or glass-glass structure around it, so called solid-core PCFs
(SC-PCFs) [2], see inset in Fig. 3.5. The usual, but not exclusive, guidance
mechanism in SC-PCFs is the classical total internal reflection. Second type of
PCF is hollow core PCF (HC-PCF), where light is guided in an air core by the
photonic band gap mechanism [3, 5], see inset in Fig. 3.6. In SC-PCFs most
of the light propagates in the silica glass, as in conventional fibres. There-
fore the nonlinearity mechanisms are the instantaneous electronic response
and non-instantaneous Raman response associated with molecular motion.
The wavelength at which interesting effects occur is determined by the PCF’s
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group velocity dispersion (GVD), which can be very different from GVD in
conventional fibres [6]. The strength of the nonlinear effects is inversely propor-
tional to the effective area of the fundamental fibre mode, which in a telecom
fibre is ≈ 100 μm2, while in the PCFs it can be reduced down to ≈ 2 μm2 if the
core diameter is close to 1 μm [7]. Thus the same nonlinear effects as every-
one is used to in telecom fibres become important at different wavelengths
and for the powers 10 to 100 times less when a SC-PCF is used instead.
The nonlinearity may also be enhanced in non-silica PCFs [8, 9] with conse-
quent changes to the dispersion. The combination of strong nonlinearity with
flexible dispersion control via cladding and core designs has been the main
reason for the continuing stream of new experiments, modeling and theories
relying on opportunities offered by PCFs. Production of HC-PCFs guiding
via a photonic-band gap with losses order of few to tens of dB/km [5,10] has
matured relatively recently. Therefore their exploitation for nonlinear applica-
tions is still in its initial stage. HC-PCFs can be used for the guided delivery of
high power pulses [11,12], offering such obvious advantages as tight focusing,
choice of dispersion, long interaction length and low loss to out-perform capil-
lary waveguides in frequency conversion [13], pulse shaping [14] and quantum
optics applications [15].

In the second section we briefly review the vast area of supercontinuum
generation and frequency conversion in PCFs, which has been previously
described in excellent reviews, see, e.g., [16–19].

In the third and most detailed section we focus on properties of optical
solitons in SC-PCFs and their prominent role in supercontinuum generation.
There we summarize our very recent and few year old results and give a fairly
detailed account of the work done by other groups. In the next two sections we
review results on pulse compression and nonlinear and quantum optics with
HC-PCFs.

3.2 Supercontinuum Generation and Frequency
Conversion: Techniques and Applications

3.2.1 Femtosecond Supercontinua

An area of great recent interest has been supercontinuum generation in SC-
PCF and in conventional optical fibres, see Fig. 3.1a. The initial impetus came
from the work of Ranka et al. [6] demonstrating a supercontinuum spanning
more than two octaves from 400 nm to 1600nm, see Fig. 3.1b. Broad contin-
uum spectra had been observed before, but only with high energy (∼ tens
of μJ or above) pulses in bulk solids or liquids [20–22]. What was new was
the low energy pulses used, only a few nJ, in a small-core optical fibre [6,23].
The other important factor for PCFs is that the chromatic dispersion required
can be achieved in the visible and near IR [24], and particularly at the 700–
900nm range of the ubiquitous Ti:sapphire modelocked laser. In this section
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Fig. 3.1. (a) Photograph of a supercontinuum. 100 fs, 800 nm pulses enter a 2 μm
core PCF from the bottom. (b) Femtosecond supercontinuum generated under con-
ditions similar to (a). Dashed line is the pump spectrum. Reprinted from [6]. (c) and
(d) Output spectra as a function of power for a 5 μm core PCF pumped with
0.6 ns, 1064 nm pulses with 1m and 20m length respectively. The MI peaks are
clearly visible in (c), converting into a broad flat continuum over a longer length
(d). Reprinted from [25]

we shall review the state of the art for femtosecond supercontinua, similar
to this initial result, and also for continuum and frequency conversion using
longer, picosecond to nanosecond pulses and even cw. This division arises
from the underlying physics of the initiation of the continuum: with short,
femtosecond, pulses the rapidly changing intensity, dI/dt, at the rising and
falling edges of the pulse gives rise to strong self-phase modulation (SPM).
For picosecond and longer pulses the pulse edges are less important, we can
consider the pulses as quasi-cw undergoing classical four-wave mixing (FWM)
under a third-order nonlinear susceptibility, χ(3).

There are two pressing reasons that femtosecond supercontinua may be
necessary. The first is in modelocked laser carrier-envelope phase stabilisa-
tion and frequency metrology; the second is in time resolved studies, where
the sliced continuum can provide 200 fs pulses at selected wavelengths. Fem-
tosecond supercontinua are also often used for optical coherence tomogra-
phy (OCT) [26], where excellent spatial resolution can be obtained. In this
case there is less need for a femtosecond source. An OCT system requires
bandwidth (for axial resolution) and high repetition rate for fast scanning
with at least one pulse per pixel.
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We shall consider first supercontinuum for femtosecond laser pulse sta-
bilisation and frequency metrology [27, 28]. In this application there is less
emphasis placed on the spectral envelope of the supercontinuum; as long as
there is sufficient light at the required f and 2 f frequencies to achieve a
phase-locked loop, that is enough. What is vitally important though is that
the coherence is maintained. Dudley and Coen calculated numerically [29] how
the first order coherence in the supercontinuum spectrum varies with propa-
gation distance and with input pulse duration. These simulations clearly show
that although the spectrum may be very similar for input pulses of different
duration, only pulses of ≤ 50 fs duration will yield good coherence over the
full spectral bandwidth. The predictions are borne out by experiment [30]
and by the evidence of the many successful metrology or stabilization [27,28]
schemes using short pulses, and the failure of attempts to use 75 fs laser pulses
to the same ends, even by the same research teams [28]. The simulations also
point to a direction where good coherence is possible, even with long pulses,
namely with very short fibre lengths, where the spectrum appears as a SPM
spectrum. As well as being useful for frequency metrology, continuum which
maintains coherence can be compressed into shorter pulses [31].

For some applications the spectral flatness is of as great importance as the
spectral bandwidth and coherence. Long-pulse continua tend to give flatter
spectra [6, 23], but where short pulses are required smooth spectra can be
obtained by remaining in the regime of SPM, without soliton formation and
breakup [32]. This has been demonstrated by using a PCF with a small normal
dispersion [26], or by using very short lengths of PCFs with anomalous dis-
persion [8,29]. Multiphoton microscopy [33], fluorescence lifetime imaging [34]
and coherent anti-stokes Raman scattering (CARS) spectroscopy [35] have all
be demonstrated using femtosecond continua generated in PCF.

3.2.2 Long-pulse Supercontinua

For pulses longer than a few picoseconds modulation instability (MI) over-
takes SPM as the dominant spectral broadening process at low power [36],
see Fig. 3.1c. In contrast to the fs pulses considered above, longer pulses
have comparatively small dI/dt, and pulse walk-off between different spec-
tral components is not significant. The dynamics observed can be considered
using a cw approximation [36]. MI of cw or quasi-cw beams is a well known
phenomenon in optical fibre in this regime [1]. In the frequency domain MI
corresponds to FWM in which two degenerate pump photons create signal
and idler photons equally spaced in frequency about the pump, see Fig. 3.1c.
The χ(3) nonlinearity provides coupling of the phasematched fields, and for
a pump wavelength in the anomalous GVD regime broad MI bands appear
close to the pump wavelength. Then generated frequencies serve as the pump
fields and the MI process develops in the cascade manner, see Figs. 3.1c, 3.1d.

The first ps/ns continua, based simply on placing the fibre zero GVD
close to the pump wavelength, yielded spectra spanning only to 500 nm from
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a 1064nm pump [25,37], see Fig. 3.1c, 3.1d. Extension into the visible has been
achieved by dual wavelength pumping [38], by pumping nano-core fibres at
532nm [39], by pump wavelength conversion by FWM followed by supercon-
tinuum generation [40], by fibres with changing zero GVD wavelength, either
piecewise using multiple fibres [41] or continuously using a tapered fibre [42]
and most recently and simply by using uniform fibres designed to match the
group velocity of the long wavelength parts of the continuum to the shortest
possible wavelengths [43–45]. Development of MI along the fiber length results
in generation of a train of quasi-solitonic pulses, which implies that the cw
generated continuum can ultimately acquire some features of the femtosecond
one. Applications of ps-ns continua include confocal microscopy [46] and fibre
analysis [12], with sufficient impact for commercial product offerings.

It is often considered that phasematching for MI can only occur in the
anomalous dispersion regime, however this is only so if one simply considers
dispersion terms up to β(2) [1]. With sufficiently large higher even-order dis-
persion, β(4), β(6), there can be phasematching for pump wavelengths in the
normal dispersion regime [25, 36, 47, 48]. Typical PCFs with zero dispersion
wavelengths in the visible/near-IR range do have large and positive β(4), which
allows phasematching for pump wavelengths in the normal dispersion regime.
In contrast to the broad MI gain bands close to the pump wavelength in the
anomalous regime, the phasematched wavelengths for the normal regime are
far from the pump, and much narrower band [25,36]. For this reason it is often
referred to by the frequency domain nomenclature FWM. In the time domain
the period of modulation of the MI is only a few cycles of the carrier pump
wave (e.g. in [25] can be as low as 2 cycles).

In the long-pulse regime there has been a revisiting of the possibility of
generating correlated and entangled photon pairs in fibre. This was attempted
using the MI available in conventional fibre, but the signal was swamped by
spontaneous Raman generation in the idler band. The FWM/MI signal grows
quadratically with pump power, whereas the spontaneous Raman only grows
linearly. At high power this favours FWM/MI, but at the very low powers
required for generating single photon pairs Raman generation can dominate.
A solution is offered with the widely spaced FWM phasematching available
in the normal dispersion regime of PCF, yielding high count rates and low
background [49] compared with previous results for the anomalous regime in
PCF or conventional fibres [50, 51]. Further rich phasematching is attainable
in birefringent fibres through vector modulation instability, with pump, signal
and idler fields not necessarily on the same axis of the fibre [48], which has
been seen in conventional fibres [52] and in PCF [53]. This has been suggested
as a means of reducing raman noise in pair-photon generation [54]. PCF is a
particularly interesting fibre for the study of these effects because of the ease
with which birefringence may be introduced through asymmetry in the core
or cladding.

As well as the χ(3) process discussed above, the acousto-optic interac-
tion has also been found to be significantly affected by the PCF cladding
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structure [55]. In particular, the nano-sized core of PCFs increases five fold
the threshold of the stimulated Brillouin and significantly alters the Brillouin
spectrum.

3.3 Solitons in Solid-core PCFs and Their Role
in Supercontinuum Generation

3.3.1 Soliton Fission and Intrapulse Raman Scattering

The nonlinearity enhancement in small solid core PCFs described in the in-
troduction means that for the same dispersion, pulse duration and energy the
single soliton pulse in a telecom fibre becomes a multi-soliton one (∼10’s order
soliton) in a small core PCF. Evolution of the multi-soliton pulse over a length
shorter than the GVD length is dominated by the self-phase modulation pro-
ducing symmetric spectral lobes and accompanied by the compression in time
domain [56]. After the point of maximal compression the Raman effect and
higher order dispersions break the pulse up into single solitons and residual
radiation. This process is often referred to as soliton fission [32]. Emerging
solitons are still imperfect due to perturbations and continue to shake off
radiation. They travel through the fibre embedded into a sea of dispersive
waves, which leads to generation of yet new frequencies and further spectral
broadening. The above scenario has been modeled and seen before the inven-
tion of PCFs, see, e.g., [57], but most of the how and why questions have
remained without the answers until recently. PCFs arrived at a time when
experimental techniques allowing simultaneous temporal and spectral studies
of complex optical signals have become widely known [58] and the theoretical
tools of soliton science have matured to a level which allows us to approach
complex problems confidently. The combination of these factors has led to
the significant advances in our knowledge about physics of solitons in optical
fibres, which is reviewed here.

Solid-core PCFs can, uniquely, provide anomalous dispersion in the region
700–1100nm, covering modelocked Ti:sapphire, Nd and Yb lasers, and soli-
tons were observed in the earliest PCF experiments [59]. In the most typical
experiments when small core PCFs are pumped not far from the zero GVD
wavelength with 100 fs pulses having peak powers of few to 10s kW the du-
ration of the most intense of the emerging solitons is order of few 10s of fs.
Such short pulses are readily influenced by the intrapulse Raman scattering,
which downshifts the soliton frequency [1]. The red shift of the carrier soli-
ton frequency is by no means a perturbation in PCFs and fibre parameters
such as GVD and effective area felt by the soliton can vary substantially over
even a short fibre length, profoundly affecting soliton evolution [60–62] and
collisions [63, 64]. The soliton self-frequency shift in PCFs, controlled by the
choice of the appropriate fibre length and power of the input pulse, has been
used in imaging systems based on CARS and fluorescence microscopy [65].
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3.3.2 Resonant Radiation from Solitons

Solitons do not disperse, which implies that the dependence of the propaga-
tion constants of the plane waves constituting the soliton on frequency makes
a straight line whose angle determines the soliton group velocity. The straight
line representing the soliton dispersion is tangent (with a small offset) to the
dispersion of linear waves [32, 66]. The curvature of the dispersion of linear
waves changes sign at the zero GVD frequency which makes the intersection
of the soliton dispersion and of the dispersion of the linear waves topologi-
cally unavoidable and placed in the range of the normal GVD, see Fig. 3.2a.
The intersection point determines the frequency of the dispersive wave emit-
ted by the solitons (so called resonant or Cherenkov radiation) [67]. It has
been demonstrated that the resonant radiation from solitons contributes to
supercontinuum generation [32, 68–71]. Emission of resonant radiation is not
a noise amplifying parametric process. It is rather analogous to the signal of
an oscillator driven by a resonant external force. This amongst other things
implies that the radiation together with the soliton form a coherent part of
the supercontinuum. Resonant radiation makes a dominant contribution into
spectral broadening for sufficiently short pump pulses, when modulational in-
stability and other noise amplifying processes are suppressed [29]. When the
frequency detuning between the soliton and the resonance increases the am-
plitude of the resonant radiation exponentially decreases and vice versa [60].

Fig. 3.2. Emission of the resonance radiation by a soliton in fibre with positive
third order dispersion. (A) Resonance conditions. Changing colors of the straight
lines schematically show detuning between the carrier soliton frequency and the
resonance. k0 is the propagation constant at the zero GVD frequency. (B) Soliton
and emitted radiation. Radiation amplitude falls down with propagation
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In the case where GVD increases with wavelength, i.e. the 3rd order dispersion
is positive, see Fig. 3.2a (which is the most typical case for supercontinuum
generation with pump around 800nm) the self-frequency shift pulls the soli-
tons away from the zero GVD point so that the resonant frequency gets de-
tuned progressively further from the solitons towards the blue side of the
spectrum. Hence the efficiency of the emission of radiation falls down quickly
as soliton propagates along the fibre, which is schematically illustrated in
Fig. 3.2b. Therefore one needs to look for other reasons explaining formation
of the continuously blue shifting with propagation short-wavelength edge of
the continuum spectra generated with femtosecond pump [43–45,72, 73].

3.3.3 Mixing of Solitons with Dispersive Radiation, Radiation
Trapping and Short-wavelength Edge of Supercontinuum

Mechanisms of the continuous blue shift of the shortwavelength edge of the
supercontinuum spectra obtained with femtosecond pump sources have been
understood only recently [44, 45]. First we should recall once again that the
Raman effect continuously pulls solitons towards redder frequencies, which
for anomalous GVD implies an increase of the group index felt by the soliton.
Hence solitons slow down with a constant acceleration. At the same time the
wave packet of the blue radiation emitted behind the soliton propagates with
constant group velocity, see Fig. 3.2b. Thus the slowing soliton will collide with
the blue radiation. The soliton locally increases the refractive index felt by the
blue radiation. It is well known that the refractive index increase acts as an
attractive potential for diffracting optical beams. According to the principle of
spatio-temporal analogy in paraxial optics, diffraction of beams is analogous
to the anomalous GVD of pulses. However, GVD of the blue radiation is
normal. Therefore the latter is reflected from (not attracted towards) the
effective potential barrier created by the accelerating soliton. Acceleration
of the potential is equivalent to presence of an effective constant force or
in our context to the linear increase of the refractive index, superimposed
on the index hump created by the soliton, see Fig. 3.3a, and [44, 45]. Thus
the radiation emitted by the soliton gets reflected from the linear potential
back towards the soliton and reflects from the soliton again. This bouncing
continues with propagation implying trapping of the radiation. Every collision
of the radiation wave packet with the soliton is accompanied by the blue shift
of the scattered radiation [43]. This frequency transformation is in its nature a
FWM process, which is disabled for solitons interacting with dispersive waves
in the ideal NLS equation, but becomes activated by the strong higher order
dispersions typical for PCFs [43, 66]. The cascade of distinguishable FWM
events converges to a continuous intrapulse FWM process [43]. The emerging
waveform is a two-color soliton-radiation bound state, with a red shifting
soliton part and a blue shifting trapped radiation component [44, 45, 74, 75].
Dispersive spreading of the radiation and its nonlinear phase modulation by
the strong red shifting soliton (cross-phase modulation) are both suppressed
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Fig. 3.3. Trapping of the blue radiation and supercontinuum formation in PCFs
with positive 3rd order dispersion. (a) Refractive index profile created by the accel-
erating solitons for the radiation. (b) Computed spectrogram for a typical supercon-
tinuum experiment showing formation of the bound soliton-radiation states. Doted
line marks the zero GVD wavelength. Data used for (b) are from [44]

by the trapping mechanism [44, 45]. Obviously the radiation trapped by the
soliton is delayed together with the latter. However, for normal GVD the group
velocity decreases towards shorter wavelengths, which is consistent with the
blue shift of the radiation.

It is important to realize that solitons can robustly trap radiation at short
wavelengths, provided that both are group-velocity matched. As the group
delay at short wavelengths is mainly determined by the material dispersion of
silica and is not changed by the fibre structure, a practical fibre design counter
intuitively needs to engineer the group delay of the longest wavelengths in the
continuum in order to broaden the spectrum on the short wavelength side. The
trapping of blue shifting radiation by red shifting solitons can be clearly seen
on the time-frequency spectrograms, see Fig. 3.3b. Since the soliton creates
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only finite potential barrier a small part of the blue radiation leaks through it
forming dispersive wave joining all the trapped radiation bunches in Fig. 3.3b.
Raman shifted solitons are themselves constantly shaking off some radiation
even without presence of the higher order dispersions [76]. This radiation is
not reflected by the solitons (because its GVD is anomalous) and it fills the
space between them, see Fig. 3.3a, 3.3b.

3.3.4 Red Shifted Radiation and Soliton Self-frequency Shift
Cancelation

In the opposite case, where the GVD is decreasing with wavelength
(negative third order dispersion), the resonant radiation is red detuned from
the soliton. The radiation escapes from the soliton on the side where the lin-
ear potential due to acceleration decreases, i.e. emitted wave is faster than
the soliton. Hence the radiation can not get trapped by the slowing soli-
ton, see Fig. 3.4. However, the radiation is amplified with propagation in
this case, because the Raman effect pulls the soliton closer and closer to the
zero GVD point [60]. Eventually the radiation gets so strong that the soliton
recoils against it. As a result the soliton acceleration and the frequency shift
drop significantly and nearly disappear [60,77,78], see Fig. 3.4. The powerful

Fig. 3.4. Experimentally measured spectral evolution along the fibre length showing
emission and amplification of the red shifted resonant radiation, which recoil on the
soliton compensates the soliton self-frequency shift. Inset shows the fibre used in the
experiments. Dashed line marks the zero GVD wavelength. Reprinted from [60]
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Fig. 3.5. Experimentally measured spectrogram showing emission of the strong red
radiation and radiation trapping effect in PCFs with negative 3rd order dispersion.
The wave 1 of the resonant radiation is emitted by the soliton 1. Soliton 2 reflects
part of this wave, traps it on its tail and simultaneously transforms frequency of the
reflected radiation creating the wave 2. Doted line marks the zero GVD wavelength.
Reprinted from [77]

radiation wave reflects from the second soliton, see Fig. 3.5. The frequency
of the reflected wave blue shifts and the wave itself faces the rising linear po-
tential and gets trapped, see Fig. 3.5. The frequency of the trapped radiation
increases with propagation, while the soliton frequency decreases. Trapping
and frequency conversion mechanisms are exactly as described above. The
difference here is, however, that initially the radiation has smaller frequency
than the soliton. It implies that the frequencies of the soliton and trapped
radiation are converging with propagation along the fibre. Therefore the gen-
erated spectrum fills the middle part of the continuum not its edges. This
scenario is shown on the spectrogram in Fig. 3.5.
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3.3.5 Other Soliton Effects in Solid-core PCFs

Such rich zoology of the interactions of solitons with dispersive waves appear-
ing in practically important experimental settings creates fertile ground for
further fundamental and applied studies in this area. Moreover, the solid core
PCFs have been and are planned to be used for realization of variety of other
ideas involving optical solitons. Low loss (0.3 dB/km) solid-core PCFs have
been used for soliton propagation over hundreds of kilometers in dispersion
managed transmission lines [79]. Amongst the soliton related research which is
likely to be within experimental reach soon are the spatio-temporal nonlinear
effects in multi-core fibres. Fibres potentially suitable for this purpose have
been fabricated, see, e.g. [80, 81], but no experiments with spatially discrete
solitons similar to the ones accomplished in planar waveguide arrays and pho-
tonic lattices in photorefractives [82] have been reported so far. A strong drive
towards this goal exists because the fibres will allow us to observe interplay
of temporal and spatial degrees of freedom, see, e.g., recent experiments with
two-core PCFs [83]. An interesting alternative to using multiple silica cores
could be filling the holes of photonic crystal fibres with nonlinear polymers
or liquids having large refractive index, so that the liquid channels become
waveguides in the silica surrounding [84–86].

3.4 Pulse Compression in PCFs

Once a soliton is formed in a fibre, it is very robust. Gradual changes in power
(from fibre attenuation), wavelength (from the soliton self-frequency shift),
dispersion and nonlinearity (from deliberate nonuniformity in the fibre) will
not cause the soliton pulse to break up. Rather the available energy will be
redistributed in time and frequency to yield a fundamental soliton under the
local conditions as the soliton propagates along the fibre. This robustness has
been used for adiabatic soliton compression in both SC- [87] and HC-PCF [88].
High order solitons exhibit pulse compression in the first stages of propaga-
tion [1], which has been successfully demonstrated in both solid-core [56] and
HC-PCF [89]. Non-solitonic compression of pre-chirped pulses by factors 20
to 80 in HC-PCFs has been demonstrated in [14]. In these applications PCF
provides two unique properties, firstly it can be designed with the necessary
anomalous dispersion at the pump wavelength and secondly HC-PCF has
a sufficiently low nonlinearity for high energy fundamental solitons, up to
0.5 μJ. Pulse compression has also been achieved by spectral broadening by
SPM [90] or supercontinuum generation [31] with subsequent compensation
for the chirp or spectral phase variations using dispersive fibres [90] or adap-
tive phase control [91]. Pulses as short as 5 fs have been generated in these
ways from 12 to 30 fs input pulses [56, 91], and temporal compression ratios
more than 10 [87]. In all of these compression schemes the ultimate limit on
the short pulse duration is higher order dispersion and the Raman shift.
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3.5 Nonlinear and Quantum Optics in Hollow-core PCFs

One of the initial stimuli driving research into HC-PCFs has been develop-
ment of waveguides where the guided light has only small overlap with solid
materials and therefore nonlinearity and loss are minimized. However, cur-
rently opportunities offered by HC-PCFs for research into new nonlinear and
quantum optical effects are becoming a dominant theme. Indeed instead of
using gas cells or capillaries one can fill a HC-PCF with a required gas and
conduct experiments on nonlinear and quantum optics in an environment
where a constant intensity of the diffraction free beam is sustained along the
desirable length. The fibre also can be bent so that the entire device can
be made compact. Using an enhancement factor λl/a2 [92], where l is the
constant intensity interaction length and a is the beam radius, it has been
demonstrated that the low loss HC-PCFs can beat capillary guides by the
factor ∼ 106 [13]. This remarkable efficiency boost is due to the fact that in
hollow capillary waveguides l is limited by loss and scales as l ∼ a3/λ2 [93],
while in high quality PCFs l practically equals the fibre length. This advan-
tage of PCFs has been used to dramatically reduce the threshold of stimulated
Raman scattering [13,94,95]. First, vibrational Raman lines in hydrogen have
been generated in a relatively high loss (but wide bandwidth) HC-PCF, beat-
ing the previous best pump threshold by the factor of 100 [94] and later a low
loss PCF with a narrow bandwidth has been used to demonstrate one million
times threshold reduction in generation of rotational Raman lines [13]. Driv-
ing the Raman transition away from the resonance makes the effective Kerr
nonlinearity dominate strongly over the nonlinear gain and loss. This effective
nonlinearity is about two orders of magnitude stronger than the intrinsic Kerr
nonlinearity of the HC-PCFs [96] and, in combination with the fibre disper-
sion, can be used for various nonlinear applications [97] and observation of
new types of solitons [96].

HC-PCFs represent potentially useful structures linking photonics and
telecom applications with quantum and atom optics [95, 98–101]. Acetylene
and rubidium filled HC-PCFs have been used to demonstrate electromagnet-
ically induced transparency [98, 99] (see Fig. 3.6), slow light propagation [98]
and increased resolution of the saturated absorption signal [100]. Acetylene
has a very weak oscillator strength of the molecular transition and strong
enhancement of light-matter interaction in PCFs promotes practical applica-
tions of acetylene spectroscopy. It has been recently demonstrated that the
SC-PCF having a ≈ 200 nm air hole running along its center supports guided
modes with pronounced intensity peak in the air core [101]. This geometry
promises further enhancement of light interaction with gases. The idea of light
confinement in air by periodic dielectric structures has been recently applied
for planar optical chips [102], where the micron-sized waveguides with peri-
odic cladding and cores filled with rubidium have been created and used to
demonstrate on-chip atomic spectroscopy.



50 D.V. Skryabin and W.J. Wadsworth

Fig. 3.6. Electromagnetically induced transparency signal in acytelene filled hollow-
core PCF (see inset). Reprinted from [98]

The soliton energies in SC-PCFs are rather low, corresponding to around
1mW from a typical 100fs oscillator. This is not acceptable for many practi-
cal applications requiring high energy delivery. However, higher energy soli-
tons can be observed in HC-PCF. Femtosecond solitons with megawatt peak
powers propagating in air-core PCFs and suitable for medical and micro-
machining applications have been demonstrated in Refs. [11,12,103–105]. The
dispersion in HC-PCFs is anomalous at the red side of the transmission band,
whatever the wavelength of the guidance band, because of the presence of
the bandgap edge [5, 103] and focusing nonlinearity comes from combined
contribution of the glass cladding and gas in the core. Solitons in HC-PCFs
carry energy of one to few hundreds nJ, corresponding to the output from
low energy or high repetition rate amplified laser pulses, or the pulse ener-
gies for amplified fibre lasers. There is some simple tunability of the soliton
energy attainable through fibre design (overlap of the guided mode with the
glass) [10,104,106], or through evacuating the hollow core to remove the non-
linearity of the air, or by increasing the core pressure to add nonlinearity.
The soliton frequency also can be tuned by the intrapulse Raman scattering,
which can be a combination of glass and gas contributions [11].

3.6 Summary

Nonlinear and quantum optical effects in the waveguides enhancing light-
matter interaction are going to be the driving force behind developments in
photonics for years to come. Classical applications of optical nonlinearities
for light manipulation and emerging applications for processing and transmis-
sion of quantum information will continue to benefit from and feedback onto
research into micro- and nano-structured waveguides, where photonic-crystal
fibers is an established and still very promising player.
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4.1 Introduction

The speed of light sets the maximum possible rate for transmission of in-
formation, in excess of 108 meters per second. Light pulses in optical fibers
carry bits of data around the world in sub-second time frame, enabling inter-
active global communications. There is a constant demand for increasing the
network performance in view of steadily growing information flows. It is envi-
sioned that the presently required multiple conversions between optical pulses
and electronic signals at network hubs may be eliminated in future when rout-
ing and switching of data flows is performed all-optically. This vision can be
realized if the speed of light is dynamically controlled, allowing for synchro-
nization and multiplexing of signals. Furthermore, by temporarily making the
light slower it becomes possible to compress optical signals and perform their
manipulation in compact photonic chips. Additionally, in the regime of slow
light the photon-matter interactions are dramatically enhanced, enabling the
active control of light and nonlinear transformations of signals.

Slowing down the light is a challenging physical problem. In conventional
dielectrics, the speed of light can only be reduced by a factor less than four
which is limited by the optical refractive index of available materials. The
most dramatic slowing down of light to a complete stop was reported in the
regime of electromagnetically induced transparency [1]. This phenomenon is
based on a resonant interaction of light with an atomic system and accordingly
the speed of light is very sensitive to the frequency detuning. This restricts the
effect to narrow frequency ranges limiting its applicability to communication
networks with demands for data rates in excess of 100Gb per second. In con-
trast, dielectric photonic structures with a periodic modulation of the optical
refractive index at a sub-micrometer scale can be engineered to operate at
any frequency range. Periodic modulation results in resonant light scattering,
and reduction of pulse speed by more than 100 times was registered experi-
mentally in photonic crystals [2–4]. Ultra-slow light propagation can also be
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realized based on the coupling between high-Q optical cavities [5–10]. How-
ever, in all static structures the maximum usable delay decreases for shorter
pulses which have larger bandwidth and exhibit stronger distortions due to
the effect of frequency dispersion [11]. It was suggested that the restriction
on the delay-bandwidth product, the key parameter characterizing the device
capacity to store optical signals [12], can be overcome in dynamically tunable
structures, with the exciting possibility to completely stop and then release
light pulses all-optically [13, 14].

Slow light was mostly studied in configurations where the propagation di-
rection is fixed by the waveguide geometry. In contrast, novel ways to direct
the flow of light can be realized in extended periodic photonic structures where
the familiar rules of refraction and reflection may be manipulated, including
such unconventional effects as negative refraction [15] in the direction oppo-
site to normal and self-collimation [16] of beams. The potential for slow light
propagation in two spatial dimensions was demonstrated experimentally [17]
with plane-wave excitations, yet the effect of diffraction needs to be considered
for tightly focused beams. On the other hand, in nonlinear periodic structures
a light wave can alter the refractive index and thereby adjust its own veloc-
ity, enabling all-optical switching and beam steering [18]. Most importantly,
the effect of nonlinearity is enhanced in the slow-light regime [19–21]. These
considerations have motivated our investigations on all-optical manipulation
of both the magnitude and the direction of the speed of light in nonlinear
periodic structures.

In this Chapter, we present our recent theoretical results [22–24] demon-
strating the potential for dynamically tunable slowing down and spatial
switching of optical pulses in specially designed nonlinear photonic structures.
In Sec. 4.2, we overview the methods for the reduction of the speed of light
based on dispersion control in periodic structures. In Sec. 4.3, we introduce
the photonic structures in the form of nonlinear Bragg-grating and photonic-
crystal couplers that can be used to simultaneously slow down the pulses and
redirect them between the output ports. Finally, in Sec. 4.4 we discuss pulse
routing in defect-free extended periodic structures in the form of nonlinear
Bragg-grating waveguide arrays, where the propagation direction is selected
by the internal phase structure of the optical pulse.

4.2 Dispersion and Tuning of the Speed of Light
in Nonlinear Periodic Structures

Dielectric structures with micro-scale modulations of the refractive index can
behave as metamaterials with unconventional characteristics. These struc-
tures offer new possibilities for control over the fundamental properties of
electromagnetic waves, including the tuning of the group velocity defining
the speed of optical pulses. One of the mechanisms that can slow down opti-
cal waves is Bragg scattering from periodic inhomogeneities of the refractive
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Fig. 4.1. (a) Schematic of a Bragg-grating structure, and the corresponding (b) dis-
persion and (c) group velocity dependencies. Shading in plots (b) and (c) marks the
frequency band-gap. (d) Sketch of a photonic-crystal waveguide, where circles indi-
cate the regions with reduced values of the optical refractive index

index [25], such as a Bragg grating shown schematically in Fig. 4.1a. In
periodic structures, the wave spectrum contains band-gaps at certain fre-
quency ranges, similar to energy gaps experienced by electrons in crystalline
potentials (Fig. 4.1b). In periodic structures where the propagation direction
is fixed by the waveguide geometry, the dispersion relation between the optical
frequency (ω) and the Bloch wavenumber (k) in the vicinity of band-edges is
commonly expressed as ω 
 ω0 +D2(k−k0)2, where the ω0 and k0 denote the
values at the band-edge, and D2 is the second-order dispersion coefficient. The
group velocity is found as Vg = dω/dk 
 ±2[D2(ω−ω0)]1/2, and it gradually
reduces to zero as the frequency is tuned towards the edge of a transmission
band (Fig. 4.1c). Recent experiments [2–4] reported the reduction of the group
velocity by factors exceeding 100 in photonic crystal waveguides, such as the
W1 waveguide schematically shown in Fig. 4.1d. In optical fibers with Bragg
gratings the experimentally demonstrated slow-down factor [26,27] is smaller
(up to 3), yet the overall pulse delay can be significant due to a much longer
propagation distance.

An optical pulse occupies a spectral region that is inversely proportional
to its duration, δω ∼ τ−1. Propagating pulses tend to broaden due to dis-
persion which appears because the speed of light depends on frequency. The
sensitivity to frequency detuning is inversely proportional to the group veloc-
ity, dVg/dω 
 2D2/Vg. Therefore, the pulse distortion is especially strong for
slow light in the vicinity of band edges [28]. It was suggested that dispersion
can be suppressed in specially designed structures, supporting propagation of
broadband slow light inside the transmission band away from the gap edges,
where the dispersion curve contains a point with D2 = 0. In this case, the
pulse distortion is defined by higher-order dispersion effects, which can also
be minimized [29–36].

An important aspect of slow-light systems is their tunability. Let us con-
sider the effect of the overall modification of the refractive index of the di-
electric material or special inclusions [37], which can be induced through the
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electro-optic, thermal, photorefractive, or other mechanisms. Such a change
can be understood, in the first-order approximation, as an effective shift of
band-gaps and transmission bands by δω. The sensitivity to such tuning of
the phase velocity (Vp = ω/k), which defines the characteristics of phase-
sensitive devices such as Mach-Zehnder interferometer, is enhanced by a factor
inversely proportional to the group velocity, allowing one to construct very
compact optical switches [2, 20]. For communication networks, the capability
to dynamically adjust the group velocity is desirable for the realization of
tunable pulse delays. Such tunability may be realized when the group velocity
is sensitive to the effective shift of band-gaps, i.e. dVg/dω �= 0. However, in
this case the pulses inevitably experience dispersion-induced broadening, and
there appears a fundamental limit on the delay-bandwidth product [11].

The delay-bandwidth product can be made infinitely large if the refractive
index is modified in local regions at the same time as the pulse is propagating
through the photonic structure [38]. In a recent experiment, the pulse trapping
and subsequent release was controlled by an external pump [14], and the
signal distortion was minimized. Such scheme requires precise synchronization
between the signal and pump waves. On the other hand, the need for a pump
wave may be avoided in nonlinear media, where the signal pulse can itself
induce the refractive index change.

It was shown that the simultaneous tuning of the propagation velocity and
suppression of dispersion-induced pulse broadening can be realized in media
with fast nonlinear response, where pulse may change its own propagation.
The nonlinear pulse self-action in Bragg gratings can result in the formation of
gap solitons [39], which envelope profiles remain undistorted as they propagate
through the photonic structure (see sketches in Fig. 4.2). On the other hand,
the propagation velocity of gap solitons can be theoretically reduced down
to zero, depending on the excitation conditions. Most recent experimental
observations have demonstrated that the gap-soliton velocity may be tuned
by varying the optical power [27]. Additionally, the efficiency of light coupling
into the photonic structure can be improved in the nonlinear regime.

(a) (b)

Linear propagation Nonlinear propagation

Fig. 4.2. Schematic illustration of pulse propagation in the slow-light regime though
a nonlinear periodic structure, such as Bragg-grating waveguide: (a) Broadening of
pulse with small peak intensity due to the linear group-velocity dispersion, and
(b) Nonlinear dispersion compensation and formation of a gap soliton when the
pulse energy is increased
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4.3 Slow-light Switching in Waveguide Couplers

Directional waveguide coupler has attracted a great deal of attention as a
major candidate for creation of ultra-fast all-optical switches [40–42]. This
device utilizes light tunneling between two optical waveguides placed in close
proximity to each other. In the linear regime, light is switched from one to
another waveguide at the distance called coupling length. At high input pow-
ers, intensity-dependent change of the refractive index through optical non-
linearity creates detuning between the waveguides which can suppress power
transfer between coupler arms, such that light remains in the input waveguide.
In the following, we describe the configuration of waveguide couplers enabling
the switching of slow-light pulses between the output ports. In Sec. 4.3.1,
we describe the potential of nonlinear Bragg-grating couplers for all-optical
switching of slow-light pulses, combined with delay tuning and dispersion
compensation. Then, we show in Sec. 4.3.2 that the routing of slow-light
pulses is also possible in specially designed photonic-crystal couplers, where
the switching distance can be reduced by several orders of magnitude com-
pared to Bragg-grating structures.

4.3.1 All-optical Switching in Bragg-grating Couplers

We consider the pulse propagation along two parallel waveguides, where each
waveguide contains a Bragg grating. Such structures were previously sug-
gested for the applications in mode conversion and add-drop filtering [43–47],
and their dynamical tuning through the nonlinearly-induced shift of Bragg
resonance was demonstrated [48]. It was also shown that stationary gap soli-
tons can exist in the nonlinear regime [49–51]. In the following, we reveal
the potential of such structures for all-optical switching and manipulation of
slow-light pulses [23].

The concept of the conventional coupler [40–42] is based on the effect of
complete tunneling of light between the waveguides in the linear regime. It
is therefore essential to achieve the same kind of tunneling in the slow-light
regime, when the optical frequency is tuned in the vicinity of the band-edge
associated with the resonant Bragg-reflection from the periodic grating. The
pulse dynamics under such conditions can be modeled by a set of coupled-
mode equations [52] for the normalized slowly varying envelopes of the forward
(un) and backward (wn) propagating modes in each of waveguides n = 1, 2,

i
∂un
∂t

+ i
∂un
∂z

+ Cu3−n + ρnwn + γ(|un|2 + 2 |wn|2)un = 0 , (4.1)

i
∂wn
∂t
− i

∂wn
∂z

+ Cw3−n + ρ∗nun + γ(|wn|2 + 2 |un|2)wn = 0 , (4.2)

where t and z are the dimensionless time and propagation distance normal-
ized to ts and zs, respectively, C is the coupling coefficient for the modes
of the neighboring waveguides, ρn characterizes the amplitude and phase of
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the Bragg gratings, γ is the nonlinear coefficient, and the group velocity far
from the Bragg resonance is normalized to unity. The scaling coefficients are
ts = λ2

0|ρ1|/(πcΔλ0) and zs = tsc/n0, where c is the speed of light in vac-
uum, λ0 is the wavelength in vacuum, Δλ0 is the width of Bragg resonance
for an individual waveguide, n0 is the effective refractive index in the ab-
sence of a grating. To be specific, in numerical examples we set γ = 10−2,
λ0 = 1550.63 nm, Δλ0 = 0.1 nm, ts 
 12.8 ps, zs 
 1.8 mm corresponding to
characteristic parameters of fiber Bragg gratings [27,46] with refractive index
contrast Δn 
 1.3× 10−4.

We consider the case of identical waveguides and analyze the effect of
a phase shift (ϕ) between the otherwise equivalent waveguide gratings with
ρ1 = ρ and ρ2 = ρ exp(iϕ) (with no loss of generality, we take ρ to be real and
positive), see schematic illustrations in Figs. 4.3a, 4.3b. It was shown that the
grating shift can strongly modify the reflectivity of modes with different sym-
metries [44, 46, 47], and we investigate how this structural parameter affects
the properties of slow-light modes.

In the linear regime, wave propagation is fully defined through the Floquet-
Bloch eigenmode solutions of the form, un = Un exp (ikz − iωt), wn =
Wn exp (ikz − iωt). After substituting these expressions into the linearized
coupler equations (4.1) and (4.2) (with γ = 0), we obtain the dispersion
relation between the frequency ω and the corresponding wavenumber k,
ω2(k) = k2 + C2 + |ρ|2 ± 2C[k2 + |ρ|2 cos2(ϕ/2)]1/2.

Slow-light propagation can be observed due to the reduction of the normal-
ized group velocity (Vg = dω/dk) when the pulse frequency is tuned close to
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Fig. 4.3. (a), (b) Schematic of directional couplers with (a) in-phase (ρ1 = ρ2 = 0.5)
or (b) out-of-phase (ρ1 = −ρ2 = 0.5) Bragg gratings. (c), (d) Characteristic disper-
sion, and (e), (f) normalized group velocity dependence on wavelength detuning for
the case of in-phase ((c) and (e)) and out-of-phase ((d) and (f)) gratings. For all the
plots C � 0.144. Solid and dotted lines mark different branches, note their overlap
in (f)
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the bandgap edge. We find that different regimes of slow light can be realized
depending on the structural parameters.

(i) If |ρ cos(ϕ/2)/C| > 1, the bandgap appears for ω2 < ω2
g = C2 + |ρ|2 −

2C|ρ cos(ϕ/2)|, and only a single forward propagating mode (with Vg > 0)
exists for the frequencies near the gap edges. This situation can be realized
for in-phase gratings with ϕ = 0, see Figs. 4.3c, 4.3e.

(ii) If |ρ cos(ϕ/2)/C| < 1, the bandgap appears for |ω| < ωg = |ρ sin(ϕ/2)|,
and two types of the forward propagating modes (with Vg > 0) exist simulta-
neously (in the regions with k > 0 and k < 0) for the frequencies arbitrarily
close to the gap edges. This situation is always realized for out-of-phase grat-
ings with ϕ = π, see Figs. 4.3d, 4.3f.

We now analyze linear propagation of pulses in a semi-infinite Bragg grat-
ing coupler. When the optical frequency is detuned from the bandgap, light
periodically tunnels between the waveguides with the characteristic period
Lc 
 π/(2C) defined for a conventional coupler without the Bragg grating,
see examples in Figs. 4.4a and 4.4b. The periodic tunneling appears due to
the beating of even and odd modes, which correspond to different branches
of the dispersion curves. When the pulse frequency is tuned closer to the gap
edge and (i) only one slow mode is supported, then periodic beating disap-
pears and light is equally distributed between the waveguides irrespective of
the input excitation, see Figs. 4.4c and 4.4e. Note that the light intensity at
the boundary of the second waveguide is non-zero due to the strong reflection
of forward-propagating even mode. The periodic coupling can only be sus-
tained in the slow-light regime when (ii) two modes co-exist at the gap edge,
see Figs. 4.4d and 4.4f. Therefore, the configuration with out-of-phase shifted
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Fig. 4.4. Linear transmission of incident wave coupled to the first waveguide of a
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gratings: (a)–(d) Intensity distribution (averaged over grating period) shown in the
first (solid line) and second (dashed line) waveguides for (a), (b) large frequency
detuning from the resonance and (c), (d) frequency tuned close to the band edge
with slow group velocity Vg = 0.1. (e), (f) Intensities at z = 2 cm vs. wavelength
detuning. Parameters correspond to Fig. 4.3, and the intensities are normalized to
the input intensity
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Bragg gratings is the most preferential for switching of slow-light pulses, since
for ϕ = π the dispersion of the type (ii) is always realized for any values of the
grating strength and the waveguide coupling, and simultaneously the bandgap
attains the maximum bandwidth.

At higher optical powers, nonlinear effects become important, and we
perform numerical simulations of equations (4.1) and (4.2) to model pulse
propagation. We find that the optimal regime of spatio-temporal control can
be realized, in particular, when the structure size is equal to three coupling
lengths, L = 3Lc. In the linear regime, the pulse tunnels three times between
the waveguides and switches accordingly to the other waveguide at the out-
put, however, it significantly broadens due to the group-velocity dispersion,
see Fig. 4.5a. As the input pulse energy is increased, nonlinearity may support
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Fig. 4.5. (a)–(d) Pulse dynamics inside the nonlinear coupler for different values of
the normalized peak input intensities I0 = 10−4, 3.33, 3.37, 4. Shown are the density
plots of intensity in the first (left column) and second (middle column) waveguides.
Output intensity profiles normalized to I0 at the first (solid line) and second (dashed
line) waveguides are shown in the right column. Input Gaussian pulse has full width
at half-maximum of intensity of 577 ps, and its central wavelength is tuned to the
gap edge at λ0 − Δλ0/2
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dispersionless slow-light pulses in the form of gap solitons, studied previously
in single [27] and coupled waveguides with in-phase gratings [49–51]. Most
remarkably, we find that the presence of two types of slow-light modes in the
structure with out-of-phase gratings gives rise to gap solitons which period-
ically tunnel between the waveguides while preserving a constant width, see
Figs. 4.5b–4.5d. This effect is analogous to tunneling of fast-light solitons in
twin-core rocking filters [53]. In agreement with the properties of conventional
nonlinear couplers [40–42], the coupling length is gradually extended as the
optical power is increased, resulting in the pulse switching between the out-
put waveguides. As the input power is further increased, we observe a sharp
switching when the output is highly sensitive to small changes of the input
intensity (less than 1%), cf. Figs. 4.5b and 4.5c. At the same time, the pulse
delay is also varied with optical power. The power tunability of the pulse
delay and switching dynamics can be adjusted by selecting parameters such
as waveguide coupling, and choosing the frequency detuning from the gap
edge. Such switching can be realized in compact planar devices created with
highly nonlinear materials such as AlGaAs [54] or chalcogenide glass [55].

4.3.2 Tunneling of Slow Light in Photonic-crystal Couplers

Waveguides created in planar photonic crystals offer many unique opportu-
nities for manipulating optical pulses. We present a general approach to the
design of directional couplers in photonic crystals where dispersionless rout-
ing of slow light may be realized [24]. The pulses are fully switched between
parallel waveguides at the fixed coupling length, even as the group velocity is
varied by orders of magnitude. The additional advantage of suggested struc-
ture is the short coupling length, which is equal to just several unit cells.
Such remarkable performance is enabled by the co-existence of forward and
backward modes which band-edge dispersion is exactly matched, realizing a
fundamentally different physical regime compared to the previously consid-
ered [30, 35, 56–59] photonic-crystal couplers.

To illustrate the general concept, we consider two-dimensional photonic
crystals created by a hexagonal array of holes in a Si membrane with the hole
radius of 0.3d, where d is the lattice constant. The W1 waveguide is created
when a single row of holes is absent, see Fig. 4.1d. Due to the hexagonal lattice
geometry, the coupler symmetry critically depends on the number of rows (N)
between the two W1 waveguides. When N is odd, then the coupler is sym-
metric with respect to reflection about a central line between the waveguides
(x → −x). When N is even, then the coupler becomes anti-symmetric, as it
maps onto itself only when reflection is performed simultaneously along the
two axes (x→ −x and z → −z), see example for N = 2 in Fig. 4.6a.

The tunneling of light between the coupled waveguides is possible through
the beating of two modes which are (i) co-propagating and (ii) have different
symmetries. Therefore, to realize the routing of slow-light pulses with largely
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Fig. 4.6. Example of one realization of antisymmetric photonic-crystal couplers
supporting dispersionless tunneling of slow-light pulses between the waveguides.
(a) The coupler geometry, (b) dispersion of the fundamental modes (additionally
dotted curves mark the light lines)

varying group velocities, it is necessary to have two distinct branches of dis-
persion curves with the same slope (i.e. the same sign of group velocities)
arbitrarily close to the edge of the photonic band-gap. We note that in di-
electric waveguide couplers, the following relation is always fulfilled, ω(k) ≡
ω(−k). Then, the condition (i) can be satisfied when the band-edge is
reached at a point with nonzero wavenumber inside the Brillouin zone, i.e.
dω/dk|k=k0 = 0 at 0 < |k0| < kb, where kb = π/d is the Bloch wavenum-
ber. We show in Fig. 4.6b that such situation is indeed realized in the anti-
symmetric coupler at d/λ 
 0.214. We check that the condition (ii) is also
satisfied only in the anti-symmetric coupler by calculating the mode profiles
close to the band-edge, see Fig. 4.7a, 4.7b. Whereas the intensity patterns
practically coincide, the phase structures have opposite symmetries. As a re-
sult, the beating of these modes realizes light switching between the waveg-
uides, see Fig. 4.7c. Such tunneling is facilitated solely by the coupler sym-
metry, without the need for any special structure optimization. We note that
the out-of-phase Bragg-grating coupler described in Sec. 4.3.1 belongs to the
class of antisymmetric structures, which explains its optimal performance for
slow-light switching.

The operation of the anti-symmetric directional coupler is based on the
beating of forward (k 
 +k0) and backward (k 
 −k0) waves. At the
band-edge, the dispersion around these points can be expanded as ω 

ω0 + D2(|k| − k0)2 + D3(|k| − k0)3, where D2 and D3 are the second- and
third-order dispersion coefficients. By inverting these expressions, we ob-
tain the asymptotic dependence of wave-numbers on frequency as kω→ω0 

sk0 + σ[(ω − ω0)/D2]1/2 − s(D3/2)(ω − ω0)(D2)−2, where the values s = ±1
and σ = ±1 correspond to four different modes. The corresponding group
velocities are Vg = dω/dk 
 2 σD2[(ω − ω0)/D2]1/2 + 2 s(ω − ω0)D3/D2. We
see that the group velocities of branches with positive (s = +1) and nega-
tive (s = −1) wave-numbers asymptotically coincide in the slow-light regime
when ω → ω0, as confirmed by numerical calculations presented in Fig. 4.8a.
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Fig. 4.7. (a), (b) Intensity (top) and phase (bottom) of the transverse magnetic
field distributions for the band-edge modes at d/λ � 0.214 with (a) positive (k =
0.88 π/d) and (b) negative (k = −0.82 π/d) wavenumbers, respectively. (c) Intensity
of the simultaneously excited modes
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Fig. 4.8. (a) Dependence of the group velocities on the frequency detuning from
the band-edge shown in logarithmic scale and (b) the corresponding dependence of
the coupling length

The coupling length is defined as the distance where the phase between the
co-propagating modes changes by π, and close to the band-edge we obtain
Lc 
 πd |arg exp{i[ks=+1 − ks=−1]d}|−1 
 πd |arg exp{i[2 k0 −D3(D2)−2(ω −
ω0)]d}|−1. According to this expression, the coupling length approaches a
constant value in the slow-light regime, as shown in Fig. 4.8b. It is this re-
markable feature which enables dispersionless tunneling of slow light, where
the same dynamics as shown in Fig. 4.7c is preserved even under the variation
of the speed of light by several orders of magnitude.
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4.4 Slow Optical Bullets

In this section, we discuss the possibility for the spatio-temporal control of
slow-light pulses in an array of coupled Bragg-grating waveguides. In such
structures, it becomes possible to simultaneously slow down light pulses and
perform their spatial steering. Additionally, we show how to engineer inde-
pendently the strength of diffraction and dispersion in the slow-light regime,
providing the optimal conditions for the nonlinear control of spatio-temporal
pulse dynamics. In particular, we predict and demonstrate numerically the for-
mation of strongly localized slow-light optical bullets in such structures [22],
suggesting a way to overcome the issue of pulse broadening in extended linear
systems.

Similar to the case of two Bragg-grating waveguides discussed in Sec. 4.3.1,
we find that the optimal conditions for the control of slow pulses are realized by
introducing a phase shift between the otherwise equivalent waveguide gratings,
as illustrated in Fig. 4.9a. We calculate the linear dispersion of Floquet-Bloch
waves in such periodic structure, ω(K, k) = ±{ρ2 + [k − 2C cos(K)]2}1/2,
where K is the transverse wave-number defining the phase difference be-
tween the neighboring waveguides and k is the propagation constant along the
waveguides. Most importantly, for any propagation angle defined by the Bloch
wavevector component K, the width and position of the one-dimensional fre-
quency gap remains the same, |ω| < ρ. This unusual property leads to re-
markable spectral features. First, the 2D (quasi-)gap is always present in the
spectrum irrespectively to the grating strength (ρ) and coupling between the
waveguides (C). Second, the shape of isofrequency contours does not depend
on frequency in the transmission band, see Fig. 4.9b. This means that the
beam refraction and diffraction remain the same even for slow light when
the band edge is approached. In particular, when the frequency is detuned
from the Bragg resonance and the effect of the grating is negligible, it was
shown that the beam diffraction is reduced to zero [60] at the incident angle
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Fig. 4.9. (a) Schematic of a waveguide array with out-of-phase neighboring Bragg
gratings, (b) corresponding isofrequency contours for different detunings from the
gap edge: ω = 4 (solid), ω = 2 (dashed), ω = 1.1 (dashed-dotted). (c) Beam self-
collimation for the incident angle corresponding to K = π/2. For all the plots ρ = 1
and C = 1
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(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 4.10. Snapshots of field intensities for an optical pulse propagating in a waveg-
uide array structure shown in Fig. 4.9: (a)–(d) Linear broadening due to spatial
diffraction and temporal dispersion, (e)–(h) Nonlinear self-trapping in space and
time and formation of an optical bullet. Input pulse has Gaussian profile with
FWHM Δt � 13

corresponding to K = π/2. Most remarkably, for the waveguide array with
phase-shifted gratings, such self-collimation behavior is preserved in the slow
light regime, see Fig. 4.9c.

