
STRUCTURED SURFACES AS
OPTICAL METAMATERIALS

Optical metamaterials are an exciting new field in optical science. A rapidly devel-
oping class of these metamaterials allow the manipulation of volume and surface
electromagnetic waves in desirable ways by suitably structuring the surfaces they
interact with. They have applications in a variety of fields, such as materials science,
photovoltaic technology, imaging and lensing, beam shaping, and lasing.

Describing techniques and applications, this book is ideal for researchers and
professionals working in metamaterials and plasmonics, as well as for those just
entering this exciting new field. It surveys different types of structured surfaces,
their design and fabrication, their unusual optical properties, recent experimental
observations, and their applications. Each chapter is written by an expert in that
area, giving the reader an up-to-date overview of the subject. Both the experimental
and theoretical aspects of each topic are presented.
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Preface

If a metamaterial can be defined as a deliberately structured material that possesses
physical properties that are not possible in naturally occurring materials, then
deliberately structured surfaces that possess desirable optical properties that planar
surfaces do not posses can surely be considered to be optical metamaterials. The
surface structures displaying these properties can be periodic, deterministic but not
periodic, or random.

In recent years interest has arisen in optical science in the study of such surfaces
and the optical phenomena to which they give rise. A wide variety of these phe-
nomena have been predicted theoretically and observed experimentally. They can
be divided roughly into those in which volume electromagnetic waves participate
and those in which surface electromagnetic waves participate. Both types of opti-
cal phenomena and the surface structures that produce them are described in this
volume.

The first several chapters are devoted to optical interactions of volume elec-
tromagnetic waves with structured surfaces. One of the earliest examples of a
structured surface that acts as an optical metamaterial, and the one that today
is perhaps the best known and most widely studied, is a metal film pierced by
a two-dimensional periodic array of holes with subwavelength diameters. It was
shown experimentally by Ebbesen et al. [1] that the transmission of p-polarized
light through this structure can be extraordinarily high at the wavelengths of the
surface plasmon polaritons supported by the film. “Extraordinarily high” in this
context refers to the observation that more than twice as much light is transmitted
as impinges on the holes. This paper stimulated a great deal of theoretical and
experimental work directed at elucidating the mechanism(s) responsible for the
extraordinarily high transmissivity, and at enhancing it even more. In the first chap-
ter, E. Popov and N. Bonod describe the theoretical and experimental studies of this
phenomenon, whose explanation at times has been the subject of some controversy.

xvii
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Not all optical enhancement effects occur in transmission through structured
surfaces. In Chapter 2, T. V. Teperik discusses recent theoretical and experimental
work on the diffraction of light from a two-dimensional periodic lattice of sub-
micron voids (nanopores) situated beneath the surface of a metal in contact with
vacuum. This kind of structure supports both dispersive surface plasmon polaritons
at the vacuum–metal interface, and nondispersive void plasmons associated with
each void. One of the interesting and important consequences of the existence of the
latter type of excitation is the possibility of achieving omnidirectional total absorp-
tion of p- and s-polarized light of a specified wavelength incident on the structure
when the voids are filled with a dielectric medium. Moreover, as a consequence of
Kirchhoff’s law, such a structured surface can also exhibit omnidirectional black-
body emission at a resonant frequency that can be varied by varying the radius of
the dielectric-filled voids. Other interesting optical properties of nanoporous metal
surfaces are also discussed in this chapter.

The reflection of an optical plane wave from, and its transmission through,
yet another type of two-dimensional periodic planar structure is discussed by A.
Alú and N. Engheta in Chapter 3. The structure considered is a dense planar
array of nanoparticles, primarily metallic nanospheres whose diameter and periods
are smaller than the wavelength of the illuminating electromagnetic field, that are
treated in the dipolar approximation. The reflection and transmission spectra display
features arising from the plasmonic resonances of the individual nanoparticles, and
from the two-dimensional periodicity of the structure as a whole. It is shown
that structures of this type offer the possibility of basing highly reflective and/or
frequency-selective surfaces at optical frequencies on them, which can be used for
filtering, absorption, and radiation purposes.

A planar metamaterial is a planar two-dimensional surface of zero thickness that
is periodically structured on the sub-wavelength scale. In practice such a material is
represented by a single periodically patterned metal or dielectric layer that is very
thin compared to the wavelength of the light incident on it, and is often supported
by a transparent substrate. In a comprehensive review in Chapter 4, E. Plum and N.
Zheludev analyze polarization and propagation properties of these metamaterials
on the basis of such general principles as symmetry, Lorentz reciprocity, and
energy conservation. They show that suitably structured planar metamaterials can
display circular birefringence and circular dichroism, linear birefringence and linear
dichroism, as well as asymmetric transmission of circularly polarized light incident
on them from opposite directions.

The ability to control the propagation of light is important for a variety of
applications. In recent years a great interest has arisen in the negative refraction
of light as it passes through the interface between two media. This interest is due
to the fundamental importance of this effect, as well as to possible applications
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of it. For example, a perfect lens can be created on the basis of a medium that
produces negative refraction, and sub-wavelength imaging can also be achieved by
the use of such a medium. Negative refraction has been achieved in two types of
materials. The first type is a metamaterial that possesses simultaneously a negative
dielectric permittivity and a negative magnetic permeability within some frequency
range [2]. Such a medium has a negative-index of refraction, and hence is often
referred to as a negative-index material. The first material with these properties
was fabricated by embedding arrays of split-ring resonators in a lattice of metal
wires [3]. The second type of material is a nonmagnetic metamaterial with a
positive dielectric permittivity. Such a material has a positive index of refraction,
and is often referred to as a positive-index material. Photonic crystals formed from
dielectric components can serve as positive-index materials that display negative
refraction. One of the mechanisms responsible for negative refraction in such
media is the presence in their photonic band structure of a surface of constant
frequency with a negative group velocity in some frequency range [4]. In this case
the Poynting vector of a wave packet is directed opposite to its wave vector, which
leads to negative refraction [5]. The negative group velocity of circularly polarized
electromagnetic waves of one handedness propagating in a gyrotropic medium also
leads to negative refraction in certain frequency ranges [6].

The types of metamaterials just described are bulk materials. However, negative
refraction of volume electromagnetic waves can also be achieved by the use of
suitably structured surfaces. In a recent study, Lu et al. [7] showed that negative
refraction can be achieved when light is incident from a dielectric medium with
a real positive refractive index n > 1 on a periodically corrugated interface with
air, at an angle of incidence θ0 that is greater than the critical angle for total
internal reflection, θ0 > θc = sin−1(1/n). In this situation the zeroth and all positive
orders of the light refracted into the air are suppressed, and by a suitable choice
of the period of the corrugation of the interface only the (−1)-order refracted
beam is nonzero. This mechanism for negative refraction has been confirmed
experimentally. These authors also show that by introducing the periodic surface
not on a homogeneous semi-infinite dielectric medium but on a planar multilayered
medium, the restriction θ0 > θc can be lifted. This prediction has also been verified
experimentally. W. T. Lu and S. Sridhar review this work in Chapter 5, and present
descriptions of several optical devices based on this approach to negative refraction.

A more general type of refraction is described by A. A. Maradudin et al. in
Chapter 6, where it is shown how to design and fabricate a two-dimensional
randomly rough surface that transforms a beam with a specified transverse intensity
distribution into a beam with a different specified intensity distribution on its
transmission through that surface. Such beam shaping is used in a variety of
applications from laser surgery to optical scanning. In this chapter it is also shown
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how to design and fabricate a circularly symmetric but radially random surface that
transforms a plane wave incident on it into a transmitted beam that does not spread
over a finite distance along the symmetry axis of the structure from the surface – a
pseudo-nondiffracting beam. Such beams can be used in precision alignment and
in laser machining, for example.

The preceding examples of structured surfaces that act as optical metamaterials
have all consisted of surfaces that are illuminated by volume electromagnetic
waves. However, the propagation of surface electromagnetic waves, and even their
existence, can be modified in specified desirable ways by structuring in suitable
ways the surfaces on which they propagate. Similarly, novel applications of these
waves can be realized by a suitable structuring of the surfaces supporting them.

For example, it has been known for some time that the planar surface of a
semi-infinite perfect conductor does not support a surface electromagnetic wave.
However, if a perfectly conducting surface is periodically corrugated, as in a clas-
sical grating, or is doubly periodically corrugated, as in a bigrating, it can support
a surface electromagnetic wave. These theoretical predictions have recently been
confirmed experimentally. The interesting properties of these surface waves, which
owe their existence to the structuring of the surfaces on which they propagate, are
described by A. I. Fernández-Domı́nguez et al. in Chapter 7.

As we have noted above, the negative refraction of volume electromagnetic
waves has been studied theoretically and experimentally by many investigators,
and several mechanisms for accomplishing such refraction have been explored,
including the use of a periodically corrugated dielectric surface [7]. Recently,
attention has been directed at the negative refraction of surface plasmon polari-
tons. Shin and Fan [8] proposed a metal–dielectric–metal structure that produces
all-angle negative refraction of a surface plasmon polariton incident on it. The neg-
ative refraction they predicted is not due to the structure producing it possessing
simultaneously a negative dielectric permittivity and a negative magnetic perme-
ability in some frequency range. Instead it arises because each structure supports
a surface plasmon polariton whose dispersion curve possesses a branch with an
isotropic negative group velocity. It has been known for some time that the exis-
tence in a medium of an elementary excitation that possesses a negative group
velocity within some frequency range is a sufficient condition for that medium to
display in that frequency range the negative refraction of light incident on it with
a frequency in that range [4, 5]. The theoretical and experimental aspects of the
negative refraction of a surface plasmon polariton are presented in Chapter 8 by
P. B. Catrysse et al.

There exists a commonly held belief that any randomness in a long one-
dimensional conductor leads to an exponentially small transmission due to the
Anderson localization of all of its eigenstates. However, the actual situation is
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subtler than this. It has been shown [9] that specific long-range correlations in a
scattering potential give rise to perfect electron wave transmission within any given
energy/frequency window. This result, which is known as selective transparency,
was confirmed in experiments on a single-mode waveguide possessing this type
of disorder. The experimental results clearly showed the mobility edges that sepa-
rate regions of perfect transparency from those with localized transport. As F. M.
Izrailev and N. M. Makarov point out in Chapter 9, these results suggested to them
that similar results should be observed in single-mode or multimode planar waveg-
uides with one of their surfaces randomly rough, when the rough surface profile
function has long-range correlations of a specific type. These authors present results
confirming their expectation for both single-mode and multimode waveguides.

A recently introduced class of metamaterials is one consisting of materials
designed in such a way that an object embedded in one of them is cloaked from
observation by electromagnetic waves propagating through the material. Perhaps
the most commonly employed approach to the design of such cloaks is trans-
formation optics [10, 11]. It predicts materials with dielectric permittivities and
magnetic permeabilities that possess coordinate dependencies that deform the path
of electromagnetic waves propagating in them to avoid spatial regions occupied
by the objects to be cloaked. This approach to the cloaking of two- and three-
dimensional objects, and other approaches that have been proposed, are reviewed
by C. C. Davis and I. I. Smolyaninov in Chapter 10. They then show how the
approach to the cloaking of two-dimensional objects in metamaterials designed by
transformation optics can be extended to the design of surface structures that cloak
surface defects from detection by surface plasmon polaritons, and produce the
“trapped rainbow” effect for guided waves, in which a suitably designed plasmonic
waveguide slows down and stops light of different wavelengths at different spatial
points along the waveguide. Experimental results demonstrating both effects are
presented.

In a planar waveguide consisting of a thin oxide layer sandwiched between
an air superstrate and a metallic substrate the electric field intensity of the surface
electromagnetic wave guided by this structure becomes a maximum at the interface
between air and the oxide layer as the waveguide thickness is made extremely thin
but finite. If the oxide layer is patterned with a periodic structure, e.g. by an array
of holes, a standing electromagnetic surface wave can be formed. Such a standing
wave enhances the interaction between a molecule placed on the air–oxide interface
and the electromagnetic field of the surface wave. This enhanced interaction can be
useful in surface-enhanced Raman spectroscopy, in the detection of molecules on
a surface, and as a source for coherent radiation (lasers). These applications, and
the physics underlying them, are described by H. Grebel in Chapter 11.
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The chapters constituting this book present an up-to-date survey of many aspects
of optical effects produced by structured surfaces. Yet, the topics covered in it do
not exhaust the optical phenomena to which suitably structured surfaces can give
rise. Indeed, they are limited only by our imagination. Nevertheless they provide
a good indication of the variety of these phenomena, and the kinds of surfaces
required for their realization, and help to indicate why this emerging field in optical
science will continue to generate more research activity and applications in the
future.

The editorial staff at the Cambridge University Press have my thanks for their
help in producing this book. Special thanks are due to Ms. Irene Pizzie for her
excellent copyediting of each manuscript.

I owe an enormous debt of gratitude to my colleague Dr. Tamara A. Leskova for
the many hours spent in ensuring the correct formatting of the chapters, in helping
to prepare the subject index, and in checking and correcting the references.

Finally, I wish to express my appreciation to the authors for the thought and care
they put into preparing their contributions.

Irvine, California Alexei A. Maradudin
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1

Physics of extraordinary transmission through
subwavelength hole arrays

evgeny popov and nicolas bonod

1.1 A brief reminder of the history of grating anomalies and plasmon
surface waves

The recent history of the research and development around plasmon surface waves
that was initiated by the work published in Nature in 1998 by Ebbesen et al. [1]
looks like a ten-fold compressed version of studies initiated more than a century
ago by Robert Wood with his discovery of anomalies in the efficiency of metallic
diffraction gratings, now known as Wood’s anomalies [2]. In 1902, R. Wood wrote:
“I was astounded to find that under certain conditions, the drop from maximum
illumination to minimum, a drop certainly from 10 to 1, occurred within a range of
wavelengths not greater than the distance between the sodium lines,” an observation
that marked the discovery of grating anomalies.

The first period of the search for their explanation is marked by the attempt of
Lord Rayleigh [3, 4] to link Wood’s anomalies to the redistribution of the energy due
to the passing-off (cut-off) of higher diffraction orders of the grating (transfer from
propagating into evanescent type). As pointed out by Maystre [5], his prediction was
all the more remarkable as the author first ignored the groove frequency of the grat-
ing used by Wood, and thus could not verify this assumption with experimental data.

It took more than 30 years for the second period of experimental and the-
oretical studies to establish another explanation of Wood’s anomalies. In 1941,
Fano [6] was the first to distinguish between two types of anomaly: (i) an edge
anomaly, with a sharp behavior connected with the passing-off of a higher diffrac-
tion order, and (ii) an anomaly, generally consisting of a minimum and a maximum
in the efficiency, which appears in a much broader interval. The second type of
anomaly was described by Fano as a resonance one, linked with the excitation of a
guided (leaky) wave along the grating surface. Hessel and Oliner [7] published a
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pioneering paper that shows for the first time, using a theory based on an analysis
of electromagnetic scattering from a generic model of a periodic structure yielding
a simple closed form solution, that Wood’s anomaly resonances are of two types:
one due to branch point singularities that correspond physically to the onset of a
new propagating spectral order (first indicated by Lord Rayleigh), and the other
due to pole singularities that correspond to the condition of resonance for leaky
surface waves guided by the structure. In addition, Hessel and Oliner developed
a so-called phenomenological approach to the resonant anomalies that permitted
describing the anomaly by a very small number of physical parameters: a pole of
the scattering matrix, a zero of the diffracted amplitudes, and smoothly varying
coefficients.

The third period that continues even today contains studies in three different
directions. First are the grating manufacturers and instrumental optics users for
whom it is strongly advisable to avoid anomalies because of their devastating effects
for spectral instrument performance. Second, the excitation of surface plasmons can
lead to a total absorption of the incident light, a phenomenon predicted and observed
by Hutley and Maystre [8] in a single polarization for classical gratings with one-
dimensional (1D) periodicity, with the magnetic field vector parallel to the groove
direction (TM, transverse magnetic, polarization). By the use of crossed gratings
with two-dimensional periodicity, it is possible to obtain total light absorption
in unpolarized light [9, 10]. In both cases, it was necessary to use gratings with
subwavelength periods that can support only the specular (zeroth) reflected order.
The total light absorption by metallic gratings evidenced that the coupling between
the incident light and metals can be strongly enhanced by the excitation of surface
plasmons, and this effect opened the way to many applications based on the strongly
enhanced light–matter interaction. Third, as the electromagnetic field is localized
in the vicinity of the metallic surface, light absorption leads to very strong optical
intensities at the surface. As any surface presents natural roughness that can excite
the surface wave, the field enhancement obtained under specific conditions was
sufficient to provide a proper physical explanation of the surface enhanced Raman
scattering (SERS) effect [11]. The same effect is also used to enhance otherwise
weak nonlinear phenomena [12]. Biosensors based on surface plasmons are highly
dependent on the refractive index of the surrounding media. Binding or adsorption
of molecules on the metallic surface induces a change of the local refractive index of
the dielectric medium, so that such biosensors can be called refractometric sensors
[13–17].

1.2 Generalities of the surface waves on a single interface

Before discussing in detail the historical development of the studies of enhanced
light transmission through arrays of holes in a metallic screen, let us introduce



Physics of extraordinary transmission through subwavelength hole arrays 3

several notations and basic principles. Let us consider a plane metal–dielectric
interface in the x0z plane that separates two nonmagnetic media with relative
dielectric permittivities ε1 and ε2. In TM (transverse magnetic) polarization and
incidence in the x0y plane, the two components of the electric and magnetic field
that are parallel to the interface, and thus continuous across it, are:

ωμ0Hz = exp(ikxx)
[
exp(−ik1yy) + r exp(ik1yy)

]
,

Ex = k1y

k2
0ε1

exp(ikxx)
[
exp(−ik1yy) − r exp(ik1yy)

] (1.1)

in the cladding and

ωμ0Hz = t exp(ikxx) exp(−ik2yy)

Ex = k2y

k2
0ε2

t exp(ikxx) exp(−ik2yy)
(1.2)

in the substrate. The first terms in the brackets in Eqs. (1.1) correspond to the
incident wave, and the second terms correspond to the reflected wave, with r the
reflection coefficient for the magnetic field amplitude. The transmission coefficient
is denoted by t . Note that kx is the x-component of the incident wavevector, and
that k1y and k2y are the y-components of the wavevectors in the cladding and in the
substrate:

kjy =
√

k2
0εj − k2

x, j = 1, 2 , (1.3)

with k0 the free-space wavenumber. The Fresnel reflection coefficients depend on
the polarization and have the following form for transverse electric (TE) polariza-
tion:

rT E = k1y − k2y

k1y + k2y

, (1.4)

and for TM polarization:

rT M = k1y/ε1 − k2y/ε2

k1y/ε1 + k2y/ε2
. (1.5)

It is well-known that rT E has neither a pole nor a zero. In contrast, when both ε1

and ε2 are real and positive, there is a zero of rT M called the Brewster effect. There
also exists a pole (a zero of the denominator) if one of the media is a dielectric
and the other a metal, a pole that corresponds to a surface wave that can propagate
along the interface. When expressed in terms of the wavevector component parallel
to the interface, the solution has the same form for the Brewster effect and the pole,

kx = k0

√
ε1ε2

ε1 + ε2
, (1.6)
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due to the ambiguity of the choice in Eq. (1.3) of the sign of the square root for
complex arguments. Indeed, combining Eqs. (1.3) and (1.6), we obtain the classical
form of the Brewster angle in the incident medium: tan θ1 = kx/k1y = √

ε2/ε1.
When the second medium is a metal with the real part of ε2 negative and smaller
than −ε1, the real part of kx in Eq. (1.6) is greater than the wavenumber k0

√
ε1 in the

upper medium; i.e., the wave is evanescent in the cladding (and inside the metal),
with increasing distance from the interface, representing a surface wave with a
propagation constant equal to kx , a solution that we shall note as kg, the index
g standing for “guided,” and its normalized propagation constant will be denoted
as αg = kg/k0. As ε2 always has a non-zero imaginary part due to the absorption
losses in the metal, the surface wave decays as it propagates. Quite often the
negative permittivity is due to the collective oscillations of the free electron plasma
in the metal, which gives the names surface plasmon or plasmon surface wave
(PSW) to these surface waves. As an incident electric field creates polarization
states of the plasma, some authors call this wave a surface plasmon polariton
(SPP). In the case of a polar crystal/vacuum interface, the corresponding surface
waves represent surface phonon polaritons. They all have common properties from
an electromagnetic point of view, although the background solid state physics
can be quite different. As they represent a zero of the denominator of rT M , they
are solutions of the homogeneous problem – a scattered field with zero incident
field – and thus represent proper (eigen) modes of the system.

When considering an idealized presentation of a perfectly conducting metal with
ε2 → −∞, the propagation constant in Eq. (1.6) becomes equal to the vacuum
wavenumber, and thus the solution represents a plane wave propagating parallel to
the interface inside the cladding, with its electric field vector perpendicular to the
surface; i.e., the solution is not localized to the surface.

When αg is greater than n1, such a wave cannot be excited with an incident
plane propagating wave. The excitation of the surface wave is possible through
the Kretschmann configuration [13]: the surface plasmon is excited on the lower
surface of a metallic layer having on its upper surface a prism with refractive index
higher than the index of the substrate in order to match the horizontal component
of the incident wavevector to the real part of the PSW wavenumber on the lower
interface. The surface plasmon is then coupled to the incident light by tunneling
through the metallic layer. A surface plasmon can also be excited in a prism
coupler in the Otto configuration. In that case, the metallic film is coated on a glass
substrate. The strength of excitation depends on the distance between the prism and
the metallic layer. In both cases, the reflection of light is strongly attenuated when
the surface plasmon is coupled to the incident wave, and the angle of incidence
where the absorption is maximum depends on the refractive index of the dielectric
medium surrounding the metallic layer.
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Much more efficient coupling occurs when gratings are used with a periodicity
that serves as a generator of wavevectors parallel to the surface. An incident plane
wave generates an infinite number of diffraction orders. In the case of 1D periodicity
in the x-direction with period d, the wavevector component of each diffraction order
m is given by the grating equation:

k1x,m = k1x,0 + mK, K = 2π

d
, (1.7)

where k1x,0 is equal to the x-component of the incident wavevector and m is an
integer. If, for a certain value of m, k1x,m is close to kg, a surface wave can be
excited. A simplified notation leads to the condition of excitation:

Re(αg) = sin θi + m
λ

d
(1.8)

if the upper interface is air (more precisely, a vacuum).
The coupling of the incident wave to the surface wave (mode) is reciprocal;

i.e., the surface wave can be radiated into propagating diffraction orders in the
cladding following Eq. (1.7). This phenomenon is called leakage and the surface
wave becomes a leaky one, which leads to an increase of the imaginary part of αg.
Another important feature that is not obvious from Eq. (1.8) is that the real part
of the propagation constant, as well as the electromagnetic field distribution of the
surface wave characteristics, are modified by the presence of surface corrugation.
Another possibility to excite a PSW realizes itself in SERS, where the surface
roughness scatters the incident plane wave into waves with different kx , and, in
particular, with kx > k0, with part of the incident energy coupled to the PSW.

1.3 Extraordinary transmission and its first explanations

Just as Robert Wood 95 years earlier was astounded by his experimental observa-
tion, Thomas Ebbesen and his collaborators found it quite surprising to observe
that when light tries to pass through an array of holes of subwavelength dimensions
in an optically thick (opaque) metallic sheet (Fig. 1.1(a)), and whose entire area
is much smaller than the total illuminated surface, there are spectral regions with
anomalously high transmission (Fig. 1.1(b)) compared with the predictions of clas-
sical diffraction theory. The surprise was so great that it prevented the publication
of the results for almost ten years from their first observation [18] of the effect in
the NEC laboratories.

As with Wood’s anomalies, it is possible to separate the studies on this extraor-
dinary transmission into three much shorter and more dynamic periods. In 1998, in
contrast to the situation at the start of the twentieth century, electromagnetic theories
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Figure 1.1. (a) Schematic representation and notations of a two-dimensional hole
array perforated in a metallic screen deposited on a glass substrate and illuminated
from above with a linearly polarized incident wave. (b) Spectral dependence of the
transmission of the structure presented in (a), with dx = dz = 0.9 μm, t = 0.2 μm,
and a hole diameter of 0.2 μm [1]. Reprinted with permission from Macmillan
Publishers Ltd. © 1998.

of gratings (1D or 2D) were largely developed. The understanding of the role of the
PSW (and surface waves in general) in grating anomalies, field enhancement, etc.,
was much deeper, and the number of scientists working in the field incomparably
larger. The end of the Cold War moved large human resources from defense micro-
electronics, solid state and high energy physics into optics, creating neologisms like
photonic crystals, photonics, metamaterials, etc., causing, for instance, the change
of Optics News into Optics and Photonic News. In addition, production resources
such as optical photolithography, focused ion-beam and laser-beam writing and
etching, became more available in optics laboratories, which permitted structuring
metals and dielectric media at the nanometer scale and developing photonic devices
able to control light at the subwavelength scale. Already in the original paper [1],
the authors clearly indicated that the transmission enhancement appears at spec-
tral positions closely given by PSW excitation by a bi-periodic structure, but they
were not satisfied by this qualitative explication. The publication of these results
by Ebbesen and coworkers in Nature immediately strongly impacted the newly
enlarged optical community that was closely interested in photonics, to find a new
but similar interest in plasmon surface waves, giving birth to another neologism,
plasmonics.
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Figure 1.2. (a) Slit grating having a one-dimensional periodicity and characterized
by vertical straight channels. (b) Propagation of a TM electromagnetic field inside
the slit with perfectly conducting walls. The electric field vector perpendicular
to the slit walls satisfies the boundary conditions there and the vertical wave
propagates as in free space. (c) Propagating character of the electromagnetic
field inside a narrow slit (w = 40 nm). Reprinted with permission from ref. [22].
© 2000, American Physical Society.

The first numerical results were so close to the experimental enhancement that
doubts were generated whether the transmission increase was so extraordinary. The
main characteristic of this first period (see, for example, refs. [19] and [20]) was
the use by theoreticians of gratings with 1D periodicity made of periodic slits in a
metallic screen (Fig. 1.2(a)). The results were quite nice, with a clearly visible flow
of the electromagnetic field inside the slits, so that some authors started to indicate
the decisive role of another wave – a vertical plasmon wave that propagates inside
the slits of the metal–dielectric interface – that is responsible for the enhanced
transmission, acting simultaneously with the grating-induced resonances of the
horizontally propagating PSW, excited at spectral positions given by Eq. (1.8).
Figure 1.2(b) represents such a vertical wave which propagates inside the slits as in
free space for perfectly conducting walls. For metals with a finite conductivity, this
wave represents a hybrid wave that can propagate in the vertical direction formed
by two coupled plasmons on the slit walls [21].
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The finite conductivity of the metal changes the boundary conditions on the
vertical walls, but even for very narrow slits and a silver grating, the TM electro-
magnetic field preserves its propagating nature, as seen in Fig. 1.2(c).

These idyllic conclusions were common for the first period of about two to three
years following 1998. The main problem was that they were not applicable to the
geometry involved in the initial experiment made by Ebbesen et al., where the
slits were replaced by small holes. In fact, the enhanced transmission through slit
metallic gratings (or gratings having similar grooves) in TM polarization had been
known for quite a long time and resulted in commercially available wire-grating
polarizers (see, for example, [10]). Such gratings (as represented in Fig. 1.2(a))
with subwavelength periods small enough to support just the specular reflected
and transmitted orders, reflect incident light of TE polarization almost completely,
while light of TM polarization can be transmitted almost totally for a proper choice
of grating parameters. The reason lies in the existence of a waveguide mode inside
each slit, which in TM polarization has no cut-off wavelength. Let us consider
a slit, neglecting the absorption losses inside the metal walls. As in the case of
the plane horizontal interface between a lossless metal and a dielectric in TM
polarization, a vertical interface also supports a wave of plane-wave type inside
the dielectric propagating parallel to the interface with a magnetic field vector
parallel to the interface (Fig. 1.2(b)). The same wave can propagate inside slits
with lossless walls, as it satisfies the boundary conditions on both walls, whatever
the width of the slit. The mode is characterized by a real propagation constant
in the vertical direction (neglecting absorption losses, as assumed). On the upper
and lower interfaces (Fig. 1.2(a)), the mode is reflected backwards in the slit,
and is partially transferred into propagating waves in the cladding and in the
substrate, representing a Fabry–Perot resonator. If the system is symmetrical (the
same optical index of the substrate and the cladding, as in wire polarizers), the
Fabry–Perot resonance maxima can reach 100% in transmission. In contrast, in TE
polarization the corresponding slit mode has a cut-off, because the electric field
vector is parallel to the slit walls. The electric field vanishes on both walls and
satisfies the following relation (Fig. 1.3(a)):

Ez ∼ sin
(π

w
x
)

, (1.9)

so that the y-component of its wavevector, given by

qy =
√

k2
0 − π2

w2
= π

√
4

λ2
− 1

w2
, (1.10)

becomes imaginary for small widths w; i.e., the mode is evanescent in the vertical
y-direction if the slit width is smaller than λ/2. Thesmaller the width, the faster the
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Figure 1.3. (a) TE mode inside a slit with perfectly conducting walls. The
x-dependence of Ez is given by the thick line, and it has to vanish on the walls.
(b) A map of the evanescent TE mode inside a subwavelength slit (w = 40 nm)
with silver walls. The slit is so small compared to the wavelength that the sinusoidal
dependence that appears for perfectly conducting walls (a) cannot be distinguished
in the x-dependence. Reprinted with permission from ref. [22]. © 2000, American
Physical Society.

exponential decrease of the mode amplitude inside the slit depth. The narrower the
slit and the thicker the metal layer, the smaller the amount of transmitted energy,
and thus the polarizing properties of the device.

When finite conductivity is taken into account, the cut-off width is slightly
smaller for finitely conducting walls than the λ/2 value obtained from Eq. (1.10).
In addition, very narrow slits absorb an electromagnetic field, and the transverse
variation of the field becomes very weak, as can be observed in Fig. 1.3(b) for
silver walls and a 40 nm slit width.

In contrast to what happens with slits, holes with a finite width in both directions
of their cross-section do not support modes without cut-off; i.e., below a given
width of the hole, the field of the modes inside is always evanescently decreasing.
Although obvious, these considerations were not taken into account in the first
modelizations, when the hole array was replaced by periodic slits. However, these
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Figure 1.4. Computed spectral dependence of the transmission intensity of a
square-hole array in a 200 nm thick silver screen deposited on a glass sub-
strate. Reprinted with permission from ref. [22]. © 2000, American Physical
Society.

first works were relatively easily carried out from theoretical and computational
points of view, and the large number of studies based on this assumption attracted
substantial interest to metallic gratings and surface plasmons.

1.4 The role of the evanescent mode

The second period of the studies of extraordinary transmission started with the first
rigorous electromagnetic modeling of the array of holes with finite subwavelength
cross-section dimensions [22]. The numerical results are similar to the experimental
observations (Fig. 1.4).

The grating period in both directions is the same and equal to 0.9 μm, the
cladding is air, and the substrate is glass. The metal is silver 0.2 μm thick, and
the holes have a square cross-section with a width of 0.25 μm, much below the
cut-off dimensions for the spectral interval under study. Two peaks are clearly
distinguished, the shorter-wavelength one, lying around 1 μm, corresponds to the
excitation of PSW on the upper air–silver interface. The long-wavelength peak is
due to the excitation of PSW on the lower glass–silver interface.

For an infinitely conducting metal, the fundamental TE mode of the hollow
square waveguide formed inside each hole has a propagation constant of the order
of qy ≈ i11 μm−1, which corresponds to a decay constant in the y-direction, γ =
Im(qy)/k0 ≈ 2.5. When the finite conductivity of the metal is taken into account,
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Figure 1.5. Zero-order transmittivity as a function of the silver layer thickness.
Reprinted with permission from ref. [23]. © 2002, IOP publishing.

the electromagnetic field of the mode penetrates inside the hole walls, so that its
propagation constant changes, and the decay constant becomes smaller and equal
to γ 	 2.1 at a wavelength of 1.4 μm, a value more than four times smaller than the
imaginary part of the refractive index of the silver film, nAg = 0.1 + i8.94, in the
IR. When compared to the direct tunneling through the metal layer, with a decay
constant given by Im(nAg), the decay of the fundamental mode, even though it
has an exponentially decreasing amplitude, within the film thickness of 0.2 μm is
20 000 times smaller than without the perforations.

Numerical simulations can easily confirm these conclusions, because one can
smoothly vary the layer thickness quite easily numerically. Figure 1.5 presents the
transmission under the same conditions (λ = 1.38 μm) as a function of the metal
layer thickness. As can be observed, the dependence for h < 0.6 μm is linear on a
semi-logarithmic scale, and the slope close to 20 μm−1 corresponds quite well to
2qy because the intensity decreases as the square of the amplitude.

In parallel with the rigorous electromagnetic study of the enhanced transmission
through hole arrays, several authors have presented approximate models that not
only provide an easier physical understanding of the various interactions, but also
in some cases predicted new phenomena. In the early 2000s, a simple model that we
describe below was developed due to the understanding of the role of the evanescent
waveguide mode inside the hole [24, 25]. Let us consider an interface between air
and a perforated metal with infinite thickness, in order to eliminate the role of the
lower interface. When the array period(s) is small enough to avoid propagation
of higher diffracted orders in the cladding, and when the hole cross-section of
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width w is small in comparison with the period and thus with the wavelength,
the predominant fields in TM incident polarization are the incident and specularly
reflected fields, as given in Eqs. (1.1). Inside the rectangular hole with perfectly
conducting walls, the transverse electric fundamental mode is parallel to the x-axis,
it does not depend on z, and it must vanish at x = 0 and w, as in Eq. (1.9), but
permuting the z- and x-axes, because the TE mode with electric field oriented in
the z-direction cannot be excited with an incident electric field oriented in the x0y

plane. If the amplitude of Hz is denoted by τ , the x- and z-components are given
by

ωμ0Hz = τe−iqyy sin
(πz

w

)
,

Ex =
{

τ
qy

e−iqyy sin
(

πz
w

)
, 0 ≤ x, z ≤ w

0, x, z �∈ [0, w],
(1.11)

so that the boundary conditions require that the tangential electric field components
vanish on the walls at x = 0 and w, and at z = 0 and w.

The requirement of the continuity of the tangential (x and z) components of the
electromagnetic field at y = 0 links the system of Eqs. (1.1) and (1.11) and yields
two equations:

eikxx(1 + r) = τ sin
πz

w
, (1.12)

ky

k2
0

eikxx(1 − r) =
{

τ
qy

sin πz
w

, x, z ∈ [0, w]

0, x, z �∈ [0, w].
(1.13)

The first equation must be satisfied within the aperture opening, because the
magnetic field inside the metal is not known. The basic modal functions of the
modes in the apertures are sin(mπz/w) and cos(pπx/w), where m and p are
integers. If we multiply Eq. (1.12) by sin(πz/w) and integrate over the aperture
with respect to z and x, the result is as follows

2

π
(1 + r)

(
sin

(
kxw

2

)/(
kxw

2

))
= τ

2
. (1.14)

The second boundary condition must be valid within the entire cell, with basic
modal functions in x and y being the exponential functions. By multiplying the
equation by exp(−ikxx) and integrating from 0 to d in x and z, we obtain a similar
relation:

ky

k2
0

d2(1 − r) = τ

qy

2a2

π

(
sin

(
kxw

2

)/(
kxw

2

))
. (1.15)
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kx/k0

r

Figure 1.6. Reflection coefficient r from Eq. (1.16) as a function of the x-
component of the incident wave wavevector kx/k0.

It is straightforward to obtain the reflection coefficient, which has a form similar
to Eq. (1.5):

r = kyqy/k2
0 − I 2

kyqy/k2
0 + I 2

, (1.16)

where

I = w

d

2
√

2

π

(
sin

(
kxw

2

)/(
kxw

2

))

represents the coupling integral between the electromagnetic field in the cladding
and in the apertures. Assuming that the aperture size is much smaller than the
wavelength, the dependence of I on the angle of incidence can be neglected. In the
lossless case and for evanescent modes (imaginary qy), the modulus of r is equal
to unity, as for a planar metal–air interface without losses.

The situation can change if we consider incidence with kx > k0, as is the case
with the PSW. With ky becoming imaginary, it is possible to find a zero of the
denominator of r in Eq. (1.16) representing also a resonance of the mode ampli-
tude inside the aperture, because the pole of the reflection coefficient is a pole in
transmission too. It must be stressed that this resonance can be excited only with
evanescent incident waves, as observed in Fig. 1.6, where the reflection coeffi-
cient r is plotted as a function of kx/k0, with d = 1 μm, w = 0.2 μm, wavelength
λ = 1.3 μm, and the refractive index inside the aperture n = 1. A sharp peak can be
observed for an evanescent incident wave. The periodicity of the array can provide
such waves through the grating equation, and a PSW excited by the grating will
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Figure 1.7. Pole of the reflection coefficient given by Eq. (1.16) as a function of
the aperture width w. Period d = 1 μm, wavelength λ = 1.3 μm.

serve as a strong source to excite the evanescent mode resonantly through the zero
of the denominator of Eq. (1.16).

Let us see, from the example provided by the original paper [1], how this
could happen. If the ratio between the wavelength and the hole side dimensions is
approximately equal to 1.4/0.2 = 7, the value qy/k0 is equal to i3.35, as given by
Eq. (1.10). The normalized propagation constant of a PSW on a highly conducting
surface is slightly greater than unity, kx/k0 	 1.01, whereas ky/k0 	 0.01. The
product kyqy/k2

0 	 −0.034. With a/d = 0.2, the value of I 2 in Eq. (1.16) is close
to 0.032, so that r = 33, indicating the existence of a resonance.

In the case of a single aperture, light can be coupled to a localized surface
plasmon, as discussed in Section 1.6, that is able to excite further a waveguide
mode. However, this effect is much weaker than when using the perodicity of the
hole array.

Of course, the model discussed here is quite simplified. The interaction between
the PSW and the evanescent mode changes the PSW propagation constant, as can
be observed in Fig. 1.7 for the case of the perfectly conducting model represented
by Eq. (1.16). A larger aperture width leads to a stronger interaction between the
mode and the incident wave, and a shift of the resonance to longer wavevectors is
observed, with a cut-off width equal to λ/2, above which qy becomes real.

In practice, the mode properties are also modified by the finite conductivity of
the metal walls, and its cut-off wavelength is increased whereas its cut-off hole
dimension is reduced. In addition, higher diffraction orders will play a role in the
grating scattering. However, such a model serves well to unveil the physics of the
process. Another, more sophisticated, model is proposed in ref. [26] based on the
assumption of small aperture diameter. It shows that the amplitude of the electric
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Figure 1.8. Field enhancement inside a circular aperture made in an aluminum
film with thickness 220 nm deposited on a glass substrate and filled with a solvent
with refractive index of 1.4, with incidence from the substrate side and wavelength
488 nm. (a) Mean electric field intensity IS at a depth of z = −5 nm inside the
aperture as a function of aperture radius. (b) Real and imaginary parts of the
normalized propagation constant of the mode inside the hollow metallic waveguide
inside the aperture. Reprinted with permission from ref. [27]. © 2006, Optical
Society of America.

field inside small apertures grows linearly with the aperture diameter. For larger
apertures this approximation is no longer valid, but rigorous theoretical calculations
and fluorescence measurements show that a maximum of the electromagnetic field
intensity is obtained when the hole dimensions are just below the cut-off of the
fundamental mode. This can be understood by taking into account the fact that the
real part of the propagation constant qy of the waveguide mode at its cut-off is
almost zero, as if the field were accumulated at the entrance of the aperture. As a
consequence, the field inside the single aperture can be enhanced several times when
compared to its value in free space, which leads to enhanced transmission through
the waveguide mode inside the hole. An example well confirmed by fluorescent
measurements [27] is given in Fig. 1.8(a), which presents the mean electric field
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intensity IS as measured just below the aperture entrance and defined as

IS = 1

πR2

∫
S

|E|2 dS , (1.17)

where the integral is taken over the cross-section of the aperture. For small radii
its dependence on the radius is quadratic, and a seven-fold enhancement of it when
compared to the field inside the solvent without apertures is observed close to the
cut-off of the fundamental mode. Figure 1.8(b) presents the real and imaginary
parts of the normalized mode constant γ = qy/k0.

1.5 Enhanced Fabry–Perot resonances through evanescent modes

A direct consequence of the fact that a plasmon surface wave propagating on the
horizontal surface can resonantly interact with the vertical evanescent mode inside
a hole is discussed in ref. [24]. If the model presented in the preceding section
is extended to a layer with two metallic surfaces, a perforated layer, there will
be additional reflection of the mode when it reaches the lower surface. Multiple
reflection leads to Fabry–Perot resonances, which, however, are quite weak when
evanescent waves are used instead of propagating waves. Indeed, a textbook formula
is applicable to both propagating and evanescent modes. The transmission of a
Fabry–Perot resonator is proportional to a denominator that contains the mode
propagation constant qy , the layer thickness h (waveguide length), and the product
of the reflection coefficients of the mode on the upper (r+) and lower (r−) surfaces:

t ∼ 1

1 − r+r− exp(2iqyh)
. (1.18)

The usual case of evanescent waves with imaginary qy cannot ensure strong
resonances because the reflection coefficients are smaller than unity in modulus.
However, this is not the case discussed in the preceding section. We have observed
the possibility of having a ten-fold or more increase in the coefficient of reflection
r , although we have considered the reflection from the cladding into the cladding,
rather than from inside the hole backwards to the hole. A similar analysis shows that
r+ and r− are enhanced in a similar manner to compensate the exponential decay
due to exp(2iqyh), leading to enhanced transmission through evanescent-wave
Fabry–Perot resonances.

1.6 What resonance predominates?

As shown in Sections 1.4 and 1.5, the evanescent fundamental TE mode plays
a crucial role in the transmission mechanism. However, this role alone cannot
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explain the sharp spectral and angular variations of the transmission, because its
wavevector component kx/k0 is much larger than unity. Indeed, in the example
considered at the end of Section 1.4, the propagation constant in the vertical
direction, qy/k0 = i3.35, corresponds to a value of kx/k0 = 3.5 in air or 3.67 in
glass. Such a mode is quite difficult to excite by an incident plane wave, even with
the help of the grating periodicity.

On the other hand, we have observed in Section 1.4 that the interaction between
the incident plane wave and the fundamental TE11 mode inside each aperture can
have a resonance close to kx/k0 slightly greater than unity (in air), provided that
both the incident wave and the mode are evanescent. On the other hand, the exci-
tation of the PSW on a plane surface also requires evanescent incident fields with
kx/k0 > 1. A natural question that arises is whether there is a difference between
these resonances, or whether they represent two physical interpretations of the
same resonance. If there is a real difference obtained through a complete diffrac-
tion analysis (and not by a simplified model), this means that the excitation of the
evanescent mode on the aperture opening would create a new surface resonance on
the interface between the perforated metal and the dielectric cladding, in addition
to the PSW. A resonance of the reflection coefficient means the existence of a scat-
tered field without the existence of an incident one. In addition, as far as kx/k0 > 1,
this diffracted field will be evanescent in the cladding, i.e. localized close to the
interface, in the same manner as for the PSW. As a consequence of this hypoth-
esis, it would be possible to excite both resonances with the help of the grating
periodicity, and the excitation would occur, in general, at different wavelength and
angular conditions. However, both experimental and numerical results do not show
such a double resonance. Another possibility is that the two resonances exist, and
that they represent different phenomena, but the values of kx at which they appear
coincide, as for the case of phase-assisted second-harmonic generation in periodi-
cally corrugated (or poled) dielectric waveguides with waveguide modes excited at
both the fundamental and the harmonic frequencies [28]. However, if such a case
appears, the resonant response will be observed as a double Lorentzian (with two
identical poles). Moreover, a rigorous numerical analysis carried out in ref. [23]
shows that the transmission intensity T of the structure analyzed experimentally in
ref. [1] can be extremely well approximated by a single pole of the transmission
amplitude:

T =
∣∣∣∣ kx − kz

x

kx − k
p
x

∣∣∣∣
2

∼
∣∣∣∣ λ − λz

λ − λp

∣∣∣∣
2

, (1.19)

where p stands for a pole, and z for zero.
Although, in general, there are four surface waves excited in normal incidence,

those propagating in the +x-, −x-, +z-, and −z-directions, they are all coupled
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Figure 1.9. Comparison between the result of the rigorous electromagnetic analy-
sis (dots) and the approximation given by Eq. (1.19) with λp = 1.3878 + i0.002
and λz = 1.3689 + i0.00048. Values of the transmission in normal incidence
through a perforated silver screen of 200 nm thickness deposited on a glass sub-
strate. Hole size is 250 × 250 nm. Reprinted with permission from ref. [23].
© 2002, IOP publishing.

by the grating to form four different standing waves, symmetric or antisymmetric
with respect to the origin. There is only one solution symmetric with respect to the
change of sign of the z-axis and antisymmetric with respect to the sign of the x-axis,
having the same symmetry as the incident wave is polarized along the x-axis. The
other three solutions cannot be excited in normal incidence by an incident plane
wave.

The Lorentzian resonance response is deformed by the existence of a zero, a
fact that is well known in grating theories, and is necessary in order to limit the
value of T and to compensate the pole when the modulation due to the grating
(the hole dimensions in our case) tends to zero, because no anomaly is observed
without the grating. As demonstrated for classical one-dimensional gratings [29],
the zero λz can become real for a certain value of the grating depth, which leads to
a total light absorption in TM polarization. The comparison between the numerical
values obtained by rigorous electromagnetic theory and the results obtained using
Eq. (1.19) are given in Fig. 1.9, which clearly demonstrates the existence of only a
single pole (the square arises because it is the intensity that is being calculated).

An additional argument (presented in ref. [23]) that the resonance responsible
for the enhanced transmission is due to the PSW is its trajectory in the complex
λ-plane when the aperture is shrunk to zero. The resonant wavelength gradually
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Figure 1.10. The real and imaginary parts of the pole in the transmission amplitude
for different hole widths w. The structure is described in Fig. 1.9. Reprinted with
permission from ref. [23]. © 2002, IOP publishing.

tends to the resonant wavelength of the PSW on the unperturbed plane metal–glass
interface, as observed in Fig. 1.10, in the same manner as the pole of Eq.(1.16) for
a perfectly conducting metal tends towards the wavenumber of the cladding; see
Fig. 1.7.

The presence of a hole modifies the constant of propagation of the PSW due to
scattering, to the radiation losses through the grating periodicity, and to the inter-
action with the waveguide evanescent mode. That is the reason why the analytical
formula given by Eq. (1.6) for the complex value of λp in the case of an unperturbed
flat surface is no longer valid in the case of a periodic array of holes. The red-shift
of the pole explains why the transmission maximum appears at longer wavelengths
than those predicted by Eq. (1.6). The zero λz (see the caption of Fig. 1.9) is almost
real, leading to the almost zero transmission when λ = λz observed in Fig. 1.4. In
addition, the real part of λz almost coincides with the initial position of the pole,
when w = 0 (Fig. 1.10), which explains why the transmission drops to zero at a
wavelength corresponding to PSW excitation at a flat metallic surface without holes,
a fact that has put in question the role of the PSW in the enhanced transmission. The
correct explanation comes from a proper understanding of the red-shift of the pole
observed in Fig. 1.10, presenting Fano-type anomalies in transmission [30, 31].

A direct proof that the resonance of the mode reflection coefficient, discussed
in Section 1.4 as a consequence of Eq. (1.16), is the same as the PSW on the
perforated structure, can be found using a more sophisticated model, which ana-
lyzes the scattering by a single aperture in a real metal in the approximation of a
very small aperture diameter. The excitation of the waveguide mode in such small
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Figure 1.11. Spatial spectrum of the vertical component of the electric field on
the entrance surface of a single aperture. It is zero in the vertical direction, and
presents a resonance anomaly corresponding to a PSW. Reprinted with permission
from ref. [33]. © 2005, Optical Society of America.

cross-section waveguides can be represented by a single magnetic dipole, as in
Bethe’s paper [32], but buried inside the metallic layer [26]. Its coupling to the out-
side radiation is achieved through the classical Fresnel coefficients of transmission
and reflection at the dielectric–metal interface, which presents a pole, known as the
PSW. When the hole diameter is larger, the coupling is stronger, as expected, and
one always finds in the spatial spectrum of the scattered light the signature of the
PSW pole, as observed in Fig. 1.11 for the kx decomposition of Ey on the entrance
surface of a circular aperture (250 nm diameter) in a silver sheet (thickness 200
nm) illuminated normally with TM polarized light (wavelength 500 nm) from air.
The position of the resonance anomaly coincides with the normalized constant of
propagation of the PSW on the planar surface. When a hole array is considered,
this spatial component can be enhanced by the periodicity under the conditions
given by the grating equation, Eq. (1.8).

1.7 Nonplasmonic contributions

The role of PSW in producing the minima and maxima observed in the spectral fea-
tures of the transmission through subwavelength holes is now clearly established.
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However, the question remains as to whether the PSW is the only propagating
wave along the metallic surface launched by subwavelength holes. This question
has opened the third period of research since the discovery of Ebbesen and co-
workers. Let us recall that the first period (1998–2000) was dedicated to the study
of enhanced transmission though subwavelength slits. The second period (2000–
2004) was marked by the development of rigorous numerical methods able to tackle
arrays of subwavelength apertures. Numerical and experimental studies permitted
understanding the role of the shape and size of a hole. This period corresponds also
to the emergence of the complementary thematic of light diffraction by single sub-
wavelength apertures and its applications in biosensing, single-molecule analysis,
membrane analysis, etc.

During the entire decade, however, there have always been studies that contested
the role of the surface plasmon in the enhanced transmission (see, for example, the
discussion after Fig. 1.10). In 2004, another model, called the composite diffracted
evanescent wave (CDEW) model, was introduced into the theory of light diffraction
by subwavelength indentations [34]. The CDEW model predicts that the summation
of all diffracted inhomogeneous waves by a subwavelength indentation results in
a propagating wave along the metallic surface, with a propagation constant k0 and
an amplitude decaying with increasing distance from an indentation as 1/r . This
paper attempted to explain the minima and maxima observed in the transmission
of light by an array of subwavelength holes with the use of the CDEW model
only and by fully neglecting the role of the PSW. It is now established that PSWs
are a key component of the mechanism of enhanced transmission. However, this
study attracted the attention of researchers to other kinds of electromagnetic waves
propagating close to the surface. The fundamental problem that arose was the
determination of the properties of waves launched by a subwavelength indentation
when illuminated by an incident plane wave. It was then necessary to simplify
considerably the device under study to determine quantitatively the properties
of this wave. Gay et al. experimentally studied the interference between light
transmitted through a slit and waves launched by a neighboring nanoslit as a
function of the distance between the two neighboring slits [35]. They explained
their result with the use of the CDEW model, but rapidly this formalism has been
strongly debated [36, 37]. This model has been therefore replaced by the so-called
quasi-cylindrical wave (QCW) model.

The existence of this wave is better understood on the basis of the experiment
made by Aigouy et al. [38]. In 2007, they studied experimentally the near field
distribution created by a slit-doublet on a metallic sheet. When the slits were illu-
minated in TM polarization, they observed the presence of an interference pattern
between the two slits generated by two counter-propagating waves (Fig. 1.12).
The interference pattern has been thoroughly studied at different distances from
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Figure 1.12. Near-field interference observed by the fluorescence of erbium
molecules. Thin line with dots: fluorescence signal proportional to |E|4. The
two slits represented by the arrows are separated by a distance of 10.44 μm and
are illuminated in TM polarization at the wavelength λ = 974.32 nm. Solid thick
line: fitted curve obtained with PSW and QCW models. The insets shows the
fitted curve with the PSW model only in the central zone where the QCW can
be neglected. Reprinted with the permission from ref. [38]. © 2007, American
Physical Society.

the slit, and Aigouy et al. confirmed in the near field the observations made by
Gay et al. in the far field: a rapid decrease of the amplitude of the waves close
to the slits followed by a persistent wave farther from the slit, i.e. in the central
part of the doublet. The fringes observed in the central part are well fitted by the
interference of two counter-propagating PSWs only. The persistent surface wave
was then identified with PSWs and the rapidly decaying wave was attributed to
QCWs (see the inset in Fig. 1.12). Both waves propagate on the metallic surface,
the PSW with a propagation constant kSP slightly higher than k0, and the QCW
with a propagation constant equal to k0. Thorough experimental, numerical, and
theoretical studies revealed that QCWs present two decay rates with respect to the
distance ρ from the line source along the surface, different from the decay rate
obtained with the CDEW model. It has been established that the QCW decays
as ρ−1/2 and ρ−3/2. An analytical expression of the QCW can be obtained in the
case of a line source located at a metal–dielectric interface. It is the product of an
Erf-like envelope function of ρ, and a term proportional to ρ−3/2 with a wavevec-
tor parallel to the interface. The two decay rates observed experimentally are the
two asymptotes of the Erf-like envelope: very close to the slit the decay rate of
the QCW is ρ−1/2; farther away, the envelope vanishes and the rate tends towards
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ρ−3/2 [39]. A numerical study [33] made in 2005 of light diffracted by a single
circular aperture on a metallic sheet in a direction parallel to the surface had already
shown that the electric field decay as a function of the distance ρ from the hole is
determined mainly by two contributions: the PSW and a spherical wave decaying as
r−1, which represents the field radiated by a single dipole, as predicted by Bethe’s
model. Along the surface, the propagation constant of this spherical wave is equal
to the free space wavevector k0 (in vacuum or air). If we consider a slit, or a chain
of holes, as discussed in the next paragraph, they radiate like a line antenna, with
an electric field decreasing as ρ−1/2, a fact that provides a simple explanation of
the QCW.

In 2008, Liu and Lalanne published a microscopic analysis of the enhanced
light transmission based on the scattering of PSW on an array of subwavelength
holes [40]. This analysis permitted tackling separately the contribution of the
PSW and quantifying its role in the energy transmitted. Microscopic here means
that the holes are considered individually as single scatterers. More precisely, the
authors considered a one-dimensional linear chain of holes, and they listed the
elementary scattering coefficients when the PSWs interact with the chain: PSWs
can be reflected (with reflection coefficient P ), transmitted (transmission coefficient
T ) on the interface plane, or they can be scattered into outgoing plane waves and
modes in the holes (with coefficient α). The coefficient of reflection RA of the
Bloch mode supported by the array on the front surface of the holes can be written
in the case of normal incidence as

RA = R + 2α2

u−1 − (P + T )
, (1.20)

where R is the coefficient of reflection of the Bloch mode of a single hole chain,
u = exp(ikspd), and d is the distance between the hole chains. This analytical
expression takes into account the excitation of a PSW by a linear chain of holes
and the scattering of this PSW by the infinity of other linear chains of holes.
In addition, the authors of ref. [40] were able to account for the contribution
of the QCW wave. Not surprisingly, in conditions close to those of the initial
experiment, this model reveals all the spectral features of light transmission by a
2D array of subwavelength holes. Maxima and minima are well represented, and
a comparison with a rigorous numerical study confirms that their frequencies are
well predicted by the pure PSW model. However, this comparison also reveals that
this model does not predict the exact portion of light transmitted. More precisely,
the pure PSW model predicts about half of the total light transmitted. This fact
demonstrates that PSWs are fully involved in the transmission of light through 2D
arrays of subwavelength holes but that QCWs are responsible for the other half
of the light energy transmitted. The amount of light energy transmitted by PSWs
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diminishes for lower frequencies, where QCWs are predominant. Liu and Lalanne
extracted the PSW contribution from the total field and they represented the real
part of the y-component of the magnetic field along the x-axis. They confirmed the
fact that the field scattered by subwavelength holes is not a pure PSW mode but
that it also contains a QCW contribution. The two waves are excited with a very
moderate phase difference, their phase velocities ksp and k0 are very close, and
their contributions interfere constructively. The radiative decay of the QCW scales
as ρ−1/2, so that it is much faster than the PSW (as observed on the slit model in
Fig. 1.12). However, close to the linear chain, the QCW contributes equally with
the PSW to the total light transmitted.

1.8 Conclusions

We are now able to understand quite well the phenomenon of enhanced light trans-
mission through an array of subwavelength apertures in a metallic screen. The
scattering of the incident field on the aperture boundaries creates waves with a
variety of wavevector directions, in particular the surface plasmon along the upper
boundary. When the array periodicity corresponds to the resonant conditions of
PSW excitation, as given by the grating equation, the PSW wave is enhanced
significantly, which creates a local field enhancement on the metal surface. This
enhancement leads to a resonant excitation of the fundamental waveguide mode
inside each aperture, due to the fact that the transmission coefficient for its exci-
tation has a resonance corresponding to the PSW on the interface. Of course, the
propagation constant of the PSW is modified by the interaction, which can be used
to create similar surface waves in the microwave domain. At normal incidence, the
PSW forms a standing wave on the entrance interface, so that, at both sides of each
aperture, the electromagnetic energy flows towards that opening, somehow as if the
incident intensity is gathered inside the aperture, as seen in Fig. 1.13. In addition
to the PSW, each hole generates a radiated field, a part of which propagates in
grazing directions to the surface, according to refs. [39] and [40], and can reach
the neighboring holes to enhance the field there.

The fact that the fundamental mode is resonantly enhanced in this process
explains why the field transmitted by the mode is not negligible at the exit side,
even if the mode is evanescent for a small hole cross-section. At the exit side,
the mode excites both the PSW and a radiated field, and the radiation from each
hole interferes to form the transmitted zeroth diffracted order. If the system is
symmetrical with identical substrate and cladding, the resonant conditions for
excitation of the PSW on the entry interface are the same as for a resonant emission
of the PSW on the exit interface into the zeroth transmission order, which enhances
the transmission even more.
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Figure 1.13. Schematic view of the Poynting vector flow on the upper surface and
in the vicinity of the hole entrance.

In the case when the periodicity is not suitable to excite the PSW on the entry
interface, another resonance can be observed when a PSW is excited on the lower
interface. The waveguide mode inside the holes acts to enhance the tunneling of
light from the entry to the exit surface. When the grating period is suitably chosen,
the periodicity can add in phase the PSW generated on each exit aperture, enhancing
the PSW. In addition, the same periodicity also enhances the radiation of the PSW
into the substrate, which explains the existence of the transmission peak close to
1.4 μm in the experiment of Ebbesen et al. Another way of explaining this case is to
use the reciprocity theorem, which implies in particular that the transmission into
the substrate when light is incident from the cladding is the same in the reciprocal
case of transmission into the cladding when light is incident from the substrate
side. The latter provides suitable conditions for the excitation of the PSW on the
entry side with all the resulting transmission enhancement, as explained above.

Other factors can modify the system response and contribute to its quantitative
understanding. For example, the hole form modifies the polarization response. If
the dimensions are close to the cut-off, the field inside the aperture is enhanced as
the mode propagation constant in the vertical direction approaches zero.
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Resonant optical properties of nanoporous
metal surfaces
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2.1 Introduction

The structuring of a metal at nanoscale dimensions results in novel optical prop-
erties that are not present for bulk metals. Metallic photonic crystals, metal-based
structures with periodicities on the scale of the wavelength of light, have attracted
particular attention due to their unique optical properties. Among the approaches
taken to prepare a three-dimensional photonic crystal is to take advantage of the
self-assembly of spheres from a colloidal solution. Spherical colloidal particles of
polymers or silica with diameters ranging from 20 nm up to 1 μm and larger, with
low coefficients of variation in their diameter, are readily available. The methods of
producing monodispersive colloids are well discussed in ref. [1]. The importance
and interest of these particles lies in the fact that it is possible to induce them into
a close-packed structure analogous to an ordinary close-packed crystal. There are
several methods for self-assembly of colloidal spheres, in particular, sedimentation,
evaporation, and electrophoresis. These close-packed arrays of uniform particles
offer an attractive and, in principle, simple means to template the three-dimensional
structure of a variety of materials.

Generally, self-assembly is restricted to the formation of close-packed two-
dimensional or three-dimensional assemblies of colloidal particles. However, the
low cost and availability of a relatively easy protocol to obtain this type of pho-
tonic crystals, artificial opals, make the self-assembly technique very attractive
and widely used. The next step in the development of this technique to prepare
metallic photonic crystal is to infiltrate the sample with some appropriate material,
removing the original structure, and obtaining in this way inverted opals. The first
results obtained concerning metallic inverse opal structures were reported by Jiang
et al. [2] and by Velev et al. [3]. Jiang et al. used nanocrystal catalyzed electroless
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Figure 2.1. Typical scanning electron microscope images of a gold sample for
different thicknesses; taken from ref. [11].

deposition to infiltrate the structures with metal [2, 4]. Velev et al. [3, 5] infil-
trated the structure with colloidal gold particles. Subsequent work has improved
the quality of metal porous structures by the use of electrochemical deposition
through a colloidal template [6–8], while the first example of the use of elec-
trochemical deposition was demonstrated by Braun and Wiltzius by infiltrating
semiconductors such as CdSe and CdS through a colloidal template [9]. It has
been shown that electrochemical deposition has a number of significant advantages
for fabricating high-quality metal inverse opals with complete control over sample
thickness, surface topography, and the structural openness (metal filling fraction)
[6–8]. Metal structures made from gold, silver, copper, platinum, palladium, and
nickel have been produced. Zhou and Zhao provided an outstanding overview of the
self-assembly approaches to the fabrication of three-dimensional porous photonic
materials [10], and supplied this work with a large list of references.

In this chapter we discuss the optical properties of nanoporous metal structures.
Among the metals, gold is a very promising material due to its strong plasmon
properties and chemical inactivity. As a pictorial example of a metal nanostructure
we consider a gold nanoporous surface. Nevertheless, the results discussed here
can be generalized to other noble metals. The experimental samples of nanoporous
gold we will consider were prepared using a nanoscale casting technique with
electrochemical deposition of metal through a self-assembled latex template. The
templates were produced using a capillary force method, by which the latex spheres
were initially deposited on a gold-coated glass slide from a colloidal solution,
allowing a monolayer of well ordered spheres to be produced. Electrodeposition,
while measuring the total charge passed, allows the accurate growth of a metal
to a required thickness t . The resulting metallic mesh reflects the order of the
self-assembled close-packed template, allowing convenient control of the pore
diameters and regularity of the array. After deposition the template is dissolved,
leaving a free-standing structure. This allows the production of shallow, well-
spaced dishes as well as nearly encapsulated spherical voids on a single sample.
Figure 2.1 shows scanning electron microscope images taken from [11] for a gold
sample with a void diameter of 600 nm at three normalized thicknesses t = 0.2d,
0.5d, and 0.9d, where d is the void diameter. Optical and electron microscopy
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shows that the resulting surfaces are smooth on the sub-10 nm scale. The sub-3%
size dispersion of the latex spheres results in an identical size dispersion of voids,
while detailed diffraction measurements confirm the single-domain nature of the
samples. A detailed description of the technique can be found in refs. [7] and [12].

2.2 Resonant optical properties of metal surfaces with spherical pores

The optical properties of metallic gratings (in other words one-dimensional metallic
photonic crystals) have been the subject of extensive research since the early
1900s. One of the early achievements in the field of optics of metal gratings was
the discovery and understanding of the Wood’s anomalies [13] in the reflection
spectra, which were later assigned into two groups. One type of anomaly is caused
by excitation of surface plasmons, the density waves of electrons that propagate
along the surface. Another type is the diffractive anomaly, which is associated with
the opening of new orders of diffraction into the surrounding media (also called
Rayleigh anomalies).

Considerable advances in the assembly of microporous and nanoporous metal
structures have prompted the investigation of their optical properties and renewed
the interest in these problems. A lattice of voids beneath a metal surface can act
as a coupling element, which couples incoming light to the surface plasmons and
diffracted beams. Furthermore, in this specific type of resonant grating coupler,
the inherent confined resonances in the voids (void plasmon resonances) can be
excited. Therefore, one can expect a complex optical response associated with
different types of plasmon excitations in periodic porous metal structures.

In this chapter we describe the role of surface plasmons, void plasmons, and
diffractive anomalies in molding reflection and absorption spectra of porous metal
surfaces. We discuss the interaction between surface plasmons and plasmons local-
ized in buried voids. We also focus on the interaction between diffracted beams
and void plasmons.

Before embarking on a treatment of the optical problems discussed above with
the use of rigorous electromagnetic methods, we make several estimates with the
help of simplified approaches. Let us consider light incident at an angle θ to the
surface normal, on a planar surface of a metal that contains a two-dimensional
hexagonal lattice of voids with primitive vectors a and b (|a| = |b|) just beneath
the surface. The plane of incidence of the incident light is defined by the azimuthal
angle φ measured with respect to the x-axis (Fig. 2.2).

The diffracted beams emerge at the frequencies of the grazing photons, which
are given by

ω = c|qpq |, (2.1)
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where c is the speed of light, qpq = k‖ + g, g = pA + qB are reciprocal void-
lattice vectors, A = 2π (b × n)/|a × b| and B = 2π (n × a)/|a × b| are the primi-
tive vectors of the reciprocal two-dimensional void lattice (Fig. 2.3), n is the normal
to the porous layer, p and q are integers, k‖ = k0 sin θ is the in-plane component
of the wavevector of the incident light, which is equal to zero in the case of normal
incidence, and k0 is the wavenumber of light in the surrounding vacuum.

The dispersion relation for a surface plasmon propagating along a planar
vacuum–metal interface can be written in the following form [14]:

k2
sp =

(ω

c

)2 ε(ω)

1 + ε(ω)
, (2.2)

where ksp is the surface plasmon wavenumber and ε(ω) is the frequency-dependent
dielectric function of the metal. Let us use the local Drude model to describe the
dielectric response of the metal to an electric field E exp(−iωt),

ε(ω) = 1 − ω2
p

ω(ω + iνe)
, (2.3)

where ωp is the bulk plasma frequency and νe is a phenomenological bulk elec-
tron relaxation rate. (The case of gold corresponds to h̄ωp = 7.9 eV and h̄νe =
90 meV.) Then, for high-conductivity metals (for which ωp >> ω), from Eq. (2.2)
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one can obtain

k2
sp =

(ω

c

)2 ω2 − ω2
p

2ω2 − ω2
p

. (2.4)

For a periodic structure the dispersion relation of surface plasmons propagating
along the nanostructured surface can be estimated in the “empty lattice approxi-
mation.” In this case in Eq. (2.2) and Eq. (2.4) the surface plasmon wavenumber
ksp should be replaced by |qpq | = |k‖ + g|. Thus, for a given wavevector k|| the
frequencies of surface plasmons are slightly below the frequencies of grazing
photons.

The frequencies of void plasmons can be estimated in the framework of a simple
model of plasmon modes supported by a spherical void in an infinite metallic
medium. The modes of a void are given by the zeros of the denominator in the
corresponding scattering-matrix element familiar from Mie scattering theory [15].
(We give the explicit expressions for the scattering matrices of spherical voids,
which are used in rigorous electromagnetic calculations, in Section 2.3.) More
precisely, for electrical plasmon modes supported by a void in a metal (those with
zero radial component of the magnetic field)

ε(ω)h+
l (ρ1)[ρ0jl(ρ0)]′ = [ρ1h

+
l (ρ1)]′jl(ρ0), (2.5)

where ρ0 = k0d/2, ρ1 = k0d
√

ε(ω)/2, k0 = ω/c, d is the diameter of the void,
jl(x) is a spherical Bessel function of the first kind of lth order (l is the orbital
momentum quantum number), h+

l (x) is a spherical Hankel function, and the prime
denotes differentiation with respect to argument. Note that the magnetic modes,
i.e. those with zero radial component of the electric field, do not couple to plasma
oscillations in a spherical geometry and therefore are not considered here.

For a small void (d � λ, where λ is the wavelength of light) one can use the
asymptotic form of the spherical Bessel and Hankel functions. In this case Eq. (2.5)
can be greatly simplified, and with the use of the Drude model (Eq. (2.3)) for the
description of the dielectric function of the metal one can obtain the frequencies of
plasmon modes in a small void. For ω � νe one has

ω = ωp

√
l + 1

2l + 1
. (2.6)

The fundamental (l = 1) plasmon mode of a void with a frequency ω = ωp

√
2/3

is known as the Fröhlich mode [15]. For an electric field with a short spatial
distribution we can take l → ∞ and thus obtain the asymptotic nonretarded sur-
face plasmon solution [14], ω = ωp/

√
2. This result shows the common origin

of plasmons excited on a flat surface and plasmons localized in voids. Note that
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for nanoporous metal surfaces, which we consider in this chapter, the pore size is
comparable with the wavelength of light. Thus, Eqs. (2.2) and (2.5) should be used
to estimate the frequencies of the plasmon modes of a nanostructured surface.

2.3 Self-consistent electromagnetic model: scattering-matrix
layer-KKR approach

Theoreticians increasingly come up against the problem of the choice between the
use of universal well developed, but still time consuming, methods and methods
that are specially elaborated for solving a particular optical problem. We have
had the chance to use a method particularly adapted to the problem at hand.
In this section we consider the framework of the self-consistent electromagnetic
multiple-scattering layer-Korringa–Kohn–Rostoker (KKR) approach first devel-
oped for studying the properties of photonic crystals [16, 17] and later adapted for
studying the optical properties of metal surfaces with pores [18, 19]. The purpose
of this section is to acquaint the reader with the main ideas of the method; a detailed
description can be found in refs. [16] and [17].

Let us again address Fig. 2.2, where the theoretical model of a periodic two-
dimensional hexagonal lattice of spherical voids inside a metal is presented.
The multiple-scattering layer-KKR approach is based on a rigorous solution of
Maxwell’s equations that makes use of a re-expansion of the plane-wave represen-
tation of the electromagnetic field in terms of spherical harmonics [16, 17, 20–23].
This approach involves the following steps. First, the whole structure is divided
into parts separated by parallel planes that form two homogeneous semi-infinite
media and a planar layer in between that contains the periodic lattice of voids. The
homogeneous semi-infinite space below the periodic layer is filled with a homoge-
neous metal medium. The periodic layer is treated within the multiple-scattering
KKR method [22, 23] in a spherical-wave representation, whereas the interaction
between the fields in the periodic layer and the field in the homogeneous half-spaces
is treated separately in a plane-wave representation.

One of the advantages of this scattering-matrix approach is that it employs
explicitly the decomposition of the total field into a sum of waves propagating
(or decaying) along and opposite to the n-direction (see Fig. 2.2). It allows one
to avoid difficulties with convergence when describing the evanescent waves. The
total fields in the homogeneous media surrounding the periodic metal layer result
from the superposition of plane waves

E±
tot =

∑
g

E±
g exp(iK±

g r) (2.7)



34 Tatiana V. Teperik

with transverse wavevectors

K±
g =

[
k|| + g, ±

√
k2 − (k|| + g)2

]
,

where the sum in Eq. (2.7) runs only over propagating and evanescent waves,
k = k0

√
ε(ω) inside the metal, k0 is the wavenumber of light in the surrounding

vacuum, g = pA + qB are the in-plane reciprocal lattice vectors, A and B are the
primitive vectors of the two-dimensional reciprocal lattice, p and q are integers,
and r is the radius vector. The superscripts “+” and “−” label waves that propagate
(or decay) along and opposite to the n-direction, respectively. The square root of the
frequency-dependent dielectric function ε(ω) is chosen here to have a non-negative
imaginary part. It should be noted that every plane wave in the metal substrate is
evanescent at frequencies below the bulk plasma frequency.

The total field inside the layer with a periodic lattice of voids is represented as a
superposition of the incoming plane waves (both propagating and evanescent) and
the field scattered from every void:

Esc(r) =
∑

l

l∑
m=−l

⎛
⎝ i

k
bE

lm∇ ×
∑
Rn

exp (ik||Rn)h+
l (krn)Xlm(r̂n)

+ bH
lm

∑
Rn

exp (ik||Rn)h+
l (krn)Xlm(r̂n)

⎞
⎠ , (2.8)

where h+
l (kr) is the spherical Hankel function of lth order, which has the asymptotic

form describing an outgoing spherical wave h+
l (kr) ≈ (−i)l exp(ikr)/ikr at r →

∞, rn = r − Rn, Rn, is the radius vector of the center of the nth void, Xlm(r̂) is a
vector spherical harmonic defined by√

l(l + 1)Xlm(r̂) = −ir̂ × ∇Ylm(r̂),

where the unit vector r̂ denotes the angular variables (θ, φ) of the radius vector r in
spherical coordinates, and Ylm are spherical harmonics. The amplitude coefficients
b

E,H
lm of the scattered spherical waves with E and H polarizations in Eq. (2.8)

are determined using the scattering matrix of a void that relates the total electro-
magnetic field incident on a given void to the electromagnetic field scattered from
this void: (

bE

bH

)
=
(

TE 0
0 TH

)(
aE

aH

)
, (2.9)

where bE,H ≡ {bE,H
lm } are column matrices of lmax(lmax + 2) elements, aE,H ≡

{aE,H
lm } are the column matrices with the amplitude coefficients of the combined
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electromagnetic field incident on a given void as their elements, and lmax is the
cutoff value of the angular momentum in the spherical-wave expansion to reach a
desired level of convergence. The elements of the scattering matrices of spherical
voids depend only on l as

T
E,H
lm;l′m′ = T

E,H
l δll′δmm′,

where [15, 20]

T E
l = −ε(ω)jl(ρ1)[ρ0jl(ρ0)]′ + [ρ1jl(ρ1)]′jl(ρ0)

ε(ω)h+
l (ρ1)[ρ0jl(ρ0)]′ − [ρ1h

+
l (ρ1)]′jl(ρ0)

,

T H
l = −jl(ρ1)ρ0j

′
l (ρ0) + ρ1j

′
l (ρ1)jl(ρ0)

h+
l (ρ1)ρ0j

′
l (ρ0) − ρ1[h+

l (ρ1)]′jl(ρ0)
,

(2.10)

ρ0 = k0d/2, ρ1 = k0d
√

ε(ω)/2, k0 = ω/c, and d is the diameter of the void. The
prime denotes differentiation with respect to argument. The zeros of the denom-
inator in the scattering-matrix elements T E

l and T H
l give the frequencies of the

electrical and magnetic modes of a single void, respectively. Note that only elec-
trical modes are associated with plasmon oscillations. The magnetic modes have
a zero radial component of the electric field, and thus do not couple to plasma
oscillations in a spherical geometry.

The field scattered from each void reaches out to other voids and contributes to
their scattered fields. The layer-KKR method incorporates this effect by translating
outgoing spherical waves from each void to other voids, where they are expressed as
spherical components of plane waves. This translation procedure is detailed in refs.
[16] and [17]. Then a summation over all of these in-plane scattering contributions
is performed directly in real space. Indeed, in our case the metal provides a natural
space cutoff distance beyond which the voids cannot see each other through the
inter-void metal portions.

Therefore, the combined field incident on a given single void is decomposed into
spherical waves, each of which is scattered according to Eqs. (2.9) and (2.10). Then
the combined field scattered from all voids is back-transformed into the plane-wave
representation that is expressed as a sum over the in-plane reciprocal vectors g,

E±
sc =

∑
g

[E±
sc]g exp(iK±

g r).

Finally, the boundary conditions are applied at the interfaces of the layer containing
the lattice of voids with the surrounding media. As a result, the total scattering
matrix is constructed, yielding the reflectivity, R, transmittivity, T , and absorption,
A = 1 − R − T , of the entire structure. This procedure is explained in great detail
in refs. [16] and [17], together with the extension to an arbitrary number of layers.
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Figure 2.4. Reflectivity spectra measured (a) and calculated (b) for a nanoporous
metal surface formed by periodic arrangements of close-packed spherical voids.

The electromagnetic approach described here allows us to obtain the reflection
and absorption spectra of nanoporous metal surfaces and to elucidate the interaction
of plasmons localized in voids with delocalized surface plasmons, and diffracted
beams.

2.4 Optical spectra of nanoporous metal surfaces

In this section we discuss the optical spectra of nanoporous metal surfaces. We
present theoretical and experimental results for gold samples. The measurements
and rigorous electromagnetic calculations are analyzed on the basis of simplified
approaches (see Eqs. (2.1), (2.2), and (2.5)) that allow us to unravel the main
physical phenomena.

Figure 2.4(a) shows the measured intensity of the zero-order reflected beam
(specular reflection spectrum) as a function of photon energy h̄ω and angle of
incidence θ for a nanoporous gold surface formed by the periodic arrangement of
close-packed spherical nanovoids (with d = 500 nm) grown up to the void diameter
t = d. The angle θ is measured with respect to the direction perpendicular to the
surface (see Fig. 2.2). The incident light has p polarization with its plane of
incidence along the �–M direction of the first Brillouin zone (see Fig. 2.3), which
corresponds to a zero azimuthal angle (φ = 0).

Calculations (Fig. 2.4(b)) are performed in the framework of the self-consistent
electromagnetic multiple-scattering layer-KKR approach described in Section 2.3.
In the theoretical model a single two-dimensional hexagonal lattice (|a| = 515 nm)
of close-packed voids of diameter d = 500 nm is buried just beneath a planar gold
surface. The distance from the planar metal surface to the top of the voids, h, is
chosen to be 5 nm, which is much smaller than the skin depth (25 nm for gold),
in order to model a strong coupling of the incoming light to the nanoporous metal
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surface. Note that there are residual void openings and interconnections of voids in
the sample, which are not described by our theoretical model, although we expect
that their effect lies more in the details than in the qualitative optical response. We
also assume that there is a residual dielectric material inside the nanopores, which
we account for by an effective dielectric constant different from unity (εvoid = 1.3).

The reflectivity spectra exhibit dips that are associated with the excitation of
plasmons in voids and surface plasmons (see Fig. 2.4). The stronger and almost
dispersionless resonances are associated with the excitation of plasmons in the
voids. The frequencies of these void-plasmon resonances are close to the frequen-
cies of the void-plasmon modes with orbital quantum numbers l = 1 and l = 2 of a
single void in bulk gold given by Eq. (2.5) (marked by horizontal lines in Fig. 2.4).
The slight red shifts are due to the effects of coupling between plasmons in adjacent
voids and the disturbance of the void-plasmon mode by the proximity of the planar
surface of the metal. The other (dispersive) resonance in the reflectivity spectra
originates from the excitation of the surface-plasmon mode with wavevector q−1−1

(see Fig. 2.3) on the planar metal surface. The frequency of this mode is close to
that of the corresponding surface-plasmon mode estimated in the “empty lattice
approximation” given by Eq. (2.2) for (p, q) = (−1, −1).

The void-plasmon resonances in the calculated specular reflection spectra
become stronger near grazing incidence (see Fig. 2.4(b) for θ ∼ 70◦−80◦). This
behavior can be explained for the l = 1 dipolar mode, where the dipole orientation
should follow approximately the incident electric field polarization (p polarization
in our case). Therefore, at normal incidence, the dipole is buried beneath the metal
surface at a depth roughly equal to half of the void diameter, whereas increasing
the angle of incidence produces rotation of the dipole in such a way that its pole
becomes closer to the surface of the metal, which in turn leads to stronger coupling
of the void-plasmon mode with the incident light. Similar arguments can be applied
to explain the l = 2 mode behavior. As to the experiment, such an effect is smeared
out in the spectra because the light incident at grazing angles is more sensitive to
imperfections of the metal surface that lead to additional scattering, and this, in
turn, results in an increased divergence of the reflected beam (see Fig. 2.4(a)).

From Fig. 2.4 it is clear that plasmons excited in the voids produce stronger
resonance dips compared with those from surface-plasmon resonances. The reason
for this is that the void plasmons are radiative excitations [24, 25], and for the case
of a void lattice slightly buried in a metal (void to surface distance h much smaller
than the skin depth, which is about 25 nm for gold) these plasmons couple to light
efficiently. The surface plasmons are nonradiative excitations and can couple to light
only via a coupling element [26] (which is the lattice of voids itself in the structure
here). The surface-plasmon resonances on a planar surface of nanoporous metals
with nearly encapsulated close-packed voids are rather weak since the effective
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grating aspect ratio of such a lattice is too small (i.e. the fractional volume occupied
by metal in the porous layer is too small) to couple light effectively to nonradiative
surface plasmons. Note that the coupling of localized void plasmons and delocalized
surface plasmons with light can be tuned in the process of sample growth. Thus, for
samples with t < 0.3d the nanostructured surfaces take the form of well-spaced
dishes (see Fig. 2.1(a)) that appear to be a very efficient two-dimensional grating
for surface-plasmon excitation [11]. In contrast, the localized plasmons are not
exhibited in the optical spectra since the voids are not properly molded. Once t ≥ d,
the sample with nearly encapsulated voids supports the localized excitations. The
efficiency of their coupling with light is controlled by the void to surface distance
h (Fig. 2.2). If the lattice of voids is buried beneath the planar surface of metal at a
distance h deeper than the skin depth (about 25 nm for gold), the regime of weak
coupling takes place.

One can see in Fig. 2.4 that at a certain angle of incidence the localized plasmons
in voids and surface plasmons come into a resonant interaction. Thus, the surface-
plasmon mode exhibits an avoided crossing with the first and second void-plasmon
modes at angles of incidence ≈20◦ and ≈45◦, respectively [27]. In the anticrossing
regime the interaction between void plasmons and surface plasmons produces two
mixed plasmon modes comparable in absorption efficiency.

Additional information about the resonant structures in the reflectivity spectra of
nanoporous metal surfaces, and the proof of the localized and delocalized origin of
plasmon modes, come from the analysis of the calculated near fields. In Fig. 2.5 the
calculated distributions of the normal-to-surface electric-field component induced
at the planar surface of a nanoporous metal by the incident light, are plotted over
several unit cells of the void lattice. One can perceive that the normal-to-surface
electric-field component is the most representative of the main characteristic fea-
tures of the different plasmon modes in the structure under investigation. Indeed, for
example, for normal incidence of the incoming light, this component of the electric
field originates entirely from the excitation of plasmons (either void plasmons or
surface plasmons) in the structure.

Let us consider electric-field distributions in the uncoupled fundamental (l = 1)
void-plasmon mode and in the surface-plasmon mode with (p, q) = (−1, −1)
excited at points A and B of the dispersion plane in Fig. 2.4, respectively. Note
that at points A and B the void plasmon and surface plasmon do not interact
with each other. As expected, the void plasmon oscillates with a dumbbell-like
field distribution localized in the voids (Fig. 2.5A), which is oriented along the
external electric field direction (i.e. the �–M direction). At oblique incidence,
the orbitals are slanted with respect to the planar metal surface and the void-
plasmon oscillations are displaced in phase along the in-plane component of the
wavevector of the incident light wave, k|| (along the �–M direction). The uncoupled
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Figure 2.5. Snapshots of the normal-to-surface electric-field component in plas-
mon modes excited at points A and B of the dispersion plane in Fig. 2.4.
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Figure 2.6. The first Brillouin zone and the wavevectors qpq of surface plasmons
in the lowest-frequency subband. For further details see Section 2.2.

surface-plasmon mode is a delocalized plane wave with wavevector q−1−1 propa-
gating along the �–M direction (Fig. 2.5B).

In general, at an arbitrary azimuthal angle and oblique incidence on the hexag-
onal lattice of voids there are six surface-plasmon resonances observed in the
reflectivity [28]. This can be understood from the first Brillouin zone and wavevec-
tors of surface plasmons belonging to the lowest-energy subband (|q| ≤ 1, |p| ≤ 1)
shown schematically in Fig. 2.6. However, due to symmetry reasons, some of the
six surface-plasmon resonances are degenerate along the �–K and �–M directions,
and only one surface-plasmon mode is seen in the frequency range of the spectra
presented in Fig. 2.4 with k‖ directed along �–M .

In Fig. 2.7 calculated reflection spectra of s- and p-polarized incident light are
shown as functions of the photon energy h̄ω and the in-plane light wavevector k||.
The results correspond to a planar gold surface with a two-dimensional hexagonal
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Figure 2.7. Reflectivity spectra for (a) s-polarized and (b) p-polarized light inci-
dent with an azimuthal angle φ = 15◦ onto a nanoporous metal surface.

lattice (|a| = 705 nm) of voids of diameter d = 630 nm. The plane of incidence of
the incoming light is defined by the azimuthal angle φ = 15◦. The lattice of voids
is buried beneath the planar surface of the metal at a distance h of the order of
the skin depth (about 25 nm for gold). In such a way the regime of weak coupling
of light with plasmon modes of the porous layer can be realized. In this case the
resonant dips in the reflectivity spectra are very close to those estimated with the
help of the simplified models (see Eqs. (2.2) and (2.5)). In the weak coupling
regime the nanoporous metal surface is a poor absorber, A = 1 − R ≤ 0.12. One
can see the series of dips in the reflectivity spectra associated with excitation of
surface plasmons and plasmons localized in voids. Again, the stronger and almost
dispersionless resonance is associated with excitation of plasmons in the voids. The
other (dispersive) resonances in the reflectivity spectra are related to the excitation
of surface plasmons on the planar metal surface.

Note that different surface plasmons are excited by p-polarized or s-polarized
light with different efficiencies, even at a small angle of incidence, when the in-
plane components of the electric field of the p-polarized and s-polarized light have
nearly equal amplitudes. In the case of a small angle of incidence θ , measured with
respect to the surface normal, one has k|| � g. The directions of propagation of
different surface-plasmon modes are then nearly parallel to the reciprocal lattice
vectors g (Fig. 2.6). Therefore, for an azimuthal angle φ = 15◦ as in Fig. 2.7,
surface plasmons with wavevectors (p, q) = (1, 1) and (p, q) = (−1, −1) (which
nearly coincide with vectors A + B and −(A + B), respectively) are efficiently
excited by p-polarized light (see Fig. 2.7). This is because the in-plane electric-
field component of p-polarized light E(p)

|| is nearly parallel to the wavevectors of
these particular surface plasmons. For the same reason s-polarized light efficiently
excites surface plasmons with (p, q) = (1, 0) and (p, q) = (−1, 0), which have
wavevectors nearly parallel to the vectors A and −A, respectively. Surface plas-
mons with (p, q) = (0, −1) and (p, q) = (0, 1) are excited by p-polarized and
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(a)

(b)

Figure 2.8. Intensity of the the first-order diffracted beam as a function of photon
energy h̄ω and angle of incidence θ (a) measured from and (b) calculated for
a surface of nanoporous gold. The right-hand panels show the measured and
calculated spectra corresponding to two angles of incidence, 30◦ (dashed) and 50◦
(solid), marked by dashed vertical lines in the contour maps.

s-polarized light with nearly the same moderate efficiency (see Fig. 2.7), since the
in-plane electric-field components of either p-polarized or s-polarized light are
directed at an angle of about 45◦ with respect to the wavevectors q0−1 and q01.

A lattice of voids beneath the metal surface can serve as a diffraction grating
[29]. In what follows we will discuss the diffractive anomalies that are associated
with the opening of new diffraction beams into the surrounding media (also called
Rayleigh anomalies), as well as the interaction between diffracted beams and
plasmons localized in voids.

One can notice from Fig. 2.4 that the void-plasmon resonances in the specularly
reflected beam quench abruptly (a Rayleigh anomaly occurs) starting with the onset
of the diffracted beam with in-plane wavevector q−1−1. The reason for this anomaly
is that the diffracted beam takes a certain amount of energy out of the specularly
reflected beam. The diffraction threshold in Fig. 2.4 is given by Eq. (2.1).

Figure 2.8 shows the measured and calculated intensities of the first-order
diffracted beam with in-plane wavevector q−1−1 as a function of photon energy h̄ω
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Figure 2.9. Calculated intensity of the first-order diffracted beam versus photon
energy h̄ω for a surface of nanoporous gold formed by a hexagonal arrangement
of spherical voids of different diameters d from 380 to 500 nm (from right to left,
in steps of 20 nm).

and angle of incidence θ . The p-polarized light is incident along the �–M direction
of the first Brillouin zone (see Fig. 2.3), which corresponds to a zero azimuthal
angle (φ = 0). The structure parameters are the same as for Fig. 2.4. The calculated
intensity of the diffracted beam is normalized to the intensity of the incident light.
Naturally, the diffracted beam appears only in the frequency/angle-of-incidence
region to the right of the dispersion curve for grazing photons with wavevector
q−1−1. However, its intensity becomes strong only at the frequency of the dis-
persionless resonances associated with excitation of plasmons in the voids. The
theoretical results agree qualitatively with experimental data, demonstrating that
the diffracted beam takes significant intensity only at the void-plasmon resonances:
the intensity of the diffracted beam at a void-plasmon resonance is two orders of
magnitude stronger than that off resonance.

The frequencies of void-plasmon resonances can be tuned by varying the diame-
ter of the voids. Figure 2.9 shows the calculated intensity of the first-order diffracted
beam with in-plane wavevector q−1−1 as a function of photon energy h̄ω at a given
angle of incidence, θ = 50◦, for a surface of nanoporous gold with a hexagonal
arrangement of spherical voids of different diameters. Resonances of the diffrac-
tion beam intensity follow the blue shift of the void-plasmon resonances (l = 1 and
l = 2) with decreasing void diameter. Observe that the diffracted beam intensity
decreases with decreasing void diameter.

In the case under consideration, the diffracted beam with the in-plane wavevector
q−1−1 preserves the polarization of the incident wave (p-polarization) with respect
to the plane of diffraction (which is the plane defined by the wavevector of the
diffracted beam and the normal to the metal surface). The plane of diffraction
coincides with the plane of incidence, the �–M plane, which is a plane of mirror
symmetry of the structure (see Fig. 2.3). The polar angle of diffraction τ can be
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deduced from the expression sin τ = c|k‖ + g|/ω. It can be easily perceived from
Fig. 2.3 that for the diffracted beam with the in-plane wavevector q−1−1 the polar
angle of diffraction τ decreases with increasing angle of incidence θ .

Note that the width of plasmon resonances in the experimental plot is broader
than predicted by the theory (see Figs. 2.4(a, b) and Figs. 2.8(a, b)). One possible
reason for such broadening of the plasmon resonances may be the formation of
absorption bands caused by tunneling of light through void interconnections [30]
(not accounted for by the theory here), although the role of additional inhomo-
geneous plasmon broadening caused by imperfections in the experimental sample
(e.g. residual void openings) also cannot be ruled out. The experimental data con-
firm that the void-plasmon resonances are more pronounced in samples whose
thickness t approaches the void diameter d, because the localized void-plasmon
modes are well molded in almost fully enclosed voids [31].

In closing this section, we have discussed the different types of anomalies in
reflectivity spectra of nanoporous metal surfaces caused by (i) plasmons localized
in voids, (ii) surface plasmons propagating on the planar metal surface, and (iii)
diffractive anomalies, which are associated with the opening of new diffraction
beams into the surrounding media (Rayleigh anomalies). Particular attention has
been given to the interaction between surface plasmons and diffractive beams with
plasmons localized in buried voids.

2.5 Total light absorption in nanostructured metal surfaces

In this section we focus on the absorption properties of a nanoporous metal surface.
Let us look again at the reflection spectra of a nanoporous metal surface presented in
Fig. 2.4. Since there is no transmission through the structure (the nanoporous layer
is located on a metal substrate), the resonant minimum in the reflectivity spectrum
below the first diffraction threshold corresponds to the resonant maximum in the
absorption spectrum (A = 1 − R). It is common knowledge that planar metal
surfaces absorb light very poorly. However, if light gets trapped in contact with
a nanostructured metal surface and interacts with it for a sufficiently long time,
the electromagnetic energy can be absorbed considerably and even totally. To
understand the physics behind the effect of total absorbtion by nanostructured
metals we consider several approaches. In the following subsection we refer to
electrical engineering to develop a simple physical model describing the optical
properties of metallic nanoporous structures in terms of equivalent oscillating-
current resonant circuits. We explain the total light absorption phenomenon by
relating it to the impedance matching condition at the plasmon resonance. This
model can be easily adapted to describe the scattering of electromagnetic waves
from different nanostructures possessing plasmon resonances. In the framework
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of another approach we apply the general principles of formal scattering theory
developed in the context of quantum mechanics to analyze the interaction of light
with resonant nanostructures. The latter allows a description of the total light
absorption effect on general physical grounds applicable for an arbitrary resonant
layer.

2.5.1 Equivalent resonant RLC circuit model

All structures that transmit transverse electromagnetic waves, including free space,
can be described within the transmission-line model [32]. In this model, a nanos-
tructured metal surface can be considered as a load impedance at the end of the
transmission line modeling free space. Introducing the effective surface impedance
Zeff of the metallic nanostructure, the reflection of light can be described on a com-
mon basis independent of the particular kind of resonant nanostructure at hand.
In this subsection we present a simple physical model describing the total light
absorption phenomenon in nanoporous metallic structures in terms of an equiva-
lent oscillating-current resonant circuit model. This allows us to look at the problem
from the electrical engineering point of view, and can be helpful in understanding
the optical phenomenon.

Beyond the specific resonant conditions, planar metal surfaces absorb light very
poorly. The reason for this is their high free-electron density, which reacts to the
incident light by sustaining strong oscillating currents that, in turn, re-radiate light
efficiently back into the surrounding medium. However, if one could match the free-
space (purely resistive) impedance, Z0 = 377 �, to the impedance of the metal
surface, the incident-light energy would be completely transformed into ohmic
losses inside the metal and the total absorption effect would be achieved.

The bulk conductivity of a metal can be described using the local Drude model
as

σe(ω) = e2Ne

m(νe − iω)
,

where Ne is the bulk free-electron density, νe is a phenomenological bulk electron
relaxation rate, ω is the angular frequency of an external electric field E exp(−iωt),
and e and m are the electron charge and mass, respectively. For a planar surface of
a homogeneous bulk metal, its effective surface impedance can be written as

Ze = 1

σeδ
= Re − iωLe,

where δ is the skin depth, an intrinsic property of each metal. The effective
areal electronic resistance, Re = mνe/(e2δNe), determines the amount of power
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Figure 2.10. Lattice of voids in a metal, along with its equivalent circuit.

absorbed on the metal surface, whereas the areal reactance, −ωLe, determined
by a kinetic electronic inductance, Le = m/(e2δNe), accounts for the phase shift
between the electric field and the surface current induced in the skin layer. For
homogeneous bulk metals, the strong inequalities Re � Z0 and ωLe � Re hold,
and the matching condition cannot be satisfied at optical frequencies.

The problem of impedance matching may be solved by using an intrinsic plasmon
resonance, for which the effective electron resistance can be drastically enhanced
due to the fact that only a small fraction of the total number of electrons participate
in the plasmon mode, while the inductive reactance may be canceled by a capac-
itive reactance inherent in the resonance, leaving the impedance purely resistive.
Therefore, the nanoporous metal surfaces exhibiting plasmon resonances in the
visible part of the spectrum are candidates for achieving the total light absorption
effect in that regime.

Every resonance can be described in terms of its equivalent resonant RLC cir-
cuit. We illustrate this equivalent model by considering a two-dimensional lattice of
nanovoids in a metal, which we describe by a parallel-resonant circuit. The equiv-
alent RLC circuits of the lattice shown in Fig. 2.10 describe the main physical
features of the resonant structures: the effective electronic resistance Rl deter-
mines the amount of power absorbed due to ohmic losses associated to oscillating
plasmonic electron currents; the kinetic electronic inductance Ll accounts for the
phase shift between the oscillating electric field and the current flowing within the
skin depth; and the capacitance Cl describes charge accumulation induced by the
oscillating current. Note that here l refers to the lth plasmon mode.

The equivalent impedance of this circuit can be written as

Zl = Rl − iωLl

1 − ω2LlCl − iωRlCl

. (2.11)

Here Rl = 2mνl/(e2�lδNe) is the equivalent areal electronic resistance and Ll =
m/(e2�lδNe) is the areal kinetic electronic inductance characteristic of the lth
plasmon mode, where νl is the damping of the lth plasmon mode due to all
dissipative processes, except radiative damping, and �l is the fraction of free
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electrons participating in the plasma oscillations in the lth mode. We estimate the
equivalent areal capacitance as Cl = |fl|2dε0, where d is the void diameter, ε0 is the
electrical constant, and |fl|2 is the dimensionless phenomenological form-factor
characteristic of a given lth multipole plasmon mode of a void, which is a free
parameter in this simple model. Substituting the expressions for Rl , Ll , and Cl

given above into Eq. (2.11), one finds

Zl = m

e2�lδNe

ω2
l (2νl − iω)

(ω2
l − ω2 − 2iωνl)

,

where

ωl = 1√
LlCl

=
√

e2�lδNe

|fl|2dε0m
(2.12)

is the frequency of the lth plasmon mode. In the vicinity of the resonance, ω 	 ωl ,
assuming that 2νl � ωl , we finally obtain

Zl 	 −i
m

2e2�lδNe

ω2
l

(ωl − ω − iνl)
.

With these considerations, we can easily obtain the total frequency-dependent
equivalent areal impedance of the two-dimensional lattice of voids in the following
form:

Zeff 	 −i
m

2e2

∞∑
l=1

|βl|2
�lδNe

ω2
l

(ωl − ω − iνl)
, (2.13)

where |βl|2 < 1 is the phenomenological coefficient of coupling between the exter-
nal oscillating electric field E exp(−iωt) and the lth plasmon mode, which depends
on the geometry of the particular structure under consideration.

In the vicinity of the lth plasma resonance, ω 	 ωl , the lth term of the summation
dominates the right-hand side of Eq. (2.13) and we have

Zeff ≈ −i
m|βl|2

2e2�lδNe

ω2
l

(ωl − ω − iνl)
. (2.14)

Now let us consider an electromagnetic plane wave incident normally from a
vacuum on a planar surface of a bulk metal that contains a two-dimensional lattice
of voids just beneath the surface. In this case of zero transmission through the
structure we apply the impedance boundary condition in the form [33]

Ein + Erf = Zeff [n × (Hin + Hrf)] . (2.15)
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By solving Maxwell’s equations in the ambient medium (vacuum) together with the
boundary condition Eq. (2.15), it is easy to obtain the complex amplitude reflection
coefficient given by

r = Zeff − Z0

Zeff + Z0
. (2.16)

The surface impedance given by Eq. (2.14) leads to the following expression
for the reflectance and absorptance of light in the neighborhood of the lth plasma
resonance:

R = rr∗ ≈ (ωl − ω)2 + (γl − νl)
2

(ωl − ω)2 + (γl + νl)
2 , (2.17a)

A = 1 − R ≈ 4νlγl

(ωl − ω)2 + (γl + νl)
2 . (2.17b)

Here

γl = |βl|2 mω2
l

2Z0e
2�lδNe

(2.18)

is the radiative damping of the lth plasmon mode on the nanoporous metal surface.
The absorption resonance described by Eq. (2.17b) has a Lorentzian lineshape
with the full width at half maximum 2(νl + γl). The free parameters |fl|2/�l and
|βl|2/�l can be obtained by fitting the resonance frequency and the full width at half
maximum yielded by this simple model of a resonant porous metal surface to their
values obtained by the rigorous self-consistent electromagnetic model described in
Section 2.3.

