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Preface

Discovery consists of seeing what everybody has seen and thinking what nobody has
thought.

Albert Szent-Gyorgyi

Classical electromagnetism is one of the best established theories of physics. Its con-
cepts and theorems have been shown to be useful from the atomic to the cosmological
scale; and they have been more successful in surviving to the relativistic and quantum
revolutions than other classical concepts. It is well known for instance that Maxwell’s
equations were at the very basis of relativity and that Maxwell’s electromagnetic
theory was the first relativistic invariant theory. Concerning quantum mechanics,
classical electromagnetism still provides the best foundations—together with
quantum dynamics—for atomic and solid state physics. It is only in the domain of
particle physics that classical electromagnetism needs to be reformulated as quantum
electrodynamics. With regard to practical applications, classical electromagnetic
theory is the basis of many well-known technologies, which strongly affect our ordin-
ary lives, from power generation to wireless communications. It seems very difficult to
add something conceptually new to such well-established theories and technologies.

However, during recent years, a new expression appeared in the universe of clas-
sical electromagnetic theory: metamaterials. From 2000 to 2007, the number of
journal and conference papers related to metamaterials has grown exponentially;
there has also been a multitude of special sessions, tutorials, and scientific meetings,
all around the world, devoted to this new topic. Related to metamaterials, other topics
appeared on the scene, such as photonic crystals, negative refraction, left-handed
media, or cloaking, among others. But what is the reason and meaning behind this
sudden explosion in the otherwise quiet waters of electromagnetism? In fact,
nothing is new from the point of view of fundamental science in metamaterials.
Throughout this book, it will be shown that metamaterials can be understood by
using well-known theoretical tools, such as homogenization of effective media or
elementary transmission line theories. In addition, many electrical and electronic
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engineers have pointed out that almost all new applications arising from metamaterial
concepts can be understood by using more conventional approaches, that is, without
the need to invoke these metamaterial concepts. So, what is new in metamaterials?

Physicists usually try to explain how nature works, whereas engineers try to apply
this knowledge to the design of new devices and systems, useful for certain appli-
cations. In our opinion, metamaterials are placed at an intermediate position
between science and engineering—for this reason they are of interest to both physicists
and engineers. Metamaterials are not “materials” in the usual sense: they cannot be
found in nature (by the way, this is a very common definition of metamaterials). In
fact, metamaterials are artificial structures (products of human ingenuity), designed
to obtain controllable electromagnetic or optical properties. This includes the possi-
bility to synthesize artificial media with properties not found among natural materials,
such as negative refraction, among others. Within this scenario, it is evident that meta-
materials may open many challenging objectives of interest to physicists and scientists
in general. From the technological and engineering viewpoint, the interest in metama-
terials is based on the possibility of designing devices and systems with new properties
or functionalities, able to open up new fields of application or to improve existing
ones. Although it has been argued that certain applications of metamaterials can be
analyzed through conventional approaches, the key virtue of metamaterials is in pro-
viding new design guidelines for components and systems that are missing in conven-
tional approaches. Other applications such as subdiffraction imaging are, however,
genuine products of metamaterials. This intermediate position between physics and
engineering is a relevant aspect and probably one of the main novelties of meta-
materials. In order to highlight this multidisciplinarity, in our opinion it is appropriate
to refer to this new topic as metamaterials science and engineering.

Most metamaterials fall in one of two categories: photonic or electromagnetic
crystals and effective media. The first category corresponds to structures made of per-
iodic micro- or nano-inclusions whose period is of the same order as the signal wave-
length. Therefore, their electromagnetic properties arise mainly from periodicity.
Conversely, in effective media the period is much smaller than this signal wave-
length. Hence, their electromagnetic properties can be obtained from a homogeni-
zation procedure. This book is mainly devoted to the second category, specifically
to those metamaterials that can be characterized by a negative effective permittivity
and/or permeability.

The first chapter is devoted to the analysis of the electrodynamics of continuous
media with simultaneously negative dielectric permittivity and magnetic per-
meability. Chapter 2 is focused on the design of bulk metamaterials made of
systems of individual metallic inclusions with a strong electric and/or magnetic
response near its first resonance. The third chapter develops the transmission line
approach for the design of metamaterials with negative parameters, including both
the nonresonant and the resonant-type approaches. Chapter 4 is devoted to the
analysis of some relevant microwave applications of the concepts developed in the
previous chapters. Finally, in Chapter 5, some related and/or advanced topics,
such as metasurfaces, magneto-inductive waves in metamaterial structures and sub-
diffraction imaging devices are developed.
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This book is mainly directed towards the resonant-type approach to metamaterials
because, obviously, it has been strongly influenced by the personal experience of the
authors. However, our aim in writing this book has been to give a complete overview
of the present state-of-the-art in metamaterials theory, as well as the most relevant
microwave applications of metamaterial concepts. Indeed, our purpose has been
twofold: to generate curiosity and interest for this emerging field by those readers
not previously involved in metamaterials science and engineering and to provide
useful ideas and knowledge to scientists and engineers working in the field.

RICARDO MARQUÉS

FERRAN MARTÍN

MARIO SOROLLA

Sevilla, Spain
Barcelona, Spain
Pamplona, Spain
October 2007
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Universitat Autònoma de Barcelona), headed by Ferran Martı́n, are also acknowl-
edged, with special emphasis given to Jordi Bonache, Joan Garcı́a, Ignacio Gil,
Marta Gil, and Francisco Aznar, who have been actively and exhaustively involved
in this work. Special thanks are given to Marta Gil, who has helped the authors
with the generation and editing of some of the figures, and to Anna Cedenilla, for
being in charge of copyright issues and permissions. We would also like to
mention in the list the recently incorporated members to the team: Gerard, Fito,
Ferran, and Beni.

Concerning the team of the Millimeter Wave Laboratory (Universidad Pública de
Navarra), headed by Mario Sorolla, the authors thank Francisco Falcone, Miguel
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CHAPTER ONE

The Electrodynamics of
Left-Handed Media

1.1 INTRODUCTION

Continuous media with negative parameters, that is, media with negative dielectric
constant, 1, or magnetic permeability, m, have long been known in electromagnetic
theory. In fact, the Drude–Lorentz model (which is applicable to most materials) pre-
dicts regions of negative 1 or m just above each resonance, provided losses are small
enough [1]. Although losses usually prevent the onset of this property in common
dielectrics, media with negative 1 can be found in nature. The best-known examples
are low-loss plasmas, and metals and semiconductors at optical and infrared frequen-
cies (sometimes called solid-state plasmas). Media with negative m are less common
in nature due to the weak magnetic interactions in most solid-state materials [2]. Only
in ferrimagnetic materials are magnetic interactions strong enough (and losses small
enough) to produce regions of negative magnetic permeability. Ferrites magnetized to
saturation present a tensor magnetic permeability with negative elements near the
ferrimagnetic resonance (which usually occurs at microwave frequencies). These
materials are widely used in microwave engineering, mainly to make use of their non-
reciprocity. The electrodynamics of these solid-state materials with negative 1 or m is
described in many well-known textbooks [3–5], so this chapter will focus on the elec-
trodynamics of media having simultaneously negative 1 and m (see, however,
problems 1.1–1.3, 1.12, and 1.14).

Wave propagation in media with simultaneously negative 1 and m was discussed
and analyzed in a seminal paper by Veselago [6] at the end of the 1960s. However, it
was necessary to wait for more than 30 years to see the first practical realization of

Metamaterials with Negative Parameters. By Ricardo Marqués, Ferran Martı́n, and Mario Sorolla
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such media [7], also called left-handed media [6,7]. This terminology will be
used throughout this book.1 Other terms that have been proposed for media with
simultaneously negative 1 and m are negative-refractive media [8], backward
media [9], double-negative media [10], and also Veselago media [11].

The propagation constant of a plane wave is given by k ¼ v
ffiffiffiffiffiffi
1m

p
, so it is apparent

that wave propagation is not forbidden in left-handed media. Several principal ques-
tions arise from this statement:

† Does an electromagnetic wave in a left-handed medium differ in any essential
way from a wave in an ordinary medium with positive 1 and m?

† Is there any essential physical law—for instance, energy conservation—
forbidding left-handed media?

† Assuming the answer to the previous question was affirmative. How to obtain a
left-handed medium in practice?

In this chapter we will try to give some answers to the first and second questions
above, leaving the following chapters to find the answer to the third question.

1.2 WAVE PROPAGATION IN LEFT-HANDED MEDIA

In order to show wave propagation in left-handed media, we will first reduce Maxwell
equations to the wave equation [6]:

r2 � n2

c2
@2

@t2

� �
c ¼ 0, (1:1)

where n is the refractive index, c is the velocity of light in vacuum, and n2=c2 ¼ 1m.
As the squared refractive index n2 is not affected by a simultaneous change of sign in
1 and m, it is clear that low-loss left-handed media must be transparent. In view of the
above equation, we can obtain the impression that solutions to equation (1.1) will
remain unchanged after a simultaneous change of the signs of 1 and m. However,
when Maxwell’s first-order differential equations are explicitly considered,

r� E ¼ �jvmH (1:2)

r�H ¼ jv1E, (1:3)

it becomes apparent that these solutions are quite different. In fact, for plane-wave
fields of the kind E ¼ E0 exp(�jk � rþ jvt) and H ¼ H0 exp(�jk � rþ jvt) (this
space and time field dependence will be implicitly assumed throughout this book),

1Terms such as right- and left-handed are of common use in optics, referring to polarized light or to media
having optical activity. Therefore, it will be worth noting that the use of the term left-handed in this book is
not related to any specific polarizing property or structural handedness of the material.
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the above equations reduce to

k � E ¼ vmH (1:4)

k �H ¼ �v1E: (1:5)

Therefore, for positive 1 and m, E, H, and k form a right-handed orthogonal system
of vectors. However, if 1 , 0 and m , 0, then equations (1.4) and (1.5) can be
rewritten as

k � E ¼ �vjmjH (1:6)

k �H ¼ vj1jE, (1:7)

showing that E, H, and k now form a left-handed triplet, as illustrated in Figure 1.1.
In fact, this result is the original reason for the denomination of negative 1 and m

media as “left-handed” media [6].
The main physical implication of the aforementioned analysis is backward-wave

propagation (for this reason, the term backward media has been also proposed for
media with negative 1 and m [9]). In fact, the direction of the time-averaged flux
of energy is determined by the real part of the Poynting vector,

S ¼ 1
2
E�H�, (1:8)

which is unaffected by a simultaneous change of sign of 1 and m. Thus, E, H, and S
still form a right-handed triplet in a left-handed medium. Therefore, in such media,
energy and wavefronts travel in opposite directions (backward propagation).
Backward-wave propagation is a well-known phenomenon that may appear in non-
uniform waveguides [12,13]. However, backward-wave propagation in unbounded
homogeneous isotropic media seems to be a unique property of left-handed media.
As will be shown, most of the surprising unique electromagnetic properties of
these media arise from this backward propagation property.

FIGURE 1.1 Illustration of the system of vectors E, H, k, and S for a plane transverse
electromagnetic (TEM) wave in an ordinary (left) and a left-handed (right) medium.
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So far, we have neglected losses. However, losses are unavoidable in any practical
material. In the following, the effect of losses in plane-wave propagation will be con-
sidered. To begin, we will consider a finite region filled by a homogeneous left-
handed medium. In the steady state, and provided there are no sources inside the
region, there must be some power flow into the region in order to compensate for
losses. Thus, from the well-known complex Poynting theorem [14],

r � E�H�f g ¼ |v E � D� � B �H�ð Þ, (1:9)

it follows that

Re
þ
E�H� � n̂ dS

� �
¼ v Im

ð
mjHj2 � 1�jEj2

� �
dV

� �
, 0, (1:10)

where integration is carried out over the aforementioned region. Therefore,

Im(1) , 0; Im(m) , 0: (1:11)

Let us now consider a plane wave with square wavenumber k2 ¼ v2m1, propagating
in a lossy left-handed medium with Re(1) , 0 and Re(m) , 0. From expression
(1.11), it follows that Im(k2) . 0. Therefore

{Re(k) . 0 and Im(k) . 0} or {Re(k) , 0 and Im(k) , 0}: (1:12)

That is, waves grow in the direction of propagation of the wavefronts. This fact is in
agreement with the aforementioned backward-wave propagation.

1.3 ENERGY DENSITY AND GROUP VELOCITY

If negative values for 1 and m are introduced in the usual expression for the time-
averaged density of energy in transparent nondispersive media, Und, given by

Und ¼
1
4
{1jEj2 þ mjHj2}, (1:13)

they produce the nonphysical result of a negative density of energy. However, as is
well known, any physical media other than vacuum must be dispersive [1], equation
(1.13) being an approximation only valid for very weakly dispersive media. The
correct expression for a quasimonochromatic wavepacket traveling in a dispersive
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media is [2]

U ¼ 1
4

@(v1)
@v

jEj2 þ @(vm)
@v

jHj2
� �

, (1:14)

where the derivatives are evaluated at the central frequency of the wavepacket. Thus,
the physical requirement of positive energy density implies that

@(v1)
@v

. 0 and
@(vm)
@v

. 0, (1:15)

which are compatible with 1 , 0 and m , 0 provided @1=@v . j1j=v and
@m=@v . jmj=v. Therefore, physical left-handed media must be highly dispersive.
This fact is in agreement with the low-loss Drude–Lorentz model for 1 and m,
which predicts negative values for 1 and/or m in the highly dispersive regions just
above the resonances [1]. Finally, it must be mentioned that the usual interpretation
of the imaginary part of the complex Poynting theorem, which relates the flux of reac-
tive power through a closed surface with the difference between electric and magnetic
energies inside this surface [14], is not applicable to highly dispersive media, where
equation (1.14) holds instead of (1.13). Thus, this interpretation is also not valid for
left-handed media.

Backward-wave propagation implies opposite signs between phase and group
velocities. In fact

@k2

@v
¼ 2k

@k

@v
; 2

v

vpvg
, (1:16)

where vp ¼ v=k and vg ¼ @v=@k are the phase and group velocities, respectively. In
addition, from k2 ¼ v21m and equation (1.15),

@k2

@v
¼ v1

@(vm)
@v

þ vm
@(v1)
@v

, 0 (1:17)

Finally, from equations (1.16) and (1.17)

vpvg , 0: (1:18)

This property implies that wavepackets and wavefronts travel in opposite directions,
and can be considered an additional proof of backward-wave propagation in physical
left-handed media.
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1.4 NEGATIVE REFRACTION

Let us now consider the refraction of an incident optical ray at the interface between
ordinary (1 . 0 and m . 0) and left-handed media. Boundary conditions impose
continuity of the tangential components of the wavevector along the interface.
Thus, from the aforesaid backward propagation in the left-handed region, it immedi-
ately follows that, unlike in ordinary refraction, the angles of incidence and refraction
must have opposite signs. This effect is illustrated in Figure 1.2.

From the aforementioned continuity of the tangential components of the wave-
vectors of the incident and refracted rays, it follows that (Fig. 1.2)

sin ui
sin ur

¼ �jk2j
jk1j

;
n2
n1

, 0, (1:19)

which is the well-known Snell’s law. In this expression, n1 and n2 are the refractive
indices of the ordinary and left-handed media, respectively. Assuming n1 . 0, from
equation (1.19) it follows that n2 , 0. That is, the sign of the square root in the refrac-
tive index definition must be chosen to be negative [6]:

n ; �c
ffiffiffiffiffiffi
1m

p
, 0: (1:20)

For this reason, left-handed media are also referred to as negative refractive index or
negative refractive media.

Geometrical optics of systems containing left-handed media is dominated by this
last property. By tracing the paths of optical rays through conventional lenses made of
left-handed media, it can be shown that concave lenses become convergent and

FIGURE 1.2 Graphic demonstration of the negative refraction between ordinary (subscript
1, top) and left-handed (subscript 2, gray area) media. Poynting and wavevectors for each
media are labeled as S1, S2, k1, and k2, respectively. Negative refraction arises from the conti-
nuity of the components of the wavevectors, k1 and k2, parallel to the interface, and from the
fact that rays propagate along the direction of energy flow. That is, they must be parallel to the
Poynting vectors S1 and S2.
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convex lenses become divergent, thus reversing the behavior of lenses made from
ordinary media [6]. However, the most interesting effect that can be deduced from
the geometrical optics of left-handed media is probably the focusing of energy
coming from a point source by a left-handed slab [6]. This effect is illustrated in
Figure 1.3. For paraxial rays

jnj ¼ j sin u1j
j sin u2j

’ j tan u1j
j tan u2j

¼ a0

a
¼ b0

b
, (1:21)

where n is the refractive index of the left-handed slab relative to the surrounding
medium. Therefore, as is illustrated in Figure 1.3, electromagnetic energy coming
from the point source is focused at two points, one inside and the other outside the
left-handed slab, the latter at a distance

x ¼ aþ a0 þ b0 þ b ¼ d þ d

jnj (1:22)

from the source, where d is the width of the slab. If n ¼ 21 the aforementioned effect
is not restricted to paraxial rays, because in this case ju1j ¼ ju2j for any angle of inci-
dence. In fact, when n ¼ 21, all rays coming from the source are focused at two
points, inside and outside the slab, the latter being at a distance 2d from the
source. We will return later to this interesting situation.

The above discussion mainly followed the earlier work of Veselago [6]. More
recently, negative refraction at the interface between ordinary and left-handed
media has been criticized on the basis of the highly dispersive nature of left-
handed media [15]. In spite of these criticisms, negative refraction in left-handed
media seems now to be well established. In fact, both theoretical calculations
[16,17] and experiments [18–22] have confirmed Veselago’s predictions. The
reader interested in this specific topic can consult the aforementioned references
for a more complete discussion.

FIGURE 1.3 Graphic illustration of the focusing of paraxial rays coming from a point source
by a left-handed slab. Light focuses at two points, F1 and F2, inside and outside the slab.
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A brief discussion about the meaning and scope of the term negative refraction is of
interest at this point. In the frame of this section, negative refraction and negative
refractive index are equivalent. That is, the incident and refracted beams always lie
at the same side of the normal, and Snell’s law (1.19) is satisfied with a negative refrac-
tive index that does not depend on the angle of incidence. In this strong sense, negative
refraction seems to be a unique property of isotropic left-handed media. In a less
restrictive sense, negative refraction can also be understood as the simple situation
where an incident and a refracted beam both lie at the same side of the normal, for
a particular angle of incidence. However, it may be worth mentioning that, in this
weak sense, negative refraction can appear in many physical systems that may not
include left-handed media, nor evenmedia with negative parameters. As an illustration
of this statement, Figure 1.4 shows the negative refraction of the extraordinary ray at
the interface between an ordinary isotropic medium and an hypothetical uniaxial
medium with 1? . 1k. The isofrequency ellipsoids, v(k) ¼ constant, for the isotropic
and the uniaxial media are shown for a specific orientation of the optical axis. For this
specific orientation, and for the considered specific angle of incidence, the group vel-
ocity rk(v) corresponding to the wavevector of the refracted ray forms a negative
angle with the normal (in spite of the fact that the corresponding wavevector k r

makes a positive angle with the normal). Because the direction of the refracted ray
is determined by the group velocity, the refracted ray forms a negative angle with
the normal. However, unlike negative refraction in left-handed media, negative refrac-
tion in uniaxial media only occurs for very specific orientations of the optical axis, and
for very specific angles of incidence and polarizations of the incident light. A more
restrictive concept is all-angle negative refraction [23]. This means that a negative
refraction in the aforementioned weak sense is observed for all angles of incidence.
All-angle negative refraction, with a refractive index depending on the angle of inci-
dence, has been reported in uniaxial media with negative permittivity or permeability
along the optical axis [9] (see problem 1.8). Generalized refraction laws at the interface

FIGURE 1.4 Graphic demonstration of the negative refraction of the extraordinary ray at the
interface between an isotropic and an uniaxial medium. The isofrequency surfaces for both
media are shown, and the wavevector and the group velocity of the refracted ray are graphically
obtained from these surfaces. The reported negative refraction only occurs for very specific
angles of incidence and polarizations.
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between anisotropic media with negative parameters are analyzed in detail in [24].
Finally, it may be worth mentioning that negative refraction has been also reported
in strongly modulated photonic crystals for some specific frequency bands [25].

1.5 FERMAT PRINCIPLE

As is shown in many textbooks, Snell’s law can be deduced from the variational
Fermat principle, and vice versa. The variational Fermat principle states that the
optical length of the path followed by light between two fixed points, A and B, is
an extremum. The optical length is defined as the physical length multiplied by the
refractive index of the material. Therefore, the Fermat principle is stated as

dL ¼ 0, where L ¼
ðB
A

n dl: (1:23)

Because Snell’s law (1.19) still holds for left-handed media, the Fermat principle will
also hold for systems containing left-handed media, provided the appropriate defi-
nition for n (1.20) is taken in equation (1.23) [8]. It may be worth mentioning that,
according to this statement of the Fermat principle, the optical length of the actual
path chosen by light is not necessarily a minimum when left-handed media are
present. In fact, it may even be negative or null. It also becomes apparent that the
time taken by light to travel between two points is not related to the optical length
through the usual formula for ordinary weakly dispersive media, that is t = L=c.
Therefore, the path followed by light in optical systems containing left-handed
media is not necessarily the shortest in time [8].

From the definition of L (1.23), it follows that the optical length between two points,
A and B, on a given optical ray is proportional to the phase advance between such
points: Df ¼ �kAB ¼ �n(v=c)AB ¼ �(v=c)L. It is of interest to evaluate the
optical length between the source and the focuses, F1 and F2, in the experiment
shown in Figure 1.3 for the particular case of n ¼ 21. It follows immediately that
the optical length between the source and the focus is exactly zero for all rays (not
only for paraxial rays). Thus, all the rays coming from the source are recovered at the
focus with exactly the same phase as at the source. Nevertheless, because the reflection
coefficient for each ray depends on the angle of incidence, the intensity of the rays is not
reproduced at the focus. However, if 1=10 ! �1 and m=m0 ! �1, the wave impe-
dance of the slab becomes equal to that of free space, and the reflection coefficient
vanishes for all rays. In such a case, it can be shown that the electromagnetic field at
the source is exactly reproduced at the focus [26]. We will return later to this point.

1.6 OTHER EFFECTS IN LEFT-HANDED MEDIA

Backward-wave propagation in left-handed media also has implications in other well-
known physical effects related to electromagnetic wave propagation. The following
text considers some of them.
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1.6.1 Inverse Doppler Effect

When a moving receiver detects the radiation coming from a source at rest in a
uniform medium, the detected frequency of the radiation depends on the relative
velocity of the emitter and the receiver. This is the well-known Doppler effect.
If this relative velocity is much smaller than the velocity of light, a nonrelativistic
analysis suffices to describe such an effect. The qualitative analysis is quite simple
for ordinary (n. 0) media, and can be found in many textbooks. If the receiver
moves towards the source, wavefronts and receiver move in opposite directions.
Therefore, the frequency seen by the receiver will be higher than the frequency
measured by an observer at rest. However, if the medium is a left-handed material,
wave propagation is backward, and wavefronts move towards the source.
Therefore, both the receiver and the wavefronts move in the same direction, and
the frequency measured at the receiver is smaller than the frequency measured by
an observer at rest.

A straightforward calculation shows that the aforementioned frequency shifts are
given by

Dv ¼ +v0
v

vp
, (1:24)

where v0 is the frequency of the radiation emitted by the source, v is the velocity at
which the receiver moves towards the source, vp the phase velocity of light in the
medium, and the + sign applies to ordinary/left-handed media. Equation (1.24)
can be written in a more compact form as [6]

Dv ¼ v0
nv

c
, (1:25)

where n is the refractive index of the medium and c the velocity of light in free space.
In equation (1.25), Dv is the difference between the frequency detected at the receiver
and the frequency of oscillation of the source. For n, 0, the frequency shift becomes
negative for positive v (receiver moving towards the source), as it was qualitatively
shown at the beginning of this section. Interestingly, from equation (1.17), it directly
follows that djkj=dv , 0 in left-handed media. Thus, a negative frequency shift
results in an increase of jkj. Therefore, a shift towards shorter wavelengths is seen
when the receiver approaches the source, both in ordinary and left-handed media.

1.6.2 Backward Cerenkov Radiation

Cerenkov radiation occurs when a charged particle enters an ordinary medium at a
velocity higher than the velocity of light in such a medium. If the deceleration of
this particle is not too high, its velocity can be considered approximately constant
over many wave periods. Then, as is illustrated in Figure 1.5a, the spherical wave-
fronts radiated by this particle become delayed with regard to the particle motion,
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thus giving rise to a shock wave [1], which travels forward, making an angle u with
the particle velocity. This angle is given by

cos u ¼ c

nv
, (1:26)

where c/n is the velocity of light in the medium and v the velocity of the particle.
If the medium has a negative refractive index, wave propagation is backward, and

the spherical wavefronts corresponding to each frequency harmonic of the radiation
move inwards to the source, at a velocity c=jn(v)j. Therefore, each wavefront
collapses at the advanced position of the particle shown in Figure 1.5b. Thus, the
resulting shock wave travels backward at an obtuse angle from the particle motion.
This angle is still given by equation (1.26) [6], as is illustrated in the figure.

In practice, any left-handed medium must be highly dispersive, the left-handed
behavior being restricted to some frequency range. Because the particle radiates at
all frequencies, the Cerenkov radiation spectra must show wavefronts moving in
both forward and backward directions [27].

FIGURE 1.5 Illustration of the formation of Cerenkov shock waves: (a) in an ordinary
medium, and (b) in a left-handed medium. In (a) the spherical wavefronts move outwards
from the source at a velocity c/n. In (b) the spherical wavefronts move inwards to the
source at a velocity c/j nj.
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1.6.3 Negative Goos–Hänchen Shift

When a plane wave is incident from a medium of refractive index n ¼ n1 onto the
plane interface of another medium with n ¼ n2, where jn2j , jn1j, there is a critical
angle sin uc ¼ jn2=n1j, beyond which total reflection onto medium 1 occurs.
However, fields penetrate into medium 2 by a small distance, forming a nonuniform
plane wave that is evanescent in the direction normal to the interface and propagative
along the interface. Power associated with this plane wave flows parallel to the inter-
face in the forward direction for ordinary media and in the backward direction for left-
handed media. Thus, when a beam of finite extent is incident from medium 1 to
medium 2, the reflected beam experiences a finite lateral shift D, as a consequence
of the aforementioned energy flow in medium 2. This effect is illustrated in
Figure 1.6. As energy flow is parallel to wavefront propagation, the Goos–
Hänchen shift must be positive in ordinary media. However, if medium 2 is a left-
handed medium, energy flow and wavefront propagation are antiparallel.
Therefore, the Goos–Hänchen shift must be negative in such media, as is illustrated
in Figure 1.6b.

The Goos–Hänchen shift D can be calculated by expanding the incident beam in
plane waves, and studying the reflection of these waves at the interface. If the angular
spectrum of the beam is not too wide, and the angle of incidence is sufficiently away
from the critical and grazing angles, the Goos–Hänchen shift is given by [28]

D ¼ @fr

@kk
, (1:27)

where fr is the phase of the reflection coefficient and k is the component of the wave-
vector parallel to the interface (for lossless left-handed media jrj ¼ 1, and
fr ¼ �j ln r). The Goos–Hänchen effect in left-handed media has been analyzed
in detail in [29–32]. In [33], giant Goos–Hänchen shifts due to the excitation of
surface waves have been reported for stratified media including left-handed layers.
In all these calculations, the sign of the Goos–Hänchen shift agrees with the predic-
tions of Figure 1.6.

FIGURE 1.6 Illustration of the Goos–Hänchen effect in (a) ordinary media and (b) left-
handed media.
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1.7 WAVES AT INTERFACES

So far, our analysis has been developed in the frame of the geometrical optics
approximation, although with some general considerations regarding electromagnetic
wave analysis. In this section we will describe in more detail the electromagnetic
interactions at the interface between a left-handed medium and an ordinary
medium. We will consider s-polarized waves, so that electromagnetic fields are trans-
verse electric (or TE) along the normal to the interface (these waves are also called
longitudinal section electric, or LSE, waves). The analysis of p-polarized (transverse
magnetic, TM, or longitudinal section magnetic, LSM) waves is quite similar, and the
main results can be deduced from the results for s-polarized waves by means of a
duality transformation [14] (see Problem 1.7). In this and the following section we
will consider transparent lossless media. Thus, unless explicitly specified, losses
will be neglected, so that 1 and m will be real quantities. This approximation,
although nonphysical, is useful when losses can be considered small and propagative
effects dominate.

1.7.1 Transmission and Reflection Coefficients

Transmission and reflection coefficients at the interface between an ordinary medium
and a left-handed medium can be found using standard electromagnetic techniques.
In this section we will follow the transverse transmission matrix [34] method. For this
purpose, plane waves at both sides of a plane interface will be decomposed into
propagative positive (þ) and negative (2) waves, with a common wavevector
component parallel to the interface (the kz component in Fig. 1.7). For the plane

FIGURE 1.7 Definition of positive and negative waves for the determination of the trans-
verse transmission matrix at the interface between an ordinary medium and a left-handed
medium. Note that backward propagation in the left-handed medium has been taken into
account in the definition of positive and negative waves.
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interface shown in Figure 1.7, and for the considered s-polarized waves,

Ei ; Ey,i ¼ Eþ
i þ E�

i , (1:28)

where subindex i ¼ 1 (i ¼ 2) stands for the fields at the left-(right-)hand side of the
interface (at x ¼ 0). Positive waves are defined as those waves carrying energy along
the positive axis perpendicular to the interface. Thus, if the interface is perpendicular
to the x-axis, as in Figure 1.7, the field dependence of positive and negative waves can
be summarized as

E+
i ; E+

y,i / exp(+ jkx,ix� jkzzþ jvt), (1:29)

where kz is the common wavevector component parallel to the interface. According to
backward propagation, in the left-handed half space, kx,2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v212m2 � k2z

p
must be

chosen with Re(kx,2) , 0. For ordinary media kx,1 must be chosen with Re(kx,1) . 0,
as usual.

A key magnitude in our analysis is the wave impedance of each medium, Zi, which
is defined as the ratio between the transverse (to x) components of the electric and
magnetic fields for positive waves propagating in such media. For the considered
TE waves, a straightforward calculation leads to the result [1,34]

Zi ;
Eþ
i

Hþ
z,i

¼ vmi

kx,i
, (1:30)

where Eþ
i ; Eþ

y,i is the electric field component of the positive wave. As both m2 and
kx,2 are negative in the left-handed medium, the impedance (1.30) is positive, as is
required for passive media.

After expanding the transverse electric and magnetic fields at the left (i ¼ 1)
and the right (i ¼ 2) sides of the interface into positive and negative waves
(Ei ¼ Eþ

i þ E�
i and Hz,i ¼ Hþ

z,i þ H�
z,i ¼ (Eþ

i � E�
i )=Zi), and after imposing the con-

tinuity of the these field components at the interface, the transverse transmission
matrix is determined as

Eþ
1

E�
1

� �
; T

¼
� Eþ

2
E�
2

� �
¼ 1

2Z2

Z2 þ Z1 Z2 � Z1
Z2 � Z1 Z2 þ Z1

� �
� Eþ

2
E�
2

� �
: (1:31)

From this result, the transmission, t, and reflection, r, coefficients are readily obtained
by taking Eþ

1 ¼ 1, E�
1 ¼ r, Eþ

2 ¼ t, E�
2 ¼ 0; that is,

1
r

� �
¼ 1

2Z2

Z2 þ Z1 Z2 � Z1
Z2 � Z1 Z2 þ Z1

� �
� t

0

� �
, (1:32)
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or

t ¼ 2Z2
Z2 þ Z1

and r ¼ Z2 � Z1
Z2 þ Z1

: (1:33)

For the particular case of Z2 ¼ Z1, from equations (1.33) it follows that t ¼ 1 and
r ¼ 0. That is, the left-handed medium is perfectly matched with the ordinary
medium. From equations (1.30) it follows that this is the case for any angle of
incidence if 12=11 ! �1 and m2=m1 ! �1.

Equations (1.33) are also valid when losses in the left-handed half space are
taken into account. If, according to backward-wave propagation, we choose
Re(kx,2) , 0 in equation (1.29), from equation (1.12) it follows that Im(kx,2) , 0.
Therefore, positive waves carry energy and attenuate along the positive x-axis, as
is required from energy conservation. Substitution of these values of kx,2 in
equations (1.30) and (1.33) gives the correct values for the transmission and
reflection coefficients. Equations (1.33) are also valid for the total reflection
case (i.e., when k2z . v212m2), provided kx,2 is chosen as kx,2 ¼ �ja,

a ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z � v212m2

p
. In this case, Z2 (1.30) is imaginary, and t and r become

complex, with jrj ¼ 1, as is required from energy conservation.

1.7.2 Surface Waves

Surface waves along the interface between two different media must decay at both
sides of the interface. Therefore, imaginary values of kx,i should be considered.
From the definitions of the previous section, it follows that

kx,i ¼ �jai and ai ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z � v2mi1i

q
, (1:34)

in both ordinary and left-handed media. Therefore, positive waves in equation (1.29)
will decay along the positive x-axis in both media. On the other hand, in order to
obtain imaginary values of kx,i, it must be that

k2z . k21 , k
2
2 , (1:35)

where k1 and k2 are the wavevectors in the unbounded ordinary and left-handed
media, respectively (k2i ¼ v21imi). With these definitions, surface waves correspond
to solutions of the following implicit equation (see also equation (1.31):

0
E�
1

� �
¼ 1

2Z2

Z2 þ Z1 Z2 � Z1
Z2 � Z1 Z2 þ Z1

� �
� Eþ

2
0

� �
: (1:36)
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This equation has nontrivial solutions if Z2 þ Z1 ¼ 0. According to equations (1.30)
and (1.34), Z1 and Z2 are both imaginary and have opposite signs in ordinary and left-
handed media. Therefore, solutions to equation (1.36) can exist at the interface
between these media, provided that expression (1.35) is satisfied. The general
condition for the existence of such solutions is

k2z ¼
m2
2 k

2
1 � m2

1 k
2
2

m2
2 � m2

1

. k21 , k
2
2 , (1:37)

which is also the dispersion relation for s-polarized (or TE, or LSE) surface waves. As
both 12 and m2 strongly depend on frequency (see Section 1.3), the frequency depen-
dence of kz(v) will depend on the specific characteristics of the left-handed medium.
Dispersion curves for surface waves at the interface between free space and
left-handed media have been investigated in [35,36] for some realistic frequency
dependences of 12 and m2. It may be worth mentioning that similar surface waves
(sometimes called surface plasmons) are guided along the interface between ordinary
media and media with negative 1 (see Problem 1.3). Surface waves can also be guided
along the interfaces between ordinary and negative m media, and at the interface
between a medium with negative 1 and other with negative m [38].

Let us now consider again the limit 12=11 ! �1 and m2=m1 ! �1. In this
limit, the above dispersion relation becomes degenerate, being satisfied for
any value of kz . k1 ¼ jk2j. Thus, in this limit, the bandwidth is zero and the
density of states becomes infinite. This behavior is quite similar to that of surface
plasmons at the surface of an ideal plasma in the quasistatic limit (see Problems
1.2 and 1.3). However, unlike for surface plasmons, the degeneracy of the considered
surface waves is complete, not being restricted to the quasistatic limit (i.e., to
kz � k1 ¼ jk2j).

Finally, due to the particular form of the transverse transmission matrix in
equations (1.31) and (1.36), mathematical solutions corresponding to nonphysical
surface waves growing to infinity at both sides of the interface show the same dis-
persion relation (1.37) as the aforementioned physical surface waves. Such solutions,
although nonphysical for an isolated interface, will play an important role in the
perfect lens configuration, as will be shown in the following.

1.8 WAVES THROUGH LEFT-HANDED SLABS

In this section, transmission and guidance of electromagnetic waves through left-
handed slabs will be analyzed. The method of analysis will be a straightforward
extension of the transverse transmission matrix technique of the previous section.
The same method can be applied to the analysis of transmission and guidance of
waves through multilayered structures.
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1.8.1 Transmission and Reflection Coefficients

The transmission matrix for a left-handed slab of width d is obtained by simply cas-
cading the transmission matrices for each interface (1.31) and for the left-handed
medium in between,

Eþ
1

E�
1

� �
¼ 1

4Z2Z3

Z2 þ Z1 Z2 � Z1
Z2 � Z1 Z2 þ Z1

� �
� e jkx,2d 0

0 e�jkx,2d

� �

�
Z3 þ Z2 Z3 � Z2
Z3 � Z2 Z3 þ Z2

� �
�

Eþ
3

E�
3

� �
, (1:38)

where, using the same notation as in equation (1.31), we have considered s-polarized
waves. In equation (1.38) kx,2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2m212 � k2z

p
, 0 is the x-component of the

propagation constant for positive waves inside the slab, and subscripts 1, 2, and 3
stand for the left-handed medium (2) and for the media at the left- and the right-
hand sides of the slab (1 and 3). Zi are the wave impedances (1.30), and electric
fields are evaluated just on the left (E+

1 ) and on the right (E+
3 ) interfaces of the

slab. All waves inside and outside the slab have a common propagation vector, kz,
parallel to the slab interface, which determines the angle of incidence sin ui ¼ kz=k1.

In the following, media 1 and 3 will be considered identical, so that Z3 ¼ Z1. In
this case, the transmission and reflection coefficients, t and r, are obtained from
equation (1.38) by taking Eþ

1 ¼ 1, E�
1 ¼ r, Eþ

3 ¼ t, E�
3 ¼ 0. After a straightforward

calculation, the following expressions arise:

t ¼ 2Z1Z2
j(Z2

1 þ Z2
2 ) sin(kx,2d)þ 2Z1Z2 cos(kx,2d)

(1:39)

and

r ¼ Z2
2 � Z2

1

Z2
2 þ Z2

1 � 2jZ1Z2 cot(kx,2d)
: (1:40)

Note that kx,2 , 0, so the phase advance through the slab is positive for small values
of kx,2d, which corresponds to the propagation of a backward wave inside the slab.

1.8.2 Guided Waves

Waves guided along the slab correspond to the poles of the reflection coefficient
(1.40) that may appear for imaginary values of kx,1. In such cases, according to our
previous definitions, kx,1 ¼ �ja1, with a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z � v211m1

p
. 0. Therefore,
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surface waves correspond to solutions of the implicit equation

Z2
2 þ Z2

1 � 2jZ1Z2 cot(kx,2d) ¼ 0, with Z1 ¼ j
vm1

a1
, (1:41)

with the additional condition kz . k1, so that electromagnetic energy decays at both
sides of the slab. Two cases may arise in equation (1.41), depending on whether kx,2 is
real or imaginary. If kz , k2 ¼ v

ffiffiffiffiffiffiffiffiffiffi
12m2

p
, kx,2 is real and fields inside the slab have a

trigonometric dependence, so that they are volume waves. In that case equation (1.41)
reduces to

m2a1

m1 kx,2
� m1 kx,2

m2a1
þ 2 cot(kx,2d) ¼ 0; (1:42)

which, taking into account the trigonometric relation 2 cot(2x) ¼ cot x� tan x, can be
written as

m2a1

m1 kx,2
tan(kx,2d=2)þ 1

� �
m1 kx,2
m2a1

tan(kx,2d=2)� 1

� �
¼ 0, (1:43)

which is the implicit dispersion relation for guided volume waves. In equation (1.43)
the two branches, corresponding to symmetric and antisymmetric modes, are expli-
citly shown. As can be seen from the above dispersion relations, volume waves in
the left-handed slabs do not substantially differ from guided volume waves in ordin-
ary dielectric slabs [34]; waves inside the slab can be seen as the composition of two
propagating TEM waves, which suffer total reflection at the slab interfaces. Therefore
energy flow is backward inside the left-handed slab and forward outside the slab, the
whole wave being forward or backward depending on the structural parameters of the
waveguide.

If kz . k2 ¼ v
ffiffiffiffiffiffiffiffiffiffi
12m2

p
, electromagnetic fields show an exponential decay inside

the slab, and the guided waves become surface waves. They correspond to the coup-
ling between the surface waves generated at each slab interface (see Section 1.7.2).
Therefore, when d ! 1, these waves should converge to the surface waves found
in Section 1.7.2. For these surface waves, both Z1 and Z2 are imaginary and
cot(kx,2d) becomes a hyperbolic function. Thus, equation (1.41) reduces to

m2a1

m1a2
þ m1a2

m2a1
þ 2 coth(a2d) ¼ 0, (1:44)

which, taking into account the relation 2 coth(2x) ¼ coth xþ tanh x, can be written as

m2a1

m1a2
tanh(a2d=2)þ 1

� �
m1a2

m2a1
tanh(a2d=2)þ 1

� �
¼ 0, (1:45)
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where the two branches, corresponding to symmetric and antisymmetric modes, can
be appreciated. The specific dependence of kz on frequency will depend on the
specific dependence of 1 and m on v. Surface and volume guided waves in
left-handed slabs, also including metallic ground shields, have been analyzed in
[37–43]. Finally, it would be worth mentioning that resonant modes in other geome-
tries distinct from planar ones, such as spherical or cylindrical, have been also studied
(see, for instance, [44–47], and references therein).

1.8.3 Backward Leaky and Complex Waves

As in any open guiding system, most of the electromagnetic modes guided by a left-
handed slab leak power to the surrounding space [13,34]. These waves correspond
to the poles of the reflection coefficient (1.40) that may appear for complex values
of kx,1.

Leaky modes in a left-handed slab have been analyzed in [48]. In the following we
will consider, without loss of generality, a leaky wave with field dependence
exp(�jkzzþ jvt), and Re(kz) . 0. The wavenumber of such a leaky mode should
satisfy Re(kz) , k1 ; v

ffiffiffiffiffiffiffiffiffiffi
11m1

p
, so that power leaks at an angle cos u ¼ Re(kz)=k1

from the slab (Fig. 1.8). Inside the left-handed slab, power flow is backward, but
in the surrounding medium, outside the slab, power flows in the forward direction.
Therefore, for the analyzed leaky mode, power always leaks backward with regard
to the main stream of guided power, inside the slab. For this reason, such leaky
modes have been called backward leaky modes [48].

FIGURE 1.8 Illustration of the wavevectors and power flows in a backward leaky mode
guided by a left-handed slab. Re(kz) is the mode phase vector, and Re(S) shows the power
flux inside and outside the slab. The angle of leakage is determined by cos u ¼ Re(kz)/k1.
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Physical leaky modes can be excited by sources at the onset of a semi-infinite
guiding system. In such a configuration, power is guided along the waveguide,
from the source to its end. Considering Figure 1.8, this means that the source must
be located at the top of the figure. Therefore, it must be that Im(kz) . 0, so that
the leaky wave attenuates towards the lower end of the slab. On both sides of the
slab the field dependence must be of the kind exp(+jkxx� kzzþ jvt). On the
other hand, boundary conditions impose that k2z þ k2x ¼ k21, so that, for small attenu-
ating constants,

k21 ’ {Re(kz)}
2 þ {Re(kx)}

2 (1:46)

0 ¼ Re(kz)Im(kz)þ Re(kx)Im(kx): (1:47)

The first equation defines the leakage angle mentioned at the beginning of this
section. The second determines the sign of Im(kx) as follows: at the left-hand side
of the slab, power must flow to the left, so that Re(kz) . 0 and Re(kx) , 0.
Moreover, Im(kz) . 0, as has already been mentioned. Therefore, it must be that
Im(kx) . 0, so that backward leaky waves are attenuated in the transverse direction.
This result is somewhat unexpected, as leaky modes in ordinary guiding systems are
usually unbounded modes, whose amplitude grows to infinity in the transverse direc-
tion [34,49]. This unusual behavior of leaky modes in left-handed slabs is a direct
consequence of the reported backward leakage of power [48], and recalls the behavior
of the complex modes that may appear in some very inhomogeneous wave-guiding
systems [13]. Backward leakage of power in a circuit analogous to an open left-
handed waveguide has been experimentally reported in [50].

1.9 SLABS WITH 1/10!21 AND m/m0!21

As has already been mentioned, many striking properties of left-handed media arise
in the limit when 1 and m become equal in magnitude, but opposite in sign, as in
those of the surrounding medium. In this section we will analyze these properties
in detail. For simplicity, the surrounding medium is considered free space.

1.9.1 Phase Compensation and Amplification of Evanescent Modes

If 1=10 ! �1 and m=m0 ! �1, the left-handed wave impedances (1.30) of the left-
handed medium become identical to that of free space for any propagative wave, and
for any angle of incidence. Therefore, for any angle of incidence, the transmission
matrix at each slab interface (1.31) reduces to unity. Thus, the slab is perfectly
matched to free space. Even more interesting, because wave propagation is backward
inside the left-handed slab, the phase advance inside the slab is positive, and can be
exactly compensated by the phase advance outside the slab (which must be negative).
A straightforward calculation shows that this compensation actually happens—for
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any angle of incidence—when the distance between the input and output planes
is 2d, where d is the slab width. In fact, this last property is a direct consequence
of the zero optical length between the input and output planes already mentioned
in Section 1.5

Let us now consider the incidence of evanescent waves on the slab. In this case,
after substitution in equations (1.30), (1.39), and (1.40) (with kx,1 ¼ kx,2 ¼ �ja;
a ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z � 10m0

p
), it is readily shown that

t ¼ ead and r ¼ 0: (1:48)

Thus, evanescent plane waves are amplified inside the left-handed slab by a factor that
is just the attenuation constant at the input. Because evanescent modes do not carry
energy, this amplification, although striking, is not forbidden by energy conservation.
Interestingly, when the input and output planes are separated by a distance 2d, the
amplitude of any incident evanescent wave is recovered at the output. Thus, for
this specific location of the input and output planes, both propagating and evanescent
waves are recovered without change at the output.

Phase compensation and amplification of evanescent modes is not a unique prop-
erty of left-handed slabs. After attention was first drawn to this effect by Pendry [26],
it was also shown in a pair of consecutive slabs with only negative 1 and m [51,52]
and, for some specific polarizations and planes of incidence, in some anisotropic
slabs with negative parameters [53]. It has also been shown in a pair of coupled
resonant surfaces [54]. Some of these results have been summarized in a generalized
perfect lens theorem [55].

1.9.2 Perfect Tunneling

As is well known, when a wave is incident from a medium of refractive index n ¼ n1
onto the plane interface of another medium of n ¼ n2, where jn2j , jn1j, there is a
critical angle uc ¼ sin�1jn2=n1j beyond which total reflection onto medium 1
occurs. However, if medium 2 is substituted by a slab of finite thickness, and the
slab is not too thick, some amount of energy can tunnel through medium 2 onto
the medium behind the slab. For ordinary media, the power tunneled through the
slab is always smaller than the incident power, so there is also some reflected
power. This tunneling of power is due to the coupling of evanescent waves generated
at both sides of the slab. Thus, because a left-handed slab can restore the amplitude of
evanescent waves (as was shown in the previous section), it can be guessed that tun-
neling through left-handed slabs can be very significant. In fact, as will be shown in
this section, under some circumstances such tunneling of power can be so high that all
the incident power will flow through the slab. This “perfect tunneling” effect will be
analyzed in this section.

Instead of analyzing incidence in free space, a different but fully equivalent system
will be analyzed. This system is shown in Figure 1.9, and consists of a rectangular wave-
guide that includes a section filled with a left-handed medium with 1=10 ! �1 and
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m=m0 ! �1. As is well known [1,34], the fundamental mode in a rectangular wave-
guide is the TE1,0 mode, which corresponds to the composition of two propagating
s-polarized plane waves (E ¼ Ey ŷ), which are reflected by the lateral sidewalls of the
waveguide, giving rise to a stationary wave in the transverse direction and a propagating
wave along the waveguide axis: Ey / sin(pz=a) exp(�jkxxþ jvt). This mode is
propagative/evanescent if thewaveguidewidth is larger/smaller than a half-wavelength
(a_p=k, where k ¼ vj ffiffiffiffiffiffi

m1
p j). Therefore, evanescent plane waves are generated in sec-

tions 2 to 4 of Figure 1.9 if a , p=k0, where k0 ¼ v
ffiffiffiffiffiffiffiffiffiffi
m010

p
. In order to excite this eva-

nescent mode, we can simply place at the input a waveguide filled by a high-permittivity
dielectric, supporting a propagative TE1,0 mode incident on section 2 (if the cross-
sections of both waveguides are identical, no other modes will be generated at the inter-
face [34]). It can be easily realized that such a system is equivalent to the incidence of
two identical s-polarized waves coming from a semi-infinite medium (medium 1) onto a
slab formed by media 2 to 4, and with a semi-infinite medium (medium 5) at the end of
the system. The angle of incidence is u ¼ sin�1fp=(ka)g, where k2 ¼ v21m0, and inci-
dence by an angle higher than the critical angle corresponds to the excitation of evanes-
cent modes at waveguide sections 2 to 4 of Figure 1.9. Thus, a system such as that shown
in this figure is fully equivalent, from an analysis standpoint, to a composite slabmade of
media 2 to 4, sandwiched between two semi-infinite media (1 and 5). However, the
system of Figure 1.9 is easier to implement for an experimental verification of
tunneling effects.

Let us now analyze the behavior of the device. When a propagative TE1,0 mode is
incident from waveguide 1, evanescent TE1,0 modes are generated in waveguides 2 to
4 and, eventually, some power may tunnel to waveguide 5. Following our previous
analysis, transmission and reflection coefficients can be obtained from the implicit
equation

1

r

� �
¼ 1

2Z2

Z2 þ Z1 Z2 � Z1
Z2 � Z1 Z2 þ Z1

� �
� ea2l2 0

0 e�a2l2

� �

� 1
2Z3

Z3 þ Z2 Z3 � Z2
Z3 � Z2 Z3 þ Z2

� �
� ea3l3 , 0

0, e�a3l3

� �

FIGURE 1.9 Illustration of a device designed to study perfect tunneling and amplification of
evanescent waves in a waveguide. The device consists of five consecutive waveguides with the
same cross-section. Input and output waveguides (1 and 5 ) are above cutoff. Waveguides 2 to 4
are below cutoff. Waveguides 2 and 4 are empty. Waveguide 3 is filled with an isotropic left-
handed medium with 1 ¼ �10, m ¼ �m0, and l3 ¼ l2 þ l4:
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� 1
2Z4

Z2 þ Z3 Z2 � Z3
Z2 � Z3 Z2 þ Z3

� �
� ea2l4 0

0 e�a2l4

� �

� 1
2Z1

Z1 þ Z2 Z1 � Z2
Z1 � Z2 Z1 þ Z2

� �
�

t

0

� �
, (1:49)

where ai are the attenuation constants of the TE1,0 mode in waveguides 2, 3, and 4

(ai ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(p=a)2 � v2mi1i

q
), and Zi are the wave impedances (1.30) for each

mode, with kx,i ¼ �jai,

Zi ¼ j
vmi

ai
; i ¼ 2, 3, 4: (1:50)

In the limit 1=10 ! �1 and m=m0 ! �1, Z3 ¼ �Z2, and we obtain

t ¼ 1 and r ¼ 0, for l2 þ l4 ¼ l3: (1:51)

That is, total transmission is obtained for the appropriate waveguide lengths. This
total transmission is not a Fabry–Perot resonance, because all waves between the
input and the output are evanescent. It is a perfect tunneling of power between
input and output [56].

Interestingly, the condition for perfect tunneling coincides with the condition for
focusing (1.22) when n¼21, and with the condition for amplitude and phase restor-
ation (see Sections 1.4 and 1.9.1). In fact, if l2 þ l4 = l3, the amount of power tun-
neled through the device decreases. This effect is illustrated in Figure 1.10, where the

FIGURE 1.10 Transmitted power through the device of Figure 1.9 versus the ratio
(l2 þ l4)=l3 for several values of l3=l0 (values given close to the lines). The waveguide
width is a ¼ 0:8l0=2. The dielectric constant of sections 1 and 5 is 1 ¼ 210. (Source:
Reprinted with permission from [56]; copyright 2005 by the American Physical Society.)
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fraction of power tunneled through the device is shown as a function of (l2 þ l4)=l3.
The sensitivity of the device to the normalized length of the left-handed slab l3=l0 (l0
is the free-space wavelength at the frequency of operation) can also be observed. As
can be expected, this sensitivity is higher for larger slabs.

In order to clarify the relation between perfect tunneling and amplification of
evanescent waves, it is illustrative to analyze field amplitudes along the device of
Figure 1.9 for the perfect tunneling configuration, and when the output waveguide
is eliminated (l4 ! 1).2 Both amplitudes are shown in Figure 1.11. Amplification
of the evanescent wave inside the left-handed medium can be clearly appreciated
in Figure 1.11b. The restoration of the mode amplitude at a distance 2l3 from the
input can also be appreciated in this figure. However, the pattern for the wave ampli-
tude is quite different in the perfect tunneling configuration (Fig. 1.11a). The reason

FIGURE 1.11 Field amplitude distribution inside the structure of Figure 1.9. (a) Perfect tun-
neling when l3 ¼ l2 þ l4. (b) Field amplitude when the last transition is eliminated (l4 ! 1).
Dashed lines show the amplitude when waveguide 3 is empty. Geometrical dimensions are
a ¼ 24mm, l2 ¼ l4 ¼ 15mm, l3 ¼ 30mm, and the operating frequency is 5GHz. The dielec-
tric constant of sections 1 and 5 is 1 ¼ 210. (Source: Reprinted with permission from [56];
copyright 2005 by the American Physical Society.)

2Such amplitudes can be obtained from the amplitudes at the input by cascading the appropriate trans-
mission matrices between the input and the plane of interest.
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for this is that single evanescent modes do not carry power, and perfect tunneling
implies a maximum of power transmission. To obtain this transmission peak, the
composition of two symmetrical evanescent modes decaying at opposite directions
is necessary. This leads to the amplitude pattern shown in Figure 1.11a.

Perfect tunneling of power through waveguides filled by metamaterials with
negative parameters was proposed and demonstrated in [56], where an experimental
verification of this effect was also provided. Photon tunneling through a left-handed
slab in free space was analyzed in [57].

1.9.3 The Perfect Lens

The perfect lens is one of the most fascinating devices that can be designed by using
the striking optical properties of left-handed materials. This configuration was first
proposed by Pendry in his seminal paper of 2000 [26]. In this paper Pendry
showed how the amplitude of evanescent waves can be restored by a left-handed
slab, and how using this property, a perfect lens overcoming the diffraction limit
for the resolution of conventional lenses can be designed.