The unique features of linear spectrum in arrays with phase-shifted grat-
ings suggest that these structures provide optimal conditions for a nonlinear
control of the pulse dynamics. In particular, since the 2D gap appears for any
values of the grating strength and waveguide coupling, it is possible to choose
these parameters independently in order to balance the rates of dispersion and
diffraction. This allows for simultaneous compensation of the pulse broadening
in space and time and formation of light bullets [61–63] through the nonlinear
self-trapping effect. Indeed, numerical simulations confirm the possibility to
perform spatial steering of pulses across the array. In the linear regime, the
pulse broadens in both transverse and longitudinal directions (Figs. 4.10a–
4.10d). Nonlinear self-action results in the pulse self-trapping in both space
and time. In Figs. 4.10e–4.10h, the velocity of the generated light bullet is
30% of the speed of light in the absence of the Bragg grating, and smaller
velocities can be accessed as well by controlling the central frequency and
bandwidth of the input pulse. Taking the characteristic experimental values
for a single Bragg-grating waveguide fabricated in AlGaAs [54] Δλ0 = 0.2 nm
and λ0 = 1550 nm, we have ts 
 12.8 ps and zs 
 1.8 mm. Accordingly, sim-
ulations in Fig. 4.10 correspond to experimentally feasible conditions of the
input pulse duration 170 ps and device length 27mm. Control of shorter pulses
may be realized in deeper gratings with larger bandwidth.
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4.5 Summary

In conclusion, we have shown that both the spatial and temporal dynamics
of slow-light pulses can be controlled in specially designed nonlinear periodic
photonic structures with optimized band-edge dispersion characteristics. We
have presented the approaches to pulse switching and steering combined with
delay tuning and dispersion compensation in arrays of nonlinear Bragg-grating
waveguides, and shown that slow light pulses can be efficiently manipulated
in photonic-crystal couplers. We anticipate that even more flexibility in pulse
control can be achieved by combining the nonlinear pulse self-action and exter-
nal tunability of photonic structures, and expect rapid progress in theoretical
studies and experimental demonstrations of such concepts.
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5.1 Introduction to Optical Periodic Systems

In this chapter, we present a review of optical systems that have a periodic
variation in their index transverse to the direction of propagation. Such pho-
tonic systems include photonic crystal fibers, which have a large index varia-
tion that controls frequency dispersion, and coupled waveguide arrays, which
have a relative small index variation that controls spatial diffraction. Here,
we will focus on the latter case and consider 1+1D and 2+1D dynamics. A
photonic lattice has the advantage that the refractive index contrast require-
ments are low, and thus, for example, a 2D bandgap can be established for
index modulations of the order 10−3. Light excitation is quite simple because
the optical wave is launched in a direction that is almost perpendicular to the
direction of the index modulations. Also, nonlinearity can quite easily mani-
fest in such systems simply because of low refractive index modulations. As a
result, nonlinear self-localized structures or solitons are possible for nonlinear
index modulations of the order of 10−4.

An optical periodic system with periodicity along the transverse direction
was first theoretically studied in 1965 [1] in the linear regime. In that work the
diffraction pattern of an array of identical fibers has been found using coupled
mode theory in terms of Bessel functions. Experimentally this behavior was
reported in 1973 in an array of optical waveguides [2].
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In 1988, for the first time a nonlinear waveguide array was considered [3].
It was shown that nonlinearity can counteract waveguide coupling, leading to
suppressed diffraction and the formation of optical discrete solitons. Discrete
solitons were experimentally observed ten years later [4] in AlGaAs arrays.

The transition from one-dimensional to two-dimensional lattices came a
few years later. Using an optical induction technique [5, 6] allowed for the
creation of two-dimensional periodic topologies in photosensitive crystals. This
let to the first experimental observation of two-dimensional discrete/lattice
solitons in any physical system in nature [7].

During the last years the research interest for studying nonlinear optical
periodic systems has grown rapidly (see the recent review articles [8,9]). There
are several factors for this rapid growth in this area. From the physical point
of view, the behavior of nonlinearity and periodicity arises in a wide vari-
ety of fields, ranging from nonlinear optics and photonic crystals to biology,
solid-state physics, and Bose-Einstein condensates in lattice potentials. The
common ground in these problems is the co-existence of a band structure along
with nonlinearity that in turn allows for inter and intra band interactions.

Considering applications, waveguide lattices are potential candidates for
optical switching applications [10–13]. By engineering regions with different
periodicities, which have different band structure properties, it is possible to
control of the flow of light. In addition, nonlinearity is a necessary ingredient
for performing routing and logic operations.

It has only been recently that the experimental techniques have grown
to the point where experiments can be successively performed in two spa-
tial dimensions for a variety of different settings. These methods include, the
aforementioned optical induction technique [5, 6] (see section 5.2 for details),
the use of arrays of optical fibers [14], and writing optical waveguides in bulk
glasses using femtosecond laser beams [15].

5.2 Optically Induced Lattices

Until 2002, waveguide arrays were only fabricated by etching the top of a sub-
strate, creating a series of ridged structures [4]. However, this procedure limits
the allowed topologies to only one transverse spatial dimension. Considering
applications, higher dimensionality provides the possibility to route informa-
tion in an optical network from a point of origin A to a final destination
Z, something that is not possible using only one spatial dimension [10–12].
In [5] a new method was suggested to induce a two-dimensional optical lat-
tice in photosensitive crystals. Experimentally the method was first verified
in one dimension [6] and subsequently in two dimensions [7], leading to the
first observation of two-dimensional lattice solitons.

Optically induced lattices, are periodic index configurations which are es-
tablished in biased photorefractive crystals. Let us assume that the crystal
is biased with voltage V along the extraordinary crystalline c-axis (which
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is along the x direction). a is the ordinary axis (y direction) and the opti-
cal field propagates along the z direction. Lattice stability requires that the
photo-induced crystal is highly anisotropic, being essentially linear and highly
nonlinear along the two polarizations. Crystals with such properties are avail-
able in photorefractives such as the Strontium Barium Niobate (SBN), which
is highly nonlinear along the c-axis and essentially linear along the a-axis.

Following [16] the normalized propagation of two incoherent beams in a
biased photorefractive crystal in one dimension is given by

iuz +
1
2
uxx − βu

[
1

1 + I
− δ ∂I/∂x

1 + I

]

u = 0, (5.1)

ivz +
1
2
vxx − βv

[
1

1 + I
− δ ∂I/∂x

1 + I

]

v = 0, (5.2)

where u, v are the extraordinary and ordinary (respectively) polarized waves,
and βu/βv = r33/r13 (r13 and r33 are the relevant electro-optic coefficients),
I = |u|2 + |v|2 is the total intensity, and the nonlinearity is of the self-focusing
or self-defocusing type if βu, βv > 0 or < 0, respectively. Below, we will
establish a simplified model that accurately describes the behavior of the
system of Eqs. (5.1)–(5.2).

Notice that the term proportional to δ represents small diffusion effects
that can be, in general, ignored. On the other hand, the requirement for large
electro-optic anisotropy r33  r13 results in a parameter region, where the
nonlinear term of Eq. 5.2 can be ignored, leading to the linear diffraction
equation for the v field

ivz +
1
2
vxx = 0. (5.3)

Thus, propagation along the ordinary axis is essentially linear. Equation (5.3)
admits periodic exact solutions of the form

v =
∑

j

Aj exp(−iλ2
jz/2 + iλjx+ iφj), (5.4)

where Aj , λj , and φj are real constants. Experimentally such patterns can
be achieved by superimposing plane waves. The only coherent interference
pattern in 1D that does not travel in the x direction and remains invariant
along z is obtained by interfering two plane waves with λ1 = −λ2 = π/L:

v = A cos(πx/L) exp(−iπ2z/(2L2)) (5.5)

Thus, under the above assumptions, Eqs. (5.1)–(5.2) describing the evolu-
tion of two orthogonally polarized waves can be approximated by

iuz +
1
2
uxx −

βu

1 + V (x) + |u|2 = 0, (5.6)
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where
V (x) = A2 cos2(πx/L). (5.7)

The field u, which is the probe beam, sees a highly nonlinear environment due
to the large electro-optic coefficient. Another generic and experimentally feasi-
ble model is that of Kerr nonlinear media. The corresponding model equation
is given by

iuz +
1
2
uxx + V (x)u + σ|u|2u = 0, (5.8)

where V (x) is proportional to the index modulations and σ = ±1 accounts
for self-focusing (+) and self-defocusing (−) nonlinearities. Equation (5.8) de-
scribes a variety of optical systems, such as periodic waveguide arrays [4],
fiber arrays [14], and Bose-Einstein condensates [17]. In the case of photore-
fractives, Eq. (5.8) can be obtained from Eq. (5.6) in the low intensity limit
(assuming V (x), |u|2 � 1, −u/(1 + V (x) + |u|2) ≈ −u + V (x)u + |u|2u).
Equation (5.8) is associated with two conserved quantities, namely the total
power

P =
∫ ∞

−∞
|u|2 dx (5.9)

and the Hamiltonian

H =
1
2

∫ ∞

−∞

(
|ux|2 − |u|4 − 2V (x)|u|2

)
dx. (5.10)

Thus, Eq. (5.8) can be written as

i
∂u

∂z
=
δH

δu∗
. (5.11)

In two dimensional settings, by employing similar arguments the original
model can be simplified to take the form

iuz +
1
2
∇2u− βu

1 + V (x, y) + |u|2 = 0, (5.12)

or for Kerr nonlinear media

iuz +
1
2
∇2u+ V (x, y)u + σ|u|2u = 0. (5.13)

In Fig. 5.1 the experimental configuration of an optically induced lattice is
schematically shown. In two spatial dimensions the freedom to select the op-
tically induced lattice is much higher. A generic integral form of the field
generated by the interfering beams is given by

v =
∫∫ ∞

−∞
A(kx, ky)eiφ(kx,ky)e−i(k2

x+k2
y)z/2eikxx+ikyy dkx dky. (5.14)
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(a) (b)

Fig. 5.1. Configuration of an optically induced lattice. Two pairs of plain waves
interfere along the (essentially linear) ordinary polarization, establishing a periodic
intensity pattern. On the other hand, the probe beam (red color) polarized along
the extraordinary axis propagates in a highly nonlinear environment with a periodic
index lattice which is proportional to the intensity pattern of the interfering beams

Notice that the condition for an invariant, along z, lattice intensity is satisfied
when the “Bloch momentum” vectors kx, ky lie on a circle, i.e., k2

x+k
2
y = ρ2. In

cylindrical coordinates kx = ρ cos θ, ky = ρ sin θ, A(kx, ky) = δ(ρ−R)f(θ)/ρ,
and thus

v = eiR2z/2

∫ 2π

0

f(θ) exp(iφ(θ)) exp[iR(cos θx+ sin θy)] dθ. (5.15)

All possible coherent non-diffracting beams can be obtained from Eq. (5.15)
by specifying the amplitude and the phase of the interfering plane waves
(f(θ), φ(θ)). Another degree of freedom can be introduced when the lattice is
established from mutually incoherent plane waves all of which are polarized
along the ordinary axis. In that latter case, the potential is given by

V (x) =
∑

j

|vj |2, j = 1, . . . , n. (5.16)

where vj are the mutually incoherent fields, each one of them being deter-
mined by an equation of the form (5.15). Different types of one and two-
dimensional diffraction free lattices have been studied in the literature. These
include coherent (f(θ) =

∑3
j=0 δ(θ−jπ/2), φ(θ) = 0) and incoherent (f1(θ) =

∑1
j=0 δ(θ − jπ), f2(θ) =

∑1
j=0 δ(θ − jπ + π/2), along with φ(θ) = 0) square

lattices [5, 7], hexagonal lattices [18, 19] for which f(θ) =
∑5
j=0 δ(θ − jπ/3),

φ(θ) = 0, and Bessel lattices [20,21] with weight functions f(θ) = c and φ(θ) =
mθ, where m is the vorticity number. Quasicrystals which are structures with
long-range order but no periodicity can be formed by the interference of five
different plane waves separated by angles 2π/5 [22], i.e., (f(θ) =

∑4
j=0 δ(θ −

j2π/5) and φ(θ) = 0). In Fig. 5.1b the experimental picture of the square
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lattice intensity pattern established by the coherent interaction of two pairs
of orthogonal plane waves is shown.

5.3 Coupled-mode Theory

Coupled-mode theory (CMT), provides an approximate model for the descrip-
tion of equations with periodic potentials such as (5.8) and (5.13). Although
CMT is not exact, it is quite accurate, providing both qualitative and quanti-
tative results, as long as the original assumption from which it was derived are
satisfied. Coupled-mode theory originates in the theory of solids, where it is
known as tight binding approximation [23]. In optics, it has been extensively
used in a variety of linear and nonlinear problems [1, 3, 24]. For simplicity
here we consider a one-dimensional model although the same formal analysis
can be repeated for higher dimensionalities. CMT is based on the following
expansion of the optical field

u =
∑

n

cn(z)ψn(x). (5.17)

In (5.17) ψn(x) = Ψ(x− nx0), where Ψ(x) is the linear lowest order localized
mode of a single waveguide in isolation having potential V0(x), i.e.,

qΨ +
1
2
Ψxx + V0(x)Ψ = 0. (5.18)

Notice that Ψ has zero nodes and is even when the index function is even. In
Eq. (5.17) cn(z) represents the amplitude of the local mode ψn at distance z.
Substituting Eq. (5.17) to (5.8) an evolution Equation for the amplitudes is
derived

i
dcn
dz

+ Ecn + κ(cn+1 + cn−1) + γ|cn|2cn = 0, (5.19)

where κ = (1/2)〈φn|φn±1〉 + 〈φn|V (x)φn±1〉, E = 〈φ0|(V (x) − V0(x))φ0〉,
γ = σ〈φn|φ3

n〉, assuming that 〈φn|φn〉 = 1. In a normalized form Eq. (5.19)
reads

i
dcn
dz

+ (cn+1 + cn−1) + σ|cn|2cn = 0, (5.20)

where σ is the sign of the nonlinearity. Equation (5.20) is known as the Discrete
Nonlinear Schrödinger (DNLS) equation. The regimes of validity of Eq. (5.20)
as an approximate model for periodic systems is discussed in [25]. In partic-
ular, DNLS-type models are single band approximations of the lattice NLS
equation. Thus, self-defocusing lattice solitons predicted in DNLS models exist
in a finite instead of a semi-infinite gap. Notice that coupled-mode theory ap-
proximations are accurate, as long as the nonlinear index change is much
smaller than the linear index modulations. Besides optics, DNLS type models
appear in diverse settings such as Biology [26], in molecular crystals [27], in
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atomic chains [28], and in Bose-Einstein condensates [29] (see also the review
papers [30–32]).

In two transverse dimensions a two-dimensional DNLS equation is derived

i
dcm,n

dz
+ (cm,n+1 + cm,n−1 + cm+1,n + cm−1,n) + σ|cn|2cn = 0 (5.21)

for the case of square lattices. For lattices of different symmetries the coupling
coefficients can take different form (see for example the case of a honeycomb
lattice in [33]).

5.4 Linear Properties

A fundamental difference between homogeneous and periodic media is that in
homogeneous media the dispersion/diffraction curves characterize the regions
of continuous/plane wave solutions. On the other hand, media with periodic
index modulations do not possess such solutions, but instead support Floquet-
Bloch modes. Understanding the linear properties of the system, is not only
important per se, but also is fundamental for analyzing the nonlinear proper-
ties of the system. In the literature, linear properties have been studied both
in the context of the periodic Eqs. (5.8) and (5.13) or using approximate CMT
descriptions (5.20) and (5.21).

Let us start by considering the approximate, CMT description in one-
dimension as given by Eq. (5.20). The discrete Fourier transform of the field
amplitude cn is defined by

c̃n(κ) =
1√
2π

∑

n

cn(z)e−iκn, cn(z) =
1√
2π

∫ 2π

0

c̃n(κ)eiκn dκ. (5.22)

The diffraction relation is directly obtained by assuming low amplitude plane-
wave solutions of the form

cn = exp(−iqz + ikn) (5.23)

resulting in
q = −2 cos k. (5.24)

From Eq. (5.24) the group velocity and the (second order) diffraction are
given by vg = q′ = dq/dk = 2 sink and g2 = q′′ = 2 cosk respectively.
Perhaps the most interesting feature of the diffraction relation is the possibility
to engineer the second order diffraction term as a function of the incident
angle inside the array. For |k| < π/2 the diffraction of the array is normal
(q′′ > 0), whereas for π/2 < |k| < π the diffraction becomes anomalous
(q′′ < 0). Furthermore, for |k| = π/2 the second order diffraction term is
identical to zero [34, 35]. Thus a beam propagating with this value of the
“Bloch momentum” k is going to experience minimal diffraction, arising only
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from higher order diffraction terms. The phenomena of negative and zero
second order diffraction are not possible in uniform media where the diffraction
is always positive (since q = k2/2).

The diffraction of optical beams in waveguide arrays when an initial index
ramp is applied to the waveguides can be obtained in closed form in the case
of discrete models. For the sake of generality, let us consider the linear part
of Eq. (5.20)

icn + (cn+1 + cn−1) + γnf(z)cn = 0, (5.25)

where the linear index ramp across the array γn is multiplied by a function
f(z). Equation (5.25) can be solved in the Fourier domain using the method
of characteristics [36]. In particular, assuming single waveguide excitation at
the input (cm(0) = δm,0) the intensity of the optical field along z is given by

Im(z) = |cm(z)|2 = J2
m(w), (5.26)

where

w =
√
u2 + v2,

(
u
v

)

=
∫ z

0

(
cos
sin

)

[γη(z′)] dz′, η =
∫ z

0

f(z′) dz′.

(5.27)
Because Eq. (5.25) is linear, the propagation of more complicated patterns is
obtained analytically by superposition.

In optics, the diffraction in an array of linear fibers without an additional
index tilt (γ = 0) has been theoretically studied in [1]. In this case, the evo-
lution of a single waveguide excitation is given by cn(z) = Jn(2z) exp(iπn/2).
It is interesting to notice that the amplitude of the field as it propagates is
maximum at the edges and not at the center. Experimentally, this behavior
has been observed in [2].

A waveguide array with propagation constants that vary linearly in the
transverse direction (i.e., f(z) = 1 in Eq. (5.25)) exhibits solutions which are
called “Bloch oscillations” [37]. Independently of the form of the initial con-
dition, such waves exhibit periodic revivals along z, and thus remain localized
as they propagate. The required linear variation of the propagation constant
is usually achieved by a linear index ramp. Solving Eq. (5.25) in the special
case f(z) = 1 results to

cn(z) = Jn

[
4
γ

sin
(γz

2

)]

exp
[
in
2

(γz + π)
]

. (5.28)

From Eq. (5.28) one can find that the (intensity) period of the oscillations
is equal to 2π/γ. In optics, the existence of Bloch oscillations in waveguide
arrays has been predicted in [38]. The experimental observation came one
year later independently from two-different groups: In [39] the linear vari-
ation of the index contract is created by applying a temperature gradient,
whereas in [40] the thickness of the central layer is varied. In [34], the diffrac-
tion properties of a waveguide arrays were exploited, and it was shown that
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by using a waveguide array in a zig-zag configuration the second and third
order diffraction terms can be canceled out. This can be achieved by using
different short segments of waveguides with average zero diffraction. The nor-
mal and anomalous refraction and diffraction properties of arrays have been
experimentally verified in [35]. AC Bloch oscillations were predicted in [36]
(f(z) being a sinusoidal function of z) in the case where the ratio of the field
amplitude and field spatial frequency is a root of the ordinary Bessel function
of order 0. Such periodic modulations in f(z) have not been implemented thus
far in optical waveguides. However, it has been shown that an array of optical
waveguides whose curvature periodically changes can give rise to AC opti-
cal Bloch oscillations [41, 42]. Such periodic oscillations have been observed
in [43, 44].

Coupled-mode theory equations are single band approximations of Eqs. (5.8)
and (5.13) which exhibit a periodic potential. To consider higher-band behav-
ior, these equations can be analyzed by making use of Floquet-Bloch theory.
Let us consider the linear two-dimensional case. Looking for wave solutions,
whose amplitude is stationary along z, i.e., u(x, y, z) = ψ(x, y) exp(−iqz), we
obtain

qψz +
1
2

(ψxx + ψyy) + V (x)ψ = 0. (5.29)

Floquet-Bloch’s theorem [23,37,45] states that the eigenfunctions of Eq. (5.29)
for a periodic potential are the products of a plane wave exp(ik ·r) multiplied
with a function Ψk(r) with the periodicity of the crystal lattice, or

ψk = Ψk(r)eik·r, (5.30)

where Ψk(r + R) = Ψk(r), R = mR1 + nR2, m,n ∈ Z and R1, R2 are the
primitive vectors of the lattice such that V (r +R) = V (r). A related concept
is that of a Brillouin zone which is defined as the primitive cell in the reciprocal
lattice. Several methods have been developed in condensed matter physics [23]
to find the band structure of Eq. (5.29). A simple approach, known as the
plane-wave method, relies on the Fourier series decomposition of Ψq(r) under
periodic boundary conditions. The resulting system of algebraic equations
can then be solved numerically. Some specific types of potentials admit exact
solutions, such as the Kronig-Penney model in one-dimension [46] and the
sinusoidal potential which can be solved in one or higher dimensions with the
use of Mathieu functions [47].

Let us consider the one-dimensional case with a typical sinusoidal potential
of the form

V (x) = −V0 sin2(πx/2). (5.31)

The period of the potential is 2 and its band structure is shown in Fig. 5.2
for V0 = 10 in the reduced zone scheme (the band structure is “folded” inside
the first Brillouin zone). The bands of Fig. 5.2 are the regions where periodic
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Fig. 5.2. A typical one-dimensional band structure for the lattice potential of
Eq. (5.31) for V0 = 10. Curves I–V correspond to the first five bands of the complete
band structure

Floquet-Bloch modes exist, i.e. modes that have allowed values of the propa-
gation constant q. The regions outside the bands are called bandgaps. Inside
the bandgaps exponentially decaying/growing modes are supported. These
modes can be obtained for example using the plane-wave method for complex
values of the Bloch momentum. Notice that between two successive bands, a
bandgap always exist in the q-domain. In waveguide arrays, the band struc-
ture and the corresponding Floquet-Bloch modes were investigated in [48] for
one spatial dimension.

The band structure properties become more complicated in more than
one dimension. We analyze two different type of lattices [49]. The first index
potential is sinusoidal (Fig. 5.3a)

V (x, y) = − (V0/2)
[
sin2 πx+ sin2 πy

]
, (5.32)

whereas the second lattice has a backbone index profile

V (x, y) = − V0

1 +A2 cos2(πx) cos2(πy)
. (5.33)

The lattice of Eq. (5.33) (shown in Fig. 5.3b) is established by the interference
of two pairs of plane waves that are coherently superimposed.

A complete bandgap is defined as a finite region in q between two suc-
cessive (in increasing q order) Floquet-Bloch modes. As can be seen from the
three-dimensional band structure shown in Fig. 5.3, different bands can over-
lap with each other in the q axis restricting, or even eliminating altogether, the
number of complete bandgaps. This property of higher dimensional lattices
is in contract to the one-dimensional arrays, which are, in general, associated
with an infinite number of complete Bragg resonance bandgaps. In Fig. 5.3
we display the band (gray) and bandgap (white) regions for varying potential
depth. In Fig. 5.3a we find that no complete bandgap exist for V0 � 13.8.
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Fig. 5.3. Index potentials of Eqs. (5.32) and (5.33) and their correspond band
structure properties are shown in (a), (b), respectively. The numerically calculated
band structures for (a) V0 = 21.6 and (b) A2 = 1.21 and V0 = −36.3 are shown.
The regions of bands (gray) and bandgaps (white) are depicted as a function of the
potential depth

By increasing the potential depth further, a second bandgap opens up when
V0 
 40.7. The backbone lattice of Fig 5.3b exhibits different behavior. When
the potential depth is less than 28.4 (and A2 = 1.21) all the bands overlap, i.e.
no complete band gap exists. On the other hand, for bigger values of V0, one
gap opens up between the first and the second bands. Unlike the sinusoidal
lattice case, we find that no other band gaps emerge for even greater values
of V0.

The presence of a linear index ramp (say γx+δy in two spatial dimensions)
in addition to the periodic lattice is expected to give rise to Bloch oscillations.
However, Zener predicted [50] that Bloch oscillations are not ideal (they per-
sist for finite distances) in periodic lattices due to interband interactions.
Furthermore, Bloch oscillations are expected to breakdown when the index
difference imposed on a period of a lattice due to the linear potential is of
the order of the gap to the next band. Zener tunneling in one-dimensional
waveguide arrays has been observed in [51]. In [52] Bloch oscillations and
Zener tunneling in two-dimensional periodic systems have been reported. In
this latter work, an optical induction technique was applied and, in order to
create a transverse refractive index gradient, the crystal was illuminated from
the top with incoherent white light.

A method of optical waveguiding, which relies on Bragg diffractions from
a 1D grating that gives rise to waveguiding in the direction normal to the
grating wave vector was proposed in [53]. The waveguide structure consists
of a shallow 1D grating that has a bell- or trough-shaped amplitude in the
confinement direction. In [54] non-diffracting beams in two-dimensional peri-
odic systems were identified. Such beams are constructed by superposition of
Floquet-Bloch modes.

In dispersion curves, there are specific points known as diabolic points
which are singular. In [18] it was demonstratedthat such a diabolical point
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exists in honeycomb lattices, around which an input beam experiences conical
diffraction.

5.5 One-dimensional Lattice Solitons

In the early works on optical discrete solitons, the theoretical analysis was
based on CMT description. This single band model, can provide valuable
information about the behavior of optical periodic systems (5.8), (5.13).
In one-dimension Eq. (5.20) is not integrable unlike its continuous analogue,
the nonlinear Schödinger equation. An integrable version of the DNLS equa-
tion, which is known as the Ablowitz-Ladik DNLS exists [55].

We are going to analyze basic families of discrete soliton solutions by
utilizing the DNLS equation in one transverse dimension. We assume that
Eq. (5.20) admits solutions of the form

cn = an exp(−iqz), (5.34)

and thus
qan + (an+1 + an−1) + σa3

n = 0. (5.35)

Asymptotic analysis of soliton solutions can be carried out in the limit of
nonlinear modes which are highly localized inside the lattice. We are going to
analyze two basic families of discrete solitons of Eq. (5.35) known as “on-site”
and “off-site”. We isolate these solutions from many other types because, by
analytic continuation, they represent single hump soliton solutions in the long
wavelength limit. In the strongly nonlinear limit the first family of solutions [3]
has the approximate form

a0 = α, a±1 =
1
σα

, (5.36)

whereas un = 0 for n �= 0,±1 and q = −σα2. This family of solution is called
“on-site” because the maximum of an imaginary envelope is located exactly
at the lattice site n = 0 (Fig. 5.4). The second family of solutions is given by

aj = α (sgn(σ))j , j = 0, 1, (5.37)

aj =
α (sgn(σ))j

1 + |σ|α2
, j = −1, 2, (5.38)

and q = − sgn(σ)(1 + |σ|α2). This family of solutions is called “intra-site”
or “off-site” because an imaginary envelope has its maximum between lattice
sites 0 and 1 [56]. For both families of solitons sgn(σ) = − sgn(q). The “on-
site” family of solitons is energetically favorable, and thus stable whereas
“intra-site” discrete solitons are unstable [57, 58]. The exponential decay (for
large |n|) of these solutions is given by
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Fig. 5.4. Diffraction relation (left) and families of discrete solitons supported by
the DNLS equation. The two families shown in (a) (“on-site” (left) and “off-site”
(right)) exist for self-focusing nonlinearities and have eigenvalues in the bandgap
below the base of the 1st Brillouin zone. The families shown in (b) (“on-site” (left)
and “off-site” (right)) exist for self-defocusing nonlinearities and have eigenvalues in
the bandgap above the edge of the 1st Brillouin zone

an = (sgn(σ))n exp(−λn), (5.39)

where λ = arccosh(k/2).
Notice that these two families of solutions exist for both signs of the non-

linearity [59]. This result is in contrast to the nonlinear Schrödinger equation
which admits bright soliton solutions in the self-focusing case only. In Fig. 5.4
these two families of discrete solitons are schematically illustrated for self-
focusing (Fig. 5.4a) and self-defocusing (Fig. 5.4b) nonlinearity. We would like
to point out that for self-focusing nonlinearity (σ > 0) the soliton eigenvalue
resides in the semi-infinite bandgap below the 1st Brillouin zone (q < −1).
On the other hand, self-defocusing solitons (σ < 0) have eigenvalues residing
above the Brillouin zone (q > 1). In addition, the phase difference between
adjacent lattice sites of self-focusing discrete solitons is zero, and thus these
solitons reside at the base of the Brillouin zone (k = 0). The adjacent lattice
site phase difference of self-focusing discrete solitons is π, i.e., these solitons
reside at the edge of the Brillouin zone (k = π). The mathematical proof for
the existence of discrete solitons was derived in [60].

The analysis of lattice solitons in periodic lattices beyond the DNLS limit
reveals that the behavior of the system is more complex [5,25,61]. Families of
lattice solitons (LS) can exist in the semi-infinite (or total internal reflection
(TIR)) gap and in the finite (Bragg) bandgaps of the band structure. Thus, an
infinity of families of LS in principle exist in one-dimensional periodic lattices.
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Fig. 5.5. Lattice solitons existence curves (total power P vs. propagation constant
q) for self-focusing (a) and self-defocusing (b) Kerr media. The gray (shaded) regions
II and IV depict the first two bands. Regions I, III, IV correspond to the semi-infinite
and the first two Bragg (finite) gaps of the system. Typical soliton profiles with an
eigenvalue in the semi-infinite gap (a) and in the first finite bandgap (b) are shown
on the bottom. Gray (white) areas represent high (low) refractive index regions

In the case of self-focusing nonlinearity (Fig. 5.5a) families of lattice solitons
exist both in the TIR gap and in every Bragg resonance gap. A typical TIR
lattice soliton is shown on the bottom of Fig. 5.5a. Notice the absence of
nodes (the field does not become zero) in the profile which is characteristic
for TIR LS. In Fig. 5.5b the existence curves of self-defocusing lattice solitons
are shown [25]. In this case lattice solitons do not exist in the TIR bandgap,
but only in the Bragg gaps. The field profile of a typical lattice soliton with
eigenvalue inside the first Bragg resonance is shown on the bottom of Fig 5.5b.

Figure 5.6 depicts experimental results showing lattice soliton formation
in optically induced lattices [6]. In Fig. 5.6I the transition of the signal beam
from discrete diffraction to a discrete soliton for on-axis (corresponding to zero
Bloch momentum, or at the base of the 1st Brillouin zone) input as a function
of self-focusing nonlinearity is depicted. When the nonlinearity is small, the
signal beam experiences diffraction. On the other hand, in the strongly non-
linear regime, a highly localized lattice soliton is formed (Fig. 5.6Ie–f). This
family of solutions reside in the semi-infinite bandgap of the band structure.
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(I) (II)

Fig. 5.6. Signal beam output intensity as a function of increasing focusing (I)
and defocusing (II) nonlinearity. (A), (B) show discrete diffraction, (C), (D) show
intermediate self-focusing, and (E), (F) depict lattice soliton formation. The period
of the waveguide lattice is 8.8 μm and 9.3 μm in (I) and (II), respectively

Such solitons were first observed in optical waveguide arrays in [4]. Figure 5.6II
shows lattice soliton formation when the signal beam is incident at an angle
very close to the first Bragg resonance (or at the edge of the 1st Brillouin
zone) of the system with self-defocusing nonlinearity. When the nonlinearity
is small, the beam diffracts. Increasing the applied voltage (thus increasing
the nonlinearity) a self-defocusing gap soliton residing in the first bandgap of
the band structure is formed. This family of solitons was first observed in [6].

There is a plethora of works based on DNLS type Equations and, during
the last years, on lattice NLS equations. Pairs of out-of-phase solitons, which
resemble twisted localized modes were observed in [62]. Self-focusing gap soli-
tons were reported in waveguide arrays in [63]. Properties of gap solitons such
as Bloch wave interactions [64] and controlled generation and steering [65]
have also been studied.

Modulational instability of plane wave solutions has been theoretically
analyzed in [3, 66]. Modulational instability was observed in AlGaAs waveg-
uide arrays with self-focusing nonlinearity [67]. Such instabilities occur as
long as the spatial Bloch momentum of the initial excitation is within the
normal diffraction region of the Brillouin zone. Modulation instability in
the anomalous-diffraction regions of a photonic lattice has been observed
in [68]. The experiments were carried out in a 1D waveguide array fabri-
cated in a lithium niobate crystal displaying the photovoltaic self-defocusing
nonlinearity.

Another basic family of solutions supported by a lattice is that of dark soli-
tons. Dark discrete solitons have the form of a dip in a uniform background
of light. Theoretically, their properties have been studied in the discrete do-
main [69]. Experimentally, they have been observed in self-focusing waveguide
arrays, that support dark gap solitons [63,70]. Notice that in order to excite a
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dark soliton, a π step needs to be introduced at the center of the interference
pattern that results in a dark narrow notch in the shaped input beam.

The propagation of two different waves, which can be optical fields of differ-
ent colors or polarizations or mutually incoherent beams, is described by a sys-
tem of coupled nonlinear Schrödinger equations. Solutions of such models are
known as vector solitons [71]. The families of vector solitons in discrete lattices
have been analyzed and their stability has been studied in [72] for strongly
localized modes. Experimentally, discrete vector solitons were reported in [73]
in Kerr nonlinear waveguide arrays. The vector elements consisted of two co-
herently coupled orthogonal polarizations. In spite of four-wave mixing effects,
such solitons were found to be stable. In the continuous periodic model [74]
or in discrete superlattices [75] the presence of multiple Bragg gap can allow
for more complicated localized vector structures, such as multigap vector soli-
tons, which have components with eigenvalues in different gaps of the band
structure.

Another two-component vector family is that of quadratic solitons. In such
media, the fundamental and the second harmonic interact to form a local-
ized soliton solution. Theoretically, discrete quadratic solitons were analyzed
in [76]. Discrete solitons with two frequency components mutually locked by
a quadratic nonlinearity have been observed in [77]. Experiments have been
performed in waveguide arrays with tunable quadratic nonlinearity.

Spatiotemporal effects have been analyzed theoretically in [78] and experi-
mentally in [79]. Temporal dispersion results to a sharp transition from strong
diffraction at low powers to strong localization at high powers. In [80] it was
shown that two components consisting of a periodic and a localized wave,
such as that of an optical lattice, are exact vector soliton solutions of the
system. The analytic form of the solution was derived in [81]. Families of
exact solutions were also derived in [82] for the case of a linear-nonlinear
structure.

Recently, the study of discrete/lattice solitons at interfaces has attracted
considerable attention. Such solutions were first predicted to exist at the edge
of an array above a certain power threshold [83]. Surface lattice solitons can
also exist in the Bragg gap of an optical lattice [84]. Experimentally, sur-
face solitons were observed in [85] at the interface between a nonlinear self-
focusing waveguide lattice and a continuous medium. Surface gap solitons
were observed in [86].

Discrete solitons traveling in the transverse plane are known to decelerate
in periodic systems due to the presence of the Peierls-Nabarro potential [56,
87]. In [88] it was shown that by using a special prechirped ansatz traveling
waves are more robust as compared to regular linear chirp. In [89] it was
shown that in discrete systems with saturable nonlinearity traveling modes
can exist for specific values of the spectrum. Such solutions can be considered
as embedded solitons.

Two-dimensional X-wave nondiffracting solutions are known to exist in
linear bidispersive optical systems [90]. This family of optical waves has been
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excited in waveguide arrays, by using the interplay between discrete diffraction
and normal temporal dispersion, in the presence of Kerr nonlinearity [91].

In the case of a periodic potential with a low-index defect, localized defect
modes exist as a result of repeated Bragg reflections [92]. Strongly confined
defect modes appear when the lattice intensity at the defect site is nonzero
rather than zero. Furthermore, it is possible to construct a waveguide lattice
that relies on the effect of bandgap (Bragg) guidance, rather than total internal
reflection, in the regions between defects [93]. In the nonlinear regime the
Kerr effect can counteract diffraction leading to the formation of gap lattice
solitons.

Another family of solutions is that of dissipative discrete solitons. Such soli-
tons were studied first in the context of the discrete cubic-quintic Ginzburg-
Landau equation [94]. In that work, the basic families of solutions and their
stability were analyzed. Dissipative lattice solitons were also studied theoret-
ically in waveguide array configurations that involve periodically patterned
semiconductor optical amplifiers and saturable absorbers [95]. Exact solutions
for dissipative discrete solitons can be found, when the discretization of the
Ginzburg-Landau equation is similar to the Ablowitz-Ladik model [96].

The theoretical and experimental investigation of optical beam interac-
tions was reported on [97]. Discrete solitons in periodic diffraction managed
systems were studied in [98]. Lattice solitons have been studied in other set-
tings, such as nematic liquid crystals [99] which are supported due to a non-
local nonlinearity. For reviews on the properties of one-dimensional discrete
solitons see also [8, 100–102].

5.6 Two-dimensional Lattice Solitons

Two-dimensional settings allow better control of the flow of light as compared
to a planar geometry. For example, in [10–12] it was shown theoretically that
discrete solitons can be navigated in two-dimensional networks of nonlinear
waveguide arrays. This can be accomplished via vector interactions between
two classes of discrete solitons: signals and blockers. Discrete solitons in such
two-dimensional networks can exhibit a rich variety of functional operations,
e.g., blocking, routing, logic functions, and time gating.

Following [49], we are going to analyze basic properties of solitons in 2D
periodic lattices. In Fig. 5.7 typical existence curves as well as field profiles
of two-dimensional LS are shown. The self-focusing soliton shown in Fig. 5.7a
exists in the semi-infinite (TIR) bandgap below the first band. On the other
hand, the self-defocusing solitons shown in Fig. 5.7b exist in the finite (Bragg)
bandgap between the first and the second band. It is important to notice that
a complete bandgap is always required for gap lattice solitons to exist, i.e.,
shallow potentials do not support gap lattice solitons. If the bandgap is only
partial (a situation not encountered in 1D), an input beam will radiate due
to the interactions with the linear spectrum.
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Fig. 5.7. The existence (power vs. eigenvalue) curves (top) for self-focusing (a) and
self-defocusing (b) Kerr nonlinearity. Gray areas represent bands. On the bottom
typical field profiles of these soliton families are depicted

The power P conveyed by the solitons versus the eigenvalue q is shown on
the top of Fig. 5.7. Note that there is a minimum power threshold required in
order to observe a lattice soliton (in a finite or infinite bandgap) in two dimen-
sions. In the 1D case, such a threshold does not exist [25,61] (see Fig. 5.5). In
the case of a semi-infinite band gap these results are in agreement with the
discrete nonlinear Schrödinger case [103,104] as rigorously proven in [105].

The existence curve also provides information on the stability of the
solitons. For the self-focusing case the stability can be determined by a
straightforward application of the Vakhitov-Kolokolov criterion [106]. More
specifically, when ∂P/∂q < 0 the solutions are stable, while, close to the band
∂P/∂q > 0 and the lattice solitons become unstable. This analysis cannot be
applied directly to the defocusing case (the soliton amplitude has nodes).

In a Kerr nonlinear NLS equation in two (critical) or three (supercritical)
spatial dimensions an input beam collapses in finite time to a singularity. A
characteristic property of DNLS lattices is the absence of collapse irrespec-
tively of the dimensionality of the problem [107]. However, this behavior does
not always convey to periodic systems [108]. Specifically, when the soliton
is highly confined into the lattice, it becomes unstable in the supercritical
case. In the critical case, although the soliton is mathematically stable, its
basin of attraction is so small that the lattice soliton is physically unstable.
On the other hand, broad solitons in critical and supercritical dimensions can
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(a) (b)

Fig. 5.8. Experimental results depicting the intensity structure of the probe beam
at the exit facet of the 6mm long crystal. (a) self-focusing nonlinearity, discrete
diffraction at low intensity (bottom), and formation of self-focusing TIR lattice soli-
tons at high intensities (top), (b) self-defocusing nonlinearity, discrete diffraction
at low intensity (bottom), formation of self-defocusing gap lattice solitons at high
intensities (top)

be stable if the lattice confinement is high, in agreement with the discrete
model.

Following [7] experimental results of 2D lattice solitons are shown in
Fig. 5.8. The waveguide array is induced in real time, in a photosensitive
material from two pairs of plane waves. A separate “probe” beam is launched
into the periodic waveguide array. The experimental results for self-focusing
nonlinearity are shown in Fig. 5.8a. The “Bloch momentum” of the probe
beam is zero (base of the 1st Brillouin zone). The probe beam is launched
into a single waveguide. At low voltages, the beam propagates, essentially,
linearly and as a result discrete diffraction concentrates the signal intensity
into the outer perimeter of a square (Fig. 5.8a, bottom). For a stronger non-
linearity (at higher voltage), self-focusing dominates and a lattice soliton is
formed (Fig. 5.8a, top). An interferogram of this soliton (not shown), obtained
by interfering the soliton output beam with a plane wave, shows constructive
interference of all the elements; that is, the central peak is in-phase with its
neighbors.

The formation of self-defocusing lattice solitons is shown in Fig. 5.8b. In
this case the Bloch momentum of the “probe” beam lies in the vicinity of the
M point of the first Brillouin zone, so as to excite gap lattice solitons with
eigenvalues inside the first bandgap. At low voltages, a diffuse diffraction pat-
tern occurs (Fig. 5.8a, bottom), while a self-defocusing gap lattice soliton is



92 N.K. Efremidis et al.

observed (Fig. 5.8a, top) at a higher nonlinearity. Self-focusing solitons in the
TIR regime have also been shown in [109]. An interferogram (not shown) con-
firms the π phase difference between first neighbors: the central peak is lowered
while the surrounding lobes increase their intensity, indicating destructive and
constructive interference, respectively.

Interaction of a 2D lattice soliton with a lattice was shown in [110]. In
this work, other phenomena such as lattice dislocation, and creation of struc-
tures akin to optical polarons were demonstrated. Two-dimensional gap lattice
solitons can also exist in the presence of self-focusing nolninearity. Such a fam-
ily of solutions was studied theoretically and experimentally in [111].

Two-dimensional lattice solitons at interfaces have been studied theoret-
ically in [112, 113]. Experimentally, surface lattice solitons were observed at
the boundaries of a finite optically induced photonic lattice [114] and at the
edge of femtosecond laser-written waveguide arrays in fused silica [115].

Families of two-dimensional dissipative Ginzburg-Landau solitons have
been studied in [116]. Discrete solitons and their stability in Honeycomb
lattices were examined theoretically in [33]. Two-dimensional TIR and gap
solitons in such lattices were observed in [18, 19]. In square lattices, dipole
like modes [117] and two-dimensional lattice vector solitons [118] have been
studied theoretically and experimentally.

Nondiffractive rotary Bessel lattices can support families of localized
waves. In particular, in addition to the lowest order soliton trapped in the
center of the lattice, solitons can be trapped at different lattice rings [20,21].

Quasicrystals are structures with long range order but no periodicity. The
lack of periodicity excludes the possibility of describing quasicrystals with ana-
lytical tools, such as Bloch’s theorem and Brillouin zones. In [22] it was demon-
strated that light launched at different quasicrystal sites travels through the
lattice in a way equivalent to quantum tunneling of electrons in a quasiperiodic
potential. At high intensities lattice solitons are formed.

Anderson localization theory predicts that an electron may become im-
mobile when placed in a disordered lattice. The origin of localization is inter-
ference between multiple scatterings of the electron by random defects in the
potential altering the eigenmodes from being extended (Floquet-Bloch waves)
to exponentially localized. In [119] the experimental observation of Anderson
localization in a perturbed periodic potential was reported.

5.7 Vortex Solitons in Lattices

Vortex solitons are self-localized solutions of nonlinear wave equations, which
are characterized by a phase singularity at the pivotal point. The phase charge
of a simple closed curve surrounding the vortex core is equal to 2πm, where
m is the integer vorticity of the solution.

The optical case of discrete vortices was considered in Kerr nonlinear
waveguide arrays, where on-site vortices (vortices whose singularity is located
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Fig. 5.9. Calculated intensity and phase of (a), (b) the on-site and (c), (d) the off-
site vortex lattice solitons, along with the output diffraction pattern of (e), (f) the
off-site vortex at z = 800

on a lattice site) [120] and off-site vortices (vortices whose singularity is lo-
cated between sites) [109,121] were studied. Both cases were found to be stable
within a certain range of parameters. Experimental results on optical vortex
solitons were presented in [122, 123]. Here, we present results from [123].

Typical beam propagation results showing on-site and off-site vortex soli-
tons for z = 800 are given in Figs. 5.9a–5.9d. The main four “lobes” all have
the same peak intensity and, importantly, each lobe is π/2 out of phase with
its neighbors. Note again that the singularity of the on-site vortex is centered
on a lattice site (Figs. 5.9a and 5.9b), whereas the singularity of the off-axis
vortex is centered between four lattice sites (Figs. 5.9c and 5.9d). The soliton
exhibits stationary propagation, and the shapes of the vortices remain un-
changed, i.e., these are, indeed, vortex lattice solitons. For comparison, when
the nonlinearity is set to zero, the vortices diffract by tunneling between lat-
tice sites, as shown in Figs. 5.9e and 5.9f for the off-site vortex after z = 800.
Note that the phase of the diffracting beam maintains its spiral structure
throughout diffraction (Fig. 5.9f).

Experimental results are shown in Fig. 5.10. The photorefractive screening
nonlinearity is controlled by applying voltage against the crystalline c-axis. At
a low voltage (∼ 100 V), the output diffraction of both the on-site and off-site
vortices looks similar. Figures 5.10a and 5.10b show the diffraction pattern
of an on-site vortex after 5mm of propagation, showing that both the hole
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Fig. 5.10. Experimental results at the output face of crystal. (a), (b) Diffraction
at 100 V: (a) intensity and (b) phase information formed by interference of output
with a plane wave. (c) Typical on-site soliton at 700 V and (d) relative phase from
an interferogram. (e) Typical off-site soliton at 700 V and (f) relative phase from
an interferogram. Note that phase information is extremely sensitive to background
noise, so only the interference patterns from the relevant lattice sites are shown

and the width of the ring expand through the lattice. The ring expands to
roughly 3 times its original size (Fig. 5.10a), while an interferogram, created
by interfering the output pattern with a plane wave, clearly shows the 0→ 2π
spiral phase structure of the vortex (Fig. 5.10b). At around 700V, the input
vortices become vortex lattice solitons and maintain their structure (intensity
and phase) while propagating. Figures 5.10c and 5.10d show the intensity and
phase of an on-site soliton, while Figs. 5.10e and 5.10f show those features for
an off-site soliton. Because phase information is very sensitive to noise in the
system, only the relative phase of the relevant (soliton) lattice sites is shown
for clarity.

Other families of vortices have been subsequently studied. These include
higher-band vortex solitons [124, 125], asymmetric vortex solitons [126], and
multivortex solitons in triangular photonic lattices [127].

5.8 Random-phase lattice solitons

This chapter has dealt with coherent nonlinear phenomena in discrete lattices.
It should be pointed out that many interesting nonlinear phenomena with
partially incoherent light in photonic lattices have been discovered in the past
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few years. Lattice solitons made of partially-incoherent light were theoretically
predicted in [128]. The first experimental observation of such solitons [129]
has shown that due to the simultaneous excitation of multiple bands, and
the interplay of dispersion in a lattice and the nonlinearity, the spatial power
spectra of the observed solitons is multi-humped, with humps being located in
the normal diffraction regions for self-focusing nonlinearity and vice versa for
the self-defocusing nonlinearity. The dynamics of incoherent light in nonlinear
lattices, which leads to such intricate structures has lead to a technique for
Brillouin zone spectroscopy [130], and studies of other nonlinear phenomena
with incoherent light in photonic lattices (e.g., see [131] and Refs. therein).
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Lett. 88, 093901 (2002)
36. D.H. Dunlap and V.M. Kenkre, Phys. Rev. B 34, 3625 (1986)
37. F. Bloch, Z. Phys. 52, 555 (1928)
38. U. Peschel, T. Persch, and F. Lederer, Opt. Lett. 23, 1701 (1998)
39. T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, Phys. Rev.
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Phys. Rev. Lett. 96, 023901 (2006)
52. H. Trompeter, W. Krolikowski, D.N. Neshev, A.S. Desyatnikov,

A.A. Sukhorukov, Y.S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer,
Phys. Rev. Lett. 96, 053903 (2006)

53. O. Cohen, B. Freedman, J.W. Fleischer, M. Segev, and D.N. Christodoulides,
Phys. Rev. Lett. 93, 103902 (2004)

54. O. Manela, M. Segev, and D.N. Christodoulides, Opt. Lett. 30, 261 (2005)
55. M.J. Ablowitz and J.F. Ladik, J. Math. Phys. 17, 1011 (1976)



5 Introduction to Solitons in Photonic Lattices 97

56. Y.S. Kivshar and D.K. Campbell, Phys. Rev. E 48, 3077 (1993)
57. S. Darmanyan, A. Kobyabov, and F. Lederer, JETP 86, 682 (1998)
58. P.G. Kevrekidis, K.Ø. Rasmussen, and A.R. Bishop, Int. J. Mod. Phys. B 15,

2833 (2001)
59. Y.S. Kivshar, Opt. Lett. 14, 1147 (1993)
60. R.S. MacKay and S. Aubry, Nonlinearity 6, 1623 (1994)
61. P.J.Y. Louis, E.A. Ostrovskaya, C.M. Savage, and Y.S. Kivshar, Phys. Rev.

A 67, 013602 (2003)
62. D.N. Neshev, E.A. Ostrovskaya, Y.S. Kivshar, and W. Krolikowski, Opt.

Lett. 28, 710 (2003)
63. D. Mandelik, R. Morandotti, J.S. Aitchison, and Y. Silberberg, Phys. Rev.

Lett. 92, 093904 (2004)
64. A.A. Sukhorukov, D.N. Neshev, W. Krolikowski, and Y.S. Kivshar, Phys. Rev.

Lett. 92, 093901 (2004)
65. D.N. Neshev, A.A. Sukhorukov, B. Hanna, W. Krolikowski, and Y.S. Kivshar,

Phys. Rev. Lett. 93, 083905 (2004)
66. Y.S. Kivshar and M. Salerno, Phys. Rev. E 49, 3543 (1994)
67. J. Meier, G.I. Stegeman, D.N. Christodoulides, Y. Silberberg, R. Morandotti,

H. Yang, G. Salamo, M. Sorel, and J.S. Aitchison, Phys. Rev. Lett. 92, 163902
(2004)
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6.1 Introduction

Nonlinear periodic structures have become an active area of research due to
many exciting possibilities of controlling wave propagation, steering and trap-
ping. Periodicity changes the wave bandgap spectrum and therefore strongly
affects propagation and localization, leading to the formation of discrete and
gap solitons which have already been studied in several branches of science
[1–4].

In optics, a periodic modulation of the refractive index can either be pre-
fabricated as in photonic crystals [5] or optically induced in photorefractive
materials [6–9]. Until now, several different approaches for the fabrication of
photonic crystals exist [10–12]. Although these mechanisms enable a precise
material structuring with periodicities adequate for optical waves, they do
not allow for flexible changes of structural parameters (e.g., lattice period or
modulation depth). In contrast, the optical induction in photorefractive crys-
tals provides highly reconfigurable, wavelength-sensitive nonlinear structures
which can be induced at very low power levels.