Finally, at resonance, ω = ωl , one finds

Rres ≈ (γl − νl)
2

(γl + νl)
2 ,

Ares ≈ 4νlγl

(γl + νl)
2 ,

and it is readily seen that nearly total light absorption by the lth plasmon mode
(Ares ≈ 1) occurs when νl = γl , while the reflectivity, Rres, drops to zero.

Therefore, using a simple physical model based on equivalent oscillating-current
resonant circuits we explain the total light absorption phenomenon by a porous
metallic nanostructure. This model can be easily adapted to describe different
resonant nanostructures exhibiting total absorption of light at plasmon resonances.
In particular, a similar approach has been applied in ref. [34] to describe the total
light absorption effect by a two-dimensional square lattice of metallic nanospheres
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above a metal surface. This structure is inverted with respect to the nanoporous
surface.

2.5.2 General conditions for total light absorption

It is worth noting that the total absorption effect is of quite general nature. In
1973 the effect of large anomalous absorption was registered in partially disor-
dered silver films [35]. In 1976 the total absorption of light was experimentally and
theoretically shown [36, 37] for a metal diffraction grating. These works were later
extended both theoretically and experimentally to a variety of metallic nanostruc-
tures including metal gratings of different configurations [38–41], doubly periodic
metal gratings [42–44], diffraction gratings consisting of cylindrical cavities in a
metallic substrate [45], metal–semiconductor–metal nanostructures [46], multilay-
ers of ordered metallic nanoparticles [34], as well as partially disordered metallic
nanoparticle arrays [47]. It is also known that electromagnetic energy can be com-
pletely absorbed by an overdense plasma slab at the surface-plasmon resonance in
the microwave frequency range [48]. Furthermore, according to Kirchhoff’s law,
the effect of enhanced absorption is relevant for resonant thermal emission, which
has been experimentally observed and theoretically explained for metal gratings
[49, 50] and doped silicon gratings [51–53]. More precisely, Kirchhoff’s law states
that the emissivity and absorptance of an object are equal for systems in thermal
equilibrium.

Although the nanostructures that exhibit total light absorption might differ con-
siderably, they possess some common characteristics. First, the transmission of
light through the entire structure is forbidden. This can be achieved by making
the nanostructure thick enough [47, 48] or by locating the nanostructured absorb-
ing layer over a metal slab [34, 36, 37] or over a multilayer Bragg reflector [46]
that effectively refocuses the light into the absorbing layer. Second, the total light
absorption effect relies on the excitation of intrinsic resonances in the structure, and
requires specific conditions of the effective coupling of light with resonant excita-
tions in the system. Therefore, it is relatively common to observe total absorption
associated with optical resonances (e.g. in gratings) [54, 55], although this effect has
so far been realized only for specific directions of incidence. Only recently has the
omnidirectional polarization independent total light absorption by a nanoporous
metal surface been demonstrated [56].

Let us define the properties of the nanostructured surface that would lead to the
effect of total light absorption sought. We find it appropriate to use a Hamiltonian
formalism to recast Maxwell’s equations in the form of a Schrödinger equation
[57]. The general principles based on the formal scattering theory developed in
quantum mechanics can then be applied [58, 59]. Thus, if ω is the frequency of
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the incident wave, then, for a given wavevector of the incident light parallel to the
structure k||, the solution of the scattering problem can be written in the form of
the Lippmann–Schwinger equation [60],

� = �0 + G+(ω)(H − H0)� ≡ �0 + �+, (2.19)

where H and H0 are Hamiltonians representing structured and planar metal sur-
faces, respectively, �+ is an outgoing wave function containing all components of
the electric and magnetic fields for the structured surface, �0 is the wave function
of the unperturbed planar-surface system that satisfies (H0 − ω)�0 = 0 and corre-
sponds to a specific angle of incidence and polarization, and G+(ω) is the retarded
Green function of H .

The entire energy flux in the system is distributed in different scattering channels,
among which we single out the elastic one (channel 1) describing the incident light
and its specular reflection without polarization conversion. All other scattering
channels represent reflection with converted polarization, higher-order diffractive
beams, and absorption in the metal. Note that transmission through the structure is
prevented.

The asymptotic magnetic field of channel 1 can be written as follows:

B1 = 1√
k⊥

[
êi exp(−ik⊥z) + êrS11 exp(ik⊥z)

]
, (2.20)

where êi,r defines the polarization direction for the incident (i) and reflected (r)
waves, and k⊥ is the wavevector component perpendicular to the structure (along
the z direction). The first term in Eq. (2.20) represents the incident light, whereas
S11 is the scattering amplitude. In the vicinity of a pole associated with a localized
resonance, the Breit–Wigner multichannel scattering theory permits approximating
S11 by [61]

S11 = exp(2iδ11) − iM11�

ω − ω0 + i�/2
exp(2iδ11), (2.21)

where the second term describes resonant scattering, and the absorption of light by
the nonstructured (flat) metal surface is neglected. Here, ω0 and � are the frequency
and width of the resonance, respectively, δ11 is a non-resonant scattering phase,
and M11 is a constant. Flux conservation in the system implies

|S11|2 + J = 1, (2.22)

where J is the flux associated to channels other than channel 1. In what follows we
assume that the partial decay rate into channel 1 (i.e. the relevant radiative decay
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rate) equals the sum of the decay rates into all other channels:

J =
∣∣∣∣ M11�

ω − ω0 + i�/2

∣∣∣∣
2

. (2.23)

Now, using Eqs. (2.21), (2.22), and (2.23) we obtain

|M11|2� = Re{iM11(ω − ω0) + M11�/2}. (2.24)

Equation (2.24) should hold for all frequencies. Therefore M11 = 1/2, so that
the partial decay rate into the first channel is equal to one-half the total decay rate
of the resonance. The specular reflection coefficient (reflection into channel 1) is
then given by

R = |S11|2 = (ω − ω0)2

(ω − ω0)2 + �2/4
. (2.25)

Clearly, R drops to zero at the resonance frequency ω = ω0, at which the inci-
dent flux is completely transferred into polarization conversion, diffraction, and
absorption.

This allows us to assess the conditions for total resonant light absorption assisted
by a localized resonance as follows: (i) there is only specular reflection with no
diffracted beams; (ii) there is no polarization conversion; and (iii) the radiative
decay rate of the resonance equals its dissipative decay rate (rate equipartition
condition). Under these conditions the incident light is fully transformed into
losses in the metal, such that the absorption A = 1 − R is 100% at the resonance
frequency ω = ω0.

Note that because of the dispersion of the intrinsic resonant mode, ω0 = ω0(k||),
the total light absorption can be a priori achieved only at a specific value of the
incident wavevector k||. That is why only the directional total light absorption effect
has been reported for the metallic nanostructures based on gratings that support
dispersive surface plasmons. In order to obtain the omnidirectional (for arbitrary
incident angles) total light absorption effect, a nondispersive intrinsic resonance
in the system should be used. Thus, the nanoporous metal surface appears very
promising.

2.5.3 Omnidirectional absorption by a nanoporous metal surface

We have already shown in Section 2.4 that a nanoporous metal surface can simulta-
neously support both delocalized (surface) plasmons and localized (void) plasmons.
The surface plasmons exhibit a strong dispersion. They are highly sensitive to the
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Figure 2.11. Total light absorption in nanostructured metal surfaces. (a) Sketch
and scanning electron microscope (SEM) image of nanoporous gold surfaces.
(b) Measured and (c) calculated absorption spectra under normal incidence.
Results are presented for samples with different thicknesses t as indicated.

angle of incidence, thus they cannot enable omnidirectional total light absorption.
We now turn to the properties of plasmons localized in voids. This type of plas-
mon excitations has no dispersion (see Fig. 2.4). Thus, one can expect that these
properties allow us to obtain omnidirectional total light absorption.

We first investigate the absorption spectra of nanoporous metal surfaces for
normal light incidence. Figure 2.11(a) presents a sketch and a scanning electron
microscope (SEM) image of nanoporous gold surfaces, consisting of a layer of
close-packed voids of diameter d = 500 nm covered with gold to a thickness t .
The SEM image is taken at t < d to help visualize the inner part of the nanovoids.
The absorption measurements have been performed for different thicknesses of the
nanorporous layer. Since the gold coating was thick enough to prevent transmis-
sion through the sample, the absorption is A = 1 − R, where R is the measured
reflectivity of the specularly reflected beam.

We have simulated absorption spectra using the layer-KKR approach described
in Section 2.3 for fully buried voids. The samples have openings at the top of
the voids (Fig. 2.11(a)) and possibly also in the touching region between adjacent
voids. The effect of partial penetration of the electromagnetic field through these
openings has been phenomenologically accounted for by describing the metal using
a Maxwell–Garnett dielectric function [33] formed by 55% empty pores embedded
in gold, with the gold represented by measured optical data [62].
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The calculated results (Fig. 2.11(c)) show good qualitative agreement with the
measurements (Fig. 2.11(b)). One can observe the red shift of the resonance from
the energy of the dipole plasmon of a single void in gold marked in Figs. 2.11(b)
and 2.11(c) by arrows. The red shift as well as the width of the resonant absorption
features are larger in the experiment for the reasons explained in Section 2.4.
Nonetheless, the same evolution of the maximum absorption with t is observed
in experiment and theory, with an optimum metal thickness at which absorption
reaches 100%. In other words, the effect occurs at a specific coupling of light with
plasmons in voids so that condition (iii) for the total light absorption is satisfied
(see the preceding subsection). Note that with a hexagonal lattice of period 500
nm, the wavelength of the onset of diffraction (433 nm) (see Eq. (2.1)) is well
below the minimum wavelength explored in Fig. 2.11 (689 nm). Thus, condition
(i) is satisfied. As to the polarization conversion upon reflection: while generally
it can occur for a metal surface with a hexagonal lattice of voids, it appears to
be negligibly small in the present case. This is due to the dipole symmetry of the
void-plasmon mode (that follows the polarization of the incident light), as well
as to the small coupling between individual voids through the metal membranes.
Therefore, upon specular reflection the polarization is preserved, so that condition
(ii) is satisfied as well. Consequently, all three conditions are met to enable total
absorption.

Now let us turn to the oblique incidence case. As we already discussed in Section
2.4 the nanoporous metal surface can exhibit different types of anomalies. Apart
from plasmons localized in voids, at certain angles of incidence one can observe
the anomalies in reflectivity (absorption) spectra caused by the excitation of delo-
calized surface plasmons and Rayleigh anomalies associated with the opening
of new diffraction beams into the surrounding media. Thus, at oblique incidence
the omnidirectionality in absorption might be strongly affected in some incident
angle/frequency intervals, e.g. at the avoided crossing between void and surface
plasmons (see Fig. 2.4). However, omnidirectional absorption can be restored
using dielectric filling of the voids. Indeed, the void plasmon is very
sensitive to the dielectric filling [63, 64]. One can reduce the frequency of void
plasmons significantly by filling the pores with a dielectric material. In such a situ-
ation the dispersion of surface plasmons and grazing photons remains undisturbed.
Indeed, the dispersion of grazing photons depends only on the lattice configura-
tion. As for the surface plasmons propagating along the air–metal interface, they
are weakly sensitive to the dielectric filling of voids. As a result, the anticrossing
between two plasmon modes is removed.

Figure 2.12(a) shows the calculated incidence-angle dependence of absorption
by a layer of 500 nm close-packed silica-filled inclusions buried in gold for p-
polarized light incident along the �–M direction of the void lattice. The metal



Resonant optical properties of nanoporous metal surfaces 53

Figure 2.12. Omnidirectional light absorption by the structure formed by a layer of
close-packed silica-filled inclusions buried in gold. Calculated (a) incidence-angle
and (b) azimuthal-angle dependence of absorption for p-polarized light incident
along the �–M direction of the void lattice.

extends 5 nm above the top of the inclusions to maximize absorption over a wide
angular range. Under the same conditions as Fig. 2.12(a), Fig. 2.12(b) shows the
azimuthal dependence of absorption for 20◦ off-normal incidence. The polar plot
insets show the angular behavior of absorption at the frequency of the dipolar void
plasmon, ω = 1.17 eV. The frequencies of the plasmon resonances of a single
silica-filled void are marked by horizontal dashed lines in Fig. 2.12. Comparing
results presented in Fig. 2.12 with those in Fig. 2.4 (without dielectric filling
of voids), it appears that by filling the pores with silica the energy of plasmons
localized in voids is red shifted. There is no anticrossing between the void- and
surface-plasmon modes. Note that we simultaneously avoid the scattering of light
into nonzero diffraction channels since their energies are close to the energies of
surface plasmons for noble metals with a small effective grating aspect ratio (i.e.
the fractional volume occupied by the metal in the periodic layer is small), which
is the case for a metal surface with a close-packed lattice of voids. Moreover, there
is no polarization conversion due to the reasons given above, and conditions (i)
and (ii) are well satisfied, while condition (iii) is achieved by tuning the overlayer
thickness. Therefore, provided the proper choice of nanostructure parameters is
made, all conditions are met for total light absorption, where the entire energy of
the incident light is transformed into losses in the metal.

As soon as total light absorption is achieved for normal incidence, it is intu-
itively clear that for s-polarized light with the electric field of the incident light
in the plane of the metal surface total light absorption can be achieved at any
incident and azimuthal angles. We check the validity of this assumption by rigor-
ous electromagnetic calculations and conclude that the total light absorption effect
for a nanoporous metal surface is omnidirectional and polarization-independent
as well.
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Finally, as a consequence of Kirchhoff’s law [65], the nanostructured metal
surfaces should exhibit omnidirectional black-body emission at a resonant fre-
quency that can be tuned by varying the size of the dielectric inclusions, thus
resulting in efficient, spectrally narrow, wide-angle, thermal emitters.

Summarizing this chapter: we have discussed the optical properties of
nanoporous metal surfaces prepared using a nanoscale casting technique with
electrochemical deposition of metal through a self-assembled latex template. We
have demonstrated that a nanoporous metal surface can support two types of plas-
mon oscillations: surface plasmons propagating at the planar metal surface and
void-localized plasmons. The surface plasmons lead to the dispersive features in
the light scattering. The features due to the void plasmons are nearly dispersion-
less owing to the spherical symmetry of the voids and the deep localization of
the voids beneath a metal surface. By analyzing the near field calculations we
have demonstrated the localized and delocalized origin of plasmon modes. Fur-
thermore, we have discussed the interaction of localized and delocalized plasmon
modes in the anticrossing regime. We have also addressed the diffractive properties
of nanoporous metal surfaces, Rayleigh anomalies, that are strongly pronounced
in the spectra when resonances are coupled with plasmons localized in voids.

Particular attention has been given to the total light absorption effect. While
planar metal surfaces are poor absorbers, when nanostructured they can efficiently
absorb electromagnetic energy. We have demonstrated that the physics underly-
ing the total light absorption can be understood from general principles based
on the resonance scattering theory developed in quantum mechanics. An addi-
tional understanding of the phenomenon can come from the use of the equivalent
oscillating-current resonant circuit model. In the latter case the particular con-
figuration of the periodic cell of a plasmonc nanostructure should be taken into
account. We have also shown that omnidirectional polarization-independent total
light absorption can be achieved using the dispersionless void-plasmon resonance
in a nanoporous metal surface.
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3

Optical wave interaction with two-dimensional
arrays of plasmonic nanoparticles

andrea alú and nader engheta

3.1 Introduction

Nanotechnology has seen enormous progress in recent years, and various tech-
niques are now available for the realization of ordered periodic arrays of particles
with nanoscale dimensions. Electron-beam [1] and interference lithography [2],
polymer-based nanofabrication [3], and self-assembly techniques [4] indeed enable
producing ordered one-dimensional (1-D), two-dimensional (2-D), and even three-
dimensional (3-D) arrays of metallic or dielectric nanoparticles with sizes much
smaller than the wavelength of operation. As is well established in the field of
optical metamaterials, such arrays may interact with light in anomalous and exotic
ways, provided that their unit cells are sufficiently close to the individual or col-
lective resonance of these arrays.

The electromagnetic response of optical metamaterials and metasurfaces is very
distinct from that of gratings and photonic crystals. In photonic crystals, for which
lattice periods are comparable to the wavelength of operation, it is possible to
tailor the optical interaction operating near the Bragg collective resonances and
Wood’s anomalies associated with their period, whereas in optical metamaterials
and metasurfaces, we operate near the plasmonic resonances of the individual
inclusions, leading to the advantage of a much broader response in terms of the angle
of incidence, and the absence of grating lobes in the visible angular spectrum. On the
other hand, unlike photonic crystals, optical metamaterials and metasurfaces require
a much smaller scale for their unit cells. Moreover, plasmonic materials, required
to support the required resonances at the nanoscale, are usually characterized by
intrinsic non-negligible loss and absorption.

Plasmonic materials have indeed experienced a dramatic growth of interest
in recent years. In particular, at optical frequencies where they are available in
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nature [5, 6], various potential applications of plasmonic phenomena have been
proposed, including transport of optical energy with tight lateral confinement
[7–14], left-handed wave propagation [15–18], and optical radiation patterning
[19–22]. In the recent past, we have proposed and analyzed different periodic
geometries that may realize optical nanotransmission lines in the form of 1-D
linear chains of plasmonic nanoparticles [11], planar (2-D) plasmonic nanolayers
[14], and plasmonic 3-D nanoarrays of particles, to form optical metamaterials
[12]. One relevant aspect of these plasmonic waveguides at IR and optical frequen-
cies is based on their sub-diffractive properties, i.e. the possibility of supporting
a guided beam with a sub-wavelength cross-section that may travel over reason-
ably long propagation distances with a sufficiently large bandwidth of operation.
When these eigen-modes couple with propagating modes in free-space, anomalous
reflection and transmission properties arise, which may be used for a variety of
applications.

In the following, we analyze in detail the interaction of an optical plane wave
with 2-D periodic arrays of sub-wavelength plasmonic nanoparticles, and present an
analytical solution with fast convergence in the limit of the dipolar approximation
for the particles in the periodic array excited by a plane wave with generic polariza-
tion and angle of incidence. These results generalize recent analytical approaches
for the electromagnetic modeling of planar arrays of nanoparticles [23–27]. We
discuss several features of this theoretical solution that highlight the main fea-
tures and power balance of this anomalous wave interaction in the case of small
plasmonic nanoparticles near resonance. Moreover, we apply these theoretical
results to specific designs of such arrays, to suggest highly reflective frequency-
selective response with relatively flat angular response. These geometries may
offer novel possibilities for thin patterned surfaces for filtering, absorbing, and/or
radiation patterning applications. In the following, we assume an exp(−iωt) time
convention.

3.2 Plane wave excitation of two-dimensional arrays of nanoparticles:
theoretical analysis

Consider the geometry of Fig. 3.1, namely, a periodic ordered array of nanoparticles
with a rectangular lattice with periods dx , dy in a suitable Cartesian reference
system. Without loss of generality, the array is positioned in the plane z = 0
and is excited by an external plane wave of arbitrary polarization and angle of
incidence, which may model with a good degree of approximation a laser beam,
or an analogous optical excitation of the array. As we have done extensively in our
previous works on wave interactions with small nanoparticles [11, 12], consistent
with analogous approaches in the literature [23–25], we approach this problem by
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xd

yd

Figure 3.1. Periodic planar array of plasmonic nanoparticles.

assuming that the plasmonic nanoparticles may be described by a polarizability
tensor α that relates the induced dipole moment P to the local electric field Eloc at
the particle position as

P = α · Eloc. (3.1)

This assumption implies that the nanoparticles are dominated by their dipole
moment, and that they are not too closely packed (which implies that the effect
of higher-order multipole moments is negligible when considering the coupling
between neighboring elements). Moreover, for simplicity we assume that the orien-
tation and geometry of the particles is chosen in such a way as to avoid polarization
mixing, i.e. that the polarizability tensor α is diagonal in the chosen reference sys-
tem. This assumption includes the special cases of isotropic particles, with a scalar
polarizability, and strongly anisotropic particles, like nanodiscs or nanorods, which
may become polarized only along one or two axes. Extension of this analysis to a
full polarizability tensor is also possible, but beyond the interest of the present work.

Since at optical frequencies materials interact mostly with the impinging electric
field (natural magnetism is very weak above the infrared range), the assumption of
a dominant electric dipole is justified, and the transverse-electric (TE) polarization
excitation is easier to analyze, since it implies an electric field always polarized
in the same direction and with constant magnitude, independent of the angle of
incidence. In the following subsection we focus on this polarization, and will
analyze the transverse-magnetic (TM) case later in the chapter.
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3.2.1 TE excitation

For this polarization we can assume, without losing generality, that the impinging
plane wave has an electric field of the form

Einc = E0 exp(ikyy) exp

[
i

√
k2

0 − k2
yz

]
x̂. (3.2)

From symmetry, the local field acting on each particle is expected also to have
the same polarization Eloc = Elocx̂, ensuring that Eq. (3.1) responds solely to
the αxx component of the polarizability tensor. Moreover, due to phase matching
considerations, we expect the generic nanoparticle at position (x = Nxdx , y =
Nydy), where Nx and Ny may be positive or negative integers, to be characterized
by a dipole moment

PNxNy
= exp(ikyNydy)P00, (3.3)

where P00 is the dipole moment induced on the nanoparticle placed at the origin,
which is yet to be determined.

As is commonly done in analogous problems (see refs. [23]–[25] and references
therein), the value of P00 may be evaluated by considering the full coupling among
the whole array of interacting nanoparticles. In general, for each nanoparticle we
may write

PNxNy
= αEloc

= α

⎡
⎣Einc +

∞∑
N ′

x�=Nx

∞∑
N ′

y�=Ny

G
(

rNxNy
− rN ′

xN
′
y

)
· PN ′

xN
′
y

⎤
⎦ , (3.4)

where G is the dyadic Green’s function in free-space given by

G(r) = (∇∇ + k2
0I
) eik0r

r
, (3.5)

where rNxNy
is the position of the PNxNy

nanoparticle, k0 is the free-space wave
number, and r = |r|. Equation (3.4), combined with Eqs. (3.2) and (3.3), implies
that

P00 = P00x̂ = Einc

α−1 −
∞∑

N ′
x�=0

∞∑
N ′

y�=0
x · G

(
rN ′

xN
′
y

)
· x eikyN ′

ydy

, (3.6)

which contains the full dynamic coupling among the infinite array of nanoparticles
[23]. Although the electromagnetic problem is formally solved with Eq. (3.6), the
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convergence of the summation in the denominator of Eq. (3.6) is usually very slow
from the numerical point of view in this direct expression. In order to solve this
convergence issue, we can calculate Eq. (3.6) using an approach consistent with the
one used in ref. [28] and in ref. [12], but here applied to 2-D arrays of nanoparticles.
In this sense, Eq. (3.6) may be rewritten as follows:

P00 = E0

α−1 − βT E

, (3.7)

where the interaction constant βT E , corresponding to the summations in Eq. (3.6),
may be split into two contributions: one that takes into account the coupling from
parallel linear arrays of nanoparticles oriented along x, which we have calculated
in closed-form in ref. [11], and a second that takes into account the interaction
among the infinite set of these parallel arrays, which may be calculated in terms of
cylindrical wave functions, similar to what was suggested in refs. [28] and [29], as
a Floquet wave expansion. By combining these contributions, a rapidly convergent
series equivalent to the summation in Eq. (3.6) for the interaction constant is given
by

βT E =
∞∑

N ′
x�=Nx

∞∑
N ′

y�=Ny

G
(

rN ′
xN

′
y

)
exp(ikyN

′
ydy) · x̂ · x̂

= k3
0

ε0

[
Li3

(
exp(idx)

)− idxLi2
(
exp(idx)

)
πd

3
x
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In this expression, LiN (z) = ∑∞
k=1 zk/kN is the polylogarithm function [30],

K0(. . .) is the modified Bessel function of the second kind and zeroth order, U (. . .)
is the step function, which is unity for a positive argument and zero for a nega-
tive argument, ε0 is the free-space permittivity, di = k0di , ky = ky/k0, ξ (. . .) is
the Riemann zeta function, and γ is the Euler–Mascheroni gamma constant [31].
The first term in Eq. (3.8) takes into account the coupling among particles lying
along the x axis, and it coincides with the closed-form expression derived in ref.
[11] for a linear array with longitudinally polarized dipoles, calculated here for the
case in which kx = 0. The second term corresponds to the infinite summation of
evanescent Floquet modes below cut-off, coupling the parallel arrays of nanoparti-
cles forming the planar array. This summation has a very rapid convergence, since
the cylindrical waves considered here are all below cut-off, and the arguments of
the K0(. . .) functions are all real. Finally, the third addend takes into account the
propagating (above cut-off) Floquet modes coupling the parallel chains, which are
finite in number. In the case of sufficiently small periods (dx < 2π ), only the dom-
inant Floquet mode propagates and carries power, and this summation is limited to
the Nx = 0 term. Although cumbersome looking, this series in general has a very
rapid convergence, in particular when dx and dy are sufficiently small to ensure
that only one Floquet cylindrical wave dominates the coupling among the parallel
linear arrays, and that only the dominant reflected and transmitted plane waves
radiate away from the surface.

Averaged description of the periodic surface

Once P00 is obtained from Eq. (3.7), the electromagnetic problem is solved, and it is
possible to derive various other electromagnetic quantities of interest. In particular,
it is possible to define averaged quantities that may describe in an accurate, but
simplified, way the interaction of a plane wave with the array. For example, the
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averaged surface current density is given by

Jav = Javx̂ = −iωP00 exp(ikyy)

dxdy

= −iωE0 exp(ikyy)x̂
dxdy(α−1 − βT E)

. (3.9)

Such an averaged current sheet sustains the radiation from the dominant reflected
and transmitted plane waves from the array, associated with the dominant Floquet
plane wave. This is an accurate description of the electromagnetic properties of
the array, as long as the periods are small enough to ensure that only one Floquet
harmonic affects the far-field radiation from the surface. We will derive a formal
condition for this to happen later in this section. The current expression presented
in Eq. (3.9) produces a reflected wave with electric field given by

Er = − ωμ0√
k2

0 − k2
y

Jav

2
exp

[
−i

√
k2

0 − k2
y z

]
x̂ (3.10)

and a transmitted wave formed by the superposition of the impinging wave in
the half-space behind the array and a scattered wave with the same magnitude as
Eq. (3.10):

Et = Einc − ωμ0√
k2

0 − k2
y

Jav

2
exp

[
i

√
k2

0 − k2
y z

]
x̂. (3.11)

In this limit of one propagating Floquet plane wave on each side of the array, the
reflection and transmission coefficients are easily calculated as

R = iω2μ0

2
√

k2
0 − k2

ydxdy(α−1 − βT E)
, (3.12a)

T = 1 + R. (3.12b)

The averaged surface impedance, namely the ratio of the local electric field to the
averaged current density, is given by

Zs = E0

Jav

− ωμ0

2
√

k2
0 − k2

y

. (3.13)

These averaged relations are valid as long as only one plane wave is radiated
out from each side of the array. In general, as discussed in the following, when
the periods become larger, side lobes and higher-order Floquet harmonics may
propagate out of the surface, and these averaged descriptions may not be sufficient
for an accurate description of interaction of the array with the impinging plane
wave.
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Power balance

It is instructive to analyze in more detail the analytical expressions obtained and,
in particular, their energy relations, which are associated with the imaginary part
of the denominator in Eq. (3.7). The overall power extracted from the impinging
plane wave by each nanoparticle is given by

Pext = ω |E0|2
2

Im

[
1

α−1 − βT E

]
= ω |E0|2

2

Im[βT E − α−1]∣∣α−1 − βT E

∣∣2 , (3.14)

which is also equal to the energy extracted from the impinging electric field by the
averaged current density, Eq. (3.9), as expected.

Equation (3.14) may be further manipulated by considering the physical require-
ments on the imaginary parts of α. In particular, the imaginary part of α−1 is
associated with the radiation and absorption loss from each individual nanoparticle
[11, 32], implying that

Im[α−1] = − k3
0

6πε0
− α−1

loss ≤ − k3
0

6πε0
, (3.15)

where the equal sign holds when α−1
loss = 0, i.e. when the particles are lossless.

In Eq. (3.15) the first addend gives the radiation loss from an individual particle
and the second gives the possible Ohmic loss in it. Note that Eq. (3.15) is totally
independent of the specific nature of the nanoparticles, and it generally applies
as long as the dipolar approximation holds. The geometry of the nanoparticles,
and in particular its resonant features, are directly related to Re[α−1] (which is
zero at the resonance of the individual isolated nanoparticle), whereas Im[α−1] is
directly associated with the power balance, as described in Eq. (3.15). Moreover,
by applying an analytical derivation analogous to the one in ref. [28] it is possible
to express in closed-form the imaginary part of βT E . In general, by inspecting
Eq. (3.8) and using the results in refs. [11] and [28], we can write

Im[βT E] = − k3
0

6πε0
+ k0

∑∞
Nx,Ny=−∞

×

(
1 − 4π2N2

x d
−2
x

)
U

(
1 − 4π2N2

x d
−2
x −

[
ky − 2πNyd

−1
y

]2
)

2dxdyε0

√
1 − 4π2N2

x d
−2
x −

(
ky − 2πNyd

−1
y

)2
.

(3.16)
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The first term compensates the radiation loss addend in Eq. (3.15), due to the
coupling of the whole periodic array, whereas the second term takes into account the
power radiated by each of the propagating Floquet modes. It is evident, therefore,
that the condition that ensures that the array supports only one dominant Floquet
harmonic (and therefore the averaged quantities derived above may accurately
describe the far-field interaction with the array), is given by the following condition
on the periods:

4π2N2
x

d
2
x

+
(

ky − 2πNy

dy

)2

> 1 ∀Nx, Ny �= 0. (3.17)

Evidently, this condition is satisfied for periods sufficiently smaller than the wave-
length of operation. When this condition is satisfied, the summation in Eq. (3.16)
has only one nonzero element for Nx = Ny = 0, and

Im[βT E] = − k3
0

6πε0
+ 1

2dxdy

ω2μ0√
k2

0 − k2
y

. (3.18)

The power extracted by each particle may therefore be written in the general case
as

Pext = ω|E0|2
2
∣∣α−1 − βT E

∣∣2
{

k0

2dxdyε0

∞∑
Nx,Ny=−∞

[
1 − 4π2N2

x

d
2
x

]

×
U

(
1 − 4π2N2

x d
−2
x −

[
ky − 2πNyd

−1
y

]2
)

√
1 − 4π2N2

x d
−2
x −

(
ky − 2πNyd

−1
y

)2
+ α−1

loss

}
, (3.19)

which for one single propagating Floquet plane wave becomes

Pext = ω|E0|2
2
∣∣α−1 − βT E

∣∣2
⎡
⎣ ω2μ0

2dxdy

√
k2

0 − k2
y

+ α−1
loss

⎤
⎦ . (3.20)

For lossless particles in particular, Eq. (3.20) simplifies to

Pext = ω3μ0|E0|2
4dxdy

√
k2

0 − k2
y

∣∣α−1 − βT E

∣∣2 . (3.21)

The power radiated from the array is given by the sum of the power flows carried
by the radiated Floquet plane waves above cut-off on the two sides of the surface,
which from symmetry considerations have the same magnitude. In particular, when
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condition (3.17) holds and the averaged current density, Eq. (3.9), is sufficient to
describe the array, the reflected and transmitted waves in Eqs. (3.10)–(3.11) each
radiate an overall power per unit cell given by

Prad = ωμ0|Jav|2
8
√

k2
0 − k2

y

dxdy = ω3μ0|E0|2
8dxdy

√
k2

0 − k2
y

∣∣α−1 − βT E

∣∣2 . (3.22)

As expected from energy considerations, this quantity is exactly one-half of the
extracted power in the lossless scenario, Eq. (3.21). Equation (3.19) indeed repre-
sents a generalized power balance relation for the array, and each term corresponds
to a specific contribution to the total energy extracted from the impinging plane
wave: when Ohmic losses are present, the absorbed power is given by

Pabs = ω|E0|2
2
∣∣α−1 − βT E

∣∣2 α−1
loss, (3.23)

and if higher-order Floquet modes of order (Nx, Ny) are propagating away from
the surface, each of them contributes an additional term to the summation (3.19)
with magnitude:

Prad = ω|E0|2k0

4dxdyε0

∣∣α−1 − βT E

∣∣2
(

1 − 4π2N2
x d

−2
x

)
√

1 − 4π2N2
x d

−2
x −

(
ky − 2πNyd

−1
y

)2
.

(3.24)

Of course, this quantity is real only when Eq. (3.17) is not satisfied for the specific
(Nx, Ny) pair.

Finally, it is noted that, in the lossless scenario, power balance also requires

1

2
Re[E0J

∗
av] = ωμ0

4
√

k2
0 − k2

y

|Jav|2, (3.25)

which implies

Re

[
E0

Jav

]
= ωμ0

2
√

k2
0 − k2

y

, (3.26)

a relation that is valid as long as condition (3.17) holds. This ensures, using
Eq. (3.13), that Re[Zs] = 0 for any lossless array when only the dominant Floquet
wave propagates, as expected.
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Resonance condition

The largest induced dipole moments in Eq. (3.7) are obtained when Re[α−1] =
Re[βT E], which corresponds to the surface resonance. It is observed that there
are two possibilities of achieving a resonance, which correspond to two distinct
phenomena supported by the array. The first possibility is that Re[α−1] 	 0 for
sufficiently small periods, such that also Re[βT E] 	 0, which implies nonresonant
coupling in the array. This case implies that the nanoparticles are relatively close to
their individual resonance frequency, with a slight shift associated with the coupling
with the other nanoparticles in the array. In order to achieve this situation, special
nanoparticles should be employed that may support a strong electric resonance in a
small volume. At optical frequencies, plasmonic materials serve this purpose, since
plasmonic nanoparticles may resonate even for a very small electrical size [6]. As
a second possibility, nanoparticles far from their electric dipole resonance (such
as dielectric nanoparticles), characterized by a large Re[α−1], may still support
a collective resonance as long as Re[βT E] is sufficiently large that the difference
Re[α−1] − Re[βT E] in the denominator of Eq. (3.7) vanishes. This implies that
the periods of the array are not small and a lattice resonance is in place. As
we describe in the following, these two physical mechanisms have very different
resonant properties for the array.

At the surface resonance, the average surface current density assumes the value

Jav = −ωE0 exp(ikyy)x̂

dxdyIm
[
α−1 − βT E

]

= ωE0 exp(ikyy)x̂
dxdy

⎡
⎣ 1

2dxdy

ω2μ0√
k2

0 − k2
y

+ α−1
loss

⎤
⎦

−1

, (3.27)

where we have assumed condition (3.17), which is necessary for a proper meaning
of the averaged surface current density. This description is particularly relevant
when plasmonic resonances are considered, for which the array periods are smaller
than the wavelength of operation. It may be seen that Jav at resonance is purely in
phase with the impinging plane wave, as expected (this implies a maximized power
interaction with the impinging wave and zero net stored energy). In the absence of
losses, this expression simplifies to

Jav =
2
√

k2
0 − k2

yE0 exp(ikyy)x̂

ωμ0
. (3.28)
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The reflection and transmission coefficients at resonance are given by

R = −
⎛
⎝1 + α−1

loss

2
√

k2
0 − k2

ydxdy

ω2μ0

⎞
⎠

−1

, (3.29a)

T =
2α−1

loss

√
k2

0 − k2
ydxdy

ω2μ0 + 2α−1
loss

√
k2

0 − k2
ydxdy

, (3.29b)

which tend to

R = −1 (3.30a)

and

T = 0 (3.30b)

in the lossless case, realizing a perfect electric conducting surface at the ideal
lossless resonance of such a planar array. Indeed, at resonance, for a lossless
surface with periods satisfying Eq. (3.17), we obtain from Eqs. (3.28), (3.26), and
(3.13)

Zs = 0. (3.31)

Note that these limiting results, Eqs. (3.30)–(3.31), are independent of the specific
choice of the array periods; i.e., in the ideal limit of zero loss, even a very sparse
array may support total reflection and zero transmission.

3.2.2 TM excitation

For TM plane wave incidence, the situation is complicated by the fact that the
electric field also has a nonzero normal component of polarization. In this case,
without loss of generality, the impinging plane wave may be assumed to have a
magnetic field,

Hinc = E0

η0
exp(ikxx) exp

[
i

√
k2

0 − k2
x z

]
ŷ, (3.32)
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which implies

Einc = E0

{√
1 − k2

x

k2
0

exp(ikxx) exp

[
i

√
k2

0 − k2
x z

]
x̂

− kx

k0
exp(ikxx) exp

[
i

√
k2

0 − k2
x z

]
ẑ
}

. (3.33)

Since the magnetic field does not interact directly with plasmonic nanoparticles
(we are assuming here nonmagnetic materials), each of the two components of
the electric field is responsible for the polarization of the array. In particular, for
symmetry reasons the two components of Einc separately induce a polarization
vector on the whole array parallel to x̂ and ẑ, respectively, and due to the linearity
of the problem we can write, in analogy with Eq. (3.7),

P00x =
√

1 − k2
x

k2
0

E0

α−1
xx − βxx

, (3.34a)

P00z = −kx

k0

E0

α−1
zz − βzz

, (3.34b)

where αxx and αzz are the polarizability components of the nanoparticles in the two
directions, and βxx , βzz are the corresponding interaction factors. As an example,
the accelerated form of βxx in this case is as follows:

βxx = k3
0

ε0

{
Li3

(
exp[idx(1 + kx)]

)+ Li3
(
exp[idx(−1 + kx)]

)
πd

3
x

− i
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(
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(
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)
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2
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×
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⎫⎬
⎭ , (3.35)

where the first term corresponds to the closed-form interaction in a linear array of
nanoparticles aligned along x with phase shift kx , consistent with ref. [11], and the
following summations refer once again to the Floquet expansion of the cylindrical
waves radiated by each array, divided into cylindrical waves below cut-off (second
addend in Eq. (3.35)) and propagating cylindrical waves (third addend).

Averaged description of the periodic array

For small enough periods, an averaged description of the array granularity is still in
place, since only the dominant radiated plane waves will constitute the far-field of
the array. For this polarization, the corresponding averaged surface current density
also has two components:

Jav = JavXx̂ + JavZ ẑ

= −iωE0 exp(ikxx)

dxdy

[√
1 − k2

x

k2
0

x̂

α−1
xx − βxx

− kx

k0

ẑ

α−1
zz − βzz

]
, (3.36)

which in turn produces, under this assumption of one single propagating Floquet
harmonic, reflected and transmitted plane waves with magnetic fields given by

Hr =
⎡
⎣JavX

2
+ kxJavZ

2
√

k2
0 − k2

x

⎤
⎦ exp

[
−i

√
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0 − k2
x z

]
ŷ, (3.37a)

Ht = Hinc −
⎡
⎣JavX

2
+ kxJavZ

2
√
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0 − k2

x

⎤
⎦ exp

[
i

√
k2

0 − k2
x z

]
ŷ. (3.37b)
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The corresponding reflection and transmission coefficients for magnetic fields may
be written as follows:

R = − i

2ε0

√
k2

0 − k2
xdxdy

{
k2

0 − k2
x

α−1
xx − βxx

+ k2
x

α−1
zz − βzz

}
, (3.38a)

T = 1 + i

2ε0

√
k2

0 − k2
xdxdy

{
k2

0 − k2
x

α−1
xx − βxx

− k2
x

α−1
zz − βzz

}
. (3.38b)

It is easily verified that for normal incidence this reflection coefficient collapses
to the opposite sign of Eq. (3.12) for TE polarization, as expected (these are
reflection and transmission coefficients for the magnetic fields). Moreover, when
the particles cannot be polarized longitudinally (αzz = 0, as in the case of flat
nanodiscs composing the surface), the coefficients have the dual form of Eq. (3.12),
as expected:

R = −iω

2dxdy(α−1
xx − βxx)

√
k2

0 − k2
x

ωε0
, (3.39a)

T = 1 − R. (3.39b)

In general, however, both polarizability factors come into play for TM oblique
incidence. For this reason, the equivalent surface impedance now has a shunt
component, the dual of Eq. (3.13), and a series component related to the normal
polarization of the surface, which is always present unless αzz = 0 or kx = 0. In
this latter case, the shunt surface impedance has the following expression:

Zs = E0

Jav

√
1 − k2

x

k2
0

−
√

k2
0 − k2

x

2ωε0
. (3.40)

Power balance

The overall power extracted by each nanoparticle from a TM impinging plane wave
may be written in this case as

Pext = ω|E0|2
2k2

0

Im

[
k2

0 − k2
x

α−1
xx − βxx

+ k2
x

α−1
zz − βzz

]
. (3.41)

The radiated power from the array has a more challenging derivation here, since
on each side of the array the radiated wave is composed of the contribution from
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the two coexisting polarizations, which, in general, may interfere constructively
or destructively. Limiting ourselves to the case of one dominant Floquet mode for
simplicity, for which Eq. (3.38) holds, the radiated power per nanoparticle in the
backward direction, associated with the reflected wave, reads as

P
(R)
rad =

∣∣∣∣
√

k2
0 − k2

xJavX + kxJavZ

∣∣∣∣
2

dxdy
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8
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∣∣∣∣ k2
0 − k2

x
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x
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∣∣∣∣
2

. (3.42)

Similarly, the plane wave radiated along the positive z axis, in the transmission
region, carries an overall power per unit cell given by

P
(T )
rad =
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2

. (3.43)

The overall radiated power per unit cell is readily obtained as

Prad = P
(R)
rad + P

(T )
rad

= ω|E0|2
k2

0

1

4
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+
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x
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2
}

. (3.44)

It is seen that, due to the polarization along z, the radiated power on the two sides
of the array is not the same, due to the break in the symmetry. However, interest-
ingly enough, the total radiated power is simply given by the sum of the power
flows independently associated with the two current polarizations. As expected,
Eqs. (3.42) and (3.43) coincide for normal incidence (equaling Eq. (3.22)), and
in the case of αzz = 0, for which the symmetry is restored, due to the absence of
normal polarization in the array.
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The analogous expression to Eq. (3.16) for βxx may be derived from Eq. (3.35):

Im[βxx] = − k3
0

6πε0
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. (3.45)

Consistent with the TE case, for small enough periods such that

(
kx − 2πNx

dx

)2

+ 4π2N2
y

d
2
y

> 1, ∀Nx, Ny �= 0, (3.46)

only one dominant TM plane wave is radiated on each side of the array, simplifying
Eq. (3.45) to

Im[βxx] = − k3
0

6πε0
+ 1

2dxdy

√
k2

0 − k2
x

ε0
, (3.47)

which is the dual of Eq. (3.18). Following similar arguments, the equivalent of
Eq. (3.47) may be derived for Im[βzz] as

Im[βzz] = − k3
0

6πε0
+ 1

2dxdy

k2
x√

k2
0 − k2

xε0

. (3.48)

In the absence of Ohmic absorption, and when condition (3.46) is satisfied, the
extracted power from each nanoparticles may be written as

Pext = ω|E0|2
4k2

0ε0dxdy

⎡
⎣ (k2

0 − k2
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)3/2∣∣α−1
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∣∣2 + k4
x√
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x
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∣∣2
⎤
⎦

= Prad, (3.49)

which confirms the power conservation requirements. As noticed in the TE case, the
presence of Ohmic loss in the array, or excitation of higher-order Floquet modes,
increases the extracted power accordingly.
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Finally, it is noticed in this polarization that when αzz = 0 and a purely shunt
surface reactance is available, power balance requires

1

2
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[
E0

√
1 − k2

x

k2
0

J ∗
av

]
=
√

k2
0 − k2

x

4ωε0
|Jav|2 , (3.50)

which implies

Re

[
E0

Jav

]
=

√
μ0/ε0

2
, (3.51)

as long as condition (3.46) holds. In parallel with the case of TE polarization, this
ensures, using Eq. (3.40), that Re[Zs] = 0 for any lossless array when only the
dominant Floquet wave propagates, as expected. This result may be generalized to
arrays with a nonzero normal component of polarizability αzz by also considering
a series component of the surface reactance.

All the theoretical results derived in this section hold for a generic planar periodic
array, independent of its nature, material, and geometry of the nanoparticles, as
long as the dipolar approximation holds. In the following section, we describe
some specific examples of interest to validate the preceding theory, and provide
further insights into the design of these arrays for practical applications of interest.

3.3 Numerical results and design principles

After having established the main electromagnetic properties of a general 2-D array
of nanoparticles excited by an external plane wave, we report in the following
some numerical examples and verification of the preceding results that address the
potentials of plasmonic arrays of nanoparticles in a variety of practical problems.
We focus for simplicity on the TE polarization for most of this section, since we
have highlighted the differences and analogies with the TM case in Section 3.2.

3.3.1 TE polarization: lossless nanoparticles

Consider a planar array of nanospheres with permittivity ε and radius a � λ0,
where λ0 is the free-space wavelength, with an isotropic polarizability tensor

α = αI = −6πiε0c
T M
1

k3
0

I 	 4πε0a
3 ε − ε0

ε + 2ε0
I, (3.52)

where cT M
1 is the first TM Mie scattering coefficient as defined in ref. [32] and I

is the identity tensor. The approximate expression in the last term of Eq. (3.52)
holds for small spherical nanoparticles in the “quasi-static” small-radius limit. In
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Figure 3.2. Dispersion of the magnitude and phase of the induced dipole moments
on a periodic array with a = 10 nm, dx = dy = 22 nm.

our calculations, we use the exact expression for the Mie scattering coefficient cT M
1

in Eq. (3.52), which ensures complete power balance [33].
Let us assume first the case of lossless spheres, with permittivity ε = Re[εAg],

where εAg is the experimentally retrieved permittivity of silver in the visible, as
found in ref. [5]. This allows us to consider a realistic dispersion model for the
permittivity of the nanosphere, neglecting for the moment the presence of realistic
losses. This is particularly instructive in order to analyze the effects of radiation
loss and higher-order Floquet modes in the wave interaction with the array. Later in
this section we will also consider realistic loss in the materials of the nanospheres.

Figure 3.2 reports the normalized induced dipole moment p = (k3
0/6πε0)P00 for

TE plane wave incidence for a uniform periodic array of nanospheres with radius
a = 10 nm and equal periods dx = dy = 22 nm. The angle of incidence is varied
from the normal φ = 0 to the grazing angle, and the figure reports the amplitude
and phase of the normalized dipole moment.

It is seen that the induced dipole moment on each nanoparticle experiences a
significant peak at the frequency (around λ0 = 400 nm) for which Re[α−1] = βT E .
Due to the different coupling among particles for different angles of incidence, the
peak shifts slightly in frequency. It is also seen that a sharp minimum in the
induced dipole moment is experienced, independent of the angle of incidence, near
λ0 = 300 nm. This is simply associated with the fact that around this wavelength
Re[εAG] 	 ε0, and we are neglecting absorption by the particles.

Figure 3.3 reports the corresponding reflection coefficient for the same planar
array, showing a sharp reflection peak, always centered around the same resonance
frequency, independent of the incidence angle. This stability of the frequency of
maximum reflection is associated with the sub-wavelength features of this array
(this is drastically different from regular Wood’s anomalies associated with lattice
resonances, for which the angle of incidence significantly affects the resonance



Optical wave interaction with arrays of plasmonic nanoparticles 77

200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0

A
bs

 [R
]

Wavelength λ
0
 [nm]

(a)

200 300 400 500 600 700 800

–150

–100

–50

0

50

100

150
φ = 0 deg
φ = 45 deg
φ = 67.5 deg
φ = 81 deg

A
rg

 [R
] [

de
g]

Wavelength λ
0
 [nm]

(b)

Figure 3.3. Dispersion of the reflection coefficient from the periodic array of
Fig. 3.2 (a = 10 nm, dx = dy = 22 nm).

frequency, as we show in the following for larger periods). Note that, despite the
presence of gaps between neighboring particles, the reflection may become total
at the array resonance in this lossless scenario. In fact, as shown in the preceding
section, total reflection is achieved at resonance independent of the period, and
even sparse arrays would produce total reflection at the resonance frequency (in
this lossless scenario). The array density affects the bandwidth and Q-factor of the
resonance. As anticipated in Section 3.2, the phase of the reflection coefficient (for
electric fields) is 180◦ at resonance, ensuring the effect of an equivalent perfect
electric conductor around the resonance frequency. For larger angles, the reflection
bandwidth increases due to the naturally larger reflection from the array in this
polarization.

We do not report here the corresponding transmission coefficient, which is simply
given by |T | =

√
1 − |R|2 as long as the far-field is formed just by the dominant

Floquet mode (as for this choice of periods) due to the absence of absorption.
Figure 3.4 reports the equivalent shunt impedance for this geometry, which is

the same for all incidence angles, due to the absence of higher-order propagating
Floquet modes and the small granularity of the array. This is consistent with recent
findings on metasurfaces whose surface impedance is weakly dependent on the
angle of incidence [27]. It is seen that the impedance is purely reactive due to the
absence of absorption on the surface, and it crosses zero at the resonance frequency,
ensuring total reflection. The surface impedance diverges near the transparency
frequency, as expected. In Fig. 3.5 we report the magnitude of the induced dipole
moment on planar arrays with dx/3 = dy = 2.2a and a = 10 nm (Fig. 3.5a), a =
20 nm (Fig. 3.5b). On comparing Fig. 3.5(a) with Fig. 3.2, it is seen that a larger
spacing in the x̂ direction ensures a sharper resonance and stronger induced dipole
moments. This is expected, and is consistent with our results for linear arrays and
3-D arrays of nanoparticles: decreasing the coupling in the direction of polarization



78 Andrea Alú and Nader Engheta

200 300 400 500 600 700 800
–1

0

1

2

3

4

5

6

 R
s

 X
s

Z
s [ 

kΩ
 ]

Wavelength λ
0
 [nm]

Figure 3.4. Dispersion of the effective surface impedance for the periodic array
of Fig. 3.2 (a = 10 nm, dx = dy = 22 nm). This impedance is the same for all
angles of incidence.
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Figure 3.5. Dispersion of the magnitude of the induced dipole moments for a
periodic array with dx/3 = dy = 2.2a for two different sizes of the particles.

of the nanoparticles ensures sharper and stronger resonant properties for the whole
array. Of course, the price to be paid is an inherently anisotropic response.

Figure 3.5(b) shows the effect of scaling the whole geometry by a factor of
two. It is seen how the resonant peak is somehow shifted to larger frequencies due
to the different size of the individual particles and the different coupling among
them. The induced dipole moments are also larger, as expected due to the larger
nanoparticle polarizability. The dependence on the angle of incidence is analogous
in all these examples.
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Figure 3.6. Dispersion of the magnitude of the reflection coefficient for the
periodic arrays of Fig. 3.5.
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Figure 3.7. Dispersion of the effective surface impedance for the periodic arrays
of Fig. 3.5. This impedance is the same for all angles of incidence.

Figure 3.6 reports the corresponding magnitude of the reflection coefficient for
these arrays. It is evident that the angular response is analogous to the one reported
in Fig. 3.3, but a larger distance dx ensures a narrower bandwidth and sharper
filtering properties (which is quite counterintuitive, given the strong reduction in
the number of nanoparticles employed for the array). Moreover, larger nanoparticles
inherently correspond to larger bandwidths of operation.

Figure 3.7 reports analogous plots for the effective surface impedance in these
cases. Although the impedance is always purely reactive and crosses zero at the
array’s resonance frequency, the variation and slope of surface reactance versus
frequency may be tuned by varying the geometry of the array, increasing or reducing
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Figure 3.8. Dispersion of the magnitude of the induced dipole moments for plane
wave excitation at normal incidence in a periodic array with dy = 2.2a, for several
sizes of the particles.

the resonance bandwidth. These plots may be used to tailor the dispersion properties
of the surface reactance with a proper design of the nanoparticles and their period.
Also, in these examples, the surface impedance is the same for all incidence angles.

Figure 3.8 reports the normalized induced dipole moment for normal incidence
and several sizes of the nanoparticles, for dy = 2.2a and dx = dy (Fig. 3.8a), dx =
3dy (Fig. 3.8b). These plots show how the induced dipole moment at resonance
grows approximately as the square of the diameter for small nanoparticles, and
the resonance frequency is fairly constant with scaling the array. As expected,
the Q-factor of the resonance increases for anisotropic arrays when the period is
increased in the direction of the polarization of the electric field.

Figure 3.9 shows the corresponding amplitude of the reflection coefficient |R|,
which always reaches unity at the resonance frequency, as expected, due to the
absence of absorption. It is evident that the resonance bandwidth is strongly affected
by the variation in the period of the array along the electric field polarization.

Figures 3.10 and 3.11 report similar plots, but for larger nanoparticles, in the case
dx = 3dy . It is observed how further increasing a, and correspondingly increas-
ing the periods, causes the occurrence of Wood’s anomalies or lattice resonances
associated with higher-order Floquet harmonics excited by the impinging plane
wave. These resonances correspond to the scenario in which the nanoparticles
are far from their individual resonance, but the lattice period is comparable with
the transverse wavelength and may produce an overall resonance effect. In this
scenario, condition (3.17) is not met below a certain wavelength, and additional
side lobes are produced in the far-field of the surface, on both sides of the array.
It is seen that the occurrence of these lattice resonances produces a very distinct
behavior when compared to the “quasi-static” small-radius resonances associated
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Figure 3.9. Dispersion of the reflection coefficient for the geometries of Fig. 3.8.
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Figure 3.10. Dispersion of the magnitude of the induced dipole moments for plane
wave excitation in a periodic array with dx/3 = dy = 2.2a, for several sizes of the
particles.
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Figure 3.11. Dispersion of the reflection coefficient for the geometries of Fig. 3.10.

with the plasmonic properties of the nanoparticles for smaller sizes: as expected,
these Wood’s resonances are strongly dependent on the period (varied here together
with the nanoparticle size) and on the incidence angle, which varies the effective
transverse wavelength seen by the periodic array, consistent with our previous
theoretical results. In Fig. 3.10, we observe that these lattice resonances may pro-
vide additional peaks in the induced dipole moment, distinct from the plasmonic
resonances.

In Fig. 3.11, we note that the reflection coefficient dispersion behaves more
irregularly in the region where condition (3.17) is not satisfied, with peaks that
are lower than unity and sharp changes in the slope, even in the case in which we
are neglecting Ohmic absorption. This is associated with the fact that, as predicted
in Section 3.2, for larger periods additional modes can radiate away a portion of
the extracted power. In this regime, the reflection and transmission coefficients,
Eq. (3.12), do not provide a complete description of the array interaction, and
power balance is not satisfied if we do not consider the other propagating waves
beyond the dominant Floquet mode.

This is further detailed in Fig. 3.12, where we report for the examples of Fig. 3.11
the quantity 1 − |R|2 − |T |2, which is identically zero for energy conservation as
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Figure 3.12. Power balance for the array of Fig. 3.11 for different angles of incidence.

long as condition (3.17) holds, i.e. as long as there is only one propagating Floquet
wave. As can be seen in the figure, when the interparticle distance increases together
with the particle size, higher-order propagating Floquet modes arise, implying that
power is coupled into additional plane waves and that a nonzero value of the
power balance quantity is obtained in Fig. 3.12, if we consider only the dominant
Floquet mode in the reflection and transmission scenarios. For this scenario, due
to the larger period along x, the cut-off wavelength for which higher-order modes
propagate out of the array and |R|2 + |T |2 < 1, occurs for Nx = ±1 in Eq. (3.17),
i.e. at the free-space wavelength

λ0 = dx

√
1 − sin2 φ. (3.53)

Any wavelength below this value is characterized by the presence of at least one
higher-order Floquet mode carrying additional power away from the array.

Larger periods along the polarization direction, although ensuring larger Q-
factors and stronger polarization vectors,imply lower cut-off frequencies for the
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higher-order Floquet modes and undesired side lobes in the radiation pattern of
the array. These results confirm that it may be more appealing to achieve highly
reflective surfaces or anomalous wave interaction properties from these planar
arrays based on plasmonic resonance effects associated with smaller nanoparticles,
rather than with regular Wood’s anomalies and lattice resonances associated with
the lattice periodicity. A metasurface based on plasmonic resonances would provide
a resonant response that is independent of the angle of incidence and is not affected
by the presence of side lobes and radiation in undesired directions.

It is also noticed that, together with strong reflections, lattice resonances may
produce sharp transparency windows for the dominant mode (reflection coefficient
R), associated with enhanced optical transmission effects [34] through such arrays.
We stress the fact that these are lattice effects, associated with the array period,
which is comparable with the effective incident wavelength, and that they are not
related to the plasmonic features of the array. As shown in Section 3.2, for sub-
wavelength features the resonance of these arrays is always associated with strong
reflections, since the large polarization currents on each nanoparticle produce a
maximized reflected wave and cancel out the impinging wave on the transmission
side of the array.

3.3.2 TE polarization: realistic levels of absorption

After having established the main properties of such arrays for lossless nanopar-
ticles, we consider in this section the presence of realistic material absorption.
In particular, we use the extracted experimental values of the permittivity of sil-
ver given in ref. [5] for our nanoparticles. Analogous to Fig. 3.3(a), Fig. 3.13(a)
reports the reflection coefficient from the array of Fig. 3.2, with isotropic peri-
ods dx = dy = 22 nm and small silver nanoparticles, a = 10 nm. It is seen that
the reflection curves are analogous to those in the lossless case, even if the peak
in reflection is slightly lower than unity, due to absorption, and the dip around
λ0 = 300 nm is larger than zero, since silver is not transparent in that range of
wavelengths. The levels of reflection consistently shift down for larger angles of
incidence at all wavelengths.

The corresponding transmission and absorption coefficients are also reported
in Fig. 3.13. We observe that a significant level of absorption is experienced on
the surface, in particular near the array resonance for normal incidence and near
the transparency window for grazing angles. Due to the small periodicity, in this
scenario the quantity 1 − |R|2 − |T |2 directly corresponds to the absorbed power,
since the cut-off frequency for higher-order modes is in the UV.

Figure 3.14, analogous to Fig. 3.4, reports the effective surface impedance for
the array of Fig. 3.13. Also in this case, this quantity is independent of the angle of



Optical wave interaction with arrays of plasmonic nanoparticles 85

1.0

0.6

0.8

1.0
[R

]

0.2

0.4A
bs

[

(a)
200 300 400 500 600 700 800

0.0

Wavelength λ
0
 [nm] (b)

1.0

0.4

0.6

0.8

A
bs

 [T
]

200 300 400 500 600 700 800
0.0

0.2

Wavelength λ  [nm]

(c)

0

1 0

0.6

0.8

1.0

φ = 0 deg
φ = 45 deg
φ = 67.5 deg
φ = 81 deg

0.2

0.4

1 
– 

A
bs

 [R
]2  –

 A
bs

 [
T

]2

200 300 400 500 600 700 800
0.0

Wavelength λ
0
 [nm]

Figure 3.13. Dispersion of the reflection, transmission, and absorption for the
periodic array of Fig. 3.2 (a = 10 nm, dx = dy = 22 nm), but now for realistic
values of the absorption for silver.
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Figure 3.14. Analogous to Fig. 3.4, dispersion of the effective surface impedance
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Figure 3.15. Analogous to Fig. 3.6, dispersion of the magnitude of the reflection
coefficient for the periodic arrays of Fig. 3.5, but now for realistic values of the
absorption for silver.
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Figure 3.16. Similar to Fig. 3.15, but reporting the transmission coefficients for
the same array, for realistic values of the absorption for silver.

incidence, due to the small features of the array. As expected, the absorbing nature
of the nanoparticles mainly affects the surface resistance, which is not negligible
for wavelengths below the array resonance. The surface impedance is still relatively
small around the resonance wavelength, ensuring a low-impedance behavior with
high reflectivity around this regime. However, the large surface reactance around
the transparency window is strongly affected by the material absorption, increasing
the reflective properties of the array in this frequency range.

Figures 3.15–3.17 report the reflection, transmission, and absorption coeffi-
cients, respectively, for the periodic arrays of Fig. 3.5, with anisotropic periods
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Figure 3.17. Similar to Figs. 3.15 and 3.16, but reporting the absorption loss
associated with realistic values of Ohmic absorption in silver.

dx/3 = dy = 2.2a and a = 10 nm (panels (a)), a = 20 nm (panels (b)). It is
observed that in this case the high-Q and narrow bandwidth features obtained
in Fig. 3.6 are strongly affected by the presence of absorption in the particles. In
this case, the array is considerably less dense, and the particle absorption seriously
affects the plasmonic resonances of the nanoparticles, considerably broadening the
resonant features. Still, the overall coupling in the array ensures a stable reflection
peak weakly dependent on the angle of incidence and a maximized reflection for
larger angles of incidence. As expected, larger nanoparticles (panels (b)) ensure
more robustness to loss and larger reflectivities. Also in this case, on comparing
these results with Fig. 3.13, one may note how reducing the period in the direction
of polarization of the nanoparticles ensures sharper resonance features.

Figures 3.16 and 3.17 report similar trends for the transmission and absorption
features of the array. It is particularly interesting to verify that by reducing the
array density, and removing a significant number of nanoparticles from the array,
it is possible to increase the absorption at the surface. This counterintuitive effect
is again associated with the improved resonant features arising from the coupling
reduction in the direction of polarization of the nanoparticles, consistent with our
findings in ref. [11] for linear arrays of nanoparticles.

3.3.3 TM polarization: realistic levels of absorption

As in the preceding subsection for TE polarization, we present here some numerical
examples of wave interaction with planar arrays of nanoparticles for TM plane wave
excitation. In this section, we concentrate for simplicity on arrays of nanodiscs of
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Figure 3.18. Dispersion of the amplitude and phase of the reflection coefficient for
a periodic array of nanodiscs and geometry as in Fig. 3.2 (a = 10 nm, dx = dy =
22 nm).

radius a for which

α = αxx (x̂x̂ + ŷŷ) . (3.54)

For easy comparison with the TE case, we assume that the polarizability value in
the xy plane is the same as used in Eq. (3.52). However, the normal component of
polarizability, αzz, is assumed to be negligible here. In this case, the reflection and
transmission coefficients are given by Eq. (3.39) and the shunt surface impedance
is given by Eq. (3.40). We consider the experimental values of absorption in silver
from the literature [5], as in the preceding subsection.

Figure 3.18 reports the amplitude and phase of the reflection coefficient for
an array with a = 10 nm, dx = dy = 22 nm, consistent with the geometry of
Fig. 3.2. It is seen that for normal incidence, as expected, the results coincide
with Fig. 3.13, but, for an increasing angle of incidence, the reflection coefficient
decreases, rather than increasing as in the TE case. The reason is due to the fact that
in TM polarization, as noted in the preceding section, the tangential component
of the electric field is not constant on the surface of the array, but decreases for
larger angles of incidence. Correspondingly, the polarization of the nanoparticles,
and the effective averaged currents, significantly decrease as the grazing angle is
approached. The phase of the reflection coefficient now crosses zero at resonance,
since the reflection coefficient is calculated here for magnetic fields, consistent with
the definition given in Eq. (3.38). Interestingly, in this polarization the resonance
becomes sharper for larger angles of incidence, in contrast with the TE case.

Figure 3.19 reports the corresponding values of transmission and absorption
for the same array. It is particularly interesting to notice the sharp absorption
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Figure 3.19. Dispersion of the transmission and absorption coefficients for the
array of Fig. 3.17.

features obtained for large incidence angles, consistent with the enhanced resonant
features obtained for larger angles in this polarization. The corresponding surface
impedance for this polarization is consistent with Fig. 3.14. Also in this case, the
variation of the surface impedance with the incidence angle is negligible, since
the array period is much smaller than the wavelength of operation, and therefore
in both polarizations the impedance, with good approximation, is constant with
respect to the incidence angle. Of course, in the TM case we expect in general to
obtain a series component to the surface impedance; this is not present here, due
to the assumption of a negligible normal component of the polarizability tensor.

Figures 3.20–3.22 present the reflection, transmission, and absorption coeffi-
cients, respectively, for an array of nanodiscs as in Fig. 3.18, but with periods
consistent with Fig. 3.15, i.e. dx/3 = dy = 2.2a and a = 10 nm (panels (a)), a =
20 nm (panels (b)). It can be seen that in this case maximum wave interaction is also
achieved, as expected, for normal incidence, whereas larger angles of incidence
produce a weaker interaction with the impinging wave. Interestingly, increasing the
distance between neighboring nanoparticles in the direction of polarization now
weakens the resonant response for larger angles of incidence. This is particularly
obvious in the reflection (Fig. 3.20) and absorption coefficients (Fig. 3.22), which
become very small for larger angles of incidence. This is associated with the weak
response of a sparser array of lossy nanoparticles, which interact only with the
transverse component of the electric field.

These findings confirm that the homogenized description provided by an aver-
aged surface impedance, as in Eq. (3.40), well describes the interaction of waves
of both polarizations with such an array. Due to space limitations, the numerical
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Figure 3.20. Analogous to Fig. 3.15, dispersion of the magnitude of the reflection
coefficient for a periodic array of nanodiscs as in Fig. 3.18, illuminated by a TM
plane wave. In this case, dx/3 = dy = 2.2a and (a) a = 10 nm, (b) a = 20 nm.
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Figure 3.21. Similar to Fig. 3.20, but reporting the transmission coefficients for
the same array.

results for arrays that have a nonzero normal component of the polarizability are
not given here, but in light of the theoretical results reported in the preceding sec-
tion, similar features may be seen. For larger periods, higher-order Floquet modes
become more relevant, and the periodic features of these surfaces produce side
lobes and additional higher-order Floquet plane waves, analogous to the features
discussed in the preceding subsection for TE polarization.
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Figure 3.22. Similar to Figs. 3.20 and 3.21, but reporting the absorption loss.

3.4 Conclusions

In this chapter, we have analyzed in detail the properties of the interaction of an
optical plane wave with two-dimensional planar arrays of nanoparticles. We have
distinguished features of the resonant reflection and transmission properties arising
from the plasmonic features of periodic arrays of nanoparticles, associated with
the small value of Re[α−1] (individual resonant properties of the nanoparticles)
and lattice resonances arising due to the large value of Re[β] (coupling among the
entire lattice due to its periodic features). The plasmonic features are particularly
appealing, since their resonance features are weakly dependent on the angle of
incidence and on the order of the array, in contrast to the regular lattice resonances.
We have shown that it may be possible to realize highly reflective and/or frequency-
selective surfaces at optical frequencies for filtering, absorption, and radiation
purposes. We have discussed in detail both the theoretical solution and associated
power issues for plane wave excitation and several numerical examples, taking
into account the effect of losses and polarization of the incident plane wave. These
findings may be useful for a variety of applications at optical frequencies.
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[14] A. Alú and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-
handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23,
571–583 (2006).

[15] C. Enkrich, M. Wegener, S. Linden et al. “Magnetic metamaterials at telecommuni-
cation and visible frequencies,” Phys. Rev. Lett. 95, 203901(1-4) (2005).

[16] J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis,
“Saturation of the magnetic response of split-ring resonators at optical frequencies,”
Phys. Rev. Lett. 95, 223902(1-4) (2005).
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[21] A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with
nanocircuit loads,” Nature Photon. 2, 307–310 (2008).



Optical wave interaction with arrays of plasmonic nanoparticles 93
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4

Chirality and anisotropy of planar metamaterials

eric plum and nikolay i. zheludev

4.1 Introduction

In recent years it has emerged that planar metamaterials offer a vast range of
custom-designed electromagnetic functionalities. The best known are wire grid
polarizers, which are established standard components for microwaves, terahertz
waves, and the far-infrared. They are expected to be of increasing importance also
for the near-infrared [1] and visible light [2]. Equally well developed are frequency
selective surfaces [3–6], which are used as filters in radar systems, antenna tech-
nology [7], broadband communications, and terahertz technology [8, 9]. However,
the range of optical effects observable in planar metamaterials and the variety of
potential applications have only become clear since metamaterials research took
off in 2000 [10]. Wave plate [11, 12] as well as polarization rotator and circu-
lar polarizer [13–15] functionalities have been demonstrated in metamaterials of
essentially zero thickness. Traditionally, such components are large as they rely
on integrating weak effects over thick functional materials. Polarization rotation
has also been seen at planar chiral diffraction gratings [16, 17] and thin lay-
ered stereometamaterials [18, 19]. Electromagnetically induced transparency (EIT)
[20–24] and high quality factor resonances [20] have been observed at planar struc-
tured interfaces. And finally, new fundamental electromagnetic effects leading to
directionally asymmetric transmission of circularly [25–29] and linearly [30] polar-
ized waves have been discovered in planar metamaterials.

Planar metamaterials derive their properties from artificial structuring rather
than atomic or molecular resonances, and therefore appropriately scaled versions of
such structures will show similar properties for radio waves, microwaves, terahertz
waves, and, to some extent, in the infrared and optical spectral regions where
losses are becoming more important. Planar metamaterials are compatible with
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well-established fabrication technologies such as lithography and nanoimprint,
allowing for high-throughput manufacturing and making them suitable for highly
integrated applications and miniaturization.

The effects underlying the functionalities of planar metamaterials can be divided
into two categories: dispersion phenomena in the forms of narrow resonances,
stop bands, and EIT-like behaviors on the one hand, and polarization phenomena,
such as circular and linear birefringence and dichroism and polarization-sensitive
asymmetric transmission, on the other hand. The present chapter is devoted to the
analysis of polarization phenomena and propagation asymmetries.

Given the huge range of potential applications of planar metamaterials, it is time
to ask the following question: what are the fundamental limits of polarization func-
tionalities and propagation asymmetries one can expect from planar metamaterials?
In this work we aim to examine what limitations are imposed on the performance
of planar metamaterials by energy conservation and fundamental symmetries.

Before we start, we need to clarify what we mean by a planar metamaterial.
Idealized, a planar metamaterial is a flat two-dimensional surface of zero thick-
ness that is periodically structured on the sub-wavelength scale. This ideal is best
approximated by a single periodically patterned metal layer with a thickness that
is comparable to the skin depth. An ideal planar metamaterial is still well approxi-
mated by a single periodically patterned metal or dielectric layer that is very thin
compared to the wavelength. In practice, such structures are often supported by a
transparent substrate. Due to their sub-wavelength periodicity, planar metamateri-
als do not diffract electromagnetic waves at normal incidence. Here we consider
only nondiffracting angles of incidence.

Oblique incidence onto a planar metamaterial is considered in Section 4.2, and
then the consequences of different structural symmetries and symmetries of the
experimental arrangement are examined. We show that, in general, planar meta-
materials can manifest circular birefringence and circular dichroism, as well as
linear birefringence and dichroism and directionally asymmetric transmission; see
Fig. 4.1. Following general definitions in Section 4.3, these phenomena are further
discussed in Section 4.4. In Section 4.5, an analysis of polarization eigenstates for
planar metamaterials is presented. In Section 4.6 the role of energy conservation is
studied. The performance limits of planar metamaterials as linear polarizers, circu-
lar polarizers, wave plates, or polarization rotators will be examined in Section 4.7.
The final Section 4.8 is devoted to normal incidence onto planar metamaterials.

4.2 General planar metamaterials

The transmission and reflection properties of a linear planar metamaterial can be
written in terms of the transmission1 and reflection matrices, t and r , which relate

1 Also known as Jones matrix.
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Figure 4.1. Exemplar polarization effects in planar metamaterials. (a) Optical
activity in the form of polarization rotation and differential transmission for circu-
larly polarized waves of different handedness (observable at oblique incidence onto
planar metamaterials). (b) Linear birefringence and dichroism in an anisotropic
metamaterial at normal incidence. (c) Asymmetric transmission arising from cir-
cular polarization conversion of the incident wave.

the transmitted and reflected electric fields, Et and Er, to the incident field E0.
Where the propagation direction of the incident wave, forwards or backwards, is
important, it is indicated by an arrow over the matrix, vector, or scalar. For example,
for a forward-propagating incident wave,

−→
E t = −→

t
−→
E 0, (4.1)

−→
E r = −→

r
−→
E 0. (4.2)

It is also convenient to express the transmission and reflection matrices in terms
of the scattering matrix s. As a planar metamaterial is just a nondiffracting array
of scatterers, the transmitted field is simply the superposition of the scattered field
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Figure 4.2. Coordinate systems. Each wave’s polarization state (see Fig. 4.3(a))
is defined in its own right-handed Cartesian coordinate system defined by its
propagation direction and plane of incidence; see the text. Here the coordinates
are shown for a wave incident on the metamaterial’s front xyz (back x ′y ′z′) and
the corresponding reflected wave xryrzr (x ′

ry
′
rz

′
r ). The coordinates xmym are used

to define the metamaterial’s in-plane orientation (see Fig. 4.3(b)) and correspond
to xy projected onto the metamaterial.

and the incident wave, i.e.

−→
t = −→

s + 1, (4.3)

where 1 is the unit matrix.
As illustrated by Fig. 4.2, we will define the polarization state of any electro-

magnetic wave in its own right-handed Cartesian coordinate system xyz, where x

is perpendicular to the plane of incidence,2 y is parallel to the plane of incidence,
and z is the wave’s propagation direction. Note that y is chosen consistently so that
its projection onto the metamaterial is parallel for all waves within the same plane
of incidence.

For example, incident and transmitted waves, as well as scattered fields (mea-
sured in the transmission direction), all have the same propagation direction and
therefore the same coordinates xyz. The coordinates for an incident wave xyz and
the reflected wave xryrzr have anti-parallel x axes xr = −x. The coordinates xyz

and x ′y ′z′ for waves with opposite propagation directions are related by x ′ = −x,
y ′ = y, and z′ = −z.

2 The plane of incidence contains the propagation direction and the metamaterial’s surface normal n.
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Figure 4.3. Polarization state and metamaterial orientation. (a) Each wave’s polar-
ization state is defined in its own coordinate system. Looking along the negative
z axis, i.e. into the beam, positive ellipticity η corresponds to a right-handed path
of the electric field vector at a fixed position in space. The azimuth � is mea-
sured from the positive x axis and increases towards the positive y axis. (b) The
metamaterial’s orientation ϕ̃ corresponds to a preferred direction, e.g. a line of
(glide) mirror symmetry m or direction of anisotropy, which is measured from the
positive ym axis, increasing towards the negative xm axis; xmym correspond to xy
projected onto the metamaterial (see Fig. 4.2).

Planar structures can only couple to tangential electric fields and normal mag-
netic fields.3 Therefore two electromagnetic waves with identical tangential elec-
tric fields and identical normal magnetic fields cannot be distinguished by a planar
metamaterial. In terms of the electric field – which fully defines an electromagnetic
plane wave – these waves correspond to mirror images with respect to the plane of
the metamaterial.

In particular, this implies that the electric field radiated by a planar metamaterial
(or planar current configuration) must be symmetric with respect to the metamate-
rial plane. However, the polarization states (see Fig. 4.3(a)) of waves scattered in the
transmission and reflection directions are defined in different coordinate systems
(see Fig. 4.2), in which they have the opposite handedness. This is why the reflection
matrix (describing scattering in the reflection direction) differs from the scattering
matrix (describing scattering in the transmission direction) by a coordinate trans-
formation. Choosing right-handed (RCP, +) and left-handed (LCP, −) circularly
polarized waves as our basis, the reflection matrix for forward-propagating incident
waves is given by

−→
r = σ

−→
s , (4.4)

where σij switches between the coordinate systems for the incident and reflected
waves, and is 0 for i = j and 1 otherwise.

3 Coupling to normal electric fields and tangential magnetic fields is not possible, as the electric charges cannot
leave the plane of the structure.
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Figure 4.4. Scattering matrices for opposite angles and/or opposite directions
of incidence in the same plane. (a) Form of the scattering matrices for waves
incident at opposite angles ±θ on opposite sides of a planar metamaterial according
to conditions (4.5) and (4.6). (b) Form of the scattering matrices for opposite
directions of incidence as required by Lorentz reciprocity; see Eqs. (4.7) and (4.8).
(c) For nonmagnetized planar metamaterials, both (a) and (b) must apply, thus the
scattering coefficients b, c are reversed for opposite propagation directions, while
the coefficients a, d are reversed for opposite angles of incidence: ±θ .

As discussed above, planar metamaterials can only couple to tangential electric
fields and normal magnetic fields. Therefore two electromagnetic waves that do
not differ in these field components must excite the metamaterial in the same way.
In particular, this is the case for circularly polarized waves of opposite handedness
that are incident in the same plane at angles θ and −θ from the normal on the
front and back of the metamaterial; see Fig. 4.4(a). These waves must cause the
same scattered field. Taking into account that the scattering matrix describes the
scattered field in the respective transmission direction (opposite handedness for
the considered cases), we can identify pairs of identical scattering coefficients for
opposite angles of incidence on opposite sides of the metamaterial:

−→
s++(θ ) = ←−

s−−(−θ ) and −→
s−−(θ ) = ←−

s++(−θ ), (4.5)
−→
s+−(θ ) = ←−

s−+(−θ ) and −→
s−+(θ ) = ←−

s+−(−θ ). (4.6)



100 E. Plum and N. I. Zheludev

If no static magnetic field is present, the Lorentz reciprocity lemma [31] must
hold. Lorentz reciprocity requires, for opposite propagation directions, that −→

tij =←−
tj i , which, due to Eq. (4.3), is equivalent to −→

sij = ←−
sji . This gives us (see also

Fig. 4.4(b))

−→
s++(θ ) = ←−

s++(θ ) and −→
s−−(θ ) = ←−

s−−(θ ), (4.7)
−→
s+−(θ ) = ←−

s−+(θ ) and −→
s−+(θ ) = ←−

s+−(θ ). (4.8)

By combining Eqs. (4.5)–(4.8), we arrive at four complex coefficients describing
the scattering properties of a planar metamaterial for one plane of incidence:

a(θ ) := −→
s++(θ ) = ←−

s++(θ ) = −→
s−−(−θ ) = ←−

s−−(−θ ), (4.9)

b(θ ) := −→
s+−(θ ) = ←−

s−+(θ ) = −→
s+−(−θ ) = ←−

s−+(−θ ), (4.10)

c(θ ) := −→
s−+(θ ) = ←−

s+−(θ ) = −→
s−+(−θ ) = ←−

s+−(−θ ), (4.11)

d(θ ) := −→
s−−(θ ) = ←−

s−−(θ ) = −→
s++(−θ ) = ←−

s++(−θ ). (4.12)

The corresponding scattering matrices are written out explicitly in Fig. 4.4(c),
where

a(θ ) = d(−θ ), d(θ ) = a(−θ ), (4.13)

b(θ ) = b(−θ ), c(θ ) = c(−θ ). (4.14)

A planar metamaterial’s response depends not only on the angle of incidence θ ,
but also on the orientation ϕ̃ ∈ [0, 2π ) of the metamaterial structure in its plane.
With reference to Fig. 4.4(c), reversal of the angle of incidence, θ → −θ , is equiv-
alent to an in-plane rotation of the metamaterial by π , i.e. ϕ̃ → ϕ̃ + π . Therefore−→
s (θ, ϕ̃) = −→

s (−θ, ϕ̃ + π ) and

a(θ, ϕ̃) = d(θ, ϕ̃ + π ), d(θ, ϕ̃) = a(θ, ϕ̃ + π ), (4.15)

b(θ, ϕ̃) = b(θ, ϕ̃ + π ), c(θ, ϕ̃) = c(θ, ϕ̃ + π ). (4.16)

For reference, the scattering, transmission, and reflection matrices for opposite
directions of incidence (same θ, ϕ) onto a planar metamaterial are given explicitly:

−→
s =

(
a b

c d

)
and ←−

s =
(

a c

b d

)
, (4.17)

−→
t =

(
a + 1 b

c d + 1

)
and ←−

t =
(

a + 1 c

b d + 1

)
, (4.18)

−→
r =

(
c d

a b

)
and ←−

r =
(

b d

a c

)
. (4.19)
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4.2.1 Lossless complementary planar metamaterials

According to Babinet’s principle, complementary waves (Ecpl,0 = cB0, Bcpl,0 =
−E0/c) incident on complementary perfectly conducting planar thin screens cause
transmitted fields Et, Bt and Ecpl,t, Bcpl,t, which are related by Et − cBcpl,t = E0

and Bt + Ecpl,t/c = B0 [32, 33].
This requires the transmission matrices of complementary planar metamaterials

to be related as follows:

−→
t =

(
a + 1 b

c d + 1

)
and

−→
t cpl =

(−a b

c −d

)
. (4.20)

The corresponding scattering matrices are given by

−→
s =

(
a b

c d

)
and

−→
scpl =

(−(a + 1) b

c −(d + 1)

)
. (4.21)

Thus, apart from a phase shift by π , complementary lossless planar metamateri-
als have interchanged direct transmission and scattering properties for circularly
polarized waves, e.g. t cpl

++ = −s++. On the other hand, the circular polarization con-
version coefficients (off-diagonal elements) are the same for such complementary

structures, e.g.
−→
t
cpl
−+ =

−→
s
cpl
−+ = −→

t−+ = −→
s−+.

4.2.2 Two-dimensional (2D) achiral planar metamaterials

A volume structure that cannot be superimposed with its mirror image is called
chiral, or 3D-chiral. Infinitely thin planar objects can always be superimposed with
their mirror image and therefore are 3D-achiral. However, the notion of chirality
also exists in two dimensions: any planar object that cannot be superimposed
with its mirror image without being lifted off the plane is called 2D-chiral. The
consequences of 2D and 3D chirality are very different in electrodynamics, and a
substantial body of literature exists on establishing continuous measures of 3D and
2D chirality [34, 35].

Like all planar periodic structures, planar metamaterials can be classified accord-
ing to their wallpaper symmetry group [16, 36, 37]. For the examples of planar
metamaterials presented here, we specify the wallpaper symmetry using crystallo-
graphic notation [38].

Planar metamaterials with a line of (glide) mirror symmetry m are achiral
and will be considered further in this section. The orientation of a 2D-achiral
metamaterial pattern with respect to the plane of incidence is of special significance.
This orientation is most conveniently defined by an angle ϕ̃ between the pattern’s
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line of (glide) mirror symmetry m and the ym axis along which the plane of
incidence crosses the metamaterial plane.

For planar metamaterials with only one line of (glide) mirror symmetry,4 an
in-plane rotation by π results in a different metamaterial orientation with the same
line of mirror symmetry. In order to resolve this, a direction needs to be assigned to
the line of mirror symmetry m in this case.5 For metamaterials with multiple lines
of mirror symmetry,6 a particular mirror line needs to be chosen. Here we measure
ϕ̃ from the ym axis to the line of (glide) mirror symmetry m, increasing towards
the negative xm axis (compare with Fig. 4.3(b)).

Before considering general values of ϕ̃, we will consider special cases corre-
sponding to the metamaterial’s (glide) mirror line being either parallel (ϕ̃ = 0, π )
or perpendicular (ϕ̃ = π/2, 3π/2) to the plane of incidence.

As illustrated by Fig. 4.5(a), if the metamaterial has a line of (glide) reflection
symmetry m parallel to the plane of incidence, identical experiments result from
waves incident at angles θ and −θ on opposite sides of the metamaterial. These
experiments can be superimposed by rotating one of them by π around m. Iden-
tical experiments must have identical scattering matrices, −→

s (θ ) = ←−
s (−θ ), and

therefore a = d and b = c must hold for planar metamaterials with a (glide)
mirror line parallel to the plane of incidence (ϕ̃ = 0 or π ); compare with
Fig. 4.4(c).

Figure 4.5(b) illustrates the case when the metamaterial has a line of (glide)
reflection symmetry m perpendicular to the plane of incidence. In this case, oppo-
site directions of incidence result in identical experiments, which can be superim-
posed by rotating one experiment by π around m. The corresponding scattering
matrices must be identical, −→

s (θ ) = ←−
s (θ ), and therefore b = c must hold for pla-

nar metamaterials with a (glide) mirror line perpendicular to the plane of incidence
(ϕ̃ = π/2 or 3π/2); compare with Fig. 4.4(c).

Thus, the following conditions apply to achiral planar metamaterials:

a(θ, nπ ) = d(θ, nπ ), (4.22)

b(θ, nπ
2 ) = c(θ, nπ

2 ) for n ∈ Z. (4.23)

Figure 4.5(c) illustrates the case of a fixed direction of incidence onto an achiral
planar metamaterial for opposite metamaterial orientations ±ϕ̃. These experiments
are mirror images of each other and therefore they must show the same behavior

4 Wallpaper symmetry groups with a single line of (glide) reflection: pm, pg, cm.
5 For example, narrow end to wide end of the pattern.
6 Wallpaper symmetry groups with multiple lines of (glide) reflection: pmm, pmg, pgg, cmm, p4m, p4g, p3m1,

p31m, p6m.
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Figure 4.5. Achiral planar metamaterials: special orientations ϕ̃ of the metamate-
rial’s line of (glide) mirror symmetry m relative to the plane of incidence (ym axis,
see Fig. 4.3(b)), illustrated for a pattern in the pm wallpaper group. (a) For ϕ̃ = 0
or π , opposite angles of incidence on opposite sides of the metamaterial corre-
spond to identical experiments with identical scattering matrices and therefore
a = d and b = c. (b) For ϕ̃ = π/2 or 3π/2 opposite directions of incidence cor-
respond to identical experiments with identical scattering matrices and therefore
b = c. (c) For the same direction of incidence, opposite metamaterial orientations
±ϕ̃ result in mirrored experiments with the same properties for opposite circular
polarizations.

for opposite circular polarizations:

a(θ, +ϕ̃) = d(θ, −ϕ̃), (4.24)

b(θ, +ϕ̃) = c(θ, −ϕ̃). (4.25)

4.2.3 Normal incidence onto achiral planar metamaterials

The special cases when the metamaterial’s line of (glide) mirror symmetry is
either parallel or perpendicular to the plane of incidence have particular relevance
to the special case of normal incidence onto achiral planar metamaterials. At
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Figure 4.6. Two-fold rotational symmetry, illustrated for a pattern in the p2 wall-
paper group. (a) Opposite angles of incidence ±θ onto a planar metamaterial with
2-fold rotational symmetry result in identical experiments. (b) The corresponding
scattering matrices must also be identical, therefore a = d.

normal incidence any plane containing the metamaterial’s surface normal can
be considered the plane of incidence, including those parallel and perpendicular
to the metamaterial’s line of (glide) mirror symmetry m. Therefore the physical
restrictions for both of these cases must apply to normal incidence.

However, whereas at oblique incidence these special cases correspond to m
being perpendicular or parallel to the x axis of the incident wave’s coordinates,
at normal incidence the plane of incidence, and therefore the orientations of xy,
are not defined by the experimental geometry. No new physics should appear if
we rotate the coordinate system around the z axis. Later we will find that for
normal incidence a rotation of the coordinate system by some angle −�ϕ (or the
metamaterial by +�ϕ) around the z axis simply corresponds to a change in the
phases of b and c, which is given explicitly by Eq. (4.80). The remaining restrictions
that must hold for normal incidence onto achiral planar metamaterials are

a = d and |b| = |c|. (4.26)

Note that b = c must hold in the special coordinate systems in which the x

axis is either perpendicular or parallel to the metamaterial’s line of (glide) mirror
symmetry.

4.2.4 Two-fold rotational symmetry or normal incidence

Here we will consider two common cases: 2-fold rotational symmetry7 (for any
angle of incidence) and normal incidence (for any planar metamaterial).

As illustrated by Fig. 4.6, opposite angles of incidence onto the same side of a
planar metamaterial with 2-fold rotational symmetry result in the same experiment.
One experiment can be superimposed on the other through a rotation by π around

7 Wallpaper symmetry groups with 2-fold rotational symmetry: p2, pmm, pmg, pgg, cmm, p4, p4m, p4g, p6,
p6m.
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the metamaterial’s normal. The corresponding scattering matrices must be identical,−→
s (+θ ) = −→

s (−θ ), and therefore a = d.
On the other hand, for any planar metamaterial, −→

s (+θ ) = −→
s (−θ ) must hold

for the limiting case θ = 0, and therefore a = d is required at normal incidence.
Thus for (i) planar metamaterials at normal incidence and (ii) 2-fold rotationally

symmetric planar metamaterials at any given angle of incidence ±θ , the most
general form the scattering matrices can take is

−→
s =

(
a b

c a

)
and ←−

s =
(

a c

b a

)
. (4.27)

For the corresponding transmission and reflection matrices see Eqs. (4.18) and
(4.19), with a = d.

4.3 Definitions

4.3.1 Alternative variables for the elements of scattering
and transmission matrices

It turns out to be convenient to make the following definitions for the diagonal
elements of the scattering matrix:

a = Aei(ξ−2δ) − 1
2 and d = Dei(ξ+2δ) − 1

2 . (4.28)

These definitions allow us to specify a and d in terms of the real parameters
A, D, ξ, δ, which we define as follows:

A = |a + 1
2 | and D = |d + 1

2 |, (4.29)

ξ = arg(a+1/2)+arg(d+1/2)
2 , ξ ∈ (−π, π ], (4.30)

δ = arg(d+1/2)−arg(a+1/2)
4 , δ ∈ (−π

2 , π
2 ). (4.31)

Importantly, some later arguments regarding the meaning of δ require us to choose
a phase convention. We choose ξ, δ, so that ξ ± 2δ ∈ (−π, π ]. This convention
is automatically satisfied if we choose arg(a + 1/2), arg(d + 1/2) ∈ (−π, π ] and
follow the above definitions.

Similarly it is convenient to define alternative parameters κ, ϕ for the phases of
the off-diagonal elements of the scattering matrix b and c,

b = |b|ei(κ−2ϕ) and c = |c|ei(κ+2ϕ), (4.32)
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where κ and ϕ are defined as

κ = arg(b) + arg(c)

2
, κ ∈ [0, 2π ), (4.33)

ϕ = arg(c) − arg(b)

4
, ϕ ∈ [0, π

2 ). (4.34)

It will be shown that in the case of normal incidence, or of 2-fold rotationally
symmetric planar metamaterials, ϕ is the azimuth of one eigenstate for forward
propagation, and that in these cases the eigenpolarizations are independent of κ . We
will also find that for lossless metamaterials without linear birefringence/dichroism,
δ specifies the polarization azimuth rotation of the transmitted field.

4.3.2 Polarization states

In a circular basis, the azimuth � of a polarization state E = (E+, E−) is defined
as

� = −1

2
[arg(E+) − arg(E−)] , (4.35)

and its ellipticity angle η is given by

η = 1

2
arcsin

( |E+|2 − |E−|2
|E+|2 + |E−|2

)
. (4.36)

Clearly, any polarization can be represented as a vector E = (E+, E−), where
any collinear vectors E′ = τE, τ ∈ C represent the same polarization state. The
squared magnitude |E|2 represents the intensity of the electromagnetic wave. As
we only consider linear materials, none of the phenomena discussed here depends
on the intensity of the incident wave, and therefore it is sufficient to consider
incident waves of normalized amplitude û = E/|E|. All normalized polarization
states can be written as

û =
(

sin(β)ei(γ−α)

cos(β)ei(γ+α)

)
, α ∈ (−π

2 , π
2 ], β ∈ [0, π

2 ], γ ∈ [0, 2π ). (4.37)

From Eqs. (4.35) and (4.36) it follows that the azimuth and ellipticity of û are

�(û) = α,

η(û) = β − π
4 .
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Thus û represents a polarization state of azimuth α and ellipticity angle β − π/4.
Different values of γ correspond to the same polarization state at different times.

4.4 Polarization effects

Planar metamaterials may exhibit several polarization effects. As shown in
Section 4.4.1, optical activity is present when a �= d. It will be demonstrated
in Section 4.4.2 that |b| �= |c| corresponds to directionally asymmetric transmis-
sion, reflection and absorption of circularly polarized waves (circular conversion
dichroism). As derived in Section 4.4.3, corresponding directional asymmetries
for linearly polarized waves (linear conversion dichroism) may accompany optical
activity in lossy planar metamaterials. Finally, it will be shown in Section 4.4.4
that linear birefringence and dichroism are present in their pure form if a = d

and |b| = |c| �= 0. Here we will also find that polarization-azimuth-independent
transmission and reflection properties correspond to b = c = 0.

Note that for a general lossy planar metamaterial without 2-fold rotational sym-
metry at oblique incidence all of the above effects should be expected to occur,
if the structure does not have a line of (glide) mirror symmetry either parallel or
perpendicular to the plane of incidence. In these cases the scattering matrix takes
its most general form, which allows the magnitudes and phases of the scattering
coefficients a, b, c, d to be all different.

4.4.1 Optical activity at oblique incidence (a �= d)

For oblique incidence onto a planar metamaterial that does not have 2-fold rotational
symmetry,8 we found that generally −→

t++ �= −→
t−−, or a �= d should be expected, if

the metamaterial does not have a line of (glide) mirror symmetry in the plane
of incidence. We will find that a �= d corresponds to optical activity, i.e. circular
birefringence and circular dichroism. These effects are normally associated with
intrinsic 3D chirality.

Optical activity due to extrinsic 3D chirality (see Fig. 4.8) was first predicted by
Bunn [39] and later detected in liquid crystals [40, 41]. However, the topic attracted
hardly any attention until the observation of large circular birefringence and circular
dichroism due to extrinsic 3D chirality in planar metamaterials [13–15].

In order to see how a �= d leads to circular birefringence, consider the scattered
field for an incident wave û with azimuth α as defined in Eq. (4.37). The scattered

8 Wallpaper symmetry groups without 2-fold rotational symmetry: p1, pm, pg, cm, p3, p3m1, p31m.
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field is given by (for forward-propagation)

−→
E s = −→

s û(α)

=
(

a b

c d

)(
sin(β)ei(γ−α)

cos(β)ei(γ+α)

)

=
(

a sin(β)ei(γ−α) + b cos(β)ei(γ+α)

c sin(β)ei(γ−α) + d cos(β)ei(γ+α)

)
. (4.38)

Now we will calculate the azimuth rotation, i.e. the difference between the
azimuth of scattered and incident waves. As the azimuth of a polarization state
E is � = −(1/2)[arg(E+) − arg(E−)], see Eq. (4.35), the azimuth rotation can be
written as follows:

��s = �(
−→
E s) − �(û)

= − 1
2

[
arg(a sin(β)ei(γ−α) + b cos(β)ei(γ+α))

− arg(c sin(β)ei(γ−α) + d cos(β)ei(γ+α))
]

+ 1
2

[
arg(sin(β)ei(γ−α)) − arg(cos(β)ei(γ+α))

]
= − 1

2

[
arg(a + b cot(β)e+i2α)

− arg(c tan(β)e−i2α + d)
]

= − 1
2

[
arg(a) − arg(d)

+ arg(1 + b
a

cot(β)e+i2α)

− arg(1 + c
d

tan(β)e−i2α)
]
. (4.39)

We can clearly see that for b = c = 0 the azimuth rotation does not depend on the
azimuth of the incident wave, as we would expect for an ideal, circularly birefringent
medium. The eigenstates corresponding to this case of pure optical activity will be
derived in Section 4.5.1. In the general case, however, the planar metamaterial may
also show linear birefringence/dichroism or circular/linear conversion dichroism,
and the rotation can depend on the azimuth α of the incident wave. Therefore it is
more meaningful to consider the average rotation experienced by all waves with
the same ellipticity. Clearly, when averaging over all α ∈ (−π/2, π/2], the last two
terms must vanish, giving us the average azimuth rotation for the scattered field

〈��s〉 = − 1
2

[
arg(a) − arg(d)

]
. (4.40)
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Similarly, it can be shown that the average azimuth rotation for the transmitted
field is given by

〈��t〉 = − 1
2

[
arg(a + 1) − arg(d + 1)

]
. (4.41)

Note that the azimuth rotations for scattered and reflected fields have opposite
signs, ��r = −��s , as scattering rotation is measured looking into the incident
beam while reflection rotation is measured looking into the reflected beam.

It can be easily seen that generally a �= d leads not only to circular birefringence,
but also to circular dichroism. Transmission circular dichroism corresponds to
different direct transmission levels for opposite circular polarizations:

�T := |t++|2 − |t−−|2 = |a + 1|2 − |d + 1|2, (4.42)

and for planar metamaterials it is accompanied by analogous phenomena in scat-
tering and reflection, i.e.

�S := |s++|2 − |s−−|2 = |a|2 − |d|2, (4.43)

�R := |r−+|2 − |r+−|2 = |a|2 − |d|2. (4.44)

Note that polarization states are always measured looking into the beam, thus the
reflected beam must be measured in a different coordinate system, which gives rise
to different indices in Eq. (4.44).

As the diagonal elements of the scattering and transmission matrices do not
depend on reversal of the propagation direction, Eqs. (4.40)–(4.44) apply to forward
and backward propagation. For the opposite angle of incidence −θ and in-plane
rotations of the metamaterial by π , however, the roles of a and d are reversed
(see Eqs. (4.13) and (4.15)), and these equations change sign. In other words,
circular birefringence and circular dichroism are the same for opposite propagation
directions, but the effects change sign for opposite angles of incidence and in-plane
rotations of the metamaterial by π . It follows that polarization rotation and circular
dichroism in planar metamaterials without 2-fold rotational symmetry are tunable
via the angle of incidence. The effects are “switched off” at normal incidence and
can be “switched on” with one sign for angles of incidence θ > 0 and the other
sign for θ < 0.

It was derived in Section 4.2.1 that lossless complementary planar metamaterials
have interchanged direct scattering and transmission coefficients for circularly
polarized waves (apart from an overall phase shift).Therefore transmission and
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Figure 4.7. Experimental demonstration of optical activity due to extrinsic 3D
chirality. Spectra of transmission circular dichroism, �T , and polarization rota-
tion, 〈��t 〉, measured for a planar metamaterial based on achiral asymmetrically
split wire rings (wallpaper group pm). The respective zero-level is indicated by a
dashed line. The 3D-chiral phenomena have reversed signs for opposite angles of
incidence θ = ±30◦ and vanish at normal incidence. The structure’s line of mirror
symmetry m is oriented perpendicular to the plane of incidence (ϕ̃ = π/2), which
ensures the absence of the asymmetric effect discussed in Section 4.4.2. How
extrinsic 3D chirality controls the properties of this metamaterial is discussed in
detail in ref. [13].

scattering optical activity are interchanged for lossless complementary planar
metamaterials.

For achiral planar metamaterials,9 it follows from Eq. (4.22) that optical activ-
ity is absent, if the metamaterial has a line of (glide) mirror symmetry in the
plane of incidence. Thus, for the orientations ϕ̃ = 0, π , circular birefringence and
circular dichroism are absent independent of θ . Equation (4.24) implies that for
achiral planar metamaterials the signs of circular birefringence and circular dichro-
ism will be reversed for in-plane metamaterial orientations ±ϕ̃. (Of course, as
we found for the general case, the signs will also be reversed for orientations
ϕ̃, ϕ̃ + π or alternatively angles of incidence ±θ .) Importantly, if the achiral planar
metamaterial has a line of (glide) mirror symmetry perpendicular to the plane of
incidence, i.e. ϕ̃ = π/2, 3π/2, the asymmetric phenomena for circularly polarized
waves (|b| �= |c|) that will be discussed in Section 4.4.2 are absent, while circu-
lar birefringence and circular dichroism are still permitted. Experimental results
illustrating this case are shown in Fig. 4.7.