Before showing how the properties of left-handed slabs can be used to improve
lens resolution, the limitations imposed by Fourier optics to the resolution of a lens
will be described in detail. Following [26], we will consider an infinitesimal dipole
of frequency v in front of a lens. The electric field produced by this dipole can be
expanded in some two-dimensional Fourier integral of plane waves (spatial Fourier
harmonics),

Ep(x, y, z) ¼
ð1
�1

dky

ð1
�1

dkz E(ky, kz) exp(�jkxx� jkyy� jkzzþ jvt), (1:52)

where kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v210m0 � k2y � k2z

q
. The response of any optical system to this excitation

can be obtained by analyzing the scattering of each plane wave of (1.52), and then
adding up for all the scattered waves. However, optical systems are usually only sen-
sitive to propagating waves, that is, to waves with real values of kx (the x-axis is
assumed to be the axis of the system). Evanescent waves are usually strongly attenu-
ated and do not reach the image. Therefore, even for the best manufactured lens, the
resolution at the image is limited by the truncation of the expansion (1.52) to

Ep(x, y, z) ’
ð ðkmax

�kmax

dky dkz E(ky, kz) exp(�jkxx� jkyy� jkzzþ jvt), (1:53)

where kmax ¼ k0 ¼ v
ffiffiffiffiffiffiffiffiffiffi
10m0

p
. Equation (1.53) gives the effective source seen by the

optical system. Therefore, from a well-known rule of Fourier analysis, it immediately
follows that the aforementioned infinitesimal dipole is restored at the image with a
resolution D not better than a wavelength (D � 2p=k0 ¼ l0).

The above analysis is based on the assumption that any lens or optical system will
lose all the information contained in the evanescent Fourier harmonics of the source
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field expansion (1.52). However, we have already seen how a left-handed slab of
width d, and 1=10 ! �1, m=m0 ! �1 can restore the amplitude and phase of
any incident plane wave at a distance 2d from the input, both for propagative and eva-
nescent waves. Therefore, it is the whole field at the source (1.52) that is restored at
x ¼ 2d, not the truncated expansion (1.53). That is, left-handed slabs in the limit
1=10 ! �1 and m=m0 ! �1 behave as perfect lenses, translating the whole field dis-
tribution on a plane at the left side of the slab to another plane at the right side of the
slab, as is shown in Figure 1.12.

It is illustrative to analyze the role of surface waves in the restoration of the eva-
nescent Fourier harmonics at the image plane. Figure 1.13 shows the amplitude
pattern for one of these evanescent Fourier harmonics between x ¼ 0 and x ¼ 2d.
The physical and nonphysical surface waves mentioned at the end of Section 1.7.2
can be easily recognized in the amplitude curves of Figure 1.13. Therefore, the res-
toration of an evanescent Fourier harmonic in the perfect lens is due to the excitation
of a physical surface wave at the right interface of the slab. This physical surface wave
couples with the evanescent fields generated at the source through the excitation of a
nonphysical (see the end of Section 1.7.2) surface wave3 at the left interface of the
slab. It may be worth mentioning that this field pattern does not imply that an
actual surface wave is generated at the slab. In fact, it can be easily realized that
equation (1.45) has no solutions for 1=10 ¼ m=m0 ¼ �1 (except for the trivial
case of d ! 1). In fact, the generation of such slab surface waves would be undesir-
able, because it would imply a disproportionate contribution of the corresponding
Fourier harmonic to the image.

FIGURE 1.12 Illustration of the perfect lens proposed in [26]. The fields at x ¼ 0 (E(0, y, z)
and H(0, y, z)) are exactly reproduced at x ¼ 2d: E(0, y, z) ¼ E(2d, y, z) and H(0, y, z) ¼
H(2d, y, z), provided there are no sources between the planes x ¼ 0 and x ¼ 2d.

3The denomination “nonphysical” indicates that these waves do not satisfy physical boundary conditions at
infinity when they are considered in an unbounded system (they monotonically grow at both sides of the
interface). However, the presence of additional boundary conditions, as in Figure 1.13, allows for its
excitation.
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Some considerations should be made at this point. First of all, as has already been
mentioned, restoration of evanescent Fourier harmonics at x ¼ 2d implies the ampli-
fication of such Fourier harmonics inside the slab (Fig. 1.13). As we approach the
back interface of the slab, the density of energy stored by these evanescent waves
grows by the exponential factor exp[2a(d � d)], where d is the distance to the inter-

face. In the limit jkzj, jkyj ! 1, we have a(ky, kz) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y � v210m0

q
! 1, and

the density of energy grows to infinity at the slab interface. Therefore, the perfect lens
implies a nonphysical divergence of energy [58]. Although we will return to this
point later (see Section 1.10) it should be mentioned here that this apparent
paradox disappears if lossy slabs are considered [59–61]. An additional effect of
losses is to limit the resolution of the perfect lens. Lossy left-handed slab lenses
can still improve the value of kmax (kmax . v

ffiffiffiffiffiffiffiffiffiffi
10m0

p
) in equation (1.53), but

leaving it finite (see Section 1.10 for a complete discussion on this point).
Therefore, it will be more appropriate to speak about lossy left-handed superlenses,
which approach Pendry’s perfect lens when losses approach to zero.

Other considerations of interest arise from the comparison between the Veselago
lens (see Fig. 1.3) and Pendry’s perfect lens. For this purpose we will consider the
image of a point source created by both lenses. A Veselago lens, with n , 0 but
1=10 ,m=m0 = �1, will be considered first. It is a nonconventional geometrical
optics system, where electromagnetic energy coming from a point source is
focused into a three-dimensional spot beyond the lens, of radius not smaller than a
half wavelenght (this behavior is sketched in Fig. 1.14a). Therefore, superresolution
is not present in the Veselago lens. Let us now consider Pendry’s perfect lens. In
this device, the fields at x ¼ 0, where the source is placed, are exactly reproduced
at x ¼ 2d (see Fig. 1.12). Therefore, from the uniqueness theorem [14], it immedi-
ately follows that the source fields in the x-interval [0, 1] are exactly reproduced
beyond the lens in the x-interval [2d, 1]. However, nothing ensures that the source

FIGURE 1.13 Amplitude pattern for an evanescent Fourier harmonic of the perfect lens
shown in Figure 1.12. The amplitude follows the curves exp(+ax), where

a(ky, kz) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z � v210m0

q
.
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fields for x , 0 will be reproduced at x, 2d. In fact, this will be impossible, as the
presence of the source implies a field divergence at x ¼ 0 that is not present at x ¼ 2d
[62]. Intuitively, it can be guessed from the amplitude pattern of Figure 1.13 that
fields must grow from the image plane to the lens, regardless of behavior near the
source (such behavior is sketched in Fig. 1.14b). In fact, this behavior has been con-
firmed by analysis [63] and experiment [64]. Therefore, Pendry’s perfect lens does
not focus the energy coming from a point source into any spot in three-dimensional
space. Nevertheless, it still produces a two-dimensional spot on the image plane (x ¼
2d ), of a size that can be much smaller than a square wavelength. Therefore, Pendry’s
perfect lens produces two-dimensional superresolution in the image plane, but not
superfocusing of energy in three-dimensional space4. This characteristic of the
perfect lens (and similar devices) imposes severe limitations to its applicability for
subsurface heating or burning devices. It also imposes restrictions on its usefulness

FIGURE 1.14 Illustration of the behavior of the Veselago (a) and Pendry (b) lenses. In the
Veselago lens the energy coming from a point source, S, is focused onto a spot at the focus, F,
at a distance d þ d=jnj from the source. The size of this spot is not smaller than a wavelength.
In Pendry’s perfect lens, a virtual image, S0, of a point source, S, is created at a distance 2d from
S. However, fields at x , 2d grow exponentially towards the lens, so there is no focusing of
energy at any point.

4Such three-dimensional superfocusing will be contrary to the well-known uncertainty principle, as has
already been noted in [65] and [66]. It should also be mentioned that any practical lens must be lossy,
and that the behavior of lossy Pendry’s superlenses approaches that of Veselago lenses when the ratio
d/l0 increases (see Section 1.10).
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in imaging devices, at least if the distance between the source and the lens is
unknown. In fact, because the electromagnetic field intensity has a monotonic
decay at the back side of the lens, the location of an unknown source can hardly
be recovered from the analysis of the field distribution at the back side of the lens
(see [63] for a complete discussion, with examples, of this point).

Experimental confirmation of subdiffraction imaging in Pendry’s perfect lens has
been reported in [64], and the effects of an input or output medium other than free
space have been investigated in [67] (see Problem 1.13). Superresolution similar to
that produced by a left-handed perfect lens, but in the quasistatic limit, can be
obtained by using slabs with only negative 1 (such as silver plates at optical frequen-
cies) [26,68–71] (see Problem 1.14). It can be also obtained in magnetized ferrite
slabs [72] and in pair-coupled magnetoinductive surfaces [73].

1.9.4 The Perfect Lens as a Tunneling/Matching Device

In the previous section, the field created by a source placed in front of a perfect lens
was studied. In this section we will address the problem of image detection in such
devices. A key point in the behavior of Pendry’s perfect lens is that most of the infor-
mation reaching the image plane is carried by evanescent electromagnetic waves (the
aforementioned evanescent Fourier harmonics). As is well known, a single evanes-
cent electromagnetic wave does not carry power (for this reason the amplification
of evanescent Fourier harmonics inside the lens does not violate energy conserva-
tion). However, any measurement of the image should imply the transmission of
some amount of power from the source to the detector. Power transmission by eva-
nescent waves is known in physics as tunneling. Therefore, seen from the detector,
a perfect lens is a kind of tunneling device. For a single electromagnetic mode, tun-
neling of power was analyzed in Section 1.9.2. For a summation of evanescent waves
(the aforementioned evanescent Fourier harmonics), the basic mechanism should be
essentially the same: Some new evanescent waves are generated at the output in
addition to the evanescent Fourier harmonics generated by the source. It is the com-
position of all these waves that allows for power transmission. The aforementioned
new evanescent waves generated at the output are not present before the detector is
placed at the output. Therefore, the image detection process substantially affects
the field distribution along the system formed by the source and the lens. These
kind of devices, where fields depends on both the input and the output, have long
been considered by electrical engineers. Some of these devices—those that maximize
power flow—are usually called matching devices. Thus, from this standpoint, the
perfect lens can also be considered a matching device [66,74].

In the following we will analyze the image detection process in detail. As usual,
we will consider a system formed by the perfect lens, an input antenna (the source S ),
and an output antenna (the detector D). Two waveguides are connected to the input
and output antennas (for simplicity both waveguides will be assumed identical, with
characteristic impedance Z0). The image is obtained by scanning the detector behind
the lens, as a map of the transmission coefficient between the source and the detector.
The whole system is illustrated in Figure 1.15. The computation of the transmission
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coefficient is a standard problem of electromagnetic theory, which can be solved if
the impedance matrix Zij of the system formed by the antennas and the lens is
known. The resulting expression is [75]

t ¼ 2Z12Z0
(Z11 þ Z0)(Z22 þ Z0)� Z2

12

, (1:54)

where Zij are the elements of the impedance matrix of the system formed by the two
antennas and the left-handed slab, and Z0 is the characteristic impedance of the input/
output waveguides. If superresolution has to be detected, the size of the input and
output antennas has to be smaller than the free-space wavelength, which would
also make the real part of Zij (the radiation resistance) negligible with respect to its
imaginary part [14]; in other words, Zij ’ jXij, where Xij is the reactance matrix of
the system5. Moreover, because the perfect lens perfectly matches any source to
free space, X11 and X22 can be approximated by the reactances of the input and
output antennas in free space. The off-diagonal term, X12, accounts for the mutual
reactance between the antennas, which is strongly affected by the presence of the
lens. Therefore,

t � 2jX12Z0
( jX11 þ Z0)( jX22 þ Z0)þ X2

12

: (1:55)

If one of the self-reactances dominates over the remaining ones, the first term in
the denominator of (1.55) dominates over the second, and

t / X12: (1:56)

FIGURE 1.15 Experimental setup for the detection of images created by a left-handed
perfect lens. The source S is placed at a fixed distance from the left-handed slab, and the detec-
tor D is scanned behind the slab. The transmission coefficient between S and D is measured.

5Throughout this section we will consider lossless antennas. Loading the antennas with a resistance has
consequences that will not be analyzed here. See [63] for an analysis of this particular scenario.
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That is, the transmission coefficient is simply proportional to the mutual reactance,
X12, which usually provides a good measure of the field in the absence of the
output. This case may correspond to a small electric dipole antenna at the output
(in such a case, jX22j � jX21j, jX11j). It may also occur when the output antenna is
a small magnetic loop (in such a case, usually, jX11j � jX21j, jX11j, [63]).
Therefore, if small electric or magnetic probes are used as detectors, the transmission
coefficent through the device can give a correct measurement of the field created by
the source at the back side of the lens. This result can be expected from the physics of
the experiment; in both cases the field generated by the currents at the output antenna
should be very small, and should not substantially affect either the current at the input
antenna or the field distribution behind the lens. As was shown in [64], when such a
small probe is used for field measurements at the back side of the lens, the maximum
of transmission is obtained just at the back interface of the lens, in agreement with the
behavior outlined in Figure 1.14.

However, if the self-reactances of the input and output antennas are the same
(X11 ¼ X22 ¼ X ), which may corresponds to a detector identical to the source, then

t � 2jX12Z0
X2
12 � X2 þ Z2

0 þ 2jXZ0
: (1:57)

The values of t, as a function of X12 and X, are plotted in Figure 1.16. Except for very
small values of X, the maximum is achieved for X12 � X, and in such a case it is also
the case that jtj � 1. Because both antennas are identical and the lens reproduces the
field of the source at the image plane, the condition X12 � X is fulfilled when the
detector is placed at the theoretical location of the image, at a distance 2d from the
source. Therefore, if the source and the detector are identical, and the detector is

FIGURE 1.16 Plot of the modulus of the transmission coefficient t ¼ S21 (1.57) as a func-
tion of the modulus of the reactances X11 ¼ X22 ¼ X and X21 (Source: Reprinted with per-
mission from [63]; copyright 2005 by the American Physical Society.)
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placed at the theoretical location of the image (i.e., at a distance 2d from the source),
the perfect lens behaves as a perfect tunneling (or perfect matching) device, giving a
maximum of power transmission at the theoretical location of the image (i.e., at the
point marked as S0 in Fig. 1.14). If the antennas are not identical, but none can be
considered a small probe (in the sense defined in the previous paragraph), the location
and magnitude of the maximum transmission will vary. This tunneling effect in meta-
material perfect lenses and similar devices has been analyzed in detail in [63]. The
experimental confirmation of such an effect has been shown in a device similar to
Pendry’s super-lens [73] (see also Chapter 5).

Two main conclusions arise from the above analysis. The first is that for field
measurements at the back side of a metamaterial super-lens, care must be taken in
order to avoid artifacts coming from the matching/tunneling capabilities of such
devices. The second is that, in some circumstances, it may be possible to take advan-
tage of such a tunneling effect in order to obtain additional information from the
image. For instance, if the shape and characteristics of the source are known, it is
possible to design an appropriate detector in order to determine the source location
in three-dimensional space from measurements of the transmission coefficient
behind the lens.

1.10 LOSSES AND DISPERSION

After the first seminal papers showing propagation in left-handed media, it was
claimed that losses and dispersion will destroy many of the previously reported
effects. Specifically, negative refraction [15] and super-resolution in Pendry’s
perfect lens [58] were criticized. The analysis of the refraction of a Gaussian beam
at the interface between an ordinary and a left-handed medium showed, without
doubt, that negative refraction occurs in such a situation [16,17], thus confirming
the Veselago analysis [6]. Of more interest are the effects of losses on the perfect
lens proposed by Pendry [26]. This effect was analyzed in [59–61] among others,
leading to similar conclusions. In the following we will briefly examine this aspect.

In order to develop the analysis, it is convenient to rewrite the transmission coeffi-
cient (1.39) as

t ¼ 4Z

(1þ Z)2 exp( jkx,2d)� (1� Z)2 exp(�jkx,2d)
, (1:58)

where Z ¼ Z2=Z1. If 1=10 ! �1 and m=m0 ! �1, from our definitions of positive
waves6 and from equation (1.30), it follows that Z ¼ 1 if kx,2 ¼ �jkx,2j is real, and
Z ¼ �1 if kx,2 ¼ �ja is imaginary. Therefore t ! exp( jjkx,2jd) for propagative
waves and t ! exp(ad) for evanescent waves. In both cases, the phase and amplitude

6According to our definitions (see Fig. 1.7 as well as Section 1.7 and equation 1.12), in the left-handed slab,
propagation is backward and positive waves are defined with Re(kx,2), 0 and/or Im(kx,2) , 0. In ordinary
media, positive waves are defined with Re(kx,2) . 0 and/or Im(kx,2) , 0, as usual.
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of the incident waves change along the slab just by the amount necessary to produce
Fourier harmonics restoration at a distance 2d from any source (see Section 1.9.3).
Let us now introduce a small amount of losses in the left-handed slab, so that
1 ! �10(1þ jd1) and m ! �m0(1þ jdm). Let us also suppose that kz � k0, so
that kx,2 ¼ �ja ’ �jjkzj. In such limit, taking into account equation (1.30), we obtain

t ! 4

4 exp(�jkzjd)� d2m exp(jkzjd)
: (1:59)

Therefore, for high values of kz it is still t ’ exp(jkzjd) ’ exp(ad) provided
d2m exp(jkzjd) , 4 exp(�jkzjd), or

jkzjd . ln
2
dm

� �
: (1:60)

However, if the above condition is not fulfilled, then t � exp(�jkzjd), and evanescent
waves are not amplified inside the left-handed slab. A similar (dual) result holds for
p-polarized (or TM) modes.

Regarding the analysis of Section 1.9.3, the above results imply that, in general, a
lossy left-handed slab with 1=10 ! �(1þ jd1) and m=m0 ! �(1þ jdm) will see the
effective source (1.53) with

kmax �
1
d
ln

2
d

� �
; d ¼ max d1, dm

� 	
, (1:61)

so that the source is seen at the image with a resolution D given by

D

d
&

2p
kmaxd

¼ 2p ln
2
d

� �� ��1

: (1:62)

It is worth noting that the wavelength of the incident radiation does not
appear in equation (1.62), only the losses and thickness limit the resolution of the
device.

An interesting consequence of the above results is that losses prevent the diver-
gence of energy mentioned in section 1.9.3. In fact, because Fourier harmonics are
only restored upto some finite value of jkzj ¼ kmax, the energy divergence associated
with the harmonics in the limit jkzj ! 1 disappears. However, this regularization
takes place at the cost of a loss in resolution. Thus, the lossy perfect lens is, in
fact, a super-lens, with a resolution limited by equation (1.62). As the free-space
wavelength is not present in equation (1.62), the resolution of such a lens may still
overcome the diffraction limit (D . l0). However, the logarithmic dependence on
1=d of D=d strongly limits this effect. In fact, even in the best dielectrics, d1 is not
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much smaller than 1023. Therefore, as a consequence of equation (1.62), super-
resolution can only be present in left-handed slabs with a width of only a fraction
of the wavelength. Thus, in practice, any left-handed super-lens is a near-field
device whose effectiveness should be measured with regard to other near-field
microscopy devices [76]. In order to reduce the limitations caused by losses in the
super-lens performance, multilayer lenses formed by alternating layers of ordinary
and left-handed media have been proposed [77,78]. Such devices provide a larger
distance between the source and the image, but not a larger distance between the
source and the left interface of the lens.

The above analysis can easily be extended to variations in the real part of 1 and m:
1 ! �10(1þ d1) and m ! �m0(1þ dm) [59]. The results are quite similar to those
reported in the previous paragraph. The main difference is that these small variations
of 1 or m may allow for the excitation of slab guided waves (see Section 1.8.2) for
some values of the transverse wavenumber. In such cases, very high values of the
transmission coefficient are obtained for the corresponding spatial Fourier harmonic
[59], which may distort the image. As left-handed metamaterials are highly dispersive
media, this effect may appear for sources emitting radiation pulses of finite duration.

The effect of the finite duration of RF pulses in the focusing of rays in the
Veselago lens was also analyzed in [61]. The main conclusion is that, for the effective
focusing of a ray, the pulse duration should be longer than the time taken by light to
travel between the source and the focus along such a ray.

1.11 INDEFINITE MEDIA

Upto now, we have focused our attention on isotropic left-handed media. However,
most present realizations of such media are in fact highly anisotropic, showing a
left-handed behavior only for very specific polarizations and directions of propa-
gation. These structures (some of them will be described in detail in the following
chapters of this book) are easier to manufacture than isotropic left-handed media,
while keeping many of their interesting properties. Therefore, they are of great prac-
tical interest. Many of them can be described by means of symmetric and simul-
taneously diagonalizable permittivity, 1

¼
, and permeability, m

¼
, tensors with some

negative eigenvalues. These media have been called indefinite media [53], a denomi-
nation that emphasizes that not all the eigenvalues of the constitutive tensors have the
same sign. In this section, wave propagation in indefinite media will be briefly dis-
cussed. This discussion will mainly follow the analysis in [53].

In order to simplify the analysis, we will choose a system of reference such that
both 1

¼
and m

¼
are diagonal:

1
¼ ¼

1x 0 0
0 1y 0
0 0 1z

0
@

1
A; m

¼ ¼
mx 0 0
0 my 0
0 0 mz

0
@

1
A: (1:63)
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Because the dispersion relation for plane waves of generic polarization propagating in
such a medium may be rather complicated, we will focus our attention on
some particular cases of interest. In particular we will consider the very important
case of TE waves polarized along a main axis of 1

¼
and m

¼
. As in the previous sections

we will choose, without loss of generality, E ¼ E ŷ. The dispersion relation for such
waves is [53]

v2 ¼
k2z

1ymx
þ k2x
1ymz

(1:64)

(the dispersion relation for TM waves is the dual one). Taking v as a parameter,
equation (1.64) defines the isofrequency curves in the (kz, kx) plane. These curves
may be ellipses or hyperbolae, depending on the signs of 1ymx and 1ymz. It may be
worth mentioning that, because left-handed media are highly dispersive, the consti-
tutive parameters in equations (1.63) and (1.64) are usually frequency dependent.
Therefore, in practical indefinite media, the shape of these curves may change
from hyperbolic to elliptic, and vice versa, depending on frequency.

The direction of propagation of optical rays and energy is defined by the group
velocity vg ¼ rkv(k). From equation (1.64) it is readily found that

vg ¼
1
v

kx
1ymz

, 0,
kz

1ymx

� �
: (1:65)

The angle between group and phase (vp ¼ kv=k2) velocities is defined by

vp � vg ¼
1
k2

k2x
1ymz

þ
k2z

1ymx

� �
, (1:66)

which generalizes equation (1.18). The laws for the refraction of optical rays at the
interface of an indefinite media can be deduced from equation (1.64) by imposing
the continuity of the tangential component of the wavevector k at the interface,
and using equation (1.66) to draw the rays in the indefinite media [24] (see
Fig. 1.4 and Problem 1.8). Equation (1.64) is also useful for analyzing the propa-
gation of TE modes in rectangular waveguides filled with indefinite media [79], or
the amplification of TE evanescent modes by slabs made of such media [53].

PROBLEMS

1.1. Quasistatic plasmonic resonance of a sphere. Find the polarization of a
sphere of permeability 1 , 0 in the presence of a uniform quasielectrostatic
field. Assume a plasmonic type of frequency dependence 1 ¼ 10(1� v2

p=v
2),

and find the frequency of oscillation of quasistatic polarization modes.
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1.2. Quasistatic surface plasmons. Show that Laplace’s equation at the interface
between two media, 1 and 2, has bounded propagative solutions along such
interface provided 11 ¼ � 12. These solutions are usually called quasistatic
surface plasmons [3].

1.3. Full-wave surface plasmons–polaritons. Find the dispersion relation for TM
surface waves at the interface between two media with 11 . 0 and 12 , 0.
Show that these solutions converge to the aforementioned surface plasmons
(see Problem 1.2) in the limit k ! 1. For small values of k, these waves
have a different dispersion relation and are sometimes called surface polari-
tons. See [3] for a deeper discussion on surface plasmons–polaritons.

1.4. Energy flow of a plane wave in a left-handed medium. Show that equation
(1.14) ensures that the density of energy (U) and the energy flux (the Poynting
vector S) of a plane wave in a lossless left-handed medium are related through
S ¼ vg U:

1.5. Left-handed concave and convex lenses. Show that a concave (convex) lens
made of a left-handed metamaterial becomes convergent (divergent). These
lenses were analyzed in [6].

1.6. Refraction of nonparaxial rays by a left-handed slab. Study the refraction
of nonparaxial rays coming from a point source by a left-handed slab, and
find the distance from the source at which these rays refocus. Show that this
distance reduces to equation (1.22) for paraxial rays.

1.7. Dispersion relation for p-polarized surface waves. Find the dispersion
relation for p-polarized (or TM, or LSM) surfaces waves at the interface
between a left-handed medium and free space. Show that it is deduced from
equation (1.37) by the duality transformations 1!m, m!1, E!H, H!2E
(see [14]).

1.8. All-angle negative refraction by an indefinite uniaxial dielectric. Study the
refraction of plane waves at the interface between free space and a uniaxial
dielectric with m ¼ m0, 1k , 0 and 1? ¼ 10. Show that all-angle negative
refraction occurs for p-polarized (TM) waves when the optical axis is perpen-
dicular to the interface. Similar systems have been analyzed in [9,24].

1.9. Energy flow in surface waves. Show that in the surface waves (1.37), power
flows in the backward direction inside the left-handed material, and in the
forward direction in free space. Discuss, in terms of the constitutive parameters,
if the whole surface wave is forward or backward.

1.10. Small resonators made with left-handed media. Study the resonant modes
of a one-dimensional cavity made of two consecutive slabs of ordinary and
left-handed media, placed between two parallel metallic plates. Show that
the condition for the resonance of TEM waves does not depend on the distance
between the plates, but on the relative width of the slabs. This and other similar
resonators and waveguides have been proposed in [47].
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1.11. Modes in parallel-plate waveguides partially filled by a left-handed
slab. Find, making use of the transverse transmission matrix technique, the
dispersion relation for TE and TM modes in parallel plate waveguides partially
filled by a left-handed slab. This and other similar waveguides have been ana-
lyzed in [38].

1.12. Phase compensation in single negative slabs. Show that all-angle phase com-
pensation and amplification of evanescent waves also occurs in two consecutive
slabs with 0 , 12 ¼ �11 and 0 . m2 ¼ �m1, provided thewidths of both slabs
are identical. Draw a plot of the amplitude of electromagnetic waves inside this
system for the different aforementioned effects. See [52] for a deeper discussion
on the properties of a pair of consecutive single negative slabs.

1.13. Asymmetric perfect lens. Find the transmission coefficient through a left-
handed slab with 1 ¼ �10 and m ¼ �m0 sandwiched between free space
and a semi-infinite medium with 0 , 1 = 10 and 0 , m = m0. This system
is sometimes called an asymmetric perfect lens [67].

1.14. Near-field near-perfect lens made with a medium with 1 ¼210. Find the
transmission coefficient for evanescent quasielectrostatic waves (i.e., solutions
to Laplace’s equation of the kind f(r) ¼ f0 exp(�jk � r)) through a slab with
1 ¼ �10 and m ¼ m0. Show that this slab behaves as a near-field near-perfect
lens for the quasielectrostatic field. A deeper discussion of this proposal can be
found in [26] and in [68–71], among others.

1.15. TE anticutoff waveguide made with an indefinite uniaxial medium. Find
the dispersion relation for the fundamental TE1,0 mode in a rectangular wave-
guide filled with a uniaxial indefinite medium with 1 ¼ 10, mx ¼ my ¼ m0,
mz , 0 (see Fig. 1.9 for the axis definition). Show that this mode has an
anticutoff behavior; that is, it is propagative below certain cutoff
frequency and evanescent above this frequency. This device has been
studied and experimentally demonstrated in [79].

1.16. TM anticutoff waveguide made with an indefinite uniaxial medium. Find
the dispersion relation for the fundamental TM1,1 mode in a rectangular wave-
guide filled with a uniaxial indefinite medium with m ¼ m0, 1x ¼ 10,
1y ¼ 1z , 0 (see Fig. 1.9 for the axis definition). Show that this mode has
an anticutoff behavior; that is, it is propagative below a certain cutoff frequency
and evanescent above this frequency. This device has been studied and exper-
imentally demonstrated in [80].
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CHAPTER TWO

Synthesis of Bulk Metamaterials

2.1 INTRODUCTION

This chapter is devoted to the design of bulk metamaterials with negative parameters.
By bulk metamaterialswe mean discrete media made of a combination of unit cells of
small electrical size at the frequencies of interest. It will be assumed that the consti-
tutive parameters of such media can be deduced from the unit cell polarizabilities by
an appropriate homogenization procedure. This approach is, in fact, a direct trans-
lation of the methods used in solid-state physics for the characterization of natural
substances. Bulk metamaterials, as they have been defined here, substantially differ
from photonic or electromagnetic crystals. In fact, the electromagnetic properties of
bulk metamaterials arise, in essence from the electromagnetic properties of its consti-
tutive elements. Periodicity usually plays a secondary role in bulk metamaterials.

After the seminal works of Walter Rotman [1], John Pendry [2,3], and David
Smith and his co-workers [4], a standard procedure was established for the design
of bulk artificial media with negative parameters at microwave frequencies. This stan-
dard procedure makes use of a system of metallic wires and/or plates to obtain the
negative dielectric permittivity. A system of split ring resonators (SRRs) is used to
obtain the negative magnetic permeability. This standard approach will be developed
through the main part of this chapter, in Sections 2.2 to 2.5. The homogenization of
systems of metallic wires and plates is described in Section 2.2. In the last part of this
section, the key issue of spatial dispersion in wire media is introduced. Section 2.3 is
devoted to the synthesis of negative permeability media using SRRs. A physical
model for these elements, based on equivalent LC circuits, is developed. Then,
Lorentz local field theory is applied to the homogenization of SRR media. Some
advanced topics, such as higher-order SRR resonances, the design of isotropic
SRRs, or the behavior of SRRs at infrared and optical frequencies, will be addressed
in the last part of this Section. The synthesis of left-handed metamaterials using a
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superposition of the aforementioned negative permittivity and negative permeability
configurations will be developed in Section 2.4. Some key issues of this approach,
such as the limits of the homogenization procedure in discrete left-handed meta-
materials, and the justification of the superposition hypothesis underlying this pro-
cedure, will be addressed at the end of the section. Finally, in the last section of
this chapter, other proposals for the design of bulk metamaterials with negative par-
ameters are described and analyzed.

It must be mentioned here that there is also an alternative and widely used
approach for the design of metamaterials at microwave frequencies. This approach
was introduced simultaneously by Iyer and Eleftheriades [5], Caloz et al. [6], and
Oliner [7]. It may be classified as a nonresonant circuit analysis approach. Such
as approach substantially differs from the bulk media approach, because only
circuit-like interactions between the nearest-neighbors elements of the system are
considered. It also makes it possible to avoid the resonant behavior inherent in
bulk design approaches. This circuit analysis approach will be described in the
next chapter. The relation between such as approach and the analysis developed in
this chapter, as well as the analysis of SRR-loaded transmission lines in the frame
of the circuit analysis approach, will be developed in Chapter 3.

2.2 SCALING PLASMAS AT MICROWAVE FREQUENCIES

The simulation of plasmas at microwave frequencies became an active field of
research during the 1960s, mainly aimed at the simulation of radio-communications
with spaceships during transit through the ionosphere. In a paper that became a
classic, Walter Rotmann studied the modeling of dilute plasmas—with plasma fre-
quencies in the microwave range—by systems of metallic wires or plates [1].
Many years later, the same problem was addressed from a different standpoint by
John Pendry [2]. Because lossless plasmas exhibit a negative effective permittivity
below plasma frequency, these works opened the way to the design of artificial
media with negative dielectric permittivity. Such an approach will be developed in
this section. We will start with the simpler analysis of hollow metallic waveguides
and plates, which simulate one- and two-dimensional plasmas, respectively. Wire
media will then be analyzed.

2.2.1 Metallic Waveguides and Plates as One- and
Two-Dimensional Plasmas

Let us consider a hollow rectangular metallic waveguide. The propagation constant
corresponding to the fundamental TE10 mode is given by

k2 ¼ v210m0 1� v2
c

v2

� �
, (2:1)
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where vc is the cutoff frequency of the waveguide. This dispersion relation is iden-
tical to that of an ideal plasma provided the cutoff frequency vc is substituted by
the plasma frequency vp. This identity suggest that a rectangular waveguide can be
seen—to some extent—as a one-dimensional plasma [8] with an effective dielectric
constant of

1eff ¼ 10 1� v2
c

v2

� �
: (2:2)

This equivalence is supported by analysis of the wave impedance corresponding to
the considered mode [9,10],

Z ¼ vm0

k
: (2:3)

In fact, if we assume that the continuous media relations

k2 ¼ v21effmeff and Z2 ¼ meff

1eff
, (2:4)

are simultaneously satisfied with k and Z given by equations (2.1) and (2.3), the effec-
tive dielectric constant (2.2) is deduced, as well as meff ¼ m0. Additional compu-
tations show that the proper relation between the effective polarization and the
averaged electric field also holds (see Problem 2.1). Therefore, the proposed equiv-
alence between rectangular waveguides and one-dimensional ideal plasmas is also
supported by the averaging of the electromagnetic quantities. In fact, because the pre-
vious discussion is not restricted to rectangular waveguides, this equivalence can be
extended to any hollow waveguide supporting TE modes. In particular, in square
waveguides the fundamental modes TE10 and TE01 are degenerated. Therefore, a
bunch of square waveguides such as those shown in Figure 2.1 will behave as a
one-dimensional plasma for TE wave polarization.1

The above results can easily be extended to the simulation of two-dimensional
plasmas by a system of parallel metallic plates [1] such as that shown in
Figure 2.1. When this structure is illuminated by a plane wave polarized with the elec-
tric field parallel to the plates, and with a wavevector also parallel to them (so that the
incident magnetic field is perpendicular to the plates) the TE10 mode is excited in the
system.2 Such a TE10 mode has a propagation constant inside the system of plates as
given by equation (2.1), and an impedance given by equation (2.3). Therefore, from
equation (2.4), the system of plates can be characterized by the effective dielectric

1It may be worth mentioning that a similar equivalence between waveguides supporting TM modes and
ideal magnetic plasmas can be stated (see Problem 2.2 and [11])
2In fact, higher-order modes are also excited. However, it is usually supposed that only the TE10 mode has a
significant penetration inside the system, so that the effect of higher-order modes can be accounted for as a
boundary condition at the interface.
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constant (2.2), and the effective magnetic permeability meff ¼ m0. Such effective con-
stants correspond to an ideal plasma with plasma frequency vp ¼ vc ¼ cp=a, where
c is the velocity of light in free space, and a is the distance between the plates.
Because, for the TE10 mode, the average component of the magnetic field along
the direction of propagation vanishes, the average fields inside the system of parallel
plates (kEl and kHl) form a TEM wave, with kEl parallel and kHl perpendicular to the
plates. It can also be shown (see Problem 2.1) that the average electric polarization P
inside the structure is related to the averaged electric field by

P ¼ �10
v2
c

v2
kEl, (2:5)

which corresponds to the effective dielectric constant (2.2). In summary, the system
of parallel plates shown in Figure 2.1 behaves as a two-dimensional ideal plasma with
plasma frequency vp ¼ cp=a. However, it should be kept in mind that this equival-
ence is restricted to waves polarized with the electric field parallel to the plates.

FIGURE 2.1 Illustration of the development of one-, two-, and three-dimensional artificial
plasma designs by using square waveguides, metallic plates, and wires. (a) A bunch of
square metallic waveguides behaves as a one-dimensional plasma (with a plasma frequency
equal to the cutoff frequency of the waveguides). (b) The horizontal conducting walls,
which do not affect the field distribution in (a), are suppressed in order to obtain a two-
dimensional design (front view). (c) The metallic boundaries of (a) are substituted by a
regular mesh of wires in order to achieve an isotropic three-dimensional artificial plasma.
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2.2.2 Wire Media

The designs described in Section 2.2.1 are simple and can be easily analyzed and man-
ufactured. However, they are restricted to propagation in one or two dimensions, and to
waves with the proper polarization. It can be guessed that a cubic mesh of conducting
wires can provide the generalization of the above concepts to a three-dimensional
structure. This concept is illustrated in Figure 2.1. If the period of the wire mesh is
smaller than the free-space wavelength, it should be approximately equivalent to the
bunch of waveguides shown in Figure 2.1a. Moreover, because the considered wire
mesh is isotropic at large scales, it can be guessed that such system will behave as
an isotropic artificial plasma for all wave polarizations and directions of propagation
(at least in the long wavelength limit). The plasma frequency of such artificial
plasma should be close to the cutoff frequency of the waveguide bunch vp � cp=a.

A more accurate determination of vp comes from the analysis of the equivalent
transmission line for the wire medium. Let us consider a TEM transmission line
loaded by metallic posts, as shown in Figure 2.2. This transmission line is useful
for modelling the propagation of TEM waves along the wire media of Figure 2.1, pro-
vided the electromagnetic field is polarized with the electric field parallel to a set of
wires. The per unit length series inductance of the parallel plate transmission line is
Ls=a ¼ m0, where the per unit length shunt capacitance is C=a ¼ 10. In the circuit
model for the transmission line of Figure 2.2, the effect of the wires can be
modeled by periodically loading this transmission line with the shunt inductances
associated with each metallic post. We can estimate this shunt inductance as [2]

L ’ m0a

2p
ln (a=r), (2:6)

FIGURE 2.2 Illustration of the transmission line model for wire media. (a) Equivalent trans-
mission line (PEC: perfect electric conductor; PMC: perfect magnetic conductor). (b) Circuit
model for the equivalent transmission line, Ls ¼ m0a, C ¼ 10a.
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where r is the wire radius. In this expression, the effect of the remaining wires has
been taken into account by imposing that the magnetic field created by a single
wire is shielded by its nearest neighbors at a distance a from the considered wire
(otherwise, this inductance will become infinite). From standard transmission line
theory it follows that the phase propagation along the wire-loaded transmission
line of Figure 2.2 is given by

k2 ¼ v2

a2
(Lþ Ls)C ¼ v2m010 1� 2p

v2m010a2 ln(a=r)

� �
, (2:7)

provided the periodicity a can be considered small with regard to wavelength. By
comparing this expression with the corresponding one for an ideal plasma, the
following value is obtained for the plasma frequency of the wire media:

v2
p ¼

2p
m010a2 ln(a=r)

: (2:8)

This value coincides with the result reported in [2]. More accurate calculations [14],
lead to the result

v2
p ¼

2p

m010a2[ lnfa=ð2prÞg þ 0:5275]
: ð2:9Þ

The reported theory on the homogenization of wire media cannot be accepted
without some criticism. In fact, except for extremely thin wires, the above expression
implies that propagation of electromagnetic waves is only possible at frequencies with
an associated free-space wavelength of the same order as the period of the structure.
Nevertheless, near the plasma frequency, the internal wavelength is very large, so the
assumption of an electrically small periodicity along the line can still be considered
valid. However, as frequency increases, the internal wavelength soon becomes similar
to the period. Needless to say, below the plasma frequency, the penetration length of
evanescent waves also soon becomes of the same order as the period. Therefore,
except for a small region around the plasma frequency, the reported homogenization
seems to be against the most basic assumption of any homogenization theory: The
scale of variation of the averaged field should be much larger than the period.
Nevertheless, in metamaterial analysis, the above expression is widely used
without too much care about its frequency range of validity. This use is ordinarily
justified by the fact that, when other elements (split ring resonators for instance)
are added to the wires, waves with an internal wavelength much larger than the
period can propagate in the metamaterial. This argument leads, however, to the super-
position problem, which will be addressed in Section 2.4.4. Ultimately, it is the agree-
ment between theory and experiments that justifies the homogenization.
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2.2.3 Spatial Dispersion in Wire Media

The analysis reported in the previous section is valid for TEM waves propagating
along a set of wires, and polarized with the electric field parallel to another set of
wires (see Fig. 2.1c). From this result, and from the isotropy at large scales of the
structure, we could assume that the results of such an analysis are generalizable to
any TEM wave. That is, the system of wires could be described as an ideal isotropic
plasma with a plasma frequency given by equation (2.8). However, as will be shown
in the following, this assumption is not always justified.

To begin, we will consider the more simple system made of a set of periodic par-
allel infinite wires, as shown in Figure 2.3. For homogenized TEMwaves propagating
perpendicular to the wires and polarized with the magnetic field also perpendicular to
the wires, this medium behaves as an ideal plasma with plasma frequency given by
equation (2.8). For waves with orthogonal polarization, the medium is transparent
with 1 ¼ 10. Also, for TEM waves of any polarization propagating along the
wires, the medium is transparent with 1 ¼ 10 (for thin wires). However, it has
been shown [12] that these facts do not mean that the wire medium could be charac-
terized as an uniaxial dielectric with 1x ¼ 1y ¼ 10 and 1z ¼ 10(1� v2

p=v
2).

The effective permittivity tensor of the artificial medium shown in Figure 2.3 can be
obtained from the analysis of the propagation of TM-to-z electromagnetic waves
through such medium (TE-to-z waves do not see the wires, thus being TEM waves
with propagation constant k0 ¼ v

ffiffiffiffiffiffiffiffiffiffi
10m0

p
). The fields of such TMwaves are fully deter-

mined by the electric field component Ez, which should satisfy Hemholtz’s equation

@

@x2
þ @

@y2
þ g2

� �
Ez ¼ 0, (2:10)

where g2 ¼ k20 � k2z (with k20 ¼ v210m0), and kz is the wavevector along the wires’
axis. Boundary conditions impose that Ez ¼ 0 on the wires. Solutions to this

FIGURE 2.3 A system of perfectly conducting infinite parallel wires.
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system of equations only depend on the eigenvalue g2, so the transverse dependence
of the fields is not affected by kz and v independently, but by the combination of both
g2 ¼ k20 � k2z . The eigenvalue g can be identified with the free-space wavevector, k0,
corresponding to a TM wave with kz ¼ 0; g2 ¼ k20(kx, ky, 0). Therefore, the dis-
persion relation for the considered TM waves must satisfy

g2 ; k20(kx, ky, kz)� k2z ¼ k20(kx, ky, 0), (2:11)

for any value of kz. The dispersion relation for such TM waves with kz ¼ 0, is known,
having the plasma-like form

k2x þ k2y ¼ k20(kx, ky, 0)� k2p , (2:12)

where kp ¼ vp
ffiffiffiffiffiffiffiffiffiffi
10m0

p
is the free-space wavevector corresponding to the plasma fre-

quency vp. From this result, the dispersion relation for TM waves with kz = 0 is
obtained by substitution of equation (2.11) into (2.12):

k2 ; k2x þ k2y þ k2z ¼ k20 � k2p : (2:13)

This result is not compatible with the uniaxial permittivity tensor previously assumed
(see Problem 2.3). However, if the uniaxial permittivity tensor [12]

1x ¼ 1y ¼ 10, 1z(v, kz) ¼ 10 1�
k2p

k20 � k2z

 !
; k2p ¼ v2

p10m0 (2:14)

is assumed for the parallel wire medium, then the dispersion relation (2.13) is
obtained (see Problem 2.3). Thus, we can conclude that the considered wire
medium behaves as a uniaxial dielectric with the permittivity tensor (2.14). This
result shows that spatial dispersion, expressed in the dependence on kz of the permit-
tivity tensor (2.14), plays an important role in the characterization of wire media, even
in the very large wavelength limit. Such a result may be expected, because the unit
cell of the considered parallel-wire medium has an infinite extent along the z-axis,
and spatial dispersion is expected to appear when the unit cell size is not small
with regard to the wavelength [13].

The above result raises an important question on the homogenization of wire
media: to what extent spatial dispersion should be considered in the analysis of
wire meshes? This question has been answered in [14]. The main result reported
there is that the connected configuration shown in Figure 2.1c actually behaves as
an ideal plasma, supporting homogenized TEM waves with the dispersion relation
(2.1), and with an effective plasma frequency given by equation (2.9). However, a
regular mesh of nonconnected wires shows strong spatial dispersion in the long wave-
length limit, similar to that reported for the parallel-wire media.
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2.3 SYNTHESIS OF NEGATIVE MAGNETIC PERMEABILITY

In 1852, Wilhem Weber formulated the first theory of diamagnetism, discovered by
Faraday some years before. He assumed the existence of closed circuits at the molecu-
lar scale, and invoked Faraday’s law to prove that currents would be induced in these
circuits when they were under the effect of an external time-varying magnetic field.
As the secondary magnetic flux created by such currents would be opposite to that
created by the external field, this mechanism would explain the diamagnetism
reported by Faraday [15]. In fact, it is easily shown that the magnetic polarizability
of a lossless conducting ring along its axis (namely the z-axis) is given by

mz ¼ amm
zz Bext

z and amm
zz ¼ �p2r4

L
, (2:15)

where amm
zz is the polarizability,3 Bext

z is the z-component of the applied magnetic
field, r is the radius of the ring, and L the self-inductance of the ring. However,
the diamagnetic effect associated with a closed metallic ring is not strong enough
to produce negative values for m. In fact, the self-inductance of a perfect conducting
ring can be efficiently calculated as [13]

L ¼ m0r ln
16r
d

� �
� 2

� �
, (2:16)

where d is the diameter of the wire. This expression gives L � m0r for any realistic
r/d ratio. Thus, m0jamm

zz j � p2r3. Therefore, the magnetic susceptibility of an

arrangement of rings (which can be estimated as xm � m0a
mm
zz =V , where V & (2r)3

is the volume per ring) is jxj . p2=8 � 1. That is, it does not seem possible to
obtain an effective negative m from any arrangement of closed metallic rings.

The magnetic polarizability of a closed metallic loop can be easily enhanced by
loading the loop with a capacitor. This configuration, proposed by Schelkunoff
[16], provides the following expression for amm

zz :

amm
zz ¼ p2r4

L

v2
0

v2
� 1

� ��1

, (2:17)

where v0 ¼ 1=
ffiffiffiffiffiffi
LC

p
is the resonant frequency of the LC circuit formed by the loop

and the capacitor. This expression shows that, just above the frequency of resonance,
the polarizability becomes negative and very large. Therefore, it is expected that a
regular array of capacitively loaded metallic loops will show a negative magnetic

3The repeated sub-index zz indicates that it is due to a force directed along the z-axis, and produces an effect
along the same axis. The repeated super-index mm indicates that the external force is magnetic, and that the
effect is also magnetic.
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permeability just above the frequency of resonance of the loops. However, this
configuration may be difficult to manufacture at microwave and higher frequencies,
a fact that is crucial if we are interested in the design of effective media that may
involve hundreds or, perhaps, thousands of elements. This difficulty is solved at
microwave frequencies if the lumped capacitance is substituted by a distributed
one. This modification of Shelkunoff’s proposal leads to the split ring resonator
(SRR) proposed by Pendry in [3]. Using this design it is possible to manufacture
large series of small loops, of very high and negative magnetic polarizability, by
using standard planar photo-etching techniques. The analysis of Pendry’s SRR and
related geometries is the main purpose of this section. This analysis will account
for the main properties of these elements, providing accurate analytical design for-
mulas useful for the design of SRR-based metamaterials.

In the last part of this section some related topics will be addressed. Such topics
include the design of isotropic SRRs useful for isotropic metamaterial design, as
well as the behavior of split ring resonators when they are scaled down in order to
obtain a resonant magnetic response at infrared and optical frequencies.

2.3.1 Analysis of the Edge-Coupled SRR

The SRR (in the following, “edge-coupled SRR”, or EC-SRR), as it was initially pro-
posed by Pendry [3], consists of two concentric metallic split rings, printed on a
microwave dielectric circuit board (Fig. 2.4). When it is excited by a time-varying
external magnetic field directed along the z-axis, the cuts on each ring (which are
placed on opposite sides of the EC-SRR) force the electric current to flow from
one ring to another across the slots between them, taking the form of a strong displa-
cement current. The slots between the rings therefore behave as a distributed capaci-
tance, and the whole EC-SRR has the equivalent circuit shown in Figure 2.5b, where
L is the EC-SRR self-inductance and C is the capacitance associated with each EC-
SRR half. This capacitance is C ¼ prCpul, where r is the mean radius of the EC-SRR
(r ¼ rext � c� d=2), and Cpul is the per unit length capacitance along the slot
between the rings. The total capacitance of this circuit is the series connection of

FIGURE 2.4 The edge-coupled split ring resonator (EC-SRR). Metallizations are in white
and dielectric substrate in gray.
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the capacitances of both EC-SRR halves, that is C/2. Thus, neglecting losses, the
equation for the total current I on the circuit is given by

2
jvC

þ jvL

� �
I ¼ S, (2:18)

where S is the external excitation. The reported circuit model was first proposed in
[17]. It is valid as long as the perimeter of the ring can be considered small with
regard to a half-wavelength, and the capacitance associated with the cuts on each
ring can be neglected. Under such assumptions, the currents on each ring must
vanish at the cuts, and the angular dependence of the currents on each ring can be
assumed to be linear (so that the total current on both rings is constant). Such assump-
tions also imply that the voltage across the slots is constant in both EC-SRR halves
(see Fig. 2.5c and d for a detailed illustration of these hypotheses). A more detailed
circuit model, which takes into account the gap capacitance and includes a
transmission-line model for the slot between the rings has been reported in [18]. It
has been shown that such a model converges to the previous model when the capaci-
tance of the cuts on each ring is neglected, and the electrical length of the EC-SRR is
small [18]. As both approximations are usually fulfilled for any practical EC-SRR
design, the more simple model developed above will be assumed valid throughout
this book. The frequency of resonance, v0, of the EC-SRR can be obtained from
the proposed model by solving equation (2.18) for S ¼ 0. This leads to

v2
0 ¼

2
LC

¼ 2
prCpulL

: (2:19)

As has already been mentioned, near-resonance current lines flow across the slot
between the rings as displacement current lines. Thus, the EC-SRR self-inductance,

FIGURE 2.5 Quasistatic circuit model for the EC-SRR. (a) Sketch of the resonator. (b)
Equivalent circuit for the determination of the frequency of resonance, where C is the capaci-
tance across the slots on the upper and lower halves of the EC-SRR: C ¼ prCpul. (c) Plots of
the angular dependence of currents on the inner ring (dashed line), on the outer ring (dash–
dotted line), and of the total current on both rings (solid line). (d ) Plots of the angular depen-
dence of the voltage on the inner ring (dashed line) and on the outer ring (dash–dotted line).
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L, can be modeled as the inductance of an average ring of radius r (the mean radius of
the ring) and width c (the width of each ring) [17]. The analysis in [18] leads to the
same conclusion: The self-inductance L in equation (2.19) must be the average of the
inductances of both rings (without the gaps). In [19], approximate expressions for the
average inductance L, based on a variational calculation, are provided. Closed
expressions for the per unit length capacitances between the rings can be found in
many microwave handbooks (see, for instance, [20]). Such explicit expressions for
L and Cpul are given in the Appendix.

If the EC-SRR is excited by an external magnetic field, the excitation in equation
(2.18) is S ¼ �jvFext, where Fext is the external magnetic flux across the EC-SRR.
The equation for the total current becomes

I ¼ Fext

L

v2
0

v2
� 1

� ��1

: (2:20)

As has been shown, the EC-SRR essentially behaves as a capacitively loaded con-
ducting loop. It therefore exhibits a resonant magnetic polarizability amm

zz , given by
equation (2.17).

A careful consideration of the behavior of the EC-SRR shows that, near the reson-
ance, the particle reacts to an external magnetic field not only as a strong magnetic
dipole, but also as a strong electric dipole. In fact, when the EC-SRR is excited at
resonance, charges in the upper half of the EC-SRR must be the images of charges
at its lower half, as sketched in Figure 2.5a. Two parallel electric dipoles directed
along the y-axis are generated at each EC-SRR half. From the well-known Onsager
symmetry principle [21], it directly follows that the EC-SRR resonance can also be
excited by an external electric field directed along the y-axis of Figure 2.5a. In
both cases, a strong magnetic dipole along the z-axis, and a strong electric dipole
along the y-axis, are simultaneously excited. Moreover, the EC-SRR exhibits some
nonresonant electric polarizabilities along the x- and y-axis, which can be approxi-
mated by those of a metallic disk of radius rext ¼ r þ d=2þ c [10]. All these
results can be summarized by the following set of equations [19]:

mz ¼ amm
zz Bext

z � aem
yz E

ext
y (2:21)

py ¼ aee
yyE

ext
y þ aem

yz B
ext
z (2:22)

px ¼ aee
xxE

ext
x (2:23)

where the symmetry of the cross-polarizabilities derived from the Onsager symmetry
principle [21,22], (aem

yz ¼ �ame
zy ) has been explicitly introduced.

The EC-SRR magnetic polarizability is directly obtained from equation (2.20)
by taking into account that the dipolar magnetic moment of the ring is mz ¼ pr2I,
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and Fext ¼ pr2Bext
z ; that is,

mz ¼
p2r4

L

v2
0

v2
� 1

� ��1

Bext
z , (2:24)

a result that coincides with equation (2.17). The electric dipole induced by the exter-
nal field component Bext

z can be computed as

py ¼ 2
ðp
0
prr sinf df ¼ 4rpr, (2:25)

where pr is the radial per unit length electric dipole created along the slot between the
rings in the upper half of the EC-SRR ( y . 0 in Fig. 2.5a). This quantity can be
written as pr ¼ qdeff , where q is the per unit length charge on the outer ring (the
charge on the inner ring must be equal in magnitude and of opposite sign), and
deff some effective distance deff ’ cþ d. That is,

pr ¼ qdeff ¼ CpulVdeff , (2:26)

where V is the voltage difference across the slot between the outer and the inner rings,
which is a constant in the considered approximation (Fig. 2.5d). This voltage can be
calculated from 2V ¼

Þ
E � dl, where the field integral is taken along a path going on

the rings, and passing from one ring to another across the slots. From Faraday’s law,
2V ¼ �jv(LI þFext). Therefore, taking into account equations (2.25) and (2.26),

py ¼ �2jvrCpuldeff (LI þFext), (2:27)

and taking into account equation (2.20) and Fext ¼pr2Bext
z ,

py ¼ �2jpr3deffCpul
v2
0

v

v2
0

v2
� 1

� ��1

Bext
z : (2:28)

Let us now consider the behavior of the EC-SRR under an electric excitation. The
external excitation S is now the series connection of the external voltage across the
capacitors formed by the upper and the lower EC-SRR halves. This external
voltage can be estimated as two times the average voltage created by the external
field through each EC-SRR half.