When dealing with optically induced photonic lattices in these photorefrac-
tive materials, it is crucially important to consider the anisotropic properties
of photorefractive crystals. The light-induced refractive index change strongly
depends on orientation as well as polarization of the lattice wave [13, 14]. In
particular, its orientation with respect to the c-axis of the crystal determines
the symmetry of the induced pattern [15]. The shape of the induced refrac-
tive index pattern also changes with increasing lattice strength depending on
the saturation of the photorefractive nonlinearity. For instance, an ordinarily
polarized light pattern created by several interfering plane waves induces a
change of the refractive index while propagating linearly along the crystal.
The lattice wave does not ‘feel’ the periodic modulated refractive index dur-
ing propagation. If the lattice is weak, i.e. it is not affected by the saturation
of the photorefractive nonlinearity, the light-induced refractive index follows
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the light intensity distribution and forms a two-dimensional photonic lattice,
being uniform in the direction of propagation. Many exciting features of non-
linear light propagation have been investigated in these lattices and have been
presented in chapter 5.

An extraordinarily polarized periodic wave in contrast gets self-trapped if
the diffractionless light pattern can propagate without change of its profile,
becoming an eigenmode of the self-induced periodic potential. Such a station-
ary periodic nonlinear wave is a soliton-like lattice. These flexible nonlinear
photonic lattices offer many new possibilities for the study of nonlinear effects
in periodic systems.

In this chapter we will give an overview of our recent experimental and
theoretical results of the properties and features of optically induced strongly
nonlinear photonic lattices in photorefractive media. In the following section
we will present the experimental techniques to engineer the desired photonic
lattices and discuss the underlying theory. Many kinds of lattices with different
symmetries can be optically imprinted in a photorefractive crystal. Exploit-
ing the anisotropy and saturation of the photorefractive nonlinearity, allows
inducing strongly nonlinear photonic lattices up to self-trapped lattices. The
orientation and polarization anisotropy of the lattices is discussed in sec-
tion 6.3. The periodic modulation of the refractive index changes the wave
bandgap spectrum and therefore the light propagation. By flexibly tuning the
strength and form of the refractive index change light can be self-trapped in
the form of discrete and gap solitons (section 6.4). The combination of weakly
and strongly nonlinear features of a lattice leads to hybrid lattices which are
presented in section 6.5. The variation of the strength of the nonlinearity
represents an excellent tool to create more complex lattices for light propa-
gation. Among them, superimposed lattices, quasiperiodic or random lattices
seem to be attractive for studying fundamental laws of non-periodicity. In sec-
tion 6.6, we show the potential to realize these lattices exploiting techniques
of holographic optical storage, especially multiplexing of different lattices at a
single location. Section 6.7 is devoted to the next step of complexity: complex
beam propagation in complex photonic lattices – as e.g. the propagation of a
dipole-mode gap soliton in a complex, triangular lattice. Finally, we discuss
the potential of optically induced lattices to serve as control systems to sta-
bilize spatial and temporal instabilities in nonlinear optical feedback systems.
We show exemplarily how one- or two-dimensional photonic lattices can be
used to stabilize counterpropagating spatial solitons. We demonstrate that
spatio-temporal oscillations and chaotic temporal oscillations of two counter-
propagating solitons can be successfully ‘tamed’ by a photonic lattice.

6.2 Optically Induced Lattices in Photorefractive Media

Two-dimensional photonic lattices can be optically induced in photorefractive
crystals in different ways, e.g. by interfering a certain number plane waves (see
chapter 5), or by amplitude modulation of a partially coherent optical beam
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(see chapter 7). In our experimental approach, a spatial phase modulation of
a coherent optical beam is used. We have demonstrated experimentally that
an array of in-phase spatial solitons can be produced by amplitude modu-
lation where every soliton of the lattice induces a waveguide [16] as long as
the spatial solitons are separated spatially in a sufficient way to prevent in-
teraction. Therefore, the spatial periodicity of these soliton lattices is limited
by attractive or repulsive interaction of the neighboring solitons that gener-
ates their strong instability (see also Sec. 6.8). In contrast, lattices created by
out-of-phase spatial solitons are robust [13]. Therefore, phase-engineering is a
powerful tool to generate non-diffracting light patterns. When engineering the
light patters in an appropriate way, a variety of different forms and symmetries
like square, diamond, hexagonal, or triangular-shaped lattices can be easily
generated, opening the door to new insights into light propagation in com-
plex lattices. A typical experimental setup is shown schematically in Fig. 6.1.
A beam derived from a frequency-doubled Nd:YAG laser at a wavelength of
532nm is sent through a combination of half wave plate and polarizing beam
splitter in order to adjust the intensities. The desired pure phase modula-
tion of the transmitted beam is achieved by using a programmable spatial
light modulator. The modulated beam is then imaged at the input face of a
z = 20 mm long Cerium doped strontium barium niobate (SBN:Ce) crystal
by a high numerical aperture telescope. The crystal is biased by an externally
applied electric field and uniformly illuminated with a white-light source to
control the dark irradiance. A half wave plate is placed in front of the telescope
so that lattices can be induced with ordinarily as well as extraordinarily
polarized light.

Nd:YAG
m

M

MO

PH

L

SLM BS L FM L SBN:Ce BS L

CC

L

C
C

PBS

PM PBS

M

L
RD

L
ID

L

BS

λ

λ

λ

Fig. 6.1. Experimental setup, (P)BS: (Polarizing) beam splitter, MO: Microscope
objective, PH: Pinhole, L: Lens, M: Mirror, PM: Piezoelectric mirror, SLM: Spa-
tial light modulator, FM: Fourier mask, ID: Iris diaphragm, RD: Rotating diffuser,
CCD1: Real space camera, CCD2: Fourier camera
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The structure of the induced photonic lattice can be visualized in different
ways. By switching off the modulator, the crystal can be illuminated with a
broad plane wave to observe the wave guiding properties of the induced lat-
tice, and hence to visualize the light-induced refractive index structure [17].
To ensure that the light will experience a strong refractive index modulation
of the lattice, the beam is extraordinarily polarized. If a weak nonlinear lat-
tice shall be operating, ordinary polarization can also be employed by simply
adjusting the polarization in the system. The output of the crystal is analyzed
with two CCD cameras. CCD1 monitors the real space output, whereas CCD2
is placed in the focal plane of a lens to visualize the Fourier power spectrum
of the light exiting the lattice. Another possibility to analyze the structure is
given by the Brillouin zone spectroscopy [15,18]. For this purpose, the second
beam, also extraordinarily polarized, is passed through a rotating diffuser and
the partially spatially incoherent output of the diffuser is imaged at the front
face of the crystal. This results in partially coherent multi-band excitation
of the lattice modes and enables a direct visualization of the lattice struc-
ture in Fourier space by mapping the boundaries of the extended Brillouin
zone, which are defined through the Bragg reflection planes. By removing the
rotating diffuser, two lenses and the iris diaphragm (dashed), the setup can
be changed to observe the evolution of Bloch waves on the lattice. This is
achieved by focusing a Gaussian probe beam onto the front face of the crystal
and analyzing the output using CCD1.

To describe the propagation of an extraordinarily polarized beam in a
photonic lattice as well as the optical induction process of the lattice, we
employ the generalized nonlinear Schrödinger equation

i
∂E

∂z
+∇2E + n(I)E = 0, (6.1)

where I = |E|2 is the light intensity. The nonlinear contribution to the refrac-
tive index is given by

n(I) = Γ
∂ϕ

∂x
, (6.2)

where Γ = k2n2
0x

2
0reffEext is defined through the effective electro-optic coef-

ficient reff , the externally applied electric field Eext, and k = 2 πn0/λ. The
electro-optic coefficient of Sr0.6Ba0.4Nb2O6 for extraordinarily polarized light
(r33 ≈ 235 pm/V) is about five times larger than the coefficient for ordinarily
polarized light (r13 ≈ 47 pm/V). The electro-static potential of the optically
induced space charge field pattern satisfies the equation [19]

∇2ϕ+∇ϕ∇ ln(1 + I) =
∂

∂x
ln(1 + I), (6.3)

where the gradient operator is ∇2 = ∂2/∂x2 + ∂2/∂y2 and the intensity I is
measured in units of the background illumination intensity.
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The desired stationary solutions which have a transverse intensity profile
that does not change during propagation can be written as

E(x, y, z) = U(x, y) exp(ikz). (6.4)

Inserting this into (6.1) results in an equation for the field envelope U

− kU +
(
∂2

∂x2
+

∂2

∂y2

)

U + ΓU
∂φ

∂x
= 0. (6.5)

Following [13, 14], we are looking for phase-modulated periodic waves of the
form U(X,Y ) = U(X + 2 π, Y + 2 π) and the initial ansatz

U0(X,Y ) = A sinX sinY (6.6)

is used. Equations (6.3) and (6.5) can then be solved numerically using the
relaxation technique described in [20].

Numerical simulations reveal that two different families of solutions evolve
from the initial ansatz (6.6) depending on the spatial orientation of the lattice
wave.

The diamond lattice is oriented diagonally at an angle of 45 degrees
with respect to the c-axis of the crystal, thus giving X = (x + y)/

√
2 and

Y = (x − y)/
√

2. The calculated field and the refractive index for this type
of solution are shown in Fig. 6.2 for three different levels of saturation and a

U
(x

,y
)

∂
φ

/∂
x

k = 1.9 k = 1.5 k = 1.2

Fig. 6.2. Field U(x, y) and refractive index ∂xφ of the diamond lattice shown for
three distinct values of the mode amplitude max(U(x, y)) or the propagation con-
stant k from low (k = −1.9) to high (k = −1.2) saturation
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focusing nonlinearity (i.e. σ = +1). Note that the different levels of saturation
are indicated by different values of k. This is due to the specific structure of
the used equations. In general, the saturation of the induced refractive index
change depends on the intensity I. However, Eq. (6.5) shows that the field
envelope U and consequently the intensity I depend on the propagation con-
stant k as well. Therefore, the level of saturation can also be described in
terms of this constant [14]. The maximum amplitude max(U(x, y)) vanishes
in the limit k → −2. Hence, k = −2 can be considered as the linear limit.
Further analysis shows that in the general case Γ �= 1 the solutions cover a
band of k = [−2, Γ − 2].

The second family of solutions is given by the square lattice which is essen-
tially given by a 45 degrees tilted diamond lattice. Its corresponding variables
are X = x and Y = y and the field and the refractive index are shown in
Fig. 6.3 for the same values of the propagation constant k as for the diamond
lattice.

Comparing the refractive index structures shown in Fig. 6.2 and Fig. 6.3,
a striking difference between the solutions with different orientations can be
observed. In the strong saturation regime, the regions of high refractive index
are well separated for the diamond lattice but fuse to vertical lines for the
square lattice.

Thus, the symmetry of the induced refractive index change strongly
depends on the orientation of the lattice wave with respect to the c-axis of the
crystal. The diamond lattice induces a truly two-dimensional refractive index
lattice whereas the square lattice leads to an effectively one-dimensional refrac-
tive index pattern, although the original lattice wave is fully two-dimensional.

U
(x

,y
)

∂
φ
/∂

x

k = 1.9 k = 1.5 k = 1.2

Fig. 6.3. Field U(x, y) and refractive index ∂xφ of the square lattice shown for three
distinct values of the mode amplitude max(U(x, y)) or the propagation constant k
from low (k = −1.9) to high (k = −1.2) saturation
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6.3 Anisotropy in Nonlinear Photonic Lattices

The optically induced refractive index structure in a photonic lattice depends
on the orientation of the light pattern as well as on the polarization of the
lattice wave. These anisotropies are examined and discussed in the following
sections.

6.3.1 Orientation Anisotropy

To investigate the orientation anisotropy, the structure of the induced re-
fractive index change is analyzed with two different methods: guiding of a
broad extraordinarily polarized plane wave on the one hand, and Brillouin
zone spectroscopy on the other hand.

Fig. 6.4 demonstrates the obtained results using a lattice wave with a
period of 22 μm for a diamond (top row) and square pattern (bottom row),
respectively. The lattice input is shown in real space (Figs. 6.4a and 6.4d).
The intensity distribution of the plane wave guided by the lattice is shown
in Figs. 6.4b and e. As the output intensity of the guided wave matches the
induced refractive index change, the differences in the refractive indices for
the two orientations caused by the anisotropy of the photorefractive crystal
is clearly present. The waveguiding output consists of vertical lines for the
square pattern (Fig. 6.4e), but keeps its fully two-dimensional structure for
the diamond pattern (Fig. 6.4b).

The orientation-dependent structure of the induced refractive index change
is clearly demonstrated in the Brillouin zone pictures (Figs. 6.4c and 6.4f),
too. For the diamond pattern the two-dimensional structure of the induced
refractive index change is revealed by the clearly visible first Brillouin zone of

(a) (b) (c)

(d) (e) (f)

Fig. 6.4. Structure analysis for diamond (top) and square pattern (bottom).
(a), (d) Lattice wave (input), (b), (e) guided wave, (c), (f) Brillouin zone
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the diamond lattice. The Brillouin zone representation of the square pattern
however is dominated by two vertical lines representing the borders of the first
Brillouin zone of the corresponding one-dimensional stripe pattern.

6.3.2 Polarization Anisotropy

Due to the electro-optic anisotropy of axial photorefractive crystals like stron-
tium barium niobate (SBN), one can distinguish between linear and nonlin-
ear material response in order to create the desired photonic lattices. An
ordinarily-polarized light beam only experiences a negligible nonlinearity due
to the small electro-optic coefficient and therefore propagates in an almost
linear regime. An extraordinarily polarized light beam on the other hand is
influenced by a strong photorefractive nonlinearity and propagates in the non-
linear regime. For both polarizations the symmetry of the induced refractive
index change depends on orientation of the lattice wave with respect to the
c-axis [13, 14], and the saturation of the refractive index depends on the inten-
sity of the lattice wave. The larger the intensity, the stronger the saturation
of the refractive index. However, when the lattice wave is extraordinarily po-
larized, the self-focusing effect increases the intensity of each spot such that
the lattice is effectively induced with higher peak intensity. Consequently, for
otherwise same parameters (initial intensity, background illumination, and
applied voltage), the refractive index modulation induced with extraordinar-
ily polarized light is stronger than that for ordinarily polarized light. This is
illustrated in Fig. 6.5 showing the output of the guided plane wave for square
and diamond patterns, respectively [13, 14]. Lattices with a period of 60 μm
are induced with either ordinary or extraordinary polarization using a very
low power of 3 μW for the whole lattice wave. The polarization of the plane
wave can be made ordinary (o) as well as extraordinary (e). As expected, the
strongest modulation can be observed when lattice and the probe plane wave
are extraordinarily polarized. If the lattice and the plane waves are both ordi-
narily polarized, no modulation of the guided wave can be observed. Indeed, in
the latter case the lattice intensity is too low to induce a significant refractive
index change as well as the coupling of the ordinarily polarized plane wave is
week due to very small electro-optic coefficient.

6.4 Two-dimensional Discrete Solitons in Nonlinear
Photonic Lattices

To study the propagation of an optical beam in a biased photorefractive crystal
with an optically induced lattice, the set of equations (6.1)–(6.3) can be solved
with a total intensity I that includes the intensity of the lattice wave V (x, y),
the intensity of the optical beam |E|2 as well as the background illumination.
Thus, the intensity relation
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Fig. 6.5. Guided wave output (first and third column) and horizontal intensity
profiles (second and fourth column) of diamond pattern (left) and square pattern
(right) with varied polarizations for lattice wave and guided wave. (a) lattice wave
and guided wave e-polarized, (b) lattice wave e-polarized, guided wave o-polarized,
(c) lattice wave o-polarized, guided wave e-polarized, (d) lattice wave and guided
wave o-polarized

I = 1 + V (x, y) + |E|2 (6.7)

is used. The periodic modulation of the refractive index causes a bandgap
spectrum for the transverse components of the wave vectors Kx and Ky and
the beam propagation through the lattice is described by two-dimensional
Bloch waves [21] of the form

E(x, y, z) = U(x, y) exp [i (βz +Kxx+Kyy)] (6.8)

with the propagation constant β and the spatially periodic amplitude U(x, y).
To calculate the band structure of a specific lattice type (Fig. 6.6), it

is important to consider the anisotropic properties of the refractive index.
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(a)
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semi-infinite gap
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Fig. 6.6. First Brillouin zone and band spectrum for (a) diamond and (b) square
lattice

From a geometrical point of view, there is no qualitative difference between
diamond (Fig. 6.6a) and square (Fig. 6.6b) pattern except the spatial orienta-
tion. However, it has been demonstrated that different spatial orientations of
the lattice wave result in fundamentally different refractive index structures
and accordingly in different band structures.

The points in the band spectrum with maximum β are of special impor-
tance. In case of a focusing nonlinearity, the nonlinear response increases the
beam propagation constant and leads to a shift inside the gaps for modes
associated with these points. Once the propagation constant is located in-
side the gap, the propagation is no longer restricted to the spatially extended
Bloch waves and the formation of self-trapped waves becomes possible. In
the following experiments, the Γ point at the top of the first band will be
investigated. Increasing the propagation constant from this point shifts it
inside the semi-infinite total internal reflection gap. Solitary states in this
gap are commonly denoted as discrete solitons. Additionally, another possible
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(a) (b) (c)

(d) (e) (f)

Fig. 6.7. Experimental results (top) and numerical simulations (bottom) for the
square pattern. (a) Lattice wave intensity and (d) refractive index distribution,
(b), (e) diffraction of the probe beam at low intensity, (c), (f) localized state at
high intensity

localized state originates from the point with maximum β of the second band.
In this case, the propagation constant is shifted inside the Bragg-reflection
gap and the corresponding localized state is called gap soliton.

In order to explore the influence of the anisotropy of photonic lattices
on the symmetries of discrete solitons, we generate two-dimensional solitons
experimentally by focusing an extraordinarily polarized Gaussian beam into
a lattice site at the front face of the crystal. The result for the square lattice
is shown in Fig. 6.7. Although the probe beam is extraordinarily polarized,
we also observe its linear propagation (discrete diffraction) using the slow
response of the photorefractive nonlinearity. Indeed, the process of optical
induction is much slower than the propagation of light and immediately after
launching the probe beam the periodic refractive index induced by the lattice
wave is undistorted.

We observed that the discrete diffraction in the diamond lattice follows the
dynamics known for a truly two-dimensional square photonic lattice, while
corresponding images for the square lattice in Fig. 6.7b are significantly dif-
ferent. The modulation of the beam intensity after discrete diffraction, similar
to the guided waves in [Figs. 6.4e and 6.5], is effectively one-dimensional.

To model discrete diffraction (Fig. 6.7e) we solve Eqs. (6.1–6.3) with the
total intensity I = 1 + V and the lattice intensity in analogy to (6.6)

V (x, y) = I0 cos2X cos2 Y, (6.9)

where again X = (x + y)/
√

2 and Y = (x − y)/
√

2 for the diamond lattice
while X = x and Y = y for square lattice. The numerical results are in good
qualitative agreement with corresponding experimental pictures.
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Increasing the power of the probe beam and allowing for sufficient time
for self-action effects to take place, we record the formation of discrete soli-
tons in Fig. 6.7c. Numerically, we obtain the profiles of the solitons by solving
Eqs. (6.1–6.3) with the ansatz E = U(x, y) exp(iβz), and the total intensity
I = 1 + V + U2. The resulting discrete solitons carry the symmetry of the
underlying nonlinear lattice, i.e., the soliton in the square lattice is only mod-
ulated in the x-direction.

The observations closely resemble two-dimensional solitons in saturable
media propagating in a one-dimensional lattice potential investigated theo-
retically in [22]. These solitons naturally show a strong anisotropy, making
them essentially different from usual two-dimensional solitons. An additional
advantage of using a one-dimensional lattice potential is that the remaining
free direction offers the possibility of soliton motion, and therefore allows the
study of soliton collisions or the formation of bound states [23]. The mobil-
ity of two-dimensional solitons was also shown to be strongly anisotropic in
two-dimensional lattices [24].

6.5 Hybrid Lattices

An ordinarily polarized lattice wave is not influenced by the refractive index
changes it produces due to the small electro-optic coefficient. This is why the
ordinarily polarized lattice is often denoted as fixed lattice. The extraordinar-
ily polarized lattice wave propagates in the nonlinear regime and also induces
the nonlinear refractive index change which will be different for different ori-
entations and different intensities. However, in the nonlinear regime, there
are instabilities which may brake the stationary lattice during propagation.
Similarly, an additional extraordinarily polarized probe beam can be seen as
a perturbation to the lattice such that it gets deformed or even destroyed.
Therefore, this lattice is sometimes denoted as flexible lattice [25, 26].

Hybrid lattices with mixed polarization include both types of lattices. If
the polarization of the lattice wave gets tilted with respect to the c-axis, the
projection to the ordinary axis will propagate in an almost linear regime and
the projection to the extraordinary axis will propagate in the nonlinear regime.
Still, it is the total intensity that is important for saturation of the refractive
index, even if the lattice is induced with two parts, fixed and flexible. A two-
dimensional flexible lattice is rather unstable to perturbations, and therefore
gets easily destroyed. In a hybrid lattice, the flexible part does not propagate
in a free medium as the pure flexible lattice but in a periodically modulated
media created by the fixed part. As a result, the flexible part is stabilized, and
the probe beam ‘sees’ the stable periodic media while it still able to interact
with the flexible part of the hybrid lattice.

This stabilization of the flexible lattice part can easily be observed in
experiment (Fig. 6.8). After induction of an ordinarily polarized lattice, an
extraordinarily polarized probe beam is launched collinear into the lattice
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Fig. 6.8. Beam propagation in hybrid lattices with mixed polarization

to excite the Γ -point. The evolution of the probe beam has been observed
for increased intensities. Figure 6.8 clearly shows the discrete diffraction and
the corresponding discrete soliton. After the discrete soliton had formed,
the lattice and the probe beam have been imaged together to check if the
lattice remains stable while being probed. As expected, the ordinary polar-
ized lattice is not influenced by the probe beam. Then, while keeping the
total intensity constant, the polarization of the lattice wave has been tilted
to different angles with respect to the c-axis and the steps mentioned above
have been repeated. When the polarization is tilted by 30◦ with respect to
the c-axis, the lattice gets strongly modified or even destroyed in the probed
region.

Obviously, the observed localized states look similar for all the chosen
polarizations of the lattice wave. A detailed knowledge of the interaction
between the hybrid lattice and the probe beam therefore brings an additional
degree of freedom in engineering the lattice guiding properties. In particular,
tuning the relative amplitudes of both lattice types allows to precisely control
the mobility of the localized probe beam with the polarization of the lattice
wave being the control parameter. Thus, hybrid lattices are a forthcoming and
promising area of research that will lead optically induced photonic lattices
to a higher level of complexity.

6.6 Multiperiodic Lattices

Besides the comparatively simple geometries like diamond, square [9, 13, 14]
or hexagonal [27] lattices special attention is also paid to more complex pho-
tonic structures like modulated waveguide arrays [28], lattice interfaces [29]
or double-periodic one-dimensional photonic lattices [30]. In general, such
multiperiodic structures are of great interest since they offer many exciting
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possibilities to engineer the diffraction properties of light by opening addi-
tional mini gaps in the transmission spectrum and thereby facilitate the exis-
tence of new soliton families in nonlinear media [31].

We have implemented a new approach for all optical induction of multi-
periodic superlattices by superposition of several single periodic lattices [32].
The demonstrated method is closely related to the incremental recording in
holographic data storage [33] and enables the induction of reconfigurable
multiperiodic structures in one and two dimensions. Unfortunately, for the
induction of multiperiodic lattices the self-evident idea to use the spatial light
modulator for a direct modulation of the lattice wave with a corresponding
pattern is not successful. The reason is that lattice waves of different peri-
odicities acquire different phase shifts during propagation and their coherent
superposition therefore leads to an intensity modulation in the propagation
direction due to interference. Consequently, a method of incoherent superpo-
sition is required.

Of course a simple overlay of multiple incoherent interference patterns is
feasible but lacks the flexibility benefits offered by the usage of a modulator.
A solution is given by the multiplexing technology known from holographic
data storage. Several different approaches like wavelength, angular and phase
code multiplexing [34–36] allow the superposition of different refractive index
patterns inside the volume of a photorefractive crystal and can therefore serve
as a basis for the induction of multiperiodic photonic superlattices.

Compared to the commonly used sequential recording scheme, the method
of incremental multiplexing [33] offers the possibility to induce the superim-
posed lattices with varied modulation depths by simply adjusting their rela-
tive illumination times. In fact, this enhances the flexibility of the induction
process even more.

If only one lattice period is used during the induction process, the Brillouin
zone pictures show two dark lines marking the borders of the first Brillouin
zone of the corresponding lattice. This is demonstrated in Figs. 6.9d and 6.9e
for lattice periods of 15 μm and 24 μm, respectively. The corresponding real
space images of the lattice wave are shown in Figs. 6.9a and 6.9b. The in-
duction of a one-dimensional photonic superlattice as a superposition of these
two structures is depicted in Figs. 6.9c and 6.9f. The arrows in Fig. 6.9c in-
dicate the alternating sequence of the two single periodic lattice waves. Both
waves are sent onto the crystal in an alternating scheme having the same
power of 35 μW for two seconds, respectively. It is important to note that this
illumination time is at least one magnitude smaller than the typical dielectric
relaxation time of the used crystal, which at these intensities typically is in the
range of tens of seconds. The total illumination time of the induction process
is about 60 s. In this case, (Fig. 6.9f) clearly shows four dark lines correspond-
ing to the Brillouin zone structure of the double periodic one-dimensional
superlattice induced by superposition of the two single periodic structures.

In addition to the optical induction of one-dimensional superlattices,
the method can easily be extended to achieve multiperiodic structures in
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(a) (b) (c)

(d) (e) (f)

Fig. 6.9. Experimental realization of a superlattice by incrementally recording
two stripe patterns with different periods. Lattice wave (top), Brillouin-zone spec-
troscopy (bottom)

two transverse dimensions as well [32]. The only fundamental restriction on
the successively multiplexed structures is their diffraction-free propagation
through the medium. Therefore, the method of holographic multiplexing may
also be extended to induce more sophisticated refractive index structures, for
example asymmetric lattices being a superposition of many single periodic
lattices of different symmetries. Due to its simplicity and high flexibility, the
presented method can serve as a novel tool for the investigation of several
fascinating effects of nonlinear wave propagation in multiperiodic photonic
lattices.

6.7 Complex Beam Propagation in Complex Lattices

Up to now, in almost all demonstrations the optically induced lattices have
been restricted to a fourfold symmetry in a diamond-like orientation. This
is due to the fact that in this lattice configuration effects of the anisotropy
of the electro-optic properties of photorefractive crystals can be neglected.
Recently, in the same spirit, the formation of discrete and gap solitons in
hexagonal lattices has also been demonstrated [27,37]. Again, the orientation
of the lattice wave has been chosen to minimize the effect of anisotropy.

To overcome previous limitations of useable lattice configurations the
concept of solitons in optically induced lattices can be extended to more
complex anisotropic lattices. Triangular lattices represent an example of
highly-symmetric patterns that are transformed into lattices with strongly
reduced symmetry and they are also an extension of the commonly known
fourfold symmetry diamond or square lattices. Triangular lattices are
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Fig. 6.10. Parallel triangular pattern. (a) Lattice wave, (b) first Brillouin zone,
(c) numerical simulation of the light-induced refractive index change, (d) guided
wave, (e) bandgap spectrum

higher-order lattices consisting of dipole structures oriented in a diamond
pattern with angles of 60◦.

A similar effect of symmetry reduction can also be observed for the hexag-
onal lattices already implemented. However, the photorefractive anisotropy
leads for the triangular lattices to crucially different refractive index struc-
tures (refer to Fig. 6.10c). Certainly, this results in different bandgap spectra
and hence influences the characteristics of possible solitons dramatically.

In the following, we will expand the analysis to the propagation of dipole-
modes [38] and show that triangular lattices in parallel orientation enable the
formation of dipole-mode gap solitons [39]. This is a demonstration of a stable
dipole structure – a molecule of light – in a highly anisotropic lattice.

To obtain the induced refractive index change, the two equations (6.3)
and (6.5) have to be solved numerically with the initial ansatz [14]

UΔ
0 (X,Y ) = E sin

(
2Y/
√

3
)

sin
(
Y/
√

3 +X
)

sin
(
Y/
√

3−X
)
. (6.10)

Again, the numerical simulations show that two different families of solutions
evolve from the initial ansatz. The parallel orientation with lines of π phase
jumps oriented parallel to the c-axis is described by (X,Y ) = (x, y) and the
perpendicular orientation is given by (X,Y ) = (y, x). Similar to the diamond
and square pattern, these lattices also show a strong orientation anisotropy
in the symmetry of the induced refractive index changes (see section 6.3).
Numerical calculations for the parallel orientation show that every two verti-
cally neighboring out-of-phase lobes of the field distribution induce a focusing
dipole-island and these islands form essentially a diamond pattern with an-
gles of 60◦ (Fig. 6.10c). The experimentally observed guided waves (Fig. 6.10d)
confirm these numerical results. In order to study the formation of discrete
and gap solitons in these lattices, we also calculate the bandgap spectrum for
the parallel lattice as shown in Fig. 6.10e.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 6.11. Formation of fundamental discrete solitons in the parallel triangular lat-
tice ((a)–(f)) and formation of dipole-mode gap solitons in the parallel triangular
lattice ((g)–(l)). Experimental results (first and third column) and numerical simula-
tions (second and fourth column). (a), (b) and (g), (h) diffraction of the probe beam
at low power, (c), (d) and (i), (j) localized state at moderate power, (e), (f) and
(k), (l) discrete soliton. Used colormap going from blue (low intensity) to red (high
intensity) depicted between the columns

Experimentally, we generate fundamental discrete solitons by focusing an
extraordinarily polarized Gaussian beam into one lattice site at the front face
of the crystal. The results for the parallel pattern are shown in Fig. 6.11.

It is clearly visible that the diffraction of the probe beam in the parallel-
oriented lattice at low power shows a behavior similar to the diamond lattice
forming a fully two-dimensional diffraction pattern (Fig. 6.11a). It has also
been experimentally verified that the perpendicular lattice shows an effectively
one-dimensional diffraction pattern consisting of vertical stripes as observed
for the square pattern (Fig. 6.4b).

Increasing the power of the probe beam, we observe the evolution from
the described diffraction pattern to the strongly localized discrete solitons
(Fig. 6.11e).

In addition to the previously discussed fundamental discrete solitons in
triangular photonic lattices, our numerical simulations reveal that the lat-
tice in parallel orientation with its dipole-like islands of high refractive index
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gives rise to the formation of dipole-mode gap solitons originating from the
M3-point of the irreducible first Brillouin zone (Fig. 6.10b).

To compare these numerical simulations to the experiment, we generate
a dipole-like input beam by using the superposition of two counter-rotating
vortices in a Mach-Zehnder interferometer and observe the output of the probe
beam at the back face of the crystal for different probe beam powers.

The experimental as well as the numerical results are summarized in
Figs. 6.11g–l. At low probe beam powers the diffraction pattern consists of
a central dipole surrounded by four side lobes each forming a dipole itself
(Fig. 6.11g). With increased power the side lobes vanish and a stable dipole-
mode gap soliton evolves (Fig. 6.11k).

The existence of these stable solitons in triangular lattices offers novel
possibilities to control dipole-like beams. In bulk photorefractive media they
are known to experience strong repulsion [40], whereas in the presence of the
lattice they are confined in one dipole-like island of high refractive index.

6.8 Controlling Instabilities of Counterpropagating
Solitons by Optically Induced Photonic Lattices

Light-induced refractive index changes of photorefractive optical spatial soli-
tons offer the possibility for reconfigurable optical links. Therefore, the inter-
action of spatial optical solitons is of crucial importance. The interaction of
photorefractive solitons can include attraction or repulsion as well as energy
exchange and fusion or even a creation of new solitons [41,42]. The temporally
constant input of copropagating solitons leads to a stationary state after ini-
tial transient dynamics [43]. In contrast, counterpropagating solitons [44–51]
induce a common waveguide. With increasing medium length L or increasing
coupling strength Γ this waveguide structure breaks up into a so called bidirec-
tional waveguide structure. Increasing the nonlinear interaction parameter ΓL
further, the bidirectional waveguide loses stability via regular limit cycle oscil-
lations until the temporal dynamics become irregular [47–50]. To control and
stabilize counterpropagating solitons, optically induced photonic lattices [52]
are ideal candidates. The modulation of the refractive index acts as a periodic
potential, reducing the mobility of the spatial extension of the beams, and
enabling the formation of lattice solitons in the total internal reflection gap.
This suppresses the instability of the counterpropagating solitons, therefore
allowing for stability of the resulting composite waveguide. In this section we
discuss the influence of the lattice depth and period of an optically induced
lattice on the dynamics of counterpropagating solitons.

To numerically simulate the situation, we focus on the interaction of
two counterpropagating mutually incoherent screening solitons with a one-
dimensional model of a saturable nonlinearity. Spatial evolution of the slowly
varying field envelopes EF and EB of the forward and backward propagating
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beams is modelled in paraxial approximation:

i∂zEF + ∂2
xEF = ΓEscEF

−i∂zEB + ∂2
xEB = ΓEscEB (6.11)

where Esc is the space charge field created by the beams inside the photore-
fractive crystal and Γ = k2n2

0w
2
0reffEext denotes the photorefractive coupling

constant. The transverse x-coordinate is scaled to the beam waist w0 whereas
the propagation z-coordinate is scaled with the diffraction length LD = 2kw2

0,
with k = 2πn0/λ and λ denoting the laser wavelength [48].

For the temporal evolution of the space charge field we assume relaxation
type dynamics

τ(I)∂tEsc + Esc = − I

1 + I
, (6.12)

where I = |EF|2+ |EB|2 is the total intensity – again scaled to the background
intensity – and Esc is scaled to the applied electrical field. The relaxation time
τ depends on the total intensity as τ(I) = τ0/(1 + I).

The presence of the index grating created by the interference of two plane
waves is modelled by including the additional term V (x) = A cos2(πx/p) in
the expression for the total light intensity I = |EF|2 + |EB|2 + V , where A
and p determine the peak intensity and periodicity of the lattice, respectively.
As the lattice-forming waves are ordinarily polarized, they do not interact
directly with solitons, and the lattice intensity distribution remains stationary
throughout the crystal.

In our investigations, we assume the incident waves to be stationary in a
form of two identical Gaussian beams with beam waists 1 and peak intensity
I = 1 each. We simulate their head-on collision by launching both beams at
the same lateral position perpendicularly to the crystal face. For the chosen
parameter values, the soliton solutions in bulk media already exhibited very
irregular temporal oscillations [50].

In order to study the influence of the induced photonic lattice on the soliton
dynamics, we vary the peak intensity and periodicity of the lattice wave and
determine the degree of instability in terms of the level of dynamics [50]
defined as

lodN =

N∑

t=1

∑

x

[ |EF(x,L, t) − EF(x,L, t− 1)|2
|EF(x,L, t)|2 +

|EB(x, 0, t) − EB(x, 0, t− 1)|2
|EB(x, 0, t)|2

]

.

(6.13)

This parameter represents the time and space integrated modulus of the differ-
ences in the field envelopes at either exit face between two successive simulated
time-steps. It follows directly from Eq. (6.13) that a decrease in the intensity
variation of the solitons (i.e. a weaker instability) leads to a lower value of
lodN (lodN = 0 for stationary solutions).

As can be clearly seen from Fig. 6.12, the rate of decrease of the temporal
dynamics of counterpropagating solitons launched on-site strongly depends on
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Fig. 6.12. Level of dynamics lodN for counterpropagating solitons launched on-site
as a function of lattice intensity A for different lattice period p. (Here and in the
following on-site will denote the case when the solitons maximal intensity coincides
with the maximum of the lattice.) (a) period smaller than the beam diameter,
(b) lattice period larger than the beam diameter. Non-monotonous decrease of lodN

for p = 1 d and A = 0.4–0.8, is due to long lasting transient dynamics

lattice strength and its period. The influence of the lattice on soliton dynamics
is strongest for period p = 1 d, where d = 2 is the beam diameter of the
incident Gaussian beams. This can be explained as follows: for small lattice
periodicity, the self-trapped beam covers many lattice sites. As a result, the
effect of the lattice is weaker, and in the limit p → 0 the medium can be
regarded as homogeneous with higher refractive index. If the periodicity is
comparable with the beam diameter, the soliton experiences maximal guiding
by the lattice induced refractive index modulation. For larger periodicity, the
region in which the refractive index change is negligible increases, so that in the
limit p → ∞ one ends up again with a homogeneous medium. Consequently
the influence of the lattice decreases again. Furthermore, our simulations show
that the decrease of the dynamics is not as rapid for smaller periodicity as it
is for larger one.

Figure 6.13 depicts the numerical solution of the temporal evolution of the
intensity distribution for p = 1 d for three different values of the lattice inten-
sity A. For weaker lattices the output oscillates irregularly. These oscillations
are similar to those occurring in a bulk continuous medium. The presence
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Fig. 6.13. Temporal evolution of the intensity distribution at one crystal face with
increasing lattice peak intensity at the plane of incidence of EF. The constant line
(red) marks the input of EF while the intensity distribution of EB oscillates (green)
since it is the output plane of beam EB. Depicted is the evolution along the curve
for periodicity equal to beam diameter. Qualitatively similar results are obtained at
the plane of incidence of EB for the transmitted beam EF

of the lattice leads to solitons residing more frequently at the lattice sites,
which is reflected in the appearance of faint horizontal lines in Fig. 6.13a.
For a stronger lattice, we still observe some transient dynamics with oscil-
lation periods which are quite short (Fig. 6.13b). During these oscillations,
the output couples to the neighboring lattice sites. However, after the initial
oscillations the output becomes stationary and resides at the lattice site clos-
est to the input waveguide. For even larger lattice intensity the range of time
transient dynamics shortens. Notice that in the stable state a small fraction
of the soliton is trapped at the input lattice channel while the majority of
soliton power is confined in the neighboring site.

The impact of a one-dimensional optically induced lattice on the dynamics
of soliton interaction can be investigated experimentally by interfering two
plane waves of equal power inside the photorefractive crystal. The periodicity
of the lattice is chosen to be comparable with the beam diameter, for which
the soliton stabilization is expected to be strongest.

The experimental results are shown in Fig. 6.14 which depicts temporal
evolution of one of the beams at the exit facet of the crystal. It is evident
that soliton dynamics, i.e. spatio-temporal oscillations are suppressed with
the increasing strength of the optical lattice. These results agree qualitatively
well with the numerical simulations. Figure 6.14a shows irregular oscillations
forming out at low lattice power. These oscillations are comparable to those
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Fig. 6.14. Temporal evolution of the intensity distribution projected onto the x-
axis (parallel to the c-axis) for different lattice powers of (a) 250 μW, (b) 1.0 mW,
(c) 1.5 mW, (d) 2.0 mW, and 2.5 mW. The faint horizontal lines at x = 0 μm mark
the reflected beam at this crystal face which acts as a reference. Again the results
for the other crystal face show similar behavior

emerging in a bulk medium under the same set of parameters. For higher
lattice beam power (Figs. 6.14b and 6.14c) the oscillation amplitude starts
to decrease and within the irregularity sequences of regular oscillations are
observed. For even higher power of the lattice waves we see long lasting tran-
sient dynamics tending to a stationary state (Fig. 6.14d). Finally, a stationary
state over the observation period of two hours is seen for lattice beam power
of 2.5mW (see Fig. 6.14e).

So far we have considered the dynamics of counterpropagating solitons
in a one-dimensional lattice, emphasizing the arrest of instability in a sin-
gle transverse direction only. For application of the counterpropagating soli-
tons as a self-adjusting bi-directional waveguide, it is necessary, however, to
ensure stabilization in both transverse directions. This can be achieved in
two-dimensional optical lattices [52]. The dependence of beam dynamics on
the lattice period qualitatively matched those obtained for one-dimensional



6 Complex Nonlinear Photonic Lattices 123

optical lattice. For a small lattice period the potential induced by the lat-
tice is too weak to arrest the instability of the counterpropagating beams
but with increasing lattice period the instability is practically removed for
a certain range of lattice intensities. Without the lattice, both beams over-
lap weakly and their individual propagation is strongly affected by the beam
self-focusing and self-bending. The introduction of the lattice suppresses the
oscillatory instability observed in homogenous crystals due to the induced
periodic potential and therefore reduces the mobility of solitons. In the pres-
ence of the lattice both beams align well with each other and the oscillatory
motion is suppressed. With the increase of the lattice power the instability
dynamics of the counterpropagating beams is reduced and the solitons join
steadily at both sides of the crystal.

In conclusion, the dynamics of counterpropagating solitons can be sup-
pressed by optically induced lattices of proper period and strength. For a
one-dimensional lattice the period should be comparable to the beam diame-
ter and the lattice strength should exceed a certain value. The stabilization of
the dynamics of counterpropagating solitons in two transverse direction can
be achieved with a two-dimensional square lattice.

6.9 Summary

We have presented an overview of the properties and applications of strongly
nonlinear optically induced photonic lattices in photorefractive media. By
exploiting the anisotropic nature and the saturation of the photorefractive
nonlinearity, the strong nonlinearity allows designing strongly complex lat-
tices and variably tuning the strength and shape of the periodic refractive
index change. With nonlinear photonic lattices, we are able to influence the
propagation of light beams in many different ways. Self-trapped light beams in
form of discrete and gap solitons can be generated inside the lattice, and coun-
terpropagating solitons can be stabilized by photonic lattices. As light-induced
optical lattices provide a much greater control of the grating parameters than
fabricated waveguide arrays, we believe that these results open many new pos-
sibilities for the study of various nonlinear effects in more complex optically
induced lattices, including lattices with mixed polarization and superlattices
with different spatial periodicities.
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Y.S. Kivshar, and C. Denz, Appl. Phys. B 86, 399 (2007)
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7.1 Introduction

In the past ten years, there has blossomed an interest in the study of collective
behavior of wave propagation in periodic waveguide arrays and photonic lat-
tices [1–3]. The unique bandgap structures of these periodic media, coupled
with nonlinear effects, give rise to many types of novel soliton structures [1–
26]. On the other hand, it is well known that one of the unique and most
interesting features of photonic band-gap structures is a fundamentally dif-
ferent way of waveguiding by defects in otherwise uniformly periodic struc-
tures. Such waveguiding has been demonstrated with an “air-hole” in photonic
crystal fibers (PCF) for optical waves [27, 28], in an isolated defect in two-
dimensional arrays of dielectric cylinders for microwaves [29–31], and recently
in all-solid PCF with a lower-index core [32, 33]. In addition, laser emission
based on photonic defect modes has been realized in a number of experi-
ments [34–38]. In one-dimensional (1D) fabricated semiconductor waveguide
arrays, previous experiments have investigated nonlinearity-induced escape
from a defect state [39] and interactions of discrete solitons with structural
defects [40] (see also [41]).

Despite the above efforts, theoretical understanding on defect guiding
was still limited, and experimental demonstrations of defect guiding was still
scarce. In addition, when nonlinear effects are significant, how defect guiding
is affected by nonlinearity is largely an open issue. Recently, in a series of
theoretical and experimental studies, we optically induced 1D, 2D and ring-
like photonic lattices with single-site negative defects in photorefractive crys-
tals, and investigated their linear and nonlinear light guiding properties [42–
48]. This work will be reviewed in this Chapter. In addition, we present the
first experimental demonstration of nonlinear defect modes which undergoes
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nonlinear propagation through the defects. Our work not only has a direct
link to technologically important systems of periodic structures such as PCF,
but also brings about the possibility for studying, in an optical setting, many
novel phenomena in periodic systems beyond optics such as edge dislocation,
defect healing, eigenmode splitting, and nonlinear mode coupling which have
been intriguing scientists for decades [49–51].

7.2 Optically Induced Lattices and Defects

With today’s nano-fabrication technology, creation of a closely-spaced uniform
1D waveguide array on a substrate material is not a difficult task. For instance,
such waveguides have been fabricated with AlGaAs semiconductor materials
or LiNbO3 crystals. Yet, it has been a challenge to create or fabricate 2D
or 3D waveguide arrays in bulk media. In Ref. [9], 2D photonic lattices were
successfully created by sending multiple interfering beams into a crystal. This
interference method has some disadvantages, such as its sensitivity to ambient
perturbation, and its inability to generate more complicated lattice structures
with single-site defects. In view of that, we used a different method of optical
induction which is based on the amplitude modulation of a partially coherent
optical beam.

The experimental setup for our study is illustrated in Fig. 7.1. The experi-
ments are performed in a biased SBN:60 (strontium barium niobate) photore-
fractive crystal (typically, r33 ∼ 280 pm/V and r13 ∼ 24 pm/V) illuminated
by a laser beam (either Coherent argon ion laser λ = 488 nm or solid-state
laser λ = 532 nm) passing through a rotating diffuser and an amplitude mask.
The biased crystal (bias field can be varied from -2.0 to 6.0 kV/cm) provides

Fig. 7.1. Experimental setup for optical induction of waveguide lattices in a biased
photorefractive crystal by amplitude modulation of a partially coherent beam. PBS:
polarizing beam splitter, SBN: strontium barium niobate. Top path is the lattice
beam, and bottom path is the probe beam (either a Gaussian beam or a vortex
beam if a vortex mask is inserted). The right insert shows a typical experimental
picture of 2D uniform lattice created by optical induction
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a self-focusing or defocusing noninstantaneous nonlinearity [52]. The rotating
diffuser turns the laser beam into a partially spatially incoherent beam with
controllable degree of spatial coherence, as first introduced in experiments
with incoherent optical solitons [53–55]. The amplitude mask provides spatial
modulation after the diffuser on the otherwise uniform beam, which exhibits a
periodic intensity pattern at the input face of the crystal [56,57]. This partially
coherent and spatially modulated beam is used as our lattice beam. Another
beam, either split from the same laser or emitted from a different laser and
not passing through the diffuser and the mask, is used as our probe beam,
propagating along with the lattice. In our experiments on defect modes, the
lattice beam has its polarization close to being o-polarized, thus the lattice
beam induces a weak periodic index variation to form the waveguide arrays.
The probe beam, on the other hand, is always a coherent e-polarized beam,
but its intensity and/or wavelength can be adjusted so it can undergo linear
propagation (for study of linear guidance or linear defect modes) or nonlinear
propagation (for study of nonlinear trapping or nonlinear defect modes) as
detailed in later sections. The two beams are monitored separately with CCD
cameras at the input and output facets of the crystal. In addition, a white-
light background beam illuminating from the top of the crystal is normally
used for fine-tuning the photorefractive nonlinearity [52–60].

In our experiments, the periodic lattice must stay stationary during its
quasi-linear propagation through the crystal. In order for this to happen, we
need to understand how to eliminate the Talbot effect . The Talbot effect is
a phenomenon of coherent light propagation in a homogeneous media with
spatially-periodic initial conditions [61,62]. Light exhibiting this phenomenon
does not propagate stationarily, and it shrinks and expands as it moves along,
and its intensity pattern repeats itself periodically along the propagation di-
rection. Our lattice beam travels in a homogeneous crystal (as it does not feel
the probe beam), and its initial condition on the input face of the crystal is
periodic (due to the amplitude mask). Because of the Talbot effect, it can
not form a stationary lattice. To overcome this difficulty, our idea is to use
frequency filtering to remove half of the spatial frequencies in the initial condi-
tions. The filtered lattice beam, when slightly tilted, can propagate stationar-
ily along the crystal; thus, the Talbot effect is eliminated. Our experimentally
created 1D and 2D stationary lattices are presented in Fig. 7.2. A theoretical
understanding for the elimination of the Talbot effect by frequency filtering
and beam tilting can be found in [63].

In our studies, we need to optically create stationary periodic lattices with
a local defect akin to an “air defect” in photonic crystals. To explore this pos-
sibility, we prepare an initial periodic lattice with a single-site negative defect
using amplitude masks. Under linear propagation, however, we find that the
frequency filtering and beam tilting techniques are not enough to maintain
the defect and keep the lattice stationary. The defect tends to be washed out
at the exit face of the crystal. In order to maintain the defect, we employ
two additional techniques. One is to introduce a small amount of nonlinearity
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Fig. 7.2. Optically induced 1D and 2D lattices with a single-site negative defect, as
obtained from our experiments. 1D results (top), 2D results (bottom). (a) uniform
lattice at output, lattice spacing 42 μm (1D) and 27 μm (2D), (b) lattice with defect
at input, (c) lattice with defect at output maintained by weak nonlinearity

into the lattice beam (by setting its polarization to contain a small amount
of e-polarized component), and the other one is to introduce partial incoher-
ence into the lattice beam (by letting the lattice beam go through a rotating
diffuser). With the combined use of these techniques, we have successfully
created 1D and 2D single-site defects in the otherwise uniform lattice which
remains nearly stationary throughout the crystal (length varies from 10 to
20mm). Typical examples are presented in Fig. 7.2.

7.3 Linear Defect Modes in 1D Lattices

When a periodic lattice has a local defect, this defect can affect the prop-
agation of a probe beam significantly and in a way fundamentally different
from linear propagation in continuous media. For instance, if the defect is
negative (repulsive), i.e., the lattice intensity at the defect is lower than that
in neighboring lattice sites, the defect can guide a linear localized mode (de-
fect mode). This is quite counter-intuitive. The physical mechanism for this
unusual light guiding is the repeated Bragg reflections, rather than the con-
ventional total internal reflections, analogous to light transmission in air-hole
photonic crystal fibers.

To understand the linear light-guiding property of a negative defect, a
theoretical analysis is performed first for our present physical system [42,43].
The non-dimensionalized model is [7–9]

iUz + Uxx −
E0

1 + IL(x)
U = 0 , (7.1)
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where U is the envelope function of the probe beam, E0 is the applied bias
field, IL(x) = I0 cos2(x)[1− fD(x)] is the lattice intensity containing a defect,
I0 is the lattice peak intensity, and fD(x) = exp(−x8/128) accounts for the
single-site negative defect. If we take I0 = 3, this defective lattice is shown
in Fig. 7.3i. A surprising fact is that this negative defect supports localized
defect modes (DMs) of the form

U(x, z) = u(x)e−iμz , (7.2)

where μ is the propagation constant (DM eigenvalue). These eigenvalues ver-
sus E0 are shown in Fig. 7.3ii. It is seen that these eigenvalues all lie in the gaps
between Bloch bands. None of them exists in the semi-infinite bandgap (total
internal reflection region). As E0 increases, these modes disappear from lower
bandgaps, and appear in higher bandgaps. A typical DM profile in the second
gap is shown in Fig. 7.3iii. This mode has its intensity maximum inside the
negative defect, with double-peaks in each lattice spacing, and its neighboring
intensity peaks are out of phase with each other [42, 43].

The above results on DMs are confirmed experimentally, and our exper-
imental results are shown in Fig. 7.3a–d. Here, Fig. 7.3a is the input of the
1D lattice with a defect (lattice spacing about 42 μm), the polarization angle
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Fig. 7.3. Theoretical demonstration of defect modes (top). (i) Lattice intensity
profile, (ii) DM branches in the (μ,E0) plane, (iii) a DM in the second bandgap
marked by a circle in (ii). Experimental observation of DMs (bottom), shown are
transverse intensity patterns of the lattice beam at crystal input (a) and output (b)
with a single-site defect, and those of the probe beam at input (c) and output (b)
after 20 mm propagation through the defect channel. Lattice spacing 42 μm, Bias
field 1.1 kV/cm (after Ref. [42,43,46])
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is about 8% relative to the o-axis, and the propagation distance is 20mm. At
the bias field of 1.1 kV/cm, the output of the lattice is shown in Fig. 7.3b. It
is seen that the defect is well maintained throughout propagation. After such
a lattice is “fabricated”, its light guiding property can be studied. To do so,
we launch a low-intensity e-polarized probe beam into the defect. The experi-
mental result is shown in Figs. 7.3c and 7.3d. It can be seen that after 20mm
propagation, most of the probe-beam energy is still confined inside the nega-
tive defect. This is remarkable, as without the defect, the probe beam would
strongly scatter to nearby lattice sites in case of strong coupling. The exper-
imentally observed defect mode (Fig. 7.3d) closely resembles the theoretical
one in Fig. 7.3iii.

7.4 Linear Defect Modes in 2D Square Lattices

Guiding light by defects in 2D periodic lattices is even more interesting. Using
experimental techniques similar to those for 1D DMs, we have demonstrated
2D defect guiding as well. The experimental results are shown in Fig. 7.4. Here
a 2D lattice with a single-site negative defect is first created in a 20mm crystal
as shown in Fig. 7.2. Then we launch a Gaussian probe beam into the defect
(Fig. 7.4a). Under different lattice conditions, we observed different guided
structures as shown in Fig. 7.4b–d. At lattice spacing of 27 μm and bias field
of 2.8 kV/cm, the Gaussian beam evolves into a DM, with most of its energy
concentrated in the defect site (Fig. 7.4b). At spacing 42 μm and bias field of
3.0 kV/cm, the tails along the principal axes of the square lattice (which are
diagonally oriented) are more prominent, and they show interesting vortex-
array-like structures (Fig. 7.4c). Figure 7.4d shows a typical interferogram
corresponding to intensity pattern of Fig. 7.4c, where the locations of vortices
are indicated by arrows. It is seen that the vortex cells have different sign of
topological charge along two diagonal “tails” [45].