We will find in Section 4.4.3 that optical activity in lossy planar metamaterials
is usually accompanied by directionally asymmetric transmission, reflection, and
absorption of linearly polarized waves. Importantly, such directional asymmetries,

9 Achiral wallpaper symmetry groups without 2-fold rotational symmetry: pm, pg, cm, p3m1, p31m.
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Figure 4.8. Intrinsic and extrinsic chirality. Panels (a) and (b) show examples
of intrinsically 3D-chiral and 2D-chiral elements, respectively. (c) Extrinsic 3D
chirality: the arrangement of structure and incident wave cannot be superimposed
with its mirror image. (d) Extrinsic 2D chirality: the structure combined with the
direction introduced by the plane of incidence cannot be superimposed with its
mirror image without being lifted off the plane. Panels (e) and (f) show configu-
rations where extrinsic chirality is absent.

both for linearly and circularly polarized waves, are not allowed for lossless planar
metamaterials.

Optical activity is generally associated with 3D chirality. One might correctly
argue that a planar structure, which can always be superimposed with its mirror
image via an out-of-the-plane rotation by π , cannot be 3D-chiral. However, it turns
out that for oblique incidence onto a structure without 2-fold rotational symmetry,
the metamaterial and incident beam form a 3D-chiral experimental arrangement,
if the metamaterial does not have a line of (glide) mirror symmetry in the plane of
incidence; see Figs. 4.8(c) and (e). Chirality arising from the mutual orientation of
metamaterial and incident beam has been called extrinsic chirality [13] in order to
distinguish it from intrinsic chirality, which refers to the symmetry of a material;
see Fig. 4.8(a). Inherently tunable optical activity in planar metamaterials allows
the realization of tunable planar metamaterial polarization rotators and circular
polarizers. The potential performance of such devices will be discussed in Sections
4.7.4 and 4.7.5.



112 E. Plum and N. I. Zheludev

For any planar metamaterial at normal incidence, and for planar metamaterials
with 2-fold rotational symmetry10 in general, equality of the diagonal elements
of the transmission matrix is required, i.e. −→

t++ = −→
t−−, and thus optical activity

is prohibited. This should also be expected, as the metamaterial and incident
beam cannot form an extrinsically 3D-chiral experimental arrangement in these
cases.

4.4.2 Circular conversion dichroism (|b| �= |c|)
Intriguing behavior may also arise from the in general nonequal off-diagonal terms
of the transmission matrix. We will find that circular conversion dichroism, |b| �=
|c|, leads to directionally asymmetric transmission, reflection, and absorption of
circularly polarized waves.

Asymmetric transmission of circularly polarized waves was discovered in 2006
for normal incidence of microwaves onto an intrinsically 2D-chiral metamaterial
[25], which is shown in Fig. 4.9. Soon thereafter the effect was also seen in
optics [26] and for terahertz waves [42]. Corresponding asymmetries were first
numerically predicted [43] and then measured [27] for reflection and absorption.
Asymmetric transmission due to extrinsic 2D chirality was discovered in 2009 for
oblique incidence onto an achiral metamaterial [28]; see Fig. 4.10. The effect has
since even been observed for oblique incidence onto a highly symmetric, achi-
ral, and isotropic lossy planar metamaterial [29], providing experimental evidence
that circular conversion dichroism should be expected for extrinsically 2D-chiral
directions of incidence onto any lossy periodically structured interface. Further-
more, the observation of circular conversion dichroism in planar metamaterials has
led to the discovery of a similar phenomenon in plasmonics [44] and has generated
theoretical interest [45].

Consider right-handed circularly polarized waves E0 = (1, 0)tr with opposite
propagation directions incident on the front and back of a planar metamaterial:

−→
E t = −→

t (θ, ϕ̃)
−→
E 0 =

(
a + 1

c

)
,

←−
E t = ←−

t (θ, ϕ̃)
←−
E 0 =

(
a + 1

b

)
.

(4.45)

Assuming the case of |b(θ, ϕ̃)| > |c(θ, ϕ̃)|, this implies that the considered planar
structure would be less transparent for right-handed circularly polarized waves
that are incident on its front than for those on its back. One can easily see that

10 Wallpaper symmetry groups with 2-fold rotational symmetry: p2, pmm, pmg, pgg, cmm, p4, p4m, p4g, p6,
p6m.
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Figure 4.9. Experimental demonstration of asymmetric transmission at normal
incidence due to intrinsic 2D chirality. The spectral dependence of the directional
transmission asymmetry,

−→
T+ − ←−

T+, for right-handed circularly polarized waves
is shown for right-handed, achiral and left-handed forms of the metamaterial
(wallpaper groups p2, pmg, p2). The respective zero-level is indicated by a
dashed line. The insets show the front side of the structures. See ref. [25] for a
detailed discussion of the experimental work.
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Figure 4.10. Experimental demonstration of asymmetric transmission due to
extrinsic 2D chirality. The spectral dependence of the directional transmission
asymmetry,

−→
T+ − ←−

T+, for right-handed circularly polarized waves is shown for
orientations ϕ̃ = 0,±π/4 of the achiral metamaterial (wallpaper group pmg).
The angle of incidence is θ = 30◦ in all cases. Note that the metamaterial’s pro-
jection onto the plane normal to the direction of incidence is 2D-chiral when
extrinsic 2D chirality is present. See ref. [28] for a detailed discussion of the
experimental work.
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the transmission asymmetry has to be reversed for left-handed waves. The asym-
metry arises from different circular polarization conversion efficiencies ←−

t−+ = b

and −→
t−+ = c for the same circular polarization in opposite propagation directions

(circular conversion dichroism).
If we calculate the reflectivity for right-handed circularly polarized waves, we

find

−→
E r = −→

r (θ, ϕ̃)
−→
E 0 =

(
c

a

)
,

←−
E r = ←−

r (θ, ϕ̃)
←−
E 0 =

(
b

a

)
.

(4.46)

Assuming again that |b(θ, ϕ̃)| > |c(θ, ϕ̃)|, this implies that the considered planar
structure would be simultaneously less transparent and less reflective for right-
handed waves that are incident on its front than when they are incident on its back.
The asymmetry is reversed for left-handed waves. As a fraction of incident power,
the transmission asymmetry and reflection asymmetry are given by

−→
T± − ←−

T± = −→
R± − ←−

R± = ±(|c|2 − |b|2), (4.47)

where
−→
T±,

−→
R±,

←−
T±,

←−
R± correspond to the transmitted (T) and reflected (R) power

fractions for circularly polarized (right, +, or left, −) incident waves with opposite
propagation directions (arrows). For example, the transmitted power fraction for
a forward-propagating right-handed circularly polarized incident wave is

−→
T+ =

|−→t++|2 + |−→t−+|2.
This corresponds to an asymmetry of losses, L, of

−→
L± − ←−

L± = ∓2(|c|2 − |b|2), (4.48)

where
−→
L±,

←−
L± correspond to the “lost” power fractions for circularly polarized

(right, +, or left, −) incident waves with opposite propagation directions (arrows).
Thus, a planar metamaterial for which |b| �= |c| will have larger losses for one
circular polarization for forward propagation and for the other circular polariza-
tion for backward propagation. The eigenstates associated with these asymmetric
phenomena are discussed in Section 4.5.2.

In particular, the asymmetric phenomena, which occur when |b| �= |c|, imply
that at least one circular polarization experiences losses. For metamaterials, which
do not diffract, the only loss mechanism is absorption. Thus, for lossless planar
metamaterials the asymmetric phenomena for circularly polarized waves cannot
occur and |b| = |c| must hold. However, note that in principle diffraction losses
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could play the same role as absorption losses, and thus circular conversion dichro-
ism (|b| �= |c|) may be possible in nonabsorbing planar diffraction gratings, i.e.
structures that would be lossless planar metamaterials at longer wavelengths.

For any planar metamaterial the angular dependence of the scattering coefficients
b and c must obey Eqs. (4.14) and (4.16), which imply that the difference |c|2 − |b|2
takes the same value for opposite angles of incidence ±θ and for in-plane rotations
of the metamaterial by π , i.e.

(|c|2 − |b|2)(θ, ϕ̃) = (|c|2 − |b|2)(−θ, ϕ̃)

= (|c|2 − |b|2)(θ, ϕ̃ + π ). (4.49)

This indicates that the asymmetric properties are the same for opposite angles
of incidence ±θ . For in-plane rotation of the metamaterial, circular conversion
dichroism is periodic with period π , i.e. the metamaterial must show the same
asymmetric response for orientations ϕ̃ and ϕ̃ + π .

For achiral planar metamaterials11 the scattering coefficients b and c must also
obey Eqs. (4.25) and (4.23), from which we can conclude that the difference
|c|2 − |b|2 is an odd function of the metamaterial orientation ϕ̃ that is zero for
multiples of π/2:

(|c|2 − |b|2)(θ, +ϕ̃) = −(|c|2 − |b|2)(θ, −ϕ̃),

(|c|2 − |b|2)(θ, nπ
2 ) = 0 for n ∈ Z.

(4.50)

This means that for achiral planar metamaterials the directional asymmetries are
reversed for in-plane orientations ±ϕ̃ of the metamaterial, and that circular con-
version dichroism is absent if the metamaterial has a line of (glide) mirror sym-
metry either parallel (ϕ̃ = 0, π ) or perpendicular (ϕ̃ = π/2, 3π/2) to the plane
of incidence; see Fig. 4.10. In particular, it follows that achiral planar metama-
terials do not allow circular conversion dichroism for the special case of normal
incidence.

Importantly, cases that allow circular conversion dichroism, in which optical
activity (a �= d) and linear conversion dichroism, see Sections 4.4.1 and 4.4.3,
cannot occur, are (i) lossy planar metamaterials with 2-fold rotational symmetry12

and (ii) normal incidence onto lossy 2D-chiral planar metamaterials13 (that are
anisotropic, as explained in Section 4.4.4).

The asymmetric transmission, reflection, and absorption phenomena arise from
reversed right-to-left and left-to-right circular polarization conversion efficiencies

11 Achiral wallpaper symmetry groups: pm, pg, cm, pmm, pmg, pgg, cmm, p4m, p4g, p3m1, p31m, p6m.
12 Wallpaper symmetry groups with 2-fold rotational symmetry: p2, pmm, pmg, pgg, cmm, p4, p4m, p4g, p6,

p6m.
13 Anisotropic 2D-chiral wallpaper symmetry groups: p1, p2.
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for opposite directions of wave propagation. Such properties resemble the perceived
handedness of 2D-chiral patterns (e.g. flat spirals), which is reversed for opposite
directions of observation. In fact, the abovementioned symmetry requirements are
equivalent to stating that circular conversion dichroism requires 2D chirality. This
can be either intrinsic 2D chirality of the planar metamaterial itself (see Fig. 4.8(b))
or it can be extrinsic 2D chirality of the experimental arrangement (see Figs. 4.8(d)
and (f )).

4.4.3 Linear conversion dichroism

Based on the results of the preceding section, one may expect that also directionally
asymmetric transmission, reflection and absorption of linearly polarized waves
should be observable in planar metamaterials.

In fact asymmetric transmission of linearly polarized waves was reported in
2010 for a lossy extrinsically 3D-chiral planar metamaterial [30] as well as an
intrinsically 3D-chiral metamaterial which was not planar [46].

Consider two linearly polarized waves
−→
E 0,

←−
E 0 with opposite propagation direc-

tions and parallel polarization states incident on front and back of a planar metama-
terial. Here we must take into account that the polarization of these waves is defined
in their own mutually rotated coordinate systems (see Figs. 4.2 and 4.3), therefore
a forward-propagating wave of azimuth α corresponds to a backward-propagating
wave of azimuth −α. Using Eq. (4.37) with β = π

4 for linear polarization we get
the normalized incident waves

−→
E 0(α) = eiγ√

2

(
e−iα

eiα

)
and

←−
E 0(α) = eiγ

√
2

(
eiα

e−iα

)
, (4.51)

where γ corresponds to the same polarization state at different times. The corre-
sponding scattered field is given by

−→
E s(α) = −→

s
−→
E 0(α) = eiγ√

2

(
ae−iα + beiα

ce−iα + deiα

)
,

(4.52)←−
E s(α) = ←−

s
←−
E 0(α) = eiγ√

2

(
aeiα + ce−iα

beiα + de−iα

)
.

As the reflected field corresponds to the scattered field described in different
coordinates, the reflected power fraction is given by |Es |2 in each case and therefore
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the directional reflection asymmetry as a fraction of incident power is

(
−→
R − ←−

R )(α) = |−→E s(α)|2 − |←−E s(α)|2 (4.53)

= [Re(a − d)Re(b − c) + Im(a − d)Im(b − c)] cos(2α)

+ [Im(a − d)Re(b + c) − Re(a − d)Im(b + c)] sin(2α).

In order to derive the corresponding transmission asymmetry, we need to con-
sider the transmitted fields rather than the scattered fields, which requires us to
replace a, d with a + 1, d + 1 throughout this derivation. However, as the above
expression only depends on a − d it remains unchanged by this substitution. There-
fore the directional transmission and reflection asymmetries are identical and must
be compensated by a corresponding asymmetry of losses:

(
−→
T − ←−

T )(α) = (
−→
R − ←−

R )(α) = − 1
2 (

−→
L − ←−

L )(α) (4.54)

It is clear from Eq. (4.53) that these asymmetries change sign for the orthogonal
incident polarization. Thus if the metamaterial is more transparent (and reflec-
tive) for forward-propagating than backward-propagating x-polarized waves, it
will be less transparent (and reflective) for forward-propagating than backward-
propagating y-polarized waves.

It follows from Eq. (4.53) that the directional transmission, reflection and absorp-
tion asymmetries will only vanish for all linear polarizations if

Re(a − d)Re(b − c) + Im(a − d)Im(b − c) = 0,

Im(a − d)Re(b + c) − Re(a − d)Im(b + c) = 0.

If we interpret the scattering coefficients a, b, c, d as vectors in the complex plane,
then these conditions are equivalent to a − d ⊥ b − c and a − d ‖ b + c, respec-
tively. This has the trivial solutions (4.55) and (4.56), while the remaining non-
trivial solutions can be written in a simplified form (4.57):

a = d (4.55)

b = c = 0 (4.56)

a − d ⊥ b − c and |b| = |c| (4.57)

The directional asymmetries for transmission, reflection and absorption of linearly
polarized waves will be absent if and only if one of the above conditions (4.55)–
(4.57) is satisfied.

In particular the presence of these phenomena requires losses and optical activity
(a �= d). Just like optical activity, it may only occur at oblique incidence onto planar
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metamaterials without 2-fold rotational symmetry14 if the structure does not have
a line of (glide) mirror symmetry in the plane of incidence, see Section 4.4.1. The
effect is reversed for opposite angles of incidence ±θ and linked to extrinsic 3D
chirality.

If no static magnetic field is present the Lorentz reciprocity lemma [31] must
hold. Lorentz reciprocity requires the component of the transmitted wave which
is polarized parallel to the incident wave to be the same for opposite propagation
directions. In case of planar metamaterials the same holds for reflection. Therefore
asymmetric transmission/reflection of linearly polarized waves can only result from
a directional asymmetry of the linear polarization conversion efficiency from the
incident wave to the orthogonal polarization, i.e. linear conversion dichroism.

4.4.4 Linear birefringence and linear dichroism

In their pure form, linear birefringence and dichroism are associated with
orthogonal linearly polarized eigenpolarizations (see Section 4.5.2), which expe-
rience different phase delays (linear birefringence) or different transmission/
reflection/absorption levels (linear dichroism).

Before focusing on the above special case, let’s begin by asking more gen-
erally under which conditions the transmission/reflection properties of a planar
metamaterial can depend on the polarization azimuth of the incident wave.

At normal incidence, the electromagnetic properties can only depend on the
azimuth of the incident wave for anisotropic planar metamaterials, where for achiral
anisotropic structures15 the intrinsic preferred directions (i.e. eigenpolarizations)
are parallel and perpendicular to the pattern’s line of (glide) mirror symmetry.

At oblique incidence, additional extrinsic preferred directions parallel and
perpendicular to the plane of incidence are associated with the experimental
arrangement. Therefore isotropic planar metamaterials16 can show linear bire-
fringence/dichroism at oblique incidence. For achiral anisotropic planar metama-
terials the eigenpolarizations become frequency-dependent at oblique incidence
if the metamaterial pattern’s line of (glide) mirror symmetry is neither parallel
nor perpendicular to the plane of incidence: the intrinsic preferred directions of
the metamaterial pattern compete with the extrinsic preferred directions of the
experimental arrangement in this case.

We note that at oblique incidence isotropic structures can exhibit linear birefrin-
gence and/or linear dichroism. Also, at specific frequencies linear birefringence/
dichroism may vanish for anisotropic planar metamaterials, as illustrated by
Fig. 4.11.

14 Wallpaper symmetry groups without 2-fold rotational symmetry: p1, pm, pg, cm, p3, p3m1, p31m.
15 Achiral anisotropic wallpaper symmetry groups: pm, pg, cm, pmm, pmg, pgg, cmm.
16 Isotropic wallpaper symmetry groups: p3, p3m1, p31m, p4, p4m, p4g, p6, p6m.
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Figure 4.11. Experimental example of a metamaterial with linear dichroism. Nor-
mal incidence transmission spectra for waves polarized perpendicular (x) and par-
allel (y) to the metamaterial’s line of mirror symmetry. Consistent with its highly
anisotropic structure, the planar metamaterial (wallpaper group pmg) generally
shows substantial linear dichroism, Tx − Ty . This is reflected by nonzero circular
polarization conversion T−+. However, at 10.5 GHz linear dichroism vanishes:
transmission levels for x and y polarizations are identical and circular polarization
conversion is absent. Refer to ref. [11] for more details on this experimental work.

In order to see how the scattering coefficients reveal a dependence of the scat-
tering properties on the azimuth of the incident wave, let’s consider the azimuth
rotation and ellipticity angle of the scattered field for some incident wave û of
azimuth α. Any polarization state with azimuth α can be written as (4.37)

û =
(

sin(β)ei(γ−α)

cos(β)ei(γ+α)

)
,

α ∈ (−π
2 , π

2 ], β ∈ [0, π
2 ], γ ∈ [0, 2π ).

The azimuth rotation of the scattered field is given by Eq. (4.39),

��s = − 1
2

[
arg(a) − arg(d) + arg(1 + b

a
cot(β)e+i2α) − arg(1 + c

d
tan(β)e−i2α)

]
.

Thus ��s depends on the azimuth α of the incident wave if and only if at least one
of the scattering coefficients b, c is nonzero.

To see whether all diagonal scattering matrices correspond to polarization-
azimuth-independent scattering properties, we must check whether the elliptic-
ity angle and amplitude of the scattered field are also independent of the incident
wave’s azimuth α when b = c = 0. The scattered field for b = c = 0 is (for forward
and backward propagation since b = c)

Es = s û

=
(

a 0
0 d

)(
sin(β)ei(γ−α)

cos(β)ei(γ+α)

)

=
(

a sin(β)ei(γ−α)

d cos(β)ei(γ+α)

)
. (4.58)
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It can be easily seen that the amplitude |Es| does not depend on α. Using Eq. (4.36)
we obtain the ellipticity angle of the scattered field as follows:

ηs = 1

2
arcsin

( |Es
+|2 − |Es

−|2
|Es+|2 + |Es−|2

)

= 1

2
arcsin

( |a sin(β)|2 − |d cos(β)|2
|a sin(β)|2 + |d cos(β)|2

)
.

Clearly also the ellipticity angle of the scattered field does not depend on the
azimuth α of the incident field, if b = c = 0. By replacing a, d with a + 1, d + 1,
we could write the same proof for the transmitted field.

Thus the transmission and reflection properties are polarization-azimuth-
dependent if and only if |b| �= 0 and/or |c| �= 0. Note that – apart from linear
birefringence and linear dichroism – this also includes the lossy chiral effects of
circular conversion dichroism (see Section 4.4.2) and linear conversion dichroism
(see Section 4.4.3). On the other hand, simultaneous absence of these azimuth-
dependent phenomena corresponds to b = c = 0.

We will speak of pure linear birefringence/dichroism if no other polarization
effects are present. This requires the simultaneous absence of circular/linear con-
version dichroism and optical activity (a = d and |b| = |c| �= 0). Provided that
preferred directions are defined by the structure (anisotropy) or the experimental
arrangement (oblique incidence), pure linear birefringence/dichroism occurs for (i)
lossless planar metamaterials without extrinsic 3D chirality and (ii) lossy planar
metamaterials without 2D or 3D chirality. Linear dichroism in planar metamaterials
can be exploited for the realization of linear polarizers, and linear birefringence
allows planar metamaterial wave plates to be developed. The potential performance
of such devices will be discussed in Sections 4.7.2 and 4.7.3.

4.5 Eigenstates

To gain a better understanding of polarization effects in planar metamaterials, we
study the associated eigenstates. The transmission eigenstates simply correspond
to those polarization states that are transmitted without any change in azimuth
and ellipticity; see Fig. 4.12 (top). For reflection the situation is more complex.
As polarization states must be measured looking into the beam, the reflection
matrix relates incident and reflected waves that are measured in mutually rotated
coordinate systems; compare the top of Fig. 4.12 with the bottom. Thus the eigen-
states of the reflection matrix are polarization states for which the azimuth and
ellipticity of the incident and reflected waves are the same in their respective coor-
dinate systems. This, however, is not physically meaningful, as it depends on the
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Figure 4.12. Eigenstates of the transmission (top), scattering (middle), and reflec-
tion (bottom) matrices. For scattering eigenstates the projections of the polarization
ellipses of the incident and reflected waves onto the metamaterial are the same,
whereas for eigenstates of the reflection matrix, the incident and reflected waves
have the same parameters in their mutually rotated coordinate systems.

choice of coordinates (orientation of x and xr in the plane normal to the prop-
agation direction). For reflection the eigenstates of the scattering matrix, which
describes reflection in the coordinates of the incident wave, are physically mean-
ingful eigenstates. For eigenstates of the scattering matrix, the projection of the
polarization ellipses of the incident and reflected waves onto the metamaterial are
the same.

For the scattering eigenstates, the eigenvalues λs
1,2 are given by the eigenvalue

equation

det
[−→

s − λs
] = det

(
a − λs b

c d − λs

)

= (a − λs)(d − λs) − bc = 0, (4.59)

which, for both forward and backward propagation, has the following solutions:

λs
1,2 = a + d

2
±
√(

a − d

2

)2

+ bc

= a + d

2
±
√(

a − d

2

)2

+ |bc|ei2κ . (4.60)
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Similarly, the eigenvalues of the transmission matrix are given by

λt
1,2 = 1 + a + d

2
±
√(

a − d

2

)2

+ |bc|ei2κ (4.61)

for both forward and backward propagation. Thus the simple relation

λt
1,2 = 1 + λs

1,2 (4.62)

applies for transmission and scattering eigenvalues in planar metamaterials. Note
that the eigenvalues do not depend on ϕ.

The scattering eigenstates (or eigenvectors) for the general case can be calculated
from the eigenvector equation for forward propagation:

−→s −→v = λ
−→v(

a b

c d

)(−→v +−→v −

)
= λ

(−→v +−→v −

)
(

a−→v + + b−→v −
c−→v + + d−→v −

)
= λ

(−→v +−→v −

)
, (4.63)

where −→v is an eigenstate. By eliminating λ from the two conditions contained in
the last line, we arrive at the eigenstate condition

a + b

−→v −−→v +
= c

−→v +−→v −
+ d. (4.64)

Note that by replacing a and d with a + 1 and d + 1, we get the corresponding
condition for the transmission eigenstates. Clearly Eq. (4.64) remains unchanged by
this substitution, and thus the eigenstate conditions for both forward transmission
and forward scattering are identical. It follows that planar metamaterials have
identical transmission and scattering eigenstates. This becomes obvious when
considering that for transmission eigenstates the superposition of the scattered field
and the incident wave must have the same polarization state as the incident wave on
its own. This can only be achieved if transmission eigenstates are simultaneously
also scattering eigenstates. Note, however, that we have to distinguish between
eigenstates for forward-propagating and backward-propagating incident waves.
The eigenstate condition for backward propagation corresponds to Eq. (4.64) with
reversed values of b and c, i.e.

a + c

←−v −←−v +
= b

←−v +←−v −
+ d. (4.65)
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In the general case, when the polarization effects of optical activity, circular/
linear conversion dichroism, linear birefringence, and linear dichroism may occur
simultaneously, any pair of polarization states is the pair of eigenstates of some
scattering matrix. Thus it is more instructive to derive the eigenstates associated
with specific polarization effects. Here we do this for the cases of pure optical
activity (b = c = 0) and the absence of optical activity (a = d). Note that the latter
case corresponds to the general eigenstates for (i) normal incidence onto planar
metamaterials and (ii) any angle of incidence onto 2-fold rotationally symmetric
planar metamaterials, as in these cases a = d always applies.

4.5.1 Eigenstates for pure optical activity (b = c = 0)

Optical activity has been introduced in Section 4.4.1. Pure optical activity corre-
sponds to the special situation when no other polarization effects are present. In this
case b = c = 0 is required, which results in diagonal scattering and transmission
matrices and simple solutions for eigenvalues and eigenstates. The eigenvalues
given by Eqs. (4.60) and (4.61) simplify to the diagonal elements of the corre-
sponding matrices:

λs
1 = a, λs

2 = d, (4.66)

λt
1 = a + 1, λt

2 = d + 1, (4.67)

while the eigenstates v1,2 simply correspond to the polarization states that form our
basis, i.e. right-handed and left-handed circular polarizations,

v1 =
(

1
0

)
, v2 =

(
0
1

)
. (4.68)

Note that eigenvalues and eigenstates with the same indices correspond to each
other, and that in this case eigenvalues and eigenstates are the same for opposite
propagation directions. For the opposite angle of incidence −θ the roles of a and
d are reversed, which means in this case that the same eigenstates correspond to
the opposite eigenvalues.

So in the case of pure optical activity, i.e. b = c = 0, the eigenstates are counter-
rotating circular polarizations.

4.5.2 Eigenstates in the absence of optical activity (a = d)

Here we derive the eigenstates for planar metamaterials not showing optical activity.
Such structures can show the directionally asymmetric transmission, reflection,
and absorption effects for circularly polarized waves (see Section 4.4.2) as well as
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linear birefringence and dichroism (see Section 4.4.4) in their purest forms. Note
that a = d is automatically satisfied in two important cases for which optically
active behavior cannot occur. These are (i) normal incidence onto any planar
metamaterial and (ii) any angle of incidence onto 2-fold rotationally symmetric
planar metamaterials. Therefore the eigenvalues and eigenstates derived here are
the complete set for cases (i) and (ii).

For a = d the scattering and transmission eigenvalues given by Eqs. (4.60) and
(4.61), respectively, simplify to

λs
1,2 = a ± √

bc = a ±
√

|bc|eiκ , (4.69)

λt
1,2 = a + 1 ± √

bc = a + 1 ±
√

|bc|eiκ , (4.70)

which apply to both forward and backward propagation. Solutions λ1 and λ2

correspond to “+” and “−”, respectively. Note that the eigenvalues do not depend
on ϕ.

The transmission and scattering eigenstates for forward propagation are given
by Eq. (4.64), which simplifies for a = d to

(−→v +)2

(−→v −)2
= b

c
. (4.71)

Note that the equivalent expression for the backward-propagation eigenstates has
reversed values of b and c. From the magnitude of the terms in Eq. (4.71) we can
determine the ellipticity angle η of the eigenstates, while the azimuth follows from
their phases. Thus the eigenstates are fully defined by Eq. (4.71).

Generally the ellipticity angle of a polarization state is given by Eq. (4.36):

η = 1

2
arcsin

( |E+|2 − |E−|2
|E+|2 + |E−|2

)
.

By considering the magnitudes of all terms in Eq. (4.71) we can easily see that for
the forward-propagation eigenstates, E = −→v 1,2, the ellipticity angle must be given
by

−→η = 1

2
arcsin

( |b| − |c|
|b| + |c|

)
. (4.72)

This indicates that both eigenstates must have the same ellipticity angle. In partic-
ular, if they are not linear polarizations, they must be co-rotating.

For backward propagation the roles of b and c are reversed and therefore

←−η = −−→η , (4.73)
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which indicates that the eigenstates for backward propagation are also co-rotating
if they are not linear; however, they have the opposite handedness compared to the
eigenstates for forward propagation.

The azimuth � of a polarization state is generally given by Eq. (4.35), i.e.

� = − 1
2 [arg(E+) − arg(E−)].

By considering the phases of all terms in Eq. (4.71) it can easily be seen that for the
forward-propagation eigenstates E0 = −→v 1,2 the following phase condition must be
satisfied:

arg(−→v +) − arg(−→v −) =
{

arg(b)−arg(c)
2

arg(b)−arg(c)
2 − π.

(4.74)

With Eq. (4.35) the azimuths �1,2 of the forward-propagation eigenstates are found
to be

−→
�1 = arg(c) − arg(b)

4
= ϕ, (4.75)

−→
�2 = ϕ + π

2 . (4.76)

For backward propagation, the azimuths of the eigenstates are

←−
�1 = −ϕ,

←−
�2 = −ϕ + π

2 ,
(4.77)

as in this case the roles of b and c are switched.
Thus for normal incidence or 2-fold rotational symmetry, planar metamateri-

als have eigenstates with orthogonal azimuths �1,2. The parameter ϕ, defined in
Eq. (4.34), simply corresponds to the azimuth of one of the eigenstates for for-
ward propagation in these cases. Note that, in their respective coordinate systems,
the eigenstates for backward propagation are rotated relative to those for forward
propagation by −2ϕ.

By combining the magnitudes of the terms in Eq. (4.71) with the phase conditions
(4.74) and normalizing, we can write down the eigenstates for forward propagation
for normal incidence or 2-fold rotational symmetry:

−→v 1 = eiγ

√|b| + |c|
(√|b|e−iϕ

√|c|eiϕ

)
,

−→v 2 = eiγ

√|b| + |c|
(√|b|e−i(ϕ+π/2)

√|c|ei(ϕ+π/2)

)
,

(4.78)
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where the eigenstate azimuth ϕ is defined by Eq. (4.34). Different values of
γ ∈ [0, 2π ), which has been included for completeness, correspond to the same
polarization state at different times.

The eigenstates for backward propagation, where b and c are switched, are

←−v 1 = eiγ

√|b| + |c|
(√|c|e−i(−ϕ)

√|b|ei(−ϕ)

)
,

←−v 2 = eiγ

√|b| + |c|
(√|c|e−i(−ϕ+π/2)

√|b|ei(−ϕ+π/2)

)
.

(4.79)

The eigenpolarizations do not depend on the scattering coefficients a = d and the
phase κ . Note that the eigenvalues λi and the eigenvectors vi with the same indices
do correspond to each other.

Importantly, we found that planar metamaterials not showing optical activity
(a = d) have eigenstates with orthogonal azimuths. In the general case, when
|b| �= |c|, the directionally asymmetric transmission, reflection, and absorption
effects for circularly polarized waves (see Section 4.4.2) are present, and the
eigenstates are co-rotating with the same ellipticity angle. In the special case of
|b| = |c| �= 0, which corresponds to linear birefringence and dichroism without the
presence of other polarization effects (see Section 4.4.4), the eigenstates are simply
orthogonal linear polarizations.

Note that, for normal incidence, the azimuths of the eigenstates, if well-defined,
must correspond to preferred directions of the metamaterial. For 2D-chiral meta-
materials these preferred directions may be frequency-dependent, while for meta-
materials with a single line of (glide) mirror symmetry they must be oriented
parallel and perpendicular to the line of mirror symmetry. The orientation of this
line of mirror symmetry is given by ϕ̃, which is measured in the coordinates for
forward propagation at normal incidence. Thus the azimuth of one normal inci-
dence forward-propagation eigenstate, ϕ or ϕ + π/2 (measured from the x-axis)
must correspond to ϕ̃ (measured from the ym-axis). So for normal incidence onto
metamaterials with a single line of (glide) mirror symmetry, ϕ = ϕ̃ + nπ/2 must
hold for some n ∈ Z.

Obviously, at normal incidence, if ϕ is well-defined, rotation of the metama-
terial by some angle +�ϕ must result in the same rotation of the eigenstates,
without affecting the eigenvalues or the ellipticity of the eigenstates. Thus at
normal incidence the rotation ϕ̃ → ϕ̃ + �ϕ must simply translate into a change of
the parameter ϕ → ϕ + �ϕ . From Eqs. (4.32) it follows that an in-plane rotation
of a planar metamaterial at normal incidence by �ϕ corresponds to

b → be−i2�ϕ and c → ce+i2�ϕ . (4.80)
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4.6 Energy conservation

Energy conservation implies that the combined power of the transmitted and
reflected waves plus losses, L ≥ 0, must equal the power of the incident wave.
Here we consider the case of forward propagation; the opposite propagation direc-
tion corresponds to reversed values of b and c:

|E0|2 = |Et|2 + |Er|2 + L|E0|2

= |−→t E0|2 + |−→r E0|2 + L|E0|2. (4.81)

Division by |E0|2 allows us to introduce the unit vector û = E0/|E0|:

1 − L = |−→t û|2 + |−→r û|2. (4.82)

This condition must be satisfied for any incident polarization, i.e. for any complex
unit vector û. All possible unit vectors or polarization states can be written as
Eq. (4.37),

û =
(

sin(β)ei(γ−α)

cos(β)ei(γ+α)

)
,

α ∈ (−π
2 , π

2 ], β ∈ [0, π
2 ], γ ∈ [0, 2π ).

Thus energy conservation for forward propagation written out explicitly is given
by

1 − L =
∣∣∣∣
(

a + 1 b

c d + 1

)(
sin(β)ei(γ−α)

cos(β)ei(γ+α)

)∣∣∣∣
2

+
∣∣∣∣
(

c d

a b

)(
sin(β)ei(γ−α)

cos(β)ei(γ+α)

)∣∣∣∣
2

∀ α, β, γ. (4.83)

This simplifies to

0 ≥ −L = p1 sin2 β + p2 cos2 β

+ sin 2β[p4 cos(2α) − p5 sin(2α)]

∀ α ∈ (−π
2 , π

2 ], β ∈ [0, π
2 ], (4.84)
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with the parameters

1
2p1 := |a|2 + |c|2 + Re(a), (4.85)

1
2p2 := |d|2 + |b|2 + Re(d), (4.86)

1
2p4 := Re(a + 1

2 )Re(b) + Im(a + 1
2 )Im(b)

+ Re(d + 1
2 )Re(c) + Im(d + 1

2 )Im(c), (4.87)

1
2p5 := Re(a + 1

2 )Im(b) − Im(a + 1
2 )Re(b)

− Re(d + 1
2 )Im(c) + Im(d + 1

2 )Re(c). (4.88)

Equation (4.84) is equivalent to

0 ≥ p1 sin2 β + p2 cos2 β + p3 sin 2β

∀ β ∈ [0, π
2 ], (4.89)

where the parameter p3 corresponds to

p3 :=
√

(p4)2 + (p5)2

= 2
{|a + 1

2 |2|b|2 + |d + 1
2 |2|c|2

+ 2|a + 1
2 ||d + 1

2 ||b||c|
· cos[arg((a + 1

2 )(d + 1
2 )) − arg(bc)]

}1/2

= 2
{
A2|b|2 + D2|c|2 + 2AD|b||c| cos[2ξ − 2κ]

}1/2
. (4.90)

The parameters A, D, ξ, κ used in the last line are defined by Eqs. (4.29), (4.30),
and (4.33).

The right-hand side of Eq. (4.89) reaches its largest value for β0 given by

β0 =

⎧⎪⎪⎨
⎪⎪⎩

1
2 arctan

(
2 p3

p2−p1

)
for p1 < p2

π
4 for p1 = p2

1
2 arctan

(
2 p3

p2−p1

)
+ π

2 for p1 > p2.

(4.91)

Therefore energy conservation is satisfied, if Eq. (4.89) is satisfied for β0 both
in the cases of forward and backward propagation, where backward propagation
corresponds to reversed roles of b and c in all formulas. (If this is satisfied, energy
conservation for the opposite angle of incidence −θ is also satisfied.)

Although this does define the scattering coefficients that satisfy energy conser-
vation, it is not very intuitive. One can easily see that the energy conservation
equation (4.89) requires p1,2 ≤ 0. As we will find for the lossless case, p3 = 0
corresponds to a constraint on the possible values of the phase κ . We will derive
that for lossless planar metamaterials κ has two solutions for each allowed pair of
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values of a, d (except for trivial cases). The constraint on κ is less tight for lossy
planar metamaterials. Note that p1,2 ≤ 0 can be written as

∣∣a + 1
2

∣∣2 + |c|2 ≤ (
1
2

)2
, (4.92)∣∣d + 1

2

∣∣2 + |b|2 ≤ (
1
2

)2
, (4.93)

which must also hold for reversed values of b and c, due to energy conservation
for the opposite propagation direction.

From this we can obtain for a, d and the magnitudes of |b| and |c| that

∣∣a + 1
2

∣∣ , ∣∣d + 1
2

∣∣ ≤ 1
2 , (4.94)

|b|, |c| ≤
√

1
4 − max

(∣∣a + 1
2

∣∣2 ,
∣∣d + 1

2

∣∣2) ≤ 1
2 . (4.95)

Note that by using Eqs. (4.29) these conditions can rewritten in terms of the
alternative parameters A, D resulting in the simplified forms

A, D ≤ 1
2 ,

|b|, |c| ≤
√

1
4 − max

(
A2, D2

) ≤ 1
2 .

From Eqs. (4.94) and (4.95) it follows that, in the complex plane, the solutions for
a, b, c, d must always fall in the regions indicated in Fig. 4.13(a).

For the lossless case the conditions |a + 1/2| = |d + 1/2| and the left equal-
ity of Eq. (4.95) are required. Compared to any chosen lossless solution,
|a + 1/2|, |d + 1/2|, |b|, |c| may take smaller values for a lossy planar metamate-
rial; see Fig. 4.13(b).

4.6.1 Lossless planar metamaterials

For lossless planar metamaterials, the equality in Eq. (4.89) must hold for all β. Thus
the expressions p1, p2, p3 must all be zero. The conditions p1,2 = 0 are equivalent
to the equality in Eqs. (4.92) and (4.93), which must also hold for reversed values
of b, c due to lossless behavior for the opposite propagation direction. From this it
follows that the following relations must hold for lossless planar metamaterials:

|a + 1
2 | = |d + 1

2 | ≤ 1
2 , (4.96)

|b| = |c| ≤ 1
2 , (4.97)∣∣a + 1

2

∣∣2 + |b|2 = (
1
2

)2
. (4.98)



130 E. Plum and N. I. Zheludev

Figure 4.13. Constraints on the scattering coefficients a, b, c, d from energy con-
servation. (a) The solution space for a, b, c, d. (b) Lossy vs. lossless solutions
for b, c, d for a particular choice of |a + 1/2| = const (here 1/

√
3). The roles

of a, d can be switched. (c) The nontrivial solutions (4.104) for the lossless case
illustrated for an arbitrary choice of A, ξ . Solutions for a, d are corresponding
points on the dashed arrows indicating a and d as functions of δ. Solutions b, c are
corresponding points on the dashed arrows indicating b and c as functions of the
parameter ϕ. (d) Trivial solutions for the lossless case: a = d = −1/2 is shown
in black (Eq. (4.105)) and b = c = 0 is plotted in gray (Eq. (4.106)).

Rewritten in terms of the alternative parameters A, D defined by Eqs. (4.29) these
conditions simplify to

A = D ≤ 1
2 ,

|b| = |c| ≤ 1
2 ,

A2 + |b|2 = (
1
2

)2
.

Note that condition (4.97) implies that lossless planar metamaterials cannot show
the asymmetric transmission, reflection, and absorption effects for circularly polar-
ized waves, which were identified in Section 4.4.2. Equation (4.98) describes two
circles in the complex plane that intersect orthogonally (see Fig. 4.13(b)). In the
lossless case a and d lie on a circle of radius A = D centered at −1/2, while b and
c lie on a circle of radius |b| = |c| centered at the origin. The sum of the squared
radii of both circles is 1/4. In particular, this implies that the maximum radius of
either circle is 1/2.
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For lossless planar metamaterials, p3, defined by Eq. (4.90), must also be zero.
Using Eqs. (4.96) and (4.97), p3 = 0 simplifies to

|a + 1
2 ||b| {1 + cos[arg((a + 1

2 )(d + 1
2 )) − 2κ]

}
= A|b| {1 + cos[2ξ − 2κ]}
= 0, (4.99)

where A, ξ , and κ are defined by Eqs. (4.29), (4.30), and (4.33). Thus the nontrivial
solutions of p3 = 0 correspond to cos[2ξ − 2κ] = −1, which requires κ to take
one of the values

κ0 := ξ ± π
2 . (4.100)

Condition (4.99) also has two trivial solutions corresponding to the cases (see
Fig. 4.13(d))

a = d = −1

2
(4.101)

or

b = c = 0. (4.102)

Note that we defined κ0 as the allowed values for κ in the lossless nontrivial case.
So any lossless planar metamaterial must satisfy Eqs. (4.96), (4.97), and (4.98),

and additionally one of Eqs. (4.100), (4.101), and (4.102). The latter three are the
nontrivial and trivial solutions of p3 = 0.

For the lossless case, Eq. (4.98) allows us to write the values |b| = |c| as functions
of A:

|b| = |c| =
√

1
4 − |a + 1

2 |2 =
√

1
4 − A2 ≤ 1

2 . (4.103)

Using Eqs. (4.28) and (4.32) to express a, b, c, d in terms of the alternative
parameters, we can easily write down the lossless nontrivial scattering matrices
(see Fig. 4.13(c)):

−→
s =

(
a b

c d

)
=
(

Aei(ξ−2δ) − 1
2 |b|ei(κ0−2ϕ)

|b|ei(κ0+2ϕ) Aei(ξ+2δ) − 1
2

)
, (4.104)

A ∈ (0, 1
2 ), ξ ∈ (−π, π ], δ ∈ (−π

2 , π
2 ), ϕ ∈ [0, π

2 ),
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where κ0 and |b| are given by Eqs. (4.100) and (4.103), respectively. Note that there
are four independent parameters for the lossless nontrivial solutions, compared to
eight free parameters for general planar metamaterials.

For the trivial cases Eqs. (4.101) and (4.102), we get the following trivial solu-
tions (see Fig. 4.13(d)):

−→
s = 1

2

( −1 ei(κ−2ϕ)

ei(κ+2ϕ) −1

)
, (4.105)

κ ∈ [0, 2π ), ϕ ∈ [0, π
2 ),

s = 1
2

(
ei(ξ−2δ) − 1 0

0 ei(ξ+2δ) − 1

)
, (4.106)

ξ ∈ (−π, π ], δ ∈ (−π
2 , π

2 ).

All scattering matrices allowed for lossless planar metamaterials are given by
Eqs. (4.104), (4.105), and (4.106).

How can we interpret these solutions? Clearly, |b| = |c| must be satisfied
for all lossless planar metamaterials and thus circular conversion dichroism (see
Section 4.4.2), cannot be observed for lossless planar metamaterials. Also linear
conversion dichroism (see Section 4.4.3) is absent for the above solutions, which
satisfy the conditions (4.57), (4.55) and (4.56), respectively. Therefore direction-
ally asymmetric transmission, reflection, and absorption of circularly or linearly
polarized waves cannot occur for lossless planar metamaterials.

For Eqs. (4.104) and (4.106) the diagonal elements of the scattering matrix, a and
d, are allowed to take different values, which corresponds to the effects of circular
birefringence and circular dichroism; see Section 4.4.1. Here ξ = 0 corresponds to
the special case of circular birefringence without circular dichroism.

Solutions (4.104) and (4.105) correspond to responses with linear dichroism
and/or linear birefringence, as they have |b| = |c| �= 0; see Section 4.4.4. In the
absence of optical activity, a = d, the eigenstates are linearly polarized with
azimuths ϕ and ϕ + π/2 for forward propagation; see Section 4.5.2. Special cases
of these linearly birefringent/dichroic lossless solutions without optical activity
correspond to lossless linear polarizers and lossless wave plates. These important
cases will be identified and discussed in Sections 4.7.2 and 4.7.3.

Lossless solution (4.106), which has b = c = 0, corresponds to a response
that does not depend on the azimuth of the incident wave; see Section 4.4.4.
This family of solutions corresponds to lossless planar metamaterials without
linear birefringence/dichroism that may exhibit optical activity. Section 4.6.2
studies such lossless pure optical activity in more detail, while Sections 4.7.4
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and 4.7.5 will discuss the special cases of lossless polarization rotators and circular
polarizers.

4.6.2 Lossless planar metamaterials without linear birefringence/dichroism
(L = 0, b = c = 0)

We now study optical activity for lossless planar metamaterials without linear bire-
fringence/dichroism. The complete set of scattering matrices for this case is given
by Eq. (4.106), and the corresponding eigenstates are derived in Section 4.5.1.
Note that in general optical activity can only occur at oblique incidence onto
planar metamaterials without 2-fold rotational symmetry. Quantitatively the prop-
erties discussed here can only be realized for planar metamaterials that are also
lossless. Importantly, absence of linear birefringence/dichroism at some particular
frequency does not require the metamaterial itself to be isotropic. First we will
derive polarization rotation and circular dichroism of lossless planar metamaterials
without linear birefringence/dichroism in general, and then in Sections 4.7.4 and
4.7.5 the special cases of an ideal lossless rotator and circular polarizer will be
discussed.

Since in our case the metamaterial properties do not depend on the azimuth
of the incident wave, it follows from Eqs. (4.40) and (4.41) that the polarization
azimuths of the scattered and transmitted waves will be rotated by

��s = 1
2

[
arg(d) − arg(a)

]
,

��t = 1
2

[
arg(d + 1) − arg(a + 1)

]
.

(4.107)

Note that for lossless planar metamaterials without linear birefringence/dichroism
both a and d are of the form (1/2)ei(ξ∓2δ) − 1/2, where ξ, δ are chosen to satisfy
the phase convention ξ ± 2δ ∈ (−π, π ]. As illustrated by Fig. 4.14, arg(d + 1) −
arg(a + 1) = 2δ follows for this case. The phase difference arg(d) − arg(a) is 2δ if
a, d lie in the same half-plane (upper or lower) and π − 2δ otherwise. From these
results we obtain the polarization azimuth rotations for lossless planar metamate-
rials without linear birefringence/dichroism for the scattered and transmitted fields
as follows:

��s =
{

δ
π
2 − δ

for
Im(a)Im(d) ≥ 0
Im(a)Im(d) < 0,

��t = δ.

(4.108)
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Figure 4.14. For lossless metamaterials without linear birefringence/dichroism
(shown in black), a + 1 and d + 1 lie on a circle through the origin centered
at +1/2. The angle from a + 1 to d + 1 around the circle’s center that faces
away from the origin is arg(d + 1/2) − arg(a + 1/2) = 4δ; see Eq. (4.31). The
angle arg(d + 1) − arg(a + 1) that the same points form with the origin is just
half as large. (We use basic geometry to sketch the proof (in gray) on the right-
hand side of the top panel; the same idea is used in all cases.) For the angle
arg(d) − arg(a) from a to d (shown in gray) we must distinguish two cases.
The top panel shows that if a and d fall in different half-planes (lower/upper),
arg(d) − arg(a) is just half as large as 2π − 4δ. The bottom panel shows that
arg(d) − arg(a) = arg(d + 1) − arg(a + 1) = 2δ if a and d fall in the same half-
plane (upper/lower).

Circular dichroism for transmission and scattering are generally given by
Eqs. (4.42) and (4.43), which in our lossless case without linear birefrin-
gence/dichroism take the form

�S = |a|2 − |d|2

= | 1
2e

i(ξ−2δ) − 1
2 |2 − | 1

2e
i(ξ+2δ) − 1

2 |2,
�T = |a + 1|2 − |d + 1|2

= | 1
2e

i(ξ−2δ) + 1
2 |2 − | 1

2e
i(ξ+2δ) + 1

2 |2.
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After simplifying we find that for lossless planar metamaterials without linear
birefringence/dichroism, circular dichroism for scattering and transmission is given
by

�S = − sin(ξ ) sin(2δ), (4.109)

�T = + sin(ξ ) sin(2δ). (4.110)

4.7 Applications and limitations

We are used to a variety of optical components, some of which are polarization-
insensitive, such as ideal mirrors, beam splitters, and attenuators, while others, such
as wave plates, linear and circular polarizers, and polarization rotators are used to
manipulate polarization states. In this section, we explore the potential of planar
metamaterial realizations of these components.

Planar metamaterials acting as mirrors, beam splitters, or reflective attenuators
should not be surprising, as the usual realizations of these components can be
understood as trivial cases of planar metamaterials. The same applies to wire grid
linear polarizers commonly used in the microwave, terahertz, and mid-infrared
parts of the spectrum.

We show that planar metamaterials can also be used as wave plates, which can
be very efficient for small phase delays. Large phase delays, however, come at the
cost of large insertion losses, and λ/2-plates cannot be realized.

We find that, at oblique incidence, planar metamaterials can act as polarization
rotators or circular polarizers. Polarization rotators can perform well for small
rotation angles, but large rotation angles come at the cost of large insertion losses,
and rotation angles of ±π/2 cannot be realized. Circular polarizers are not limited
in efficiency.

Importantly, planar metamaterials allow the realization of wave plates, linear
and circular polarizers and polarization rotators that operate in transmission and/or
reflection. Thus planar metamaterials provide not only an opportunity to miniaturize
existing polarization optics for transmission, but they also allow the development
of novel components such as reflection wave plates, reflection circular polarizers,
and reflection polarization rotators.

It will be shown that for all functionalities listed here, apart from attenuators,
the best performance can be achieved with lossless planar metamaterials.

4.7.1 Attenuators, beam splitters, mirrors, and empty space

Attenuators, beam splitters, mirrors, and empty space exhibit neither polarization-
azimuth-dependent properties (b = c = 0) nor optical activity (a = d). Thus they
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correspond to scattering matrices

s =
(

a 0
0 a

)
, (4.111)

|a + 1
2 | ≤ 1

2 .

The corresponding scattered (reflected) and transmitted power fractions S and
T are given by

S = |a|2,
T = |a + 1|2. (4.112)

The equality |a + 1/2| = 1/2 corresponds to all lossless planar metamaterials
without linear birefringence/dichroism and optical activity. Using Eqs. (4.28), all
lossless a can be written as a = (1/2)(eiξ − 1), which allows us to rewrite the
scattered and transmitted power fractions for the lossless case as

S = sin2
(

ξ

2

)
,

T = cos2
(

ξ

2

)
.

(4.113)

Lossless planar metamaterials showing neither linear birefringence/dichroism nor
optical activity are beam splitters. The transmitted and scattered power fractions are
given by Eqs. (4.113). A simple 50 − 50 beam splitter corresponds to ξ = ±π/2,
while the two limiting cases are a perfect mirror for ξ = π (a = −1) and empty
space with ξ = 0 (a = 0).

All lossy planar metamaterials without polarization-azimuth-dependent charac-
teristics and without optical activity, i.e. |a + 1/2| < 1/2, correspond to attenuating
beam splitters.

4.7.2 Linear polarizer

A transmission linear polarizer transmits one specific linearly polarized component
of the incident wave without changing its polarization state, while it is opaque for
the orthogonal linearly polarized component. A reflection linear polarizer exhibits
corresponding behavior for the scattered field.

Thus, linear polarizers must have orthogonal linearly polarized eigenstates,
where, for reflection linear polarizers one scattering eigenvalue is zero, and for
transmission linear polarizers one transmission eigenvalue is zero. Orthogonal,
linearly polarized eigenstates correspond to linearly dichroic (and/or birefrin-
gent) behavior without optical activity or circular/linear conversion dichroism,
i.e. a = d and |b| = |c|. The additional requirement that one eigenvalue must be
zero allows us to write down linear polarizer conditions based on the eigenvalue
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equations (4.69) and (4.70). A reflection linear polarizer must satisfy

a = ±|b|eiκ (4.114)

for one sign, and a transmission linear polarizer must satisfy

a = ±|b|eiκ − 1 (4.115)

for one sign.
Linear polarizers that operate in transmission and reflection are of particular

interest. It can be easily seen that Eqs. (4.114) and (4.115) can only be simultane-
ously satisfied for |b| = 1/2, κ ∈ {0, π}, and a = −1/2.

Thus all simultaneous transmission and reflection linear polarizers are given by

−→
s = 1

2

( −1 ±e−i2ϕ

±ei2ϕ −1

)
,

ϕ ∈ [0, π
2 ).

(4.116)

These scattering matrices correspond to the lossless planar metamaterial solution
(4.105) with κ ∈ {0, π}. It follows that energy conservation is satisfied and that
simultaneous reflection and transmission planar metamaterial linear polarizers, like
good wire grid polarizers [1, 2], must be lossless. They completely transmit one
linear polarization and completely reflect the orthogonal linear polarization. Note
that the parameter ϕ specifies the azimuth of either the transmitted or the reflected
polarization state. At normal incidence ϕ simply corresponds to the orientation of
the linear polarizer.

Importantly, all lossy (and many lossless) planar metamaterial linear polariz-
ers only work for either reflection or transmission, as they do not reflect/transmit
the wanted polarization completely. To see this, consider a reflection linear polar-
izer that reflects the wanted linear polarization completely. It must have scattering
eigenvalues |λs

1,2| = 1, 0. Due to λt
1,2 = λs

1,2 + 1 (see Eq. (4.62)) and energy con-
servation, |λs

i |2 + |λt
i |2 ≤ 1, the scattering eigenvalues must be λs

1,2 = −1, 0, and
the corresponding transmission eigenvalues are λt

1,2 = 0, 1. Thus a planar meta-
material reflection linear polarizer that reflects the wanted polarization completely
must also work for transmission (and vice versa). As discussed in the preceding
paragraph, this is only possible if no absorption losses are present.

It follows that all planar metamaterial linear polarizers with 100% efficiency are
lossless, work simultaneously for both reflection and transmission, and are given
by Eq. (4.116). Here efficiency is the reflected or transmitted power fraction for
the desired polarization state.
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4.7.3 Wave plates

A wave plate introduces some phase delay ρ between two orthogonal, linearly
polarized components of an electromagnetic wave. For any wave plate, the polar-
ization state of these orthogonal, linearly polarized components will not be affected
by the wave plate, and therefore these components must be eigenstates. As wave
plates have identical transmission levels for both eigenstates, the corresponding
eigenvalues must have the same magnitude, i.e. they only differ by the desired
phase difference ρ.

Wave plates do not show optical activity or circular/linear conversion dichroism
and thus a = d and |b| = |c|. The behavior of wave plates is simply linearly
birefringent.

It follows from Section 4.5.2 that orthogonal linearly polarized eigenstates result
automatically from a = d and |b| = |c|. Thus all scattering matrices that addition-
ally have eigenvalues of the same magnitude correspond to wave plates.

Here we generalize the concept of wave plates to the scattered field. Thus,
we consider scattering wave plates and transmission wave plates. Scattering wave
plates act as wave plates for the reflected wave. In order to simplify this deriva-
tion, we introduce a parameter ã, which is defined differently for scattering and
transmission wave plates, as follows:

scattering: ã := a,

transmission: ã := a + 1
(4.117)

In the absence of optical activity, the eigenvalues are given by Eqs. (4.69) and
(4.70) for scattering and transmission, respectively. Here, with |b| = |c| and the
definition of ã, these equations simplify to

λ1,2 = ã ± |b|eiκ ,

for both scattering and transmission eigenstates. Clearly, |λ1| = |λ2| is only satisfied
when the vectors represented by ã and eiκ in the complex plane are perpendicular
to each other, i.e.

κ = arg(ã) ± π
2 . (4.118)

The angle formed by the sum and difference of two perpendicular vectors is
twice the arctangent of the ratio of their magnitudes. Therefore the phase difference
ρ ∈ [0, π ] between the eigenvalues corresponds to

ρ = | arg λ2 − arg λ1| = 2 arctan

∣∣∣∣bã
∣∣∣∣ . (4.119)
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Note that all scattering matrices with a = d and |b| = |c|, which additionally
satisfy condition (4.118) and energy conservation, correspond to wave plates. For
scattering wave plates ã = a, while for transmission wave plates ã = a + 1.

The phase difference induced by a scattering wave plate is given by

ρs = 2 arctan
∣∣ b
a

∣∣ ≤ 2 arctan
√

Re(a)+1
−Re(a) , (4.120)

where we used inequality (4.95) to write the largest possible |b| in terms of a.
Similarly the phase difference induced by a transmission wave plate is

ρt = 2 arctan
∣∣ b
a+1

∣∣ ≤ 2 arctan
√

−Re(a)
Re(a)+1 . (4.121)

Planar metamaterials have identical scattering and transmission eigenstates. As
wave plates have orthogonal linearly polarized eigenstates, the corresponding scat-
tering and transmission matrices can always be written in the orthogonal eigenstate
basis. Written in the eigenbasis, both scattering and transmission matrices become
diagonal with the corresponding eigenvalues as entries. For a scattering wave plate
both scattering eigenvalues have the same magnitude, and therefore the scattered
power fraction S for any incident polarization is simply given by the squared
magnitude of its scattering eigenvalues, i.e.

S = |λs |2 = |a|2 + |b|2

≤ |a|2 + 1
4 − |a + 1

2 |2 = −Re(a). (4.122)

Similarly the transmission level of a transmission wave plate is given by the squared
magnitude of its transmission eigenvalues, i.e.

T = |λt |2 = |a + 1|2 + |b|2

≤ |a + 1|2 + 1
4 − |a + 1

2 |2 = Re(a) + 1. (4.123)

Importantly, a planar metamaterial λ/2-plate cannot be realized. A phase delay
of π in transmission requires a = −1 (see Eq. (4.121)), but for a = −1 the wave
plate must be opaque. Similarly, for a scattering λ/2-plate a = 0 would be required,
but for a = 0 the wave plate cannot reflect.

Lossy planar metamaterial wave plates [11, 12] typically work for either trans-
mission or scattering. However, there is one important exception: if a ∈ R, and thus
also ã ∈ R, the wave plate condition (4.118) will be satisfied for both scattering
and transmission by κ = ±π/2. It follows that all wave plates that simultaneously
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work for transmission and scattering are given by

−→
s =

(
a b

c d

)
=
(

a |b|ei(±π
2 −2ϕ)

|b|ei(±π
2 +2ϕ)

a

)
, (4.124)

−1 < a < 0, |b| ≤
√

1
4 − (a + 1

2 )2, ϕ ∈ [0, π
2 ),

where one preferred direction is given by ϕ. All solutions (4.124) satisfy energy
conservation (4.89) as p3 = 0 for A = D, |b| = |c|, and κ − ξ = ±π/2, and as the
conditions (4.94) and (4.95), which arise from p1,2, are obviously satisfied. The
limiting cases a ∈ {−1, 0}, which lead to |b| = 0, correspond to a phase delay of
ρ = 0 and the absence of linear birefringence. As a and |b| are both free parameters,
the possible choices for phase delays for transmitted and reflected waves are largely
independent in lossy planar metamaterial wave plates that work simultaneously in
transmission and reflection.

Lossless wave plates

All scattering matrices allowed by energy conservation for lossless planar meta-
materials are given by Eqs. (4.104), (4.105), and (4.106). As shown earlier in this
section, wave plates must satisfy a = d (i.e. δ = 0).

In the nontrivial case, Eq. (4.104), lossless planar metamaterials must meet the
condition κ = arg(a + 1/2) ± π/2, Eq. (4.100), while wave plates must satisfy
κ = arg(ã) ± π/2, Eq. (4.118). Clearly these conditions can only be simultane-
ously satisfied if a ∈ R and thus arg(a + 1/2), arg(ã) ∈ {0, π}. The only linearly
birefringent trivial lossless solution, Eq. (4.105), also satisfies a ∈ R.

Thus all lossless planar metamaterial wave plates are given by

−→
s =

(
a |b|ei(±π

2 −2ϕ)

|b|ei(±π
2 +2ϕ)

a

)
, (4.125)

−1 < a < 0, |b| =
√

1
4 − (a + 1

2 )2, ϕ ∈ [0, π
2 ),

where ϕ specifies one preferred direction. All lossless wave plates are simultane-
ously wave plates for scattered and transmitted waves. Importantly, in the lossless
case there is only one free parameter a, apart from the orientation of the anisotropic
direction ϕ. Therefore the phase delays ρs and ρt for scattering and transmission
are not independent in lossless planar metamaterial wave plates, and Eqs. (4.120)
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and (4.121) become equalities:

ρs = 2 arctan
∣∣ b
a

∣∣ = 2 arctan
√

a+1
−a

, (4.126)

ρt = 2 arctan
∣∣ b
a+1

∣∣ = 2 arctan
√

−a
a+1 . (4.127)

It follows that

ρs + ρt = π. (4.128)

Equations (4.122) and (4.123) for the scattered power fraction S and the trans-
mitted power fraction T for any incident polarization also become equalities, and
can be written in terms of the phase delay using Eqs. (4.126) and (4.127) as
follows:

S = −a = cos2
(

ρs

2

)
, (4.129)

T = a + 1 = cos2
(

ρt

2

)
. (4.130)

It follows that a large phase delay comes at the cost of low efficiency. For
example, a transmission phase delay of 3π/4 can only be achieved with 15%
transmission, while the corresponding π/4 scattering phase delay is achieved with
85% reflection. The special case of ρs = ρt = π/2, i.e. the lossless λ/4-plate, has
transmission and reflection levels of 50% each.

From Eqs. (4.120)–(4.123) and (4.126)–(4.130) it follows that lossless planar
metamaterial wave plates introduce larger phase delays combined with higher
transmission and scattering levels than lossy planar metamaterial wave plates.
Simply put, lossless wave plates perform better.

4.7.4 Polarization rotators

Here we examine the special case of polarization rotators. Note that rotators require
oblique incidence onto planar metamaterials without 2-fold rotational symmetry.
Polarization rotators rotate the azimuth of any polarization state by some fixed
angle �� without affecting the ellipticity of the polarization state.

As shown in Section 4.4.4, the same azimuth rotation for any polarization state
will be seen if and only if b = c = 0. For this case energy conservation, Eq. (4.89),
reduces to the simple condition |a + 1/2|, |d + 1/2| ≤ 1/2, where the equalities
correspond to the lossless case; see the gray circles in Fig. 4.15.
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Lossless Rotator
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Figure 4.15. Pure optical activity and lossless rotators. As shown in Section
4.4.4, absence of linear birefringence/dichroism and circular/linear conversion
dichroism requires b = c = 0. For this case energy conservation, Eq. (4.89), allows
all a, d that satisfy |a + 1/2|, |d + 1/2| ≤ 1/2. The equalities, corresponding
to the lossless case, are indicated by gray circles. The relevant coefficients for
scattering are a, d, while the relevant transmission coefficients are a + 1, d + 1.
(a) For lossless planar metamaterials the scattering and transmission coefficients
must fall on the gray circles, while for lossy planar metamaterials all values within
the gray circles are allowed. Circular dichroism is only absent if the relevant
coefficients have the same magnitude, i.e. fall on the same (dashed) circle around
the origin. The angle that both coefficients form with the origin is twice as large
as the polarization azimuth rotation �� experienced by incident waves. (b) The
lossless rotator is the special case where circular dichroism and losses are absent.

From Eqs. (4.40) and (4.41) it follows that for the absence of linear birefrin-
gence/dichroism and circular/linear conversion dichroism the azimuth rotations
��s and ��t are given by

��s = − 1
2

[
arg(a) − arg(d)

]
, (4.131)

��t = − 1
2

[
arg(a + 1) − arg(d + 1)

]
. (4.132)

Thus, for scattering the rotation is half as large as the angle formed by a and d with
the origin; and for transmission the rotation is half as large as the angle formed by
a + 1 and d + 1 with the origin; see the black lines in Fig. 4.15.

Rotators do not change the ellipticity of any polarization state, thus a scattering
rotator must not have scattering circular dichroism (4.43), and a transmission rotator
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must not have transmission circular dichroism (4.42). For scattering rotators this
requires |a| = |d|, while for transmission rotators |a + 1| = |d + 1| is needed; see
the dashed arcs in Fig. 4.15.

Due to the absence of circular dichroism, the scattering matrix of a scattering
rotator is diagonal with entries a, d (= eigenvalues) of equal magnitude. Therefore
the scattered power fraction S of a scattering rotator is given by

S = |a|2,

independent of the incident polarization state. Similarly the transmitted power
fraction of a transmission rotator is given by

T = |a + 1|2.

It can easily be seen from Fig. 4.15(a) that the largest reflectivity S for any
choice of ��s (angle between the black lines in the left panel) without scattering
circular dichroism (a and d on same dashed circle) corresponds to the lossless case
(gray circle). Similarly, the largest transmission T for any choice of ��t without
transmission circular dichroism corresponds to the lossless case; see the right
panel. Thus, for any azimuth rotation, the most transparent transmission rotator
and the most reflective scattering rotator are lossless. We will find on the following
pages that for lossless scattering/transmission rotators the reflected/transmitted
power fraction is given by cos2(��). Therefore the scattered power fraction of a
scattering rotator is given by

S = |a|2 ≤ cos2(��s), (4.133)

and similarly the transmitted power fraction of a transmission rotator is given by

T = |a + 1|2 ≤ cos2(��t ). (4.134)

Typically lossy planar metamaterial rotators [13] will only work for scattered or
transmitted fields. However, there are rotator solutions (a �= d) that satisfy |a| = |d|
and |a + 1| = |d + 1| simultaneously. All of these scattering and transmission rota-
tors are given by d = ā, where ā is the complex conjugate of a. The corresponding
scattering matrices are

s =
(

a 0
0 ā

)
, (4.135)

|a + 1
2 | ≤ 1

2 .
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The lossless rotator

Here we examine the special case of lossless rotators. Note that lossless rota-
tors require oblique incidence onto lossless planar metamaterials without 2-fold
rotational symmetry.

Lossless rotators must correspond to lossless scattering matrices without any
linear birefringence/dichroism (b = c = 0) or circular dichroism for scattering
(|a| = |d|) or transmission (|a + 1| = |d + 1|). All lossless scattering matrices
without linear birefringence/dichroism are given by Eq. (4.106). From Eq. (4.109)
and (4.110) it follows that circular dichroism is generally absent simultaneously for
scattered and transmitted fields. For our phase convention, ξ ± 2δ ∈ (−π, π ], all
circularly birefringent solutions without circular dichroism correspond to ξ = 0.
Thus the scattering matrices of all lossless rotators are given by Eq. (4.106) with
ξ = 0:

s = 1
2

(
e−i2δ − 1 0

0 e+i2δ − 1

)
, (4.136)

δ ∈ (−π
2 , π

2 ).

Note that this just corresponds to Eq. (4.135) with |a + 1/2| = 1/2.
We have found that for any given azimuth rotation the most transparent trans-

mission rotator and the most reflective scattering rotator are lossless. In order to
assess the potential of planar metamaterials as rotators, we will calculate transmis-
sion, reflection, and the associated polarization rotation for the lossless case. As the
diagonal elements have the same magnitude, in both the scattering matrix and the
transmission matrix, the scattered power fraction S and transmitted power fraction
T are given by

S = |d|2 = 1
4 |ei2δ − 1|2,

T = |d + 1|2 = 1
4 |ei2δ + 1|2,

which simplify to

S = sin2 δ,

T = cos2 δ.
(4.137)

In the lossless case without linear birefringence/dichroism or circular dichroism
the polarization rotation for scattered and transmitted fields is given by Eq. (4.108),
where Im(a)Im(d) ≤ 0. It follows that lossless rotators rotate the azimuth of
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Figure 4.16. Experimental demonstration of an almost ideal lossless rotator
response for a 1 mm thick aluminum film perforated with asymmetrically split
ring apertures (wallpaper group pm). At 9.46 GHz, linear birefringence/dichroism
(T−+ = T+− = 0 and S−+ = S+− = 0) and circular dichroism (T++ = T−− and
S++ = S−−) are absent, both in transmission and scattering. Transmission rotation
of 67◦ is achieved at 12% transmission (limit cos2 67◦ = 15%), and scattered field
rotation of 17◦ is achieved at 88% scattering (limit cos2 17◦ = 91%). Transmission
and scattering rotation add up to 84◦ (ideal case 90◦). All data shown correspond
to oblique incidence at θ = −30◦ with the metamaterial’s line of mirror symmetry
m perpendicular to the plane of incidence. The structure’s transmission properties
are discussed in detail in ref. [14].

scattered and transmitted fields by

��s = π
2 − δ,

��t = δ.
(4.138)

Thus the scattering matrices of all lossless rotators are given by Eq. (4.136). Their
transmission and reflection levels are described by Eqs. (4.137) and their rotary
power is given by Eqs. (4.138). As illustrated by Fig. 4.16, real planar metamaterials
can come very close to ideal lossless rotators [14]. Importantly, a large polarization
rotation of the transmitted wave comes at the expense of reduced transmission,
while a large rotation of the scattered field comes at the expense of reduced
reflection. Thus planar metamaterial rotators can be efficient only for small rotation
angles. For example, a transmission rotator that rotates up to 6◦ can be ≥99%
transparent, while one rotating by 45◦ can only transmit up to 50%. In general, loss-
less planar metamaterial rotators have the highest efficiency that can be achieved
with planar metamaterial rotators. Due to being measured in different coordinate
systems, the rotation for scattering and that for reflection have opposite signs.
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4.7.5 Circular polarizers

The behavior discussed here can only occur at oblique incidence onto planar
metamaterials without 2-fold rotational symmetry.

A transmission circular polarizer transmits one circular polarization without
changing its polarization state, while it is opaque for the other circular polarization.
A reflection circular polarizer shows analogous behavior for the scattered field.

Thus circular polarizers must have counter-rotating circularly polarized eigen-
states, where for reflection polarizers one scattering eigenvalue is zero, and for
transmission polarizers one transmission eigenvalue is zero. Counter-rotating cir-
cularly polarized eigenstates correspond to pure optical activity, i.e. b = c = 0 (see
Section 4.5.1). This leaves us with diagonal scattering matrices which have scat-
tering eigenvalues as their entries. For reflection circular polarizers, exactly one
scattering eigenvalue is zero, thus all reflection circular polarizers are given by

s(θ ) =
(

0 0
0 λ

)
and s(−θ ) =

(
λ 0
0 0

)
, (4.139)

|λ + 1
2 | ≤ 1

2 , λ �= 0,

which correspond to reflection of left-handed and right-handed incident circu-
lar components, respectively. The reflected power fraction of the desired circular
component is |λ|2.

Similarly, for transmission circular polarizers exactly one transmission eigen-
value must be zero. From λt

1,2 = λs
1,2 + 1 (see Eq. (4.62)) it follows that exactly

one diagonal entry of the scattering matrix must be −1, and thus all transmission
circular polarizers are given by

s(θ ) =
(

λ 0
0 −1

)
and s(−θ ) =

(−1 0
0 λ

)
, (4.140)

|λ + 1
2 | ≤ 1

2 , λ �= −1,

which correspond to transmission of right-handed and left-handed incident circular
components, respectively. The transmitted power fraction of the desired circular
component is |λ + 1|2.

As circular polarizers rely on optical activity, which is reversed for opposite
angles of incidence ±θ , a planar metamaterial circular polarizer for one circular
polarization s(θ ) can always be turned into a circular polarizer for the other circular
polarization s(−θ ) by reversing the angle of incidence.

Obviously, circular polarizers that work simultaneously for transmission and
reflection are of particular interest. It can easily be seen that the only matrices that



Chirality and anisotropy of planar metamaterials 147

satisfy Eqs. (4.139) and (4.140) are

−→
s (θ ) =

(
0 0
0 −1

)
and s(−θ ) =

(−1 0
0 0

)
. (4.141)

The corresponding eigenvalues have magnitudes 0, 1, for both scattering and trans-
mission, and thus one circular polarization is completely transmitted while the
other is completely reflected. In fact, Eqs. (4.141) correspond to the lossless solu-
tion (4.106) with ξ = π/2 and δ = ±π/4. It follows that simultaneous transmission
and reflection planar metamaterial circular polarizers must be lossless.

All lossy planar metamaterial circular polarizers only work for either reflection
or transmission. Note that there are also lossless circular polarizers that only work
either in reflection or transmission.

It can be easily seen that scattering circular polarizers, Eqs. (4.139), and
transmission circular polarizers, Eqs. (4.140), which reflect or transmit 100% of
the desired circular component, must correspond to the special case given by
Eqs. (4.141), which is lossless and works simultaneously for reflection and trans-
mission. Therefore all planar metamaterial circular polarizers with 100% efficiency
are lossless, work simultaneously for reflection and transmission and are given by
Eqs. (4.141).

In this case, s(θ ) corresponds to 100% transmission of right-handed circular
polarization and 100% reflection of left-handed circular polarization, while the
properties for s(−θ ) are reversed. Interestingly, as the reflected wave changes
handedness, s(θ ) splits any beam into two right-handed circularly polarized
beams, while s(−θ ) splits any beam into two left-handed circularly polarized
waves.

Note that Eqs. (4.141) can also be found by maximizing circular dichro-
ism in lossless planar metamaterials without linear birefringence/dichroism; see
Eqs. (4.109) and (4.110).

4.8 Normal incidence

Here we explore the properties of planar metamaterials under normal incidence con-
ditions. We found in Section 4.2.4 that for normal incidence a = d must hold, and
that therefore optical activity and linear conversion dichroism cannot be observed
in this case. We also found that the asymmetric transmission, reflection, and absorp-
tion effects for circularly polarized waves (|b| �= |c|) can occur at normal incidence
onto planar metamaterials only if they are simultaneously 2D-chiral, lossy, and
anisotropic. The arguments for this were presented in Sections 4.2.3, 4.4.2, and
4.4.4, respectively.
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Figure 4.17. Achiral and planar chiral patterns and their mirror images, which
correspond to the pattern seen from the other side. (a) Achiral patterns and their
mirror images are not different from each other as they can be superimposed
by an in-plane rotation of the mirror image by 2ϕ. (b) 2D-chiral patterns are
different from their mirror image, as the pattern and its mirror image cannot be
superimposed by an in-plane rotation. In the 2D-chiral case the pattern and its
mirror image have opposite senses of twist.

The following three sections examine normal incidence for the cases of achiral,
isotropic, and lossless planar metamaterials. For each of these cases the scattering
matrices allowed by symmetry and energy conservation will be derived. Further-
more, it will be shown that for normal incidence onto lossless or isotropic planar
metamaterials 2D chirality does not lead to any polarization effect. For normal inci-
dence the scattering matrices of all lossless (a = d, |b| = |c|) or isotropic (a = d,
b = c = 0) planar 2D-chiral metamaterials could also correspond to achiral planar
metamaterials (a = d, |b| = |c|).

4.8.1 Achiral planar metamaterials at normal incidence

For planar metamaterials, waves normally incident on the front and back observe
mirror images of the structure; see Fig. 4.17. If the structure and its mirror image, i.e.
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the patterns seen by forward- and backward-propagating waves, cannot be superim-
posed without being lifted off the plane, the metamaterial is 2D-chiral. In the case
of normal incidence on achiral structures,17 forward- and backward-propagating
waves see the same pattern. However, the reflected pattern will be rotated by
an angle −2ϕ; see Fig. 4.17 and Section 4.5.2 (at normal incidence eigenstate
azimuth = metamaterial orientation seen by the wave). Thus in the achiral case
we must be able to overlap the mirror-image structure with the original by a +2ϕ

in-plane rotation. Taking into account that mirror images rotate in opposite direc-
tions and using Eqs. (4.80) this rotation corresponds to multiplying the scattering
coefficients b and c by the phase factors e+i(4ϕ) and e−i(4ϕ), respectively. After this
rotation the rotated scattering matrix ←−

s rot must be equal to the original scattering
matrix −→

s :

−→
s =

(
a b

c a

)
, (4.142)

←−
s rot =

(
a c e−i(4ϕ)

b ei(4ϕ) a

)
. (4.143)

For the achiral case at normal incidence, −→
s = ←−

s rot must hold, and therefore

c = b ei(4ϕ). (4.144)

By using b = |b|ei(κ−2ϕ), from Eqs. (4.32), this gives us c = |b|ei(κ+2ϕ). Writ-
ten in this form the scattering matrices for normal incidence on achiral planar
metamaterials are

−→
s =

(
a |b|ei(κ−2ϕ)

|b|ei(κ+2ϕ) a

)
,

←−
s =

(
a |b|ei(κ+2ϕ)

|b|ei(κ−2ϕ) a

)
,

ϕ ∈ [0, π
2 ), |a + 1

2 | ≤ 1
2 ,

(4.145)

where the allowed values for κ are derived below (see Eq. (4.150)) and |b| must
satisfy Eq. (4.95), which simplifies in this case to

|b| ≤
√

1
4 − |a + 1

2 |2 ≤ 1
2 . (4.146)

This set of scattering matrices implies that achiral planar metamaterials can
serve as normal incidence linear polarizers or wave plates operating in transmis-
sion and/or reflection. Obviously normal incidence attenuators, beam splitters, and
mirrors can also be realized using achiral planar metamaterials; see Section 4.7.

17 Achiral wallpaper symmetry groups: pm, pg, cm, pmm, pmg, pgg, cmm, p4m, p4g, p3m1, p31m, p6m.
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From the results obtained in Section 4.5.2, we can conclude that achiral planar
metamaterials at normal incidence have linear, orthogonal eigenstates, where the
azimuth of one eigenstate for forward (backward) propagation is +ϕ (−ϕ). Note
that for anisotropic achiral metamaterials, the orientation ϕ̃ of the structure’s line
of (glide) mirror symmetry must correspond to the orientation of a polarization
eigenstate. As ϕ̃ is measured in the coordinates of a normally incident forward-
propagating wave, the relationship ϕ̃ = ϕ + nπ/2 must be satisfied for some n ∈ Z.

Since |b| = |c|, circular conversion dichroism cannot occur for normal incidence
onto achiral planar metamaterials. Thus at normal incidence circular conversion
dichroism requires 2D-chiral metamaterials.

In order to find the allowed values for the parameter κ , we must examine the
general energy conservation condition (4.89). For normal incidence onto achiral
planar metamaterials, we found a = d and |b| = |c|, and therefore p1 = p2 (see
Eqs. (4.85) and (4.86)) must hold, which simplifies the energy conservation condi-
tion to

p3 ≤ −p1. (4.147)

Note that Eq. (4.85) is equivalent to (1/2)p1 = |a + 1/2|2 + |c|2 − 1/4, and
that p3 is defined by Eq. (4.90). Using this and a = d, |b| = |c|, and the alternative
parameters A, ξ, κ defined in Eqs. (4.29), (4.30), and (4.33), Eq. (4.147) can be
written as

√
2A|b|

√
1 + cos[2(ξ − κ)] ≤ 1

4 − A2 + |b|2. (4.148)

Using (1 + cos 2α) = 2 cos2 α this is equivalent to

|cos[ξ − κ]| ≤ 1/4 − A2 + |b|2
2A|b| . (4.149)

This expression describes how much the parameter κ can deviate from κ0 = ξ ±
π/2, the values allowed in the lossless case; see Eq. (4.100). We note that because
a = d, in our case the simplified expression ξ = arg(a + 1/2) holds,

|κ − κ0| ≤
∣∣∣∣arcsin

(
1/4 − A2 − |b|2

2|b|A
)∣∣∣∣ ,

or, in terms of the scattering coefficient a,

|κ − κ0| ≤
∣∣∣∣arcsin

(
1/4 − |a + 1/2|2 − |b|2

2|b| |a + 1/2|
)∣∣∣∣ (4.150)

applies for the nontrivial solutions of Eq. (4.147). For the trivial solutions, which
have either a = −1/2 or b = 0, all values of κ ∈ [0, 2π ) are allowed.
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4.8.2 Isotropic planar metamaterials at normal incidence

At normal incidence, isotropic planar metamaterials do not have a preferred direc-
tion and therefore their response cannot depend on the azimuth of the inci-
dent wave. In Section 4.4.4, we have shown that such an absence of linear
birefringence/dichroism and circular/linear conversion dichroism is equivalent to
b = c = 0. Together with the energy conservation condition (4.94), this gives us
the set of scattering matrices allowed for normal incidence onto isotropic planar
metamaterials,

s =
(

a 0
0 a

)
, (4.151)

|a + 1
2 | ≤ 1

2 .

This set of scattering matrices implies that isotropic planar metamaterials can serve
as normal incidence attenuators, beam splitters, and mirrors; see Section 4.7.1. Note
that these scattering matrices are a subset of those allowed for normal incidence onto
achiral planar metamaterials, Eqs. (4.145). Thus for normal incidence onto isotropic
planar metamaterials 2D-chiral symmetry cannot lead to any polarization effect.

Importantly, any planar metamaterial with 3-fold or higher rotational symmetry18

is isotropic. This can be seen from the fact that for any chosen direction in a pattern
with 3-fold or higher rotational symmetry there is at least one different direction
that is absolutely equivalent. Therefore such structures do not have any preferred
direction, and their transmission and reflection properties must be independent of
the azimuth of normally incident waves.

4.8.3 Lossless planar metamaterials: normal incidence or two-fold
rotational symmetry

Here we determine the scattering matrices and associated properties for the cases of
(i) any lossless planar metamaterials at normal incidence and (ii) 2-fold rotationally
symmetric lossless planar metamaterials19 at any angle of incidence.

All lossless planar metamaterials must satisfy energy conservation without
losses. The complete set of scattering matrices meeting this requirement is given by
Eqs. (4.104), (4.105), and (4.106). In Section 4.2.4 we found that a = d holds for
any planar metamaterial at normal incidence and that the same constraint applies
to 2-fold rotationally symmetric planar metamaterials at any angle of incidence.

18 Isotropic wallpaper symmetry groups: p3, p3m1, p31m, p4, p4m, p4g, p6, p6m.
19 Wallpaper symmetry groups with 2-fold rotational symmetry: p2, pmm, pmg, pgg, cmm, p4, p4m, p4g, p6,

p6m.
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Thus the scattering matrices for cases (i) and (ii) are the subset of Eqs. (4.104),
(4.105), and (4.106) for which a = d is satisfied. This subset is

−→
s =

(
a |b|ei(κ0−2ϕ)

|b|ei(κ0+2ϕ) a

)
, (4.152)

|a + 1
2 | ∈ (0, 1

2 ), ϕ ∈ [0, π
2 ),

with with κ0 and |b| given by Eqs. (4.100) and (4.103), respectively, and

−→
s = 1

2

( −1 ei(κ−2ϕ)

ei(κ+2ϕ) −1

)
, (4.153)

κ ∈ [0, 2π ), ϕ ∈ [0, π
2 ),

s =
(

a 0
0 a

)
, (4.154)

|a + 1
2 | = 1

2 .

For (i) normal incidence onto any lossless planar metamaterial and (ii) any angle
of incidence onto a 2-fold rotationally symmetric lossless planar metamaterial, all
allowed scattering matrices are given by Eqs. (4.152), (4.153), and (4.154).

It follows from Eqs. (4.72), (4.75), and (4.76) that the eigenstates are orthogonal
linear polarizations, where the azimuth of one forward-propagation eigenstate is
given by ϕ. Solutions (4.152) and (4.153) have |b| = |c| �= 0 and thus ϕ is well-
defined by Eq. (4.34). These solutions correspond to lossless planar metamaterials
exhibiting linear birefringence and/or linear dichroism. Importantly, these scatter-
ing matrices include the special cases of lossless linear polarizers and wave plates
for transmission and/or reflection, which are discussed in Sections 4.7.2 and 4.7.3,
respectively.

Solution (4.154) corresponds to lossless planar metamaterials without linear
birefringence/dichroism, i.e. mirrors (a = −1), empty space (a = 0), and lossless
beam splitters; see Section 4.7.1.

Importantly, 2D-chiral circular conversion dichroism (|b| �= |c|) or 3D-chiral
optical activity (a �= d) or linear conversion dichroism cannot occur in the cases
(i) and (ii) considered. We found in Sections 4.4.2 and 4.4.3 that directionally
asymmetric transmission, reflection, and absorption phenomena, which rely on
absorption losses, cannot be observed for lossless planar metamaterials in general,
not even in the presence of chirality. Such a generalization cannot be made for
3D-chiral optical activity, which can occur for oblique incidence onto a lossless
planar metamaterial without 2-fold rotational symmetry.
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Note that the scattering matrices in Eqs. (4.152), (4.153), and (4.154) are a
subset of those allowed for normal incidence onto achiral planar metamaterials,
Eqs. (4.145). Thus for normal incidence onto lossless planar metamaterials 2D-
chiral symmetry cannot lead to any polarization effect. The same holds for 2-fold
rotationally symmetric lossless planar metamaterials at any angle of incidence.

4.9 Summary

We have found that planar metamaterials can show distinctly different polarization
effects of 3D-chiral and 2D-chiral nature. Importantly, these effects do not require
the metamaterial itself to be chiral.

The first 3D-chiral effect corresponds to optical activity, i.e. circular birefrin-
gence and circular dichroism. In terms of the scattering or transmission matrices
for circularly polarized waves, optical activity corresponds to nonequal diagonal
elements. Conventionally, optical activity has been associated with 3D-chiral struc-
tures. Just as 3D-chiral structures have the same sense of twist when observed from
opposite sides, optical activity is the same for opposite propagation directions.
Even though planar metamaterials cannot have 3D-chiral symmetry, we found that
circular birefringence and circular dichroism can occur in planar metamaterials if
the following conditions are met:

� oblique incidence,
� no 2-fold rotational symmetry,20

� no (glide) mirror line parallel to the plane of incidence.

Under these conditions, the experimental arrangement consisting of the metamate-
rial combined with the direction of incidence has 3D-chiral symmetry (extrinsic 3D
chirality). Due to its dependence on the angle of incidence, optical activity in pla-
nar metamaterials is inherently tunable. In this respect it is particularly useful that
circular birefringence and circular dichroism are each absent at normal incidence
and have opposite signs for opposite angles of incidence.

The second 3D-chiral phenomenon is linear conversion dichroism, which leads
to asymmetric transmission, reflection, and absorption of linearly polarized waves
with parallel polarization states for opposite propagation directions. Linear conver-
sion dichroism can accompany optical activity in lossy planar metamaterials, i.e.
its observation requires absorption losses and the conditions for optical activity,
which are listed above.

The 2D-chiral phenomenon is circular conversion dichroism, which leads to
asymmetric transmission, reflection, and absorption of circularly polarized waves

20 Wallpaper symmetry groups without 2-fold rotational symmetry: p1, pm, pg, cm, p3, p3m1, p31m.
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of the same handedness for opposite directions of propagation. The asymmetric
behavior arises from reversed right-to-left and left-to-right circular polarization
conversion efficiencies for opposite propagation directions. Thus, in terms of scat-
tering or transmission matrices for circular polarization, the phenomenon corre-
sponds to different magnitudes of the off-diagonal terms. At oblique incidence
circular conversion dichroism requires structures that have

� losses,
� no (glide) mirror line parallel or perpendicular to the plane of incidence.

As these conditions can be satisfied by any lossy planar periodic interface, circular
conversion dichroism at oblique incidence appears to be a generic property of
lossy planar metamaterials. At normal incidence21 circular conversion dichroism
requires planar metamaterials that have

� losses,
� 2D chirality,
� anisotropy.

Note that at normal incidence the reversed circular polarization conversion effi-
ciencies for opposite propagation directions correspond to the reversed sense of
twist of 2D-chiral structures for opposite directions of observation. At oblique inci-
dence, the above criteria require that the metamaterial combined with the direction
introduced by the plane of incidence is 2D-chiral (extrinsic 2D chirality). Thus,
while optical activity and linear conversion dichroism are 3D-chiral phenomena,
circular conversion dichroism is of 2D-chiral nature.

We found that both linear and circular conversion dichroism rely on asymmetric
absorption losses, and that therefore the asymmetric effects cannot occur in lossless
planar metamaterials.

Optical activity and circular conversion dichroism have remarkably different
polarization eigenstates. In the case of pure optical activity, the eigenstates are the
same counter-rotating circular polarizations for opposite propagation directions.
On the other hand, circular conversion dichroism is associated with co-rotating
elliptically polarized eigenstates of orthogonal azimuth, which are left-handed for
one propagation direction and right-handed for the opposite direction.

Apart from chiral polarization effects, planar metamaterials can also show linear
birefringence and linear dichroism. In terms of scattering or transmission matri-
ces for circularly polarized waves, pure linear birefringence and dichroism, i.e.
without the presence of chiral polarization effects, correspond to identical diag-
onal elements and non-zero off-diagonal terms of the same magnitude. Provided

21 2D-chiral anisotropic wallpaper symmetry groups: p1, p2.
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that preferred directions are provided by the structure (anisotropy) or the experi-
mental arrangement (oblique incidence), pure linear birefringence and dichroism
can be seen in lossless planar metamaterials when extrinsic 3D chirality is absent
and in lossy planar metamaterials when both 2D and 3D chirality are absent. The
eigenstates associated with pure linear birefringence and dichroism, are orthogonal
linear polarization states.

Importantly, planar metamaterials can act as linear or circular polarizers, wave
plates, or polarization rotators. Each of these functionalities can be realized for
transmission and/or reflection. In particular this allows the realization of reflection
circular polarizers, reflection wave plates, and reflection rotators. The potential
efficiency of planar metamaterial wave plates and rotators decreases with increasing
phase delay and rotation angle, respectively. Low phase delay wave plates and weak
rotators can be very efficient, while planar metamaterial λ/2-plates and ±π/2-
rotators cannot be realized. Planar metamaterial rotators and circular polarizers
require oblique incidence, and have the interesting property that their rotation and
polarizing properties, respectively, are reversed for opposite angles of incidence.
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F. Lederer, “Asymmetric transmission of linearly polarized light at optical metama-
terials,” Phys. Rev. Lett. 104, 253902 (2010).



5

Novel optical devices using negative refraction of light
by periodically corrugated surfaces

wentao trent lu and srinivas sridhar

5.1 Introduction

Negative refraction (NR) has been theoretically predicted [1, 2] and experimentally
realized [3–7] in three types of materials. One is a material with a simultaneously
negative permittivity and permeability [8–12], leading to a negative refractive index
for the medium. The second consists of a photonic crystal (PhC) [13–21], which
is a periodic arrangement of scatterers in which the group and phase velocities
can be in different directions leading to NR. The third is the indefinite medium
[22–28], whose permittivity and/or permeability tensor is an indefinite matrix. In
all cases, the bulk properties of the medium, which is inherently inhomogeneous
at a subwavelength scale, can be described as having an effective negative refrac-
tive index. The active research in these artificial materials has opened doors to a
plethora of unusual electromagnetic properties and new applications such as a per-
fect lens [29], subwavelength imaging [30], cloaking [31], slow light, and optical
data storage [32, 33], that cannot be obtained with naturally occurring materials.
The holy grail of manufacturing these artificial photonic metamaterial structures
is to manipulate light at the nanoscale level for optical information processing and
high-resolution imaging.

In order to achieve NR, engineering the bulk electromagnetic properties is nor-
mally needed such that the group velocity and phase velocity be at an obtuse angle
or even anti-parallel to each other. However, refraction is a surface phenomenon.
A bulk-engineered material will have certain inherent surface properties. Negative
refraction can be realized in positive index materials by special orientation [34]
or by engineering the interface properties [35–37]. Although the bulk materials
have a positive refractive index, and thus will not lead to subwavelength imaging
resolution, the far-field properties are the same as those of negative index materials.
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In this chapter we describe a new mechanism of achieving NR by utilizing
surface corrugation. Negative refraction through diffraction is realized in a step-
by-step fashion. We will show that by adding a surface grating to a smooth surface,
the forward diffracted beam can be bent positively or negatively, with respect
to the transverse wave vector direction. By tuning the periodicity of diffraction,
we will suppress all orders of diffraction except the −1 order. Even though true
negative refraction is not yet achieved at this point, this negatively diffracted beam
will be utilized to make a grating lens that is realized in both microwaves and
in optics. We will show that one can further eliminate the −1 order reflection by
applying surface corrugation to photonic band gap materials, which will lead to
true negative refraction. Surface corrugation is applied to one-dimensional (1D) and
two-dimensional (2D) photonic band gap structures to realize all-angle negative
refraction (ANNR) [18] by folding the band structures. This leads to new frequency
windows and lattice orientations for AANR. Flat lens imaging will be demonstrated.
Unlike previously realized flat lens in PhCs, these flat lenses can have very large
object–image distances.

5.2 Negative refraction with visible light and microwaves
by selective diffraction

No homogeneous materials have yet been found to exhibit negative refraction.
Causality prevents the existence of materials with both negative static permeabil-
ity and permittivity. Negative refraction is demonstrated only in inhomogeneous
systems [38] or low-dimensional structures with wave confinement [39].

We start with an initially smooth interface that is totally reflecting. Consider a
plane wave incident on the corrugated surface of a material with bulk refractive
index n > 1 at an angle of incidence θ as shown in Fig. 5.1(a). A single beam of
light can be refracted negatively or positively by (i) making the angle of incidence
greater than the critical angle,

θ > θc = sin−1(1/n), (5.1)

which suppresses the zeroth and all positive orders, and then (ii) tuning the corru-
gation wave vector to select the −1 order.

We demonstrate this concept experimentally using grisms (grating prisms) at
visible and microwave frequencies. The presence of the surface grating changes
the wave vector in the bulk medium and gives a new handle to control the light
emerging from the interface. The corrugation provides a momentum kick to the
incident light, enabling it to cross the interface and emerge refractively at angles
that can be controlled.
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The component of the the wave vector k of the incident light parallel to the
surface is

k|| = nk0 sin θ. (5.2)

Here k0 = 2π/λ is the wave number and λ is the wavelength in free space. Due to
the surface corrugation of periodicity as , the wave vector along the grating surface
is not conserved. The parallel components of the transmitted and reflected wave
vectors along the grating surface are

k||m = nk0 sin θ + 2mπ/as, (5.3)

according to the Floquet theorem [40]. Here m is the order of the so-called Bragg
waves. The radiating Bragg waves into the air have

− 1 < n sin θ + mλ/as < 1. (5.4)

Otherwise, they will be evanescent, constituting surface waves. For angles of
incidence larger than the critical angle, all the radiating Bragg waves have negative
orders, m < 0. Within the wavelength range

as(1 + n sin θ )/2 < λ < as(1 + n sin θ ), (5.5)

only the m = −1 Bragg wave will radiate from the grating surface into the air, which
we call the refracted beam with wave vector kf and kf || = nk0 sin θ − 2π/as . For
light within this range, an effective refractive index can be defined as

neff = n − λ/(as sin θ ), (5.6)

and Snell’s law applies. If as(1 + n sin θ )/2 < λ < nas sin θ , neff > 0 and the
refraction will be positive, while for asn sin θ < λ < as(1 + n sin θ ), neff > 0 and
the refraction will be negative. This is illustrated in Fig. 5.1(a).

An experimental demonstration of NR at visible light using this mechanism
is shown in Fig. 5.1(b). A holographic transmission grating with ruling density
2400 lines/mm and estimated groove depth h ∼ 130 nm was replicated on one of
the sides of an equilateral right-angle BK7 prism of size 2 cm. A collimated laser
beam is incident on the hypotenuse and passes through the grating surface of the
grism. The angle of incidence at the grating is the prism angle θ = π/4, which
is greater than the critical angle for the BK7 glass. Theoretical analysis indicates
that only the m = −1 order beam will radiate into the air at negative angles if
the incident light is within the 435–860 nm wavelength range. Photographs of
the experiments clearly indicate that the incident He–Ne (632.8 nm) laser beam
“refracts” negatively through an angle φ = 27◦, as shown in Fig. 5.1(b). Indeed,
this is indistinguishable from refraction by a prism made of a negative refractive
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Figure 5.1. (a) Wave vector diagram for NR from a corrugated surface with grating
period as . The semicircle is the equi-frequency surface (EFS) in the air, while the
circle is the EFS in the dielectric. Here ki is the incident wave vector in the glass,
kf is the refracted one of −1 order in the air; kr,0 and kr,−1 are the reflected
wave vectors in the dielectric of the zeroth and −1 orders, respectively. (b) Optical
experiment demonstrating NR using a grism of size 2 cm with a grating density
of 2400 lines/mm on the upper short surface. The He–Ne laser beam is normally
incident to the hypotenuse. To visualize the beam path in air, the grism was placed
inside a glass enclosure that was sparsely filled with smoke. The solid lines with
arrows indicate the propagation of the beams inside the grism.

index material with neff = −0.63 for the red light. A sketch of the main beam
trajectories inside the glass is also shown in Fig. 5.1(b). All the beams can and have
been explained by diffraction theory; NR was also observed on this grism for the
green laser (532 nm), in which case neff = −0.29.

These experiments were repeated on a 1800 lines/mm grism with an estimated
groove depth h ∼ 150 nm. In the case of red light with normal incidence to the
hypotenuse, only the m = −1 beam will emerge negatively from the grating surface,
whereas for the green light the m = −1 order is diffracted positively with the
additional appearance of the m = −2 order. Control experiments performed on
regular prisms (without the grating) show positive refraction or complete reflection
without any transmitted beam, depending on the angle of incidence, as is to be
expected.

For a fixed wavelength and groove geometry, the fraction of light diffracted
into the m = −1 order depends strongly on the polarization state of the incident
light. The intensity transmission efficiency η = I−1/Iin for the m = −1 order was
measured at different polarization orientations of the incident light. A half-wave
plate inserted between the grism and a polaroid is used to rotate the orientation of
the linearly polarized light. For P polarization, the electric-field vector was parallel
to the grooves, whereas for S polarization it was perpendicular to the grooves. A
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Figure 5.2. (a) Experimentally measured transmission efficiency of the beam neg-
atively refracted through a BK7 grism with 2400 lines/mm grating. The electric
vector is parallel to the groove for a 0◦ orientation (P polarization) and perpen-
dicular for a 90◦ orientation of the polarizer. Calculated transmission efficiency
in S polarization (b) and in P polarization (c) with an angle of incidence π/4 for
λ = 532 nm through a lamellar grating on BK7 glass. The period of the lamellar
grating has a density of 2400 lines/mm (as = 416.7 nm). See color plates section.
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maximum efficiency of 25% is attained for the 2400 lines/mm grism with the P -
polarized green light. The detailed transmission curves for different polarizations
are shown in Fig. 5.2(a).

For practical applications, the efficiency of the power transmission is of primary
concern. Since the direction of the refracted beam is determined only by the surface
periodicity and not by the detailed geometry of the grating, there is considerable
freedom allowed to design the grating surface to maximize the transmission. To
exploit this freedom for transmission enhancement, we consider a specific grating,
the lamellar grating. The transmission and reflection of waves were calculated
using the Bloch wave expansion method. The transmission efficiency is plotted
as a function of the groove depth h and the filling ratio for both the S and P

polarizations at λ = 532 nm, as shown in Figs. 5.2(b) and (c), respectively. For a
groove depth h < 50 μm, an efficiency of over 60% can be reached in P polarization
for h ∼ 1 μm and a filling ratio 0.34. For h ∼ 0.4 μm and a filling ratio of 0.4, the
efficiency is 50%.