S ¼ 2kV extl ¼ 2
p

ðp
0
Eext
y deff sinf df ¼ 4

p
deffE

ext
y : (2:29)
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By substitution in equation (2.18), the total current in the EC-SRR is found to be

I ¼ j
4deff
pvL

v2
0

v2
� 1

� ��1

Eext
y : (2:30)

This current creates a magnetic moment mz ¼ pr2I, which, taking into account
equation (2.19), can be written as4

mz ¼ 2jpr3deffCpul
v2
0

v

v2
0

v2
� 1

� ��1

Eext
y : (2:31)

Moreover, when the EC-SRR is under this excitation, the resonant current generated
around the rings must also create an electric moment, due to the radial polarization
(2.26) along the slots. It is easier to obtain the per unit length charge on the outer
ring from the current on this ring, and from charge conservation,

jvq ¼ � 1
r

dIout
df

, (2:32)

where Iout is the current on the outer ring. As, according to the model sketched in
Figure 2.5, the dependence of Iout on f is linear, and Iout takes a maximum Iout ¼
I at f ¼ 0, and a minimum Iout ¼ 0 at f ¼ p, the derivative in equation (2.32) can
be evaluated as dIout=df ¼ �I=p. Therefore, taking into account equation (2.30),

q ¼ I

jvpr
¼ 4deff

p2v2rL

v2
0

v2
� 1

� ��1

Eext
y : (2:33)

The total electric dipole associated with the EC-SRR is evaluated by substitution in
equations (2.25) and (2.26). Taking into account equation (2.19), this electric dipole
can be written as

py ¼ 4d2eff r
2C2

pulL
v2
0

v

� �2
v2
0

v2
� 1

� ��1

Eext
y : (2:34)

Finally, the EC-SRR must show a nonresonant electric polarizability in the
plane of the rings, which can be approximated as the electric polarizability of a
metallic disk of the same size as the EC-SRR. This polarizability is

4Note that the symmetry of the cross-polarizabilities assumed in equations (2.21) and (2.22) is fulfilled.
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a ¼ 1016r3ext=3, where rext ¼ r þ 2cþ d [10]. In summary, the polarizabilities of the
EC-SRR are as follows:5

amm
zz ¼ p2r4

L

v2
0

v2
� 1

� ��1

(2:35)

aee
xx ¼ 10

16
3
r3ext (2:36)

aem
yz ¼ �ame

zy ¼ �2jpr3deffCpul
v2
0

v

v2
0

v2
� 1

� ��1

(2:37)

aee
yy ¼ 10

16
3
r3ext þ 4d2eff r

2C2
pulL

v2
0

v

� �2
v2
0

v2
� 1

� ��1

: (2:38)

In such equations the effect of the polarization charges induced in the dielectric sub-
strate has been neglected. However, they should affect the electric polarizabilities. If
the substrate is thin (t � d), it can be assumed that the polarization charges induced
on each side of the dielectric substrate cancel each other. Therefore, the electric dipole
(2.26) is mainly due to the free charge alone, and the above expressions are approxi-
mately valid. However, for thick substrates, it is the overall (free and polarization)
charge that contributes in equation (2.26). In such a case it can be more appropriate
to use the in vacuo per unit length capacitance between the rings, C0

pul, instead of Cpul

in equation (2.26).6 Moreover, it is also more appropriate to use

S ¼ 2kV extl ¼
C0
pul

Cpul

2
p

ðp
0
Eext
y deff sinf df ¼

C0
pul

Cpul

4
p
deffE

ext
y , (2:39)

instead of equation (2.29).7 All these changes are accounted for by simply substitut-
ing Cpul with C0

pul in equations (2.35) to (2.38) [17,19] (of course, equation (2.19)

should not be changed).
From equations (2.35) to (2.38) it follows an interesting property of the resonant

part of the polarizabilities amm
zz , aem

yz , and amm
yy , that is,

amm
zz aee

yy � 10
16
3
r3ext

� �
¼ �(aem

yz )
2: (2:40)

5The value for ayy
ee slightly differs from the value reported in [17]. We are in debt to Dr Juan Baena and Dr

Lukas Jelinek for bringing this mistake to our attention.
6In other words, the total (free plus polarization) charge q0 ¼ C0

pul=Cpulq is used instead of the free
charge q.
7The reason for this choice is that the voltage induced by an external electric field Eext in a capacitor par-
tially filled by a dielectric is approximately given by C0=C Eextd, where d is the distance between the plates.
An additional reason is that this choice guarantees that the cross-polarizabilities satisfy the Onsager sym-
metry: ayz

em¼2azy
me.
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In fact, this property is quite general and comes from the quasistatic nature of the first
EC-SRR resonance, and in particular from the possibility of modeling this resonance,
by an LC circuit.

Up to now, we have considered a lossless EC-SRR. However, as was already men-
tioned in Chapter 1, losses play an important role in the characterization of meta-
materials. As SRRs are resonant elements, it can be expected that metamaterial
losses will be mainly associated with ohmic losses in the SRRs. These losses can
easily be taken into account by considering the AC resistance of the SRRs, which
can be estimated as [19]

R ¼

2pr0
chs

if h=2 , d,

pr0
cds

otherwise,

8><
>: (2:41)

where h is themetal thickness,s is the conductivityof themetallic strips, and d is the skin
depth. The introduction of this resistance in the above analysis leads to the substitution

L ! L̂ ¼ Lþ R

jv
: (2:42)

Such a substitution must be made through equations (2.35) to (2.38) (as well as in
equations (2.52) and (2.53) in the next section). It implies that the frequency of
resonance (2.19) must also be substituted by the function

v̂2
0(v) ¼

2

L̂C
¼ 2

prCpulL̂
: (2:43)

A straightforward calculation leads to

v̂2
0

v2
� 1

� ��1

¼ v̂2
0

� 	�1 v2v2
0

v2
0 � v2 þ jvg

, (2:44)

where g ¼ R=L. After the substitutions L ! L̂ and v0 ! v̂0 in equations, (2.35) to
(2.38), and taking into account equation (2.44) as well as the relation L̂v̂2

0 ¼ Lv2
0, the

polarizabilities for a lossy EC-SRR take the form

amm
zz ¼ p2r4

L

v2

v2
0 � v2 þ jvg

� �
, (2:45)

aee
xx ¼ 10

16
3
r3ext, (2:46)

aem
yz ¼ �ame

zy ¼ �2jpr3deffCpul
v2
0

v

v2

v2
0 � v2 þ jvg

� �
, (2:47)
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and

aee
yy ¼ 10

16
3
r3ext þ 4d2eff r

2C2
pulL

v2
0

v

� �2
v2

v2
0 � v2 þ jvg

� �
: (2:48)

These equations have a quite familiar form, showing the typical Lorentzian form near
the resonance. However, they are not causal for high values of v, due to the presence
of powers of v in the numerator. Nevertheless, this fact has no importance, because
the behavior of the polarizabilities at high frequencies is actually determined by
higher-order resonances, which are not accounted for in equations (2.45) to (2.48).

The frequency of resonance of an EC-SRR can be measured by placing the EC-
SRR inside a rectangular waveguide and measuring the transmission coefficient,
which must show a sharp dip at the EC-SRR resonance [19]. These experiments sys-
tematically show an agreement with the circuit model developed in this section within
a few percent of error. The presence of cross-polarization effects in the EC-SRR was
experimentally checked in [23] (and previously in [24]) by measuring the trans-
mission coefficient through a waveguide loaded with an EC-SRR placed at different
orientations inside the waveguide (Fig. 2.6). As can be seen, the aforementioned dip
in the transmission coefficient appears or not depending on the particle orientation.
Only in orientation 4 of Figure 2.6 is there neither magnetic flux across the
EC-SRR, nor an electric field component along the y-axis of the particle.
According to equations (2.35) to (2.38), it is only for this orientation that the reson-
ance should not appear, as can be seen in the figure.

The reported expressions for the EC-SRR polarizabilities in equations (2.35) to
(2.38) can be used for the computation of the effective permeability and permittivity
of artificial magnetic media made from periodic or nonperiodic arrangements of
EC-SRRs. According to the above set of equations, an electric permittivity tensor
and a magnetic susceptibility tensor do not suffice for the complete characterization
of these media. They are, in general, bianisotropic, and a cross-polarization tensor
must also be included for their complete characterization.

2.3.2 Other SRR Designs

In the previous section, the EC-SRR originally proposed by Pendry [3] was analyzed.
It was shown that this element may produce a strong magnetic polarizability near its
resonance. Because the EC-SRR is electrically small at resonance, and it can be easily
and reliably manufactured by using standard photo-etching techniques, its usefulness
for the design of magnetic metamaterials is apparent. However, some properties of
the EC-SRR, such as bianisotropy, may be the origin of unwanted effects in the meta-
material. Moreover, the EC-SRR electrical size, although small, cannot be reduced in
practice to values much smaller than l/10, where l is the free-space wavelength. This
limitation comes from the edge-coupling of the metallic rings forming the EC-SRR.
This fact implies a logarithmic dependence with the inverse of the distance between
the rings, d, for the per unit length capacitance Cpul. Thus, Cpul cannot be increased
too much by reducing d (at least for practical values of d ). Therefore, the frequency of
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resonance (2.19) cannot be made too small. Such limitations can be overcome by
means of small modifications of the EC-SRR design. This section is devoted to a
brief description of such alternatives.

2.3.2.1 The Broadside-Coupled SRR The broadside-coupled SRR (BC-SRR)
was proposed in [17] in order to avoid the EC-SRR bianisotropy. It has the additional
advantage of a potentially much smaller electrical size [19]. The BC-SRR is shown in
Figure 2.7. The main modification with regard to the EC-SRR is that both rings are
printed at both sides of the dielectric board, so that the per unit length capacitance
Cpul is the capacitance of the broadside-coupled strips. This modification does not
substantially affect the behavior of the resonator. Therefore, the equivalent circuit

FIGURE 2.6 (a) Experimental determination of the frequency of resonance, and demon-
stration of cross-polarization effects in the EC-SRR. Position 1: electric and magnetic exci-
tation. Position 2: magnetic excitation only. Position 3: Electric excitation only. Position 4:
no excitation. (b) Behavior of the nonbianisotropic SRR (NB-SRR) under the same excitations.
The absence of electric excitation (3 and 4) shows the absence of cross-polarization effects.
(Source: Reprinted with permission from [23]; copyright 2005 by the IEEE.)
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for the BC-SRR, as well as the current and voltage distributions, are the same as for
the EC-SRR (Fig. 2.5b–d ). As in the EC-SRR, near the resonance, charges in the
upper half of the BC-SRR are the images of charges in the lower half. However,
as is sketched in Figure 2.7, this charge distribution does not result in a net electric
dipole. Thus, the BC-SRR is nonbianisotropic. The same conclusion is obtained from
symmetry considerations: The BC-SRR has inversion symmetry with regard to the
center of both rings. Therefore, any second-order pseudo-tensor characterizing the
resonator (for instance, the cross-polarizability tensor) must vanish.

From the above considerations, it turns out that the BC-SRR polarizabilities are
summarized by the following set of equations [19]:

mz ¼ amm
zz Bext

z (2:49)

py ¼ aee
yyE

ext
y (2:50)

px ¼ aee
xxE

ext
x (2:51)

where

amm
zz ¼ p2r4

L

v2
0

v2
� 1

� ��1

(2:52)

and

aee
xx ¼ aee

yy ¼ 10
16
3
r2ext, (2:53)

where v0 is the frequency of resonance, which can still be obtained from equation
(2.19). However, Cpul in equation (2.19) is now the per unit length capacitance
between the broadside-coupled rings forming the BC-SRR (closed expressions for
this parameter are given in the Appendix).

The per unit length capacitance for the BC-SRR approximately corresponds to a
parallel plate capacitor. Therefore, it has a linear dependence with the inverse of

FIGURE 2.7 Broadside-coupled split ring resonator (BC-SRR).
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the width t of the dielectric substrate. Thus, the frequency of resonance varies as the
square root of t. It also varies as the inverse of the square root of the dielectric per-
mittivity of the substrate. Both properties imply that the electrical size at resonance
of the BC-SRR can be made potentially much smaller than for the EC-SRR. In
order to achieve such a goal, thin substrates of high permittivity can be used. This
behavior is illustrated in Figure 2.8, where the electrical sizes at resonance of EC-
and BC-SRRs of similar characteristics are compared.

2.3.2.2 The Nonbianisotropic SRR The nonbianisotropic SRR (NB-SRR) was
initially proposed in [25] in order to avoid EC-SRR bianisotropy while keeping a
uniplanar design. This structure is shown in Figure 2.9. It can be easily observed
that the equivalent circuit, as well as the frequency of resonance of this element,
should be the same as for an EC-SRR with similar dimensions. However, the NB-
SRR, like the BC-SRR, has inversion symmetry with regard to its center.
Therefore, the NB-SRR polarizabilities are formally given by the same set of
equations as the BC-SRR (2.49–2.53). The frequency of resonance is given by
equation (2.19), with Cpul being the same as for the EC-SRR. An experimental
demonstration of the absence of cross-polarization effects in the NB-SRR is shown
in Figure 2.6.

2.3.2.3 The Double-Split SRR An alternative way to obtain inversion sym-
metry, thus overcoming bianisotropy, is by introducing additional cuts in the EC-
SRR design. The double-split SRR (2-SRR) [25] shown in Figure 2.10 is an
example of this strategy. The equivalent circuit for the 2-SRR is also shown in
Figure 2.10. As the capacitances in this equivalent circuit are C ¼ prCpul=2, the
total capacitance of the circuit is four times smaller than for the conventional EC-
SRR. Therefore, the frequency of resonance of the 2-SRR is twice the frequency
of resonance of an EC-SRR or NB-SRR of the same size and shape:

v0[2-SRR] ¼ 2v0[EC-SRR] ¼ 2v0[NB-SRR]: (2:54)

Because it implies a larger electrical size at resonance, this property is a clear
disadvantage of the 2-SRR. However, the high symmetry of the 2-SRR will make
this design very useful for the development of isotropic negative magnetic per-
meability media (see Section 2.3.5). As the 2-SRR is a nonbianisotropic design,
the 2-SRR polarizabilities are still formally given by equations (2.49) to (2.53).

2.3.2.4 Spirals Spirals are well-known resonators in planar microwave circuitry.
Their usefulness for the design of negative magnetic permeability and left-handed
media was shown in [26]. As an example, we will analyze the two-turns spiral reso-
nator (2-SR) shown in Figure 2.11. A quasistatic analysis of this configuration leads
to the equivalent circuit, and to the current and voltage distributions shown in the
figure. This design also provides a strong magnetic dipole at resonance, thus being
useful for metamaterial design. From the equivalent circuit of Figure 2.11, it
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FIGURE 2.8 Frequency of resonance and normalized electrical size (2rext/l) for several
EC-SRRs (a) and BC-SRRs (b) with the same external radius rext ¼ 0.6 mm and ring width
c ¼ 0.2mm, printed on several dielectric substrates. (Source: Reprinted with permission
from [19]; copyright 2003, IEEE.)
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follows that the frequency of resonance of the 2-SR must be half the frequency of
resonance of the EC-SRR—or the NB-SRR—of the same size and shape:

v0[2-SR] ¼
1
2
v0[EC-SRR] ¼

1
2
v0[NB-SRR]: (2:55)

This property is a clear advantage, as it implies a smaller electrical size at resonance.
The electrical size can still be reduced by increasing the number of turns [26] (see
Problem 2.4).

Relations (2.54) and (2.55) have been experimentally checked. Table 2.1 shows an
example of such results [25].

From the current and charge distributions on the 2-SR at resonance (Fig. 2.11) it
can be guessed that this design will be also nonbianisotropic. However, this con-
clusion comes only from the quasistatic analysis and not from the symmetries of
the element. In practice, any 2-SR design must imply long strips (of length �4pr,
where r is the mean radius of the 2-SR). These strips may be long with regard to
the half-wavelength at resonance. Thus, the reported quasistatic analysis, although
accurate enough for the determination of the frequencies of resonance, may not
give accurate results for the polarizabilities. As a consequence, the 2-SR always

FIGURE 2.9 Nonbianisotropic split ring resonator (NB-SRR). Metallizations are in white
and dielectric substrate in gray.

FIGURE 2.10 Sketch of a double-split SRR (a) and its equivalent circuit (b). The four capa-
citances C of the equivalent circuit correspond to the capacitances across the four slots between
the rings C ¼ prCpul/2.
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presents some degree of bianisotropy, although smaller than for the EC-SRR [27].
This result shows the importance of symmetry in order to avoid bianisotropy: Only
designs invariant by inversion, or by other appropriate symmetry, are completely
free of this effect.

2.3.3 Constitutive Relationships for Bulk SRR Metamaterials

Theeffectiveconstitutiveparameters ofbulkSRRmediacanbe found fromthepolariza-
bilities obtained in previous sections. There are many possible periodic or nonperiodic
combinations of SRRs that provide an effective medium. In fact, the only necessary
condition is that the size of the unit cell must be much smaller than the internal wave-
length. In this section, a cubic periodic arrangement of coplanar SRRs will be con-
sidered in order to illustrate the general procedure. The resulting artificial medium,
which is illustrated in Figure 2.12, is strongly anisotropic. Moreover, due to the pre-
sence of cross-polarizabilities in the SRRs (see Section 2.3.1), the resulting medium
is also bianisotropic. Therefore, the most general linear constitutive relationships must

FIGURE 2.11 (a) Sketch of a two-turns spiral resonator (2-SR). (b) Equivalent circuit for the
determination of the frequency of resonance, where C is the capacitance across the slot between
the rings: C ¼ 2prCpul. (c) Angular dependence of current along the inner (dashed line) and
outer (dot–dashed lined) strips. (d ) Voltage along the inner (dashed line) and outer (dot–
dashed line) strips. Such distributions (c and d ) imply a constant voltage across the slot and
a total current (the sum of currents on both strips) constant with f (solid line in (c)).

TABLE 2.1 Comparison Between the Resonance
Frequency Provided by Experiment (exp) and Theory
(th) for an SRR, a 2-SRR, and a 2-SR of Similar
Dimensions Printed on the Same Substrates

f0
exp (GHz) f0

th (GHz)

SRR 5.03 5.06
2-SSR 10.31 10.13
2-SR 2.66 2.53

The external radius of the three particles is 2.54mm, the width of the
strips is of 0.19mm and its separation 0.17mm. The substrate is
0.49mm thick with a permitivitty of 2.4310 [25].
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be considered [22]:

D ; 10Eþ P ¼ 10(1þ x
¼
e) � Eþ j

ffiffiffiffiffiffiffiffiffiffi
10m0

p
k
¼ �H (2:56)

B ; m0(HþM) ¼ �j
ffiffiffiffiffiffiffiffiffiffi
10m0

p
(k
¼
)T � Eþ m0(1þ x

¼
m) �H, (2:57)

where P andM are the polarization and magnetization vectors, (.)T indicates the trans-
pose, and x

¼
e, x

¼
m, and k

¼
are the electric, magnetic, and magnetoelectric susceptibility

tensors, which are related to the permittivity and permeability tensors through

1
¼ ¼ 10(1þ x

¼
e ); m

¼ ¼ m0(1þ x
¼
m): (2:58)

In equations (2.56) and (2.57), the symmetry properties of the generalized suscepti-
bilities [21], derived from the Onsager principle, have been explicitly included. These
symmetries also imply that x

¼
e and x

¼
m must be symmetric tensors, so that the whole

medium is bianisotropic and reciprocal [22].
The simplest approach for the computation of the constitutive tensors x

¼
e, x

¼
m, and

k
¼
is to ignore couplings between adjacent elements. In such an approach, each sus-

ceptibility is simply the corresponding polarizability, divided by the volume of the
unit cell. In this zero-order approach, we obtain

x
¼
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1
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¼
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1
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1
a3

a
¼em, (2:59)

FIGURE 2.12 Artificial magnetic medium made of a cubic three-dimensional array of SRRs
(EC-SRRs in the figure).
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where a
¼ee, a

¼mm, and a
¼em are the polarizability tensors of the SRRs, and a is the lattice

parameter. For the artificial medium of Figure 2.12, only the susceptibilities

xe,xx ¼
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10a3
aee
xx; xe,yy ¼

1
10a3

aee
yy; xm,zz ¼

m0

a3
amm
zz ;

kyz ¼ �j

ffiffiffiffiffiffi
m0

10

r
1
a3

aem
yz (2:60)

are different from zero.
A better approximation, which takes into account the coupling between elements

in a rather simple way, makes use of the well-known Lorentz local field theory (see
[9], for instance). For a cubic array, this approximation considers that each element is
excited by a local electric field Eloc ¼ Eþ P=310, and by a local magnetic field
Hloc ¼ HþM=3 (or, equivalently, Bloc ; m0Hloc ¼ B� (2=3)m0M). When this
approach is applied to the coupled electric and magnetic polarizations, Py and Mz,
it leads to the equations

Mz ¼
1
a3

m0a
mm
zz Hz þ

Mz

3

� �
� aem

yz Ey þ
Py

310

� �� �
, (2:61)

Py ¼
1
a3

aee
yy Ey þ

Py

310

� �
þ m0a

em
yz Hz þ

Mz

3

� �� �
: (2:62)

At this point it may be convenient to rewrite expressions (2.45) to (2.48) in the form

amm
zz ¼ amX

�1; am ¼ p2r4

L
(2:63)

aee
xx ¼ a0; a0 ¼ 10

16
3
r3ext (2:64)

aem
yz ¼ �ame

zy ¼ aemX
�1; aem ¼ �2jpr3deffCpul

v2
0

v
(2:65)

aee
yy ¼ a0 þ aeX

�1; ae ¼ 4d2eff r
2C2

pulL
v2
0

v

� �2

, (2:66)

where

X ¼ v2
0=v

2 � 1þ jg=v
� 	

: (2:67)

With such definitions, equation (2.40) takes the form

amae ¼ �a2
em: (2:68)

2.3 SYNTHESIS OF NEGATIVE MAGNETIC PERMEABILITY 67



The next step is to solve equations (2.61) and (2.62) for Py and Mz. After a cumber-
some but straightforward calculation, and taking equation (2.68) into account, it is
found that

Py ¼
1
D

LEy þ
m0aem

a3
Hz

n o
(2:69)

and

Mz ¼
1
D

�aem

a3
Ey þ K

m0am

a3
Hz

n o
, (2:70)

where

D ¼ K
v2
0

v2
� 1þ ae

3K10a3
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, (2:71)

L ¼ a0

a3
v2
0
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� 1� ae
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� �
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� �
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and

K ¼ 1� a0

310a3
¼ 1� 16r3ext

9a3
: (2:73)

Finally, from the above equations it directly follows that

xe,yy ¼
L

10D
; xm,zz ¼

K

D

m0am

a3
; kyz ¼ �j

ffiffiffiffiffiffi
m0

10

r
aem

Da3
: (2:74)

The main difference between these results and equation (2.60) is a variation of the
frequency of resonance, from v0 to v1, given by

v2
1 ¼ v2

0 1þ ae

3K10a3
þ m0am

3a3

� ��1

: (2:75)

Bianisotropy has relevant effects in wave propagation through the considered SRR
media. The general dispersion relation for plane waves of arbitrary polarization is
rather complicated8, so we will only consider some specific examples. Plane waves
propagating along the x-axis of Figure 2.12, with the electric field polarized along
the y-axis (plane waves with the orthogonal polarization see a medium with 1 ¼ 10

8An implicit expression for this dispersion relation can be found in [28].
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and m ¼ m0) are TEM waves with the dispersion relation [17]

kx ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mzz1yy � m010k

2
yz

q
: (2:76)

However, plane waves propagating in the y direction with the electric field parallel to
the x-axis are TM waves with the E field elliptically polarized in the x–z plane. The
dispersion relation for such waves is

k ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1yymeff

p
and meff ¼ mxx � 10m0

k2yx

1yy
(2:77)

(see Problems 2.7 and 2.9).
The constitutive parameters for the considered medium when the EC-SRRs are

substituted with nonbianisotropic inclusions (such as BC-SRRs or NB-SRRs) can
be obtained from the above expressions by taking aem, ae ¼ 0. It is apparent that
bianisotropy disappears in such media, which can be included into the category of
indefinite media [29], already analyzed in Chapter 1.

The behavior of the relevant constitutive parameters in a typical cubic array
(Fig. 2.12) of EC-SRRs and BC-SRRs is illustrated in Figure 2.13 and
Figure 2.14, respectively. Lorentz local field theory is used for the computation of
the constitutive parameters in both cases. Because the EC-SRR medium is
bianisotropic, there are four relevant parameters in Figure 2.13: magnetic per-
meability mzz, magneto-electric susceptibility kyz, and the dielectric permittivities

FIGURE 2.13 Constitutive parameters of the cubic array of Figure 2.12. The Lorenz
approximation (2.74) was used for the modeling of the coupling between elements. The
Medium parameters are rext ¼ 1.24 mm, c ¼ 0.2 mm, d ¼ 0.1mm, and 1 ¼ 10. The metal is
copper with a thickness of 35mm. Periodicity is a ¼ 2.5mm.
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1yy and 1xx. Except for this last quantity, all the remaining constitutive parameters
show a resonant behavior, and take negative values above the resonance. Unlike
the EC-SRR medium, the BC-SRR medium is not bianisotropic (see Section
2.3.2). Therefore, only two parameters are relevant for this structure: the magnetic
permeability mzz, and the dielectric permittivities 1yy ¼ 1xx. Moreover, only one of
these quantities—the magnetic permeability mzz—is resonant, taking negative
values above the resonance. In order to evaluate the importance of the different
homogenization procedures for SRR media, the magnetic permeability for the
BC-SRR medium obtained from the zero-order approach (2.60) is also shown in
Figure 2.14. Except for a small shift in the frequency of resonance, the results are
quite similar. Therefore, we can conclude that the zero-order approach is useful, at
least as a rough approximation, for SRR media characterization.

2.3.4 Higher-Order Resonances in SRRs

So far, only the first resonance of the SRRs has been analyzed. For such resonance it
was shown that the total current excited on the SRR is almost uniform; so that the
whole SRR behaves as a small closed loop of uniform current, with a strong associ-
ated magnetic moment. As was shown, such resonance can be modeled by an LC
circuit model, whose L and C values can be extracted from the SRR geometry. For
this reason, the first SRR resonance has been named the quasistatic resonance
[30]. SRRs also exhibit higher-order resonances that can be excited at higher frequen-
cies. The analysis of such resonances is of interest because they can affect the beha-
vior of the metamaterial at high frequencies. They can be also useful for the design of

FIGURE 2.14 Real (solid lines) and imaginary (dashed lines) parts of the constitutive par-
ameters of the cubic array of Figure 2.12 when BC-SRRs are used as basic elements. The
medium parameters are rext ¼ 1.24mm, c ¼ 0.2mm, t ¼ 0.3mm, and 1 ¼ 10. The metal is
copper with a thickness of 35mm. Periodicity is a ¼ 2.5mm. (a) Lorenz approximation
(2.74). (b) Zero-order approximation (2.59).
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some microwave devices [31]. Distributed circuit models to describe SRR
higher-order resonances, based on the assumption that almost all the electric field
lines go across the slots between the rings, have been recently proposed [18]. From
such circuit models, as well as from experiments and simulations [30], it follows
that strongly nonuniform total currents are excited on the SRR at higher-order
resonances. Therefore, such resonances will be referred to as dynamic resonances.

It is illustrative to compare the behavior of higher-order resonances in an
SRR presenting cross-polarization effects (for instance the EC-SRR of Fig. 2.5),
and in an SRR with inversion symmetry, where such effects are not present (for
instance the BC-SRR of Fig. 2.7 or the NB-SRR of Fig. 2.9). This analysis has
been developed in detail in [30] on the basis of numerical simulations and experi-
ments. In this section we will briefly describe the main conclusions of such
an analysis.

Let us first consider resonators with inversion symmetry, namely the BC-SRR or
the NB-SRR. As both rings forming the structure are identical, it is expected that SRR
resonances will appear as a consequence of the splitting of the resonances of a single
ring. Therefore, the number of resonances in a given frequency interval for the
NB- and the BC-SRR should be approximately twice the number of resonances of
its constitutive single rings inside such an interval. The analysis of Section 2.3.1
(specifically, the analysis of the current distribution shown in Fig. 2.5c) can be
easily extended to the quasistatic resonances of the BC- or the NB-SRR of Figures
2.7 and 2.9, respectively. From such an analysis it follows that the current distribution
of these resonances must be antisymmetric. That is, the surface current on a given
point, (x, y), of a ring, namely ring A, Js,A(x, y), has the same amplitude but opposite
sign as the surface current on the other ring, namely ring B, at the opposite point:
Js,A(x, y) ¼ �Js,B(�x,�y). In fact, this property is directly related to the inversion
symmetry of NB- and BC-SRRs. Therefore, it can be extended to higher-order reson-
ances, which can be classified as symmetric (with Js,A(x, y) ¼ Js,B(�x,�y)) and
antisymmetric (with Js,A(x, y) ¼ �Js,B(�x,�y)). Thus, it is expected that each
single-ring resonance will split into two NB- or BC-SRR resonances, one symmetric
and the other anti-symmetric. This behavior is illustrated in Figure 2.15, where the
splitting of the single-ring resonances in the symmetric and anti-symmetric NB-
SRR resonances is shown. It follows directly from this classification (and from the
definitions of the electric and magnetic dipolar moments) that the symmetric reson-
ances cannot produce any magnetic dipolar moment, whereas the antisymmetric ones
(which have a symmetric charge distribution) cannot produce any electric dipolar
moment. A particular case of this last property is demonstrated by the well-known
behavior of the first (quasistatic) antisymmetric resonance for the considered NB-
and BC-SRRs; it is essentially a magnetic resonance, which does not present
cross-polarization effects (see Section 2.3.2). From the above schema, it follows
that the second NB- and BC-SRR resonances are symmetric and electric (there is
no magnetic dipolar moment associated with such resonance).

The onset of the resonances for the conventional EC-SRR is quite different.
Because the rings forming the particle are not identical, its individual frequencies
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of resonance must be different. When they are strongly coupled to form an EC-SRR,
the frequencies of resonance of each ring will change as a consequence of the coup-
ling. Thus, the final number of these resonances in a given frequency interval will
remain constant; that is, it will be roughly the same as for the system of two
decoupled rings. The stronger the coupling, the wider the difference between the
EC-SRR resonances and those of its constitutive rings. From the above consider-
ations, it directly follows that the classification of symmetric and antisymmetric
does not hold for the EC-SRR resonances. Instead, as is illustrated in Figure 2.16,
higher-order EC-SRR resonances resemble more the individual resonances of the
individual rings forming the structure. Thus, bianisotropic effects can be present,
in principle, in all resonances. However, it has been experimentally found that the
second resonance of the EC-SRR does not present cross-polarization effects [30].
That is, it has only an associated electric dipolar moment, without any detectable
additional magnetic dipolar moment. We do not have, for the moment, any theoretical
explanation for this remarkable fact.

As has already been mentioned, higher-order SRR resonances may have effects on
the behavior of SRR-based metamaterials. In particular, the second resonance may
strongly affect the behavior of such metamaterials if the coupling between the
rings forming the SRRs is weak. In such a case, the first and the second resonances
appear closely spaced. Because the second resonance produces a strong electric
dipole, a dielectric permittivity higher than expected may appear around such a
resonance. This region of unexpectedly high electric permittivity may overlap with

FIGURE 2.15 Resonances of an NB-SRR. The resonances appear as dips in the trans-
mission coefficient of a microstrip line coupled to the NB-SRR. The NB-SRR resonances
are labeled as “symmetric” (S) and “antisymmetric” (A) according to the classification in
the text. The resonances of one of the rings making the NB-SRR are also shown. The NB-
SRR parameters are external radius rext ¼ 6:217mm, strip width c ¼ 0.56mm, width separ-
ation d ¼ 0.37mm. The substrate parameters are thickness h ¼ 0.49mm, dielectric constant
1 ¼ 2.4310. (Source: Reprinted with permission from [30]; copyright 2005, American
Institute of Physics.)
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the region of negative magnetic permeability, above the first SRR resonance.
Conversely, if both SRR rings are strongly coupled, the second SRR resonance
will appear far away from the first one. It will then produce a frequency band of
high positive/negative dielectric permittivity neatly separated from the negative per-
meability frequency band. This effect can be useful for some applications [31].

2.3.5 Isotropic SRRs

Small magnetic resonators showing a purely magnetic and isotropic response are of
great interest for the design of isotropic magnetic metamaterials. It is clear that the
magnetic response of any planar SRR, as those analyzed in the previous sections,
must be highly anisotropic. In addition, depending on its specific topology, an
SRR may also be bianisotropic; that is, it can show both magnetic and electric
response at the same resonance. The first attempt to obtain an isotropic SRR
design was reported in [32]. In this work, two SRRs of cylindrical shape were
attached in order to obtain a composite SRR configuration, which was shown to be
isotropic in two dimensions. Unfortunately, it was not possible to generalize this
approach to obtain an isotropic three-dimensional configuration. A different approach
to the same problem was reported in [33] and [34]. In these works, cubic arrays of
SRRs and Omega resonators [35] were proposed in order to obtain a composite iso-
tropic magnetic resonator. However, it has been shown [36] that couplings between
adjacent elements can destroy the isotropic response of such arrangements.

A systematic approach to the design of isotropic SRR composites must start from
the group theory of symmetry transformations in periodic systems [36]. It will be

FIGURE 2.16 Resonances of an EC-SRR determined as in Figure 2.15. The EC-SRR and
substrate parameters are the same as in Figure 2.15. Only the first and second resonances
can be identified as approximately symmetric or anti-symmetric. Higher-order resonances
are similar to those of the outer (O) or inner (I) isolated rings. (Source: Reprinted with per-
mission from [30]; copyright 2005, American Institute of Physics.)
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assumed, as usual, that the electromagnetic response of the composite is accurately
described by some linear polarizabilities, which form some second-order tensors or
pseudotensors. It is well known [21] that there are 32 symmetry groups for periodical
systems, which can be classified in seven systems. It is also well known that only the
symmetry groups of the cubic system reduce the second-order tensors to scalars, thus
imposing an isotropic behavior. Moreover, if cross-polarizabilities must be forbidden,
inversion symmetry must be included in such groups. This reduces the possible sym-
metry groups to only two: the Oh and Th groups in Schönflies notation [36]. The Oh

group includes all the symmetry rotations of the cube, and the inversion. It has the
highest symmetry, including 48 symmetry operations. In [37], a resonant magnetic
structure showing this symmetry was proposed for magnetic metamaterial design.9

The Th group is generated by the rotations of symmetry of the tetrahedron and the
inversion. It has 24 operations of symmetry, thus imposing lower symmetry con-
straints than the Oh group. This fact results in potentially simpler designs. As an
example, two isotropic magnetic resonators pertaining to the Th symmetry group
are shown in Figure 2.17 [36]. The structure shown in Figure 2.17a is a modification
of the SRR composite previously proposed in [32]. It is the composition of three 2-
SRRs (see Section 2.3.2) of cylindrical shape. This last structure shows two orthog-
onal symmetry planes (the x ¼ 0 and the y ¼ 0 planes in Fig. 2.10), which behave as
virtual perfectly conducting planes at resonance. Therefore, the inclusion of two
additional 2-SRRs at these planes (as in Fig. 2.17a) will not affect the behavior of
the former 2-SRR when it is illuminated by an orthogonal external magnetic field
Bext ¼ Bextẑ. Thus, by superposition, the whole structure must exhibit an isotropic
and purely magnetic response. The frequency of resonance of the composite must
be the same as for each individual 2-SRR (2.54), which is twice that of an EC-
SRR of the same size and characteristics. However, this is not a big problem in
that the broadside coupling between the rings allows for very high interring
capacitances.

FIGURE 2.17 Two isotropic composite SRR resonators belonging to the Th symmetry
group. Both resonators show a purely magnetic response at the first resonance. (Source:
Reprinted with permission from [36]; copyright 2006, American Institute of Physics.)

9In fact, for left-handed metamaterial design, since the proposed structure also included a regular array
of wires.
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An other example of an isotropic magnetic resonator belonging to the Th group of
symmetry is the structure shown in Figure 2.17b. This is a composite of six two-split
BC-SRRs (the structure shown in Fig. 2.7, with an additional symmetric cut on each
ring). This composite also belongs to the Th symmetry group. Thus, it will also show
an isotropic and purely magnetic response [36].

2.3.6 Scaling Down SRRs to Infrared and Optical Frequencies

After the demonstration of negative permeability in the microwave range [4], there
has been a continuous effort for pushing up the frequency of operation of magnetic
metamaterials to terahertz and optical frequencies. A rather obvious strategy in this
regard is to take advantage of the linearity of electromagnetism and scaling down
the size of the well-known metallic SRR, so that its frequency of operation is
pushed up [38,39]. However, the application of this procedure has a limit, because,
when frequency increases, metals cannot be characterized as near-perfect conductors,
as was assumed in Section 2.3.1. From terahertz to ultraviolet frequencies, most
metals can be characterized by the well-known Drude complex permittivity,

1̂ ¼ 10 1�
v2
p

v(v� jfc)

 !
, (2:78)

where vp is the plasma frequency, and fc is the collision frequency of the electrons.
The effects of this new metal characterization on the SRR frequency of resonance and
polarizability will be considered throughout this section.

Before analyzing the behavior of an SRR, we will consider the more simple case of
a single metallic ring (Fig. 2.18a). We will consider, for simplicity, a metallic ring of
mean radius r, made with a cylindrical wire of diameter d and cross-section
S ¼ p(d=2)2. For good conductors fp ¼ vp=2p is in the ultraviolet range (several

FIGURE 2.18 (a) Closed metallic ring and (b) the simplest split-ring configuration with
inversion symmetry.
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thousands of terahertz), and fc is between 10 THz and 100 THz. Therefore, roughly
speaking, vp � 102fc: At infrared and optical frequencies, v is still smaller than
vp, say v . 0:1vp. Therefore, at such frequencies and below, j1̂j � 10, and equation
(2.78) can be approximated as

1̂ ’ �10
v2
p

v(v� jfc)
: (2:79)

From the continuity of the normal component of jv1̂E at the metal–air interface, it
directly follows that n � Er � 0, where Er is the electric field inside the ring, and n
is the unit vector normal to the ring boundary. Thus, the electric lines of force are
strongly confined inside the wire, forming closed loops along the ring. Therefore,
it makes sense to define a total current inside the ring as

It ¼ jv1̂Er S, (2:80)

where Er is the magnitude of the electric field inside the ring. This current includes
both ohmic and displacement currents, and is approximately uniform along the
ring due to the aforementioned confinement effect. Therefore, it is still possible to
define the ring magnetic inductance, Lm, as usual, that is,

Lm ;
F(It)
It

, (2:81)

where F(It) is the magnetic flux across the ring. Because the magnetic flux is related
to the total current through Ampère’s law, Lm is still approximately given by equation
(2.16). In fact, a small correction must be included in equation (2.16) in order to take
into account the magnetic energy stored inside the wire, which cannot be neglected
for nonperfect conductors. Assuming a uniform distribution of the current inside
the ring, the final expression for Lm is [13]

Lm ¼ m0r ln
16d
r

� �
� 7
4

� �
: (2:82)

Taking into account equations (2.79) and (2.80), the electromotive force around the
ring E ¼

Þ
E dl ’ 2prEr can be written as

E ’ (Rþ jvLk)It, (2:83)

76 SYNTHESIS OF BULK METAMATERIALS



where R is the resistance of the ring

R ¼ 2prfc
Sv2

p10
, (2:84)

and Lk is a magnitude with dimensions of inductance given by

Lk ¼
2pr
Sv2

p10
: (2:85)

This inductance can be interpreted as being due to the kinetic energy of the electrons
[40]. Putting all this together, the final equation for the current It on the ring is
given by

{Rþ jv(Lm þ Lk)}It ¼ �jvFext, (2:86)

where Fext is the external magnetic flux across the ring. Therefore, as long as
j1̂j � 10 (which is satisfied if v . 0:1vp ), the only effect of scaling down the ring
is the onset of the additional inductance Lk. From equations (2.82) and (2.85) it
follows that [41]

Lm
Lk

� 2pS

l2p
, (2:87)

where lp ¼ 2pc=vp is the “plasma wavelength”, that is, the free-space wavelength at
the plasma frequency.

Let us now consider what happens when some capacitive gaps are added to the
closed ring of Figure 2.18, in order to obtain a resonant behavior. The simplest res-
onant configuration having inversion symmetry (in order to avoid cross-polarization
effects) is shown in Figure 2.18b.10 However, the present analysis is not restricted to
such a configuration, and more complicated geometries can be considered, including
the SRRs reported in Sections 2.3.1 and 2.3.2. We will assume, as in the preceding
paragraph, that j1̂j � 10, so that equation (2.79) holds. If the gaps are sufficiently
narrow, the electric field lines of force are still confined inside the ring, passing
across the gaps from one half ring to the other. Moreover, from the continuity of
the normal component of jv1̂E at the gap boundaries, it directly follows that the
total current It is still uniform along the ring and gaps.11 Also, because the

10This configuration was proposed and analyzed in [40].
11This behavior is quite similar to the behavior of the magnetic flux through the arms and between the poles
of an electromagnet, as described in many elementary textbooks of electricity and magnetism (see, e.g.,
[42]).
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permittivity inside the metal is essentially real and negative, the continuity of 1̂E
implies that the sign of the electric field lines is reversed in the gaps, as is shown
in Figure 2.19.

Provided the aforementioned hypotheses are fulfilled, the equation for the total
current in the resonator of Figure 2.18b is gives as

Rþ jv(Lm þ Lk)þ
1
jvC

� �
It ¼ �jvFext, (2:88)

where C is the total capacitance provided by the series connection of the gaps (i.e.,
C ¼ Cg=2, where Cg is the capacitance of each gap). From equation (2.88), the
total current, as well as the associated magnetic moment m ¼ pr2It, can be obtained.
Finally, the magnetic polarizability of the ring is obtained as

amm
zz ¼ a0

v2

v2
0 � v2 þ jvg

� �
and a0 ¼

p2r4

Lm þ Lk
, (2:89)

where v0 is the frequency of resonance,

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
(Lm þ Lk)C

r
, (2:90)

and

g ¼ R

Lm þ Lk
: (2:91)

Such expressions are, in fact, quite similar to equation (2.45). The only difference
with equation (2.45) is the presence of the kinetic inductance Lk. Therefore, we
can conclude that the analysis developed throughout the previous sections is still

FIGURE 2.19 Schematic illustration of the behavior of the electric field lines inside the reso-
nator of Figure 2.18b.
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valid at optical and infrared frequencies, provided the presence of the kinetic induc-
tance (2.85) is taken into account. The main restriction for the validity of such an
analysis is that the condition j1̂j � 10 must hold at the considered frequency.

Let us now consider the behavior of the SRR polarizability when the resonator is
scaled down in order to increase its frequency of resonance. Because, according to
equation (2.85), Lk scales as 1/r, for small SRR sizes it dominates over Lm, which
scales as r. Therefore, for sufficiently small ring sizes, Lk � Lm, and the frequency
of resonance (2.90) saturates [40] to the value

v0 ¼
ffiffiffiffiffiffiffiffi
1

LkC

r
(2:92)

which does not depend on SRR size. Also the loss factor saturates to

gs ¼
R

Lk
¼ fc: (2:93)

Finally, the amplitude of the magnetic polarizability scales down as

a0 !
p2r4

Lk
¼ v2

p10r
3S: (2:94)

Let us consider, as in previous paragraphs, a cubic array of SRRs of lattice constant a.
As was discussed in Section 2.3.3, the magnetic susceptibility xzz can be approxi-
mated as xzz � m0a

mm
zz =a3. Thus, from the previous considerations, it follows that,

for sufficiently small SRR sizes, this susceptibility behaves as

xzz � x0
v2

v2
s � v2 þ jvgs

� �
and x0 ¼ m0

a0

a3
� (2p)2

r

a


 �3 S

l2p
: (2:95)

This expression shows that, when the structure is scaled down in the optical range, the
amplitude of the magnetic susceptibility also scales down as the square of SRR size
(see also Problem 2.11).12 The above discussion shows that scaling down SRR media
in order to achieve a negative magnetic permeability at infrared and optical frequen-
cies has two main limitations: saturation of frequency of resonance and decrease of
the magnetic response. Such effects appear when the key parameter S=l2p becomes
small, which, according to equation (2.87), makes the kinetic inductance dominant
over the magnetic one.

Recently, kinetic inductance of conductors has been invoked in order to develop
nano-inductors at optical frequencies [43]. According to our previous discussion, a

12In the RF and microwave range, however, because Lm scales down as r, the amplitude x0 does not vary
substantially when the structure is scaled down.
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metallic wire of length l and section S has a kinetic inductance that is given by a direct
generalization of equation (2.85); that is,

Lk ¼
l

Sv2
p10

: (2:96)

Therefore, it can be considered as a nanoinductor with the above inductance. In fact,
any nanocircuit is composed of some closed loops of current, and in order to apply
Kirchoff’s laws, the magnetic inductance of every loop should be much smaller than
the inductance of each inductor in the circuit. For instance, the SRR of Figure 2.18b
can be considered a nanocircuit formed by two nanoinductors (the wires) and two
nanocapacitors (the gaps), provided its magnetic inductance Lm is much smaller
than the kinetic inductance Lk. From equation (2.87) it follows that this condition
is satisfied if

S=l2p � 1: (2:97)

In fact, it can be easily realized that the same condition must hold for any closed loop
of any hypothetical nanocircuit. Therefore, equation (2.97) seems to be a necessary
condition for the applicability of the nanoinductor concept.

Higher-order SRR resonances in the optical range are dynamic plasmonic reson-
ances. Closed metallic rings made of metallic wires resonate when the ring perimeter
is equal to a wavelength of one of the plasmons that can be excited along the wire
[44]. From this result it can be guessed that n-cuts SRRs will resonate when each
piece of wire forming the SRR is a multiple of a half-wavelength of a plasmon pro-
pagating along the wire. Such resonances can also generate electric and magnetic
dipoles, so their analysis (either to avoid, or to take advantage of them) may also
be important for SRR characterization at infrared and optical frequencies. Such analy-
sis is, however, beyond the scope of this book.

2.4 SRR-BASED LEFT-HANDED METAMATERIALS

The first artificial left-handed medium, designed by David Smith and co-workers [4],
came only one year after Pendry’s proposal for SRR-based artificial negative mag-
netic permeability media [3]. Smith’s first design was a combination of wires
(which provide the negative permittivity) and SRRs (which provide the negative per-
meability) [4]. Soon after, negative refraction in left-handed media was experimen-
tally demonstrated [45], using a very similar design. Since then, wires and/or
metallic plates assembled with SRRs have been the most popular combination for
left-handed metamaterial design. Through this section, the main characteristics of
these proposals will be described in detail. Other proposals will be analyzed in
Section 2.5.
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2.4.1 One-Dimensional SRR-Based Left-Handed Metamaterials

The first practical realization of a left-handed metamaterial [4] was, in fact, a one-
dimensional realization. The reported structure is shown in Figure 2.20. It consists
of an array of metallic wires and EC-SRRs placed between two parallel metallic
plates. The structure was illuminated by a plane wave polarized with the electric
field parallel to the wires, and the magnetic field perpendicular to the EC-SRRs, so
that the parallel metallic plates simulate an infinite periodic medium along the wire
axis. In a previous experiment, propagation through a structure as in Figure 2.20,
but without the wires, was checked. A stopband was observed in this last structure
near the frequency of resonance of the SRRs (solid line in Fig. 2.21). This stopband
is consistent with the negative magnetic permeability associated with the SRRs.
When wires were introduced, the aforementioned stopband switched to a passband
(dashed lines in Fig. 2.21). Because the frequency of the experiment was well
below the plasma frequency of the system of wires, the aforementioned passband
is consistent with the combination of the negative permittivity of the wire system
(see Section 2.2.2) and the negative permeability of the SRR system. Therefore, it
was the first experimental observation of electromagnetic propagation through a
left-handed medium. Backward-wave propagation was tested by computing the dis-
persion relation by electromagnetic simulation. The results of such simulations, as
well as the dispersion relations obtained from the theory reported in this chapter
(see Sections 2.2.2 and 2.3.3), are shown in Figure 2.22. The slight mismatch
between the negative-m stopband and the left-handed passband comes from the
bianisotropy of the EC-SRR system [17] (see Problem 2.8).

The structure of Figure 2.20 only shows a left-handed behavior for a specific polar-
ization and direction of propagation of the electromagnetic field. Therefore, it can be
considered a one-dimensional metamaterial, showing negative effective permittivity
along the wires, and—neglecting bianisotropy—negative permeability along the SRR

FIGURE 2.20 Sketch of Smith’s experiment (top view). The relative location of wires and
SRRs is illustrated. The whole system is placed between two (upper and bottom) metallic
plates, and simulates an infinite medium along the wire axis. The orientation of the EC-
SRRs with regard to the x–y–z axes is the same as in Figure 2.12.
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axis. If the wire rows are substituted with metallic plates, a more simple one-
dimensional structure is obtained [46]. Such a structure is shown in Figure 2.23. It
is made of a single row of SRRs placed inside a cutoff square waveguide, along its
middle E-plane. In such a configuration, the effective negative permittivity (2.2) is
provided by the cutoff waveguide and the effective negative permeability by the
SRRs: meff ¼ m0(1þ xm,zz), with xm,zz given by equation (2.74). The left-handed
passband measured in the device of Figure 2.23 is shown in Figure 2.24.
Backward-wave propagation along this device has been experimentally demonstrated
in [48]. As in the structure reported in [4], bianisotropic effects are also present in the
structure of Figure 2.23. These effects can be eliminated if BC-SRRs are used instead
of EC-SRRs [50]. This last structure provides an easy way of simulating propagation
in left-handed metamaterials. It will be extensively used in Section 2.4.5 to check the
accuracy of the models proposed in this chapter for SRR-based metamaterials.

It will be illustrative to mention here that the results reported in Figures 2.23 and
2.24 can also be interpreted in terms of a cutoff waveguide filled by an uniaxial
medium with negative permeability along the SRR axis [47,48]. This interpretation
models the structure of Figure 2.23 as a waveguide filled by a uniaxial anisotropic
magnetic medium with mxx ¼ myy ¼ m0 and mzz obtained from equation (2.74).13

From Maxwell is equations, it is deduced that the dispersion relation for such

FIGURE 2.21 Transmission coefficient through the structure proposed in [4] (see Fig. 2.20)
when only SRRs are present (solid line), and when wires and SRRs are present (dashed line).
(Source: Reprinted with permission from [4]; copyright 2000, by the American Physical
Society.)

13Bianisotropy, as well as the small correction to 1yy due to the nonresonant electric polarizability of the
SRRs, are neglected in this analysis. However, they can be easily included in the model.
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a waveguide is given by

k2 ¼ v2mzz10 1� v2
c

v2

� �
¼ v21effmeff , (2:98)

where vc is the cutoff frequency of the hollow waveguide. This dispersion relation is
exactly the same dispersion relation that is deduced from the analysis in the previous
paragraph. Therefore, both models are fully equivalent, leading to the same dis-
persion relation. In our opinion this fact does not mean that the interpretation pre-
viously developed in this section is erroneous.14 It only shows that, in order to
obtain a left-handed behavior by loading a waveguide below cutoff with magnetic
resonators, such resonators must interact with the transverse components of the mag-
netic field and not with the longitudinal components of such a field. This behavior can
be obtained from SRRs, or from a hypothetical uniaxial magnetic medium.15

FIGURE 2.22 Phase advance (ka) as a function of frequency for the SRR medium of
Figure 2.20 without wires (dotted lines), and phase advance for the SRR and wire left-handed
medium of Figure 2.20 (solid line). The experimental (see Fig. 2.21) left-handed passband
Dv, aswell as the experimental stopbandDvþ dv, are also shown in the figure. The SRRdimen-
sions are c ¼ 0.8 mm, d ¼ 0.2 mm, rint ¼ r2 d/2 2 c ¼ 1.5 mm, and t ¼ 0.216 mm. The rela-
tive dielectric permittivity of the circuit board is 1r ¼ 3:4, and the lattice constant a ¼ 8.0 mm.
(Source: Reprinted with permission from [19]; copyright 2003, IEEE.)

14See author’s reply to [47] for a deeper discussion on this point.
15There are at least two more interesting interpretations of the results reported in [46]. The first was pro-
posed by Belov [49], and considers the SRR-loaded waveguide as equivalent to a system of magnetic scat-
terers (the SRRs) propagating a wave that is stationary in the z-direction (with kz ¼+p/a, where a is the
width of the waveguide). Another possible interpretation considers the results reported in [46] as the com-
position of two magnetostatic waves in an infinite SRR medium (see Problem 2.10) with kz ¼+p/a, ky¼
0 and kx given by equation (2.167) (see Problem 2.10). It can be easily shown that for p/a � k0 ;
v
ffiffiffiffiffiffiffiffiffiffiffi
10 m0

p
, the value of kx obtained from equation (2.167) coincides with equation (2.98).
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From the dispersion relation (2.98)—whatever the physical interpretation of such
an equation—it is deduced that, if the hollow waveguide is above cutoff, the left-
handed passband associated with the negative magnetic permeability becomes a stop-
band. This effect has been shown experimentally in [51]. In such an experiment, two
hollow waveguides—one above and the other below cutoff—were loaded by equis-
paced BC-SRR rows. The resulting transmission is shown in Figure 2.25, where it can
be clearly seen how the left-handed passband of the narrow waveguide becomes a
stopband in the wider waveguide. The mismatch between both bands, near the BC-
SRR resonance, can be explained by the high losses and anomalous dispersion at
such frequencies. The behavior shown in Figure 2.25 can be considered as the
counterpart, in waveguide configurations, of the passbands and stopbands of
Figure 2.21.

FIGURE 2.24 Transmission coefficient through the structure of Figure 2.23. (Source:
Reprinted with permission from [46]; copyright 2002, American Physical Society.)