Fig. 7.4. Experimental observations on 2D defect guidance. (a) Input probe beam,
(b), (c) intensity patterns of the output probe beam under different lattice con-
ditions, (d) zoom-in interferogram of (c) with a tilted plane wave where arrows
indicate location of vortices. The brightest spot corresponds to the defect site (after
Ref. [45])
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To theoretically analyze these various 2D DM structures, we use the 2D
model equation

iUz + Uxx + Uyy −
E0

1 + IL(x, y)
U = 0 , (7.3)

where

IL(x, y) = I0 cos2
(
x+ y√

2

)

cos2
(
x− y√

2

) {

1 + ε exp

[

−
(
x2 + y2

)8

128

]}

(7.4)

is the 2D defective lattice, and ε is the defect depth. Localized DMs in the
form of U(x, y, z) = u(x, y) exp(−iμz) are sought for both attractive (ε > 0)
and repulsive (ε < 0) defects. We first examine the dependence of defect-
modes on the defect strength ε by fixing E0 = 15, I0 = 6, and varying ε from
−1 to 1. When the defect is weak, i.e., ε� 1, such dependence can be derived
analytically by asymptotic methods, and we find that the distance between μ
and a Bloch-band edge μc decreases exponentially with the defect strength ε,
i.e. [48],

μ = μc + Ce−β/|ε| , ε� 1 , (7.5)

where C and β > 0 are constants. Fig. 7.5 shows the analytical results (dashed
lines) as well as our numerical results (solid lines) for both weak and strong
defects. When ε is small, they are in very good agreement. Fig. 7.5 also shows
that there is one DM branch bifurcating from each band: DMs in an attrac-
tive defect (ε > 0) bifurcate from the left edge of each band, and DMs in a
repulsive defect (ε < 0) bifurcate from the right edge of each band. As the
defect strength ε varies, branches of attractive defect-modes stay inside their
respective gaps, while repulsive DM branches march to higher Bloch bands,
disappear when reaching the edge of the band, and reappear in higher gaps.
Fig. 7.6 shows typical DM profiles corresponding to the letter-marked points
in Fig. 7.5. DMs on branches “i”, “a” and “b” are symmetric in both x and
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Fig. 7.5. Bifurcation of DMs with the defect lattice (7.4) at E0 = 15 and I0 = 6.
Solid lines: numerical results, dashed lines: analytical results. The shaded regions
are the Bloch bands. Profiles of defect modes at the circled points are displayed in
Fig. 7.6 (after Ref. [48])
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(a) (b) (c) (d) (e) (f)

(i) (j) (k) (l) (m) (n)

Fig. 7.6. (a)-(c) and (i)-(l): profiles of defect modes at the circled points in Fig. 7.5.
Repulsive defect modes (top), attractive defect modes (bottom). (d) the co-existing
mode of mode (c), (e) vortex mode derived from the superposition of mode (c)
and (d) with π/2 phase delay, i.e., in the form of u(x, y) + iu(y, x), (f) dipole mode
derived from the superposition of mode (c) and (d) without phase delay, i.e., in
the form of u(x, y) + u(y, x), (m) and (n) modes derived from the superposition of
mode (l) and its co-existing mode in the form of u(x, y)+u(y, x) and u(x, y)−u(y,x)
respectively (after Ref. [48])

y, with a dominant hump at the defect site, and satisfy the symmetry rela-
tion u(x, y) = u(y, x). They can be called fundamental defect modes. DMs on
the branches “j” and “c” are dipole-like and do not satisfy the above sym-
metry relation. Note that there is one branch, i.e., “l”, which bifurcates not
from a band edge, but rather from an interior point in the third Bloch band.
On DM branches with asymmetric modes u(x, y), such as “j”, “c” and “l”,
another linearly independent DM u(y, x) co-exists. For instance, at point “c”
in Fig. 7.5, the DM is a dipole along the vertical direction (Fig. 7.6c), while its
co-existing DM is a dipole along the horizontal direction (Fig. 7.6d). Due to
the linear property of the model equation (7.3), we can get other co-existing
DMs by arbitrarily superimposing these two DMs u(x, y) and u(y, x). This
linear superposition can produce more interesting DM patterns. For instance,
a vortex mode, shown in Fig. 7.6e, can be derived from a superposition of
modes “c” and “d” in the form of u(x, y) + iu(y, x). A dipole mode oriented
along the diagonal direction, shown in Fig. 7.6f, can be derived as well by
the superposition u(x, y) + u(y, x). Similarly, Fig. 7.6m and 7.6n are derived
from the superposition of mode “l” and its co-existing mode in the form of
u(x, y) + u(y, x) and u(x, y)− u(y, x), respectively.

Comparing the experimental results of Fig. 7.4 with the theoretical results
of Figs. 7.5 and 7.6, we can see that Fig. 7.4b closely resembles a fundamental
defect mode of Fig. 7.6b. The tails of vortex arrays in Figs. 7.4c and 7.4d
should be related to the vortex DM of Fig. 7.6e when this DM gets close to a
Bloch band [45, 64]. Further analysis of tail structures in Figs. 7.4c and 7.4d
as well as observations of various DMs in Figs. 7.6 are currently underway.
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7.5 Linear Defect Modes in 2D Ring Lattices

Ring-like photonic-lattice structures with a negative defect (a low-index core)
are of particular interest as they have direct connections with Bragg fibers and
PCFs. Yet it poses a challenge to make such structures by optical induction.
Recently, we have succeeded in creating such structures in a self-defocusing
photorefractive crystal, and subsequently demonstrated defect guiding in 2D
ring lattices [44].

The crystal used for this experiment is a 10mm long SBN:61. The ex-
perimental setup is similar to that used for generation of discrete ring lattice
solitons reported in [65], except that the Bessel-like lattices [66,67] are induced
with a self-defocusing nonlinearity, so the center of the lattice is a low index
core. With proper filtering, the mask gives rise to a Bessel-like intensity pat-
tern at the crystal input, which remains nearly invariant during propagation
throughout the 10mm long crystal even under a negative bias field of 2 kV/cm
(Fig. 7.7A). Starting from the first ring, the measured spacing between adja-
cent rings in Fig. 7.7A is about 20 μm. We note that the ring pattern created
this way is somewhat different from the true Bessel pattern, since the intensity
of rings here decreases more slowly (along the radial direction) than in a true
Bessel lattice. Under a negative bias field, the crystal has a self-defocusing
nonlinearity [52,68,69]. This means that the locations of the ring waveguides
correspond to the dark (low intensity) areas of the lattice beam, while the
center (high-intensity) corresponds to an anti-guide. Thus the ring pattern in
Fig. 7.7A induces a periodic ring waveguide lattice with a low-index core.

Fig. 7.7. Experimental observation of defect guidance in a ring lattice (top). (A) a
ring lattice (20 μm spacing) established in experiments, (B)–(D) output of the probe
beam in a ring lattice with 37 μm spacing as the negative bias is increased gradually.
Theoretical demonstration of quasi-localized defect modes (bottom). (a) a Bessel-
like ring lattice, (b) a guided mode in (a), (c) the lattice of (a) with outer rings
removed, (d) a guided mode in (c) (after Ref. [44])
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To investigate the waveguiding property in such a ring lattice, a Gaussian-
like probe beam (FWHM: 14 μm) is launched directly into the core and prop-
agates collinearly with the lattice. The probe beam is e-polarized but has a
wavelength of 632.8 nm that is nearly photo-insensitive for our crystal, so that
nonlinear self-action of the probe beam is negligible [52]. Since the index at the
center of the lattice is lower than that at its surrounding, the probe beam tends
to escape from the center and couple into the surrounding ring waveguides
due to evanescent coupling. However, under appropriate conditions, guiding
of the probe beam into the core is observed. Typical experimental results are
presented in Fig. 7.7B–D for a ring lattice with 37 μm spacing. They show
the output patterns of the probe beam as the negative applied dc field is
set at three different levels (−0.6,−1.4, and −2.0 kV/cm), while the lattice
intensity (normalized to background illumination) is fixed. When the bias field
is low, the probe beam tends to diffract away from the core (Fig. 7.7B), but
as the bias field increases, the probe beam undergoes a transition from dis-
crete diffraction to central guidance (Fig. 7.7C). At even higher bias field, the
guidance starts to deteriorate (Fig. 7.7D) because the experimental condition
deviates from that for the formation of the defect mode.

To better understand the experimental results in Fig. 7.7, we use the model
equation

iUz + Uxx + Uyy −
E0

1 + I0|J0(r)|3/2
U = 0 , (7.6)

where J0(r) is the Bessel function, and r =
√
x2 + y2. Here x and y are nor-

malized by the spacing (pitch) of the lattice far away from the center, and
normalizations for I0, E0 and z are the same as in [42,43]. The Bessel function
|J0(r)|3/2 was chosen for the ring lattice since the first four peaks of this func-
tion decay as 1.00, 0.25, 0.16, 0.12, closely resembling those in experiments.
Numerical simulations under experimental conditions produce results qualita-
tively similar to those in Fig. 7.7B–D. Furthermore, we have also searched for
guided modes of the above model in the form of U(x, y, z) = exp[−iμz]u(r)
with normalized parameters E0 = −15, and I0 = 750 (corresponding to ex-
perimental parameters). At μ = 0.97, we found solutions u(r) which have a
high central peak and weak oscillatory tails. One such solution is shown in
Fig. 7.7b, which resembles those observed in Fig. 7.7C. Note that in our ring
lattice, the intensity decays along the radial direction, and thus bandgaps do
not really open in the above model. Thus, the solution in Fig. 7.7b can not be
a truly localized defect mode, but has tails decaying very slowly like a Bessel
function, and its power is infinite. We can call it a quasi-localized mode. If we
keep only the central beam and the first ring of the lattice (see Fig. 7.7c), we
find that quasi-localized modes as in Fig. 7.7b persist (see Fig. 7.7d). This find-
ing indicates that the guidance observed in Fig. 7.7C may not be attributed
to the repeated Bragg reflections of outer rings, but rather it is dominated by
the first high-index ring in our lattice. This guidance seems analogous to that
in antiresonant reflecting optical waveguides [70], and certainly merit further
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investigation. For instance, one of the subjects in our future research is to
see if such low-index core can create any “coloring” effect as that occurred in
photonic crystal fibers.

7.6 Nonlinear Defect Modes

In previous sections, we discussed linear DMs and bandgap guidance in dif-
ferent types of photonic lattices containing defects, for which the probe beam
propagates in the linear regime. On the other hand, the probe beam can also
propagate in the nonlinear regime, where light can also be trapped as localized
nonlinear defect modes (defect solitons). This issue has not received much at-
tention before in photonic crystals or PCFs because the nonlinearity there is
very weak. In nonlinear waveguide arrays and photonic lattices, however, the
nonlinearity is high [1–18]. Thus far, there has been only limited theoretical
work on defect solitons in waveguide lattices [41, 47, 51]. In this section, we
investigate how nonlinearity affects the formation of 1D defect modes both
theoretically and experimentally. The theoretical work is an extension of our
earlier results in [47], while the experimental work is new.

We first consider defect solitons in a negative defect under focusing non-
linearity. The experimental setup is similar to the one illustrated in Fig. 7.1.
The linear 1D lattice with a single-site negative defect as created in our ex-
periment is shown in Figs. 7.8a and 7.8b. Here the lattice spacing is about
42 μm, the peak intensity (normalized to background illumination) is about
0.65, and the propagation distance is 20mm. It is seen that the defect is
maintained quite well. Next, a probe stripe beam with peak intensity about
0.23 (normalized to background illumination) is launched into this defect. At
bias field of 1.1 kV/cm (for self-focusing nonlinearity), the output of linear
propagation (taken instantaneously) is shown in Fig. 7.8c. It is seen that the
probe beam evolves into a linear defect mode as we have demonstrated in
Fig. 7.3d. However, under nonlinear propagation, the output (taken after a
steady state has reached) has evolved into a defect soliton shown in Fig. 7.8d.
The nonlinear output is similar to the linear output, except that the central
stripe is more localized due to self-focusing nonlinearity. These observations
demonstrate that defect guiding is quite robust, and sustains under nonlin-
ear effects. This phenomenon is quite different from the nonlinearity-induced
escape from defect sites of waveguide arrays as reported in [39].

Theoretically, we employ the model equation similar to (7.1) except that
nonlinearity is involved:

iUz + Uxx −
E0

1 + IL(x) + |U |2U = 0 . (7.7)

Defect soliton solutions of (7.7) are sought in the form of (7.2). Correspond-
ing to experimental conditions, we take E0 = 20, and I0 = 0.65. At these
parameter values, the lowest linear defect mode is at μ = 20.40, which lies
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Fig. 7.8. Experimental demonstration of defect solitons in a repulsive defect under
focusing nonlinearity (top). (a) lattice input, (b) lattice output, (c) probe linear
output, (d) probe nonlinear output. Theoretical demonstration of defect solitons
(bottom). (i) the power diagram (shaded regions are Bloch bands), (ii), (iii) profiles
of defect solitons at μ values marked by circles in (i). The shaded stripes denote
locations of high intensities in the defective lattice

in the second bandgap (between the second and third Bloch bands). Using
asymptotic methods, we have shown that bifurcating from every linear defect
mode, a family of nonlinear defect solitons will arise [47]. We have computed
this family of defect solitons using the modified squared-operator method
developed in [71], and its power curve is shown in Fig. 7.8i. We see that at
higher powers, this soliton branch moves left toward the lower Bloch band.
Two representative mode profiles are displayed in Figs. 7.8ii and 7.8iii. They
have symmetric shapes, with peak intensities lying inside the repulsive defect.
The profile of Fig. 7.8ii has lower power, and it is very close to the linear defect
mode. As the power rises, the central peak becomes narrower (due to nonlin-
ear self-focusing), while the side band mini-peaks become more pronounced
(see Fig. 7.8iii). These findings agree well with the experimental observations
in Figs. 7.8c and 7.8d.

Next, we present our work on defect solitons in a single-site attractive
(rather than repulsive) defect. For this purpose, we only need to turn the
nonlinearity from self-focusing to self-defocusing by reversing the sign of the
bias field E0 in the experiment of Fig. 7.8 and in the theoretical model
of Eq. (7.7). The question is what types of defect solitons can exist in an
attractive defect under self-defocusing nonlinearity. To answer this question,
we take E0 = −8, I0 = 3 in Eq. (7.7), and numerically find two families of
defect solitons, one in the semi-infinte bandgap, and the other one in the first
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probe input, (d) defect soliton excited with (c) at E0 = −1.6 kV/cm, corresponding
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bandgap. The power curves of these families are shown in Fig. 7.9i. We can
see that both families bifurcate from the linear defect modes in the low power
limit. On the family of the semi-infinite bandgap, a typical soliton profile is
shown in Fig. 7.9ii, which consists of a dominant hump inside the defect. Note
that this soliton exists under defocusing nonlinearity. It is possible because
the negative bias field makes the surrounding lattice sites having lower refrac-
tive indices than the center defect, thus due to total internal reflection, such
solitons are permitted. For the family in the first bandgap, a typical soliton
profile is shown in Fig. 7.9iii. This soliton has three dominant intensity peaks
inside the defect site, flanked by weaker peaks nearby. All adjacent peaks are
out of phase with each other. This is a higher-order nonlinear defect mode
(defect gap soliton) supported by the attractive defect.

Experimentally, these two types of defect solitons under defocusing non-
linearity are also observed. The experimental results are summarized in
Fig. 7.9a–d. First, a photonic lattice with a single-site defect is maintained
(see Fig. 7.9a). Then we launch a single-stripe probe beam into the defect
channel. At bias field of −1.4 kV/cm, the output of the probe beam is shown
in Fig. 7.9b. It can be seen clearly that the probe beam is well guided inside the
defect channel despite the fact that a self-defocusing nonlinearity is employed.
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This guided mode closely resembles the theoretical defect soliton shown in
Fig. 7.9ii. When the input probe beam contains three out-of-phase stripes
(Fig. 7.9c), it still remains somewhat localized at the bias field of −1.6 kV/cm
(Fig. 7.9d). Recalling that such a probe beam would defocus and diverge dra-
matically should the defect be absent, the formation of such defect gap soliton
is again attributed to combined effects of nonlinearity and lattice impurity.
When comparing this output with the theoretical solution in Fig. 7.9iii, we
see that the outer two peaks in the experiment are more pronounced, but the
theoretical and experimental results are in qualitative agreement. These stud-
ies of nonlinear defect modes and defect gap solitons can readily be extended
to the 2D domain.

7.7 Summary

In summary, we have successfully fabricated 1D and 2D defective pho-
tonic lattices by the method of amplitude modulation together with several
other techniques such as frequency filtering, partial spatial coherence, and
polarization-controlled index variation. We have also studied light guiding in
these defective lattices, and shown that these defects can guide a wide array
of defect modes in both linear and nonlinear regimes. Our results pave the
way for further studies of new phenomena in photonic structures with built-in
defects, as well as for exploring potential applications in beam shaping and
light routing with reconfigurable lattices. Since defects exist in a wide array
of other periodic linear and nonlinear systems, our work may prove to be rele-
vant to the studies of defect-mediated phenomena in other branches of physics
and nonlinear sciences.
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8.1 Introduction

Photonic structures with a periodic modulation of the optical refractive index
open novel possibilities for designing the fundamental aspects of optical wave
dynamics [1]. They offer important opportunity for spatial beam control,
including manipulation of beam refraction and diffraction. The physics of
beam propagation in periodic photonic structures is governed by the scattering
of waves from the high refractive index regions and the subsequent interference
of the scattered waves. This is a resonant process, which is sensitive to both
the frequency and the propagation angle. In photonic crystals, for example,
there appear sharp spectral features where the propagation of optical signals is
highly sensitive to the wavelength. As such, most of the demonstrated effects
of spatial beam manipulation in periodic structures are primarily optimised
for a narrow-frequency range. In many practical cases, including ultra-broad
bandwidth optical communications, manipulation of ultra-short pulses or su-
percontinuum radiation, the bandwidth of the optical signals can span over
a wide frequency range. This motivates the studies on the propagation of
broad-bandwidth optical beams in periodic photonic structures.

The strong dispersion of waves in periodic structures can lead to enhanced
spatial separation of the spectral components of the incident light, an effect
known as superprism [2, 3]. Importantly, the wave dispersion and diffraction
can be balanced or enhanced in materials with nonlinear optical response,
thus opening opportunities for all-optical spectral management [4]. The non-
linear spatial control of polychromatic light represents an intriguing physical
problem, and is the main scope of our studies. In this review we present,
what we believe is the first experimental demonstration of nonlinear control
of broadband and supercontinuum light in spatially-extended periodic pho-
tonic structures, as well as provide theoretical description of the observed
phenomena.
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Fig. 8.1. (a) Schematic of the waveguide array structure (top) and the characteristic
transverse refractive index profile (bottom), (b), (c) numerical simulation of poly-
chromatic beam diffraction, (b) image of beam evolution inside the array and (c) the
spectrally-resolved output profile, (d) Bloch-wave dispersion at 530 nm wavelength,
(e) dependence of photonic bands on wavelength. Numerical simulations correspond
to the parameters of LiNbO3 waveguide arrays [21,22]

To understand the basic concepts of nonlinear control of polychromatic
light, we utilise a combination of broadband coherent light radiation from su-
percontinuum generation and a one-dimensional periodic structure in the form
of a waveguide array (Fig. 8.1a). This type of structures belong to a class of
nonlinear photonic lattices [5–16], and feature refractive index modulation in
the transverse spatial dimension with a characteristic period of several wave-
lengths, resembling the periodic cladding of photonic crystal fibers [17]. In
such structures the back-scattering of light is absent and transmission coeffi-
cients can approach unity simultaneously for all spectral components, making
them specifically attractive for manipulation of polychromatic or supercon-
tinuum light. By using this system, we reveal novel possibilities for all-optical
spatial switching, spectral reshaping, and localisation of supercontinuum light
beams. We demonstrate that the interplay of wave scattering from the peri-
odic structure and nonlinearity-induced interaction of multiple colours allows
one to selectively separate or combine different spectral components. Addi-
tional flexibility is implemented through interactions with induced defects and
boundaries in the structure, where small refractive index changes may enable
tunable spectral filtering.

The Chapter is organised as follows: In Sec. 8.2 we present the basic
concepts of linear polychromatic light propagation in photonic lattices. In
Sec. 8.3 we describe the effect of nonlinear material response on the beam
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spectral-spatial reshaping. We show how the collective nonlinear interaction
of spectral components in a medium with slow nonlinearity leads to the for-
mation of polychromatic gap solitons. In Sec. 8.4 we provide experimental
verification of the theoretical predictions and demonstrate how the slow de-
focusing photorefractive nonlinearity in lithium niobate waveguide arrays can
be used for tunable all-optical reshaping of supercontinuum light. We also
describe the ability of surfaces to alter the nonlinear propagation of poly-
chromatic light, leading to the formation of polychromatic nonlinear surface
states.

8.2 Polychromatic Light in Periodic Structures

In this section we discuss the general features of polychromatic beam diffrac-
tion in planar periodic photonic structures (Fig. 8.1a), such as optically-
induced lattices or waveguide arrays [5–16]. The physical mechanism of beam
diffraction in such structures is based on the coupling between the modes of
neighbouring waveguides [9, 18, 19]. When the beam is launched into a sin-
gle waveguide at the input, it experiences ‘discrete diffraction’ where most of
the light is directed into the wings of the beam. This is in sharp contrast to
the diffraction of Gaussian beams in bulk materials where the peak intensity
remains at the beam centre at any propagation distance. The light couples
from one waveguide to another due to the spatial overlaps of the waveguide
modes. Since the mode profile and confinement depend on the wavelength,
the discrete diffraction exhibits strong spectral dispersion. The mode overlap
at neighbouring waveguides is usually much stronger for red-shifted compo-
nents [20], which therefore diffract faster than their blue counterparts. This
leads to spatial redistribution of the colours of the polychromatic beam which
increases along the propagation direction, see Fig. 8.1b. As a result, at the
output the red components dominate in the beam wings, while the blue com-
ponents are dominant in the central region, see Fig. 8.1c.

The mathematical modeling of the diffraction process for optical sources
with a high degree of spatial coherence, such as supercontinuum light gener-
ated in photonic-crystal fibres, is based on a set of equations for the spatial
beam envelopes Am(x, z) of different frequency components at vacuum wave-
lengths λm. Since we consider beam propagation at small angles along the
lattice and the refractive index contrast is usually of the order of 10−4 to
10−2, then the general wave equations can be reduced to parabolic equations
employing the conventional paraxial approximation [22–24],

i
∂Am
∂z

+
λm

4πn0(λm)
∂2Am
∂x2

+
2 π
λm

Δn(x, λm)Am = 0 , (8.1)

where x and z are the transverse and longitudinal coordinates, respectively,
and n0(λm) is the background refractive index. The function Δn(x, λm)
describes the effective refractive index modulation, which depends on the
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vertical mode confinement in the planar guiding structure. Since the verti-
cal mode profile changes with wavelength, the dispersion of the effective in-
dex modulation is defined by the geometry of the photonic structures. For
an array of optical waveguides in LiNbO3, the modulation can be approxi-
mately described as Δn(x, λ) = Δnmax(λ) cos2(πx/d), where the wavelength
dependence of the effective modulation depth Δnmax(λ) can be calculated
numerically or determined experimentally by measuring the waveguide cou-
pling [22, 24]. Even if the material and geometrical dispersion effects are
weak, the beam propagation would still strongly depend on its frequency
spectrum [23,25] since the values of λm appear explicitly in Eqs. (8.1).

The linear propagation of optical beams through a periodic lattice can
be fully characterised by decomposing the input profile in a set of spa-
tially extended eigenmodes, called Bloch waves [26, 27]. The Bloch-wave
profiles can be found as solutions of Eqs. (8.1) in the form Am(x, z) =
ψj(x, λm) exp[iβj(Kb, λm)z + iKbx/d], where ψj(x, λm) has the periodicity
of the underlying lattice, βj(Kb, λm) are the propagation constants, Kb are
the normalised Bloch wavenumbers, j is the band number, and d is the lattice
period. At each wavelength, the dependencies of longitudinal propagation con-
stant (along z) on the transverse Bloch wavenumber (along x) are periodic,
βj(Kb, λm) = βj(Kb ± 2π, λm), and are fully characterised by their values in
the first Brillouin zone, −π ≤ Kb ≤ π. These dependencies have a universal
character [1, 26, 27], where the spectrum consists of non-overlapping bands
separated by photonic bandgaps, as shown in Fig. 8.1d. The position and
the width of the bands and the gaps, however, are strongly sensitive to the
wavelength of light (Fig. 8.1e). As a result, the spatial beam shaping exhibits
frequency dispersion. In particular, the rate of beam diffraction is determined
by the curvature of the dependencies βj(Kb, λm). For the input beam cou-
pled to a single waveguide, the first band is primarily excited, and the beam
diffraction rate is determined by maxKb |∂2β1/∂K

2
b|, which increases at longer

wavelengths where the band gets wider. This conclusion is in full agreement
with the physical interpretation presented above using the concept of coupling
between waveguide modes.

8.3 Nonlinear Localisation of Polychromatic Light

An important task of building a nonlinear photonic device for manipulation
of broadband signals requires the ability to tune the spectral transmission
in the spatial domain. In this section, we describe an approach to flexible
spatial-spectral control of polychromatic light through the effect of nonlin-
ear interaction and selective self-trapping of spectral components inside the
individual channels of the waveguide array.
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8.3.1 Collective Nonlinear Interactions in Media with Slow
Nonlinearity

In order to perform spatial switching and reshaping of polychromatic sig-
nals without generating or depleting different spectral regions, the coherent
four-wave-mixing processes need to be suppressed. This can be achieved in
media which nonlinear response is slow with respect to the scale of tempo-
ral coherence [28]. This condition is commonly satisfied for photorefractive
materials [29,30] or liquid crystals [31], where the optically-induced refractive
index change is defined by the time-averaged light intensity of different spec-
tral components. The slow nonlinearities thus provide a fundamentally differ-
ent regime compared to dynamics of light with supercontinuum spectrum in
multi-core photonic-crystal fibers with fast nonlinear response [32–34], where
nonlinearly-induced spatial mode reshaping is inherently accompanied by the
spectral transformations.

We model the nonlinear propagation and interaction of the spectral com-
ponents by including into Eqs. (8.1) a nonlinearly-induced refractive index
change,

i
∂Am
∂z

+
λm

4 πn0(λm)
∂2Am
∂x2

+
2 π
λm

[Δn(x, λm) + Δnnl(x, z)]Am = 0 . (8.2)

We write the nonlinear term in Eq. (8.2) in a Kerr-type form: Δnnl(x, z) =
γM−1

∑M
j=1 σ(λj)|Aj |2, which approximately describes the LiNbO3 photo-

voltaic nonlinearity [30, 35] in the regime of weak saturation. Here γ is the
nonlinear coefficient, and M is the number of frequency components included
in the numerical modeling. Whereas nonlocality and saturation may affect the
soliton properties [36], these effects were weak under our experimental condi-
tions [21, 22, 24, 37]. An important characteristic of this model is the spectral
nonlinear response σ(λj).

The physical mechanism of the photovoltaic nonlinearity in lithium nio-
bate arises due to charge excitations by light absorption and correspond-
ing separation of these charges due to diffusion. The spectral response of
this type of nonlinearity depends on the crystal doping and stoichiometry
and may vary from sample to sample. In general, however, light sensitiv-
ity exists in a wide spectral range with a maximum for the blue spectral
components [38]. The sensitivity, however, extends well in the near infra-red
region [39] resulting in a broad-band nonlinear response. In our analysis, we
therefore approximate the photosensitivity dependence by a Gaussian function
σ(λ) = exp[− ln(2)(λ− λb)2/λ2

w] with λ > λb = 400 nm and λw = 150 nm.

8.3.2 Polychromatic Gap Solitons

Multiple frequency components of an optical beam can undergo self-trapping
process and propagate in a common direction, when they are nonlinearly



150 D.N. Neshev et al.

coupled together and form a polychromatic spatial soliton. Such solitons are
self-trapped polychromatic beams which do not diffract. In bulk media poly-
chromatic or white-light solitons can only be supported in materials with
self-focusing nonlinearity [29, 30]. In periodic structures, however, polychro-
matic solitons were predicted to occur in media with either self-focusing [40]
or self-defocusing [23,25] nonlinearities. Below we consider the most intriguing
case of polychromatic soliton formation in lattices with defocusing nonlinear-
ity, when localisation would not be possible for bulk crystals and can only
occur due to resonant Bragg confinement from the periodic structure.

The numerical simulations based on the system of Eqs. (8.2) (with γ = −1
for defocusing nonlinear response) show that the input beam experiences self-
trapping above a critical power level [21–23, 25]. In this regime, the spec-
tral components become spatially localised and form a polychromatic soliton,
which propagates without broadening in the photonic structure, see Fig. 8.2a.
In order to identify the physical mechanism of beam localisation and soli-
ton formation, we calculate the spectrum of the propagation constants, which
is presented as density plot (white colour corresponds to larger amplitudes)
in Fig. 8.2b. This figure shows that the propagation constants are entirely

Fig. 8.2. Numerical simulation of nonlinear beam self-trapping and formation of a
polychromatic gap soliton [21,22]. (a) Soliton excitation inside the waveguide array,
(b) propagation constants of the soliton beam vs. wavelength, dashed and dashed-
dotted lines mark the band edges as indicated in Fig. 8.1e, (c) spectrally resolved
output intensity profile, (d) the fraction of output power remaining at the central
waveguide for different spectral components
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located inside the Bragg-reflection gap due to the nonlinear decrease of the
refractive index in the soliton region. This effect, analogous to the band-gap
guiding in hollow-core photonic crystal fibres [17], allows for the spatial self-
trapping of all spectral components in an ultra-wide spectral bandwidth. Thus,
such self-trapped states can be termed polychromatic gap solitons. Note that
the spectrum for blue components is shifted deeper inside the gap, whereas
the red components have spectra very close to the gap edge. This explains the
weaker localisation of red components as shown in Figs. 8.2c and 8.2d, and
results in colouring of the soliton profile (Fig. 8.2c) such that the soliton has
a blue centre and red tails.

8.4 Experimental Studies of Polychromatic Self-trapping

8.4.1 Experimental Setup

In this section we describe how the nonlinear effects of polychromatic light
reshaping and self-trapping can be realised and observed experimentally. The
key for such experimental realisation is the combination of a periodic struc-
ture featuring a broadband nonlinear response and polychromatic light with
a broad frequency spectrum, high-spatial coherence, and high optical inten-
sity. The natural choice of such light source is provided by the effect of
supercontinuum generation. In this process, spectrally narrow laser pulses
are converted into the broad supercontinuum spectrum through several pro-
cesses [17, 41, 42], including self-phase modulation, soliton formation due to
the interplay between anomalous dispersion and Kerr-nonlinearity, soliton
break-up due to higher order dispersion, and Raman shifting of the solitons,
leading to non-solitonic radiation in the short-wavelength range. Such super-
continuum radiation has proven to be an excellent tool for characterisation
of bandgap materials [43], it posses high spatial coherence [42], as well as
high brightness and intensity required for nonlinear effects [44]. In our exper-
iments (Fig. 8.3a), we use a supercontinuum light beam generated by fem-
tosecond laser pulses (140 fs at 800nm from a Ti:Sapphire oscillator) coupled
into 1.5m of highly nonlinear photonic crystal fiber (Crystal Fiber NL-2.0-740
with engineered zero dispersion at 740 nm) [24]. The spectrum of the generated
supercontinuum is shown in Fig. 8.3b, and it spans over a wide frequency range
(typically more than an optical octave). After re-collimation and attenuation,
the supercontinuum is spectrally analysed by a fiber spectrometer and is refo-
cused by a microscope objective (×20) to a single channel of a waveguide array
(see Fig. 8.3c).

The optical waveguides are fabricated by indiffusion of a thin (100 Å) layer
of titanium in a X-cut, 50mm long mono-crystal lithium niobate wafer [15].
The waveguides are single-moded for all spectral components of the supercon-
tinuum. Arrays with different periodicity and index contrast were fabricated.
The choice of LiNbO3 as an experimental platform was dictated by its strong



152 D.N. Neshev et al.

Fig. 8.3. (a) Schematic of the experimental setup. Supercontinuum radiation is
generated in a photonic crystal fibre (PCF) and then injected into a single channel
of the LiNbO3 waveguide array. The array output is imaged onto a colour CCD
camera. A prism can be inserted between the sample and the camera to achieve
spectral resolution of the output beam. A fiber spectrometer is used to analyse the
supercontinuum spectrum, and a reference beam from a dispersion compensated
interferometer is used for interferometric analysis. M: mirrors, L: lenses, P: prisms,
and GP: glass plate. (b) Spectrum of the generated supercontinuum radiation. (c) Il-
lustration of the excitation scheme, showing the separation of the colours inside the
array of optical waveguides [24]

nonlinear optical response at micro-Watt laser powers due to photorefrac-
tion [45, 46]. The photovoltaic photorefractive nonlinearity [35] in LiNbO3 is
of the defocusing type, meaning that an increase of the light intensity leads
to a local decrease in the material refractive index.

After coupling to the array, its output is imaged by a microscope objective
(×5) onto a colour CCD camera, where a dispersive 60◦ (glass SF-11) prism
could be inserted between the imaging objective and the camera in order to
spectrally resolve all components of the supercontinuum. Alternatively, the
output spectral distribution can be obtained with a high accuracy (resolution
0.3 nm) by a fiber spectrometer, which integrates over the whole transverse
mode of each waveguide and provides individual spectra at each waveguide
position. Furthermore, a reference supercontinuum beam is used for inter-
ferometric measurement of the phase structure of the output beam [22]. To
compensate for the pulse delay and pulse spreading inside the LiNbO3 waveg-
uides, this reference beam is sent through a variable delay-line, implemented
in a dispersion compensated interferometer, including 5 cm long bulk LiNbO3

crystal (to equalise the material dispersion). In this way, interferometric mea-
surements are possible for ultra-wide spectral range. The experiments were
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performed with two samples designed for weak and strong waveguide coupling,
thus allowing to distinguish between different nonlinear localisation scenarios.

8.4.2 Nonlinear Spectral-spatial Reshaping

As a first step we characterise the effect of nonlinearity on the propagation of
supercontinuum beam in an array with a weak waveguide coupling (waveguide
period of 19 μm). The coupling in this sample has been designed such that
the blue spectral components remain entirely in the central waveguide, while
other colours couple to the neighbouring waveguides. The spectral distribution
at the output of a low power (17 μW) beam (measured by a spectrometer) is
shown in Fig. 8.4a. This graph represents a linear distribution of colours with
the waveguide number. This can be considered as a simple scheme for colour
sorting/separation of broadband radiation into different waveguide channels,
an effect similar to wavelength division demultiplexers. This natural colour
separation is clearly visible in Fig. 8.4b, where we plot the output spectrum
at different waveguides of the array, normalised to the input supercontinuum
spectrum. The spectra show a dominant spectral peak, followed by decaying
oscillations. Clearly, in each waveguide of the array, in the dominant peak,
we select a narrow spectral band from the entire supercontinuum spectrum.
The maximum of this transmission peak, however drops rapidly at longer
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Fig. 8.4. (a) Spectrum measured by a spectrometer for low input power (17 μW) at
the output of a waveguide array with periodicity of 19 μm, (b) normalised spectral
transmission for the central, second, fourth, sixth, eighth, and the tenth waveguides,
respectively, (c), (d) output spectrum for nonlinear localisation at power 7.5 mW and
normalised transmission (central, first, second, and third waveguides), respectively,
(e) measured (points) and calculated (lines) relative spectral power in the central
waveguide as a function of the input power for five different spectral components
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wavelengths due to the increased waveguide coupling and the associated beam
broadening.

The effect of the nonlinear self-action of the beam can dramatically change
the transmission spectrum in each waveguide. In Fig. 8.4c we show the com-
bined pictures for the whole array in the nonlinear regime (power of 7.5mW).
It is clear that at this power the spectral spreading at longer wavelengths
is compensated by the nonlinear self-trapping even in the case of defocusing
nonlinearity. The normalised spectra of the first three waveguides are shown
in Fig. 8.4d. The normalised transmission spectrum for the central waveguide
has a well defined bell shape with a steep front at shorter wavelengths and a
gradually decaying slope at longer wavelengths, revealing weaker trapping in
the latter case. Not surprisingly, at the neighbouring waveguides only a small
fraction of light is being transmitted at this laser power.

To quantify the process of nonlinear spectral reshaping we plot in Fig. 8.4e,
the amount of spectral power trapped into the central waveguide for five dif-
ferent wavelengths as measured experimentally (points) and confirmed numer-
ically (lines). Our result demonstrates that the localisation happens at lowest
powers for the blue spectral components (470 nm), which experience weakest
diffraction. The threshold localisation power is higher at longer wavelengths
(500, 580, 645, and 780 nm) as larger nonlinearity-induced index change is
necessary to balance the stronger diffraction at these wavelengths. The ob-
served gradual localisation of the spectral components with power, together
with strong nonlinear confinement in the spatial domain, suggest important
possibilities for nonlinear active control over the transmitted supercontinuum
radiation. Such active control is possible due to the balance of wave scattering
and nonlinear spatial localisation in the LiNbO3 waveguide array.

8.4.3 Generation of Polychromatic Gap Solitons

In the second type of experiments we investigate the nonlinear process of poly-
chromatic beam localisation in an array with periodicity of 10 μm. Accord-
ingly, the waveguide coupling is stronger compared with the sample used in
Sec. 8.4.2 where the waveguide separation is larger. The image in Fig. 8.5a de-
picts the spectrally resolved discrete diffraction of the supercontinuum beam
(measured by a spectrometer) when the input beam is focused to a single
waveguide. Again the diffraction of the beam is weakest for the blue spectral
components, which experience weaker coupling. However the shortest wave-
length component (460 nm) now couples to more than eight neighbouring
waveguides. The spectrally resolved discrete diffraction provides visual illus-
tration of the colour distribution at the output, but it also allows for exact
determination of the waveguide coupling in the waveguide array. In our sam-
ple we measure that the discrete diffraction length (defined as the length at
which the beam expands with two extra waveguides) varies from 1 cm, for blue
(480 nm), to less than 0.2 cm, for red (800nm) spectral components. These
values correspond to a total propagation distance of 5.5 and 27.5 discrete
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Fig. 8.5. Polychromatic light propagation in a waveguide array of a 10 μm pe-
riod [21,22]. (a) Polychromatic discrete diffraction output profile at low laser power
(0.01 mW), (b) nonlinear localisation and formation of polychromatic gap soliton at
a higher (6mW) power, (c) calculated dependence of the output beam profile with
increasing input power

diffraction lengths for the blue and red components, respectively. The propa-
gation of few diffraction lengths for all spectral components is advantageous
for nonlinear experiments, and is crucially important for the formation of soli-
tons [47, 48]. This large effective propagation also facilitates strong spectral
transformations in the nonlinear regime.

To study the nonlinear beam self-action we increase the power of the input
beam while monitoring the output profile. We observe that the broad out-
put beam profile weakly changes up to 150 μW power level, but then quickly
transforms into a localised state within a narrow range of input beam powers.
Further increase of the beam power leads to gradual trapping of its long-
wavelength spectral components. A typical spectrally-resolved output profile
is shown in Fig. 8.5b for a supercontinuum average power of 6mW. A distin-
guishable characteristic of the observed localisation process is the fact that it
traps simultaneously all wavelength components of the supercontinuum spec-
trum (from blue to red). Numerical simulations of the power dependence of
the output beam profile (Figs. 8.5c) indeed reveal that the polychromatic light
localisation appears with a sharp power threshold. As such this localisation
process results in suppression of the spatial dispersion in the nonlinear regime
through the formation of a polychromatic gap soliton.

Taking advantage of the high spatial coherence of the supercontinuum
light, we also performed interferometric measurement of the phase structure
of the localised output profile. Such measurement is important for determin-
ing if the localisation is associated with Bragg confinement inside the Bragg
reflection gap. The observed interference pattern reveals that all spectral com-
ponents in the adjacent waveguides are out-of-phase. This fact provides a proof
that the localised beam is indeed a polychromatic gap soliton, which charac-
teristic feature is the staggered phase structure [21,22]. We note that this type
of localisation is physically different from the gap solitons generated by two-
colour coupling in arrays with quadratic nonlinearity [12], where the second
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harmonic field has a plane phase in contrast to the staggered phase of the
fundamental wave component.

8.4.4 Interaction with an Induced Defect

A specific characteristic of the localisation process in LiNbO3 is the slow time
response. The response time is inversely proportional to the input laser power,
and it can vary from a few seconds to several minutes at low light intensity.
The advantage of this slow time response, however, is that once the refractive-
index modulation is written it can be preserved in the structure for a long
period of time, providing the sample is not exposed to strong light illumina-
tion [45]. This opens a novel possibility for dynamic writing of defects with
arbitrary geometry [46,49,50]. We demonstrate that defects can play a role of
spectral filters for the supercontinuum light. We generate a localised super-
continuum state in an array with periodicity of 19 μm at power of 12mW and
several hours later, we probe this induced defect with a low power supercon-
tinuum beam. To obtain a detailed insight into the spectral distribution at the
array output, we resolve the individual spectral components by a prism (P2 in
Fig. 8.3a) and acquire a single shot two-dimensional image providing spatial
resolution in one (horizontal) direction and spectral resolution in orthogonal
(vertical) direction. This technique enables precise determination of the spec-
tral distribution at the array output. We note that the spectral scale in this
type of measurements is not linear (Fig. 8.6) due to the prism dispersion.

When the light is injected into the waveguide adjacent to the defect
(Fig. 8.6a) we observe reflection of all spectral components below a threshold
wavelength value (approximately 800nm in our case). On the other hand,
spectral components of longer wavelengths can tunnel to the left-hand side of
the defect. When the input beam is injected into the second or third waveg-
uide away from the induced defect, we observe complex spectral reshaping of
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Fig. 8.6. Spectrally-resolved reflection and transmission of a low-power probe beam
(0.01 mW) from an optically-induced defect when the array (d = 19 μm) is probed
(a) next to the defect, (b) one waveguide away, (c) two waveguides away [24]
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the output transmission due to reflection of the supercontinuum from the de-
fect state. We note that the nonlinear refractive index change in the detuned
waveguide is only of the order of 10−4, but it is sufficient to modify signifi-
cantly the spectrum of the supercontinuum radiation. This effect is somehow
similar to surface manipulation of the supercontinuum light discussed below
in Sec. 8.4.5, but with the ability for dynamical reconfiguration and all-optical
tuning of the defect properties.

8.4.5 Spatial-spectral Reshaping by Interaction with a Surface

Important flexibility in tailoring beam shaping can be realised when the opti-
cal beam interacts with a boundary of the periodic structure [23,51–54]. Such
boundaries or surfaces may support linear localised modes that generalise the
so-called surface Tamm states known to exist in solid state physics and other
periodic photonic structures. The nonlinearities of the material allow for light
localisation even in the cases when linear surface states are absent [55–62].
By making the surface waveguide to be slightly different (see an example in
Fig. 8.7a), it is possible to perform spectrally-selective control of linear waves.
The surface defect plays the role of an optical waveguide when the refractive
index change exceeds a certain threshold, such that the mode eigenvalue can
be shifted outside the photonic band [63,64]. Since the bandgap structure of
the photonic lattice depends strongly on frequency, as discussed in Sec. 8.2,
the critical change of the refractive index becomes also wavelength-dependent.
Only when the optical wavelength is shorter than a certain threshold value,
λ < λth, where λth depends on the strength of the surface defect, the opti-
cal waves can be localised at the surface [63, 64]. For longer wavelengths the
light is reflected from the surface and these spectral components experience
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Fig. 8.7. (a) Characteristic refractive index profile in waveguide arrays with a
surface defect, dashed line shows, for comparison, the refractive index in an infinite
periodic structure, (b) numerically simulated linear and (c), (d) nonlinear dynamics
inside the array (bottom) and output spectra (top) for increasing powers of the input
beam coupled to the second waveguide [37]
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modified discrete diffraction [55]. For the refractive index profile shown in
Fig. 8.7a, the defect can trap blue spectral components, whereas the longer
wavelength components are reflected.

In our studies [37] we demonstrate that by coupling light in the sec-
ond waveguide, next to the surface defect, it is possible to perform power-
dependent spatial-spectral reshaping. In the linear regime, the tunneling of
short-wavelength components with λ < λth to the first waveguide is sup-
pressed almost completely. On the other hand, light at longer wavelengths
can penetrate in the first waveguide, see Fig. 8.7b. When the light intensity
is increased, the refractive index at the location of the input beam keeps
decreasing, approaching gradually the effective refractive index of the sur-
face waveguide. When the mismatch between the two waveguides is reduced,
shorter wavelength components start tunneling to the first waveguide. As this
happens, nonlinearity acts to increase the mismatch, and light switches per-
manently to the first waveguide, as shown in Fig. 8.7c. For even higher input
powers, the refractive index of the second waveguide decreases to values below
the index of the neighbouring waveguides, such that light remains trapped at
the input location, see Fig. 8.7d.

The suggested method of beam manipulation was also realised experimen-
tally [37]. As the input power into the second waveguide is increased, we
observe enhanced coupling of red, green, and blue components to the surface
waveguide (Figs. 8.8a–d) and the formation of polychromatic nonlinear sur-
face modes. At even higher powers the second waveguide is fully detuned from
the neighbouring ones and we observe light trapping entirely in the second
waveguide (Figs. 8.8e). In the latter case, nonlinearity strongly reduces the
influence of the surface on beam propagation. These results demonstrate that
collective spatial switching of multiple spectral components can be realised
through the nontrivial interplay between the effects of fabricated and self-
induced nonlinear defects in photonic lattices.

410

440

500
470

560

950

650

800

input
λ,nm

0.1mW

(c) (d)(a)

6mW 11mW1.5mW

(b) (e)

Fig. 8.8. Experimental demonstration of interaction with the surface defect of a
supercontinuum light beam coupled to the second waveguide. (a), (b), (d), (e) Spec-
trally resolved spatial distributions at the output for increasing laser power, arrows
show the position of the surface waveguide, (c) output intensity distribution and a
schematic plot of the refractive index profile in the waveguide array [37]
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8.5 Summary

We have presented an overview of the basic theoretical studies and experi-
mental observations of spatio-spectral control of polychromatic light in peri-
odic photonic structures. We have described theoretically new types of self-
trapped states in the form of polychromatic gap solitons and surface waves,
all possessing nontrivial phase structure and spectral features. We have pre-
sented the first observation of polychromatic gap solitons in periodic photonic
structures with defocusing nonlinearity; such solitons can be generated due to
simultaneous spatio-spectral localisation of supercontinuum radiation inside
the photonic bandgaps. We anticipate that many of the theoretically predicted
and experimentally demonstrated effects can be useful for tunable control of
the wavelength dispersion for ultra-broad spectrum pulses offering additional
functionality for broadband optical systems and devices.
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Buonarroti 2, 56127 Pisa, Italy
arimondo@df.unipi.it, ciampini@df.unipi.it, morsch@df.unipi.it

9.1 Introduction

The development of powerful laser cooling and trapping techniques has made
possible the controlled realization of dense and cold gaseous samples, thus
opening the way for investigations in the ultracold temperature regimes not
accessible with conventional techniques. A Bose-Einstein condensate (BEC)
represents a peculiar gaseous state where all the particles reside in the same
quantum mechanical state. Therefore BECs exhibit quantum mechanical phe-
nomena on a macroscopic scale with a single quantum mechanical wavefunc-
tion describing the external degrees of freedom. That control of the external
degrees of freedom is combined with a precise control of the internal degrees.
The BEC investigation has become a very active area of research in contem-
porary physics. The BEC study encompasses different subfields of physics,
i.e., atomic and molecular physics, quantum optics, laser spectroscopy, solid
state physics. Atomic physics and laser spectroscopy provide the methods for
creating and manipulating the atomic and molecular BECs. However owing
to the interactions between the particles composing the condensate and to the
configuration of the external potential, concepts and methods from solid state
physics are extensively used for BEC description.

Quantum mechanical BECs within the periodic potential created by in-
terfering laser waves (“optical lattices”) have attracted a strongly increasing
interest [1–4]. In particular, the formal similarity between the wavefunction
of a BEC inside the periodic potential of an optical lattice and electrons in a
crystal lattice has triggered theoretical and experimental efforts alike. BECs
inside optical lattices share many features with electrons in solids, but also
with light waves in nonlinear materials and other nonlinear systems. How-
ever, the experimental control over the parameters of BEC and of the peri-
odic potential make it possible to enter regimes inaccessible in other systems.
Many phenomena from condensed matter physics, such as Bloch oscillations
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and Landau-Zener (LZ) tunneling have since been shown to be observable
also in optical lattices. BEC in an optical lattice even made possible the
observation of a quantum phase transition that had, up to then, only been
theoretically predicted for condensed matter systems [5]. However an impor-
tant difference between electrons in a crystal lattice and a BEC inside the
periodic potential of an optical lattice is the strength of the self interaction
between the BEC components and hence the magnitude of the nonlinearity
of the system. Electrons are almost noninteracting whereas atoms inside a
BEC interact strongly. A perturbation approach is appropriate in the former
case while in the latter the full nonlinearity must be taken into account. Gen-
erally, atom-atom interactions in Bose-Einstein condensates lead to rich and
interesting nonlinear effects. Most experiments to date have been carried out
in the regime of shallow lattice depth, for which the system is well described
by the Gross-Pitaevskii equation, a mean-field equation. Moreover, the non-
linearity induced by the mean-field of the condensate has been shown both
theoretically and experimentally to give rise to instabilities in certain regions
of the Brillouin zone. These instabilities are not present in the corresponding
linear system, i.e. the electron system.

The present text initially describes the construction of the optical lattice
periodic potential for cold atoms in Sec. 9.2. The following Section reports the
analysis of the condensate interference pattern when released from the optical
lattice. In Sec. 9.4 the nonlinear term within the Gross-Pitaevskii equation
describing the dynamics of a Bose-Einstein condensation is introduced. The
following Sections report experimental results on the Bloch oscillations, on the
nonlinear Landau-Zener quantum tunneling and on the resonantly enhanced
quantum tunneling. A short conclusion terminates the presentation.

9.2 Optical Lattice

In order to trap a Bose-Einstein condensate in a periodic potential, it is suf-
ficient to exploit the interference pattern created by two or more overlapping
laser beams and the light force exerted on the condensate atoms. Optical lat-
tices work on the principle of the ac Stark shift. When an atom is placed in a
light field, the oscillating electric field of the latter induces an electric dipole
moment in the atom. The interaction between this induced dipole and the
electric field leads to an energy shift ΔE of an atomic energy level. When
we take two identical laser beams and make them counterpropagate in such
a way that their cross sections overlap completely see Fig. 9.1a, we expect
the two beams to create an interference pattern, with a distance dL = λ/2
between two neighbouring maxima or minima of the resulting light intensity.
The potential seen by the atoms is then

V (x) = V0 cos2
(πx
d

)
=
V0

2

[

1 + cos
(

2 πx
dL

)]

, (9.1)
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Lasers

Optical potential

a) b)

Fig. 9.1. Representation of the laser configuration creating an optical lattice (a) in
the counterpropagating geometry and (b) in the angle tuned geometry

where the lattice depth V0 is determined by the light shifts ΔE produced by
the individual laser beams. The easiest option to create a one-dimensional
optical lattice is to take a linearly polarized laser beam and retro-reflect it
with a high-quality mirror. If the retro-reflected beam is replaced by a second
phase-coherent laser beam as obtained, for instance, by dividing a laser beam
in two, another degree of freedom is introduced. It is now possible to have
a frequency shift ΔνL between the two lattice beams. The periodic lattice
potential will now no longer be stationary in space but move at a velocity
vlat = dLΔνL. If the frequency difference is varied at a rate ∂ΔνL/∂t, the
lattice potential will be accelerated with alat = dL∂ΔνL/∂t. Clearly, in the
rest frame of the lattice there will be a force

F = −Malat = −MdL
∂ΔνL
∂t

(9.2)

acting on the condensate atoms. This gives us a powerful tool for manipulating
a BEC inside an optical lattice.

Another degree of freedom of a 1D lattice realized with two laser beams
is the lattice constant. The spacing dL between two adjacent wells of a lattice
resulting from two counterpropagating beams can be enhanced by making
the beams intersect at an angle θ �= π, see Fig. 9.1b. This will give rise to a
periodic potential with lattice constant

dL =
λ

2 sin(θ/2)
. (9.3)

To simplify the notation, in the following we shall always denote the lattice
constant by dL and all the quantities derived from it, regardless of the lattice
geometry that was used to achieve it. In particular the recoil energy ER and
the recoil frequency νR of an atom with mass M are

ER = hνR =
�

2π2

2Md2
L

, (9.4)



168 E. Arimondo et al.

and the recoil velocity vR = �π/(dLM). Naturally, by adding more laser beams
one can easily create two- or three-dimensional lattices [4].