The concept of NR by using selective diffraction is applicable over a wide range
of frequencies. This is further exemplified by the grism experiments performed
using microwaves, as shown in Fig. 5.3. The grism consists of a right-angled
polystyrene (ε = 2.56) prism with a surface grating of alumina rods next to the
hypotenuse. The alumina rods have a diameter of 0.635 cm with grating periodicity
as = 2 cm. The experiments were carried out in a parallel-plate waveguide. The
distance between the two plates is 1.26 cm. The excitation in the parallel-plate
waveguide is a transverse magnetic (TM) mode of up to 12 GHz such that the
electric field is vertical and the magnetic field is within the plane. The collimated
microwave beam is incident normally on the shortest side of the prism and hits
the hypotenuse with an angle of incidence θ = π/3. A dipole antenna attached
to an X–Y robot maps the electric field. As shown in Fig. 5.3, at 9 GHz the
beam emerges as if it were refracted negatively at an angle φ = −16◦, leading to
neff = −0.32; NR was observed between 6.3 and 10.8 GHz. Experimental data
are in excellent agreement with theory and numerical simulations. For all the
microwave experiments and the corresponding numerical simulations carried out
in this section, only the TM modes are considered.

5.3 Focusing microwaves by a plano-concave grating lens

A unique feature of a negative index material is that it leads to focusing by a plano-
concave lens [41, 42]. Focusing by plano-concave lenses was realized in 2D and
1D PhCs [43–45]. We show that the NR mechanism demonstrated in Section 5.2
can be used to design a plano-concave grating lens. For a plano-concave lens with
a circular curved surface of radius R, and if the grating is placed such that the
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Figure 5.3. Microwave experiment demonstrating NR using a polystyrene grism
with a surface grating period as = 2 cm and angle of incidence θ = π/3 at 9 GHz.
Plotted is the electric field (real part of the measured transmission coefficient S21).
The solid arrows on the left indicate the direction of the incident microwave beam.
The dashed line is the surface normal, and the dashed arrow indicates the direction
of propagation of the refracted beam. See color plates section.

groove distance along the optical axis is a fixed number a, the surface periodicity
will be as = a/ sin θ . Here the angle θ is the angle of incidence toward the curved
surface. The effective refractive index is given by

neff = n − λ/a , (5.7)

which is independent of θ . A focus is expected with a focal length f (θ ) = R[1 +
sin φ/ sin(θ − φ)]. The focal length depends on the angle θ , leading to aberration,
which is present even in conventional lenses. The image quality is mainly impacted
by (a) the variation of the focal length for a large angle of incidence θ and (b) the
zeroth order diffraction, which is present when θ < sin−1(1/n). The strategy to
improve the image quality is discussed next.

A good quality focus can be observed for the plano-concave grating lens with
circular surface if λ/a ∼ n, neff ∼ 0, in which case the focal length f (θ ) is flat. For
|neff| < 1, one can use a noncircular curve instead of a circular one to minimize
spherical aberration. This curve assumes an elliptical form

y2/b2 + x2 = R2 , (5.8)

where b = (1 − neff)1/2 and

f = R/(1 − neff) (5.9)

is the desired focal length. On this elliptical curve one places the grating such that
the distance along the optical axis is a constant a as in the circular case.
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In order to eliminate the diverging beam around the optical axis of the plano-
concave lens due to the zeroth order diffraction, one can simply block this part
of the lens. Even if the interference from the zeroth order diffraction could not
be eliminated, it can be reduced. For a plano-concave lens with higher refractive
index, this effect is smaller. For certain gratings on the plano-concave lens, the
zeroth order diffraction can also be suppressed. For example, for the staggered cut,
as in a 1D PhC, the part of the lens around the optical axis is flat, as shown in
Fig. 5.4. For this grating one can choose the thickness of the lens around the optical
axis such that the transmission through this part is a minimum. This is confirmed
in our numerical simulations by using the finite-difference time-domain (FDTD)
method [46].

An elliptical plano-concave grating lens made of alumina with a semimajor axis
R = 15 cm and a semiminor axis 12.7 cm is shown in Fig. 5.4(c). The grating is
made by staggered cuts on the concave surface, such that the horizontal distance of
consecutive cuts is 1 cm. The effective index is neff = −0.53 at 8.5 GHz. A high
quality focus of a microwave beam is observed at 8.4 GHz, as shown in Fig. 5.4(a).
The inverse experiment was also performed in which a point source placed at
the focal point will radiate a plane wave beam at 8.4 GHz. The plano-concave
grating lens was placed inside the parallel-plate waveguide [43]. Numerical sim-
ulation (Fig. 5.4(b)) verifies both of the abovementioned focusing experiments at
8.5 GHz.

5.4 Realization of a plano-concave grating lens in optics

In this section we demonstrate how this binary-staircase optical element can be
tailor-made to have an effective negative refractive index at optical frequencies,
thus bringing a new approach to negative index optical elements.

The binary-staircase lens [47] we consider here consists of a sequence of zones
configured as flat parallel steps each having an annular shape. The binary-staircase
lens is a plano-concave lens. Proof-of-concept experiments have been carried out
at microwave frequencies, and were described in Section 5.3. However the plano-
concave lens used in the microwave range consisted of an assembly of commercial
alumina bars, placed in a parallel-plate waveguide, which are not suitable for
integration in optoelectronic circuits.

Geometrical parameters of the binary-staircase lens were determined by con-
sidering the transverse size of the lens, the focal length, the wavelength of the
incoming radiation, the index of the material used to fabricate the lens itself, and
mainly the surface periodicity. For a binary-staircase lens with a plano-concave
shape, and in the case that the grating period is much smaller than the incident
wavelength, an effective refractive index neff can be used to describe the refraction
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Figure 5.4. Demonstration of plano-concave grating lens focusing. (a) Composite
figure of the microwave focusing experiment at 8.4 GHz using a plano-concave
grating lens made of alumina with a grating on the curved surface. The electric
field of the incident beam measured without the presence of the grating lens is
plotted on the left. The intensity of the electric field is plotted on the right. In
the middle is a photo of the lens. The grating lens behaves like a smooth plano-
concave lens made of negative index material with neff = −0.57 at 8.4 GHz.
(b) FDTD simulations at a plano-concave lens without aberration made with
n = 3, R = 15 cm, and a = 1 cm at 8.5 GHz. Plotted is the electric field. The size
of the system is measured in centimeters. (c) Details of the plano-concave lens
(half of which is shown). The dashed curve is an ellipse with a semimajor axis
of 15 cm and a semiminor axis of 12.73 cm. The horizontal length of the grooves
is 1 cm. See color plates section.

at the modified concave surface. The effective index is related to the bulk refractive
index of the medium nmed, the step size a, and the free space wavelength λ through
Eq. (5.7) (with a < λ). The number of steps Nsteps or zones is then R/a, where 2R

is the transverse size of the binary-staircase lens. The focal length f is calculated
by using Eq. (5.9). To obtain a good focus, a ∼ λ/nmed (Abbe’s diffraction limit).
In the present case, λ = 1550 nm and a was chosen as 450 nm with nmed = 3.231
for TE modes and nmed = 3.216 for TM modes; a has been given an arbitrary value
close to λ/nmed; Nsteps = 11, so that R is 20 μm. Thus neff is −0.2133 for TE
modes and −0.2889 for TM modes.

The actual lens has been nanofabricated by a combination of electron beam
lithography and reactive ion etching in an InP/InGaAsP heterostructure. The fab-
rication platform consisted of a 400 nm InGaAsP core layer on an InP substrate
with a 200 nm InP top cladding layer. The waves are trapped and propagate within
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Figure 5.5. (a) Bird’s eye view of the tapered waveguide and the binary-staircase
lens. (b) Close-up view of the binary-staircase lens.

the core layer plane with an effective permittivity of 3.231 (TE modes) and 3.216
(TM modes). The final structure for optical measurements consisted of three sub
units (shown in Fig. 5.5(a)). (i) A 0.5 mm long waveguide, laterally tapered, hav-
ing 5 μm wide trenches on each side; the taper starts at a distance of 100 μm
from the edge of the waveguide, with a core width varying from 5 μm to 10 μm.
(ii) Binary-staircase plano-concave lens with ten zones on the optical axis, having
a step height of 450 nm and a transverse size of 10 μm, located at a distance of
5 μm from the tapered end of the waveguide, as shown in Fig. 5.5(b). (iii) Finally,
an open cavity (semicircle attached to a 20 μm × 20 μm square) at the end of the
binary-staircase lens.

An analogous structure, having the same geometrical dimensions but bearing
no steps (or zones), was also fabricated. The purpose of the analogous design
was to prove that the periodicity of the steps is a decisive structural element in
realizing a negative index prototype. The structures were written using electron
beam lithography on polymethylmethacrylate (PMMA) resist. Pattern transfers to
a silicon nitride working mask and subsequently to the InP/InGaAsP layers were
achieved with a reactive ion etching (RIE) method.
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Figure 5.6. Optical images from an optical scanning microscope, obtained at
λ = 1550 nm around the focal point of (a) the binary-staircase lens and (b) of the
analogous structure with no zones/steps (semicircle with smooth walls). Note that
focusing is observed only with the binary-staircase lens.

In the characterization experiment, a continuous wave (CW) tunable semicon-
ductor laser (1550 nm–1580 nm) was used as the input light source. The laser
light was coupled into the cleaved end of the input waveguides using a monomode
lensed fiber (working distance ≈14 μm and FWHM ≈ 2.5 μm in air) mounted on
a five-axis positioning stage. An infrared (IR) camera (Hamamatsu Model C2741)
connected to a microscope port aids the initial alignment to optimize the IR light
coupling from the optical fiber to the waveguide. In the FDTD simulation, a 10 μm
wide plane parallel, Gaussian beam was chosen as the incident field for the grating
lens. In the actual sample, the 5 μm wide input facet of the waveguide was inversely
tapered to a 10 μm width (see Fig. 5.5(a)), so that the propagating Gaussian beam
is expanded sufficiently inside the guiding channel before reaching the device end.
The planar wavefront after emerging from the binary-staircase lens is expected to
focus in the air cavity.

Subsequently, the focusing properties of the device were experimentally verified
using a scanning probe optical technique. A tapered fiber probe (250 nm aperture
diameter) metalized with a thin chromium and gold layer was raster scanned
just above the sample surface. The output end of the fiber probe was connected
to a nitrogen cooled germanium detector (North Coast Scientific Corp. Model #
EO-817L). Additionally, a typical lock-in amplifier was utilized to optimize the
detection scheme. Scanning the fiber tip at a constant height about 500 nm above
the sample surface allowed us to probe the optical intensity distribution over a
grid of 256 × 256 points spanning a 15 × 15 μm2 area. The reconstructed image
is shown in Fig. 5.6(a).

The intensity distribution near the cavity center clearly shows the light focusing
from the binary-staircase lens. Identical focusing patterns were observed when
the experiment was repeated over a range of wavelengths varying from 1510 nm
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Figure 5.7. (a) Three-dimensional FDTD simulation of the plano-concave binary-
staircase lens. (b) Three-dimensional FDTD simulation of the lens having the same
geometrical dimensions as the binary-staircase one, but bearing no steps (or zones).
See color plates section.

to 1580 nm. Another controlled experiment was performed in which the binary-
staircase lens was replaced by an analogous structure (having the same geometrical
features) with no steps. In the latter case, as shown in Fig. 5.6(b), no beam focusing
was observed. Nevertheless, we can distinguish a bright spot near the device’s edge,
which is attributed to a sudden beam divergence as it propagates into open space
from its initial confinement in the InGaAsP core waveguide layer (diffraction).

The numerical simulations were performed by using in-house 3D FDTD codes
with perfectly matched layer boundary conditions that minimize reflections at
the edges. The chosen input field excitation for the FDTD simulation was a TE
polarized Gaussian beam which closely resembles the beam shape of the fiber
source in the actual experiment. The energy density of the propagating H-field was
mapped at different plane heights. Figures 5.7(a) and (b) show the simulated H -
field density of the binary-staircase lens and the analog structure at about 800 nm
above the center of the core layer, respectively. No focusing is achieved if the zones
are removed, reinforcing the fact the steps are the decisive structural elements.

5.5 AANR and a negative lateral shift through a multilayered structure
with surface gratings

So far we have demonstrated NR through the combination of total internal reflection
and selective negative diffraction by using a surface grating on a homogeneous
isotropic bulk material. Focal grating lenses have also been fabricated and realized.
Strictly speaking, the negative refraction we have demonstrated in previous sections
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Figure 5.8. All-angle negative refraction using a surface grating. (a) A slab of 1D
multilayer PhC of lattice spacing a, with a surface grating of period as on both
surfaces. The surface grating gives rise to NR for the 1D PhC operating within the
band gap. (b) Illustration of NR using a surface grating. The EFS of S-polarized
modes in a 1D PhC made of alumina bars with lattice spacing a = 0.9 cm and a
bar thickness d = 0.5 cm, at 6.85 GHz, is shown in the curves at top and bottom.
The semicircle is the corresponding EFS in the air.

is not refraction at all due to the fact that, at the interface, two diffraction beams
were reflected.

Apparently, an additional requirement is needed on the bulk properties to demon-
strate true negative refraction in the presence of surface modification. In this section,
we apply surface corrugation to one-dimensional photonic crystals. A negative lat-
eral shift of an incident microwave beam by a flat multilayered structure with a
surface grating [18] will be demonstrated. We further show that all-angle negative
refraction (AANR) can also be achieved.

To illustrate this principle to achieve AANR, we consider a multilayered structure
which behaves as a 1D PhC. For a 1D PhC as shown in Fig. 5.8(a), there will be a
band gap for normally incident plane waves within a certain frequency range. For
these frequencies, transmission may be allowed for oblique angles of incidence. For
example, for the equi-frequency surface (EFS) of the 1D PhC shown in Fig. 5.8(b),
waves with an angle of incidence θ , such as ka < k0 sin θ < kb, will propagate.
If, for some frequencies, k0 < ka , then, for all the incident plane waves, there is
total external reflection. So this 1D PhC behaves as an omnidirectional mirror [48]
for these S-polarized waves. If a grating with period as is introduced on the flat
surface of the 1D PC, for example with 2π/as = ka , then a plane wave with an
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angle of incidence θ will receive a positive momentum kick along the surface.
Thus the incident wave will couple to the Bloch wave with ky = k0 sin θ + 2π/as

and propagate inside the 1D PhC. However, if 2π/as = kb, the incident wave will
receive a negative momentum kick along the surface and couple to the Bloch wave
with ky = k0 sin θ − 2π/as . With proper design it is possible that only the Bloch
wave with ky = k0 sin θ − 2π/as will propagate inside the 1D PhC. This refraction
is well-defined and negative. Furthermore, if k0 = kb − ka , all the propagating
waves will be transmitted into the 1D PhC. Since ky of the Bloch wave is negative
for every positive angle of incidence θ , this leads to a single-beam AANR. In
this case, both the wave vector and the group velocity refraction is negative. This
scenario for NR is illustrated in Fig. 5.8(b). For 1D PhCs, different ky correspond
to different modes. With the introduction of a surface grating, Bloch states with
ky and ky + 2mπ/as are identical. Thus the 1D PhC effectively becomes a 2D
PhC due to band structure folding, resulting in a finite-sized first Brillouin zone of
rectangular shape. This is the simplest all-dielectric structure to achieve AANR.

A microwave experiment carried out in a parallel-plate waveguide confirms this
mechanism for NR. A negative lateral shift was observed experimentally in the
range 6.65–7.74 GHz for a multilayered grating structure. The 1D PhC is made
of six layers of alumina bars with thickness d = 0.5 cm, lattice spacing a = 0.9
cm, and surface grating as = 1.8 cm (see Fig. 5.9). The angle of incidence of the
10 cm wide microwave beam was 13.5◦. A 5.6 cm negative lateral shift is observed
at 6.96 GHz, as shown in Fig. 5.9. Numerical simulations confirm AANR and a
negative lateral shift for a large range of angles of incidence for frequencies around
6.85 GHz, as shown in Fig. 5.10.

Though negative refraction has been shown in 1D PhC [44], the range of negative
refraction is quite limited. No AANR has been demonstrated in 1D all-dielectric
PhCs. However, with surface engineering, AANR can be realized in 1D PhCs.

Even though AANR can be realized in 1D PhCs, these devices cannot be used
to demonstrate flat lens imaging, which requires elliptic dispersion with negative
group refraction [49]. This requirement will lead all negatively refracted light
rays to focus at a single point. However, for the 1D PhC with a surface grating,
different rays will focus at different points and the focal point of the paraxial rays
is at infinity. Thus severe aberrations will render focusing impossible. Nevertheless
these structures may be used to converge beams.

5.6 Surface corrugation approach to AANR in 2D photonic crystals

In this section, we will obtain new windows of AANR in two-dimensional (2D)
PhCs using this new mechanism of surface modification.
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Figure 5.9. (a) Experimental demonstration of a negative lateral shift by a 1D
PhC with a surface grating, at 6.96 GHz. A 5.6 cm negative lateral shift was
observed. The 1D PhC is made of six layers of alumina bars with width d = 0.5
cm and spacing a = 0.9 cm. The surface grating was formed by rods of the same
material, alumina, with diameter 0.63 cm and spacing as = 1.8 cm. The width
of the incident beam is 10 cm and the angle of incidence is 13.5◦. The incident
and outgoing beams are plotted as the real parts of the measured transmission
coefficient S21. (b) A positive lateral shift for a microwave beam at 6.96 GHz by
a slab of polystyrene with thickness 7.5 cm. See color plates section.

Figure 5.10. FDTD simulation of a negative lateral shift of microwave beams
through a 1D PhC with surface gratings as specified in Fig. 5.8 at 6.96 GHz.
(a) Microwave beam with an angle of incidence 13.5◦. (b) Microwave beam with
an angle of incidence 30◦. The arrows indicate the energy flows of the incident
and refracted beams. Lengths are measured in meters. See color plates section.
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Figure 5.11. EFS of the TM modes of a square lattice PhC. The lattice is made
of square rods of alumina (ε = 9) with a filling ratio 0.49 (see inset). The shaded
area is the window of AANR for the PhC with surface grating as = 2a (see
Fig. 5.13). A slab of this PhC is oriented such that the surface normal is along the
�X direction.

In a pioneering paper [18], Luo et al. showed that AANR can be achieved within
certain frequency windows in the first band of a PhC. Specifically, within the first
band, AANR is possible along the �M direction for a square lattice PhC. We will
show that with an appropriate surface grating, NR and AANR are also possible
along the �X direction in the first band of a square lattice PhC.

In the main text of this section, we consider only TM modes of a square lattice
PhC of square rods. A square lattice of circular rods, or even of rods whose cross
section is a rhombus, can be treated similarly. The generalization to TE modes
and lattice structures other than the square lattice is straightforward. As a specific
example, we consider a square lattice of rhombus rods with the ratio b/a = 0.7,
and thus a filling ratio of 0.49. The EFS of this PhC is calculated by using the
plane-wave expansion method [16] with 5041 plane waves. The EFS of the first
band is shown in Fig. 5.11. The frequencies at the X point and the M point are
ωX = 0.1943(2πc/a) and ωM = 0.2446(2πc/a), respectively.

Consider a slab of this PhC with surface normal along the �X direction. If one
increases the frequency, ω > ωX, there will be a partial band gap for waves incident
on the air–PhC interface since the Bloch waves have ky ≥ ka and the incident plane
wave with ky < ka will be completely reflected. Here ka is the ky value of the
crossing point of the EFS with the XM boundary of the first Brillouin zone,
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Figure 5.12. Mechanism for NR and AANR for a square lattice PhC with surface
grating as = 2a. The curve is the EFS in the PhC and the semicircle is that in the
air for ω = 0.219(2πc/a). With a vertical momentum kick �k = π/a, an incident
plane wave with ki will be refracted negatively into a Bloch wave with kr .

as shown in Fig. 5.11 and Fig. 5.12. For certain frequencies ωl < ω < ωM with
ωl = 0.2089(2πc/a) when ka = ω/c, a flat slab of such a PhC is an omnidirectional
reflector [48]. For example, for ω = 0.219(2πc/a), as shown in Fig. 5.12, there
will be total external reflection of any incident plane wave. However, for these
frequencies, a surface grating with period

as = 2a (5.10)

will give a momentum boost along the surface to the incident plane wave with angle
of incidence θ such that it will be coupled to the Bloch waves inside the PhC with
transverse momentum ky = π/a + (ω/c) sin θ , if θ is negative, and ky = −π/a +
(ω/c) sin θ if θ is positive. The refracted wave will propagate on the opposite side
of the surface normal with respect to the incident beam. Thus NR is achieved. This
is illustrated in Fig. 5.12. The effect of this surface grating is equivalent to bringing
down the EFS around the M point to the X point for ωl < ω < ωM . As we pointed
out in ref. [35], it is the surface periodicity which determines the size of the EFS
and the folding of the band structure. Furthermore, if π/a − ka ≥ ω/c, AANR can
be achieved. The upper limit for AANR is ωu = 0.2192(2πc/a). Thus we obtained
a 4.7% AANR around ωu.

The above approach to NR and AANR is confirmed in our FDTD simulations.
Here we consider the lateral shift of an incident beam by a slab made of a square
lattice PhC. The details of the slab are shown in Fig. 5.13. Negative lateral shifts
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Figure 5.13. Details of slab made of a square lattice PhC with surface grating
as = 2a. For simplicity, the thickness d of the slab is defined as the distance from
the first surface to the last surface of the structure.

x

y y

x

Figure 5.14. Negative lateral shift by a slab of PhC given in Fig. 5.13 for an
incident Gaussian beam with angles of incidence 15◦ (left) and 30◦ (right) at
ω = 0.219(2πc/a). The distance is measured in units of the lattice spacing a. See
color plates section.

are observed for different angles of incidence, as shown in Fig. 5.14 for beams at
ω = 0.219(2πc/a). It can be verified that, for this slab, AANR can be achieved
for 0.2089 ≤ ωa/2πc ≤ 0.2192. Note that the details of the surface grating are
not essential, except for its period, as = 2a. The grating can be holographic or an
array of circular rods, as long as it is not too thick. For the specific surface grating
shown in Fig. 5.13, the energy transmissions are 99.2% and 4.7% for plane waves
with angles of incidence 15◦ and 30◦, respectively.

Our new approach gives a much larger window of AANR than previously
realized. For example, for a square lattice of air holes in ε = 12 with r/a = 0.35
studied in ref. [18], our approach gives a lower limit ωl = 0.183(2πc/a) and an
upper limit ωu = 0.206(2πc/a), hence a fraction of AANR frequency range of
11% around 0.206(2πc/a). This range is much larger than the 6.1% AANR range
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Figure 5.15. Flat lens with the lens equation u + v = σd.

along the �M direction for the TE modes. This window of AANR is easier to
locate. The two limits are obtained from the crossing of the band with the light
lines around the X point and the M point, respectively. For the determination of
the lower limit ωl , there is no need to compute the frequency at which the radius
of curvature of the contours along �M diverges [18].

This approach to AANR can also be extended to three-dimensional PhCs.

5.7 Flat lens imaging with large σ

One prominent application of negative refraction is the Veselago–Pendry perfect
lens [29]. A flat slab of thickness d can focus an object with distance u on one side
to a distance v on the other side with u + v = d if the refractive index n = −1. For
a generalized flat lens without an optical axis [49], the lens equation takes the form

u + v = σd, (5.11)

where σ is a material property, depending on the dispersion characteristics of the
flat lens. This is illustrated in Fig. 5.15. This lens equation requires the following
form of the EFS at the operating frequency:

krx = κ − σ

√
ω2/c2 − k2

y. (5.12)

The lens surface is in the y-direction. The surface normal is along the x-axis. Here
krx is the longitudinal component of the wave vector in the lens medium and κ is
the center of the EFS ellipse [49].

Even though AANR can be realized in the first band along the �M direction for
a square lattice PhC [18], the EFS is very flat around the lens normal. Thus one
has σ � 1 [49]. Although σ ∼ 1 has been reported in PCs with other structures
[50–52], the focusing is still limited to the vicinity of the lens surface [53]. For
practical applications, we need a large σ so that the object and image can be far away
from the lens. We also show that a flat lens made of a photonic crystal with a surface
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Figure 5.16. Fitting of the EFS of the TM modes at ωa/2πc = 0.219 by Eq.
(5.12). Here σ0 = 4 and κa/2πc = 1.16. Note that the center of the EFS is shifted
from the M point to the X point due to the surface grating with as = 2a.

grating can have u + v = σd [49] with σ � 1, while for the Veselago–Pendry flat
lens [29] σ = 1. Thus a flat lens can focus large and far away objects.

As we have stated in Section 5.6, the first Brillouin zone of a square lattice PhC
with surface grating as = 2a takes the shape of a rectangle instead of a square
and its vertical size is reduced to −π/a ≤ ky ≤ π/a. The center of the EFS for
ωl ≤ ω ≤ ωM of the original PhC is moved from the M point to the X point.
The fitting of the modified EFS for this frequency by Eq. (5.12) will give the lens
property σ . An inspection of the band structure reveals that the EFS is not elliptical.
This results in a σ that depends on the angle of incidence [49]. Nevertheless, the
EFS can be fitted well with a constant σ0 for small ky , as shown in Fig. 5.16. For the
square lattice PhC we have designed (Fig. 5.13), one has σ0 ∼ 4 for ωl ≤ ω ≤ ωu.

Focusing by such a flat lens is shown in Fig. 5.17. For a point source
with u = 13.6a, a clear focused image is obtained at v = 12.4a for the oper-
ating frequency ω = 0.219(2πc/a), which is consistent with the lens equation
u + v = σeffd with σeff = 3.5 and d = 7.4a. There are two reasons for σeff < σ0.
First, the EFS is elliptical only for small ky = (ω/c) sin θ , and σ ≡ −dkrx/dkx

decreases with increasing angle of incidence θ . The effective σeff is an average
and thus smaller than σ0 = −dkrx/dkx |ky=0. Second, the thickness of a PhC slab
is not a well-defined quantity. Here we simply define the lens thickness as the
distance from the first surface to the last surface, as shown in Fig. 5.13. This may
overestimate the effective thickness of the lens.

To check the performance of this flat lens further, we vary the object distance u.
In Fig. 5.18 we show that the ratio (u + v)/d is almost constant and very close to
σ0 for different object distances u.
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Figure 5.17. FDTD simulation of flat lens focusing of a point source. For better
contrast effect, the field intensity at the point source is suppressed. The details of
the lens are given in Fig. 5.13. The distance is measured in units of the lattice
spacing a.

u/a

(u
+

v
)/

d

Figure 5.18. Ratio of the object–image distance to the slab thickness (u + v)/d vs.
the object distance u for the flat lens shown in Fig. 5.13 at the operating frequency
ω = 0.219(2πc/a).

The primary concern for practical applications is the power transmission through
the lens. As expected, the transmission through the flat lens is low due to the
impedance mismatch. However, since the details of the grating on the PhC will not
alter the scenario for NR, the power transmission can be enhanced through careful
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Figure 5.19. Transmission coefficient for a plane wave incident on the flat lens
shown in Fig. 5.13.

engineering of the grating. In our simulation, we find that the grating on the 2D
PhC with large dielectric constant has strong power transmission. The parameters
of the surface grating shown in Fig. 5.13 are not optimized. Further improvement
of transmission may be possible. For the grating parameters given in Fig. 5.13, the
transmission coefficient is calculated and plotted in Fig. 5.19.

5.8 Discussions and conclusions

In this chapter we have shown that negative refraction of light can be achieved
using surface corrugation, leading to novel microwave and optical devices.

Although the phenomena presented in this chapter are due to diffraction, ray
optics does apply, as we have shown in the design of the plano-concave grating lens.
The mechanism of plano-concave lens focusing is different from that of the zone
plate, where concentric rings are carved to give each ray the corrected phase and ray
optics does not apply. Previous use of diffractive optics has been limited to reflection
gratings. The grism used in astronomy [54] satisfies the condition n sin θ < 1,
which allows the zeroth order diffraction. Our approach is different from the
suppression of zeroth and enhancement of −1 order transmission through surface
grating depth modification [55]. By removing the zeroth order Bragg diffraction
completely, our work opens the door for new phenomena and applications such as
plano-concave lens focusing and flat lens imaging.

We have also achieved NR using a new approach: photonic band gap with surface
grating. This approach enables us to demonstrate NR at the interface between
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two homogeneous positive media, achieve AANR in 1D PhC, and discover new
windows for AANR in 2D PhCs. This approach also enables us to design a flat
lens made of these PCs with a large object–image distance. Through the process
of achieving these, we have provided a new perspective on the phenomenon of
negative refraction. The NR can be seen as attributed to the folding of the band
structure and EFS of the bulk material by a proper surface grating. Under certain
conditions, surface periodicity alone can be sufficient to achieve NR even with
homogeneous positive index materials, as we have demonstrated. For a 2D or
higher dimensional PhC, the bulk periodic structure naturally introduces a surface
periodicity at the interface between a PhC and another medium. Improper surface
modification of the PhC may suppress or even diminish NR. Here we have shown
that NR can be achieved by combining a surface grating with a multilayer 1D PhC
structure that is relatively easier to fabricate. Previous approaches towards creating
NR materials with multilayered structures required the use of alternating layers of
negative permittivity and negative permeability materials [56, 57], and have not yet
been realized experimentally. The realization of AANR in 1D all-dielectric PhCs
with surface corrugation opens new realms of NR applications. Many structures,
such as the photonic band gap materials currently used to guide waves or form
cavities as photon insulators [13–15, 58–60] can be modified to have NR and
AANR through surface engineering [36].

We have shown that negative refraction can be realized without changing the bulk
properties. Our approach helps to deepen our understanding of negative refraction;
it also gives us an extra handle on engineering the electromagnetic properties of
materials. Surface engineering will enable us to manipulate waves further. Refrac-
tion is an interfacial phenomenon. Throughout this chapter we have shown that by
engineering the interface, a totally reflecting surface can be made to refract nega-
tively or positively, even though the materials utilized do not possess bulk negative
refractive indices. The importance of surface modification has been previously
recognized [61, 62], but has not been used as a mechanism to achieve negative
refraction. Surface modification can also lead to the formation of surface states,
which can be used to enhance subwavelength imaging.

The concepts discussed in this chapter are particularly suitable for integrated
optical circuits, where the device dimension is about the size of the free space
wavelength. Our work provides new ideas to harness diffraction to produce focusing
devices and other optical elements.
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Transformation of optical fields by structured surfaces

a. a. maradudin, e. r. méndez, and t. a. leskova

6.1 Introduction

A reader of this book will quickly see that structured surfaces, whether deter-
ministic or random, can reflect, transmit, refract, and amplify volume or surface
electromagnetic waves in ways that naturally occurring surfaces cannot. They can
also change the nature of an electromagnetic field incident on them. For example,
they can change a beam with one intensity distribution into a beam with a different
intensity distribution, or they can convert a plane wave into a beam. The use of
structured surfaces, specifically randomly rough surfaces, to effect such transforma-
tions of optical fields is the subject of this chapter, where two examples of this use
are presented, namely beam shaping and the formation of pseudo-nondiffracting
beams.

The creation of optical elements that transform an electromagnetic beam with
a specified transverse intensity distribution into a beam with a different specified
transverse intensity distribution, especially those that transform a laser beam with
a Gaussian intensity profile into a beam with a constant intensity profile – a flat top
beam, has been studied theoretically and experimentally for many years [1–38].
The interest in beam shaping is due to a wide range of applications for beams
with a variety of non-Gaussian intensity distributions. These applications include
laser surgery [39], laser radar [40], laser microstructuring of materials [41], metal
hardening [42], optical communication [43], and optical scanning [44], among
others. Some of them and other applications of beam shaping are discussed in the
recent book by Dickey et al. [45].

A variety of experimental methods has been developed for shaping a laser
beam into a beam with a different transverse intensity profile. These include the
use of a binary diffractive optical element [6], a distributed phase plate [11],
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a refractive optical element [3, 13], a polarization-holographic optical element
[5, 8], aspherical refractive lenses [22], microlens arrays [7, 12], and holograms
[21], for example. Many of these methods are described in the review article by
Shealy [16].

There is also a great deal of interest at the present time in a different type
of transformation of an optical field, namely one that produces a nondiffracting
beam. It is well known that a bounded optical field propagating in free space
ordinarily undergoes diffractive spreading. However, there are exceptions to this
general statement if the field is unbounded. In 1987, in a study of the scalar wave
equation in cylindrical coordinates,

(∇2 + k2
)
�(ρ, φ, z) = 0, (6.1)

Durnin [46] obtained an exact, cylindrically symmetric, solution:

�(ρ, z) = exp(iβz)J0(αρ), (6.2)

where α2 + β2 = k2, J0(x) is the Bessel function of the first kind and zero order,
and (ρ, φ, z) are the cylindrical coordinates. This beam has an infinite extent in the
transverse plane, and is capable of propagating to infinity in the z direction without
spreading. It has been named a diffraction-free beam. Durnin’s discovery stimulated
a great number of studies of diffraction-free beams. It has been shown that there
exists an infinite number of diffraction-free beams with different transverse field
profiles [47]. Much of this work is cited in a recent book by Ostrovsky [48].

However, the ideal diffraction-free beams considered by Durnin and by other
authors possess wave functions �(ρ, φ, z) that are not square integrable and that
contain an infinite amount of energy. They are therefore impossible to realize in
practice. Consequently, studies of diffraction-free beams have shifted to studies
of pseudo-nondiffracting beams. These beams have a finite beam aperture, and
exhibit the main propagation features of true diffraction-free beams, namely a
constant intensity along the direction of propagation, and a beam-like profile in
any transverse plane, over a finite propagation range [49–81]. This propagation
length can extend to several tens of centimeters, or more, which is long enough
for many applications, which include optical interconnection [76], laser Doppler
velocimetry [72], precision alignment [51, 65, 72], laser machining [60], and laser
surgery [60].

Several approaches to the production of three-dimensional [49, 51, 57–60, 62, 64,
65, 68–70, 72, 73, 76–78, 81] and even two-dimensional [75] pseudo-nondiffracting
beams have been developed. The latter are characterized by a constant intensity
along the direction of propagation z, and a beam-like shape in one of the transverse
directions, say x.
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The great majority of the methods proposed for the transformation of optical
beams into different optical beams, and the methods actually realized for perform-
ing such transformations, have been based on diffractive optical elements. These
are deterministic periodic structures that produce, essentially, an array of diffrac-
tive orders over the desired region in the far field [82]. To produce the desired
intensity distribution of light scattered from or transmitted through such a diffuser,
the diffracted beams have to overlap to some extent. This means that the cells,
whose periodic repetition in two dimensions forms the diffuser, must be larger than
about 500 wavelengths of the incident light. The design of these diffusers is usually
based on scalar diffraction theory and the paraxial approximation [83]. The small-
est features impressed in the diffuser plate must then be larger than the wavelength
of the incident light, and the angles of scattering must be small, so that the cosine
of the polar scattering angle can be replaced by unity. These requirements impose
some limitations on the design of a diffuser. It is generally not possible to obtain
the structure within a cell analytically, which then has to be found through some
kind of optimization algorithm.

In addition, many of the approaches to the design of optical diffractive elements
are based on the use of binary phase distributions. These are two-dimensional peri-
odic structures fabricated from horizontal cells whose heights above a base plane
can have only two values. The resulting diffusers work well only for wavelengths
of the incident light in the vicinity of the design wavelength, i.e. they are chromatic.
Therefore they are not useful in applications that use broadband illumination. Con-
sequently, although diffractive optical elements have been successful in modifying
laser beams to produce desired transverse intensity profiles, or to produce desired
axial intensity distributions, for example, there are situations for which they would
not be appropriate.

In this chapter we describe an alternative approach to the design of optical ele-
ments that effect desired transformations of optical fields that is based on refraction
rather than diffraction. This kind of element is well suited for applications in which
broadband illumination is required. The approach described here is based on the
use of random surfaces and, as we will see, provides simple and well-defined pro-
cedures for designing these optical elements, without having to resort to iterative
techniques that might not converge for some designs. In contrast with the diffractive
approach, the methods described here are well suited for cases involving partially
coherent broadband beams.

We show in particular that beam shaping and the generation of pseudo-
nondiffracting beams can be effected by the transmission of an incident electro-
magnetic field through a suitably designed random surface. The random surfaces
we consider are the surfaces (microreliefs) of a thin random phase screen. A thin
random phase screen can be thought of as a layer of negligible thickness in the
plane x3 = 0 that in transmission produces a phase shift �(x‖) that is a random
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function of the coordinates x‖ = (x1, x2, 0) in the plane x3 = 0 [84], but does not
change the amplitude of the field. We assume that �(x‖) is a single-valued function
of x‖ that is differentiable with respect to x1 and x2, and that constitutes a random
process, but not necessarily a stationary one. This phase function can be related to
variations in the thickness of a dielectric film, i.e. to the surface profile function
ζ (x‖) of the rough illuminated surface of the film. In the case of small polar angles
of incidence and transmission, this relation is given by [85–87]

�(x‖) = ω

c
�nζ (x‖), (6.3)

where �n is the difference between the refractive index of the material from which
the film is fabricated and the refractive index of the surrounding medium, ω is the
frequency of the incident light, and c is the speed of light in a vacuum. In more
sophisticated models [87, 88], the relation between the phase function �(x‖) and
the surface profile function ζ (x‖) has the form

�(x‖) = ω

c
μ(x‖)ζ (x‖), (6.4)

where μ(x‖) depends on the slope of the surface profile function and the angles of
incidence and observation. However, the use of such a relation would complicate
the analysis presented in this chapter enough to make it unworkable, and we do not
consider it further.

The two examples of field transformations by transmission through deliberately
structured surfaces considered in this chapter suggest that additional types of such
transformations can be effected in this way.

6.2 Beam shaping

In this section we show how the transformation of a beam with a specified transverse
intensity distribution into a beam with a different specified transverse intensity
distribution can be effected by its transmission through a suitably designed random
surface.

6.2.1 The transmitted field

The system we consider is depicted in Fig. 6.1. It consists of a thin random phase
screen in the plane x3 = 0 that fills the aperture A in an opaque screen in the plane
x3 = 0. The region x3 < 0 is a vacuum, as is the region x3 > 0. We assume that the
phase screen is illuminated at normal incidence from the region x3 < 0 by a scalar
beam of frequency ω, written as a superposition of incoming plane waves,

ψ(x|ω)inc =
∫

d2k‖
(2π )2

F (k‖) exp[ik‖ · x‖ + iα0(k‖, ω)x3], (6.5)
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x1

x
3

x
2

0

A

Figure 6.1. The system studied in Section 6.2.

where x‖ = (x1, x2, 0) is an arbitrary vector in the plane x3 = 0, while k‖ =
(k1, k2, 0) is a two-dimensional wave vector. The weight function F (k‖) at this
point is arbitrary, subject to the condition that the integral converges. The function
α0(k‖, ω) is defined by

α0(k‖, ω) = [(ω/c)2 − k2
‖]1/2, Reα0(k‖, ω) > 0, Imα0(k‖, ω) > 0. (6.6)

The field transmitted through the phase screen can be written formally as follows:

ψ(x|ω)tr =
∫

d2q‖
(2π )2

T (q‖) exp[iq‖ · x‖ + iα0(q‖, ω)x3]. (6.7)

From the result that

ψ(x‖, 0+ |ω)tr =
∫

d2q‖
(2π )2

T (q‖) exp(iq‖ · x‖), (6.8)

where the notation “0+” emphasizes that this is the field just after its passage
through the phase screen, we find that the transmission amplitude T (q‖) is given
by

T (q‖) =
∫

d2x ′
‖ exp(−iq‖ · x′

‖)ψ(x′
‖, 0+ |ω)tr . (6.9)

When this result is substituted into Eq. (6.7) the transmitted field in the region
x3 > 0+ takes the following form:

ψ(x|ω)tr =
∫

d2x ′
‖ ψ(x′

‖, 0+ |ω)tr

×
∫

d2q‖
(2π )2

exp[iq‖ · (x‖ − x′
‖) + iα0(q‖, ω)x3]. (6.10)
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At this point we make the parabolic approximation

α0(q‖, ω) = [(ω/c)2 − q2
‖ ]1/2 	 (ω/c) − (c/2ω)q2

‖ , (6.11)

with which Eq. (6.10) becomes

ψ(x|ω)tr =
(

ω

2πicx3

)
exp

(
i
ω

c
x3

)

×
∫

d2x ′
‖ exp

[
i

ω

2cx3
(x‖ − x′

‖)2

]
ψ(x′

‖, 0+ |ω)tr . (6.12)

The mean intensity of the transmitted field in the region x3 > 0+ is obtained
from Eq. (6.12) in the form

〈|ψ(x|ω)tr |2〉 =
(

ω

2πcx3

)2

×
∫

d2x ′
‖

∫
d2x ′′

‖ exp

{
i

ω

2cx3
[(x‖ − x′

‖)2 − (x‖ − x′′
‖)2]

}

× 〈
ψ(x′

‖, 0+ |ω)trψ
∗(x′′

‖, 0+ |ω)tr
〉
, (6.13)

where the angle brackets denote an average over the ensemble of realizations of
the random phase screen.

The correlation function 〈ψ(x′
‖, 0+ |ω)trψ∗(x′′

‖, 0+ |ω)tr〉 is called the cross-
spectral density of the transmitted field in the plane x3 = 0+, and is denoted by
W (0)(x‖, 0+ |x′

‖, 0+) [89]. We assume that it has the form corresponding to a
Schell-model source in this plane [90], namely

W (0)(x′
‖, 0+ |x′′

‖, 0+) = 〈ψ(x′
‖, 0+ |ω)trψ

∗(x′′
‖, 0+ |ω)tr〉

= [
S(0)(x′

‖)
]1/2

g(0)(x′
‖ − x′′

‖)
[
S(0)(x′′

‖)
]1/2

. (6.14)

In this expression g(0)(x′
‖ − x′′

‖) is the spectral degree of coherence of the source. It
is a Hermitian function of x′

‖ and x′′
‖ ,

g(0)(x′′
‖ − x′

‖) = g(0)(x′
‖ − x′′

‖)∗, (6.15)

where the star denotes complex conjugation and has the following properties [89]:

0 ≤ |g(0)(x′
‖ − x′′

‖)| ≤ 1 (6.16)

and

g(0)(0) = 1. (6.17)
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It is assumed to be nonzero only for values of |x′
‖ − x′′

‖| smaller than a characteristic
(coherence) length σg.

The function S(0)(x‖) is the spectral density (intensity) of the transmitted field
in the plane x3 = 0+, and is given by

S(0)(x‖) = W (0)(x‖, 0+ |x‖, 0+)

= 〈|ψ(x‖, 0+ |ω)tr |2〉. (6.18)

It is a real non-negative function of x‖,

S(0)(x‖) ≥ 0, (6.19)

and is assumed to be nonzero only for values of |x‖| smaller than a characteristic
length σs .

The square root [S(0)(x‖)]1/2 is also a real non-negative function of x‖, and has
the Fourier representation

[S(0)(x‖)]1/2 =
∫

d2p‖
(2π )2

Ŝ(p‖) exp(ip‖ · x‖), (6.20)

where the Fourier coefficient Ŝ(p‖) has the property

Ŝ(−p‖) = Ŝ∗(p‖). (6.21)

When Eq. (6.14) is substituted into Eq. (6.13) and use is made of Eq. (6.20), we
obtain the mean intensity of the transmitted field in the following form:

〈|ψ(x|ω)tr |2〉 =
(

ω

2πcx3

)2 ∫
d2u‖ g(0)(u‖) exp

[
−i

ω

cx3
x‖ · u‖

]

×
∫

d2p‖
(2π )2

exp(ip‖ · u‖)Ŝ

(
p‖ − ω

2cx3
u‖

)
Ŝ∗
(

p‖ + ω

2cx3
u‖

)
.

(6.22)

In obtaining the result given by Eq. (6.22), we have not made use of any properties
of the phase function �(x‖) = �n(ω/c)ζ (x‖). However, as our aim is to determine
the function ζ (x‖) that produces the mean intensity given by Eq. (6.22), we now
have to obtain an expression for the mean intensity of the transmitted beam that
depends explicitly on ζ (x‖). On equating the latter expression with Eq. (6.22), we
will obtain an equation from which ζ (x‖) can be determined.

Our starting point is Eq. (6.10). The transmitted field just beyond the phase
screen, ψ(x‖, 0+ |ω)tr , is related to the incident field just before the phase screen,
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ψ(x‖, 0− |ω)inc, as follows:

ψ(x‖, 0+ |ω)tr = ψ(x‖, 0− |ω)inc exp
[
i
ω

c
�nζ (x‖)

]

= exp
[
i
ω

c
�nζ (x‖)

] ∫ d2k‖
(2π )2

F (k‖) exp(ik‖ · x‖) x‖ ∈ A (6.23a)

= 0 x‖ �∈ A, (6.23b)

where we have used Eq. (6.5). When Eq. (6.23) is combined with Eq. (6.10), the
mean intensity of the transmitted field in the region x3 > 0+ can be written as
follows:

〈|ψ(x|ω)tr |2〉 =
(

ω

2πcx3

)2 ∫ d2k′
‖

(2π )2
F (k′

‖)
∫

d2k′′
‖

(2π )2
F ∗(k′′

‖)

×
∫
A

d2x ′
‖ exp

{
i

[
k′

‖ − ω

cx3
x‖

]
· x′

‖ + i
ω

2cx3
x ′2

‖

}

×
∫
A

d2x ′′
‖ exp

{
−i

[
k′′

‖ − ω

cx3
x‖

]
· x′′

‖ − i
ω

2cx3
x ′′2

‖

}

×
〈
exp

{
i
ω

c
�n[ζ (x′

‖) − ζ (x′′
‖)]
}〉

. (6.24)

As it stands, this equation is too difficult to invert to obtain ζ (x‖) in terms of
〈|ψ(x|ω)tr |2〉. To obtain an expression that can be inverted, we first extend the
integration over x′

‖ and x′′
‖ to the entire x3 = 0 plane. This is allowable if the

linear dimensions of the aperture A are larger than the width of the intensity
distribution of the incident beam. We then pass to the geometrical optics limit of
Eq. (6.24) by making the change of variable x′′

‖ = x′
‖ − u‖, expanding the difference

ζ (x′
‖) − ζ (x′

‖ − u‖) in powers of u‖, and keeping only the linear term. In this way
we obtain the following result:

〈|ψ(x|ω)tr |2〉 =
(

ω

2πcx3

)2 ∫ d2k′
‖

(2π )2
F (k′

‖)
∫

d2k′′
‖

(2π )2
F ∗(k′′

‖)

×
∫

d2u‖ exp

{
i

[
k′′

‖ − ω

cx3
x‖

]
· u‖ − i

ω

2cx3
u2

‖

}

×
∫

d2x ′
‖ exp

{
i

[
k′

‖ − k′′
‖ + ω

cx3
u‖

]
· x′

‖

}

×
〈
exp

[
i
ω

c
�nu‖ · ∇ζ (x′

‖)
]〉

. (6.25)



Transformation of optical fields by structured surfaces 193

(m, n)

(m+1/3, n+1/3)

(m+1, n)

(m, n+1)
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Figure 6.2. A segment of the x1x2 plane showing the equilateral triangles above
which the triangular facets that generate the two-dimensional rough surface defined
by Eq. (6.26) are placed.

This is the equation that we can invert to obtain the surface profile function ζ (x‖)
that produces a specified form for

〈|ψ(x|ω)tr |2
〉
.

6.2.2 The inverse problem

To evaluate the integral over x′
‖ in Eq. (6.25) we begin by covering the x1x2

plane by equilateral triangles of edge b (Fig. 6.2). The vertices of these triangles
are given by the vectors {x‖(m, n)} that are defined by x‖(m, n) = ma1 + na2,
where m, n = 0, ±1, ±2 . . . , and the basis vectors a1 and a2 are a1 = (b, 0), a2 =
(b/2,

√
3b/2) [91]. Each triangle is labeled by the coordinates of its center of

gravity. These are given by the mean values of the coordinates of its three vertices.
Thus, the triangle defined by the vertices (m, n), (m + 1, n), and (m, n + 1) is the
(m + 1/3, n + 1/3) triangle, while the triangle whose vertices are (m + 1, n), (m +
1, n + 1), and (m, n + 1) is the (m + 2/3, n + 2/3) triangle. As m and n take the
values 0, ±1, ±2, . . . , the (m + 1/3, n + 1/3) triangles and the (m + 2/3, n +
2/3) triangles generated cover the x1x2 plane.

For x‖ contained in the triangle (m + 1/3, n + 1/3) the surface profile function
is represented by

ζ (x‖) = b
(0)
m+1/3,n+1/3 + a

(1)
m+1/3,n+1/3x1 + a

(2)
m+1/3,n+1/3x2. (6.26a)

For x‖ contained within the triangle (m + 2/3, n + 2/3) the surface profile function
is represented by

ζ (x‖) = b
(0)
m+2/3,n+2/3 + a

(1)
m+2/3,n+2/3x1 + a

(2)
m+2/3,n+2/3x2. (6.26b)
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The coefficients a
(1,2)
m+1/3,n+1/3 and a

(1,2)
m+2/3,n+2/3 are assumed to be independent identi-

cally distributed random deviates. Therefore, the joint probability density functions
(pdf) of the two coefficients associated with a given triangle,

f (γ1, γ2) = 〈δ(γ1 − a
(1)
m+1/3,n+1/3)δ(γ2 − a

(2)
m+1/3,n+1/3)〉

= 〈δ(γ1 − a
(1)
m+2/3,n+2/3)δ(γ2 − a

(2)
m+2/3,n+2/3)〉, (6.27)

are independent of the coordinates labeling the triangles.
With the use of the representation of ζ (x‖) given by Eqs. (6.26) we find that∫

d2x ′
‖ exp

{
i

[
k′

‖ − k′′
‖ + ω

cx3
u‖

]
· x′

‖

} 〈
exp

[
i
ω

c
�nu‖ · ∇ζ (x′

‖)
]〉

=
∞∑

m=−∞

∞∑
n=−∞

{ ∫
(m+1/3,n+1/3)

d2x ′
‖ exp(ia‖ · x′

‖)

×
〈
exp

[
i
ω

c
�n

(
u1a

(1)
m+1/3,n+1/3 + u2a

(2)
m+1/3,n+1/3

)]〉

+
∫

(m+2/3,n+2/3)

d2x ′
‖ exp(ia‖ · x′

‖)

×
〈
exp

[
i
ω

c
�n

(
u1a

(1)
m+2/3,n+2/3 + u2a

(2)
m+2/3,n+2/3

)]〉 }
, (6.28)

where, for example, the notation
∫

(m+1/3,n+1/3) d
2x‖ indicates that the integration is

carried out over the area of the triangle (m + 1/3, n + 1/3), and where, to simplify
the notation, we have defined

a‖ = k′
‖ − k′′

‖ + (ω/cx3)u‖. (6.29)

Using Eqs. (6.27), the averages in Eq. (6.28) can be evaluated, with the result that
the integral becomes∫

d2γ‖ f (γ ‖) exp
(
i
ω

c
�nγ ‖ · u‖

)

×
∞∑

m=−∞

∞∑
n=−∞

{ ∫
(m+1/3,n+1/3)

d2x ′
‖ exp(ia‖ · x′

‖) +
∫

(m+2/3,n+2/3)

d2x ′
‖ exp(ia‖ · x′

‖)

}

=
∫

d2γ‖ f (γ ‖) exp
(
i
ω

c
�nγ ‖ · u‖

) ∫
d2x ′

‖ exp(ia‖ · x′
‖)

= (2π )2
∫

d2γ‖ f (γ ‖) exp
(
i
ω

c
�nu‖ · γ ‖

)
δ(k′

‖ − k′′
‖ + (ω/cx3)u‖). (6.30)
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When the result given by Eq. (6.30) is substituted into Eq. (6.25), with some
changes of variables we find that

〈|ψ(x|ω)tr |2〉 =
(

ω

2πcx3

)2 ∫
d2γ‖ f (γ ‖)

×
∫

d2u‖ exp
(
i
ω

c
�nγ ‖ · u‖

)
exp

[
−i

ω

cx3
(x‖ · u‖)

]

×
∫

d2p‖
(2π )2

exp(ip‖ · u‖)F (p‖ − (ω/2cx3)u‖)F ∗(p‖ + (ω/2cx3)u‖). (6.31)

On equating the right-hand sides of Eqs. (6.22) and (6.31), we obtain an equation
that relates the spectral degree of coherence g(0)(u‖) of the phase screen to the joint
pdf f (γ ‖) of the coefficients {a(1,2)

m+1/3,n+1/3} and {a(1,2)
m+2/3,n+2/3} defining the surface

profile function ζ (x‖):

∫
d2u‖ g(0)(u‖) exp

[
−i

ω

cx3
x‖ · u‖

]

×
∫

d2p‖
(2π )2

exp(ip‖ · u‖)Ŝ(p‖ − (ω/2cx3)u‖)Ŝ∗(p‖ + (ω/2cx3)u‖)

=
∫

d2γ‖ f (γ ‖)
∫

d2u‖ exp
(
i
ω

c
�nγ ‖ · u‖

)
exp

[
−i

ω

cx3
x‖ · u‖

]

×
∫

d2p‖
(2π )2

exp(ip‖ · u‖)F (p‖ − (ω/2cx3)u‖)F ∗(p‖ + (ω/2cx3)u‖). (6.32)

We see immediately that if

Ŝ(k‖) = AF (k‖), (6.33)

where A is a constant, Eq. (6.32) is satisfied if

|A|2
∫

d2u‖ g(0)(u‖) exp

[
−i

ω

cx3
x‖ · u‖

]

=
∫

d2γ‖ f (γ ‖)
∫

d2u‖ exp
(
i
ω

c
�nγ ‖ · u‖

)
exp

[
−i

ω

cx3
x‖ · u‖

]
. (6.34)

On equating the x‖ Fourier coefficients on both sides of this equation, we find that

|A|2g(0)(u‖) =
∫

d2γ‖ f (γ ‖) exp
(
i
ω

c
�nγ ‖ · u‖

)
, (6.35)
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which can be inverted to yield

f (γ ‖) = |A|2
∫

d2u‖
(2π )2

g(0)
( c

ω�n
u‖
)

exp(−iγ ‖ · u‖). (6.36)

From the normalization of f (γ ‖),∫
d2γ‖ f (γ ‖) = |A|2

∫
d2u‖
(2π )2

g(0)
( c

ω�n
u‖
)

(2π )2δ(u‖)

= |A|2g(0)(0) = |A|2

= 1, (6.37)

where we have used Eq. (6.17), we find that

|A|2 = 1. (6.38)

With no loss of generality, because Ŝ(p‖) always appears multiplied by a complex
conjugate Ŝ∗(p′

‖) in a calculation of a physical property, we can assume that

A = 1. (6.39)

Thus we have obtained the result that in order for the beam transmitted through
the random phase screen to be described by the cross-spectral density, Eq. (6.14),
the amplitudes {a(1,2)

m+1/3,n+1/3} and {a(1,2)
m+2/3,n+2/3} defining the phase screen through

Eqs. (6.26) have to be drawn from the joint pdf given in terms of the spectral degree
of coherence by

f (γ ‖) =
∫

d2u‖
(2π )2

g(0)
( c

ω�n
u‖
)

exp(−iγ ‖ · u‖), (6.40)

and the phase screen must be illuminated from the region x3 < 0 by a beam defined
in terms of the spectral density by

ψ(x|ω)inc =
∫

d2k‖
(2π )2

Ŝ(k‖) exp[ik‖ · x‖ + iα0(k‖, ω)x3]. (6.41)

For the generation of the surface profile function ζ (x‖) we also need the marginal
pdf given by

f (γ1) =
∫

f (γ1, γ2)dγ2, (6.42)

and the conditional pdf of a
(2)
m+1/3,n+1/3 (a(2)

m+2/3,n+2/3) given a
(1)
m+1/3,n+1/3

(a(1)
m+2/3,n+2/3),

f (γ2|γ1) = f (γ1, γ2)/f (γ1). (6.43)
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In addition, if we denote the value of ζ (x‖) at the vertex (m, n) by hm,n, we find
that b

(0)
m+1/3,n+1/3 = (m + n + 1)hm,n − mhm+1,n − nhm,n+1, while b

(0)
m+2/3,n+2/3 =

(n + 1)hm+1,n − (m + n + 1)hm+1,n+1 + (m + 1)hm,n+1.
The preceding results, together with the rejection method [92] for generating

random deviates from a given pdf, enable us to generate an ensemble of Np

realizations of the two-dimensional random surface profile function ζ (x‖) that are
continuous functions of x‖, and whose statistical properties are defined by the joint
pdf f (γ ‖) derived from the cross-spectral density, Eq. (6.14), we wish the random
phase screen to produce. The precise manner in which this generation is carried
out is described in detail elsewhere [91]. Here we focus on its use in beam shaping.

6.2.3 Beam shaping

We now return to Eq. (6.22) and replace g(0)(u‖) through the use of Eq. (6.35) (with
|A|2 = 1), and find that the mean intensity of the transmitted beam becomes

〈|ψ(x|ω)tr |2
〉 = (

ω

2πcx3

)2 ∫
d2u‖

∫
d2γ‖ f (γ ‖)

× exp

{
i

[
ω

c
�nγ ‖ − ω

cx3
x‖

]
· u‖

}∫
d2p‖
(2π )2

exp(ip‖ · u‖)

× Ŝ

(
p‖ − ω

2cx3
u‖

)
Ŝ∗
(

p‖ + ω

2cx3
u‖

)
. (6.44)

In the far field this expression takes the form

〈|ψ(x|ω)tr |2〉 =
(

ω

2πcx3

)2 ∫
d2γ‖ f (γ ‖)

∣∣∣∣Ŝ
(

ω

c
�nγ ‖ − ω

cx3
x‖

)∣∣∣∣
2

= 1

(2π�nx3)2

∫
d2p‖ f

(
c

ω�n
p‖ + 1

�nx3
x‖

) ∣∣Ŝ(p‖)
∣∣2 . (6.45)

If S(0)(x‖) is a slowly varying function of x‖, Ŝ(p‖) is sharply peaked at p‖ = 0. In
this case we can make the approximation

∣∣Ŝ(p‖)
∣∣2 = Bδ(p‖), (6.46)

where

B =
∫

d2p‖
∣∣Ŝ(p‖)

∣∣2 = (2π )2
∫

d2x‖ S(0)(x‖). (6.47)
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It follows, then, that in the far field

〈|ψ(x|ω)tr |2〉 ∼= B

(2π�nx3)2
f

(
1

�nx3
x‖

)
. (6.48)

The intensity profile of the mean intensity of the transmitted beam at a distance x3

from the phase screen is thus a scaled version of the joint pdf f (γ ‖). This result
shows how to design a random phase screen, i.e. a random surface in view of
Eq. (6.3), which transforms an incident beam, Eq. (6.41), with an intensity profile
S(0)(x‖) into a transmitted beam with a specified intensity profile 〈|ψ(x|ω)tr |2〉 at
some fixed value of x3 in the far field: one simply introduces a scaled version of
〈|ψ(x|ω)tr |2〉,

f (γ1, γ2) = (2π�nx3)2

B

〈∣∣ψ (�nx3γ1, �nx3γ2, x3|ω)tr
∣∣2〉 , (6.49)

which is normalized to unity when integrated over γ ‖, and uses it to generate the
surface profile function ζ (x‖) in the manner described in ref. [91]. We note that the
intensity profile of the incident beam is unimportant here provided that the function
Ŝ(k‖) that defines it through Eq. (6.41) is sufficiently sharply peaked at k‖ = 0 for
Eq. (6.46) to be a good approximation. This intensity profile then enters Eq. (6.48)
only through the amplitude B.

6.2.4 Example

To illustrate the result in Eq. (6.49), we consider the transformation of a laser beam
whose intensity profile in the plane x3 = 0 has the Gaussian form

S(0)(x‖) = exp(−x2
‖/2σ 2

s ) (6.50)

into a flat-top beam of circular cross section in the far field. From Eq. (6.49) we
therefore find that f (γ ‖) must have the form

f (γ ‖) = 1

πb2
θ (b − γ‖), (6.51)

where θ (z) is the Heaviside unit step function. It follows from Eq. (6.35) that the
spectral degree of coherence g(0)(u‖) is given by

g(0)(u‖) = 2
J1(�n(ω/c)bu‖)

�n(ω/c)bu‖
, (6.52)

where J1(z) is the Bessel function of the first kind and first order. If we wish g(0)(u‖)
to have significant values only for u‖ smaller than a characteristic length σg, we can
set the parameter b equal to 3.83c/�nωσg (the first zero of J1(z)/z is z = 3.83),
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Figure 6.3. Segment of one numerically generated realization of the surface profile
function ζ (x‖) calculated on the basis of the joint pdf f (γ ‖) given by Eq. (6.53).
The values of the parameters used in obtaining this result were ω = 2πc/λ, where
λ = 1.55 μm, �n = 0.6, b = 20 μm, and σg = 31 μm.

so that

f (γ ‖) = σ 2
g

(3.83)2π
(�n(ω/c))2θ

(
3.83

�n

c

ωσg

− γ‖

)
(6.53)

and

g(0)(u‖) = 2σg

3.83u‖
J1

(
3.83u‖

σg

)
. (6.54)

In Fig. 6.3 we plot a segment of a single realization of the surface profile
function ζ (x‖) for which the joint pdf f (γ ‖) is given by Eq. (6.53). The values of
the parameters used in obtaining this result are ω = 2πc/λ, where λ = 1.55 μm,
b = 20 μm, σg = 31 μm, and �n = 0.6.

In Fig. 6.4(a) we plot the intensity profile of the incident field in the plane
x3 = 0−. It is a Gaussian, exp(−x2

‖/w
2), with a 1/e half width w = 2σs . In

Fig. 6.4(b) we plot the intensity profile of the field in the far zone transmitted
through a random phase screen that has been designed to produce a cross-spectral
density in the plane x3 = 0+ defined by Eq. (6.14) and Eqs. (6.50) and (6.54). It
is seen that the incident Gaussian beam is transformed into a flat-top beam with
a circular cross-section. The values of the parameters assumed in obtaining these
results are σs = 155 μm, σg = 31 μm, ω = 2πc/λ with λ = 1.55 μm, b = 20 μm,
Np = 20 000, and x3 = 50 cm. The index of refraction of the phase screen was
assumed to be n = 1.6.

6.2.5 Fabrication of surfaces formed from triangular facets

The design procedure presented in the preceding discussion would be of limited
interest if the designed surfaces could not be fabricated. It is therefore important to
discuss at least one possible fabrication scheme.
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Figure 6.4. (a) Intensity profile of the incident beam in the plane x3 = 0−. It is
a Gaussian, exp(−x2

‖/w
2), with 1/e half width w = 2σs . (b) Intensity profile of

the field in the far zone transmitted through a random phase screen that has been
designed to produce a cross-spectral density in the plane x3 = 0+, defined by
Eqs. (6.14), (6.50), and (6.54). The values of the parameters assumed in obtaining
these results were ω = 2πc/λ with λ = 1.55 μm, �n = 0.6, σs = 155 μm, σg =
31 μm, b = 20 μm, Np = 20 000, and x3 = 50 cm.

A few years ago, the fabrication of surfaces according to the designs presented
here would have been a major undertaking. Fabrication by optical methods, for
instance, would involve an elaborate setup with computer controlled scanning
and beam intensity modulation. One would also have to deal with issues like the
linearity of the recording medium (e.g. photoresist).

Fortunately, due to the availability of three-dimensional (3D) printers, things are
much simpler now. The fabrication of 3D structures from their computer models
is a problem that has relevance in fields as diverse as paleontology, archaeology,
architecture, and medicine. Three-dimensional printing techniques are of central
importance to the emerging field of rapid prototyping and manufacturing.

The most common additive fabrication techniques synthesize the 3D object by
breaking it into slices and printing layer by layer onto some suitable material. Sub-
tractive techniques, on the other hand, start from a solid block from which material
is removed until the desired shape is reached. Typical examples of additive fabri-
cation techniques are selective sintering, fused deposition modeling, and selective
photocuring.

In selective laser sintering, one starts with a thin layer of powder of some
suitable material. A focussed laser beam is used to scan and selectively sinter the
medium to form a solid layer with the cross-section of the desired object. Another
layer of powder is added and the procedure is repeated. One possible variation
consists of using an inkjet printing system instead of a laser. In this case, the
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layers of powder are selectively bonded by depositing an adhesive with the inkjet
printhead.

In fused deposition modeling, a nozzle is used to deposit a molten polymer onto a
support structure, layer by layer. An alternative is to deposit a curable photopolymer
and use an ultraviolet (UV) flood lamp mounted in the print head to cure each layer
as it is deposited.

Selective photocuring includes linear and nonlinear stereolithography. In stereo-
lithography one builds a layer at a time using a liquid UV-curable photopolymer
and a scanning UV laser. For each layer, the laser beam traces the desired cross-
section on the surface of the liquid resin. Exposure to the UV laser light solidifies
the pattern traced on the resin, which adheres to the solid layer below. After a
pattern has been traced, the platform descends by a single layer thickness and the
exposed material is re-coated with fresh material. On this new liquid surface, the
subsequent layer pattern is traced; the layer solidifies and adheres to the previous
layer. A complete 3D part is formed by this process.

In general, the resolution is determined by the thickness of the deposited layers
and by the lateral resolution of the printing technology. Resolutions of 100 μm
or better in the three directions are not uncommon with stereolithography. Ultra-
small features may be made using an intense infrared laser beam (instead of a
UV one) which photopolymerizes the material by two-photon absorption. Feature
sizes of about 100 nm can be produced in this way. For the fabrication of sam-
ples based on the designs presented here, normal stereolithography is viable and
adequate.

It is also important to consider the format for data transfer to the writing
device. There are two widely used formats: NC code (Numerical Control code)
for subtractive fabricators and StL (StereoLithography) [93, 94] for additive ones.
Fortunately, the specification of our surfaces is quite natural in this scripting
language.

To specify an object in StL format, its surface is tessellated into a series of
small triangular facets. Each triangular facet is specified by its outward pointing
unit normal and the coordinates of the three vertices in a 3D Cartesian coordinate
system. The printer uses these data and a slicing algorithm to determine the cross-
section of the 3D object that needs to be printed on each layer. The vertices must
be ordered counterclockwise (right-hand rule) when the object is viewed from the
outside (see Fig. 6.5). The orientation of the facets is specified redundantly in these
two ways, which must be consistent. The syntax for specifying a triangle in an
ASCII StL file is shown in Table 6.1.

To illustrate the generation and specification of a surface in this format, let us
begin by considering the equilateral triangles of edge b that cover the x1x2 plane
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(m, n)

(m+1/3, n+1/3)

(m+1, n)

(m, n+1)

(m+1, n)

(m+1, n+1)

(m+2/3, n+2/3)

(m, n+1)

V1
V1

V2

V2
V3

V3

Figure 6.5. Triangles (m + 1/3, n + 1/3) and (m + 2/3, n + 2/3). Note that the
vertices are listed in a counterclockwise manner.

Table 6.1. Syntax for describing a
triangular facet in an ASCII StL file

The numbers n1, n2, and n3 represent
the three components of the outward
pointing unit vector, and the V numbers
represent the coordinates of the three
vertices of the facet

facet normal n1 n2 n3
outer loop

V11 V12 V13
V21 V22 V23
V31 V32 V33

end loop
endfacet

(see Fig. 6.2). These triangles represent the projection of the triangular facets of
the surface on the x1x2 plane.

For the triangle (m + 1/3, n + 1/3), the information required by the StL scripting
language is given by the position of the vertices on the plane x1x2, and the constants
b

(0)
m+1/3,n+1/3, a(1)

m+1/3,n+1/3, and a
(2)
m+1/3,n+1/3. To simplify the notation we define μ =

(m + 1/3) and ν = (n + 1/3). The coordinates of the vertices in three-dimensional
space are given by

V (11)
μ,ν =

(
m + n

2

)
b , V (12)

μ,ν =
(√

3
n

2

)
b , V (13)

μ,ν = hm,n , (6.55a)

V (21)
μ,ν =

(
m + 1 + n

2

)
b , V (22)

μ,ν =
(√

3
n

2

)
b , V (23)

μ,ν = hm+1,n , (6.55b)

V (31)
μ,ν =

(
m + n + 1

2

)
b , V (32)

μ,ν =
(√

3
n + 1

2

)
b , V (33)

μ,ν = hm,n+1 , (6.55c)
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where hm,n, hm,(n+1), and h(m+1),n represent the heights of the three vertices of the
triangle that, from Eqs. (6.26a), are found to be

V (13)
μ,ν = b(0)

μ,ν + a(1)
μ,νV

(11)
μ,ν + a(2)

μ,νV
(12)
μ,ν , (6.56a)

V (23)
μ,ν = b(0)

μ,ν + a(1)
μ,νV

(21)
μ,ν + a(2)

μ,νV
(22)
μ,ν , (6.56b)

V (33)
μ,ν = b(0)

μ,ν + a(1)
μ,νV

(31)
μ,ν + a(2)

μ,νV
(32)
μ,ν . (6.56c)

To complete the set of equations, we note that the parameter b(0)
μ,ν satisfies the

relation

b(0)
μ,ν = (m + n + 1)V (13)

μ,ν − mV (23)
μ,ν − nV (33)

μ,ν . (6.57)

The components of the unit normal to the facet are given by

n(1)
μ,ν = −a(1)

μ,ν

φμ,ν

, n(2)
μ,ν = −a(2)

μ,ν

φμ,ν

, n(3)
μ,ν = 1

φμ,ν

, (6.58)

where

φμ,ν =
[
1 + (

a(1)
μ,ν

)2 + (
a(2)

μ,ν

)2
]1/2

. (6.59)

On the other hand, for the triangle (m + 2/3, n + 2/3), we write μ = (m + 2/3)
and ν = (n + 2/3). The coordinates of the vertices are given by

V (11)
μ,ν =

(
m + 1 + n

2

)
b , V (12)

μ,ν =
(√

3
n

2

)
b ,

V (13)
μ,ν = hm+1,n , (6.60a)

V (21)
μ,ν =

(
m + 1 + n + 1

2

)
b , V (22)

μ,ν =
(√

3
n + 1

2

)
b ,

V (23)
μ,ν = hm+1,n+1 , (6.60b)

V (31)
μ,ν =

(
m + n + 1

2

)
b , V (32)

μ,ν =
(√

3
n + 1

2

)
b ,

V (33)
μ,ν = hm,n+1, (6.60c)

where the heights and the components of the unit normal can be written as in
Eqs. (6.56) and (6.58), but with μ = (m + 2/3) and ν = (n + 2/3). In this case,
the parameter b(0)

μ,ν satisfies the relation

b(0)
μ,ν = (n + 1)V (13)

μ,ν − (m + n + 1)V (23)
μ,ν + (m + 1)V (33)

μ,ν . (6.61)
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Figure 6.6. Example of a solid structure supporting a triangular facet.

As an example, we consider the triangle (1/3, 1/3). That is, we take m = n = 0
with V

(13)
1/3,1/3 = 0, and consider the fabrication of a solid structure that supports a

facet with a sloping angle of 10◦ in both the x1 and x2 directions. The solid model of
this structure is shown in Fig. 6.6. The ASCII StL code that generates this structure
is presented in the Appendix to this chapter.

6.2.6 Replacement of ensemble averaging by frequency averaging

In concluding this section we note that in obtaining the mean intensity of the
transmitted field we have assumed a monochromatic incident beam, and have per-
formed averages over the ensemble of realizations of the surface profile function
ζ (x‖), as in Eqs. (6.24) and (6.25). Without this averaging the intensity of the field
transmitted through a single realization of the random phase screen would consist
of an array of bright and dark spots – a speckle pattern – as a function of the
transverse coordinates on the plane of observation, rather than the smooth func-
tion of these coordinates produced by the ensemble averaging, and displayed in
Fig. 6.4(b). However, under normal experimental conditions, carrying out an
ensemble average is not a practical consideration. An experimentalist has to work
with a single realization of the phase screen. To obtain the kind of smooth curve
produced by ensemble averaging the experimentalist has to average over the result-
ing speckles in some way. One way of doing this is to move the random surface, for
example to rotate it or dither it. However, in some applications moving the surface
may not be an option.

A speckle pattern depends on the wavelength of a monochromatic incident beam:
change the wavelength, and the positions of the bright and dark spots on the plane
of observation change. This means that it is possible to average over speckles
by using a polychromatic, broadband, beam instead of a monochromatic beam to
illuminate the phase screen. In what follows we show that this is the case.
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We begin by generalizing the expression for the incident beam given by Eq. (6.41)
to the case where it is time dependent:

ψ(x; t)inc =
∞∫

−∞

dω

2π
G(ω)

∫
d2k‖
(2π )2

Ŝ(k‖)

× exp[ik‖ · x‖ + iα0(k‖, ω)x3 − iωt], (6.62)

where α0(k‖, ω) is defined in Eq. (6.6). The function G(ω) is a random function
with the properties

〈G(ω)G∗(ω′)〉F = 2πδ(ω − ω′)S0(ω), (6.63a)

〈G(ω)G(ω′)〉F = 0, (6.63b)

where the angle brackets 〈. . .〉F denote an average over the ensemble of realizations
of the incident field. The fluctuation of |G(ω)|2 as a function of ω, which depends on
the integration time of the detector, is below the resolution of a normal spectrograph,
so, for all practical purposes, G(ω) can be considered to be delta correlated [95].

For specificity we will assume that the spectral density of the incident light S0(ω)
has a Gaussian form centered at a frequency ω0 with 1/e half width �ω,

S0(ω) = 1

2
√

π�ω
exp[−(ω − ω0)2/(�ω)2]. (6.64)

The half width �ω is assumed to be small enough that S0(ω) can be regarded as
zero when ω < 0. Broadband beams of this nature are produced, for example, by
superluminescent diodes [96].

Due to the linearity of the transmission problem, the transmitted field in the
region x3 > 0+ can be written in the form

ψ(x; t)tr =
∞∫

−∞

dω

2π
G(ω)

∫
d2q‖
(2π )2

T (q‖)

× exp[iq‖ · x‖ + iα0(q‖, ω)x3 − iωt], (6.65)

where

T (q‖) =
∫

d2k‖
(2π )2

T (q‖|k‖)Ŝ(k‖) (6.66)

and

T (q‖|k‖) =
∫

d2x‖ exp
[
−i(q‖ − k‖) · x‖ + i

ω

c
�nζ (x‖)

]
. (6.67)
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In obtaining Eq. (6.65) we have combined Eqs. (6.7), (6.9), and (6.23), but we have
not used the parabolic approximation, Eq. (6.11).

The intensity of the transmitted beam, averaged over the ensemble of realizations
of the incident field, then becomes

〈|ψ(x; t)tr |2〉F =
∞∫

−∞

dω

2π
S0(ω)|ψ(x|ω)|2, (6.68)

where

ψ(x|ω) =
∫

d2q‖
(2π )2

T (q‖) exp[iq‖ · x‖ + iα0(q‖, ω)x3]. (6.69)

The use of the representation for ζ (x‖) given by Eqs. (6.26), and the results

∫
(m+ 1

3 ,n+ 1
3 )

d2x‖ =

√
3

2 (n+1)b∫
√

3
2 nb

dx2

(m+n+1)b− x2√
3∫

mb+ x2√
3

dx1 , (6.70a)

∫
(m+ 2

3 ,n+ 2
3 )

d2x‖ =

√
3

2 (n+1)b∫
√

3
2 nb

dx2

(m+1)b+ x2√
3∫

(m+n+1)b− x2√
3

dx1, (6.70b)

enable the integral in Eq. (6.67) to be calculated straightforwardly, with the result
that

T (q‖|k‖) = t1(q‖|k‖) + t2(q‖|k‖), (6.71)

where

t1(q‖|k‖)

= i

√
3

2
b

N−1∑
m=−N

N−1∑
n=−N

exp(−iab
(0)
m+1/3,n+1/3)

q1 − k1 + aa
(1)
m+1/3,n+1/3

× exp

[
−i
(
q1 − k1 + aa

(1)
m+1/3,n+1/3

)(
m + 1

2
n + 1

2

)
b

− i

√
3

2

(
q2 − k2 + aa

(2)
m+1/3,n+1/3

)(
n + 1

2

)
b

]

×
{

exp

[
−i
(
q1 − k1 + aa

(1)
m+1/3,n+1/3

) b

4

]
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× sinc

[√
3b

4

(
q2 − k2 + aa

(2)
m+1/3,n+1/3

)
− b

4

(
q1 − k1 + aa

(1)
m+1/3,n+1/3

)]

− exp

[
i
(
q1 − k1 + aa

(1)
m+1/3,n+1/3

) b

4

]

× sinc

[√
3b

4

(
q2 − k2 + aa

(2)
m+1/3,n+1/3

)
+ b

4

(
q1 − k1 + aa

(1)
m+1/3,n+1/3

)]}

(6.72a)
and

t2(q‖|k‖)

= i

√
3

2

N−1∑
n=−N

N−1∑
n=−N

exp(−iab
(0)
m+2/3,n+2/3)

q1 − k1 + aa
(1)
m+2/3,n+2/3

× exp

[
−i
(
q1 − k1 + aa

(1)
m+2/3,n+2/3

)(
m + 1

2
n + 1

)
b

− i

√
3

2

(
q2 − k2 + aa

(2)
m+2/3,n+2/3

)(
n + 1

2

)
b

]

×
{

exp

[
−i
(
q1 − k1 + aa

(1)
m+2/3,n+2/3

) b

4

]

× sinc

[√
3b

4

(
q2 − k2 + aa

(2)
m+2/3,n+2/3

)
+ b

4

(
q1 − k1 + aa

(1)
m+2/3,n+2/3

)]

− exp

[
i
(
q1 − k1 + aa

(1)
m+2/3,n+2/3

) b

4

]

× sinc

[√
3b

4

(
q2 − k2 + aa

(2)
m+2/3,n+2/3

)
− b

4

(
q1 − k1 + aa

(1)
m+2/3,n+2/3

)]}
,

(6.72b)

where sinc x = sin x/x and a = �n(ω/c).
To illustrate the preceding results, we again assume for S(0)(x‖) the Gaussian

form (6.50) with σs = 155 μm, and generate a single realization of ζ (x‖) by the use
of the joint pdf f (γ ‖) given by Eq. (6.53). For the central frequency of the incident
beam we choose ω0 = 2πc/λ0, with λ0 = 1.55 μm, and its 1/e half width is
�ω = 0.1ω0. The index of refraction of the phase screen is assumed to be n = 1.6,
so that �n = n − 1 = 0.6. In generating a realization of ζ (x‖), we assume that
b = 20 μm. Finally, x3 is taken to be x3 = 50 cm.
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Figure 6.7. (a) The intensity distribution in the far zone when a single realization
of the surface profile function, calculated on the basis of the joint pdf f (γ ‖) given
by Eq. (6.53), is illuminated at normal incidence by a monochromatic Gaussian
beam of frequency ω0. (b) The intensity profile given by Eq. (6.68) when the same
realization of the surface profile is illuminated at normal incidence by a broadband
Gaussian beam, Eq. (6.62), centered at frequency ω0 with �ω = 0.1ω0. (c) The
intensity profile obtained by averaging the intensities of the field produced by
scattering a monochromatic Gaussian beam from an ensemble of Np realizations
of the surface profile function, all drawn from the same joint pdf f (γ ‖). In all these
calculations f (γ ‖) is given by Eq. (6.53), with ω0 = 2πc/λ0 (λ0 = 1.55 μm),
�ω = 0.1ω0, �n = 0.6, σs = 155 μm, σg = 31 μm, b = 20 μm, Np = 20 000,
and x3 = 50 cm.

The intensity profile of the incident field in the plane x3 = 0− is the same as
the one plotted in Fig. 6.4(a). It is a Gaussian, exp(−x2

‖/w
2), with a 1/e half width

w = 2σs . The procedure now is to generate a single realization of the surface profile
function ζ (x‖) on the basis of the joint pdf f (γ1, γ2) of the slopes a

(1,2)
m+1/3,n+1/3 and

a
(1,2)
m+2/3,n+2/3 in the representation of ζ (x‖) given by Eqs. (6.26a) and (6.26b) and

to use it in calculating the speckle pattern produced at a distance x3 = 50 cm from
it when it is illuminated at normal incidence by a monochromatic Gaussian beam
of frequency ω0 (G(ω) = 2πδ(ω − ω0) in Eq. (6.62)). In Fig. 6.7(a) we present a
plot of this speckle pattern. In Fig. 6.7(b) we present the intensity profile given by
Eq. (6.68) when the same realization of the surface profile is illuminated at normal
incidence by a broadband Gaussian beam with central wavelength λ0 = 1.55 μm
and �λ = 0.1λ0. Finally, in Fig. 6.7(c) we plot the intensity profile obtained by
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averaging the intensities of the fields produced by scattering a monochromatic
Gaussian beam of frequency ω0 from an ensemble of Np = 20 000 realizations
of the surface profile function, all drawn from the same joint pdf f (γ1, γ2). The
joint pdf f (γ1, γ2) assumed in carrying out all of the calculations whose results are
presented in Figs. 6.7(a)–(c) is the one given by Eq. (6.53).

From the results presented in Fig. 6.7(a)–(c) we see that the use of a broadband
beam to illuminate a single realization of the random phase screen averages over
the speckles produced by a monochromatic incident beam. It thereby produces
an intensity of the transmitted field that closely matches the one produced by
a monochromatic incident beam when the intensity of the transmitted field is
averaged over the ensemble of realizations of the random phase screen.

6.3 Pseudo-nondiffracting beams

In this section we present an approach to the production of a three-dimensional
pseudo-nondiffracting beam that is based on the transmission of a scalar plane
wave incident from the region x3 < 0 normally on a two-dimensional circularly
symmetric random phase screen situated in a circular aperture A of radius R in
an opaque screen in the plane x3 = 0. The region x3 < 0 is a vacuum, as is the
region x3 > 0. We assume that the phase fluctuations introduced by the circularly
symmetric random phase screen are much larger than 2π , so that the coherent
component of the transmitted field is negligible.

In carrying out this program we first solve the problem of designing a two-
dimensional circularly symmetric random phase screen that, when illuminated at
normal incidence by a scalar plane wave, produces a transmitted field that has a
specified distribution of intensity along the cylindrical axis (the positive x3 axis).
In particular, we design a random phase screen that produces a transmitted field
whose intensity is a constant along a finite segment of the positive x3 axis and
vanishes along the remainder of that axis. We then show that the intensity of the
field transmitted through this phase screen is a rapidly decreasing function of the
radial coordinate r transverse to the x3 axis for each value of x3 for which
the intensity along the x3 axis is a nonzero constant. Thus, the beam transmit-
ted through the random phase screen is a pseudo-nondiffracting beam.

In the analysis that follows we will make use of some results obtained in
Section 6.2.

6.3.1 The transmitted field

We assume in the present case that the phase screen is illuminated at normal
incidence from the region x3 < 0 by a plane wave of frequency ω,

�(x|ω)inc = exp
(
i
ω

c
x3

)
. (6.73)
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The field transmitted through the phase screen is given in the parabolic approx-
imation by Eq. (6.12):

�(x|ω)tr =
(

ω

2πicx3

)
exp

(
i
ω

c
x3

)

×
∫

d2x ′
‖ exp

[
i

ω

2cx3
(x‖ − x′

‖)2

]
�(x′

‖, 0+ |ω)tr , (6.74)

where �(x‖, 0+ |ω)tr is the field just after its passage through the phase screen.
From Eq. (6.73) and (6.23) we find that �(x‖, 0+ |ω)tr is given by

�(x‖, 0+ |ω)tr = �(x‖, 0− |ω)inc exp
[
i�n

ω

c
ζ (x‖)

]
, |x‖| < R (6.75a)

= 0 , |x‖| > R. (6.75b)

Thus the transmitted field in Eq. (6.74) becomes

�(x|ω)tr =
(

ω

2πicx3

)
exp

(
i
ω

c
x3

)

×
∫
A

d2x ′
‖ exp

[
i

ω

2cx3
(x‖ − x′

‖)2

]
exp

[
i�n

ω

c
ζ (x ′‖)

]
. (6.76)

We now consider the transmitted field along the x3 axis,

�(0, 0, x3|ω)tr =
(

ω

2πicx3

)
exp

(
i
ω

c
x3

) ∫
A

d2x ′
‖ exp

[
i

ω

2cx3
(x′

‖)2

]

× exp
[
i�n

ω

c
ζ (x ′‖)

]
, (6.77)

make the assumption that the profile function ζ (x‖) is a function of x‖ only through
its magnitude |x‖| = r , and write

ζ (x‖) = H (r). (6.78)

This assumption, together with the assumption of an incident field in the form of
a plane wave, Eq. (6.73), ensures that the intensity of the transmitted field is also
circularly symmetric. With these assumptions Eq. (6.77) becomes

�(0, 0, x3|ω)tr =
(

ω

icx3

)
exp

(
i
ω

c
x3

)

×
R∫

0

dr r exp

{
i
ω

c

[
r2

2x3
+ �nH (r)

]}
. (6.79)
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We now make the change of variable r2 = t , and introduce the definition

H (
√

t) = h(t). (6.80)

As a result we obtain

�(0, 0, x3|ω)tr =
(

ω

2icx3

)
exp

(
i
ω

c
x3

)

×
R2∫

0

dt exp

{
i
ω

c

[
t

2x3
+ �nh(t)

]}
. (6.81)

The mean intensity of the transmitted field along the x3 axis is therefore
given by

〈I (x3|ω)〉 = 〈|�(0, 0, x3|ω)tr |2
〉

=
(

ω

2cx3

)2
R2∫

0

dt

R2∫
0

dt ′ exp

[
i

ω

2cx3
(t − t ′)

]

×
〈
exp

{
i
ω

c
�n[h(t) − h(t ′)]

}〉
. (6.82)

Our goal, now, is to find the function h(t) that produces a specified form for
〈I (x3|ω)〉. As it stands, the expression for 〈I (x3|ω)〉 given by Eq. (6.82) is too
difficult to invert to obtain h(t). We therefore make an approximation that is
analogous to passing to the geometrical optics limit of Eq. (6.82). Namely, we
expand h(t) about t = t ′,

h(t) = h(t ′) + (t − t ′)h′(t ′) + · · · , (6.83)

where h′(t) is the derivative of h(t) with respect to t , and retain only the first
two terms on the right-hand side of this expansion. With this approximation the
expression for 〈I (x3|ω)〉 becomes

〈I (x3|ω)〉 =
(

ω

2cx3

)2
R2∫

0

dt

R2∫
0

dt ′ exp

[
i

ω

2cx3
(t − t ′)

]

×
〈
exp

{
i
ω

c
�n(t − t ′)h′(t ′)

}〉
. (6.84)

This is the equation we can invert to obtain h(t) in terms of 〈I (x3|ω)〉.
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6.3.2 The inverse problem

To invert Eq. (6.84) we assume the following representation of h(t):

h(t) = an

b
(t − nb2), nb2 < t < (n + 1)b2, n = 0, 1, 2, . . . , N − 1, (6.85)

where the {an} are independent identically distributed random deviates and b is a
characteristic length. Because the {an} are independent and identically distributed
random deviates, the probability density function (pdf) of an,

〈δ(γ − an)〉 = f (γ ), (6.86)

is independent of n.
In the representation (6.85) N is a large integer. It is then convenient to define

the characteristic length b through the relation R = √
Nb. The function h(t) is not

a continuous function of t : it has jump discontinuities at t = nb2. Therefore the
surface profile function H (r),

H (r) = an

b
(r2 − nb2),

√
nb < r <

√
n + 1b, n = 0, 1, 2, . . . , N − 1, (6.87)

also has jump discontinuities at r = √
nb. This contradicts our starting assumption

that the surface profile is a single-valued function of x‖. However, as we will see,
the surface profile function h(t) defined by Eq. (6.85) will produce a transmitted
field with the properties we seek.

With the representation for h(t) given by Eq. (6.85) Eq. (6.84) becomes

〈I (x3|ω)〉 =
(

ω

2cx3

)2
Nb2∫
0

dt

N−1∑
n=0

(n+1)b2∫
nb2

dt ′ exp

[
i

ω

2cx3
(t − t ′)

]

×
〈
exp

[
i
ω

cb
�n(t − t ′)an

]〉

=
(

ω

2cx3

)2
Nb2∫
0

dt

N−1∑
n=0

(n+1)b2∫
nb2

dt ′ exp

[
i

ω

2cx3
(t − t ′)

]

×
∞∫

−∞
dγ f (γ ) exp

[
i
ω

cb
�n(t − t ′)γ

]
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=
(

ω

2cx3

)2
∞∫

−∞
dγf (γ )

∣∣∣∣∣∣∣
Nb2∫
0

dt exp

{
i

[
ω

2cx3
+ �n

ωγ

cb

]
t

}∣∣∣∣∣∣∣
2

=
(

ω

2cx3

)2

N2b4

∞∫
−∞

dγf (γ )sinc2

(
N

�n

2

ωb

c

(
b

2�nx3
+ γ

))
.

(6.88)

In the limit as N → ∞,

(sinc Nx)2 →
N→∞

π

N
δ(x), (6.89)

where δ(x) is the Dirac delta function. With the use of this result, Eq. (6.88)
simplifies to

〈I (x3|ω)〉 = π

2�n

ωb

c
N

b2

x2
3

f

( −b

2�nx3

)
. (6.90)

Thus, the mean intensity of the transmitted field along the x3 axis is given in terms
of the pdf of an. With the change of variable b/(2�nx3) = −γ , we obtain the result
that

f (γ ) = 1

2π�n

c

ω

1

Nb

〈I ((−b/2�nγ )|ω)〉
γ 2

. (6.91)

Since x3 has been assumed to be positive, we see that f (γ ) is nonzero only for
negative values of γ . Therefore all the slopes {an} are negative.

With the aim of obtaining a transmitted field that is a pseudo-nondiffracting
beam, we seek to design a surface that produces a field with a constant intensity
within the interval z1 < x3 < z2 (0 < z1 < z2) of the x3 axis, and a vanishing
intensity along the rest of this axis, so that

〈I (x3|ω)〉 = I0θ (x3 − z1)θ (z2 − x3). (6.92)

On combining Eqs. (6.91) and (6.92) we find that

f (γ ) = I0
1

2π�n

c

ω

1

Nb

1

γ 2
θ

(
γ + b

2�nz1

)
θ

(
− b

2�nz2
− γ

)
. (6.93)
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Figure 6.8. Segment of one numerically generated realization of the surface profile
function H (r) with 100 zones calculated on the basis of the pdf f (γ ) given by
Eq. (6.97). The values of the experimental and material parameters assumed in
generating this segment were z1 = 5 cm, z2 = 50 cm, b = 0.2 cm, �n = 0.6.

The constant I0 is determined from the normalization condition for f (γ ),

∞∫
−∞

dγ f (γ ) = 1 = I0
1

2π�n

c

ω

1

Nb

−b
2�nz2∫
−b

2�nz1

dγ
1

γ 2

= I0
1

π

c

ω

1

Nb2
(z2 − z1), (6.94)

so that

I0 = π
ω

c

Nb2

z2 − z1
. (6.95)

It therefore follows that

〈I (x3|ω)〉 = π
ω

c

Nb2

z2 − z1
θ (x3 − z1)θ (z2 − x3) (6.96)

and

f (γ ) = b

2�n(z2 − z1)

1

γ 2
θ

(
γ + b

2�nz1

)
θ

( −b

2�nz2
− γ

)
. (6.97)

From the result given by Eq. (6.97) a long sequence of {an} is obtained, for
example by the rejection method [92], and the surface profile function H (r) is then
constructed on the basis of Eq. (6.87). In Fig. 6.8 we present a segment of one
numerically generated realization of the surface profile function H (r) calculated
on the basis of the pdf f (γ ) given by Eq. (6.97). The values of the experimental
and material parameters employed in generating this segment were z1 = 5 cm,
z2 = 50 cm, b = 0.2 cm, and �n = 0.6.
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6.3.3 Three-dimensional distribution of the mean intensity in the radial
direction from the optical axis

The distribution of intensity along the x3 axis has served its purpose in providing
us with the pdf of slopes {an}. However, the axial intensity distribution is not the
only function of interest if we wish to produce a pseudo-nondiffracting beam: it is
also important to know the intensity distribution in the radial direction away from
the x3 axis. Consequently, we turn to the calculation of the mean intensity as a
function of r for values of x3 that include the interval z1 < x3 < z2.

From Eqs. (6.76) and (6.78) we find that the transmitted field is given by

�(x|ω)tr = �(r, x3|ω)tr

=
(

ω

icx3

)
exp

{
i
ω

c

[
x3 + r2

2x3

]}

×
R∫

0

dr ′ r ′J0((ωr/cx3)r ′) exp

{
i
ω

c

[
r ′2

2x3
+ �nH (r ′)

]}
, (6.98)

where J0(x) is a Bessel function of the first kind of zero order. With the form of
H (r) given by Eq. (6.87), this expresssion can be written in the form

�(r, x3|ω)tr =
(

ω

icx3

)
exp

{
i
ω

c

[
x3 + r2

2x3

]}

×
N−1∑
n=0

exp

[
−i

ωb

c
�nann

]
�n(r, x3; an), (6.99)

where

�n(r, x3; an) =
√

n+1b∫
√

nb

dr ′ r ′J0

(
ωr

cx3
r ′
)

× exp

{
i
ω

c

[
1

2x3
+ �n

an

b

]
r ′2
}

. (6.100)

The field �n(r, x3; an) gives the diffraction pattern of an annular pupil function
with defocus (ω/c)[(1/2x3) + �n(an/b)], where an is a random quantity.

Diffraction integrals of the kind given by Eq. (6.100) have been extensively
studied in the past [97, 98]. They are evaluated here by the Nijboer expansion
[98, 99].
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The mean intensity obtained from Eq. (6.99) is given by

〈I (r, x3|ω)〉 = 〈|�(r, x3|ω)tr |2
〉

=
(

ω

cx3

)2 N−1∑
m=0

N−1∑
n=0

〈exp [−i(ωb/c)�n(man − nan)]

× �m(r, x3; am)�∗
n(r, x3; an)

〉
. (6.101)

In deriving the preceding results we have assumed that the slopes {an} are indepen-
dent random deviates. If we assume in addition that the coherent contribution to
〈I (r, x3|ω)〉 is negligible, i.e. that 〈�n(r, x3; an)〉 = 0, the expression for the mean
intensity of the transmitted field simplifies to

〈I (r, x3|ω)〉 =
(

ω

cx3

)2 N−1∑
n=0

〈|�n(r, x3; an)|2〉. (6.102)

The results of calculations not presented here show that the relative error made in
using Eq. (6.102) instead of Eq. (6.101) is of the order of one part in 104 for all
the parameters and values of r and x3 assumed in this work. Consequently, in what
follows we use the simple expression in Eq. (6.102) to calculate the mean intensity
〈I (r, x3|ω)〉.

The result given by Eq. (6.102) allows us to reach a useful conclusion about the
approach we have used here to obtain the pdf of an. Thus, let us consider the mean
intensity of the transmitted field along the x3 axis obtained from Eq. (6.102). The
amplitude along this axis produced by the nth ring of the random phase screen is

�n(0, x3; an) =
√

n+1b∫
√

nb

dr r exp

{
i
ω

c

(
1

2x3
+ �n

an

b

)
r2

}

= b2

2
exp

{
i
ω

c

(
1

2x3
+ �n

an

b

)
b2

(
n + 1

2

)}

× sinc

[
ω

c

(
1

2x3
+ �n

an

b

)
b2

2

]
. (6.103)

The average of the squared modulus of this expression,(
ω

cx3

)2

〈|�n(0, x3; an)|2〉

=
(

ω

cx3

)2
b4

4

〈
sinc2

[
ω

c

(
1

2x3
+ �n

an

b

)
b2

2

]〉
, (6.104)
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is the contribution to the mean intensity along the x3 axis from the nth annular ring
of the random phase screen. However, because the pdf of an is independent of n,
so is 〈|�n(0, x3; an)|2〉. Therefore all of the annular rings produce exactly the same
axial intensity distribution. The random phase screen consists of N annular rings.
Therefore, the total intensity distribution along the positive x3 axis is N times the
result given by Eq. (6.104), which we write as follows:

〈I (0, x3|ω)〉 =
(

ω

cx3

)2
R4

4N

〈
sinc2

[
1

N

(
ωR2

4cx3
+ ω

c
�n

R2

2b
an

)]〉
, (6.105)

where we have used the relation R2 = Nb2.
It is now interesting to compare the result given by Eq. (6.105) with the expres-

sion for the mean intensity given by Eqs. (6.88) and (6.89), namely

〈I (0, x3|ω)〉 =
(

ω

cx3

)2
R4

4

〈
sinc2

[(
ωR2

4cx3
+ ω

c
�n

R2

2b
an

)]〉
. (6.106)

We see that the integer N that appears in Eq. (6.105) is absent from Eq. (6.106).
This is due to the fact that the geometrical optics approximation employed in the
derivation of Eq. (6.106) neglects diffraction effects by the small scale of the random
phase screen, and retains only the diffraction effects of the complete aperture.
Therefore the diffraction pattern obtained is related to the complete aperture rather
than to the individual annular rings, as should be the case. The use of Eq. (6.89)
removes the remaining diffraction effects and produces a final result, Eq. (6.90), that
is consistent with geometrical optics. Thus, the results obtained in Section 6.3.2
are useful in the design of the phase screen, but cannot be used for diffraction
calculations.

6.3.4 Pseudo-nondiffracting beam

We now seek to produce a phase screen that produces a uniform distribution of
intensity in the range z1 < x3 < z2 of the x3 axis. The pdf of an in this case is given
by Eq. (6.97), so that from Eq. (6.102) we obtain

〈I (r, x3|ω)〉 =
(

ω

cx3

)2
b

2�n(z2 − z1)

N−1∑
n=0

− b
2�nz2∫

− b
2�nz1

dγ

γ 2
|�n(r, x3; γ )|2. (6.107)

The result for the rotationally symmetric mean intensity 〈I (r, x3|ω)〉 is plotted
in Fig. 6.9 for the following values of the experimental and material parameters:
ω = 2πc/λ, where λ = 632.8 nm, �n = 0.6, z1 = 10 cm, z2 = 50 cm, R = 2 cm,
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Figure 6.9. Plot of the rotationally symmetric mean intensity 〈I (r, x3|ω)〉 for the
following values of the experimental and material parameters: ω = 2πc/λ, where
λ = 632.8 nm, �n = 0.6, z1 = 10 cm, z2 = 50 cm, R = 2cm, and N = 100
(b = 0.2 cm).

0 10 20 30 40 50 60
x

3
[cm]

0

0.5

1

〈I
(0

,
x 3)〉

/I 0

0 2 4

(a) (b)

6 8 10
r [μm]

0

0.5

1

〈I
(r

,
x 3|ω

)〉
/I

0

Figure 6.10. (a) The mean intensity distribution along the x3 axis 〈I (0, x3|ω)〉,
calculated on the basis of Eq. (6.107). (b) The mean intensity in the transverse
direction 〈I (r, x3|ω)〉, calculated on the basis of Eq. (6.107), as a function of r
for x3 = 27.5 cm. The parameter values used in obtaining Fig. 6.9 were used in
obtaining these results.

and N = 100 (b = 0.2 cm). It is seen to be fairly constant in the region (z1, z2) of
the x3 axis, and to decrease rapidly outside it and for off-axis points.