FIGURE 2.23 Sketch of the one-dimensional left-handed medium simulation experiment in
[46]. [Source: Reprinted with permission from [46]; copyright 2002, American Physical
Society.)
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2.4.2 Two-Dimensional and Three-Dimensional SRR-Based
Left-Handed Metamaterials

The structures reported in the previous section exhibit a left-handed behavior for a
specific direction of propagation, and for a specific polarization of the electromag-
netic wave. Therefore, they are not suitable for the demonstration of negative refrac-
tion at the interface with an ordinary medium. For this purpose, a two-dimensional
isotropic left-handed medium is necessary. Such a medium was designed and man-
ufactured soon after the first demonstration of a left-handed medium [52]. It was a
modification of the earlier design of [4], consisting of an orthogonal arrangement
of dielectric circuit boards with EC-SRRs and metallic strips printed on each side,
as is shown in Figure 2.26. The whole array is placed between two horizontal metallic
plates connected to the strips, so that an infinite structure is simulated along the z-axis.
As in the structure of Figure 2.20, the negative permittivity comes from the metallic
strips, and the negative permeability from the SRRs. However, the whole structure is

FIGURE 2.25 Transmission coefficient through the BC-SRR loaded waveguides sketched
in the figure. The narrow waveguide cross-section was 6 	 6 mm2, and the wide waveguide
cross-section was 30 	 6 mm2. The periodicity is a ¼ 6 mm. The BC-SRR parameters are
rext ¼ 2.28 and c ¼ 0.5mm. The substrate parameters are 1 ¼ 2:4310 and thickness t ¼
0.49mm. The metallization was in copper with a thickness h ¼ 35mm. (Source: Reprinted
with permission from [51]; copyright 2003, IEEE.)
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now isotropic in two dimensions.16 Using the reported structure, negative refraction at
the interface between ordinary and left-handed media was first demonstrated [45]. It is
instructive to note that, in Figure 2.26, metallic strips are placed along the symmetry
planes of the SRRs. Such planes behave as virtually perfect electric conductors at
resonance, a fact that minimizes the strip–SRR interaction (we will return to this
point later, in Section 2.4.4).

An alternative design for two-dimensional isotropic left-handed metamaterials was
proposed in [50]. It consists of metallic plates and BC-SRRs arranged and illuminated
as is shown in Figure 2.27. As in previous designs, the negative permeability comes
from the SRRs. However, in the present design, negative permeability comes from the
parallel metallic plates (see Section 2.2.1). Because its fabrication only involves a
single printed circuit board, this design is more simple to manufacture than the pre-
vious one. Moreover, the use of BC-SRRs ensures that cross-polarization effects are
not present along the structure. Negative refraction using the two-dimensional left-
handed structure of Figure 2.27 was experimentally demonstrated in [53].

Compared with two-dimensional structures, the development of practical isotropic
left-handed media in three dimensions is still a challenging issue. In principle, a three-
dimensional cubic array of connected wires could provide negative permittivity (see
Section 2.2.2), whereas magnetic permeability could come from a cubic arrangement

FIGURE 2.26 The basic unit of the two-dimensional left-handed metamaterial reported in
[52] (left). The metallic strips (gray) and the EC-SRRs (black) are printed on opposite sides
of the dielectric substrate. The metamaterial was made from a two-dimensional periodic
array along the x- and y-directions of such basic units (right). The whole system was placed
between two conducting plates parallel to the x–y plane that simulates an infinite medium in
the z-direction.

16In fact, regarding the analysis in Section 2.3.3, this structure must be biisotropic in two dimensions (see
Problem 2.9). However, for the structure proposed in [52] this effect is small except near the resonance, and
can be neglected in a first-order approximation.
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of any of the isotropic SRRs reported in Section 2.3.5. However, practical technologi-
cal limitations to this procedure may be enormous. First, isotropic SRRs are rather
sophisticated structures, much more difficult to manufacture than planar SRRs.
Then, the number of SRRs involved in a three-dimensional design grows as l3,
where l is the typical length of the structure. Finally, to assembly all the elements
is not a trivial task. Moreover, once backward-wave propagation and negative refrac-
tion in left-handed media has been demonstrated using one- and two-dimensional
structures, the scientific interest in three-dimensional structures decays. However,
these designs may still be of interest for many practical applications, such as three-
dimensional lenses or coats. In [37] an isotropic three-dimensional left-handed meta-
material design was proposed and validated by numerical simulations. Other similar
designs, using a cubic network of metallic wires in combination with different isotro-
pic SRRs, such as those shown in Figure 2.17, can be envisaged.

2.4.3 On the Application of the Continuous-Medium Approach to
Discrete SRR-Based Left-Handed Metamaterials

The continuous-medium approach for the description of electromagnetic properties of
a discrete medium always involves an averaging—or homogenization—procedure.
This homogenization only has sense if the variation of the average field is small at
the scale of the constitutive elements of the medium. This condition is usually
expressed as follows: The size of the elements must be small as compared with the
wavelength of the host medium, lh, at the frequency of operation. Stated in this

FIGURE 2.27 Sketch (front view) of the two-dimensional isotropic left-handed meta-
material proposed in [50]. A square array of BC-SRRs is printed on a dielectric board,
placed between two parallel metallic plates.
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form, the above condition is approximately satisfied by the reported SRR-based meta-
materials. In fact, in all the experiments reported along the previous section, the unit
cell size was �lh=10. However, the aforementioned condition cannot be accepted
without discussion. All left-handed metamaterials analyzed in this section are res-
onant structures, whose wavevector varies from 0 to 1 in a small frequency band
(see, e.g., Fig. 2.22). Therefore, the internal wavelength of the metamaterial
li ¼ 2p=k varies from very large to very small values in the operation band.
Because it is the internal wavelength that determines the scale of variations of the aver-
aged field, we conclude that the size of the metamaterial elements must be much
smaller than li in order to justify the homogenization. It is apparent that this condition
cannot be fulfilled in the whole left-handed passband. In particular (Fig. 2.22), it
cannot be fulfilled at the lower frequencies of this passband, where li ! 0 (in fact,
all the values of the phase advance outside the first Brillouin zone, i.e., higher than
p, have no physical meaning—they were only computed in order to determine the
passband predicted by the model). Therefore, for the lowest frequencies of the pass-
band the discrete nature of the metamaterial must be taken into account. That is, the
metamaterial should be explicitly analyzed as a three-dimensional periodic structure.
Of course, the smaller the electrical size of the elements is (in terms of the host medium
wavelength), the smaller is such a frequency region.

Conversely, at the upper frequencies inside the passband, li ! 1, and the
homogenization makes sense regardless of the size of the elements. Therefore, it
can be concluded that the continuous medium approach in left-handed metamaterials
is valid at the high-frequency region of the passband, and becomes more and more
inaccurate as the frequency approaches the lower limit of the passband.

2.4.4 The Superposition Hypothesis

There is another important issue that has to be discussed in relation to the accuracy of
the continuous-medium approach, as it has been applied in most of the reported con-
tributions to left-handed metamaterials. In fact, all left-handed metamaterials
described in this section (and in all the reported references), are the superposition
of two systems, one of them exhibiting negative permittivity and the other
showing negative permeability. It was assumed without discussion that the electric
and magnetic susceptibilities of the resulting media are the superposition of the elec-
tric and magnetic susceptibilities of the aforementioned isolated systems. Because the
elements of both systems are placed very close in the metamaterial, and therefore they
can interact, this assumption is not apparent at all.

This topic was discussed in [54], where it was shown that a system of parallel wires
placed in a host medium with negative permeability cannot propagate electromag-
netic waves. This result could be expected from the expression for the inductance
of the wires (2.6): When the permeability of the surrounding medium is negative,
such inductance also becomes negative, thus destroying the negative permittivity pro-
vided by the wires. From such a result, it was concluded in [54] that the superposition
of a system of wires and a system of SRRs cannot be seen, in general, as a medium
with simultaneously negative permittivity and permeability. The argument in [54]
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becomes even more apparent if we consider the structure shown in Figure 2.23 (or in
Fig. 2.27). It can be easily shown [47] that electromagnetic waves cannot propagate
along a waveguide filled by an isotropic medium of negative permeability.

The meaning and validity of the superposition hypothesis for left-handed media
based on SRRs and wires or plates was further discussed in [55] and in the
author’s reply to [47]. It is important to recall that the continuous-medium approach
only accounts for the behavior of the average field, and not for the field behavior at the
much smaller scale of the metamaterial elements. At this scale, the short-range
quasielectrostatic and quasimagnetostatic interactions between the metamaterial
elements determine the coupling between them. Therefore, the relative disposition
of such elements is crucial for the accuracy of the aforementioned superposition
hypothesis. Systems providing negative permittivity and negative permeability
should be placed in such a way that the interaction between its elements through
its quasistatic fields is minimized. This is actually the case in Figure 2.20, where
the magnetic flux created by a wire on its nearest SRRs vanishes, so that the wire’s
inductance is not affected by the SRRs. This is also the case in Figure 2.26, where
the metallic strips are placed in the plane of symmetry of the SRRs, which behave
as a virtual perfect conductor (see Section 2.4.2). In fact, it has been shown that if
the SRRs of Figure 2.20 are placed along the wire rows (where magnetic interaction
has a maximum), and not between these rows, as in the actual experiment, the left-
handed behavior disappears [56] (both configurations are illustrated in Fig. 2.28).

Regarding the structures where negative permittivity comes from metallic wave-
guides or plates—as in Figures 2.23 and 2.27—in order to obtain a left-handed beha-
vior, the SRRs must interact with the transverse magnetic field, but not with the
longitudinal magnetic field of the structure. Note that the transverse component of
the magnetic field, after averaging, produce the macroscopic magnetic component
of the left-handed wave. However, due to the symmetry of such devices, the
average longitudinal magnetic field component vanishes. That is, in order to
achieve a left-handed behavior for the average wave, the magnetic resonators must
interact with the macroscopic field components, and not with the microscopic ones.

FIGURE 2.28 (a) Sketch (top view) of the configuration of Figure 2.20, where a left-handed
behavior was observed at some frequency range [4]. (b) Sketch (top view) of a configuration in
which there is no wave propagation at the same frequencies [56].
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In summary, it can be concluded that, in general, a superposition of two systems,
one of them providing negative permittivity and the other providing negative per-
meability, does not make a left-handed medium. However, there are some clever rela-
tive dispositions of the elements of both systems for which the aforementioned
superposition hypothesis is fulfilled, and the left-handed behavior is achieved.
Ultimately, it is the agreement with the experiments that provides the final proof of
the superposition hypothesis for a given design.

2.4.5 On the Numerical Accuracy of the Developed Model for
SRR-Based Metamaterials

The numerical accuracy of the reported theory for the computation of the constitutive
parameters of left-handed metamaterials has already been illustrated in Figure 2.22,
where it was comparedwith simulations and experimental results. It has also been exper-
imentally tested in [51]. In this paper a BC-SRR loaded cutoff waveguide, similar to that
shown in Figure 2.23, was used in order to experimentally check the theoretical model
(the only difference with Fig. 2.23 was that BC-SRRs instead of EC-SRRs were used).
Electromagnetic propagation through three similar devices of different lengths, with 10,
20, and 30 consecutive BC-SRRs, was studied. In particular, the time delay and the
attenuation were measured. From these results, the slow-wave factor c/vg (where vg is
the group velocity) and the attenuation constant of the metamaterial were extracted in
a quite direct way (see [51] for more details). Theoretical and experimental results for
a particular structure are shown in Figures 2.29 and 2.30. The slow-wave factor can
be directly related to the phase constant, k, through vg ¼ j@v=@kj. Therefore, its
measurement can be considered equivalent to a measurement of the dispersion relation

FIGURE 2.29 Theoretical and experimental values for the slow-wave factor along the narrow
BC-SRR loaded waveguide of Figure 2.25. Waveguide and BC-SRR characteristics are as in
Figure 2.25. (Source: Data reproduced with permission from [51]; copyright 2003, IEEE.)

90 SYNTHESIS OF BULK METAMATERIALS



v(k) of the metamaterial. On the other hand, the measurement of the phase and attenu-
ation constants in the considered structure corresponds to the measurement of these
quantities on a typical SRR-based left-handed metamaterial (see Sections 2.4.1 and
2.4.2). Therefore, such measurements can be considered to be a good test for the
accuracy of the model developed in this chapter. It is clear from the figures that the
model provides a good qualitative picture of the metamaterial behavior, reproducing
the passband width and location with only a few percent of error. Attenuation also
seems to be approximately predicted. The main disagreement is in the slow-wave
factor, that is, in the slope of the dispersion relation v(k). This fact can be related to
a drawback in the application of the continuous-medium approach to a discrete meta-
material with a periodicity not smaller that l/10. In fact, as has already been discussed
in Section 2.4.3, for the lower frequencies of the passband, the internal wavelength
becomes very small, and the discrete nature of the metamaterial cannot be ignored.
It can be guessed that for smaller periodicities this drawback could be overcome.

In summary, it can be concluded that the reported theory not only provides phys-
ical insight on the qualitative behavior of left-handed SRR-based metamaterials, but
also reasonable quantitative results (only limited by general considerations about the
validity of the homogenization procedures). This is a remarkable fact, because the
developed theory is analytical and, therefore, much more simple to implement than
standard electromagnetic simulation techniques.

2.5 OTHER APPROACHES TO BULK METAMATERIAL DESIGN

There are two main approaches for metamaterial design at microwave frequencies.
One of them was developed in the previous section. The other, introduced

FIGURE 2.30 Theoretical and experimental values for the attenuation factor along the
narrow BC-SRR loaded waveguide of Figure 2.25. (Source: Data reproduced with permission
from [51]; copyright 2003, IEEE.)

2.5 OTHER APPROACHES TO BULK METAMATERIAL DESIGN 91



simultaneously in [5] to [7], will be described in detail in the next chapter. Apart from
these two main approaches, there are many other interesting proposals that can be also
considered as bulk metamaterial designs (as they were defined at the beginning of this
chapter). Some of them are described in this section.

2.5.1 Ferrite Metamaterials

There are two main groups of materials in nature showing negative permittivity or
permeability and small losses. One of them comprises semiconductors and metals
at infrared and optical frequencies. As has already been mentioned, metals and semi-
conductors are accurately described by permittivity (2.78). At frequencies between
the collision frequency of the electrons fc and the plasma frequency fp, this dielectric
constant becomes approximately real and negative. For this reason, such materials are
sometimes referred as solid-state plasmas. The other group corresponds to saturated
ferrimagnetic materials (ferrites), which have long been used in microwave technol-
ogy, and show negative magnetic permeability near the ferrimagnetic resonance.
Unfortunately, both groups present these interesting properties at quite different
frequency bands, which prevents their combination in designing left-handed
metamaterials.17

Before proceed with the description of ferrite-based left-handed metamaterials, we
will briefly describe the main characteristics of microwave propagation in ferrites.18

Ferrites, when magnetized to saturation by an external DC magnetic field H0, acquire
a resonant anisotropic magnetic permeability. Low-loss cubic ferrites, such as yttrium
iron garnets (YIG), are accurately described by the well-known Polder permeability
tensor19 [58,59]

��m ¼ m0

��mt 0
0 mz

� �
¼ m0

m jk 0
�jk m 0
0 0 1

0
@

1
A, (2:99)

where the external magnetic field is assumed along the z-axis (H0 ¼ H0ẑ) and

m ¼ 1þ vMvH

v2
H � v2

(2:100)

and

k ¼ vvM

v2
H � v2

, (2:101)

17Recently, the use of superconductors has been proposed to overcome this difficulty [57].
18See, for a more detailed analysis, [58,59].
19In such ferrites the only source of anisotropy is the DC fieldH0. Other ferrites with lower symmetry, such
as hexagonal ferrites, are described by a similar tensor, which takes into account the intrinsic anisotropy of
the material.
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where vH is the ferrimagnetic resonance frequency given by

vH ¼ gH0 (2:102)

and

vM ¼ 4pgMs, (2:103)

whereMs is the saturation magnetization of the ferrite, and g is the gyromagnetic ratio
g ¼ 1:76	 107 rad=sec Oe (c.g.s. units).20 It may be worth noting here that the
Polder tensor (2.99) is not symmetric. Therefore, ferrites are nonreciprocal media,
and many practical applications of ferrites in microwave technology come from
such nonreciprocity. In fact, the Polder tensor becomes transposed if the sign of
the biasing magnetic field H0 is reversed. This fact can be expected from the
general properties of generalized susceptances in magnetized media [21]. A general-
ized reciprocity theorem for ferrite media was given in [60].

It is clear from equation (2.99) that for v . vH, k becomes negative and that, for
vH , v ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vH(vH þ vM)

p
, m also becomes negative. Therefore, ferrites exhibit

negative permeability in a significant frequency range near the ferrimagnetic reson-
ance. Regarding plane-wave propagation, the solution to the Maxwell equations
with the tensor permeability (2.99) gives four solutions for the wavevector. For
propagation along the biasing field H0, such solutions are circularly polarized
plane waves. These waves have different phase constants for the different polariz-
ations, given by

k+ ¼ +v

ffiffiffiffiffiffiffiffiffiffi
1m+

eff

q
, (2:104)

where 1 is the dielectric constant of the ferrite, and m+
eff is an effective magnetic

permeability given by the two eigenvalues of ��mt,

m+
eff ¼ m0(m+ k), (2:105)

where the “þ” sign stands for the right-handed circularly polarized (RCP) wave and
the “2” sign for the left-handed circularly polarized (LCP) wave21 with regard to the
direction of the biasing field H0. From equation (2.105), it is deduced that there is a
region of negative mþ

eff for

vH , v , vH þ vM: (2:106)

20The reported expression for the Polder tensor neglects losses. Expressions including losses may be found
in many textbooks, as, for instance, in [58] or [59].
21Here, left- and right-handed refer only to the polarization, and do not imply any backward behavior.
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In this frequency range, the RCP wave sees a negative effective permeability, and
becomes evanescent.

For plane waves propagating in a direction orthogonal to the biasing fieldH0, there
are two kind of solutions to Maxwell’s equations. One of them is an ordinary TEM
plane wave polarized with the magnetic field parallel to H0 and k ¼ +v

ffiffiffiffiffiffiffiffi
1m0

p
. The

other is an extraordinary TE plane wave, with the electric field parallel to H0 and the
H field elliptically polarized in the plane orthogonal toH0. The dispersion relation for
the extraordinary wave is

k ¼ +v
ffiffiffiffiffiffiffiffiffiffi
1meff

p
, (2:107)

where

meff ¼ m0
m2 � k2

m
: (2:108)

From equation (2.108), a negative effective permeability stopband is deduced for
extraordinary waves in the frequency range

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vH(vH þ vM)

p
, v , vH þ vM: (2:109)

In the neighborhoods of current sources, at distances much smaller than the wave-
length, magnetic fields are quasimagnetostatic. Such quasimagnetostatic fields obey
Ampère’s law.22 Therefore, in source-free regions, they are irrotational, and can be
expressed as the gradient of a scalar magnetic potential cm:

H ¼ �rcm: (2:110)

Source-free solutions for such quasistatic magnetic potential with the permeability
tensor (2.99) leads to the magnetostatic wave equation [59]

r � ��m ¼ �rcm ¼ m
@2

@x2
þ @2

@y2

� �
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@z2

� �
fm ¼ 0: (2:111)

It is interesting to note that the cross-term k does not appear in the magnetostatic wave
equation.23 Therefore, for the quasimagnetostatic field, the ferrite appears as an uni-
axial magnetic medium with m? ¼ m0m and mk ¼ m0. Such an effective medium

22In other words, electric displacement current can be neglected.
23However, for finite systems, it usually appears in the boundary conditions.
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shows a negative transverse permeability in the range

vH , v ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vH(vH þ vM)

p
: (2:112)

Among the many similarities between ferrites and solid-state plasmas is the exci-
tation of magnetostatic surface waves (MSSWs), similar to surface plasmons. Such
MSSWs appears in ferrite–metal and ferrite–air interfaces, for external magnetiza-
tion parallel to the interface (see Problems 2.12–2.14). MSSWs are unidirectional
waves, which propagate only in the direction defined by the cross-product H0 	 n,
where n is the outward normal to the ferrite. Depending on the boundary conditions,
such MSSWs can also be excited in ferrite slabs, in all the frequency range

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vH(vH þ vM)

p
, v , vH þ vM: (2:113)

In addition to MSSWs, ferrite slabs can also support magnetostatic volume waves
(MSVWs), with a trigonometric field dependence inside the ferrite. The range of
excitation of MSVWs coincides with the range of negative m (2.112), and for mag-
netization parallel to the slab and propagation parallel to H0, they are backward-
waves. Backward MSSWs can also appear for some specific boundary conditions.24

Like surface plasmons, magnetostatic waves are slow waves with k � k0 ¼ v
ffiffiffiffiffiffiffiffiffiffi
m010

p
.

In such waves, energy is mainly associated with the magnetic field, which can be
accurately determined from the magnetostatic wave equation (2.111).

The above paragraphs show the large variety of phenomena that may appear in
ferrite media, including regions of effective negative permeability, and backward-
wave propagation. This variety is even higher in waveguide configurations [61].
All these properties strongly suggest the usefulness of ferrites for designing micro-
structured metamaterials, with novel electromagnetic properties. Regarding left-
handed metamaterials, there is an interesting precedent for the results reported
in [46] using ferrite-loaded waveguides. In a paper published in 1955 [62],
Thompson reported backward-wave propagation in a below-cutoff waveguide,
filled with a ferrite magnetized along the waveguide axis. The physical interpretation
of this effect relies on the effective negative permeability (2.105) seen for right-
handed circularly polarized (RCP) waves in the frequency range (2.106). This effec-
tive negative permeability, when combined with the effective negative permittivity
(2.2) provided by the below-cutoff waveguide, produces the typical left-handed beha-
vior: backward-wave propagation below the cutoff frequency of the hollow wave-
guide. Note that, according to equation (2.99), the permeability of the ferrite along
the waveguide axis is undoubtedly positive (mz ¼ 1). Therefore, only the transverse
effective polarizability is negative inside the waveguide. Such simultaneously posi-
tive/negative axial/transverse permeability explains, according to the discussion in
Sections 2.4.1 and 2.4.4, the observed effect. Therefore, although there was obviously
not any reference to left-handed media in [62], the reported structure can be

24Specifically, when there is a metallic plate at some distance from the ferrite interface [58].
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interpreted as a one-dimensional left-handed metamaterial. More recently, the same
anticutoff behavior has been demonstrated in ferrite-filled rectangular waveguides
with transverse magnetization [63]. In this case, the effective negative magnetic
polarizability (for the appropriate wave polarization) is provided by equation (2.108).

The substitution by a ferrite of the SRRs in the first Smith’s proposal for left-
handed metamaterial design (Fig. 2.20) has also been considered [64]. The proposed
structure is the same as in Figure 2.3, with the space between the wires filled by a
homogeneous ferrite, magnetized in the direction parallel to the wires. According
to the previous analysis, a plane wave incident in the plane perpendicular to the
wires, and with the electric field polarized parallel to the wires (and to the external
magnetization) will see an effective permeability given by equation (2.108). This
effective permeability is negative in the frequency range given in equation (2.109).
Thus, when combined with the negative permittivity provided by the wire system,
it will produce a left-handed metamaterial in a such frequency range, at least for
the considered field polarization. The proposal has the additional advantages of iso-
tropy in the transverse plane, and tunability by a proper adjustment of the external
magnetization. However, such a proposal presents an important drawback. It can
be easily realized that, for the considered excitation, the magnetic field in the direction
parallel to the wires vanishes. Therefore, only the magnetic permeability in the plane
perpendicular to the wires affects the field behavior. Assuming that this permeability
can be approximated by the scalar permeability (2.108), the behavior of the structure
will be identical to that of a system of wires immersed in a homogeneous medium
with such permeability. It has also been shown [54] (see Section 2.4.4) that such
system does not behave as a left-handed metamaterial. To circumvent this drawback,
the first proposal in [64] was modified, so that the wires were surrounded with a
dielectric cladding [65]. This cladding strongly affects the wire inductance (2.6),
such that it remains positive.

As was mentioned at the beginning of this section, metals and semiconductors
behave as solid-state plasmas, presenting a permittivity whose real part is negative
at frequencies below the plasma frequency (which is usually located between the
infrared and the ultraviolet frequency ranges). However, at microwave frequencies—
where the ferrimagnetic resonance of known ferrites is located—the imaginary part
of the permittivity of metals and semiconductors dominates over the real part. This
fact seems to prevent the design of left-handed composites by taking advantage of
the simultaneously negative real parts of the permeability and permittivity of ferrites
and solid-state plasmas. Recently, the use of superconductors has been proposed to
overcome this difficulty [57]. The proposed structure consists of a set of stacked fer-
romagnetic25 and superconducting very thin layers. Magnetization is in the direction
parallel to the layers. Normal incidence of plane waves polarized with the magnetic
field perpendicular to the external magnetization is considered. For these waves, the
ferromagnetic layers present the effective permeability (2.108), which is negative in
the frequency range of expression (2.109). Superconducting layers are thinner than

25Results in [57] were reported for insulating ferromagnetic layers, with a behavior similar to those of fer-
rimagnetic layers.
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the penetration depth at the frequency of operation, and present a permittivity that is
mostly real and negative. Thus, the resulting structure is quite similar to a stratified
system of stacked 1-negative and m-negative layers. The properties of such a
system were analyzed in [66] (see also Chapter 1). For thin layers and normal inci-
dence, it behaves as a one-dimensional left-handed medium, with a permeability
and a permittivity that are the average of the permeabilities and permittivities of
the layers. In [57], experimental results supporting this interpretation were provided.

Results reported in this section show the possibilities of ferrites magnetized to sat-
uration as constituent elements of left-handed metamaterials. Magnetized ferrites
have the drawbacks of being highly anisotropic, fragile, and expensive. They also
need an external magnet, which may prevent many technological applications.
However, they have the key advantage of tunability by a proper adjustment of the
external biasing field. Because most bulk metamaterials are resonant devices, with
a narrow frequency band of operation, such tunability can be a crucial advantage.

2.5.2 Chiral Metamaterials

Optical activity in natural materials is known in physics from the former analysis of
Arago and Biot, in the early 19th century. After Pasteur’s studies on the crystal struc-
ture of optically active materials, it became apparent that optical activity is closely
related to handedness or chirality. As has already been mentioned in Section 2.3.2,
if the constituents of a material are not invariant by inversion (that is, if they have
some handedness), cross-polarization effects can be expected in the material.
Therefore, isotropic optically active media can be considered as a particular case of
the wider category of bianisotropic media. In fact, the constitutive relations for an iso-
tropic and optically active medium are quite similar to equations (2.56) and (2.57):

D ¼ 1Eþ j
ffiffiffiffiffiffiffiffiffiffi
10m0

p
kH; 1 ¼ 10(1þ xe) (2:114)

B ¼ �j
ffiffiffiffiffiffiffiffiffiffi
10m0

p
kEþ mH; m ¼ m0(1þ xm), (2:115)

where xe, xm, and k are the electric, magnetic, and magnetoelectric susceptibilities,
respectively. For lossless media, these quantities are real numbers [22].

The term chiral media is usually restricted to artificial materials that replicate
natural optical activity at microwave frequencies [22]. The first systematic experi-
ments on chiral media were reported by Lindmann between 1914 and 1920 [67].
Lindmann placed several hundreds of small helices made of copper wire inside
cotton balls, and then put these balls, randomly orientated, inside a cardboard box.
When these boxes were illuminated by a linearly polarized electromagnetic wave
(of a frequency between 1 and 3GHz), the rotation of the plane of polarization
after crossing the box was clearly observed. This rotation changed sign when the
handedness of the helices was reversed, and disappeared when a racemic (balanced)
mixture of helices of both handedness was put into the box. Other inclusions also
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producing chirality were later proposed in [68] to [70].26 Because all these inclusions
show a resonant behavior, strong values of the susceptibilities xe, xm, and k can be
expected around the resonance. Thus, causality constraints suggest that regions of
simultaneously strong and negative dielectric and magnetic susceptibilities should
appear just above the resonance. In fact, negative refraction from artificial chiral
inclusions has been proposed either for chiral mixtures [71,72] or for racemic
mixtures of such elements [73].

Plane waves in biisotropic chiral media are TEM circularly polarized waves, with
square wavevectors [22]

k2 ¼ k20(
ffiffiffiffiffiffiffiffiffi
mr1r

p
+ k)2; 1r ¼ 1=10, mr ¼ m=m0, (2:116)

where k0 ¼ v
ffiffiffiffiffiffiffiffiffiffi
m010

p
is the wavevector in free space, and the sign of the square roots

is chosen positive by convention (in fact, a change in this sign will not affect the
equation). The four roots of equation (2.116) give the four RCP and LCP waves
propagating in the positive and negative directions, respectively. The TEM wave
impedance for all these waves is the same [22]:

h ¼
ffiffiffiffi
m

1

r
: (2:117)

In general, chiral media present forbidden frequency bands for plane-wave propa-
gation at those frequencies where 1 and m have opposite sign. At such frequencies,
the propagation constant (2.116) becomes complex, and the plane wave becomes a
nonpropagating “complex wave”.27 The same condition holds for racemic mixtures
of chiral particles. However, in this case, the wavevector k ¼ v

ffiffiffiffiffiffi
1m

p
becomes imagin-

ary and the plane wave is evanescent in the forbidden frequency region. Only media
with 1m . 0 at all frequencies do not present forbidden frequency bands. This con-
dition is fulfilled when xe ¼ xm for all frequencies. In such a case, the wave impe-
dance (2.117) coincides with that of free space.28

The conditions for backward-wave propagation—and therefore for negative refrac-
tion—in chiral media have been analyzed in [72]. They can be deduced from the con-
dition

k � S , 0, (2:118)

26As has already been mentioned, any resonant inclusion without inversion symmetry must show some
degree of cross-polarizability, leading to a bianisotropic medium. Chiral inclusions can be considered as
a particular case of the former inclusions, showing resonant electric, magnetic, and cross-polarizabilities
along the same direction.
27Complex waves are plane waves that presents a complex propagation constant even if the media is loss-
less. They can appear in bi(iso/aniso)tropic media, as well as in some complex guiding systems [61].
28However, except for normal incidence, this does not mean that there will not be reflected waves at the
interface between free space and such a chiral medium. The reason for this behavior is the different
values taken by the wavevectors in free space and in the chiral medium.
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where k is the wavevector and S is the real part of the Poynting vector for the plane
wave. From this equation, cumbersome but straightforward calculations lead to the
following general condition [72]:

ffiffiffiffiffiffiffiffiffi
1rmr

p
+ k , 0, (2:119)

where the negative sign of the square root has to be chosen if 1r and mr are both nega-
tive. According to equation (2.119), if k2 , j1rmrj then both solutions of equation
(2.116) show negative refraction when both 1r and mr are negative. However, if
k2 . j1rmrj, only one of the solutions of equation (2.116) can be a backward wave
and therefore will experience negative refraction at the interface with ordinary media.

Concerning racemic mixtures, it is well known that they present backward-wave
propagation when 1 , 0 and m , 0 simultaneously.

In order to obtain a better understanding of the behavior of artificial chiral media,
we will analyze the quasiplanar inclusion proposed in [74] and shown in Figure 2.31.
It is a slight modification of the two-turns spiral resonator shown in Figure 2.11. This
modification is enough to provide a chiral behavior, while maintaining the equivalent
circuit shown in Figure 2.11. In particular, the frequency of resonance is still given by

v0 ¼ 1=
ffiffiffiffiffiffi
LC

p
; C ¼ 2prCpul, (2:120)

where L is the ring inductance (2.152), Cpul is the per unit length capacitance between
the rings (2.161), and r the mean radius of the inclusion. However, unlike the planar
spiral of Figure 2.11, the quasiplanar helix of Figure 2.31 presents quasistatic cross-
polarizations. Such cross-polarizations can be obtained from an analysis similar to
that reported in Section 2.3.1. For lossless inclusions, the result is

mz ¼ amm
zz Bext

z � aem
zz E

ext
z (2:121)

and

pz ¼ aee
zzE

ext
z þ aem

zz B
ext
z , (2:122)

FIGURE 2.31 Quasiplanar chiral resonator.
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where the polarizabilities are given by

amm
zz ¼ p2r4

L

v2
0

v2
� 1

� ��1

, (2:123)

aem
zz ¼ +jpr2tC0

v2
0

v

v2
0

v
� 1

� ��1

, (2:124)

and

aee
zz ¼ t2C2

0L
v4
0

v2

v2
0

v2
� 1

� ��1

, (2:125)

where C0 is the in vacuo capacitance between the rings (C0 � 10=1C), and the sign in
equation (2.124) depends on the helicity of the element. These expressions are, in
fact, very similar to equation (2.35) to (2.38), and the presence of the in vacuo capaci-
tance C0 is justified as in the footnote of Section 2.3.1. An interesting property of the
above polarizabilties is that

amm
zz aee

zz ¼ �(aem
zz )

2: (2:126)

This property is very similar to equation (2.40). It is quite general, being shared by
many chiral inclusions, and comes from its LC resonant nature (see Problem 2.15).
In addition to these resonant polarizabilities, the particle also shows some non-
resonant quasistatic polarizabilities aee

xx and aee
yy, which can be estimated as (see

Section 2.3.1)

aee
xx ¼ aee

yy ¼ 10
16
3
r3ext, (2:127)

where rext is the external radius of the particle. Therefore, for a random arrangement
of particles, the average isotropic polarizabilities per particle are

kamml ¼ 1
3
amm
zz , (2:128)

kaeml ¼ +
1
3
aem
zz , (2:129)

and

kaeel ¼ 1
3
aee
zz þ

2
3
aee
xx (2:130)
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In order to develop an ab initio analysis of a random arrangement of the con-
sidered inclusions, we will assume a zero-order homogenization:29

xe ¼
1
10

Nkaeel; xm ¼ m0 Nka
mml; k ¼ +j

ffiffiffiffiffiffi
m0

10

r
Nkaeml, (2:131)

where N is the number of inclusions per unit volume. If the medium is made from a
balanced (or racemic) mixture of elements, it will be isotropic with k ¼ 0.

The electric susceptibility xe can be expanded into two terms, one resonant and
other nonresonant:

xe ¼ xnre þ xre ; xnre ¼ 32N
910

r3ext ; xre ¼
1
310

Naee
zz : (2:132)

From equation (2.131) it follows that a property quite similar to equation (2.126)
also holds for the resonant susceptibilities:

xrexm ¼ k2: (2:133)

Near the resonance, where xe
r takes very high values, the nonresonant susceptibility is

much smaller than the resonant one.30 Therefore, the above inequality becomes

xexm � k2: (2:134)

As has already been shown, media with xe � xm minimize the forbidden fre-
quency bands. From equation (2.134), such a condition also implies that

xm � xe � jkj: (2:135)

The corresponding condition for the resonant polarizabilities (2.123) to (2.125) is

c2aee
zz ¼ amm

zz ¼ +jcaem
zz ; c ¼ 1ffiffiffiffiffiffiffiffiffiffi

10m0
p , (2:136)

29We know from Section 2.3.3 that this simple homogenization can give a good qualitative picture of the
behavior of the system. A careful calculation (not included) shows that a similar behavior is obtained if
Lorentz local field theory is applied.
30 This condition is not too restrictive in practice. For instance, if the ratio between the external diameter of
the particle and the average distance between particles is 2/3, the resulting nonresonant susceptibility is
xnre ¼ 0:13.
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which is compatible with equation (2.126). Taking into account equation (2.134),
condition (2.119) can be rewritten as

1þ xe þ xm , 0: (2:137)

Let us consider the particular case when equation (2.135) and (2.136) are fulfilled. In
such a case the forbidden frequency band is minimized, and backward-wave propa-
gation occurs for

xe � xm .�0:5: (2:138)

In this region, k . 1rmr and, therefore, only one of the solutions of equation (2.116)
exhibits negative refraction.

At frequencies where xe � xm � �0:5, k � 0 for the corresponding wave.
Therefore, at such frequencies there is power transmission (or nonzero group velocity)
with very small (or even zero) phase velocity. This behavior recalls that of the
balanced right/left-handed structures (analyzed in Chapter 3).

For racemic dilute mixtures of the same chiral particles, backward-wave propa-
gation is present in the frequency range

xe � xm . �1, (2:139)

and the aforementioned balanced behavior occurs for xe � xm � �1. Therefore, the
frequency band for backward-wave propagation is wider in biisotropic mixtures
than in racemic ones. The price to pay for this bandwidth enhancement is that only
one of the two circular polarizations shows this behavior in the reported biisotropic
mixtures.

Negative refractive metamaterial design from random (chiral or racemic) mixtures
of chiral inclusions is advantageous because left-handedness comes from only one
kind of element. Regarding the quasiplanar chiral inclusion analyzed in this
section, its main advantage is the reliability and reproducibility that can be obtained
from standard photoetching manufacturing techniques. Other works dealing with the
application of chirality to left-handed media design have stressed the usefulness of a
mixture of a chiral medium operating far from the resonance and a resonant dielectric
medium [75]. Finally, the specific situation when 1=10 ¼ m=m0 ¼ 0 but k = 0, so-
called chiral nihility, has been analyzed in [76].

2.5.3 Other Proposals

In this section we will briefly describe some alternative designs to bulk left-handed
metamaterials. Because a description of all such alternatives would be imposible
(and the number of such proposals steadily increase with time), this description
will be necessarily incomplete.
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An interesting alternative for the design of left-handed metamaterials at microwave
frequencies has recently been proposed in [78] and [79]. This proposal starts from the
consideration of a system of spheres embedded in a dielectric matrix. The problem of
the homogenization of an array of dielectric or magnetic spheres inside a homo-
geneous host matrix has long been known. If the size of the spheres is small compared
with the wavelength in both the host medium and the spheres, the array behaves as a
homogeneous medium with intermediate values of 1 and m [77]. However, if the size
of the spheres is of the same order as the internal wavelength, they may present res-
onances at some specific frequencies (such resonances are sometimes referred to as
Mie resonances). If the wavelength in the host medium is still larger than the size
of the spheres, then the array can be seen as a homogeneous medium, with a resonant
permittivity or permeability that, eventually, may be negative above the resonances
[78,79]. In order to achieve this behavior, at least one of the constitutive parameters
of the spheres, 1s and/or ms, must be much higher than the corresponding constitutive
parameter of the host medium 1h and/or mh:

1s

1h
� 1 and/or

ms

mh

� 1: (2:140)

The problem of the homogenization of a system of spheres embedded in a host
medium satisfying (2.140) was studied by Lewin [80] in 1947. Lewin provided
closed expressions for the constitutive parameters of the homogenized medium,
which were subsequently utilized in [78] and [79] for their analysis.

Starting from Lewin’s results, Holloway et al. [78] analyzed a hypothetical com-
posite medium made of magnetodielectric spherical particles embedded in a host
medium, with 1h � 1s and mh � ms. They found that, for 1s and ms high enough,
the homogenized medium shows a frequency band of simultaneously negative 1

and m. However, isotropic media showing simultaneously very high electric permit-
tivity and magnetic permeability are not known for microwaves. In fact, even isotro-
pic media with very high magnetic permeability are not known for microwaves.
However, ferroelectric or ceramic media with very high dielectric constants are avail-
able in such a frequency range. Vendik and Gashinova [79] considered this specific
case, that is, 1s � 1h, ms ¼ mh ¼ m0. Dielectric resonators made with small
inclusions of high dielectric constant, such as the spheres proposed in [79], are
well known in microwave technology. They are usually analyzed by assuming “mag-
netic wall” boundary conditions around the resonator,31 that is, assuming the follow-
ing conditions at the sphere’s boundary:

n � Es ’ 0; n	Hs ’ 0; (2:141)

where n is the normal to the interface, and Es,Hs are the fields inside the sphere. From
this approach it follows that the field distribution inside the spheres corresponds

31This assumption can be justified from the fact that the reflection coefficient at the boundary between a
medium of high permittivity and a medium of low permittivity is approximately þ1, the same as for a
magnetic wall [81].
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approximately to that of a spherical cavity in a perfect magnetic conductor. This
problem is dual to that of a spherical cavity inside a perfect electric conductor, a
well-known problem of classical electromagnetism [82]. Figure 2.32 shows the elec-
tric and magnetic field inside the high-permittivity spheres proposed in [79], obtained
from the aforementioned magnetic wall approximation. It becomes apparent from
such a figure that the first resonance (TE011 resonance) is associated with a magnetic
dipole, arising from the circulation of the electric displacement current. The second
resonance (TM011) is associated with an electric dipole arising from the continuity
of the tangential electric field at the sphere’s boundary. Around such resonances,
the aforementioned dipoles must show the universal causal behavior, which
ensures that they are positive/negative (regarding the external excitation) below/
above the resonance. Starting from this result, Vendik and Gashinova [79] proposed
a composite left-handed medium made of two sets of high-permittivity dielectric
spheres of different radii, embedded in a dielectric matrix. The radius of each set is
chosen so that the first and the second Mie resonances are excited at each set of
spheres at the same frequency. Therefore, according to causality requirements, just
above this specific frequency the permittivity and the permeability of the effective
medium must be negative. Numerical finite difference time domain (FDTD) simu-
lations supporting this conclusion were reported in [79].

The aforementioned proposal is conceptually simple, and has the additional
advantage of being intrinsically isotropic. The main disadvantage of such a design
seems to be the small bandwidth, about a 1% in the analyzed structures [79]. A limit-
ation of this proposal comes from the fact that, the higher the 1s, the smaller the inter-
action between the fields internal and external to the spheres (in the limit 1s ! 1, the
spheres behave as perfect conducting spheres).

Negative-permittivity mediamade from systems ofmetallic wires or plates present an
important drawback for small absolute values of 1, such as those needed for the design of
super-lenses and other devices of practical interest. In fact, according to equations (2.2)

FIGURE 2.32 Sketch of the magnetic (solid lines) and electric (dashed lines) fields inside a
spherical cavity in a perfect magnetic conductor, for the two first resonances. (a) TE011 first
resonance. (b) TM011 second resonance. (Source: Reprinted with permission from [79]; copy-
right 2003, IEEE.)
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and (2.8), the wire spacing must be of the same order as a half-wavelength in order to
obtain values of 1=10 � �1. Therefore, the continuous-medium approach can be
hardly justified for such values of 1 (see Section 2.4.3). In order to overcome this
difficulty, a modification of the SRR concept has been proposed in [83]. The proposed
structure, two symmetric closed inductive loops connected to a common capacitor, is
shown in Figure 2.33a. The equivalent circuit is shown in Figure 2.33b. At resonance,
the magnetic moment associated with currents in both loops cancels, only the electric
dipole associated with the capacitor remaining. According to causality requirements,
the electric polarizability must be large and negative just above the resonance, thus
providing the required behavior for negative-permittivity metamaterial design. By
properly adjusting the resonator parameters (by slight modifications of the basic
design [83]) the electrical size of the resonator can be made small enough to overcome
the aforementioned drawback of wire media. In [83], numerical calculations supporting
the above discussion are reported. In our opinion, the main inconvenience of this
proposal may be the excitation of unwanted magnetoinductive waves (see Chapter 5)
due to the magnetic coupling between adjacent resonators.

It was shown in Section 2.2.1 that a hollow metallic waveguide operating in the
fundamental TE10 mode behaves as a one-dimensional ideal plasma, with plasma fre-
quency equal to the cutoff frequency of the waveguide. Let us now consider a rec-
tangular waveguide operating at the first TM mode, that is, the TM11 mode. The
propagation constant is still given by equation (2.1); however, the wave impedance
is now given by

Z ¼ k

v10
, (2:142)

instead of equation (2.3). Therefore, from the same rationale as in Section 2.2.1, it
follows that the waveguide behaves now as a magnetic plasma with effective dielec-
tric constant

meff ¼ m0 1� v2
c

v2

� �
, (2:143)

FIGURE 2.33 (a) Electric coupled-field resonator proposed in [83] for negative permittivity
metamaterial design: (a) Basic configuration; (b) Equivalent circuit.
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and effective dielectric constant 1eff ¼ 10. This concept was proposed and demon-
strated by Esteban et al. [11] by filling a below-cutoff square waveguide with a
two-dimensional wire medium of effective negative dielectric constant given by
equation (2.2).32 The proposed structure is shown in Figure 2.34. The propagation
constant for TM modes is given by [11]

k2 ¼ v210m0 1� v2
c

v2

� �
1�

v2
p

v2

 !
, (2:144)

where vc is the cutoff frequency of the TMmode of the hollow waveguide, and vp the
plasma frequency of the wire system. It can be easily realized that propagation is
backward for v , vc, vp (which correspond to the left-handed passband) and
forward for v , vc, vp. For vc , v , vp (or vc . v . vp) there is a stopband
of negative 1 (or m). A key advantage of this proposal over other one-dimensional
left-handed media waveguide simulations (see Section 2.4.1) is a wider bandwidth,
as well as smaller losses due to the absence of resonances in the system. The case
with vc ¼ vp is of interest because no stopband appears. The reported behavior is
quite similar to the behavior of the composite left-/right-handed transmission lines
[5–7], which will be analyzed in detail in the next chapter. In fact, the proposal of
Esteban et al. [11] can be seen as the waveguide counterpart of the aforementioned
proposals.

To end this section we will devote some words to the synthesis of left-handed
metamaterials at optical frequencies. Because negative permittivity is already
present at such frequencies in many metals, the main challenge seems to be how to
obtain negative permeability. That materials do not show a magnetic response

FIGURE 2.34 Simulation of a one-dimensional left-handed medium by a below-cutoff TM
hollow waveguide, filled by a system of crossed wires [11].

32In fact, the analysis in [11] models the system as a hollow waveguide filled with a uniaxial dielectric
medium with 1? , 0 and 1k ¼ 10 (see Problem 1.16 of Chapter 1).
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at optical frequencies has been almost a dogma in optics for many years. The reason
usually invoked to support this statement is that optical frequencies are of the same
order as natural frequencies of oscillation of electrons in atoms and molecules.
Therefore, it seems impossible to obtain closed loops of atomic currents—and
therefore magnetization—at such frequencies [13]. More recently, many attempts
have been made in order to obtain a nonvanishing magnetic response at infrared
and optical frequencies from artificial atoms, such as SRRs [39] and other nanofab-
ricated plasmonic structures [84,85], which can also be modeled as LC resonant
circuits [86]. However, the measured magnetic response of such structures was
always much smaller than those obtained from similar structures at microwave fre-
quencies. This result is in agreement with the considerations already made in
Section 2.3.6.

APPENDIX

In this appendix, accurate quasianalytical expressions for the inductances and per unit
length capacitances used in Section 2.3 will be provided. To begin, the self-induc-
tance of a ring of mean radius r and width c will be obtained. Let us assume a
uniform current I on the ring. As there is no field and/or current dependence on
the azimuthal coordinate, the magnetic energy can be computed as

UM ¼ p

ð1
0

rAfJs,f dr, (2:145)

where Af is the azimuthal component of the vector magnetic potential. Integrating by
parts and using Bz ¼ r�1@r(rAf), where Bz is the z component of the magnetostatic
field, and @r the partial derivative with respect to r, it is found that

UM ¼ p

ð1
0

rBzI(r) dr, (2:146)

where I(r) is defined by

I(r) ¼
ð1
r

Js,f(r
0) dr0, (2:147)

and Js,f is the azimuthal surface current density on the ring.
Because the currents are restricted to the z ¼ 0 plane, Bz can be derived from

a scalar magnetic potential, c(r, z): Bz ¼ �m0@zc. This scalar magnetic potential
must satisfy Laplace’s equation, @2

zcþ r�1@r(r@rc) ¼ 0, subjected to the follow-
ing boundary conditions: @zc(r, 0þ) ¼ @zc(r, 0�); I(r) ¼ c(r, 0þ)� c(r, 0�) and
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c(1, z) ; c(r,1) ¼ 0. Taking the Fourier–Bessel transform, which is defined as

eF(k) ¼
ð1
0

rJ0(kr)F(r) dr, (2:148)

the above problem is analytically solved for ~c(k, z), which is found to be

ec (k, z) ¼ +
1
2
eI(k)e+kz, (2:149)

where the upper (lower) sign stands for z . 0 (z , 0).
After introducing Bz ¼ �m0@zc into equation (2.146), using equations (2.148)

and (2.149), and making use of the Parseval theorem as well as the relation
L ¼ 2UM=I2, the SRR inductance is obtained as

L ¼ m0p
2

I2

ð1
0

[~I(k)]2 k2 dk: (2:150)

For practical computations, a constant value for Js,f has been assumed on the ring,
that is,

Js,f ¼ I=c for r � c=2 , r0 , r þ c=2
0 otherwise.

�
(2:151)

Introducing this expression into equation (2.147), after some algebraic manipulations,
the SRR inductance can be obtained as the following integral:

L

m0
¼ p3

4c2

ð1
0

1
k2

(bB(kb)� aB(ka))2 dk, (2:152)

where a ¼ r � c=2, b ¼ r þ c=2 and function B(x) is defined as

B(x) ¼ S0(x)J1(x)� S1(x)J0(x), (2:153)

with Sn and Jn being the nth order Struve and Bessel functions respectively. This inte-
gral can be easily calculated in a computer, giving an accurate evaluation of the SRR
inductance [19].

Regarding the per unit length capacitances for the EC-SRR and the BC-SRR, they
can be directly obtained from well-known microwave circuit design formulas. For the
EC-SRR, from Table 2.7 and equation (2.4) of [20], it is directly obtained that

Cpul=10 ¼ 1eF(k), (2:154)
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where

1e ¼ 1þ 1� 10

210

F(k)
F(k1)

(2:155)

k ¼ a=b; a ¼ d=2; b ¼ d=2 þ c (2:156)

k1 ¼
sinh(pa=2t)
sinh(pb=2t)

(2:157)

F(k) ¼ 1
p
ln 2

1þ
ffiffiffiffi
k0

p

1�
ffiffiffiffi
k0

p
� �

(2:158)

if 0 � k � 0.7, and

F(k) ¼ p ln 2
1þ

ffiffiffi
k

p

1�
ffiffiffi
k

p
� �� ��1

(2:159)

if 0.7 �k �1, where

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
: (2:160)

For the BC-SRR, from Table 2.6 of [20], it directly follows that

Cpul=10 ¼
1
2
1e

2c
t
þ 1:393þ 0:667 ln

2c
t
þ 1:444

� �� �
(2:161)

where

1e ¼
1þ 10

210
þ 1� 10

210
1þ 6 t

c

� ��1

: (2:162)

PROBLEMS

2.1. Polarizability of a waveguide. Define the average polarization of a rectan-
gular waveguide that supports the fundamental TE10 mode as

P ¼ 1
jvSw

þ
Js dl, (2:163)

where Js is the surface current on the waveguide walls, Sw the surface of the
waveguide cross-section, and the integral is over the boundary of the
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waveguide section. Show that this average polarization is related to the average
electric field in the waveguide cross-section by equation (2.5).

2.2. TM waveguides as artificial magnetic plasmas. Show, following the same
procedure as in Section 2.2.1, that a waveguide operating in a TM mode can
be seen as an artificial magnetic plasma with an effective dielectric constant
1eff ¼ 10 and an effective permeability meff ¼ m0(1� v2

c=v
2), where vc is

the cutoff frequency of the TM mode.

2.3. Spatial dispersion in wire media. Show that a uniaxial medium with permit-
tivity tensor 1x ¼ 1y ¼ 10 and 1z(v) ¼ 10(1� v2

p=v
2) gives the following

dispersion relation for TM (to z) waves:

k2x þ k2y ¼
1z(v)
10

(k20 � k2z ): (2:164)

Show that if 1z is given by equation (2.14), then the dispersion relation (2.13) is
obtained.

2.4. Three-turns spirals as metamaterial elements. Consider the resonator shown
in Figure 2.35. Derive an equivalent circuit for the determination of the fre-
quency of resonance of this element. Using this equivalent circuit show that
the frequency of resonance, f, of this element is related to the frequency of
resonance f2SR of the two-turns spiral (Fig. 2.11) of the same mean radius,
strip width, and slot width through f ’ f2SR=

ffiffiffi
2

p
. Derive an expression for

the magnetic polarizability of such an element (see [26]).

2.5. Nonbianisotropic two-turns spirals. Consider the metamaterial element
shown in Figure 2.36. It can be easily realized that it presents inversion sym-
metry, so that its cross-polarizabilities must vanish. Derive an equivalent circuit

FIGURE 2.35 Sketch of a three-turns spiral resonator. Metallizations are in gray, and the
arrows show the direction of the ohmic and displacement currents at resonance.
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for this element. Using this equivalent circuit, show that the frequency of res-
onance, f, of this element is related to the frequency of resonance, f2SR, of the
two-turns spiral (Fig. 2.11) of the same mean radius, strip width, and slot width
through f ¼

ffiffiffi
2

p
f2SR. Derive an expression for the magnetic polarizability of

such element.

2.6. Open EC-SRR. Consider the configuration shown in Figure 2.37. Derive an
equivalent circuit for this configuration. Using this equivalent circuit show
that this element is equivalent to a short circuit at a frequency that is a half
of the frequency of resonance of the EC-SRR of similar design. This configur-
ation is useful for microwave filter design (see [87]).

2.7. Dispersion relation for plane TEM waves in SRR media. Consider the SRR
media shown in Figure 2.12, with EC-SRRs as elementary constituents. Using
the model reported in Section 2.3.3, show that the dispersion relation for elec-
tromagnetic plane waves propagating along the x-axis and polarized with the

FIGURE 2.36 Sketch of a nonbianisotropic spiral resonator. Note the presence of two non-
connected metallizations.

FIGURE 2.37 Open split rings resonator.
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magnetic field parallel to the z-axis is

kx ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mzz1yy � m010k

2
yz

q
: (2:165)

2.8. Effects of bianisotropy on the dispersion relation of a left-handed medium.
Using expression (2.76), and assuming the superposition hypothesis for the
left-handed composite of wires and SRRs reported in [4], find the width of
the mismatch between the negative-m stopband and the left-handed passband
of Figure 2.22.

2.9. TM plane waves in SRR media. Consider the SRR media shown in
Figure 2.12, with EC-SRRs as elementary constituents. Show that plane
waves propagating along the y-axis and polarized with the magnetic field
along the z-axis are TM waves, with the electric field elliptically polarized in
the x–y plane. Show that the dispersion relation for such waves is

k ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1yymeff

p
; meff ¼ mxx � 10m0

k2yx

1yy
: (2:166)

2.10. Magnetostatic waves in SRR media. Consider the SRR medium shown in
Figure 2.12, with BC-SRRs as elementary constituents. Consider a quasimag-
netostatic field, H ¼ �rcm, where cm is the magnetostatic potential.

† Show that magnetostatic waves with the dispersion relation

k2x þ k2y þ
mzz

m0
k2z ¼ 0 (2:167)

can propagate through the metamaterial in the region of mzz , 0:
† Study the propagation of magnetostatic modes in a slab of the SRR medium
of width d. Consider the two cases, with the SRRs in the plane of the slab,
and with the SRRs orthogonal to the plane of the slab.