The description of the propagation of noninteracting matter waves in pe-
riodic potentials is straightforward once one has found the eigenstates and
corresponding eigenenergies of the system. The eigenstates are found in by ap-
plying Bloch’s theorem, which states that the eigenfunctions have the form [6]

φn,q(x) = eiqxun,q(x) , (9.5)

where �q is referred to as quasimomentum and n indicates the band index,
the meaning of which will become clear in the following discussion. The quasi-
momentum q appearing in the Bloch’s theorem can always be confined to the
first Brillouin zone (−qR, qR) with qR = π/dL , because any q′ not in the first
Brillouin zone can be written as q′ = q + G, where G is a reciprocal lattice
vector and q does lie in the first zone. The eigenenergies En(q) of the above
eigenstates depend on the potential depth V0 = sER and, additionally, on
the quasimomentum q. In Fig. 9.2, we summarize the properties of the eigen-
basis for a shallow potential V0 = 2ER. The eigenenergies form bands that
are separated by a gap in the energy spectrum, i.e., certain energies are not
allowed. Since the gap energy Engap between the nth and (n+1)th band scales
with V n+1

0 in the weak potential limit, it only has appreciable magnitude
between the lowest and first excited band. A particle with high energy is very
well described as a free particle and the influence of the periodic potential is
negligible in this case. It is important to note that for energies near the Bril-
louin zone edge of the lowest band, the eigenstate probability distribution is a

Fig. 9.2. Band structure of a BEC in an optical lattice (V0 = 2ER) and LZ tunnel-
ing, (a) ground to excited state and (b) excited to ground state. When the BEC is
accelerated across the edge of the Brillouin zone (BZ) at quasimomentum q/qR = 1,
LZ tunneling occurs. After the first crossing of the edge of the Brillouin zone in-
creasing the lattice depth and decreasing the acceleration leads to a much reduced
tunneling rate from the ground state band at successive BZ edge crossings, as shown
in (a) for the ground to excited state tunneling and in (b) for excited to ground state
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periodic
√

2 sin(2 πx/2 dL) exp(iπx/2 d) function, its maxima coinciding with
the potential minima and the phase changing by π between adjacent wells.
This is the well-known sinusoidal Bloch state at the Brillouin zone edge, in the
literature also referred to as a staggered mode. In the limit of deep periodic
potentials, also referred to as the tight-binding limit, the eigenenergies of the
low lying bands are only weakly dependent on the quasimomentum.

The wave-packet dynamics of a particle in a periodic potential in the
presence of an additional external potential, i.e., with an external force, is
generally not easy to solve. The problem becomes relatively simple, though,
as soon as the width of the wave packet in quasimomentum space is small and
thus the wave packet can be characterized by a single mean quasimomentum
q(t) at time t. An external force then leads to a time-dependent q(t) via

�q̇(t) = F . (9.6)

In the case of a constant force F , e.g., due to the gravitational field, this
results in

q(t) = q(t = 0) +
Ft

�
. (9.7)

In addition, the velocity vn(q) of the particle in the n band is given by the
group velocity of the underlying wavepacket

vn(q) =
1
�

∂En(q)
∂q

. (9.8)

The above equations determine that the rate of change of the quasimomentum
is given by the external force, but the rate of change of the wavepacket’s
momentum is given by the total force including the influence of the periodic
field of the lattice. In the case of a constant force, the velocity at time t is

vn (q(t)) = vn

(

q(t = 0) +
Ft

�

)

. (9.9)

Since vn is periodic in the reciprocal lattice, the velocity is a bounded and
oscillatory function of time. Therefore the result of the force is not an acceler-
ation of the wave packet, and instead the wavepacket will show an oscillatory
behavior in real space. The velocity oscillatory motion is known as Bloch
oscillations [7] and the period as the Bloch time

TB =
2 π�

FdL
=

1
F0νR

, (9.10)

where we have introduced a dimensionless force F0 = FdL/ER.
In the case of a strong external force acting on matter waves in periodic

potentials, transitions into higher bands can occur as schematically repre-
sented in Fig. 9.2. In the context of electrons in solids, this is known as the
Landau-Zener breakdown [8,9], occurring if the applied electric field is strong
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enough for the acceleration of the electrons to overcome the gap energy sepa-
rating the valence and conduction bands. It was shown in [9] that for a given
acceleration aL corresponding to a constant force, one can deduce a tunneling
probability across the first-second band gap in the adiabatic limit

PLZ = e−π
2V 2

0 /32F0 . (9.11)

The resulting wavepacket dynamics is shown in Fig. 9.2, where LZ tunneling,
from n = 1 to n = 2 band, leads to a splitting of the wave function.

9.3 Analysis of the Interference Pattern

Doing experiments with condensates in optical lattices is useful only if one is
able to extract information from the system once the experiment has been car-
ried out. There are essentially two methods for retrieving information from
the condensate: in situ and after a time of flight. In the former case, one
can obtain information about the spatial density distribution of the conden-
sate, its shape, and any irregularities on it that may have developed during
the interaction with the lattice. Also, the position of the center of mass of
the condensate can be determined. Looking at a condensate released from
a lattice after a time of flight, typically on the order of a few milliseconds,
amounts to observing its momentum distribution. When the atomic system
is in a steady state, the condensate is distributed among the lattice wells (in
the limit of a sufficiently deep lattice in order for individual lattice sites to
have well-localized wavepackets). If the lattice is now switched off suddenly,
the individual (approximately) Gaussian wavepackets at each lattice site will
expand freely and interfere with one another. The resulting spatial interfer-
ence pattern after a time of flight of t will be a series of regularly spaced
peaks with spacing 2 vRt, corresponding to the various diffraction orders. In
the case of a condensate that is very elongated along the lattice direction, to
a good approximation we initially have an array of equally spaced Gaussians
of a width determined by the lattice depth. Figure 9.3 shows a typical time
of flight interference pattern of a condensate released from an optical lattice
(plus harmonic trap) for a lattice depth V0 = 10ER. From the spacing of the
interference peaks and the time of flight, one can immediately infer the recoil
momentum of the lattice and hence the lattice constant dL. Furthermore, from
the relative height of the side peaks corresponding to the momentum classes
±2 π/dL, one can calculate the lattice depth. The top interference pattern was
produced by a condensate at rest with zero quasimomentum. Instead the bot-
tom interference pattern was produced by a condensate with quasimomentum
at the edge of the Brillouin zone, in the staggered state with the condensate
wavefunction changing by π between adjacent wells.
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100  μm

Fig. 9.3. Interference pattern of a Bose-Einstein condensate released from a one-
dimensional optical lattice of depth V0 = 10ER after a time of flight of 20ms. In
the top pattern the lattice was at rest, whereas in the bottom one the condensate
had been accelerated to vR, i.e., its quasimomentum was at the edge of the Brillouin
zone

9.4 Nonlinear Optical Lattice

The motion of a Bose-Einstein condensate in a 1D optical lattice experiencing
an acceleration aL is described by the Gross-Pitaevskii equation

i�
∂ψ

∂t
=

1
2M

(

−i�
∂

∂x
+MaLt

)2

ψ +
V0

2
cos

(
πx

dL

)

ψ +
4 π�

2as
M

|ψ|2 ψ .

(9.12)
The s-wave scattering length as determines the nonlinearity of the system.
Equation (9.12) is written in the comoving frame of the lattice, so the inertial
force −MaL appears as a momentum modification. The wavefunction ψ is
normalized to the total number of atoms in the condensate and we define n0

as the average uniform atomic density. Defining the dimensionless quantities
x̃ = 2 πx/dL, t̃ = 8ERt/�, and rewriting ψ̃ = ψ/

√
n0, ṽ = V0/16ER, α̃ =

MaLdL/16ERπ, C = asn0d
2
L/π, (9.12) is cast in the following form

i
∂ψ

∂t
=

1
2

(

−i
∂

∂x
+ αt

)2

ψ + v cos(x)ψ + C |ψ|2 ψ , (9.13)

where we have replaced x̃ with x, etc. In the neighborhood of the Brillouin
zone edge we can approximate the wave function by a superposition of two
plane waves, assuming that only the ground state and the first excited state
are populated. We then substitute in (9.13) a normalized wavefunction

ψ(x, t) = a(t)eiqx + b(t)ei(q−1)x . (9.14)

Projecting on this basis, linearizing the kinetic terms and dropping the
irrelevant constant energy, (9.13) assumes the form
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i
∂

∂t

(
a
b

)

=
[

−αt
2
σ3 +

v

2
σ1

] (
a
b

)

+
C

2
(
|b|2 − |a|2

)
σ3

(
a
b

)

, (9.15)

where σi, i = 1, 2, 3 are the Pauli matrices. The adiabatic energies of (9.15)
have a butterfly structure at the band edge of the Brillouin zone for C ≥ v [10],
but in the present work we only consider a regime where C � v, hence that
structure plays no role.

In the linear regime (C = 0), evaluating the transition probability in the
adiabatic approximation, we find the linear LZ formula for the tunneling prob-
ability PLZ given by (9.11). Therefore for C = 0 the tunneling probability is
the same for both tunneling directions whereas for C �= 0 the two rates are
different. In the nonlinear regime, as the nonlinear parameter C grows, the
lower to upper tunneling probability grows as well until an adiabaticity break-
down occurs at C = v [10]. The upper to lower tunneling probability, on the
other hand, decreases with increasing nonlinearity.

The asymmetry in the tunneling transition probabilities can be explained
qualitatively as follows: The nonlinear term of the Schrödinger equation acts as
a perturbation whose strength is proportional to the energy level occupation.
If the initial state of the condensate in the lattice corresponds to a filled lower
level of the state model, then the lower level is shifted upward in energy while
the upper level is left unaffected. This reduces the energy gap between the
lower and upper level and enhances the tunneling. On the contrary, if all
atoms fill the upper level then the energy of the upper level is increased while
the lower level remains unaffected. This enhances the energy gap and reduces
the tunneling. The overall balance leads to an asymmetry between the two
tunneling processes.

The nonlinear regime may be reinterpreted by writing (9.15) as

i
∂

∂t

(
a
b

)

=
[

−αt
2
σ3 +

v

2
σ1

](
a
b

)

− C

2

(
|a|2 −b∗a
−a∗b |b|2

) (
a
b

)

. (9.16)

The nonlinear off-diagonal terms modify the interaction term v in a way equiv-
alent to a Rabi frequency in the two-level model. In (9.16) we identify an
offdiagonal term v+Ca∗b which acts as an effective potential. Thus for small
C values we can modify the linear LZ formula (9.11) to include nonlinear cor-
rections, substituting the potential v = V0/16ER with the effective potential
veff = Veff/16ER ≡ |v +Ca∗b| (modulus is needed since a∗b is complex). The
expression for veff is

veff = v

√

1± C

v
+

C2

4 v2
, (9.17)

where the upper and lower signs corresponds to initial conditions of
excited/ground states.
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9.5 Bloch Oscillations

A fundamental property of a quasiparticle in a periodic potential subject to
an external static force is its localization by Bragg reflections at the boundary
of the Brillouin zone, which leads to temporal and spatial oscillations known
as Bloch oscillations [7]. Related fundamental transport phenomena are the
nonresonant LZ tunneling into a continuum of states of another Bloch band
and the resonant LZ tunneling between anticrossing Wannier-Stark states
of neighboring Bloch bands. Bloch oscillations were first observed as time-
resolved oscillations of wave packets of photo-excited “hot” electrons in bi-
ased semiconductor superlattices. Later Bloch oscillations and LZ tunneling
were observed in ensembles of cold atoms [11–13]. During the last decade,
there were experimentally realized time-resolved Bloch oscillations of coher-
ent electron wave packets in semiconductor superlattices [14,15] subjected to
combined electric and magnetic fields. The progress in the fabrication and
investigation of complex optical nanostructures has allowed for direct exper-
imental observations of one-dimensional optical Bloch oscillations of an opti-
cal laser field in dielectric structures with a transversely superimposed linear
ramp of the refractive index [16, 17]. A periodic distribution of the refractive
index plays a role of the crystalline potential, and the index gradient acts
similarly to an external force in a quantum system. This force causes the laser
beam to move across the structure while experiencing Bragg reflections on the
high-index and total internal reflection on the low-index side of the structure,
resulting in an optical analogue of Bloch oscillations. Bloch oscillations and LZ
tunneling from the first to second energy band was also demonstrated experi-
mentally in two-dimensional photonic structures [18]. Most recently, acoustic
Bloch oscillations and resonant LZ tunneling of phononic wave packets were
observed in perturbed ultrasonic superlattices [19].

We report here results for Bloch oscillations in experiments with Bose-
Einstein condensates adiabatically loaded into one-dimensional optical lat-
tices. In particular, we discuss the dynamics of the BEC when the periodic
potential provided by the optical lattice is accelerated, leading to Bloch os-
cillations [20, 21]. The condensate was loaded adiabatically into the (hori-
zontal) optical lattice with lattice constant dL = 390 nm immediately after
switching off the magnetic trap. Thereafter, the lattice was accelerated with
a = 9.81 m/s2 by ramping the frequency difference ΔνL between the laser
beams forming the optical lattice. After a time the lattice was switched off
and the condensate was observed after an additional time of flight. Fig. 9.4a
and 9.4c shows the results of these measurements in the laboratory frame.
The Bloch oscillations are more evident, however, if one calculates the mean
velocity vm of the condensate as the weighted sum over the momentum compo-
nents after the interaction with the accelerated lattice, as shown in Fig. 9.4b.
When the instantaneous lattice velocity vlat is subtracted from vm, one clearly
sees the oscillatory behaviour of vm− vlat. The added feature of using a Bose-
Einstein condensate is that the spatial extent of the atomic cloud is sufficiently
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(a) (b)

(c)

Fig. 9.4. Bloch oscillations of a Bose-Einstein condensate in an optical lattice.
(a) Acceleration in the counterpropagating lattice with dL = 390 nm, V0 ≈ 2.3ER

and a = 9.81 m/s2. Dashed line: theory. (b) Bloch oscillations in the rest frame
of the lattice, along with the theoretical prediction (dashed line) derived from the
shape of the lowest Bloch band. (c) Acceleration in a lattice with dL = 1.56 μm and
V0 ≈ 11ER. In this case,the Bloch oscillations are much less pronounced. Dashed
and solid lines: theory for V0 = 11ER and Veff ≈ 7ER

small so that after a relatively short time-of-flight the separation between the
individual momentum classes is already much larger than the size of the con-
densate due to its expansion and can, therefore, be easily resolved. Similar
observations were reported in [22, 23]. In Ref. [24] by using an optical Bessel
beam to form the optical lattice, a very large number of Bloch oscillations of
a rubidium condensate was realized and large final velocities were reached.

9.6 Landau-Zener Tunneling

The linear regime of the LZ tunneling in atomic physics was investigated
by several authors, using Rydberg atoms in [25], in classical optical systems
in [26], for cold atoms in an accelerated optical potential in [27]. We investi-
gated linear and nonlinear LZ tunneling between the two lowest energy bands
of a condensate inside an optical lattice in the following way. Initially, the
condensate was loaded adiabatically into one of the two bands. Subsequently,
the lattice was accelerated in such a way that the condensate crossed the
edge of the Brillouin zone once, resulting in a finite probability for tunnel-
ing into the other band (higher-lying bands can be safely neglected as their
energy separation is much larger than the band gap). Thus, the two bands
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had populations reflecting the LZ tunneling probability (assuming only one
band exclusively populated initially). In order to experimentally determine the
number of atoms in the two bands, we then increased the lattice depth and
decreased the acceleration. Using this experimental sequence we selectively ac-
celerated further that part of the condensate that populated the ground state
band, whereas the population of the first excited band was not accelerated
further, as shown schematically in Fig. 9.2.

In order to investigate tunneling from the ground state band to the first
excited band, we adiabatically ramped up the lattice depth with the lattice at
rest and then started the acceleration sequence. The tunneling from the first
excited to the ground-state band was investigated in a similar way, except
that in this case we initially prepared the condensate in the first excited band
by moving the lattice with a velocity of 1.5 vR (through the frequency dif-
ference ΔνL between the acousto-optic modulators) when switching it on. In
this way, in order to conserve energy and momentum the condensate must
populate the first excited band at a quasimomentum half-way between zero
and the edge of the first Brillouin zone. For both tunneling directions, the
tunneling probability is derived from PLZ = Ntunnel/Ntot, where Ntot is the
total number of atoms measured from the absorption picture. For the tunnel-
ing from the first excited band to the ground band, Ntunnel is the number of
atoms accelerated by the lattice, whereas for the inverse tunneling direction,
Ntunnel is the number of atoms detected in the v = 0 velocity class.

For a small value of the interaction parameter C, we verified that the tun-
neling rates in the two directions are essentially the same and agree well with
the linear LZ prediction. By contrast, when C is increased, the two tunneling
rates differ greatly, as in Fig. 9.5. We have not yet performed a quantitative
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Fig. 9.5. Asymmetric tunneling between the ground state and first excited band of
a BEC in an optical lattice as a function of the nonlinear interaction parameter C.
In these experiments, a = 32.1 m/s2 and the lattice depth was 1.77 ER
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comparison of these data with the theoretical predictions of the non-linear LZ
model. Previous data published in [28] presented good agreement with the
theoretical predictions of the asymmetric nonlinear LZ tunneling.

9.7 Resonantly Enhanced Quantum Tunnelling

Resonantly enhanced tunneling (RET) is a quantum effect in which the proba-
bility for tunneling of a particle between two potential wells is increased when
the quantized energies of the initial and final states of the process coincide. In
spite of the fundamental nature of this effect and the practical interest, it has
been difficult to observe experimentally in solid state structures. Quantum
tunnelling has found many technological applications, for instance, in scan-
ning tunnelling microscopes and in superconducting squid devices. The most
widely application is in tunnelling diodes and related integrated semiconduc-
tor devices which go back to the pioneering work of Leo Esaki [29]. The latter
also proposed to exploit resonantly enhanced tunnelling (RET) for technical
use, and since the 1970s much progress has been made in producing artifi-
cial superlattice structures, in which RET of fermionic quasiparticles could
be demonstrated.

Here we present our realization of RET using Bose-Einstein condensates
held in optically induced potentials. The counter-propagating beams creating
the lattice were continuously accelerated such as to mimic a static linear
potential in the moving frame of reference. BEC tunneling occurred between
the quantised energy levels (the Wannier-Stark levels) in various wells of the
potential, see Fig. 9.6. We demonstrated that the tunneling probability is
resonantly enhanced and the LZ formula does not give the correct result.

When under the applied external force the quasimomentum explores the
Brillouin zone, adiabatic transitions occur at the points of avoided crossings
between the adjacent Bloch bands, for example, between the first and sec-
ond bands in Fig. 9.2. The probability of this transition is given by the LZ

a) b)

x x

Fig. 9.6. The tunneling of atoms out of a tilted lattice is resonantly enhanced when
the tilt induced energy difference FdLΔi between lattice wells i and i+ Δi matches
the separation between two quantized energy levels within a well, Δi = 1 (left) and
Δi = 2 (right)
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Γ 1/(ν

Fig. 9.7. Tunneling resonances of the n = 1 lowest energy level for V0 = 3.5ER.
The continuous line represents the theoretical RET prediction in the linear regime,
and the dashed line the LZ prediction. For the experimental data (at dL = 426.1 nm
and C = 0.007) and theoretical prediction in the RET linear regime, the Δi = 2 and
Δi = 3 resonant peaks appear at increasing values of F−1

0 , while the Δi = 1 peak
is not completely scanned. In the nonlinear regimes (dL = 626.4 nm, C = 0.024 and
dL = 626.4 nm, C = 0.095) the resonant peaks are washed out

tunneling formula of (9.11). In a first approximation, one can assume that
the adiabatic transition occurs once for each Bloch cycle with the period TB

of (9.10). Then the population of the initial band decreases exponentially with
a rate which, for the tunneling out of the ground n = 1 band, is given by [30]

Γ1 = νRF0e−π
2V 2

0 /32F0 . (9.18)

A plot of this tunneling rate as a function of F0 in the linear regime is shown
in Fig. 9.7. This regime is reached either by choosing small radial dipole trap
frequencies or by releasing the BEC from the trap before the acceleration
phase and thus letting it expand. In both cases, the density and hence the
interaction energy of the BEC is reduced. Superimposed on the overall ex-
ponential decay of Γ1/F0 with F0, one clearly sees the resonant tunneling
peaks corresponding to Δi = 3, 2. For this choice of parameters, the Δi = 1
peak lay outside the region of F values explored in the experiment. In order
to highlight the deviation from the LZ prediction, the dashed line represents
the prediction of (9.11). The experimental results are in good agreement with
numerical solutions obtained by diagonalizing the Hamiltonian of the open
decaying system represented by the continuous line.

Resonances in quantum tunneling for atomic motion within an optical
lattice were previously observed by few authors. Evidence of RET is apparent
in the tunneling measurements on cold atoms of [27]. In a gray optical lattice
they appear as a magnetization modulation [31]. In the demonstration of the
Mott insulator phase of [5,32] with each lattice site of Fig. 9.6 occupied by a
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single atom, RET occurred when the energy difference between neighbouring
lattice sites was equal to the on-site atomic interaction energy.

9.8 Summary

In recent years quantum-wave transport phenomena linked to Bloch oscilla-
tions and LZ tunneling in a variety of optical lattice configurations have been
widely investigated. In addition, Bloch oscillations of ultracold atoms were
proposed as a tool for precision measurements of tiny forces with a spatial
resolution at the micron level [33]. In [34] Bloch oscillations of ultracold atoms
were performed within a few microns from a test mass in order to measure
gravity with very large accuracy in order to test deviations from Newton’s law.
Measurements of the recoil velocity of rubidium atoms based on Bloch oscil-
lations lead to an accurate determination of the fine structure constant [35].
Bloch oscillations of ultracold fermionic atoms have also been proposed as a
sensitive measurement of forces at the micrometer length scale, in order to
perform a local and direct measurement of the Casimir-Polder force [36]. The
use of quantum resonant tunneling that presents a resonant dependence on
the external force may improve the accuracy of those measurements.
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10.1 Introduction

Thermal fluctuations alone cannot create a steady directed transport in an
unbiased system. However, if a system is out of equilibrium, the Second Law of
Thermodynamics no longer applies, and then there are no thermodynamical
constraints on the appearance of a steady transport [1, 2]. A directed current
can be generated out of a fluctuating (time-dependent) external field with zero
mean. The corresponding ratchet effect [3–9] has been proposed as a physical
mechanism of a microbiological motility more then a decade ago [4,5]. Later on
the ratchet idea has found diverse applications in different areas [6–9], from
a molecular nanoscale-machine [10] up to quantum systems and quantum
devices [11–17].

When the deviation from an equilibrium regime is small (the case of weak
external fields) one may use the linear response theory in order to estimate
the answer of the system [18–20]. However, due to the linearization of the
response, the current value will be strictly zero since the driving field has
zero bias. Therefore, one has to take into account nonlinear corrections and
then derive the corresponding nonlinear response functional [20, 21], which
may become a very complicated task, if the nonadiabatic regime is to be
considered.

To obtain a dc-current, one has to break certain discrete symmetries, which
involve simultaneous transformations in space and time. A recently elaborated
symmetry approach [22, 23] established a clear relationship between the ap-
pearance of a directed current and broken space-time symmetries of the equa-
tions of motion. Thus, the symmetry analysis provides an information about
the conditions for a directed transport appearance without the necessity of
considering a nonlinear response functional.
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Most theoretical and experimental studies have focused on ratchet real-
izations at a noisy overdamped limit [6–9]. However, systematic studies of
the underlying broken symmetries, and the largest possible values of directed
currents achieved for different dissipation strength, show that the dc current
values typically become orders of magnitude larger in the limit of weak dissipa-
tion [24,25]. The corresponding dynamics is characterized by long space-time
correlations which may drastically increase the rectification efficiency [25,26].

Fast progress in experimental studies of cold atoms ensemble dynamics
have provided clean and versatile experimental evidence of a ratchet mecha-
nism in the regime of weak or even vanishing dissipation [27, 28]. The results
of the corresponding symmetry analysis for the regime of classical dynamics
has already been successfully tested with cold Rubidium and Cesium atoms
in optical lattices with a tunable weak dissipation [29–32]. Further decreasing
of the dissipation strength leads to the quantum regime [27]. Recent exper-
iments have shown the possibility to achieve an optical lattice with tunable
asymmetry in the quantum regime [33]. A Bose-Einstein condensate (BEC)
loaded into an optical potential is another candidate for a realization of quan-
tum ratchets in the presence of atom-atom interactions [28]. While there is
obvious interest in experimental realizations of theoretically predicted sym-
metry broken states, another important aspect of the interface between cold
atoms and the ratchet mechanism is, that new possibilities for a control of the
dynamics of atomic systems by laser fields may be explored [34, 35].

The objective of this work is to provide a general introduction into the
symmetry analysis of the rachet effect using a simple, non-interacting one-
particle dynamics. Despite its simplicity, this model contains all the basic
aspects of classical and quantum ratchet dynamics, and may be used also as
a starting point of incorporating atom-atom interactions.

10.2 Single Particle Dynamics

We start with the simple model of an underdamped particle with mass m,
moving in a space-periodic potential U(x) = U(x + λ) under the influence of
the external force χ(t) with zero mean:

mẍ+ γẋ− f(x)− χ(t) = 0 . (10.1)

Here f(x) = −U ′(x),
∫ λ
0
f(x) dx = 0, and γ is the friction coefficient. Next,

we ask whether a directed transport with nonzero mean velocity, 〈ẋ〉 �= 0, may
appear in the system (10.1).

If χ(t) ≡ ξ(t) is a realization of a Gaussian white (i.e. delta-correlated)
noise, obeying via its correlation properties the (second) fluctuation-dissipation
theorem [20], Eq. (10.1) then describes the thermal equilibrium state of a par-
ticle interacting with a heat bath. From the Second Law of Thermodynamics
it follows that a directed transport is absent, independently of the particular
choice of the periodic potential U(x) [4, 6, 7, 24].
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The presence of temporary correlations in χ(t) may change the situation
drastically. A simple way to get such correlations is to use an additive periodic
field E(t),

χ(t) = ξ(t) + E(t) , E(t) = E(t+ T ) ,
∫ T

0

E(t) dt = 0 . (10.2)

If ξ(t) is a realization of a white noise, then the functions −ξ(t), ξ(t), and
ξ(t + τ) are also realizations of the same white noise, and their statistical
weights are equal to the statistical weight of the original realization. For what
comes, the noise term ξ(t) will thus not be relevant for the following symmetry
analysis. We consider the symmetries of the deterministic differential equation

mẍ+ γẋ− f(x)− E(t) = 0 . (10.3)

Eq. (10.3) contains two periodic functions, f(x) and E(t), both with zero
mean. The properties of the symmetries of the Eq. (10.3) are strongly de-
pending on the symmetry properties of these functions.

10.3 Symmetries

10.3.1 Symmetries of a Periodic Function with Zero Mean

Let us consider a periodic function g(z + 2 π) = g(z) with zero mean,∫ 2 π

0 g(z) dz = 0. This function can be expanded into a Fourier series

g(z) =
∞∑

k=−∞
gk · exp(ikz) , (10.4)

where g0 ≡ 0. We will consider real-valued functions; therefore, gk = g∗−k.
The function g(z) may possess three different symmetries. First, it can

be symmetric, g(z + z0) = g(−z + z0), around a certain argument value z0.
For such functions we will use the notation gs. The Fourier expansion (10.4)
contains, after the shift by z0, only cosine terms, so gk(z0) = gk · exp(ikz0)
are real numbers, i.e. gk(z0) = g−k(z0).

Second, the function g(z) can be antisymmetric, g(z+ z1) = −g(−z+ z1),
around a certain value of the argument, z1. For such functions we will use the
notation ga. The corresponding Fourier expansion (10.4) contains only sine
terms (after the shift by z1), so gk(z0) = gk · exp(ikz0) are pure imaginary
numbers, and gk(z0) = −g−k(z0).

Finally, the function g(z) can be shift-symmetric, g(z) = −g(z + π). The
Fourier expansion of a shift-symmetric function gsh(z) contains odd harmonics
only, g2m ≡ 0.

It is straightforward to show that a periodic function g(z) can have either
none of the above mentioned symmetries, or exactly one of them, or all three of
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them. Let us consider several simple examples. The function cos(z) possesses
all three symmetries. The function cos(z)+cos(3 z+φ) always possesses shift-
symmetry and in addition may be simultaneously symmetric and antisymmet-
ric for φ = 0,±π. The function cos(z)+cos(2 z+φ) is not shift-symmetric, thus
it will either have no other symmetry at all, except for φ = 0,±π (symmetric),
and φ = ±π/2 (antisymmetric).

10.3.2 Symmetries of the Equations of Motion

The system dynamics in Eq. (10.3) can be described by three first-order
autonomous differential equations,

ẋ =
p

m
, ṗ = f(x) + E(τ) − γ

m
p , τ̇ = 1 . (10.5)

The phase-space dimension is three. We are looking for symmetrytransforma-
tions Ŝ, which do not change the equation (10.5), but do change the sign of
the velocity ẋ. Such transformations map the phase space {x, p, τ} onto itself.
If we find such a transformation, we then apply it to all points of a given
trajectory. We get a new manifold in phase space, which also represents a
trajectory, i.e., a solution of the equations (10.5). The original trajectory and
its image may coincide (or may not).

Let us assume that we have found such a transformation. Next, we consider
the mean velocity, v̄ = lims→∞(x(t0 +s)−x(t0))/s, on the original trajectory.
If the trajectory and its image coincide, then v̄ = 0. If they are different then
their velocities have the same absolute value but opposite signs. If, in addition,
both the trajectories have the same statistical weights in the presence of a
white noise, then we can conclude that the average current in the system (10.3)
is equal to zero [22].

There are only two possible types of transformations which change the
sign of the velocity ẋ: they include either a time-reversal operation, t → −t,
or a space inversion, x→ −x (but not both operations simultaneously!).

The following symmetries can be identified [22]:

Ŝa : x→ −x , t→ t+
T

2
, if {fa, Esh} ,

Ŝb : x→ x , t→ −t , if {Es, γ = 0} , (10.6)

Ŝc : x→ x+
λ

2
, t→ −t , if {fsh, Ea,m = 0} .

The symmetry Ŝb requires zero dissipation, γ = 0, i.e., it requires the Hamil-
tonian regime, and the symmetry Ŝc can be fulfilled in the overdamped limit
(i.e. m = 0) only. Note that all symmetries require certain symmetry proper-
ties of the function E(t). Usually, an experimental setup allows to tune the
shape of the time-dependent field E(t) easier than the shape of the spatially
periodic potential [36,37]. A proper choice of the force E(t) may break all three
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symmetries for any coordinate dependence of the force f(x). We restrict the
further consideration to the case of a symmetric potential U(x) = 1− cos(x)
while using a bi-harmonic driving force,

E(t) = E1 cos(t) + E2 cos(2 t+ θ) , (10.7)

for a symmetry violation. If θ �= 0, π/2, π, 3 π/2 then all three symme-
tries (10.6) are broken and we may count on a nonzero mean velocity, v �= 0.

10.3.3 The Case of Quasiperiodic Functions

We generalize the symmetry analysis to the case of quasiperiodic driving field
E(t) [38, 39].

We consider a quasiperiodic function g(z) to be of the form

g(z) ≡ g̃(z1, z2, . . . , zN ) ,
∂zi
∂z

= Ωi (10.8)

where all ratiosΩi/Ωj are irrational if i �= j and g̃(z1, z2, . . . , zi+2 π, . . . , zN) =
g̃(z1, z2, . . . , zi, . . . , zN) for any i. Such a function may have numerous sym-
metries. With respect to the following symmetry analysis of the equation of
motion we will list here only those symmetries of g̃ which are of relevance. It
can be symmetric g̃s(z1, z2, . . . , zN) = g̃s(−z1,−z2, . . . ,−zN), antisymmetric
g̃a(z1, z2, . . . , zN ) = −g̃a(−z1,−z2, . . . ,−zN). It can be also shift-symmetric
for a given set of indices g̃sh,{i,j,...,m} which means that g̃ changes sign when
a shift by π is performed in the direction of each zi, zj, . . . , zm only, leaving
the other variables unchanged.

The relevant symmetry properties of g̃ are thus studied on the compact
space of variables {z1, z2, . . . , zN}. The irrationality of the frequency ratios
guarantees that in the course of evolution of z this compact space is densely
scanned by these variables with uniform density in the limit of large z. At the
same time we note that it is always possible to find a large enough value Z
such that

lim
τ→∞

1
τ

∫ τ

0

(g(z + Z)− g(z))2 dz < ε (10.9)

with (arbitrarily) small absolute value of ε. For a given value of ε this defines
a quasiperiod Z of the function g(z).

In order to make the symmetry analysis of the equation of motion trans-
parent, we rewrite it (skipping the noise term) in the following form [39]:

mẍ+ γẋ− f(x)− E(φ1, φ2, . . . , φN ) = 0 , (10.10)
φ̇1 = ω1 ,

φ̇2 = ω2 ,

...
φ̇N = ωN .
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The function f(x) is also assumed to be quasiperiodic with M corresponding
spatial frequencies.

The following symmetries can be identified, which change the sign of 〈ẋ〉
and leave (10.10) unchanged:

S̃a : x→ −x , φi,j,...,m → φi,j,...,m + π , if {fa, Esh,{i,j,...,m}} ,
S̃b : x→ x , t→ −t , if {Es, γ = 0} , (10.11)

S̃c : x→ x+
λ

2
, t→ −t , if {fsh,{1,2,3,...,M}, Ea,m = 0} .

The symmetry S̃a is actually a set of various symmetry operations which are
defined by the given subset of indices {i, j, . . . ,m}.

The prediction then is, that if for a given set of parameters any of the
relevant symmetries (10.11) is fulfilled, the average current will be zero. If
however the choice of functions f(x) and E(t) is such that the symmetries are
violated, a nonzero current is expected to emerge.

10.4 Dynamical Mechanisms of Rectification:
The Hamiltonian Limit

Let us consider the limit γ = 0 (Hamiltonian case) [22, 26]. Due to time
and space periodicity of the system (10.3) we can map the original three-
dimensional phase space (x, p, t) onto a two-dimensional cylinder, T 2 = (x
mod 1, p), by using the stroboscopic Poincaré section after each period T =
2π/ω. For given initial conditions {x(0), p(0)}, we integrate the system over
time T , and then plot the final point, {x(T ), p(T )}, on the cylinder T 2.

For E(t) = 0 the system (10.3) is integrable and there is a separatrix in the
phase space which separates oscillating and running solutions. A non-zero field
E(t) destroys the separatrix and leads to the appearance of a stochastic layer
(see Fig. 10.1). In this part of the phase space the system dynamics is ergodic,
i.e., all average characteristics are the same for all trajectories, launched inside
the layer. Therefore, the symmetry analysis is valid for all trajectories on
this manifold. Numerical studies have confirmed this conclusion [22, 23, 26].
Fig. 10.2 shows several trajectories x(t) from chaotic layers and illustrates the
fact that the violation of symmetries causes a directed motion of the particle.

The dynamics within the stochastic layer can be roughly subdivided into
two distinct fractions. The first one corresponds to ballistic flights near the
layer boundaries. They appear due to a sticking effect [40]. A random diffusion
within a chaotic bulk is attributed to the second fraction. A rectification
effect appears due to a violation of the balance between ballistic flights in
opposite directions [26]. This interpretation supports the view, that even in
the presence of damping and noise, the ratchet mechanism relies on harvesting
on temporal correlations of the underlying dynamical system. Ballistic flights
are just such examples of long temporal correlations on a trajectory which
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Left upper inset: Poincaré map for a single ballistic flight, θ = π/2. Right inset:
zoom of x(t) for the case θ = π/2



188 S. Denisov et al.

is overall chaotic. Therefore it is not surprising, that the ratchet effect is
stronger in the dissipationless limit, since dissipation will introduce finite (and
possibly short) time scales which cut the temporal correlations down. The
averaged drift velocity can be estimated by using a sum rule [41, 42]. From
the corresponding approach, which is based on a statistical argument by the
authors of Ref. [41, 42], it follows, that a mixed space, i.e., a stochastic layer
with boundaries and embedded regular submanifolds (islands), presents the
necessary condition for a directed transport.

The adding of a non-zero dissipation, γ �= 0, does not change the situation
drastically [23]. The symmetry analysis is still valid for this case. The phase
space is shared by different transporting and non-transporting attractors with
their corresponding basins of attraction, which are strongly entangled inside
the former stochastic layer region. A symmetry violation causes a desym-
metrization of basins. Finally, a weak noise leads to a trajectory wandering
over different basins, sticking to corresponding attractors, and, finally, to the
rectification effect. The long flights which appear at the Hamiltonian limit
are damped after a characteristic time which is the shorter, the larger the
dissipation strength γ is [23, 26].

A systematic analysis shows that, under the condition of full symmetry vi-
olation, the approach of the dissipationless limit leads to a drastic increase of
the dc current value [25], which depends on the characteristics of the stochas-
tic layer [26]. It has been shown that, in a full accordance with the symme-
try analysis, the dc current disappears near θ = 0, π for the case of weak
dissipation, and near θ = ±π/2 at the strong dissipation limit. The value of
the phase θ, at which the current becomes zero, is a monotonous function of
the dissipation strength γ [25].

An inclusion of a dc-component to the external field, Ẽ(t) = E(t) + Edc,
may lead to a directed transport against a constant bias Edc, even in the
Hamiltonian limit [43].

The abovementioned results have been confirmed in cold atoms exper-
iments, performed in the group of Renzoni [29–31]. In these experiments,
atoms of Cs and Rb have been cooled to temperatures of several mK. An
optical standing wave, created by a pair of counter-propagating laser beams,
formed a periodic potential for the atoms. Finally, a time-dependent force E(t)
has been introduced through a periodic modulation of the phase for one of
the beams. The results of the above symmetry analysis have been verified by
changing the relative phase φ and by tuning the effective dissipation strength.

The case of the quasiperiodic driving force E(t) for cold atoms ratchets
also has been studied experimentally [32], with a similar outcome.
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10.5 Resonant Enhancement of Transport with Quantum
Ratchets

A quantum extension of the (dissipationless) system dynamics in Eq. (10.3)
can readily be achieved [44,45]. The system evolution can be described by the
Schrödinger equation,

i�
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 , (10.12)

where the Hamiltonian H is of the form

H(x, p, t) =
p2

2
+ [1 + cos(x)] − xE(t) . (10.13)

The system (10.12) describes a cloud of noninteracting atoms, placed into
a periodic potential (formed by two counter-propagating laser beams) and
exposed to an external ac field (10.7)1.

Because of the time and space periodicity of the Hamiltonian (10.13), the
solutions |ψα(t + t0)〉 = U(t, t0)|ψα(t0)〉 of the Schrödinger equation (10.12)
can be characterized by the eigenfunctions of the Floquet operator U(T, t0)
which satisfy the Floquet theorem |ψα(t)〉 = exp(−iEαt/T )|φα(t)〉, |φα(t +
T )〉 = |φα(t)〉 (here t0 is the initial time). The quasienergies Eα (−π < Eα <
π) and the Floquet eigenstates can be obtained as solutions of the eigenvalue
problem of the Floquet operator

U(T, t0)|φα(t0)〉 = e−iEα |φα(t0)〉 (10.14)

with α denoting the band index and with k being the wave vector [44–47].
An initial state can be expanded over Floquet-Bloch eigenstates, |ψ(t0)〉 =∑

α,k Cα,k(t0)|φα,k〉 and the subsequent state’s evolution is encoded in the
coefficients {Cα,k}. We restrict further consideration to the case κ = 0 which
corresponds to initial states where atoms equally populate all (or many) wells
of the spatial potential.

The mean momentum expectation value,

J(t0) = lim
t→∞

1
t

∫ t

t0

〈ψ(τ, t0)|p̂|ψ(τ, t0)〉dτ , (10.15)

measures the asymptotic current. Expanding the wave function over the Flo-
quet states the current becomes

J(t0) =
∑

α

〈p〉α|Cα(t0)|2 , (10.16)

where 〈p〉α is the mean momentum of the Floquet state |φα〉 [44–46].

1 The dissipation may be included into quantum dynamics by coupling the sys-
tem (10.13) to a heat bath, Hdiss(x, p, t, {q}) = H(x, p, t) + HB(x, {q}). Here
HB(x, {q}) describes an ensemble of harmonic oscillators {q} at thermal equilib-
rium interacting with the system [11].
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Fig. 10.3. (a) Poincaré section for the classical limit, (10.7), (10.13), (b)–(f) Husimi
representations for different Floquet eigenstates for the Hamiltonian (10.13) with
� = 0.2 (momentum is in units of the recoil momentum, pr = �kL, with kL = 1).
The parameters are E1 = E2 = 2, ω = 2, θ = −π/2 and t0 = 0 for (b)–(e), and
E1 = 3.26, E2 = 1, ω = 3, θ = −π/2 and t0 = 0 for (f)

The analysis of the transport properties of the eigenstates shows that the
quantum system inherits the symmetries of its classical counterpart [44,45]. In
particular, the symmetries of the classical equations of motion translate into
symmetries of the Floquet operator. The presence of any of these symmetries
results in a vanishing the time-averaged expectation value of the momentum
operator for each Floquet eigenstate: 〈p〉α = 0. Thus, if one of the symmetries,
S̃a, S̃b (10.11), holds then 〈p〉α = 0 for all α. Consequently J(t0) = 0 in this
case.

By using the Husimi representation [48,49] we can visualize different eigen-
states in the phase space, {x, p, τ} and establish a correspondence between
them and the mixed phase space structures for the classical limit (Fig. 10.3).

Since the Schrödinger equation (10.12) is linear, the system maintains
a memory of the initial condition for infinite times [50]. The asymptotic
current value depends on the initial time, t0, and on the initial wave func-
tion, ψ(t0). For a given initial wave function, |ψ〉 = |0〉, we can assign a
unique current value by performing an averaging over the initial time t0,
J = 1/T

∫ T
0 J(t0) dt0 [44, 45]. Fig. 10.4 shows the dependence of the average
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current on the asymmetry parameter θ. Sharp resonant peaks for E2 = 1.2
where the current value changes drastically are associated with interactions
between two different Floquet eigenstates. The Husimi distributions show that
one state locates in the chaotic layer, and another one in a transporting island.
Off resonance the initial state mainly overlaps with the chaotic state, which
yields some nonzero, yet small, current. In resonance Floquet states mix, and
thus the new eigenstates contain contributions both from the original chaotic
state as well as from the regular transporting island state. The Husimi dis-
tribution of the mixed state is shown in Fig. 10.3f, the strong asymmetry is
clearly observed. The regular island state has a much larger current contribu-
tion, resulting in a strong enhancement of the current.

To conclude this section, we would like to emphasize the following two
points. For both cases, i.e., the classical and the quantum one, the overall, total
current over the whole momentum space is zero [41, 42]. Thus, it is essential
to have the initial state prepared localized near the line p = 0, because for
broad initial distributions the asymptotic current tends to zero. However, if
the dynamics is restricted to the lowest band of the periodic potential, no
current rectification does occur [51].
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10.6 Summary

This surveyed symmetry analysis, originally put forward in Refs. [22,23], pro-
vides a general toolbox for the prediction of dynamical regimes for which one
can (or cannot) obtain the rectification and directed current phenomenon for
a given transport dynamics. First, one has to set up the equations of motions
and define a observable (current, magnetization, angular velocity, energy flux,
etc.) which should become nonzero, in terms of these dynamical variables.
Then, one examines whether there exist transformations (symmetries) which
change the sign of the observable and at the same time leave the equations
of motion invariant. Upon breaking all the symmetries one can expect the
emergence of a non-zero, directed current. This strategy has been successfully
tested with Josephson junctions (fluxon directed motion) [52, 53] and as well
with paramagnetic resonance experiments (spin magnetization by a zero-mean
field) [54, 55].

Herein, we focused only on the one-dimensional case. By use of more laser
beams, experimentalists can fabricate two- and three-dimensional optical po-
tentials [28]. By changing the relative phase between lattice beams, 2D- and
3D-potentials with different symmetries and topologies can be achieved [56,
57]. This fact incites for an extension of the present ratchet studies into higher
dimensions.

Moreover, for the phenomenon of Bose-Einstein-condensation (BEC) of
cold gases, interactions between atoms become essential and nonlinearities
start to play an important role [28]. Many features of BEC dynamics are
manifestations of general concepts of nonlinear physics, such as soliton cre-
ation and propagation. These collective excitations can then themselves be
subjected to a ratchet transport mechanism [58].
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11.1 Introduction

Optical lattices for atomic Bose-Einstein condensates raised enormous inter-
est, as they mirror features known from solid state physics to the field of atom
optics. In perfect solid state crystals atoms are arranged in a regular array
creating a periodic potential for the electrons inside. Felix Bloch was one of
the first who investigated in his dissertation (1928) the quantum mechanics of
individual electrons in such crystalline solids. In the independent electron ap-
proximation interatomic and interelectronic interactions are neglected. Each
electron obeys the one electron Schrödinger equation with a periodic potential
V (x + a) = V (x) with period a. According to Bloch’s theorem the station-
ary eigenstates ψn,q(r) are plane waves modulated by a periodic function
revealing the periodicity of the atom lattice [1]. With proper periodicity and
boundary conditions the eigenstates are quantized, characterized by the band
index n = 0, 1, . . .. The plane waves propagate in the direction of the wave
vector q with the associated quasimomentum �q, which it is sometimes re-
ferred to as the crystal or lattice momentum. The energy levels En(q) are
periodic continuous functions of the wave vector q forming the energy bands.
Pictures of the energy bands showing the bandstructure are conventionally
restricted the first Brillouin-zone of the reciprocal lattice −�k ≤ q ≤ �k. One
milestone of Bloch theory and the band structure of particles is the finding of
a natural physical explanation of the some 20 orders of magnitude difference
in electrical conductivity between an insulator and a good conductor [2].

A realization of the fundamental concept of Bloch theory more recently
became also accessable in a field quite different from solid state physics,
namely in quantum optics. Due to the breakthrough of creating atomic Bose-
Einstein condensates in 1995 [3,4] it is now also possible to investigate conden-
sates confined in periodic optical potentials, so called optical lattices. Ultra-
cold atoms exposed to such periodic potentials exhibits analogies to electrons
in solids. In recent years, atoms confined in lattice potentials have allowed
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for observations of Bloch oscillations and Landau-Zener tunneling [5,6], num-
ber squeezing [7], or the Mott-insulator transition [8]. Further, fascinating
pictures of cubic clouds depicting the first Brillouin-zone [9] and interference
patterns of Bragg scattered atoms were taken [8]. These first experiments
demonstrated that optical lattices are an attractive tool for modelling effects
known or predicted in solid state physics.

So far, the band structure was investigated only for sinusoidal lattice po-
tentials, in which the lattice periodicity is given by λ/2, where λ denotes
the wavelength of the used laser radiation. Other potential shapes were real-
ized: some authors studied superlattices based on the spatial beating of two
neighboring trapping sites [10,11], others used a grey optical lattice configura-
tion to realize asymmetric, dissipative potentials [12]. We here describe work
realizing dissipationless lattice potential with spatial periodicity λ/4, which is
realized with a fourth-order Raman process. Building upon this potential, a
Fourier-synthesis of lattice potentials for a 87Rb Bose-Einstein condensate is
demonstrated. By superimposing the λ/4 period multiphoton potential with
a conventional lattice potential with λ/2 spatial periodicity of appropriate
phase, either symmetric or saw-tooth like asymmetric lattice potentials are
synthesized. The scheme is scalable, in principle, to arbitrarily many Fourier
components. In subsequent experiments, we have studied quantum transport
in such lattices of variable symmetry. We find that the Landau-Zener tun-
neling rate of atoms between the lowest two excited Bloch bands depends on
the shape of the lattice potential. In this way, the band structure of Fourier-
synthesized lattices was explored.

The outline is as follows: In Sect. 11.2 we describe our method to generate
nonstandard optical lattices. The experimental set up is presented in Sect. 11.3
and experimental results in Sect. 11.4. We conclude this article with Sect. 11.5,
where we give an outlook on quantum ratchets.

11.2 Principle of Optical Multiphoton Lattices

A conventional lattice with sinusoidal shape and spatial periodicity λ/2 is gen-
erated by overlapping two counterpropagating off-resonant laser beams with
frequency ω forming a standing wave. Due to a spatial varying ac-Stark shift,
atoms experience a dipole force depending on the sign of the polarizability,
which attracts the atoms to the nodes (for ω > ω0) or the anti-nodes (for
ω < ω0) of the laser intensity, where ω0 is an atomic resonance frequency.
The effective potential for an atom exposed to a standing optical wave may
also be described in a quantum picture by the exchange of photons changing
the atom’s momentum. The atoms here undergo virtual two-photon processes
of absorption of one photon from one laser beam and stimulated emission
of another photon into a counterpropagating beam, see Fig. 11.1a. An atom
undergoing such a two photon process exchanges a momentum amount of 2 �k
with the lattice.
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Fig. 11.1. Virtual process in optical lattices. (a) The trapping potential of conven-
tional standing wave lattices is due to a virtual two photon process of absorbing and
instantaneously emitting a photon of energy �ω. This yields the well-known spatial
periodicity of λ/2, (b) virtual four photon process contributing to a lattice potential
of λ/4 spatial periodicity

We use a multiphoton Raman technique to generate a lattice potential of
periodicity λ/4, as the first harmonic for a Fourier-synthesis of lattice poten-
tials [13,14]. The scheme uses three-level atoms with two stable ground states
|g0〉 and |g1〉 and the electronically excited state |e〉. The atoms are irradiated
by two optical beams of frequencies ω+ Δω and ω−Δω from the left and by
a beam of frequency ω from the right, as shown in Fig. 11.1b. Momentum is
transferred to the atoms in units of 4 �k during an induced virtual four-photon
processes, being a factor two above the corresponding process in a standing
wave. This suggests a spatial periodicity of λ/4 for the adiabatic light shift
potential, which is in agreement with theoretical predictions [13, 14].

This scheme can be extended to generate lattice potentials with higher
periodicities λ/2n by a 2n-th photon process. The high resolution of Raman
spectroscopy between two stable ground states over an excited state allows
to clearly separate in frequency space the desired 2n-th order process from
lower order contributions.

By combining lattice potentials of different spatial periodicities, variable
periodic potentials can be synthesized [15]. At present, we experimentally
investigate ratchet-type asymmetric and symmetric potentials by combining
four-photon potentials based on the scheme of Fig. 11.1b with usual standing
wave lattice potentials. The adiabatic lattice has then the form

V (z) = V1 cos(2 kz) + V2 cos(4 kz + φ) , (11.1)

where V1 and V2 are the potential depths of the lattice potentials with spa-
tial periodicities λ/2 and λ/4 respectively, and φ denotes the relative phase
between the spatial harmonics. A constant offset to the potential V is here
omitted. Figure 11.2a shows the form of such a lattice potential for typical
experimental potential depths for a relative phase between lattice harmonics
of φ = 0◦ (solid line) and φ = 90◦ (dashed line), as an example for a symmet-
ric and asymmetric lattice respectively. Figure 11.2b shows the corresponding
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Fig. 11.2. Lattice potential and band structure. (a) For the experimentally realized
values we show the lattice potential (11.1) for two specific phases φ. The solid line
corresponds to φ = 0◦ and the dashed line to φ = 90◦. The depths are V1 = 3/2Er

and V2 = 1Er, where Er = �
2k2/2M denotes the recoil energy, M the atomic mass.

(b) Bandstructure corresponding to the lattice potentials shown in (a). It is clearly
visible that the energy gap between first and second excited Bloch band depends on
the phase φ

band structure for those potentials for the lowest Bloch bands. Notably, the
band gap between first and second excited Bloch band dependends on the
phase φ and the potential depths V1, V2 of the two lattice harmonics. For
given values of the potential depths V1 and V2 one finds, that the gap takes
its maximum for φ = 0◦ and minimum for φ = 180◦. For a suitable choice
of the lattice depths V1, V2 and the phase φ between them the gap can even
vanish.

11.3 Experimental Approach

Our experimental set-up was described in detail in Ref. [16]. Briefly, a 87Rb
Bose-Einstein condensate is produced all-optically by evaporative cooling in a
CO2-laser dipole trap. The used evaporation time is about 10 s, during which
an additional magnetic field gradient is activated, to end up with a spin-
polarized condensate of about 16 000 atoms in the |F = 1,mF = −1〉 ground
state is produced.