In Fig. 6.10(a) we present the mean intensity distribution along the x3 axis,
and in Fig. 6.10(b) we present the mean intensity in the transverse direction for
the plane x3 = 27.5 cm. The same data used in calculating the result presented in
Fig. 6.9 were used in obtaining these results. From Eq. (6.105) we see that the mean
intensity along the x3 axis is the convolution of a sinc2 function with f (γ ) which,
according to Eq. (6.97), reproduces the desired intensity distribution. Therefore,
the axial intensity distribution is not perfectly rectangular, but is smoothed by
diffraction effects.
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Several comments need to be made about the preceding results. In an earlier
study [100] of the creation of a pseudo-nondiffracting beam by the scattering
(reflection) of light from a random circularly symmetric Dirichlet surface a different
representation of the function h(t) was used, namely

h(t) = an

b
t + bn, nb2 ≤ t ≤ (n + 1)b2, n = 0, 1, . . . , N − 1. (6.108)

In this representation {an} are independent identically distributed random deviates,
and b is a characteristic length. The {bn} were determined from the condition that
h(t) be a continuous function of t , and were found to be

bn = b0 + (a0 + a1 + · · · + an−1 − nan)b, n ≥ 1. (6.109)

Because the {an} were independent and identically distributed random deviates,
the probability density function of an, f (γ ) = 〈δ(γ − an)〉, was also independent
of n. The {an} were all found to be positive for each realization of h(t), so that the
resulting surface profile function h(r) had a scalloped bowl shape. We have chosen
to use the representation of h(t) given by Eq. (6.85) in the present work because it
produces a surface profile function that is much closer to being planar, and hence
should be easier to fabricate by the approach described in ref. [101] than a phase
screen based on Eqs. (6.108) and (6.109).

All of the preceding results have been obtained on the basis of calculations
that neglect the contribution to the transmitted field from the vertical segments
of the surface profile function H (r) at r = √

nb, n = 1, 2, . . . , N . However, in
the present case this omission should have a small impact on the results obtained
for two reasons. The first is that, since the illuminating plane wave is incident
normally on the phase screen, it does not “feel” these vertical segments of the
surface profile function. The second is that, since the {an} are all negative and the
index n of the dielectric material from which the phase screen is constructed is
greater than unity, the refraction of the light through the segment of H (r) in the
interval

√
nb < r <

√
n + 1b is toward the x3 axis and away from the vertical

segments of the surface profile function. Thus, in a ray optics sense the refracted
light also does not “feel” the vertical segments of the surface.

6.3.5 Fabrication of circularly symmetric radially random surfaces

To fabricate the circularly symmetric radially random surfaces studied in this
section one could use the approach described in Section 6.2.5. However, this is
not the best option, as it would be desirable to exploit the circular symmetry of
these surfaces. One possible way in which to proceed is to use an approach based
on diamond turning techniques [102]. Diamond turning is a process of mechanical
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Figure 6.11. Schematic of the setup employed for the fabrication of a circularly
symmetric radially random surface.

machining that uses a diamond-tipped cutting element to shape a rotating solid
block of material. It is a subtractive computer numerical control (CNC) technique.
The process is widely used to manufacture precision optical elements such as
aspheric lenses and mirrors for the infrared. A variety of materials, such as plastics,
crystals, and metals, can be used. Blazed-like structures, such as Fresnel lenses
[103], can be fabricated by diamond turning processes, for example the Fresnel
lenses used in overhead projectors.

An alternative approach, which we review below, has been described in ref. [101].
The rotationally symmetric surfaces discussed here can be fabricated by exposing
photoresist-coated plates to blue light (λ = 442 nm) from a He–Cd laser transmitted
through a rotating ground glass to reduce its coherence. A schematic depiction of the
experimental setup employed in the fabrication is shown in Fig. 6.11. An incoherent
image of a disk-shaped mask is formed on the rotating photoresist-coated plate by
a well-corrected imaging system with magnification m. The photoresist plate is
exposed for a time Te, during which it executes a large number of revolutions. As
explained below, this setup produces a total exposure of the plate that is a scaled
version of the profile function used in the generation of the mask.

To produce a suitable mask one first needs to generate a realization of a profile
function H (r). An example has been shown in Fig. 6.8. We next introduce a
function �H (r) = KH (r) that, by a suitable choice of the units of K , can be
interpreted as an angle. For a given radius r the angles θ that fall in the transparent
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Figure 6.12. Mask generated from the random profile of Fig. 6.8.

section of the mask are defined by �0 < θ < �H (r), where �0 is a constant that
is smaller than the minimum value of �H (r) (see Fig. 6.12).

An incoherent image of the mask is formed on the surface of the rotating
photoresist plate. The resulting exposure is circularly symmetric with a radial
dependence of the form E(r) = IeTe[�H (mr) − �0]/2π , where Ie is a constant
related to the intensity of the illumination. This expression can be rewritten in the
form E(r) = E0 + AH (mr), where E0 = −IeTe�0/2π and A = IeTeK/2π . The
values of the constants E0 and A can be adjusted by varying the intensity of the
light reaching the photoresist plate, the aperture of the mask, and the exposure time.
If we assume a linear relation between exposure and the resulting height of the
surface, the developed surface will have the desired property of being proportional
to AH (mr).

The theory developed in this section has been based on a random phase screen
defined by a surface profile function H (r). The question therefore arises of how the
mean intensity produced by a random phase screen with a surface profile function
AH (mr) differs from the mean intensity obtained with the original function H (r).
From Eq. (6.85) we see that the transformation is equivalent to choosing new
random deviates a′

n = Am2an. As a result, the new region of constant intensity
along the x3 axis becomes z′

1 < x3 < z′
2, where z′

j = Am2zj (j = 1, 2). In other
words, by scaling the profile function H (r) in the vertical or horizontal direction
one changes the length of the region of constant intensity along the x3 axis. Such
scaling is almost inevitable in the fabrication process, and is defined by the exposure
of the plate and by the magnification of the optical system.

The approach described in this section has been used successfully in the fabrica-
tion of optical diffusers that can be used to extend the depth of focus of an imaging
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Figure 6.13. (a) The intensity distribution along the x3 axis when a single real-
ization of the phase screen is illuminated by monochromatic light of wavelength
λ = 632.8 nm. (b) Transverse intensity image at x3 = 20 cm. The parameter val-
ues assumed in obtaining these results are ω = 2πc/λ, where λ = 632.8 nm,
�n = 0.6, z1 = 10 cm, z2 = 35 cm, R = 5cm, and N = 2500 (b = 0.1 cm).

system [101]. It has yet to be used in fabricating diffusers for use in producing
pseudo-nondiffracting beams.

6.3.6 Replacement of ensemble averaging by frequency averaging

The average over the ensemble of realizations of the surface profile function that
yields the mean intensity of the transmitted beam is readily carried out in theoreti-
cal/numerical calculations. A theorist generates a large number Np of realizations
of the surface profile function, and calculates the intensity of the transmitted field
for each realization. An arithmetic average of these Np intensities gives the ensem-
ble average sought. In contrast, an experimentalist ordinarily has only a single
realization of the random phase screen to work with. For a particular realization
of the surface profile function the different annular rings focus the light on differ-
ent points on the x3 axis, with equal probability within the region (z1, z2). When
monochromatic illumination is used, the interference between all of these randomly
phased contributions produces speckle, which manifests itself as random variations
of the intensity along the x3 axis. Simultaneously, the rotational symmetry of the
system leads to a transverse intensity pattern that contains rings that change rapidly
as one moves along the x3 axis. As an example, we show in Fig. 6.13(a) the intensity
distribution of the transmitted field along the x3 axis when a single realization of
the phase screen is illuminated by monochromatic light. Random variations of this
intensity distribution are observed. Similarly, in Fig. 6.13(b) we show a calculated
transverse intensity image at x3 = 20 cm. A ring structure is clearly seen.
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Figure 6.14. (a) The intensity distribution along the x3 axis when a single real-
ization of the phase screen is illuminated by a broadband source whose spec-
tral density is given by Eq. (6.110), where ω0 = 2πc/λ0 with λ0 = 632.8 nm,
�ω0 = 0.1ω0. (b) The transverse intensity image at x3 = 20 cm, obtained from
the same realization of the phase screen when it is illuminated by the same broad-
band source.

Both types of intensity fluctuations can be smoothed through the use of broad-
band illumination instead of monochromatic illumination. In Fig. 6.14(a) we show
the intensity distribution of the transmitted field along the x3 axis when a single
realization of the phase screen is illuminated by a broadband source whose spectral
density has the Gaussian form

S0(ω) = 1√
π�ω

exp

[
− (ω − ω0)2

(�ω)2

]
. (6.110)

The central frequency ω0 = 2πc/λ0 corresponds to a wavelength λ = 632.8 nm
and �ω = 0.1ω0. The random intensity fluctuations present in the results depicted
in Fig. 6.13(a) have almost completely disappeared. In Fig. 6.14(b) we show calcu-
lated transverse intensity images obtained at x3 = 20 cm from the same realization
of the phase screen when it is illuminated by the same broadband source. It can
be seen that the ring structure present in the results presented in Fig. 6.13(b) has
practically disappeared. The smoothing of the axial intensity and the transverse
intensity images improves as the number of rings N forming the random phase
screen is increased, and the results approach closely those obtained by ensemble
averaging. Thus, it can be said that the performance of the phase screen designed
here improves with the replacement of monochromatic light by polychromatic
light.

In this section we have used scalar diffraction theory to design a random phase
screen that, when illuminated at normal incidence by a scalar plane wave, produces



224 A. A. Maradudin, E. R. Méndez, and T. A. Leskova

a transmitted beam with an intensity that is constant along a segment of the optical
axis, and decays rapidly with increasing radial distance from this axis in any
transverse plane within this region. Such a random phase screen is potentially
useful for the production of a pseudo-nondiffracting beam.

6.4 Discussion and conclusions

In this chapter we have described two types of structured surfaces that produce
optical effects that planar unstructured surfaces cannot produce. The effects we
have considered consist of the production of electromagnetic waves, which possess
specified spatial or angular dependencies, by the transmission of volume electro-
magnetic waves through suitably structured surfaces.

Thus we have presented a random phase screen that, when illuminated by an
electromagnetic field with a prescribed intensity distribution and a specified spectral
degree of coherence, produces a transmitted beam with a different prescribed
intensity distribution in the far field. We have also designed a two-dimensional
circularly symmetric thin random phase screen that, when illuminated at normal
incidence by a scalar plane wave, produces a transmitted field with a specified
intensity distribution along the optical axis, and we have shown how this result can
be used to produce a pseudo-nondiffracting beam.

The approaches we have used to transform a specified spatial or angular depen-
dence of a transmitted field into the phase of a thin random phase screen that
produces that dependence are based on the use of an expression for the transmitted
field in the form of an integral that has been obtained with the use of the phase
screen sought and contains the phase function in its integrand in a simple expo-
nential form. The spatial variation of the phase function is then transformed into a
spatial dependence of the surface profile function of the phase screen by a standard
procedure. The latter dependence is then represented in terms of triangular facets
with random slopes along two perpendicular directions for each facet in the case
of a two-dimensional surface, or linear segments with random slopes in the case
of a one-dimensional surface. Such representations lead to a Fredholm integral
equation of the first kind for the joint probability density function or the probability
density function of slopes defining the surface profile function of the phase screen,
respectively. The inhomogeneous term in this equation is the desired intensity dis-
tribution of the transmitted field. The geometrical optics limit of this equation can
be solved analytically to yield the corresponding probability density function. The
analytic solutions of these equations are then tested by generating random surafces
on the basis of these functions, and then solving the problem of wave transmission
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through them by the use of methods that are more rigorous than those used in their
derivations.

There are many applications requiring optical elements that shape light in speci-
fied ways that have not been considered in this chapter. Many of them can be effected
by the use of structured surfaces. Nevertheless, the examples presented here, and
the approaches used in their realization, give an indication of how broadly dis-
tributed these applications, and how robust the results obtained by these approaches,
can be.
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Appendix

---------------------

solid surface

facet normal 0.0 0.0 -1.0

outer loop

vertex 0.0 0.0 0.0

vertex 1.0 0.0 0.0

vertex 0.5 0.866 0.0

endloop

endfacet

facet normal -0.171 -0.171 0.97

outer loop

vertex 1.0 0.0 0.176

vertex 0.5 0.866 0.24

vertex 0.0 0.0 0.0

endloop

endfacet

facet normal 0.0 -1.0 0.0

outer loop

vertex 0.0 0.0 0.0

vertex 1.0 0.0 0.0

vertex 1.0 0.0 0.176

endloop

endfacet



226 A. A. Maradudin, E. R. Méndez, and T. A. Leskova

facet normal 0.5 0.866 0.0

outer loop

vertex 1.0 0.0 0.0

vertex 0.5 0.866 0.0

vertex 0.5 0.866 0.24

endloop

endfacet

facet normal 0.5 0.866 0.0

outer loop

vertex 1.0 0.0 0.0

vertex 0.5 0.866 0.24

vertex 1.0 0.0 0.176

endloop

endfacet

facet normal -0.5 -0.866 0.0

outer loop

vertex 0.0 0.0 0.0

vertex 0.5 0.866 0.0

vertex 0.5 0.866 0.24

endloop

endfacet

endsolid

---------------------
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[52] G. Häusler and W. Heckel, “Light sectioning with large depth and high resolution,”

Appl. Opt. 27, 5165–5169 (1988).
[53] L. Vicari, “Truncation of nondiffracting beams,” Opt. Commun. 70, 263–266

(1989).
[54] M. Florjanczyk and R. Tremblay, “Guiding of atoms in traveling-wave laser trap

formed by axicon,” Opt. Commun. 73, 448–450 (1989).



Transformation of optical fields by structured surfaces 229

[55] G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and
synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).

[56] A. Vasara, J. Turunen, and A. T. Friberg, “General diffraction-free beams produced
by computer-generated holograms,” SPIE 311, 85–89 (1989).

[57] A. Vasara, J. Turunen, and A. T. Friberg, “ Realization of general nondiffract-
ing beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754
(1989).

[58] K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl.
Phys. B 48, 125–129 (1989).

[59] J. Turunen, A. Vasara, and A. T. Friberg, “Propagation invariance and self-imaging
in variable-coherence optics,” J. Opt. Soc. Am. A 8, 282–289 (1991).

[60] T. Hidaka, “Generation of a diffraction-free laser beam using a specific Fresnel zone
plate,” Jpn. J. Appl. Phys. 30, 1738–1739 (1991).

[61] R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,”
J. Opt. Soc. Am. A 8, 932–942 (1991).

[62] N. Davidson, A. A. Friesem, and E. Hasman, “Efficient formation of nondiffracting
beams with uniform intensity along the propagation direction,” Opt. Commun. 88,
326–330 (1992).

[63] A. J. Cox and J. D’Anna, “Constant-axial-intensity nondiffracting beam,” Opt. Lett.
17, 232–234 (1992).

[64] A. J. Cox and D. C. Dibble, “Nondiffracting beam from a spatially filtered Fabry–
Perot resonator,” J. Opt. Soc. Am. A 9, 282–286 (1992).

[65] L. C. Laycock and S. C. Webster, “Bessel beams: their generation and application,”
GEC J. Res. 10, 36–51 (1992).

[66] K. M. Iftekharunddin and M. A. Karim, “Heterodyne detection by using a diffraction-
free beam: tilt and offset effects,” Appl. Opt. 31, 4853–4856 (1992).

[67] J. Sochacki, A. Kolodziejcryk, Z. Jareszewicx, and S. Bará, “Nonparaxial design of
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Lopez, “The design of two-dimensional random surfaces with specified scattering
properties,” J. Opt. A 7, S141–S151 (2005).

[92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in Fortran, 2nd edn (New York: Cambridge University Press, 1992), pp. 281–282.

[93] M. Burns, Automated Fabrication: Improving Productivity in Manufacturing (Engle-
wood Cliffs, NJ: Prentice Hall, 1993), sect. 6.5.

[94] StereoLithography interface specification. http://www.Ennex.com/fabbers/StL.sht,
Ennex Corporation, 1989.

[95] J. M. Stone, Radiation and Optics (New York: McGraw-Hill, 1963), sect. 12-6.
[96] C.-W. Tsai, Y.-C. Chang, G. Sh. Shmavonyan, Y.-S. Su, and C.-F. Lin, “Extremely

broad band superluminescent diodes/semiconductor optical amplifiers in optical
communications band,” Proc. SPIE 4989, 69–77 (2003).

[97] W. T. Welford, “Use of annular aperture to increase focal depth,” J. Opt. Soc. Am.
50, 749–753 (1960).

[98] M. Born and E. Wolf, Principles of Optics, 7th edn (Cambridge: Cambridge Uni-
versity Press, 1999), sect. 8.8.

[99] J. C. Dainty, “The image of a point for an aberration free lens with a circular pupil,”
Opt. Commun. 1, 176–178 (1969).



Transformation of optical fields by structured surfaces 231

[100] A. A. Maradudin, T. A. Leskova, and E. R. Méndez, “Pseudo-nondiffracting beams
from rough surface scattering,” in Wave Propagation, Scattering and Emission in
Complex Media, ed. Ya-Qiu Jin (Singapore: World Scientific, 2004), pp. 100–118.

[101] E. E. Garcı́a-Guerrero, E. R. Méndez, H. M. Escamilla, T. A. Leskova, and A. A.
Maradudin, “Design and fabrication of random phase diffusers for extending the
depth of focus,” Opt. Express 15, 910–923 (2007).

[102] W. B. Lee, Benny C. F. Cheung, Surface Generation in Ultra-precision Diamond
Turning Modelling and Practices (London: Professional Engineering Publishing,
2003).

[103] R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of
Solar Concentrators (New York: Springer, 2001).



7

Surface electromagnetic waves on structured perfectly
conducting surfaces

a. i. fernández-domı́nguez, f. garcı́a-vidal,

and l. martı́n-moreno

7.1 Introduction

The ability to localize electromagnetic energy below the diffraction limit of clas-
sical optics featured by surface plasmon polaritons (SPPs) (electromagnetic sur-
face waves sustained at the interface between a conductor and a dielectric) is
currently being exploited in numerous studies ranging from photonics, optoelec-
tronics, and materials science to biological imaging and biomedicine [1]. While the
basic physics of SPPs has been described in a number of seminal papers spanning
the twentieth century [2, 3], the more recent emergence of powerful nanofabri-
cation and characterization tools has catalyzed a vast interest in their study and
exploitation. The dedicated field of plasmonics [4] brings together researchers and
technologists from a variety of disciplines, with the common aim to take advantage
of the subwavelength light confinement associated with the excitation of SPPs.

Most interest is focused on the optical regime, where SPPs are strongly confined
to the respective metal/dielectric interface, i.e. where subwavelength mode local-
ization is achieved in the direction perpendicular to the interface. These strongly
confined SPPs occur at frequencies which are still an appreciable fraction of the
intrinsic plasma frequency of the metal in question. In this regime, the motion of
the conduction electrons at the interface is dephased with respect to the driving
electromagnetic fields, leading to a reduction in both phase and group velocities
of the SPP, and, therefore, to strong localization. A considerable fraction of the
SPP field energy resides inside the conductor. This fraction increases with con-
finement of the SPP inside the dielectric, causing the well known tradeoff between
confinement and propagation loss.

Most SPP research has thus far focused on the noble metals, such as Ag, Au,
and Cu, which show plasma frequencies in the UV. Therefore, the aforementioned
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strong localization is only achieved for visible frequencies. As the frequency is
lowered, the spread of the field in the direction normal to the interface increases,
from being subwavelength to extending over many wavelengths. In this limit,
SPPs acquire the character of a grazing-incidence light field, with phase velocities
asymptoting the phase velocity of light in the dielectric. It is interesting to note that
the first theoretical descriptions of SPPs considered this regime, namely the seminal
publications by Sommerfeld [2] and Zenneck [5] on electromagnetic surface wave
propagation at radio frequencies along cylindrical metal wires and planar metal
interfaces. The link with more localized SPP excited via optical beams on diffraction
gratings [6] or via electron impact [3] occurred decades later.

It would be highly desirable to achieve light localization of subwavelength
dimensions at low frequencies such as microwave or terahertz (THz) frequencies.
Since the middle of the twentieth century, it has been known that the addition of
a subwavelength corrugation (arrays of holes, for example) to the metal surface
produces an enhanced surface impedance and binds a surface mode to the interface,
even in the limit of perfect conductivity [7, 8], and it is at the origin of the whole
field of frequency selective surfaces [9]. This can be understood in the following
way. The presence of a periodic array of small holes can be considered within a
perturbative approach. The result is that the dispersion relation (band) of surface
electromagnetic (EM) modes in the corrugated structure will closely follow the
one for SPPs, except for values of the momentum lying close to the boundary
of the Brillouin zone, where the SPP band bends in order to accommodate for
band gaps. The band sector below the first gap represents a truly bound surface
mode. As a result of the band bending caused by the periodic array of holes, the
lowest band of the surface modes separates from the light line, therefore binding
the EM field more strongly to the surface. This line of reasoning has been presented
before [10].

In 2004, Pendry and co-workers [11] discovered that there is an additional
mechanism for periodicity-induced binding of the EM fields to the surface. As
will be extensively discussed in Section 7.3, these authors found that the effective
surface layer can be described with a dielectric permittivity of the Drude form,
with the plasma frequency given by the cutoff frequency of the hole waveguide.
In this way, the surface EM modes supported by corrugated metal surfaces can be
entirely controlled by geometry. In the perfect electrical conductor (PEC) limit,
these designed surface EM modes are known as spoof surface plasmon polaritons.

In this chapter we focus our study on the recent developments in the field
of surface EM waves on structured metal surfaces that have been reported since
2004. More specifically, we will show how the concept of spoof SPPs can be
applied to very different geometries, such as planar (Section 7.3), cylindrical
(Section 7.4), and even to more complex structures such as helically grooved
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wires, V-grooves, wedges, and domino structures (Section 7.5). In order to study
the emergence of the corresponding spoof SPP modes, we will apply a common the-
oretical formalism, a coupled mode method, the details of which are introduced in
Section 7.2.

7.2 Theoretical formalism: coupled mode method

We introduce the theoretical formalism that we employ to investigate the geometry
dependence of the modal properties of the spoof SPPs supported by planar and
cylindrical metal structures partially or fully perforated with periodic arrays of
indentations. It is based on the modal expansion technique, a powerful theoretical
framework which has been successfully applied to study different EM phenom-
ena such as extraordinary transmission [12, 13] or negative index metamaterials
[14]. Unlike other approaches used to analyze the emergence of spoof SPP modes
[15–17], this theoretical method yields, under certain conditions, analytical expres-
sions for the dispersion relation of the guided modes. Despite their approximate
character, these simple dispersion relations allow us to reach a deeper understanding
of the spoof SPP concept and its potential applications.

Our approach consists in the expansion of the EM fields into eigenmodes of
Maxwell’s equations within the various regions comprising the system under study.
By imposing the appropriate continuity conditions at all the internal boundaries,
EM fields can be constructed in all space. Although the so-called surface impedance
boundary conditions [18] can be implemented into the formalism, in this chapter
we treat metals as PECs, which is an excellent approximation at microwave or
terahertz (THz) frequencies. Note that the scattering properties of a corrugated
PEC remain invariant if all the lengths are scaled by the same factor, which allows
the transfer of results from one frequency range to another.

Figure 7.1 shows a schematic of the expansion procedure for the case of a two-
dimensional (2D) array of square holes with periods dx and dy . Here, we illustrate
the construction of our theoretical framework in planar structures. In Section 7.4 we
will introduce the modifications which allow us to treat cylindrical geometries. We
denote by z the direction normal to the metal structure. The interfaces are placed
at z = 0 and z = h. When treating fully pierced structures, the latter interface
corresponds to the lower surface of the metal slab, whereas in the case of partial
perforation, it yields the bottom of the blind indentations decorating the upper
metal surface. Thus, the system is divided into three regions along the z-direction:
the upper semi-space with dielectric constant εI (region I), the metal perforated
with filled indentations with dielectric constant εII (region II), and the substrate,
comprising a dielectric with permittivity εIII (a PEC medium) for fully (partially)
pierced geometries (region III). Note that the periodic character of the system
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Figure 7.1. Schematic of the modal expansion procedure for the case of a periodic
array of square holes. Both the expansion coefficients and the different terms in
Eqs. (7.12) and (7.16) are rendered schematically.

enables us to apply Bloch’s theorem and to expand the EM fields only within the
unit cell of area dx × dy containing one single indentation.

A convenient notation, which simplifies the calculations presented in this chapter,
is to use a Dirac nomenclature for the EM fields. In this way, we define the
bi-vectors 〈r|E〉 = E(r) = (Ex(r), Ey(r))T and 〈r|H〉 = H(r) = (Hx(r), Hy(r))T

(T standing for transposition). Note that r refers to the parallel components (x and
y) of the spatial vector and that the z-components of the EM fields can be found
using the Maxwell equations and the direction of propagation of the field.

Then, in region I, EM fields can be expanded into an infinite set of plane waves,
|kmn, σ 〉, which are characterized by their polarization σ (s or p) and parallel wave
vector kmn = k|| + Kmn, where k|| is the in-plane wave vector of the spoof SPP
mode and Kmn = m(2π/dx)ux + n(2π/dy)uy is a vector of the two-dimensional
(2D) reciprocal lattice. The expressions for these plane waves in real space are:

〈r|kp〉 = (kx, ky)T exp(ık · r)/
√

dxdy |k|2, (7.1)
〈r|ks〉 = (−ky, kx)T exp(ık · r)/

√
dxdy |k|2.

These modes are orthonormal when integrated over a unit cell, i.e. 〈kσ |k′σ ′〉 =
δk,k′δσ,σ ′ , where δ is the Kronecker delta.

By introducing the unknown expansion coefficients ρI
kmnσ

, the parallel compo-
nents of the electric and magnetic fields can be written as follows:

|EI
t〉 =

∑
m,n,σ

ρI
kmnσ

|kmn, σ 〉eκI
mnz, (7.2)

| − uz × HI
t〉 =

∑
m,n,σ

Y I
kmnσ

ρI
kmnσ

|kmn, σ 〉eκI
mnz, (7.3)
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where the normal plane wave vector is κI
mn =

√
|kmn|2 − εIk

2
0, and k0 = 2π/λ =

2πf/c is the wave vector modulus in a vacuum. The electric and magnetic fields are
related through the admittances Y I

kmns
= iκI

mn/k0 and Y I
kmnp

= −iεIk0/κ
I
mn. Note

that we have assumed that all plane waves in region I are evanescent along the
z-direction, i.e. |kmn| >

√
εIk0.

In region II, as we are modeling the metal response through the PEC approach,
EM fields are nonzero only within the perforations. Therefore, parallel components
of the fields can be expressed in terms of the corresponding waveguide modes,
labeled with index α, having

|EII
t 〉 =

∑
α

[Aαe
iqα(z−h) + Bαe

−iqα(z−h)]|α〉, (7.4)

|− uz × HII
t 〉 =

∑
α

Y II
α [Aαe

iqα(z−h) − Bαe
−iqα(z−h)]|α〉, (7.5)

where qα is the propagation constant of mode |α〉 and Aα and Bα are the unknown
expansion coefficients. The mode admittances are given by Y II

α = qα/k0 (for
s-polarization) and Y II

α = εIIk0/qα (for p-polarization). Note that in this case we
do not impose the propagating/evanescent character of the basis elements along
the z-direction. In the case of blind indentations, the PEC boundary at the bottom
of the perforations implies Et|z=h = 0 and therefore Aα = −Bα in Eqs. (7.4) and
(7.5).

In region III, EM fields can be expressed again in terms of plane waves decaying
along the z-direction as

|EIII
t 〉 =

∑
m,n,σ

ρIII
kmnσ

|kmn, σ 〉e−κIII
mnz, (7.6)

|− uz × HIII
t 〉 = −

∑
m,n,σ

Y III
kmnσ

ρIII
kmnσ

|kmn, σ 〉e−κIII
mnz, (7.7)

where the definitions of all terms are the same as in Eqs. (7.2) and (7.3), substituting
εI by εIII. Importantly, when considering blind perforations, this region is filled with
PEC metal, and, therefore, electric and magnetic fields must vanish within it, i.e.
ρIII

kmnσ
= 0 for all |kmn, σ 〉.

The unknowns ρI
kmnσ

, Aα, Bα, and ρIII
kmnσ

are calculated by imposing continuity
of the parallel components of the EM field at z = 0 and z = h. Thus, we obtain
four vectorial equations (one for each field component at each interface) which
depend on the parallel spatial coordinates x and y:∑

m,n,σ

ρI
kmnσ

|kmn, σ 〉 =
∑

α

[Aαe
−iqαh + Bαe

iqαh]|α〉, (7.8)

∑
m,n,σ

Y I
kmnσ

ρI
kmnσ

|kmn, σ 〉 =
∑

α

Y II
α [Aαe

−iqαh − Bαe
iqαh]|α〉, (7.9)
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α

[Aα + Bα]|α〉 =
∑
m,n,σ

ρIII
kmnσ

|kmn, σ 〉e−κIII
mnh, (7.10)

∑
α

Y II
α [Aα − Bα]|α〉 = −

∑
m,n,σ

Y III
kmnσ

ρIII
kmnσ

|kmn, σ 〉e−κIII
mnh. (7.11)

Note that in the case of blind indentations, Eqs. (7.10) and (7.11), which reflect
field continuity at the boundary between regions II and III, are redundant. Let us
stress that the PEC approximation leads to a relevant difference between equations
for the parallel electric (Eqs. (7.8) and (7.10)) and magnetic fields (Eqs. (7.9) and
(7.11)): whereas Et must be continuous everywhere within the xy plane, Ht must be
continuous only at the perforation openings. By projecting the electric (magnetic)
continuity equations onto vacuum plane waves (indentation waveguide modes) we
take into account this fact, as well as removing the dependence of the continuity
equations on the spatial coordinates x and y. The analytical expressions for the
overlap integrals between plane waves and waveguide modes of different aperture
shapes can be found in the literature [19, 20].

We can combine the projected equations obtained from Eqs. (7.8)–(7.11) to
express the continuity of the EM fields at the two interfaces of the system in the
form of tight-binding-like equations:

(GI
αα − εα)Eα +∑

α′�=α GI
αα′Eα′ − GV

α E′
α = 0,

(GIII
αα − εα)E′

α +∑
α′�=α GIII

αα′E
′
α′ − GV

α Eα = 0,
(7.12)

whose unknowns are now the modal amplitudes of Et at the openings of the
perforations, which can be written in terms of the expansion coefficients as Eα =
Aαe

−iqαh + Bαe
iqαh (at z = 0) and E′

α = −[Aα + Bα] (at z = h).
We can give a simple physical interpretation to all the magnitudes appearing

in the matching equations. First, let us stress that the upper (lower) equation in
system (7.12) is obtained from Eqs. (7.8) and (7.9) (Eqs. (7.10) and (7.11)) and
therefore it can be associated with the field continuity at the I–II (II–III) interface
of the system. Thus, the term

εα = Y II
α cot(qαh), (7.13)

which takes into account how fields on one of the system interfaces affect the modal
amplitudes at that interface, can be interpreted as resulting from the bouncing back
and forth of the EM fields inside the indentations. On the other hand,

GV
α = Y II

α

1

sin(qαh)
, (7.14)

which links the amplitudes at one interface with the fields at the other, is reflecting
the EM coupling at the two sides of the metal slab through the perforations. Note
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that these two terms involve only one waveguide mode |α〉. However, the terms

G
I,III
αα′ = i

∑
m,n,σ

Y
I,III
kmnσ

〈α|kmnσ 〉〈kmnσ |α′〉 (7.15)

describe the interaction between modal amplitudes corresponding to different
waveguide modes at a given interface. Note that Y

I,III
kmnp

, and therefore the G terms,

diverge when the grazing condition κI,III
mn =

√
|kmn| − εI,IIIk

2
0 = 0 is satisfied. In

Fig. 7.1 the physical interpretations of the different terms in the set of homogeneous
equations (7.12) are represented schematically.

Let us now describe how this result is modified for the case of blind holes,
i.e. when a PEC substrate is considered. Then, Eqs. (7.8) and (7.9), together
with the condition Aα = −Bα, express the appropriate continuity of the EM fields.
Following the same matching procedure as before, we end up with a set of equations
of the form

(GI
αα − εα)Eα +

∑
α′�=α

GI
αα′Eα′ = 0, (7.16)

where the definition of all the terms remains the same as before and the unknown
amplitudes are given by Eα = 2iBα sin(qαh) (note that, as expected, E′

α = 0).
This result agrees with our interpretation of Eqs. (7.12). Now, only the interface
between regions I and II is relevant, which removes the equations related to the
II–III interface and the coupling between interfaces through the perforations (which
are blind), yielding GV

α = 0.
Although the equations presented up to now are general and can be applied to

both 1D and 2D geometries, it is worth commenting briefly how our approach is
simplified when treating the 1D case with ky = 0. In this case, it can be shown that
light polarizations are decoupled, which permits the independent treatment of s-
and p-polarized waves. Thus, when studying spoof SPPs in 1D indentations, we
consider only p-polarization, as the appearance of nonzero solutions in Eqs. (7.12)
and (7.16) is linked to the divergent behavior of Gαα′ when a p-polarized plane
wave goes grazing. Therefore, we can restrict the expansion basis in our theoretical
framework to only p-polarized modes when treating 1D systems, which simplifies
considerably the calculations.

Spoof SPP modes supported by perforated metals are given by the nonzero solu-
tions of Eqs. (7.12) and (7.16). Specifically, the dispersion relation of these bound
modes can be calculated by finding the parallel wave vector, k||, and frequency,
f , for which the determinant associated to the matching equations vanishes. This
problem must be solved numerically in general, but analytical expressions can be
obtained by using two approximations:
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� only the fundamental waveguide mode (that we denote as α = 0) is taken into
account in the modal expansion inside the indentations, minimizing the size of
the set of matching equations;

� only the zero-order diffracted (p-polarized) plane wave is considered in Gαα′ ,
which provides us with simple expressions for this term.

The first approximation leads to accurate results for subwavelength indentations,
failing when the cross section of the indentations is comparable to the size of the
array unit cell. The second approximation, which is equivalent to considering the
perforated structure as an homogenous metamaterial penetrated by the average EM
fields, must be corrected close to the band edges, as it does not reflect the presence
of band gaps due to diffraction effects.

Let us first consider the analytical results obtained from those two approxima-
tions for the case of periodic blind perforations. The condition for the existence of
bound modes in these systems is given by

G − ε = 0, (7.17)

where we have made G ≡ GI
00 (Eq. (7.15)) and ε ≡ ε0 (Eq. (7.13)). Neglecting

diffraction effects, the G term is given by G = iYk||p|S|2, where S = 〈k||, p|0〉 is
the overlap between the p-polarized zero-order diffracted mode and the lowest
indentation waveguide mode. For apertures much smaller than the wavelength, the
dependence of S on the parallel wave vector can be neglected. Imposing k|| = k||ux ,
we can write the dispersion relation of the spoof surface plasmon modes as

k|| = k0

√
1 + |S|4

ε2
. (7.18)

Note that, as expected, k|| > k0, which reflects the confined nature of the modes.
We now focus on metal slabs fully pierced by periodic indentations. The sym-

metric character of these structures with respect to the z = h/2 plane enables us to
rewrite Eqs. (7.12) into a single approximate equation of the form

(G − ε) ± GV = 0, (7.19)

where GV ≡ GV
0 . Importantly, the presence of the negative (positive) sign in

Eq. (7.19) indicates the symmetric (antisymmetric) character of the modes with
respect to the slab center. Following the same procedure as before, the analytical
spoof surface plasmon bands can be now written as

k|| = k0

√
1 + |S|4

(ε ± GV )2
. (7.20)
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Again, we have k|| > k0 (bound modes). Equation (7.19) indicates that the fre-
quency shift between the spoof SPP dispersion relation for partially and fully per-
forated metals is governed by the ratio GV /ε = 1/ cos(qh), which only depends on
the propagation constant of the indentation waveguide mode, q, and the thickness
of the metal slab, h.

7.3 Planar geometries

7.3.1 Textured surfaces

In this section we analyze the EM modes bound to textured PEC surfaces by
considering the two simple geometries for which the spoof SPP concept was first
developed: 1D arrays of grooves and 2D arrays of square dimples [11, 21]. We have
shown that guided modes in these two structures are given by the nonvanishing
solutions of the matching equations describing the continuity of the fields at the
metal–vacuum interface.

First we consider the case of 1D arrays of grooves. The inset of Fig. 7.2(a)
shows the geometrical parameters of the structure: the array period, d, and the
grooves’ width and depth, a and h, respectively. As mentioned before, the PEC
approximation makes all lengths scalable. Thus, from now on, we take the system
periodicity, d, as the unit of length. The approximate spoof SPP band obtained
from Eq. (7.18) is given by

k|| = k0

√
1 +

(a

d

)2
tan2(k0h), (7.21)

where we have used the result that S = √
a/d for very narrow 1D apertures and

that the propagation constant for the lowest waveguide mode inside the grooves
is q = k0. This expression shows clearly the geometrical origin of the modes and
allows us to predict the dependence of the spoof SPP bands on the width and depth
of the indentations. Note that, according to Eq. (7.21), enlarging the groove depth
translates into the deviation of the dispersion relation from the light line towards
larger wave vectors, and that when a = 0 or h = 0 (flat surface), k|| = k0, and no
confined modes are supported by the structure.

Figure 7.2(a) displays the normalized frequency (d/λ) versus wave vector
(k||d/2π ) for the spoof SPP modes, in groove arrays of width a = 0.2d and depths
ranging from h = 0.2d to h = d. As predicted by Eq. (7.21), the bands shift to
lower frequencies when the depth of the grooves is increased. This result can be
understood in terms of cavity resonances occurring inside the indentations. Note
that the lowest waveguide mode supported by 1D apertures is always propagat-
ing. Thus, EM fields explore completely the groove depth, making them strongly



SPP on structured perfectly conducting surfaces 241

a d

h a

a
a
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Figure 7.2. Dispersion relation of the spoof SPPs supported by periodic groove
arrays. (a) Dependence on h for a fixed groove width a = 0.2d. The inset sketches
the structure considered. (b) Bands for h = 0.6d at different groove widths. The
inset depicts the electric field amplitude for h = 0.6d and a = 0.2d evaluated at
the band edge (k|| = π/d). See color plates section.

dependent on h. This is reflected through the tangent function in Eq. (7.21), which
diverges when the Fabry–Perot condition, sin(k0h) = 0, is satisfied. We can inter-
pret this behavior as resulting from the fact that spoof SPPs in 1D blind indentations
have a hybrid nature with characteristics of both surface and cavity EM modes.

Figure 7.2(b) shows the dependence of the dispersion relation on the groove
width (a) for h = 0.6d. Four groove sizes between a = 0.1d and a = 0.6d are
considered. The mode frequency shifts to the red with larger a. This is also pre-
dicted by Eq. (7.21), where k|| grows linearly with a far from the light line. As
the ratio a/d controls the overlap between the zero-order diffracted wave and the
first waveguide mode, we can conclude that the EM coupling at the interface is
larger for wider indentations, which increases the binding of the fields lowering the
mode frequency. The inset depicts the electric field amplitude for a groove array
with a = 0.2d and h = 0.6d evaluated at band edge (k|| = π/d). It decays more
rapidly into the vacuum than inside the grooves, which agrees with the interpre-
tation of the spoof surface plasmons as hybrid modes between surface and cavity
modes.

The previous calculations have been done within the PEC approximation, and,
therefore, the propagation length of the corresponding spoof SPP modes is infinite.
This length is reduced to finite values in a real metal due to absorption. Recently,
Shen and co-workers [22] have studied the propagation length of geometrically
modified SPP modes supported by 1D arrays of grooves in the THz regime. As
expected, the loss is large at frequencies close to the asymptotic frequency.
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Figure 7.3. Dispersion relation of the spoof SPPs sustained by periodic dimple
arrays. (a) Bands for a = 0.2d and several dimple depths h. The inset shows a
schematic of the system. (b) Bands for h = 0.6d and different a. The inset displays
the electric field amplitude at the band edge for the case h = 0.6d and a = 0.6d.
See color plates section.

Very recently, two different types of applications based on the propagation
characteristics of spoof SPP modes in 1D arrays of grooves have been proposed. In
the first one [23], the slowing down of THz waves based on 1D arrays of grooves
with graded depths can be achieved by a proper design of the dispersion curves and
asymptotic frequencies. Another proposal is that of active THz switches, controlled
by an electro-optical material placed inside the grooves, which can be activated by
a low-voltage control-signal [24].

Now we analyze the characteristics of the spoof SPP modes supported by 2D
dimple arrays. For simplicity, we consider only the case of square arrays of square
apertures; see the inset of Fig. 7.3(a). The geometry of the system is now given
by the array period, d, taken as a reference length, and the side and depth of the
dimples, a and h, respectively. The analytical expression for the dispersion relation
of the modes has the form

k|| = k0

√√√√1 +
(

2
√

2a

πd

)4
k2

0

(π/a)2 − k2
0

tanh2

(√
(π/a)2 − k2

0 h

)
, (7.22)

where we have used the result that S = (2
√

2/π )(a/d) in the limit of deep subwave-
length indentations [21] and that the propagation constant for the lowest waveguide

mode (TE11) supported by 2D square apertures is q = i

√
(π/a)2 − k2

0. Note that,
in the range of validity of our approximate approach, λ >> 2a, q for the TE11

mode is imaginary, and the fields decay evanescently within the perforations. This
evanescent character of the fields is reflected in the hyperbolic tangent dependence
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on h that Eq. (7.22) yields for the spoof SPP dispersion relation. We can anticipate
that the distinct character (propagating/evanescent) of the fundamental waveguide
modes supported by 1D and 2D indentations leads to fundamental differences
between the bound modes supported by these two geometries.

Figure 7.3(a) plots the exact spoof SPP bands for dimples of side a = 0.6d, as
calculated by looking at zeroes of the determinant of the whole system of Eq. (7.16).
The depth of the indentations is varied from h = 0.1d to h = d. As in Fig. 7.2(a),
the mode frequency is lowered when the depth of the perforations is increased.
However, the displacement of the bands is much smaller than in the 1D case. This
difference is related to the evanescent nature of the fields within the dimples and can
be understood through Eq. (7.22), where the tanh function leads to a low sensitivity
of the modes to variations in h.

In Fig. 7.3(b), the dependence of the spoof SPP bands on the dimple area is
analyzed. Dimples of depth h = 0.6d and sides between a = 0.4d and a = 0.8d

are considered. As predicted by Eq. (7.22), the dispersion relation bends at lower
frequencies when a is enlarged. Similar to groove arrays, this effect is due to an
increase in the EM coupling of diffracted and dimple waveguide modes, which in
our analytical approach is proportional to the ratio a/d. The inset depicts the electric
field amplitude evaluated at the band edge for a = 0.6d and h = 0.5d. As predicted
by Eq. (7.22), the electric field is mostly located at the system interface (z = 0)
and decays into both the indentations and the vacuum superstrate. Recently, the
propagation and confinement of THz radiation in planar copper surfaces pierced by
square arrays of square dimples have been experimentally analyzed [25], obtaining
results in accordance with the analytical results described above.

7.3.2 Perforated slabs

In this subsection, we study the modal properties of the spoof SPPs supported by
periodic arrays of 1D and 2D apertures drilled in PEC slabs of thickness h and
compare them with those of textured surfaces. As in the case of blind indentations,
it is possible to construct analytical expressions for the dispersion relation of the
modes by recalling Eq. (7.20). Thus, for 1D arrays of slits of width a we have

k|| = k0

√
1 +

(a

d

)2 sin2(k0h)

[cos(k0h) ± 1]2
, (7.23)

where the negative (positive) sign corresponds to bound modes whose parallel
component of the electric field is symmetric (antisymmetric) with respect to the
mid-plane of the film. Note that the overlap and the propagation constant remain
the same as in Eq. (7.21).
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Figure 7.4. Dispersion relation of the spoof SPPs supported by fully perforated
films. (a) Comparison between 1D slits and grooves of the same size (a = 0.2d
and h = d). Dotted lines show the analytical band obtained from Eqs. (7.21) and
(7.23). The inset depicts the electric field amplitude at the band edge for the slit
array. (b) Comparison between holes and dimples with a = 0.6d and h = 0.3d.
The insets depict the fields at the edges of the two spoof SPP bands for the hole
array. See color plates section.

Figure 7.4(a) presents the dispersion relation of the spoof SPP modes supported
by slits and grooves of the same dimensions. The width and depth of the indentations
are a = 0.2d and h = d, respectively. For this set of geometrical parameters, both
structures sustain only one mode, which is tightly bound to the metal slab. The
dispersion relation for the slit array is raised with respect to that for the grooves,
which indicates that the modes are more weakly bound to the structure. This
is a direct consequence of the propagating nature of the waveguide modes in 1D
apertures, which leads to the bouncing of the fields inside the perforations. Whereas
the bottom of the grooves acts as a mirror, slit openings allow the coupling to
diffracted waves. This fact blueshifts the spectral position of the cavity resonances
and permits spoof SPP modes to extend out of the structure. Dotted lines plot the
analytical bands for both systems. The inset of Fig. 7.4(a) displays the electric field
amplitude at the band edge for the fully perforated slab. Note that the electric field
vanishes at the center of the slits, showing the odd parity of the mode with respect
to the mid-plane of the film.

Similar results to those previously presented have been obtained by different
groups [26–29]. Due to the similarity of these confined modes to those of waveguide
modes supported by a dielectric slab, these works have been focused on obtaining
the effective dielectric response of the 1D periodic metallic structure. It has been
demonstrated that, in the metamaterial limit (wavelength much larger than the
period of the array), a 1D array of slits behaves as an anisotropic dielectric medium
characterized by εx = d/a, εz = ∞, and μy = a/d [27].
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By introducing S and q for 2D apertures in Eq. (7.20), the dispersion relation
of the spoof SPP modes supported by 2D holes fully piercing a metal slab can be
calculated. For the simple case of square holes it is given by

k|| = k0

√√√√√√√√1 +
(

2
√

2a

πd

)4
k2

0

(π/a)2 − k2
0

sinh2

(√
(π/a)2 − k2

0 h

)
(

cosh

(√
(π/a)2 − k2

0 h

)
± 1

)2 . (7.24)

Note that, similarly to dimple arrays, the evanescent character of the EM fields
inside the apertures is reflected in the appearance of hyperbolic functions describing
the dependence of the mode properties on h.

Similarly to blind indentations, the distinct behavior of EM fields within 1D and
2D apertures piercing the metal structure gives rise to different mode properties
for these two systems. Whereas in 1D geometries the complete perforation of the
metal slab blueshifts the mode frequency, in 2D perforations, this effect leads to
the splitting of the spoof SPP band into two. This is clearly shown in Fig. 7.4(b),
which plots the dispersion relation for dimples and holes of the same dimensions
(a = 0.6d and h = 0.3d). Note that, whereas the former support only one bound
mode two different modes are sustained by the latter.

The origin of the two spoof SPP modes supported by hole arrays is clarified in
the insets of Fig. 7.4(b). They depict the electric field amplitude at k|| = π/d for
the two spoof SPP bands. In both cases, EM fields are strongly localized at the
film surfaces and decay into the holes. The two modes emerge from the interaction
through the holes of the evanescent tails of the surface EM modes at each side
of the film. The field patterns show that the lower (higher) band corresponds to
bound modes having an even (odd) parity with respect to the symmetry plane of
the perforated slab. Note that this phenomenology is similar to that observed in
long- and short-range SPPs in thin metallic films [30].

It is worth analyzing the dispersion relation of these spoof SPP modes in the
limit h → ∞ (i.e. when the perforated PEC film is thick enough). In this limit, the
coupling between the two sides of the PEC film vanishes and the two modes merge
into one, whose dispersion relation reads

k|| = k0

√√√√1 +
(

2
√

2a

πd

)4
k2

0

(π/a)2 − εholek
2
0

, (7.25)

where εhole is the dielectric constant of the medium filling the holes. The effec-
tive parameters for the dielectric and magnetic response of a 2D array of holes
perforating a semi-infinite PEC film can be obtained [11, 21] by:
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� comparing the dispersion relation given by Eq. (7.25) with that of the canonical
SPPs propagating on a real metal surface;

� forcing the EM fields to decay in the same way inside the corrugated metal and
in the metamaterial.

This procedure yields the following expressions for εeff and μeff :

εeff(ω) = (π2d2εhole/8a2)
(
1 − ω2

p/ω2
)
,

μeff = 8a2/π2d2.
(7.26)

This functional form for εeff(ω) is similar to Drude’s expression for the dielec-
tric constant of a metal. We can define an effective plasma frequency, ωp =
(c/

√
εhole) π/a, which coincides with the cutoff frequency of the hole waveguide.

Actually, the system is anisotropic, so care must be taken about the different compo-
nents of the effective dielectric constant tensor. The anisotropy is also responsible
for the fact that the flat region of the dispersion curve for the spoof SPP mode
appears at εeff = 0, whereas the dispersion relation for true SPPs bound to the
interface between two isotropic media flattens at ε = −1. The important point of
a Drude formula for the dielectric response for a perforated PEC film is that the
cutoff frequency of the hole waveguide marks the separation between positive and
negative values for the effective dielectric function.

The simple dispersion relation of the spoof SPP modes supported by a 2D array
of holes as written in Eq. (7.25) has been obtained within the two approximations
described in Section 7.2. Namely, only the fundamental mode inside the holes is
introduced in the modal expansion and only the zero-order p-polarized diffracted
mode is considered. By including more modes in both regions (in the vacuum and
inside the holes), different authors have demonstrated that the exact dispersion
relation moves closer to the light line and strong confinement only occurs for
frequencies much closer to ωp than that which the effective parameter expression
(7.26) predicts [15–17, 31].

The results of experiments in which the angular dependence of the transmission
peaks in 2D arrays of holes infiltrated with wax was analyzed showed band bending
associated with the cutoff frequency of the hole waveguide [32]. These experiments
were carried out in the microwave regime of the EM spectrum. In a more recent
development by the same group [33], the excitation of spoof SPP modes in 2D arrays
of holes on perforated metals has been demonstrated at microwave frequencies
using the classical method of prism-coupling. On the other hand, the Drude-like
response of a 2D array of holes has been investigated in the THz range of the EM
spectrum [34, 35].

Hole shapes other than squares have also been analyzed during the last years.
For example, it has been demonstrated that 1D arrays of rectangular holes support
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the propagation of spoof SPP modes exhibiting a very low group velocity and
that are confined in a deep subwavelength region [36, 37]. In 2009, surface EM
modes supported by a Sievenpiper mushroom decorating a very thin metallic layer
have been demonstrated experimentally [38]. As in the case of square holes, this
surface EM mode is asymptotic to the effective surface plasma frequency defined
by the fundamental resonance of the sample. Arrays of complementary split ring
resonators [39] or annular holes [40] have been proposed as good candidates to
enlarge the operative bandwidth of the spoof SPP modes.

One of the possible applications of the spoof SPP concept is to mold the flow
of plasmons in 2D surfaces by means of a proper design of the geometry. Along
this line, 1D light waveguiding could be achieved by gradually increasing the hole
size as one moves away from the center of the 2D hole array, leading to a lowering
of the effective index and, subsequently, to an evanescent decay of the mode in
the transverse direction [41]. Finally, it has also been shown that arrays of holes
presenting a parabolic graded-index distribution are able to focus, collimate, and
waveguide spoof SPPs in the transverse direction [42].

7.4 Cylindrical geometries

Recently, there has been a resurgence of interest in SPP propagation along metal
wires in the THz regime of the spectrum [43, 44], mostly in the context of bio-
chemical sensing. However, the delocalized nature of the Sommerfeld waves sets
constraints upon the achievable sensitivity, and leads to significant radiation loss
at bends and surface imperfections. As in the case of planar interfaces, the field
confinement decreases with increasing conductivity of the conductor and, in the
PEC limit, metallic wires no longer sustain electromagnetic surface waves. The
idea of increasing the binding of Sommerfeld waves through the wire corrugation
was already explored in the 1950s in the context of telecommunications technology
[7, 45]. These early works demonstrated that the guiding capabilities of corrugated
transmission lines could be enhanced by tailoring their surface geometry. In this
section, we reformulate the analysis of these two seminal works using the coupled
mode method.

First we implement the theoretical formalism as explained in Section 7.2 to
analyze the formation of spoof SPPs on corrugated PEC wires [46, 47]. We will
show how the theoretical approach presented in Section 7.2 can be modified in
order to treat these systems. Figure 7.5 shows the simplest structure supporting
cylindrical spoof SPPs, a PEC wire milled with a periodic array of rings. The
geometrical parameters of the system are: the wire radius, R; the array period, d;
and the rings’ width and depth, a and h, respectively. We restrict our analysis to
azimuthally (θ ) independent modes, which present the lowest frequency and for



248 A. I. Fernández-Domı́nguez, F. Garcı́a-Vidal, and L. Martı́n-Moreno

a

Figure 7.5. Schematic of the simplest structure supporting cylindrical spoof SPPs:
a PEC wire of radius R perforated with an array of rings of period d, width a, and
depth h.

which light polarizations are decoupled. This allows us to consider only p-polarized
modes in our expansion basis.

As in planar geometries, we consider a unit cell of length d along the wire axis
(z-direction) and divide the system into three regions: the vacuum space surround-
ing the wire (region I, r ≥ R); the wire thickness occupied by the perforations
(region II, R > r ≥ R − h); and the wire core (region III, r < R − h). In region I,
the relevant components of the EM fields (Ez and Hθ ) can be expressed in terms
of p-polarized plane waves as follows:

|EI
z 〉 =

∑
n

ρnK0(κnr)|kn〉, (7.27)

|HI
θ 〉 =

∑
n

Y I
kn

ρnK1(κnr)|kn〉, (7.28)

where kn = kz + n(2π/d) and κn =
√

k2
n − k2

0 are the wave vector components of

the plane wave |kn〉, and Y I
kn

= ik0/κn is its admittance. Note that kz denotes the
propagation wave number of the guided modes. The radial dependence of the fields
is given by the modified Bessel functions of the second kind K0 and K1 [48].

In region II, fields are only nonzero inside the rings. Thus, EM fields can be
expanded as a sum over propagating and counter-propagating waveguide modes in
the radial direction as follows:

|EII
z 〉 =

∑
α

Dα

(
J0(qαr) − γαN0(qαr)

)
|α〉, (7.29)

|HII
θ 〉 =

∑
α

Y II
α Dα

(
J1(qαr) − γαN1(qαr)

)
|α〉, (7.30)
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where |α〉 are the ring waveguide modes and Y II
l = −ik0/qα are their admittances.

The radial dependence of the fields is now described by the Bessel and Neumann
functions J0,1 and N0,1 [48]. Region III is filled with PEC material and therefore
fields vanish within it. This provides us with a new condition on the fields in region
II, which must satisfy Et = 0 at the ring bottom. Thus, from Eq. (7.29) we have
γα = J0[qα(R − h)]/N0[qα(R − h)].

The matching of the EM fields at the I–II interface (r = R) is performed similarly
to the case of planar geometries. The z-component of the electric field must be
continuous everywhere on the interface, whereas the θ -component of the magnetic
field is continuous only at the openings of the rings. Projecting the continuity
equations for the electric (magnetic) field over plane waves (ring waveguide modes),
we remove the dependence on z of the matching equations. Defining the quantities

Eα = Dα

(
J0(qαR) − γαN0(qαR)

)
, (7.31)

which correspond to the modal amplitudes of the z-component of the electric field
at the openings of the rings, we can write the matching equations for the system in
the same form as Eq. (7.16).

The physical interpretation of the various terms appearing in the matching
equations are the same as for planar geometries, although their expression as a
function of the modal expansion coefficients is different. Thus, the ε term is now
given by

εα = Y II
α

J1(qαR) − γαN1(qαR)

J0(qαR) − γαN0(qαR)
. (7.32)

The G term is given by

Gαα′ =
∑

n

Y I
kn

K1(κnR)

K0(κnR)
〈α|kn〉〈kn|α′〉, (7.33)

where the overlap integrals are defined as

〈kn|α〉 =
∫

dz〈z|kn〉∗〈z|α〉. (7.34)

Following the same notation as for planar geometries, 〈z|kn〉 and 〈z|α〉 denote the
real space wavefunctions for the p-polarized plane waves and the ring waveguide
modes, respectively.

Once we have constructed the set of homogeneous matching equations, the spoof
SPP modes correspond to the nonzero solutions for the modal amplitudes Eα. In
Section 7.3 we have seen that for subwavelength perforations (λ � a), we can keep
only the lowest (TM0) waveguide mode in the field expansion (note that this mode
is always propagating, irrespective of the ratio a/λ). This allows us to reduce the
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Figure 7.6. Spoof SPP dispersion relation for wires of radius R = 2d perforated
with rings of width a = 0.2d. Left panel: θ -independent bands for different ring
depths. The inset shows the electric field amplitude (r > R − h) at the edge of the
bands. Right panel: FDTD bands for higher azimuthal orders (m) for h = 0.5d.
The insets plot the electric field patterns at the band edge ordered with increasing
m from the left bottom corner to the right top corner of the figure. See color plates
section.

set of matching equations to a single one, (G00 − ε0) = 0, which, on introducing
the expressions for the G and ε terms, reads as follows:

∑
n

k0

κn

K1(κnR)

K0(κnR)
|〈kn|0〉|2 = −J1(k0R) − γ0N1(k0R)

J0(k0R) − γ0N0(k0R)
, (7.35)

where we have used the fact that qα = k0 for the TM0 waveguide mode. The
expressions for the overlap integrals 〈kn|0〉 can be found elsewhere [46]. In the
left panel of Fig. 7.6, the azimuthally independent spoof SPP bands obtained from
Eq. (7.35) for three different ring arrays are plotted. We take d as the unit of length.
Thus, the wire radius is R = 2d, and the ring width a = 0.2d. The three ring
depths are: h = 1.6d, h = 0.8d, and h = 0.4d. The dispersion relations deviate
farther from the light line when h is increased, in a similar way to what was
observed in 1D groove arrays (see Fig. 7.2(a)).

At low frequencies (λ � d, a), and for wires much thicker and rings much
shallower than the array period (R, R − h � d), we can neglect diffraction orders
in the G term and obtain an analytical expression for the dispersion relation of the
guided modes. By introducing the asymptotic expansions of the different Bessel
functions involved in Eq. (7.35), we have

kz = k0

√
1 +

(a

d

)2
tan2(k0h). (7.36)
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Note that Eq. (7.36) coincides with Eq. (7.21), which gives the spoof SPP bands
for 1D arrays of grooves of width a and depth h. This agrees with the fact that,
as in the planar case, the key parameter governing the binding of the mode is the
depth of the rings, h (see Fig. 7.6).

The right panel of Fig. 7.6 presents the dispersion relation of the spoof SPPs on
a wire of radius R = 2d perforated by periodic rings with a = 0.2d and h = d.
In this calculation, there is no restriction regarding the azimuthal dependence of
the EM fields. The dispersion relations (dots) have been obtained by means of 3D
finite difference time domain (FDTD) simulations. The different bands (labeled by
the index m) correspond to the different azimuthal symmetries of the electric field
amplitude shown in the insets of the figure. For the structure considered, m ranges
from m = 0 (θ -independent modes) to m = 5 (see insets from left bottom corner
to right top corner of the panel). The electric field associated to the mth azimuthal
mode presents 2m nodes and maxima in θ . The solid line shows the m = 0 band
calculated from Eq. (7.35). A very good agreement between FDTD and modal
expansion (ME) results for the lowest spoof SPP band is observed.

7.5 Terahertz waveguides based on spoof SPPs

As shown in the preceding sections, spoof SPP modes allow the routing of EM
fields along corrugated PEC surfaces. This fact opens the way to the design of THz
or microwave waveguiding schemes based on the concept of spoof SPPs. Different
theoretical works have been published exploring this idea in the microwave regime
[39, 42]. Due to the recent technological interest raised by THz waves [49, 50], the
guiding properties of spoof SPP modes in this range of the EM spectrum have been
analyzed in different configurations [23, 24, 41]. In the following, we describe in
detail four simple guiding schemes based on the spoof SPP concept that operate
at THz frequencies: milled wires, corrugated channels and wedges, and domino
structures.

7.5.1 Milled wires

The lack of lateral confinement of spoof SPPs in 1D and 2D indentations prevent
their use as waveguides, aiming to transport EM energy within small transverse
cross sections. Taking this into account, probably the most straightforward spoof
SPP waveguide consists of a metallic wire periodically corrugated with an array
of rings, as presented in Section 7.4. The tailoring of the wire geometry enables us
to select the spectral range of operation of the structure. By choosing modulation
sizes of the order of hundreds of microns, the guiding is optimized at the THz
range.
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Figure 7.7. (a) Dispersion relation of the guided modes traveling along a cor-
rugated wire of radius R = 150 μm perforated with an array of rings of period
d = 100 μm. The width and depth of the rings are both 50 μm. (b)–(d) Electric
field amplitude for wires of length 20 × d illuminated from the left by a radially
polarized plane wave. Fields are evaluated at three different frequencies (0.4, 0.6,
and 1.0 THz), indicated by dotted lines in (a). See color plates section.

Figure 7.7 shows the propagation of EM fields along a 2 mm long corrugated
wire of 150 μm radius. The pitch of the corrugation is d = 100 μm, and the width
and depth of the rings are a = h = 50 μm. The geometry of the ring array has
been chosen so that the optimal frequencies for guiding are around 0.6–0.8 THz.
Figure 7.7(a) shows the dispersion relation, f (kz), for the guided modes supported
by an infinite wire with the same geometrical parameters. Figures 7.7(b), (c), and
(d) depict the electric field amplitude (evaluated at three different frequencies) for
the finite wire illuminated by a radially polarized broadband terahertz pulse from
the left. The field patterns have been obtained through finite-integration-technique
(FIT) simulations. At the lowest frequency considered, f = 0.4 THz, the band lies
close to the light line, which leads to a weak binding of fields to the structure. At
f = 0.6 THz, EM radiation is guided more efficiently as the modes are strongly
confined to the wire surface. At f = 1.0 THz, as the system does not support the
propagation of any guided mode, the incident radiation is scattered out from the
wire.

Taking advantage of the strong dependence of the spoof SPP confinement on the
wire geometry, it is feasible to design a structure able to concentrate EM energy at
one of its ends [46, 51]. Here, we describe one candidate for this: a conical wire in
which the external radius is gradually decreased along the direction of propagation,
keeping the depth of the rings fixed. Figure 7.8(a) plots the guided mode bands
for ring arrays of period 100 μm with h = 30 μm and a = 50 μm. Four structures
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(a) (b)

Figure 7.8. (a) Frequency versus propagation wave vector, kz, for the guided
modes supported by four corrugated wires of different radii. The inset plots the
radial component of the electric field versus r − R (f = 0.6 THz) for the four
structures. (b) Electric field amplitude at 0.6 and 1.2 THz for a 2 mm corrugated
cone whose radius is reduced from 140 to 40 μm. See color plates section.

with wire radii ranging between 140 μm and 40 μm are considered. Note that as R

is decreased, the spoof surface plasmon bands deviate further from the light line.
The inset renders the radial component of the electric field, Er , as a function of the
distance to the wire surface, r − R, for the four structures evaluated at 0.6 THz.
We can see that the lowering of the bands leads to a stronger confinement of the
modes with decreasing R.

Figure 7.8(b) shows the electric field pattern corresponding to a 2 mm long wire
whose external radius is gradually reduced from 140 to 40 μm. The structures are
milled with ring arrays with the same dimensions as in Fig. 7.8(a). At 0.6 THz, the
guided modes are tightly bound to cylindrical wires, even for the smallest radius
considered. However, at larger frequencies, 1.2 THz, modes are not supported by
wires with R ≤ 140 μm. This has the consequence that EM radiation is guided
along the cone and focused at its tip at 0.6 THz. On the other hand, the absence of
guided modes at 1.2 THz leads to EM waves being scattered out of the structure
without reaching the end of the wire. Remarkably, the high confinement of EM
fields featured by cylindrical spoof SPPs allows the concentration of THz waves
into deep subwavelength volumes in conical geometries.

7.5.2 Helically grooved wires

In this subsection, we consider the case in which a metallic wire is periodically
drilled with helical grooves. We present some experiments that verify the prop-
agation of guided modes in this type of geometry. This experimental study is
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Figure 7.9. (a) Receiver current as a function of time delay for the smooth wire and
the grooved structure. (b) Amplitude spectra of the time domain data in (a) together
with the spectrum of another, nominally identical, helical sample (displaced for
clarity). The arrows indicate the three azimuthal modes of the helical groove
structure. The spectrum of the Sommerfeld wave on the smooth wire extends to
∼1 THz. See color plates section.

accompanied by a theoretical analysis of the surface EM modes supported by this
complex structure [52].

The experimental setup consists of a 150 mm long helically grooved wire, formed
by tightly wrapping a steel wire (radius 200 μm) around a 200 μm radius core. For
comparison, a bare copper wire of the same outer radius and length (600 μm and
150 mm, respectively) is also studied. Measurements are performed using time-
domain THz spectroscopy. In order to discriminate the bound EM modes against
unguided free space radiation, the wires are bent along the arc of a circle of radius
26 cm.

Figure 7.9(a) displays time-domain traces of the receiver current for the wires
with smooth and helically grooved surfaces. It is clear that a single-cycle-like
pulse, which can be associated with a Sommerfeld wave [2], propagates along
the smooth wire. However, propagation on the helical wire exhibits significant
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Figure 7.10. Dispersion relation of the guided modes supported by a PEC wire
of radius R = 600 μm inscribed with a triangular-cross-section helical groove of
pitch d = 400 μm. The groove has width a = 200 μm and depth h = 150 μm. The
upper row of insets displays snapshots of the electric field at the three band edges,
0.305 THz (left), 0.320 THz (center), and 0.349 THz (right). The next lowest
row correspond to the first mode at 0.280 THz (left) and the second mode at
0.180 THz (right). The pattern in the bottom row is for the first mode at 0.180
THz. See color plates section.

dispersion together with beating due to the presence of bound modes with different
frequencies. Figure 7.9(b) plots the amplitude spectra of the traces in Fig. 7.9(a)
together with the spectrum of a second, nominally identical sample of the helical
structure, which shows the reproducibility of the experimental data in the pres-
ence of small variations in optical alignment. In Fig. 7.9(b), the frequency at the
band edge (kz = π/d) of the three lowest guided modes supported by the structure
are indicated by vertical arrows. They are obtained by means of the theoreti-
cal FDTD calculations and correspond to the peaks in the amplitude spectra at
0.305 ± 0.002 THz, 0.326 ± 0.002 THz, and 0.353 ± 0.003 THz. We show below
that the structure observed in the spectra at frequencies lower than 0.3 THz can
be associated with the propagation of radiation along the wire at smaller wave
vectors.

Figure 7.10 presents the spoof SPP bands for a helically grooved PEC wire cal-
culated using the FDTD method. In accordance with the experimental parameters,
the helix pitch is d = 400 μm and the wire radius R = 600 μm. The EM fields are
evaluated inside a unit cell along the direction parallel to the wire axis (z-direction).
Due to design limitations of our computer code, the modeled groove has a triangu-
lar profile of width a and depth h (see lower inset). We find that a = 200 μm and
h = 150 μm give a good match to the experimental results for the frequency at the
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edges of the bands. The main panel shows the dispersion relation for this set of
geometrical parameters. The three theoretical values obtained, 0.305 THz, 0.320
THz, and 0.349 THz, are in excellent agreement with the spectral peaks found in
the experiments.

The insets of Fig. 7.10 provide snapshots of the electric field amplitude of
the spoof SPP modes supported by the wire at various frequencies. Note that,
as expected, the lack of azimuthal symmetry of the metallic structure leads to
nonsymmetrical field distributions. The upper row displays the electric field ampli-
tude at the three band edges, increasing in frequency from left to right. The fields
are confined within less than a wavelength of the wire surface. The field maps
depicted in the lower two rows are evaluated at smaller kz. The two on the left cor-
respond to the first spoof surface plasmon mode at 0.280 THz and 0.180 THz, and
that on the right of the second row corresponds to the second mode at 0.180 THz.
At the band edge, the modes exhibit an odd number of azimuthal nodes (1, 3, and 5)
whereas with decreasing kz the number of nodes is gradually reduced by one and
becomes even. Thus, the guided modes propagating along the helical structure at
low kz resemble the case of a ring array, where the number of nodes is even.

Now we analyze why the spoof SPPs on helically grooved wires exhibit such
a kz-dependent azimuthal symmetry. Any component of the EM fields bound to a
helical structure [53] can be expanded in terms of diffracted waves as

Fm(r, θ, z) = eikzzeimθ
∑

n

An m−n(r)ein( 2π
d

z−θ), (7.37)

where the modal amplitude An m−n(r) contains the radial dependence of the nth-
diffracted wave. Note that Fm(r, θ, z) is an eigenfunction of the helical translation
operator, Sφ d

2π
φ , satisfying

Sφ d
2π

φFm(r, θ, z) = Fm

(
r, θ + φ, z + d

2π
φ

)
= ei(m+kz

d
2π

)φFm(r, θ, z),

(7.38)

where the index m controls the symmetry properties of the EM fields. We introduce
the helical coordinate ξ = z − dθ/2π , which is parallel to the cylindrical coordi-
nate z, but measured from the surface z = dθ/2π . Electromagnetic fields can be
expressed in terms of ξ as

Fm(r, θ, ξ ) = f (r, ξ )ei(m+kz
d

2π
)θ . (7.39)

It is now clear that this eigenfunction, evaluated along the helical surface (ξ =
constant), evolves in time as cos[(m + kz(d/2π ))θ − 2πf t], where f and t are
the mode frequency and time, respectively. Thus, snapshots of the EM fields with
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kz = π/d show 2m + 1 nodes along one helix pitch, whereas for kz = 0 they show
only 2m nodes. This result allows us to label the spoof SPP modes in Fig. 7.10
with the indices m = 0, m = 1, and m = 2.

7.5.3 Corrugated channels

We have shown that the presence of spoof SPP modes decorating the corrugated
surface of free-standing PEC wires allows the transport of EM energy within
subwavelength cross sections. However, this guiding scheme presents a major
drawback: its nonplanar character makes it difficult to implement in a complex
THz circuit. Here, we present a waveguide based on the spoof SPP concept that
features subwavelength transverse confinement of EM fields at a planar surface.
The design consists of corrugated V-grooves milled on a metal surface, and borrows
ideas from the so-called channel plasmon polaritons (CPPs) [54] operating at visible
and telecom frequencies [55]. The EM fields in uncorrugated V-grooves become
more extended with increasing wavelength in such a way that, on PEC channels,
they are not bound at all. Following the same strategy as in cylindrical geometries,
we show how the texturing of the metal surface leads to the emergence of bound
EM modes in corrugated channels, even in the PEC limit [56].

The upper inset of Fig 7.11 depicts the system under study: a V-channel of depth
h and width w modulated with a periodic array of grooves of width a and depth h.
Figure 7.11(a) shows the dispersion relation of the modes bound to the structure
with a = t = 0.5d, w = 0.76d, and h = 5d. For this set of geometrical parameters,
the angle of the channel is 20◦, similar to those considered in the telecom regime.
FDTD calculations demonstrate the appearance of two guided modes (from now on
termed spoof CPPs) for normalized frequencies d/λ < 0.35. Note that in corrugated
V-channels of finite height, these modes possess a finite cutoff frequency, as in the
case of conventional CPPs [57]. Note also the small frequency overlap between the
two spoof CPP bands, which facilitates the monomode operation of the V-groove
as a THz waveguide.

The longitudinal component of the electric field associated with the two spoof
CPP modes is shown in the insets of Fig. 7.11(a). The fields are evaluated at the
edges of the bands. Electric fields are plotted only inside the shallow part of the
corrugated V-groove. The first mode has odd parity, as the longitudinal electric
fields have two lobes of different sign at both sides of the channel, vanishing at the
mid-plane. The second mode has even parity with respect to the symmetry plane.
The tightly bound nature of the modes is clarified by introducing the modal size δ. It
is defined as the transverse separation between the locations where the electric field
amplitude has fallen to one-tenth of its maximum value; δ = 0.52λ, and δ = 1.06λ,
respectively, for the two spoof CPPs at the band edge. Figures 7.11(b) render the
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Figure 7.11. (a) Dispersion relation of the first two spoof CPP modes supported
by a corrugated V-channel milled on a PEC surface. A schematic of the structure
is shown in the upper inset. The lower insets depict the amplitude of the longitu-
dinal component of the electric field evaluated at the band edge for both modes.
(b) Electric field amplitude at the band edge for the lowest mode evaluated at the
shallower (upper panel) and deeper (lower panel) sections of the channel. The
horizontal white bar represents the wavelength of the mode in a vacuum. See color
plates section.

electric field amplitude at the band edge for the lowest spoof CPP mode. The upper
(lower) panel shows the field distribution within a transverse plane located at the
shallower (deeper) part of the channel, displaced by d/2. Note that the electric field
is confined into a subwavelength area, being strongly localized within the shallow
section of the channel. Another interesting feature is that EM energy is not guided
at the groove bottom but rather at the groove edges. We can anticipate that this is
due to the strong hybridization of spoof CPPs with modes running on the edges of
the groove, much in the same way as it occurs in conventional CPPs [57].

Once we have demonstrated that spoof CPPs are supported by infinitely long
corrugated V-grooves, we analyze how these EM modes behave in waveguides
of finite length. We choose the structure period d = 200 μm, keeping the rela-
tion between the rest of the geometrical parameters and d as in Fig. 7.11.
Figure 7.12 shows the transmission spectra of THz waves through five differ-
ent channels comprising 100 periods calculated through FIT simulations. Dashed
arrows indicate the cutoff and band edge frequencies obtained from Fig. 7.11 for
the lowest spoof CPP mode supported by the structure. Note that, as expected, the
transmission of the straight waveguide approaches unity within the spectral region
(0.3–0.42 THz) between these two frequencies.
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Figure 7.12. Transmission spectra for spoof CPP modes supported by a corrugated
PEC V-channel of period d = 200 μm and total length 20 mm. Straight and four
different 90◦ bent waveguides are shown. Dashed arrows indicate the spectral
position of the cutoff and band edge frequencies in Fig. 7.11. The right panels
depict the electric field amplitude at 0.40 THz evaluated at a height of 100 μm
above the planar surface for the structures with (a) r = 10 mm and (b) r =
1.5 mm.

The possible use of spoof CPPs in corrugated channels for routing THz radiation
requires a study of the bending losses suffered by these modes. The transmission
of four 90◦ bends with radii of curvature, r , are also plotted in Fig. 7.12. In these
structures, d = 200 μm in the straight part of the channel and is slightly adjusted at
the bends in order to conform with the curved geometry. For the case of maximum
r (10 mm), the transmission can be as large as 90%, but is reduced as r becomes
smaller, reaching 50% in the case r = 1.5 mm (around twice the wavelength). Let
us stress that these bending losses are much smaller than those reported for metallic
wires at THz frequencies [43]. In the right-hand panels of Fig. 7.12, the electric
field amplitude at 0.40 THz for r = 10 mm (a) and r = 1.5 mm (b) in a plane
located 100 μm above the planar surface is depicted. It is clear how the bending
losses in these structures stem from radiation into vacuum modes occurring just at
the bend of the waveguide.

7.5.4 Corrugated wedges

The electric field distribution of spoof CPPs indicates that they are not guided at the
bottom of corrugated channels but at its edges (see Fig. 7.11). In this subsection,
we have related this field profile to the hybridization with modes traveling along
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a

Figure 7.13. Dispersion relation of spoof WPPs traveling along corrugated wedges
for different θ . Dashed line shows the dispersion band corresponding to the flat
(θ = 180◦) case (groove array). The inset depicts the system geometry. Right
panels show the electric field amplitude at the band edge for (a) θ = 60◦ and
(b) θ = 20◦. In both panels, λ/2 is represented by white bars.

the edges of the structure. We analyze guided modes and present a new guiding
scheme for THz waves based on them [58].

The system under study is depicted in the inset of Fig. 7.13: a PEC wedge milled
with a periodic array of grooves. We will show that, as in the case of corrugated
channels, the EM modes supported by such a geometry resemble wedge plasmon
polaritons (WPPs) [59, 60] occurring at visible and telecom frequencies. The
parameters defining the system supporting these EM guided modes (termed spoof
WPPs from now on) are the height, h, and angle, θ . The grooves milled on the wedge
have depth t and width a, and the period of the corrugation is d. In our analysis we
fix the groove dimensions, a = t = 0.5d, and the wedge height, h = 5d.

Figure 7.13 presents the dispersion relation of the fundamental spoof WPPs
supported by wedges with different θ . The dashed line plots the spoof SPP band for
the limiting case of a flat (θ = 180◦) groove array. Reducing θ leads to the shift of
the dispersion relation to lower frequencies, which implies the tighter confinement
of the modes. Note that, as in the case of corrugated channels, the finite height
of the structure provides the spoof WPP bands with a cutoff frequency, below
which the modes lose their nonradiative nature. The right panels of Fig. 7.13 depict
the electric field amplitude at the band edge for wedges with (a) θ = 60◦ and
(b) θ = 20◦. The cross sections correspond to the deeper part of the corrugated
wedge, where the EM fields are mainly localized. Remarkably, the field patterns
resemble those corresponding to conventional WPPs. The half-wavelength (λ/2)
is also represented by vertical white bars in both panels. The modal size for the
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Figure 7.14. (a) Inset: Corrugated PEC wedge with θ varying smoothly along the
z-direction from 60◦ to 20◦. Plot shows the electric field amplitude versus z along
the line located 100 μm above the structure apex. Three different frequencies are
considered: 0.12 THz (solid line), 0.16 THz (dashed line), and 0.20 THz (dashed
dotted line). (b)–(d) Electric field amplitude within the xz-plane located 100 μm
above the apex for these three frequencies. Dashed arrows indicate the positions
of the maxima of amplitude shown in (a).

60◦ wedge is δ = 0.78λ, whereas for θ = 20◦ it is equal to 0.28λ. These results
demonstrate the subwavelength transverse confinement featured by spoof WPPs.

As an illustrative example, we present a functional device exploiting the prop-
agation capabilities of these spoof WPP modes. To make the design work at THz
frequencies, the corrugation period, d, is set to 200 μm. Figure 7.13 provides a hint
on how radiation can be focused and slowed down with the aid of spoof WPPs.
The lowering of the dispersion bands for decreasing θ suggests that THz waves
of a given frequency propagating in a wedge which is sharpened along its length
(see inset of Fig. 7.14(a)) would be gradually concentrated within the transverse
plane. Additionally, THz waves at frequencies above the band edge associated to a
specific θ will never reach sections of the structure sharper than that angle, being
slowed down as they approach it. In order to prevent back-reflection and scattering
of EM fields out of the structure, impedance mismatches along the wedge can be
minimized by performing the reduction in θ adiabatically.

The inset of Fig. 7.14(a) shows a diagram of the design proposed: a 10 mm
long wedge with θ varying smoothly from 60◦ to 20◦ milled by 50 grooves dis-
posed periodically, keeping the relation between d and the remaining geometrical
parameters as in Fig. 7.13. The guiding properties of the structure are analyzed by
means of FIT simulations under the PEC approximation. Figure 7.14(a) presents
the electric field amplitude on a line parallel to the z-axis and 100 μm above the
wedge apex. Fields are evaluated at three different frequencies within the spectral
range spanned by the dispersion bands shown in Fig. 7.13. Waves at d/λ = 0.08
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(f = 0.12 THz) propagate until the sharpest end of the wedge, giving rise to a max-
imum in the electric field amplitude located at that position (solid line). At higher
frequencies, radiation is slowed down and stopped before reaching the wedge end.
For d/λ = 0.1 (f = 0.16 THz), a peak in |E| is developed at the 42nd groove, for
which θ = 26◦ (dashed line). At d/λ = 0.13 (0.20 THz) EM fields explore an even
shorter section of the wedge and |E| presents a maximum at the 34th groove, which
corresponds to θ = 32◦ (dashed dotted line). Let us stress the excellent agreement
of these results with the dispersion bands of Fig. 7.13.

Figures 7.14(b)–(d) depict the electric field amplitude within the xz-plane
located 100 μm above the wedge apex, for the three frequencies considered in
(a). Vertical dashed arrows indicate the position of the maxima in (a). These three
contour plots show the reduction of the effective wavelength (λeff = 2π/Re(k))
experienced by the guided EM fields as they propagate along the structure. This
indicates that THz waves slow down and stop at different frequency-dependent
locations along the corrugated wedge. Figures 7.14(b)–(d) demonstrate that guided
waves are not scattered out of the wedge as they travel in the z-direction. On the con-
trary, while propagating along the structure, EM fields are gradually concentrated,
leading to frequency selective focusing of THz waves.

7.5.5 Domino structures

Perhaps the most promising route for THz waveguiding based on the concept of
spoof SPPs is the domino structure (see inset of Fig. 7.15(a)), as first introduced
in ref. [61]. This structure consists of a periodic array of metallic parallelepipeds
standing on top of a metallic surface, resembling a chain of domino pieces. The
properties of its guided modes, the so-called domino plasmons (DPs), are governed
by the geometric parameters defining the dominoes: periodicity (d), height of the
boxes (h), lateral width (L), and inter-domino spacing (a).

Here we analyze how the dispersion relation of DPs changes with the lateral
width, L. To gain a physical insight, as in previous cases it is better to model the
metal first as a PEC. Within the PEC approach we choose the periodicity d as the
unit of length. The value of a is not critical for the properties of DPs and, in these
simulations, is set equal to a = 0.5d. Domino plasmon bands present a typical
plasmonic character, i.e. they approach the light line for low frequencies and reach
a horizontal frequency limit at the edge (kedge = π/d) of the first Brillouin zone
(Fig. 7.15(a); note that only fundamental modes are plotted). While the limit
frequency of SPPs for large k is related to the plasma frequency, the corresponding
value for DPs is controlled by the geometry. In particular, the influence of the
height h is clear: the band frequency rises for short dominoes (h = 0.75d) as
compared with that of taller ones (h = 1.5d). The most striking characteristic
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Figure 7.15. (a) Dispersion relation of DPs for various lateral widths L. The
dashed line stands for infinitely wide dominoes (L = ∞). Inset: diagram of the
domino structure and geometric parameters (the arrow depicts the mode propaga-
tion direction). (b) DP modal effective index as a function of lateral dimension L
in units of wavelength. Various operating frequency regimes are considered: λ =
1.6 mm, λ = 0.16 mm, λ = 0.016 mm, and λ = 1.5 μm. A realistic description of
the metals is used. As described in the main text, the periodicity d is different for
the various operating frequencies, and h = 1.5d, a = 0.5d, L = 0.5d, . . . , 24d.

of DPs is their behavior when the lateral width L is changed. All bands in the
range L = 0.5d, . . . , 3d lie almost on top of each other (Fig. 7.15(a)). In other
words, the modal effective index, neff = k/k0, is rather insensitive to lateral width.
Remarkably, the bands remain almost unchanged even for L = 0.5d, whose modal
size is well inside the subwavelength regime. The described behavior is to be
contrasted with that of conventional plasmonic modes in the optical regime for
which subwavelength lateral confinement is not a trivial issue.

Now we study in more detail the role played by the lateral dimension L, consid-
ering realistic metals and paying attention to the spectral regime. The periodicity
d is chosen to set the operating wavelength within the desired region of the EM
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spectrum, and L is varied in the range L = 0.5d, . . . , 24d, while the remain-
ing parameters are kept constant (a = 0.5d, h = 1.5d). Aluminum is selected
for low frequencies, where metals behave almost like PECs. In order to work at
λ = 1.6 mm, providing an operating angular frequency of the order of 1 THz,
we first consider d = 200 μm. The evolution of the modal effective index as a
function of the lateral dimension normalized to the wavelength is plotted in Fig.
7.15(b). The curves corresponding to a PEC and aluminum at λ = 1.6 mm are,
as expected, almost identical. We can now quantify the sensitivity of the effective
index to L, its variation being only about 12% even when L goes from L = ∞ to
L = 0.5d = λ/16, well inside the subwavelength regime. To investigate the per-
formance of DPs at higher frequencies, the structures have been scaled down by
factors 1/10 and 1/100. The fact that the curves corresponding to λ = 0.16 mm
and λ = 0.016 mm do not lie on top of the previous ones is a signature of the depar-
ture of aluminum from the PEC behavior. Nevertheless, even at λ = 0.016 mm,
the variation of the effective index is still smaller than 15%. When the operating
frequency moves to the telecom regime (λ = 1.5 μm) the variation of the effective
index is much larger (about 38%).

The important message of Fig. 7.15(b) is that, although a variation of neff begins
to be noticeable when the lateral dimension L goes below λ/2, DP bands are fairly
insensitive to L in the range L = 0.5d, . . . , 24d when operating at low frequencies.
Such a key property does not appear in spoof SPP modes in corrugated wedges,
channels, or wires. Based on this remarkable characteristic (insensitivity of DPs to
lateral dimensions), several THz devices based on domino plasmons such as tapers,
power dividers, and directional couplers have recently been proposed [61].

7.6 Conclusions

In this chapter, we have described the fundamental physics behind the so-called
spoof surface plasmon polaritons, i.e. surface EM modes propagating along struc-
tured perfectly conducting surfaces. By means of a theoretical formalism based on
the modal expansion technique, we have studied spoof surface plasmon modes in
textured planar and cylindrical surfaces. We have analyzed in detail the geometri-
cal dependence of these modes in simple systems: planar surfaces decorated with
arrays of fully and partially perforated indentations (slits and holes), and wires
milled with periodic ring arrays. We have provided approximate analytical expres-
sions for the dispersion relation of the spoof SPP modes in these geometries and
for the effective electric and magnetic response of the structures supporting them.

We have also presented a number of guiding schemes for THz waves exploit-
ing the modal properties of spoof SPPs: conical and helically grooved wires,
corrugated channels and wedges, and domino structures. We have demonstrated
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that subwavelength routing of THz radiation in such geometries can be achieved
by tailoring the parameters of the waveguiding design.

Throughout the chapter, we have linked the technological interest of spoof SPPs
to their ability for transferring the capabilities of canonical SPPs in the optical
regime to low-frequency domains such as the microwave or terahertz domains.
However, the potential applications of these spoof SPP modes is not limited to that.
Microwave and terahertz spoof SPP modes sometimes exhibit modal characteristics
very different from conventional SPPs, which may lead to novel electromagnetic
phenomena which do not have a counterpart in the optical regime. Moreover, the
transfer of the spoof SPP concept to higher frequencies, where the hybridization
of dielectric and geometrical effects may take place, promises to be a very exciting
line of research for the future [62].
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Negative refraction using plasmonic structures
that are atomically flat

peter b. catrysse, hocheol shin, and shanhui fan

8.1 Introduction

All-angle negative refraction of electromagnetic waves [1, 2] has generated great
interest because it provides the foundation for a wide range of new electromag-
netic effects and applications, including subwavelength image formation [2] and
a negative Doppler shift [1], as well as novel guiding, localization and nonlin-
ear phenomena [3, 4]. There has been tremendous progress in achieving negative
refraction in recent years using either dielectric photonic crystals [5–9] or metal-
lic meta-materials [10–17]. For either approach, however, there is an underlying
physical length scale that sets a fundamental limit [18]. Below such a length scale,
the concept of an effective index no longer holds. For photonic crystals, it is the
periodicity, which is smaller than but comparable to the operating wavelength of
light [8]. For metallic meta-materials, it is the size of each individual resonant
element. In the microwave wavelength range, constructing resonant elements that
are far smaller than the operating wavelength is relatively straightforward. As one
pushes towards shorter optical wavelengths, however, it becomes progressively
more difficult to construct resonant elements at a deep subwavelength scale [15].
Moreover, in the optical wavelength range, the plasmonic effects of metals become
prominent. The strong magnetic response of metallic structures, as observed in
microwave and infrared wavelength ranges, may be fundamentally affected. It is
therefore very desirable to accomplish all-angle negative refraction using struc-
tures that are flat at an atomic scale. Along these lines, a flat metal lens has been
experimentally demonstrated using surface plasmons [19]. The structure does not
operate, however, on the propagating components of a source [2]. Achieving a neg-
ative refractive index using nonmagnetic media has also been suggested [20, 21].
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It is not clear yet, however, what uniform physical medium would possess the
required dielectric dispersion properties.

In this chapter, we review our work on the creation of all-angle negative refrac-
tion with atomically flat structures. We first introduce the plasmonic model for
metals that we used to highlight the physics. We briefly review the types of modes
that are supported by single metal–dielectric interfaces and metal–dielectric–metal
structures. Next, we describe our approach for achieving all-angle negative refrac-
tion for surface plasmon waves with a hetero–metal–dielectric–metal structure. We
demonstrate lens operation numerically for both a plasmonic metal model and real
metal data. We then proceed to investigate the design of all-angle negative refrac-
tion and evanescent wave amplification with a metallo-dielectric photonic crystal
in which each cell consists of a metal and a dielectric layer. We conclude with an
overview of related work that has been done in this area of research.

8.2 Physics

To highlight the essential physics of the structures we are about to consider, we
begin by describing the dielectric function of the metal with a Drude free-electron
model:

εm(ω) = 1 − ω2
p

ω(ω − iωτ )
, (8.1)

where ωp and ωτ are the bulk plasma frequency and the collision frequency of
the metal, respectively. In this model, the dielectric function takes into account
the contribution of free electrons only and, hence, displays plasma-like dispersion.
We refer to Eq. (8.1) as the plasmonic model for metals; in particular, when ωτ

is set to zero, we call it the lossless plasmonic model. Despite its simplicity, the
plasmonic model describes the main features of the dielectric function for real
metals. Moreover, it has also provided valuable insights into their optical behavior
[22]. In most metals, for example, ωp is generally in the range of ultraviolet or
even shorter wavelengths [23]. A metal exhibits therefore a negative dielectric
constant at visible and infrared wavelengths, and bulk metal does not support
propagating electromagnetic waves at these wavelengths. We use the plasmonic
model to analyze the optical properties of metallic structures and to establish a
sound theoretical background before proceeding to realistic designs based on a
more complex model of real metals. The magnetic permeability μ is assumed to
equal unity since metal is nonmagnetic at optical frequencies.

While metals do not allow bulk electromagnetic waves, a plasmonic metal
can support a surface mode propagating along its interface with a dielectric with
a positive dielectric constant. This mode comes in the form of a polariton and
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Figure 8.1. (a) Dispersion relation of a metal–dielectric interface. The inset shows
the geometry. The frequency and the wave number are normalized with respect
to ωp, and kp = ωp/c, where c is the speed of light in free space. The gray area
respresents the continuum of modes that are extended in metals. For the surface
plasmon polariton (SPP) mode indicated by the black dot, we show (b) a magnetic
field distribution where the left gray spot, the white region, and the right gray spot
correspond to positive, zero, and negative Hy , respectively, (c) a vector plot of
the electric field with a schematic surface charge distribution superimposed, and
(d) the time-averaged Poynting vector.

physically corresponds to the coupling of an electromagnetic wave and free electron
charges. It is often referred to as a surface plasmon polariton (SPP). We briefly
summarize the SPP properties using its dispersion relation, which relates frequency
ω and wave number parallel to the interface kz for the eigenmodes supported by the
metal–dielectric interface (Fig. 8.1(a)) [22]. Note that SPP modes have transverse
magnetic (TM) polarization with magnetic field perpendicular to the direction of
propagation (Fig. 8.1(b)). Figure 8.1(c) shows the electric field with surface charge
superimposed. The dispersion curve of this mode is located completely below
the light line in the dielectric, which is the signature of a surface-bound mode.
Hence, modal size is not subject to the diffraction limit [24] and can, in principle,
be arbitrarily small. Unlike a conventional waveguide mode, the dispersion curve
has an upper bound at ωsp = ωp/

√
1 + εd , which is commonly referred to as the

surface plasmon frequency where the metal dielectric constant (εm) is equal in
magnitude and opposite in sign to that of the dielectric (εd) [25]. Finally, the band
has a positive group velocity (vg = dω/dkz) at all frequencies, and the eigenmode
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Figure 8.2. (a) Three sets of dispersion relations for MDM structures in which
the separation d = 0.1λp, d = 0.25λp, and d = 0.5λp. The dashed line represents
the light line in the dielectric (e.g. air). The gray area represents the continuum
of extended modes in the metal. (b) Coupling through field overlap of the two
otherwise independent surface plasmons (leftmost). As a result, the modes split
into even (center) and odd (rightmost) modes. The fields shown here are the
magnetic fields (Hy).

carries net power in the positive z direction. This is confirmed by the time-averaged
Poynting vector Sz. Positive Sz means the power flows along with the phase front,
whereas negative Sz means the power flows opposite to the phase front propagation
direction. Figure 8.1(d) shows there is a sign change in the Poynting vector: such a
unique power reversal phenomenon occurs due to the negative dielectric constant
of the metal. Still, the SPP mode carries net power flow in the positive z direction
because more power is carried in the air region than in the metal region.

We now consider a metal–dielectric–metal (MDM) structure, where we have
two separate metal–dielectric interfaces in proximity to each other. In contrast
to the metal–dielectric interface, the dispersion diagram features three bands of
modes whose fields are guided in the dielectric region (Fig. 8.2(a)) [22]. We are
interested in only the two lowest-frequency bands whose mode profiles exhibit
the surface-bound nature. The third-order modes are similar to typical dielectric
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waveguide modes whose dispersion curves asymptotically approach the light line in
the dielectric in the limit kz → ∞. The first two bands, on the other hand, approach
ωdielec

sp = ωp/
√

1 + εd in the limit kz → ∞. For the second band, the frequency
ωII (kz = 0) depends on the dielectric thickness d. When d < λp/4

√
1 + εd/

√
εd ,

where λp = 2πc/ωp and c is the speed of light in a vacuum, ωII (kz = 0) becomes
greater than ωdielec

sp and the band acquires a negative slope and a negative group
velocity [26]. The aforementioned features in the dispersion diagram can be best
explained with the coupling theory of two otherwise single-interface surface plas-
mons. If the coupling between the two interfaces were to be negligible, the disper-
sion diagram for the MDM structure would be identical to that of a single-interface
surface plasmon. For finite d, the field overlap becomes zero as kz → ∞. Hence,
the surface plasmon modes become degenerate at ωsp in the limit kz → ∞. How-
ever, as the field overlap increases from zero with decreasing kz, the degeneracy is
lifted into an even (band I) mode and an odd (band II) mode with a frequency gap:
the even (odd) mode is shifted up (down) (Fig. 8.2(b)).

In the MDM structure, the negative group velocity is related to the negative power
flow of the mode. For any given eigenmode, the time-averaged Poynting vector
always changes sign across a metal–dielectric interface, since the displacement
fields normal to the interface are continuous, and the dielectric constant of the metal
region is negative. As a result, the Poynting vector inside the metal is opposite to
the phase velocity. For the MDM structure, the modes in the second band can have
more power in the metal than in the dielectric, resulting in a net power flow that
is opposite to the phase velocity [27]. Therefore, such a structure has an effective
negative refractive index for the frequency range of band II.

8.3 All-angle negative refraction for surface plasmon waves

The second band for the MDM structure and the surface plasmon band for the
metal–air interface overlap in frequency when εd > 1. With the proper choice of
dielectric thickness, the MDM region can therefore function as a negative refraction
lens for the propagating surface plasmon waves on the metal–air interface (Fig. 8.3).
Since the MDM structure by itself is uniform in all directions parallel to the metal
surface, the constant-frequency contour is exactly circular at all frequencies, which
makes it a unique physical realization of a negative index medium. In addition, one
can choose an operating frequency such that the wave numbers in the two regions
are matched in magnitude (Fig. 8.3(c)). The phase-index matching ensures negative
refraction at all angles of incidence, as well as aberration-free image formation,
as can be shown using Fourier decomposition. In the design, as shown, there
are reflections at the boundaries between the regions due to modal mismatch. The
physical origin of such reflections can be seen by analyzing the modal profile for the
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Figure 8.3. (a) Geometry of an imaging system consisting of a stripe of a metal–
dielectric–metal (MDM) structure on a metal surface. The arrows on the metal
surface indicate the lens operation. (b) Dispersion relations for modes of a metal–
air interface (left panel), and for modes in an MDM structure with d = 0.1λp

and εd = 4 (right panel). The corresponding structures are shown in the insets of
the respective panels. The gray areas represent the continuum of extended modes
in the metal regions. The black dots in both panels indicate the frequency ω0 at
which the wave numbers match in magnitude. (c) The constant-frequency contour
at ω0 for both the metal surface region (left side) and the MDM region (right side).
Arrows indicate group velocity direction. Dashed line represents conservation of
parallel wave vector.

two structures, shown as insets in Fig. 8.3(b), at the index matching frequency. On
the metal–air interface the mode intensity has a single maximum at the interface
(Fig. 8.4(a), left panel), while the mode intensity in the MDM region has two
maxima on the two metal–dielectric interfaces (Fig. 8.4(a), right panel). To optimize
modal overlap, instead of using the homo-MDM structure, where both the top and
the bottom metals are of the same kind, one can use a hetero-MDM structure,
where the metals have different bulk plasma frequencies, to break the symmetry
of the field profiles and enhance the fractional amplitude of the peak at the lower
interface (Fig. 8.4(b)).

We now numerically demonstrate the lens operation of a hetero-MDM structure.
We choose ω′

p = 0.6ωp, where ωp and ω′
p are the bulk plasma frequencies of the

lower and upper metal sections, respectively. This ratio corresponds to the ratio
between the plasma frequencies of Al (14.98 eV) and Ag (9.01 eV) in typical
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Figure 8.4. Magnetic field profiles. (a) A mode of the metal–air interface (left
panel) and a mode in the second band of a homo-MDM structure (right panel). All
metals have the same plasma frequency ωp; the dielectric region has a thickness
d = 0.1λp and a dielectric constant εd = 4. Both modes have the same frequency,
ω0 = 0.62ωp, and the same wave number, kp . (b) A mode of the metal–air interface
(left panel) and a mode in the second band of a hetero-MDM structure (right
panel). The metal at the top has a plasma frequency, ω′

p = 0.6ωp. The dielectric
parameters are the same as in (a). Both modes have the same frequency, ω0 =
0.54ωp, and the same wave number, 0.69kp.