These waves can be considered analogous to the well-known magnetostatic
waves in ferrites [58,59] (see also Section 2.5.1). As happens in ferrites, such
magnetostatic approximation is only valid in the limit k � k0 ; v0

ffiffiffiffiffiffiffiffiffiffi
10m0

p
.

2.11. Magnetic susceptibility of a nano-SRR media at near-optical frequencies.
Consider a cubic network of SRRs such as that shown in Figure 2.12, with
elementary constituents such as those shown in Figure 2.18b. Show that, if
losses are small, the magnetic susceptibility along the ring axis is approxi-
mately given by

xm � v2
m

v2
0 � v2 þ jvg

, (2:168)
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where

v2
m ¼ m0

p2rv2
0

8K3(Lm þ Lk)
, (2:169)

v0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Lm þ Lk)C
p , g ¼ R

Lm þ Lc
� v, v0, (2:170)

and K is the dimensionless ratio a/2r.
Show that, when Lk . Lm, the maximum value of j<(xm)j is

jRe(xm)jmax �
p3

8K3

v0

fc

S

l2p

 !2

, (2:171)

where S is the wire section.

2.12. Magnetostatic surface modes in a saturated ferrite I. Show that the
magnetostatic wave equation (2.111) has bounded propagative solutions at
the interface between a magnetized ferrite and a perfect conductor for
v ¼ vH þ vM. These surface magnetostatic waves have the following charac-
teristics: static magnetization H0 parallel to the surface and propagation along
the direction defined by H0 	 n, where n is the outgoing normal to the ferrite
interface. As in quasistatic surface plasmons (see Chapter 1), the dispersion
equation for such waves is degenerate (any wavevector is excited at the
aforementioned frequency).

2.13. Magnetostatic surface modes in a saturated ferrite II. Show that the mag-
netostatic wave equation (2.111) has bounded propagative solutions at the
interface between a magnetized ferrite and free space similar to those analyzed

FIGURE 2.38 A chiral inclusion made of two metallic balls, connected by a solenoid.
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in the previous problem. Show that the frequency of excitation of such MSSWs
is v ¼ vH þ 1

2vM.

2.14. Magnetostatic surface modes in a saturated ferrite III. Find, from Maxwell
equations, the dispersion equation without approximations for the MSSWs
analyzed in the previous problem (see [58] for more information).

2.15. Quasistatic analysis of a chiral inclusion. Consider the chiral inclusion of
Figure 2.38. Using elementary formulas for the self-inductance of a solenoid,
and for the capacitance between two metallic balls [9], find closed expressions
for the polarizabilities of the inclusion.
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CHAPTER THREE

Synthesis of Metamaterials in
Planar Technology

3.1 INTRODUCTION

This chapter is focused on the synthesis of left-handed and single negative structures
in planar technology. Essentially, one-dimensional propagating structures, that is,
metamaterial transmission lines, will be considered, although a subsection will also
be dedicated to the implementation of planar two-dimensional left-handed media.
Regarding the synthesis of metamaterial transmission lines, most of the chapter
will be devoted to the resonant-type approach, where the formerly constitutive par-
ticles for the implementation of bulk left-handed structures, that is, the SRRs, are
used in combination with other elements. A resonant particle that is the dual
version of the SRR, which is useful for the implementation of negative-permittivity
media in planar technology will also be introduced in this chapter, that is, the comp-
lementary split rings resonator (CSRR). The lumped-element equivalent circuit
models for left-handed and single negative transmission lines loaded with both
SRRs and CSRRs will be presented, analysed, and discussed. These models are fun-
damental for the design of microwave components based on SRRs and CSRRs, as
will be shown in Chapter 4.

This book predominantly reflects the results of the research activities carried out
by the authors and their respective groups in the field of metamaterials. These activi-
ties have been mainly oriented towards the resonant-type approach, and the authors
have pioneered the synthesis and applications of metamaterial transmission lines
based on SRRs, CSRRs, and related topologies. However, chronologically, there
was an earlier approach to the design of metamaterials in planar technology,
namely that based on the dual transmission line concept. This approach, initially pro-
posed by Iyer et al. [1], Oliner [2] and Caloz et al. [3], has reached a level of maturity
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that has led to many prospective engineering applications in the field of microwaves.
Therefore, the first sections of this chapter will be devoted to a brief introduction of
this approach. Applications of both approaches (dual transmission line and resonant-
type approaches) will be discussed in Chapter 4.

3.2 THE DUAL (BACKWARD) TRANSMISSION LINE CONCEPT

The concept of backward waves to describe propagating waves with antiparallel
phase and group velocities is not new (several textbooks have dealt with and
described this subject [4,5]). Conceptually, backward waves can be generated by
feeding a ladder network with alternating shunt-connected inductors and series
capacitors (Fig. 3.1). Such a network is the dual version of the equivalent-circuit
model of a conventional lossless planar transmission line with forward (as opposed
to backward) wave propagation (see also Fig. 3.1). The analysis of the propagation
characteristics of the structures shown in Figure 3.1 can be realized from the
theory of periodic structures [6], where it is assumed that the structure is either infinite
or it is matched to the ports. From this analysis, the phase constant,1 b, and the
characteristic (or Bloch) impedance,2 ZB, of the transmission media can be inferred
according to

cosbl ¼ 1þ Zs(v)
Zp(v)

(3:1)

ZB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zs(v)[Zs(v)þ 2Zp(v)

p
], (3:2)

where Zs and Zp are the series and shunt impedances of the basic cell of the structure,
described by its T-circuit model, and l is the period. Application of expressions (3.1)
and (3.2) to the circuits of Figure 3.1 leads to the following expressions [the sub-
indices L and R are used to distinguish between the left-handed (backward wave)

1The phase constant is usually designated by b in circuit theory, whereas in the previous chapters it has
been designated by k, which is the usual convention to express the dispersion relation in continuous media.
2The characteristic impedance of a transmission line is the relation between voltage and current for a single
propagating wave at any position of the line. In periodic structures (either infinite or matched to the ports)
the relation between voltage and current for the Bloch waves is usually called Bloch impedance. For finite
periodic structures not matched to the ports, both incident (energy flow from the input to the output port)
and reflected (energy flow in the opposite direction) waves necessarily arise. For either propagating wave
(incident or reflected), expression (3.2) provides the relation between voltage and current. This impedance
is usually called image impedance, as it is the load impedance required to see identical input impedance.
Nevertheless, we will not distinguish between image and Bloch impedances, and we will call the impe-
dance given by expression (3.2) Bloch impedance or, even, characteristic impedance. Indeed the image
or Bloch impedance play exactly the same role as the characteristic impedance in conventional lines.
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and right-handed (forward wave) structures]:

cosbRl ¼ 1� LC

2
v2 (3:3)

ZBR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

C
1� v2

v2
cR

� �s
(3:4)

cosbLl ¼ 1� 1
2LCv2

(3:5)

ZBL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

C
1� v2

cL

v2

� �s
(3:6)

where vcR ¼ 2=(LC)1=2 and vcL ¼ 1=2(LC)1=2 are angular cutoff frequencies for the
forward and backward wave transmission line structures, respectively. The dispersion
diagram as well as the dependence of ZB on frequency are depicted in Figure 3.2.
Transmission is limited to those frequency intervals that make the phase constant
and the characteristic impedance to be real numbers. It is worth mentioning that fre-
quency dispersion is present in both structures. Even though the circuit of Figure 3.1b
models an ideal lossless forward transmission line, where dispersion is absent, in fact
this circuit is only valid for frequencies satisfying v � vcR, that is, in the long wave-
length limit (corresponding to those frequencies where the wavelength for guided
waves satisfies, lg � l ).3 To correctly model an ideal lossless transmission line at
higher frequencies, we simply need to reduce the period of the structure, and, accord-
ingly, the per-section inductance and capacitance of the line, L and C, with the result
of a higher cutoff frequency. Thus, the circuit of Figure 3.1b can properly describe

FIGURE 3.1 Equivalent circuit model of backward (a) and forward (b) transmission lines.
The T-circuit models of the basic cell structures are also indicated in (c) and (d ).

3lg has been called the internal wavelength and was designated li in the previous chapter (see Section
2.4.3).
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ideal transmission lines without dispersion. To this end we simply need to select the
period such that the long wavelength limit approximation holds. Under this approxi-
mation, expressions (3.3) and (3.4) lead us to the following well-known expressions:

bR ¼ v
ffiffiffiffiffiffiffiffiffi
L0C0

p
(3:7)

and

ZBR ¼
ffiffiffiffiffi
L0

C0

r
; Zlw, (3:8)

where L0 and C0 are the per-unit length inductance and capacitance of the trans-
mission line (in expression 3.8, L0 and C0 can be replaced by L and C with no
effect). From (3.7), we can obtain the phase and group velocities of the forward trans-
mission line. These velocities are given by:

vpR ¼ v

bR

¼ 1ffiffiffiffiffiffiffiffiffi
L0C0

p ¼ lffiffiffiffiffiffi
LC

p (3:9)

vgR ¼ @bR

@v

� ��1

¼ vpR (3:10)

and they are both positive and constant.

FIGURE 3.2 Typical dispersion diagram of forward (a) and backward (b) transmission line
models. The dependence of the normalized (ZB/Zlw) Bloch impedance with frequency is
shown in (c) and (d ) for the forward and backward lines, respectively.
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Conversely, the backward-wave structure of Figure 3.1a is dispersive even in the
long wavelength limit. In order to identify this structure as an effective propagating
medium (i.e., one-dimensional metamaterial), operation under this approximation
is required.4 However, regardless of the operating frequency within the transmission
band, the structure supports backward waves and, for this reason, it is a left-handed
transmission line. In order to properly identify effective constitutive parameters, meff

and 1eff, the long wavelength approximation is necessary. However, many circuit
applications of these left-handed lines are based on left-handedness, rather than on
the effective medium properties, and operation under this approximation is not a
due. Nevertheless, for coherence and simplicity, the phase constant, the characteristic
impedance, as well as the phase and group velocities are derived under the long wave-
length limit (v � vcL). The following results are obtained:

bLl ¼ � 1

v
ffiffiffiffiffiffi
LC

p (3:11)

ZBL ¼
ffiffiffiffi
L

C

r
; Zlw (3:12)

vpL ¼ v

bL

¼ �v2l
ffiffiffiffiffiffi
LC

p
, 0 (3:13)

vgL ¼ @bL

@v

� ��1

¼ þv2l
ffiffiffiffiffiffi
LC

p
. 0 (3:14)

and the phase and group velocities have opposite signs. From a mathematical point of
view, in the dispersion diagrams for the forward and backward lines depicted in
Figure 3.2, and obtained from expressions (3.3) and (3.5), the sign of b can be
either positive or negative. This ambiguity comes from the two possible directions
of energy flow, namely from left to right or vice versa. If we adopt the usual conven-
tion of energy flow from left to right, then the sign of the phase constant is determined
by choosing that portion of the curves that provide a positive group velocity (bold
lines in Fig. 3.2a and b). From this, it is clear that for the forward transmission
line, b and vp are both positive, whereas these magnitudes are negative for the back-
ward transmission line. In both cases, vg is positive, as one expects, on account of the
codirectionality between power flow and group velocity.

In the backward and forward transmission lines depicted in Figure 3.1, it is poss-
ible to identify effective constitutive parameters. To this end, we should take into
account that transverse electromagnetic (TEM) mode propagation in planar trans-
mission media and plane wave propagation in isotropic and homogeneous dielectrics
are described by identical equations (telegraphist’s equation) provided the following

4This aspect was discussed in Section 2.4.3.
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mapping holds:

Z 0
s(v) ¼ jvmeff (3:15)

Y 0
p(v) ¼ jv1eff (3:16)

where Z0s and Y 0
p are the series impedance and shunt admittance per unit length. Thus,

for the forward line, the effective permittivity and permeability are constant and they
are given by

1eff ¼ C=l (3:17)

and

meff ¼ L=l, (3:18)

whereas for the backward transmission line, the constitutive parameters are

1eff ¼ � 1
v2Ll

(3:19)

and

meff ¼ � 1
v2Cl

, (3:20)

and they are both negative, a sufficient condition to obtain left-handed wave
propagation.

From a practical point of view, in order to implement a dual (or backward) trans-
mission line, a host line (microstrip or CPW, among others) is required. The host line
thus introduces parasitic elements that in general may not be negligible, and they
should be taken into account to accurately describe the propagation characteristics
of the lines. As will be shown later, these structures may exhibit left-handed or
right-handed wave propagation, depending on the frequency interval, and, for these
reason, they have been termed as composite right-/left-handed (CRLH) transmission
lines [7]. The equivalent circuit model of these structures is depicted in Figure 3.3.
For clarity, we have renamed the reactive elements of the dual transmission line as
CL and LL, and CR and LR correspond to the per-section capacitance and inductance
of the host line. By using expressions (3.1) and (3.2), the dispersion relation as well as
the characteristic impedance of the CRLH transmission line can be inferred, namely:

cosbl ¼ 1� v2

2v2
R

1� v2
s

v2

� �
1�

v2
p

v2

 !
(3:21)

ZB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR
CR

1� v2
s

v2

� �

1�
v2
p

v2

 !� L2Rv
2

4
1� v2

s

v2

� �2

vuuuuuut (3:22)
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where the following variables

vR ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
LRCR

p (3:23)

vL ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
LLCL

p (3:24)

and the series and shunt resonance frequencies

vs ¼
1ffiffiffiffiffiffiffiffiffiffiffi
LRCL

p (3:25)

vp ¼
1ffiffiffiffiffiffiffiffiffiffiffi
LLCR

p (3:26)

have been introduced to simplify the mathematical formulas. Expressions (3.21 and
3.22) are depicted in Figure 3.4. Two propagating regions, separated by a gap at the
spectral origin, can be distinguished. In the lowest frequency region the parameters of
the dual transmission line, CL and LL, are dominant, and wave propagation is back-
ward. This situation is reversed above the stopband, where the parasitic reactances of
the host line make the structure behave as a right-handed line. Indeed, at high frequen-
cies, the CRLH transmission line tends to behave as a purely right-handed (PRH)
line. Conversely, in the lower limit of the first allowed band, the CRLH structure exhi-
bits the characteristics of a purely left-handed (PLH)—or dual—transmission line.
The gap limits are given by the frequencies satisfying.

vG1 ¼ min(vs, vp) (3:27)

vG2 ¼ max(vs, vp): (3:28)

In the long wavelength limit, expression (3.21) is rewritten as

b ¼ s(v)
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

v2
R

1� v2
s

v2

� �
1�

v2
p

v2

� �s
, (3:29)

FIGURE 3.3 Equivalent circuit model (basic cell) of the CRLH transmission line.
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where s(v) is the following sign function:

s(v) ¼ �1 if v , min(vs, vp)
þ 1 if v . max(vs, vp):

�
(3:30)

From the phase constant (equation 3.29), the phase and group velocities can be easily
inferred, these velocities being of opposite sign in the left-handed band and both
being positive in the right-handed band.

With regard to the constitutive parameters for the CRLH transmission line, they
can be inferred as previously indicated, that is,

1eff ¼
CR

l
� 1
v2LLl

(3:31)

and

meff ¼
LR
l
� 1
v2CLl

, (3:32)

and they can be positive or negative, depending on the frequency range.

FIGURE 3.4 Typical dispersion diagram (a) and variation of Bloch impedance with fre-
quency (b) in a CRLH transmission line model. In this example, vs , vp.
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One particular case of interest is the so-called balanced CRLH line, which corre-
sponds to the situation where the series and shunt resonances are identical, namely
vs ¼ vp ¼ vo [8]. In this case, there is not a forbidden band between the left-handed
and right-handed allowed bands; in other words, the change between backward and
forward wave behavior is continuous. Concerning the characteristic impedance, it
reaches its maximum at vo (the transition frequency), where

ZB ¼
ffiffiffiffiffiffi
LR
CR

r
¼

ffiffiffiffiffiffi
LL
CL

r
, (3:33)

and the characteristic impedance decreases as frequency increases or decreases from
vo. At the limits of the allowed propagation interval (which contains both the left-
handed and right-handed frequency bands) the characteristic impedance nulls, and
beyond this limits, it takes imaginary values. Figure 3.5 depicts the dispersion
diagram and the variation of line impedance with frequency. In contrast, the charac-
teristic impedance dependence on frequency is more complicated for the unbalanced
case (see Fig. 3.4). If we consider that vs , vp (which is the situation considered in
Fig. 3.4), the characteristic impedance is zero at the lower limit of the left-handed
interval, it increases as frequency increases, reaches a maximum, and then decreases

FIGURE 3.5 Typical dispersion diagram (a) and variation of Bloch impedance with fre-
quency (b) in a balanced CRLH transmission line.

3.2 THE DUAL (BACKWARD) TRANSMISSION LINE CONCEPT 127



towards zero, at vs, the upper limit of the left-handed band. In the right-handed band,
the impedance exhibits a pole at vp (the lower frequency limit), it decreases as fre-
quency increases, and it nulls at the higher cutoff frequency of the right-handed
band. However, the behavior changes if vs . vp; in this case, the impedance goes
from zero up to infinity in the left-handed passband, and it nulls at the edges of
the right-handed band.

From the point of view of the characteristic impedance, the balanced CRLH trans-
mission line is interesting because in the vicinity of the transition frequency, ZB is not
very dependent on frequency, and it allows for broadband matching, as compared to
the unbalanced case, where the characteristic impedance is much more sensitive to
frequency. On the other hand, the balanced case exhibits another important difference
as compared to the unbalanced CRLH transmission line. Namely, at the transition fre-
quency, where the phase velocity exhibits a pole, the phase shift5 is zero, and the
group velocity differs from zero. In other words, at this frequency, wave propagation
is possible (vg = 0) with b ¼ 0. The phase origin of the balanced CRLH line thus
takes place at vo. When frequency is decreased below vo, the phase becomes positive
and it increases progressively; conversely, when frequency increases from vo, the
phase increases in magnitude but with negative sign (as occurs in conventional trans-
mission lines). Regarding the behavior of wavelength for guided waves, lg, in the
balanced CRLH transmission line, this reaches its maximum (infinity) at vo, and
lg decreases as frequency increases or decreases from vo. Indeed, for the unbalanced
case, the guided wavelength also increases when frequency approaches the spectral
gap. However, at the edges of the gap the group velocity is zero, the line impedance
takes extreme values, and signal propagation is not allowed.

3.3 PRACTICAL IMPLEMENTATION OF BACKWARD
TRANSMISSION LINES

As has been indicated in the previous section, the practical implementation of a dual
transmission line requires a host medium. As consequence, the description of the
whole structure bymeans of a lumped elementmodel includes not only the series capaci-
tor and the shunt inductor, but also the elements of the host line, namely the per-section
inductance and capacitance. Depending on the frequency region, propagation is back-
ward (or left-handed) or forward (or right-handed) and the line behaves as a CRLH
transmission medium. Thus, rather than the implementation of backward (or purely
left-handed) lines, which is not possible in practice, the main concern is the design
and fabrication of CRLH transmission lines. These lines can be considered one-
dimensional metamaterials belonging to the category of structures based on the dual
transmission line approach. Another type of one-dimensional metamaterial is that
based on the resonant-type approach, where a host line is loaded with SRRs, or other
related topologies. The design of left-handed transmission lines based on SRRs will
be discussed in Section 3.5.

5Notice that by phase shift we refer to the phase of the transmission coefficient, which is of opposite sign to
the phase constant.
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Returning to the CRLH lines, in principle, the host propagating medium can be
any type of planar transmission line, such as microstrip, strip line or coplanar wave-
guide (CPW) structures. For the reactive elements (series capacitor and shunt induc-
tor) necessary to achieve a CRLH line, two possibilities arise, namely the use of
lumped (typically surface mount technology) elements, or, alternatively, distributed
components. In this context, distributed components means planar elements that
are electrically small, that is, with a size smaller than lg. Typically, these planar
elements are termed semi-lumped, because their size cannot be as small as those
of lumped elements. However, the key point for the synthesis of metamaterials,
that is, effectively homogeneous materials, is to make use of electrically small con-
stitutive elements, or particles. Thus, it is important to reduce the size of the semi-
lumped components as much as possible. The advantage of lumped elements is
their size; however, lumped elements can operate only in a limited frequency range
(typically below 5–6 GHz) due to parasitic effects that cause self-resonance to
appear. Moreover, it is difficult to achieve the required electrical characteristics by
using lumped elements, because their values are restricted to those provided by the
manufacturers. Finally, the use of lumped elements is more expensive; soldering is
necessary (it causes additional losses) and it goes against the full integration of micro-
wave components. Hence, semi-lumped elements are preferred.

Two main host lines have been considered for the synthesis of metamaterial trans-
mission lines based on the dual (or backward) transmission line concept: the micro-
strip structure and the coplanar waveguide configuration. The former was proposed
by Caloz et al. in 2002 [9], and subsequently used in many applications. The
implementation of a CRLH structure by means of a CPW configuration was due to
the group of Eleftheriades [10], who used the structure to demonstrate the occurrence
of backward-wave radiation in the fast-wave region of the dispersion diagram. The
microstrip structure proposed by Caloz consists of a periodic arrangement of series
interdigital capacitors alternated with grounded (through metallic vias) stubs,
which act as shunt-connected inductors (see Fig. 3.6). The interdigital capacitors
are described by the series capacitance CL in the circuit of Figure 3.3, whereas LL
models the grounded stubs. The other reactive elements CR and LR correspond to
the line capacitance and inductance, respectively. As this book is mainly focused
on the resonant-type approach of metamaterials, we will not discuss the detailed pro-
cedure to generate the layout, or to extract the electrical parameters from it [8].
Nevertheless, we have included in Figure 3.7 the frequency responses (measured,
simulated through electromagnetic solvers and by means of circuit simulation) of a

FIGURE 3.6 Microstrip CRLH transmission line implemented by means of shunt-
connected grounded stubs and interdigital capacitors. (Source: Photo courtesy of C. Caloz.)

3.3 PRACTICAL IMPLEMENTATION OF BACKWARD TRANSMISSION LINES 129



FIGURE 3.7 Typical frequency responses for nine-cell balanced (a) and seven-cell unba-
lanced (b) CRLH transmission lines of the type depicted in Figure 3.6. (Source: Reprinted
with permission from [8]; copyright 2006, John Wiley & Sons.)

FIGURE 3.8 CPW CRLH transmission line leaky wave antenna (a). The detail of the struc-
ture and the radiation diagram are depicted in (b) and (c), respectively. (Source: Reprinted with
permission from [10]; copyright 2002, American Institute of Physics.)
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nine-cell balanced structure and a seven-cell unbalanced design. The transition
frequency is fo ¼ 3.9 GHz in the balanced structure, which does not exhibit the
stopband. However, this stopband can be appreciated (separating the left-handed
and right-handed frequency bands) in the unbalanced structure.

In the CPW configuration, the shunt inductors can be implemented by means of
connecting strips between the central strip and ground planes. The series capacitors
can be implemented through interdigital geometries, or by means of series gaps.
The latter are more simple, but the achievable capacitance values are much
smaller. The Eleftheriades Group at the University of Toronto (Canada) presented
a realization of a left-handed line fabricated in CPW technology by using series
gaps and shunt strips (see Fig. 3.8) [10]. This line was used as a leaky wave
antenna, where the operating frequency was set in the fast-wave region of the spec-
trum, where the structure may radiate. The most relevant aspect of this structure is
that, unlike ordinary leaky wave antennas, which exhibit forward radiation, this
line exhibits backward radiation. This effect has been explained as being due to
the propagation of backward leaky waves in the structure (see Section 1.8.3),
and this can be considered as the signature of left-handed wave propagation in the
radiating element. This aspect will be discussed in more detail in Chapter 4.

3.4 TWO-DIMENSIONAL (2D) PLANAR METAMATERIALS

In this section, the authors simply want to point out that the extension of the previous
transmission line, that is, planar one-dimensional (1D), metamaterials to 2D metama-
terials is straightforward, rather than providing a network analysis of such 2D struc-
tures. This has been done by others and is explained in [8] and [11]. Indeed, the first
2D metamaterial was synthesized by the group of David Smith in 2001 by etching
SRRs and strips in multiple dielectric slabs orthogonally oriented [12] (see
Fig. 2.26). Although the structure was utilized to demonstrate negative refraction, it
was a bulk structure, rather than planar. In planar technology, the first 2D structure
was proposed by the group of Eleftheriades [13], who experimentally demonstrated
for the first time the occurrence of near-field focusing [14]. The structure consisted
of a 2D L–C loaded transmission line (see Fig. 3.9), where the capacitances were
implemented by means of chip capacitors surface-mounted between gaps etched in
the grid lines between lattice nodes, and the inductances were realized through
chip inductors embedded into holes drilled at the node positions. The possibility of
overcoming the diffraction limit in a planar lens made of a 2D L–C loaded periodic
lattice [15], which was placed between two 2D grids made of conventional microstrip
lines, was also experimentally demonstrated (Fig. 3.10). In Figure 3.10 are also
depicted the measured vertical electric field detected in the structure (0.8mm above
the surface), as well as the measured vertical electric field at the image, which is com-
pared to the theoretical limit corresponding to a continuous medium. The amplifica-
tion of evanescent waves and subdiffraction imaging are both demonstrated.

Alternatively, the possibility of implementing a 2D left-handed structure avoiding
the use of lumped elements has also been demonstrated [16]. The structure was
first proposed by Sievenpiper [17] for the realization of high-impedance surfaces.
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It consists of a mushroom structure (Fig. 3.11), which can be described by a CRLH
transmission line model in two dimensions (Fig. 3.12).6 The series capacitances (CL)
are implemented by means of the slots present between neighboring patches, whereas
vias are responsible for the shunt inductance (LL) necessary to obtain left-handed-
ness. In the structure, the caps are used to enhance the weak capacitance couplings
between adjacent patches. The other elements of the circuit model (CR and LR) are
provided by the capacitance and inductance of the transmission line formed by the
ground plane and metal patches. The typical dispersion diagram for a periodic
structure based on the unit cell of Figure 3.12 is depicted in Figure 3.13 (see
details for calculation and parameters in [16]) for the balanced and unbalanced
cases. As occurs in the 1D case, backward and forward wave transmission arise in
different frequency intervals, separated by a gap in the unbalanced case, and with
a continuous transition under balance conditions. The dispersion diagram for the
structure of Figure 3.11 has been also obtained by Sanada et al. [16] from full
wave (FEM) simulation (Fig. 3.14). Similar characteristics as those of Figure 3.13
are observed. However, the fundamental mode of the structure is mixed left-
handed/right-handed, because, as argued in [16], the structure is opened and the
left-handed mode couples with the TM air mode (in a closed stripline structure a
purely left-handed mode has been found [16]). On the other hand, there is also a
degenerate right-handed TE mode not accounted for in the circuit model. The fact
that the left-handed mode is shifted towards higher frequencies when the caps are
not present is indicative of the influence of the caps on the series capacitance CL.

Although this chapter is focused on planar structures, proposals of three-
dimensional structures based on the transmission line approach of metamaterials
have also been done (see for instance [18] and [19]).

FIGURE 3.9 Two-dimensional metamaterial consisting of a grid of transmission lines
loaded with series capacitors and shunt-connected inductors. (Source: Reprinted with per-
mission from [13]; copyright 2002, IEEE.)

6This circuit model also describes the unit cell of those structures depicted in Figures 3.9 and 3.10.
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FIGURE 3.10 Left-handed planar transmission line lens (a), measured vertical electric field
detected 0.8 mm above the surface of the entire structure at 1.057 GHz (b), and measured ver-
tical electric field at the image plane in solid line (c). For comparison, (c) also illustrates the
electric field at the source plane (dashed curve), and the theoretical diffraction-limited
pattern in a continuous medium (dash-dotted curve). (Source: Reprinted with permission
from [15]; copyright 2004, American Physical Society.)
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FIGURE 3.13 Typical dispersion diagram for a 2D periodic structure composed of the unit
cells described by the circuit of Figure 3.12. (Source: Reprinted with permission from [16];
copyright 2004, IEEE.)

FIGURE 3.11 General view of the 2D CRLH structure based on the mushroom configur-
ation (a) and unit cell (b). (Source: Reprinted with permission from [16]; copyright 2004,
IEEE.)

FIGURE 3.12 Equivalent circuit model of the unit cell of the structure shown in Figure 3.11.
(Source: Reprinted with permission from [16]; copyright 2004, IEEE.)
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3.5 DESIGN OF LEFT-HANDED TRANSMISSION LINES BY
MEANS OF SRRs: THE RESONANT TYPE APPROACH

In the preceding sections of this chapter, it has been demonstrated that the dual trans-
mission line concept can be used for the synthesis of planar left-handed transmission
lines in both microstrip and coplanar waveguide technologies. The negative effective
permeability and permittivity values are provided by the series (capacitive) and shunt
(inductive) impedances, respectively, loading the line. In fact, these impedances are
not purely capacitive and inductive, because the host transmission line introduces
extra reactances of opposite sign (that is, series inductance and shunt capacitance)
and their effects increase with frequency, with the result of a CRLH behavior that
limits the bandwidth of the left-handed transmission band. Therefore, the backward
transmission lines of the previous sections have a limited bandwidth, and they
exhibit forward transmission above the left-handed band.

The synthesis of left-handed transmission lines by properly etching SRRs in the host
line is also possible [20]. In contrast to the dual transmission line approach, we can term
this approach the resonant-type approach, because resonators (SRRs) are utilized as
loading elements.7 The authorswould like to emphasize at this point that this designation
(resonant-type approach) merely indicates that subwavelength resonators are used. As
will be shown later, the transmission characteristics of both approaches (dual trans-
mission line and resonant-type approach) are qualitatively very similar. In other

FIGURE 3.14 Typical dispersion diagram inferred from full wave (FEM) simulation and
corresponding to the structure depicted in Figure 3.11. (Source: Reprinted with permission
from [16]; copyright 2004, IEEE.)

7Alternatively, resonant-type metamaterial transmission lines can be implemented by using complementary
split rings resonators (CSRRs). These particles will be introduced in Section 3.7.
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words, resonant-type metamaterial transmission lines also exhibit a composite right-/
left-handed (CRLH) behavior. Indeed, as for dual transmission lines, it is also possible
to design resonant-type balanced structures, with the absence of the stopband between
the left-handed and right-handed bands. Differences between the dual and resonant-
type approach concern their descriptions through equivalent circuit models. These
models are not identical, but they are similar. A comparison between both models and
with the transmission line model of bulk SRR-based metamaterials will be carried out
later in this chapter (Section 3.9).

The natural host lines for the implementation of SRR-based left-handed metamater-
ials in one dimension are the microstrip line and the coplanar waveguide, among others.
SRRs provide the negative effective permeability. However, to achieve backward-wave
propagation, further microstructuring is necessary, in order to obtain the required nega-
tive effective permittivity. In coplanar waveguide technology, a possible solution is that
proposed by Eleftheriades and co-workers [10], namely, the periodic connection of
metallic strips between the central strip and the ground planes. As has been discussed
previously, these connecting wires act as shunt inductors and, hence, they provide a
negative value of the effective permittivity up to a cutoff (or plasma) frequency that
depends on the period of the structure, on the width of the shunt-connecting strips
(which is intimately related to the inductance value) and on the per-unit cell capacitance
of the line. In microstrip technology, grounded stubs can be used to implement the nega-
tive permittivity, as reported by the group of Professor Itoh at theUniversity of California
at Los Angeles (UCLA) [9]. Alternatively, the implementation of metallic vias between
the conductor strip and the ground plane at periodic positions arises as a possible solution
where lateral metallization (to etch the stubs) is avoided [21]. This is of interest, because
SRRs must necessarily be etched in the upper substrate side in close proximity to the
conductor strip to achieve high line-to-SRRs magnetic coupling. Therefore the lack of
stubs is preferred. Let us now consider in more detail the implementation of microstrip
andCPW transmission lines simply loaded with SRRs (that is, 1D negative permeability
media). After this, the design of left-handed microstrip and CPW transmission lines will
be discussed in detail.

3.5.1 Effective Negative Permeability Transmission Lines

In order to load a CPW transmission linewith SRRs, and thus obtain a negative effective
permeabilitymedium, it is necessary to etch the rings at the appropriate locations, that is,
in such a way that the magnetic field generated by the current flowing through the line
exhibits a significant component in the axial direction of the rings. Under these con-
ditions, the rings will be properly excited and the overall structure will be expected to
behave as an effective medium with negative-valued permeability in a certain band
above the resonance frequency of the SRRs.8 This means that the SRRs must be
etched in the slot region. However, they can be etched either at the upper metal level,
or in the back substrate side (provided there is no ground metallization at that side of

8Although not explicitly indicated, by resonance frequency of the SRRs the authors refer to the first one
(quasistatic resonance). This applies to the whole chapter.
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the substrate). In the former case, wemay call the structure a uniplanar transmission line,
but in the latter case it seems appropriate to talk in terms of a bi-metal implementation
[22]. The uniplanar structure is more simple, as no back-side etching is required.
However, it exhibits two drawbacks. First, wide slots are required to accommodate
the SRRs; this has a direct influence on the characteristic impedance of the host
line, which is expected to be high when compared to the usual impedance of 50V
required to obtain low insertion losses9 in the allowed frequency bands. On the other
hand, line-to-rings magnetic coupling is expected to be relatively weak provided the
magnetic field flowing through the rings is only a few percent of the overall magnetic
flux generated by the host line (details on this structure including its behavior are
given in [22]).

The preferred solution to obtain high line-to-rings coupling and low insertion
losses in the allowed band10 (that is, in that region where 1eff and meff are both
positive) is the bimetal structure. Figure 3.15 depicts, the layout corresponding to a
bimetal implementation as well as the simulated and measured frequency responses.
Because SRRs are etched in this case in the back substrate side, the lateral dimensions
of the host line (etched in the upper metal level) are no longer influenced by the
presence of the rings, and line matching is easily achieved. Moreover, as long as
the substrate is thin enough, the magnetic flux generated by the current flowing
through the line can efficiently penetrate the SRRs and hence a high magnetic coup-
ling between line and rings is expected. A stopband appears in the vicinity of fo ¼
7.7GHz, the resonance frequency of the SRRs (their dimensions are indicated in
the caption of the figure and they have been calculated following [23] and Chapter
2 to obtain such resonance frequency). In fact, the forbidden band extends above
and below fo. This stopband can be interpreted as a consequence of the properties
of the structure, which behaves as a 1D effective medium with negative magnetic per-
meability in a narrow band above resonance and with high positive permeability in a
narrow band below resonance,11 which causes a strong mismatch at the feeding port
of the line. In Figure 3.15, it can be perfectly appreciated that no ripple is present in
the allowed band, which is indicative of a good matching. Indeed, outside the forbid-
den band, the signal does not see the presence of the rings and it is propagated
between the input and output ports of the structure. A current diagram of the structure
for two different frequencies (that is, within the stopband and below) is depicted in
Figure 3.16. At 2 GHz, the signal propagates and SRRs are not excited. However,
at 7.7 GHz, SRR excitation is very visible and the injected power is retuned back

9In two-port networks it is usual to describe the transmission and reflection levels of the feeding signals by
means of the insertion (IL) and return (RL) losses, respectively, where IL ¼ 20 logjS21j and RL ¼ 20
logjS11j.
10To efficiently use these negative permeability lines as small-sized stopband structures, it is necessary to
reduce transmission band losses as small as possible. This application will be discussed in detail in the next
chapter.
11Simultaneous positive or negative values of 1eff and meff are necessary but not sufficient conditions for
signal propagation. This is very clear to the light of Figure 3.2, where signal propagation is limited to a
certain region of the electromagnetic spectrum.
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to the source. It is interesting to notice that four ring pairs suffice to obtain a rejection
level in the vicinity of 40dB (Fig. 3.15).

In microstrip technology only one possibility arises, that is, the rings should be
etched as close as possible to the line in order to obtain high magnetic coupling.
In fact, in order to enhance this coupling, square-shaped or rectangular SRRs are pre-
ferred in this case. This way, the magnetic flux lines penetrate the SRR’s area more
efficiently. Figure 3.17 depicts the layout and simulated frequency response of a 50V
microstrip transmission line loaded with square-shaped SRRs. Significant attenuation
in the stopband is also achieved in this case, this band extending up and down the
resonant frequency of SRRs.

FIGURE 3.15 Layout (a) and simulated (thin line) and measured (bold line) frequency
response (b) of the bi-metal SRR loaded CPW structure. SRRs, etched in the back side of
the substrate, are depicted in black, whereas the upper metal level is depicted in gray. Ring
dimensions have been determined following [23] to obtain a resonance frequency of fo ¼
7.7 GHz, where ring width and separation are c ¼ d ¼ 0.2 mm and the radius of the inner
ring is r ¼ 1.3 mm. The distance l between adjacent rings is 5 mm. Lateral CPW dimensions
have been calculated to obtain a 50V characteristic impedance. The parameters used in
the simulation are those of the Arlon 250-LX-0193-43-11 substrate (1r ¼ 2.43, thickness
h ¼ 0.49 mm). (Source: Reprinted with permission from [22]; copyright 2004, John Wiley
& Sons.)
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3.5.2 Left-Handed Transmission Lines in Microstrip and
CPW Technologies

The first left-handed transmission line implemented by means of SRRs was proposed
by Martı́n et al. [20]. The structure was a coplanar waveguide with SRRs etched in the
back substrate side, underneath the slots, and signal-to-ground metallic connections
(strips) periodically located above the SRRs, as shown in Figure 3.18. In fact, this
structure is identical to that shown in Figure 3.15, except for the presence of the
shunt strips. These strips act as shunt-connected inductors, and hence they make
the structure behave as an effective medium with negative dielectric permittivity,
up to a frequency (plasma or cutoff frequency, fc) that depends on the period and
width of the shunt strips. Therefore, as long as fc is set above the resonance frequency
of the SRRs, a region exists where both the effective dielectric permittivity and mag-
netic permeability (the latter provided by the rings) are both simultaneously negative.
According to our previous words, this occurs in a narrow band above the resonance
frequency of the SRRs. Signal propagation in this band is thus allowed, but with
backward waves (that is, with negative phase velocity). The measured frequency
response of this structure is also depicted in Figure 3.18. This result confirms that
the stopband behavior obtained when the shunt strips are not present switches to a
passband in the SRR-loaded CPW with shunt strips. Moreover, there is a visible dis-
placement towards positive frequencies in the passband, relative to the onset of the

FIGURE 3.16 Current diagrams for the bimetal structure of Figure 3.15, obtained by means
of CST Microwave Studio, at two different frequencies.
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stopband in Figure 3.15. This is an expected result on account of the fact that the
negative effective permeability, necessary to obtain a band with negative wave propa-
gation, arises at the resonant frequency of the SRRs.12 In contrast, the stopband in the
negative-permeability CPW (that is, without shunt-connecting strips) extends below
the resonance frequency of the SRRs.

An interesting aspect of the structure shown in Figure 3.18 is the fact that the rela-
tive position and orientation of the SRRs with regard to the shunt strips is relevant in
order to optimize the insertion losses in the allowed band. Namely, it has been found
that by aligning the slits of the SRRs with the wire shorts, an optimum result in terms
of in-band losses is obtained. An explanation of this is given in [24], and it has also
been given in Section 2.4.4, where the validity of the superposition principle in bulk

FIGURE 3.17 Layout (a) and simulated frequency response (b) of a 50V microstrip line
loaded with square-shaped SRRs. The structure has been implemented in the Rogers
RO3010 substrate (thickness h ¼ 1.27 mm, dielectric constant 1r ¼ 10.2). Dimensions: ring
width and separation c ¼ 0.2 mm and d ¼ 0.4 mm, respectively, ring side (external) 5 mm,
line width W ¼ 1.2 mm, and distance between adjacent rings 3 mm.

12In fact, the left-handed band begins slightly above the resonance frequency of the SRRs, as will be shown
later.
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media composed of wires and SRRs was discussed. Essentially, thanks to this align-
ment, no interference between the SRRs and the shunt strips takes place, because at
the SRR resonance there is a virtual electric wall along the orthogonal plane to the
rings containing the slits. Hence, if the relative orientation of the shunt strips and
the rings causes the strips to be contained in this imaginary plane, then such inter-
action is minimized, this being a necessary condition for generating a 1D effective
medium where both permeability and permittivity are negative.

In CPW technology, it is also possible to design left-handed structures with mul-
tiple transmission bands. To this end, the buried CPW concept is invoked, where the
metal level containing the ground planes and the central conductor strip is surrounded
by a dielectric on top and bottom [24]. This allows SRRs to be etched in two separ-
ated metal layers (on both sides of the substrate), which is of interest in tailoring the
frequency response of the structure, that is, to achieve two separated left-handed
allowed bands (if the rings etched at opposite sides are tuned at different frequencies),
or to widen the bandwidth (provided the SRRs are tuned at closer frequencies). This
structure can be considered as the parallel combination of two SRR-loaded CPW

FIGURE 3.18 Layout (a) and simulated (thin line) and measured (bold line) frequency
response (b) of the left-handed SRR-based line. SRR dimensions and separation as well as
lateral dimensions of the CPW structure are identical to those of Figure 3.15. Wire width is
0.2 mm. (Source: Reprinted with permission from [20]; copyright 2003, American Institute
of Physics.)
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transmission media, where the host CPW is shared. This explains the presence of two
transmission bands, which can be partially overlapped to produce a single trans-
mission band with improved bandwidth. To illustrate these ideas, two buried CPW
structures are provided, one with the top and bottom SRRs tuned at closed frequencies
(Fig. 3.19), and the other designed to provide separated narrow pass-bands
(Fig. 3.20). The simulated and measured frequency responses for these structures
are also depicted in Figures 3.19 and 3.20. The slight frequency shift between simu-
lations and experiments is due to some discrepancy between the dimensions of the
fabricated rings and the nominal values. This may also cause the degradation of

FIGURE 3.19 Layout (a) and frequency response (b) of the left-handed buried CPW struc-
ture with closely tuned SRRs. Measured results are depicted as bold lines, and simulations are
depicted as thin lines. To better distinguish, measured return losses have been depicted in gray.
Geometrical parameters are c ¼ d ¼ 0.2 mm, inner radius for the top and bottom rings
r ¼1.9 mm and r ¼ 2.0 mm, respectively (the parameters of the Arlon 250-LX0193-43-11 sub-
strate have been considered: 1r ¼ 2.43, thickness h ¼ 0.49 mm). With these dimensions, the
nominal resonant frequencies for the top/bottom rings are in the vicinity of 5 GHz. The
width of connecting wires (0.2 mm) guarantees a plasma frequency beyond the resonant fre-
quency of SRRs. Slot and strip widths (G ¼ 0.3 mm, W ¼ 5.5 mm) correspond to a 50V
line. Simulations have been carried out using CST Microwave Studio. (Source: Reprinted
with permission from [24]; copyright 2004, IEEE.)
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the second passband for the structure of Figure 3.20, which is too close to the plasma
frequency of the CPW structure loaded with shunt strips. Nevertheless, the presence
of two allowed bands confirms that the device can be viewed as two separated left-
handed structures parallel connected, and it explains bandwidth widening when the
two sets of rings are closely tuned. The high-frequency selectivity and low level of
losses (allowed band) measured in both structures (,1.5 dB) is remarkable.

In microstrip technology, it has previously been anticipated that the combination
of SRRs (etched as close as possible to the conductor strip to enhance magnetic coup-
ling) and via holes is appropriate for the synthesis of left-handed structures in one
dimension [21]. The metallic vias emulate shunt-connected inductors and provide
the required negative permittivity, whereas SRRs are responsible for the negative
effective permeability. In Figure 3.21, it is depicted a left-handed line with these
elements (the measured and simulated frequency responses are also depicted).
Again, as expected, a passband behavior has been obtained, the allowed band extend-
ing over a narrow region above the resonance frequency of the SRRs. In this case the
geometry of the rings has been chosen to be square-shaped to enhance magnetic
coupling between the line and the rings, as has previously been commented.

FIGURE 3.20 Layout (a) and frequency response (b) of the left-handed buried CPW struc-
ture with two separated transmission bands. Measured results are depicted as bold lines, and
simulations are depicted as thin lines. To better distinguish, measured return losses have
been depicted in gray. The inner radius of SRRs etched in the top metal level has been set
to r ¼ 1.2 mm, and other geometric parameters are identical to those given in Figure 3.19.
(Source: Reprinted with permission from [24]; copyright 2004, IEEE.)
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3.5.3 Size Reduction

In the previous implementations of metamaterial transmission lines based on SRRs,
dimensions were relatively small on account of the small electrical size of the SRRs.
For instance, in the left-handed CPW structure shown in Figure 3.18, the length, exclud-
ing access lines, is as small as l � l/2, l being the wavelength corresponding to a 50V
line implemented onto a identical substrate at SRR resonance.13 To reduce the size of
SRR-based structures, it is necessary to decrease the electrical size of SRRs, and to
this end it is imperative to reduce the space between the rings and/or to narrow their
width. The effect is a shift of the resonance frequency of the SRRs to lower values
and hence an improvement of their electrical size. However, in practice, due to the
limited lateral resolution of standard fabrication systems (typically in the vicinity of
100mm for chemical etching or drilling machines on conventional microwave

FIGURE 3.21 Layout (a) and simulated (dashed line) and measured (solid line) (b) fre-
quency response for the microstrip left-handed line implemented by means of square-shaped
SRRs and metallic vias. Substrate and dimensions are as in Figure 3.17. (Source: Reprinted
with permission from [21]; copyright 2005, IEEE.)

13Notice that l= lg (see Section 3.2).
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FIGURE 3.22 Layout (a), simulated (b), and measured (c) frequency response of the
negative-permeability CPW structure loaded with SRs. SRs, etched in the back side of the sub-
strate, are depicted in black, and the upper metal level is depicted in gray. SR dimensions and
separation are roughly the same as those of Figure 3.15. Lateral CPW dimensions have been
calculated to obtain a 50-V characteristic impedance. (Source: Reprinted with permission
from [27]; copyright 2004, John Wiley & Sons.)
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substrates), it is difficult to drive SRRdimensions (external diameter) below one-tenth of
a wavelength at resonance (this being indeed an optimistic prospect).

To further reduce the size of the devices and circuits, alternative topologies for the
resonators may be more convenient. As has already been pointed out in Chapter 2
(Section 2.3), the BC-SRR, where one ring is placed above the other, allows for
higher levels of miniaturization [25]. This is possible because, thanks to the broad
side coupling (which can be enhanced by simply reducing the width of the inter-
ring dielectric), the equivalent capacitance of the structure is increased. Another possi-
bility is to replace the SRRs with spiral resonators (SRs) [26,27]. By etching them onto
the same substrate, the electrical size of a two-turn SR is roughly half the electrical size
of an SRR, provided dimensions are identical. To illustrate this, Figure 3.22 depicts a
negative-permeability CPW transmission line loaded with two-turn SRs, together with
the simulated and the measured frequency responses. The dimensions of the SRs are
very similar to those of the SRRs of Figure 3.15. Again, a stopband behavior related to
the negative effective permeability provided by the SRs is obtained. However, the for-
bidden band arises in the vicinity of 3.5GHz, which is approximately half the fre-
quency of the central frequency for the forbidden band depicted in Figure 3.15.
Obviously, by increasing the number of turns of the spirals, it is possible to further
decrease their electrical size. However, this makes ohmic losses significant for practi-
cal applications, unless high-temperature superconductors (HTS) are used [28]. It is
worth mentioning that the combination of SRs and shunt strips to achieve a left-
handed transmission band has been considered by the authors, but poor frequency
responses as compared to those of Figures 3.18–3.21 have been obtained. It is believed
that the reason for this degradation is the lack of symmetry of the SR with regard to the
plane of the shunt strips, which may cause a nonnegligible interaction between SRs
and strips.

3.6 EQUIVALENT CIRCUIT MODELS FOR SRRs COUPLED TO
CONVENTIONAL TRANSMISSION LINES

In the previous chapter, it was demonstrated that SRRs can be modeled by an LC res-
onant tank that can be externally driven by a time-varying magnetic field applied in
the axial direction. The equivalent capacitance is the series connection of the edge
capacitance corresponding to the lower and upper halves of the structure, and the
equivalent inductance is given by the inductance of a closed ring with the same
width of each individual ring and average SRR radius. For the alternative topologies
of the SRR presented in Chapter 2, similar equivalent circuits arise. All of them can
be reduced to a simple parallel LC tank, as for the SRRs. However, in order to design
metamaterial transmission lines based on SRRs, equivalent circuit models for these
lines are necessary. These models should describe the host transmission line, the reso-
nators (SRR or other resonators), and their coupling. It was indicated in the previous
chapter that the basic SRR topology exhibits cross-polarization effects. This means
that SRRs can be magnetically and/or electrically excited if the rings are properly
oriented. However, it has been verified that magnetic coupling is the dominant
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coupling mechanisms in SRRs. Therefore cross-polarization effects can be ignored in
a first-order approximation (this assumption is strictly valid for NB-SRRs and other
nonbianisotropic configurations under a uniform field excitation).

Due to the small electrical dimensions of SRRs at resonance, the structures (CPW
or microstrip loaded lines) can be described by means of lumped element equivalent
circuits. The proposed equivalent circuit model (basic cell) for the SRR loaded trans-
mission line (of Figs 3.15 and 3.17) is shown in Figure 3.23a [22]. L and C are the
per-section inductance and capacitance of the line, and SRRs are modeled as resonant
tanks (with inductance Ls and capacitance Cs) magnetically coupled to the line
through a mutual inductance,14 M. For the SRR-loaded CPW, this mutual inductance
can be inferred from the fraction, f, of the slot area occupied by the rings, according to

M ¼ 2L � f , (3:34)

whereas for the microstrip structure it is difficult to accurately determine M and it is
considered a fitting parameter. Neither losses (ohmic and dielectric) nor inter-
resonator coupling have been considered in this model.15 The equivalent impedance

FIGURE 3.23 Lumped element equivalent p-circuit model of the SRR loaded negative-
permeability transmission lines (a), and circuit model that results after transformation of the
series branch (b).
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section of the line is included in the model.
15Coupling between adjacent SRRs is only significant in closely spaced square or rectangular SRRs. Such
coupling is the origin of magnetoinductive waves in chains of SRRs, and it will be considered in the last
chapter. However, it can be neglected in modeling the structures considered in this chapter.



of the series branch can be simplified to that shown in the circuit of Figure 3.23b,
which is formally identical to the series impedance corresponding to a left-handed
transmission line (in that region where the total series impedance is capacitive). To
demonstrate this, the voltage–current equations for the transformer are first derived
(in this analysis, to gain further insight on the effect of losses, a series resistance,
Rs, will be included in the LC tank modeling the SRRs). These equations are

V1(v) ¼ jv2LI1(v)þ jvMI2(v) (3:35)

and

�I2(v)Za(v) ¼ jvMI1(v)þ jvLsI2(v), (3:36)

where the variables refer to the circuit of Figure 3.23a, and Za is the series connection
of the equivalent capacitance of the SRR, Cs, and Rs, namely:

Za(v) ¼
1þ jvRsCs

jvCs
: (3:37)

By isolating I2 in equation (3.36), and substituting it into equation (3.35), we directly
obtain the series impedance of the line:

Zs(v) ¼ j2vLþ v2M2 jvCs

(1� v2LsCs)þ jvRsCs

� �
: (3:38)

This impedance is equivalent to the series connection of an inductor (with inductance
2L) and a parallel RLC tank, provided the following conditions are satisfied:

L0s ¼ v2
oM

2Cs (3:39)

C0
s ¼ Ls=v

2
oM

2 (3:40)

R0 ¼ v2
oM

2=Rs, (3:41)

where vo ¼ (CsLs)�1=2 ¼ (C0
sL

0
s)
�1=2 is the resonance frequency of the SRRs.

Therefore, the equivalent circuit model of Figure 3.23a can be simplified to that
shown in Figure 3.23b (where R0 has not been included for coherence).

For the left-handed structures shown in Figures 3.18 and 3.21, where either a
shunt-connected strip or a metallic via has been introduced (compared to the
negative-permeability structures), the equivalent circuit model is identical to that
shown in Figure 3.23a (or to the simplified version of Fig. 3.23b), but with the
addition of a shunt-connected inductance that models the signal to ground strips
(CPW configuration) or the vias (microstrip structures). This circuit is depicted in
Figure 3.24. The value of the shunt inductance, Lp, can be inferred from the simulated
frequency response of the host line with SRRs removed, where the plasma frequency
is given by the resonator composed by C and Lp [20].
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A comparison between the frequency responses measured on the CPW meta-
material structures and those obtained through electrical simulation of the equivalent
circuit models (with Ls and Cs obtained from the expressions in the Appendix of
Chapter 2) is depicted in Figure 3.25 [29]. Reasonable agreement between model
and experiment results, if one takes into account that losses are neglected and the
electrical parameters of the equivalent circuit model are all estimated, rather than
used as fitting parameters.

It is worth mentioning that the model of Figure 3.24 also predicts a forward-wave
transmission band above the left-handed region (CRLH behavior). As for the trans-
mission lines loaded with series capacitances and shunt inductances studied in
Section 3.2, at high enough frequencies the parameters of the host line become domi-
nant and signal propagation is forward. The shunt impedance changes its sign at the
resonance frequency of the tank formed by Lp and C:

vp ¼
1ffiffiffiffiffiffiffiffi
CLp

p : (3:42)

The series reactance is negative in the left-handed band and it switches to a positive
value (that is, inductive) at the following angular frequency:

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2C0
s L

þ 1
L0s C

0
s

s
: (3:43)

FIGURE 3.24 Lumped element equivalent p-circuit model of the SRR loaded left-
handed transmission lines (a), and circuit model that results after transformation of the
series branch (b).
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Thus, the limits of the stopband present between the left-handed and right-handed
regions are given by expressions (3.27) and (3.28), with vp and vs given by
expressions (3.42) (a) and (3.43) (b). Usually, these left-handed lines based on
SRRs are designed with vp . vs. In other words, the cutoff (plasma) frequency
related to the presence of the shunt strips or vias is set significantly above the reson-
ance frequency of the SRRs (which is close to vs in practical implementations).
The special case where vp ¼ vs collapses the gap and provides the balanced
SRR-loaded left-handed transmission line.16

FIGURE 3.25 Comparison between the measured insertion losses (solid line) and those
inferred from the equivalent circuit models (dashed line) for the negative permeability structure
of Figure 3.15 (a) and for the left-handed structure of Fig. 3.18 (b). (Source: Reprinted with
permission from [29]; copyright 2005, IEEE.)