A magnetic bias field generates a frequency splitting of ωZ 
 2 π×805 kHz
between neighbouring Zeeman ground states. The direction of the magnetic
field forms an angle respectively to the optical beam, so that atoms expe-
rience σ+-, σ−- and π-polarized light simultaneously. For the multiphoton
lattice potential according to the scheme of Fig. 11.1b, the F = 1 ground
state components mF = −1 and 0 are used as states |g0〉 and |g1〉, while the
|5 P3/2〉 manifold serves as the excited state |e〉. The Raman detuning δ typ-
ically is tuned to 2 π × 50 kHz. The lattice beams are provided by a tapered
diode laser tuned some 2 nm to the red of the rubidium D2-line. The beam is
splitted into two, whereafter each of the partial beams pass an acoustoopti-
cal modulator. The modulators control the intensities and frequencies of the
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beams, as is required to generate superpositions of a standing wave and a
four-photon potential [15]. The modulators are driven by four phase-locked
rf function generators. The optical lattice beams are directed onto the 87Rb
condensate under an angle of 49◦ relatively to axis of gravity via optical fibers
in a counterpropagating geometry.

11.4 Measurements and Results

In initial work, we have characterized the generated lattice potentials by
diffracting the atomic Bose-Einstein condensate off the variable lattice poten-
tials. Figure 11.3 shows the result of such measurements [15], where atoms
were diffracted off a 6 μs long pulse of the lattice potential, where the used
free expansion time was 10ms for the shown time-of-flight images (top fig-
ures). For Figs. 11.3a and 11.3b, λ/2 and λ/4 periodicity lattice potentials
respectively were investigated, where the smaller spatial periodicity of the
multiphoton potential results in larger spatial separation of the diffracted
peaks in the latter image. Figures 11.3c and 11.3d show the results obtained
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Fig. 11.3. Far-field diffraction images of lattice potentials and corresponding re-
constructed spatial structure of the lattice potentials. (a) For a two-photon lattice
potential with λ/2 spatial periodicity and (b) for a four-photon lattice potential
with λ/4 spatial periodicity. Due to its smaller spatial periodicity, the splitting of
the clouds is a factor two above that observed in (a), (c) diffractions image for an
asymmetric lattice potential realized by superimposing two- and four-photon lattice
potentials, (d) same as in (c), but with an additional phase shift of 180◦ for the
four-photon lattice potential
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when combining lattice potentials of periodicity λ/2 and λ/4 for different val-
ues of the relative phase between spatial harmonics. The asymmetry of the
observed diffraction images is attributed to as evidence for the asymmetry of
the Fourier-synthesized lattice potentials. The shown plots below the time-of-
flight images give the reconstructed lattice potentials respectively, obtained
by fitting the results of the diffraction experiment to the solution of a numer-
ical integration of the momentum-picture Schrödinger equation [15]. More
recently, we have experimentally investigated the band structure of Fourier-
synthesized lattice potentials by means of quantum transport experiments.
One fundamental quantum effect is Landau-Zener tunneling which can occur
in accelerated lattices [17]. When the acceleration of the lattice is sufficiently
large, transitions between different energy bands become possible, which is
called Landau-Zener tunneling. On the other hand, for sufficiently small ac-
celeration the atoms are Bragg diffracted at the Brillouin zone edge and the
atomic quasimomentum oscillates within the Bloch bands from −�k to �k,
which is known as Bloch oscillation. The Landau-Zener transition probability
can be estimated as [18, 19]

P (a) = exp(−πE2
G/�

2ka) , (11.2)

where a is the acceleration of the lattice and EG is the energy gap between
two bands. In a series of experiments we have investigated the Landau-Zener
tunneling rate between the first and the second excited Bloch band [20]. One
of the lattice beams with frequency ω is used both for the standing wave
and the fourth order multiphoton potential. This beam was acoustooptically
detuned by a small amount δDopp, so that the reference frame in which the
lattice is stationary moves with a velocity of vrel = λδDopp/4 π. The atoms
were loaded into the first Bloch band by adiabatically transferring them into
a lattice moving at a velocity vrel 
 1.5 �k/M , where M is the atomic mass.
To accelerate the lattice we increase the beam detuning δDopp with a constant
rate, so that an acceleration is achieved which can be larger than the projection
of gravity’s acceleration on the lattice direction. The tunneling rate depends
on the size of the band gap and therefore on the phase φ between the two
lattice harmonics. The dependence on the phase is measured and depicted in
Fig. 11.4 for an acceleration of 6.44 m/s2 and potential depth of V1 
 3/2Er

and V2 
 1Er, where Er = �
2k2/2M denotes the recoil energy. The data

fits well to a sinusoidal curve which is fitted to the data (solid line) to guide
the eyes. In the course of the experiment we studied also the dependence
of the tunneling rate on the depths of the two lattice harmonics for which
we refere the reader to [20]. Remarkably, for symmetric potentials φ = 0◦

(φ = 180◦) the Landau-Zener tunneling rate reaches a minimum (maximum)
while for the ratchet type asymmetric potential (φ = 90◦) an intermediate
value is obtained. This is in contrast to dissipative asymmetric lattices, where
maxima and minima tunneling rates are reached for ratchet-like potentials of
different symmetry respectively.
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Fig. 11.4. Phase dependence of Landau-Zener tunnel rate. Shown is the ratio
NLZ/N of the number of atoms that have undergone a Landau-Zener transition
NLZ and the total number of atoms in the condensate N as a function of the phase
φ between the two lattice harmonics of the potential (11.1). The experimental data
(dots) is fitted to a sinusoidal curve (solid line)

11.5 Quantum Ratchets

A mechanical ratchet is a device used to restrict arbitrary motion into one
direction. One familiar macroscopic application is the self-winding wristwatch,
where the clockwork is rewound by an eccentric weight that rotates to the
movement of the wearer’s body [21]. Converting microscopic fluctuations, such
as Brownian motion, into useful work was suggested by Smoluchowski [22]
and later refined in Feynman’s Lectures on Physics [23]. Experimental work
on ratchet systems is nicely reviewed in [21], see also [24] for recent work on
atomic systems. The interest in cold atoms for ratchet systems lies in the here
possible realization of a Hamiltonian quantum ratchet system. A quantum
mechanical ratchet for cold atoms can be thought of by building a sort of
quantum barrier like the asymmetric optical potential described above, see
Fig. 11.2a. An nondirected motion can be produced by rocking the ratchet
potential forth and back, or alternatively flashing the ratchet on and off. The
atoms spread over the whole lattice follow the dragging, but because of the
asymmetry of the lattice the probability for tunneling into one direction is
preferred. Consequently, the atoms start to move into the preferred direction
of tunneling leading to a measurable current of atoms.

By such a periodic rocking no energy is added to the system since
the energy contribution vanishes in the time average. The one-dimensional
Hamiltonian of such a system is of the form

H(z, p, t) =
p2

2M
+ V (z)E(t) , (11.3)
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where p is the atom’s momentum, M the atomic mass, and E(t + T ) = E(t)
is a periodic driving force. A necessary condition to observe the quantum
ratchet effect is to break all relevant temporal and spatial symmetries of the
system [25]. In a theoretical work concerning the Hamiltonian ratchet (11.3)
with the lattice potential (11.1) and an ac-driving forceE(t) = E1 cos(2ωact)+
E2 cos(4ωact + θ), where ωac is the driving frequency, it was shown that di-
rected transport can here be achieved if φ �= 0,±π/2 and θ �= 0,±π/2 [26].
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12.1 Introduction

The ratchet effect [1–3] is the rectification of fluctuations in a periodic
potential in the absence of net applied bias forces. In this way directed motion
along a macroscopically flat structure is obtained.

The archetypal of a ratchet consists of Brownian particles in a periodic
potential. In order to obtain directed motion, two main requirements have
to be fulfilled. First, the system has to be driven out of equilibrium, so to
overcome the limitations imposed by the second principle of thermodynam-
ics. Second, the relevant symmetries of the system, which would otherwise
prevent the generation of a current, have to be broken. Among the different
possible implementations of the ratchet effect, we mention here the flashing
ratchet [1–3], the rocking ratchet [1–3], and the more recently introduced gat-
ing ratchet [4–6].

In the rocking ratchet set-up, Brownian particles in a periodic potential
experience an additional time-dependent applied force F (t), which is homoge-
neous and has zero time-average. The oscillating applied force plays a double
role. On one hand, it drives the system out of thermodynamic equilibrium,
thus avoiding the restrictions imposed by the second principle of thermody-
namics. On the other hand, the temporal symmetry properties of the applied
force, together with the spatial symmetry properties of the periodic potential,
control the directed motion.

In this work, we review a series of recent experiments with a rocking ratchet
for cold atoms in which the relationship between symmetry and transport
is investigated. This is quite an unusual system to model a phenomenon of
statistical physics, as there is no real thermal bath. The atoms are isolated
from the environment, and the laser fields determine both the conservative
periodic potential and the applied force, and the dissipative features (damping
and fluctuations). The excellent tunability of such a system allows one to
precisely investigate the correspondence between symmetry and transport.
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This paper is organized as follows. In Section 12.2 we review the theoret-
ical work on the relationship between symmetry and transport in a rocking
ratchet [7–10]. Both cases of periodic and quasiperiodic driving are considered.
In Section 12.3 we introduce the main features of a near-resonant optical lat-
tice of the type used in the experiments on the rocking ratchet. Section 12.4 re-
views the recent experimental work on a cold atom ratchet, which investigates
from an experimental point of view the correspondence between symmetry and
transport as studied theoretically in the work reviewed in Section 12.2. Finally,
Section 12.5 summarizes the work done so far and examines the prospects for
future work.

12.2 Symmetries of a Rocking Ratchet

In this Section the symmetries which prevent the generation of a current in a
rocking ratchet are identified. We follow closely the treatment of Refs. [7–10].

12.2.1 The Dissipationless Case

We first consider the dissipationless case, which will then be extended to
include weak dissipation. In the absence of dissipation, the equation of motion
for a particle of mass m is

mẍ(t) = −U ′(x) + F (t). (12.1)

Here U is a spatially periodic potential of period λ, and F a zero-mean ac
driving force of period T .

Now, we are interested in determining the symmetries which forbid directed
motion. These correspond to the transformations in x, t which change the
sign of the momentum p, i.e., the transformations which map a trajectory
{x(t;x0, p0), p(t;x0, p0)}, with x0, p0 the initial position and momentum, into
another one with opposite momentum. These transformations consist of re-
flections and shifts in time and space, and are

Ŝa

(
x(t;x0, p0)
p(t;x0, p0)

)

=
(
−x(t+ T/2;x0, p0) + 2χ
−p(t+ T/2;x0, p0)

)

, (12.2)

Ŝb

(
x(t;x0, p0)
p(t;x0, p0)

)

=
(
x(−t+ 2 τ ;x0, p0)
−p(−t+ 2 τ ;x0, p0)

)

, (12.3)

with χ and τ constants. If the equation of motion Eq. (12.1) is invariant
under Ŝa, Ŝb directed motion is forbidden. Whether Ŝa, Ŝb are symmetries of
the system depends on the specific form of U(x) and F (t). In the following
we consider only the case of a spatially symmetric periodic potential U(x +
χ) = U(−x + χ), where χ is a constant. This is the case relevant to the
experimental realizations reviewed in this work, with the symmetry of the
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system controlled by the ac driving. Following the notations of Ref. [8], we
say that F (t) possesses F̂s symmetry if F (t) is invariant under time reversal,
after some appropriate shift

F (t+ τ) = F (−t+ τ). (12.4)

Moreover, if F (t) satisfies

F (t) = −F (t+ T/2), (12.5)

we say that F possesses shift-symmetry (Fsh).
If the driving is shift-symmetric then the system is invariant under the

transformation Ŝa, and current generation is forbidden. If the the driving is
symmetric under time reversal, then the system is invariant under the trans-
formation Ŝb, and once again directed motion is forbidden.

We now carry further the symmetry analysis for a specific form of driving.
We consider the case of a bi-harmonic driving force

F (t) = A cos(ωt) + B cos(2ωt+ φ). (12.6)

For A,B �= 0 the presence of both an even and an odd harmonic breaks the
shift symmetry Fsh, independently of the relative value of the phase φ. On the
other hand, whether the Fs symmetry is broken depends on value of the phase
φ: for φ = nπ, with n integer, the symmetry Fs is preserved, while for φ �= nπ
it is broken. Therefore for φ = nπ current generation is forbidded, while for
φ �= nπ it is allowed. Perturbative calculations [7] show that the average
current of particles is, in leading order, proportional to sinφ, in agreement
with the above symmetry considerations.

12.2.2 Weak dissipation

We now consider the case of weak, nonzero dissipation [8]. For the sake of
simplicity, we restrict our analysis to the case of a bi-harmonic driving of the
form of Eq. (12.6). As already mentioned the shift-symmetry is broken as the
driving consists both of even and odd harmonics. Consider now the symmetry
under time-reversal. For φ = nπ, with n integer, the driving has Fs symmetry.
However, the system is not symmetric under the transformation Ŝb because
of dissipation. Therefore the generation of a current is not prevented, despite
the symmetry of the driving. It was shown [8] that the generated current
I still shows an approximately sinusoidal dependence on the phase φ, but
acquires a phase lag φ0: I ∼ sin(φ− φ0). Such a phase lag corresponds to the
dissipation-induced symmetry breaking.

12.2.3 Quasiperiodic Driving

We now consider the case of quasiperiodic driving [10]. We consider a generic
driving with two frequencies ω1, ω2. Two different specific forms of driving
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were examined in the experimental realizations, each probing a different sym-
metry. Quasiperiodic driving corresponds to an irrational value of the ratio
ω2/ω1. In order to analyze the relationship between symmetry and transport
in the the case of a quasiperiodic driving, the two phases

Ψ1 = ω1t (12.7)
Ψ2 = ω2t (12.8)

can be treated as independent variables [11]. The symmetries valid in the case
of a perioding driving can then be generalized to the case of a quasiperiodic
ac force [10].

The driving force F (t) is said to be shift-symmetric if it changes sign under
one of these transformations

Ψα → Ψα + π, (12.9)

where α is any subset of {1, 2}, i.e., the π shift is applied to either any of the
two variables, of to both of them. If F is shift-symmetric, then the system is
invariant under the transformation

S̃a : x→ −x , Ψα → Ψα + π (12.10)

and directed motion is forbidden.
The driving is said to be symmetric if

F (−Ψ1 + χ1,−Ψ2 + χ2) = F (Ψ1, Ψ2) (12.11)

with χ1, χ2 appropriately chosen constants. If the driving is symmetric, in the
dissipationless limit the system is invariant under the transformation

S̃b : x→ x , Ψj → −Ψj + λj , j = 1, 2 (12.12)

and directed transport is forbidden.
The two symmetries are the direct generalization of the symmetries for

the periodic case, and control directed motion in the case of a quasiperiodic
driving.

12.3 Dissipative Optical Lattices

In this Section we introduce the basic features of dissipative optical lattices
of the type used in the experiment on the rocking ratchet.

Optical lattices are periodic potentials for atoms created by the interfer-
ence of two or more laser fields [12]. In near resonant optical lattices the
laser fields produce at once the periodic potential for the atoms and a cooling
mechanism, named Sisyphus cooling. We will discuss here the simple case of a
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one-dimensional configuration and a Jg = 1/2→ Je = 3/2 atomic transition.
This is the simplest configuration in which Sisyphus cooling takes place.

We consider two counterpropagating laser fields, with orthogonal linear
polarizations. They have the same wavelength λ, and they are detuned below
atomic resonance. The interference between the two laser fields results into a
spatial gradient of polarization ellipticity of period λ/2. This in turn produces
a periodic potential for the atom. More precisely, each atomic ground state
|g,±〉 = |Jg = 1/2,M = ±1/2〉 experiences a periodic potential U±(z) of the
form

U±(z) =
U0

2
[−2± cos kz] . (12.13)

Here U0 is the depth of the potential wells. It scales as IL/Δ, with IL the total
laser intensity and Δ the detuning from atomic resonance.

As the laser fields are near to resonance with the atomic transition, the
interaction with the light fields also leads to stochastic transitions between
atomic ground states. The rate of this transitions can be quantified by the
scattering rate Γ ′ which scales as IL/Δ2. It is therefore possible to vary inde-
pendently the optical lattice depth U0 and Γ ′ by changing simultaneously IL
and Δ.

The stochastic transitions between ground states lead to damping and fluc-
tations. The damping mechanism, named Sisyphus cooling, originates from the
combined action of the light shifts and of optical pumping which transfers,
through cycles of absorption/spontaneous emission, atoms from one ground
state sublevel to the other one. It turns out that in this process the atomic ki-
netic energy is transformed into potential energy, which is then carried away by
a spontaneously emitted photon. In this way, the atoms are slowed down until
their kinetic energy is small enough to be trapped in the wells of the optical
potential. We notice that the stochastic transitions between the two poten-
tials U±(z) also generates fluctuations of the instantaneous force experienced
by the atom. The equilibrium between these cooling and heating mechanisms
determine the final kinetic energy of the atoms.

12.4 Rocking Ratchet for Cold Atoms

In a rocking ratchet, Brownian particles experience a periodic potential and
an ac force F (t) of zero average. Whenever the relevant symmetries of the
system are broken, the particles are set into directed motion.

Optical lattices allows the implementation of rocking ratchets for cold
atoms, and we will review here recent experiments [13–16]. As discussed in
the previos Section, in near resonant optical lattices the laser fields produce
at once a periodic potential for the atoms and a damping mechanism for the
atomic motion. The only missing element for a rocking ratchet set-up is the
rocking force. We now discuss how to apply an homogeneous ac force F (t) to
the atoms in the optical lattice.
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In order to generate a time-dependent homogeneous force, one of the lattice
beams is phase modulated, and we will indicate by α(t) the time-dependent
phase. In the laboratory reference frame the phase modulation of one of the
lattice beams results into the generation of a moving optical lattice U±(z −
α(t)/2 k). Consider now the dynamics in the moving reference frame defined
by z′ = z − α(t)/2 k. In this accelerated reference frame the optical potential
is stationery. In addition to the optical periodic potential the atom, of mass
m, experiences also an inertial force F in the z direction proportional to the
acceleration a of the moving frame

F = −ma =
m

2 k
α̈(t). (12.14)

In this way, in the accelerated frame of the optical potential the atoms ex-
perience an homogeneous force which can be controlled by varying the phase
α(t) of one of the lattice beams.

The above described rocking ratchet set-up was recently used to investigate
experimentally the relationship between symmetry and transport. We treat
here separately the two different cases: a biharmonic driving including two
harmonics at frequencies ω and 2ω, and a multifrequency driving obtained
by combining signals at three different frequencies.

12.4.1 Biharmonic Driving

We consider a biharmonic driving of the form of Eq. (12.6). As discussed
above, the symmetry analysis predicts a dependence of the current on the
phase φ of the form I ∼ sinφ. Dissipation introduces a phase lag φ0, and the
expected current shows now the dependence I ∼ sin(φ− φ0).

The experimental work of Refs. [13, 14] precisely invesigated the relation-
ship between symmetry and transport in the case of biharmonic driving, and
examined the effect of dissipation. In that work the depth U0 of the optical
potential, which scales as IL/Δ, was kept constant while varying the scattering
rate Γ ′, which scales as IL/Δ2. This was done by varying simultaneously IL
and Δ, keeping constant their ratio. We notice that as IL and Δ can be varied
only within a finite range, it was not possible to completely suppress dissi-
pation, i.e., obtain Γ ′ = 0. However, as it will be discussed in the following,
for the driving strength considered in the experiment, the smallest accessible
scattering rate results into a phase shift which is zero within the experimental
error; i.e., this choice of parameters well approximates the dissipationless case.
By then increasing Γ ′ it is possible to investigate the effects of dissipation.

The experimental results of Refs. [13,14], reported in Figs. 12.1, 12.2 clearly
demonstrated the relationship between in symmetry and transport, as pre-
dicted by the symmetry analysis. In fact, the measured current of atoms was
found to be well approximated by A sin(φ − φ0). Therefore, by fitting data
as those of Fig. 12.1, with the funcion v/vr = A sin(φ − φ0), the phase shift
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Fig. 12.1. Experimental results for the average atomic velocity, in units of the
recoil velocity, as a function of the phase φ. The lines are the best fit of the data
with the function v/vr = A sin(φ− φ0). Different data sets corresponds to different
scattering rates for a given optical potential depth. The data are labelled by the
quantity Γs = [ωv/(2π)]2/Δ, where ωv is the vibrational frequency at the bottom of
the wells, which is proportional to the scattering rate. Figure from Ref. [14]

Fig. 12.2. Experimental results for the phase shift φ0 as a function of Γs. Figure
from Ref. [14]

φ0 was determined as a function of Γ ′, as reported in Fig. 12.2. The mea-
sured phase shift φ0 is zero, within the experimental error, for the smallest
scattering rate examined in the experiment. In this case, no current is gener-
ated for φ = nπ, with n integer, as for this value of the phase the system is
invariant under time-reversal. The magnitude of the phase shift φ0 increases
for increasing scatering rate, and differs significantly from zero. The nonzero
phase shift corresponds to current generation for φ = nπ, i.e., when the sys-
tem Hamiltonian is invariant under time-reversal transformation. Therefore,
the experimental results of Figs. 12.1, 12.2 demonstrate the breaking of the
system symmetry by dissipation.
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12.4.2 Multifrequency Driving

Recent experiments with multifrequency driving [15, 16] aimed to investigate
the transition from periodic to quasiperiodic driving, and to examine how the
symmetry analysis is modified in this transition. The multifrequency driving
was obtained by combining signals at three different frequencies: ω1, 2ω1 and
ω2. For ω2/ω1 irrational the driving is quasiperiodic. Clearly, in a real experi-
ment ω2/ω1 is always a rational number, which can be written as ω2/ω1 = p/q,
with p, q two coprime positive integers. However, as the duration of the exper-
iment is finite, by choosing p and q sufficiantly large it is possible to obtain a
driving which is effectively quasiperiodic on the time scale of the experiment.

Different forms of multifrequency driving allow one to investigate differ-
ent symmetries. We consider here the driving consisting of the sum of three
harmonics:

F (t) = A cos(ω1t) +B cos(2ω1t+ φ) + C cos(ω2t+ δ). (12.15)

In our treatment, we will neglect the effects of dissipation as we know
that it results in an additional phase shift. Consider first the case of periodic
driving, with ω2/ω1 rational. We already know that for biharmonic driving –
C = 0 in Eq. (12.15) – the shift symmetry is broken for any value of φ,
while the time-reversal symmetry is preserved for φ = nπ, with n integer.
A current of the form I ∼ sinφ is obtained as a result. We now include the
third harmonic – C �= 0 in Eq. 12.15. For δ = 0 this additional driving is
invariant under time reversal, and therefore the total driving is still invariant
under time-reversal for φ = nπ. Instead, for δ �= 0 the symmetry under time-
reversal is broken and directed transport is allowed also for φ = nπ. In other
words, for δ �= 0 the third driving leads to an additional phase shift of the
current as a function of φ. The magnitude of such a shift depends on the
phase δ. Taking dissipation also into account, we can conclude that the current
will show the dependence I ∼ sin(φ − φ0) where φ0 includes the phase shift
produced by dissipation and the phase shift produced by the harmonic at
frequency ω2.

We now turn to the case of a quasiperiodic driving, as obtained in the
case of irrational ω2/ω1. As discussed in Sec. 12.2 the symmetry analysis for
the periodic driving can be generalized to the quasiperiodic case by treating
the phases Ψ1 = ω1t and Ψ2 = ω2t as independent variables. We notice that
the driving considered here, Eq. 12.15, is invariant under the transformation
Ψ2 → −Ψ2 + χ2 for any δ, as δ can be reabsorbed in χ2. Therefore the invari-
ance under the transformation S̃b is entirely determined by the invariance of
F under the transformation Ψ1 → −Ψ1 + χ1, i.e., we recover the results for
biharmonic driving: S̃b is a symmetry, and therefore directed motion is for-
bidden, for φ = nπ. Hence, in the quasiperiodic limit, the third harmonic at
frequency ω2 is not relevant for the symmetry of the system, which is entirely
determined by the biharmonic term at frequency ω1, 2ω1.
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Fig. 12.3. Experimental results for the phase shift φ0 as a function of pq which
characterize the degree of periodicity of the driving. The two data sets correspond
to different amplitudes of the driving. The two horizontal lines indicate the phase
shift φ0 for biharmonic drive, i.e., in the absence of the driving at frequency ω2.
Figure from Ref. [15]

In the experiment, the transition to quasiperiodicity can be investigated
by studying the atomic current as a function of φ for ω2/ω1 = p/q with p and
q coprimes. By increasing p and q the driving can be made more and more
quasiperiodic on the finite duration of the experiment, with the quantity pq a
possible measure of the degree of quasiperiodicity. To verify the predictions of
the symmetry analysis, the average atomic current was measured as a function
of φ, for different choices of p and q. The data were fitted with the function
v = vmax sin(φ + φ0). The resulting value for the phase shift φ0 is plotted in
Fig. 12.3 as a function of pq.

For small values of the product pq, i.e., for periodic driving, the harmonic
at frequency ω2 leads to a shift which strongly depends on the actual value of
pq. For larger values of pq, i.e., approaching quasiperiodicity, the phase shift
φ0 tends to a constant value. Such a value was found to be independent of δ,
and coincides with the phase shift φ0 measured in the case of pure biharmonic
driving (horizontal lines in Fig. 12.3), which is determined by the finite damp-
ing of the atomic motion. The experimental results of Fig. 12.3 prove that in
the quasiperiodic limit the only relevant symmetries are those determined by
the periodic biharmonic driving and by dissipation. For a driving of a form
Eq. (12.15), quasiperiodicity therefore restores the symmetries which hold in
the absence of the additional driving which produced quasiperiodicity.
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12.5 Summary

Rocking ratchets for cold atoms have been experimentally demonstrated using
driven optical lattices. The laser fields create both a periodic potential for the
atoms, and friction and fluctuations for the atomic dynamics. An homoge-
nous, time-dependent, driving force can be applied by modulating one of the
lattice beams. These ratchets, which rely on harmonic mixing between the
different components of the driving [17] allowed to experimentally investigate
the relationship between symmetry and transport and validated recent theo-
retical analysis [7, 8, 10]. It was indeed shown that the properties of directed
transport are determined by the symmetry of the system.

Further work may include the implementation of ratchets which do not
rely on harmonic mixing, such as the gating ratchet [4–6], and the study of
quantum ratchets [18], in which the transport is determined by the interplay
between quantum tunneling and thermal hopping over the barriers.
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13.1 Introduction

Recent experimental demonstrations of optical metamaterials opened up an
entirely new branch of modern optics that can be described as “refractive
index engineering” [1–20]. The refractive index of a material is the factor by
which an electromagnetic wave is slowed down, compared with a vacuum,
when it propagates inside the material. The material properties of conven-
tional materials are largely controlled by the properties of their constituent
components, viz., atoms and molecules. Their refractive indices can be mod-
ified to some degree by altering material chemical composition, using ther-
mal or electrical tuning, or through nonlinear optical effects. Nevertheless, a
majority of existing materials possesses positive, and typically greater than
one, index of refraction. In contrast, metamaterials provide almost unlimited
opportunities for designing the refractive index through a careful engineering
of their constituent components, or meta-atoms. Several examples of engi-
neered optical structures, including magnetic metamaterial and negative in-
dex metamaterials (NIMs), are shown in Fig. 13.1. Moreover, metamaterial
properties can be tuned [21, 22] and even controlled on a level of a single
meta-atom [23]. Basic properties of optical metamaterials will be reviewed in
Section 13.1.

Additional design flexibility provided by metamaterials (discussed in
Section 13.2) gives rise to new linear and nonlinear optical properties, func-
tionalities, and applications unattainable with conventional materials. In this
chapter, we discuss two examples of refractive index engineering in metama-
terials that results in truly fascinating phenomena.

One unique potential application, enabled by metamaterials is the possi-
bility of designing a cloak of invisibility. For a long time, the concept of cloak-
ing was primarily associated with myths and science fiction stories. However,
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(a) (b) (c) (d) (e)

Fig. 13.1. Optical metamaterials. (a) Arrays of gold split rings enabling magnetic
resonances at visible and telecommunication frequencies, and negative magnetic per-
meability near 1.5 μm [7], (b) paired gold nanorod array providing negative refractive
index at 1.5 μm [9], (c) array of holes in paired gold films separated by a dielectric
(Al2O3) layer producing negative refractive index around 2 μm [10], (d) the fish-net
structure providing negative refractive index at 1.4 μm and the best performance in
terms of loss minimization [12], (e) coupled gold nanostrips based magnetic meta-
material enabling magnetic response across the entire visible range [20]

the situation radically changed with the emergence of metamaterials. The
first metamaterial-based cloak operating in microwave frequency range has
recently been proposed [24–26] and demonstrated experimentally [27]. In ad-
dition, cloaking devices at very low (near-zero) frequencies [28] and an acoustic
cloak [29] were proposed theoretically.

Many civil and military applications would benefit from having cloaks of
invisibility operating at optical frequencies; therefore, significant efforts are
being devoted to the development of an optical cloak. Recently, a first design
and a practical recipe for the realization of a cloaking device operating in
an optical spectral range have been proposed [30, 31]. In Section 13.3, we
discuss basic theory and proposed metamaterial designs, as well as numerical
and experimental results demonstrating cloaking at microwave and optical
frequencies.

Another remarkable class of metamaterials includes negative index meta-
materials or left-handed materials (LHMs). Although unique properties of
NIMs have been predicted theoretically by Veselago about forty years ago [32],
their practical realization has become possible only with the appearance of
metamaterials [1–20,33–38]. The state-of-the-art experimental results and un-
usual linear optical properties of metamaterials, including negative refrac-
tion [32,34,35] and super-resolution [39–49], have been summarized in recent
review articles [1–5].

Recently, it became obvious that besides having very unusual linear prop-
erties, NIMs may trigger fundamentally new manifestations of many well-
known nonlinear optical phenomena [50–79]. In section 13.4, we discuss new
regimes of second-harmonic generation (SHG) and optical parametric ampli-
fication (OPA), optical bistability, and novel kinds of solitons predicted in
nonlinear NIMs structures.
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13.2 Optical Metamaterials: New Degrees of Freedom

The original driving force in the optical metamaterial research was the realiza-
tion of magnetic and negative index materials in the optical range. However,
it was recently realized that the same basic design principles may be applied
for enabling a wide range of other unusual phenomena and functionalities.

While the refractive index is one of the basic characteristics of light prop-
agation in continuous media, it does not directly enter into the Maxwell’s
equations. However, it is closely related to two fundamental physical param-
eters, specifically, relative dielectric permittivity ε and relative magnetic per-
meability μ that describe material properties through n = ±√εμ. Despite
an apparently large variety of naturally occurring materials, their properties
utilize a rather limited part of the entire (ε, μ)-parameter space. Indeed, a
majority of naturally existing transparent optical materials possess ε > 1 and
μ ≈ 1 and, therefore, n > 1.

Metamaterials, being artificially created micro- or nano-structures, allow
a significant expansion of attainable values of material parameters and re-
fractive indices, including ultra-low refractive index materials [80], magnetic
metamaterials (μ ≈ 1) [6–8, 15, 19, 20], structures with gradually changing
refractive index, enabling cloaking and wave concentrator applications [24–
31, 81, 82], and negative index materials [9–14, 16–19, 32–38]. Many of these
unusual material properties can be achieved near ε or μ resonances that can
be carefully engineered by adjusting the dimensions, spatial arrangement, and
other properties of their constituent components (meta-atoms).

An example of metamaterial structure with resonant electric and magnetic
responses [20] is shown in Fig. 13.2. The structure consists of coupled gold
nanostrips with varying dimensions. A cross-section of coupled strips pairs is
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Fig. 13.2. Coupled gold nanostrips based magnetic metamaterial enabling resonant
material response across the entire visible range [20]. (a) A cross-section of coupled
strips pairs, (b) the transmission spectra for the TM polarization measured in six
double-strip metamaterial samples with varying average width parameter w, (c) the
transmission (solid line) and reflection (dashed line) spectra with two characteristic
wavelengths corresponding to electric and magnetic resonances marked. The inset
shows the schematics of the current modes at electric and magnetic resonances,
respectively



220 N.M. Litchinitser and V.M. Shalaev

shown in Fig. 13.2a. The corresponding FE-SEM image of an experimental
sample is shown in Fig. 13.1e. Such structures exhibit both magnetic and elec-
tric resonances under TM illumination with the magnetic field polarized along
the strips, while there are no resonant effects for the TE polarization with the
electric field aligned with the strips. Figure 13.2b shows the transmission spec-
tra for the TM polarization measured in six double-strip metamaterial samples
with varying average width parameter w (and consequently, varying period
of the structure p). These spectra show strong resonant features that shift in
wavelength, depending on the strip width, and extend over the entire visible
spectrum. In particular, the electric resonance near λe, shown in Fig. 13.2c
for one of the samples (E), originates from a symmetric current mode, while
the magnetic resonance around λm results from a circular current, formed by
the anti-symmetric current flows in the upper and lower strips.

A possibility of the realization of magnetic resonances at optical frequen-
cies was also shown to have an important impact on nonlinear optical prop-
erties of metamaterials [51,59,61]. Several orders of magnitude enhancements
of the second- and third-harmonic generation from metamaterial thin film
composed of gold split-ring resonators excited at 1.5 μm were experimentally
observed when magnetic-dipole resonances were excited, as compared to the
case of just electric-dipole resonances [61]. Although optical metamaterials
are currently only available in a form of sub-wavelength thin films, these re-
sults clearly indicate a pronounced effect of the metamaterial nanostructure
on their basic nonlinear properties. While no comprehensive microscopic the-
ory describing the nonlinear interaction of light with metamaterial structures
is available so far, in Section 13.4, we discuss several unusual regimes of non-
linear wave interactions in bulk metamaterials assuming effective nonlinear
coefficients χ(2) or χ(3) as well as touch upon the first steps toward under-
standing the effects of a material’s nanostructure.

Numerous advantages of using engineered resonant structures often come
at a price of limited useful bandwidth for a particular application, increased
absorption (losses), and non-negligible reflection owing to impedance mis-
match [1, 3, 12]. Finding solutions to these problems, acceptable trade-offs,
and optimized or alternative designs are some of the directions of current
research in the field of optical metamaterials.

13.3 A Route to Invisibility

Owing to unique and controllable properties of metamaterials, making objects
invisible to the naked eye or the radar is likely to become a widespread reality.
Two general metamaterial-based approaches rely on either cancellation [83–
90] of the incoming radiation or redirecting waves around the object [24–31].

One form of cancellation-based cloaking, theoretically proposed by Alu and
Engheta [83–86], utilizes a plasmonic or metamaterial spherical shell with low-
positive or negative permittivity. If the dielectric permittivity ε of the cover
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material is less than that of the background material ε0, the local electric
polarization vector P = (ε − ε0)E changes its sign, resulting in the overall
dipole moment cancellation. This is a simple and intuitive technique, not
requiring complex metamaterial designs; however, it can only be used for the
cloaking of sub-wavelength-size objects and also is “object-specific”, that is,
the cloak has to be tailored for a particular object.

Also, somewhat similar idea was discussed long before the emergence of
metamaterials in a context of coated compound ellipsoids composed of an
inner ellipsoidal core and an outer confocal ellipsoidal shell with different
dielectric constants [87]. Under a plane wave illumination and for certain
combinations of dielectric permittivities, the scattering vanishes, thus making
the ellipsoids invisible.

Another “cancellation-based” approach was proposed by Milton and Nico-
rovici [88–90], who considered a polarizable line dipole placed in the vicinity
of a coated cylinder with a core dielectric constant εc = ε0 = −εs where εs
is the permittivity of the coating material. Under the action of an external
quasistatic transverse magnetic field, both the coated cylinder and the polariz-
able line dipole become invisible. This effect can be explained by the fact that
the resonant field generated by a polarizable line dipole acts back on the line
dipole and effectively cancels the fields from outside sources. This approach
was also extended to the plane-parallel slab of metamaterial of thickness d,
known as a superlens. When a polarizable line dipole is located less than a
distance d/2 from the lens, it is cloaked, owing to the presence of a resonant
field in front of the lens. Nevertheless, the main limitation of this approach is
that cloaking is limited to sub-wavelength size objects.

Before proceeding to a fundamentally different cloaking approach, it may
be important to formulate the requirements for an ideal cloaking device. First,
such a device should be object-independent, and macroscopic, that is, suitable
for concealing large objects. Second, it should not reflect, scatter, or absorb
any light, introduce any phase shifts, or produce a shadow. Third, it should
operate for non-polarized light and in a wide range of frequencies simultane-
ously.

The redirection-based approach appears to satisfy many, although not to
all the above requirements and, therefore, appears to be a more general tech-
nique in comparison to the previous two. The main goal is to design a cover
(i.e., a cloak) that would guide electromagnetic waves around the object. This
approach has been proposed independently by Leonhardt [25, 26] within the
geometrical optics approximation and by Pendry et al. [24] within the frames
of full Maxwell’s equations. It is based on the form invariance of Maxwell’s
equations that allows us to map the coordinate transformation to a set of
material parameters ε and μ. Basic design equations for the redirection ap-
proach will be summarized in section 13.3.1. Metamaterial technology allows
precise control over material parameters, and therefore is essential for such
mapping. Recently, first designs for microwave and optical cloaks based on this
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technique were reported as discussed in section 13.3.2. Moreover, cloaking at
microwave frequencies was demonstrated experimentally [27].

13.3.1 Transformation Approach

In order to redirect waves around the object, either the space around the
object should be deformed, assuming that material properties stay the same,
or the material properties should be modified around the object. The former
approach is referred to as topological interpretation, while the latter is called a
material interpretation. Thanks to the form invariance of Maxwell’s equations,
these two interpretations are equivalent. More specifically, under a coordinate
transformation, the form of Maxwell equations should remain invariant while
new ε and μ would contain the information regarding the coordinate trans-
formation and the original material parameters. This important property of
Maxwell’s equations that was first studied and utilized in a totally different
context of computational studies of complex systems involving several length
scales [91], forms the basis of the transformation method [30,31,81,82,92–94].
The main design tools of this approach are given by
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where it was assumed that the original space is isotopic and transformations
are time invariant, and Λα

′
α = ∂xα

′
/∂xα are the elements of the Jacobian

transformation matrix.
The general design strategy using the transformation approach includes

two main steps. In the first step, a coordinate transformation of the space
with desired property is built. In the next step, a set of material properties
that would realize this property of the transformed space in the original space
using Eqs. (13.1) is calculated. Certainly, an important question would be
whether a particular set of material parameters predicted by Eqs. (13.1) is
physically realizable. In many cases, metamaterials bring about a positive
answer.

Finally, the transformation approach is rather general and is not limited
to cloaking applications. Figure 13.3 illustrates several examples, including
(a) square cloak, (b) wave concentrator, and (c) wave rotator, all designed
using this technique.

13.3.2 Cloaking Device: From Microwaves to Optics

The field of metamaterial-based cloaking is very new and rapidly develop-
ing. The first experimental demonstration of a cloaking device at microwave
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(a) (b) (c)

Fig. 13.3. The examples of the structures that can be built using the transformation
approach. (a) Square cloak [81], (b) Wave concentrator [81], (c) Wave rotator [82]
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Fig. 13.4. (a) The cylindrical cloak used in the microwave experiments [27], the
inset shows the SRR with two adjustable parameters, (b) a schematic of the optical
cloak, (c) a fraction of the cylindrical cloak built with metal wires embedded in a
dielectric material [30]

frequencies has been reported only a few months after the original theoreti-
cal design was published [24–27]. In this pioneering experiment, the object,
a copper cylinder, was concealed by the cylindrical cloak built using split-
ring resonators (SRR) positioned with their axes along the radial direction as
shown in Fig. 13.4a.

The coordinate transformation that compresses the cylindrical region
0 < r < b in space into the shell a < r′ < b is given by [27]

r′ =
b− a
b

r + a , θ′ = θ , z′ = z. (13.2)

The design equations (13.1) give the following material parameters [27, 94]

εr = μr =
r − a
r

, εθ = μθ =
r

r − a , εz = μz =
(

b

b− a

)2
r − a
r

, (13.3)

where primes were omitted to emphasize that these parameters are trans-
formed material parameters in an original (untransformed) coordinate space.

First experiments were designed and performed for the TE polarization
with the electric field polarized along the cylinder axis. In this case the origi-
nal parameters given by Eqs. (13.3) can be significantly simplified. One such
possibility is a reduced parameter set that was used in the first experiments,
given by [27, 94]
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εz =
(

b

b− a

)2

, μr =
(
r − a
r

)2

, μθ = 1. (13.4)

This set of parameters contains only one spatially inhomogeneous compo-
nent μr and also eliminates infinite values of material parameters components
that follow from Eqs. (13.3). However, while the ideal cloaking parameters
described by Eqs. (13.3) assure power-flow bending and retaining the phase
front and guarantee no reflection at interface with free space, a set of reduced
design parameters given by Eqs. (13.4) is not reflectionless. Indeed, for normal
incidence, the impedance of the simplified parameter metamaterial is

Z =
√
μθ
εz

=
b− a
b

. (13.5)

Then, the power reflection at normal incidence can be estimated as R =
[a/(2 b− a)]2 and would be negligible only when b a.

The material parameters prescribed by the design equations (13.4) were
realized in the experiment using the SRR with two main adjustable parame-
ters: the length of the split s and the radius r of the corners shown in the inset
in Fig. 13.4a. These parameters can be used to tune the magnetic and electric
resonance, respectively. Although the invisibility demonstrated in these exper-
iments was not perfect, the principal feasibility of the electromagnetic cloaking
mechanism on a basis of metamaterial design was clearly demonstrated.

The next important step was to examine the possibility of cloaking in the
optical range. Very recently, the first theoretical design of a non-magnetic
cloaking device operating at optical frequencies was proposed by the Pur-
due team [30]. While magnetism at optical frequencies has previously been
demonstrated, it is still considered to be a challenging task that can only
be realized in resonant structures with relatively high loss. However, it was
realized that an optical cloak for the TM polarization can be built without
any magnetism. In this case, Eqs. (13.3) are replaced with the following set
of reduced parameters [30]

μz = 1 , εθ =
(

b

b− a

)2

, εr =
(

b

b− a

)2 (
r − a
r

)2

. (13.6)

Constant, greater than one azimuthal dielectric permittivity component can
easily be achieved in conventional dielectrics. A crucial part of the design is
the realization of required radial distribution of dielectric permittivity vary-
ing from zero to one. This can be achieved using subwavelength metal wires
aligned along the radii of the annular cloak shell as shown in Figs. 13.4b
and 13.4c. A detailed effective-medium theory-based recipe for determining
the physical parameters of the cloak, including the shape factor of the device
Rab = a/b and metal filling fraction distribution along the radial direction,
can be found in Ref. [30]. Other potential implementations of design param-
eters (13.6) include chains of metal nanoparticles and thin continuous and
semi-continuous strips.
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Fig. 13.5. Numerical simulations of the magnetic field mapping around the cloaked
cylinder [30]. (a) An ideal cloak with parameters determined by Eqs. (13.3), (b) the
non-magnetic cloak with parameters given by Eqs. (13.6), (c) the designed metal
wire composite cloak, (d) wave propagation without the cloak

Figures 13.5a and 13.5b show the results of full-wave numerical simulation
illustrating the performances of an ideal cloaking device with material param-
eters given by Eqs. (13.3) and that of the cloak, based on reduced parameters
of Eq. (13.6). The latter one shows small but non-negligible amount of scat-
tering owing to the impedance mismatch at the outer boundary of the cloak
designed using Eqs. (13.6). These results should be compared to the perfor-
mance of the non-magnetic cloaking device composed of prolate spheroidal
silver nanoparticles embedded in a silica tube, as shown in Fig. 13.5c. While
the fields are slightly perturbed in this case, the overall performance closely
resembles that of the previous two cases. Finally, Fig. 13.5d illustrates the
no cloak case, clearly showing the distortions of the fields around the object
(metallic cylinder). As expected, a significant shadow is formed behind the
object.

We note that both originally proposed microwave and optical cloaking
devices perfectly satisfy the first criterion for the ideal cloak formulated in
the beginning of Section 13.3, that is, the cloak is object-independent and
does not impose any limitations of the size of the object. The second crite-
rion, related to reflection, scattering, absorption, phase shifts, and shadows,
is not fully satisfied due to the impedance mismatch related to reduced design
parameters (13.6) and small but non-negligible material absorption.

Additionally, these first cloaks were specifically designed for either the
TE or the TM polarizations, allowing significant simplifications of the design
conditions (13.3). Finally, the last criterion is the most challenging; how to
make a cloak operation broadband remains an open question.
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The cloaking devices, in their current implementation are inherently nar-
rowband. Indeed, since the refractive index of the cloaking shell varies from
zero to one, a phase velocity of light inside the shell is greater than the velocity
of light in a vacuum. While this condition itself does not contradict any law of
physics, it implies that the material parameters must be frequency-dependent
or dispersive. However, even a narrowband cloak, once realized experimen-
tally, may have a number of practical applications, including night-imaging
systems or hiding objects from light designators. Nevertheless, designing a
broadband cloaking device is of interest from fundamental as well as practical
standpoints.

Another feature of the cloaking device that is not often mentioned, but
may be of rather general character, is that the invisibility from outside is
accompanied by the darkness inside the cloak and inability to see from within
the cloak. This property may or may not be desirable in practical applications.

It is noteworthy that first designs of the cloaking devices assumed inactive
objects that do not generate electromagnetic waves. However, cloaking of ac-
tive devices, including those emitting or absorbing radiation are certainly of
practical interest and was recently addressed in a theoretical paper by Green-
leaf et al [95].

Finally, until recently all cloaking devices designed using the transforma-
tion method relied on a linear transformation such as Eqs. (13.2) and the sets
of reduced parameters (13.4) and (13.6). Reduced parameters are easier to
implement than exact material parameters described by Eqs. (13.3), but a
shortcoming of using these parameters is that the cloak is not reflectionless.
However, recently it was pointed out [31] that at least from mathematical
viewpoint, there are numerous ways of compressing a cylindrical or spherical
region 0 < r < b into an annular region a < r′ < b and the transformation
function does not have to be linear. As a result, a novel approach utilizing
a high-order coordinate transformation that eliminate undesired reflections
at the outer boundary of the non-magnetic optical cloak was proposed [31].
Figure 13.6 compares the results of full-wave field mapping simulations for a

(a) (b) (c)

Fig. 13.6. Full-wave simulations of the performance of (a) an ideal linear cloak,
(b) the linear non-magnetic cloak with p = 0, and (c) the quadratic cloak with
p = a/b2 [31]
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metal cylinder inside (a) an ideal cloak, (b) the non-magnetic cloak designed
using a linear transformation, and (c) the non-magnetic cloak built using a
quadratic transformation given by

r′ = f(r) =
[
b− a
b

+ p (r − b)
]

r + a, (13.7)

where p is a flexible parameter that can be chosen to facilitate Z|r′=b = 1.
In the example shown in Fig. 13.6c p = a/b2. A linear transformation used
in the original design follows from Eq. (13.7) if p = 0. Figure 13.6c confirms
that the cloaking device designed using the quadratic transformation results
in negligible reflectance.

13.4 Nonlinear Optics with Backward Waves in Negative
Index Materials

An important class of metamaterials that originally inspired the development
of the entire field of metamaterials research is negative index metamaterials.
Recently, there has been a significant interest in nonlinear optical processes
in NIMs. First of all, why would the nonlinear optics be different in NIMs
as compared to conventional materials? To answer this question, we will first
outline some of the remarkable linear properties of NIMs.

As their name suggests, these materials have a negative index of refrac-
tion. As a result, light refracts “negatively” as illustrated in Fig. 13.7b in
contrast to conventional, or “positive” refraction as shown in Fig. 13.7a [4].
Figure 13.7c shows the experimental results demonstrating negative refraction
at microwave frequencies [35]. Another fundamental characteristic of NIMs is
their inherent frequency dependence; that is, both ε and μ are functions of
frequency. In fact, the refractive index is negative only in a limited range of
frequencies – a direct result of their resonant nature. Consequently, the same

phase energy

PIM

PIM

PIM

(a)

phase energy

NIM

(b) (c)

Fig. 13.7. (a) Conventional (or positive) refraction, (b) negative refraction, (c) re-
sults of a microwave scattering experiment demonstrating negative refraction in
left-handed metamaterial prism [35]
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material may act as a NIM in one range of frequencies, and as a PIM at other
frequencies.

Moreover, Fig. 13.7b shows one of the most important properties of NIMs –
opposite directionality of the phase velocity (or wave vector) and the energy
velocity (or Poynting vector). Waves in NIMs with the phase velocity pointing
toward the interface are often referred to as backward waves. It should be men-
tioned that backward waves were discussed long before Veselago’s work and
metamaterial demonstration, in contexts ranging from mechanical to optical
systems [96–101].

It turned out that backward waves in combination with the strong fre-
quency dependence of the material parameters play an especially important
role in nonlinear optics of NIMs. In particular, they facilitate a fundamentally
new regime of phase matching: backward phase matching. Since many phase-
sensitive nonlinear processes, including second-harmonic generation, sum- and
difference-frequency generation, parametric amplification and oscillation, as
well as four-wave mixing, strongly rely on phase matching, their manifesta-
tion in NIMs is expected to differ as compared to PIMs. Fundamentally new
regimes of SHG [52–62], three- and four-wave mixing [57,58,63–65] enabled by
unusual phase-matching conditions in NIMs have been proposed. Realization
of SHG in NIMs was predicted to enable nonlinear-optical mirrors, converting
100% of the incident radiation into a reflected second harmonic [55–57] and
a novel type of nonlinear lens that can provide a sub-wavelength image of
the source at the second-harmonic frequency, while it is opaque at the fun-
damental frequency [43]. Such lenses might provide a practical solution for
loss mitigation at the fundamental frequency. Two of these important nonlin-
ear phenomena, namely second-harmonic generation and optical parametric
amplification in NIMs will be considered in more detail in sections 13.4.1
and 13.4.2, respectively.

Backward waves can also facilitate an effective feedback mechanism in
wave-guiding structures. This novel mechanism will be exemplified by a non-
linear coupler with one channel filled with NIM. It turns out that introducing
a NIM in one of the channels dramatically changes both linear and nonlinear
transmission characteristics of such a coupler [70]. Optical bistability and gap
solitons in nonlinear optical couplers will be discussed in section 13.4.3.

Another important manifestation of negative refraction is a negative phase
shift (phase advance) that was actually measured in thin films of NIMs in
the first experiments [9, 10]. Recently, several novel device applications that
rely on such phase shifts introduced by NIMs have been proposed. These
include miniaturized optical waveguides, resonators and laser cavities, phase
compensators/conjugators, and nonreciprocal (diode-like) applications [66–69,
102–105]. Novel regimes of optical bistability and potentially useful nonlinear
transmission properties of layered structures containing thin films of NIMs will
be discussed in section 13.4.4. Finally, since NIMs are artificial nanostructured
materials, a natural question is how the underlying nanostructure influences
the nonlinear wave propagation in NIMs. While this fundamental issue is not
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fully explored and understood, some initial theoretical considerations will be
outlined in section 13.4.5.

13.4.1 Second-harmonic Generation

Discovery of the SHG at optical frequencies is considered as the first milestone
of nonlinear optics [106]. Naturally, it was one of the first nonlinear processes
examined in a context of NIMs. As mentioned in the introduction, backward
phase-matching enables principally new regimes of SHG in NIMs.

The basic idea of backward phase-matching is illustrated in Fig. 13.8a.
Let us consider the material that is a NIM at the fundamental frequency ω
and that is a PIM at the second-harmonic frequency 2ω. If the energy flow of
the fundamental frequency travels from left to right, the phase of the wave at
the same frequency should move in the opposite direction, that is, from right
to left. The phase-matching requirement k2ω = 2 kω can be satisfied if the
phase of the second harmonic also travels from right to left. Since the second
harmonic propagates in the PIM, its energy flow is co-directed with the phase
velocity and, therefore, the energy propagates from right to left as well, as
shown in Fig. 13.8a. Figure 13.8b illustrates the conventional PIM case.

The equations describing the SHG process in NIMs can be written in the
following form:

∂Aω
∂z

= −i
2Kω2μω
c2kω

A2ωA
∗
ω exp(−iΔkz) (13.8)

∂A2ω

∂z
= i

4Kω2μ2ω

c2k2ω
A2
ω exp(−iΔkz) (13.9)

where Aω and A2ω are slowly varying amplitudes of the fundamental and
second-harmonic waves, respectively, Δk = 2 kω−k2ω, K = 2 πc−2χ(2)(2ω) =
πc−2χ(2)(ω). Note that the SHG process is studied here for the case of
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Fig. 13.8. (a) A schematic of SHG in NIM, (b) a schematic of SHG in PIM, (c) the
deviation of the conversion efficiency from unity [56]
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nonlinear polarization instead of considering nonlinear magnetization as in
Refs. [56, 57].