Drude models [23]. The MDM region has

d = 0.1λp <
λsp

4
√

εd

, w = 8.67λp, l = 2.5λp, (8.2)

where w and l are the width and the length of the MDM, respectively (Fig. 8.3(a)).
The dielectric region has εd = 4. The simulations use the finite-difference time-
domain (FDTD) method in three dimensions with a grid size of λp/120. The
computational cell is surrounded by perfectly matched layer absorbing boundary
conditions [28]. We assume a near-lossless plasmonic model Eq. (8.1) for metals
with the collision frequencies set to one-thousandth of the metal plasma frequen-
cies. We excite surface plasmon waves on the left region of the metal surface by
placing a single dipole source at λp away from the edge of the MDM. The source
has a frequency ω = 0.539ωp and is polarized perpendicular to the metal surface.

The steady state field distribution for the x component of the electric field
is shown in Fig. 8.5(a). Two images are observed: one near the center in the
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Figure 8.5. The imaging process for surface plasmons with the hetero-MDM lens.
The computational setup is schematically shown in Fig. 8.3(a). Plotted is the steady
state Ex field distribution on a cross-section at 0.18λp above the bottom metal
surface. The image is formed clearly at large field values. (b) The time-average Ex

field intensity at the image plane for two point sources oscillating in phase. The
lens has a length of 1.7λp. The two point sources are separated by 0.93λp, and
are placed 0.5λp away from the edge of the lens. In comparison, at the operating
frequency ω0 = 0.539ωp, the surface plasmon wave at the metal–air interface has
a wavelength of 1.46λp.

MDM region, and the other on the right region of the metal surface. We also
observe significant field enhancement at the boundaries of the MDM region, indi-
cating excitation of edge states [29]. The actual field values at the boundaries are
underrepresented in Fig. 8.5(a), due to the shading scheme chosen, which satu-
rates at large field values in order to highlight the image. Our calculations show
that such a lens can resolve two sources, oscillating in phase, with a distance of
0.93λp between them (Fig. 8.5(b)). In comparison, the surface plasmon wave at
the metal–air interface has a wavelength of 1.46λp at this operating frequency. We
do not observe perfect image recovery, which is consistent with previous FDTD
simulations on an ideal negative index lens that had both ε and μ simultane-
ously negative [29–31]. In addition to computational constraints due to the finite
widths [29] and numerical dispersion for large wave vector components [31], Smith
et al. have shown theoretically that to achieve perfect imaging for a lens with length
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Figure 8.6. (a) Cross-sectional view of a simulated structure for the purpose of
demonstrating the imaging process with realistic material parameters. The solid
and dashed arrows indicate the positions of the source and image, respectively.
(b) Steady state Ez field for the structure shown in (a), on a cross-section at 60 nm
above the bottom Ag surface.

comparable to the wavelength of the incident wave requires parameter accuracy
that is very difficult to realize in either simulations or experiments [18].

For practical metallic structures, material loss is a major issue. The effect of
losses in the metal can potentially be mitigated by operating at low temperatures
[32], or by introducing gain [33]. For the structure we have proposed, the lens can
still function with proper design even in the presence of realistic material loss. As
an MDM lens demonstration, we use a Ag–GaP–Ag structure with a length of 280
nm, a width of 1440 nm, and a dielectric thickness of 24 nm. The surface of Ag
outside the MDM region is covered by a 28 nm thick Si3N4 film with a refractive
index n = 2 (Fig. 8.6(a)). The use of GaP and Si3N4 pushes the operating free-space
wavelength up to 479 nm, where Ag is less lossy. At this wavelength, however, there
is absorption loss from GaP. The overall loss is lower compared with structures
operating at shorter wavelengths, since the loss in Ag increases dramatically as
wavelength decreases.

To simulate this structure with FDTD, we fit the experimentally determined
dielectric constants of Ag and GaP with Lorentz–Drude models. Our models give
εAg = −7.47 − i0.73 and εGaP = 13.69 − i0.045 at the operating wavelength,
which is in excellent agreement with experimental values for these materials [34].
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The grid size is chosen to be 2 nm. The dipole source is placed on the Ag surface
40 nm away from the edge of the MDM region. Figure 8.6(b) shows the Ez field
profile at steady state. Although the amplitude of the transmitted wave is strongly
attenuated due to reflections and material losses, the image formation is still clearly
visible.

With this work, we have identified a new route toward all-angle negative refrac-
tion. The simplicity of MDM structures should enable one to incorporate negative
index materials into geometries that are more complex than a flat lens, which can
lead to a wide range of unexplored novel electromagnetic effects [35]. The pro-
posed structure also provides a new mechanism for controlling the propagation of
surface plasmons, which are important for manipulating light at the nanoscale [36].

8.4 All-angle negative refraction and evanescent wave amplification

In general, negative refraction and super-lensing effects do not necessarily require
a negative index medium [8]. It has been demonstrated, for example, that two-
or three-dimensional photonic crystal structures can provide all-angle negative
refraction in a positive refractive index medium, based on the negative photonic
mass, where the photonic band dispersion ω(k) is a convex function [6]. Such
a photonic crystal structure neither involves a negative refractive index for neg-
ative refraction nor does it require surface state excitations for evanescent wave
amplification. Still, a lens based on such a photonic structure is shown to have
super-resolution beyond the diffraction limit via an alternative mechanism. The
resolution of such a photonic crystal lens is ultimately limited due to its surface
periodicity at the interfaces [8].

In this section, we introduce a metallo-dielectric photonic crystal in which
each cell consists of a metal and a dielectric layer (Fig. 8.7(a)). We show that,
when the plasmonic properties of the metal become prominent, for example, in
the visible or ultra-violet wavelength range, such a structure exhibits all-angle
negative refraction at its interfaces. In contrast to the MDM negative refraction
lens [37], it does not possess an effective negative refractive index. Instead, the
all-angle negative refraction phenomenon is due to its convex dispersion band [38].
Moreover, its uniform surfaces parallel to the object plane distinguishes this lens
from all previously demonstrated photonic crystal lenses [6–9]. The resolution
is therefore not subject to the surface periodicity. With a proper design, such a
structure provides a resolution beyond the diffraction limit. While such structures
were initially studied by Bloemer and Scalora [39] as a transparent electrode,
our work explicitly shows that all-angle negative refraction for propagating waves
and recovery of evanescent components can be achieved simultaneously in such a
system [40].
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Figure 8.7. (a) Geometry of the metallo-dielectric photonic crystal structure.
(b) Projected band diagram ω(kx, kz) in the z direction and (c) band diagram
ω(kx, kz = 0) of the periodic structure in (a). The dashed lines are the light lines
in air and the horizontal lines indicate the operating frequency of ω = 0.55ωp.
(d) The CFC representation of ω(kx, kz) in the frequency range of the second band,
with the contour at ω = 0.55ωp highlighted with a thick line. The CFC in air at
ω = 0.55ωp represented by a circle is overlaid. For light incident from air onto the
crystal at an angle of incidence θ , the thin arrows indicate the wave vectors in air
and in the crystal, whereas the thick arrows indicate the group velocity directions
in air and in the periodic layer region. These directions are determined by the
procedure represented by the dashed line, which arises from the conservation of
the parallel wave vectors.

As a starting point, for simplicity we use a lossless plasmonic model, Eq. (8.1),
for metal. For concreteness, we assume that both the metal and dielectric layers are
0.2λp thick and choose a dielectric with a dielectric constant εd = 4 (Fig. 8.7(a)).
For the metallo-dielectric structure in Fig. 8.7(a), we numerically calculate the band
structure ω = ω(kx, kz) in the two-dimensional wave vector (k) space, using the
transfer matrix formalism. All the modes we calculate here have TM polarization
with a magnetic field parallel to the layers. Since the structure is periodic in the
x direction and uniform in the z direction, the edges of the first Brillouin zone
along the kx direction are located at ±π/0.4λp, while kz extends to ±∞. We show
the projected dispersion relation along the z direction in Fig. 8.7(b) [22], and the
dispersion relation ω(kx, kz = 0) in Fig. 8.7(c). The structure supports two bands
that both asymptotically approach the surface plasmon frequency of the metal–
dielectric interface at large kz (Fig. 8.7(b)). A significant portion of band II lies
above the light line. Consequently, externally incident light from air can couple to
this band.

To study the refraction properties of light in band II, we plot the corresponding
constant-frequency contours (CFCs) in Fig. 8.7(d), in the frequency range from
0.45ωp to 0.65ωp, which frequencies are close to the lower and upper edges of
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band II. Since the band maximum is located at km ≡ (kx = 1.25kp, kz = 0), as can
be inferred from Figs. 8.7(b) and (c), the CFCs in the frequency range close to
0.65ωp are of elliptical shapes centered around km, with the size of the contour
in the k-space decreasing with increasing frequency. Such a CFC satisfies the
condition for all-angle negative refraction of light externally incident from air [6].
As an illustration, we overlay in Fig. 8.7(d) a CFC of air at ω = 0.55ωp and plot
the direction of the refracted beam for light incident from air at an incidence angle
θ . The refraction direction, which clearly shows negative refraction behavior, is
derived based upon conservation of the parallel wave vector kz, and the fact that the
gradient ∇kω determines the direction of electromagnetic energy propagation. Also
at this frequency, since the radius of the air CFC is smaller than kmax

z (defined as the
maximum |kz| allowed in the photonic crystal), negative refraction occurs for all
angles of incidence. For this structure, all-angle negative refraction exists within
the entire frequency range 0.447ωp < ω < 0.615ωp, where the metal dielectric
constant is −4.00 < εm < −1.64. We have analyzed similar structures with other
geometrical parameters. In general, all-angle negative refraction occurs when the
dielectric thickness is smaller than λp

√
1 + εd/4

√
εd , which is closely related to

the fact that with the same dielectric thickness a metal–dielectric–metal waveguide
exhibits a negative group velocity [26] and the metal layer thickness has to be
smaller than the skin depth to allow penetration of incident light into the structure.

In addition to focusing the propagating field components, our metallo-dielectric
structure can provide recovery of the evanescent components of an object. For an
object in air, the evanescent components have parallel wave vector components
|kz| > k0, where k0 = ω/c. Using our structure, the evanescent components in the
region k0 < |kz| < kmax

z can be recovered. In this range of kz, for a structure with an
infinite number of periods, there exist propagating Bloch modes (Fig. 8.7). When
the periodic structure is truncated with air, the Bloch modes undergo total internal
reflection at the air interface. For a slab structure composed of a finite number
of metal–dielectric layers, waveguide modes can therefore exist depending on the
thickness of the slab structure. These waveguide modes provide the mechanism to
amplify the optical near field. For our structure, which has a thickness of 4.5 periods
(see the inset in Fig. 8.8(a)), we use the transfer matrix method to calculate the
transmission coefficient through the multi-layer structure at different wave numbers
kz at ω = 0.55ωp (Fig. 8.8(a)). The transmission coefficient T is defined as the ratio
of the complex amplitude of the transmitted wave to that of the incident wave. The
transmission |T | is fairly constant and smaller than unity in the propagating regime
kz/k0 ≤ 1, where negative refraction occurs. In the evanescent regime, where
kz/k0 > 1, two sharp transmission peaks occur at kz = 1.23k0 and kz = 1.58k0,
indicating the existence of waveguide modes. The width of the peaks is related to
the loss in the metal, and can be made arbitrarily small when the loss in the metal
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Figure 8.8. (a) Amplitude of the transmission coefficient through a multi-layer
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gray layers represent the metal and the dielectric, respectively. (b) The steady state
magnetic field Hy distribution with an incident evanescent wave of kz = 1.23k0 at
ω = 0.55ωp.

vanishes, in which case the amplitude of the peaks diverges. The height of the peaks
greatly exceeds unity, indicating strong amplification of the optical near field at
these vector components. Figure 8.8(b) shows the magnetic field Hy distribution on
resonance at kz = 1.23k0, i.e. the signature of the waveguide mode where the field
is highly concentrated in the structure. Such amplification, due to the presence of
the waveguide mode, can be used to amplify the decaying evanescent fields from
the source, leading to partial recovery of the evanescent components of the object
[8]. Furthermore, it was noted by Luo et al. [8] that the use of the waveguide
mode for subwavelength imaging has better tolerance to deviations from the ideal
condition than a surface-plasmon-based mechanism.

The effects of negative refraction for propagating waves and amplification for
evanescent waves, as discussed above using the lossless plasmonic model, also
occur in real metal systems with realistic losses, which can be substantial at optical
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frequencies. As an example, we consider a structure composed of five layers of
Ag and four layers of Si3N4. Both the Ag and Si3N4 layers are 40 nm thick. At
λ = 363.6 nm, the dielectric constants for Ag and Si3N4 are εAg = −2.51 − i0.60
and εSi3N4 = 4 [34]. Using the transfer matrix method, we calculate the magnetic
field Hy distribution both inside and outside the structure, in the presence of a
point-like object located in air at 48 nm away from the slab surface. The field
intensity of the object is Gaussian in the z direction, where the full width at half
maximum (FWHM) is equal to one-tenth of the propagating wavelength. The object
is formed by a Gaussian-weighted sum of plane waves with parallel wave vector
components kz ranging from −11k0 to +11k0. To calculate the image, we determine
the amplitudes of the forward and backward waves for every parallel wave vector
component in each layer, and superimpose all the plane wave components to obtain
the full magnetic field distribution. Figure 8.9(a) shows the field distribution, which
clearly shows an image formed on the opposite side of the structure in air. To assess
the resolution performance of the slab lens, we plot the magnetic field intensity
|Hy |2 at the image plane (x = 48 nm) and compare the image against the diffraction-
limited image (Fig. 8.9(b)). The diffraction-limited image is calculated by taking
only propagating components from the Gaussian object field. The comparison in
Fig. 8.9(b) clearly indicates recovery of the evanescent wave components from the
original object field. While the FWHM of the solid curve is 0.44λ, the FWHM of
the dashed curve is 0.31λ. The same design principle may also be applicable to
longer wavelength ranges using dispersive materials such as polaritonic media.

We have demonstrated that both all-angle negative refraction and evanescent
wave amplification can occur using a one-dimensional photonic crystal consisting
of metal–dielectric multi-layers. Based on the theory, we designed a Ag–Si3N4

multi-layer structure that operates in the visible wavelength range, and we verified
its subwavelength resolution. Our result not only provides an alternative approach
to the practical realization of a super-lens at optical frequencies, but also opens a
new perspective on light propagation in metals.

8.5 Related work

We now briefly describe a selection of works that are closely related to our work
on negative refraction with atomic-scale media. The field of negative refraction is
a very large one, and this selection is representative without being comprehensive.

Very recently, our approach towards all-angle negative refraction for surface
plasmon waves with a hetero-MDM structure was experimentally demonstrated
by the Atwater group at Caltech [40]. Lezec et al. demonstrate an experimen-
tal realization of a two-dimensional negative index material in the blue–green
region of the visible spectrum. Their work features direct geometric visualization
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the operating wavelength λ = 363.6 nm. (b) The field intensity at the image plane
(x = 48 nm) with the multi-layer structure (dashed line) and the diffraction-limited
field intensity (solid line).

of negative refraction. To achieve negative indices, they employed an ultrathin
Au–Si3N4–Ag hetero-MDM structure, which, as we described, sustains a surface
plasmon polariton mode with antiparallel group and phase velocities. All-angle
negative refraction was observed at the interface between this hetero-MDM and a
conventional Ag–Si3N4–Ag MDM structure. This experimental result is the first
step in the development of practical negative index optical designs in the visible
regime.

Bloemer et al. present a theoretical analysis of a broadband super-resolving
lens with high transparency in the visible range [41]. The lens is based on one-
dimensional metal–dielectric photonic band gap crystals composed of Ag/GaP
multi-layers. The individual Ag layers are 22 nm thick and can be readily fabricated
in conventional deposition systems. In this design the lens maintains a normal
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incidence transmittance of 50% for propagating waves over the super-resolving
wavelength range of 500–650 nm.

Podolskiy and Narimanov developed an approach to build a material with nega-
tive refraction index in a similar geometry [21]. Their approach is also intrinsically
nonmagnetic, but differs from ours in that it uses a material with a strong anisotropic
dielectric constant to provide a left-handed behavior in a waveguide geometry.

Using the concepts of nanoscale circuit elements at optical frequencies, Alú
and Engheta theoretically investigate optical nanotransmission lines that can be
regarded as stacks of plasmonic and nonplasmonic planar slabs [42]. Such struc-
tures are similar to those described in Section 8.3 on achieving all-angle negative
refraction for surface plasmon waves. The authors independently come to the con-
clusion that such structures may be designed to exhibit effectively the properties of
planar metamaterials of “forward (right-handed) or backward (left-handed) opera-
tion.” In particular, negative refraction and left-handed propagation are shown to be
possible in these planar plasmonic guided-wave structures, providing possibilities
for subwavelength focusing and imaging in planar optics and laterally confined
waveguiding at IR and visible frequencies.

We have recently demonstrated that the entire dispersion behavior of coax-
ial plasmonic structures, including the number of modes at every frequency, the
modal propagation constants, the propagation losses, and the cutoff frequencies of
propagating modes, can be understood through a direct connection with the planar
metal–dielectric–metal geometry [43]. This intuitive picture allows for a qualitative
understanding of these technologically important structures and opens up the way
to design meta-materials based on them as well. It is therefore not too surprising to
find that structures based on closely packed deep-subwavelength plasmonic coaxial
waveguides have been shown to act as negative index meta-materials [44].
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Anomalous transmission in waveguides with
correlated disorder in surface profiles

f. m. izrailev and n. m. makarov

9.1 Introduction

In recent years, increasing attention has been paid to the so-called correlated disor-
der in low-dimensional disordered systems. Interest in this subject is mainly due to
two reasons. First, it was found that specific correlations in a disordered potential
can result in quite unexpected anomalous properties of scattering. Second, it was
shown that such correlations can be relatively easily constructed experimentally,
at least in the one-dimensional Anderson model and in Kronig–Penney models of
various types. Therefore, it seems to be feasible to fabricate random structures with
desired scattering properties, in particular when one needs to suppress or enhance
the localization in given frequency windows for scattering electrons or electromag-
netic waves. In addition, it was understood that, in many real systems, correlated
disorder is an intrinsic property of the underlying structures. One of the most
important examples is a DNA chain, for which strong correlations in the potential
have been shown to manifest themselves in an anomalous conductance. Thus, the
subject of correlated disorder is important both from the theoretical viewpoint, and
for various applications in physics.

The key point of the theory of correlated disorder is that the localization length
for eigenstates in one-dimensional models absorbs the main effect of correlations
in disordered potentials. This fact has been known since the earliest analytical
studies of transport in continuous random potentials. However, until recently the
main interest was in delta-correlated potentials, or in potentials with a Gaussian-
type of correlation. On the other hand, it was shown [1–7] that the most interesting
effect is related to specific long-range correlations that can be fabricated in practice.
In particular, it was demonstrated that in the standard one-dimensional Anderson
model one can observe effective mobility edges in the energy spectrum, when the
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pair correlator computed along the disorder is of a specific form. The important
feature of the mobility edge ωc in the frequency spectra of traveling waves is
that it separates the region of strongly localized states from that of very extended
states. This property is important for the construction of potentials with selective
transmission or reflection. From the experimental viewpoint, many of the results
obtained may have a strong impact on the creation of a new class of electron
nanodevices, optical fibers, and acoustic and electromagnetic waveguides, with
selective transport properties.

In spite of an asymptotic nature of the theoretical results obtained for infinitely
large samples and weak disorder, the analytical predictions were found to work
relatively well for a strong disorder. The first experimental study [8–10] of both
the suppression and enhancement of localization due to correlated disorder, was
performed on single-mode electromagnetic waveguides. It was shown that in the
case of statistically correlated point-like surface scatterers one can create controlled
frequency windows of enhanced transmission, or windows with a very strong
reflection. The important point is that, in spite of many experimental imperfections,
such as very strong absorbtion or a small number of scatterers with large amplitudes,
selective transport was clearly observed in accordance with the theory.

For single-mode waveguides the problem of surface scattering can be reduced
to that for one-dimensional disordered models. For this reason the methods and
results obtained for the latter case can be directly applied for the waveguides
[11–15]. The situation is fundamentally different for many-mode waveguides. The
problem of wave propagation through such systems with corrugated surfaces has a
long history, and remains a hot topic in the literature. This problem naturally arises
in the analysis of spectral and transport properties of optical fibers, acoustic and
radio waveguides, remote sensing, shallow water waves, multilayered systems and
photonic lattices, etc. [16–21]. Similar problems emerge in quantum physics when
describing the propagation of quasi-particles in thin metal films and semiconduc-
tor nanostructures, such as nanowires and strips, superlattices and quantum-well-
systems [22–31]. Recently, new theoretical results [32, 33] have been obtained
for one-dimensional disordered models describing photonic crystals, bi-layered
metamaterials and electronic superlattices. Experiments performed on microwave
guiding systems with intentionally randomized model parameters [34, 35] have
confirmed the predictions of the theory.

As is well established, the scattering from corrugated surfaces results in diffu-
sive transport [36–53], as well as in the effects of strong electron/wave localization
[54–70]. Correspondingly, the eigenstates of periodic systems with corrugated
surfaces turn out to have a chaotic structure [71–74]. Recent numerical stud-
ies of quasi-one-dimensional surface-disordered systems [67–70] have revealed a
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fundamental difference in their properties from those known in the standard models
with bulk random potentials [29]. Specifically, it was found that transport proper-
ties of quasi-one-dimensional waveguides with rough surfaces essentially depend
on many characteristic lengths. In comparison, for bulk scattering all transport
characteristics depend on one parameter only, which is the ratio of the localization
length to the size of a sample (the so-called single-parameter scaling).

The situation in many-mode waveguides in the presence of long-range correla-
tions was found to be quite tricky [13, 75, 76]. It was shown that the long-range
correlations, on the one hand, give rise to a suppression of the interaction between
different propagating waveguide modes. On the other hand, the same correlations
can provide a perfect transparency of each independent channel, similar to what
happens in the one-dimensional geometry. The number of independent transparent
modes is governed by the correlation length, and can be equal to the total num-
ber of propagating modes. Therefore, the transmission through such waveguides
can be significantly enhanced in comparison with the case of uncorrelated surface
roughness.

It should be stressed that the main results in the theory of surface scattering
were obtained for random surfaces with rapidly decaying correlations along the
structures. Therefore, it is of great importance to explore the role of specific long-
range correlations in surface profiles, using the results found for one-dimensional
systems with correlated disorder. Apart from its theoretical interest, this problem
can be studied experimentally, since the existing experimental techniques allow for
the construction of systems with sophisticated surfaces [77, 78].

We would like to note that in order to focus on the role of long-range correlations
in surface profiles, in this chapter we do not discuss the so-called square-gradient
mechanism of scattering. As was recently shown, this mechanism emerges due to
a quite specific dependence of the scattering length on the second derivative of
scattering profiles. The theoretical aspects of the square-gradient scattering and its
possible experimental implications can be found in refs. [79–83].

9.2 Surface-corrugated waveguide

As a physically plausible and commonly used model to study multiple surface
scattering, we consider an open planar waveguide of length L and average width d

with perfectly conducting lateral walls. It is natural to require the waveguide length
to be much greater than its width, d � L. Such a system is called quasi-one-
dimensional. The x-axis is stretched along the structure and the z-axis is directed
in the transverse direction. The lower boundary of the waveguide is assumed to have
a rough (corrugated) profile z = ξ (x), slightly deviated from its flat average z = 0.
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Figure 9.1. Planar waveguide with a lower corrugated edge.

The upper boundary is taken to be flat, z = d (see Fig. 9.1). Thus, the surface-
corrugated guiding system occupies the area defined by the following relations:

− L/2 < x < L/2, ξ (x) � z � d. (9.1)

The random function ξ (x) describing the surface roughness is assumed to be
statistically homogeneous with the following characteristics:

〈ξ (x)〉 = 0, 〈ξ 2(x)〉 = σ 2, 〈ξ (x)ξ (x ′)〉 = σ 2W(x − x ′). (9.2)

The angle brackets 〈. . .〉 stand for ensemble averaging over the disorder, i.e. over
different realizations of the random surface profile ξ (x), or for a spatial average
over the coordinate x of any prescribed realization. These two types of averaging
are assumed to be equivalent due to ergodicity. The variance of ξ (x) is denoted
by σ 2, and, consequently, σ is the root-mean-square roughness height. The binary
(two-point) correlator W(x) is normalized to its maximal value, W(0) = 1, and
is assumed to decrease with increasing |x| on a characteristic scale termed the
correlation length.

In what follows we consider weak surface scattering for which the corrugations
are small, σ � d. This limitation is common in the surface scattering theories based
on appropriate perturbative approaches [16]. As is known, for weak scattering all
transport properties are entirely determined by the roughness power spectrum
W (kx),

W(x) =
∫ ∞

−∞

dkx

2π
exp (ikxx) W (kx), (9.3a)

W (kx) =
∫ ∞

−∞
dx exp(−ikxx)W(x). (9.3b)

From Eq. (9.2) the pair correlator W(x) is seen to be a real and even function of
the coordinate x. Its Fourier transform W (kx) is an even, real and non-negative
function of the longitudinal wave number kx . Note that the condition W(0) = 1 is
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equivalent to the following normalization for W (kx):∫ ∞

−∞

dkx

2π
W (kx) = 1. (9.4)

Since in the x-direction the system is open, at x = ±L/2 we assume radiative
boundary conditions. In the transverse z-direction the zero Dirichlet boundary
conditions are applied at both lateral walls, z = ξ (x) and z = d. Thus, the analysis
of the surface scattering in our model is reduced to the study of the following
two-dimensional boundary-value problem:(

∂2

∂x2
+ ∂2

∂z2
+ k2

)
�(x, z) = 0, (9.5a)

�(x, z = ξ (x)) = 0, �(x, z = d) = 0. (9.5b)

Here k = ω/c is the total wave number for an electromagnetic wave of frequency
ω and TE polarization, propagating through a waveguide with perfectly conducting
walls. Note that, in contrast with bulk scattering, here the wave equation does not
contain any scattering potential since the source of the scattering is the roughness
of the boundaries.

In an ideal waveguide with flat walls, ξ (x) = 0, the solution of the problem (9.5)
has the canonical form of normal waveguide modes, i.e.

�n,±(x, z) = 1√
πd

sin
(πnz

d

)
exp(±iknx). (9.6)

Here the integer n = 1, 2, 3, . . . enumerates the normal modes (9.6) with the trans-
verse wave number kz = πn/d. The longitudinal wave number kx = ±kn for the
nth mode is given by

kn =
√

k2 − (πn/d)2. (9.7)

Evidently, the transport properties depend only on normal modes that can propagate
along the waveguide, i.e. have a real value of kn. As follows from Eq. (9.7), such
propagating modes have indices n � Nd , and their total number Nd is equal to the
integer part [. . .] of the ratio kd/π ,

Nd = [kd/π ]. (9.8)

The waveguide modes with indices n > Nd have purely imaginary wave numbers
kn. These evanescent modes decay exponentially rapidly on a scale of the order of
the wavelength. As one can see, the unperturbed (flat) waveguide is equivalent to
a set of Nd one-dimensional noninteracting conducting channels occupied by the
corresponding propagating modes.
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9.3 Single-mode structure

Keeping in mind the relevance of wave scattering to the Anderson localization,
let us first consider a single-mode waveguide. When the mode parameter kd/π is
restricted by the relation 1 < kd/π < 2, and the number of conducting channels
equals one, Nd = 1. The transmission through such a waveguide depends on the
longitudinal wave number k1:

k1 =
√

k2 − (π/d)2. (9.9)

All other waveguide modes with n � 2 are evanescent and do not contribute to
the transport properties. From the single-mode condition it follows that the wave
number k1 is confined within the interval

0 < k1d/π <
√

3. (9.10)

Note that the weak surface-scattering condition σ � d leads to the inequality
k1σ � 1.

As was shown in refs. [56–59], the transport problem (9.5) for the surface-
disordered single-mode waveguide is equivalent to a one-dimensional disordered
model,

[
d2

dx2
+ k2 − V (x)

]
ψ(x) = 0 , (9.11)

where k1 replaces k. In such a description, the effective potential V (x) has the
form

V (x) = 2

π

(π

d

)3
ξ (x) , (9.12)

which is entirely determined by the rough surface profile ξ (x).
As one can see, the surface scattering in one-mode waveguides is equiva-

lent to the bulk scattering emerging in one-dimensional disordered systems. The
latter problem can be solved with the use of well developed methods, such
as the perturbative diagrammatic technique of Berezinski [23, 24], the invari-
ant imbedding method [56–59, 84–86] or the two-scale approach [61–63, 87].
All these methods allow one to take adequately into account the effects of the
coherent multiple scattering from the corrugated surface giving rise to Anderson
localization.
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The main theoretical result is that the average transmittance 〈T 〉 as well as all of
its moments 〈T s〉, are described by the universal function

〈T s(L/Lloc)〉 = 1

2
√

π

(
L

2Lloc

)−3/2

exp

(
− L

2Lloc

)

×
∫ ∞

0

z dz

cosh2s−1 z
exp

(
−z2 Lloc

2L

)∫ z

0
dy cosh2(s−1) y ,

s = 0, ±1, ±2, . . . . (9.13)

This function depends solely on the ratio L/Lloc between the waveguide length L

and the localization length Lloc (see, for example, ref. [25]).
In one-dimensional disordered systems a wave can be scattered either forward

or backward. However, it was shown that the transport properties are determined
exclusively by the backscattering while the forward scattering has no influence.
Therefore, the quantity Lloc is, in fact, the backscattering length emerging in an
infinite one-dimensional structure. It is important that the inverse value L−1

loc can
be associated with the Lyapunov exponent appearing in various transfer matrix
approaches [25]. In the latter description, the Lyapunov exponent gives the average
rate of decrease of the wave function 〈ψ(x)〉 away from the center of its localization.

It should be stressed that the dependence of the transport properties on the ratio
L/Lloc manifests a principal concept of one-parameter scaling that constitutes the
phenomenon of one-dimensional Anderson localization. The nontrivial point of
this concept is that in order to describe the transport properties of finite samples
of size L, it is sufficient to know how the wave function is localized in an infinite
sample with the same disorder.

From Eq. (9.13) one can derive relatively easily the expressions for low moments
of the transmittance T . Specifically, for s = 1 one obtains the average transmittance
〈T (L/Lloc)〉:

〈T (L/Lloc)〉 = 1

2
√

π

(
L

2Lloc

)−3/2

exp

(
− L

2Lloc

)

×
∫ ∞

0

z2 dz

cosh z
exp

(
−z2 Lloc

2L

)
. (9.14)

The second moment, s = 2, is important for obtaining the variance of the trans-
mittance. It can be shown that, for Lloc � L, the variance is of the order of the
squared average transmittance itself. This means that for strong localization the
transmittance is not a self-averaging quantity. Hence, by changing the length L of
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the waveguide, or the disorder itself, one should expect very large fluctuations of
the transmittance. Such fluctuations are known as the mesoscopic fluctuations that
are characteristic of strong interference effects on a macroscopic scale.

In order to characterize properly the transport properties of one-dimensional
structures for any degree of localization (ratio L/Lloc), one should refer to the
self-averaging logarithm of the transmittance,

〈ln T (L/Lloc)〉 = −2L/Lloc. (9.15)

This result is consistent with an exponential decrease of the transmittance averaged
over the so-called representative (nonresonant) realizations of the random disorder
[25],

〈T (L/Lloc)〉rep = exp(−2L/Lloc). (9.16)

Note that Eq. (9.15) is quite often used as the definition of the localization length
Lloc itself. It is highly nontrivial that by exploring the transmission properties of
finite samples, one can extract the localization length that is defined for infinite
samples. This fact is again the manifestation of one-parameter scaling.

In accordance with the scaling concept, in the one-dimensional geometry there
are only two characteristic regimes, corresponding to (i) ballistic and (ii) localized
transport.

(i) The ballistic transport occurs if the localization length Lloc is much larger than
the system length L. In this case the one-dimensional structure is practically
fully transparent, since its average transmittance is close to unity,

〈T (L/Lloc)〉 ≈ 1 − 2L/Lloc for Lloc � L. (9.17)

This asymptotic expression results from both Eq. (9.14) and Eq. (9.16).
(ii) Otherwise, the disordered structures exhibit localized transport, when the local-

ization length Lloc is smaller than the sample length L. In this case the average
transmittance, Eq. (9.14), is exponentially small,

〈T (L/Lloc)〉 ≈ π3

16
√

π
(L/2Lloc)

−3/2 exp (−L/2Lloc) (9.18)

for Lloc � L. This means that in the localization regime disordered single-
mode waveguides perfectly (with an exponential accuracy) reflect the incoming
waves.

According to Eq. (9.18), the transmission exponentially decreases on the scale
L ≈ 2Lloc, with an additional power prefactor. In contrast, the transmittance,
Eq. (9.16), has an exponential dependence with a much faster decrease on the
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scale L ≈ Lloc/2. This fact can be explained as follows. The main contribution to
the asymptotic form (9.18) for the average transmittance (9.14) is given by resonant
realizations of the random potential V (x). For these realizations the transmittance
is almost equal to unity; however, they have an exponentially small probability. On
the other hand, for representative realizations (most probable, but nonresonant) the
transmittance is described by Eq. (9.16). This effect is peculiar to the mesoscopic
nature of Anderson localization.

Equations (9.13)–(9.18) are universal and applicable for any one-dimensional
system with a weak static disorder. As one can see, in order to describe transport
properties of finite structures, one needs to know the localization length Lloc.
According to different approaches [23–25, 84–87], the inverse localization length
for any kind of weak disorder is determined by the 2k-harmonic in the randomness
power spectrum S(kx) of the scattering potential V (x):

L−1
loc(k) = S(2k)/8k2, (9.19a)

〈V (x)V (x ′)〉 = C(x − x ′), (9.19b)

S(kx) =
∫ ∞

−∞
dx exp(−ikxx) C(x). (9.19c)

For elastic backward scattering, the wave vector k conserves its value k, changing
its sign, |�k| = 2k. Accordingly, Eqs. (9.19) reflect the fact that the localization
length is defined by the backscattering length only.

Equations (9.19) indicate that the global properties of the wave transmission
through one-dimensional disordered media depend on the two-point correlations
in the random scattering potential. Therefore, if the power spectrum S(2k) is very
small, or vanishes within some interval of the wave number k, then the localization
length Lloc appears to be very large (Lloc � L), or even diverges. Evidently, the
localization effects can be neglected in this case, and the structure, even of a large
length, is fully transparent. This means that, in principle, by a proper choice of
the disorder, one can design the disordered structures with selective (anomalous)
ballistic transport within a prescribed range of k.

Taking into account the form (9.12) of the potential and its correlation properties
(9.2), from Eqs. (9.19) one can readily derive the following explicit formula for the
localization length in the single-mode waveguide [56–59]:

L−1
loc(k1) = 2σ 2

π2

(π

d

)6 W (2k1)

(2k1)2
. (9.20)

Since the potential, Eq. (9.12), is entirely determined by the rough surface pro-
file ξ (x), the localization length, Eq. (9.20), is specified by the roughness power
spectrum W (kx). Therefore, by a proper fabrication of a random profile ξ (x) with
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specific long-range correlations, one can arrange a desirable anomalous trans-
port within a given window of k = ω/c inside the single-mode region given in
Eq. (9.10).

Before we begin with a practical implementation of Eq. (9.20) for the inverse
localization length, it is worthwhile clearing up some points. First, one should stress
that this result, as well as Eqs. (9.19) obtained by various methods, is an asymptotic
one. This means that the higher terms are non-controlled; however, they can be
neglected in the limit σ 2 → 0. Second, the main assumptions used in the derivation
of Eq. (9.20) are based on the validity of averaging over different realizations of
disorder (see, for instance, ref. [87]). The condition for such an average is that
two lengths, Lloc and L, are much larger than two other characteristic lengths, the
wavelength k−1

1 and the correlation length k−1
c determining the maximal value of

the power spectrum W (2k1). One should stress that, for any finite values of k1 and
kc, this condition can always be satisfied due to the asymptotic nature of Eq. (9.20)
(or, what is the same thing, due to the small value of σ 2).

9.4 Design of a random surface profile with predefined correlations:
convolution method

From the preceding considerations it is seen that, in principle, by a proper choice
of surface disorder one can artificially create systems with selective transparency
or reflectivity. Thus, the important practical problem arises of how to construct
a corrugated surface profile from a predefined roughness power spectrum W (kx).
This problem can be solved by employing a widely used convolution method that
was originally proposed in ref. [88]. The modern applications of this method for
the generation of random structures with specific correlations, including long-range
nonexponential correlations, can be found in refs. [77] and [89–98] and in other
papers cited in this chapter.

The method consists of the following steps. First, having a desired form for the
power spectrum W (kx), we derive the modulation function β(x), whose Fourier
transform is W 1/2(kx):

β(x) =
∫ ∞

−∞

dkx

2π
exp (ikxx) W 1/2(kx). (9.21)

Then the random surface profile ξ (x) is generated as a convolution of a white-noise
Z(x) with the modulation function β(x):

ξ (x) = σ

∫ ∞

−∞
dx ′ Z(x − x ′) β(x ′). (9.22)



Anomalous transmission in waveguides with correlated disorder 297

The delta-correlated random process Z(x) is determined by the standard relations

〈Z(x)〉 = 0, 〈Z(x)Z(x ′)〉 = δ(x − x ′), (9.23)

and can be numerically created with the use of random-number generators. Here,
δ(x) is the Dirac delta-function.

Equations (9.22) and (9.23) give the solution of the inverse scattering problem
of constructing random roughness from its power spectrum. Note that this method
is valid in the case of a weak disorder only. That is why only the binary correlator is
involved in the construction of ξ (x), while the higher correlators do not contribute.
Note also that the profile obtained by the proposed method is not unique. Indeed,
there is an infinite number of realizations of delta-correlated noise Z(x) that give
rise to different profiles ξ (x) having the same power spectrum W (kx).

The importance of this method is due to the possibility of obtaining profiles
resulting in a sharp transition between ballistic and localized transport, when
changing the wave number k. In this case the corresponding power spectrum W (kx)
abruptly vanishes at prescribed values of kc. This means that the binary correlator
W(x) has to be a slowly decaying function of the distance |x|. In other words,
the corresponding corrugated surface profiles ξ (x) should be of a specific form,
revealing long-range correlations along the structure. Because of the abrupt nature
of transmission properties, the transition point kc can be regarded as an effective
transparency edge.

As was pointed out above, a statistical treatment is meaningful if the scale of
decrease k−1

c of the correlator W(x) is much smaller than both the sample length L

and the localization length Lloc. In this connection, one should stress that the long-
range correlations we speak about do not assume large values for the correlation
length k−1

c . Indeed, the simplest correlator,W(x) = sin kcx/kcx, has the finite scale
k−1
c of its decrease, and k−1

c can be quite small; see the examples in Section 9.6.
On the other hand, the effective width of the transparency edge is determined by
the product (Llockc)−1, not by k−1

c , and turns out to be very small (for details, see,
e.g., ref. [87]). One can say that the sharpness of the transition is defined by the
form of the pair correlator rather than by the value of its correlation length.

Note that systems with very complicated scattering potentials are not exotic. For
example, bulk random potentials have been constructed in experiments [8–10, 78],
while rough surfaces with a rectangular power spectrum have been fabricated in a
study of the enhanced backscattering effect [77].

9.5 Gaussian correlations

As was mentioned above, the general expression, Eq. (9.20), for the localiza-
tion length Lloc(k1) indicates that all features of the wave transmission through a
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surface-disordered single-mode waveguide depend on two-point correlations in the
surface profile. In order to demonstrate how to realize the properties of long-range
correlated disorder, let us first consider the surface roughness ξ (x) with a widely
used Gaussian correlator,

W(x) = exp
(−k2

c x
2
)
, (9.24a)

W (kx) = √
π k−1

c exp
(−k2

x/4k2
c

)
. (9.24b)

This correlator decreases exponentially on the scale of the correlation length
k−1
c .

Using the convolution method, Eqs. (9.21)–(9.23), one can obtain that the corru-
gated surface profile ξ (x) with the correlation properties in Eqs. (9.24) is described
by the function

ξ (x) = σ
√

2kc

π1/4

∫ ∞

−∞
dx ′ Z(x − x ′) exp

(−2k2
c x

′2) . (9.25)

Correspondingly, the inverse localization length, Eq. (9.20), takes the following
explicit form:

L−1
loc(k1) = 2σ 2

π
√

πkc

(π

d

)6 exp
(−k2

1/k2
c

)
(2k1)2

. (9.26)

One can see that, within the single-mode interval given in Eq. (9.10), the localization
length increases exponentially with k1 from zero at k1 = 0 to a large value at
k1 = π

√
3/d. Clearly, in the vicinity of k1 = 0 the localization length Lloc(k1) is

much smaller than L and the waveguide is nontransparent. Thus, the localization
regime, Eq. (9.18), occurs within the whole single-mode interval, provided by the
condition Lloc(π

√
3/d) � L at k1 = π

√
3/d.

In contrast, when Lloc(π
√

3/d) � L, one can observe the crossover from the
localized transport, Eq. (9.18), to the ballistic one, Eq. (9.17). For the Gaussian
correlations (9.24), both the crossing point, where Lloc(k1) = L, and the crossover
width depend on the values of k−1

c and L. Because of the smooth nature of
the crossover, the crossing point cannot be regarded as the transparency edge.
However, one can see that the longer the correlation length k−1

c , the larger the
localization length Lloc(k1). Hence, the larger is the ballistic region, the nar-
rower is the crossover. One can conclude that, in general, correlations suppress
localization.

The surface profile ξ (x) with Gaussian correlations admits the uncorrelated
roughness of the white-noise type. Indeed, since σ 2k−1

c = const, from Eqs. (9.24)
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for k−1
c → 0 one obtains the delta-like correlator and constant power spectrum:

Wwn(x) = √
π k−1

c δ(x), (9.27a)

Wwn(kx) = √
π k−1

c . (9.27b)

The convolution method, Eqs. (9.21)–(9.23), results in the following expression
for the surface profile ξ (x):

ξwn(x) = σπ1/4

√
kc

Z(x). (9.28)

According to Eq. (9.20), the localization length is given by

1

Lwn
loc(k1)

= σ 2k−1
c

2π
√

πk2
1

(π

d

)6
. (9.29)

Equations (9.27)–(9.29) can be considered as the asymptotic limits of the corre-
sponding equations (9.24)–(9.26) when (k1/kc)2 � 1.

A comparison of Eqs. (9.29) and (9.26) leads to the conclusion that the best
way to observe localized transport is to employ an uncorrelated disordered surface.
Indeed, the condition Lloc(k1) � L is stronger for the Gaussian correlations than
for the case of white-noise profiles. On the other hand, for Gaussian correlations
with a small value of kc, the ballistic regime, Eq. (9.17), can be realized even for
such lengths L and wave numbers k1 for which strong localization, Eq. (9.18),
takes place for delta-like correlations. Again, this fact confirms that correlations
suppress localization.

9.6 Two complementary examples of selective transparency

As we discussed in Section 9.4, rough surfaces with prescribed two-point correla-
tions can be constructed with the use of the convolution method. In the following
we demonstrate the construction of surface-disordered structures with selective
transparency by considering two examples of long-range correlations.

9.6.1 Example 1

Let us first consider a waveguide that is nontransparent when the wave number
k1 is smaller than some value kc, and completely transparent for k1 > kc. Such
a behavior can be observed if the transition point (transparency edge) k1 = kc is
located inside the allowed single-mode interval given by Eq. (9.10), i.e.

0 < kcd/π <
√

3. (9.30)
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For this case, one can obtain the following expressions for the binary correlator
W(x) and power spectrum W (kx):

Wa(x) = sin(2kcx)

2kcx
, (9.31a)

Wa(kx) = π

2kc

�(2kc − |kx |). (9.31b)

Here �(x) is the Heaviside unit-step function, �(x < 0) = 0 and �(x > 0) = 1,
and kc is the correlation parameter to be specified.

According to Eqs. (9.21)–(9.23), the surface profile with the properties given in
Eqs. (9.31) is given by the expression

ξa(x) = σ√
2πkc

∫ ∞

−∞
dx ′ Z(x − x ′)

sin(2kcx
′)

x ′ . (9.32)

Correspondingly, the inverse localization length has the step-down form

L−1
loc(k1) = σ 2

πkc

(π

d

)6 �(kc − k1)

(2k1)2
. (9.33)

In line with this expression, as k1 increases, the localization length Lloc(k1) also
smoothly increases and then diverges at k1 = kc. Thus, within the region 0 < k1 <

kc the average transmittance 〈T (L/Lloc)〉 is expected to be exponentially small (see
Eq. (9.18)) due to strong localization. The condition for strong localization to the
left from k1 = kc is as follows:

L

Lloc(kc − 0)
= σ 2L

4πk3
c

(π

d

)6
� 1. (9.34)

Otherwise, inside the interval kc < k1 < π
√

3/d a ballistic regime occurs with
perfect transparency, 〈T (L/Lloc)〉 = 1.

9.6.2 Example 2

The second example refers to a complementary situation when, for k1 < kc, the
waveguide is perfectly transparent and for k1 > kc is nontransparent. The corre-
sponding expressions for W(x) and W (kx) are given by

Wb(x) = πδ(2kcx) − sin(2kcx)

2kcx
, (9.35a)

Wb(kx) = π

2kc

�(|kx | − 2kc). (9.35b)
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In this case, the corrugated surface is described by a superposition of white noise
and roughness of the first type:

ξb(x) = σ√
2πkc

[
πZ(x) −

∫ ∞

−∞
dx ′ Z(x − x ′)

sin(2kcx
′)

x ′

]
. (9.36)

Correspondingly, the inverse localization length is expressed by the step-up
function,

L−1
loc(k1) = σ 2

πkc

(π

d

)6 �(k1 − kc)

(2k1)2
. (9.37)

As a consequence, in contrast with the first case, here the surface-scattering local-
ization length Lloc(k1) diverges below the transparency edge k1 = kc. At this point
Lloc(k1) sharply decreases to a finite value Lloc(kc + 0), and then smoothly increases
with further increase of k1. In order to observe localization within the whole region
kc < k1 < π

√
3/d, one should assume that strong localization is retained at the

upper point k1 = π
√

3/d of the single-mode region given by Eq. (9.10):

L

Lloc(π
√

3/d)
= σ 2L

12πkc

(π

d

)4
� 1. (9.38)

Therefore, in this example, the ballistic transport is abruptly replaced by strong
localization at the transparency edge, k1 = kc.

One should stress that the surface profiles given by Eqs. (9.32) and (9.36) with
binary correlators and power spectra Eqs. (9.31) and (9.35), respectively, are sub-
stantially different from the delta-correlated white noise (9.27), (9.28), and from
random processes, Eq. (9.25) with exponentially decaying Gaussian correlations
(9.24). Specifically, here the profiles are characterized by the variation scale (2kc)−1

and have long power-decaying tails in the expressions for their two-point correlator.
Such tails originate from the stepwise discontinuity at the points kx = ±2kc. The
location of the transparency edge is defined by these discontinuity points, and does
not depend on other parameters, in contrast to the case of Gaussian or delta-like
correlations.

Now we demonstrate the above predictions by a direct numerical simulation.
For this, the inverse localization length L−1

loc was computed with the use of the
Hamiltonian map approach developed in refs. [1–3]. First, the continuous scatter-
ing potential (9.12) was approximated by the sum of delta kicks, with the spacing δ

chosen much smaller than any physical length scale in the model. Then, a discrete
analog of the one-dimensional wave equation (9.11) was analyzed numerically,
with the longitudinal wave number k1 in place of k and with the surface scattering
potential V (x) given by Eq. (9.12). In this way the wave equation was expressed
in the form of a two-dimensional Hamiltonian map describing the dynamics of a
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Figure 9.2. Selective dependence of the rescaled Lyapunov exponent on wave
number for two realizations of a random surface with specific long-range corre-
lations. To show the main effect of correlations, the complementary dependence
of the Lyapunov exponent on K is shown: (a) eigenstates are localized for K < 1
and delocalized for K > 1; (b) complete delocalization for K < 1 alternates with
strong localization for K > 1. (After ref. [7]).

classical linear oscillator under parametric noise determined by V (x). As a result,
the analysis of the localization length was reduced to the computation of the
Lyapunov exponent L−1

loc associated with this map (see details in refs. [1–3]).
Numerical data reported in Figure 9.2 represent the dependence of the dimen-

sionless Lyapunov exponent, � = c0L
−1
loc, on the normalized wave number, K =

k1/kc, in the range 0 < K < 2, corresponding to the single-mode interval. The
normalization coefficient c0 was set to have � = K−2 for the delta-correlated
potential. Two surface profiles ξ (x) were generated according to discrete versions
of Eqs. (9.32) and (9.36), determining complementary stepwise dependencies of
the localization length Lloc(k1) in accordance with Eqs. (9.33) and (9.37).

One can clearly see a nontrivial dependence of � on the wave vector K , which
is due to the specific long-range correlations in ξ (x). The data display sharp depen-
dencies of � on K when crossing the point K = 1. Thus, by taking the size L of
the scattering region according to the requirements in Eqs. (9.34) or (9.38), one can
arrange anomalous transport in the single-mode guiding structure, as predicted by
the analytical theory.

9.7 Random narrow-band reflector

Let us now consider one more example, namely a binary correlator that gives rise
to a power spectrum of the following rectangular form:

W(x) = sin(2k+x) − sin(2k−x)

2(k+ − k−)x
, (9.39a)

W (kx) = π

2(k+ − k−)
[�(2k+ − |kx |) − �(2k− − |kx |)] , 0 < k− < k+ < π

√
3/d.

(9.39b)
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In these relations the factor 1/2(k+ − k−) provides the normalization requirement,
Eq. (9.4), or equivalently, W(0) = 1. Such a power spectrum has been employed to
create specific rough surfaces in the experimental study of enhanced backscattering
[77]. This spectrum was also used in the theoretical analysis of light scattering from
amplifying media, as well as in the study of the localization of plasmon polaritons
on random surfaces [99, 100].

In accordance with the convolution method, Eqs. (9.21)–(9.23), the random
surface profile ξ (x) with the correlation properties (9.39) can be obtained from the
following expression:

ξ (x) = σ√
2π

∫ ∞

−∞
dx ′ Z(x − x ′)

sin(2k+x ′) − sin(2k−x ′)
(k+ − k−)1/2x ′ . (9.40)

The peculiarity of such surfaces is that they have two characteristic scales,
(2k+)−1 and (2k−)−1. Consequently, the binary correlator and its power spectrum,
Eqs. (9.39), are specified by two correlation parameters.

From Eqs. (9.20) and (9.39), one can find the inverse localization length,

L−1
loc(k1) = σ 2

π (k+ − k−)

(π

d

)6 �(k+ − k1)�(k1 − k−)

(2k1)2
. (9.41)

As one can see, there are two transparency edges, at the points k1 = k− and k1 = k+.
The localization length Lloc(k1) diverges below the first point, k1 = k−, and above
the second one, k1 = k+. Between these points, for k− < k1 < k+, the localiza-
tion length has a finite value and smoothly increases with an increase of wave
number k1.

Let us now choose the parameters for which the regime of strong localization
occurs at the upper transition point k1 = k+, where Lloc(k1) has its maximal value.
This automatically provides strong localization within the whole interval k− <

k1 < k+. The condition for this situation is given by

L

Lloc(k+ − 0)
= σ 2L

4πk2+(k+ − k−)

(π

d

)6
� 1. (9.42)

As a result, there are two regions of perfect transparency for waveguides of finite
length L with the surface profile specified above. Between these regions the average
transmittance 〈T 〉 is exponentially small according to Eq. (9.18). Due to this fact,
the system exhibits localized transport within the interval k− < k1 < k+, and the
ballistic regime with 〈T 〉 = 1 outside this interval. In an experiment one can observe
that, with an increase of the wave number k1, the perfect transparency below
k1 = k− abruptly alternates with a complete reflection and recovers at k1 = k+.
From Eqs. (9.41) and (9.42) one can see that the smaller the value k+ − k− of the
reflecting region, the smaller the surface-scattering localization length Lloc(k1) and,
consequently, the stronger is the localization within this region. This remarkable
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fact may find important applications in creating a new class of random narrow-band
filters or reflectors.

9.8 Multi-mode waveguide

Now we examine the correlated surface scattering in multi-mode waveguides, i.e.
in waveguides with a large number, Nd > 1, of conducting channels; see Eq. (9.8).
According to Landauer’s concept [28], the total average transmittance 〈T 〉 of any
disordered quasi-one-dimensional guiding structure can be expressed as a sum
of partial average transmittances 〈Tn〉 that describe the transport for every nth
propagating normal mode, i.e.

〈T 〉 =
Nd∑
n=1

〈Tn〉. (9.43)

When all conducting channels are open, i.e. all Tn = 1, the total transmittance
attains its maximal value equal to the total number Nd of propagating modes.
Therefore, our definition of the transmittance differs from the canonical one in
which the maximal value of the total transmittance is equal to unity. Nevertheless,
we shall use the definition in Eq. (9.43) in order to discriminate clearly the intervals
of the mode parameter kd/π with different numbers of the conducting channels
and more clearly display the role of correlated surface disorder. In order to pass to
the definition used in wave theories, one should simply divide Eq. (9.43) by Nd .

From the general theory of quasi-one-dimensional scattering systems, it follows
that the transmission properties of any nth conducting channel (1 � n � Nd) are
determined by two attenuation lengths: the forward scattering length L

(f )
n and the

backscattering length L(b)
n . For multi-mode quasi-one-dimensional waveguides

with surface disorder, the inverse scattering lengths are given by

1

L
(f )
n

= σ 2 (πn/d)2

2knd

Nd∑
n′=1

(πn′/d)2

kn′d
W (kn − kn′), (9.44)

1

L
(b)
n

= σ 2 (πn/d)2

2knd

Nd∑
n′=1

(πn′/d)2

kn′d
W (kn + kn′). (9.45)

Here the longitudinal wave number kn is defined by Eq. (9.7). Equations (9.44)
and (9.45) can be obtained for the boundary-value problem in Eq. (9.5) by the
diagrammatic Green’s function method [16], as well as by the technique developed
in ref. [54]. Also, these expressions can be derived by using the invariant imbed-
ding method extended to quasi-one-dimensional structures [69, 70]. Note that in a
single-mode waveguide with Nd = 1, the sum over n′ contains only one term with
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n′ = n = 1. Therefore, in this case the backscattering length L
(b)
1 is exactly equal

to the single-mode localization length given in Eq. (9.20), i.e. L
(b)
1 = Lloc(k1); see

Eq. (9.13).
The sums in Eqs. (9.44) and (9.45) show that, in general, the scattering of a

given nth propagating mode into all other modes contributes to both attenuation
lengths. This is the case when, for example, a rough surface profile is either a
delta-correlated random process with a constant power spectrum, W (kx) = const,
or has a rapidly decreasing binary correlator W(x) and, correspondingly, a slowly
decreasing roughness power spectrum W (kx).

Another feature is that Eqs. (9.44) and (9.45) display a rather strong dependence
on the mode index n. Namely, the larger the number n, the smaller the corresponding
mode scattering lengths and, as a consequence, the stronger is the scattering of this
mode into the others. This strong dependence is due to the squared transverse wave
number kz = πn/d in the numerator and to the longitudinal wave number kn in
the denominator of Eqs. (9.44) and (9.45). Evidently, with an increase of the mode
index n the value of kn decreases. An additional dependence appears because of
the roughness power spectrum W (kn ∓ kn′). Since the binary correlator W(x) of
random surfaces is a decreasing function of |x|, its Fourier transform W (kn ∓ kn′)
increases with n (note that it is constant for the delta-correlated roughness only).
Therefore, all the factors contribute in the same direction for the dependence of
L

(f )
n and L(b)

n on the mode index n. As a result, we arrive at the following hierarchy
of mode scattering lengths:

L
(f,b)
Nd

< L
(f,b)
Nd−1 < · · · < L

(f,b)
2 < L

(f,b)
1 . (9.46)

The smallest mode attenuation lengths L
(f )
Nd

and L
(b)
Nd

belong to the highest channel

with the mode index n = Nd , while the largest scattering lengths L
(f )
1 and L

(b)
1

correspond to the lowest channel with n = 1. Note that a similar hierarchy was
also found in refs. [7], [14] and [15] in the model of quasi-one-dimensional systems
with a stratified disorder.

As is known, the quasi-one-dimensional systems with isotropic volume disorder
reveal three typical transport regimes: the regimes of ballistic, diffusive (metal-
lic) and localized transport. In contrast to this conventional picture, in refs. [69]
and [70] it was shown that, in the case of surface disorder, a very important phe-
nomenon of the coexistence of ballistic, diffusive and localized transport emerges.
This happens due to the hierarchy, Eq. (9.46), of scattering lengths, even in the
absence of correlations in ξ (x). Specifically, while the lowest modes can be in the
ballistic regime, the intermediate and highest modes can exhibit diffusive and local-
ized behavior, respectively. This effect seems to be generic for transport through
waveguides with random surfaces.
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One can see now that, unlike the single-mode case, the concept of one-parameter
scaling is no longer valid for the transport in multi-mode surface-disordered sys-
tems. There are two points that should be stressed in this respect. On the one hand,
the average partial transmittances 〈Tn〉 entering Eq. (9.43) are very different for
different conducting channels. On the other hand, and what is even more important,
all propagating modes turn out to be mixed due to inter-mode transitions. There-
fore, the transmittance 〈Tn〉 of a given nth mode depends on the scattering into all
modes, and the total average transmittance, Eq. (9.43), is determined by the whole
set of attenuation lengths, Eqs. (9.44) and (9.45), with 1 � n � Nd .

Summarizing our brief discussion, it becomes clear that, in quasi-one-
dimensional guiding structures with delta-correlated or Gaussian correlations in
surface disorder, the crossover from the ballistic to localized transport is realized
through the successive localization of the highest propagating modes. Otherwise, if
we start from the localized regime, the crossover to the ballistic transport is realized
via the successive opening (delocalization) of the lowest conducting channels.

From this analysis one can conclude that for multi-mode structures with surface
disorder the role of specific long-range correlations is much more sophisticated
in comparison with single-mode waveguides. First, such correlations should result
in the suppression of the interaction between different propagating modes. This
nontrivial fact turns out to be crucial for the reduction of a system of mixed chan-
nels with quasi-one-dimensional transport to the subset of independent waveguide
modes with a purely one-dimensional transport. Second, the same correlations can
provide a complete transparency of each independent channel, similar to what
happens in a strictly one-dimensional geometry.

To demonstrate these effects, let us take a random surface profile ξ (x) of the
form

ξ (x) = σ√
πkc

∫ ∞

−∞
dx ′ Z(x − x ′)

sin(kcx
′)

x ′ , (9.47)

with a slowly decaying (on average) binary correlator. It results in the “window
function” for the roughness power spectrum, given by

W(x) = sin(kcx)

kcx
, (9.48a)

W (kx) = π

kc

�(kc − |kx |), kc > 0. (9.48b)

From Eqs. (9.44) and (9.45) one can see that in the case of long-range correlations
in a disordered surface, Eq. (9.47), the number of modes into which a given nth
mode is scattered, i.e. the actual number of summands in the Eqs. (9.44) and (9.45),
is entirely determined by the width kc of the rectangular power spectrum, Eq. (9.48).
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It is clear that if the distance |kn − kn±1| between neighboring quantum values of
kn is larger than the correlation width kc,

|kn − kn±1| > kc , (9.49)

then all inter-mode transitions (between different propagating modes) are forbid-
den. As a consequence, the sum over n′ in Eq. (9.44) for the inverse forward
scattering length contains only the diagonal term with n′ = n that describes a
direct intra-mode scattering inside the channels. Moreover, each term in the sum
of Eq. (9.45) for the inverse backscattering length is equal to zero. As a result, the
following interesting phenomena arise.

(i) All high propagating modes with indices n that satisfy Eq. (9.49), turn out
to be independent of the others, in spite of the interaction with the rough
surface. Therefore, they form a subset of one-dimensional noninteracting
conducting channels with a finite length of forward scattering L

(f )
n and an

infinite backscattering length L(b)
n :

1

L
(f )
n

= πσ 2

kc

(πn/d)4

(knd)2
,

1

L
(b)
n

= 0. (9.50)

(ii) As is well known from the standard theory of one-dimensional localization
(see, e.g., refs. [23–26], [56–59], [61–63] and [87]), the transport through any
one-dimensional disordered system is determined only by the backscattering
length L(b)

n , which in our consideration equals the localization length, and does
not depend on the forward scattering length L

(f )
n . Since the former diverges for

every independent channel in line with Eqs. (9.50), all of them are completely
transparent because they exhibit ballistic transport with the partial average
transmittance 〈Tn〉 = 1. This means that, according to Landauer’s formula,
Eq. (9.43), the transmittance of the subset of such independent ballistic modes
is simply equal to their total number.

(iii) As for low propagating modes with indices n contradicting Eq. (9.49), they
stay mixed by surface scattering because the roughness power spectrum,
Eq. (9.48b), is nonzero for them, W (kn − kn′) = π/kc. These mixed modes
have finite forward and backscattering lengths and, consequently, stay in the
diffusive or localized transport regime for a large enough waveguide length L.
As a result, they are nontransparent and do not contribute to the total transmit-
tance 〈T 〉. Therefore, the latter is equal to the number of independent ballistic
modes.

Note that the distance |kn − kn±1| between neighboring wave numbers kn and
kn±1 increases as the mode index n increases. Therefore, the inequality (9.49)
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restricts the mode index n from below. That is why, in contrast with the conventional
situation associated with the hierarchy of mode scattering lengths in Eq. (9.46), the
low modes are mixed and nontransparent whereas the high propagating modes are
independent and ballistic. Because of the sharp behavior of the roughness power
spectrum, the transition from mixed to independent modes is also sharp.

More analytical results can be obtained for waveguides with large numbers of
conducting channels Nd , if the quantum numbers n of independent ballistic modes
are also large:

Nd = [kd/π ] ≈ kd/π � n � 1. (9.51)

In this case the inequality (9.49) is reduced to the requirement |∂kn/∂n| > kc,
which can be rewritten in the following explicit form:

n > Nmix =
[

(kd/π )√
1 + (kcd/π )−2

]
. (9.52)

We recall that square brackets denote the integer part of the inner expression.
The condition (9.52) determines the total number Nmix of mixed nontransparent

modes, the total number Nbal = Nd − Nmix of independent ballistic modes, and the
critical value of the mode index n that divides these two groups. All propagating
modes with n > Nmix are independent and fully transparent, otherwise they are
mixed for n � Nmix and characterized by finite scattering lengths L

(f )
n and L(b)

n .
Therefore, the total average transmittance, Eq. (9.43), of the multi-mode structure
is given by

〈T 〉 = [kd/π ] − [kd/παc] , αc =
√

1 + (kcd/π )−2 . (9.53)

The numbers Nmix and Nbal of mixed nontransparent and independent ballistic
modes are governed by two parameters: the mode parameter kd/π and the dimen-
sionless correlation parameter kcd/π . In the case of “weak” correlations, when
kcd/π � 1, the number of mixed modes Nmix is of the order of Nd :

Nmix ≈
[(

kd

π

)
− 1

2

(
kd

π

)(
kcd

π

)−2
]

for kcd/π � 1. (9.54)

Consequently, in this case the number of ballistic modes Nbal is small, or there are
no such modes at all. If the parameter kcd/π tends to infinity, kcd/π → ∞, the
rough surface profile becomes white-noise-like and, naturally, Nmix → Nd .

The most appropriate case is when a random surface profile is strongly correlated
so that the correlation parameter is small, kcd/π � 1. Then the number of mixed
nontransparent modes Nmix is much smaller than the total number of propagating
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Figure 9.3. Stepwise transmittance, Eq. (9.53), of a surface-disordered guiding
system versus the mode parameter kd/π . The value of the normalized correlation
parameter kcd/π = 0.32 (after ref. [7]).

modes Nd , i.e.

Nmix ≈
[(

kd

π

)(
kcd

π

)]
� Nd for kcd/π � 1. (9.55)

Therefore, the number of independent modes Nbal is large. When the corre-
lation parameter kcd/π decreases and becomes anomalously small, kcd/π <

(kd/π )−1 � 1, the number of mixed modes Nmix vanishes, and all modes become
independent and perfectly transparent. Evidently, if the correlation parameter
kcd/π vanishes, kcd/π → 0, the roughness power spectrum, Eq. (9.48b), becomes
delta-function-like and, as a consequence, Nmix = 0. In this case the correlated
disorder results in a perfect transmission of waves.

Finally, let us briefly discuss Eq. (9.53) for the total average transmittance.
In Fig. 9.3 an unusual nonmonotonic stepwise dependence of 〈T 〉 on the mode
parameter kd/π is shown that is governed by the width kc of the rectangular power
spectrum, Eq. (9.48b).

Let us discuss Fig. 9.3. Within the region where kd/π < αc, the inter-mode
transitions caused by specific surface correlations are forbidden for all conducting
channels. Therefore, all propagating modes are independent and ballistic, and the
second term (the number of mixed modes) in Eq. (9.53) for the total transmittance
is equal to zero. Here the transmittance exhibits a ballistic stepwise increase with
an increase of the parameter kd/π . Each step “up” arises for an integer value
of the mode parameter kd/π , when a new conducting channel emerges. Such a
stepwise increase of the total transmittance is similar to that known to occur in
quasi-one-dimensional ballistic nondisordered structures (see, e.g., ref. [101]).
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When kd/π � αc, in addition to the standard steps “up” originated from the
first term in Eq. (9.53), there are also steps “down” associated with the second
term. These steps “down” are provided by the correlated surface scattering and
arise when a successive low mode abruptly becomes mixed and nontransparent. In
other words, the position of the nth step “down” is at the transparency edge point
kd/π = nαc, where the nth conducting channel closes. Specifically, the first step
“down” occurs at the total transparency edge kd/π = αc, where the first mode
is closed. This transparency edge separates the region of complete transparency
from the region where lower modes are mixed and nontransparent. The second
step “down” is due to the particular transparency edge kd/π = 2αc of the second
mode, etc. Since the values of the ratio kd/παc are determined by the correlation
parameter kc, the positions of steps “down,” in general, do not coincide with those
of steps “up.” The situation may also occur when the steps “up” and “down”
cancel each other within some interval of the mode parameter kd/π . The interplay
between steps “up” and “down” results in a new kind of stepwise nonmonotonic
dependence of the total quasi-one-dimensional transmittance. The experimental
observation of this nonconventional dependence would be highly interesting.
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Cloaking

christopher c. davis and igor i. smolyaninov

10.1 Introduction, general background, and history

Cloaking is the ability to make a region of space, and everything in it, invisible to
an external observer. It has been the dream of fantasy writers for decades. In 2009,
John Mullan [1] of The Guardian newspaper summarized the ten most important
works that use the theme: The Invisible Man by H. G. Wells, The Republic by Plato,
The Lord of the Rings by J. R. R. Tolkien, the Harry Potter books by J. K. Rowling,
Theogony by Hesiod, Dr Faustus by Christopher Marlowe, The Tempest by William
Shakespeare, The Voyage of the Dawn Treader by C. S. Lewis, The Emperor’s New
Clothes by Hans Christian Andersen, and The Hitchhiker’s Guide to the Galaxy by
Douglas Adams. A true cloak allows the clear observation of the space behind the
cloaked region, and the cloaked region casts no shadow and produces no wavefront
changes in the light that has passed through the cloaked region. It is not possible
to build a perfect invisibility cloak, as was perceptively observed in the Star Trek
series in which cloaked Romulan and Klingon spaceships could be detected by the
subtle disturbances of space that the cloak produced.

Interest in making real cloaking devices can be traced to two seminal articles,
one by John Pendry and his co-workers [2], and the other by Ulf Leonhardt [3].
Their approach can be called the transformational optics approach to cloaking,
which will be discussed in more detail later. Briefly, they propose a distortion of
space around a cloaked region by a spatial distribution of electric permittivity and
magnetic permeability that folds light around the cloaked region. In a simplistic
sense they produce a continuous distribution of refracting or mirror-like boundaries
around the cloaked region. A simple mirror geometry that cloaks a region in a
limited way is shown in Fig. 10.1. The cloaked region is bounded by four off-
axis cylindrical parabolic mirrors. Parallel light from behind the cloaked region
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Figure 10.1. Simple geometrical optics mirror cloak.

Figure 10.2. Cloaking by guiding light around the cloaked region.

reflects from these parabolic mirrors and auxiliary flat mirrors placed at the foci to
provide unobstructed viewing of distant objects placed behind the cloaked region.
This cloak works for all colors, but only for viewing within a narrow range of
angles. It also delays different rays by different times, as will be seen later to be a
common problem with more advanced cloaks. Another cloaking scheme is shown
in Fig. 10.2. Parallel light from an object is focused onto an imaging fiber bundle,
which diverts light around the cloaked region.

A type of cloaking can also be achieved if light that is absorbed or scattered by
an object can be re-emitted either by the object itself or by one or more external
scatterers so as to cancel out the effects of the scattering, and perhaps the absorption
as well. We refer to this approach as cloaking by scattering cancellation. When
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(a)

(b)

Figure 10.3. F-117 Nighthawk Stealth Ground Attack Aircraft. (a) From http://
www.carzi.com/wp-content/uploads/f-117-Night-hawk.jpg. (b) From http://
aircraft-list.com/db/images/F-117-Nighthawk/7145/.

a region of space is “cloaked,” the surrounding region or objects that render the
cloaked region invisible is called the cloak. There are also distinctions that arise
between macroscopic cloaks, where geometrical optics can be used to describe
the ray paths and microscopic cloaks, where a full wave description is required to
describe the operation of the cloak.

10.2 The difference between “cloaking,” “blackness,” and “camouflage”

From a practical standpoint, cloaking renders objects within a cloaked region invisi-
ble to an external observer and the cloak itself must be invisible. The cloaked region
appears transparent to an external observer. However, there are many instances
where making an object undetectable does not require cloaking, and this distinc-
tion is worth pointing out. In the radar world objects are detected by the signals
that backscatter to a receiver, which is generally co-located with the transmitter
of the microwave pulses. An object does not need to be cloaked to produce no
backscatter. If the object itself is shaped so as to have no surfaces that produce
specular reflection back to the irradiating source, then the backscatter cross section
is drastically reduced. This is the approach used in “stealth” technology, where
aircraft are designed with angled surfaces to reduce their backscatter, as shown in
Fig. 10.3. Radiation reflects from the aircraft, but away from the direction back to
the transmitter.

An important part of stealth technology is the concept of “blackness.” A “black”
surface absorbs all the radiation that falls on it. A black object is invisible in
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reflection, but will still obscure objects behind it and cast a shadow. Blackness can
be achieved in three principal ways: impedance matching, high intrinsic absorption,
and geometrical loss.

10.2.1 Impedance matching

When a plane electromagnetic wave strikes a boundary there is intrinsic reflection
because of impedance mismatch. The impedance of an homogeneous medium is
given by

Z =
√

μrμ0

εrε0
. (10.1)

In free space with μr = 1, εr = 1, Z = Z0 = 376.7 �. If a plane wave strikes
the boundary of a medium with nonunity μr , εr , then, depending on the angle of
incidence θ1 at the boundary and the polarization state of the incident wave, the
wave both reflects and is transmitted into the second medium with reflection and
transmission coefficients ρ and τ , respectively, where

ρ = Z′
2 − Z′

1

Z′
2 + Z′

1

, τ = 2Z′
2

Z′
2 + Z′

1

. (10.2)

The primed impedances are the effective impedances taking into account the angle
of incidence θ1 and the angle of refraction θ2. For P-polarized (TM) waves Z′

1 =
Z1 cos θ1 and Z′

2 = Z2 cos θ2, whereas for S-polarized (TE waves) Z′
1 = Z1/ cos θ1

and Z′
2 = Z2/ cos θ2. If the boundary between free space and the medium has an

anti-reflection (AR) layer, then all the incident radiation is transmitted into the
second medium and there is no reflection. Anti-reflection layers are simple to
produce for a particular angle of incidence and wavelength. The effective impedance
of the AR layer must be ZAR = √

Z′
2Z

′
1 and its effective thickness is one-quarter

of the wavelength of the radiation in the AR layer. Specifically, for an angle of
refraction θAR into the AR layer, the thickness of the AR layer should be d, where
d = λ2/(4 cos θAR).

Perfect impedance matching is difficult to accomplish for the surface of macro-
scopic objects for all angles of incidence. As we will see later, an ideal cloak should
have a refractive index at its boundary that is the same as that of free space, which
is then graded smoothly and adiabatically as light rays enter the cloak so that light
rays bend within the cloak and follow light ray geodesics that divert them around
the cloaked region.
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Figure 10.4. (a) Scanning electron micrograph (SEM) of a vertically aligned
carbon nanotube (VA-CNT) sample. (b) Side-view SEM image of the same sample
at a higher magnification. The nanotubes are vertically aligned, forming a highly
porous nanostructure. (c) Top-view SEM image of the sample. The nanotubes
are entangled with each other, forming a loosely connected random surface. The
surface corrugation is on the order of 100–1000 nm. (d) Transmission electron
micrograph of the sample, indicating that most of the nanotubes are multiwalled
with a diameter d 	 10 nm. (e) Photograph of a 1.4% NIST reflectance standard, a
VA-CNT sample, and a piece of glassy carbon, taken under flash light illumination.
(From ref. [5], courtesy of Professor Shawn-Yu Lin.)

10.2.2 Highly absorbing and nonreflective surfaces

Reflections and backscatter from surfaces can also be reduced by tessellating
the surface with crevices, which allow radiation to enter and be dissipated by
multiple lossy reflections before the radiation can escape. Simple examples in the
optical region of the spectrum include Wood’s horns, hollow nonimaging devices,
and the gaps between sharp wedges, as in a “razor blade” light absorber [4].
Conventional “black” paint can reduce scattering and backscatter to a few percent,
and recently developed carbon nanotube black can reduce this to 0.045% [5]. Figure
10.4 shows a comparison between the “blackness” of the new carbon nanotube
material, compared to a NIST reflection standard, and a sample of glassy carbon.
In the radiofrequency (RF) region, surface absorber materials typically use large
conical structures of polymer foam impregnated with carbon. The vertically aligned
carbon nanotubes in Figs. 10.4 (a), (b), and (c) look similar, except for their scale,
to the absorbing structures used in an RF absorber. Unfortunately, most of these
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Figure 10.5. Adaptive camouflage. (From the Tachi Laboratory, Keio University
and The University of Tokyo, courtesy of Professor Susumu Tachi.)

approaches to “blackness” produce surfaces that are fragile, and possess poor
aerodynamic properties for application to aircraft flight surfaces.

10.2.3 Camouflage

Camouflage is an ability that has evolved in many animals to allow them to blend in
with their surroundings, either for protection from predators, or to allow a predator
to be less detectable by its prey. Everybody is familiar with the chameleon, which
can change its color to blend into its background. Many insects have evolved colors
or shapes to make them either less visible in a natural background or to look like
inanimate objects in the background. Stick insects look like twigs, and butterflies
even use photonic crystal-like structures to modify their reflectance and color, even
beyond the normal visible part of the spectrum. Camouflage has been used for
centuries in military applications to reduce the visibility of humans and machines.
A more recent development is the use of re-projection to mask an object. Cameras
aimed at the scene behind an object to be rendered less visible activate projectors
that reproduce an image of this background onto a semi-transparent screen in front
of the object, or onto a retroreflective “cloak” to give the illusion that the object is
not there. An imaginary system of this kind was used to render James Bond’s car
“invisible” in the movie Die Another Day. There is continuing work on this form
of “adaptive camouflage.” An example is shown in Fig. 10.5.

The synthetic invisibility cloak in Fig. 10.5 relies on a camera to capture the
background and requires the projection of the imagery onto a white raincoat-like
wearable screen. The rapid development of flexible displays (“electronic paper”)
will soon likely allow for a comfortable full display suit. The micro-cams needed
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to capture the background imagery are already plentiful and relatively inexpensive.
All of the elements of a self-contained synthetic optical invisibility cloak are either
available off-the-shelf or soon will be, and these technologies will continue to
improve.

10.3 Transformational optics and optical metamaterials

Metamaterials are artificial composite structures patterned on a subwavelength
scale. They have enabled new ways to control and manipulate electromagnetic
waves. The electromagnetic response of natural materials is no longer constrained
by their chemical composition. Instead, the shape and size of the structural units
of the metamaterial can be tailored, or their composition and morphology tuned, to
provide new functionality.

The innovative field of transformation optics, which is enabled by metamaterials,
has inspired a fresh look at the very foundations of optics, and has helped to create a
new paradigm for the science of light. Transformation optics has shown that space
can be designed and engineered, opening the fascinating possibility of controlling
the flow of light with nanometer spatial precision.

The properties of many metamaterials critically depend on plasmons [6–8].
A specific important type of plasmon is a surface plasmon polariton (SPP) – a
surface electromagnetic wave propagating along the interface between two media
possessing permittivities with opposite signs, such as a metal–dielectric interface
[9]. The ability to generate SPPs in various geometries and to control their 2-D
propagation has given rise to the term plasmonics. Plasmonics has shown that it is
possible to control a refractive index over a wide range, from high to low, and even
into negative values, and promises new devices with capabilities that supplement
photonics or electronics. Transformational cloaking uses metamaterials to control
the flow of electromagnetic waves around a cloaked region.

10.4 Dielectric constants, relative permeabilities, and refractive indices

Central to our discussion of approaches to cloaking will be the consideration of
the electromagnetic properties of the materials of the cloaks themselves. The fields
around the cloaked region must obey Maxwell’s equations, and will depend on the
spatial variation of both the dielectric and relative permeability tensors.

The relative permittivity (dielectric constant) εr and relative permeability μr

characterize a medium in terms of its difference from a vacuum. Both these
dimensionless quantities are frequency-dependent. The refractive index is given
by n = √

μrεr . Most traditional optical materials are not strongly magnetic, and
it is generally legitimate to assume that for such materials μr = 1. All passive
materials are lossy to some extent, and the dielectric constant can be represented
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by a complex number. We write εr = ε′ − jε′′, where j = √−1. The choice of
the negative sign in defining εr is a matter of convention. If a wave propagates
through an absorbing medium its field amplitudes vary as exp[j (ωt − k · r)], where
k = |k| = ω

√
μrμ0εrε0. The attenuation constant of the wave is α = −Im(k). For

a low loss material, ε′′ � ε′ and α = ω
√

μrμ0ε′εo(ε′′/2ε′), where ε′′/ε′ is often
called the loss tangent. In any real material the refractive index is also complex
and we write it as n − jK , where again the choice of the negative sign is a matter
of convention. The definitions of εr and n must be consistent with attenuation of
a wave in the direction of energy flow. For an amplifying medium, which repre-
sents a nonpassive situation where there is energy input, the attenuation coefficient
becomes negative, and it is common practice to call −α the gain coefficient. In a
metal the dielectric properties are dominated by the free electrons and are frequently
described by the Drude model [10–12]. In this model the real and imaginary parts
of the dielectric constant are given by

ε′(ω) = 1 − ω2
p

ω2 + �2
and ε′′(ω) = ω2

p

�/ω

ω2 + �2
, (10.3)

where ωp =
√

Ne2/(ε0me) is the plasma frequency, and � is a damping coefficient.
Consequently, for frequencies sufficiently below the plasma frequency, the real part
of the dielectric constant becomes negative. For gold, the wavelength corresponding
to the plasma frequency is about 138 nm and in silver it is 311 nm. At a wavelength of
633 nm for gold, the refractive index is 0.122 − j3.968 and εr = −15.73 − j0.968.
For silver, at 496 nm, the refractive index is 0.24 − j3.09 and εr = −9.49 −
j1.483. At 354 nm the real part of εr is −1. Consequently, in a mixed metal–
dielectric structure it is possible to play off the negative real dielectric constant of the
metal against the positive real dielectric constant of the dielectric. For this to occur,
a wave passing through such a metamaterial must have a wavelength greater than
the nanoscale structure of the material so that the wave perceives an intermediate
average bulk dielectric constant. We acknowledge that in anisotropic, as distinct
from inhomogenous, materials the dielectric constant and relative permeability are
in general tensors, so that we would write D = ε0ε̃rE and B = μ0μ̃rH, where in a
Cartesian principal coordinate system, for example,

D = ε0

⎛
⎝ εx 0 0

0 εy 0
0 0 εz

⎞
⎠E . (10.4)

In a lossless nonmagnetic biaxial material the three principal refractive indices
are nx = √

εx , ny = √
εy , and nz = √

εz. In a uniaxial material it is common
practice to write nx = ny = no and nz = ne, where no and ne and the ordinary and
extraordinary refractive indices, respectively.
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10.5 Negative refractive index materials

It is very interesting to examine the electromagnetic properties of materials for
which both the real part of the dielectric constant and the relative permeability are
negative. The electromagnetic properties of such materials were first examined by
Veselago [13], but it is only recently that metamaterials have offered the possibility
of making such materials a reality.

For so-called double-negative materials, both ε and μ have negative real parts.
We write

μr = μ′ − jμ′′ . (10.5)

In this case, the generalized propagation constant can be written as

γ = jk0

√
(μ′ − jμ′′)(ε′ − jε′′) , (10.6)

where k0 is the free space propagation constant given by k0 = ω
√

μ0ε0, or alterna-
tively as

γ = jk0

√
μ′ε′

(
1 − j

μ′′

μ′

)(
1 − j

ε′′

ε′

)
. (10.7)

If both μ′ and ε′ are negative, this equation takes the following form:

γ = jk0

√
μ′ε′(1 − jX)(1 − jY ) , (10.8)

where both X and Y are absolutely positive for nonamplifying materials. The
location of γ in the complex plane depends on the choice of the sign of the square
root

√
μ′ε′. For nonamplifying materials γ can only lie in the second or third

quadrants of the complex plane, which requires the negative sign of the square root.
Thus, for such materials the real part of the refractive index is n = − ∣∣√μ′ε′∣∣, which
is negative. For a negative refractive index material the real part of the impedance
Z = Z0/(n − jK) is also negative. Materials with a negative refractive index are
often called left-handed media. If a plane wave strikes the boundary between
two media with positive and negative refractive indices n1 and n2, respectively,
at an angle of incidence θ1, then the angle of refraction θ2 obeys Snell’s law,
n1 sin θ1 = n2 sin θ2. So the refracted ray bends in the opposite direction from the
usual one, as shown in Fig. 10.6. Energy flow goes towards the boundary in medium
1 and away from the boundary in medium 2, as shown in Fig. 10.6; otherwise there
would be stored energy buildup at the boundary. Phase velocity, in contrast, is
towards the boundary in both media. At the boundary between two anisotropic
materials with positive principal refractive indices the wavevector direction (k)
of a wave obeys Snell’s law, but the ray direction deviates from the wavevector
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Figure 10.6. Negative refraction.

direction. At the boundary between two sufficiently birefringent materials it is
possible for the ray direction to undergo an apparent negative refraction.

In the optical region, metals sufficiently below their plasma frequency provide a
negative ε′, but achieving a negative value for μ′ is a challenge since most optical
materials have μ′ = μr = 1. It is easier to build metamaterials with controllable
permeability at longer wavelengths, where resonant metallic structures can be
incorporated that provide inductive and/or capacitive properties. For an inductor
L the impedance is Z = ωL and the admittance is Y = −j/(ωL). For a capacitor
the corresponding quantities are Z = −j/(ωC) and Y = jωC. To understand how
inductive/capacitive structures allow manipulation of the propagating electromag-
netic waves, it is instructive to examine the properties of generalized transmission
lines, which provide a lumped circuit analog of various types of propagating elec-
tromagnetic field waves.

10.6 Generalized transmission lines and backward wave systems

If a space can be represented by a distributed series impedance (�/m)/shunt admit-
tance (S/m) combination as shown in Fig. 10.7, then the generalized propagation
constant is γ = √

ZY . The simplest case is where Z = jωL and Y = jωC, and
γ = jω

√
LC, which corresponds to TEM wave propagation in a space with effec-

tive permittivity C (F/m) and permeability L (H/m). The wave vector magnitude
is β = ω

√
LC and the phase and group velocities are vp = ω/β = 1/

√
LC and

vg = dω/dβ = 1/
√

LC, respectively. The dispersion (ω − β) diagram is a straight
line.



326 Christopher C. Davis and Igor I. Smolyaninov

Z

Y

Figure 10.7. Generalized distributed impedance/admittance system.

L1

C1

C2 L2

Figure 10.8. Generalized system with two pass bands and a stop band.

For the generalized system shown in Fig. 10.8, there are two characteristic cut-off
frequencies ωc1 = 1/

√
L1C1 and ωc2 = 1/

√
L2C2. The generalized propagation

constant is given by

γ =
√

1 − ω2L1C1

jωL1

1 − ω2L2C2

jωL1
. (10.9)

For the case where ωc1 < ωc2, the dispersion diagram in the pass band 0 ≤ ω ≤ ωc1

is shown in Fig. 10.9. There is a stop band (energy gap) for ωc1 < ω < ωc2, and
a high-frequency pass band for ω ≥ ωc2. In the frequency range 0 ≤ ω ≤ ωc1, the
phase velocity and group velocities have opposite signs. This is a backward wave
system. It can be interpreted as a wave whose group velocity is positive when its
phase velocity is negative, or vice versa. It can be viewed as a system where the
phase refractive index is negative and the group refractive index is positive. This
is an analog of a negative refractive index system. Examples of other types of
dispersion diagram for distributed LC systems are given by Ramo et al. [14].

Generalized LC systems can be fabricated using distributed inductive and capac-
itive elements so as to provide spatially controlled variations in dielectric constant
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Figure 10.9. Dispersion diagram in the low-frequency pass band for the backward
wave system shown in Fig. 10.8.

Figure 10.10. (a) Schematic structure of a “fishnet” metamaterial: 21 alternating
layers of silver and magnesium fluoride. (From ref. [15], courtesy of Professor
Xiang Zhang.) (b) Scanning electron microscope image of the fabricated fishnet
structure, developed by UC Berkeley researchers. The alternating layers form small
circuits that can bend light backwards. (From ref. [15], courtesy of Professor Xiang
Zhang.)

and relative permeability. For example, composite structures of metal and dielec-
tric incorporating nanowires, metal grids, and metal loops can be used to provide
distributed inductance and capacitance. Metamaterials with a negative refractive
index that incorporate these ideas of distributed inductive and capacitive elements
have been fabricated using hybrid structures of metal and dielectric. Figure 10.10
shows the “fishnet” structure developed by Zhang and his co-workers [15]. Such
metamaterial structures, which have many other applications beyond their use in
cloaking, are very complex and require sophisticated 3-D lithography techniques.
It is beyond the scope of this chapter to discuss the optical properties of metama-
terials in detail. Their overall performance can be summarized as depending on
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(a) (b)

Figure 10.11. Illustration of the ray paths inside a spherical cloak of inner radius
R1, outer radius R2, that cloaks an inner spherical region of radius R1. A bundle
of parallel rays enters the cloak and its path is deviated by the spatial refractive
index distribution inside the cloak. A ray-tracing program was used to calculate
ray trajectories in the cloak, assuming that R2 � λ. The rays essentially follow
the Poynting vector. (a) Two-dimensional (2-D) cross section of rays entering the
cloak and being diverted within the annulus of the cloaking material contained
within R1 < r < R2 to emerge on the far side undeviated from their original
course. (b) A 3-D view of the same process. (From ref. [2], courtesy of Professor
Sir John Pendry.)

their isofrequency surfaces – the dependence of the components of the wavevec-
tor of a propagating wave on its direction relative to symmetry directions in the
metamaterial [16].

10.7 Transformation optics and the ray optics of cloaks

As discussed previously, in the geometrical optics approximation a region can
be cloaked if rays of light from behind an object flow around the object and then
continue on the same trajectory that they would have had if the cloaked region were
absent. This can be accomplished if the space around the object to be cloaked –
the cloak itself – is a region of graded refractive index that bends light rays around
the cloaked region, as shown in Fig. 10.11. It is clear from Fig. 10.11 that for
rays to enter a cloak and avoid a cloaked region they must take longer geometric
paths around the cloaked region, which requires that the refractive index inside the
cloak over at least some fraction of each path must be smaller than unity. It is not
necessary for the refractive index in the cloak to be negative for ray paths to exist
that avoid the cloaked region. If the cloak excludes external rays from entering the
cloaked region, it must also prevent any radiation from inside the cloaked region
from escaping.

In a uniform space, rays of light or wavevectors travel along straight lines,
but a cloak must make light travel along curved trajectories. One way of looking
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Figure 10.12. A mapping from one space to another transforms a straight line
in one space to a curved line in the new space. The mapping shown here is not
conformal.

at this is to imagine that space inside the cloak has been transformed so that,
in the transformed space, the paths of rays of light have become straight again,
even though the dielectric constant and relative permeability vary from point to
point. The transformation between coordinates in the original (Cartesian) space
and coordinates in the new space is called a mapping. For example, as shown in
Fig. 10.12, if the original space is a uniform grid and the transformed space is a
distorted grid, then a straight line in the original space becomes distorted in the
new space. Each point in the original space corresponds to a single point in the
new space. If the gridlines defining the coordinate systems in the original and
transformed space are locally orthogonal, then the mapping is called conformal.

In a transformation from Cartesian coordinates (x, y, z) to a set of curvilinear
coordinates (q1, q2, q3), each new coordinate q1 = q1(x, y, z), q2 = q2(x, y, z), and
q3 = q3(x, y, z) represents a surface such as q1 = const., etc. The space curves
formed by the intersection of these surfaces in pairs are called the coordinate lines.
The location of a point P (x, y, z) in the new coordinate system is P (q1, q2, q3), and
it lies at the intersection of the q1, q2, and q3 surfaces. The most useful coordinate
systems are ones in which locally the three surfaces q1, q2, and q3 intersect at right
angles. So a conformal mapping is a transformation from one set of orthogonal
curvilinear coordinates to another. It is interesting to understand how Maxwell’s
equations change as we move between coordinate systems. Of most importance in
this context are the curl equations:

curl E = −∂B
∂t

and curl H = j + ∂D
∂t

, (10.10)

which for time-harmonic fields can be written as curl E = −jωμrμ0H and
curl H = jωεrε0E, where, for conductive media, the current density has been
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incorporated into a lossy dielectric constant such that εr = ε′ − j (σ/ωε0), where
σ includes both ohmic conductivity and dielectric loss. For materials that have
magnetic loss, we can introduce a “magnetic conductivity” σ ∗, and the modified
relative permeability becomes μr = μ′ − j (σ ∗/ωε0). If we perform a coordinate
transformation to a general coordinate system (q1, q2, q3), Maxwell’s equations
retain their form, and we can write

curl qÊ = −jωμ̂rμ0Ĥ and curl qĤ = jωε̂rε0Ê, (10.11)

where in general μ̂r and ε̂r are tensors and Ê and Ĥ are renormalized electric
and magnetic fields [17]. We are still solving Maxwell’s equations, but with new
definitions of the dielectric constant and relative permeability. Transformations of
vector operators and tensors in coordinate transformations have been dealt with in
general by Margenau and Murphy [18], but the specific results that are relevant
to a discussion of spaces for cloaking have been given by Pendry et al. [2] and
in more general detail by Schurig et al. [19] and Rahm et al. [20]. Interesting
and complementary approaches have been described by Ma et al. [21] and Qiu
et al. [22]. If the new coordinates q1(x, y, z), q2(x, y, z), q3(x, y, z) are orthogonal
curvilinear coordinates, the renormalized values of the dielectric constant and
relative permeability are

εi ′i ′ = εii Q1Q2Q3

Q2
i

and μi ′i ′ = μii Q1Q2Q3

Q2
i

, (10.12)

where i = 1, 2, 3 and

Q2
i =

(
∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

. (10.13)

The transformed fields are Êi = QiEi and Ĥi = QiHi , where Ei and Hi are the
original field components along the original orthogonal axes.

The Jacobian for the transformation is given by

∂(q1, q2, q3)

∂(x, y, z)
= �q1q2q3

xyz =

⎛
⎜⎜⎝

∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y

∂q1

∂y

∂q2

∂y

∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

⎞
⎟⎟⎠ , (10.14)

where we have introduced the notation used by Schurig et al. [19]. It is instructive
to examine the meaning of the transformation of εr and μr in going from one
coordinate system to another in an undistorted space. For a transformation from
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spherical to Cartesian, coordinates, the Jacobian is given by

�
xyz

rθφ =
⎛
⎝ sin θ cos φ r cos θ cos φ −r sin θ sin φ

sin θ sin φ r cos θ sin φ r sin θ cos φ

cos θ −r sin θ 0

⎞
⎠ , (10.15)

with determinant det(�rθφ
xyz ) = r2 sin θ . In this transformation, Q2

r = 1, Q2
θ = r2,

Q2
φ = r2 sin2 θ , so the dielectric constant transformation is

ε′ =
⎛
⎝ ε0r

2 sin θ 0 0
0 ε0 sin θ 0
0 0 ε0

sin θ

⎞
⎠ . (10.16)

The metric tensor for this transformation is

gij =
⎛
⎝1 0 0

0 r2 0
0 0 r2 sin2 θ

⎞
⎠ and gij =

⎛
⎝1 0 0

0 r−2 0
0 0 (r2 sin2 θ )−1

⎞
⎠ . (10.17)

Note that

∣∣det(gij )
∣∣−1/2

gij ε
′ =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ ε0 , (10.18)

so, as pointed out by Rahm et al. [20], Eq. (10.16) still represents an isotropic
medium.

Before discussing specific cloak designs, it is instructive to review the overall
general approach to describing ray paths in transformed optical situations. We
follow the approach described by Schurig et al. [19]. If the Cartesian coordinates
in the original and transformed spaces are xi and xi ′ , where i, i ′ take the values
1, 2, 3, respectively, corresponding, for example, for i, to the familiar x, y, z coor-
dinates in the original space. We are using the standard superscript notation for the
components of a contravariant vector. The Jacobian transformation matrix can be
written as

�i ′
i = ∂xi

∂xi ′ . (10.19)

In a situation where the transformation is time-invariant and the dielectric and
magnetic properties are not directly dependent on each other, then the dielectric
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constant and relative permeabilities are tensors that change during the transforma-
tion according to Post [23]:

εi ′j ′ = �i ′
i �

j ′
j εij∣∣det(�i ′

i )
∣∣ , μi ′j ′ = �i ′

i �
j ′
j μij∣∣det(�i ′

i )
∣∣ . (10.20)

If the original medium is isotropic, then Eq. (10.20) can also be written in terms of
the metric as

εi ′j ′ = gi ′j ′
εr√∣∣det(gi ′j ′)

∣∣ , μi ′j ′ = g
i ′j ′
j μr√∣∣det(gi ′j ′)

∣∣ , (10.21)

where εr and μr are the original isotropic dielectric constant and relative perme-
ability, respectively. The metric is defined as gi ′j ′ = �i ′

k �
j ′
l δkl . For example, for a

Cartesian to spherical coordinate transformation,

gi ′j ′ =
⎛
⎝1 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

⎞
⎠ . (10.22)

So, for example, εrr = εrr
2 sin θ , where εr is the original isotropic dielectric con-

stant, as we saw previously.
To make a cloak, we perform a transformation that distorts space in the sense that

rays of light take curved paths in the cloak with regard to the original coordinate
system, but with the transformed distribution of dielectric constant and relative
permeability making the rays of light “think” that they are taking straight line
paths. If the space distortion involves a compression, then along the direction
that is compressed both ε and μ are decreased by the compression factor; in the
orthogonal directions, ε and μ are increased by the inverse of the compression
factor. There are two ways of looking at this situation: the space is transformed by
a coordinate transformation or mapping and the dielectric properties at a specific
point don’t change – the topological interpretation, or the material properties within
the space are transformed, but the coordinate systems in the two versions of the
space remain the same – the materials interpretation. These different viewpoints
are illustrated in Fig. 10.13. If a ray of light travels in a straight line in an original
coordinate system, then it will take a curved path in the transformed space. For
example, if the surface of the spherical earth is mapped to a plane, then a straight
line in the planar map will be curved in three dimensions on the spherical surface.
If the ray of light takes the shortest time path between two points P1 and P2,
then in the topological interpretation it follows the geodesics of the space, while
in the materials interpretation it follows the path s along which

∫ P2

P1
n(r, ω)ds is

minimized.
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(a)

(b) (c)

Figure 10.13. The thick line shows the path of the same ray in (a) the original
Cartesian space, and under two different interpretations of the electromagnetic
equations: (b) the topological interpretation and (c) the materials interpretation.
The position vector x is shown in both the original and transformed spaces, and the
length of the vector where the transformed components are interpreted as Cartesian
components is shown in (c). (From ref. [19], courtesy of Professor David Smith.)

10.7.1 Spherical cloak

To design a spherical cloak we consider a spherically symmetric coordinate trans-
formation and follow the details of the procedure described by Pendry et al. [2].
We compress all the space inside a sphere of radius b into a spherical shell of inner
radius a and outer radius b. A mapping that takes all the points in the sphere of
radius b and compresses this space into the shell a ≤ r ′ ≤ b is:

r ′ = a + r
b − a

b
; θ ′ = θ ; φ′ = φ ; note that r = (r ′ − a)

b

b − a
. (10.23)

The Jacobian for this transformation has elements ∂r/∂r ′, written out in full as

�i ′
i =

⎛
⎝ b

b−a
0 0

0 1 0
0 0 1

⎞
⎠ , (10.24)

so the dielectric tensor for the transformed medium is given by

ε′ =
⎛
⎝

b
b−a

(r ′ − a)2 sin θ 0 0
0 ε0

(
b

b−a

)
sin θ 0

0 0 ε0
sin θ

(
b

b−a

)
⎞
⎠ . (10.25)
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Finally, renormalizing with the metric

gi ′j ′ =
⎛
⎝1 0 0

0 r ′2 0
0 0 r ′2 sin2 θ

⎞
⎠ (10.26)

yields

ε′ =

⎛
⎜⎜⎝

b
b−a

(r ′−a)2

r ′2 0 0

0 b
b−a

0

0 0 b
b−a

⎞
⎟⎟⎠ . (10.27)

It is worthwhile examining the cloak prescription given by Eq. (10.27) in a direct
fundamental way as described by Schurig et al. [19]. Consider a position vector x
in the original coordinate system, as shown in Fig. 10.13, with components xi . In
the transformed coordinate system it has components xi ′ . The magnitude r of this
position vector is independent of coordinate system, so

r = (
xixj δij

)1/2 =
(
xi ′xj ′

gi ′j ′
)1/2

. (10.28)

In the materials interpretation of the new space we consider the components xi ′ to
be those of a Cartesian vector whose magnitude is

r ′ = xi ′xj ′
δi ′j ′ . (10.29)

Because the transformation is radially symmetric the unit vectors in the materials
interpretation and in the original space must be equal, so

xi ′

r ′ = xi

r
δi ′
i . (10.30)

Therefore, from Eqs. (10.23) and (10.30),

xi ′ = b − a

b
xiδi ′

i + a
xi

r
δi ′
i , (10.31)

which gives the Jacobian

�i ′
j = r ′

r
δi ′
j − axixkδi ′

i δkj

r3
. (10.32)

Written out in full, we obtain

�i ′
j =

⎛
⎜⎜⎝

r ′
r

− ax2

r3 − axy

r3 − axz
r3

− ayx

r3
r ′
r

− ay2

r3 − ayz

r3

− azx
r3 − azy

r3
r ′
r

− az2

r3

⎞
⎟⎟⎠ . (10.33)
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If we rotate into a coordinate system where (xi) = (r, 0, 0), then

det
(
�i ′

j

)
= r ′ − a

r

(
r ′

r

)2

. (10.34)

If our original medium is free space, then εr = μr = 1. Using Eqs. (10.20) and
(10.34) yields

εi ′j ′ = μi ′j ′ = b

b − a

(
δi ′j ′ − 2ar ′ − a2

r ′4 xi ′xj ′
)

. (10.35)

At this point we can simplify the notation by dropping the primes, since we just
need the spatial variation of the material properties in the original geometrical
space. The corresponding transformed ε̂ and μ̂ are given by1

εr ′r ′ = εr = μr ′r ′ = μr = b

b − a

(r − a)2

r2
, (10.36)

where we have simplified the notation. We have

εθ ′θ ′ = εθ = μθ ′θ ′ = μθ = b

b − a
, (10.37)

εφ′φ′ = εφ = μφ′φ′ = μφ = b

b − a
. (10.38)

The corresponding components of the refractive index are ni = √
εiμi = εi . The

radial refractive index has the value

nr ′ = b − a

b

(r − a)2

r2
, (10.39)

and the tangential refractive index is given by

nt ′ = b

b − a
. (10.40)

Locally, the cloak is uniaxial, with an isofrequency surface (indicatrix) that is an
ellipsoid of revolution.