16Practical realizations of balanced CRLH resonant-type metamaterial transmission lines implemented by
using complementary split rings resonators (CSRRs) will be presented later in this chapter.
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In the structures presented in Figures 3.18–3.21, the interest was to achieve a
backward wave band. Nevertheless, the gap and the right-handed band above it
can be clearly appreciated in Figures 3.19 and 3.20 (in Figs 3.18 and 3.21 the hori-
zontal scale is limited to show only the backward transmission band).

3.6.1 Dispersion Diagrams

For the equivalent p-circuit models obtained for the negative permeability and left-
handed transmission lines based on SRRs or other related topologies, the dispersion
diagram is also given by expression (3.1). Zs(v) and Zp(v) are the series and shunt
impedances of the p-circuit models. By applying (3.1) to the circuits shown in
Figures 3.23 and 3.24, we obtain

cos(bl) ¼ 1� LCv2

2
þ C=C0

s

4 1� v2
o

v2

� � (3:44)

cos(bl) ¼ 1� 1
2
LCv2 1�

v2
p

v2

 !
1� 1

2LC0
sv

2 1� v2
o

v2

� �
0
BB@

1
CCA, (3:45)

with vp given by equation (3.42). These expressions have been evaluated by using the
electrical parameters corresponding to the structures depicted in Figures 3.15 and
3.18, and they are represented in a reduced Brillouin diagram in Figure 3.26. For com-
parison purposes, in this figure there are also represented the dispersion diagrams that
have been obtained from the S-parameters computed by electromagnetic simulation
of a single unit cell, according to the following expression [6]:

cosf ¼ Aþ D

2
, (3:46)

where A and D are the diagonal elements of the ABCD matrix, which are related to
S-parameters through well-known expressions [30]. As expected, a stopband appears
in the vicinity of the resonant frequency of the SRRs for the negative permeability
structure, whereas this stopband is switched to a bandpass behavior with antiparallel
phase and group velocities for the left-handed structure.17

3.6.2 Implications of the Model

Let us now analyze in more detail the transmission properties of SRR-based left-
handed transmission lines. These structures are by nature frequency-selective
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devices that exhibit a bandpass behavior. In Chapter 4, the use of SRR-based struc-
tures for the implementation of planar microwave filters will be discussed exhaus-
tively, and it will be shown that it is possible to design compact and high-
performance filters with controllable characteristics. However, before this discussion,
it is necessary to point out the main relevant characteristics of metamaterial
transmission lines based on SRRs. This will provide us with interesting information,
which will be helpful in order to predict the potentiality of SRR-based devices as
filtering structures and to envisage other possible circuit applications. For the
analysis that we want to carry out, the frequency dependence of the Bloch impedance
of the structure will provide us with valuable information. In reference to the p-
circuit model of Figure 3.24b, the Bloch impedance is given by the following
expression [6]:

ZB(v) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zs(v)Zp(v)=2

1þ Zs(v)
2Zp(v)

vuuut , (3:47)

where Zs and Zp are the series and shunt impedances of the p-circuit, respectively.
The allowed band for backward-wave propagation in the structures occurs in that
region where the Bloch impedance, ZB, and the phase constant, f ¼ bl, given by
expression (3.1) are both real numbers. From equation (3.1), the limits of this interval

FIGURE 3.26 Theoretical (solid lines) and simulated (dashed lines) dispersion diagram for
the infinite periodic SRR-CPW structures with unit cells identical to those shown in Figures
3.15 and 3.18. (Source: Reprinted with permission from [29]; copyright 2005, IEEE.)
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are given by the following conditions:18

Zs(v) ¼ 0 (3:48)

where f ¼ 0 and ZB ¼ 0, and

Zs(v) ¼ �2Zp(v), (3:49)

where f ¼ 2p and ZB ¼ 1. Expression (3.48) leads to the upper limit of the left-
handed band, namely

fH ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2C0
sL

þ 1
L0sC

0
s

s
, (3:50)

and the lower limit can be inferred from equation (3.49):

fL ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C0
s(2Lþ 8Lp)

þ 1
L0sC

0
s

s
: (3:51)

To obtain expression (3.51), it has been assumed that the shunt reactance is domi-
nated by Lp, that is, C has been neglected. This approximation is reasonable as
long as vp � vs, and it simplifies expression (3.51). In the interval delimited by
the previous frequencies ( fL and fH), the sign of the series, Zs(v), and shunt,
Zp(v), impedances is negative and positive, respectively. With the signs of these reac-
tances, the structure formally behaves as a dual transmission line; that is, it admits
backward waves. It is interesting to mention at this point that, as was previously
anticipated, the onset of left-handed wave propagation does not exactly coincide
with the resonance frequency of the SRRs, fo, despite the fact that these resonant
elements provide the negative value of meff just above this frequency. Indeed, at fo
the series branch of the p-circuit model opens and the signal is completely reflected
(transmission zero).19

According to equations (3.50) and (3.51), the left-handed bandwidth depends on
the values of the electrical parameters of the equivalent circuit model. As low as L is
compared to Lp and L0s, the wider the bandwidth can be. However, this is not the con-
ventional 3dB bandwidth of filters, delimited by those frequencies where insertion
losses drop to 3dB. The left-handed bandwidth, delimited by fL and fH, must be
understood as that region of the spectrum where the phase constant, b, is real and
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and shunt reactance are positive and negative, respectively.
19Under ideal conditions (lossless line and SRRs).



negative, regardless of the transmission coefficient. In fact, at fL and fH the impedance
mismatch between the source, the load, and the line is maximum, because the Bloch
impedance takes extreme values at these frequencies. Thus the 3dB bandwidth is
lower than the left-handed bandwidth. However, the frequency response within the
left-handed band is not only controlled by impedance matching, but also by phase
matching. In other words, total transmission not only occurs when the Bloch impe-
dance coincides with the reference impedance of the ports20 (usually 50V), but
also when the electrical length of the structure is a multiple of p. The latter condition
(phase-matching) takes place at N 2 1 different frequencies (N being the number of
device stages) satisfying the following rule (relative to expression 3.45):

fi ¼
p

N
i (3:52)

where 0, i , N. Hence, the number of transmission peaks equals the number of
basic cells,21 N. As N increases, the transmission peaks spread out towards the
limits given by expressions (3.50) and (3.51). The effect is an enhancement of the
3dB bandwidth. By using the electrical parameters corresponding to the model
that describes the left-handed microstrip line of Figure 3.21, the electrical response
has been obtained (Fig. 3.27). The transmission peaks are clearly visible, although
in measurement these peaks are obscured by losses, and they do not emerge (see
Fig. 3.21). In practice, as a first-order approximation and provided that the number
of cells is not very small, it can be assumed that the left-handed and 3dB bandwidths
coincide.

We have mentioned in the preceding paragraph that the left-handed bandwidth
depends on the relative value of L as compared to Lp and L0s. In practice, the line

FIGURE 3.27 Electrical response of the circuit of Figure 3.24, with the parameters corre-
sponding to the four-stage left-handed structure of Figure 3.21.

20This occurs at a single frequency.
21Unless one of the frequencies given by expression (3.52) coincides with that frequency where impedance
matching is satisfied.
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inductance cannot be driven to very low values (as this would require very wide con-
ductor strips). On the other hand, the inductance of the shunt metallic strips or vias
cannot be increased too much, because the plasma frequency, determined by the reso-
nator formed by this inductance and the line capacitance, must remain beyond the
SRR resonance. For these reasons, it is not simple in practice to design wide-band
left-handed transmission lines by combining SRRs and shunt-connected strips (or
vias). However, the reason, rather than being related to the quality factor of the
SRRs, is due to the difficulty of satisfying the requirements for wide allowable
bands by using the structures under study. In Chapter 4, it will be shown that, by
introducing additional elements to the structures, it is possible to achieve very
wide-band left-handed transmission lines and that these 1D metamaterials can be
applied to the design of planar microwave filters with controllable characteristics.

A relevant characteristic of the left-handed transmission lines based on SRRs is the
presence of a transmission zero at the resonance frequency of SRRs (as has been pre-
viously indicated). This transmission zero is not present in the LC loaded dual (or
CRLH) structures22 considered in Section 3.2. Due to this transmission zero, the
lower band edge of the left-handed band can be made sharp. To this end, Lp must be
increased, although this degrades frequency selectivity in the upper edge of the band,
because the cutoff (plasma) frequency related to the presence of the vias decreases.
Nevertheless, for reasonable values of the electrical parameters of the model, that is,
for implementable device geometries, typically the lower band edge is sharp, whereas
frequency selectivity at the upper band is smooth, as can be appreciated in
Figure 3.21. In Chapter 4, it will be shown that by alternating SRR/strip (or via)
stages with basic cells consisting of the combination of SRRs with capacitive gaps
(that is, right-handed stages), it is possible to improve frequency selectivity at the
upper band edge.

To end this section, we would like to mention that, apart from the frequency-
selective properties of SRR-based devices (which are of interest for microwave filter
design), it has been shown that the Bloch impedance and the phase shift per cell
vary over a wide margin within the allowed band. This points out the potential of
these structures in those applications where the control of impedance and phase is of
interest, as occurs in most microwave circuits. As will be studied in the next chapter
of this book, many applications, where miniaturization is a key aspect, will be
derived from this fact.

3.7 DUALITY AND COMPLEMENTARY SPLIT RING
RESONATORS (CSRRs)

In this section, the concept of complementary split ring resonators (CSRRs) is intro-
duced as an alternative to the design of metamaterials based on resonant elements,
providing an effective negative permittivity, rather than permeability [31]. By invok-
ing the concepts of duality and complementarity [32–34], the CSRR can be derived

22In fact, the transmission zero for LC loaded lines is at the origin.
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from the SRR structure in a straightforward way. This particle, which in planar tech-
nology can be defined as the negative image of the SRR, exhibits an electromagnetic
behavior that is almost the dual of that of the SRR. Specifically, a negative effective
permittivity can be expected for any CSRR-based medium, whereas a negative-m
behavior arises in an equivalent SRR-based system.

3.7.1 Electromagnetic Properties of CSRRs

The electromagnetic properties of SRRs have been already analyzed in Chapter 2.
This analysis shows that SRRs behave as an LC resonator that can be excited by
an external magnetic flux, exhibiting a strong diamagnetism above their first reson-
ance. SRRs also exhibit cross-polarization effects (magnetoelectric coupling) [25],
so that excitation by a properly polarized time-varying external electric field is also
possible. Figure 3.28 again reproduces the basic topology of the SRR, as well as
the equivalent circuit model, for comparison purposes. In this diagram, Co indicates
the total capacitance between the rings, that is, Co ¼ 2proCpul, where Cpul is the per-
unit-length edge capacitance. The resonance frequency of the SRR is given by fo ¼
(LsCs)

21/2/2p, where Cs is the series capacitance of the upper and lower halves of the
SRR, that is, Cs ¼ Co/4. The inductance, Ls, can be approximated by that of a single
ring with averaged radius ro and width c [25,29].

As is well known, the complementary of a planar metallic structure is obtained by
replacing the metal parts of the original structure with apertures, and the apertures

FIGURE 3.28 Topologies of the SRR (a) and CSRR (b), and their equivalent circuit models
(ohmic losses can be taken into account by including a series resistance in the model). Gray
zones represent the metallization. (Source: Reprinted with permission from [29]; copyright
2005, IEEE.)
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with metal plates [32]. Due to symmetry considerations, it can be demonstrated that, if
the thickness of the metal plate is zero, and its conductivity is infinity (perfect electric
conductor), then the apertures behave as perfect magnetic conductors. In that case the
original structure and its complementary are effectively dual, and if the fieldF ¼ (E,H )
is a solution for the original structure, its dual F 0 defined by

F0 ¼ (E0,H0) ¼ (�
ffiffiffiffiffiffiffiffiffi
m=1

p
� H,

ffiffiffiffiffiffiffiffiffi
1=m

p
� E), (3:53)

is the solution for the complementary structure [33]. Thus, under these ideal con-
ditions, a perfectly dual behavior is expected for the complementary screen of the
SRR. Thus, whereas the SRR can be mainly considered as a resonant magnetic
dipole that can be excited by an axial magnetic field, the CSRR (also depicted in
Fig. 3.28) essentially behaves as an electric dipole (with the same frequency of res-
onance) that can be excited by an axial electric field. In a more rigorous analysis, the
cross-polarization effects in the SRR [25], discussed in Chapter 2, should be con-
sidered and extended also to the CSRR. Thus, this last element will also exhibit a
resonant magnetic polarizability along its y-axis (see Fig. 3.28) and, therefore, its
main resonance can be also excited by an external magnetic field applied along
this direction [29].

Rigorously speaking, due to the continuity of the tangential/normal components
of the electric/magnetic fields in the CSRR plane, F0 in equation (3.53) is the solution
on one side of this plane, and 2F0 on the other side. With regard to the CSRR polar-
izabilities, this means that the sign of such polarizabilities changes from one side to
another. Therefore, the net electric and magnetic dipoles on the CSRR must vanish, a
result that can be also deduced from the fact that electric currents confined in a
plane cannot produce any net normal/tangential electric/magnetic polarization.
However, when the CSRR is seen from one side, the aforementioned effective
polarizabilities arise.

The intrinsic circuit model for the CSRR (dual of the SRR model) is shown in
Figure 3.28. In this circuit [29], the inductance Ls of the SRR model is substituted
by the capacitance, Cc, of a disk of radius ro 2 c/2 surrounded by a ground plane
at a distance c of its edge. Conversely, the series connection of the two capacitances
Co/2 in the SRR model is substituted by the parallel combination of the two induc-
tances connecting the inner disk to the ground. Each inductance is given by Lo/2,
where Lo ¼ 2proLpul and Lpul is the per-unit-length inductance of the CPWs connect-
ing the inner disk to the ground. For infinitely thin perfect conducting screens, and in
the absence of any dielectric substrate, it directly follows from duality that the par-
ameters of the circuit models for the SRRs and the CSRRs are related by Cc ¼

4(1o/mo)Ls and Co ¼ 4(1o/mo)Lo. The factor of 4 appearing in these relations is
deduced from the different symmetry properties of the electric and magnetic fields
of both elements, as is sketched in Figure 3.29. From the above relations it is
easily deduced that the frequency of resonance of both structures is the same, as is
expected from duality.

It has already been mentioned that the behavior of SRRs and CSRRs is strictly
dual for perfectly conducting and infinitely thin metallic screens placed in
vacuum. However, deviations from duality—which may give rise to a shift in
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the frequencies of resonance—arise from losses, the finite width of metallizations,
and the presence of a dielectric substrate. The latter is expected to be the main
cause of deviations from duality. This fact is due to the variations of the elements
of the CSRR circuit model, Cc and Lo, from the values extracted from the SRR
circuit model parameters Co and Ls by duality (Cc ¼ 4(1o/mo)Ls and Co ¼ 4(1o/
mo)Lo). As is sketched in Figure 3.30, these variations arise directly from the pre-
sence of a dielectric substrate, which affects Cc and Co but leaves Ls and Lo unal-
tered. Analytical expressions for Ls and Co in the SRR when a dielectric substrate
is present were provided in Chapter 2 [23]. As we have already mentioned, the
capacitance Cc in Figure 3.29 is that corresponding to a metallic disk of radius
ro 2 c/2 surrounded by a ground plane at a distance c. An analytical approximate
expression for Cc when a dielectric substrate is present (see Fig. 3.31) has been
derived in reference [29]. The final expression is

Cc ¼
p310

c2
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0
dk
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1
2

1þ
1þ 1

10
tan h(kh)

1þ 10

1
tan h(kh)

0
B@

1
CA
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FIGURE 3.29 Sketch of the electric and magnetic field lines in the SRR (left) and the
CSRR (right). (a) Electric field lines in the SRR at resonance. (b) Magnetic field lines in the
dual CSRR. (c, d ) Magnetic and electric field lines in the SRR and the CSRR, respectively.
(e) Magnetic induction field in the equivalent ring inductance used for the computation of
Ls in the SRR [31]. ( f ) Electric field in the dual equivalent capacitor proposed for the compu-
tation of Cc for the CSRR. (Source: Reprinted with permission from [29]; copyright 2005,
IEEE.)
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where a, b, and h are geometrical variables defined in Fig. 3.31 and function B is
defined as

B(x) ¼ S0(x)J1(x)� S1(x)J0(x), (3:55)

with Sn and Jn being the nth-order Struve and Bessel functions. The inductance Lo in
Fig. 3.28 is that corresponding to a circular CPW structure of length 2pro, strip width
d, and slot width c. The design formulas given in [35] for the per-unit-length CPW
inductance provide enough accuracy and have been used in all numerical compu-
tations of the next subsection.

The previous analysis can be easily extended to the complementary version of
other planar topologies derived from the basic geometry of the SRR, such as the
NB-SRR, the 2-SRR (double-slit SRR) and the SR. The equivalent circuit models
for such complementary particles are depicted in Figure 3.32, jointly with the

FIGURE 3.30 Sketch of the electric (a) and magnetic (c) field lines of an SRR on a dielectric
substrate. The magnetic (b) and electric field (d ) lines of a similar CSRR on the same dielectric
substrate are also sketched. (Source: Reprinted with permission from [29]; copyright 2005,
IEEE.)

FIGURE 3.31 The capacitance of the CSRR is approximately equal to that corresponding to
a metallic disk of radius a ¼ ro 2 c/2 surrounded by a ground plane at a distance b 2 a ¼ c, ro
being the averaged radius of the CSRR and c the width of the slots in this. The dielectric sub-
strate is characterized by its permittivity 1 and thickness h. (Source: Reprinted with permission
from [29]; copyright 2005, IEEE.)
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equivalent circuits of the noncomplementary counterparts, which are reproduced
here for comparison purposes.

3.7.2 Numerical Calculation and Experimental Validation

The effect of the dielectric substrate on the relative shift between the resonance fre-
quency of CSRRs and SRRs of identical dimensions is shown in Figure 3.33. As
expected, there is no difference for the two limiting values of a zero- and an infinite
substrate thickness. However, significant differences in the values of the frequency of

FIGURE 3.32 Topologies corresponding to (a) the nonbianisotropic SRR (NB-SRR), (b)
the double-slit SRR (2-SRR), (c) the spiral resonator (SR), and (d ) the double SR
(DSR).The equivalent circuits for these topologies are depicted in the second column, and
the circuit models for the complementary counterparts are represented in the third column.
(Source: Reprinted with permission from [29]; copyright 2005, IEEE.)
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resonance for both elements can be observed for intermediate thickness. Obviously,
these differences increase with the dielectric constant of the substrate (see also
Fig. 3.33). In order to experimentally verify the accuracy of the proposed circuit
models for the CSRR and derived geometries, a set of these resonators with different
topologies were etched on a metallized microwave substrate and its frequencies of
resonance were measured. Their dual counterparts were also manufactured and
measured for completeness. The resonance frequencies were obtained from the trans-
mission coefficient, S21, measured in a rectangular waveguide, properly loaded with
the corresponding element [29]. The waveguide was excited in the fundamental TE01

mode, and connected to an Agilent 8510 network analyzer. The SRRs or derived geo-
metries were placed in the central E-plane, so that they were excited by the magnetic
field perpendicular to the element plane. Their dual counterparts were etched in the
top wall of the waveguide, being excited by the electric field perpendicular to the

FIGURE 3.33 Numerical calculations showing the dependence of the resonance frequency
of SRRs (solid lines) and CSRRs (dashed lines) on the substrate parameters. (a) Dependence
on the dielectric thickness for different values of the relative permittivity of the substrate
(shown at right). (b) Dependence on the value of the relative dielectric constant, for different
substrate thickness (in mm). (Source: Reprinted with permission from [29]; copyright 2005,
IEEE.)
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element plane. Figure 3.34 shows the transmission coefficients for an SRR and an
NB-SRR with identical geometrical parameters, as well as the same coefficients
for their duals (CSRR and C-NB-SRR). The SRR and the NB-SRR have the same
frequency of resonance (the small shift can be attributed to tolerances in the manu-
facturing process). The same can be said for their complementary elements.
Finally, the frequencies of resonance for different configurations, measured by fol-
lowing the method illustrated in Figure 3.34, are shown in Table 3.1 [29]. The theor-
etical values shown in this table were obtained from the proposed circuit models with
Cc calculated from equation (3.54), Lo from the design formulas in [35] and Cs, Ls
from the expressions in the Appendix of Chapter 2. As can be seen, a reasonable
agreement between theory and experiment is obtained. It is remarkable that the
CSRRs always resonate at frequencies slightly higher than those of the SRRs. This
effect is sharper for the higher dielectric constants.

FIGURE 3.34 Frequency response obtained in a rectangular waveguide loaded with SRRs
and NB-SRRs, as well as their dual counterparts (C-SRR and C-NB-SRR). The method of
excitation is sketched in the insets of the Figures. The element parameters are those of
Table 3.1. (Source: Reprinted with permission from [29]; copyright 2005, IEEE.)
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3.8 SYNTHESIS OF METAMATERIAL TRANSMISSION LINES BY
USING CSRRs

In this section, it is demonstrated that CSRRs can be used for the design of meta-
material transmission lines. From duality, it follows that whereas the dominant
mode of excitation of SRRs is by applying an axial time-varying magnetic field,
for CSRRs the main driving mechanism is electric coupling, and a significant com-
ponent of the electric field parallel to the axis of the rings is required. Thus, by etching
the CSRRs in the ground plane (in close proximity to the conductor strip), or in the
conductor strip (provided there is space enough for this purpose), the required
conditions for CSRR excitation are fulfilled in most common transmission lines
(microstrip, CPW, and so on).

3.8.1 Negative Permittivity and Left-Handed Transmission Lines

The natural (although not exclusive) host transmission line for the implementation of
one-dimensional metamaterials using CSRRs is the microstrip configuration. By
etching the complementary rings in the ground plane, under the signal strip, a signifi-
cant component of the electric line field results parallel to the rings’ axis, as desired.
Figure 3.35 illustrates such structure, where 4 CSRRs are etched in the ground plane
(relevant dimensions are indicated in the caption). The simulated and measured fre-
quency responses for this device are also depicted in Figure 3.35. Due to the negative
effective permittivity in the vicinity of CSRR’s resonance, the signal is inhibited in a
narrow band.

In order to synthesize a left-handed medium, additional elements able to provide
the required negative effective permeability must be introduced to the structure. It was
shown in the beginning of this chapter that the negative effective permeability can be
achieved by etching series capacitive gaps in the host line. These gaps make the
structure behave as a magnetic plasma, with negative valued permeability up to a
frequency that depends on the resonator formed by the gap capacitance and the

TABLE 3.1 Measured and Theoretical Values for the Frequency of Resonance

Conventional Complementary

f th0 (GHz) f exp0 (GHz) f th0 (GHz) f exp0 (GHz)

SRRa 7.17 7.40 7.49 8.00
NB-SRRa 7.17 7.56 7.49 8.14
DSRa 5.07 5.05 5.30 5.49
2-SRa 3.59 3.78 3.75 4.07
SRRb 3.33 3.40 3.56 3.77
2-SRRb 6.66 6.77 7.12 7.41

The resonators are printed on a substrate with thickness h ¼ 0.49 mm and relative permittivity 1r ¼ 2.43.
The parameters of rings, named in Figure 3.28, are (a) ro ¼ 1.7 mm, c ¼ d ¼ 0.2 mm; (b) ro ¼ 3.55 mm, c ¼
d ¼ 0.3 mm.
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FIGURE 3.35 Bottom face (ground plane) of a microstrip structure loaded with CSRRs (a),
simulated (b) and measured (c) frequency responses. CSRR dimensions are c ¼ d ¼ 0.3mm,
and the radius of the inner ring is r ¼ 2.1mm. The period of the structure is 7mm. The substrate
used is the commercially available Rogers RO3010 (1r ¼ 10.2, thickness h ¼ 1.27mm).
(Source: Reprinted with permission from [31]; copyright 2004, IEEE.)
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per-section inductance of the line. Hence, to design a left-handed metamaterial by
combining CSRRs and gaps, it is necessary to design the structure such that the
plasma frequency extends beyond the resonance frequency of the CSRRs. By
taking this into account, a region where negative effective permeability and permit-
tivity coexist is expected. Figure 3.36 illustrates a left-handed microstrip line as
well as its measured frequency response. A passband with negative wave propagation
arises. As occurs in SRR-based left-handed transmission lines, a sharp cutoff in the
lower band edge and a soft upper transition band are visible. The reasons for this
behavior are discussed in the following subsection, where the equivalent circuit
models of these structures are inferred.

We have indicated that the usual host line for the design of CSRR-based 1D planar
metamaterials is the microstrip line. However, it does not mean that CPWs and other
planar transmission lines should be ruled out. Indeed, by using CPWs, the lateral
dimensions necessary to achieve a matched line are not univocally determined, and
hence, the central strip can be made wide enough to provide the required space to
etch the CSRRs on it. This way, the ground plane can be preserved from being
etched, which is of interest in certain applications.23 On the other hand, the

FIGURE 3.36 Layout of a left-handed microstrip structure based on CSRRs (a) and
measured frequency response (b). The period of the device, the strip width and gap spacing
are l ¼ 6mm, W ¼ 1.2mm and lg ¼ 0.2mm, respectively. The dimensions of CSRRs have
been determined to obtain a resonant frequency of fo ¼ 3.5GHz, that is, c ¼ d ¼ 0.3mm
and the internal radius of the inner ring is r ¼ 1.6mm (the parameters of the Rogers
RO3010 substrate have been considered, namely, dielectric constant 1r ¼ 10.2, thickness
h ¼ 1.27mm).
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etching of CSRRs in the signal strip of microstrip lines is possible in applications
where low-impedance transmission line sections are required (as will also be
shown in the next chapter).

3.8.2 Equivalent Circuit Models for CSRR-Loaded Transmission Lines

Because CSRRs are mainly excited by the electric field induced by the line, this coup-
ling can be modeled by series connecting the line capacitance to the CSRRs, which
are modeled as parallel LC tanks, as has been shown previously. According to this,
the proposed lumped element equivalent circuit model for the CSRR-loaded trans-
mission line is that depicted in Figure 3.37, where L and C are the per-section induc-
tance and capacitance of the line, and Lc and Cc model the CSRR. For the structure
loaded with CSRRs and series gaps (left-handed medium), the lumped element
equivalent circuit model is identical, but with the addition of a capacitance, Cg, to
account for the series gaps (see Fig. 3.38).24 In fact, for these models to be valid,
the CSRRs should be relatively close. Otherwise, a significant portion of the line
would lie outside the region occupied by the CSRRs and the approximation of the
coupling capacitance by the line capacitance would not be correct [36].25

For an infinitely periodic structure composed by cascading the T-circuit models of
Figures 3.37 and 3.38, the dispersion relation and Bloch impedance are given by
expressions (3.1) and (3.2), respectively. The dispersion relations for both the nega-
tive permittivity and left-handed transmission lines inferred from the corresponding
lumped element circuit models are depicted in reduced Brillouin diagrams in
Figure 3.39 (these diagrams have been obtained by using the electrical parameters

FIGURE 3.37 Equivalent circuit model of a negative-permittivity line consisting of a trans-
mission line loaded with CSRRs.

24It must be mentioned that with the series gaps etched above the position of the CSRRs, C accounts for the
line capacitance and the fringing capacitance. As will be shown later, C may change substantially when the
gaps are present.
25A more accurate model for CSRR/gap loaded transmission lines, which includes line effects between
adjacent CSRRs (substantially spaced CSRRs), as well as inter-resonator coupling (tiny spaced CSRRs),
has been proposed in [36]. See also Problem 3.8.
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corresponding to the microstrip structures of Figs 3.35 and 3.36). The features are
similar to those of Figure 3.26, corresponding to negative permeability and left-
handed media, respectively, implemented through SRRs. For comparison, the
dispersion relation inferred from the simulated S-parameters of the unit cell is
also depicted in the diagrams. The slight discrepancies are mainly due to
fabrication-related tolerances. These diagrams point out the left-handed nature of
the line loaded with CSRRs and series gaps, as well as the stopband behavior
of the structure without the presence of the gaps, which is related to the negative
effective permittivity associated with the CSRRs.

Let us now focus on the analysis of the transmission properties of CSRR left-
handed transmission lines to the light of the equivalent circuit model. The structure

FIGURE 3.38 Equivalent circuit model of a left-handed line consisting of a transmission
line loaded with CSRRs and series gaps.

FIGURE 3.39 Theoretical (solid lines) and simulated (dashed lines) dispersion diagram for
the infinite CSRR–microstrip structures with unit cells identical to those shown in Figures 3.35
and 3.36. The mismatch between the stop- and passbands is due to the different dimensions of
the CSRRs in Figures 3.35 and 3.36. (Source: Reprinted with permission from [29]; copyright
2005, IEEE.)
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supports propagating waves in the frequency interval where f is a real number.
Analysis of expression (3.1) indicates that this occurs in the region delimited
by the following frequencies (it has been assumed that the series impedance of the
equivalent circuit model is dominated by Cg and, hence, L has been neglected in
the analysis)26:

fL ¼ 1
2p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lc Cc þ

4
1
Cg

þ 4
C

0
BB@

1
CCA

vuuuuut

(3:56)

fH ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffi
LcCc

p , (3:57)

where the subindexes simply make reference to the lower and higher frequency of the
interval. At these frequencies, both the phase and Bloch impedance take extreme
values; that is, ZB !1 and f ¼ 0 at fH, whereas ZB ¼ 0V and f ¼ 2p at fL.
Obviously, these results are valid under the assumption of negligible losses.

Inspection of the circuit of Figure 3.38 also reveals that there is a transmission zero
at a frequency given by

fz ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lc(C þ Cc)

p : (3:58)

As long as C � 4Cg, fz and fL are very close, and the structure exhibits a very sharp
cutoff in the lower edge of the left-handed allowed band, regardless of the number of
stages. As for the left-handed structure based on SRR, the number of transmission
peaks (losses neglected) coincides with the number of stages. One of these trans-
mission peaks arises as a consequence of impedance matching (that is, for that fre-
quency that makes the Bloch impedance equal to ZB ¼ 50V), and the others are
due to phase matching, the exact location of them being given by those frequencies
for which the phase variation satisfies the rule given in expression (3.52).

Following expressions (3.56) and (3.57), to design left-handed transmission
lines with relatively wide allowed bands, it is necessary that the gap capacitance as
well as the capacitance of the line is high, as compared to the equivalent capacitance
of the CSRRs. By using the following electrical parameters, that is, Cg ¼ 0.50pF,
C ¼ 3.12pF, Lc ¼ 0.93nH, and Cc ¼ 2.81pF, the simulated electrical response of
the equivalent T-circuit model (10-stage device) shown in Figure 3.38 can be inferred
(Fig. 3.40). A left-handed microstrip structure with these electrical parameters has
been synthesized (Fig. 3.40). The geometry of the structure has been obtained

26This approximation is valid if the series resonance (i.e., the resonance frequency of the Cg and L
combination) is substantially higher than the resonance frequency of the CSRRs (expression 3.57).
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FIGURE 3.40 Fabricated 10-stage prototype device (a), insertion losses (b), and return
losses (c). The period is l¼6.4mm, gap spacing g ¼ 0.2mm, and strip width W ¼ 1.69mm.
The dimensions of the CSRRs are cin ¼ 0.472mm, cout ¼ 0.391mm, d ¼ 0.149mm, and
rext ¼ 2.972mm. In (a) top and bottom views are shown. The device has been fabricated on
the Rogers RO3010 substrate (dielectric constant 1r ¼ 10.2, thickness h ¼ 1.27mm, tan d ¼

0.0023). (Source: Reprinted with permission from [37]; copyright 2006, John Wiley & Sons.)
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according to the procedure described in [37]. The simulated and measured frequency
responses of this structure are also shown in Figure 3.40. Obviously, the transmission
peaks are obscured in the measurement due to conductor and dielectric losses.
Nevertheless, these results point out the validity of the lumped element model and
show that left-handed structures with moderate left-handed bandwidth can be
implemented by using CSRRs.

3.8.3 Parameter Extraction

To further verify the validity of the lumped element circuit models of the CSRR-
loaded lines, a method to extract the electrical parameters from either electromagnetic
simulation or measurement has been proposed [38]. As will be shown at the end of
this section, the agreement between measurement and electrical simulation of the
circuit models with extracted parameters is excellent. Indeed, the technique includes
the determination of the unloaded Q factor of the CSRRs. Hence, it is necessary to
account for CSRR losses by adding a parallel resistance, R, to the models (Fig. 3.41).

In a first-order approximation, losses can be neglected and two characteristic
frequencies can be identified: the frequency that nulls the shunt impedance (trans-
mission zero frequency, fz, given by expression 3.58) and the frequency that nulls
the shunt admittance (which obviously coincides with the intrinsic resonant fre-
quency of the CSRR, fo, or fH according to expression 3.57). These frequencies
can be experimentally determined, or they can be obtained through full-wave

FIGURE 3.41 Topologies of the considered left-handed (a) and negative-permittivity (b)
cells, and their equivalent circuit models including losses (c) and (d ), respectively. CSRR
dimensions are (in reference to Fig. 3.28) c ¼ 0.3mm, d ¼ 0.19mm, rext ¼ 5.65mm, gap sep-
aration and width are 0.30mm and 3.85mm, respectively, and the width of the access lines is
1.15mm. Substrate characteristics correspond to the Rogers RO3010 substrate: dielectric
constant 1r ¼ 10.2, thickness h ¼ 1.27mm and tan d ¼ 0.0023. (Source: Reprinted with per-
mission from [38]; copyright 2006, IEEE.)
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electromagnetic simulation. At fz a notch in the transmission coefficient is expected
and this frequency can be measured accurately. To obtain fo, a representation of the
transmission coefficient on a Smith Chart is required. At this frequency the shunt path
to ground is opened, and the input impedance seen from the ports is solely formed by
the series elements of the structure and the resistance of the opposite port (50V).
Therefore, fo is given by the intersection between the measured (or simulated) S11
curve and the unit normalized resistance circle. From this result we can also obtain
the impedance of the series elements at that frequency. This directly gives the
value of L for negative-permittivity lines. For left-handed lines, L can be indepen-
dently estimated from a transmission line calculator, whereas Cg can be determined
by adjusting its value to fit the impedance inferred from simulation or experiment.
Alternatively, to determine L and Cg in a left-handed line, a negative permittivity
line can be fabricated, identical to the left-handed line except for the absence of
the gap. By applying the technique to the structure without the series gap, L can
be univocally determined. It can then be corrected to account for the presence of
the gap, and we can adjust Cg as mentioned before.

Expressions (3.57) and (3.58) are dependent on three parameters. Therefore, the
element values of the CSRR and the coupling capacitance cannot be directly
obtained. To this end, an additional condition is needed. This can be obtained
from the dispersion relation for the Bloch modes (3.1). At the angular frequency,
vp/2, where the phase of the transmission coefficient (which is a measurable
quantity) is f(S21) ¼ p/2, the phase constant is bl ¼ p/2. Following expression
(3.1), we have

Zs(vp=2) ¼ �Zp(vp=2): (3:59)

Thus, from equations (3.57), (3.58), and (3.59), we can determine the three reactive
element values that contribute to the shunt impedance. To determine R, this parameter
is swept until electrical simulations of the circuit model and measured frequency
responses agree. In practice, this parameter is determined with good accuracy from
the transmission coefficient of the negative-permittivity structure, because the rejec-
tion level is very sensitive to this parameter. From this, the unloaded Q factor is given
by Q ¼ RvoCc.

The method has been applied to the negative-permittivity and left-handed cells
depicted in Figure 3.41 (substrate characteristics and dimensions are indicated in
the caption). The electrical parameters have been obtained by applying the method
to the measured frequency responses (Fig. 3.42), and they are represented in
Table 3.2. By using these electrical parameters, the electrical simulation of the struc-
tures can be inferred. The results are also depicted in Figure 3.42 for easy comparison.
Very good agreement between measurements and electrical simulation has been
obtained. This confirms the validity of the circuit model of CSRR-loaded trans-
mission lines. The slight discrepancy between measurements and electromagnetic
simulation is attributed to fabrication-related tolerances. For more details on the
parameter extraction technique see [38].
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A similar parameter-extraction technique can be applied to SRR-loaded trans-
mission lines, by considering the circuit models depicted in Figures 3.23b and
3.24b. However, this would not directly provide the electrical parameters of the
SRRs, but L0s and C0

s. To determine Ls and Cs the value of M is needed, and it is dif-
ficult to accurately obtain such a parameter (in particular in the microstrip configur-
ation). Nevertheless, parameter extraction for the models of Figures 3.23b and 3.24b
can be of interest in certain applications, and follows a similar procedure to that
described above for CSRR-loaded lines.

3.8.4 Effects of Cell Geometry on Frequency Response

In this subsection, the effects of varying gap separation, substrate thickness and the
width of the host transmission line are analyzed and interpreted in the framework of
the proposed circuit model. Figure 3.43 presents three frequency responses corre-
sponding to different gap separations. As gap decreases, the upper band edge is
not substantially altered. However, the lower band edge is clearly displaced
towards lower values, resulting in a wider allowed band. This effect can be explained
by expressions (3.56) and (3.57). The upper edge of the band only depends on the

FIGURE 3.42 Magnitude (a) and phase (b) of the transmission coefficient for the structures
shown in Figure 3.41. Measurement, electromagnetic simulation, and electrical simulation, are
depicted in bold, thin, and dashed lines, respectively. (Source: Reprinted with permission from
[38]; copyright 2006, IEEE.)

172 SYNTHESIS OF METAMATERIALS IN PLANAR TECHNOLOGY



parameters of the resonant tank that models the CSRRs. Therefore, we do not expect a
modification of the upper fall-off, because gap width reduction does not affect the
intrinsic resonant frequency of the CSRRs. However, the lower edge depends on
Cg and this capacitance increases as gap separation decreases. This explains the
shift of the band onset towards lower frequencies when gap separation is decreased.
In view of these results, the left-handed band of these structures can be widened by
tailoring gap separation.

Bandwidth also depends on the height of the substrate. The results are depicted in
Figure 3.44. The thinner the substrate is, the wider the bandwidth is. However, in this
case, both band edges are shifted to expand the left-handed band. The upper band
edge is moved towards higher frequencies because, the thinner the dielectric is, the

TABLE 3.2 Extracted Element Parameters for the Structures Shown in Figure 3.41a

Cg (pF) L (nH) C (pF) Cc (pF) Lc (nH) R (kV)

LH cell 1.27 4.96 19.58 4.01 3.22 1.39
1, 0 cell – 5.08 4.43 4.06 2.98 1.39

aNotice that the value of C in the left-handed cell is much larger than in the negative permeability cell. The
gap should be modeled by the series capacitance and fringing capacitances in a p-model configuration.
Through p-T transformation, the effects of the line and fringing capacitances can be grouped in a single
capacitance, C, whose value can be substantially much larger than the addition of the individual com-
ponents. This has been verified by the authors in other microstrip left-handed structures based on
CSRRs and series gaps.

FIGURE 3.43 Simulated insertion losses for a 10-stage device with different values of gap dis-
tance, g, obtained by means of agilent momentum. The dimensions are: period l ¼ 6.4mm,
strip width W ¼ 1.69mm. The dimensions of the CSRRs are cin ¼ 0.472mm, cout ¼ 0.391mm,
d ¼ 0.149mm and rext ¼ 2.972mm. The parameters of the Rogers RO3010 substrate have been
considered (1r ¼ 10.2; h ¼ 1.27 mm). (Source: Reprinted with permission from [37]; copyright
2006, John Wiley & Sons.)
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higher the resonant frequency of the CSRRs [29], and hence fH, becomes. On the
other hand, as substrate height is reduced, the coupling capacitance C is augmented,
this having the effect of reducing fL (in spite of the fact that Cg is slightly reduced).

Finally, the effects of varying line width are presented. This modifies both Cg and
C, and it may slightly affect the resonance frequency of the CSRRs through the influ-
ence of the upper metallic strip on Lc and Cc. We expect a variation of the lower band
edge towards lower frequencies when line width is widened (because both C and Cg

are expected to increase), and a small (although probably nonnegligible) shift in the
upper transition band. This behavior has been verified by electromagnetic simulation
(Fig. 3.45).

According to the results shown in this section, it is clear that 1D left-handed struc-
tures with moderate bandwidths based on CSRRs can be designed. To enhance band-
width, thin substrates are preferred, as this favors the possibility of moving away fL
and fH. As long as bandwidth, out-of-band rejection (mainly dependent on the
number of stages), and in-band losses can be controlled, these structures can be
applied to the synthesis of frequency-selective structures of compact dimensions.
Also, these structures can be of interest for the design of artificial transmission
lines, where impedance and phase shift can be independently (within certain
limits) controlled over wide margins, without the need to manipulate line width
and length (as occurs in conventional transmission lines). This has many potential
applications, as will be shown in the next chapter.

FIGURE 3.44 Simulated insertion losses for a 10-stage device with different values of
substrate height, h, obtained by means of agilent momentum. The dimensions are period l ¼
6.4mm, gap spacing g ¼ 0.2mm, strip width W ¼ 1.69mm. The dimensions of the CSRRs
are cin ¼ 0.472mm, cout ¼ 0.391mm, d ¼ 0.149mm, and rext ¼ 2.972mm. The parameters
of the Rogers RO3010 substrate, except thickness, which is the varying parameter, have
been considered (1r ¼ 10.2). (Source: Reprinted with permission from [37]; copyright 2006,
John Wiley & Sons.)
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3.9 COMPARISON BETWEEN THE CIRCUIT MODELS OF
RESONANT-TYPE AND DUAL LEFT-HANDED LINES

At the beginning of Section 3.5, it was pointed out that resonant-type and dual27

transmission lines exhibit similar behavior. In particular, it was mentioned that, as
in dual transmission lines, there is also a forward wave band at high frequencies in
resonant-type structures. Indeed, in the preceding sections devoted to the synthesis
and analysis of SRR- and CSRR-loaded transmission lines, the main interest was
on demonstrating the occurrence of left-handedness, and on interpreting this in
terms of circuit analysis. However, inspection of the circuit model (unit cell) of a
host line loaded with series capacitors and shunt inductors (Fig. 3.3) and those
circuits describing the unit cells of SRR loaded (Fig. 3.24) and CSRR loaded
(Fig. 3.38) left-handed lines, indicates that similar characteristics may be expected
in all cases (obviously with certain singularities that will be highlighted).

Let us start by comparing the circuit of Figure 3.38 (CSRR-loaded left-handed
line) to that of Figure 3.3 (dual transmission line). The single difference between

FIGURE 3.45 Simulated insertion losses for a 10-stage device with different values of
strip width, W, obtained by means of agilent momentum. The dimensions are period
l¼6.4mm, gap spacing g ¼ 0.2mm. The dimensions of the CSRRs are cin ¼ 0.472mm,
cout ¼ 0.391mm, d ¼ 0.149mm, and rext ¼ 2.972mm. The parameters of the Rogers
RO3010 substrate have been considered (1r ¼ 10.2; h ¼ 1.27 mm). (Source: Reprinted with
permission from [37]; copyright 2006, John Wiley & Sons.)

27Along this section, by dual line the authors mean a host line loaded with series capacitors and shunt
inductors. A composite right-/left-handed behavior arises in such lines, due to the effect of the parasitic
elements of the host line. These lines are usually called composite right-/left-handed (CRLH) lines (as
was pointed out previously). However, this CRLH behavior is not exclusive to this type of lines. It is
also present in resonant-type (i.e., loaded with SRRs or CSRRs) left-handed lines. For this reason we
use the term dual to designate C–L loaded lines.
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these circuits is the presence of the coupling capacitance, C, in the circuit of
Figure 3.38. The direct consequence of this is the presence of a transmission zero
to the left-hand side of the backward wave band.28 In the limit of very high coupling
(C! 1) the transmission zero shifts to the origin and both models tend to be iden-
tical. In practice the capacitance C can be enhanced by decreasing the substrate height
(in microstrip configuration). Thus, we may conclude by mentioning that CSRR-
loaded left-handed lines implemented in very narrow microstrip substrates can be
described by a circuit model that is formally identical to that of the dual transmission
line in the region of interest.

Another key aspect to highlight is the composite right-/left-handed (CRLH) beha-
vior of CSRR-loaded lines [39,40]. The origin of such behavior in dual transmission
lines was studied in detail in Section 3.2. According to the model of Figure 3.38, this
behavior is also expected in CSRR-loaded left-handed lines, because above the res-
onance frequency of the series resonator (formed by L and Cg), the series impedance
is positive (inductive), whereas the shunt admittance is dominated by Cc. Indeed,
balanced CSRR structures can be achieved by merely forcing the series (vs ¼

(LCg)
21/2) and shunt (vp ¼ (LcCc)

21/2) resonances to be identical.29 This possibility
is demonstrated in Figure 3.46, which depicts the dispersion diagram of a balanced
CRLH CSRR-loaded transmission line cell (also included in the figure). As can be
seen, the structure is almost balanced (that is, there is a quasi-continuous transition
between the left handed and right handed bands).30 The measured and simulated fre-
quency responses of the cell, also depicted in Figure 3.46, exhibit a very broad trans-
mission band, which is due to the absence of gap between the backward and forward
regions.31 According to these results, it is very clear that CRLH and balanced CRLH
transmission lines can be achieved by loading the host line with CSRRs. Also, it is
clear that broadband metamaterial transmission lines can be achieved by means of
the resonant-type approach. It is interesting to analyze the dependence of the charac-
teristic impedance on frequency for the CRLH CSRR-loaded line. From expression
(3.2) and the circuit of Figure 3.38 (including all the circuit parameters), the following
expression is obtained (Problem 3.3):

ZB ¼
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28This transmission zero is of interest for the design of planar filters based on CSRR left-handed lines, as
will be discussed in Chapter 4.
29The shunt resonance frequency is the frequency that nulls the shunt admittance and it coincides with the
intrinsic resonance frequency of the CSRRs. It also coincides with the upper limit of the left-handed band
in unbalanced structures (expression 3.57).
30Perfect balance is difficult to achieve in practice. Nevertheless, for the structure of Figure 3.46, a continu-
ous transition between the left-handed and right bands is visible in the frequency response.
31The measured and simulated (through EM software) frequency responses are wider than that predicted by
the circuit model. The reason for this is the inability of the model to properly describe the structure at high
frequencies, as is discussed in [39,40].
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FIGURE 3.46 Balanced CRLH cell based on a microstrip line loaded with CSRRs (a), dis-
persion diagram (b) and frequency response (c). The structure has been implemented in the
Rogers RO3010 substrate with dielectric constant 1r ¼ 10.2 and thickness h ¼ 1.27mm.
Dimensions are line width W ¼ 0.8mm, external radius of the outer ring r ¼ 7.3mm, ring
width c ¼ 0.4mm, and ring separation d ¼ 0.2mm; the interdigital capacitor, formed by 28
fingers separated by 0.16mm, has been used to achieve the required capacitance value.
(Source: Reprinted with permission from [39]; copyright 2007, IEEE.)
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For the balanced case vs¼ vp ¼ vo, and the previous expression simplifies to

ZB ¼
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This expression is very similar to equation (3.22). The difference is the presence
of the last term in the square root of equation (3.61). As for the balanced dual trans-
mission line, the characteristic impedance is null at the extremes of the allowed band,
and it varies continuously in between. However, in resonant-type balanced lines
loaded with CSRRs, the impedance is maximum above the transition frequency, fo
(see Problem 3.3). Nevertheless, the impedance variation in the vicinity of the tran-
sition frequency is smooth and this is interesting to preserve matching in a wide band.
The variation of Zp, Zs and ZB with frequency for the transmission line model of
Figure 3.38 in the balanced case is depicted in Figure 3.47.

With regard to the lumped element model of SRR-loaded left-handed lines
(Fig. 3.24b), this can also be considered an extension of the dual transmission line
model of Figure 3.3. Both models are identical in the limiting case of L0s ! 1.
However, in practice, it is not possible to achieve high values of L0s, because M is
limited and Cs cannot be made very large (see expression 3.39). In other words,
the transmission zero cannot be easily driven to the origin. This is obvious,
because this transmission zero directly coincides with the resonance frequency of
the SRRs, which is identical to the resonance frequency of the parallel tank

FIGURE 3.47 Representation of the series, Zs, shunt, Zp, and characteristic impedance, ZB,
for a CRLH transmission line corresponding to the model of a balanced CSRR-based structure.
Electrical parameters are L ¼ 45 nH, Cg ¼ 0.48 pF, C ¼ 10 pF, Cc ¼ 3 pF, Lc ¼ 3 pF. The
depicted values of Zs and Zp are the reactances. The transition frequency has been set to
fo ¼ 1.5GHz. (Source: Reprinted with permission from [39]; copyright 2007, IEEE.)
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formed by L0s and C0
s. It has already been pointed out in Section 3.6 the CRLH

behavior of transmission lines loaded with SRRs and shunt inductors (strips or
vias). For SRR-loaded lines, it is also possible to balance these lines. To this end,
the structure must be tailored in order to have identical shunt (expression 3.42) and
series (expression 3.43) resonance frequencies.

According to the previous comments, dual and resonant-type metamaterial trans-
mission lines are conceptually very similar. The narrow band behavior usually exhib-
ited by SRR- or CSRR-based left-handed lines is not something intrinsic to the
approach, but rather due to the difficulty of tailoring the geometry of the lines (reso-
nators and other elements) to the required values to achieve wide left-handed bands.
This narrow-band behavior also occurs (though less accentuated) in fully planar dual
transmission lines. To obtain wide left-handed bands, lumped elements may be used.
Alternatively, to synthesize broad transmission bands, balanced lines can be
implemented. These balanced lines are also convenient to ensure impedance match-
ing in a wide band, although, obviously, this band includes a backward and a forward
region. The balance condition can also be forced in resonant-type CRLH transmission
lines. Hence, it is potentially possible to achieve broadband characteristics by using
SRR- and CSRR-loaded lines. In other words, broadband characteristics are not
exclusive of the dual transmission line approach.

To end this chapter we would like to compare the lumped element model of SRR-
loaded left-handed transmission lines (Fig. 3.24) with the transmission line model of
bulk left-handed structures consisting of a combination of SRRs and metallic posts
(see Fig. 2.20). This model was described in [41], and it coincides with the model
depicted in Figure 3.24b. In such a model, the posts are accounted for by means of
shunt inductors, whereas SRRs and their magnetic excitation by the incident field
are appropriately described by means of series-connected parallel LC resonators. It
was shown in [41] that through the transmission line model depicted in
Figure 3.24b,32 the effective permeability and permittivity, as derived from
expressions (3.15) and (3.16), coincide with the effective permittivity and per-
meability of the SRR/wire medium, reported in [42]:

1eff ¼ 1� vp

v2
(3:62)

meff ¼ 1� Fv2
o

v2 � v2
o � jvG

, (3:63)

where vp is the plasma frequency of the wire medium, vo is the resonance fre-
quency of the SRRs, F is the fractional area occupied by the SRRs in the unit
cell, and G is the dissipation factor, which depends on the conductor losses in
the SRRs. It is interesting to highlight that by modeling the SRR-loaded

32In the transmission line model of the SRR/wire medium considered in [41], losses have been included by
means of a resistance, disposed in parallel with the resonant tank describing the SRR.
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left-handed line by means of the circuit of Figure 3.24a, where the lumped
elements have a very clear physical interpretation, we finally obtain (through trans-
formation 3.35–3.41) a circuit model (Fig. 3.24b) that is identical to that circuit
needed to obtain the effective electromagnetic parameters (1eff and meff) of the
SRR/wire medium. This means that the bulk SRR/wire media and the planar
SRR-loaded left-handed lines are equivalent structures, because they are described
by identical transmission line circuit models. Thus, the models of Figure 3.24 and
the transformation equations (3.35–3.41) between them bridge the gap between the
bulk and transmission line approaches for the analysis of SRR-based left-handed
metamaterials.

PROBLEMS

3.1. Equivalence between plane wave propagation in homogeneous dielectrics
and TEM wave propagation in transmission lines. Demonstrate the equival-
ence between plane wave propagation in homogeneous isotropic dielectrics and
TEM wave propagation in transmission lines given by expressions (3.15) and
(3.16), and use it to obtain the effective permittivity and permeability of ideal
lossless conventional, dual, and CRLH transmission lines.

3.2. Phase constant of a CRLH line. Obtain the phase constant of a CRLH trans-
mission line in the long wavelength limit (expression 3.29) by expanding
expression (3.21) in a Taylor series.

3.3. Analysis of the CSRR-based left-handed lines by including the effects of the
line inductance. The CSRR-based left-handed transmission line is described by
the lumped element model represented in Figure 3.38. In this model, the series
inductance of the line has been neglected. This can be done provided (a) the
right-handed band is significantly separated from the left-handed band and (b)
the interest is only focused on the left-handed transmission band. However, in
a general case, it may be of interest to exploit the composite right-/left-handed
behavior of such lines. In this case the complete circuit model (with L included)
must be considered. From this model, obtain the expressions for the character-
istic impedance and phase constant. Simplify these expressions for the
balance condition and determine in this case where the characteristic impedance
reaches its maximum.

3.4. Hybrid model of left-handed lines based on CSRRs. The following circuit
model corresponds to the hybrid approach of a left-handed transmission line
(basic cell), because it describes a transmission line loaded with both CSRRs
(modeled by Cc and Lc) and shunt inductors (Lp). The series capacitances Cg

are responsible for the negative effective permeability of the line, as occurs in
the dual transmission line and resonant-type approach. For this model, obtain
the different transmission regions indicating if propagation is backward or
forward.
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3.5. Repeat the previous problem, excluding the capacitance Cc.

3.6. CRLH lines based on SRRs. For the circuit model given in Figure 3.24b, the
dispersion relation has been analytically obtained (expression 3.45). Derive this
expression and demonstrate that above the left-handed pass band, there exists a
forward wave transmission band. Obtain the conditions that are necessary to
suppress the frequency gap between the left-handed and right-handed bands
(balance condition).

3.7. Relationship between SRR and CSRR parameters. Demonstrate that for
infinitely thin perfect conducting screens, and in the absence of any dielectric
substrate, the parameters of the circuit models for the SRRs and the CSRRs
(Fig. 3.28) are related by Cc ¼ 4(1o=mo)Ls and Co ¼ 4(1o=mo)Lo.