Assuming that the phase-matching condition is satisfied, the spatially
invariant Manley-Rowe relations take the form

|Aω|2 − |A2ω|2 = C (13.10)

Equation (13.10) reflects one of the important differences between the NIM
and PIM cases, since in a conventional PIM case, the Manley-Rowe relations
require that the sum of the squared amplitudes is constant. This unusual form
of Manley-Rowe relations in NIMs results from the fact that the Poynting
vectors for the fundamental and the second harmonic are antiparallel, while
their wavevectors are parallel.

It is noteworthy that the boundary conditions for the fundamental and
second-harmonic waves in the NIM case are specified at opposite interfaces of
the slab of a finite length L in contrast to the PIM case, where both conditions
are specified at the front interface. Owing to such boundary conditions, the
conversion at any point within the NIM slab depends on the total thickness of
the slab. In the limit of semi-infinite NIM, C = 0 as both waves disappear at
infinity and Eq. (13.10) predicts 100% conversion efficiency of the incoming
wave at the fundamental frequency to the second harmonic frequency propa-
gating in the opposite direction. As a result, the NIM slab acts as a nonlinear
mirror as shown in Fig. 13.8c [55–57].

13.4.2 Optical Parametric Amplification: Loss Compensation
in NIMs

Losses are one of the major obstacles that may delay many practical appli-
cations of optical NIMs. It was shown that due to causality requirements,
low-loss resonant NIMs cannot be realized without the incorporation of some
active components [64]. It was also argued that losses cannot be completely
compensated or even significantly reduced in NIMs without losing the negative
refractive properties [107]. However, the latter statement that relies on linear
Kramers-Kronig (KK) relations, applies to a purely linear system, while in a
general nonlinear case, the KK relations are either not applicable or should be
modified [108]. Therefore, nonlinear optical effects, such as optical parametric
amplification (OPA), have a strong potential for loss compensation.

The basic idea of loss compensation using the OPA is to use the elec-
tromagnetic waves with the frequencies outside the negative index frequency
range to provide the loss-balancing OPA at frequencies corresponding to a
negative index of refraction. Indeed, recently, parametric amplification has
been demonstrated experimentally, although not in optical systems, but in
negative index nonlinear transmission line media [64].

Two basic approaches for loss compensation using the OPA have been
investigated theoretically. One possibility relies on quadratic nonlinearity of
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the NIM [57, 58]. In this case, a strong pump field at frequency ω3 interacts
with the signal at a frequency ω1. As a result, the signal is amplified, and
a new wave, an idler, at a frequency ω2 = ω3 − ω1 is generated. Quadratic
nonlinearity may be introduced by inserting nonlinear elements into the NIM’s
meta-atoms. For example, it was proposed that at microwave frequencies it
can be realized using diodes as nonlinear insertions into NIM’s meta-atoms
such as SRR.

An alternative approach does not require strong nonlinear response of
the building blocks of the NIM. Instead, it employs embedded four-level cen-
ters that can be controlled independently from the NIM parameters, result-
ing in a possibility of realization of frequency-tunable transparency windows
in NIMs [65]. This technique relies on a four-wave interaction process in a
medium with cubic nonlinearity. In this case, two control (pump) fields at
frequencies ω3 and ω4 and a signal field at ω1 combine to generate an idler
at ω2 = ω3 + ω4 − ω1 , which is amplified and contributes back to the signal
field through the four-wave mixing process which results in strongly enhanced
OPA. Importantly, using realistic material parameters it was shown that the
transparency and gain in such system can be achieved without noticeable
changes in linear negative refractive index [65].

Both quadratic and cubic parametric amplification processes strongly rely
on phase matching between the interacting waves. As a result of opposite
directionality of the phase and energy velocities, backward phase-matching
takes place in both quadratic and cubic nonlinearity cases, shown schemati-
cally in Figs. 13.9a and 13.9b. In particular, in the quadratic nonlinearity case,
the amplification factor for the signal wave and the conversion efficiency for the
idle wave show the oscillatory behavior even at Δk = 0, as shown in Fig. 13.9c.
This is in sharp contrast to the conversion efficiency behavior in PIMs, which
is shown schematically in Fig. 13.9d. In addition, the amplification threshold
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Fig. 13.9. Optical paramateric amplification in NIMs with (a) quadratic [58] and
(b) cubic [65] nonlinearities. The phase-matched amplification factor for the signal
wave (solid curve), and the conversion factor for the idler wave (dashed curve) in
the (c) NIM and (d) PIM with quadratic nonlinearity and absorption [58]
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in NIMs appears for the product gL rather than for g as in PIMs, where g
is the factor proportional to the product of quadratic nonlinear susceptibility
and the intensity of the pump field. The important advantage of the backward
OPA in NIMs is effective distributed feedback, which enables oscillations with-
out a cavity. In the NIM case, each spatial point serves as a source for the
generated wave in the reflected direction, whereas the phase velocities of all
interacting waves are co-directed. This is also true in the SHG case.

13.4.3 Bistability in Couplers

The same mechanism that enables backward phase-matching and unusual
manifestation of SHG and OPA processes, gives rise to other remarkable effects
in a context of nonlinear optical couplers. Nonlinear couplers have attracted
significant attention owing to their strong potential for all-optical process-
ing applications. Transmission properties of a nonlinear coherent directional
coupler were originally studied by Jensen [109], who concluded that a cou-
pler consisting of two channels made of conventional homogeneous nonlinear
materials is not a bistable device.

Bi- (or multi-)stability is a phenomenon in which the system exhibits two
(or more) steady transmission states for the same input intensity [110]. Optical
bistability has been predicted and experimentally realized in various settings
including a Fabry-Perot resonator filled with a nonlinear material, layered
periodic structures and nonlinear couplers with external feedback mecha-
nisms [108,110,111].

Recently, it was shown that a nonlinear optical coupler with one of the
channels filled with NIM can be bistable [70]. Moreover, the entirely uni-
form PIM-NIM coupler structure supports gap solitons – a feature commonly
associated with periodic structures. As shown in Fig. 13.10a, in PIM-NIM
couplers, wavevectors in both channels are co-directed, while the Poynting
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Fig. 13.10. (a) A schematic of a nonlinear PIM-NIM coupler, (b) output power
P1(L) as a function of input power P1(0) for three values of coupling coefficient;
inset shows the transmission coefficient, (c) spatial distributions of P1 (solid line),
of P2 (dashed line), and the constant of motion C (dot-dashed line) versus distance
at transmission resonance shown in the inset in (b) [70]
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vectors are counter-directed, producing an “effective” feedback mechanism in
these structures.

Continuous wave propagation in a nonlinear PIM-NIM coupler can be
described by the following system of equations

i
∂a1

∂z
+ κ12a2 exp(−iδz) + γ1|a1|2a1 = 0,

−i
∂a2

∂z
+ κ21a1 exp(iδz) + γ2|a2|2a2 = 0, (13.11)

where a1 and a2 are the complex normalized amplitudes of the modes in the
PIM and NIM channels respectively, κ12 and κ21 are the coupling coefficients,
δ = β1 − β2 is the mismatch between the propagation constants in the indi-
vidual channels. In a the simplest case of κ12 = κ21 ≡ κ and γ1 = γ2 ≡ γ, one
of the constants of motion is given by

C = P1 − P2 (13.12)

where P1 = A2
1, P2 = A2

2 with a1 = A1 exp(iφ1) and a2 = A2 exp(iφ2), assum-
ing A1, A2, φ1 and φ2 are real functions of z. The expression in Eq. (13.12)
should be compared to that of conventional PIM-PIM nonlinear coupler, in
which case C = P1 + P2.

In the case of δ = 0, the solutions for P1 and P2 are found in the form

P1(z) = C
dn(2 κ (z − L) /m,m) + 1
2 dn(2 κ (z − L) /m,m)

,

P2(z) = C
1− dn(2 κ (z − L) /m,m)
2 dn(2 κ (z − L) /m,m)

, (13.13)

where m = k/
√

1 + k2 = 1/
√

1 + (γC/4 κ)2, dn(z′, k′) is the Jacobi ellip-
tic function [112]. The parameter C can be found using the transcendental
equation

A2
0 = C

dn(2 κL/m,m) + 1
2 dn(2 κL/m,m)

. (13.14)

Figure 13.10b shows the transmission coefficient as a function of input power
P1(0) for three values of coupling coefficient. As the coupling increases, the
effective feedback mechanism establishes, and the PIM-NIM nonlinear coupler
becomes bistable or, more generally, multi-stable as illustrated Fig. 13.10b. Its
transmission characteristics are very similar to those of distributed feedback
(DFB) structures.

The phenomenon of bistability in DFBs is closely related to the notion
of gap solitons [113–115]. As shown in the inset in Fig. 13.10b, the transmis-
sion coefficient approaches � = 1 at a certain input power, suggesting the
existence of transmission resonance. At this resonance, spatial power distri-
butions P1(z) (solid line) and P2(z) (dashed line) peak in the middle of the
structure as shown in Fig. 13.10c. The dot-dashed line in Fig. 13.10c shows
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the constant of the motion C = P1 − P2. These results indicate that at the
transmission resonance incident light is coupled to a soliton-like static en-
tity that has its maximum in the middle of the structure and is known as
a gap soliton. While optical bistability and gap solitons are not commonly
observed in homogeneous couplers without the external feedback, in PIM-
NIM coupler these phenomena result from the inherent property of NIMs, the
opposite directionality of the phase and energy velocities, which provides an
“effective” feedback mechanism.

13.4.4 Bistability in Layered Structures

As discussed in Section 13.2, the state-of-the-art optical NIMs were realized
only in a form of sub-wavelength thin films. While no propagation effects or
negative refraction, as such, can be observed in these films, the negative index
of refraction reveals itself in a phase advancement (negative phase shift), which
is in contrast to the phase retardation (positive phase shift) in conventional
PIMs. The simplest way of introducing nonlinearities to existing NIM films
is to place an overlay of nonlinear material such as nematic liquid crystals,
having very high nonlinear χ(3) coefficients of ∼ 10−9 m2/W on top of the
NIM thin film as shown in Fig. 13.11a [69].

In order to understand the effect of the NIM thin film on the transmission
properties of such a bilayered structure, three configurations can be compared:
(a) a single nonlinear slab, (b) a nonlinear slab combined with the PIM layer,
and (c) a nonlinear slab combined with the NIM layer. A nonlinear film sur-
rounded by a linear dielectric with a high refractive index can be considered
as a resonator and is known to exhibit bistability and, more generally, multi-
stability, when illuminated at an angle θin, such that θres < θin < θTIR, where
θres is the angle corresponding to the resonant peak nearest to the angle of
total internal reflection (TIR) θTIR in the linear transmission curve. In this
configuration, transmission in the linear regime is low as shown in Fig. 13.11b.
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However, as the incident intensity increases, in the case of self-focusing Kerr
nonlinearity, the nonlinear refractive index increases, resulting in a shift of
both θTIR and θres to larger values. Simultaneously, the transmission coeffi-
cient becomes a multi-valued function of the input flux, leading to formation
of a hysteresis loop as shown in Fig. 13.11c. Moreover, numerical simulations
reveal strong sensitivity of the width and depth of the hysteresis to the changes
of the material parameters of the NIM layer. Although the NIM film is very
thin, the effect of this phase shift on the nonlinear optical response of the
entire structure turns out to be very significant. As discussed above, negative
refraction reveals itself in a phase advance or a negative phase shift. Therefore,
in the case of a NIM thin layer, the “resonator” length decreases, implying
that the intensity dependent nonlinear index change required for switching
the transmission to the high-transmission state should increase, which is in
contrast to the case of PIM thin film. Figure 13.11c confirms this prediction.
Owing to high sensitivity of the nonlinear response to the NIM’s parameters,
these results may be particularly useful for characterization of NIMs.

13.4.5 Solitons in Resonant Plasmonic Nanostructures

Previous sections mostly dealt with continuous wave effects in optical NIMs.
Several aspects of temporal and spatial dynamics and soliton propagation
in NIMs have been recently addressed by Scalora et al. [116, 117], who have
derived a generalized nonlinear Schrödinger equation taking into account fre-
quency dependence of both dielectric permittivity and magnetic permeabil-
ity, and describing the propagation of ultrashort pulses in a wide class of
magnetically active metamaterials. Novel types of gap solitons in NIMs have
been predicted in periodic NIM-PIM structures as well as in a single slab
of NIM [71, 78]. However, in most studies of nonlinear propagation effects in
NIMs, the origin of the nonlinear response has either not been specified, or the
model developed for a particular case of nonlinear response of the SRR-based
microwave NIMs [51] was utilized.

The first step toward understanding the effects of material nanostructure
was made in Ref. [76]. Short pulse propagation was studied in the simplest
case of a nanostructure consisting of metallic nanoparticles embedded in a
glass host, such that the resonance frequencies of the host medium and of the
nanoparticles are well separated. Such structures with, for example, plasmonic
resonance frequency in the visible and the resonance of the host material in
the ultraviolet can be realized using silver or gold spherical or spheroidal
nanoparticles embedded in SiO2.

The origin and magnitude of third-order nonlinearity in such nanostruc-
tures are well characterized theoretically and experimentally [118–120]. In
particular, it was shown that quantum effects in metal nanoparticles driven
by a resonant optical field play an important role in inducing a strong non-
linear response.
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Light interaction with metal nanoparticles can be described by a system of
equations consisting of Maxwell’s equation for the electric field and an oscilla-
tor equation describing the plasmonic oscillations, a so-called Maxwell-Duffing
model. Four-parameter solitary wave solutions of this Maxwell-Duffing system
of equations revealed many unique properties related to propagation and col-
lisional effects. Their collision dynamics was found to be dependent on initial
solitary wave parameters, and particularly on phase, leading to principally
different regimes of interactions: in one regime, the collisions are quasi-elastic;
in another regime, the collisions are inelastic. A strong sensitivity to the ini-
tial phase of the soliton makes this system potentially useful for a number of
phase-controlled applications.

Although a simple nanoparticle-based model may seem to be not directly
related to double-resonant metamaterials of interest, at least in a particular
case of a metamaterials with a nonlinear electric response and a linear mag-
netic response, the governing nonlinear equations for the electric and magnetic
fields decouple. As a result, a system of equations describing light interaction
with double-resonant NIMs is very similar to that derived for the simplest
nanostructures composed of metallic nanoparticles when μ = 1. Therefore,
many of the effects predicted for the simple structure may be relevant for
understanding the properties of NIMs.

Finally, since it was shown in context of the SRR-based microwave NIMs
that magnetic nonlinearities’ contribution may be even more pronounced than
that of electric nonlinearities [51, 59, 61] taking into account the effects of
nonlinear magnetization and examining its effect in optical nanostructures
may bring about new and exciting phenomena.

13.5 Summary

In this chapter, we reviewed the results of truly fascinating opportunities for
light manipulation enabled by metamaterials. Although a tremendous progress
in fabrication, characterization, and basic theory of light interaction with
metamaterials was made over the last few years, the field of optical meta-
materials is still in its early stage of development. Many fundamental and
practical challenges need to be resolved in order to exploit the full potential
of these unique structures.

To date, a majority of cloaking devices and negative index material designs
relied on passive materials with resonant material properties. The main limi-
tations of this approach are significant losses and limited bandwidth. At least
one or even both problems may potentially be addressed by using active struc-
tures. From this perspective, nonlinear optical effects may be of foremost
importance.

Finally, cloaking and NIMs are the first, but most likely not the only
examples of the unique capabilities of metamaterials to make the seemingly
impossible a reality.
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83. A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005)
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14.1 Introduction

Nature has provided us with a wide range of materials exhibiting various
electromagnetic properties. However, theoretical speculations [1] have sug-
gested that having materials with some particular unnatural characteristics
would enable us to observe very unusual and potentially useful effects, includ-
ing negative refraction for interface scattering, inverse light pressure, reverse
Doppler and Vavilov-Cherenkov effects, etc. Recently, the way to artificially
make materials with desired properties was suggested theoretically [2, 3] and
such materials were prepared experimentally [4–6]. Composite materials were
made of a mixture of electric and magnetic resonators, so that they can pro-
vide simultaneously negative dielectric and magnetic response. In particular,
the simplest composite materials of this type are created by a mesh of metallic
wires and split-ring resonators (SRRs), and their unique properties are associ-
ated with negative real parts of magnetic permeability and dielectric permit-
tivity. Such composite materials are often referred to as left-handed materials
(LHMs) or materials with negative refractive index . Further developments in
the area of complex resonant metamaterials have shown their potential for
creating of an electromagnetic cloak [7].

In this Chapter we will present our theoretical and experimental studies
of some of the properties of nonlinear metamaterials. The nonlinearity of the
resonant composite materials is nontrivial since they have strong frequency
dispersion, which is basically determined by the geometry of the structure.
The possibility to control the effective parameters of the metamaterial using
nonlinearity was first suggested in Refs. [8,9]. The nonlinear response of meta-
materials is significantly enhanced compared to conventional bulk nonlinear
dielectrics, because the microscopic electric field in the vicinity of the metallic
particles forming left-handed structure can be much higher than the macro-
scopic electric field carried by the propagating wave. We believe our find-
ings may stimulate further experiments in this field, as well as the studies of
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nonlinear effects for plasmonic applications, and in photonic crystals, where
the phenomenon of negative refraction is analyzed now very intensively [10,11].

We demonstrate that the dominant nonlinear properties of metamaterials
arise from the hysteresis-type dependence of the magnetic permeability on the
magnetic field intensity in the electromagnetic wave propagating through the
material. It allows changing the material properties from left- to right-handed
and back. Using the finite-difference time-domain simulations, we study the
wave scattering from a slab of a nonlinear left-handed material and discuss a
possibility of generation and propagation of spatiotemporal solitons in such
materials. We demonstrate also that the nonlinear left-handed metamateri-
als can support self-trapped localized beams, spatial electromagnetic solitons.
We also discuss the physical mechanisms and novel effects in the parametric
processes such as second-harmonic generation, which can take place in meta-
materials. We demonstrate a novel type of the exact spatio-temporal phase
matching between the backward propagating wave of the fundamental fre-
quency and the forward propagating wave of the second harmonic.

This Chapter is organized as follows. In Sec. 14.2 we present an overview
of nonlinear properties of left-handed metamaterials for the example of a lat-
tice of SRRs and wires embedded in a nonlinear dielectric. In Sec. 14.3 we
show first experimental results on observation of the transmission properties
of nonlinear microwave metamaterial. Sec. 14.4 is devoted to the numeri-
cal studies of the nonlinear metamaterial by means of the finite-difference
time-domain (FDTD) method. In Sec. 14.5 we discuss the structure of elec-
tromagnetic solitons supported by the nonlinear left-handed materials with
hysteresis-type nonlinear response. In Sec. 14.6 we study second-order non-
linear effects in metamaterials, such as second-harmonic generation (SHG).
We derive coupled equations for describing the process of SHG for particular
model of metamaterial.

14.2 Nonlinear Response of Metamaterials: Theory

We consider a three-dimensional composite structure in the form of a cubic
lattice of conducting wires and SRRs. We assume that the unit-cell size dcell of
the structure is much smaller than the wavelength of the electromagnetic wave
propagating in the material. For simplicity, we choose the single-ring geometry
of a lattice of SRRs. The results obtained for this case are qualitatively similar
to those obtained in more involved cases of double SRRs near low-frequency
resonance, for which the currents in both rings of the double SRR are in-phase.

The negative real part of the effective dielectric permittivity of such a
composite structure appears due to the metallic wires whereas a negative
magnetic permeability becomes possible due to the SRR lattice. As a result,
these materials demonstrate the properties of negative refraction in a finite
frequency range, i.e., ω0 < ω < min(ωp, ω‖m), where ω0 is the eigenfrequency
of the array of SRRs, ω‖m is some characteristic frequency, which we call the
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frequency of the longitudinal magnetic plasmon, ωp is the effective plasma
frequency, and ω is the angular frequency of the propagating electromagnetic
waves, (E ,H) ∼ (E,H) exp(iωt). The SRR can be described as an effective
LC oscillator (see, e.g., Ref. [12]) with capacitance of the SRR gaps, as well
as an effective inductance and resistance.

If we embed the structure in a nonlinear dielectric, we expect it to exhibit
quite unusual properties. The nonlinearity here must become complex in the
sense that both the dielectric permittivity and the magnetic permeability
will change with variation of the external electromagnetic fields. Nonlinear
dielectric response is determined by the bulk of the nonlinear dielectric, and
frequency-dependent contribution will be provided by wires. Since we assume
that the nonlinear dielectric does not possess magnetic properties itself, it
seems that the magnetic response of the composite will still be determined
by the array of SRRs. However, the response of the SRRs depends on the
field pattern in the vicinity of the resonators, which, in turn, depends on the
properties of the dielectric. Thus, both dielectric and magnetic responses of
the composite are nonlinear.

As we just mentioned above, the nonlinear magnetic response will be
determined by the dielectric which is close to the SRRs, and, in particular,
in SRR slits where the electric field is the strongest. The dielectric response
is due to bulk of the nonlinear dielectric. This suggests the way to engineer
the nonlinear response of the composite structure. E.g., one can include small
amount of nonlinear material to the SRRs, and the whole composite will have
nonlinear magnetic properties only. Placing dielectric everywhere in the com-
posite except the very vicinity of the SRRs will produce nonlinear dielectric
properties, with linear magnetic response.

14.2.1 Nonlinear Magnetic Permeability

Firstly, we assume that only the slits of the SRRs are filled with nonlinear
dielectric with a permittivity that depends on the intensity of the electric field
|E|2 in a rather general form, εD = εD(|E|2). For the calculations presented
below, we take the dependence that corresponds to the Kerr-type nonlinear
response, εD = εl + α|E|2/E2

c , where εl is the linear part of the dielectric
permittivity, Ec is a characteristic electric field strength, α = +1 for focusing
nonlinearity and α = −1 for defocusing nonlinearity.

The nonlinear magnetic response of the composite material comes from
the lattice of resonators since the SRR capacitance (and, therefore, the SRR
eigenfrequency) depends on the strength of the local electric field in a narrow
slit (we assume here that the the capacitance of the SRR is due to its slit
only). The intensity of the local electric field in the SRR gap, Eg, depends
on the electromotive force in the resonator loop, which is induced by the
magnetic field. Therefore, the effective magnetic permeability μeff depends
on the macroscopic (average) magnetic field H , and this dependence can be
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found [8, 13] in the three-dimensional case in the form,

μeff(H) = 1 +
Fω2

ω2
0NL(H)− ω2(1 + F/3) + iΓω

, (14.1)

where
ω2

0NL(H) =
( c
a

)2 dg

[2 πrwεD(|Eg(H)|2)] (14.2)

is the eigenfrequency of nonlinear oscillations, Γ = c2/4 πσarw is the damp-
ing coefficient, F = π2a3/2 d3

cell[ln(8 a/rw)− 7/4] is the filling factor, a is the
SRR radius, rw is the radius of the SRR wire, σ is the conductivity of the
wires, Eg is the strength of the electric field in the SRR slit, c is the speed
of light. It is important to note that Eq. (14.1) has a simple physical inter-
pretation: the resonant frequency of the artificial magnetic structure depends
on the amplitude of the external magnetic field and, in turn, this leads to the
intensity-dependent function μeff .

Figures 14.1 and 14.2 summarize different types of nonlinear composites
which are characterized by the dependence of the dimensionless frequency
of the external field Ω = ω/ω0, for both focusing (Figs. 14.1a, 14.1b and
Figs. 14.2a, 14.2b) and defocusing (Figs. 14.1c, 14.1d and Figs. 14.2c, 14.2d)
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Fig. 14.1. Real part of the effective magnetic permeability vs. normalized intensity
of the magnetic field for Γ/ω0 = 0.05: (a) Ω > 1, α = 1, (b) Ω < 1, α = 1,
(c) Ω > 1, α = −1, (d) Ω < 1, α = −1 [8]
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and (d) Ω < 1, α = −1. Dashed curves show the branches of unstable solutions [8]

nonlinearity of the dielectric. The actual values for Ω used in computations
are 1.2 and 0.8.

The critical fields for switching between the LH and RH states, shown in
Fig. 14.1 can be reduced to a desirable value by choosing the frequency close
to the resonant frequency of SRRs. We want to emphasize that strong losses
can suppress nonlinear resonance and multistable behaviour. With low enough
losses, even for a relatively large difference between the SRR eigenfrequency
and the external frequency, as in Fig. 14.1b where Ω = 0.8 (i.e. ω = 0.8ω0),
the switching amplitude of the magnetic field is ∼ 0.03Ec. The characteristic
values of the focusing nonlinearity can be estimated for some materials such as
n-InSb for which Ec = 200 V/cm [14]. As a result, the strength of the critical
magnetic field is found as Hc1 ≈ 1.6 A/m. Strong defocusing properties for
microwave frequencies are found in BaxSr1−xTiO3 (see Ref. [15] and references
therein). The critical nonlinear field of a thin film of this material is Ec =
4×104 V/cm, and the corresponding field of the transition from the LH to RH
state (see Fig. 14.1c) can be found as Hc1 ≈

√
0.003× 4/3 (CGS) = 5.8 A/m.
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14.2.2 Nonlinear Dielectric Permittivity

Now we analyze the dielectric properties of the composite. We suppose that
contribution to the dielectric function given by the array of wires is much
stronger then that from SRRs. In this case, we can obtain the following
expression for the effective nonlinear dielectric permittivity [8]

εeff(|E|2) = εD(|E|2)−
ω2

p

ω(ω − iγε)
, (14.3)

where ωp ≈ (c/d)[2 π/ ln(d/r)]1/2 is the effective plasma frequency, and
γε = c2/2 σS ln(d/r) is an effective wire cross-section. The second term on
the right-hand side of Eq. (14.3) is in complete agreement with the earlier
result obtained by Pendry and co-authors [2]. One should note that the low
losses case, i.e. γε � ω, corresponds to the condition δ � r, i.e, when the
wires are thick with respect to the skin-layer depth.

14.3 Nonlinear Metamaterials: Experiments

We have manufactured a two-dimensional nonlinear metamaterial consisting
of periodic arrays of wires and nonlinear split-ring resonators (see Fig. 14.3).
Each SRR contained an additional slit with variable capacity diode [16], which
provided power-dependent response to the external electromagnetic field. The
size of the array is 29× 4× 1 resonator with unit cell size of 1 cm.

The experiment was performed in parallel-plate waveguide with the sepa-
ration between conducting planes of 12mm. The wires in metamaterial were

Fig. 14.3. Photograph of nonlinear metamaterial. Each SRR in metamaterial con-
tains varactor diode (Skyworks SMV1405)
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Fig. 14.4. Transmission coefficient from the output of the amplifier to the receiving
port of the VNA for different powers of the VNA

extending above and below the metamaterial in order to provide electric con-
tact with the plates of the waveguide. The wave was excited by a wire antenna
with dielectric coating which was placed at the surface of the metamaterial
slab (see Fig. 14.3). Such position of the antenna was chosen in order to
deliver enough power to the metamaterial to observe nonlinear effects. The
source antenna was connected to the output of the amplifier (HP83020A)
which provided gain of 38 dB in the frequency range of interest to the signal
from the vector network analyzer (VNA). The receiving antenna was placed
2 cm behind the metamaterial slab. Transmission coefficient as a function of
frequency is shown in Fig. 14.4 for different values of the output power of the
VNA. We note, that the power indicated in the Figure is output power of VNA,
which is then amplified by 38 dB before reaching the source antenna. However,
the energy radiated by antenna cannot be easily estimated, since the antenna
is impedance-mismatched with the waveguide, and presence of the nonlinear
metamaterial in the vicinity of the antenna also modifies impedance. Shift
of the left-handed transmission band with the change of the power is clearly
seen, and it confirms the predictions of Section 14.2.1. The response of the
metamaterial outside of the resonance band did not depend on the power of
the source, indicating linear behaviour of the metamaterial.

14.4 Nonlinearity-controlled Transmission

In order to verify the specific features of the left-handed metamaterials
introduced by their nonlinear response, in this section we study the scattering
of electromagnetic waves from the nonlinear metamaterial discussed above.
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In particular, we perform the FDTD numerical simulations of the plane wave
interaction with a slab of LHM of a finite thickness [17].

Following Ref. [17], we study the temporal dynamics of the wave scat-
tering by a finite slab of nonlinear metamaterial. For simplicity, we consider
a one-dimensional problem that describes the interaction of the plane wave
incident at the normal angle from air on a slab of metamaterial of a finite
thickness. We consider two types of nonlinear effects : (i) nonlinearity-induced
suppression of the wave transmission when initially transparent left-handed
material becomes opaque with the growth of the input amplitude, and
(ii) nonlinearity-induced transparency when an opaque metamaterial becomes
left-handed (and therefore transparent) with the growth of the input ampli-
tude. The first case corresponds to the dependence of the effective magnetic
permeability on the external field shown in Figs. 14.1a and 14.1c, when ini-
tially negative magnetic permeability (we consider ε < 0 in all frequency
range) becomes positive with the growth of the magnetic field intensity. The
second case corresponds to the multi-valued dependence shown in Fig. 14.1b.

In all numerical simulations, we use linearly growing amplitude of the
incident field within the first 50 periods, that becomes constant afterwards.
The slab thickness is selected as 1.3λ0 where λ0 is a free-space wavelength.
For the parameters we have chosen, the metamaterial is left-handed in the
linear regime for the frequency range from f1 = 5.787 GHz to f2 = 6.05 GHz.

Our simulations show that for the incident wave with the frequency f0 =
5.9 GHz (i.e. inside the left-handed transmission band), electromagnetic field
reaches a steady state independently of the sign of the nonlinearity. In the
linear regime, the effective parameters of the metamaterial at the frequency
f0 are: ε = −1.33−0.01 i and μ = −1.27−0.3 i; this allows excellent impedance
matching with surrounding air. The scattering results in a vanishing reflection
coefficient for small incident intensities.

Reflection and transmission coefficients are qualitatively different for two
different types of infilling nonlinear dielectric. For the defocusing nonlinear-
ity, the reflection coefficient varies from low to high values when the incident
field exceeds some threshold value. Such a sharp transition can be explained
in terms of the hysteresis behavior of the magnetic permeability shown in
Fig. 14.1c. When the field amplitude in metamaterial becomes higher than
the critical amplitude (shown by a dashed arrow in Fig. 14.1c), magnetic per-
meability changes its sign, and the metamaterial becomes opaque. Our FDTD
simulations show that for overcritical amplitudes of the incident field, the
opaque region of positive magnetic permeability appears inside the slab [17].
The magnetic permeability experiences an abrupt change at the boundary
between the transparent and opaque regions.

For the focusing nonlinearity (see Fig. 14.5), the dependence of the re-
flection and transmission coefficients on the amplitude of the incident field
is smooth. This effect originates, firstly, from a gradual detuning from the
impedance matching condition, and, for higher powers, from the appearance
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of an opaque layer (see the inset in Fig. 14.5) with a positive value of the
magnetic permeability that is a continuous function of the coordinate inside
the slab.

Now we consider another interesting case when initially opaque metamate-
rial becomes transparent with the growth of the incident field amplitude. We
take the frequency of the incident field to be f0 = 5.67 GHz, so that magnetic
permeability is positive in the linear regime and the metamaterial is opaque.
In the case of self-focusing nonlinear response (α = 1), it is possible to switch
the material properties to the regime with negative magnetic permeability (see
Fig. 14.1b) making the material slab left-handed and therefore transparent.
Moreover, one can expect the formation of self-focused localized states inside
the composite, the effect which was previously discussed for the interaction of
the intense electromagnetic waves with over-dense plasma [18–20].

For the lower incident power, or in linear regime, we observe total reflec-
tion from the metamaterial slab. However, in a strongly nonlinear regime, we
observe the effect of the dynamical self-modulation of the reflected electromag-
netic wave that results from the periodic generation of the self-localized states
inside the metamaterial (see Fig. 14.6). Such localized states resemble tempo-
ral solitons , which transfer the energy away from the interface. Figure 14.6c
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shows an example when two localized states enter the metamaterial. These
localized states appear on the jumps of the magnetic permeability and, as a
result, we observe a change of the sign of the electric field derivative at the
maximum of the soliton intensity, and subsequent appearance of transparent
regions in the metamaterial. Unlike all previous cases, the field structure in
this regime does not reach any steady state for high enough intensities of the
incident field.

14.5 Electromagnetic Spatial Solitons in Metamaterials

Similar to other nonlinear media [21], nonlinear left-handed composite
materials can support self-trapped electromagnetic waves in the form of spa-
tial solitons [22]. Such solitons possess interesting properties because they
exist in materials with a hysteresis-type (multi-stable) nonlinear magnetic re-
sponse. Below, we describe novel and unique types of single- and multi-hump
(symmetric, antisymmetric, or even asymmetric) backward-wave spatial elec-
tromagnetic solitons supported by the nonlinear magnetic permeability.

Due to the multi-valued function of magnetic permeability, there exist a
wide range of soliton families in metamaterials [22]. Apart from fundamental
soliton, (see Fig. 14.7a), more complex localized solutions can be found, some
examples are shown in Figs. 14.7b–d. Such localized states exist due to induced
regions where the metamaterial has different value of magnetic permeability
(or even different sign), and these regions act as self-induced waveguides [22].
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in (b), (c) show the magnified regions of the steep change of the magnetic field [22]

For the multi-valued nonlinear magnetic response, the domains with dif-
ferent values of magnetic permeability “excited” by the spatial soliton can
be viewed as effective induced left-handed waveguides which make possible
the existence of single- and multi-hump solitons. Due to the existence of such
domains, the solitons can be not only symmetric, but also antisymmetric and
even asymmetric. Formally, the size of an effective domain can be much smaller
than the wavelength and, therefore, there exists an applicability limit for the
obtained results to describe nonlinear waves in realistic structures.

14.6 Second-order Nonlinear Effects in Metamaterials

Inclusion of elements with non-symmetric current-voltage characteristics such
as diodes into the split-ring resonators will result in a quadratic nonlinear
response of the metamaterial [9]. This quadratic nonlinearity is responsible
for the recently analyzed parametric processes such as the second-harmonic
generation (SHG) [23, 24] and three-wave mixing [25]. In particular, the first
analysis of SHG from a semi-infinite left-handed medium has been briefly pre-
sented by Agranovich et al. [23], who employed the nonlinear optics approach.
First experiments with SHG in arrays of SRRs were performed in Refs. [26,27].

In this section we consider the problem of SHG during the scattering from
a semi-infinite left-handed medium (or a slab of the left-handed material of
a finite extent) and demonstrate the possibility of the exact phase-matching,
quite specific for the harmonic generation by the backward waves. With this
condition, we demonstrate that exact phase matching between a backward



252 I.V. Shadrivov

ω

–2

–1

0

1

2

ω0 ωM

ωp

LHM RHM

d
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where the material is transparent are shaded. For other frequencies it is opaque.
Characteristic frequencies ω0, ωM, and ωp are defined in Eqs. (14.4)–(14.6). Inset
shows the unit cell of the metamaterial [29]

propagating wave of the fundamental frequency (FF) and the forward propa-
gating wave at the second harmonic (SH) is indeed possible.

Firstly, we will describe our model including both the electric and magnetic
responses. Then, we analyze quadratic nonlinearity and the SHG process in
metamaterials. Next, we develop the corresponding coupled-mode theory for
SHG with backward waves and present the analysis of both lossy and lossless
cases of this model. Then, we will present the results of numerical simulations
of SHG process a slab of finite-extension.

We consider a three-dimensional composite structure consisting of a
cubic lattice of conducting wires and split-ring resonators (SRR), shown
schematically in the insert of Fig. 14.8. We assume that the unit-cell size
of the structure d is much smaller then the wavelength of the propagating
electromagnetic field and, for simplicity, we choose a single-ring geometry
of the lattice of SRRs. The results obtained for this case are qualitatively
similar to those obtained in more involved cases of double SRRs. This type
of microstructured medium is known to possess the basic properties of left-
handed metamaterials exhibiting negative refraction in the microwave region.

In the effective-medium approximation, a response of this composite metal-
lic structure can be described by averaged equations allowing one to introduce
the effective dielectric permittivity and effective magnetic permeability of the
form
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ε(ω) = 1−
ω2

p

ω2
, (14.4)

μ(ω) = 1 +
Fω

(ω2
0 − ω2)

, (14.5)

where ωp is the effective plasma frequency, ω0 is a resonant frequency of
the array of SRRs, F is the form-factor of the lattice, and ω is the angular
frequency of the electromagnetic waves. The product of permittivity ε and
permeability μ defines the square of the effective refractive index, n2 = εμ,
and its sign determines if waves can (n2 > 0) or cannot (n2 < 0) propagate in
the medium. Due to the medium dispersion defined by the dependencies (14.4)
and (14.5), the wave propagation becomes possible only in certain frequency
domains while the waves decay for other frequencies. Metamaterial possesses
left-handed properties when both ε and μ become simultaneously negative,
and such a frequency domain exists in the model described by Eqs. (14.4) and
(14.5) provided ωp > ω0. In this case, the metamaterial is left-handed within
the frequency range

ω0 < ω < min {ωp, ωM} , ωM =
ω0√
1− F

, (14.6)

where ωp is the plasma frequency introduced in Eq. (14.4).
We assume that ωM < ωp, and in this case we have two frequency ranges

where the material is transparent, the range where the material is left-handed
(LHM), and the right-handed (RHM) domain for ω > ωp, where both per-
mittivity and permeability are positive (shaded domains in Fig. 14.8). For the
frequencies outside these two domains, the composite material is opaque.

The composite material becomes nonlinear and it possesses a quadratic
nonlinear response when, for example, additional diodes are inserted into the
SRRs of the structure [9], as shown schematically in the insert of Fig. 14.8.
Quadratic nonlinearity is known to be responsible for various parametric pro-
cesses in nonlinear media, including the frequency doubling and generation
of the second-harmonic field. In dispersive materials, and especially in the
metamaterials with the frequency domains with different wave properties, the
SHG process can be rather nontrivial because the wave at the fundamental
frequency and the second harmonic can fall into different domains of the
material properties.

The most unusual harmonic generation and other parametric processes are
expected when one of the waves (either FF or SH wave) has the frequency for
which the metamaterial becomes left-handed. The specific interest to this kind
of parametric processes is due to the fact that the waves in the left-handed
media are backward, i.e., the energy propagates in the direction opposite to
that of the wave vector. Both phase-matching condition and nonlinear inter-
action of the forward and backward waves may become quite nontrivial, as is
known from the physics of surface waves in plasmas [28].

In nonlinear quadratic composite metamaterials, interaction of the forward
and backward waves of different harmonics takes place when the material is
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left-handed either for the frequency ω or the double frequency 2ω. Under
this condition, there exist two types of the most interesting SHG parametric
processes in metamaterials [29].

Case I. The frequency of the FF wave is in the range ω0/2 < ω < ωM/2
and, therefore, the SH wave is generated with the double frequency in the LHM
domain (see Fig. 14.8). For such parameters, the electromagnetic waves at the
FF frequency are non-propagating, since ε(ω)μ(ω) < 0. As a result, the field
with the frequency ω from this range incident on a semi-infinite left-handed
medium will decay exponentially from the surface inside the metamaterial.
Taking into account Eqs. (14.4) and (14.5), the depth δ of this skin-layer can
be found as

δ =
(

k2
‖ − εμ

ω2

c2

)−1/2

<
λ

17
, (14.7)

where k‖ is the tangential component of the wavevector of the incident wave,
and λ is a free space wavelength. For the SH wave generated in this layer, the
metamaterial becomes transparent. In this case, a thin slab of a metamaterial
may operate as a nonlinear left-handed lens that will provide an image of the
source at the second harmonic [30].

Case II. The FF wave is left-handed, whereas the SH wave is right-handed.
Such a process is possible when ωp < 2ω0 (see Fig. 14.8). What is truly re-
markable here is the possibility of exact phase-matching of the SHG para-
metric process, in addition to the cases discussed earlier in Ref. [23]. The
phase-matching conditions for this parametric process are depicted in the dis-
persion diagram of Fig. 14.9 for the propagating waves in the metamaterial

k 2k

ω

2ω

ωp

ω0

Wavenumber

Fr
eq

ue
nc

y

Fig. 14.9. Dispersion of plane waves k(ω) in the metamaterial. Arrows show the
parameters of the FF and SH waves corresponding to the exact spatio-temporal
phase matching [29]
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where the dispersion of the plane waves is defined by the relation

D(ω, k) =
[

k2 − ε(ω)μ(ω)
ω2

c2

]

= 0 . (14.8)

The exact phase matching takes place when 2 k(ω) = k(2ω). Different signs
of the slopes of the curves at the frequencies ω and 2ω indicate that one of
the waves is forward, while the other wave is backward.

To study the SHG process in metamaterials we consider a composite struc-
ture created by arrays of wires and SRRs. To generate a nonlinear quadratic
response of the metamaterial, we assume that each SRR contains a diode, as
depicted schematically in the inset of Fig. 14.8. The diode is described by the
current-voltage dependence,

I =
U

Rd

(

1 +
U

Uc

)

, (14.9)

where Uc and Rd are the parameters of the diode, and U is the voltage on the
diode. Equation (14.9) is valid provided U � Uc, and it represents two terms
of the Taylor expansion series of the realistic (and more complex) current-
voltage characteristics of the diode.

Following the standard procedure, we consider two components of the elec-
tromagnetic field at the fundamental frequency ω and its second harmonic
2ω, assuming that all other components are not phase matched and therefore
they give no substantial contribution into the nonlinear parametric interac-
tion. Subsequently, we write the general coupled-mode equations describing
the simultaneous propagation of two harmonics in the dispersive metamaterial
as follows,

ΔH1 + ε(ω)μ(ω)
ω2

c2
H1 = −σ1H

∗
1H2 ,

ΔH2 + 4ε(2ω)μ(2ω)
ω2

c2
H2 = −σ2H

2
1 , (14.10)

where the indices “1”, “2” denote the FF and SH fields, respectively, Δ is a
Laplacian, and other parameters are defined as follows

σ1 = κ/2R(ω) , σ2 = κ/R∗(ω) ,

κ =
6 π

(
πa2

)3

d3c5

[
ω4

0ω
2

UcRdR(ω)R(2ω)

]

, (14.11)

where R(ω) = ω2
0ω

2 + iγω, the asterisk stands for the complex conjugation,
a and d are, respectively, the radius of the SRRs and the period of the meta-
material, and γ is the damping coefficient of the SRR. For simplicity, we
assume that both FF and SH waves are of the same polarization, and there-
fore they can be described by only one component of the magnetic field. In
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this case, Eqs. (14.10) become scalar. In the derivation of Eqs. (14.10) we
take into account the Lorentz-Lorenz relation between the microscopic and
macroscopic magnetic fields [31]. Also, it is assumed that the diode resistance
Rd is much larger than the impedance of the SRR slit, i.e. Rd  1/ωC, so
that the resonant properties of the composite are preserved.

Using Eqs. (14.10) one can describe SHG processes in metamaterials [29],
including unusual concept of opaque nonlinear lens [30]. Moreover, the second
order nonlinear response can be further enhanced through appropriate design
of double-resonant binary metamaterial [32].

14.7 Conclusions

We have described several nonlinear effects recently predicted for microstruc-
tured metamaterials which exhibit left-handed properties and negative
refraction. We believe that nonlinear properties of metamaterials can allow
for much broader scope of future applications of such materials, includ-
ing a dynamic control and tunability of the electromagnetic properties of
the composite structures, harmonic generation, intensity-dependent switches,
and generation of self-localized pulses and beams. We have experimentally
demonstrated basic nonlinear effects in metamaterials, including shift of the
left-handed frequency range. Due to general physical character of resonant
nonlinear phenomena predicted here, similar effects can be observed in plas-
monic structures (see, e.g., Ref. [33]), and in future nonlinear optical meta-
materials.
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15.1 Introduction

Metamaterials embody exciting prospects for a new generation of novel pho-
tonic devices. From their initial emergence as a physical construct in the
GHz domain at the start of the 21st century [1–3], they have attracted a
significant amount of global interest [4–13] with considerable effort being un-
dertaken to extend their operation into the THz window and even optical
regimes [14,15]. However, as they stand, early theoretical indications are that
losses will cause potential problems for all possible frequencies and, in par-
ticular, kill any opportunity [16] for a useful metamaterial operating around
and above 30THz.

Such losses are inevitably closely linked to the resonant behaviour of the
metaparticles and is addressed here by the placement of active diodes onto
a form of metallic split-ring. The use of diodes to create a nonlinear mag-
netic response [16] and to create tunability [17] has already been discussed
but active diodes [18] not only promise means of reducing losses but they can
be deployed to produce an overall gain [19]. This behaviour is readily scalable
from GHz to THz and even to nanowire [20] and nanoparticle-based meta-
materials [21] operating in the optical frequency window. Nevertheless, it is
highlighted here that instabilities could present a serious issue. From an inves-
tigation of the dispersion relation for a plane wave, a number of conditions are
derived that identify the limits placed upon the system parameters, in order to
ensure stable overall gain. Any examination of loss, or gain, must, however, be
conducted from the perspective of the entire metamaterial, including the per-
mittivity. Depending on the level of sophistication required in the fabrication
technique, split-rings may be engineered with different shapes and deployed
in a number of different arrays. The most popular have either a circular, or
square shape. The term “split-ring” is treated here as a generic name and is
not necessarily indicative of a specific shape.
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Fig. 15.1. Induced current I within a metamaterial lump with a magnetisation M
resulting from a propagating macroscopic magnetic field H

15.2 Negative Resistance Structures

Figure 15.1 is a sketch of the kind of split-ring that could be used as a meta-
particle and it shows that a diode is attached across the gap with the aim
of using the diode current-voltage characteristic to introduce negative resis-
tance [19]. The purpose of the latter is to introduce some form of amplification
into the metamaterial. Figure 15.1 illustrates what is happening at the split-
ring metaparticle, in response to a propagating electromagnetic wave that
subjects it to a magnetic field H and an induced magnetisation M .

Negative dynamic resistance, or negative differential resistance (NDR),
relates to a portion of the current-voltage (I, V ) characteristic of a de-
vice that displays a negative slope. Possible two-port devices that demon-
strate such behaviour are the Gunn, or resonant tunnel diodes (RTD) [22–
24]. The latter are regarded as one of the fastest devices that it is pos-
sible to make with subsequent oscillator circuit frequencies extending into
the THz frequency range [18, 22, 24]. Furthermore, they are based upon
well established doped semiconductor and molecular beam epitaxy technol-
ogy. As such, there is tremendous scope for flexibility in RTD design stem-
ming from variations in doping levels, types of semiconductor and layer
thickness. Hence, they are the main focus of interest here. A typical (I,
V ) curve for an RTD is shown in figure 15.2 where no current flows un-
der zero bias. As the voltage increases, the band-structure deforms and it
becomes energetically feasible for electrons near the Fermi level EF to tun-
nel from occupied states on the left, through the first barrier, into the well
and then through the second barrier into unoccupied states on the right.
Resonant tunnelling occurs for the applied voltage that provides injected
electrons with exactly the same energy as the allowed state within the well
[22, 24].

15.3 Diode Inclusions

In order to consider the impact of this diode upon the effective relative perme-
ability of the metamaterial requires, first of all, a consideration of the available
dc (I, V ) characteristic. If the diode is biased onto a point on the negative
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Fig. 15.2. Typical (I , V ) characteristic as a result of a deformation of the band
structure under an applied voltage. The three snapshots are for key points along
the curve [20,22]. As the voltage increases, occupied electrons states near the Fermi
level EF can tunnel sequentially though the barrier into the well then through the
second barrier into unoccupied states on the right. EC is the conduction band edge
and the horizontal dotted lines show possible energy levels in the well

slope of the kind of (I, V ) characteristic shown in figure 15.2 then the variation
of I and V about this bias point has the following form [23]

I = −g0V +BV 3 (15.1)

where g0 is the effective linear conductance and B is a constant. An incident
electromagnetic plane wave will introduce the necessary ac signals to drive the
diode about its bias point. A single plane wave with angular frequency ω can
be investigated without loss of generality and the corresponding complex ac
voltage on the diode can be written as V = UD/2 exp(−iωt) + c.c., where t is
time, and the corresponding complex ac current is I = ID/2 exp(−iωt) + c.c.
In the Fourier domain, therefore, equation (15.1) becomes

ID = −g0UD + b |UD|2 UD (15.2)

where b = 3B/8 and it is assumed that everything is operating at the funda-
mental frequency ω and this can be easily arranged if necessary by including
a low-pass filter into the operational circuit [25].

The equivalent circuit of the diode-loaded split-ring is given in figure 15.3
in which CBLOCK is used to prevent any dc biasing currents on the diode
affecting the split-ring structure.

In the rest of the circuit, the ac emf source U is created by the oscillating
magnetic field carried by a wave passing through the metamaterial and L,
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Fig. 15.3. Equivalent circuit of a split-ring resonator (blue) with an attached diode
structure (green). The dotted double-headed arrow simply signifies the presence of
a separate stable dc biasing circuit

Cg and R are, respectively, the inductance, capacitance and resistance of the
split-ring. The exact nature of the biasing circuit is not important to the
calculations below so no further discussion will be given here of this feature.

Given that the time-dependence is exp(−iωt), it is clear that

U = I (R− iωL) + UD. (15.3)

Similarly, the ac current is

I = ID + IC = −
(
g0 + iωCg − b |UD|2

)
UD. (15.4)

The first-order behaviour of this diode-loaded ring does not need to dwell
upon the nonlinear excursion of the current and voltage about the operating
point. Building this assumption into the equations gives the following form
for the ac current

I =
−i
U

L
ω

ω2ω2
0

ω2 + g2
0/C

2
g

− ω2 − iω
[

Γ

(
ω2

0

ω2 + g2
0/C

2
g

)
g0
C2

g

] (15.5)

where the definitions
ω2

0 =
1

LCg
, Γ =

R

L
(15.6)

have been adopted. It can be seen from the denominator of (15.5) that the
aim of setting the diode to oppose the loss associated with the Γ term has
been achieved.

Given this response for a diode-loaded single-ring, the next step is to set-
up some form of homogenisation. The latter means that, although it is clear
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that the metamaterial is being built from discrete metaparticles, it is always
assumed that the size of the individual particles must be much less than the
operational wavelength. This is called a quasi-static approximation [26] and
the outcome is that the material will be described in terms of an effective rel-
ative permeability and an effective relative permittivity. It is the permeability
that is being investigated here through the addition of diodes and it will be
assumed that the dielectric behaviour has not been modified and that the
relative permittivity is the standard negative function displayed by a metal
at the operational frequency.

Each split-ring is an effective magnetic dipole with a moment equal to IA
where A is the effective cross-sectional area of the ring and I is the current.
Hence, if there are n rings per unit volume, the total magnetisation of the
system is M = nIA and

M =
ω2μ0H

nA2

L
ω2ω2

0

ω2 + g2
0/C

2
g

− ω2 − iω
[

Γ

(
ω2

0

ω2 + g2
0/C

2
g

)
g0
C2

g

] . (15.7)

In practice, H is actually the local field [26] but for clarity this correction is
not included here because it does not change the qualitative behaviour of M .
Hence, given the fact that the magnetization is related to the magnetic field
H and the relative permeability by the formula μ = 1 +M/H , then

μ = 1 +
F ′Ω2

Ω2

Ω2 + (g0/ω0Cg)
2 −Ω

2 − iΩ

[

γ − g0/ω0Cg

Ω2 + (g0/ω0Cg)
2

] , (15.8)

where F ′ = nA2μ0/L and the normalised quantities are Ω = ω/ω0 and
γ = Γ/ω0. Note that g0/ω0Cg = g0

√
L/

√
Cg where the inductance and ca-

pacitance have the same dependence upon the characteristic size of the split-
ring[27] so that the inclusion of the diode is approximately independent of the
ring size. It is interesting that resonant tunnel diodes even down to 2× 2 μm2

have been studied recently for operation in the 1THz region [28]. Hence it can
be broadly concluded that scalability is applicable to the ideas being exposed
here.

For a given set of typical parameters, figures 15.4 show the difference
between the passive and active cases. In other words they show quantitatively
how the inclusion of diodes can influence the real μ′ and imaginary μ′′ parts
of the relative permeability.

The qualitative behaviour of the important quantity μ′ appears to be quite
similar whether the system is active or passive. This is an excellent outcome
because it means that the resonant behaviour in the relative permeability that
underpins the magnetic property of the metamaterial is accessible in both the
passive and active operational modes. This leaves the focus of attention upon
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Fig. 15.4. (a) Real and (b) imaginary parts of the relative permeability for g0 =
0.15ω0Cg. The solid red curves are for the passive case whereas the blue dashed
curve is the active case

the imaginary part of the relative permeability (μ′′), which is the pivotal
quantity used to combat loss. It appears that a suitable conductance can
always be selected, both to retain the resonant behaviour, and to give a net
gain to the system.