Clearly, inside the cloak the radial component of the refractive index ellipsoid
take values from zero to unity. The tangential index can take large values if the cloak
is thin, b − a � b. Outside the region, r > b, εr = μr = εθ = μθ = εφ = μφ = 1,
so, at the boundary of the cloak, r = b, εθ = εφ = 1/εr , and μθ = μφ = 1/μr . The
impedance components at the boundary of the cloak are all Zi = √

μiμ0/εiε0 =√
μ0/ε0, so there is perfect impedance matching. We note that these are not strictly

1 Note that there is a typographical error in eq. (7) of ref. [2].
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Figure 10.14. Point charge located near a cloaked sphere. It is assumed that
b � λ, the near-field limit, and the electric displacement field lines are plotted.
The field is excluded from the cloaked region, but emerges from the cloaking
sphere undisturbed. The field lines are plotted closer together near the sphere to
emphasize the screening effect. (From ref. [2], courtesy of Professor Sir John
Pendry.)

the boundary conditions for a perfectly matched layer [24], which requires lossy ε̂r

and μ̂r such that σr ′/ε0 = σ ∗
r ′/μ0; σθ ′/ε0 = σ ∗

θ ′/μ0; σφ′/ε0 = σ ∗
φ′/μ0 [25], where

σ and σ ∗ are the electrical and magnetic conductivities of the medium. These
conductivities are related to the lossy parts of the dielectric constant and relative
permeability for time-harmonic waves by σ = ωε′′ε0 and σ ∗ = ωμ′′μ0. However,
it is consistent to point out that there is no reflection from the outer surface of
the cloak in the geometrical optics approximation because the ray does not enter
the cloak and is therefore not reflected. On the other hand, if the refractive index
distribution within the cloak is viewed as a dielectric light guide for waves being
diverted around the cloaked region, then, since the ray directions are curved, there
is also some light leakage from the cloak, as well as scattering from the material
of the cloak.

The deviation of rays of light around the cloaked region, as shown in Fig. 10.12,
also applies for any light source or object placed close to the cloak, as shown in
Fig. 10.14.

10.7.2 Cylindrical cloak

The transformation that will cloak a cylindrical region 0 < r < b by compressing
a cylindrical region into an annular shell with inner radius a and outer radius b is
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given by

r ′ =
(

b − a

b

)
r + a; θ ′ = θ ; z′ = z , (10.41)

where θ and z are the angular and axial coordinates in the original coordinate
system, and θ ′ and z′ are the angular and axial coordinates in the transformed
system. The corresponding transformed ε̂ and μ̂ in the original coordinate system
are given by

εr = μr = r − a

r
; εθ = μθ = r

r − a
; εz = μz =

(
b

b − a

)2
r − a

r
. (10.42)

One interpretation of the action of the cloak is that it compresses the cloaked region
to a line, but there is a problematic singularity at the cloak boundary where r = a.

10.7.3 Homogeneous isotropic cloak

As we have seen so far, the transformational optics approach to cloak design
requires the use of anisotropic materials with spatially controlled dielectric and
magnetic properties. However, Sun et al. [26] have described an approach to a
cylindrical cloak that uses layers of isotropic material to fold light rays around
a cloaked region. They use an inner diverging lens with an isotropic refractive
index below unity with a Luneburg lens around the exterior. The Luneburg lens
has its external focal point at infinity. This design requires no magnetic materials
or anisotropy, only a radially dependent refractive index.

10.7.4 Cloaks of arbitrary shape

The validity of cloaking designs based on coordinate transformations has been
confirmed by solving the ray trajectories in a geometrical optics model [2, 19] and
confirmed in a full electromagnetic wave numerical simulation of a cylindrical cloak
by Cummer et al. [27]. It is also possible from a theoretical standpoint to design a
cloak for an arbitrarily shaped object by performing coordinate transformations that
shrink the cloaked region to a point or a line. The theoretical validity of arbitrary
cloak designs has been verified in simulations for square cloaks [20], elliptical
cylindrical cloaks [28–30], conical cloaks [31], and arbitrarily shaped polygonal
2-D cloaks made up of connected triangular regions [32]. Qiu et al. [33] describe
a spherical cloak made of concentric layers, where each layer is isotropic. Such
cloaks do not perform as well as a continuously varying cloak, but are in principle
easier to fabricate. In practice, of course, a spherical cloak can make an object
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q1

q2

E2

E1

Figure 10.15. P-wave electric field vectors at a cloak boundary.

of any shape invisible provided the object fits inside the cloaked region r < a.
The advantage of spherical cloaks for this purpose is that only the radial dielectric
constant and relative permittivity need to vary, which, in principle, allows the
fabrication of a metamaterial cloak of minimal complexity.

10.7.5 Cloak boundary conditions

At the boundary of the cloak, if all impedance components Zi = √
μiμ0/εiε0 =√

μ0/ε0, there is perfect impedance matching and no reflection. It is instructive to
examine how refraction occurs for a light ray entering such a cloak, as shown in
Fig. 10.15. This figure shows the locally plane boundary of the cloak at a point
that would correspond to a ray entering above the axis in the meridional plane of
either Fig. 10.10 or Fig. 10.14. The ray is shown refracting such that the angle of
refraction is greater than the angle of incidence because the ray is being deviated
around the cloaked region. There is no reflected ray because of perfect impedance
matching. If both the region outside the cloak and the cloak itself are lossless, there
is no mechanism for charge transport up to the cloak boundary, and for the P-wave
(TM-wave) shown, the continuity of the normal component of D yields

E1 sin θ1 = εrc(θ2)E2 sin θ2 , (10.43)

where εrc(θ2) is the effective dielectric constant of the cloak at angle θ2, E1 and
E2 are the magnitudes of the electric field vector in the two media, and the region
outside the cloak has εr = μr = 1. Continuity of the tangential components of the
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electric fields yields

E1 cos θ1 = E2 cos θ2 . (10.44)

Combination of Eqs. (10.43) and (10.44) yields

tan θ1 = εrc tan θ2 = n2
c(θ2) tan θ2 . (10.45)

In the transformed medium this is equivalent to every ray at any angle of
incidence being at Brewster’s angle. For a cloak that is very large in relation
to the wavelength, so that the boundary can be viewed as locally plane, the phase
velocities of the waves must match on both sides of the boundary so that the
effective refractive index, neff, seen by the refracting component parallel to the
boundary, satisfies Snell’s law:

neff = sin θ1

sin θ2
, (10.46)

which yields

n2
eff = n4

c(θ2) + [1 − nc(θ2)]2 sin2 θ1 . (10.47)

It is important to note that there is no birefringence in these structures of anisotropic
ε̂ and μ̂. Because both the dielectric and magnetic properties are equally anisotropic,
there is no angular deviation between the ray direction and the wavevector direction
in these transformed structures [34]. A ray in the original space cannot become
two rays in the transformed structure: there is no equivalent of an ordinary and an
extraordinary ray.

10.7.6 Ray dynamics in cloaks

It is worth examining some general characteristics of the refractive index distri-
bution inside the cloak before going into a detailed analysis of the actual required
profiles and a discussion of how these could be fabricated in practice. In the geo-
metric optics model of ray propagation, the path of a ray from a point P1 to a second
point P2 follows Fermat’s principle. In its simplest form, Fermat’s principle says
that a ray follows the path of least transit time from P1 to P2, which can be stated
as follows [35]:

δ

P2∫
P1

n(r, ω)

c0
ds = 0 , (10.48)

where n(r, ω) is the refractive index at vector position r measured from an origin
O along a path s, where the element of length along the ray trajectory is ds. In an
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Figure 10.16. Schematic ray path through an inhomogeneous medium.

anisotropic medium the polarization state of the ray must be stated explicitly, since
ordinary and extraordinary rays can take different paths through such a medium. The
geometry in question is shown in Fig. 10.16. For the geometrical optics approach
to be valid, the refractive index should not change much on spatial scales on the
order of the wavelength. In addition, if the medium is not only inhomogeneous but
also anisotropic, then the refractive index is related to a tensor dielectric constant
and relative permeability.

In a general sense, the variation of the path integral in Eq. (10.48) is an extremum,
although treating it as a minimum is satisfactory for most situations. It should be
pointed out that if P1 and P2 are conjugate points in an imaging system, there
is more than one path that satisfies Eq. (10.48). From Fermat’s principle we can
derive the equation of light rays as follows:

d

ds

[
n(r, ω)

dr
ds

]
= 1

2n
grad(n2) = grad[n(r, ω)] , (10.49)

where dr/ds is a unit vector in the direction of the trajectory and |dr/ds| = 1.
Along the trajectory of a ray, ds = c dt = (c0/n)dt , where c0 is the velocity of
light in a vacuum. Making this substitution in Eq. (10.49) gives an alternative form
of the equation of light rays:

n2

c0

d

dt

(
n2

c0

dr
dt

)
= grad(n2)

2
. (10.50)

10.7.7 The Hamiltonian optics of rays

A powerful approach to determining the trajectory of a light ray in an inhomoge-
neous medium is to use Hamilton’s approach, in which the trajectory of the ray can
be regarded as equivalent to the motion of a particle in a field of force [36–39]. It is
worth noting that Eq. (10.48) is analogous to Maupertuis’s principle of least action
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in particle dynamics, where the equation takes the form

δ

P2∫
P1

mv ds = δ

P2∫
P1

√
2m(E − U ) ds = 0 , (10.51)

where m and v are the particle mass and velocity, respectively, and E and U are
the total energy and potential energy, respectively. Using this mechanical analogy
between particle motion and light rays, the light ray equivalent of mv is n/c0, so
clearly the effective mass in the light ray equation is unity. Equation (10.49) can
be written for a particle as follows:

d

ds

(
v
dr
ds

)
= grad v . (10.52)

Note that dr/ds is a unit vector tangential to the trajectory, so grad v = dv/ds. We
introduce an effective “time” τ for the light ray defined from

c0

n2
dt = dτ . (10.53)

With this definition, Eq. (10.50) becomes

d2r
dτ 2

= grad n2

2
, (10.54)

which is equivalent to Newton’s second law of motion, where the Newtonian
“force” is given by

F = grad n2

2
. (10.55)

This force can be regarded as the negative gradient of an overall effective potential
function,

U = −n2

2
. (10.56)

Note that

n = c0

n

dt

dτ
=
∣∣∣∣dr
dt

∣∣∣∣ dt

dτ
=
∣∣∣∣ dr
dτ

∣∣∣∣ ; (10.57)

dr/dτ is the equivalent of the velocity, in this view, of the light ray propagation as
a light “particle” of mass m = 1. The “kinetic energy” of the light particle is

T = 1

2

∣∣∣∣ dr
dτ

∣∣∣∣
2
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and its total energy is given by

E = T + U = 1

2

∣∣∣∣ dr
dτ

∣∣∣∣
2

− n2

2
= 0 ; (10.58)

the “momentum” of the light particle in this formalism is

p =
∣∣∣∣ dr
dτ

∣∣∣∣ = n . (10.59)

So, the mechanical analog of the motion of a light “particle” is that of a particle
with zero total energy and zero frequency [37]. It is important to note that if the
medium is inhomogeneous and anisotropic then the optical path now depends on
the polarization state of the wave and a different approach is required. This is best
accomplished through the use of the eikonal [35] and the use of a Hamiltonian
approach, in which the components of the wavevector are associated with gen-
eralized momenta [40]. This approach will be described in detail later. Although
the Hamiltonian is generally associated with the total energy of a particle, this
is not always the case when coordinate transformations or mappings are used.
The Hamiltonian of a light ray is written in many different ways, for example as
follows [41]:

H = −
√

n2 − p2 . (10.60)

So, in the mechanical analog (since p = n), H = 0, and the mechanical analog
suggests ω = 0. If the motion of the light ray is equivalent to the motion of a
particle of zero total energy in a spherically symmetric refractive index profile,
then, for a potentially curved path, the ray has linear and angular momentum, and
we can write, in polar coordinates, the following:(

dr

dτ

)2

+ r2

(
dφ

dτ

)2

− n2(r) = 0 , (10.61)

so the trajectory of the ray can be determined in much the same way that it would
be determined for a particle in an orbit. If the refractive index is independent of
position, the trajectory is a straight line, and Eq. (10.61) yields

dr

dτ
= n

c0

n2
= c0

n
, (10.62)

as expected.
Some care must be exercised in not carrying the zero energy particle model too

far because the photon momentum in a material medium is still a matter of debate
[42]. This involves the Minkowski–Abraham controversy as to whether the photon
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momentum is

h̄k = nh

λ0
= nhν (Minkowski) or mv = E

c2
0

c0

n
= hν

nc0
(Abraham). (10.63)

Although recent experimental evidence [43] appears to support the Abraham inter-
pretation, Barnett [44] has indicated that there is no ambiguity. He asserts that both
Minkowski and Abraham are correct: the Minkowski momentum is the canonical
momentum for a photon viewed as a wave, while the Abraham momentum is the
kinetic momentum where a photon is viewed as a particle.

10.7.8 Ray and wave paths in inhomogeneous and anisotropic materials

Most 3-D cloaking designs to date have required the use of anisotropic media in
which the ray direction can depend on polarization state. Because the dielectric
and magnetic properties of the material are tensors, we can no longer use a scalar
refractive index that varies from point to point to describe the behavior of rays in
a cloak. We concentrate here on the ray dynamics in the nonmagnetic TM cloak
design described by Jacob and Narimanov [45]. A more general discussion has
been given by Schurig et al. [19].

We assume that time-harmonic fields propagate with a spatial field variation
of the form U ∼ exp[−jk0ψ(r)], where ψ is the eikonal and k0 = ω/c is the
propagation constant in a vacuum. For TM-wave propagation in a locally uniaxial
nonmagnetic medium the eikonal obeys the following equation [40]:

1

ε22h
2
3

(
∂ψT M

dq3

)2

− 2

ε23h2h3

(
∂ψT M

∂q2

)(
∂ψT M

∂q3

)

+ 1

ε33h
2
2

(
∂ψT M

dq2

)2

= μ0ε0 , (10.64)

where q1, q2, q3 are generalized coordinates and h1, h2, h3 are the associated scale
factors. If cylindrical symmetry is assumed, with a dielectric constant tensor of the
form

ε̂r =
(

εr 0
0 εθ

)
, (10.65)

then, for a principal coordinate system oriented locally in the r, θ directions,
Eq. (10.64) gives a Hamiltonian representation of the ray trajectory as

H =
√

p2
r

εθ

+ p2
θ

r2εr

, (10.66)
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or (written as a dispersion equation)

k2
r

εθ

+ k2
θ

r2εr

= ω2

c2
0

, (10.67)

where we have used the fact that the canonical momenta satisfy pi = ∂ψ/∂qi . In
this formulation, angular frequency can be regarded as the Hamiltonian, and the
wavevector k as the canonical momentum. Hamilton’s equations in this context
can be written as follows:

dr
dt

= ∂ω

∂k
,

dk
dt

= −∂ω

∂r
. (10.68)

In a vacuum the Hamiltonian

Hvacuum =
√

p2
r + p2

θ

r2
(10.69)

corresponds to photon motion in a straight line, where angular momentum is
conserved. The angular momentum of a photon, pθ = ρh̄k = L, is conserved,
where ρ is the impact parameter of the ray defined with respect to the origin. This
corresponds to the following ray trajectory:

r sin θ = ρ . (10.70)

As pointed out by Jacob et al. [45], one angular momentum-conserving trajectory
that avoids a cylindrical region of radius a is

(r − a) sin θ = ρ . (10.71)

They assert that a cloak Hamiltonian that accomplishes this is

Hcloak =
√

p2
r + p2

θ

(r − a)2
. (10.72)

The simplest dielectric constants that reduce Eq. (10.66) to this form are

εr = C

(
r − a

r

)
, εθ = C , (10.73)

where C is a constant. It is important that these parameters be independent of angle
so that the cloak works for rays incident from all directions in any circular cross
section. Jacob et al. [45] show that the choice of the constant C = b2/(b − a)2

provides a finite size cloak with inner radius a and outer radius b. At the outer
boundary of the cloak, rays refract into the birefringent medium and then take
trajectories that conserve angular momentum and avoid the cloaked region. The



Cloaking 345

ray trajectory inside the cloak is given by

r(θ ) = a + b sin θ√
C sin(θ − θ0)

, (10.74)

where θ0 is a constant that makes sure that angular momentum is conserved as the
ray enters the cloak:

θ0 = θ1 − arcsin

(
b sin θ1

b − a

)
. (10.75)

The cloak parameters given by (Eq. 10.73) are exactly the same as those obtained
by a transformational optics approach, which shows the equivalence between the
transformed space and the materials interpretations of cloaking. Later in this chapter
we will describe how this quasi-classical cloak may be emulated using tapered
waveguides.

10.7.9 Nonmagnetic cloak for visible light

In the visible region of the spectrum, where the notion of invisibility has the most
emotional impact and potentially greatest utility, the fabrication of metamaterials
with spatially controlled permeability is challenging. If the cloak is limited to
P-wave (TM-wave) illumination in a cylindrical or 2-D circular geometry, then the
only material parameters that must satisfy Eq. (10.42), are μz, εr , and εθ . The ray
paths inside the cloak are the same as predicted by Eq. (10.42) provided the values
of μzεr and μzεθ are maintained at the values required by Eq. (10.42). With these
constraints, a reduced cloak specification is the one described above [46]:

μz = 1, εθ =
(

b

b − a

)2

, εr =
(

b

b − a

)2 (
r − a

r

)2

. (10.76)

The penalty incurred in using this reduced cloak design is that there is no longer
perfect impedance matching at the boundary of the cloak. For waves incident
normally on the cloak, the effective impedance at the boundary of the cloak is
given by

Z =
√

μrμ0

εθε0
=
(

b

b − a

)
Z0 , (10.77)

so there is significant reflection. For grazing incidence on the cloak, the reflection
goes to zero. This cloak design does not require the incorporation of any optical
magnetic response; however, it does require a radial dielectric constant that rises
from zero at the boundary of the cloaked region to a value of unity at the boundary
of the cloak, as shown in Fig. 10.17.
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Figure 10.17. Cloak parametric variation for a = 1, b = 3.

Cai et al. [46] have carried out simulations of their nonmagnetic metamaterial
cloak in which the radial variation in dielectric constant was accomplished by
embedding nanowires of subwavelength diameter in the radial direction. If loss in
the metal is neglected, then the dielectric constant of the metal sufficiently below the
plasma frequency is negative, and, for the embedded wires inside a dielectric, the
effective dielectric constant in the radial direction can be adjusted between zero and
unity from the inside of the cloak to its outside. The azimuthal permittivity inside
the cloak is essentially the same as the dielectric because of the minimal dielectric
response of the nanowires in the direction normal to their length. The wires do
not need to be periodically spaced, and can be random, but their average fill factor
should not vary much over the scale of the wavelength inside the dielectric. The
effective dielectric constant for a metal particle–dielectric composite is

εeff = 1

2κ

(
ε ±

√
ε2 + 4κεmεd

)
, (10.78)

where εm and εd are the dielectric constants of the metal and dielectric, respectively,
κ is a screening factor, and

ε = [(κ + 1)f − 1] εm + [κ − (κ + 1)f ] εd . (10.79)

The idealized structure is shown in Fig. 10.18, and its cloaking performance is
shown in Fig. 10.19. The cloaking is not perfect, as expected, but visibility of the
cloaked cylinder is markedly reduced, as is its shadow.

In the last few years there has been considerable work on theoretical cloak-
ing structures that have potential advantages over the spherical and cylindrical
structures described so far. Jiang et al. [28] have described a cloak based on a
coordinate transformation in elliptical–cylindrical coordinates. In their approach,
the cloak still effectively hides a cylindrical region by compressing it, but not to a
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(a)

(b)

Figure 10.18. Coordinate transformation and structure of the nonmagnetic optical
cloak. (a) The coordinate transformation that compresses a cylindrical region r , b
into a concentric cylindrical shell a, r , b. There is no variation along the z direction;
r1 and r2 define the internal and external radius of a fraction of the cylindrical
cloak. (b) A small fraction of the cylindrical cloak. The wires are all perpendicular
to the cylinder’s inner and outer interfaces, but their spatial positions do not have
to be periodic, and can be random. Also, for large cloaks, the wires can be broken
into smaller pieces that are smaller in size than the wavelength.

(a)

(b)

Figure 10.19. Finite element simulations of the invisibility cloak described by
Cai et al. Cloak on (a); cloak off (b). The cloak is illuminated from the left with
TM-waves at 632.8 nm. (From ref. [46], courtesy of Professor Vladimir Shalaev.)
See color plates section.
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point in planes perpendicular to the cylinder axis, but to a line, which avoids the
singularity at the inside radius of the cloak. Unfortunately, this cloak design still
requires spatial control of relative permeability as well as dielectric constant, which
is challenging in the optical region of the spectrum. Cai et al. [47] have extended
their work on nonmagnetic cloaks to include nonlinear coordinate transformations,
which allow the impedance mismatch at the cloak boundary to be avoided. They
consider a general transformation r ′ = f (r), of which Eq. (10.41) represents a
linear example. They are still compressing the region r < b into a cylindrical shell
for which a < r ′ < b. For any cylindrically symmetric transformation of this kind,

εr ′ = μr ′ = r

r ′
∂f (r)

∂r
, εθ ′ = μθ ′ = 1

εr ′
, εz′ = μz′ = r

r ′

[
∂f (r)

∂r

]−1

, (10.80)

which reduces to Eq. (10.42) for the linear transformation of Eq. (10.41). For an
incident P-wave only, μz, εr , and εθ enter into Maxwell’s equations. A reduced set
of nonmagnetic cloak parameters can be obtained by multiplying εr and εθ by μz

to give

εr ′ =
( r

r ′
)2

, εθ ′ =
[
∂f (r)

∂r

]−2

, μz′ = 1 . (10.81)

The normalized impedance at the outer boundary of the cloak is given by

ζr ′=b = Zr ′=b

Z0
=
(√

μz′

εz′

)
r ′=b

= ∂f (r)

∂r
, (10.82)

which by an appropriate choice of f (r) can be set equal to unity to provide a per-
fectly matched nonmagnetic cloak. For example, with the nonlinear transformation

r ′ = f (r) =
[
1 − a

b
+ p (r − b)

]
r + a , (10.83)

the boundary conditions f (0) = a and f (b) = b are satisfied. To achieve ζr ′=b = 1
requires p = a/b2, and the optimal transformation becomes

r ′ = f (r) =
[a
b

( r

b
− 2

)
+ 1

]
r + a . (10.84)

The nonmagnetic material properties can then be determined from Eq. (10.79). To
keep the transformation monotonic requires the shape factor a/b < 1/2.

10.8 Conformal mapping for cloaking

A parallel approach to the general space transformations pioneered by John Pendry
and his colleagues is the elegant conformal mapping procedure described by Leon-
hardt [42, 48]. Conformal mapping is an elegant and well established technique for
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Figure 10.20. Mapping of coordinate lines in the W plane to the Z plane.

the solution of two-dimensional electrostatics and wave problems [14]. The fields
must be independent of the third dimension. Conformal mapping can transform an
electromagnetic wave problem with complicated boundaries into a mapping in the
complex plane that makes the boundaries simpler. The original 2-D plane is the
Z plane, where the coordinates of a point are represented by the complex number
Z = x + jy. The conformal mapping is to the W plane, where the coordinates of
points are represented by W (Z) = u + jv, where W (Z) is an analytic function.
In the W plane lines of constant u and v intersect at right angles and form an
orthogonal grid. In the Z plane lines of constant u and v also create a grid, but the
u = const. and v = const. lines are curved, as shown schematically in Fig. 10.20.

A Smith chart is a fine example of a conformal transformation between the Z

(normalized complex impedance) plane and the W (normalized complex reflection)
plane with W (Z) = (Z − 1)/(Z + 1).

The Helmholtz equation for time-harmonic waves in two-dimensional (x, y)
space is

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ k2ψ = 0 , (10.85)

where ψ is any field or potential associated with the wave. A transformation from
the Z plane to the W plane transforms the Helmholtz equation to [14]

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ k2ψ =

∣∣∣∣dW

dZ

∣∣∣∣
2 (

∂2ψ

∂u2
+ ∂2ψ

∂v2

)
+ k2ψ = 0 , (10.86)

so

∂2ψ

∂u2
+ ∂2ψ

∂v2
+ k2

∣∣∣∣ dZ

dW

∣∣∣∣
2

ψ = 0 . (10.87)

Note that |dZ/dW | is a scale factor that relates an incremental length |dW | in
the W plane to the corresponding incremental length |dZ| in the Z plane. In the



350 Christopher C. Davis and Igor I. Smolyaninov

420−2−4

u

−1

0

1

2

3

v

Figure 10.21. Mapping of W (Z) = (1/2)
(
Z ± √

Z2 − 4
)

. There are two branch

cuts at Z = ±2, where the mapping flips between the upper and lower half planes.

Z plane, k ∝ n, so, in the transformation to the W plane, n|dZ/dW | = n′ can be
regarded as a transformed refractive index profile.

Because of Fermat’s principle, light rays do not know the difference between
a long path in a low refractive index medium and a short path in a higher index
medium. In a similar way, if light takes a straight line path in (u, v) space, then
the corresponding paths in (x, y) space will in general be curved. The transformed
refractive index profile causes curved lines in the Z plane to become straight lines
in the W plane. A well known conformal transformation is

W (Z) = 1

2

(
Z ±

√
Z2 − 4

)
, Z = W + 1

W
, (10.88)

which maps the upper half of the Z plane to the region in the upper half of the
W plane that is outside the unit circle |W | = 1 and to the region of the lower half
plane that is inside the unit circle |W | = 1, as shown in Fig. 10.21.

If the mapping includes the lower half of the Z plane, then the combined mapping
is as shown in Fig. 10.21. Some of the geodesic curves for this mapping are shown.
In the context of the equivalent refractive index,

n′ =
∣∣∣∣ dZ

dW

∣∣∣∣ =
∣∣∣∣1 − 1

W 2

∣∣∣∣ , (10.89)

this is equivalent to a refractive index distribution n′(z) = |1 − 1/Z2| that will
exclude some rays from the region of unit radius, as shown in Fig. 10.21. Unfor-
tunately, this is not a good cloaking device because the refractive index dis-
tribution is azimuthally nonuniform. In real space the refractive index in polar
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Figure 10.22. Refractive index variation corresponding to the mapping in
Fig. 10.21. See color plates section.
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Figure 10.23. Geodesics of the mapping W (Z) = (1/2)(Z ± √
Z2 − 4). The ray

enters the cloak and is lost in the singularity at the origin.

coordinates is

n(r, θ ) =
√

2

√
1 − cos(2θ )

r2
, (10.90)

as shown in Fig. 10.22.
Rays of light that follow the geodesic curves in Fig. 10.23 approaching the

“cloak” horizontally are diverted around the unit circle, but rays of light approaching
the cloak vertically can enter the unit circle and be trapped by the singularity at
r = 0, where the refractive index goes to infinity. This would be the fate of the
ray shown in Fig. 10.23. Although a singularity of the refractive index of this kind
could never occur in the real world, if it did, rays that reached the singularity would
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slow down to zero velocity and never re-emerge. This is analogous to the behavior
of a black hole. A “cloak” designed in this way would cast a large shadow for rays
approaching the cloak in the vertical direction shown in Fig. 10.23.

Leonhardt and his collaborators describe the behavior of rays in conformal maps
in topological terms [3, 48]. Rays that enter the unit circle enter a new Riemannian
surface that is physically separated from the original Riemannian surface, which
can be identified as the real two-dimensional space where a spatially controlled
refractive index diverts rays around a cloaked region. In their approach to cloak
design they find conformal maps that consist of two or more Riemannian surfaces,
where one surface corresponds to the exterior of the cloak. Light rays that enter the
cloaked region perform closed orbits and then re-emerge onto the original surface
as if they had never left it. The invisible part of the cloaked region is inaccessible
to rays. To accomplish this, the potential under which light “particles” move in the
cloaked region must correspond to a potential that provides closed orbits around
one of the branch points, which in real space correspond to the points in w space
that separate two Riemannian sheets, for example the upper and lower half planes
in Fig. 10.21. Two cloak designs described by Leonhardt and his colleagues are
related to Luneburg lenses [49] and Eaton lenses [50]. The Luneburg lens has a
spherically symmetric refractive index of the form

n(r) =
√

2 −
( r

a

)2
, (10.91)

where a is the radius of the spherical lens. This lens is not immediately a cloaking
device, although it does possess the attribute that it does not reflect light since
its exterior index is unity, the same as surrounding free space. Parallel light rays
entering a Luneburg lens are brought to a focus on the diametrically opposite
surface, and then continue to propagate as diverging rays coming from that point.
Inside the lens, ray paths are arcs of ellipses [51]. There is no cloaked region inside
the lens.

The Eaton lens has a spherically symmetric refractive index profile given by

n(r) =
√

2a

r
− 1 , (10.92)

where a is the radius of this spherical lens. An Eaton lens works like a perfect
“cats-eye” retroreflector. Parallel light rays entering the lens are translated laterally
by the lens and returned parallel to their original paths [52]. The Luneburg lens
posseses a refractive index singularity at r = 0, but its design can be modified to
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(a) (b)

Figure 10.24. Light guiding using a harmonic oscillator profile (similar to a
Luneburg lens) with the refractive index profile Eq. (10.91) in w space. The device
guides light that has entered its interior layer back to the exterior, represented in
(a) using two Riemann sheets that correspond to the two layers, seen from above.
(b) Corresponding ray propagation in physical space with the optical conformal
map Eq. (10.98) and r1 = 8r0. At the branch cut in (a), the thick black line between
the two points, the branch points, light passes from the exterior to the interior sheet.
Here light is refracted according to Snell’s law. On the lower sheet, the refractive
index profile Eq. (10.91) guides the rays to the exterior sheet in elliptic orbits with
one branch point in the center. Finally, the rays are refracted back to their original
directions and leave on the exterior sheet as if nothing had happened. The dotted
circle in (a) indicates the maximal elongations of the ellipses. This circle limits
the region in the interior of the device that light does not enter. The outside of the
circle and the other Riemann sheets of the map correspond to the inside of the
device in physical space, as shown in (a). Anything inside this area is invisible.
(From ref. [3], courtesy of Professor Ulf Leonhardt.)

avoid this [53]. In the conformal mapping approach, the Luneburg lens has the
transformed harmonic oscillator refractive index profile given by

n′ =
√

1 − |w − w1|2
r2

1

, (10.93)

which in w space corresponds to a central potential around the branch point w1 of
the form

U (|w − w1|) = −n′2

2
= −1

2
+ |w − w1|2

2r2
1

. (10.94)

Note that r1 is a maximum radius in w space beyond which the refractive index
becomes imaginary, so the region beyond this circle corresponds to the region of
real space where an object can be hidden. The behavior of rays in this mapping is
shown in Fig. 10.24.
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For the profile based on an Eaton lens, the refractive index profile in w space is

n′ =
√

r2

|w − w1| − 1 , (10.95)

for which the central potential is

U (|w − w1|) = − r2

2|w − w1| − 1

2
, (10.96)

which corresponds to a Kepler potential. For both the harmonic oscillator and
Kepler potentials all orbits are closed, so they provide the necessary properties for
closed orbits on the interior Riemannian sheet that then return to the exterior sheet.

Another interesting example is provided by the refractive index profile corre-
sponding to a Maxwell fish eye lens, where

n′ = n0

1 + (|w − w1|/r3)2 . (10.97)

In real space the ray trajectories in a Maxwell fish eye lens are circles. Figure 10.25
shows the ray trajectories in real space for this conformal invisibility device using
the map

w = 4r0J

(
− ln(432z/r0)

2jπ

)
− 31r0

19
, (10.98)

where J (z) is the Klein invariant, r3 = 4r0, and n0 = 2. Note that rays traveling
both horizontally and vertically avoid the cloaked region.

Leonhardt and his colleagues have shown that for these conformal cloaks, where
rays entering the interior Riemannian sheet make closed orbits and then re-emerge
on the exterior sheet, all of these rays experience the same time delay, so in
principle do not suffer from the phase distortions experienced by rays passing
through cloaks based on transformation optics. Leonhardt and his coworkers [3,
48, 54, 55] have described a more general approach to cloaking using non-Euclidean
transformations, but a fundamental problem remains: how to fabricate the complex
spatial distributions of εr and μr required to turn these concepts into reality. They
point out a problem with cloaks based on transformation optics in that cloaking a
finite region requires expanding a point to a circle (in a simple 2-D case). In real
space, light takes zero time to pass a point, but when the point is expanded to a
circle the light in the transformed space must cover a finite path in zero time. This
requires the light to travel around the inner lining of the cloak at infinite phase
velocity. In the materials interpretation of the transformation described by Schurig
et al. [19], it is not clear that this is a practical issue for geometrical optics, since a
specific path through the cloak could be mimicked with a series of mirrors. There
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Figure 10.25. Ray paths in an invisibility device. (From refs. [3] and [48], courtesy
of Professor Ulf Leonhardt.) See color plates section.

will be a path-dependent delay for a light pulse passing through the cloak, but no
infinite group velocity is required.

It is important to note, however, that these cloaks based on 2-D conformal
mapping cannot cloak a 3-D region as can the transformation cloaks described by
Pendry and his colleagues, although they provide important guidance towards the
design of all dielectric cloaks without loss. For example, in the approach described
by Jacob and Narimanov [45], the ray trajectories in the cloak are generalized to
an anisotropic cloak where n(r) is not a simple scalar function of position but is a
local 2-D uniaxial tensor of the form

εr =
(

εr 0
0 εθ

)
. (10.99)

In this medium the dispersion relation is given by [56]

k2
r

εθ

+ k2
θ

r2εr

= ω2

c2
0

. (10.100)
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If the light trajectory is described in polar coordinates, then the Hamiltonian is

H = ω = c0

√
k2
r

εθ

+ k2
θ

r2εr

. (10.101)

10.9 Ray dynamics entering a dielectric cloak

As shown by Jacob and Narimanov [45], the modeling of a cloak for light particles
where angular momentum is conserved leads to ray trajectories that avoid the
cloaked region. For a nonmagnetic cylindrical cloak of finite radius b and TM
geometry, a ray must enter the cloak from a vacuum before it can execute its
trajectory around the cloaked region. Because the cloak is birefringent in this case,
in cylindrical symmetry the ray in the cloak propagates as an extraordinary ray.
Consequently, the ray angle after a ray enters the cloak must be calculated from the
ray angle relative to the optical axis for a wave that refracts according to Snell’s
law for the extraordinary wave vector. At the boundary of the cloak the angle of
incidence is θ1. The wave refracts according to Snell’s law at an angle of refraction
θ2, where θ2 is the solution of

θ2 = arctan

(
ne(b) sin θ1√

n2
on

2
e(b) − n2

o sin2 θ1

)
, (10.102)

and we have written no = √
εθ and ne(b) = √

εr (b), where εθ , εr (b) are the tan-
gential and radial components of the local diagonal dielectric tensor at the cloak
boundary r = b; θ2 is the angle the wavevector makes with the optic axis. The ray
angle θs with respect to the optic axis (radial direction) then satisfies the following
equation [57]:

θs = arctan

(
εθ

εr (b)
tan θ2

)
. (10.103)

It is easy to show that the ray bends away from the normal on entering the
cloak, although the wavevector direction does not. Because the nonmagnetic cloak
described by Jacob et al. is locally negative uniaxial, the ray bends further away
from the optic axis than the wavevector.

10.10 Practical cloaking experiments

10.10.1 Microwave cloak

The idealized cloaks described previously require 3-D spatial control of both the
dielectric and magnetic properties of the cloaking medium. In particular, the refrac-
tive index tensor of the cloaking medium must take values below unity, but not
necessarily negative values. It is difficult to fabricate cloaking structures with the
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Figure 10.26. Two-dimensional microwave cloaking structure (background
image) with a plot of the material parameters that are implemented. Note that:
μr is multiplied by a factor of ten for clarity; μθ has the constant value 1; εz

has the constant value 3.423. The SRRs of cylinder 1 (inner) and cylinder 10
(outer) are shown in expanded schematic form (transparent square insets). (From
ref. [58], courtesy of Professor David Smith.) See color plates section.

full spatial variations given, for example, by Eqs. (10.36)–(10.38) and (10.42), but
for specific geometries there are simplified structures. In a cylindrical structure
with the incident wave polarized along the cylinder axis (an S wave (TE-wave)),
the only tensor components that enter are εz, μr , and μθ , so a simplified cloaking
structure has

εz =
(

b

b − a

)2

, μr =
(

r − a

r

)2

, and μθ = 1 . (10.104)

This structure will divert rays around the cloaked cylinder, but with a penalty:
there is no longer perfect impedance matching at the boundary of the cloak so there
is some reflection of incident waves. Schurig et al. [58] have built a microwave
metamaterial structure incorporating split ring resonators (SRRs) arranged in con-
centric rings around a central region to mimic the average properties described
by Eq. (10.104). The split ring resonators provide LC elements that provide an
effective negative index, as in a backward wave structure, to compensate for the
positive refractive index between these structures to provide the radially depen-
dent variation of μr and the required value of εz. Figure 10.26 shows a picture of
the cloaking structure developed by Schurig et al. [58]. The structure consists of
ten concentric rings of SRRs, with the SRRs arranged three high with alternating
alignment along the z axis. The structure operates at 8.5 GHz, where the free space
wavelength is 35 mm, which is significantly larger than the discrete nature of the
fabricated cloak, so effective values of the cloak parameters result from averaging
over the electromagnetic properties of the rings and the air space in between. The
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Figure 10.27. Spilt ring resonator design of the microwave cloaking structure.
The in-plane lattice parameters are aθ = az = 10/3 mm. The ring is square, with
edge length l = 3 mm and tracewidth w = 0.2 mm. The substrate is 381-μm-thick
Duroid 5870 (ε = 2.33, td = 0.0012 at 10 GHz, where td is the loss tangent). The
Cu film, from which the SRRs are patterned, is 17 μm thick. The parameters r and
s are given in the table together with the associated value of μr . The extractions
gave roughly constant values for the imaginary parts of the material parameters,
yielding 0.002 and 0.006 for the imaginary part of εz and μr , respectively. The
inner cylinder (cyl.) is 1 and the outer cylinder is 10. (From ref. [58], courtesy of
Professor David Smith.)

actual design of the SRRs is shown in Fig. 10.27. This microwave cloaking struc-
ture was tested in a parallel plane waveguide and was shown to reduce scattering,
although not perfectly, and the losses in the structure caused the cloak to cast
a shadow. However, the general theoretical predictions about the behavior of the
cloak were verified experimentally. Figure 10.28 shows the flow of electromagnetic
fields around the cloak.
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(a)

(c) (d)

(b)

Figure 10.28. Snapshots of time-dependent, steady-state electric field patterns,
with stream lines (black lines in (a)–(c)) indicating the direction of power flow (i.e.
the Poynting vector). The cloak lies in the annular region between the black circles
and surrounds a conducting Cu cylinder at the inner radius. The fields shown are
(a) the simulation of the cloak with the exact material properties, (b) the simulation
of the cloak with the reduced material properties, (c) the experimental measure-
ment of the bare conducting cylinder, and (d) the experimental measurement of the
cloaked conducting cylinder. Animations of the simulations and the measurements
show details of the field propagation characteristics within the cloak that cannot be
inferred from these static frames. The right-hand scale indicates the instantaneous
value of the field. (From ref. [58], courtesy of Professor David Smith.) See color
plates section.

10.10.2 Visible light cloak

An electromagnetic cloak based on coordinate transformations cannot be easily
implemented in the visible frequency range. The main reason is the need to vary
the magnetic permeability of the metamaterials in a nontrivial way, which is difficult
to implement at optical frequencies.

In the nonmagnetic optical cloak, which has been suggested by Cai et al. [46, 47],
the abovementioned difficulties have been alleviated for a specific polarization state
of the illuminating light. In this approach the electromagnetic field may be treated
as a scalar field, and the only metamaterial parameters it is necessary to control
are the radial and tangential components of the dielectric permittivity as given
in Eq. (10.76). Experimental realization of the radial component of the dielectric
permittivity distribution approximately described by Eq. (10.76) in the frequency
range around 500 nm is possible in a two-dimensional geometry with surface
plasmon polaritons. The two-dimensional optics of surface plasmon polaritons
offers viable ways to demonstrate various theoretical designs of electromagnetic
cloaks that have been suggested in the literature [2, 3, 46, 47, 59–61]. Even though
electromagnetic cloaking cannot be perfect, and may only be achieved in a narrow
frequency range, there may be practical benefits of reduced visibility in various
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Figure 10.29. (a) Plasmon ray propagation in a “magnifying superlens” concentric
ring structure from ref. [65]. (b) Bending of the plasmon ray by the slanted array of
PMMA stripes in a parabolic lens structure shown in (d). (c) Ray optics simulation
of beam bending by a stack of slanted negative index layers. The refractive index
of gray stripes is assumed to be n2 = −1. (e), (f) Numerical simulations of the
same effect performed using COMSOL Multiphysics 3.3a.

applications related to surface plasmon polaritons, such as sensing, which explains
high current research interest in this topic.

Our approach is based on the plasmonic metamaterials described in detail by
Smolyaninov and co-workers [62–65], which are ideally suited for experimental
realization of the scalar electromagnetic cloak described in refs. [46] and [47], since
the surface plasmon polariton (SPP) field has only one polarization state [66].

The plasmonic metamaterials used are based on layers of polymethylmethacry-
late (PMMA) deposited on a gold film surface. In the 500 nm frequency region,
PMMA exhibits effective negative refraction as perceived by surface plasmons
(the group velocity is opposite to the phase velocity Fig. 10.29(a)) [62]. We have
fabricated various surface patterns consisting of stripes of PMMA separated by
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Figure 10.30. (a) Real and imaginary parts of the wavevector of the symmetric
SPP mode propagating along a 50-nm-thick gold film in the PMMA/gold/glass
and vacuum/gold/glass geometries as a function of frequency. In the frequency
range marked by the box, PMMA areas have effective negative refractive index
as perceived by SPPs, while the gold/vacuum interface looks like a medium with
positive refractive index. The antisymmetric plasmon mode exhibits very high
propagation losses and is not shown. (b), (c) AFM images of the central area of
the 2-D cloak at different magnifications. (d) Distribution of nav in the fabricated
2-D model reduced visibility device compared to the theoretical distribution given
by Eq. (10.76).

uncoated regions containing gold/air interfaces. The local orientation of PMMA
stripes may be either parallel, as shown in Figs. 10.29(c) and (e), or slanted, as
shown in Figs. 10.29(d) and (f). The width of the PMMA stripes d2, the width
d1 of the gold/air portions of the interface, and the relative angle of the stripes
may be chosen freely. Figures 10.29(a) and (b) demonstrate that the developed
metamaterial allows a high degree of control of SPP propagation: narrow plasmon
rays may be formed as a result of focusing and repeated self-imaging of the focal
spot by the negative index stripes, as reported in ref. [62].

The successive stripes of effective positive and negative refractive index may
continuously redirect the plasmon ray propagation along some curvilinear path,
as shown in Figs. 10.29(b), (c), and (f). The ability to bend the light path
around some given area constitutes a necessary condition for a successful cloaking
experiment.

The internal structure of the 2-D plasmonic model reduced visibility structure
[65] is shown in Figs. 10.30(b) and (c) and Fig. 10.31(a). It consists of concentric
PMMA rings deposited on a gold film surface, in which the width of the PMMA
rings d2 and the width d1 of the gold/vacuum portions of the interface were varied
during the e-beam fabrication process. Since the gold/air portions of the interface
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Figure 10.31. (a) Two plasmonic reduced visibility devices are observed using an
optical microscope with white light illumination. The inset shows an AFM image
of the central area of the device. (b) Optical image of surface plasmon polariton
propagation through these structures at 532 nm. The area inside the circle of radius
r1 is cloaked, except for a very small fraction of plasmon rays, which propagate
exactly through the center of the cloak. The illumination direction is shown by
the arrow. The inset demonstrates plasmon scattering by a typical concentric
ring structure, which is not optimized for cloaking at 532 nm. The plasmons are
strongly scattered by the edge of the structure and by the circular area in the middle.
(c) Measured plasmon field scattering around the central area of the device. The
flow of energy around the “cloaked” region is visualized. (From ref. [65].)

have an effective group index n1 > 0, by changing (d1 + d2) and the d1/d2 ratio the
average group refractive index of the multilayer material may be continuously
varied locally from large effective negative to large positive values [62]. The
distribution of average group refractive index in the fabricated 2-D device is shown
in Fig. 10.30(d). It is reasonably close to the theoretical distribution given by
Eq. (10.76). Numerical simulations performed using COMSOL Multiphysics 3.3a
validate this approach (Fig. 10.32). The effective refractive index of the variable-
diameter negative index ring structure is made reasonably close to the distribution
given by Eq. (10.76), which produces satisfactory reduced visibility performance.
The tangential component of the dielectric constant in this design also follows
Eq. (10.76).

In our experiments the plasmonic metamaterial device was illuminated by an
external laser operating at 532 nm, at an illumination angle that provides phase-
matched excitation of SPPs at the left and right outer rims of the structure. Since the
periodicity of the structure changes away from the outer rim, SPPs are not excited
anywhere else, and the picture of light scattering presented in Figs. 10.31(b) and (c)
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(a)

(b)

Figure 10.32. (a) Numerical validation of the 2-D cloaking design based on the
variable-diameter negative index rings performed using COMSOL Multiphysics
3.3a. Distribution of the magnetic field is shown upon the illumination of the
cloaking structure from the left. (b) Refractive index distribution within the 2-D
cloaking structure shown in (a). (From ref. [65].)

corresponds to SPP propagation inside the structure. Figure 10.31(b) demonstrates
that most of the plasmon energy cannot penetrate beyond the internal radius r1 of the
device, which corresponds to the n1d1 = −n2d2 (or εr = 0) boundary. However,
a very small fraction of the plasmon rays, which propagate exactly through the
center of the device, do reach the “cloaked” circular PMMA region in the middle
of the structure. This practical difficulty has been mentioned in ref. [2] as an
unavoidable singularity, since these rays do not know whether to deviate left or
right. On the other hand, compared to the circular PMMA region shown in the inset,
which is surrounded by a periodic concentric ring structure, the amount of scattered
energy has been reduced considerably. Figure 10.31(c) demonstrates the flow of
plasmon energy around the “cloaked” region. Visualization is achieved due to weak
scattering of plasmons into photons by the edges of the PMMA rings, which is
observed using a regular optical microscope. Since scattering efficiency depends
on the orientation of these edges, the optical signal appears to be considerably
weaker in the top and bottom of the image (the image in Fig. 10.31(c) was obtained
by considerable overexposure, compared to the image in Fig. 10.31(b)).
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Thus, some basic properties of the electromagnetic cloak, i.e. (i) considerable
isolation of the cloaked region and (ii) the flow of energy around the cloak bound-
ary, appear to match theoretical predictions. However, this structure may only be
considered as an approximation to an ideal cloak, since surface waves experience
losses and considerable scattering into “normal” 3-D photons. The effect of scat-
tering is similar to the effect of losses in electromagnetic metamaterials. In general,
losses lead to nonideal cloaking. Since some energy of the electromagnetic wave
is lost while the wave is traveling around the cloaked area, the cloak appears as
somewhat “gray” (instead of “clear”) when observed in transmission.

10.11 “Cloaking” by scattering compensation (plasmonic cloaks)

Another approach to a type of cloaking is based on scattering reduction by appro-
priately chosen plasmonic nanoparticles [60, 61, 67–69]. In principle, a careful
design of a “plasmonic cover” allows one to reduce the scattering from an isolated
conducting, plasmonic or insulating sphere through scattering cancellation. This
cloaking phenomenon is based on the fact that the multipolar radiation from a
given object may be canceled term by term (for the significant scattering orders)
with a judicious design of the plasmonic cover. This results from the local negative
polarizability of a plasmonic layer. The relevant mathematics can be found in refs.
[60], [61], [67], [68], and the references therein. In one example, the scattering
reduction was carried out for the electric and magnetic dipole radiation from an
impenetrable sphere. This implies that, even for an observer located very close to an
object, its presence becomes hardly detectable after the cover is used. Theoretically,
there exists a possibility of cloaking multiple wavelength-sized objects placed in
close proximity of each other, as shown in Fig. 10.33, or even joined together to
form a single object of large electrical size. The total scattering cross section of
the object has been shown theoretically to be lowered by more than 99% with
respect to the uncovered case. The impinging wave, both in the case of plane wave
excitation and more complex forms of excitation, was shown to be “re-routed”
through the plasmonic cover without any substantial reflection or perturbation of
its wavefronts. This cloaking phenomenon, being “nonresonant,” is considerably
robust to frequency variations near the design frequency, to changes in the shape
of the cloaked object, and/or to variations of geometrical and electromagnetic
design parameters. By covering a small object with layers of plasmonic shells, the
scattering reduction can be accomplished over a broad frequency band [68]. An
example of the scattering reduction from multilayer objects is given in Figs. 10.34
and 10.35. Baumeier et al. [70] have shown that in two dimensions two concentric
rings of point scatterers on a metal surface can significantly reduce the scattering
of surface plasmon polaritons (2-D waves) by an object “cloaked” within this ring
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Figure 10.33. Phase of the total magnetic field distribution in the E plane for the
case of four aligned spheres with and without plasmonic covers is shown for three
different incidence angles. (From ref. [61], courtesy of Professor Nader Engheta.)
See color plates section.

Figure 10.34. Total scattering efficiencies for the geometry depicted in the inset,
i.e. a dielectric particle of radius a = 100 nm and permittivity εr = 3, cloaked by a
two-layered shell designed for cloaking at λ0 = 500 nm and λ0 = 625 nm. The four
curves refer to the following: a covered particle with small losses in the plasmonic
materials (solid line), covered particle with reasonable losses (dashed line), the
original particle (dotted line), and the same particle with a dielectric material
replacing the shell region (dash-dot). (From ref. [68], courtesy of Professor Nader
Engheta.) See color plates section.

structure. Alú [71] has shown that similar scattering cancellation from small objects
can be accomplished by patterning the surface of an object on a sub-wavelength
scale. There has been experimental verification that a reduction in scattering cross
section of approximately 50% can be obtained at microwave frequencies by utiliz-
ing the local negative polarizability of metamaterials [72]. Unfortunately, although
scattering reduction does reduce the detectability of small objects whose size is
on the order of the wavelength, it cannot realistically be applied to larger objects,
as is the case in principle at least to ray-optics cloaks where Poynting vectors are
folded around a cloaked object and then continue undisturbed. Wavelength-sized
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Figure 10.35. Distribution of the total electric field orthogonal to the H plane
in the three cases corresponding to a covered particle with losses, the original
particle, and a particle covered by the dielectric of Fig. 10.34 for λ0 = 625 nm.
Brighter regions correspond to higher values of the field. (From ref. [68].)

objects are generally visible as a result of their scattering and diffraction patterns,
so, unlike large-sized objects, do not cast a geometric shadow, whose removal is a
requirement of a macroscopic cloak.

In related work, Milton and his colleagues have analyzed a cloaking concept
called exterior cloaking, in which the cloaked region is outside the cloaking device
[73–75]. The principle is similar to that used in sound cancelation. The fields from
the cloaking device(s) cancel out the fields scattered by the cloaked object(s). This
active approach to cloaking requires a controlled phase relationship between the
cloaking devices and the illumination fields, which is reasonable in the microwave
region, but which is problematic in the visible region of the spectrum because of
the short coherence time of optical sources.

10.12 Carpet cloaks

A cloak design that conceals a perturbation on a flat conducting plane, under which
an object can be hidden, appears to be much simpler than a “stand alone” cloak
[76]. The metamaterial parameters required for its experimental realization do not
have any singularities, as shown in Fig. 10.36.

As a result, such a cloak was realized almost immediately after its theoretical
conception [77]. The internal structure of the cloak and the comparison between
theoretical and measured field distributions are shown in Fig. 10.37. To match
the complex spatial distribution of the required constitutive parameters, Liu et al.
constructed a metamaterial consisting of thousands of elements (Fig. 10.37). The
geometry of each element was determined by an automated design process. The
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Figure 10.36. Metamaterial refractive index distribution in the ground plane cloak.
The mesh lines indicate the quasi-conformal mapping. (From ref. [77], courtesy
of Professor David Smith.) See color plates section.

(a) (b) (c)

Figure 10.37. Design of the nonresonant elements of the ground plane cloak and
the relation between the unit cell geometry and the effective refractive index. The
dimensions of the metamaterial unit cells are l = 2 mm, w1 = 0.3 mm, w2 =
0.2 mm, and a varying from 0 to 1.7 mm. The plots show measured field mapping
(E field) of the ground, perturbation, and ground plane cloaked perturbation. The
rays display the wave propagation direction, and the dashed line indicates the
normal of the ground in the case of free space and that of the ground plane cloak
in the case of the transformed space. (a) Collimated beam incident on the ground
plane at 14 GHz. (b) Collimated beam incident on the perturbation at 14 GHz
(control). (c) Collimated beam incident on the ground plane cloaked perturbation
at 14 GHz.

ground plane cloak has been realized with the use of nonresonant metamaterial ele-
ments, resulting in a structure having a broad operational bandwidth (covering the
range of 13–16 GHz) and exhibiting extremely low loss. This approach indicates
that the carpet cloak is easily scalable for any wavelength range of electromag-
netic radiation. Unfortunately, its applications are limited to situations in which a
ground plane is indeed present near the object to be hidden. Xu et al. [78] have pro-
posed a carpet cloak design using only anisotropic all-dielectric materials. Using
silicon grating structures they have achieved relatively broadband cloaking in the
near infrared (1372–2000 nm). Kallos et al. [79] have proposed a simple ground
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plane cloak based on relatively simple surface structures made from isotropic all-
dielectric materials. While it is often the case in RF applications that the Earth’s
surface may behave as such a ground plane, carpet cloaks have limited applications
in the infrared and visible spectral ranges.

10.13 Metamaterial emulation using tapered waveguides

While current interest in electromagnetic metamaterials has been motivated
by a solid body of theoretical work on cloaking and transformation optics
[2, 3, 46, 47, 59–61], it appears to be difficult to develop metamaterials with
low-loss, broadband performance. The difficulties are especially severe in the
visible frequency range, where good magnetic performance is limited. While inter-
esting metamaterial devices have been suggested based on nonmagnetic designs
[45–47], the development of anisotropic magnetic metamaterials for the visible
range would be highly desirable. Other limitations of “traditional” metamaterials
in any portion of the electromagnetic spectrum are high losses and narrowband
performance. These limitations may once again be illustrated using cloaking theo-
retical effort, as there exist only a few experimental demonstrations performed in
rather narrow frequency ranges. The first experimental realization of an electromag-
netic cloak in the microwave frequency range was reported in a two-dimensional
cylindrical waveguide geometry [58]. In addition, a plasmonic metamaterial struc-
ture exhibiting reduced visibility at 500 nm has been demonstrated in ref. [65].
In both experimental demonstrations, the dimensions of the “cloaked” area were
comparable with the wavelength of the incident electromagnetic radiation, meaning
that the shadow produced by an uncloaked object of the same size would not be
pronounced in these cases anyway.

On the other hand, it appears that many metamaterial devices requiring
anisotropic dielectric permittivity and magnetic permeability could be emulated
by specially designed tapered waveguides. This approach leads to low-loss, broad-
band performance in the visible frequency range, which is difficult to achieve by
other means. This technique has been recently applied to electromagnetic cloaking.
Broadband, two-dimensional, electromagnetic cloaking in the visible frequency
range on a scale roughly 100 times larger than that of the incident wavelength has
been demonstrated.

As a starting point, let us show that the transformation optics approach allows
us to map a planar region of space (a waveguide) filled with inhomogeneous,
anisotropic metamaterial into an equivalent region of empty space with curvilinear
boundaries. This mapped region could be a planar wedge waveguide or a circular
waveguide, for example. We begin by considering the following formal (material)
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notation for Maxwell’s curl equations [17, 80]:

curlqÊ = −jωμ̂rμ0Ĥ, curlqĤ = jωε̂rε0Ê , (10.105)

for vector fields Ê = ∑
êi x̂i and Ĥ = ∑

ĥi x̂i in an orthogonal curvilinear system
with the unit vectors x̂i . The components of the actual physical fields, E = ∑

ei x̂i

and H = ∑
hi x̂i , are connected with the vectors in the material coordinates, Ê and

Ĥ, through ei = êi/gi and hi = ĥi/gi , using the metric coefficients g1, g2, and g3.
The tensors ε̂r and μ̂r are given by tεr and tμr , with

t = g1g2g3

⎛
⎝g−2

1 0 0
0 g−2

2 0
0 0 g−2

3

⎞
⎠ . (10.106)

This description formally links the curvilinear components ei and hi in the domain
characterized by anisotropic material diagonal tensors εr and μr to the components
êi and ĥi in a formal, Cartesian domain characterized by nonuniform, anisotropic
ε̂r and μ̂r . However, a Cartesian domain is not ideal for comparing confined, rota-
tionally symmetric material systems encapsulated within axisymmetric coordinate
surfaces. For the comparison of axisymmetric cloaking and imaging systems, it
is more practical to match a given axisymmetric material domain to an equiva-
lent inhomogeneous axisymmetric material distribution between two planes in a
classical circular cylinder coordinate system, as shown in Fig. 10.38(a).

The transformation optics approach allows us to achieve this in a similar manner.
The metric coefficients are gρ = gz, gφ = ρ. Therefore, ρeφ = êφ , ρhφ = ĥ2

φ , and

ei = êi , hi = ĥi for i = ρ, z. Thus, any rotational coordinate system (ρ̂, φ̂, ẑ)
converted into the cylindrical format

curlqH = −jω

⎛
⎝ ρ̂ 0 0

0 ρ̂−1 0
0 0 ρ̂

⎞
⎠ ε0ε̂r Ê , (10.107a)

curlqE = jω

⎛
⎝ ρ̂ 0 0

0 ρ̂−1 0
0 0 ρ̂

⎞
⎠μ0μ̂rĤ , (10.107b)

is equivalent to a classical circular cylinder coordinate system with material tensors
ε̂r and μ̂r .

Let us now consider an interesting application of the above formalism, which
will lead us to another experimental demonstration of electromagnetic cloaking. We
map an axisymmetric space between two spherical surfaces onto a space between
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Figure 10.38. Space between a spherical surface and a planar surface (a) mapped
onto a layer with planar boundaries (b). (c) Distribution of the radial, azimuthal,
and axial (or vertical) diagonal components of permittivity in the equivalent planar
region (solid lines). Dashed lines show the same components in the equivalent pla-
nar region obtained for a tapered waveguide with the radius-dependent refractive
index for an ideal cloak. (d) Normalized profile of the optimal waveguide shape
plotted for a cloak radius of b0 = 172 μm. The shape of the optimal waveguide
may be approximated by a spherical surface placed on top of a flat surface, as
shown by the dotted line. (From ref. [81].)

two planes. The parametric description,

s2 = (z − z0)2 + ρ2, ρ = s
√

(2s − ρ̂)ρ̂

s − ρ̂ + √
s2 + ẑ2

, ρ = sẑ

s − ρ̂ + √
s2 + ẑ2

(10.108)

provides this 3-D mapping (see Fig. 10.38). Both coordinate systems share the
same azimuthal parametrization φ = φ̂. The tensors ε̂r and μ̂r are now given by
tε̂r and tμ̂r , with t explicitly written as

t = gρgφgz

⎛
⎝ρ−1g−2

ρ 0 0
0 ρg−2

φ 0
0 0 ρ−1g−2

z

⎞
⎠ . (10.109)

The transformation optics technique yields the following diagonal components:

ε̂ρ = s(2s − ρ̂)

a(a + s − ρ̂)
, ε̂φ = s3

a(a + s − ρ̂)(2s − ρ̂)
, ε̂z = as

ρ̂(a + s − ρ̂)

(10.110)
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of the inhomogeneous anisotropic dielectric constant ε̂r , as well as the anisotropic
relative permeability tensor μ̂r = ε̂r , distributed in an equivalent layer between
two planes (where a = √

s2 + z2). Analysis of Eqs. (10.110) and Fig. 10.38(c)
indicates that Eqs. (10.110) can be approximated by

ε̂ρ = μ̂ρ ≈ 1, ε̂φ = μ̂φ ≈ s2

(2s − ρ̂)2
, ε̂z = μ̂z = s2

ρ̂(2s − ρ̂)
. (10.111)

Note that the requirement for an ideal cloak in the effective material coordinate
system (ρ̂, φ̂, ẑ) should be written as follows [80]:

ε̂ρ = μ̂ρ = ρρ̂ ′

ρ̂
, ε̂φ = μ̂φ = 1

ε̂ρ

, ε̂z = μ̂z = ρ

ρ̂ρ̂ ′ , (10.112)

where ρ̂ = ρ̂(ρ) is a radial mapping function and ρ̂ ′ = dρ̂/dρ. In general, ε̂φε̂z =
(ρ/ρ̂)2. These requirements can be met if the refractive index n = √

εr inside the
gap between the sphere and the plane is chosen to be a simple radius-dependent
function n = √

(2s − ρ̂)/s. In such a case we obtain

ε̂ρ ≈ 2s − ρ̂

s
, ε̂φ = s

2s − ρ̂
, ε̂z = s

ρ̂
. (10.113)

Since in general ε̂φε̂z = (ρ/ρ̂)2, we can recover the mapping function from
Eq. (10.113) as ρ(ρ̂) = s

√
ρ̂/(2s − ρ̂), which is consistent with the approximated

version of the initial mapping shown in Eqs. (10.108). Note that the scale s is
chosen to avoid singularities: s > max(ρ̂). Also note that Eqs. (10.113) represent
the invisible body, i.e. a self-cloaking arrangement. It is also important that the
filling substance has an isotropic effective refractive index ranging from 2 to 1 for
ρ = [0, s].

It is important to note that filling an initial domain between rotationally sym-
metric curvilinear boundaries, for example with an anisotropic dielectric, allows
for independent control over the effective magnetic and electric properties in the
equivalent right-cylinder domain. Thus, while the shape is controlling the general
mapping and provides the identical transformations for the effective magnetic and
electric components, further independent adjustment of material tensors ε̂r and μ̂r

could be achieved through either anisotropic magnetic or (what is more realistic
for optics) anisotropic electric filling.

It is also interesting that in the semi-classical ray-optics approximation, the
cloaking geometry may be simplified even further for a family of rays with
similar parameters. This simplification lets us clearly demonstrate the basic
physics involved. Our starting point is the semi-classical 2-D cloaking Hamil-
tonian (dispersion law), Eq. (10.69), introduced by Jacob et al. [45], which can be
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written as

ω2

c2
0

= k2
r + k2

φ

(r − b)2
= k2

r + k2
φ

r2
+ k2

φ

b(2r − b)

(r − b)2r2
. (10.114)

Jacob and Narimanov demonstrated that, for such a cylindrically symmetric
Hamiltonian, the rays of light would flow smoothly without scattering around
a cylindrical cloaked region of radius b. Our aim is to produce this cloaking
Hamiltonian, Eq. (10.114), in an optical waveguide (Fig. 10.38). Let us allow
the thickness d of the waveguide in the z direction to change adiabatically with
radius r . The top and bottom surfaces of the waveguide are coated with metal. The
dispersion law (Hamiltonian) of light in such a waveguide is given by

ω2

c2
0

= k2
r + k2

φ

r2
+ π2m2

d2(r)
, (10.115)

where m is the transverse mode number. Note that a photon launched into the
mth mode of the waveguide stays in this mode as long as d changes adiabatically
[82]. In addition, since the angular momentum of the photon, kφ = ρk = L, is
conserved (where ρ is the impact parameter defined with respect to the origin), for
each combination of m and L the cloaking Hamiltonian, Eq. (10.114), can be emu-
lated precisely by an adiabatically changing d(r). A comparison of Eqs. (10.114)
and (10.115) produces the following desired radial dependence of the waveguide
thickness:

d = mπr3/2
(
1 − bmL

r

)
L
[
2bmL

(
1 − bmL

r

)]1/2 , (10.116)

where bmL is the radius of the region that is “cloaked” for the photon launched into
the (m, L) mode of the waveguide. The shape of such a waveguide is presented
in Fig. 10.38(b), where we have chosen bmL = b0 = 50 μm. Thus, an electro-
magnetic cloaking experiment in a waveguide may be performed in a geome-
try that is identical to the classic geometry of Newton’s rings [83], as shown in
Fig. 10.38(a).

An aspherical lens shaped according to Eq. (10.116) has to be used for the
single (m, L) mode cloak to be ideal. It appears also that the shape of the “ideal”
waveguide may be reasonably approximated by a spherical surface placed on top of
a flat surface, as shown by the dotted line in Fig. 10.38(d). Moreover, the waveguide
geometry for a single cloaking mode may be further improved to allow cloaking
in a multimode waveguide geometry. It is clear from Eq. (10.116) that the choice
of bmL = b0m

2/L2 leads to the same desired shape of the waveguide for all the
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Figure 10.39. Tapered waveguide acting as an optical cloak (not to scale). (a) Cross
section sketch for the waveguide experiment. (b) Three-dimensional rendition of
the experimental setup sketched in (a); one-quarter of the gold-coated lens is
removed to show the interior details. (From ref. [81].)

(m, L) modes of a multimode waveguide in the leading order of bmL/r:

d = π

√
r3

2b0
. (10.117)

Equation (10.117) describes the best-shaped aspherical lens for the electromagnetic
cloaking observation in the Newton’s rings geometry with an air gap.

In the experiments, a 4.5-mm-diameter double convex glass lens (lens focus
6 mm) was coated on one side with a 30 nm gold film. The lens was placed with
the gold-coated side down on top of a flat glass slide coated with a 70 nm gold film,
as shown in Fig. 10.39. The air gap between these surfaces has been used as an
adiabatically changing waveguide. The point of contact between two gold-coated
surfaces is clearly visible in Fig. 10.40(a). The Newton’s rings appear around the
point of contact upon illumination of the waveguide with white light from the top.
The radius of the mth ring is given by the expression rm = [((1/2) + m) Rλ]1/2,
where R is the lens radius. The central area around the point of contact appears to be
bright, since light reflected from the two gold-coated surfaces has the same phase.
Laser light from an argon ion laser was coupled to the waveguide formed between
two gold-coated surfaces via side illumination. Light propagation through the wave-
guide was imaged from the top using an optical microscope. Figures 10.40(b) and
(c) show microscope images of the light propagation through the waveguide in an
experiment in which a gold particle cut from a 50 μm diameter gold wire is placed
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  (a)

(b)

(c)

illumination
direction

gold particle 

Figure 10.40. (a) Microscope image of the waveguide illuminated with white
light from the top. The Newton rings are visible in the center of the field of view.
(b) Microscope image of the waveguide with a gold particle placed inside and
illuminated with white light from the top. (c) A long shadow has been cast by the
gold particle upon coupling 515 nm laser light into the waveguide. The position
of the particle edge is shown by the dashed line. See color plates section.

inside the waveguide. A very pronounced long shadow is cast by the particle inside
the waveguide (Fig. 10.40(c)). This result is quite natural since the gold particle size
is approximately equal to 100 μm (note that the first dark Newton ring visible in
Figs. 10.40(a) and (b) has approximately the same size as the diameter of the gold
wire). Since the gold particle is located 400 μm from the point of contact between
the walls of the waveguide, the effective Hamiltonian around the gold particle
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(a) (b)

Figure 10.41. Magnified images of the rings for (a) 488 nm and (b) 515 nm laser
illumination. In both cases, no wire is placed in the waveguide. (From ref. [81].)

differs strongly from the cloaking Hamiltonian of Eq. (10.114). Figure 10.40 rep-
resents the results of our best effort to insert a 150-μm-long, 50-μm-diameter gold
particle inside the waveguide and orient it along the illumination direction. A few
scratches visible in Fig. 10.40 resulted from achieving this nontrivial experimental
task.

While the gold particle casts a long and pronounced shadow, it appears that
the area around the point of contact between the two gold-coated surfaces casts no
shadow at all (Fig. 10.41). This is an observation which would be extremely surpris-
ing in the absence of the theoretical description presented above. For the mth mode
of the waveguide shown in Fig. 10.39(a), the cut-off radius is given by the same
expression as that of the radius of the mth Newton ring: rm = [((1/2) + m) Rλ]1/2,
which means that no photon launched into the waveguide can reach an area
within the radius r0 = √

Rλ/2, or approximately 30 μm from the point of contact
between the two gold-coated surfaces. This is consistent with the fact that the area
around the point of contact appears dark in Fig. 10.41. Even though some pho-
tons may couple to surface plasmon polaritons [66] near the cut-off point of the
waveguide, the propagation length of the surface plasmons at 515 nm is only
a few micrometers. Thus, the area around the point of contact about 50 μm in
diameter is about as opaque for guided photons as the 50 μm gold particle from
Figs. 10.40(b) and (c), which casts a pronounced long shadow. Nevertheless, there
appears to be no shadow behind the cut-off area of the waveguide (see the images
in Figs. 10.41(a) and (b), which were taken at the 488 nm and 515 nm laser lines
of the argon ion laser). The observed cloaking behavior appears to be broadband,
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which is consistent with the theory presented above. It is also interesting to note
that the geometry of our cloaking experiment is similar to the geometry recently
proposed by Leonhardt and Tyc [55].

10.14 Trapped rainbow

The concept of a “trapped rainbow” is closely related to electromagnetic cloaking,
and has attracted considerable recent attention. According to various theoretical
models, a specially designed metamaterial [84] or plasmonic [85, 86] waveguide
has the ability to slow down and stop light of different wavelengths at differ-
ent spatial locations along the waveguide, which is extremely attractive for such
applications as spectroscopy on a chip. In addition, being a special case of the
slow light phenomenon [87], the trapped rainbow effect may be used in appli-
cations such as optical signal processing and enhanced light–matter interactions
[88]. On the other hand, unlike typical slow light schemes, the proposed theoretical
trapped rainbow arrangements are extremely broadband, and can trap a true rainbow
ranging from violet to red in the visible spectrum. Due to the necessity of compli-
cated nanofabrication and the difficulty of producing broadband metamaterials, the
trapped rainbow schemes remained in the theoretical domain only for quite a while.
Very recently, Smolyaninova et al. [89] demonstrated an experimental realization
of the broadband trapped rainbow effect which spans the 457–633 nm range of the
visible spectrum. Similar to the recent demonstration of broadband cloaking [81],
the metamaterial properties necessary for device fabrication were emulated using
an adiabatically tapered optical nano-waveguide geometry. A 4.5 mm diameter
double convex glass lens was coated on one side with a 30 nm gold film. The lens
was placed with the gold-coated side down on top of a flat glass slide coated with a
70 nm gold film (Fig. 10.42(a)). The air gap between these surfaces has been used
as an adiabatically changing optical nano-waveguide. The dispersion law of light
in such a waveguide is given by

ω2

c2
0

= k2
r + k2

φ

r2
+ π2l2

d2(r)
, (10.118)

where l = 1, 2, 3 . . . is the transverse mode number and d(r) is the air gap, which
is a function of radial coordinate r . Light from a multi-wavelength argon ion laser
(operating at λ = 457 nm, 465 nm, 476 nm, 488 nm, and 514 nm) and 633 nm
light from a He–Ne laser were coupled to the waveguide via side illumination.
This multi-line illumination produced the appearance of white light illuminating
the waveguide (Fig. 10.42(b)). Light propagation through the nano-waveguide was
imaged from the top using an optical microscope (Fig. 10.42(c)).
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(a) (b)

(c)

Figure 10.42. (a) Experimental geometry of the trapped rainbow experiment: a
glass lens was coated on one side with a gold film. The lens was placed with
the gold-coated side down on top of a flat glass slide also coated with a gold
film. The air gap between these surfaces formed an adiabatically changing optical
nano-waveguide. (b) Photo of the trapped rainbow experiment: He–Ne and Ar:ion
laser light is coupled into the waveguide. (c) Optical microscope image of the
trapped rainbow. (From ref. [89].) See color plates section.

Since the waveguide width at the entrance point is large, the air gap waveguide
starts as a multimode waveguide. Note that a photon launched into the lth mode
of the waveguide stays in this mode as long as d changes adiabatically [82]. In
addition, the angular momentum of the photons, kφ = ρk = L, is conserved (where
ρ is the impact parameter defined with respect to the origin). Gradual tapering of
the waveguide leads to mode number reduction: only L = 0 modes may reach
the vicinity of the point of contact between the gold-coated spherical and planar
surfaces, and the group velocity of these modes,

vg = c0

√
1 −

(
lλ

2d

)2

, (10.119)

tends to zero as d is reduced: the rings around the central circular dark area
in Fig. 10.42(c) each represent a location where the group velocity of the lth
waveguide mode becomes zero. These locations are defined by

rn =
√(

l + 1

2

)
Rλ , (10.120)
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where R is the lens radius [81]. Finally, the light in the waveguide is completely
stopped at a distance

r =
√

Rλ/2 (10.121)

from the point of contact between the gold-coated surfaces, where the optical nano-
waveguide width reaches the d = λ/2 	 200 nm range. The group velocity of the
only remaining waveguide mode at this point is zero. This is consistent with the
fact that the area around the point of contact appears dark in Fig. 10.42(c). In this
area the waveguide width falls below 200 nm down to zero. Since the stop radius
depends on the light wavelength, different light colors stop at different locations
inside the waveguide, which is quite obvious from Fig. 10.42(c). Thus, the visible
light rainbow has been stopped and “trapped.” In principle, the same technique can
be applied to any spectral range of interest.

The described experimental arrangement may be used in such important appli-
cations as spectroscopy on a chip. Figure 10.43 presents a comparison of the optical
microscope images of the trapped rainbow effect from Fig. 10.42(c) and the image
obtained when only two laser wavelengths (514 nm and 633 nm) are used for
illumination (shown at the top of Fig. 10.42). Individual spectral lines separated
by only a few micrometers appear to be well resolved in the latter image, which
is evident from the cross section analysis presented in Fig. 10.44. Based on the
image cross section analysis, spectral resolution of the order of 40 nm has been
obtained. Further improvement of spectral resolution may be achieved by using a
gold-coated spherical surface with a smaller radius of curvature.

10.15 The limitations of real cloaks

When the wave nature of light is taken into account, perfect cloaking of an object is
impossible. This is well known for isotropic media [90, 91]. Cloaks based on spatial
variations in refractive index, as described by Pendry et al. [2], can, however, be
extremely good in principle, although remaining subtle effects will result in partial
visibility of the cloaked region – perhaps a hazy outline of the cloaked object.
Scattering from within the material of the cloak is inevitable, and there is an
ambiguity for rays of light that enter along an axis of symmetry of the cloak – do
they deviate around the cloaked region in the up or down direction? Unless there is
perfect impedance matching for waves at all angles at the boundary of the cloak,
there will be some reflection. In addition, although rays directed around the cloaked
region each individually take a path of least time relative to their entry point into the
cloak, different rays experience different time delays in passing through the cloak,
so wavefronts that emerge are distorted. In a conventional imaging application
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(b)

(a)

Figure 10.43. Comparison of the optical microscope images of the trapped rain-
bow effect from Fig. 10.42(c) (b) and the image (a) obtained when only two laser
wavelengths (514 nm and 633 nm) are used for illumination. Individual spec-
tral lines separated by only a few micrometers appear to be well resolved (see
Fig. 10.44). (From ref. [89].) See color plates section.

not involving coherent light, such wavefront distortion would not be noticeable.
There are also a host of practical issues that make real cloaks less than perfect. The
dielectric and magnetic properties of the cloak are frequency-dependent, so the
mapping of space that produces the cloak will only work at a single wavelength.
This can be a small effect provided the materials of the cloak are being used in their
transparency region, where losses are very small and the dispersion of the refractive
index dn/dλ is small. Unfortunately, current metamaterials that use metal/dielectric
composite structures are very lossy, which might have little impact on the cloaking
of a microscopic object, but would be unacceptable for cloaking macroscopic
objects. For example, for an effective average dielectric constant inside a spherical
cloak of 1 − j0.5, which is approximately what might be expected if silver is
the metal used in the composite cloak, the absorption length for light at 632.8
nm is about 2.6 μm. Consequently, only objects on the scale of the wavelength
can be cloaked. In summary, although cloak designs work, in principle, even for
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Figure 10.44. Cross sections of the optical microscope images along the yellow
lines shown in Fig. 10.43. Individual spectral lines are clearly resolved in the
bottom plot obtained using 514 nm and 633 nm illumination. Multiple spectral
lines are visible in the top cross section.

macroscopic objects, there is a serious problem with the properties of currently
available metamaterials. What is needed is more work on all-dielectric cloaks,
where losses can be negligible, but unfortunately lossless cloak materials with
refractive index smaller than unity are not yet available.

10.16 Prospects for the future

Research on electromagnetic cloaking has to date been largely a theoretical effort
because of the difficulty in fabricating the metamaterials needed to provide the
requisite spatially varying material properties. Given the ongoing activity in this
active field, our overview here cannot be complete and exhaustive. New interesting
theoretical ideas on cloaking and transformation optics are being put forward almost
daily. Even though progress may slow because of numerous practical difficulties,
we may expect considerable progress in experimental demonstration of these ideas.
For example, we may expect that the problem of losses, which currently present the
biggest challenge to experimental realizations, may be to some degree alleviated
by the introduction of gain media into the metamaterial designs. In addition, some
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progress may be expected in the bandwidth extension of metamaterial devices.
Geometrical ideas similar to the ones described in Section 10.13 may be used
to alleviate the bandwidth problem. At the same time, electromagnetic cloaking
ideas are being extended to such fields as acoustics, shoreline protection, and even
quantum mechanics. We firmly believe that this new and exciting field of research
will bring about many interesting and surprising discoveries.
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11

Linear and nonlinear phenomena with resonating
surface polariton waves and their applications

haim grebel

11.1 Introduction

Surface plasmon polariton (SPP) modes have attracted much interest in recent
years. Although known and studied for over 100 years [1–3], the dream of con-
fining light to dimensions smaller than its propagating wavelength has led the
way towards technological possibilities not previously addressed, such as opti-
cal circuitry within ultra small computer processors [4, 5], or small biochemical
sensors [6, 7]. Confinement of light to sub-wavelength dimensions is also a pos-
sibility when one considers the field aspects of the electromagnetic waves near
surfaces (near-field phenomena). Add to this the interest in materials and structures
exhibiting a negative refractive index for the purpose of increasing the resolution of
optical microscopy [8], and it is no wonder that the area of electromagnetic (EM)
propagation in sub-wavelength structures is enjoying a renewed interest. Whether
the far-field aspects of periodic resonating metallo-dielectric structures are the
true manifestations of a negative refractive index or simply a unique, but already
known, near-field dispersion phenomenon may be debated [9]. Nonetheless, the
near-field aspects of periodic sub-wavelength metallo-dielectric structures, and
especially recent advances in nano-fabrication of structures at dimensions smaller
than optical wavelengths, deserve a closer look.

Artificial dielectrics (ADs) constitute a class of man-made materials: the effec-
tive permittivity and permeability of a given dielectric material may be altered by
imbedding metallic or semiconductive structures on scales smaller than the prop-
agating wavelength. For example, one may alter the equivalent capacitance and
inductance of microwave waveguides by the addition of a pattern of fine metal-
lic features along the waveguide axis. These features, with spacing much smaller
than the propagating electromagnetic wavelength, affect the propagation constant
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of the wave within the guide. Moreover, by making these patterns light sensitive,
one is able to shift the phase of the propagating mode using a controlling light
beam [10]. Imbedding metallic structures within materials, or patterning metallo-
dielctric composites, may be described by an effective permittivity (the capacitive
portion of the material) and an effective permeability (the inductive component)
[11, 12]. These may be determined self-consistently by the electrodynamic poten-
tial equations. Typically, the spatial perturbation of the material is considered small
on a scale of a wavelength, and therefore the material or the structured film may
be considered as homogeneous. Often, these scatterers are not at resonance with
the propagating wave, so their effect is limited to their dimensional cross-section.
Such is the case of traditional ADs, where the changes in the index of refraction
are typically small, less than 10% [12]; here, the imbedded spheres, disks, or sim-
ply wires are considered as dipoles, added to the uniform dielectric medium. The
imbedding of other “impurities,” such as, chiral structures, e.g. springs, or chiral
molecules, e.g. sugar, has also been known [13–15]. However, when the material
is imbedded with small resonators, or when the structure itself is made to resonate,
local scatterings may no longer be treated as a perturbation, and higher orders of
diffraction need to be included in a self-consistent manner. Since resonators have a
strong frequency dependence, dispersion and inevitably loss need to be considered.
Putting it differently, the constitutive relations, the relationships between the fields
in a vacuum and the fields impacted by the material polarization, may no longer be
valid under these circumstances [16].

Periodic structures have been a subject of interest since the early days of optics
and helped establish its wave formulation. For example, Young has shown that light
interferes with itself when transmitted through two slits at close proximity. The
experiment may be repeated with many slits, or with a periodically altered refractive
index (gratings) [17]. Talbot has shown that periodic structures have wavelength-
dependent self-imaging properties [18], an effect that was later explained by Lord
Rayleigh [19]. Typically, interference between two optical beams requires some
degree of coherence, namely their relative phases should be correlated or, in the
simplest case, fixed. Otherwise, these uncorrelated phases would rapidly average to
zero within a few wave cycles. Three-(3-D) and two-dimensional (2-D) distributed
structures take advantage of such coherence properties: the scattering from each
individual feature is added coherently to the scatterings from other features. Strong
scattering ensues because the positions of all the scattering features are also cor-
related. Simply put, the scattering features have a crystallographic symmetry. One
may realize 3-D structures by an assembly of metal spheres (Fig. 11.1). This struc-
ture exhibits an effect of self-focusing because all diffraction orders in the lateral
direction (left and right; top and bottom of the figure) are summed coherently along
the structure axis (pointing towards the page).
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(a) (b)

Figure 11.1. (a) A periodic structure made of interlaced metallic and nonmetallic
(polypropylene) spheres. (b) Comparison of transmission through an all-dielectric
polypropylene fcc crystal and poly/metal as a function of range along the prop-
agation direction. The microwave frequency was 10 GHz and the sphere had a
diameter of 1 cm [17].

Individual metallic or dielectric spheres display a resonance at some frequency
owing to their size, geometry, their own dielectric constant, and its ratio with the
dielectric constant of their surrounding. In essence they act like cavities, which
are affected by their boundary conditions. If the sphere is small enough with
respect to the radiation wavelength, it may be treated as a dipole antenna (Hertzian
dipole). That does not mean that scattering from it is trivial. On the contrary; in
some frequency range, a large scattering occurs if certain metals having negative
dielectric constants are surrounded by dielectrics with positive dielectric constants.
Furthermore, if the distance between these antennas is well defined (namely, the
antennas are placed on a periodic structure or a lattice), the overall transmission
of such phased-array antennas is dictated by the relative phase between elements,
similarly to transmission of light through multiple slits. In retrospect, the linear
properties of dielectric-filled periodic arrays of holes in a metal (metallo-dielectric
screens) have been extensively investigated as spectral selective structures (optical
filters), mostly in the infrared (IR) spectral region, long before they acquired fancy
names [3]. Nonetheless, the ability to fabricate periodic and aperiodic structures
at the nanoscale enabled us to investigate optical scatterings in the visible spectral
region, and to assess related nonlinear properties of these, man-made, unique
materials.

The aim of this chapter is to follow the traditional path of dielectric waveguides
and interfaces in order to provide an introduction to those who are unfamiliar
with the subject. It is also meant for those who wish to reflect upon some delicate
derivation points along the way.

The chapter follows the formation of surface polariton modes from a wave-
guide point of view. As the waveguide thickness approaches zero, an interface is
formed. Such is the interface between a metal and a dielectric (say, air) which
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sustains surface plasmon (SP) waves. A waveguide may be understood by the
use of ray optics. A short description of reflection from an interface using ray
optics terminology is provided. Ray optics, though, has its limitations when the
interface becomes more complex. If the waveguide thickness is made extremely
thin but finite, and is composed of another dielectric (say, oxide), the electric field
intensity of the propagating surface modes maximizes at the discontinuity between
the two dielectrics (in our example, between air and the oxide layer). If we further
pattern the oxide layer with a periodic structure (say, an array of holes), a standing
surface wave may be formed. Such a standing wave is responsible for an enhanced
interaction between a molecule placed on the surface and the electric field carried
by the surface mode. The enhanced interaction is useful for Raman spectroscopy,
infrared spectroscopy, and the development of SP lasers, as shown below.

11.2 Two-dimensional surface polariton modes (a straightforward analysis)

Polaritons are formed through the interaction between electromagnetic (EM) radi-
ation and collective wave-like entities, such as free-carrier charged particles, or a
collection of free spins. Surface plasmon polariton (SPP) waves are formed through
the interaction between EM radiation and charge carriers. These waves are confined
to the interface between a lossy medium, typically a metal, and a dielectric. A sim-
ilar phenomenon might be conjured to take place between a dielectric and a lossy
medium of another type, which portrays negative permeability or surface magnetic
polariton (SMP) waves, carried by free spins. While electrons in the metal do carry
spin, the magnetic effect in the interaction between the EM radiation and the metal
is typically weaker than the electric effect.

In the following we will concentrate on a simple slab guide because, in the end,
we are interested in a thin oxide layer lying on a metallic substrate. A slab guide
comprises three layers, and the structure is schematically described in Fig. 11.2.
A surface guide may be deduced from a slab guide by extending the top layer to
infinity and reducing the thickness of the guide layer to zero, forming one interface
between two regions. Let us approach it systematically.

11.2.1 Homogeneous waveguides and interfaces

A slab waveguide is made up of three layers. We assume three dielectric layers
(Fig. 11.2). The interfaces between the dielectric layers confine the electromagnetic
field to the middle core layer. The wave is reflected back and forth between the
interfaces while propagating along the opened waveguide axis. In the lateral direc-
tion (in our simple example, along the x direction) such counter reflections lead to
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Figure 11.2. (a) A dielectric waveguide is a dielectric surrounded by another
dielectric. In general, there are two independent linear oscillation modes (two lin-
ear polarization states). These are confined by the guide boundaries and propagate
along the waveguide axis, along the z direction in this case. In the simplest case the
three layers are placed on top of each other, as described in (b). (c) The refraction
at the interface 2,1 when Ren2 < 0 is shown just before the point of total internal
reflection.

interference and formation of a stationary field pattern. The wave in the y direc-
tion is unbounded and is uniform in both ±y directions. For a positive dielectric
(namely both real values of ε and μ are positive) the waveguide region should have
a larger dielectric constant than its cladding. This is deduced from Snell’s law. So,
for example, between layers 2 and 1 we have n2 sin θ2 = n1 sin θ1, where n is the
index of refraction n = ±√

εμ of the corresponding layer and θ1 is the refracted
angle in layer 1 and measured from the surface normal. For a positive dielectric
layer 2, n2 > 0, and with a negative dielectric layer 1, n1 < 0, then θ1 is negative (as
shown). At the point of total internal reflection, θ1 becomes imaginary and the wave
is totally reflected within the core layer. The angle of reflection equals the angle
of incidence θ1, regardless of whether the cladding is made of negative or positive
cladding material. This is because of the momentum conservation assumption that
leads to Snell’s law: β2z = β1z = β3z, where βjz is the propagation constant in each
region (see the following).

Metals have complex permittivity values ε = εR + jεI , albeit that their perme-
ability values are close to the value for a vacuum, μ ≈ μ0. Certain metals, such
as gold, silver, aluminum, and copper, exhibit large negative dielectric constants,
which translates to a large imaginary refractive index with small real values. This
separates ordinary metals from metamaterials, where both the real part of the per-
mittivity and the permeability constants are negative, ε, μ < 0. In that case, the
refractive index may be real and negative, as was noted by Veselago [20]. To sim-
plify the description, we will treat the dielectrics (ε, μ > 0), metals (ε < 0, μ > 0),



Linear and non linear phenomena with resonating surface polaritons 391

and metamaterials (ε, μ < 0) as having only real values of the permittivity and per-
meability constants. The treatment, though, is general, and one may replace these
constants by their complex values.

Metal assisting surface guides may be understood as dielectric guides in the
limiting case where the waveguide support is made of metal and the waveguide
thickness approaches zero. Differently put, take layer 1 with ε1 < 0 and μ1 ∼ μ0,
make the thickness of layer 2 extremely thin, and put ε3 > 0 and μ3 > 0.

The standard approach to dealing with waveguides is to solve the wave equation
for the electric or magnetic fields. While reiterating this extended description, it
provides an opportunity to reflect on some points and re-examine their validity.

One starts with Maxwell’s equations for the electric, E, magnetic, H, electric
induction, D, and magnetic induction, B, fields (bold letters denote vectors):

curl E = −∂B
∂t

; curl H = J + ∂D
∂t

; div D = ρ ; div B = 0 , (11.1)

where J is the current density and ρ is the charge density. We make use of the
constitutive relations B = μH and D = εE, assuming source-free media (J, ρ =
0), and analyze the solution one frequency at a time by separating the spatial and
the temporal contributions, (E(x, y, z), H(x, y, z)) exp(±jωt):

∇2E + εμ
ω2

c2
E + 1

μ
(∇μ) × (curl E) + ∇

[
E · 1

ε
(∇ε)

]
= 0, (11.2a)

∇2H + εμ
ω2

c2
H + 1

ε
(∇ε) × (curl H) + ∇

[
H · 1

μ
(∇μ)

]
= 0. (11.2b)

Here, c is the speed of light in vacuum. Since the field is a real quantity, and the
time averaged energy of each photon has to be equal to a positive quantity h̄ω, in the
end we will take Re[(E(x, y, z), H(x, y, z)) exp(−jωt)]; radiation (propagation)
is characterized by a phase −(ωt − k · r). We will further comment on this in the
context of loss and dispersion in Section 11.2.6 .

The configuration of a slab waveguide simplifies the wave equations, Eqs. (11.2).
According to Fig. 11.2 we can separate the modes of oscillation into two categories:
one for which the E field oscillates parallel to the interfaces, and one in which it
oscillates (or has a nonzero component) perpendicular to them. The first mode is
known as the TE mode or s polarization and the other is known as the TM mode
or p polarization. We are focusing on the TM mode; the TE mode may be deduced
accordingly for metamaterials [21, 22]. Through Maxwell’s equations, the TM
mode may be described by the H field, whose oscillations are parallel to the slab
interface. In our case, H = ayHy , where ay is a unit vector along the y direction.
Since the wave is oscillating in a direction transverse to the direction of propagation
(in our case, the direction of propagation is along the z direction), there is no other
H field component for this mode of oscillation. The corresponding E field has two
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components, Ex , Ez, which are derived from Maxwell’s equations, Eqs. (11.1).
We will use Eq. (11.2b) for convenience: it involves only one oscillation mode,
along the y direction, and therefore the equation becomes a scalar equation. The
last term in Eq. (11.2b) is zero because the interfaces are oriented perpendicularly
to the x direction (or, to put it differently, their surface normal is parallel to the
x direction). This means that grad μ is along the x direction, which is positioned
perpendicularly to the chosen direction of oscillation, Hy , and the dot product
between the two is zero.

If a solution is found, its dependence on the y coordinate must be similar at
every point (up to a phase difference) because every segment of the guide along this
direction resembles the others. We conveniently set ∂/∂y(∂Hy/∂y) = 0. Equation
(11.2b) is, therefore, written as follows:[

∂2

∂x2
+ ∂2

∂z2
+ ε(x)μ(x)

ω2

c2
− 1

ε(x)

∂ε(x)

∂x

∂

∂x

]
Hy = 0. (11.3a)

For a slab comprising three homogeneous films, the last term is zero; one simply
solves Eq. (11.3a) separately in the three regions 1, 2, and 3 and matches the
solution(s) at the interfaces.

When solving second order differential equations, boundary conditions assert
the continuity of the field and its first derivative across the guide boundaries. Yet,
because the boundaries are defined by two different materials, the (E, H) fields are
coupled, and the derivatives of one field are related to the other and vice versa, one
may use Maxwell’s equations instead. These boundary conditions for the problem
at hand are as follows:

(1) The magnetic field component, Hy , parallel to the interfaces is continuous
across the boundaries.

(2) The electric field component, Ez, parallel to the interfaces and along the direc-
tion of propagation is continuous across the boundaries. The latter is deduced
from the Hy solution using Ez = (1/jωε)∂Hy/∂x.

(3) The electric field component, Ex , perpendicular to the interfaces obeys the
relation ε1(x)Ex1 = ε2(x)Ex2. The latter is deduced from the Hy solution using
Ex = −(1/jωε)∂Hy/∂z.

One is searching for a solution that is bound to the waveguide core (layer 2) and
which propagates in unison in all waveguide regions at a single speed. This means
that we are searching for a solution in the form of Hy(x, y, z) = Hy(x, y) exp(jβzz).
Inserting the proposed solution into Eq. (11.3a), we obtain[

∂2

∂x2
+
(

εiμi

ω2

c2
− β2

z

)]
Hy = 0 , i = 1, 2, 3 . (11.3b)
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We now define the propagation constants (some of which may be complex):

κ1 =
(

β2
z − n2

1
ω2

c2

)1/2

; κ2 =
(

β2
z − n2

2
ω2

c2

)1/2

; κ3 =
(

β2
z − n2

3
ω2

c2

)1/2

.

(11.4a)

Here, n2
i = εiμi is the refractive index of layer i. It is convenient to assume the

solution to be as follows:

Hy(x) =
⎧⎨
⎩

A exp(−κ1|x|) x < −d[
B exp(+κ2x) + C exp(−κ2x)

] − d < x < +d

D exp(−κ3|x|) x > +d .

(11.5)

If this is a solution to Eq. (11.3a), obeying the boundary conditions outlined before,
then this is the only solution. By matching the boundary conditions (specifically,
by using (1) and (2) from the recipe above), we arrive to a relationship between the
parameters κ1, κ2, κ2, and βz for given ε1, ε2, and ε3.

The condition that ascertains the existence of a nonzero solution is written as,
and is known as, the characteristic equation for the waveguide, namely

tanh(2κ2d) = −κ2

ε2

(κ1/ε1) + (κ3/ε3)

(κ2/ε2)2 + (κ1/ε1)(κ3/ε3)
. (11.6)

We may rearrange Eqs. (11.4a) as follows:

κ2
2d2 + κ2

1d2 = (−n2
2 − n2

1)
ω2

c2
d2;

κ2
2d2 + κ2

3d2 = (−n2
2 − n2

3)
ω2

c2
d2.

(11.4b)

Comment: the negative sign on the right-hand side of Eqs. (11.6) and (11.4b) is
simply due to the definition of κ2 – the wavenumber along the x direction within
the waveguide core. It becomes purely imaginary for a positive dielectric layer, and
it may be real for surface metamaterial guides.

Now consider the case where the waveguide thickness is approaching zero,
d ∼ 0; the left-hand side of Eq. (11.6) becomes very small, and the numerator on
the right-hand side of the equation is set to zero, i.e. (κ1/ε1 + κ3/ε3) = 0. This
is the condition for the propagation of a surface wave. The dielectric constant
of plasmonic metals is frequency dependent and is typically taken as ε1 = εm =
ε0(1 − ω2

p/ω2), with ωp being the plasma frequency. The dielectric constant of a
dielectric is of order unity and positive. Since both κ1 and κ3 are positive numbers,
namely the wave decays exponentially away from the surface, a solution to this
waveguide construction may be found.
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Figure 11.3. Goos–Hänchen (GH) shift may take positive (left) and negative
(right) signs.

11.2.2 Goos–Hänchen shift in optical waveguides (ray optics approach)

In the ray optics approximation under the total reflection condition, the wave
zigzags inside the guide between the two interfaces. It acquires a phase shift, as
if it is partially penetrating the waveguide wall and refracts back. The shift for a
p-polarized (TM) mode, where the H-field oscillations are parallel to the surface,
is shown schematically in Fig. 11.3: it may take positive and negative values
depending on the relative signs between the core and cladding of the interface. The
phase shift amounts to a displacement of the beam under total internal reflection,
as shown in the figure.

This actual beam displacement is given as follows (see ref. [23], where the
standard Goos–Hänchen displacement, D, was replaced by the GH shift= S21 =
D/ cos θ2, as shown in Fig. 11.3):

S
(T M)
21 = 2

kn2

[
ε12 cos θ2 sin θ2

ε2
12 cos2 θ2 + sin2 θ2 − n2

12

]⎡⎣ 1√
sin2 θ2 − n2

12

⎤
⎦ ,

where ε12 = ε1/ε2 and n12 = n1/n2. This translation may be written as a phase
delay. In a slab waveguide, there are two such delays from each of the waveguide
interfaces. Therefore

2kn2d cos θ − 2φ21 − 2φ23 = 2πm (m = 1, ±1, ±2 . . .) ,

where θ2 is the local angle of reflection between the ray and the normal to the
interface and m is the mode number (see also Fig. 11.2(c)). For a TM mode, the
phase shift at each interface is given by

tan φ12 = κ1ε2

|κ2|ε1
,

tan φ23 = κ3ε2

|κ2|ε3
,

2dkn2 cos θ = 2d|κ2| .
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At grazing angles, θ ∼ π/2 and the acquired phase shift approaches π/2. Therefore,
for the lowest order mode, propagating between very close interfaces, we write
|κ2|d = 0, and −2φ21 − 2φ23 = +2π .