3.8. CSRR-based left-handed lines with inter-resonator coupling. A generaliz-
ation of the equivalent circuit model of a left-handed transmission line
implemented by means of CSRRs is given as follows [36]:

This model takes into account not only the presence of the CSRRs coupled to the host
line, but also inter-resonator coupling (important in tiny spaced square-shaped or rec-
tangular CSRRs), which is modeled by means of the mutual capacitances CM.
Moreover, this model accounts for those situations where the distance between adja-
cent resonators is significant (negligible coupling) and the capacitance of the host line
corresponding to the regions where CSRRs are not present, C, must be considered.
Assuming that CSRRs are closely spaced (C negligible), but coupling between
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adjacent resonators is small, demonstrate that the previous model can be transformed
to the following:

where L0(v) and C0(v) are frequency-dependent inductance and capacitance, respect-
ively, related to the second and first term of the following impedance:

Zeq ¼
1

jvCg

1� Lr(CC þ 2CM þ Cr)v2½ � Lr(CC þ Cr)v2 � 1½ �
LL2rC

2
CCMv

6 þ 1� Lr(CC þ 2CM þ Cr)v2½ �
Lr(CC þ Cr)v2 � 1½ � � L2rC

2
CCMv

4=Cg

þ jvL
vCg 1� Lr(CC þ 2CM þ Cr)v2½ � Lr(CC þ Cr)v2 � 1½ �
LL2rC

2
CCMCgv

7 þ vCg 1� Lr(CC þ 2CM þ Cr)v2½ �
Lr(CC þ Cr)v2 � 1½ � � L2rC

2
CCMv

5
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CHAPTER FOUR

Microwave Applications of
Metamaterial Concepts

4.1 INTRODUCTION

The main aim of this chapter is to highlight the potential of metamaterials and
metamaterial-based structures for the synthesis and design of new microwave
devices and subsystems. Improved performance and novel functionalities, due to
the unique and controllable electromagnetic properties of these structures, as well
as device miniaturization, because of the small electrical size of their constitutive
elements, are the main areas where metamaterial concepts may produce a major
impact. In the following subsections, several applications of metamaterials will be
considered and exhaustively analyzed. Although this textbook is mostly oriented
towards the resonant-type approach of metamaterials, the authors wish to provide a
wide overview of metamaterial applications, including representative achievements
of other authors. Hence, several applications will be illustrated through implemen-
tations based on the dual transmission line concept.

As metamaterials are frequency-selective structures by nature, their application to
the design of compact microwave filters and diplexers seems to be straightforward.
Thus, the first subsection of this chapter is focused on the design of microwave
filters. Because such devices require resonant elements, the preferred (although
not exclusive) approach for the synthesis of filters and diplexers based on one-
dimensional (1D) metamaterials is the resonant-type approach. It will be shown in
Section 4.2 that SRRs and CSRRs are useful particles for the synthesis of narrow-
band and wide-bandpass filters (also including bandpass filters for ultrawide-band—
UWB—applications). A systematic methodology for the design of planar filters
subject to specifications will be presented. Finally, reconfigurable filters based on
varactor-loaded metamaterials will also be included in this section.
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Copyright # 2008 John Wiley & Sons, Inc.

187



Probably the most outstanding property of metamaterial transmission lines is the
controllability of the electrical characteristics. This includes the dispersion diagram1 as
well as the characteristic impedance of such artificial lines. Owing to this control, it is
possible to design components with superior performance compared to conventional
implementations (such as enhanced bandwidth devices), components based on new
functionalities (such as dual band components), or microwave devices with small
dimensions. In suchdevices, the conventional transmission lines and stubs are substituted
by metalines, resulting in metacircuits with smaller dimensions and/or improved
performance. These metamaterial based components will be discussed and studied in
Section 4.3. Itwill also be shown in this section that coupled lines basedonmetamaterials
are useful to improve the performance/dimensions of coupled-line couplers.

Radiated wave applications, due to the unusual dispersion diagram of left-handed
or CRLH metamaterial transmission lines, will also be considered in this chapter. It
will be shown that these structures may produce backfire (analogous to reversed
Cerenkov radiation in left-handed media [1]) to endfire radiation, including the
possibility of electronically scanning the radiation angle by tuning through varactor
diodes. Implementations based on both the dual transmission line concept and the
resonant-type approach will be provided.

4.2 FILTERS AND DIPLEXERS

It was shown in Chapter 3 that transmission lines simply loaded with SRRs or CSRRs
are able to inhibit signal propagation in a narrow band in the vicinity of resonance
[2,3]. This was interpreted as being due to the negative effective permeability or
permittivity of such 1D artificial transmission media. It was also demonstrated that
this behavior can be switched to a passband by merely introducing additional
elements to the structures. Thus, in SRR-loaded lines, an allowed band with
backward-wave propagation can be generated by introducing shunt-connected
strips or vias [4]. These elements provide the required negative effective permittivity
up to a frequency (plasma frequency) that can be tailored through their dimensions
and separation. As long as this frequency is set beyond the resonance frequency of
the SRRs, a frequency region where both electromagnetic parameters (permeability
and permittivity) are negative arises, and hence a left-handed band. In artificial lines
loaded with CSRRs, the additional elements must provide a negative-valued effective
permeability (because the negative permittivity is obtained by means of the CSRRs),
and this is achieved by etching series gaps to the line (as discussed in Chapter 3).
The result is also a narrow band with negative wave propagation [5].

1In general, the dispersion characteristics in conventional transmission lines depend on both the substrate
and line dimensions (width). However, it is not possible to tailor these characteristics as desired to achieve
certain requirements. In metamaterial transmission lines, the dispersion diagram is determined by the
characteristics of the host line and loading elements. This major number of line parameters makes it poss-
ible to engineer such artificial lines in order to obtain the required characteristics (within certain limits). For
this reason, the design of microwave components based on these artificial transmission lines can be called
dispersion engineering.
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In spite of their small dimensions, these structures have serious drawbacks for their
practical applications as stopband or bandpass filters. The single negative SRR- or
CSRR-loaded lines exhibit highly selective stopbands with a rejection level depend-
ing on the number of stages [2]. However, it is difficult to control the width of the
forbidden band. This depends on the distance between adjacent resonators, because
interresonator coupling enhances this gap. However, in practice, this coupling is
very limited, and no substantial control on device gap width is achieved by this
means. As bandpass structures, the double-negative artificial lines considered in
Chapter 3 also exhibit some limitations. Namely, the typical frequency responses
measured on these left-handed lines are very selective at the lower edge of the
band, due to the presence of a transmission zero, but the transition band is smooth
at the upper band edge [4,5]. The frequency response is thus asymmetric, and the
first spurious band may lie close to the passband of interest. On the other hand, band-
width cannot be easily controlled and it is difficult to achieve wide bands. Depending
on the applications, the left-handed transmission lines studied in Chapter 3 may
suffice. However, in other applications, bandwidths beyond those that may be achiev-
able by means of the cited structures, or frequency responses with wide stopbands, to
mention some typical needs, may be required. The purpose of this section is to study
how the structures presented in Chapter 3 can be modified in order to obtain compact
filters based on SRRs or CSRRs with improved performance. As will be shown, it is
possible to design both stopband and bandpass filters with small dimensions and elec-
trical characteristics comparable to or superior than those that may be obtained by
means of conventional distributed approaches. In the next subsection, the implemen-
tation of stopband filters with controllable gap width is considered. After that, the
implementation of bandpass filters will be analyzed. The preferred strategies to gen-
erate both narrow and wide bands will be discussed, including a design methodology
based on the generalized bandpass filter network. Also included in this study will be
the implementation of microwave diplexers based on CSRRs. The section devoted to
filters will end with a subsection focused on reconfigurable metamaterial transmission
lines and their application to tunable filters.

4.2.1 Stopband Filters

Stopband filters are typically of interest in microwave engineering for the suppression
of undesired responses or for the elimination of interfering signals. As has been indi-
cated previously, single negative transmission lines based on SRRs or CSRRs are
rejection band structures that produce reasonable suppression levels with small
dimensions. This is so because the elemental cell is very effective in inhibiting
signal propagation and is electrically small. However, for certain applications, the for-
bidden bands required are wider than those achievable by cascading several SRR or
CSRR stages. To overcome this limitation, we may take advantage of the high reflec-
tivity of the particles considered, and cascade several resonators tuned at different
frequencies over the frequency interval of interest. To this end, we may simply
scale up and down the dimensions of the SRRs (or CSRRs), or simply increase or
decrease their radius. Following this idea, it is possible to substantially enhance the

4.2 FILTERS AND DIPLEXERS 189



width of the forbidden band. This has been driven to practice in both microstrip and
coplanar waveguide technologies by using SRRs and CSRRs [6–8]. Figure 4.1 shows
a multiple-tuned SRR-loaded CPW structure with five ring pairs. Tuning has been
implemented in this case by increasing the inner radius of the SRRs in 0.05 mm
step increments and leaving c and d unaltered (as compared to the SRR geometry
of Fig. 3.15). The simulated and measured frequency responses, depicted in
Figure 4.1, show that the rejected band broadens towards lower frequencies. This
is expected, because an increment of r has the effect of decreasing the resonant fre-
quency of the SRRs. The pronounced cutoff at either side of the gap and the absence
of significant insertion losses in the pass band is noteworthy. This is important in
using SRRs for the elimination of undesired frequencies in CPW circuits.

The application of the multituning concept to SRR-loaded microstrip lines is also
possible. In this case, square-shaped SRRs are preferred in order to enhance magnetic
coupling between line and rings [7]. Figure 4.2 shows a possible implementation of
such a multituned structure. The host line is designed to exhibit a 50V impedance,
and the SRR dimensions, indicated in the caption, have been varied by scaling up
and down the geometry. The result is a wide stopband of approximately 1GHz

FIGURE 4.1 Layout (a), simulated (thin line), and measured (bold line) frequency
responses (b) of the multituned SRR–CPW stopband filter. The length of the active
region is 4 cm. The dimensions of the smallest SRRs are c ¼ d ¼ 0.2 mm, internal radius
r ¼ 1.3 mm. For the other SRRs, r has been incremented in 0.05 mm steps, and c and d
have been left unaltered. (Source: Reprinted with permission from [6]; copyright 2003, IEEE.)
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centered at 4.5 GHz, as can be seen in the simulated and measured frequency
responses, shown in Figure 4.2c and d. For comparison purposes, also included in
this figure is an electromagnetic bandgap (EBG)2 transmission line, which has
been designed to produce comparable rejection and gap width. The required

FIGURE 4.2 Multi-tuned SRR-based microstrip stopband filter compared to an EBG
implemented by varying the strip width of a microstrip line (a). Zoom view of the SRR-
based structure (b), simulated frequency responses (c), and measured frequency responses
(d ). The separation between concentric rings and their width are c ¼ d ¼ 0.3 mm for all
SRRs. The larger SRRs have an external edge (in the direction orthogonal to the line) of
lo ¼ 3.55 mm, and the smaller rings, lo ¼ 2.7 mm (tuning has been applied to this parameter).
For all SRRs, the external edge in the direction of the line is ll ¼ 4.1 mm. Finally, the strip line
width is W ¼ 1.17 mm and the distance to SRRs (outer edges) is 0.3 mm. The total length of
the device is 39.3 mm, which corresponds to approximately 1.6l (l being the signal wave-
length at the central frequency of the forbidden band). The structures have been fabricated
on the Rogers RO3010 substrate (1r ¼ 10.2, h ¼ 1.27 mm). (Source: Reprinted with per-
mission from [7]; copyright 2005, John Wiley & Sons.)

2EBGs are periodic structures able to inhibit signal propagation at certain frequencies and/or directions
[9,10]. They can be three-, two- or one-dimensional structures, and one particular case for the latter cat-
egory corresponds to EBG transmission lines, where typically the ground plane [11] or the conductor
strip [12] are periodically microstructured to achieve the required properties (for instance by drilling
holes in the ground plane [13], or by periodically modulating line width and hence line impedance
[12,14–17]).
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number of stages in the EBG structure (with linewidth modulation) is much higher.
Because the period of the EBG structure scales with frequency (namely, it must be set
to half the signal wavelength at the central frequency of the stopband), the resulting
dimensions are huge. Therefore, compared to EBG transmission lines, the approach
introduced in this chapter, and based on SRRs, seems to be more effective not only in
terms of miniaturization but also to achieve superior performance [7].

As elements able to generate a negative effective permittivity, CSRRs are also
expected to produce controllable stopbands when etched in planar transmission
lines and tuned at different frequencies [8]. Examples of such structures implemented
in microstrip and CPW technology are depicted in Figures 4.3 and 4.4, respectively.
For the CSRR-loaded microstrip line (Fig. 4.3), rectangular-shaped CSRRs are
etched in the ground plane under the conductor strip, where a significant component
of the electric field in the axial direction of the rings is present. This is necessary to
achieve high electric coupling between line and CSRRs, which is in turn of interest to
obtain high levels of rejection in the forbidden band. As in the previous illustrative
examples, the host line must be matched to the ports to minimize insertion losses
in the allowed band. The relevant dimensions of the structure are indicated in the
caption. The measured frequency response of this structure, which is also depicted
in Figure 4.3, reveals that rejection above 20 dB can be achieved within a 25% frac-
tional band. For the CPW structure of Figure 4.4, similar levels of rejection can be
achieved. In this case, however, the relative gap width is narrower, because a
smaller number of CSRRs has been used. The reason is that CSRRs have been

FIGURE 4.3 50-V microstrip line with square-shaped CSRR etched in the ground plane (a)
and measured frequency response (b). c ¼ d ¼ 0.4 mm and the external edges of the CSRRs
have been tuned in the vicinity of 9.4 mm � 5.8 mm. The structure has been fabricated on
the Rogers RO3010 substrate (1r ¼ 10.2, h ¼ 1.27 mm). (Source: Reprinted with permission
from [8]; copyright 2005, IEEE.)
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etched in the central strip. This represents the optimum procedure to save layout area,
because the ground planes are maintained unaltered. This idea can find practical
application, as will be explained later.

To summarize, it has been shown that it is possible to implement quasiperiodic
artificial transmission lines, loaded with SRRs or CSRRs, where, due to their
capability to inhibit signal propagation within a limited frequency interval, rejection
bands with controllable gap width can be generated. The most relevant characteristic
of these structures is their size, which can be made small on account of the subwave-
length nature of the constitutive elements (SRRs or CSRRs). This size can be
optimized by using other topologies discussed in Chapter 2, such as the BC-SRR,
the SR, and so on. In the next subsection, the application of these concepts to
improve the frequency response of conventional distributed filters (through the
suppression of undesired spurious bands) is explored.

4.2.2 Planar Filters with Improved Stopband

The presence of spurious bands is an important limitation of microwave filters
implemented by means of distributed elements [18]. These undesired frequency
bands can seriously degrade filter performance and may be critical in certain appli-
cations that require huge rejection bandwidths. Unfortunately, for most filter
implementations the first spurious band is relatively close to the frequency region
of interest. For example, in coupled line bandpass filters, the first spurious band
appears at the first harmonic of the central frequency (2fo), and it is a consequence

FIGURE 4.4 CPW stopband structure with CSRRs etched in the central strip (a), and
measured frequency response (b). Ring dimensions are c ¼ d ¼ 0.4 mm and external edges
are tuned in the vicinity of 6.6 mm � 3.6 mm. The structure has been fabricated on the
Rogers RO3010 substrate (1r ¼ 10.2, h ¼ 1.27 mm). (Source: Reprinted with permission
from [8]; copyright 2005, IEEE.)
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of the different phase velocities of the even and odd modes supported by the coupled
lines. In capacitively (gap) or inductively coupled resonator bandpass filters, an unde-
sired band is also inherently present at 2fo due to the resonance condition at this fre-
quency. Finally, the stopband in stepped-impedance lowpass filters is limited by the
presence of the first spurious band, which is typically too close to the cutoff
frequency. The rejection of these undesired frequency bands has been a subject of
interest for filter designers for years. Traditional techniques include the use of half-
wavelength short-circuit stubs, chip capacitors or cascaded stopband filters.
However, these techniques are either narrow band, increase device area, or introduce
significant insertion losses. In coupled-line filters, several approaches based on modi-
fied structures, aimed at obtaining equal modal phase velocities, have been proposed
as a means to improve out-of-band filter performance [19–22]. These approaches are
very effective, but they are also very specific (that is, for application in parallel
coupled-line filters).

Based on the concept of EBGs [9,10], numerous works have been devoted to the
suppression of harmonics in a wide variety of microwave circuits, including passives
[12,17,23] and actives [24]. Apart from this versatility, EBGs can be integrated within
the device active region, thus avoiding the need to cascade additional stages
[12,17,23]. This is an important property for optimizing final layout area.
Although effective, frequency selectivity in EBG structures is based on their period-
icity (Bragg effect), and several stages are required (typically 6 or 7) to obtain signifi-
cant rejection levels. As the EBG period scales with wavelength (Bragg condition),
the required dimensions of the structure might be too big for certain applications
(in particular at moderate or low frequencies). Moreover, EBGs do not provide an
easy way to control gap width [25]. Nevertheless, EBG structures have been success-
fully applied to the elimination of multiple spurious bands in microstrip bandpass
filters, with measured rejection levels above 30dB up to 5fo [23].

An alternative to the previously cited approaches for the elimination of spurious
frequency bands in distributed filters is the use of SRRs or CSRRs. Their small elec-
trical size, rejection efficiency, and versatility (stopband filters based on these par-
ticles have been demonstrated in both microstrip and CPW technology [6,8]) make
these elements very attractive to achieve effective spurious suppression with
minimum area increase. Such a possibility is explored in this subsection. The main
advantage of the approach, as with EBGs, is the fact that SRRs and CSRRs can be
etched within the active region of the devices. Namely, it is not necessary to
cascade the SRRs or the CSRRs at the input or output access lines. This represents
an optimum design in terms of area saving. To illustrate the efficiency of SRRs
and CSRRs for the elimination of spurious bands and their versatility, several illustra-
tive examples are provided. The first one is a parallel coupled-line bandpass filter
implemented in microstrip technology [8]. The layout of the device, a third-order
Butterworth bandpass filter with a central frequency of fo ¼ 2.4 GHz and 10%
fractional bandwidth, is depicted in Figure 4.5. Rectangular SRRs are etched
adjacent to the coupled lines in order to reject the first and second spurious bands.
The multiple tuning procedure explained in the previous subsection has been used,
although final SRR geometries have been determined by means of an optimization
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algorithm (integrated within the Agilent momentum software). The smaller rings
(etched in the central stages) are responsible for the rejection of the second spurious
band, whereas the first undesired band is rejected by the action of the larger SRRs,
which are allocated in the first and fourth filter stages. The simulated and measured
frequency responses of this device are represented in Figure 4.5b and c. In compari-
son to a conventional device, the first spurious band is rejected with attenuation levels

FIGURE 4.5 (a) SRR coupled-line microstrip bandpass filter. (b) Simulated frequency
response compared to that obtained in the device without rings. (c) Measured frequency
responses. The device has been fabricated on the Rogers RO3010 substrate (thickness
h ¼ 1.27 mm, dielectric constant 1r ¼ 10.2) by means of a standard photo/mask etching tech-
nique. (Source: Reprinted with permission from [8]; copyright 2005, IEEE.)
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near 40dBs, and insertion losses in the second spurious band are clearly below
220dBs. This efficiency can be attributed to the significant number of SRR pairs dis-
tributed along the device, which is possible by virtue of their small electrical size. It is
also worth mentioning that the use of square or rectangular SRRs enhances magnetic
coupling between line and rings (as has been explained), and this allows for further
rejection levels, as compared to circular SRRs [26,27].

In Figure 4.6, a coupled-line bandpass filter fabricated in CPW technology is
depicted [8]. In this device (a third-order Butterworth, 10% fractional bandwidth,

FIGURE 4.6 (a) CSRR coupled-line bandpass filter in CPW technology. (b) Simulated
frequency response compared to that obtained in the device without rings. (c) Measured fre-
quency responses. The device has been fabricated on the Rogers RO3010 substrate (thickness
h ¼ 1.27 mm, dielectric constant 1r ¼ 10.2). (Source: Reprinted with permission from [8];
copyright 2005, IEEE.)
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central frequency fo ¼ 1.8 GHz), square-shaped CSRRs are etched in the coupled
lines with the aim of eliminating the first and second harmonic bands. According
to the frequency response, also shown in Figure 4.6, suppression levels above
20dBs up to 5GHz are achieved, and the passband is scarcely affected. This
points out the efficiency of the technique, this time with CSRRs etched in the
conductor strips. Compared with CPW coupled-line filters with SRRs etched in
the back substrate side (not shown), the structure of Figure 4.6 is more effective
for spurious suppression. In addition, the back substrate side is left unaltered,
except by the presence of the via bridges that are required in these types of structures
to avoid the generation of parasitic modes [28]. In fact, this structure (Fig. 4.6) is
very interesting, because the CSRRs are etched in the strips of the coupled
lines; that is no lateral microstructuring is added to the device. Therefore this is a
very interesting solution for the elimination of undesired bands in terms of
area saving.

Following this idea, CSRRs may also be etched in the active region of other
planar filters, such as stepped-impedance lowpass filters, in order to eliminate the
first harmonic band [29]. The topology of these filters is very suitable for this
purpose because it presents low-impedance transmission line sections, which are
wide and may provide the necessary space for CSRR etching. To illustrate this,
the layout of a stepped-impedance lowpass filter with spurious suppression is
depicted in Figure 4.7. Circular CSRRs have been etched in the low-impedance
sections, with the result of significant attenuation of the first harmonic band.
Again, no area is added to the device because the resonators are etched in the metallic
strips of the filter.

In the reported examples, the passband of interest is not substantially affected by
the presence of the SRRs or CSRRs. This is an important aspect to highlight and it is
related to the relatively high Q factor of the resonators. In other words, the signal
ignores the presence of the rings, unless its frequency is very close to the nominal
resonant frequency of the SRRs (or CSRRs). These are tuned in the vicinity of the
first (or second) spurious band and hence the frequency response in the operating
band is not substantially altered.3 Miniaturization (due to subwavelength operation
of SRRs and CSRRs), high levels of rejection, and the possibility of controlling
gap width by fine tuning, are key aspects that make this technique very promising
for the elimination of undesired bands in microwave filters. Moreover, the technique
can be applied to a wide variety of structures (including CPW and microstrip
transmission lines) and filter types.

3In fact the presence of SRRs or CSRRs in the active region of the filters may affect somewhat the electrical
characteristics of the structures. Specifically, it has been found that the presence of SRRs and CSRRs in the
parallel coupled-line filters of Figures 4.5 and 4.6, respectively, slightly modifies the phase characteristics
of the coupled-line sections (as compared to the structures without SRRs or CSRRs). Therefore, it is
necessary to recalculate dimensions to preserve central filter frequency and bandwidth (the procedure is
explained in [8]). However, rather than, being a disadvantage, this is useful to reduce final device dimen-
sions (5% and 10% for the filters of Figures 4.5 and 4.6, respectively).
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4.2.3 Narrow Bandpass Filter and Diplexer Design

It has been indicated previously that left-handed transmission lines consisting of a
combination of SRRs with shunt-connected strips (or vias), or CSRRs with series
gaps, exhibit an abrupt transition band at the lower edge, but poor frequency selectiv-
ity at the upper edge of the band. A transmission zero present below and close to the
left-handed allowed band explains the sudden change in the transmission coefficient
prior to this band. However, the upper band limit is determined by that frequency
where the series impedance switches from capacitive to inductive behavior (for
SRR-based left-handed lines) or the shunt impedance switches from inductive to
capacitive behavior (for CSRRs lines).4 This change is gradual rather than abrupt
and this is the reason for the soft transition that is typically measured above the

FIGURE 4.7 (a) Layout of the CSRR-based stepped-impedance lowpass filter drawn to
scale. Total device length, including 50-V access lines, is 94 mm; (b) Simulated (dashed
lines) and measured (solid lines) frequency response for the CSRR stepped-impedance low-
pass filter. The device has been fabricated on the Rogers RO3010 substrate (thickness h ¼
1.27 mm, dielectric constant 1r ¼ 10.2). (Source: Reprinted with permission from [29].)

4Indeed, the left-handed transmission band can also be truncated at the upper edge by a change in the sign
of the shunt and series impedance for SRR and CSRR loaded lines, respectively. However, unbalanced
resonant-type left-handed lines are usually designed with the resonance frequency of the branch not depen-
dent on the SRRs or CSRRs well beyond SRRs’ or CSRRs’ resonance.
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passband. One possibility to improve frequency selectivity at the upper edge of the
band is to alternate left-handed transmission line sections with artificial right-
handed sections. The latter, which consist of SRRs combined with gaps, or
CSRRs combined with shunt-connected strips, exhibit a transmission zero above
the passband. Therefore, by overlapping the passbands of both stages, it is potentially
possible to achieve roughly symmetric and highly frequency-selective devices. Let us
explore this possibility.

4.2.3.1 Bandpass Filters Based on Alternate Right-/Left-Handed (ARLH)
Sections Implemented by Means of SRRs A representative and illustrative struc-
ture of the alternate right-/left-handed (ARLH) concept5 implemented by means of
SRRs is depicted in Figure 4.8 [30]. It consists of a CPW transmission line loaded
with three SRR pair sections. The central stage is a right-handed SRR/gap section,
and it is sandwiched between two SRR/strip (i.e., left-handed) stages. The outer
stages are described by the p lumped-element circuits of Figure 3.24, and the
central stage is modeled by the circuits shown in Figure 4.9 (Cg is the capacitance
of the series gap). An analysis of this latter circuit indicates that signal propagation
is allowed for those frequencies providing a real value of b, according to the
following expression:

cos(bl) ¼ 1þ C
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Equation (4.1) corresponds to the dispersion relation of an infinitely long periodic
structure composed of a cascade of elemental cells. Although the number of cells is
infact limited (a single SRR/gap stage sandwiched between two SRR/strip cells is
used in the structure of Fig. 4.8), equation (4.1) provides valuable information,
because it confirms that the SRR/gap combination supports propagating modes in a
narrowband below SRR resonance. Moreover, inspection of equation (4.1) reveals
that the series impedance rapidly changes from a highly inductive to a highly capacitive
behavior at resonance, with the result of a sharp cutoff at that frequency. This has been
verified by full-wave electromagnetic simulation of the central SRR/gap stage alone
(the commercial software Agilent momentum has been used). The result is visible in

5Notice that the ARLH concept is different than the composite right-/left-handed (CRLH) concept intro-
duced in Chapter 3. Namely, the CRLH concept expresses the composite (left- and right-handed) nature of
both dual and resonant-type metamaterial transmission lines. The expression ARLH is used to designate the
combination of left-handed and right-handed sections in the same structure. Although the left-handed sec-
tions exhibit a CRLH behavior, the right-handed band of such sections is not used. In ARLH structures, the
alternance of right- and left-handed sections is not actually necessary. The relevant advantages of such
structures are due to the combination of left- and right-handed sections. However the term combined
right-/left-handed has been avoided, because its acronym coincides with that of the composite right-/
left-handed concept. Moreover, in the illustrative examples provided, the right-and left-handed sections
do infact alternate.
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FIGURE 4.9 Lumped-element equivalent circuit for the gap-SRR stage (a) and simplified
model with the series branch replaced by its equivalent impedance (b). Cg is the capacitance
of the series gap.

FIGURE 4.8 Layout of the strip/gap SRR-CPW structure. For the smaller SRRs the inner
radius has been set to r ¼ 1.39 mm, and for the rings located at the edges of the structure,
r ¼ 1.52 mm. In all cases, c ¼ d ¼ 0.2 mm. The strip width is ww ¼ 2.16 mm and the gap
length is lg ¼ 1.6 mm. With these dimensions, the shunt-connected inductance and series capa-
citances take the values Lp ¼ 115.76 pH and Cg ¼ 96.84 fF, respectively. The lateral dimen-
sions of the host CPW are W ¼ 5.4 mm, G ¼ 0.16 mm. The central strip is wide in order to
avoid SRR-pair overlapping. The length of the active region of the device (i.e., excluding
access lines and connectors) is 14.4 mm. The Arlon 250-LX-0193-43-11 substrate was used,
that is, dielectric constant 1r ¼ 2.43, thickness h ¼ 0.49 mm. (Source: Reprinted with per-
mission from [30]; copyright 2004, IEEE.)
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Figure 4.10, where, for comparison purposes, the frequency response of an individual
SRR/strip stage is also depicted. In both cases, the parameters of the Arlon 250-LX-
0193-43-11 substrate were considered; that is, dielectric constant 1r ¼ 2.43, thickness
h ¼ 0.49 mm. Because in the allowed band the series impedance is inductive and the
shunt impedance is capacitive, it follows that signal propagation is forward and
hence the SRR/gap combination is a right-handed cell.

The different locations of the passband for the left-handed and right-handed stages
relative to the resonant frequency of the rings explains the smaller dimensions of the
central SRRs. The dimensions of the SRRs and other relevant dimensions of the filter
are given in the caption of Figure 4.8. With these SRR geometries, the resonance
frequencies for the central and external SRRs (according to the model reported
in Chapter 2 and also given in [31]) are fo ¼ 7.22 GHz and fo ¼ 6.64 GHz,

FIGURE 4.10 Simulated frequency responses for individual SRRs/gap (a) and SRRs/strip
(b) cells.
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respectively.6 Hence, the passband of the structure is expected to lie within this fre-
quency interval. The strip and gap geometries have been determined to obtain shunt
inductances and a series capacitance able to obscure the effects of line capacitance
and line inductance in the region of interest (i.e., within the passband) for the
outer and central stages, respectively. Filter size is approximately three times
smaller than the wavelength at the central frequency of the filter.

The simulated and measured frequency responses of the designed structure are
depicted in Figure 4.11. There is a reasonable agreement between simulation and
experiment. The slight discrepancies in the region of interest are attributed to fabrica-
tion-related tolerances.7 In agreement with the analysis based on the equivalent circuit
model, a passband is obtained between the resonant frequencies of the central and
outer rings. The sharp transition band obtained at either edge of the allowed band
is noticeable, with more than 30 dB fall in 0.5 GHz and peak rejection levels of 60
dBs and near 40 dBs at 6 GHz and 7.7 GHz, respectively.

Another illustrative example of the ARLH transmission line concept is an S-band
filter (central frequency fo ¼ 2.4 GHz), where the number of cells has been reduced
to two [32]. Namely, a single SRR/strip cell has been cascaded with an SRR/gap
combination (Fig. 4.12). The length of the active device region is 22.5 mm, that is,
five times smaller than the signal wavelength at 2.4 GHz. The simulated and measured
frequency responses of this device are depicted in Figure 4.13. In spite of the reduced
number of stages (only two), frequency selectivity is good, with measured rejection
levels better than 50 dBs at the left of the pass band and above 30 dB up to approxi-
mately 4 GHz. The upper transition band edge is very sharp with 60 dB fall in 0.4
GHz, and an average slope of 125 dB/GHz has been measured at the lower band edge.

The potentiality of ARLH transmission lines in terms of filter miniaturization is
pointed out by comparing the designed S-band filter with a conventional microstrip
coupled-line bandpass filter with similar performance (an identical substrate is
considered to validate the comparison). The layout of this filter is also depicted in
Figure 4.12. The simulated frequency response of the coupled-line bandpass filter
is depicted in Figure 4.13a (this device has not been fabricated). To obtain similar
slopes in the transition bands, it has been necessary to design a three-stage
conventional filter (Chebyshev response) with a length (excluding the access lines)
of 63.6 mm, that is, roughly three times longer than the active region of the ARLH
SRR-based prototype.8 The authors would like to highlight the absolute coincidence
of the simulated frequency responses in the pass band for both implementations
(Fig. 4.13a). This indicates that in-band losses in the ARLH SRR filter are related

6Due to the presence of the CPW structure at the other side of the substrate, these resonance frequencies do
not exactly coincide with those inferred from full-wave electromagnetic simulation (Fig. 4.10).
7It has been demonstrated by simulation that variations of ring dimensions of less than 1% around the
design values are enough to degrade in-band losses. This explains the measured in-band losses (4 dB)
not being as good as those obtained by electromagnetic simulation, and also the slight frequency shift
between simulation and measurement.
8The performance of the ARLH SRR-based filter in terms of frequency selectivity is superior. Therefore, at
least a four-stage coupled-line filter is necessary to improve the frequency response obtained in the SRR-
based filter.
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to the finite Q factor of the resonators, rather than to an improper design (although it
has been observed that in-band losses are very dependent on variations of ring dimen-
sions around the design values). These results clearly suggest the possibilities of the
ARLH concept in reducing filter dimensions in planar technology.

4.2.3.2 Bandpass Filters and Diplexers Based on Alternate Right-/Left-
Handed (ARLH) Sections Implemented by Means of CSRRs ARLH trans-
mission lines properly designed to act as narrow bandpass filters can also be
implemented by means of CSRRs. As expected, the left-handed stages consist of

FIGURE 4.11 Simulated (a) and measured (b) frequency responses for the fabricated C-
band filter of Figure 4.8. (Source: Reprinted with permission from [30]; copyright 2004, IEEE.)
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CSRRs combined with series gaps, whereas CSRRs combined with shunt stubs are
used for the forward sections [33]. The lumped-element equivalent circuit model
for the CSRR/gap stage was presented in Chapter 3 (Fig. 3.38). The equivalent
circuit model for the right-handed CSRR/stub cell is depicted in Figure 4.14.
L and C are the inductance and capacitance of the line, respectively, and Lp
models the inductance of the shunt stubs. As in Chapter 3, CSRRs are modeled as
resonant tanks electrically coupled to the line through the capacitance C. The
circuit model corresponding to the CSRR/stub stage is valid as long as CSRRs are
electrically small (as in Chapter 3, coupling between neighbor CSRRs is neglected).
The dispersion relation corresponding to an infinitely long structure composed of the
unit cells depicted in Figure 4.14 is given by

cos blð Þ ¼ 1þ
Lv2 Lp þ

Lc
1� LcCcv2
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FIGURE 4.12 (a) Layout of the fabricated S-band filter drawn to scale. The dimensions of
the SRR pairs corresponding to the strip and gap stages are r ¼ 5.2 mm, c ¼ 0.44 mm, and d ¼
0.22 mm, and r ¼ 4.1 mm, c ¼ d ¼ 0.55 mm, respectively. Strip and gap dimensions have
been set to ww ¼ 2.8 mm and lg ¼ 6.6 mm, respectively. With these geometries, the equivalent
inductance and capacitance of the strip and gap have been estimated to be Lp ¼ 183 1pH and
Cg ¼ 147 fF, respectively (as for the C-band filter of Fig. 4.8, the parameters of the Arlon 250-
LX-0193-43-11 substrate have been considered). Finally, the host CPW is a 50V line with a
wide strip (W ¼ 10 mm) in order to accommodate the rings. As the separation between ground
planes is wider than the dimensions of the connectors in use, it has been necessary to cascade
taper transitions at the input and output ports to allow for connector insertion. The length of the
active device region is 22.5 mm. (b) Layout of a conventional microstrip parallel coupled-line
bandpass filter with comparable performance. (Source: Reprinted with permission from [32];
copyright 2005, John Wiley & Sons.)
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Signal propagation is only allowed in that region where the phase constant is real. For
this, it is necessary that the shunt reactance is negative. This occurs in a narrow band
to the left of fs, the frequency that nulls the shunt impedance.9

By combining CSRR/gap stages with CSRR/stub unit cells, it is possible to syn-
thesize narrow passbands with transmission zeros at both band edges. As was done in
SRR-based ARLH transmission line filters, it is necessary to design the CSRR of the
right-handed and left-handed stages to exhibit the transmission zeros at different

FIGURE 4.13 Simulated (a) and measured (b) frequency responses for the fabricated
S-band filter. Insertion losses (simulated) for the conventional three-stage coupled-line
bandpass filter are depicted in gray. (Source: Reprinted with permission from [32]; copyright
2005, John Wiley & Sons.)

9If the inductance Lp were not present, the shunt impedance would be negative from the origin up to fs.
Thus, the inductance Lp is introduced to generate a limited forward band.
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frequencies, and to design either filter stage with identical central frequency.
Illustrative examples of narrow microstrip bandpass filters based on ARLH lines
implemented by means of CSRRs are given in [33].

These ARLH transmission-line bandpass filters can be applied to the synthesis of
microwave diplexers [34]. A diplexer is a three-port device that is used at the input
stage of communication transceiver front-ends to separate the receiver (Rx) and trans-
mitter (Tx) channel signals. To this end, a Rx and a Tx filter is required. A possible
configuration for the diplexer is that shown in Figure 4.15, where the Rx and Tx filters
are cascaded at the output ports of a Y-junction. The main relevant parameters repre-
sentative of diplexer performance are in-band losses for the Tx and Rx channels
(which should be as small as possible) and Rx/Tx isolation (which should be high
to avoid interfering signals between the Rx and Tx channels). A prototype device
operative in the 2.4–3.0 GHz frequency band is depicted in Figure 4.16a. The Tx
and Rx filters (implemented by means of CSRR-based ARLH microstrip lines10)
have been designed to provide passbands centered at 2.4 GHz and 3.0 GHz, respect-
ively, with absolute bandwidths of 0.25 GHz (namely 10.3% and 8% fractional band-
widths for transmission and reception). Figure 4.16b depicts the measured
transmission coefficient for the Tx and Rx filters (i.e., S21 and S31, respectively), as

FIGURE 4.14 Equivalent T-circuit model for the CSRR/stub cell.

FIGURE 4.15 Structure of the diplexer.

10Notice that in the right-handed sections of the Rx and Tx filters, two CSRRs are used. The reason for this
is the moderate bandwidth (rather than narrow) of either filter. To achieve such bandwidths, it is necessary
to implement unit cells also with moderate 3 dB bandwidths. For the forward sections, this is more easily
achieved by using two CSRRs, rather than only one.
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well as the measured Rx/Tx isolation (S32). In-band losses lower than 2 dB are
measured for either filter, and return losses (also represented in Fig. 4.16b) are
better than 10 dB. The frequency response of the filters is quite symmetric and the
measured isolation between ports 2 and 3 is in the vicinity of 40 dB. Remarkable
also are the dimensions of the diplexer (see the region indicated in Fig. 4.16a),
which are as small as 29.8 mm � 16.3 mm (namely 0.63l � 0.34l, l being the
signal wavelength at the Tx frequency) thanks to the compact resonators used.

4.2.4 CSRR-Based Bandpass Filters with Controllable Characteristics

In this section, a methodology for the design of bandpass filters with controllable
characteristics in microstrip technology is proposed. It is based on cascading filter
stages consisting of a combination of CSRRs, series capacitive gaps, and grounded
stubs. By this means we achieve the necessary flexibility to simultaneously obtain
quite symmetric frequency responses, controllable bandwidths, and compact

FIGURE 4.16 (a) Topology of the fabricated ARLH microstrip line diplexer and (b) the
measured frequency response. The upper metal level is depicted in gray, and the lower
metal is drawn in black. Gap spacing is 1.33 mm and 1.67 mm for the Rx and Tx filters,
respectively, and the shunt strip dimensions are 4.54 mm � 11.9 mm and 5.70 mm � 14.48
mm. External CSRR radii are 2.18 mm, 2.73 mm, 2.56 mm, and 3.27 mm for the Rx (1st
stage), Rx (2nd stage), Tx (1st stage), and Tx (2nd stage), respectively. The structure has
been implemented in the Rogers RO3010 substrate (thickness h ¼ 1.27 mm, dielectric constant
1r ¼ 10.2). (Source: Reprinted with permission from [34].)
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dimensions. Compact dimensions and symmetric frequency responses were obtained
by means of the ARLH concept proposed in the previous subsection. However, the
synthesis of bandpass filters with controllable bandwidth (over wide margins) was
not considered. It will be shown in this section that by means of the proposed
approach we can obtain wide- and even ultrawideband (UWB) frequency responses.
Moreover, by sacrificing periodicity, it is possible to synthesize standard frequency
response filters (Butterworth, Chebyshev, and so on), as will be shown later.
Another interesting aspect to highlight is that the basic cell of the structure exhibits
a transmission zero above the pass band of interest. This transmission zero can be tai-
lored to some extent and hence it can be useful to improve the out-of-band perform-
ance of the filters through suppression of undesired harmonic bands. We will also
consider in this section alternative topologies for the basic cell, where the series
gaps are replaced with transmission line sections. Although in this case wave propa-
gation is forward, we can also take the benefit of the small dimensions of the resona-
tors (CSRRs) to achieve compact designs. It will be shown that this latter strategy is
powerful for the synthesis of UWB response filters.

4.2.4.1 Bandpass Filters Based on the Hybrid Approach: Design
Methodology and Illustrative Examples The CSRR-based microstrip filters pro-
posed in this section are planar structures that can be modeled by the circuit of
Figure 4.17a, which consists of a cascade of admittance inverters (with normalized
admittance J ¼ 1) alternating with shunt-connected resonators tuned at the central
frequency of the filter band, fo [35,36]. This circuit is inferred from the lowpass
filter prototype by the well-known frequency and element transformations that can
be found in any microwave textbook [18] or in monographs devoted to microwave
filters [35,36].11 By properly designing the shunt resonators, the synthesis of standard
frequency approximations is potentially possible. Infact, the transformation from the
lowpass filter prototype leads to the structure of Figure 4.17b, with parallel LC res-
onant tanks. Thus, as long as the resonator’s admittances fit those of the LC tanks
(which depend on the L and C values inferred from circuit transformation), the tar-
geted approximation (Butterworth, Chebyshev, and so on) is achievable. Generally
speaking, in planar circuit technology, the resonators can be implemented either by
means of a distributed approach, or by using planar semi-lumped elements.
Therefore, the ideal case of perfect fitting at all frequencies is not possible, and the
admittances of the LC resonators can only be approximated near resonance. This is
the conventional procedure for the design of filters with limited bandwidth, and
this will be the case considered in this section.

The elemental cell of the proposed CSRR-based filters is depicted in Figure 4.18
[37]. This consists of a CSRR etched in the ground plane (underneath the conductor
strip), combined with two series gaps and two shunt-connected metallic strips (stubs),
which are grounded by means of vias. The equivalent-circuit model of this basic cell
is also shown in Figure 4.18. CSRRs are modeled by means of an LC resonant tank

11Alternatively, bandpass filters can be synthesized by cascading impedance inverters and series-
connected resonators.
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(Lc and Cc), and their coupling to the line is described by means of the capacitance C,
which depends on the portion of the inter-metallic region between the series gaps that
lies face-to-face with the metal inside the inner slot of the CSRR. The grounded stubs
are modeled by means of a shunt inductance, Lp, and Cg accounts for the series gaps.
The elements of the basic cell, including the CSRR, are electrically small, this being a
necessary condition to properly describe the cell by means of the proposed lumped-

n

FIGURE 4.17 Generalized bandpass filter network with admittance inverters and shunt
resonators (a). In (b) the resonators are LC resonant tanks.

FIGURE 4.18 (a) Basic cell of the proposed filters, (b) the equivalent-circuit model, and (c)
The T-model of the elemental cell. The upper metallization is depicted in black, and the bottom
metal regions are depicted in gray.
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element equivalent circuit. The series inductance of the line is neglected in this study,
as was done in Chapter 3 in the modeling of microstrip lines loaded with CSRRs and
series gaps. Indeed, the basic cell shown in Figure 4.18 is inspired by the elemental
cell of the left-handed microstrip line depicted in Figure 3.36. The introduction of the
shunt-connected stubs in the structure is a consequence of the need to improve the
upper transition band of the filter. However, the introduction of such elements rep-
resents an additional degree of freedom that is relevant not only to improve frequency
selectivity, but also to ease the design and to improve the out-of-band rejection of the
filter, as will be shown later.

Inspection to the circuit of Figure 4.18b reveals that the electrical model of the
proposed unit cell is a combination of the dual transmission-line model and the
resonant-type model. Therefore, this model can be called the hybrid model, and
the methodology based on the left-handed unit cells depicted in Figure 4.18a can
be identified as the hybrid approach [38]. Another key advantage of the structure
of Figure 4.18 is related to the admittance inverter. Because the characteristic
admittance of the inverters is unity (Fig. 4.17), the inverters merely act as 908
transmission lines. However, because gap capacitances are present in the structures,
they can be used to obtain the desired phase shift, without the need to physically
cascade 908 transmission lines between the resonators, something relevant to
device miniaturization.12

The design methodology of the filters consists in determining the electrical
parameters of the equivalent-circuit model for either filter section (provided the
filter is not periodic) from given specifications (central frequency, fractional
bandwidth, and filter order), and also the synthesis of the layout of the structure.
Let us first consider the first aspect. In the circuit of Figure 4.17b, the central filter
frequency, fo, is determined by the resonance frequency of the shunt LC tank,
which nulls its admittance. However, this is not exactly the case for the filter
implemented by cascading the elemental cells depicted in Figure 4.18, because the
resonators and admittance inverters are intermixed. Specifically, fo, neither coincides
with the intrinsic resonance of the CSRRs, nor does it null Yp(v) ¼ Zp

21(v).
Nevertheless, at fo, the phase shift and transmission coefficient between the input
and output ports of the basic cell should be f ¼ 908 and jS21j ¼ 1, respectively.
This means that at fo the image impedance (or Bloch impedance for a periodic struc-
ture), ZB, should coincide with the reference impedance of the ports, which is usually
set to Zo ¼ 50V. If we now consider that the circuit of Figure 4.18b can be described
by means of its T-circuit model, with series impedance Zs and shunt impedance Zp
(Fig. 4.18c), and we take into account that the phase shift and image impedance
for this circuit are given by expressions (3.1) (with f ¼ bl ) and (3.2), respectively,
the previous conditions lead us to Zs ¼ 2jZo and Zp ¼ jZo. In fact, the dual solution
(Zs ¼ jZo and Zp ¼ 2jZo) also satisfies the previous conditions on phase shift and
impedance matching, but this solution is not compatible with the circuit of
Figure 4.18b, because the series impedance of this circuit is capacitive.

12Nevertheless, in other filter implementations that will be analyzed later, such admittance inverters will be
implemented by means of transmission line sections.
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Consequently, at the central filter frequency, the series reactance is negative (capaci-
tive), and the shunt reactance (corresponding to the parallel combination of Lp and the
impedance of the CSRRs coupled to the line) is positive and, hence, inductive.
According to the signs of these reactances, the filter structure composed of the
elemental cells depicted in Figure 4.18 supports backward waves and behaves as a
left-handed transmission line. To determine the element values for the circuit of
Figure 4.18b, the series and shunt impedances have to be set to Zs ¼ 2jZo and
Zp ¼ jZo, respectively, at fo. This does not univocally determine the element values
for the shunt impedance. These values are also determined by the 3 dB bandwidth
of the resonators,

D ¼ v2 � v1

vo
(4:3)

(where vo, v1, and v2 are the central—angular—frequency and 3 dB frequencies,
respectively), and by the transmission zero, which occurs at that frequency where
the shunt impedance reduces to zero, namely

fZ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lc(Cc þ C)

p (4:4)

For an LC parallel resonant tank, with inductance and capacitance Leq and Ceq,
respectively, we have

D ¼ 2
Zo

ffiffiffiffiffiffiffi
Leq
Ceq

s
(4:5)

If we consider the filter structure of Figure 4.17b, where the L and C values
come from the low-pass filter prototype by frequency and element transformation
according to [35]:

Ceq ¼
1

FWB � vo � Zo

� �
gi (4:6)

Leq ¼
1

v2
oCeq

(4:7)

and expressions (4.6) and (4.7) are introduced in equation (4.5), the following
expression for resonator bandwidths results:

Di ¼
2FBW
gi

(4:8)
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where the gi factors are the element values of the lowpass filter prototype (which
depend on the specific filter approximation and can be inferred from published
tables) and Di is the 3 dB bandwidth of the resonators. According to expression
(4.8), Di is proportional to the fractional bandwidth, FBW, and hence it is determined
from the required bandwidth of the filter. Obviously, Di is also dependent on gi, and it
is therefore determined by the type of response and order. Once Di are known, we can
force the frequencies v1 and v2 to be equidistant from the central filter frequency. At
these frequencies, under the assumption that Zs(v) does not substantially vary along
the passband, the shunt impedance of the unit cell becomes Zp ¼ jZo/2 and infinity,
respectively (see Problem 4.1), and, as has been previously indicated, Zp ¼ jZo at vo.
These conditions can be expressed as

LpLcv3
1(C þ Cc)� Lpv1

Lcv2
1(C þ Cc)� Cv2

1Lp(LcCcv
2
1 � 1)� 1

¼ Zo
2

(4:9)

Lcv
2
2(C þ Cc)� Cv2

2Lp(LcCcv
2
2 � 1)� 1 ¼ 0 (4:10)

LpLcv3
o(C þ Cc)� Lpvo

Lcv2
o(C þ Cc)� Cv2

oLp(LcCcv2
o � 1)� 1

¼ Zo: (4:11)

The previous approximation (which is valid for narrow and moderate bandwidths)
leads us to simple analytical expressions (equations (4.9) and (4.10)). If this approxi-
mation is not applied, then the conditions arising from the 3 dB frequencies are not
mathematically simple. Solution of equations (4.9)–(4.11) and (4.4) leads us to the
parameters of the shunt reactance, and the series capacitance is given by

Cg ¼
1

2Zovo
: (4:12)

The criterion to set the transmission zero frequency, fz, obeys a compromise
between the need to obtain a sharp transition in the upper band edge, and the conveni-
ence to separate the spurious responses as much as possible from the passband of
interest, and thus optimize the out-of-band performance of the filter. Namely, a
narrow spurious band above the passband of interest arises, unless fz is properly set.
This spurious response is due to the presence of a parasitic half-wavelength resonator
coupled by the series capacitances (gaps) of the unit cells. By adjusting fz to the pos-
ition of the frequency parasitic, this spurious response can be minimized, and the filter
frequency response can be significantly improved. However, the position of the spur-
ious response is not known a priori. So the transmission zero frequencymust be set to a
certain tentative value, for instance fz ¼ 2fo, which is expected to lie in the vicinity of
the spurious band.13 From the previous equations, the parameters of Figure 4.18b are

13There is no physical reason that justifies this choice. However, in practice, the typical electrical sizes of
CSRRs makes the spurious band appear in the vicinity of the first harmonic of the central filter frequency.
This is not something absolute, but it has been corroborated by several examples. Nevertheless, the location
of the spurious band can be estimated from the distance between the series gaps of adjacent cells.
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inferred, and the topology of each filter cell (Fig. 4.18a) is obtained. The model
described in [39] can be used to obtain an initial guess for CSRR dimensions (the val-
idity of the model is subject to conditions that do not exactly apply in the considered
filter cells [39]). The coupling capacitance, C, can be adjusted by partially removing
the metal delimited by the CSRR contour. The length and width of the grounded
metal strips (stubs) can be determined from independent full-wave electromagnetic
simulations carried out in microstrip transmission lines loaded with these elements,
or by using standard formulas [18]. A similar procedure can be used to determine
the geometry of the series capacitances. From this initial layout, the frequency
response of the complete filter is then simulated by means of a full-wave electromag-
netic solver, thus making visible the position of the spurious band. To eliminate this
band, fz must be forced to coincide with the center of the spurious band, and the
model parameters must be recalculated. To determine the final layout, cell dimensions
should be adjusted (starting from the seeding topology) in order to fit as closely as
possible the electrical response obtained from the latter model parameters. In practice
this is simple, because cell bandwidth is mainly controlled by Lp and C (provided fz
and fo are distant enough). Therefore, stub dimensions and the etched area inside the
CSRRs can be adjusted to match the required bandwidth, and the transmission zero
frequency can be tailored by scaling the CSRR dimensions.

Let us now consider two illustrative examples of bandpass filters designed by fol-
lowing this approach. The first example is a bandpass filter based on a periodic rep-
etition of the basic cell. The second example is a bandpass filter where periodicity is
sacrificed in favor of the synthesis of a standard (Chebyshev) frequency response. In
both cases, significant levels of miniaturization are achieved, as compared to conven-
tional distributed implementations, as will be shown later. The specifications of the
periodic filter are as follows: order 3, central frequency fo ¼ 1 GHz and fractional
bandwidth FBW ¼ 10%. This filter does not obey any standard approximation, there-
fore we cannot directly determine gi from tabulated values, as is usual. Obviously,
due to periodicity, all resonators must have the same D, and accordingly the same
g. To obtain the value of g, an order-3 low-pass filter prototype with identical
element values has been considered, and it has been forced to exhibit the 3 dB
cutoff at the normalized v ¼ 1 rad/s angular frequency. From this, g ¼ 1.521 is
obtained; hence the 3 dB bandwidth of the resonators, D, is perfectly determined.
From the previously explained procedure, the element values of the equivalent
circuit model have been obtained. They are identical for the three filter cells and
are depicted in Table 4.1. Layout dimensions for the basic cell are indicated in
Figure 4.19 (the parameters of the Rogers RO3010 substrate have been used; thick-
ness h ¼ 1.27 mm, dielectric constant 1r ¼ 10.2).

TABLE 4.1 Element Values of the Equivalent-Circuit
Model for the Filter of Figure 4.20

Cg (pF) Lp (nH) C (pF) Cc (pF) Lc (nH)

1.59 1.33 12.33 21.7 0.23
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The simulated (using Agilent momentum) frequency response (amplitude and
phase) of the single-cell structure is represented in Figure 4.19 and compared to
that obtained from the electrical simulation (insertion losses only) of the equivalent-
circuit model (with the parameters indicated in Table 4.1). A reasonable fit between
the electrical and the electromagnetic simulations has been obtained. The simulated
and measured insertion and return losses for the fabricated three-stage filter are
depicted in Figure 4.20. Thanks to the transmission zero, the frequency response is

FIGURE 4.19 Simulated frequency response (amplitude and phase) corresponding to the
basic filter cell of Figure 4.18a. The insertion losses obtained by electrical simulation of the
equivalent circuit model are also depicted (thin line). Dimensions are indicated in (b). The posi-
tive phase (þ908) of S21, obtained at fo, clearly points out the left, handed nature of the struc-
ture. (Source: Reprinted with permission from [37]; copyright 2006, IEEE.)
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spurious free up to approximately 3fo (this transmission zero is clearly visible in
Fig. 4.19, where it is not obscured by parasitic resonances, as only one stage has
been considered in that figure). In-band insertion and return losses are good (i.e.,
IL, 1.5 dB and RL . 17 dB), and frequency selectivity at both band edges
is high, with near-symmetric transition bands. The measured fractional bandwidth

FIGURE 4.20 Layout of the fabricated periodic filter (a), and simulated (b) and measured
(c) insertion and return losses. Total device length excluding access lines is 4.56 cm. In (b),
the simulated insertion losses for a conventional order-3 coupled-line filter with similar
performance are depicted (dashed line). (Source: Reprinted with permission from [37];
copyright 2006, IEEE.)
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is FBW ¼ 8%, which coincides to a good approximation with the nominal value (the
discrepancy is due to the narrow band approximation related to the nonideal admit-
tance inverters used). Cell dimensions (length) are small compared with signal wave-
length at fo (i.e., lc � l/7). Further miniaturization can be achieved with the penalty
of critical (smaller) dimensions being closer to the limits imposed by the fabrication
technology (�100 mm). To avoid problems related to fabrication tolerances, critical
dimensions substantially larger than 100mm have been considered in this design,
with the result of a moderately small cell size. Figure 4.20b also includes the simu-
lated frequency response (insertion losses) obtained on a conventional microstrip
coupled-line bandpass filter with similar performance (layout comparison is shown
in the inset of Fig. 4.20b). As compared to the conventional response, where a
spurious band is present at 2fo, the CSRR-based prototype device filter exhibits
near-40 dB rejection at that frequency, and the device length, excluding access
lines, is 2.4 times shorter. Obviously, the size of the conventional device can be
partially improved by folding the coupled half-wavelength resonators in a U-shape.
However, the resonator’s length cannot be reduced in contrast to our basic cells,
where the limits of miniaturization are given by technological constraints, rather
than by the signal frequency. This prototype device, published in [37], is the first
left-handed transmission line based on CSRRs (hybrid approach) used for the
design of a bandpass filter following a methodology able to provide the element
values of the equivalent-circuit model.