15.4 Discussion of Stability

Instability can be classified [29,30] into absolute and convective, as illustrated
in figure 15.5. For absolute instability it can be seen in figure 15.5a that
an input excitation is not appreciably propagating along z but is growing
substantially in time at every spatial point. Physically, this means that, if the
metamaterial is being used in an absolute instability regime, even noise will
grow rapidly and swamp the system. Figure 15.5b shows that an excitation can
grow in time but it is being swept (“convected”) away along z. Conventionally,
this is understood to be normal spatial gain, or amplification but the technical
term is that this is an example of convective instability. The latter really means
that, even though the disturbance can grow while the excitation is traveling,
nevertheless, if a particular point in space is selected, it will be found that the
excitation is dying away. Hence, the language adopted here refers to convective
instability as a regime of stable gain meaning that the catastrophic absolute
instability regions have been avoided.

In order to get some quantitative measure of why and how a medium such
as a metamaterial that is having its loss diminished by the addition of gain can
become unstable is perhaps not immediately clear. The conceptual difficulty
derives from the fact that for a loss/gain system that is supporting propagat-
ing electromagnetic waves with wave number k and angular frequency ω it is
possible that both ω and k are complex. Traditionally, it is often assumed that
the frequency is real and the wave number is complex, or vice versa. Indeed,
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Fig. 15.5. Illustration of the evolution of an input state undergoing (a) absolute
instability, (b) convective instability (spatial amplification)

if the wave number is complex and the frequency is real then an examination
of the imaginary part of the wave number appears to give an indication of
whether a wave is growing or not. The situation, however, is not as simple
as this and it is often the case that the frequency is also complex and that
some mapping of ω onto the complex k-plane is required in order to work
out what stability limits, or otherwise, a material may possess [29]. In fact,
a useful technique is to locate the roots of the dispersion equation on the
complex k-plane, then choose a real part of the frequency and finally look at
the paths traced out by the roots on this complex k-plane as the imaginary
part of the frequency is varied. The first requirement for the existence of an
absolute instability is that a saddle-point must exist and, hence, a double root
is reached, for which ω′′ > 0 with the choice exp(−iωt). Basically, this means
that an electric field component, for example, which is being evaluated with a
contour integration will become infinite because the saddle-point prevents the
necessary deformation of the integration path. A vital condition, however, is
that the roots of the dispersion equation actually approach the saddle-point
from different halves of the complex k-plane [30] as sketched in figure 15.6.
This will be nicely illustrated numerically below. As has been stated previ-
ously, the physics of this scenario is as follows. If an excitation is created
at z = 0, the waves will decay away from this point if the initial excitation
grows fast enough. It is therefore expected that when the roots of the disper-
sion equation are tracked on the complex k-plane one of them (k+) relates to
z > 0 behaviour and the other (k−) relates to z < 0 behaviour [29]. The ques-
tion now arises as to what will happen if an excitation is fed into the system
at z = 0. When this occurs, it should not be expected that k+ = k− at z = 0
yet when this equality does occur it should not be expected that an excitation
needs to be fed into the z = 0 point. In other words, when k+ = k− a complex
resonance frequency is encountered and no source is required. This is just a
physical way of saying that the system suffers from absolute instability, which
of course is catastrophic. Any attempt to observe gain in a metamaterial can
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Fig. 15.6. The figure shows the complex k-plane using the complex wave number
k = k′ + ik′′ and the complex ω-plane using the complex frequency ω = ω′ + iω′′.
The cross shows the location of the saddle-point and each contour is generated by
adopting ω′ = const and then tracking what happens when the imaginary part of
the frequency is decreased

be seriously impeded if an unsuitable frequency is selected. A final comment
is that a saddle-point occurs where the group velocity is zero.

For the metamaterial under discussion here, the relative permittivity and
relative permeability are frequency dependent and the dimensionless disper-
sion equation for plane wave propagation is simply

K2 =
k2c20
ω2

0

= Ω2ε(Ω)μ(Ω) (15.9)

where c0 is the velocity of light in vacuum. Here, there is a strong dependence
of the permittivity ε(Ω) and the permeability μ(Ω) upon the dimensionless
frequency and it is clear that the saddle-point referred to above occurs at
K = 0, although it must be acknowledged that there is an “essential sin-
gularity” [31, 32] for |K| → ∞. The latter needs rather careful considera-
tion because the quasi-static approximation, upon which the metamaterial is
based, requires that Kd� 1 where d is the normalized width of the unit cell
in which the metaparticle resides. This point will be returned to later on.

From the dispersion relation, there are three possibilities that yield K = 0.
The trivial case is when Ω = 0 but the important condition occurs when either
complex ε, or μ, goes exactly to zero. Since the relative permittivity in this
case has only a loss parameter it is associated with stability, so that the
saddle-point is defined by setting the complex relative permeability to zero.
This action will define the edge of a frequency window below which it is safe to
operate without the onset of absolute instability until the essential singularity
region is encountered.
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Given that the normalized complex frequency is Ω = Ω′+iΩ′′, the algebra
that leads to the operational frequency window defined as Ω′

POLE < Ω′ <
Ω′

ZERO is straightforward but somewhat laborious. In fact,

Ω′
ZERO =

±
√

4 (1− F ′)
(
1− γ g0

C

)
−

[
(F ′ − 1)

g0
C

+ γ
]2
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, (15.10)

Ω′′
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, (15.11)
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C

)
−

(g0
C
− γ

)2

2
, (15.12)

Ω′′
POLE =

g0
C
− γ
2

, (15.13)

which shows that the saddle-point condition places the following limitation
upon the diode conductance

g0 <
ΓCg

(1− F ′)
= gMAX

0 . (15.14)

15.5 Numerical Analysis

For a loss/gain medium it is necessary, in principle, to consider the way in
which a complex frequency relates to a complex wave number. Indeed, the way
in which the complexΩ-plane maps onto the complexK-plane lies at the heart
of a systematic search for stability criteria [29], when attempting to add gain
to a metamaterial. Considerable insight can be obtained from numerical anal-
ysis and some outcomes of this approach will now be discussed. Figure 15.7,
for a passive medium, assumes the dispersion equation given by (15.9) and
shows the complex K-plane onto which the movement of the roots of the
dispersion equation are tracked as the complex frequency is changed. Note
that the normalised complex wave number is K = K ′ + iK ′′. Specifically, a
real part of the frequency (Ω′) is selected and the movement of the roots is
followed as the imaginary part of the frequency (Ω′′) is changed by adopting
the values given by the right-hand scale of the figure. It can be seen that,
for some values of Ω′, in parts of the complex K-plane there is a reasonably
rapid colour change induced by the root positions, caused by Ω′′. In other
parts this is not the case. The figure is labelled to reflect this and identifies
regions in terms of the magnitude of Ω′. An examination of the relative per-
meability will identify it with the Ω′ ≈ 1 regions and clearly the Ω′ � 1 is
identified with the relative permittivity. It is possible now to build upon this
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Fig. 15.7. Passive metamaterial. Complex K-plane populated by the roots of the
dispersion equation. Real frequency variation: Ω′ = 0 → +∞. Diode conductance:
g0 = 0. Colour scale: measures imaginary part of the frequency. For a given Ω′ the
roots are tracked for the range 0 ≤ Ω′′ ≤ 0.08

Fig. 15.8. Active metamaterial: root population of complex K-plane. Real fre-
quency variation: Ω′ = 0 → +12. Diode conductance: (a) g0 = 0.10ω0Cg and
(b) g0 = 0.11ω0Cg. Colour scale: 0 ≤ Ω′′ ≤ 0.02

elegant representation. First of all, a comparison between this passive case
and the manner in which the diode conductance changes the picture for an
active medium can be developed. Secondly, this representation will facilitate
a dramatic appearance of the saddle-point that is the harbinger of absolute
instability.

Figure 15.8 shows the maps obtained for an active metamaterial and the
aim is to demonstrate how the behaviour of the system as the diode conduc-
tance changes. The left- and right-hand figures show that, when g0 changes
slightly, an excursion from the upper-half of the complex K-plane to the
lower-half is made and vice-versa. The interpretation of these results is as
follows. In figure 15.8a the movement of the roots indicate clearly that g0
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Fig. 15.9. Zooming into the origin shows the edge of the gain window as a saddle-
point in the complex K-plane. Real frequency variation: Ω′ = 0.8 → +∞. Diode
conductance: (a) g0 = 0.20ω0Cg and (b) g0 = 0.22ω0Cg. Colour scale: 0 ≤ Ω′′ ≤
0.04

has an insufficient influence to create a net amplification. On the other hand,
figure 15.8b shows that the diode conductance value is now enough to create
a net spatial amplification. Having demonstrated this, it is now interesting to
pursue the question of amplification more generally in order to quantify the
possible appearance of absolute instability. This means that a search must
now be made numerically to discover whether there is actually a saddle-point
in the complex K-plane and whether conductance values for the diode can be
selected to avoid or encourage its existence.

Figures 15.9 use values of g0 that show the onset and development of
the saddle-point just mentioned. These figures are the magnified “zoomed”
representations of what happens in the close vicinity of the origin of fig-
ures 15.8. Although the mathematical development given earlier implies that
a saddle-point will occur at K = 0 the numerical results given in figure 15.9
illustrate vividly that this is, indeed, the case. Hence, this purely numerical
approach successfully pinpoints the real part of the frequency at which there is
an onset of absolute instability. Naturally, the figures are intended to show the
qualitative and quantitative trends rather than the specific numerical values.
Referring back to figure 15.3 shows that there is a particular value of Ω′ that
labels a contour that passes through the saddle-point. From equation (15.10)
this frequency is labeled as Ω′ = Ω′

ZERO and, naturally, this value is part of
the data developed for figures 15.9a and 15.9b. In addition to the singularity
referred to as the absolute instability point, there is also an essential singu-
larity associated with the |K| → ∞ region [32]. Indeed as equation (15.12)
shows, the essential singularity occurs at Ω′ = Ω′

POLE. The outcome of all this
stability analysis is that certain frequencies can be labeled as “dangerous” in
the sense that operating a gain-driven metamaterial in their vicinity will lead
to catastrophic failure. A rough guide is to set the operational window to be
Ω′

POLE < Ω′ < Ω′
ZERO with the assumption that safe operation should steer

clear of the window edges. Figure 15.10 is an illustration of which parts of
the complex relative permeability are safe to use given the tendency of the
material to engage in unstable behaviour.
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Fig. 15.10. Real and imaginary parts of the complex relative permeability of an
active metamaterial plotted for real frequency. Diode conductance: g0 = 0.21ω0Cg

15.6 Summary

This chapter discusses a solution to the problem of how to address loss in
metamaterials. It is assumed that the metamaterial is constructed using split-
ring metaparticles to provide the complex relative permeability. In combi-
nation with the usual conducting wire array, such split-rings contribute the
magnetic property that is required to endow a metamaterial with spectac-
ular properties such as the ability to support backward-waves. One of the
recognized problems with this type of material is that the very exploitation
of a magnetic resonance usually occurs in the region of very high absorption.
Naturally, loss of this magnitude, when propagating an electromagnetic wave
through the metamaterial, is a serious drawback to any possible application,
and something needs to be done to alleviate, or eliminate it. A straightforward
theory is provided here, based upon an equivalent circuit, that shows how the
conductance of a resonant tunnel diode can be introduced as the important
parameter leading to gain. It is demonstrated numerically that gain can offset
the loss very well but the chapter also shows that there can be a problem
when the resultant metamaterial becomes unstable. A thorough discussion of
how to access stability criteria is given and it is demonstrated that this task is
quite difficult because it involves the mapping of the complex frequency-plane
onto the complex wave number-plane. It is shown that absolute instability is
associated with a saddle-point in the complex wave number-plane, which, in
turn, involves the investigation of how roots of the dispersion equation move.
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In addition to this, it is pointed out that there is also an essential singularity
at large wave numbers. Taken together, the singularities that are exposed are
used to create an operational window for a typical metamaterial. It should be
emphasized that this is very preliminary work and that much more detailed
calculations will appear in the future.
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16.1 Introduction

Nonlinear localization is a process that may occur in weakly coupled nonlin-
ear oscillators and leads to the formation of dynamically localized states in
an otherwise translationally invariant lattice [1–3]. The main ingredients of
nonlinear localization is discreteness, usually stemming from the weak interac-
tion among the oscillators and nonlinearity, arising from the nonlinear nature
of the oscillator forces. The dynamical localized states generated in this pro-
cess are termed discrete breathers (DBs) or intrinsic localized modes (ILMs).
These states are collective periodically oscillating modes of the lattice that, at
the same time, are localized in a given location of the system. One basic crite-
rion for the formation of DBs in infinite lattices is that their frequency and its
sidebands should not coinside with the linearized spectrum of the oscillator
lattice [4]. When the interparticle interaction exceeds a certain threshold, DBs
become unstable and ultimately disappear. However, if the coupling becomes
strong enough, it is possible in some cases to still form localized states that
are very extended and have features of nontopological solitons or solitary
waves [5]. In the present chapter we will address the generation of localization
through nonlinearity both in the discrete, weakly interacting limit, as well
in the continuous one where the nonlinear excitations are much larger than
the lattice spacing. In all cases we will be focusing on metamaterials made
typically of micron sized units that provide desired system electromagnetic
properties.

Metamaterials are man made crystals characterized by translational invari-
ance and a unit cell formed by larger than atomic elements. We will be focusing
on left handed metamaterials (LHM) characterized by a negative index of re-
fraction; typical sizes of the constituent parts of their unit cell is at the micron
level although other sizes exist as well [6–8]. The usual structure of a LHM is
that of a periodic array of metallic wires accompanied by periodically placed
split ring resonators (SRRs) [9–16]. While the metallic wires are responsible
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for the negative dielectric permitivity that may be induced in the metama-
terial, the SRRs produce negative magnetic permeability; the combination of
both turns the index of refraction of the system negative as can be seen by the
following argument: Let ε = ε′ exp[iφ1] and μ = μ′ exp[iφ2] the permitivity and
permeability respectively of the material, where we assume also an imaginary
part denoting very small dissipation. For a positive index material we have
both permitivity and permeability positive and φ1, φ2 are taken to be small.
The index of refraction is then n =

√
εμ =

√
ε′μ′ exp[i(φ1 + φ2)/2] 


√
ε′μ′.

For a negative index material on the other hand, we have negative permitivity
and permeability; this means that φi = π + θi, i = 1, 2 and the angles θi are
now taken to be small and positive for purely dissipative structures with no
gain. As a result n =

√
εμ =

√
ε′μ′ exp(iπ) exp[i(θ1 + θ2)/2] 
 −

√
ε′μ′, i.e. the

index must be negative in this case.
The fact that the index of refraction is negative does not inhibit propaga-

tion; this may be seen easily from the dispersion relation of the wave equation
in a medium. Seeking plane wave solutions of the wave equations for the elec-
tric or magnetic field we arrive at the dispersion relation k2 = (εμ)/c2ω2;
when both permitivity and permeability are negative, the wave vector k is
real, leading to wave propagation in the medium with the negative refractive
index. Plane waves give through Maxwell’s equations k = E×B/μ and thus,
for negative μ, the wave vector is exactly opposite to the Poynting vector [17].
Furthermore, if an electromagnetic wave impinges on the interface with a
negative index material (NIM), while Snell’s law still applies, it results in a
negative refraction angle leading to a nonconventional direction of propaga-
tion in the metamaterial [17]. These peculiar properties of metamaterials have
led to proposals for the formation of flat lenses as well as object cloaking [18].

While both negative ε and negative μ are necessary for a NIM, the mecha-
nisms of generating them are quite different. The process for producing nega-
tive permitivity is rather simple and it is based on the collective oscillations of
the free electron gas that occur at the plasma frequency ωp. If the electrons at
the surface of the metallic wires found in LHMs are driven below their plasma
frequency, they respond out of phase with respect to the driving radiation
leading to negative ε [6]. If the magnetic permeability is not affected at the
same time, this would lead to the decay of the wave entering in this medium
and typically resulting in wave reflection. Only when μ becomes negative,
propagation is restored; this may occur by driving the SRR at frequencies
above their resonant frequency. An SRR unit is nothing but a circuit made of
an inductance L, capacitance C and resistance R; it is thus characterized by
a resonant frequency close to ω0 = 1/

√
LC (for R 
 0). If a time dependent

magnetic field threaded through the SRR loop drives the circuit below ω0, its
response is paramagnetic since the induced current is in phase with the driv-
ing field. When, on the other hand, the field has a frequency larger than ω0,
the response becomes diamagnetic and the system may produce an effective
negative μ. The SRR unit is central to NIMs since it provides the necessary
out of phase magnetic response to the external fields that turns the index of
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refraction negative [19]. Nonlinearity is introduced in the SRR unit in order
to induce tunability in the system.

Nonlinearity in metamaterials may be of two types, either extrinsic or in-
trinsic. The former may be introduced by embedding the metamaterial lattice
in a dielectric with strong nonlinearity that affects primarily the SRR unit [19–
21]. When a time dependent electric field is formed accross the gap of the SRR
due to alternating charge accumulation, the nonlinearity in the dielectric will
affect the resonant frequency of the unit. The new frequency will depend in
a complicated way on the magnetic flux threaded through the circuit [20].
Small changes thus in the intensity of the electromagnetic radiation sent to
the sample may have dramatic effects in the response of the nonlinear NIM.
Nonlinearity may also be introduced intrinsically through a genuine nonlinear
mechanism; an example of this is given by the Josephson effect [22]. In the
latter the supercurrent may tunnel through a junction in such a way that an
external driving field may alter the Copper pair phase nonlinearly. If the SRR
is superconducting while a Josephson junction is placed in the gap, the result-
ing circuit inherits the nonlinearity of the junction leading to an rf-SQUID
with possible negative permeability response. A metamaterial made of units
of this type may have both negative effective μ but also tunability due to the
intrinsic nonlinearity of the Josephson junction.

The present chapter focuses directly on the nonlinear properties of meta-
materials generated primarily by extrinsic nonlinearity. We will begin by ad-
dressing a nonlinear medium made of weakly interacting SRRs and investigate
the onset of nonlinear localization in the form of discrete breathers as well as
magnetic solitons in the system. Subsequently we will discuss the more gen-
eral propagation problem in a left-handed medium embedded in a nonlinear
dielectric and show that it proceeds via special type compound electric and
magnetic solitons. We will then conclude with a brief summary of the findings.

16.2 Magnetic Breathers

In order to study the effects in metamaterials of the nonliner dependence of
the SRR resonant frequency on an external field we will consider a planar
one-dimensional (1D) array of N identical SRRs with their axes perpendic-
ular to the plane; each unit is equivalent to an RLC oscillator. An effective
magnetic dipole may be induced in each unit either through the time-varying
magnetic flux or a time-varying electric field applied parallel to the SRR gap.
The mutually inductive magnetic dipole-dipole interaction decays as the cube
of the distance and thus we may condider only nearest-neighbor SRR interac-
tions. The SRRs are considered to be nonlinear elements due to the nonlinear
Kerr-type dielectric that fills their gap and has dielectric permittivity equal
to ε(|E|2) = ε0(ε� + α|E|2/E2

c ), where E is the electric component of the
applied EM field, Ec is a characteristic electric field, ε� the linear permittiv-
ity, ε0 the permittivity of the vacuum, and α = ±1 correspond to self-focusing
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and self-defocusing nonlinearity, respectively [20–22]. Due to the field depen-
dence of the permitivity the SRR gap develops a field-dependent capacitance
C = C(|E|2) = ε(|Eg|2)A/dg where A = πh2/4 is the cross-section area of the
SRR wire (assumed circular, with circular cross-section of diameter h), Eg is
the electric field induced along the SRR gap, and dg is the longitudinal size of
the slit. Using the expression C(Un) = dQn/dUn we may find the nonlinear
dependence of the charge Qn stored in the capacitor of the n-th SRR on the
applied voltage Un ≡ dgEg,n, viz.

Qn = C�

(

1 + α
U2
n

3 ε�U2
cr

)

Un, (16.1)

where n = 1, 2, . . . , N , C� = ε0ε�(A/dg) is the linear capacitance, and Ucr =
dgEcr. The time dependence of the charge Qn at the n-th unit depends on the
internal charge exchange in the unit as well as the inductive coupling to the
adjacent elements; this charge dynamics leads to the following set of equations
of motion [23, 24]:

L
d2Qn
dt2

+R
dQn
dt

+ f(Qn) = M

(
d2Qn−1

dt2
+

d2Qn+1

dt2

)

+ E . (16.2)

On the lhs of Eq. (16.2) we have the well known dynamics of an RLC circuit
that, in the present case involves a nonlinear capacitance through the term
f(Qn) = Un. On the rhs, on the other hand, we have the coupling of neigh-
bouring SRRs with mutual inductance M while E = E(t) is the electromotive
force applied in each SRR due to the external fields, magnetic and/or electric.
In order to simplify Eq. (16.2) we use the relations ω−2

� = LC�, τ = tω�,
Icr = Ucrω�C�, Qcr = C�Ucr, E = Ucrε, In = Icrin, Qn = Qcrqn, and find

d2

dτ2
[qn − λ (qn−1 + qn+1)] + γ

d
dτ
qn + f(qn) = ε(τ), (16.3)

where γ = RC�ω�, λ = M/L are the loss coefficient and the coupling param-
eter, respectively.

Analytical inversion of Eq. (16.1) for un = f(qn) with un real and un(qn =
0) = 0, results to

f(qn) 
 qn −
α

3 ε�
q3n + 3

(
α

3 ε�

)2

q5n +O(q7n). (16.4)

We thus find that the effective on-site potential V (qn) =
∫ qn

0 f(q′n) dq′n is
soft for focusing nonlinearity (α = +1) and hard for defocusing nonlinearity
(α = −1).

Upon linearization of Eqs. (16.1) and (16.3) we obtain

d2

dτ2
(−λqn−1 + qn − λqn+1) + qn = 0, (16.5)
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while substituting qn = A cos(kDn−ωτ) into Eq. (16.5) we find the dispersion
relation for the linear lattice modes, viz.

ωk = [1− 2λ cos(kD)]−1/2
, (16.6)

where D is unit cell size and k the wavenumber. Stable localized modes in an
infinite sized metamaterial must have frequencies in the zone exterior to the
band of the linearized modes.

It is important to have an estimate of the various parameters entering in
the reduced Eq. (16.3); we thus consider the SRR systems studied experimen-
tally in Ref. [14] and make simple estimates for the loop self-inductance as well
as the coupling λ ignoring the effects of nonlinearity and coupling on the loop
resonant frequency. We consider an array of square-shaped SRRs with square
cross-section of side length � = 5 μm, and t = w = dg = 1 μm the SRR depth,
width, and slit size, respectively, while the unit cell length is D = 7 μm [14].
The resulting self-inductance for these parameters is L 
 1.2× 10−11 H [23].
From this value of L we find through the expression fr = 1/2 π

√
LC that a

capacitance equal to C = C� 
 7.35× 10−17 F would give a (linear) resonant
frequency of fr = 6.2 THz. In what regards the mutual coupling of the units
we find similarly that for an array of squared SRRs with square cross-section
having dimensions as in [14] λ 
 0.02. This mutual coupling coefficient may
become one order of magnitude smaller in some other cases [23].

16.2.1 Hamiltonian Discrete Breathers

We focus now on the set of Eqs. (16.3) and consider first the lossless case
without an applied field (γ = 0, ε = 0) assuming further that the power of the
emitted dipole radiation is very small. Under these circumstances Eq. (16.3)
may be derived from the Hamiltonian

H =
∑

n

{
1
2
q̇2n + V (qn)− λq̇nq̇n+1

}

. (16.7)

We may construct Hamiltonian DBs starting from the anticontinuous limit
where all oscillators are uncoupled. In this procedure we fix the initial
amplitude of one oscillator (e.g. the one located at n = nb) to a specific
value qb, corresponding to a desired oscillation period Tb that is not reso-
nant to the linearized modes [25]. This trivial breather is then analytically
extended through the Newton method to finite couplings λ up to maximal
coupling λmax keeping the breather period constant. The resulting localized
mode is characterized by the basic frequency ωb = 2π/Tb. The linear stabil-
ity of these modes in the Hamiltonian SRR system is addressed through the
eigenvalues of the monodromy matrix [25]; we find that the modes are stable
for small couplings [23].

In Fig. 16.1 we show the time evolution of a typical, linearly stable, mag-
netic DB as a function of the array site n. We plot specifically the normalized
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Fig. 16.1. Time evolution of a Hamiltonian breather for λ = 0.04, dimensionless
breather period Tb = 6.69, α = +1, and ε� = 2. Only few sites of the lattice are
engaged in the oscillation

circulating current in that is proportional to the magnetic moment of the
nth SRR. In the breather region, the lattice performs electromagnetic oscilla-
tions that decay spatially very fast in an exponential fashion. Although DBs
are very discrete objects, they are seen to be mobile in several cases. Their
mobility is studied by perturbing the DBs in the direction of an antisym-
metric linearized mode [26]. We find that the Hamiltonian magnetic DBs are
generally mobile [23].

16.2.2 Dissipative Discrete Breathers

When the external magnetic flux and/or the applied electric field varies,
the system of the nonlinear SRRs is driven externally and, in this case, we
may form dissipative breathers. To this effect we start by solving Eqs. (16.1)
and (16.3) in the anticontinuous limit [27] using ε(τ) = ε0 sin(ωτ); the latter
represents a sinousoidally varying applied field of amplitude ε0 and frequency
ω. We identify two different amplitude attractors for the single SRR oscillator,
with amplitudes qh and q� for the high and low amplitude attractor, respec-
tively. We proceed by fixing the initial charge of one of the oscillators (say the
one at n = nb) to qh while all the others to q� and the currents in are all set
to zero. Using as initial condition this configuration, we increase adiabatically
the coupling up to a given value λ �= 0, leading to dissipative DB formation.
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Fig. 16.2. Time evolution of a dissipative breather during approximatelly two pe-
riods, for Tb = 6.82, λ = 0.0045, γ = 0.01, ε0 = 0.04, α = +1, and ε� = 2. The
breather region is left-handed while the rest of the metamaterial is right-handed

Using specifically qh 
 1.6086 and q� 
 0.28660 and following the above pro-
cedure we find different types of dissipative DBs. One type involves the lattice
oscillating close to q� while the “bright” localized mode has amplitude close
to qh as in Fig. 16.2, or the “dark” mode where the amplitudes are reversed.
We note that the DB shown in Fig. 16.2 run for over 2× 104 breather periods
without any appreciable change. There is also a domain wall mode where part
of the lattice has one of the values and the rest has the other [23]. This state
separates the system in different phases and may be potentially interesting in
applications.

When the external field is on, the whole electric lattice is locked to the
driver and oscillates with the same driver frequency. The presence of non-
linearity, however, allows for the possiblity that different parts of the lattice
oscillate at different amplitudes, i.e. different SRRs have different charge val-
ues. As a result, one may form, for instance, a single breather such as the
one depicted in Fig. 16.2 or more complex ones as in Fig. 16.3 [24]. In these
cases we may evaluate the magnetic response of the localized modes by cal-
culating the normalized, site-dependent magnetic moment per period Tb for
each SRR in the array. We consider the magnetic response of an SRR at a
given time instant to be positive (negative), when the driving magnetic flux
and the instantaneous current in(τ) have the same (opposite) signs. Without
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Fig. 16.3. Snapshot of a dissipative multibreather extending over several sites in a
two dimensional lattice with equal couplings in the x and y axes, λx = λy = 5×10−4,
γ = 0.01, driver amplitude ε0 = 0.04, α = +1 and Tb = 6.82. For these parameter
values the elevated multibreather region forms a left-handed island in an otherwise
right-handed medium. The location and the shape of the breather may be tailored
at will

DB excitations, all the SRRs oscillate with the same amplitude and phase,
contributing the same magnetization per period to the total. The magne-
tization however varies with the oscillation amplitude resulting to multiple
magnetization states, which is a purely nonlinear effect. For DB solutions the
site-dependent magnetization is larger at the central DB site, while it is small
and approximately constant away from it. Furthermore, if we select the driving
frequency to be below the SRR resonance we may have all the metamaterial
in a “right-handed state” while the breather impurity state is a “left-handed
state”. In other words, nonlinearity enables the formation of small or large
“islands” in the metamaterial that have distinct optical properties from the
rest of the lattice. The left-handed property of the breather sites is induced
through the out of phase motion of the these sites compared to the oscilla-
tion of the rest of the system. We note that the presence of a DB enhances
substantially the local magnetization.

16.3 Magnetic Solitons

In the previous section we considered the case of discrete localized modes in a
weakly coupled SRR lattice. It is also possible that a charge carrier wave forms
that is extended in space and has the shape of envelope solitons [28]. We may
thus consider an EM wave propagating in the 1D array of N identical SRRs
described previously; the linear dispersion relation governing the propagation
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of magnetoinductive waves is given in Eq. (16.5). We note that the latter has
a finite cutoff at ωmax = ω(k = 0) = 1/

√
1− 2 λ leading to an optical branch

with negative group velocity vg ≡ ω′(k) = −λω3 sink being negative for all
k values within the first Brillouin zone. As a result the wavepacket envelope
propagates at the group velocity vg in a direction opposite to that of the
carrier wave propagating at the phase speed vph = ω/k. The frequency band
is therefore bounded by ωmin = ω(k = π) = (1 + 2λ)−1/2 and ωmax in the
physically relevant regime for λ ≤ 1/2.

We may obtain a nonlinear generalization of the dispersion relation by
substituting qn = q̂ exp[i(kn−ωt̃)]+ c.c. in Eq. (16.5) and retaining only first
order harmonics. We obtain then the following amplitude dependent expres-
sion

ω2(k; |q̂|2) =
(
1− α|q̂|2/εl

)
(1− 2λ cosk)−1

. (16.8)

Assuming weak dependece on the amplitude and considering a modulated
wave frequency ω and wavenumber k close to the carrier values ω0 and k0,
respectively, we may expand as follows

ω − ω0 ≈
∂ω

∂k

∣
∣
∣
∣
k0

(k − k0) +
1
2
∂2ω

∂k2

∣
∣
∣
∣
k0

(k − k0)
2

+
∂ω(k)
∂|q̂|2

∣
∣
∣
∣
q̂0

(
|q̂|2 − |q̂0|2

)
, (16.9)

where q̂0 is a reference constant amplitude. Considering slow space and time
variables X and T , and thus setting ω− ω0 → i∂/∂T and k − k0 → −i∂/∂X ,
one readily obtains the nonlinear Schrödinger (NLS) equation

i
(
∂ψ

∂T
+ vg

∂ψ

∂X

)

+ P ′ ∂
2ψ

∂X2
+Q′ (|ψ|2 − |ψ0|2

)
ψ = 0, (16.10)

where we have set ψ = q̂ and ψ0 = q̂0, and defined the dispersion coefficient
P ′ ≡ ω′′(k)/2 = −λω5(λ cos2 k + cos k − 3λ)/2 and the nonlinearity coeffi-
cient Q′ = −(∂ω/∂|ψ|2)

∣
∣
ψ0

= (αω/2 εl)(1 − α|ψ0|2/εl)−1 ≈ αω/2 εl. We have
assumed |ψ0| � 1, and thus neglected the dependence on |ψ0| everywhere.
Upon a Galilean transformation, viz. {X,T } → {X − vgT, T } ≡ {ζ, τ}, and
a phase shift ψ → ψ exp(−iQ′|ψ0|2τ), one obtains the usual form of the NLS
equation [5]

i
∂ψ

∂τ
+ P ′ ∂

2ψ

∂ζ2
+Q′|ψ|2ψ = 0. (16.11)

The evolution of a modulated wave whose amplitude is described by
Eq. (16.11) depends on the sign of the coefficients P ′ and Q′ [5]. Specifi-
cally, if P ′Q′ < 0 the wavepacket is modulationally stable dark-type soli-
ton while for P ′Q′ > 0 the wavepacket is modulationally unstable and upon
break-up it may reduce to several localized structures in the matetial. We
find that P ′ is negative for low k, while it changes sign at some critical value
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Fig. 16.4. Bright (a) and dark (b) magnetic solitons. Continuous lines denote the
analytical amplitude shape in space, dots are the results of numerical simulation
while the lines that link them are a guide to the eye. Parameters used λ = 0.20,
εl = 2, ψ′

0 = 0.1, N = 100, and α = −1

kcr = cos−1[(−1+
√

1 + 12λ2)/2λ], thus acquiring positive values for k > kcr.
On the other hand, the sign of Q′ is simply determined by the nature of
the nonlinearity, i.e. Q′ is positive (negative) for α = +1 (−1). Therefore, for
α = +1 the wave is modulationally stable, P ′Q′ < 0 (unstable, P ′Q′ > 0),
for k < kcr (k > kcr), while for α = −1 the wave is modulationally unstable,
P ′Q′ > 0 (stable, P ′Q′ < 0), for k < kcr (k > kcr).

The Eq. (16.11) possesses a number of exact solutions; of particular interest
are the sech- and tanh-type solutions that correspond to bright and dark soli-
tons respectively [28]. In Fig. 16.4 we present these two types of solutions,
both their analytical profile (continuous lines) as well as the shapes deter-
mined numerically. The latter were obtained in a regime that is not so close
to the “continuous limit”, nevertheless we find that the agreement is reason-
ably good. We thus find that in a system of weakly coupled nonlinear SRRs
when the excitations are wide compared to lattice spacing soliton-like objects
may form and propagate in the medium. When, on the other hand, the exci-
tation is very narrow discrete breathers are then formed in the metamaterial.
In all cases it is possible to have both localized left-handed properties in a
right-handed medium, the reverse, or a domain wall separating these two
electromagnetically distinct phases.

16.4 Electromagnetic Solitons

So far we analysed primarily the effects of nonlinearity in the magnetic
response and propagation properties of metamaterials. If the electric effects
are also included we arrive at the more general case of LHM with extrinsic
nonlinearity. We focus directly on the continuous case and show that more
complex two component solitons may be generated.

The dispersion relations for this compound electromagnetic case are gen-
eralizations of the known ones for the linear cases, viz. [20]
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εeff(ω) = ε0

(

εD(|E|2)−
ω2

p

ω2

)

, (16.12)

μeff(ω) = μ0

(

1− Fω2

ω2 − ω2
0NL(|H |2)

)

, (16.13)

where ωp is the plasma frequency, F is the filling factor, ω0NL = ω0NL(|H |2)
is the nonlinear resonant SRR frequency, and εD(|E|2) = εD0 + α|E|2,
with α denoting again the strength of nonlinearity. For a linear dielectric
ω0NL(|H |2) → ω0, where ω0 is the linear resonant SRR frequency; then
Eqs. (16.12)–(16.13) reduce to previously known expressions [6]. The param-
eters F , ωp, and ω0 are related to geometrical and material parameters of the
LHM components. Although εeff can be readily put in the form ε+ εNL(|E|2),
for μeff this is not an obvious task, since μeff = μeff(ω0NL), and ω0NL depends
on |H |2 as [20, 21]

αΩ2X6|H |2 = A2E2
c

(
1−X2

) (
X2 −Ω2

)2
, (16.14)

whereX = ω0NL/ω0,Ω = ω/ω0, Ec is a characteristic (large) electric field, and
A is a function of physical and geometrical parameters [20,21]. Our α is related
to the parameters of Eq. (16.14) as α = ±1/E2

c . We choose fp = ωp/2 π =
10 GHz and f0 = ω0/2 π = 1.45 GHz leading to a left-handed zone in the range
1.45 GHz < f < 1.87 GHz. For relatively small fields when μeff is truly field
dependent, one may approximate the nonlinear expression for the effective
permeability as μeff = μ + μNL(|H |2), where μNL(|H |2) = β|H |2. Using this
approximation we thus turn both the electric and magnetic problem into an
effective Kerr nonlinear problem; in what regards the nonlinear coefficient β,
we may treat it as fitting parameter.

Using the constitutive relations D = εeffE = εE +P NL and B = μeffH =
μH + MNL where P NL, MNL are the nonlinear contributions to electric
polarization and magnetization respectively, we may use Maxwell’s equations
and obtain the following general wave vector equations:

∇2E − με∂
2E

∂t2
− μ∂

2P NL

∂t2
−∇ (∇ ·E) =

∂

∂t
[(∇μNL)×H ] +

∂

∂t

[

μNL
∂

∂t
(εE + P NL)

]

, (16.15)

∇2H − με∂
2H

∂t2
− ε∂

2MNL

∂t2
−∇ (∇ ·H) =

− ∂

∂t
[(∇εNL)×E] +

∂

∂t

[

εNL
∂

∂t
(μH + MNL)

]

. (16.16)

We consider for simplicity an x−polarized plane wave with frequency ω
and wavevectror k propagating along the z-axis, viz. E(z, t) = q(z, t)
exp[i(kz − ωt)], H(z, t) = p(z, t) exp[i(kz −ωt)]. Assuming that the envelopes
q(z, t) and p(z, t) change slowly in z and t allows us to introduce the slow
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variables ξ = ε(z − ω′t) and τ = ε2t, where ε is a small parameter, and
ω′ = ∂ω/∂k is the group velocity of the wave. Substitution of the slow
variables into Eqs. (16.15)–(16.16), assuming that α = α̂ε2, β = β̂ε2, and
expressing p and q as an asymptotic expansion in terms of a parameter ε, we
get various equations in increasing powers of ε [29]. The leading order problem
gives the dispersion relation ω = ck, where c =

√
1/εμ. At O(ε1), the group

velocity is given as ω′ = kc2/ω. At O(ε2), we obtain [29]

i
∂q0
∂τ

+
ω′′

2
∂2q0
∂ξ2

+
ωc2

2

(
α̂μ|q0|2 + εβ̂|p0|2

)
q0 = 0, (16.17)

i
∂p0

∂τ
+
ω′′

2
∂2p0

∂ξ2
+
ωc2

2

(
εβ̂|p0|2 + α̂μ|q0|2

)
p0 = 0, (16.18)

where q0(ξ, τ), p0(ξ, τ) are the zeroth in ε order terms, τ is the slow time,
ξ the slow space variable and ω′′ = (c2 − ω′2)/ω. By rescaling τ , ξ and the
amplitudes q0, p0 according to ξ = X , T = ω′′τ/2 and Q =

√
|Λq/ω′′|q0,

P =
√
|Λp/ω′′|p0, where Λq = ωc2μâ and Λp = ωc2εβ̂, we get

iQT +QXX +
(
σq|Q|2 + σp|P |2

)
Q = 0, (16.19)

iPT + PXX +
(
σp|P |2 + σq|Q|2

)
P = 0, (16.20)

where σq,p ≡ sgn(Λq,p). Eqs. (16.19)–(16.20) is a special case of the fairly
general and frequently studied system of coupled NLS equations known to
be completely integrable for σq = σp = σ [31]. The sign of the products μα̂
and εβ̂ determine the type of nonlinear self-modulation (self-focusing or self-
defocusing) effects which will occur. For σ = ±1 both fields experience the
same type of nonlinearity.

For ε, μ > 0 and â, β̂ > 0 we have σ = +1, and the system of Eqs. (16.19)–
(16.20) accepts solutions of the form [29,32]

Q(X,T ) = u(X)eiν2
qT , P (X,T ) = v(X)eiν2

pT , (16.21)

where u, v are real functions and νq, up are real positive wave parameters.
The latter is necessary, if we are interested in solitary waves that exponentially
decay as |X | → ∞. Introducing Eq. (16.21) into Eqs. (16.19)–(16.20) we get

uXX − ν2
qu+

(
u2 + v2

)
u = 0, (16.22)

vXX − ν2
pv +

(
v2 + u2

)
v = 0. (16.23)

For νq,p = ν, Eqs. (16.22)–(16.23) have a one-parameter family of symmetric
and single-humped soliton solutions (Fig. 16.5)

u(X) = ±v(X) = ν sech(νX). (16.24)

For ε, μ < 0 and â, β̂ > 0 we have σ = −1, and Eqs. (16.19)–(16.20) accept
dark soliton solutions of the form [29,33]
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Fig. 16.5. Bright (a) and dark (b) two component electromagnetic solitons. The
continuous line denotes the electric field (q0) while the dashed one the magnetic field
(p0). The parameters used are (a) σp = σq = +1 for ν = 1 and r = Λq/Λp = 2 in
arbitrary units while in (b) σp = σq = −1 for k = 1 and r = Λq/Λp = 2 in arbitrary
units; we use appropriate normalizations of the amplitudes

Q(X,T ) = P (X,T ) = k [tanh(kX)− i] ei(kX−5k2T ), (16.25)

which are localized dips on a finite-amplitude background wave, as shown in
Fig. 16.5. In this very interesting case of LHM, the electric and magnetic fields
are coupled together forming a dark compound soliton. Note that the relative
amplitudes are controlled by the corresponding nonlinearities and frequency.

In addition to the two component bright and dark solitons, there are also
other types of solutions, such as domain wall solitons that separate the left-
handed from the right-handed medium. Numerics has shown that the con-
tinuous solitons do survive in the discrete lattice provided the coupling of
the adjacent elements is not too small. The stability analysis done in Ref. [30]
shows that soliton stability depends on the combination of focusing/defocusing
nonlinearity as well whether the medium is right-handed or left-handed. The
following approximate expression may be used for the stability of the com-
pound solitons [30]

K ′ 
 εeff
ε

+
μeff

μ
− 2. (16.26)

Solitons are stable when K ′ < 0 and, as a result, we find that dark solitons
in a left-handed medium are generally stable.

16.5 Summary

Metamaterials provide a natural frame for the investigation as well as practical
exploitation of various nonlinear phenomena. The introduction of nonlinearity
in the capacitive element of SRRs and the weak interaction among the ele-
ments leads directly in the formation of spatially localized structures. When
the localization scale is very small the material forms discrete breathers; this
may occur in a controled way or in random fashion through modulational
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instability. Discrete breathers act as elementary, localized antennas in the
lattice since their oscillation frequency is typically in the non-propagating
zone. Continuous topological solitons, on the other hand, may form when the
amplitude of the EM fields change very slowly from element to element lead-
ing to a deformation over several unit cells. When only magnetic elements
are present in the metamaterial the resulting excitations are magnetic single
breathers or multibreathers and NLS-like solitons. When both electric and
magnetic elements are present we expect to find more complex, compound
electromagnetically localized objects. While the fully discrete case has not
been analyzed yet, we know that in the continuous limit we have the for-
mation of two component electromagnetic solitons. The latter are compound
objects where both the electric and magnetic fields are localized while they
propagate in the metamaterial.

In addition to extrinsic nonlinearity introduced through doping of the
dielectric medium of the metamaterial we may also use elements that are in-
trinsically nonlinear. One way is through the introduction of Josephson junc-
tions in otherwise superconducting rings. In this case the RLC circuit of the
SRR is replaced by a resistively and capacitively shunted Josephson junc-
tion that is coupled to the self-inductance of the ring. The external driver for
this unit is the time-varying magnetic field flux that passes through the loop
area. This unit is usually referred to as an rf-SQUID. The resulting, reduced
equation of motion for the single unit is

d2f

dτ2
+ γ

df
dt

+ β sin(2 πf) + f = fext, (16.27)

where f is the reduced magnetic flux passing through the loop, fext is the sinu-
soidally varying external magnetic flux while γ and β are parameters related
to the resistance, capacitance and self-inductance of the circuit [22]. We note
that the presense of the sin-term in the equation of motion makes the specific
system genuinly nonlinear. Simple analysis of the rf -SQUID metamaterial in
the decoupled limit shows that negative permeability is possible [22]. When
the superconducting units are coupled through their mutual flux, one also
finds the possibility for generation of discrete breathers and solitons, similar
but not identical to the ones found for extrinsic nonlinearity [34]. Just like in
standard optics, the introduction of either extrinsic or intrinsic nonlinearity in
metamaterials, enhances the tunabilty of the material and will lead to tailored
applications and devices.
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Anderson localization, 92
anisotropy, 101

orientation, 107
polarization, 108

bandgap, 3, 82, 148, 168
Bragg reflection, 151, 155
semi-infinite, 85, 131

bandgap spectrum, 23, 101
bandgap structure, 5, 157
bandgap tunability, 24
basin of attraction, 188
beam

non-diffracting, 77, 83
beam propagation method, 27
beam steering, 56

discrete, 28
BEC, see Bose-Einstein condensate
Bessel beam, 174
bifurcation, 133
birefringence, 22, 41
bistability, 232

optical, 218, 228, 234
Bloch momentum, 4, 79, 82
Bloch oscillation, 80, 83, 165, 169, 173,

196, 200
Bloch’s theorem, 81, 92, 168
Bose-Einstein condensate, 74, 165, 171,

176, 182, 195, 199
BPM, see beam propagation method
Bragg grating, 58

nonlinear, 56
Bragg reflection, 104, 173, 200

breather, 277
discrete, 273, 275

dissipative, 278
magnetic, 277

multi-gap, 29
Brillouin zone, 5, 81, 114, 148, 166, 168,

171, 173, 174, 195, 281
Brillouin zone spectroscopy, 95, 104,

107
Brownian motion, 201, 205
BZ, see Brillouin zone

c-axis, 74, 101, 105
Casimir-Polder force, 178
chaos, 14, 188
Cherenkov radiation, 43
chirp, 48
cloak of invisibility, 217, 221, 225, 241,

274
CMT, see coupled-mode theory
coupled-mode theory, 78, 84
coupling distance, 24
cross-phase modulation, 30

dark irradiance, 103
data storage

holographic, 114
defect, 12, 130, 146, 156
detuning, 25
diffraction, 4, 7, 56, 79, 145

anomalous, 5, 7, 79, 87
conical, 84
discrete, 13, 24, 29, 147, 154

diffraction length, 154
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diffraction relation, 79
diffusion, 149, 186
dispersion, 4, 56, 145, 147, 241

anomalous, 40, 42, 46, 151
group velocity, 38, 40, 44
second order, 57
third order, 43

dispersion relation, 4, 259, 274, 280, 282
dissipation, 182, 207
DNLS, see Schrödinger equation,

nonlinear, discrete
driving, 181, 206

biharmonic, 185, 210
multifrequency, 212
periodic, 202, 206
quasiperiodic, 185, 188, 207

electromagnetically induced trans-
parency, 55

Fabry-Perot resonator, 232
FB mode, see mode, Floquet-Bloch
Fermi level, 260
fibre

Bragg, 57, 135
multi-core, 48
photonic crystal, 37, 127, 135, 147

hollow core, 37
solid core, 37

fine structure constant, 178
four-wave mixing, 39, 40, 44, 88, 149,

228
FWM, see four-wave mixing

Ginzburg-Landau equation, 89
grating

phase-shifted, 60
Gross-Pitaevskii equation, 166, 171
group velocity, 56, 57, 79, 169, 266, 284
GVD, see dispersion, group velocity

Husimi representation, 190

idler, 41
instability, 264, 269

Jacobian matrix, 222
Josephson effect, 275
Josephson junction, 192, 275

Kramers-Kronig relation, 230
Kronig-Penney model, 81

Landau-Zener tunneling, 31, 83, 166,
170, 173, 174, 196, 200

optical, 33
laser cooling, 165
laser pulse, 38, 145

chirped, 48
laser trapping, 165
lattice, 273

Bessel, 77, 92, 135
fixed, 112
flexible, 112
hexagonal, 63
hybrid, 112
multi-periodic, 114
optical, 22, 165, 182, 195, 199, 206,

208
optically-induced, 74, 86, 101, 102
photonic, 102, 157

nonlinear, 146
random, 102

LC, see liquid crystal
level of dynamics, 119
LHM, see material, left-handed
light

polychromatic, 145
light localization, 150
liquid crystal, 21, 149

nematic, 21

Mach-Zehnder interferometer, 58, 118
material

left-handed, 218, 241, 248, 273, 282
material response

nonlinear, 3, 145, 152, 243
Mathieu function, 81
Maxwell’s equations, 23, 219, 221, 236,

274, 283
metamaterial, 56, 217, 259, 271, 273

magnetic, 217
negative index, 217, 227, 234, 241

mode
defect, 127, 130
Floquet-Bloch, 3, 23, 29, 60, 66, 79,

82, 189
staggered, 155, 169
surface, 158
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modulational instability, 8, 40, 87, 286
discrete, 8

NIM, see metamaterial, negative index
NLC, see liquid crystal, nematic
NLS, see Schrödinger equation,

nonlinear
nonlinearity, 3, 285

cubic, 8, 11
defocusing, 7, 8, 10, 13, 31, 75, 85,

87, 129, 135, 138, 147, 150, 154,
243, 248, 276

focusing, 7, 8, 50, 75, 85, 87, 91, 106,
110, 129, 137, 150, 243, 248, 275,
276

Kerr, 49, 76, 89, 151, 235, 243
Kerr-like, 6
photorefractive, 102
photovoltaic, 149
quadratic, 251

OPA, see optical parametric amplifica-
tion

optical bullet, 66
optical parametric amplification, 218,

228, 230

Pauli matrices, 172
PCF, see fibre, photonic crystal
Peierls-Nabarro potential, 11, 27, 88
permeability, 219, 235, 241, 243, 248,

263, 270, 274
nonlinear, 243

permittivity, 219, 224, 235, 241, 243,
259, 274, 275

negative, 220
nonlinear, 246

phase matching, 25, 41, 228, 231, 251
phase velocity, 228
photonic crystal, 55, 101, 145, 242
photons

entangled, 41
photorefractive crystal, 75, 101, 107,

108, 114
plasma frequency, 243, 246, 253, 274
plasmon, 236, 242, 243
Poincaré section, 186
Poynting vector, 228, 230, 233, 274
propagation constant, 25, 29, 82, 131

quasicrystal, 77, 92, 102
quasimomentum, 168, 175, 176, 195,

200

Rabi frequency, 172
Raman generation

spontaneous, 41
Raman shift, 44, 46, 151
ratchet effect, 181, 188, 201, 205
rectification, 182, 186, 191, 205
reflection

Bragg, 56, 130
total internal, 85, 130, 234

refraction, 145
negative, 56, 218, 241, 242, 252

refractive index, 55
gradient, 31
negative, 227, 273
periodically-modulated, 5, 55, 73,

101, 145
resonance, 209

Bragg, 66
Fano, 13
magnetic, 270

resonator, 234

scattering
Brillouin

stimulated, 42
Raman, 42

Schrödinger equation, 189, 195, 200
nonlinear, 44, 84, 104, 172, 235, 281

discrete, 23, 78
second-harmonic generation, 218, 228,

242, 251
self-phase modulation, 39, 151
separatrix, 186
SHG, see second-harmonic generation
Sisyphus cooling, 209
slow light, 56
slow light switching, 59
slow light tunneling, 65
Snell’s law, 274
solitary wave, 273
soliton, 73, 127, 273

blocker, 13, 89
defect, 137, 139
discrete, 7, 25, 48, 74, 84, 89, 101,

112, 113, 117
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dark, 11, 87
dissipative, 89
intra-site, 84
off-site, 84
on-site, 84
staggered, 7
unstaggered, 7

gap, 7, 29, 58, 101, 116, 232, 233
dipole-mode, 118

lattice, 3, 7, 24, 74, 85
higher order, 10
multi-gap, 29

magnetic, 275
quadratic, 88
spatial, 150, 242, 250
surface, 88
temporal, 249
vector, 9, 88

discrete, 9, 14
vortex, 92

off-site, 93
on-site, 92

white light, 150
soliton compression, 48
soliton existence curve, 89
soliton fission, 42
soliton fusion, 13, 118
soliton mobility, 112
solitons

copropagating, 13, 118
counterpropagating, 13, 118

speed of light, 55, 244
split-ring resonator, 220, 231, 236, 241,

242, 246, 259, 270, 273, 275
SPM, see self-phase modulation
SRR, see split-ring resonator

stability, 264
stability analysis, 285
stability criteria, 267, 270
stabilization, 14
Stark shift, 166, 196
supercontinuum generation, 38, 151
superlattice, 88, 114, 173, 196
superlens effect, 221
superprism effect, 145
superresolution, 218
susceptibility

nonlinear, 39
symmetry, 183
symmetry breaking, 26, 181, 205

Talbot effect, 129
Tamm state, 157
time of flight, 170, 199
TIR, see reflection, total internal

Vakhitov-Kolokolov criterion, 90
vortex

optical, 132

WA, see waveguide array
Wannier-Stark state, 173, 176
wave vector, 228, 274
wave-number, 66
waveguide, 63

bi-directional, 122
waveguide array, 3, 128, 146

nonlinear, 4, 74
waveguide coupler, 59
waveguiding, 104, 107

XPM, see cross-phase modulation
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