For a surface guide, only the lowest mode may propagate and, therefore, m = 0.
As a result, the total acquired phase shift is −2φ21 − 2φ23 = 0. Due to the signs of
the permittivity values, obviously φ21 < 0 and φ23 > 0, and these inequalities are
automatically fulfilled. The above is true only for metals with ε < 0 and μ > 0, or
conversely for materials with ε > 0 and μ < 0. The requirements for metamaterials
are similar: while the refracted angle in Snell’s law, n2 sin θ2 = n1 sin θ1, reverses
itself for n1 < 0 and n2 > 0, from a critical angle point of view the angle of
reflection will be always positive to the incident angle regardless of the definition
of the refractive index n. As was pointed out by Veselago [20], the energy flux (the
Poynting vector) always forms a right-hand system with the electric and magnetic
field vectors. Therefore, the intensity energy flow in the waveguides with a dielectric
core which is bounded by a metamaterial cladding is always positive. The situation
with a metamaterial waveguide (namely, a left-handed core) encapsulated with
a right-handed cladding is a bit different: since both φ21 and φ23 are positive,
n2 becomes negative. A large Goos–Hänchen shift has been calculated when a
metamaterial slab is backed by a metal [24]. In that case, the slab with the metal
acts as a resonator.

11.2.3 Surface modes

Standard surface plasmon case: metal–dielectric interface

The ε1 region is a plasmonic metal, namely Re ε1 � 0, while, the ε3 region is
a dielectric, ε3 > 0. While, in general, ε1 is described by a complex number, we
will treat metals as if they do not exhibit a major loss component (in other words,
Im ε ∼ 0), unless otherwise noted. Both regions have μ1,3 > 0. Equation (11.6) is
simplified and becomes, 0 = κ1/ε1 + κ3/ε3. The equality holds since both κ1 and κ3

are taken to be positive (otherwise the field envelope would not decay exponentially
along the x direction). On substituting into this equation the expressions for κ1 and
κ3 given by Eqs. (11.4), we obtain for the wavenumber βz the result

β2
z = ω2

c2

ε2
3n

2
1 − ε2

1n
2
3

ε2
3 − ε2

1

. (11.7)

Here we used, n2 = εμ. The condition for propagation is β2
z > 0. Remember

that region 1 is the metal (n2
1 < 0) whereas region 3 is the dielectric (n2

3 > 0).
The numerator is therefore negative, which dictates that the denominator ought
to be negative too. This will occur if |ε2

1| > |ε2
3| and it is true for silver, gold,
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copper, and aluminum. For example, at the d-line wavelength of a sodium lamp,
λ = 0.5893 μm, silver has [25] ε/ε0 = −11.793 + j0.688 and μ ∼ μ0 = 4π107

H/m (with ε0 ∼ (1/36π )10−9 F/m); in this case, n2
1 ∼ ε1 < 0.

It is interesting to compare the expression for the propagation constant, βz,
with the more traditional expression in the literature. We note that nonmagnetic
materials have μ1,3 ∼ μ0. This simplifies the expression for βz a little because in
that case n2

1,3 ∼ ε1,3 and βz = (ω/c)
√

ε1ε3/(ε1 + ε3).
Using Eqs. (11.4), the decay constants are given by (κ1, κ3 > 0)

κ2
1 = β2

z − n2
1
ω2

c2
= ω2

c2

ε2
3n

2
1 − ε2

1n
2
3

ε2
3 − ε2

1

− n2
1
ω2

c2
= ω2

c2
ε2

1
n2

1 − n2
3

ε2
3 − ε2

1

,

κ2
3 = β2

z − n2
3
ω2

c2
= ω2

c2

ε2
3n

2
1 − ε2

1n
2
3

ε2
3 − ε2

1

− n2
3
ω2

c2
= ω2

c2
ε2

3
n2

1 − n2
3

ε2
3 − ε2

1

.

The solution for the propagating E field is (up to a constant):

Ex = − 1

jωε1

∂Hy

∂z
= Const

(
βz

ωε1

)
exp(+κ1x) exp[−j (ωt − βzz)] x < 0;

Ez = + 1

jωε1

∂Hy

∂x
= Const

(
κ1

ωε1

)
exp(+κ1x) exp[−j (ωt − βzz)] x < 0;

Ex = − 1

jωε3

∂Hy

∂z
= Const

(
βz

ωε1

)
exp(−κ3x) exp[−j (ωt − βzz)] x > 0;

Ez = + 1

jωε3

∂Hy

∂x
= Const

(−κ3

ωε3

)
exp(−κ3x) exp[−j (ωt − βzz)] x > 0.

(11.8)

Because the electric field has components parallel and perpendicular to the direc-
tion of propagation, one may conclude that the field has an elliptical polarization in
either medium. Similarly to a sea wave, the electric field is rolling in the direction
of wave propagation (or away from it, as in the case of the dielectric).

One may repeat the entire calculation for the TE modes, which means that
instead of Hy we are considering Ey . The relationships between the E and H fields
are as follows: Hx = +(1/jωμ)∂Ey/∂z and Hz = (−1/jωμ)∂Ey/∂x. Effectively,
this means that we replace Hy by Ey and ε by −μ in the above equations.

The characteristic equation will now read

tanh(2κ2d) = − κ2

μ2

κ1/μ1 + κ3/μ3

(κ2/μ2)2 + (κ1/μ1)(κ3/μ3)
. (11.9)

Again, a positive dielectric guide layer will result in an imaginary value for κ2.
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When setting μ1 > 0 and ε1 < 0 (say, a plasmonic metal), a TE mode does
not exist because the numerator is always positive and cannot be set to zero;
κ1/μ1 + κ3/μ3 > 0 (remember that layer 3 is made of a positive dielectric).

When setting Re μ < 0 and Re ε > 0 (a spintronic medium) a surface TE wave
may be sustained by a lossy medium for which Im μ > 0. Again we assume
Im μ ∼ 0 for the time being. As long as n2

1 < 0 and n2
3 > 0, such a surface mode

exists.
For an interface between a dielectric, such as air (ε3 ∼ 1), and a plasmonic

type metal (for example, silver) with ε1 such that |ε1| � |ε3|, we may simplify
the equations. Such a condition leads to κ1 � κ3, and the wave propagates mainly
in the dielectric, confined to the interface. Attenuation is the result of the mode
propagating in the metal. The attenuation coefficient is related to the imaginary
part of the propagation constant. For μ1 ∼ μ3 ∼ μ0, we arrive at the following text
book result:

βz = ω

c

[
ε1ε3

ε1 + ε3

]1/2

,

where the dielectric constant for the cladding is ε3, a real number, and, for the
metal, ε1 = ε1R + jε1I , as identified for silver before.

Metamaterial and dielectric interfaces

Considering now the interface between a metamaterial region and a dielec-
tric, the calculations may be repeated for two half-spaces: one is made of a
dielectric as before (Re{ε3, μ3} > 0) and the other, the substrate, is made of
a metamaterial (Re{ε1 μ1} < 0) (see, for example, ref. [26]). In this case, the
characteristic equation for the TM and TE modes remains the same. The con-
dition that is deduced from these equations, 0 = κ1/ε1 + κ3/ε3 for the TM,
or p polarization, mode, is also valid. The propagation constant is positive,
β2

z = (ω2/c2)[(ε2
3n

2
1 − ε2

1n
2
3)/(ε2

3 − ε2
1)]; this sets the conditions for the relationship

between the various dielectric constants. We note that n2
1,3 > 0 for both regions.

The same holds true for the TE, or s polarization, mode: the condition for a
surface mode is 0 = κ1/μ1 + κ3/μ3, and the propagation constant is given by
β2

z = (ω2/c2)[(μ2
3n

2
1 − μ2

1n
2
3)/(μ2

3 − μ2
1)].

Metamaterial and metal interfaces

We consider surface waves between a metal and a metamaterial. We retain region 1
as a metal (Re ε1 < 0, Re μ1 > 0) and make region 3 a metamaterial (Re{ε3, μ3} <

0). The condition β2
z > 0 remains valid. For the TM (p polarization) mode n2

1 < 0,
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aluminum
substrate

thin patterned
oxide layer

Figure 11.4. Surface guide made of an aluminum substrate with a very thin
(∼50 nm) oxide layer, which is patterned with a hexagonal array of holes.

which makes the numerator negative, and therefore we need to set (ε2
3 − ε2

1) < 0.
For the TE (s polarization) mode we set (μ2

3 − μ2
1) < 0. We note that, for plasmonic

metals, the real part of the refractive index is indeed Re n2
1 � 0, yet the refractive

index of the metal is in general a complex number, as we saw for silver. As we
mentioned before, a large Goos–Hänchen effect may occur if we place a thin
metamaterial layer between a positive dielectric and a metal [24].

11.2.4 Periodically patterned interfaces

Consider now a very thin (of the order of λ/10) interfacial layer between the
dielectric and metal. This interfacial layer is also patterned, as shown in Fig. 11.4,
and has a dielectric constant ε2 ∼ 1.77, compared with ε1 = 1 and ε3 = −38.74 +
j10.42 at λ = 515 nm. The pattern comprises holes in the dielectric layer: the
hole diameter is 20 nm and the array pitch is 90 nm. The array has hexagonal
symmetry.

Since the pattern is periodic, one may expand it in a Fourier series: ε2(y, z) =∑
qy,qz

ε2(qy, qz) exp(jqyy + jqzz). One may use, then, a perturbation approach.
The magnetic field distribution is taken as a linear combination of the solutions for
a system without the perturbation: Hy(x, y, z) = ∑

m Am(z)Hmy(x, y) exp(jβmzz).
Here q = (qy, qz) is the wavevector of the pattern; if the pattern is periodic, it may
be viewed as a lattice. In our case, the intermediate layer is very thin and the lattice
is two-dimensional (2-D). Therefore, one may set q = G, a vector of the reciprocal
lattice.

This perturbation approach may be questionable in the presence of strong scatter-
ing, namely when higher orders of diffraction participate in the scattering process.
The reason is that we have ignored the gradient terms of both ε and μ in Eqs. (11.2)
when treating homogeneous layers (each layer was considered separately, and
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(a) (b)

Figure 11.5. (a) Hole array fabricated in 50 nm oxide layer on top of aluminum
(anodized aluminum oxide, or AAO). The rectangle indicates the simulation cell.
(b) Cross sectional view of electric field maps when the incident beam is launched
at normal incidence. The refractive index for the oxide was 1.77. The electric field
intensity values range from 2.25 V/m to 10−3 V/m. The incident beam was taken
as 1 V/m [27]. Simulations were obtained with an Ansoft tool. See color plates
section.

we tailored the final solution by demanding continuity of the solution and its
derivatives).

One immediate observation, however, is that the solution is no longer uniform
along the y direction because ε2 = ε2(y), and gradients of the dielectric constant
would appear in Eq. (11.2b). The solution will be periodic along the y direction
through the use of the Floquet theorem [12]. Also, the propagation constant along
the z direction will be modified (βz → βz + qz) because it experiences scatterings
from a well defined structure. Under certain conditions, the wave may be reflected
back and forth, and a standing wave may be formed. At this point, it appears
that the problem becomes too complex for an analytical approach, and we seek
a numerical solution through one of the available computer aided design (CAD)
tools. The solution is presented as an electric field distribution and is shown in
Fig. 11.5. An incident plane wave is launched at normal incidence on the surface
of Fig. 11.4. One obtains the intensity field plots (thermal plots) for a cell defined in
Fig. 11.5(a). We assume that the pattern repeats itself. Similar plots may be obtained
as the sample is tilted and rotated. What we take out of this and other simulations
is that the field is distributed at the top of the interfacial thin dielectric layer and
is mainly concentrated at the hole area. Such observations are also confirmed by
analytical solutions to a one-dimensional problem of a loaded microwave guide;
loaded waveguides are guides with a thin dielectric coating [12].
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11.2.5 Suspended periodic metallic structures

Free-standing thick metal screens are metallic structures with a hole array. The array
may have a 2-D crystallographic symmetry, such as square or hexagonal symmetry
(Fig. 11.5). The complementary structure (metal patches where the openings are
and dielectric material where the metal area is) requires a dielectric backing. Here,
the metallic layer is surrounded by a dielectric cladding, typically air. The thickness
of the screen, t , is considered thin when t/λ � 1 or thick when t/λ > 0.1. Such
screens have been studied for a long time [3]. In general, periodic metallo-dielectric
structures are able to discriminate desired infrared (IR) signals from more ener-
getic short wavelength radiation, allow color temperature measurements, provide
order sorting for grating spectrometers, and improve the signal-to-noise ratio of
Fourier transform spectrometers. Free-standing metal screens are commercially
available and have been used as band pass filters [28], reflectors for long IR wave-
lengths, Fabry–Perot etalons [29], antennas [3], and platforms for bio-chemical
characterizations [30, 31].

In principle, such periodic structures enable transmission (or reflection) of spe-
cific frequency bands by invoking standing wave surface modes; the incident beam
is coupled to the surface waves by the periodic structure, which in turn supports
standing waves [32]. The reason these structures are mentioned here is because
they too utilize surface plasmonic modes as described before. Namely, layers 1
and 3 are dielectrics and layer 2 is the perforated plasmonic layer with Re ε2 � 0.
Propagation of electromagnetic radiation is enabled only at the metal–dielectric
surfaces. These surface modes are coupled by the holes in the metal, therefore
enabling transmission of energy flux from one side of the screen to the other.
The screens exhibit transmission of a certain frequency band, which is related to
the periodicity of the array. Although there was a great deal of excitement in the
literature about the so-called extraordinary transmission through periodic metal-
lic structures [33], this excitement was built upon the erroneous premise that the
transmission ought to be related to the relative area of the screen’s openings. This
is definitely not the case here, and, for that matter, is not true for a large class of
resonating structures (for example, a Fabry–Perot etalon, comprising two mirrors
facing each other, transmits 100% of a certain wavelength even if the reflectivity
of the mirrors approaches 100%).

The reason why these screens are able to achieve large transmission at certain
wavelengths (in some cases, transmission as high as 100%) is because of an efficient
coupling between the two surface modes on either side of the screen. This occurs
when the surface modes become standing waves, thus enabling coupling via the
waveguide modes in the screen openings. The transmission changes as a function
of tilt and rotation of the screen and depends on the local field polarization [34].
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(a)

(b) (c)

Figure 11.6. (a) Flat metal screens: 7.6 × 7.6 μm2 openings, arranged in a square
lattice with lattice constant a = 12.7 μm. (b) Transmitted p polarization through
a screen tilted at various angles. (c) Simulations of transmission of a p-polarized
incident beam as a function of tilt angle [30]. The peaks become farther apart as
the tilt angle between the incident beam and the screen increases.

The coupling to the surface plasmons is achieved by coherent scatterings from the
periodic structure of openings.

As previously described, the wavenumber of the propagating surface mode,
β, is modified by the periodic structure such that β → β + G, where G is a
translation vector of the lattice reciprocal to the structure. A reciprocal lattice
vector G is a linear combination of the primitive translation vectors G1 and G2

of the reciprocal lattice. For holes arranged in a square lattice, G = q1G1 + q2G2,
where G1 = (2π/a, 0), G2 = (0, 2π/a), a is the lattice constant, and q1 and q2 are
integers. For a given pitch the free-standing screen will transmit a certain frequency
band. The peak frequency (wavelength) will split and the frequency gap between
the peaks will vary as a function of tilt angle, as shown in Fig. 11.6. The frequency
split is due to the existence of two standing waves, each centered at a slightly
different frequency. The transmission for s polarization (the oscillation mode which
is parallel to the screen) exhibits a pass-band with a single transmission peak; the
peak is down shifted as a function of the tilt angle. It is clear from the preceding
discussion that, in order to transmit a given incident wavelength through a given
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Figure 11.7. (a) Simulations of the electric field intensity distribution at the surface
of a copper screen; opening = 7.6 × 7.6 μm2 and pitch = 12 μm. The electric field
is peaked at the edges of the screen opening when the wavelength is at resonance
with the structure. The relatively small opening allows for only the lowest order
waveguide mode to propagate and couple to the surface plasmon on the other side
of the screen. (b) Simulations of transmission for three screens with periodicities
of 100, 200, and 400 μm, respectively. The screen was made of round holes in a
square lattice. The screens’ thicknesses were, respectively, 2, 5, and 5 μm. The
hole’s radius was one-fifth of the screen pitch. Note how narrow and how large
the transmission may be when the screen is relatively thick and the opening is
relatively narrow.

periodic structure, we need to tilt and rotate the screen with respect to the incident
beam in order to obtain optimal coupling to the surface plasmon modes. Unlike
Fig. 11.4, the electric field under the resonance condition (maximum transmission)
is concentrated at the edges of the screen opening (Fig. 11.7).

The next question would be how does one form a standing surface plasmon
wave? The answer is rather simple: we invoke second order diffractions. We clarify
it by example; suppose that we employ a metal screen with a square symmetry of
holes such that a = a0. At normal incidence, the optimal wavelength coupled to
the screen’s surface mode would be λ = a0. The propagation constant will be β =
2π/λ = 2π/a0 = G. Efficient backscattering along the surface occurs at the Bragg
condition [35], which takes the form 2β = mG when the surface waves are scattered
in the direction normal to the periodic interfaces. Therefore it is clear that m = 2
and the back reflection of the surface wave occurs via the second order of diffraction
or twice the spatial pitch frequency. The surface mode will be scattered back and
forth, and a standing mode will be formed. We will return to this point later on.

11.2.6 Energy considerations, dispersion, and loss

The energy carried by an electromagnetic wave may be divided into two parts: the
internal energy and the energy flux. The energy flux, S, also known as the Poynting
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vector, is the electromagnetic energy that is transfered through a known surface.
The internal energy, or the energy density W (if defined per unit volume), is the
energy contained at a given time in a given volume. Conservation of energy dictates
that

div S + ∂W

∂t
= 0, (11.10)

similar to the relationship between the charge density ρ and the current J: div J +
∂ρ/∂t = 0. The energy flux averaged over one period of the wave is given by
〈S〉 = (1/2)Re{E × H∗}. For a TM (p polarization) waveguide, or for surface
modes propagating along the guide axis in the z direction, 〈Sz〉 = (1/2)(ExHy).
The triad E, H, and S always forms a right-handed system. This expression may
be written differently, i.e. 〈S(x)〉 = (β/2ωμ)|E(x)|2, where β is the propagation
constant of the wave in the medium. For a homogeneous medium, the propagation
constant may be written as β � k0n, and, therefore, if μ < 0, then n < 0 also in
order to maintain a positive energy flux. (Note that in the case ε > 0, n = √

εμ

is imaginary and the energy flux is decaying over a short propagation distance.)
This means that negative refractive index materials have phase propagation (the
direction of the k vector) opposite to the direction of the energy flux. In our case,
〈Sz(x)〉 = (βz/2ωμ)|Ex(x)|2, and we arrive at similar conclusions.

Considering surface plasmons and a given direction of propagation βz along the
surface, the energy flux in the dielectric and in the metal are in opposite directions:
this necessitates the formation of an energy flux vortex. Therefore, in a waveguide
made of a metamaterial core with a dielectric cladding, there ought to be two
energy flux vortices to sustain propagation in the waveguide [22]. The propagation
of phase, however, is not a physical quantity, and therefore may not be important
for metamaterials. When both ε and μ are negative and real, the triad E, H, and β

forms a left-handed system (E × H is opposite to β), hence the name “left-handed
materials.”

The problem for homogeneous metamaterials lies with the internal energy
expression. This expression equals the photon energy h̄ω. The internal energy
is written as 〈W 〉 = (1/4)Re [E · D∗ + H · B∗] = h̄ω. Using the constitutive rela-
tions D = εE and B = μH, we may write the internal energy as 〈W 〉 = (ε/4)|E|2 +
(μ/4)|H |2. If both ε and μ are negative and real, then the internal energy is negative,
which means that the photon energy is negative. Thermodynamically, the electro-
magnetic energy density is the difference between the free energies of the system
with and without the wave, respectively. If ε, μ are negative, the thermodynamic
system becomes unstable.

The practical solution is to avoid homogeneous structures altogether. We recog-
nize that the above energy density term is correct only for homogeneous materials,



404 Haim Grebel

and that the constitutive relations are valid only for nondispersive media. In gen-
eral, the entities ε and μ are 3 × 3 matrices ( namely [ε] and [μ] have different
values along different directions) and depend on the frequency of the wave. The
constitutive relations for the component i of the field are written as follows [16]
(summation over repeating indices is assumed):

Di(r, t) = Ei(r, t) +
∫

d3r ′
∫

dt ′ fik(t ′, r, r′)Ek(r′, t − t ′), (11.11a)

Bi(r, t) = Hi(r, t) +
∫

d3r ′
∫

dt ′ fik(t ′, r, r′)Hk(r′, t − t ′). (11.11b)

The integral over time is taken in the range 0 < t ′ < ∞ (although one might
argue that it should be extended to −∞ < t < +∞ for finite resonating structures
to include advanced and retarded potentials). Here, the function fik(t ′, r, r′) is
a correlation function, which relates the electric field E to the D field through
events that occurred over time and space. In essence one may identify fik with the
susceptibility χ .

In the simple case where the electric and magnetic fields are taken to be slowly
varying plane waves, E = E0(r, t) exp[−j (ωt − β · r)], we may approximate the
fik function by an averaged function and identify 〈fik〉 = ∂(εikEk)/∂t from the
general constitutive relations Di = εikEk. Taking the Fourier transform of the
preceding equation (and emphasizing again that the wave is monochromatic), we
get 〈fik〉Ek = −jωεik(ω, β)Ek. The latter is achieved by writing a spatial Fourier
transform and interchanging the order of integration. For a monochromatic wave
propagating in an anisotropic medium, the energy density and the energy flux may
be written as follows:

〈W 〉 = 1

4

∂(ωεik)

∂ω
EiE

∗
k + ∂(ωμik)

∂ω
HiH

∗
k , (11.12a)

〈S〉 = 1

2
Re[E × H∗] − ω

4

∂εik

∂β
EiE

∗
k . (11.12b)

The purpose for writing these expressions is this: one may resolve the issue of
negative energy densities associated with homogeneous metamaterials by instead
turning to anisotropic and dispersive media. Since the derivatives in front of the
amplitude square terms may become positive, even if the local real values of the
permittivity and permeability constants are negative, the overall energy expression
remains positive as desired. The energy flux is also modified by the spatial–temporal
dispersion, as can be seen from Eqs. (11.12). Typical dispersion relations for
plasmonics and spintronics are

ε(ω) = ε0
(
1 − ω2

p/ω2
)

and μ(ω) = μ0
[
1 − C1ω2/(ω2 − ω2

0)
]
, (11.13)
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respectively, where ε0, μ0 are the permittivity and permeability constants of the
vacuum, respectively; ωp is the plasma frequency; C1 is a constant; and ω0 is
the resonance frequency of the magnetic elements. Therefore, the way to handle
metamaterials is to return to Eqs. (11.5), (11.6), and (11.4b) with the now dispersive
and complex values for the permittivity and permeability operators. As was pointed
out in ref. [36], dispersion and loss are inherent to metamaterial structures, and
therefore cannot be ignored under any circumstances.

On the sign of the temporal phase factor and the imaginary part of the
permittivity and permeability constants

The choice of the phase ±(ωt − k · r) is a matter of definition, and the bewil-
dered reader may find it written in publications either way. In general, the electric
or magnetic fields may be written as: A(r) exp(−jωt) + A∗(r) exp(+jωt), with
the second term being the complex conjugate of the first one. Most physics and
engineering books define the fields as we do (with a negative sign in front of the
temporal phase term):

(E(x, y, z, t), H(x, y, z, t)) = Re{(E(x, y, z), H(x, y, z)) exp(−jωt)}.

This means that the constitutive relations for a monochromatic wave, e.g. D = εE,
will determine the properties of the permittivity, because the D field may be written
as

D = ε(ω)E0(r) exp(−jωt) + ε∗(−ω)E0(r) exp(+jωt)

for real frequencies. This also means that when ε(ω) is complex, namely when it is
written as ε(ω) = εR(ω) + jεI (ω), the imaginary part εI (ω) is always positive (and
an odd function of frequency) and the real part may be either positive or negative
(but an even function of frequency). This is also consistent with Beer–Lambert’s
law that absorption of the propagation intensity along the z direction I (z) behaves as
I (z) = I0 exp(−αz), with α = 2(ω/c)Im{n(ω)}. With n = (εμ)1/2 complex, one
may write n = (εμ)1/2 = {[εR(ω) + jεI (ω)][μR(ω) + jμI (ω)]}1/2 and extract the
real and imaginary parts of the refractive index n. More on the constitutive relations
in metamaterials may be found in ref. [37].

Dispersion: another look

At a given frequency ω0, the dispersion relation may be approximated as β(ω0) =
β0 + δω(∂β/∂ω)β0 plus higher order terms. We deliberately keep the wavenumber
(which is the absolute value of the wavevector) as β · β = β2. In this case, β2/ω2 =
(β0 + δω(∂β/∂ω)β0 )

2/ω2 = (1/cn)2 + (δω/ω2)β0 · (∂β/∂ω)β0 . The term in the
second set of parentheses of this equation is the definition of the group velocity,
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(vg)−1 = (∂β/∂ω). This is the velocity of a band of frequencies (a pulse) that is δω

wide. Therefore, β2/ω2 = (1/cn)2 + 2(δω/ω2)(β0 · vg)/(vg)2. On the other hand,
the ratio δω/ω = Q−1, where Q is the quality factor, i.e. the energy stored divided
by the energy dissipated. If the material is constructed such that it is at resonance
with the wave along one direction, yet the wave is free to propagate along other
directions (e.g. a Bragg grating), the propagation is skewed. A wave oscillating
along the dispersionless directions has (vg)−1 = (∂β/∂ω) = β/ω = c−1

n ; in gen-
eral, for a wave oscillating along the resonating direction, (vg)−1 = (∂βz/∂ω) �=
βz/ω = c−1

n . When coupling to such a Bragg reflector at an angle, the wave may be
made to scatter back and forth within the structure, thus interfering with itself and
resulting in a partial standing wave mode (resonance conditions). There will be a
band of frequencies, δω wide, satisfying such a condition. In such periodic struc-
tures there will be one mode per frequency band �ω reflected, whereas the other
remaining, say N − 1, modes within the entire frequency range are transmitted.
The ratio ω/δω = Q defines the number of participating frequencies. Therefore,
for high-Q resonators, the group velocity in the direction of the resonating structure
would be very close to the phase velocity, whereas it will be very different along the
other directions. Such spatial–temporal dispersion may skew the beam direction
of propagation, and higher orders of diffraction need to be considered. It will also
alter the expression for the energy flux, as we have already seen. The question in
this case is, is there a physical meaning to the phase or even the group velocities
in contrast to the physical entity of energy velocity? As for molecules coupled to a
resonator, where the emission from the molecule is modified by the presence of a
resonator, one could argue that the propagation will be modified as well [38].

To summarize, surface waves rely on large negative permittivity or permeability
operators which exhibit dispersion and loss. The remaining question is whether one
can compensate for these dispersions and losses with structured films exhibiting
gain. As we have shown earlier, the largest interaction with a patterned film will
be when we form standing surface waves; we will take advantage of these when
assessing signal enhancement of Raman spectroscopy and surface plasmon lasers.

11.3 Raman spectroscopy with metamaterials

11.3.1 Fields and resonance effects (colloids and structured surfaces)

Raman spectroscopy is a widely used spectroscopic tool for characterizing vibration
modes of molecules. This nonlinear process couples the pump light intensity to the
vibrating molecule. The frequency of the scattered light is shifted by a vibration
frequency, thereby providing direct information about the molecule. The coupling
process is very weak, however. Surface enhanced Raman spectroscopy (SERS) is a



Linear and non linear phenomena with resonating surface polaritons 407

Figure 11.8. A large local field is predicted inside a dimer consisting of metal
spheres.

modified version of Raman spectroscopy; the usually weak signal of a nonresonant,
spontaneous Raman line is amplified via coupling of the Raman-active, optical
phonons to localized electric fields. In a typical arrangement, the probed molecule
is adsorbed on a rough metallic surface, such as silver, gold, or copper colloids [39].
Periodic structures are often utilized to couple the pumping laser light to surface
charge waves (surface plasmons). In these structures, the lattice constants are
typically one-half of either the exciting or the excited (scattered) optical wavelength
[40]. With surface plasmons in mind, one turns to silver, gold, aluminum, and
copper. Most metals are not compatible with bio-species, which is particularly true
for silver, a widely used SERS metal. An aluminum surface is rapidly oxidized
forming a nanoscale-thin but durable alumina film, which is bio-compatible [41].
An aluminum surface may be anodized to produce macroscopically homogeneous
and hexagonally packed nanopores with tunable diameter and pitch. However, the
oxide layer on aluminum was an impediment in the minds of many because it was
thought that SERS requires a direct contact with the molecule under test.

The gain of the Raman process is proportional to the electric field intensity
(namely, γ ∼ |E|2). This triggered an approach to create artificially “hot spots,”
namely, spots with large local fields. An example of a seemingly large field inside
a dimer is shown in Fig. 11.8. In a nutshell, the external electric field induces
charge separation in each metal sphere. The accumulated charges on the spheres’
interfaces which face each other are responsible for the increased local field [42].
The problem is that the field is minimal directly between the spheres, and the
molecule needs to be precisely positioned on either of the metal surfaces.

Other points of concern are as follows.

(a) Most spontaneous SERS data do not exhibit the line-shift which might be
expected in such a high field environment.
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(a) (b)

Figure 11.9. (a) Dipole structure where the incident beam (in the infra red in this
case) is polarized parallel to the dipole. Note that the field is “hot” only at the very
vicinity of the dipole edge (b). The resonance is relatively narrow.1 Simulations
were made with the Micro Suite program by CST. The transmission is plotted as
a function of wavelength in micrometers.

(b) While some indications are that luminescence is also enhanced, it is not
enhanced by the same factor as the Raman signal.

(c) No correlation has been found between Mie scattering and SERS.
(d) There is a substantial efficiency difference between gold and silver gratings,

yet their optical conductivity values are not that far apart.
(e) While the Raman spectrum of a solution such as methanol is well known, there

is no indication of its corresponding SERS effect. This is particularly puzzling
since, if correct, large local fields should always impact the molecules of the
solution.

The hot spot concept could be found in arrays of nano-holes [40, 43]. Using
the Babinet theorem, we may investigate the complementary structure in which
the holes are replaced by metal patches and the metallic regions are replaced by
dielectric material. The latter structures may be viewed as patched antennas (one
example would be a dipole antenna) or, more precisely, resonating structures. Such
is the periodic dipole structure shown in Fig. 11.9. The exciting incident beam is
parallel to the dipole direction. While these simulations are conducted at low-THz
frequencies, they are applicable up to the region of surface plasmons’ frequencies
[31].

With the idea that one needs to amplify both the pump and the scattered fre-
quencies, we extend this concept to metamaterials in the hope that these structures
possess a wider resonance range. More precisely, one would like to analyze struc-
tures such as the horse shoe shown in Figs. 11.10 and 11.11. The resonance is
indeed fairly wide, and some hot spots appear near the antenna’s edges.

1 Internal memo from J. Budd, R. Cevallos, D. Moeller, and H. Grebel.
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Figure 11.10. Transmission (left) showing the large absorption/reflection at res-
onance, and the field intensity plots (right). The polarization was set along the
y direction. See color plates section.

Figure 11.11. Transmission (left) and electric field thermal plots (right) when the
polarization is along the x direction. The frequency of the peak has changed, and
so has the field distribution. See color plates section.

From Figs. 11.10 and 11.11 one may conclude that the y polarization is slightly
better than the x polarization in terms of generating extended hot spots near the rel-
atively wide antenna sides. Thus, in principle, one may attempt to place molecules
near, or at the gap between, the antenna loops. The connection to Raman spec-
troscopy will be apparent in the following. Another view on Raman amplification
will be provided later on, which will help us understand the idea behind surface
lasers.

Raman spectroscopy is a nonlinear process as is always the case when the
frequency of the incident beam is shifted. The description involves the calculation
of the material response (polarization) as a result of the incident pump beam. As
shown below, the nonlinear polarization depends on the intensity of the pump
(incident) beam. The constitutive relations may be written as D = ε0E + P, where
P is the material polarization or its response to the external field. The polarization
may be assumed to be linearly divided between the linear part and the nonlinear
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part such that P = PL + PNL. The linear part of the polarization is absorbed in the
definition of the permittivity such that D = εE + PNL. We are interested in the
final term. The scattered nonlinear polarization, PS , that gives rise to the Raman
signal as a result of a pump field EP is given by [44]:

P(3)
S = 3ε0χR|EP |2ES , (11.14)

where χR is the Raman susceptibility and ES is the scattered (Stokes or anti-Stokes)
field. The field scattered from a film of thickness t may be written directly as

ES(t) = ES(0) exp[3jωSχRIP (0)t/2ε0c
2nSnP ] , (11.15)

where IP (0) is the incident pump intensity, ωS is the scattered radial frequency, and
nP and nS are the refractive indices of the sample (structure and molecule) at the
pump and scattered wavelengths, respectively. Linearizing Eq. (11.15) for small
scattered intensity values, the signal-to-noise ratio (SNR) may be written as

SNR ≈ IS

IN

≈ 1 − Im{χR}IP (0)t

ε0c2nSnP

. (11.16)

If we assume that the optical noise intensity IN (originating mainly from coherent
linear substrate scattering) is the seed for the Raman process, then IN ≈ IS(0). Note
the strong effect on the scattered mode as the refractive index at either the pump
or the scattered wavelengths (nS and/or nP ) approaches zero. Also note that, for
a given input pump intensity IP (0) and molecular susceptibility χR, the change in
the SNR value, and thus in the enhancement factor, depends only on the effective
refractive index.

Such were the results of a model for two plasmonic spheres [45]. By solving
a non-linear dipole equation for the spheres with a vibrating molecule, one can
show that the polarization of the complex behaves as (1/neff )4, with neff the real
value of the effective refractive index of the complex. Such a refractive index will
be affected mostly by the refractive index of the metallic spheres. We note that
this value is rather small when we consider the real part of the refractive index
of bulk silver or gold, as these are 0.067 and 0.16 at red laser light, respectively.
Therefore, with two metallic spheres, the amplification factors, which are related
to the impact of the refractive index, are given by (1/n2

S)2 ∼ 50 000 and 1500 for
silver and gold, respectively. Other effects add to an overall amplification of nine
orders of magnitude. The effective refractive index may be due to the material itself
(such as in the case of two spheres made of silver or gold), or may be due to a
resonating structure, such as a cavity or a periodic surface structure. Therefore,
the above explains the superiority of silver over gold and postulates the advantage
of metamaterials at the point where either the permittivity or the permeability
approaches zero.
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(a) (b)

Figure 11.12. (a) Graphene-coated platform, made of anodized aluminum oxide
(AAO). Hole diameter = 20 nm; pitch = 90 nm. (b) The experimental arrange-
ment. A laser beam is focused on the substrate via a lens (objective). The Raman
signal is measured in a confocal arrangement using a beam splitter, a spectrometer,
and a cooled detector array.

To summarize, we are looking at a plasmonic periodic surface structure, prefer-
ably made of silver or gold, which, under certain conditions, will yield a standing
wave pattern. The choice of a surface wave is because of the large interaction
between the electric field and the molecule, as was shown in Fig. 11.4. The periodic
structure provides for coupling and maintaining the standing wave, as explained
in Section 11.2.5. The enhancement of the Raman signal with such platforms
exhibiting standing waves may be experimentally validated by tilting the samples
towards and away from the resonance conditions. Such procedures should produce
variations in the Raman peak intensities [27]. We will expand on these momentum
conservation concepts later on.

11.3.2 Examples (sensors, etc.)

The experimental set up is depicted in Fig. 11.12. Anodized aluminum oxide is our
platform of choice: it has a hexagonal array of nano-holes and is bio-compatible.
The structure may be coated with graphene – a monolayer of graphite – in order to
sustain the molecule under test at the surface level of the platform, preferably above
a hole. As mentioned earlier, the area above the hole exhibits a large density of the
electric field intensity (Fig. 11.5). The platform is tilted (along the θ direction) and
rotated (along the φ direction) such that the surface plasmon resonance condition
is obtained.

Measured Raman signals of stilbene, a known dye molecule, as a function of tilt
angle are shown in Fig. 11.13. We have chosen stilbene because its fluorescence
wavelength is well in the blue region (420 nm), and interference to the Raman
signals is thereby minimized. Peaks of signal amplification over the noise are
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Figure 11.13. (a) Signal minus the noise as a function of tilt angle of the
1230 cm−1 Raman line of stilbene. The molecule was placed on a graphenated
AAO substrate and the sample was rotated in-plane in order to obtain optimal
conditions [46]. In this case, the first resonance occurs at 2◦. (b) Raman spectra of
10−5 M streptavidin in water. The protein was placed in a microfluidic channel,
which was resting on either glass or AAO substrates. The Raman signal is plotted
as a function of tilt angle. The first resonance occurs for a tilt angle of 0◦ (normal
incidence); it was affected by the presence of water as the top dielectric layer [47].

clearly demonstrated. The minimum at 8◦ is identified with the SP resonance for
the pump wavelength (at 514.5 nm). The minimum at 12◦ is identified with the SP
resonance for the scattered wavelength (at 548 nm). Details on the identification
of angles are provided in Section 11.4, where, for example, Eq. (11.18) relates the
angle of incidence to a particular wavelength.

11.4 Gain and feedback with structured metallo-dielectric surfaces

One could argue that the loss in metallic structures and, for that matter, the loss
associated with metamaterials could be compensated for by gain [48]. Although
Kramers–Kronig relations associate dispersion with loss and there would, therefore,
be a limit to such compensation [49], one may nevertheless try to resolve the issue
for a relatively narrow band of frequencies. With the concept of standing waves in
mind, we are set to explore surface plasmon lasers. Lasers require a gain medium
and a feedback mechanism, which forces light to scatter back and forth or repeat
its path (as in ring lasers), thus maintaining a steady state solution. Such a process
extends the interaction between the wave and matter, and oscillation occurs when
the gain overcomes the overall loss [50]. Feedback may be provided by a Fabry–
Perot etalon (two mirrors facing each other at a given distance), or by a periodic
structure; the periodic structure is either external (distributed Bragg reflectors,
DBR lasers), or exists as part of the gain medium itself (distributed feedback, DFB,
lasers). In an external grating, the zero or first order of diffraction at almost grazing
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angles was efficient enough to obtain laser oscillations at a single frequency [51].
This concept has also been employed in semiconductor lasers, including quantum
well lasers [52]. In a semiconductor planar construction the grating was integrated
with the laser waveguide itself, often fabricated on the top surface. The feedback
typically invokes high order harmonics of Bragg diffraction because of fabrication
constraints. In an attempt to avoid large scattering losses, only the tail of the
waveguide mode is made to experience Bragg scattering. This concept has been
extended to the far-IR regime where the otherwise dielectric grating was replaced
with a two-metal grating [53]. It is clear by now that, for a SP laser, the surface
mode needs to interact intimately with a gain medium. At optical frequencies this
creates a problem because of the large losses induced by the metallic free carriers.
The solution was to provide high gain in a semiconductor structure encapsulated
in a metallic cavity [54], or to separate a nano-semiconductor wire (the gain) by a
thin insulating film from the metallic surface [55]. Such separation of gain from the
metal surface was a key to the realization of the first SP laser in the visible frequency
range [56], when it was recognized that the SP mode has its highest intensity at the
separating layer interface (as we saw earlier in Fig. 11.4). The construction of that
laser deviated substantially from the original proposal [57]. A demonstration of
gain and line narrowing was achieved with metal spheres coated with a dielectric
layer; the layer was impregnated with a dye material which provided the gain [58].
Finally, one may realize a sub-wavelength laser (in this case at far-IR wavelengths)
by using strictly circuit concepts [59].

11.4.1 From local to extended feedback mechanisms

Feedback is provided by the highly scattering array of holes. Coupling to surface
waves or surface plasmons (SPs) is most conveniently made using a periodic
perturbation, obeying the momentum conservation form of

kxy + qG = β. (11.17)

Here, β is the wavevector of the SP mode propagating along the surface; kxy is
the projection of the wavevector of the incident light on the surface, launched at an
angle of incidence θ with respect to the surface normal (note that |kxy | = |k0| sin θ );
and G is a reciprocal lattice vector of holes. The parameter q takes both negative and
positive values. We note that, when G ≥ k, only the TM mode (p polarization),
with its oscillating electric field within the plane of incidence, may propagate
along the surface. If a molecule is placed on the surface, signal enhancement
occurs whenever the pump or the scattered wavelengths is in resonance with the
periodic structure. This is true for Raman signals, as we have seen in the preceding
section, or for photoluminescence signals, as we will see in the following. Unlike
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Figure 11.14. Symmetry of the hole-array. The hexagonal crystallography dictates
60◦ azimuthal symmetry (the cycle of φ upon in-plane rotations should be 60◦).
The effect of standing waves halves that value to 30◦.

typical photonic crystal structures [60, 61], where the structure pitch is of the
order of a propagating wavelength in the material, we are extending the resonance
condition to sub-wavelength structures. This was also shown to be relevant for
self-imaging properties of periodic structures [17]. The feedback to the SP waves
may be provided by a periodic hole array with the caveat that the pitch is much
smaller than the incident wavelength. This type of resonance extends over several
hole planes, and hence the parameter q is sub-integer (fractional): for example,
for an SP wavelength of 540 nm and hole-array pitch of a = 90 nm, resonance at
normal incidence dictates q = ±1/6. Coupling to and from these surface modes is
provided by the same periodic array of holes.

Let us consider an ideal 2-D hexagonal case (Fig. 11.14), and start by identifying
two lattice vectors, a1 = x̂a and a2 = x̂a/2 + ŷa

√
3/2, where a is the distance

between the nearest neighbor holes (Fig. 11.13). The primitive translation vectors
of the reciprocal lattice are G1 = x̂2π/a − ŷ2π/a

√
3 and G2 = ŷ4π/a

√
3. Light

is coupled to the periodic array of holes by momentum conservation, as described
by Eq. (11.17). Suppose that the surface component of the wave along the AAO
sample is scattered from the same periodic structure. This may happen because
the AAO is made of densely packed holes with an inter-hole spacing that is much
smaller than the propagating wavelength. This also happens because of the abrupt
nature of the hole in the AAO slab, invoking higher orders and sub-orders of
diffraction. One can envision that such Bragg diffraction creates a standing wave
within the hole-array. These considerations are true for the pump as well as for the
fluorescing wavelengths.

The scattering of laser light from such a periodic structure is shown in Fig. 11.15.
The scattering cycle upon in-plane rotation follows the 30◦ symmetry. The sample
was tilted at a tilt angle θ = 8◦, the angle at which surface plasmon waves are
launched.

The optimal launching conditions for a surface mode are achieved by a small
tilt and in-plane rotation of the sample with respect to the incident beam due to
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Figure 11.15. Laser line scattering (the 514.5 nm peak minus the noise floor)
from an AAO substrate at a tilt angle θ = 8◦. The shifted sinusoidal curve,
A + B sin2(6φ + φ0), accentuates the 30◦ symmetry.

(a) (b)

Figure 11.16. (a) Coupling into an SP wave: the projection of the incident
wavevector kxy is coupled to the surface plasmon wave by a reciprocal lattice vector
G. (b) Standing wave scenarios: β1 and β2 are two surface plasmon wavevectors
that are coupled by another reciprocal lattice vector G such that β1 − β2 = G.

the incomplete gap throughout the Brillouin zone for the hole-array, and may be
computed through Bragg scattering. Following Fig. 11.16, the projection of k0

onto the array of holes is given by kxy . The coupling to an SP mode is made via
momentum conservation: β = kxy ± G. Therefore, β2 = |β|2 = |kxy ± G|2. The
angle between the reciprocal lattice vector for the hole array G and kxy is φ. We
define β/k0 = neff , |kxy |/k0 = sin θ , and G′ = G/k0, and write an equation for θ

as follows:

sin2 θ − 2G′ cos φ sin θ + (G′)2 − n2
eff = 0.

The solution to this equation is given by sin θ = G′ cos φ ± [n2
eff − (G′)2(1 −

cos2 φ)]1/2. When the coupling is co-linear, φ = 0, the tilt angle is given by

sin θ = λ0

a

√
4

3

(
q2

1 − q1q2 + q2
2

)− neff . (11.18)
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Here we have identified G = (q1G1, q2G2), where q1, q2 are the inverses of the
numbers of planes used in the coupling process. Therefore, q is a sub-integer
(namely, 1/integer). For example, Eq. (11.18) predicts θ ∼ 5◦ and θ ∼ 0◦ with
q2 = 0, q1 = 1/6 for the pump wavelength at 514.5 nm. In the case of Raman
scattering, the G Raman line of graphene (or a carbon nanotube) is 558 nm.
Therefore, the 1600 cm−1 Stokes line of graphene corresponds to a +43 nm shift
from the laser wavelength, or λ = 558 nm. The equation predicts θ ∼ 4◦ for the
597 nm Stokes shift of ∼ 2700 cm−1, which is the Raman D′ line used to identify
the number of graphene layers. This is at resonance with q2 = 0, q1 = 1/7. In fact,
one may find numerous resonances in the range between 5 and 12 degrees because
of the densely packed hole-array structure. One of the strongest resonances is for
a tilt angle θ = 8◦, as we have seen before in Fig. 11.12(a) with q2 = −1/10,
q1 = 1/10 for the 514.5 nm laser line. For the SP laser, the idea is to find an angle
of incidence θ that is common (or pretty close) to both the incident and scattered
wavelengths, either incident and Stokes wavelengths, or pump and luminescence
wavelengths.

After launching the surface wave, the standing wave conditions need to be
established. The standing wave condition |β − qG| = β has several scenarios,
some of which are shown in Fig. 11.16(b). Due to the holes being closely packed
there are many opportunities to couple into standing wave modes in such an
environment. As stated before, at normal incidence we utilize the vector G for
coupling to an SP mode and the vector 2G for establishing a standing wave.

As we have seen earlier for suspended screens, there are two frequencies asso-
ciated with a given launching angle θ : these are ω− and ω+, corresponding to
SP propagating wave vectors β− and β+, respectively. The difference frequency,
δ� = ω+ − ω−, defines a frequency gap, as was shown in Fig. 11.6. The scat-
tering process and the standing wave formation for each wavevector is known as
band-edge coupling. Again note that these wavevectors, although differing by a
reciprocal lattice vector, belong to two different frequencies. Each one will be
associated with a standing surface wave. At normal incidence, θ = 0◦, the incident
beam generates two counter-propagating surface waves, with β = ±qG. The prop-
agation constant of the surface mode is given by β = k0neff , with neff the effective
index of the surface guide including the patterned interfacial layer. Waveguides that
are interfaced with a thin dielectric layer (patterned or not) are known as loaded
guides. Since the interfacial layer is very thin, neff ∼ 1 due to the large negative
permittivity of the aluminum and the small thickness of this oxide layer. Such
a frequency–wavenumber plot is shown schematically in Fig. 11.17. The plot is
folded at the Brillouin zone boundary, G/2m.

Momentum conservation for the surface plasmon polariton (SPP) ought
to include all scattering processes. As mentioned earlier, the SP plasmon is
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Figure 11.17. Schematic of the dispersion relations used. The folded Brillouin
zone (shaded area) is scaled by m across the light lines, ω = ±ck0. Each angle of
incidence θ is associated with two frequencies ω+ and ω− and SP wave vectors β+
and β−, respectively. The same frequencies marked by dots belong to wave vectors
separated by a reciprocal lattice vector G/m [56]. One could argue for a frequency
gap at β = 0 because of the higher harmonics involved in the scatterings.

concentrated at the structure’s holes at the interface away from the metal. We
have used graphene to “hold” the molecules at these points. However, graphene
has phonon modes which may propagate along the surface as well. Therefore,
any scattering process needs to include all modes that affect the coupling to and
from the sample. Consider the following momentum conservation condition with
incident, scattered, and optical surface phonon modes all propagating along the
nano-hole array:

(β i + qiG) + (βsc + qscG) + (K + qKG) = 0 . (11.19)

Here, β i is the wavevector of the surface plasmon (SP) mode at the frequency
of the incident beam; βsc is the wavevector of the SP mode at the frequency
of the scattered beam (Stokes or anti-Stokes processes as appropriate); K is the
wavevector of a phonon propagating in the graphene layer; G is a reciprocal
lattice vector; the various q values are the reciprocals of the number of sub-
lattices involved (namely, if scattering occurs every six lattice constants apart, then,
q = 1/6). Equation (11.19) sets the conditions for coupling between all scattered
components involved.

Standing waves or resonance conditions for one or several components occur
when |β i − qiG| = βi or |βsc − qscG| = βsc or |K − qKG| = K . The latter rela-
tionship requires a very small qK factor; it may be observed, however, in graphen-
ated micron size screens. In general, optimal coupling to a surface mode ensures
the resonance condition.
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Figure 11.18. (a) The simulation cell: a 50 nm thick hexagonally perforated oxide
is lying on top of aluminum. The hole radius is 40 nm and the refractive index of
the oxide layer is 3.3. Graphene is deposited on top of the oxide layer. The arrow
points to the direction of the incident TEM polarization state. (b) Linear electric
field intensities ranging from 1.3 × 10−6 V/m to 0 V/m. (c) Field intensity at the
hole center as a function of incident optical wavelength. See color plates section.

To summarize, we aim at coupling to a surface mode which forms a standing
wave. By tilting and rotating the sample, one taps into two resonant conditions:
one for the incident wavelength and one for the scattered wavelength. One aims
at a condition that includes both resonances (with different hole-planes involved)
having the same tilt angle. Alternatively, we may design a substrate such that both
the incident frequency ω+ and the scattered frequency ω− are coupled through
the same periodic structure. The confocal arrangement dictates that the angle of
incidence for one frequency coincides (as much as possible) with the angle of
scattering for the other frequency.

11.4.2 Electric field distribution

We have used a commercial code (MicroStripes) to calculate the field distribution
at the surface of the perforated substrates. The computational hexagonal structure
is shown in Fig. 11.18(a). A perforated oxide is lying on top of aluminum. The
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(a) (b)

Figure 11.19. (a) Platform set up. (b) Experimental configuration.

oxide layer is coated with graphene, which for calculation purposes is treated as a
lossy dielectric (a dielectric with some conduction). The incident TEM mode is at
resonance with the structure.

From Fig. 11.18(b) we observe that the electric field is concentrated at the holes,
just above the hole/air interface. This is similar to what was shown in Fig. 11.5
although with two distinctions: (1) the refractive index of the oxide was taken as
3.3 to examine its effect on the electric field distribution and (2) graphene (the gray
layer in Fig. 11.18(a)) was added on top of the interfacial layer. A larger refractive
index further concentrates the field into the hole. Figure 11.18(c) implies that the
maximum field intensity is obtained for a wavelength of 370 nm, approximately
four times the structure pitch. While the wavelength is somewhat affected by the
presence of the oxide layer, the majority of the wave tail propagates in the cladding
(air) above the oxide layer. This translates to q1 = q2 = 1/4 for neff = 1.02. This
also means that the optimal “hot spot” conditions are achieved for this 90 nm pitched
AAO substrate and may be useful for Raman spectroscopy with UV radiation.

11.4.3 Examples (enhanced fluorescence and SP lasers)

One could contemplate that fluorescence would also be enhanced (and the cor-
responding time constant shortened) in periodic or simply resonating structures
[62–64] (with the caveat of how such amplification is calculated). Our own con-
tribution is detailed below. The experimental system is shown in Fig. 11.19. This
is a confocal arrangement similar to the one used in the Raman experiments. The
sample was tilted and azimuthally rotated (in-plane rotations) with respect to the
linearly polarized incident beam until optimal conditions for launching the SP
waves were reached. Experimentally, we found that the best tilt angle for a sub-
strate with a 90 nm pitch for fluorescence purposes was θ ∼ 8◦, fairly close to
the θ = 9◦ predicted by Eq. (11.18). This also corroborated previous results with
Raman spectroscopy.
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(a) (b)

Figure 11.20. (a) The 560 nm fluorescence peak of fluorescein imbedded AAO
(no graphene) as a function of tilt angle. The substrate pitch was 90 nm. The 560
nm peak is enhanced at θ = 8◦ (resonance for the pump wavelength at 514.5 nm)
and 12◦ (resonance for the scattered wavelength at 560 nm) [66]. (b) Quantum
dots on graphenated AAO. The substrate pitch was 120 nm. The 630 nm signal
is maximized at a tilt angle of θ = 2◦, in agreement with the prediction of θ ∼
0◦ − 2◦; the related scattering sub-planes involved are (q1, q2) = (−1/8, 1/8) and
(1/6, 0) for the pump and scattered waves, respectively.2

Examples with dye material and quantum dots as gain media are shown in
Fig. 11.20 for varying platform pitch. The dye on AAO (without graphene) portrays
two fluorescence peaks, θ = 8◦ (corresponding to the pump wavelength of 514.5 nm
in p polarization mode) and 12◦ (corresponding to the scattered wavelength at
560 nm). The 630 nm signal from quantum dots on graphenated AAO with a 120 nm
pitch peaks at θ = 2◦. In general, comparing intensity values (fluorescence, Raman,
etc.) from various substrates suffers from uncertainty in the radiation coupling to
and from the samples. By tilting the sample, we achieve more direct data at on-
and off-resonance conditions, thus minimizing such uncertainty.

The fluorescence of a dye (fluorescein) as a function of wavelength is shown in
Fig. 11.21 for samples pumped with an Ar ion laser at 514.5 nm. Upon increase of
the intensity, either graphene bound or unbound samples exhibited a fluorescence
peak shift from 560 nm towards 550 nm. This is due to the diminishing effect
of longer fluorescing wavelengths by the confining periodic matrix. A careful
examination of the fluorescence peaks as functions of the pump intensity reveals a
3 nm spectral line width, narrowing for graphene bound samples, compared with
a 3 nm spectral line width, broadening for the unbound waveguide samples. The
intensity curves exhibited some undulations, which are due to the relatively long
lived excited mode of the fluorescein dye (up to ∼20 s).

While encouraged by these results obtained with a continuous wave source,
it seems that a pulsed optical source will be better suited for the task. Several

2 Internal memo from S. Trivedi and H. Grebel.
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(a) (b)

(c) (d)

Figure 11.21. Dye (fluorescein) on AAO substrate, pumped with Ar laser: (a), (b)
AAO with graphene and (c), (d) without it. (b) and (d) Fluorescence as a function
of input intensity. The spectral line width narrowed by 3 nm for the graphene
bound SP; the spectral line width broadened by 3 nm for the unbounded SP mode
as the intensity of the pump laser increased.

mechanisms interfere with the gain process: long lived excitation modes, bleaching,
and, for a gain medium composed of quantum dots, an Auger process as well
(nonlinear induced transitions that are related to the free carriers in the dots).
While we have demonstrated a dye SP laser [56], better results have been achieved
with quantum dots as a gain medium [65]. The dots were dropped on graphenated
AAO substrates, as shown in Fig. 11.22. The experimental set up is similar to the
one shown in Fig. 11.18(b).

While excited by these results, one has to be careful not to confuse the threshold
and line narrowing with ultimate lasing. Amplified stimulated emission exhibits
line narrowing as well [50]. This is more severe for large volume, or long length,
gain media such as suspended colloids coated with dye material, or fiber amplifiers
doped with erbium ions. As the volume of the gain medium increases, each segment
of the volume (length) acts as a source of radiation for the next one, and, while
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(a)

(b) (c)

Figure 11.22. (a) Quantum dots on graphenated AAO substrates. (b) Photolumi-
nescence (PL) as a function of wavelength at pump intensity of 10 mW, 10 ns
pulse Nd:YAG laser. The curve is perfectly gaussian with a line width of 2.7 nm,
compared to a 12 nm line width at much lower power. (c) The 630 nm PL peak as
a function of pump intensity at the optimal tilt angle of θ = 16◦. The curve is a fit
to the data.

the process is not coherent (as in a laser), nevertheless larger amplification may
occur. We calculated the possibility of amplified spontaneous emission (ASE) in
our system and ruled it out: our lasers are simply too small to account for such a
process.

11.5 Concluding remarks

We have described surface polariton modes on various substrates and their possible
usefulness in detecting molecules as well as sources for coherent radiation (lasers).
In the course of their description, we had to re-affirm assumptions typically made
in connection with wave propagation. For example, isotropic materials are such
that the material features are considered much smaller than the propagating optical
wavelength within the material, λn = λ/n � ζ , where ζ is some characteristic
length. One would also assume that the wave propagating in a medium is far
from any molecular resonance. For good metals, such as silver, the permittivity
constant is a large negative number, ε � 0, because of the fast collective response
of the electronic cloud. The same electronic cloud is responsible for the masking of
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magnetic effects (diamagnetic properties). Therefore, one would imagine placing
very small resonators within an otherwise isotropic material (e.g. artificial dielectric
with small spheres or rods). In principle, resonances may be tailored such that
the effective permittivity and permeability constants become negative, ε , μ < 0.
Despite the fact that periodic structures typically resonate at dimensions comparable
to λn/n, those structures with a large extinction ratio (e.g. photonic crystals) may
exhibit nontraditional refraction at a much smaller scale. As we have shown,
coherent scattering from sub-wavelength periodic structures may be maintained
even if the periodicity is 1/5 or even 1/7 of the propagating wavelength. In fact,
the optimal scattering for such patterns is a pitch-to-wavelength ratio of 1 : 4. These
spatial–temporal dispersive structures may not be considered as homogeneous in
the first place.

The quadratic wave equation may not distinguish between propagation in homo-
geneous negative and positive refractive media. It is when we analyze the energy
flux and the energy density (which is also the change in the overall free-energy of
the system) that we realize that homogenous negative refractive index media are
thermodynamically unstable. One may argue, however, that, by turning to surface
modes, a stable propagation system may be maintained.

Finally, while the future of negative index materials is unknown, one thing is for
sure: such materials have triggered a re-examination of wave propagation concepts
that we have taken for granted.
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amplifying media, 303, 323
Anderson localization, 292, 293, 295
anisotropic particles, 60
anisotropy, 94, 98, 154, 246, 337
annular pupil function , 215

anomalies, 2, 43, 52
diffractive, 30, 41, 43
edge, 1
Fano-type, 19
grating, 1, 6
Rayleigh, 30, 41, 43, 52, 54
resonance, 1, 20
resonant, 2

anomalous conductance, 287
antenna technology, 94
antennas, 400, 408

dipole, 163, 388, 408
line, 23
patched, 408
phased-array, 388

anti-reflection layer, 319
anti-Stokes field, 410
anti-Stokes processes, 417
arrays, 63, 64, 68, 73, 77, 80, 83, 84, 87

anisotropic, 80
of apertures, 243
of circular rods, 175
close packed, 28
of dimples, 242, 243
of grooves, 240, 241, 241, 243, 251, 257, 260
of holes, 5, 9, 10, 11, 14, 20, 233, 234, 245, 246,

247, 388, 389, 398, 399, 400, 413, 414, 415
periodic, 19

of indentations, 234, 264
of interacting nanoparticles, 61
lossless, 67
of lossy nanoparticles, 89
of metallic nanoparticles, 48
of metallic parallelepipeds, 262
of microlens, 186
of nano-holes, 408, 411, 417
of nanodiscs, 87
of nanoparticles, 59, 61, 62, 71, 75, 77, 87, 91
of nanospheres, 75
periodic, 66, 71, 76, 78, 79, 81, 84
planar, 69, 77

427
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arrays (cont.)
of plasmonic nanoparticles, 58, 59
polarization of, 70
of rectangular holes, 246
of rings, 247, 248, 250, 251, 253, 256, 264
of slits, 243, 244, 264
of split ring resonators, 247
of square apertures, 242
of square dimples, 240
of stripes, 360
of subwavelength apertures, 21, 24
of subwavelength holes, 1, 21, 23

artificial composite structures, 322
artificial dielectrics, 386, 423
artificial materials, 158
artificial opal, 28
artificial structuring, 94
aspherical lens, 186, 372, 373
attenuation, 323, 397
attenuation coefficient, 323, 397
attenuation constant, 323
attenuation length, 304, 305, 306
attenuator, 135
azimuth, 98, 106, 107, 108, 119, 120, 124, 125, 126,

132, 133, 137, 141, 144, 149, 150, 151, 152,
154

azimuth rotation, 108, 109, 119, 141, 142, 143, 144

Babinet theorem, 408
Babinet’s principle, 101
backscattering length, 293, 295, 304, 305, 307
backward operation, 284
backward wave system, 325, 326, 357
backward waves, 282
ballistic transport, 294, 295, 297, 301, 305, 307
band pass filters, 400
band-edge coupling, 416
beam shaping, 185, 187, 188, 197
beam splitter, 135, 136, 149, 151, 152, 411
Beer–Lambert’s law, 405
Bessel function, 32, 63, 186, 198, 215, 248,

250
binary correlator, 290, 297, 300, 301, 302, 303, 305,

306
binary diffractive optical element, 186
binary phase distributions, 187
binary-staircase lens, 165
bio-chemical characterizations, 400
biosensing, 21
biosensors, 2
birefringence, 339
birefringent media, 108, 325, 344
black paint, 320
black surface, 318
blackness, 318, 319, 320
Bloch modes, 23, 280
Bloch wave expansion method, 163
Bloch waves, 171, 173, 174

Bloch’s theorem, 235
boundary conditions, 8, 12, 35, 46, 47, 169, 234, 336,

338, 348, 388, 392, 393
Bragg collective resonances, 58
Bragg condition, 402
Bragg diffraction, 179, 413, 414
Bragg grating, 406
Bragg reflector, 48, 406
Bragg scattering, 413, 415
Bragg waves, 160
branch point singularities, 2
Breit–Wigner multichannel scattering theory, 49
Brewster effect, 3
Brewster’s angle, 4, 339
Brillouin zone, 31, 36, 39, 42, 171, 174, 177, 233,

262, 279, 415, 416
broadband Gaussian beam, 208
broadband illumination, 187, 223
broadband super-resolving lens, 283
bulk electron relaxation rate, 31
bulk plasma frequency, 31, 270
bulk random potential, 289, 297
bulk scattering, 289, 292

camouflage, 318, 321
capacitance, 45, 46, 327, 386
cats-eye retroreflector, 352
cavity, 167, 168, 388, 410, 413
cavity resonance, 240, 244
CdS, 29
CdSe, 29
channel plasmon polaritons, 257
characteristic equation, 393, 396, 397
chiral optical activity, 152
chiral structures, 387
chirality, 94, 101, 107, 111, 112, 116, 148, 153
circular birefringence, 95, 107, 109, 132, 153
circular conversion dichroism, 112, 113
circular dichroism, 95, 96, 107, 109, 114, 115, 132,

134, 136, 142, 143, 147, 150, 153, 154
circular polarizer, 94, 95, 111, 133, 135, 146
cloak, 318

all-dielectric, 380
arbitrarily shaped polygonal 2-D, 337
carpet, 366
conical, 337
cylindrical, 336
elliptical cylindrical, 337
microwave, 356
nonmagnetic, 345
nonmagnetic metamaterial, 346
plasmonic, 364
ray optics, 365
ray optics of, 328
retroreflective, 321
spherical, 333
square, 337
visible light, 359
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cloaking, 158, 316, 318
transformational, 322
by scattering cancellation, 317

coaxial plasmonic structures, 284
coexistence of ballistic, diffusive, and localized

transport, 305
colloidal particles, 28, 29
computer aided design (CAD), 399
conducting channels, 291
conductivity, 7, 8, 9, 10, 14, 31, 44, 247
conformal mapping, 348
conical grooved wires, 264
constant frequency contours, 279
constitutive relations, 387, 391, 403, 404, 405, 409
convolution method, 296, 298, 299, 303
copper, 29, 390, 396
correlated disorder, 287, 288, 289, 298, 309
correlation length, 290, 296, 297, 298
corrugated channels, 251, 257, 264
corrugated PEC wires, 247
corrugated wedges, 251, 259, 264
couple mode method, 234, 247
coupling, 2, 5, 20, 36, 37, 38, 40, 46, 48, 52, 60, 61,

62, 63, 66, 68, 76, 77, 87, 91, 98n3, 168, 237,
238, 241, 243, 244, 245, 246, 271, 273, 400,
402, 406, 407, 413, 415, 416, 417, 420

coupling element, 30, 37
critical angle, 159, 160
cross-spectral density, 190, 196, 197, 199
crossover from ballistic to localized transport, 306
crossover from localized to ballistic transport, 298
cut-off, 1, 8, 9, 15, 16, 25, 63, 66, 71, 258, 375
cut-off distance, 35
cut-off frequency, 83, 257, 260, 326
cut-off radius, 375
cut-off wavelength, 8, 14, 83
cut-off width, 9, 14
cylindrical spoof SPPs, 247

defocus, 215
delta-correlated noise, 297, 301
delta-correlated potential, 287, 302
delta-correlated random process, 297, 305
delta-like correlator, 299
diagrammatic Green’s function method, 304
diamagnetic properties, 423
diamond turning techniques, 219
dielectric constant, 179, 270, 271, 273, 277, 279, 280,

282, 284, 322, 323, 324, 326, 329, 330, 331,
332, 336, 338, 340, 343, 344, 345, 346, 348,
362, 371, 388, 390, 393, 397, 398, 399

dielectric filling of voids, 52
dielectric function, 31, 32, 34, 270
dielectric loss, 330
diffraction losses, 115
diffraction orders, 1, 5, 14, 250, 387
diffraction-free beam, 186
diffraction-limited image, 282

diffractive optical elements, 187
diffusive transport, 288, 305
dipolar approximation, 65
dipole moment, 61

dispersion of, 78
induced, 60, 68, 76, 80, 81
normalized, 76

Dirac delta function, 213
directional couplers, 264
Dirichlet boundary conditions, 291
dispersion, 387
dispersion equation, 344
dispersion relation, 240, 243, 245, 246, 250, 251, 256,

257, 260, 271, 272, 274, 279, 355
of DP, 262
of guided modes, 250, 252
of guided waves, 234
for MDM structure, 272, 274
of spoof SPP, 238, 239, 240, 241, 242, 243, 244,

245, 246, 264
of spoof WPP, 260
of surface plasmon polaritons, 246, 271
of surface plasmons, 31, 32

distributed Bragg reflector, 412
distributed feedback lasers, 412
distributed phase plate, 186
domino plasmons, 262
domino structures, 251, 262, 264
Doppler shift, negative, 269
Drude model, 31, 32, 44, 270, 323
dyadic Green’s function, 61

Eaton lens, 352, 354
effective areal electronic resistance, 44
effective index, 264, 269, 416
effective permeability, 386
effective permittivity, 386
effective plasma frequency, 246
effective thickness, 319
efficiency of power transmission, 163
eigenstates, 108, 120, 123, 132, 136, 138, 146,

154
backward-propagation, 124, 125, 126
forward-propagation, 124, 125, 126

of the reflection matrix, 120
of the scattering matrix, 121

eigenvalues
of the scattering matrix, 121
of the transmission matrix, 122

eikonal, 343
electric permittivity, 316
electrochemical deposition, 29
electrodeposition, 29
electromagnetic cloaking, 368
electromagnetically induced transparency, 94
electron beam lithography, 58, 166
electronic superlattices, 288
electrophoresis, 28
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elliptical plano-concave grating lens, 165
ellipticity angle, 106
emission, 48, 406

amplified spontaneous, 422
amplified stimulated, 421
omnidirectional black-body, 54
resonant thermal, 48

energy conservation, 95, 127, 128, 129, 130, 137, 139,
140, 141, 150, 151

energy density, 169, 403, 423
energy flux, 49, 395, 400, 402, 403, 404, 423
energy flux vortex, 403
energy velocity, 406
enhanced backscattering effect, 297
enhanced fluorescence, 419
enhancement of the Raman signal, 411
ensemble averaging, 204, 222, 223, 290
equi-frequency surface, 170
equivalent oscillating-current resonant circuit model,

54
ergodicity, 290
Euler–Mascheroni gamma constant, 63
evanescent modes, 8, 9, 10, 11, 13, 14, 16, 17, 19, 63,

291
evanescent wave amplification, 270, 278, 282
evaporation, 28
extended states, 288
exterior cloaking, 366
extraordinary ray, 339, 356
extrinsic chirality, 111
extrinsic 3D chirality, 153

Fabry–Perot condition, 241
Fabry–Perot etalons, 400, 412
Fabry–Perot resonance, 16
Fabry–Perot resonator, 8
FDTD method, 165, 168, 251, 255,

275
feedback, 413
Fermat’s principle, 339, 350
fiber bundle, 317
field enhancement, 15
finite-integration technique, 252
flat lens, 176

metal, 269
flat lens imaging, 179
flat-top beam, 185
Floquet modes, 63, 64, 66, 67, 73, 74, 76, 77, 82, 84,

90
Floquet theorem, 160, 399
Floquet wave, 66, 67, 75, 83
Floquet wave expansion, 62, 71
fluorescein, 420
fluorescence, 15, 22, 419
fluorescence peak shift, 420
fluorescence wavelength, 411
fluorescing wavelengths, 414
focal grating lens, 169

focal length, 164
focal point, 171
focus, 164
formal scattering theory, 48
forward scattering length, 304
Fourier transform spectrometer, 400
Fredholm integral equation, 224
frequency gap, 273, 401, 416
frequency selective surfaces, 94, 233
Fresnel lens, 220
fused deposition modeling, 200

gain, 407
gain coefficient, 323
gain medium, 421
GaP, 277
Gaussian correlations, 297, 298, 299, 301
generalized coordinates, 343
generalized transmittance lines, 325
geometrical optics, 192, 211, 328, 354
glide mirror symmetry, 97, 101, 102, 104, 107, 110,

111, 115, 118, 126, 150
gold, 29, 38, 390, 396
Goos–Hänchen shift, 394
graphene, 416, 417
grating lens, 159
grating spectrometer, 400
gratings, 2, 387

classical, 2
crossed, 2
diffraction, 41
doubly periodic, 48
metallic, 2, 10, 30
two-dimensional, 38

Green’s function, 61
grism, 159, 160, 161, 163, 179
group velocity, 158, 273, 274, 280, 325, 326, 355,

360, 377, 405, 406

Hamilton’s equations, 344
Hamiltonian, 356

effective, 374
2D cloaking Hamiltonian (dispersion law),

371
Hamiltonian formalism, 48
Hamiltonian map, 301
Hamiltonian map approach, 301
Hamiltonian optics, 340
Hankel function, 32
harmonic oscillator potential, 354
Heaviside unit step function, 198, 300
helically grooved wires, 253, 264
Helmholtz equation, 349
Hertzian dipole, 388
highly absorbing surfaces, 320
holograms, 186
holographic transmission grating, 160
hot spots, 407, 419
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ideal mirror, 135
impedance, 77, 88, 89, 319, 325

averaged surface, 89
effective, 319, 345
effective surface, 44, 78, 85
equivalent shunt, 77
reactive, 77
shunt surface, 88
surface, 77, 80, 86, 89

impedance boundary conditions, 234
impedance matching, 45, 319, 335, 357
indefinite medium, 158
inductance, 327, 386

areal kinetic, 45
kinetic, 45

inductor, 325
infrared spectroscopy, 389
integrated optical circuits, 180
intensity transmission efficiency, 161
interference, 21, 22, 165, 222, 294, 387, 390,

411
interference lithography, 58
interference pattern, 21
internal energy, 403
intrinsic chirality, 111
invariant imbedding method, 292, 304
inverse localization length, 298, 300, 301, 303
ion-beam etching, 6
ion-beam writing, 6
isofrequency surface, 328, 335
isotropic particles, 60

Jacobian, 330
Jacobian transformation matrix, 331
joint pdf, 194, 195
joint probability density function, see joint pdf
Jones matrix, 96

Kepler potential, 354
Kirchhoff’s law, 48, 54
Klein invariant, 354
Kramers–Kronig relations, 412
Kretschmann configuration, 4
Kronig–Penney model, 287

Landauer’s formula, 307
laser beam, 59, 160, 161, 411
laser machining, 186
laser microstructuring of materials, 185
laser radar, 185
laser surgery, 185, 186
laser-beam etching, 6
laser-beam writing, 6
lateral shift, 174
lattice of voids, 30
lattice resonance, 80
layer-KKR approach, 51
leaky surface waves, 2

light line, 233, 271
line narrowing, 421
linear birefringence, 95, 96, 108, 118, 119, 132, 154
linear dichroism, 95, 108, 118, 132, 154
linear polarizer, 135
Lippmann–Schwinger equation, 49
lithography, 95
loaded guides, 416
loaded microwave guide, 399
local electric field, 60
localization, 287, 288, 293, 298, 301, 306

of plasmon polaritons, 303
localization length, 287, 289, 293, 294, 295, 297, 298,

299, 300, 302, 307
localized states, 288
localized transport, 294, 297, 299, 303, 305
long range correlations, 287
Lorentz reciprocity lemma, 100
Lorentz–Drude model, 277
loss, 387
loss tangent, 323
lossless plasmonic model, 279
low-dimensional disordered systems, 287
luminescence wavelengths, 416
Luneburg lens, 337, 352
Lyapunov exponent, 293, 302

macroscopic cloak, 318
magnetic conductivity, 330
magnetic permeability, 270, 316
many-mode waveguides, 288
mapping, 329

conformal mapping, 329, 348
mask, 220
materials interpretation, 332, 354
Maupertuis’s principle of least action, 341
Maxwell fish eye lens, 354
Maxwell’s equations, 33, 47, 48, 234, 322, 329, 330,

348, 391
Maxwell–Garnett dielectric function, 51
MDM, see metal–dielectric – metal structure
membrane analysis, 21
mesoscopic fluctuations, 294
metal hardening, 185
metal–dielectric–metal structure (MDM), 272

hetero-MDM, 274
homo-MDM, 274

metallic inverse opal structures, 28
metallo-dielectric screens, 388
metamaterials, 94, 234, 269, 322, 395

achiral, 101, 102, 103, 110, 112, 115, 148, 149,
150, 151

achiral anisotropic, 118
achiral planar, 101, 104, 115
anisotropic, 155, 323
anisotropic planar, 118, 150
artificial photonic, 158
bi-layered, 288
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metamaterials (cont.)
chiral, 94, 101, 112, 115, 126
complementary, 101
double-negative, 324
“fishnet”, 327
inhomogeneous, 323
isotropic, 118, 148
isotropic planar, 151
lossless, 101
lossless planar, 110, 128, 129, 131, 132, 133, 135,

136, 137, 140, 146, 147, 148, 152
lossy planar, 115, 129, 136, 154
metallic, 269
negative index, 234
planar, 94, 95, 96, 98, 99, 100, 101, 107, 108, 109,

112, 114, 122, 123, 124, 126, 135, 139, 145,
146, 147

plasmonic, 360, 362
2D-achiral, 101
2D-chiral, 112

metasurface, 84
metric, 334
metric tensor, 331
microlens arrays, 186
microscopic cloak, 318
microwave waveguides, 251
Mie scattering, 408
Mie scattering coefficient, 76
Mie scattering theory, 32
milled wires, 251
Minkowski momentum, 343
mixed plasmon modes, 38
mobility edge, 287
modal expansion technique, 234
modes

Fröhlich, 32
vertical evanescent, 16
waveguide, 11, 19

modified Bessel function, 63, 248
modulation function, 296
monochromatic beam, 204
monochromatic Gaussian beam, 208
monochromatic illumination, 223
monochromatic light, 222
multi-mode waveguide, 304
multilayered systems, 288
multiple-scattering layer-KKR approach, 33

nanoimprint, 95
nanopores, 407
nanoporous metal structures, 29
nanoporous metal surfaces, 28, 43

absorption spectra, 43
optical spectra, 36
reflection spectra, 43

nanostructured metal surfaces
total absorption, 43

near-field phenomena, 386

near-lossless plasmonic model, 275
negative permeability, 158
negative permittivity, 158
negative photonic mass, 278
negative refraction, 158, 269, 360

all-angle, 159, 269
negative refraction lens, 273
negative refractive index, 158
negative refractive index materials, 403
Neumann function, 248
Newton’s second law of motion, 341
Newton’s rings, 372
nickel, 29
Nijboer expansion, 215
non-Euclidean transformation, 354
non-Gaussian intensity distribution, 185
nondiffracting beam, 186
nonreflecting surfaces, 320

ohmic conductivity, 330
ohmic losses, 44, 65
omnidirectional mirror, 170, 174
one-dimensional Anderson model, 287
one-parameter scaling, 293
optical interconnection, 186
optical activity, 96, 107, 110, 123, 138, 153
optical communication, 185
optical conductivity, 408
optical data storage, 158
optical fibers, 288
optical filters, 388
optical metamaterial, 58
optical nanotransmission lines, 59, 284
optical scanning, 185
ordinary ray, 339
orthogonal curvilinear coordinates, 329
Otto configuration, 4

p polarization, 391
pair correlator, 290
palladium, 29
parabolic approximation, 190, 206
parallel-plate waveguide, 171
paraxial approximation, 187
partially coherent broadband beams, 187
passive materials, 322
perfect conductivity, 233
perfect electric conductor, 77, 233
perfect lens, 158, 176
perfect transparency, 303
perfectly conducting metal, 4
perfectly conducting surface, 232
perfectly matched layer, 169, 275, 336
periodic slits in a metallic screen, 7
periodic structures, 387
periodically corrugated surfaces, 158
perturbative diagrammatic technique, 292
phase delay, 118, 135, 138, 139, 140, 141, 155, 394
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scattering, 141
transmission, 141

phase matching, 61
phase screen, 222
phase velocity, 158, 324, 325, 360
phase-assisted second-harmonic generation, 17
phonon modes, 417
photolithography, 6
photoluminescence signals, 413
photonic crystals, 33, 58, 158, 170, 269, 278, 280,

282, 288
metallic, 28
metallo-dielectric, 270, 278
three-dimensional, 28, 278
two-dimensional, 278

photonics, 6
photoresist, 200
plane of diffraction, 42
plane of incidence, 42, 97
plane wave, 59
plano-concave grating lens, 163
plano-concave lens, 163

focusing, 179
plasma frequency, 232, 233, 246, 247, 262, 275, 323,

325, 346, 393
plasmonic metal, 397
plasmonic model, 270

lossless, 270
plasmonic resonance, 84
plasmonics, 6, 112, 322
plasmons, 322
platinum, 29
polarizability tensor, 60
polarization conversion, 50
polarization rotator, 94, 135
polarization state, 106
polarization-holographic optical element, 186
polarizer

linear, 136
reflection linear, 136
transmission linear, 136
wire grid, 137

pole singularities, 2, 17, 49
polychromatic, broadband beam, 204
polymer-based nanofabrication, 58
polymethylmethacrylate (PMMA), 167, 360
positive index materials, 158
power balance, 67, 72, 76

generalized, 67
power dividers, 264
power fraction

scattered, 136
transmitted, 136

power spectrum, 295, 296, 297, 299, 300, 302, 303,
307

rectangular, 297, 306, 309
power transmission, 178
Poynting vector, 25, 271, 272, 365, 395, 403

primitive translation vectors of the reciprocal lattice,
30 414

primitive vectors, 30
prism, 161
prism coupler, 4
prism coupling, 246
propagating modes, 291
propagation constant, 4, 8, 11, 14, 15, 16, 17, 21, 22,

23, 24, 25, 284, 387, 390, 393, 396, 397, 399,
402, 403, 416

free space, 324
generalized, 324, 325, 326
normalized, 4, 14

pseudo-nondiffracting beam, 185, 186, 209, 224

Q factor, 77, 83, 406
quasi-one-dimensional systems, 289

radiated power, 72
radiation loss, 65
radiative boundary conditions, 291
radiative damping, 47
radiative excitations, 37
radio waveguides, 288
Raman amplification, 409
Raman signals, 413
Raman spectroscopy, 389, 406, 409, 419
Raman susceptibility, 410
random deviates, 194, 212
random phase screen, 197, 198, 199, 204, 209, 216,

217, 222, 223, 224
circularly symmetric, 209

random surface profile, 290, 306
random surfaces, 187
randomness power spectrum, 295
ray optics, 179, 389

of cloaks, 328
ray-optics approximation, 371
razor blade light absorber, 320
re-projection, 321
reactance, 45

capacitive, 45
inductive, 45
shunt surface, 75
surface, 75, 79, 86

reactive ion etching, 166
reciprocal lattice, 401
reciprocal lattice vector, 401, 413, 416
reciprocal void-lattice vectors, 31
reciprocity theorem, 25
reflection, 84

anomalous, 59
asymmetric, 112
directionally asymmetric, 153
selective reflection, 288
spectra of nanoporous metal surfaces, 36
total, 77
total internal, 390
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reflection coefficient, 3, 13, 16, 69, 76, 79, 80, 86, 88,
319

dispersion of, 79
Fresnel, 3, 20
from a periodic array, 76
pole of, 13
specular, 50

reflection matrix, 96
reflection spectra, 30, 37, 39
reflectors, 400
refractive index, 2, 4, 11, 13, 158, 165, 176, 188, 277,

323, 390, 393, 395, 398, 405, 410
average group, 362
bulk, 159, 166
effective, 160, 166, 339, 410
effective negative, 165, 273, 278
equivalent, 350
extraordinary, 323
graded, 328
group, 326
local, 2
negative, 158, 164, 269, 324, 386, 423
ordinary, 323
phase, 326

refractive optical element, 186
rejection method, 197, 214
relative permeability tensor, 322
relative permittivity tensor, 322
remote sensing, 288
resonance, 14, 80, 388

red shift, 52
small-radius, 80

resonance frequency, 76
resonant scattering, 49
resonating structures, 408
retarded Green function, 49
Riemann zeta function, 63
Riemannian surface, 352
RLC circuit model, 44
root-mean-square height, 290
rotator, 111, 145

lossless, 144, 145
polarization, 141, 155

rough profile, 289
roughness power spectrum, 290, 305, 306, 309

s polarization, 391
scalar diffraction theory, 187, 223
scattering cancellation, 364
scattering eigenstates, 121, 122, 124
scattering matrices, 32, 96

of lossless rotators, 144
of spherical voids, 35

scattering potential, 295
Schell-model source, 190
sedimentation, 28
selective negative diffraction, 169
selective photocuring, 200

selective reflectivity, 296
selective sintering, 200
selective transparency, 296, 299
selective transport, 288
self-assembly, 28, 58

of colloidal spheres, 28
self-averaging quantity, 293
self-focusing, 387
self-imaging, 361, 387, 414
SERS, see surface enhanced Raman spectroscopy
shallow water waves, 288
Si3N4, 282
silver, 29, 86, 390, 396
single-mode waveguides, 288, 292, 294, 295, 298,

304, 306
single-molecule analysis, 21
single-parameter scaling, 289
skin depth, 36, 38
slab guide, 389
slab lens, 282

resolution of, 282
slit grating, 7
slow light, 158
slow light phenomenon, 376
Smith chart, 349
Snell’s law, 160, 324, 339, 356, 390, 395
Sommerfeld surface wave, 254
sound cancellation, 366
SP lasers, 389
spatial–temporal dispersion, 406
speckle pattern, 204, 208
spectral degree of coherence, 190, 195, 196, 198, 224
spectral density, 191, 196, 205, 223
spectroscopy on a chip, 378
spherical Bessel function, 32
spherical Hankel function, 32, 34
spherical harmonics, 33, 34
spintronic medium, 397
split-ring resonators, 357
spoof CPPs, 257
spoof SPPs, 233, 264
spoof WPPs, 260
square-gradient scattering, 289
standing surface plasmon wave, 402
standing surface waves, 406
standing wave, 414

conditions, 416
surface modes, 400

stealth technology, 318
step-down form, 300
step-up function, 301
stereolithography, 201
stereomaterial, 94
StL scripting language, 202
Stokes field, 410
Stokes line, 416
Stokes processes, 417
Stokes shift, 416
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Stokes wavelengths, 416
strong localization, 288, 293, 299, 300, 303
structured surfaces, 185

deterministic, 185
random, 185

subtractive computer numerical control technique,
220

subtractive fabricators, 201
subtractive technique, 200
subwavelength image formation, 269
subwavelength imaging, 158
super-lensing effect, 278
superluminescent diodes, 205
surface corrugation, 159
surface enhanced Raman scattering, 2
surface enhanced Raman spectroscopy (SERS), 406
surface guide, 389
surface impedance, 78

dispersion of, 78
surface lasers, 409
surface phonon polaritons, 4
surface plasmon frequency, 271
surface plasmon lasers, 406, 412
surface plasmon polaritons (SPPs), 4, 233, 271, 322,

359, 364, 375, 386, 416
surface plasmons, 2, 4, 10, 21, 24, 30, 31, 32, 37, 38,

39, 40, 43, 50, 52, 53, 54, 413
delocalized, 36, 52
dispersion of, 52
dispersive, 50
localized, 14
resonances, 37, 39, 48
uncoupled, 39

surface profile function, 188, 193
surface resistance, 86
surface resonance, 68
surface scattering, 288, 292
surface scattering potential, 301
surface-disordered systems, 288

tapered waveguide, 368, 377
tapers, 264
TE mode, 391
TE, transverse electric, polarization, 3
terahertz waveguides, 251
thin random phase screen, 187, 188
three-dimensional (3D) printers, 200
time-domain THz spectroscopy, 254
TM mode, 391
TM, transverse magnetic, polarization, 2
topological interpretation, 332
total internal reflection, 394
total transparency edge, 310
transfer matrix formalism, 279, 280
transformational optics, 316, 322
transmission, 19, 84, 94

anomalous, 59
anomalously high, 5

asymmetric, 112
circular dichroism, 109
directionally asymmetric, 94, 95, 153
enhanced, 2, 11, 19, 84
extraordinary, 5, 10, 234, 400

of light through multiple slits, 388
selective, 288

transmission amplitude, 189
transmission coefficient, 3, 69, 77, 86, 280, 319

Fresnel, 20
pole of, 13

transmission eigenstates, 122, 124
transmission matrix, 96
transmittance, 284, 293, 294, 306, 307

average, 293, 294, 295, 300, 303
average partial, 306
partial average, 304, 307
self-averaging logarithm of, 294
stepwise, 309
stepwise nonmonotonic, 310
total, 304, 309, 310
total average, 304, 308, 309

transparency edge, 297
transverse electricpolarization, see TE polarization
transverse magnetic polarization, see TM polarization
trapped rainbow, 376

broadband trapped rainbow effect, 376
triangular facets, 193, 201, 202t, 204, 224
tunneling, 4
two-dimensional reciprocal lattice, 235
two-scale approach, 292
twofold rotational symmetry, 104, 151

unpolarized light, 2

vector spherical harmonic, 34
void plasmon resonances, 30, 37, 54

blue shift of, 42
void plasmons, 30

wallpaper symmetry group, 101, 102, 104, 107, 110,
112, 115, 118, 149, 151, 153

wave, 64
evanescent, 281
reflected, 64
scattered, 64
transmitted, 64

wave plate, 94, 135, 138
lossless, 140
scattering, 138
transmission, 138

waveguide modes, 271
waves

circularly polarized, 94, 98, 99, 114
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Figure 5.2. (a) Experimentally measured transmission efficiency of the beam neg-
atively refracted through a BK7 grism with 2400 lines/mm grating. The electric
vector is parallel to the groove for a 0◦ orientation (P polarization) and perpen-
dicular for a 90◦ orientation of the polarizer. Calculated transmission efficiency
in S polarization (b) and in P polarization (c) with an angle of incidence π/4 for
λ = 532 nm through a lamellar grating on BK7 glass. The period of the lamellar
grating has a density of 2400 lines/mm (as = 416.7 nm).
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Figure 5.3. Microwave experiment demonstrating NR using a polystyrene grism
with a surface grating period as = 2 cm and angle of incidence θ = π/3 at 9 GHz.
Plotted is the electric field (real part of the measured transmission coefficient S21).
The solid arrows on the left indicate the direction of the incident microwave beam.
The dashed line is the surface normal, and the dashed arrow indicates the direction
of propagation of the refracted beam.

Figure 5.4. Demonstration of plano-concave grating lens focusing. (a) Composite
figure of the microwave focusing experiment at 8.4 GHz using a plano-concave
grating lens made of alumina with a grating on the curved surface. The electric
field of the incident beam measured without the presence of the grating lens is
plotted on the left. The intensity of the electric field is plotted on the right. In
the middle is a photo of the lens. The grating lens behaves like a smooth plano-
concave lens made of negative index material with neff = −0.57 at 8.4 GHz. (b)
FDTD simulations at a plano-concave lens without aberration made with n = 3,
R = 15 cm, and a = 1 cm at 8.5 GHz. Plotted is the electric field. The size of the
system is measured in centimeters. (c) Details of the plano-concave lens (half of
which is shown). The dashed curve is an ellipse with a semimajor axis of 15 cm
and a semiminor axis of 12.73 cm. The horizontal length of the grooves is 1 cm.



Figure 5.7. (a) Three-dimensional FDTD simulation of the plano-concave binary-
staircase lens. (b) Three-dimensional FDTD simulation of the lens having the same
geometrical dimensions as the binary-staircase one, but bearing no steps (or zones).

Figure 5.9. (a) Experimental demonstration of a negative lateral shift by a 1D
PhC with a surface grating, at 6.96 GHz. A 5.6 cm negative lateral shift was
observed. The 1D PhC is made of six layers of alumina bars with width d =
0.5 cm and spacing a = 0.9 cm. The surface grating was formed by rods of
the same material, alumina, with diameter 0.63 cm and spacing as = 1.8 cm.
The width of the incident beam is 10 cm and the angle of incidence is 13.5◦.
The incident and outgoing beams are plotted as the real parts of the measured
transmission coefficient S21. (b) A positive lateral shift for a microwave beam at
6.96 GHz by a slab of polystyrene with thickness 7.5 cm.



Figure 5.10. FDTD simulation of a negative lateral shift of microwave beams
through a 1D PhC with surface gratings as specified in Fig. 5.8 at 6.96 GHz.
(a) Microwave beam with an angle of incidence 13.5◦. (b) Microwave beam with
an angle of incidence 30◦. The arrows indicate the energy flows of the incident
and refracted beams. Lengths are measured in meters.
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Figure 5.14. Negative lateral shift by a slab of PhC given in Fig. 5.13 for an
incident Gaussian beam with angles of incidence 15◦ (left) and 30◦ (right) at
ω = 0.219(2πc/a). The distance is measured in units of the lattice spacing a.
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Figure 7.2. Dispersion relation of the spoof SPPs supported by periodic groove
arrays. (a) Dependence on h for a fixed groove width a = 0.2d. The inset sketches
the structure considered. (b) Bands for h = 0.6d at different groove widths. The
inset depicts the electric field amplitude for h = 0.6d and a = 0.2d evaluated at
the band edge (k|| = π/d).
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Figure 7.3. Dispersion relation of the spoof SPPs sustained by periodic dimple
arrays. (a) Bands for a = 0.2d and several dimple depths h. The inset shows a
schematic of the system. (b) Bands for h = 0.6d and different a. The inset displays
the electric field amplitude at the band edge for the case h = 0.6d and a = 0.6d.



Figure 7.4. Dispersion relation of the spoof SPPs supported by fully perforated
films. (a) Comparison between 1D slits and grooves of the same size (a = 0.2d
and h = d). Dotted lines show the analytical band obtained from Eqs. (7.21) and
(7.23). The inset depicts the electric field amplitude at the band edge for the slit
array. (b) Comparison between holes and dimples with a = 0.6d and h = 0.3d.
The insets depict the fields at the edges of the two spoof SPP bands for the hole
array.

Figure 7.6. Spoof SPP dispersion relation for wires of radius R = 2d perforated
with rings of width a = 0.2d. Left panel: θ -independent bands for different ring
depths. The inset shows the electric field amplitude (r > R − h) at the edge of the
bands. Right panel: FDTD bands for higher azimuthal orders (m) for h = 0.5d.
The insets plot the electric field patterns at the band edge ordered with increasing
m from the left bottom corner to the right top corner of the figure.
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Figure 7.7. (a) Dispersion relation of the guided modes traveling along a cor-
rugated wire of radius R = 150 μm perforated with an array of rings of period
d = 100 μm. The width and depth of the rings are both 50 μm. (b)–(d) Electric
field amplitude for wires of length 20 × d illuminated from the left by a radially
polarized plane wave. Fields are evaluated at three different frequencies (0.4, 0.6,
and 1.0 THz), indicated by dotted lines in (a).

(a) (b)

Figure 7.8. (a) Frequency versus propagation wave vector, kz, for the guided
modes supported by four corrugated wires of different radii. The inset plots the
radial component of the electric field versus r − R (f = 0.6 THz) for the four
structures. (b) Electric field amplitude at 0.6 and 1.2 THz for a 2 mm corrugated
cone whose radius is reduced from 140 to 40 μm.
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Figure 7.9. (a) Receiver current as a function of time delay for the smooth wire
(red line) and the grooved structure (blue line). (b) Amplitude spectra of the time
domain data in (a) together with the spectrum of another, nominally identical,
helical sample (green curve, displaced for clarity). The arrows indicate the three
azimuthal modes of the helical groove structure. The spectrum of the Sommerfeld
wave (red curve) on the smooth wire extends to ∼1 THz.
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Figure 7.10. Dispersion relation of the guided modes supported by a PEC wire
of radius R = 600 μm inscribed with a triangular-cross-section helical groove of
pitch d = 400 μm. The groove has width a = 200 μm and depth h = 150 μm. The
upper row of insets displays snapshots of the electric field at the three band edges,
0.305 THz (left), 0.320 THz (center), and 0.349 THz (right). The next lowest row
correspond to the first mode at 0.280 THz (left) and the second mode at 0.180
THz (right). The pattern in the bottom row is for the first mode at 0.180 THz.



Figure 7.11. (a) Dispersion relation of the first two spoof CPP modes supported
by a corrugated V-channel milled on a PEC surface. A schematic of the structure
is shown in the upper inset. The lower insets depict the amplitude of the longitu-
dinal component of the electric field evaluated at the band edge for both modes.
(b) Electric field amplitude at the band edge for the lowest mode evaluated at the
shallower (upper panel) and deeper (lower panel) sections of the channel. The
horizontal white bar represents the wavelength of the mode in a vacuum.

Figure 10.19. Finite element simulations of the invisibility cloak described by
Cai et al. Cloak on (a); cloak off (b). The cloak is illuminated from the left with
TM-waves at 632.8 nm. (From ref. [46], courtesy of Professor Vladimir Shalaev.)
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Figure 10.22. Refractive index variation corresponding to the mapping in
Fig. 10.21.

Figure 10.25. Ray paths in an invisibility device. (From refs. [3] and [48], courtesy
of Professor Ulf Leonhardt.)



Figure 10.26. Two-dimensional microwave cloaking structure (background
image) with a plot of the material parameters that are implemented. Note that:
μr (red line) is multiplied by a factor of ten for clarity; μθ (green line) has the con-
stant value 1; εz (blue line) has the constant value 3.423. The SRRs of cylinder 1
(inner) and cylinder 10 (outer) are shown in expanded schematic form (transparent
square insets). (From ref. [58], courtesy of Professor David Smith.)
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(b)

Figure 10.28. Snapshots of time-dependent, steady-state electric field patterns,
with stream lines (black lines in (a)–(c)) indicating the direction of power flow (i.e.
the Poynting vector). The cloak lies in the annular region between the black circles
and surrounds a conducting Cu cylinder at the inner radius. The fields shown are
(a) the simulation of the cloak with the exact material properties, (b) the simulation
of the cloak with the reduced material properties, (c) the experimental measure-
ment of the bare conducting cylinder, and (d) the experimental measurement of the
cloaked conducting cylinder. Animations of the simulations and the measurements
show details of the field propagation characteristics within the cloak that cannot be
inferred from these static frames. The right-hand scale indicates the instantaneous
value of the field. (From ref. [58], courtesy of Professor David Smith.)
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Figure 10.33. Phase of the total magnetic field distribution in the E plane for the
case of four aligned spheres with and without plasmonic covers is shown for three
different incidence angles. (From ref. [61], courtesy of Professor Nader Engheta.)

Figure 10.34. Total scattering efficiencies for the geometry depicted in the inset,
i.e. a dielectric particle of radius a = 100 nm and permittivity εr = 3, cloaked
by a two-layered shell designed for cloaking at λ0 = 500 nm and λ0 = 625 nm.
The four curves refer to the following: a covered particle with small losses in the
plasmonic materials (black), covered particle with reasonable losses (green), the
original particle (red), and the same particle with a dielectric material replacing
the shell region (blue). (From ref. [68], courtesy of Professor Nader Engheta.)



Figure 10.36. Metamaterial refractive index distribution in the ground plane cloak.
The mesh lines indicate the quasi-conformal mapping. (From ref. [77], courtesy
of Professor David Smith.)
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Figure 10.40. (a) Microscope image of the waveguide illuminated with white
light from the top. The Newton rings are visible in the center of the field of view.
(b) Microscope image of the waveguide with a gold particle placed inside and
illuminated with white light from the top. (c) A long shadow has been cast by the
gold particle upon coupling 515 nm laser light into the waveguide. The position
of the particle edge is shown by the dashed line.



(a) (b)

(c)

Figure 10.42. (a) Experimental geometry of the trapped rainbow experiment: a
glass lens was coated on one side with a gold film. The lens was placed with
the gold-coated side down on top of a flat glass slide also coated with a gold
film. The air gap between these surfaces formed an adiabatically changing optical
nano-waveguide. (b) Photo of the trapped rainbow experiment: He–Ne and Ar:ion
laser light is coupled into the waveguide. (c) Optical microscope image of the
trapped rainbow. (From ref. [89].)

(b)

(a)

Figure 10.43. Comparison of the optical microscope images of the trapped rain-
bow effect from Fig. 10.42(c) (b) and the image (a) obtained when only two laser
wavelengths (514 nm and 633 nm) are used for illumination. Individual spec-
tral lines separated by only a few micrometers appear to be well resolved (see
Fig. 10.44). (From ref. [89].)



Figure 11.5. (a) Hole array fabricated in 50 nm oxide layer on top of aluminum
(anodized aluminum oxide, or AAO). The yellow rectangle indicates the simula-
tion cell. (b) Cross sectional view of electric field maps when the incident beam
is launched at normal incidence. The refractive index for the oxide was 1.77. The
electric field intensity values are: red is 2.25 V/m, green is 1.13 V/m and blue is
10−3 V/m. The incident beam was taken as 1 V/m [27]. Simulations were obtained
with an Ansoft tool.

Figure 11.10. Transmission (left) showing the large absorption/reflection at res-
onance, and the field intensity plots (right). The polarization was set along the
y-direction.



Figure 11.11. Transmission (left) and electric field thermal plots (right) when the
polarization is along the x direction. The frequency of the peak has changed, and
so has the field distribution.

Figure 11.18. (a) The simulation cell: a 50 nm thick hexagonally perforated oxide
(yellow) is lying on top of aluminum (blue). The hole radius is 40 nm and the
refractive index of the oxide layer is 3.3. Graphene (gray) is deposited on top of
the oxide layer. The arrow points to the direction of the TEM polarization state. (b)
Linear electric field intensities map (red: 1.3 × 10−6 V/m; blue-green: 0.3 × 10−6

V/m; blue: 0). (c) Field intensity at the hole center as a function of incident optical
wavelength.
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