The nonperiodic structure is a third-order Chebyshev bandpass filter with 0.3 dB
ripple and 9% fractional bandwidth, centered at fo ¼ 2.5 GHz. In this case, filter
stages are not identical on account of the different element values, gi, of the low-
pass filter prototype. These have been inferred from table values corresponding to
the considered ripple and, from expression (4.8), the 3 dB bandwidth, Di, for each
resonator has been obtained. From these values, circuit parameters for either filter
section have been calculated by means of expressions (4.9)–(4.11) and (4.4), and
the seeding filter layout has been inferred as explained before. By forcing the position
of the transmission zeros at the convenient values, element parameters have been
recalculated (see Table 4.2) and the optimized filter layout has been inferred as
explained previously (see Fig. 4.21). In this case, two transmission zeros at 4 GHz
and 5 GHz have been considered to reject the spurious band. This prototype device
has been fabricated on a Rogers RO3010 substrate with dielectric constant 1r ¼
10.2, but thinner dielectric layer (i.e., h ¼ 0.635 mm). The measured frequency
response is also depicted in Figure 4.21 and compared to that obtained from the

TABLE 4.2 Element Values for the Equivalent-Circuit Model of the Filter of
Figure 4.21

Filter Cell Cg (pF) Lp (nH) C (pF) Cc (pF) Lc (nH)

1 0.63 0.49 6.11 20.50 0.059
2 0.63 0.67 3.77 1.03 0.217
3 0.63 0.49 6.11 20.50 0.059
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equivalent circuit model (by electrical simulation using Agilent ADS). It has also been
compared to the simulated frequency response inferred on the circuit model obtained
by frequency and element transformation from the lowpass filter prototype. Very
good agreement between the electrical simulation of the equivalent-circuit model
of the filter and the circuit that results from transformation of the lowpass filter
prototype has been found in the region of interest. This indicates that the lumped-
element model of Figure 4.18b can model, to a very good approximation, any stan-
dard approximation inferred form the lowpass filter prototype. The slight discrepancy

FIGURE 4.21 Layout and relevant dimensions of the nonperiodic CSRR-based Chebyshev
bandpass filter (a) and measured insertion (bold solid line) and return (bold dashed line) losses
(b). The insertion losses obtained from circuit simulation of the equivalent circuit model of the
filter (thin line) and from the low-pass filter prototype transformation (dotted line) are also
depicted for comparison. (Source: Reprinted with permission from [37]; copyright 2006 IEEE.)
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between the measured filter fractional bandwidth FBW ¼ 7% and the nominal value
has been explained before with reference to the previous periodic filter implemen-
tation. Moreover, it has to be taken into account that losses have been neglected in
the electrical simulations. Measured in-band insertion and return losses are IL ¼

1.9 dBs and RL . 13 dB, respectively. Finally the authors want to highlight again
the small dimensions of the device, with a length, excluding access lines, of l ¼
2l/5 (l being the signal wavelength at the central filter frequency). As compared
to conventional distributed approaches, the design methodology presented in this
section makes it possible to simultaneously achieve small dimensions, low losses,
high-frequency selectivity, and good out-of-band performance.

4.2.4.2 Other CSRR-Based Filters Implemented by Means of Right-Handed
Sections In the bandpass filters reported in Section 4.2.4.1, the elemental cell is
described by a T-circuit model where the series impedance is capacitive and the
shunt impedance is inductive (positive reactance) in the passband of interest
(hence the structure behaves as a left-handed transmission line section). The design
methodology for such bandpass filters, which allows for the synthesis of bandpass
filters subject to given specifications and/or standard approximations, is based on
the generalized bandpass filter network depicted in Figure 4.17. Indeed, the elemental
cell depicted in Figure 4.18 is a particular case, among other possible solutions, for
the physical implementation of such a network. The phase shift per cell is positive in
the region of interest, instead of being negative, as occurs in other filter unit cells
where the shunt resonators are coupled through 908 (actually 2908) transmission
lines acting as admittance inverters.14 This is just one of the alternative solutions
for the synthesis of CSRR-based bandpass filters, where the characteristic impedance
of the 908 line must be set to 50V in order to obtain the desired electrical character-
istics [40]. Another possibility is to replace such transmission line sections by trans-
mission lines merely acting as coupling inductances [41].

Let us now analyze the synthesis of bandpass filters implemented by means of
CSRR/stub resonators15 coupled by means of l/4 (or 908) lines. The topology of
the basic cell is depicted in Figure 4.22, where rectangular CSRRs have been con-
sidered (the shape of the rings is not critical).16 The equivalent-circuit model is
also depicted in this figure. It is identical to that shown in Figure 4.18b, but with
the series capacitances replaced by l/8 lines with 50V characteristic impedance.
By cascading such filter sections, the resulting structure can be described by the
generalized bandpass filter network shown in Figure 4.17. The admittance inverter
(l/4 lines) and the shunt resonator (formed by the parallel combination of the
grounded stubs and the capacitively coupled, through C, CSRRs) can be perfectly
identified. The design equations are similar to those reported in Section 4.2.4.1,

14The positive phase shift per cell (phase of S21) in the structure of Figure 4.18 (see Fig. 4.19a) corresponds
to a negative phase constant in the region of interest (left-handed passband).
15By CSRR/stub resonators the authors mean those shunt resonators of the elemental unit cell of the hybrid
approach, namely, consisting of a CSRR (coupled to the line through a capacitance C ) combined with a
shunt stub.
16In the topology of Figure 4.22, only one grounded stub is considered. Obviously, two stubs are also poss-
ible, the circuit model of the unit cell being identical.
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but they are not identical. Namely, the 3 dB bandwidth of each resonator is given by
expression (4.8). To univocally determine the four electrical parameters of the
equivalent circuit model, four independent equations are required. One of such
equations is given by the transmission zero frequency (expression 4.4). Two
further equations arise by forcing insertion loss to be IL ¼ 3 dB at v1 and v2,
where these angular frequencies are obtained from expression (4.3) and (4.8),
subject to the additional constraint of being equidistant from v o. This gives

LpLcv3
1(C þ Cc)� Lpv1

Lcv2
1(C þ Cc)� Cv2

1Lp(LcCcv
2
1 � 1)� 1

¼ Zo
2

(4:13)

and

LpLcv3
2(C þ Cc)� Lpv2

Lcv2
2(C þ Cc)� Cv2

2Lp(LcCcv
2
2 � 1)� 1

¼ � Zo
2
: (4:14)

Finally, the fourth equation arises by forcing the shunt impedance to be infinity at the
central filter frequency. This gives

Lcv
2
o(C þ Cc)� Cv2

oLp(LcCcv
2
o � 1)� 1 ¼ 0: (14:15)

With these model equations, the equivalent circuit as well as the layout of the filtering
structure can be inferred (the procedure explained before can be also applied).

One prototype device example is discussed in the following steps in order to high-
light the potential of this approach. Specifically, an ultrawide bandpass filter17

(UWBPF) has been designed with the following specifications: FBW ¼ 90%, fo ¼
6.8 GHz, order N ¼ 3 [40]. The layout that has been obtained after optimization is

FIGURE 4.22 Layout of the CSRR/stub resonator (a) and equivalent circuit model (b). The
impedance inverter is obtained by means of two l/8 transmission line sections (which form a
908 line when several stages are cascaded to form a filter).

17UWBPFs are defined as those filters covering a bandwidth of more than 1 GHz or larger than 20%.
Nevertheless, ultrawideband (UWB) communication systems are restricted to fulfill the requirements of
the mask supplied by the Federal Communication Commission (FCC) in February 2002 to regulate such
systems. This mask extends from 3.1 GHz up to 10.6 GHz. Therefore, to avoid interfering signals, filters
roughly covering this bandwidth are of interest. Usually such filters are called UWBPFs. Obviously,
they satisfy the above definition, but these UWBPFs do not represent the exclusive definition of the term.
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depicted in Figure 4.23 (the relevant dimensions are indicated). The parameters of the
Rogers RO3010 substrate (dielectric constant 1 ¼ 10.2, thickness h ¼ 127 mm, have
been considered). The simulated frequency response of this structure (obtained by
means of Agilent momentum) is also represented in Figure 4.23. The frequency para-
sitic related to the presence of an undesired inductive coupled half-wavelength reso-
nator can be appreciated very close to the upper edge of the band. There is also an
additional narrow band at 17 GHz, which is due to a second-order resonance of the
CSRRs. To suppress these bands, two properly tuned CSRRs are etched at the
filter output. The layout of the final filter and the simulated frequency response are
depicted in Figure 4.24a. The FBW that results from the simulated frequency
response is slightly lower than the nominal value. This is expected on account of
the limited frequency range of the admittance inverters, but this effect could be
compensated by over-dimensioning the FBW. In order to ease fabrication, a proto-
type device scaled down in frequency has been fabricated on a Rogers RO3010
substrate with identical dielectric constant (1 ¼ 10.2), but thicker dielectric layer

FIGURE 4.23 Layout of the CSRR-based filter implemented by means of CSRR/stub reso-
nators and 908 impedance inverters (a) and simulated insertion and return losses (b). (Source:
Reprinted with permission from [40]; copyright 2005, John Wiley & Sons.)
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(h ¼ 635 mm). Lateral filter dimensions have been scaled by the same factor as the
thickness, so that the lower dimensions are not so critical. The measured frequency
response is depicted in Figure 4.24b. Good agreement between simulation (original
layout of Fig. 4.24a) and measurements has been obtained. The measured fractional
bandwidth is FBW ¼ 87%, in-band losses (optimum value) are IL ¼ 0.3 dB, with
1 dB ripple, and return losses are in the vicinity of RL ¼ 10 dB. The authors
would also like to highlight that the first spurious band arises at approximately 3fo.
Therefore, the out-of-band filter behavior is quite satisfactory, with rejection levels
above 40 dB between 2.2 GHz and 3.2 GHz and above 20 dB up to 3.7 GHz.
Obviously, frequency selectivity at the lower transition band can be improved by
increasing the number of stages. To illustrate this, an eighth-order prototype-device
periodic filter is depicted in Figure 4.25 (the Rogers RO3010 substrate with 1r ¼

10.2, h ¼ 1.27 mm was used) [42]. The device exhibits a bandwidth covering the

FIGURE 4.24 Layout and simulated frequency response for the CSRR-based UWB filter
with improved stopband (a) and measured frequency response of the fabricated UWBPF
scaled down in frequency (scaled up in dimensions) by a factor of 5 (b). (Source: Reprinted
with permission from [40]; copyright 2005, John Wiley & Sons.)
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standard band for UWB applications, namely from 3.1 GHz up to 10.6 GHz. The
simulated and measured frequency responses for this structure are shown in
Figure 4.26. Good out-of-band performance is obtained, return losses in the
allowed band are reasonable, and insertion losses are better than 2.4 dB. These
results indicate that by using CSRRs, it is possible to design very wide bandpass
filters with good out-of-band performance and small dimensions, something not
easily achievable simultaneously.

Concerning the design of bandpass filters based on CSRR/stub resonators coupled
through transmission-line sections acting as series inductive elements, the topology
of the basic cell and its lumped-element equivalent-circuit model are both depicted
in Figure 4.27 [41].18 In contrast to the previous filters, where the characteristic impe-
dance of the 908 lines was always set to 50V, this impedance (and hence line width)
is now an adjustable parameter that is used to achieve the required inductance value.
To determine the circuit elements, we again appeal to the generalized bandpass filter
network. At the central filter frequency, fo, the phase shift between adjacent stages is
f ¼ 2908 and the image impedance is given by the reference impedance of the ports,
Zo. If these conditions are applied to the T-circuit model of Figure 4.27b, the series

FIGURE 4.25 Layout (a) and photograph (b) of the fabricated eight-stage UWBPF.
Relevant dimensions are indicated. (Source: Reprinted with permission from [42]; Springer
Science and Business Media.)

18Notice that the topology and circuit model of these cells are identical to those of the right-handed stages
of the ARLH filters discussed in Section 4.2.3.2.
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and shunt impedances at fo are given by Zs ¼ jZo and Zp ¼ 2jZo, respectively. Note
that the signs of these impedance are the opposite to those of Section 4.2.4.1.
From these impedance values, the line inductance is given by

L ¼ 2Zo
vo

, (4:16)

FIGURE 4.26 Simulated (a) and measured (b) frequency responses for the filter of
Figure 4.25. (Source: Reprinted with permission from [42]; Springer Science and Business
Media.)

FIGURE 4.27 Topology of the basic cell for the filters based on inductive coupling, and
equivalent circuit model.
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and the following condition for the elements of the shunt reactance must hold:

Lpvo � LpLcv3
o(C þ Cc)

Lcv2
o(C þ Cc)� Cv2

oLp(LcCcv2
o � 1)� 1

¼ Zo (4:17)

The three additional equations required to univocally determine the element values
are given by the transmission zero frequency (equation 4.4) and by the 3 dB frequen-
cies, v1 and v2, of the T-circuit model. At these frequencies the shunt impedance
becomes Zp ¼ 2jZo/2 and infinity, respectively. Therefore,

Lpv1 � LpLcv3
1(C þ Cc)

Lcv2
1(Cc þ C)� Cv2

1Lp(LcCcv
2
1 � 1)� 1

¼ Zo
2

(4:18)

and

Lcv
2
2(C þ Cc)� Cv2

2Lp(LcCcv
2
2 � 1)� 1 ¼ 0, (4:19)

and v1 and v2 are determined from equations (4.3) and (4.8). These equations are
very similar to those reported in Section 4.2.4.1. However, the fact that the shunt
impedance is capacitive in the region of interest, makes the sign of expression
(4.18) to be opposite to that of equation (4.9). The design procedure for these
filters is very similar to that explained in the previous subsection. To determine the
width of the transmission-line sections between adjacent resonators, the line induc-
tance is forced to take the value given by expression (4.16). This inductance is iden-
tical for all the filter stages. However, because filter section lengths may not be
identical (due to the variable CSRR size of the different stages), slightly narrower
lines are required in those sections with smaller etched rings.

A prototype-device bandpass filter representative of this latter approach is given in
Figure 4.28 [41], together with the required specifications (further details on the syn-
thesis of this filter can be found in [41]). To achieve the required 3 dB bandwidths for
either resonator section, it has been necessary to use double-slit CSRRs (2-CSRRs),
and it has also been necessary to etch two 2-CSRRs pairs at the input and output
stages of the filter. The simulated and measured frequency responses of the device,
also depicted in Figure 4.28, show that the target specifications are satisfied. The
measured central frequency and fractional bandwidth are fo ¼ 3.8 GHz and 31.2%,
respectively. Measured in-band losses are below 1 dB between 3.36 GHz and 4.15
GHz, with an optimum value of 0.7 dB at fo. Return losses better than 15 dB have
been obtained between 3.37 GHz and 4.27 GHz. Finally, the out-of-band filter per-
formance is good, with 40 dB rejection at the desired frequency regions. The size
of the filter, excluding access lines, is as small as 30 mm � 16 mm.

The bandpass filters studied in this section can be described by the network rep-
resentation depicted in Figure 4.17, consisting of a cascade of shunt resonators and
admittance inverters. However, bandpass responses can also be synthesized by cas-
cading series resonators and impedance inverters. As open split rings resonators
(OSRRs; see Chapter 2 and Problem 2.6) are modeled as series resonant tanks
[43], bandpass filters based on these particles can also be designed. The design
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methodology is very similar to that corresponding to CSRR/stub shunt resonators
coupled through 908 transmission lines and, hence, it is not reproduced here
(details of such filters can be found in [44]).

4.2.5 Highpass Filters and Ultrawide Bandpass Filters (UWBPFs)
Implemented by Means of Resonant-Type Balanced CRLH Metamaterial
Transmission Lines

It was pointed out in Chapter 3 that left-handed lines implemented by means of SRRs
or CSRRs exhibit a CRLH behavior, and that by properly designing such lines it is
possible to collapse the gap between the left-handed and right-handed bands

FIGURE 4.28 (a) Layout of a filter implemented by means of 2-CSRR/stub resonators
coupled through inductive transmission lines, and relevant dimensions. (b) Target specifica-
tions (insertion loss) for the filter prototype (gray regions represent forbidden loci). (c)
Simulated (dashed line) and measured (solid line) insertion and return losses for the fabricated
prototype filter. For the external 2-CSRRs, rings slot and separation are 0.29 mm, and for the
2nd, 3rd and 4th stages, these are 0.30 mm. The device has been fabricated on a Rogers
RO3010 substrate with dielectric constant 1r ¼ 10.2 and thickness h ¼ 1.27 mm. (Source:
Reprinted with permission from [41]; copyright 2005, John Wiley & Sons.)
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(balanced design). Balanced CRLH lines exhibit typically broad bandwidths that are
useful for the synthesis of highpass filters (HPFs) or ultrawide bandpass filters
(UWBPFs). In microwave engineering the difference between an HPF and a
UWBPF is subtle. Namely, a microwave HPF implemented in planar technology
does not infact exhibit an unlimited (i.e., extending up to infinity) band above the
cutoff frequency. Thus, microwave HPFs are indeed bandpass filters with a very
wide band and a controllable cutoff frequency at the lower band edge. In other
words, the difference between an HPF and a UWBPF is merely the fact that in
these latter filters, both the upper and lower cutoff frequencies are controllable, and
in HPFs the upper limit of the band is not a target specification. With these comments
in mind, it is clear that balanced CRLH CSRR-based unit cells such as those depicted
in Figure 3.46 are useful for the synthesis of HPFs. They exhibit a huge transmission
band above the cutoff, and frequency selectivity is good due to the presence of a
transmission zero. Moreover, rejection below cutoff can be controlled by the
number of stages of the structure. To illustrate this possibility, a prototype-device
HPF consisting of three stages, identical to that depicted in Figure 3.46 has been
fabricated and characterized (Fig. 4.29) [45]. For comparison, also depicted in this
figure are the simulated frequency responses of two- and four-stage devices.
As has been indicated, rejection below cutoff is controlled by the number of cells.

FIGURE 4.29 Layout of the microstrip filter formed by three balanced CRLH CSRR-based
cells (a) and measured frequency response (b). In (b) are also depicted the simulated insertion
and return losses for two-, three-, and four-stage device filters. The metallic parts are depicted
in black in the top layer and in gray in the bottom layer. Dimensions are: total length l ¼ 55mm,
line width W ¼ 0.8 mm, external radius of the outer rings r ¼ 7.3 mm, ring width c ¼ 0.4 mm
and ring separation d ¼ 0.2 mm; the interdigital capacitors are formed by 28 fingers separated
by 0.16 mm. (Source: Reprinted with permission from [45]; copyright 2007, IEEE.)
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For the measured three-stage device filter, rejection below cutoff is better than 50 dB,
and in-band insertion and return losses are good up to 3 GHz.

To synthesize a UWBPF by using the previous structures, it is necessary to include
additional elements able to limit the transmission band. These elements can also be
multituned CSRRs (see Section 4.2.1), acting as negative-permittivity particles and
designed to achieve the upper filter cutoff at the required frequency. In Figure 4.30
a UWBPF is depicted roughly covering the mask supplied by the Federal
Communication Commission (FCC) to regulate ultrawideband (UWB) communi-
cation systems (3.1–10.6 GHz). In this filter, the CSRRs introduced to control the
upper stopband are etched inside those CSRRs that are used to synthesize the
balanced CRLH structure. Moreover, additional CSRs (complementary spiral resona-
tors) can be seen cascaded to the input and output ports. These latter elements are
introduced to demonstrate that it is possible to provide a transmission zero within
the allowed band, this being of interest for the rejection of potential interfering
signals, such as WLAN, among others19 [46,47]. The simulated and measured
frequency responses of this filter are depicted in Figure 4.30b.20 As expected, a
notch in the vicinity of 5 GHz results due to the presence of the CSRs. The measured
bandwidth roughly coincides with that given by the FCC (discrepancy between
measurement and simulation is attributed to fabrication-related tolerances). Other
UWBPFs based on a combination of CSRRs and SRRs covering the FCC mask
have been proposed [48]. Broadband filters based on balanced dual transmission
lines can be found in [49].

4.2.6 Tunable Filters Based on Varactor-Loaded Split
Rings Resonators (VLSRRs)

Reconfigurable (tunable) devices are required in modern communications systems
that need to adapt to changing operating conditions. Among these devices, filters are
probably the microwave components where most efforts have been devoted towards
finding solutions providing accurate control of their electrical characteristics and
tunability over wide ranges. Tunable filters are based on electronically controllable
components such as varactor diodes or RF-MEMS (microelectromechanical switches),
among others, where a variable capacitance is used to tailor device characteristics.
Varactor diodes and RF-MEMS have been applied to the design of tunable devices,
such as filters and other microwave components, based on conventional configurations
[50]. The possibility of designing tunable filters and resonators bymeans of active elec-
tromagnetic bandgaps (EBGs) [51] has also been demonstrated based on varactor
diodes. In this section, it is demonstrated that tunable filters can be implemented by
using resonant-type metamaterial transmission lines loaded with varactor diodes.

19For the designed structure, the transmission zero in the vicinity of 5 GHz is of interest for the elimination
of WLAN radio signals following the IEEE 802.11a or Hiperlan/2 standards (data rates up to 54Mbps in a
regulated frequency spectrum around 5 GHz).
20Although UWBPF filters with better performance have been designed and fabricated [48], the device of
Figure 4.30 has been chosen to illustrate the possibility of etching the smaller CSRRs (responsible for the
upper stopband) inside the larger CSRRs.
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Though not exclusive, one possibility of achieving tunability is managed by adding the
varactor diodes to the resonant elements (SRRs). The result is the varactor-loaded split
rings resonator (VLSRR), which was introduced by Gil et al. [52]. By loading a trans-
mission line with VLSRRs and biasing the varactors at different voltages, the trans-
mission characteristics of the structure can be tailored.

4.2.6.1 Topology of the VLSRR and Equivalent-Circuit Model The original
topology (layout) of the VLSRRs proposed by Gil et al. [52] is depicted in
Figure 4.31a. It is similar to the topology originally proposed by Pendry [53]

FIGURE 4.30 Layout of the fabricated UWBPF (a) and frequency response (b). Dimensions
of the smaller CSRRs are c ¼ 0.17 mm, d ¼ 0.11 mm and rext ¼ 0.89 mm (those CSRRs of the
extremes are slightly larger to improve the upper stopband, as is explained in the text). CSRs
have been tuned to provide a transmission zero at 5 GHz (c ¼ 0.17 mm, d ¼ 0.11 mm and
rext ¼ 1.01 mm). Dimensions of the larger CSRRs are rext ¼ 2.10 mm, d ¼ 0.11 mm, c ¼
0.22 mm, and c ¼ 0.16 mm for the external and internal ring, respectively. The area of the
device (dashed rectangle) is A ¼ 1.77 cm � 0.41 cm. CSRRs and CSRs are printed in the
ground plane (in gray). The Rogers RO3010 substrate with thickness h ¼ 635 mm and dielec-
tric constant 1r ¼ 10.2 has been used.

FIGURE 4.31 Topologies of the tunable VLSRR (a) and VLSRR with improved geometry
(b). The relevant dimensions are indicated. (Source: Reprinted with permission from [54];
copyright 2006, IEEE.)
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(Chapter 2), although the separation between rings, d, is no longer uniform in order to
connect the diode varactor between the internal and external conductors. A metal pad
is added in the center of the particle to ease diode biasing, and rectangular rings have
been considered to enhance line-to-rings coupling. With this configuration, the elec-
tromagnetic behavior of the VLSRRs does not substantially differ from that of the
SRR, except in the fact that certain electronic control of the resonance frequency is
possible thanks to the varactors, which are connected between the inner and outer
conductors and dominate over the edge capacitance corresponding to the right half
of the structure. Another difference between SRRs and VLSRRs concerns their exci-
tation, or the generation of current loops at resonance. In the former, these currents are
mainly induced by the magnetic field flowing into the inner ring, whereas in
VLSRRs, rings excitation is mainly achieved by the magnetic field penetrating the
inter-rings region where the varactors are allocated. Alternatively, the topology pre-
sented in Figure 4.31b, can also be considered to achieve tuning [54]. As compared
to the structure of Figure 4.31a, the right-hand arm of the outer ring has been shor-
tened because no appreciable current flows through it (this has been corroborated by
electromagnetic simulation). In other words, the electric current is mostly absorbed
by the varactor diode, preventing it from circulating across the portion of the external
ring between the diode junction and the slit.

The lumped-element equivalent-circuit model of a biased VLSRR coupled to a
microstrip transmission line is depicted in Figure 4.32 [54]. Diode varactors are
modeled by a variable capacitance, CVAR, and a series resistance, Rs, which takes
into account not only the intrinsic losses of the diode, RD, but also the resistance
associated with the varactor–metal junctions, RVM. CR (which is neglected due to
the shunt connection of CVAR to it) and CL are the edge capacitances corresponding
to the right and left halves, respectively, of the VLSRR, and Lr and Cpad model the
equivalent inductance of the VLSRRs and the pad-to-ground capacitance, respec-
tively. Diode biasing is applied through a variable voltage source, Vbias, which has

FIGURE 4.32 Lumped-element equivalent-circuit model for the elemental cell of a biased
VLSRR coupled to a microstrip transmission line. L and C are the per-section inductance
and capacitance of the line. Due to symmetry, the magnetic wall concept has been used.
(Source: Reprinted with permission from [54]; copyright 2006, IEEE.)
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an equivalent output resistance termed Rbias. Concerning line-to-VLSRRs coupling,
we a priori assume that VLSRRs can be driven either by the axial magnetic field gen-
erated by the line (inductive coupling) or by the electric field present between the line
and the external ring (capacitive coupling). Both couplings have been properly
modeled by means of a mutual inductance, M (magnetic coupling), and the edge
capacitance between the line and the external ring, Cedge (electric coupling). The
capacitances CrL and CrR are the rings-to-ground capacitances of the left and right
halves, respectively.

4.2.6.2 Validation of the Model The previous model is validated by comparing
the frequency response measured on a fabricated VLSRR-loaded microstrip line with
that obtained through electrical simulation of the lumped-element equivalent circuit.
To this end, a two-stage device has been fabricated (Fig. 4.33a). BB833-Infineon
Technologies silicon tuning diodes have been used as nonlinear capacitances
(the capacitance window for these diodes is 0.75–9 pF for voltages varying in the
interval 0–30 V). As expected, a stopband (due to the negative effective
permeability of the structure) with tuning capability is obtained (Fig. 4.33b).
The device has been fabricated on a Rogers RO3010 substrate (dielectric constant
1r ¼ 10.2, thickness h ¼ 1.27 mm, tan d ¼ 0.0023). Except the mutual inductance,
M, and the varactor–metal junction resistance, RVM, which have been used as
fitting parameters, the other element values have been estimated either through
geometrical considerations or with the help of the commercial software Agilent
ADS (see [54] for details). The frequency responses depicted in Figure 4.33c have
been obtained by setting M ¼ 2.4 nH and RVM ¼ 3V (the other parameters are
indicated in the caption of Fig. 4.33), and are those that have optimally fitted the
experiment over the considered tuning interval. The good agreement between
theory and experiment supports the validity of the model.

As it is, the equivalent-circuit model includes both magnetic and electric coupling
between the host line and the VLSRRs. However, if the electric coupling is switched
off by removing the coupling capacitance Cedge, no appreciable differences in the
simulated frequency responses (over the tuning interval considered) come up.
Moreover, no appreciable changes arise if Cpad is removed. Hence, the electric
coupling can be neglected and the equivalent circuit model of the VLSRR-loaded
microstrip line can be simplified to that shown in Figure 4.34a, where inductive
excitation of the VLSRRs is the single coupling mechanism (the simulated frequency
response with Cedge and Cpad removed is shown in Fig. 4.34b for comparison
purposes). Indeed, this circuit can be further simplified to the circuit of
Figure 3.23b, with C 0

s replaced by Ceq ¼ CLCVAR/(CL þ CVAR) (see details in
Chapter 3).21

4.2.6.3 Some Illustrative Results: Tunable Notch Filters and Stopband
Filters VLSRRs coupled to microstrip lines can be applied to the synthesis of

21The circuit is simplified by neglecting CrL and CrR, which are small. Thus, Rbias merely acts as a polar-
ization path for the diodes (i.e., irrelevant for signal analysis).
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FIGURE 4.33 Photograph of a two-stage VLSRR-loaded microstrip line (a), measured
insertion losses for different diode polarizations (b) and frequency responses obtained by elec-
trical simulation of the equivalent-circuit model shown in Figure 4.32. Relevant dimensions are
c ¼ d ¼ 0.2 mm, separation between line and external rings is 0.2 mm, and length and width of
VLSRRs are 6.2 mm and 2.8 mm, respectively. Element values are Lr ¼ 3 nH, CL ¼ 1.4 pF,
Cedge ¼ 1 fF, CrL ¼ 0.1 pF, Cpad ¼ 0.44 pF, CrR ¼ 0.89 pF, L ¼ 3.3 nH, C ¼ 1.3 pF, RS ¼

4.8V, (i.e., RD ¼ 1.8V and RVM ¼ 3.0V), Rbias ¼ 50V, M ¼ 2.4 nH and 1 pF � CVAR �
9 pF. (Source: Reprinted with permission from [54]; copyright 2006, IEEE.)
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tunable notch and stopband filters [52,54]. Indeed, the structure of Figure 4.33a is an
example of a tunable notch filter, where the notch frequency is bias-controlled.22

Rejection can be improved by adding VLSRR stages (see a four-stage device in
Figure 4.35a and the corresponding response in Fig. 4.35b). By biasing the diodes
at different voltage levels, it is possible to widen and to tailor filter bandwidth, as
Figure 4.35c and d illustrate.23

By adding inductive vias to the previous structures, tunable bandpass filters exhi-
biting left-handedness are obtained [54]. However, due to varactor diode losses, the
performance of these devices is very limited. To synthesize tunable bandpass filters
with good performance, low-loss tuning elements such as RF-MEMS are required.
The combination of these elements with SRRs or CSRR is very promising.

To summarize Section 4.2, it has been shown that metamaterial transmission lines
based on SRRs and CSRRs are useful for the design of microwave filters in planar
technology. Stopband filters and bandpass filters with narrow and widebands can

FIGURE 4.34 Equivalent-circuit model of the VLSRR-loaded microstrip line with electric
coupling removed (a), and electrical simulations for different diode polarizations (b).
(Source: Reprinted with permission from [54]; copyright 2006, IEEE.)

22Rejection level and bandwidth also change with tuning. This is explained by the variation in Q factor that
results when the notch frequency is tuned (see Problem 4.2).
23Another possible solution to produce wide stopbands in stopband filters is to design the VLSRR stages
having slightly different dimensions (closed resonances are obtained) and to apply the same varying bias
voltage to the devices.
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be synthesized, and a systematic design methodology has been proposed that allows
us to design filters subject to specifications, or following standard approximations.
Miniaturization, optimization of device performance through elimination of spurious
frequencies, as well as the possibility to control filter bandwidth over wide margins
are key issues. In the opinion of the authors, one of the domains where resonant-type
one-dimensional metamaterials, or structures based (or inspired) on them, can find
more practical applications is in the field of filters. However, the small dimensions
of the unit cells, as well as their nonusual electromagnetic properties, make
resonant-type metamaterials very promising in other microwave applications, as
will be explored in the next sections.

4.3 SYNTHESIS OF METAMATERIAL TRANSMISSION LINES WITH
CONTROLLABLE CHARACTERISTICS AND APPLICATIONS

It has been pointed out at the beginning of this chapter that the most outstanding prop-
erty of metamaterial transmission lines is the controllability of their electrical charac-
teristics (impedance and phase). In these artificial lines there are more parameters to
tailor, compared to conventional transmission lines. This means that the number of

FIGURE 4.35 Fabricated four-stage VLSRR microstrip line (a) and measured frequency
response for identical bias voltage applied to the diode varactors (b). In (c) and (d ) are depicted
the measured transmission characteristics of the structure by applying the indicated voltages to
the different VLSRR stages. Dimensions are identical to those of Figure 4.33a. (Source:
Reprinted with permission from [54]; copyright 2006, IEEE.)
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degrees of freedom is larger and hence it is possible to synthesize transmission lines
with a combination of characteristics and dimensions not easily achievable through
conventional implementations. By engineering these lines it is also possible to
design microwave components with superior performance as compared to existing
devices, or to obtain microwave devices based on new functionalities, such as
dual-band components. In this section we will review these aspects. Section 4.3.1
is devoted to the miniaturization of microwave components, Section 4.3.2 is
focused on the synthesis of enhanced bandwidth devices, in Section 4.3.3 we will
discuss the principles for the design of dual-band components, and, finally,
Section 4.3.4 will be devoted to coupled-line couplers based on metamaterials.

4.3.1 Miniaturization of Microwave Components

The size reduction of microwave components is based on two features: (1) the small
dimensions of the constitutive unit cells of metamaterial transmission lines and (2) the
control of the electrical length of such lines, which covers a wide margin with a
single-unit cell, as was pointed out in Chapter 3.24 Planar microwave circuits based
on the distributed approach consist of combinations of transmission lines and stubs
with certain characteristic impedance, ZB, and electrical length, f. Conventional
transmission lines and stubs can thus be substituted by their metamaterial counter-
parts with the possibility of significantly reducing dimensions. Obviously, the most
favorable solution in terms of dimensions is achieved if only one unit cell is used.25

The synthesis of metamaterial transmission lines consists of the determination of
the parameters of the circuit model of such lines from the required values of charac-
teristic impedance Zn ¼ ZB( fn) and electrical length fn ¼ f( fn) at the operating
(design) frequency, fn. As the example given later is based on the resonant-type
approach (using CSRR-based left-handed lines), the considered model to infer the
reactive parameters from transmission line parameters is that depicted in
Figure 3.38, where the line inductance has been neglected as it is assumed that the
series impedance is dominated by the gap capacitance (this aspect was discussed
in Chapter 3). From equations (3.1) and (3.2), the capacitance value of the series
gap can be easily inferred as

Cg ¼
1

2vnZn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosfn

1� cosfn

s
(4:20)

24According to the typical dispersion diagrams of left-handed and CRLH lines, the phase of the unit cell
varies between 2p and 0 along the left-handed band.
25At this point we would like to mention that although the commonly accepted definition of metamaterial
transmission line refers to an effectively homogeneous periodic structure (i.e., with period much smaller
than guided wavelength) with controllable characteristics, we will be flexible and we will adopt under
this term also those structures not satisfying the former requirement (homogeneity), including structures
with a single-unit cell. The reason is that for microwave circuit design the aim is to achieve the required
electrical characteristics at the design frequency, rather than synthesizing an effective medium.
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where vn ¼ 2pfn. To obtain the other parameters of the equivalent-circuit model,
inversion of equations (3.1), (3.2), (3.56), and (3.57) is necessary. This involves
a tedious calculation. The final results are (see Problem 4.3 and [55])

Lc ¼
Zn
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1þ cosfn
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where vL ¼ 2pfL and vH ¼ 2pfH ( fL and fH being the lower and upper limit of the
left-handed band, given by expressions 3.56 and 3.57). Inspection of equations
(4.20)–(4.23) reveals that Cg, Lc, and Cc are always positive provided vL ,

vn , vH. However, depending on the relative values of these angular frequencies,
C may be negative. Therefore, the operative bandwidth of the device is limited by
the value of C, which must be a real positive number.26

To illustrate the achievable size reduction by using resonant-type left-handed lines,
a Y-junction power divider is designed. In such power dividers, two 908 line admit-
tance inverters are used (see the schematic in Fig. 4.36). In order to achieve

FIGURE 4.36 Schematic of a Y-junction power divider implemented by means of 908 impe-
dance inverters.

26Although fL and fH are not actually design parameters, device bandwidth increases as the separation
between these frequencies is higher. More details on the limited bandwidth of these structures is given
in [55].
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impedance matching for the input port, the characteristic impedance of such 908
transmission lines must be set to 1.41Zo, where Zo is the reference impedance of
the ports (normally 50V). The metamaterial power divider can be implemented by
means of CSRR-based left-handed lines with the required electrical parameters
(Zn ¼ 1.41Zo ¼ 70.7V and fn ¼ 2908)27 at the operating frequency (which has
been set to fn ¼ 1.5 GHz). From these parameters and frequency, the elements of
the equivalent-circuit model have been obtained (following the procedure described
above). To this end, the frequencies delimiting the allowed left-handed band have
been set to fL ¼ 1.38 GHz and fH ¼ 1.68 GHz. With these delimiting frequencies,
the element values are found to be reasonable (i.e., Cg ¼ 0.75 pF, C ¼ 14.9 pF,
Lc ¼ 1.76 nH, and Cc ¼ 5.08 pF). Once the element values have been inferred, the
layout of the inverter can be obtained (optimization and the parameter extraction
method described in Chapter 3 are used). The layout of the CSRR-based power
divider is depicted in Figure 4.37 and compared to that corresponding to a conven-
tional implementation (photographs of the fabricated device are also depicted in
this figure). Significant size reduction (50% as compared to conventional implemen-
tation) is achieved through the use of metamaterial admittance inverters. The
measured and simulated frequency responses of the designed metamaterial power
divider are depicted in Figure 4.38 (S31 is roughly identical to S21 and is not
represented in the figure). The measured insertion losses at the design frequency
(dB(S21) ¼ 23.2 dB), are close to the value corresponding to an ideal lossless
device, and measured return losses are better than 20 dB. Thus, device miniaturiza-
tion is achieved, maintaining device performance at the design frequency.
Although not represented, the frequency response of the conventional device exhibits
a wider operative bandwidth. However, this does not mean that in general the
operative bandwidth of metamaterial-based devices is smaller than that achievable
through conventional implementations. On the contrary, it will be shown in the
next section that it is possible to design enhanced bandwidth devices by using
metamaterial transmission lines in their designs.

4.3.2 Compact Broadband Devices

Let us now try to explain the principle for the design of compact broadband micro-
wave components. The limited bandwidth of microwave components is due to the
phase shift experienced by transmission lines and stubs when frequency is varied
from the nominal operating value. Let us assume that at this frequency, vn, the
phase shift is f(vn) ¼ fn. This phase shift is related to the phase velocity, vp, of
the line according to the following expression:

fn ¼ bl ¼ l

vp
vn, (4:24)

27The negative sign of the phase of the left-handed admittance inverters is irrelevant for device operation.
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FIGURE 4.37 Layout (a) and photographs of the top (c) and bottom (d ) faces of the CSRR-
based power divider implemented by following the schematic of Figure 4.36. For comparison,
the layout of a conventional power divider designed by considering an identical substrate is also
depicted (b). The dimensions (in mm) of the two impedance inverters forming the device are
those indicated in (e). In (e), the upper metal strip is depicted in black, whereas the slot of the
CSRR is depicted in gray. (Source: Reprinted with permission from [55].)
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where l is the length of the line. The bandwidth of any transmission-line-based device
is given by the frequency interval where the variation of f, namely Df ¼ f2 fn, is
lower than a certain predetermined value. Hence, bandwidth is intimately related to
the derivative of f with frequency, also known as group delay. In view of expression
(4.24), this derivative increases with the length of the line and therefore we obtain the
well-known conclusion that bandwidth decreases with the phase shift (proportional
to l ) of the line. To enhance bandwidth it is therefore necessary to reduce l.
However, in practical situations, one needs a certain value of the phase shift and
this procedure is not useful. However, by using metamaterial transmission lines,
we can take advantage of certain control over the dispersion diagram of the line.
This means that it is potentially possible to design a transmission line with the
required phase shift at the operating frequency, and smaller group delay than that
of a conventional line. To illustrate this, let us consider for instance the design of a
transmission line with in-phase input and output signals, which can be of interest
for instance to feed an array of antennas (where in-phase signals at either radiating
element may be required). By using a conventional transmission line, the length of
the line must be chosen according to equation (4.24) in order to obtain a phase
shift between the input and output ports of fn ¼ 2pN, where N is an integer. Due
to the reasons already explained at the begining of this subsection, the optimum band-
width is obtained when N ¼ 1, which corresponds to the shorter line. Alternatively, a
balanced CRLH line operating at the transition frequency can be designed to actually
achieve zero phase shift at that frequency. The group delay for the conventional line is
tC ¼ 2p/vn. Therefore, to enhance bandwidth by means of the CRLH line, it is
necessary that the group delay at the transition frequency satisfies tCRLH , tC. In
reference to LC-loaded balanced CRLH lines, the phase shift in the vicinity of the
transition frequency can be inferred by forcing vs ¼ vp in equation (3.29). This gives

bl ¼ v
ffiffiffiffiffiffiffiffiffiffiffi
LRCR

p
� 1

v
ffiffiffiffiffiffiffiffiffiffiffi
LLCL

p : (4:25)

FIGURE 4.38 Simulated and measured frequency responses for the power divider shown in
Figure 4.37. (Source: Reprinted with permission from [55].)
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The first derivative with frequency gives tCRLH, and by forcing it to be smaller than
tC, the following inequality results:

vn

ffiffiffiffiffiffiffiffiffiffiffi
LRCR

p
þ 1

vn

ffiffiffiffiffiffiffiffiffiffiffi
LLCL

p , 2p: (4:26)

Two additional equations arise from the balance condition and the required character-
istic impedance, Zo, of the line:

Zo ¼
ffiffiffiffiffiffi
LR
CR

r
¼

ffiffiffiffiffiffi
LL
CL

r
: (4:27)

To satisfy inequality (4.26), and to obtain a significant bandwidth enhancement,
vR (equation 3.23) must be chosen as high as possible28 and vL (equation 3.24) as
low as possible. This is consistent with the fact that to obtain a small variation of
Zo in the vicinity of the operating frequency, vn ¼ vo, LR must be small (see equation
3.22).

Following the previous idea, bandwidth improvement has been experimentally
demonstrated in a 1 : 4 series power divider, where zero-degree metamaterial
phase-shifting lines have been used instead of 3608 lines [56]. Namely, in-phase
signals at the input of either divider branch are achieved though zero-degree designed
metamaterial transmission lines, which are placed between the different output
branches of the divider. As compared to the conventional device, the metamaterial-
based power divider exhibits an improved bandwidth. The conventional and meta-
material power dividers are depicted in Figure 4.39 with their corresponding electrical
characteristics. Another significant aspect of the metamaterial power divider is area
reduction, because the metamaterial transmission lines are substantially shorter
than the conventional l lines.

Bandwidth enhancement can be achieved by using metamaterial transmission
lines in devices based on the difference of phases between certain transmission
lines. The idea is very simple. Let us consider that at the operating frequency, vn,
the required phases of two transmission lines in such device are f1 and f2, respect-
ively. Bandwidth depends in this case on the derivative of the phase difference with
angular frequency, which is proportional to the difference in the length of such lines
(expression 4.24). The larger the phase difference, the lower the bandwidth becomes.
However, by replacing one of these lines with a metamaterial transmission line, it is
possible to tailor the dispersion diagram of this line to be roughly parallel to that of
the conventional line at the frequency of interest, and hence obtain a wider band-
width. This situation is illustrated in Figure 4.40.

By using the previous idea, several devices have been implemented. For instance
rat race hybrid couplers have been proposed, where the phase balance for the D and S
ports exhibit broader bandwidths than those obtained in the conventional implemen-
tations. The topology of the conventional rat race hybrid coupler is depicted in
Figure 4.41a. It is essentially a four-port device consisting of a 1.5 l ring structure

28To obtain a high value of vR, it suffices to implement the structure with a short host line.
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FIGURE 4.39 Metamaterial-based (a) and conventional (b) 1 : 4 power dividers with their
corresponding measured and simulated frequency responses (only S11 (c) and S21 (d ) are
depicted). (Source: Reprinted with permission from [56]; copyright 2005, IEEE.)

FIGURE 4.40 Illustration of bandwidth enhancement by using a conventional and a left-
handed transmission line. At the design frequency, vn, the phase difference, Df, between
the two lines is p, and this difference is roughly preserved in a wide band.
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(where l is the guided wavelength at the design frequency, vn) with the ports equally
spaced in the upper half of the ring. The metamaterial counterpart of this coupler can
be implemented by substituting the 2708 (0.75 l) line section by a 2908 left-handed
line designed to provide the required characteristic impedance (70.7V) and phase
(2908) at the operating frequency. This was done by Okabe et al. [57] by using
the dual-transmission-line approach, where a host line was loaded with lumped induc-
tors and capacitors in shunt and series connection, respectively. The performance and
size of the device is good, with a wide bandwidth for the coupling coefficient and
phase balance (see [57] for more details).

Alternatively, the metamaterial rat race hybrid coupler can be implemented by
means of the resonant-type approach [58]. In this case, not only is the 2708 line
replaced by an artificial 2908 left-handed line, but the three 908 (right-handed) trans-
mission lines are also implemented as artificial lines based on CSRRs29 (the charac-
teristic impedance of these artificial lines is 70.7V). This allows us to achieve a
further controllability of the frequency dependence of phase in the lines, with the
result of excellent performance in terms of phase balance. The topology of this

FIGURE 4.41 Layout of the conventional (a) and metamaterial (b) rat race hybrid couplers.
A comparative photograph of both devices can be seen in (c). The devices were fabricated on
the Rogers RO3010 substrate with dielectric constant 1r ¼ 10.2 and thickness h ¼ 635 mm.
The active area (excluding access lines) of the CSRR-based hybrid coupler is 3.62 cm2,
whereas the conventional one occupies an area of 10.33 cm2. (Source: Reprinted with per-
mission from [58], copyright 2007, IEEE.)

29As was described in Section 4.2.3.2, these lines consist of a combination of shunt stubs and CSRRs, and
they can be described by the circuit model given in Figure 4.14.
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implementation is depicted in Figure 4.41 (also included are photographs of conven-
tional and metamaterial rat race hybrid couplers, designed to operate at 1.6 GHz, in
order to appreciate the achievable size reduction obtained by using metamaterial
transmission lines). The simulated and measured impedance matching, coupling
and isolation for both structures are depicted in Figure 4.42. In Figure 4.43 is depicted
the phase balance for the S and D ports, namely f(S42) 2 f(S32) and f(S41) 2
f(S31), respectively. The CSRR-based coupler exhibits good isolation, coupling,
and matching. These magnitudes are comparable to those of the conventional
device. Specifically, measured power splitting between ports 3 and 4 (considering

FIGURE 4.42 Impedance matching (S11), coupling (S31, S41) and isolation (S21) for the
CSRR-based hybrid coupler (a) and conventional coupler (b). The slight discrepancies
between simulation and measurement in the conventional coupler are attributed to fabrication--
related tolerances. (Source: Reprinted with permission from [58]; copyright 2007, IEEE.)
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port 1 as the input port) exhibits similar characteristics in terms of flatness. Measured
isolation and matching are comparable in both devices at the operating frequency
( fo ¼ 1.6 GHz). However, phase balance in the CSRR-based rat race is clearly
superior to that obtained in the conventional hybrid, in particular for the D input
(Fig. 4.43). Namely, the phase balance variation with frequency is smaller in the
new CSRR-based hybrid and hence the operating bandwidth is enhanced. This has
been achieved thanks to an accurate control of the phase response of the individual
artificial lines forming the proposed coupler. The design is fully compatible with
planar technology, because no lumped elements are used. With the proposed
design, size reduction by a factor of 3 is achieved as compared to conventional
implementation.

FIGURE 4.43 Phase balance for the D (a) and S (b) ports. (Source: Reprinted with per-
mission from [58], copyright 2007, IEEE.)
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The technique for bandwidth enhancement described in this section has been
applied to other microwave components, such as phase shifters [59], where it has
been demonstrated in operation over one octave bandwidth.

4.3.3 Dual-Band Components

Dual-band (DB) components are devices that exhibit a certain functionality at two
different frequencies, f1 and f2. Such devices are of interest for modern microwave
and wireless communication systems because they make possible operation at two
different bands without the need to design two different mono-band (MB) circuits.
Contrary to conventional (right-handed) transmission lines, which are intrinsically
MB structures, CRLH transmission lines exhibit a DB behavior. To demonstrate
that a conventional transmission line is a MB structure, we simple have to have in
mind that the number of electrical parameters of a conventional line, namely the
per-unit length inductance, L0 and capacitance, C0, coincide with the number of
parameters given by the specifications at a given frequency, v1, that is, the character-
istic impedance, Z1, and the electrical length, b1l, where l is the physical length of the
transmission line. As is well known, the relationships between these parameters are
given by

b1 ¼ v1

ffiffiffiffiffiffiffiffiffi
L0C0

p
(4:28)

and

Z1 ¼
ffiffiffiffiffi
L0

C0

r
: (4:29)

From these equations, it is clear that we cannot obtain any arbitrary desired combi-
nation of values, Z2 and b2l, at the second operating frequency, v2. Therefore, we
cannot design DB components by means of conventional transmission lines.
However, the situation changes if the number of electrical parameters that character-
ize the line increases. This is exactly the case for the artificial CRLH transmission
lines, which are described by means of four independent parameters in LC-loaded
lines or through five reactive elements in resonant-type structures. Therefore, from
an analytical point of view, the previous limitation vanishes and CRLH lines are
appropriate for the design and synthesis of DB components. Essentially, to design
a DB component means tailoring the dispersion diagram and/or the characteristic
impedance in order to achieve the required values of impedance and phase at the
desired operating frequencies, and this can be done by means of CRLH transmission
lines. To clarify this, we will give an example. The idea is to achieve by means of a
single CRLH line cell described by the model of Figure 3.3, a DB l/4 impedance
inverter (with normalized characteristic impedance K ¼ 1), operative at frequencies
f1 ¼ 1 GHz and f2 ¼ 2 GHz. To achieve this, we can take benefit of the left-handed
and right-handed behavior of the CRLH cell. To simplify the calculation, we will con-
sider the balanced case. The idea behind this design is to set the transition frequency,
vo ¼ vs ¼ vp, between the operating frequencies, v1 and v2, and determine the line
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parameters so that at v1 and v2 the electrical length of the line is b1l ¼ 2p/2 and
b2l ¼ þp/2, respectively, with the characteristic impedance being Zo ¼ 50V at
both frequencies. To this end, equations (3.21) and (3.22) are solved subject to the
balanced case and to the previous specifications. The resulting electrical parameters
of the line are CL ¼ 0.796 pF, LL ¼ 3.98 nH, CR ¼ 3.18 pF, and LR ¼ 15.92 nH.
In Figure 4.44 are depicted the dispersion relation of the structure, and the depen-
dence of the characteristic impedance on frequency. The required values for both
bl and Zo have been obtained at the operating frequencies. As the sign of the
phase shift is irrelevant for impedance inversion, this is clearly a good example of
the DB behavior of CRLH transmission lines. Other combinations of phase shifts
(all being a positive or negative multiple of p/2) at the desired frequencies are
also possible. Depending on the required phase variation, more than one cell might
be necessary.

Dual-band prototype components based on the CRLH transmission line concept
have been developed by Lin et al. [60]. To illustrate the possibilities of the approach,
Figure 4.45 includes a DB branch line coupler, and its measured frequency response.
At the operating frequencies, the required impedance inverters have been designed to

FIGURE 4.44 Dispersion diagram (a) and characteristic impedance (b) for the CRLH model
designed to achieve dual-band operation according to the frequencies and requirements
explained in the text.
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exhibit phase shifts of þ908 and þ2708, as indicated in the schematic. The circuit has
been implemented by cascading purely right-handed (PRH) lines (implemented
through conventional microstrip sections) and purely left-handed (PLH) lines (rea-
lized by means of SMT chip components) for either branch of the coupler.
Operation at the design frequencies ( f1 ¼ 930MHz and f2 ¼ 1780MHz) is clearly
achieved, with near 3 dB transmission between the input port and both the coupled
and through ports.

4.3.4 Coupled-Line Couplers

Metamaterial transmission lines can be also applied to the optimisation of coupled-
line couplers. These are four-port devices consisting of a pair of coupled lines, as
indicated in Figure 4.46, with diverging access lines for each port. Although topolo-
gically identical, there are two types of coupled-line couplers, namely the backward
coupler and the forward coupler (Fig. 4.46). The principle of operation of such
couplers has been exhaustively described elsewhere [61], but it is concisely

FIGURE 4.45 DB branch line coupler (a), measured frequency response (b) and schematics
of the coupler for the two operating frequencies (c) f1 and (d ) f2. (Source: Reprinted with
permission from [60]; copyright 2004, IEEE.)
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reproduced here to understand the main limitations of these type of couplers and the
advantages of metamaterial-based implementations of them.

In the backward wave coupler, the coupled port is that port sharing the same refer-
ence plane as the input port, whereas the isolated port is the crossing port (in reference
to the input port). Under the assumption of a symmetric structure, even and odd mode
analysis lead us to the coefficients of the S-matrix. The condition to obtain perfect
matching at the input port is given by

Zo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZoeZoo

p
(4:30)

where Zoe and Zoo are the characteristic impedance for the even and odd modes,
respectively, and Zo is the reference impedance of the port. Under these conditions,
the following results are obtained:

S11 ¼ 0, (4:31a)

S21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
cosfþ j sinf

, (4:31b)

S31 ¼
jk sinfffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p

cosfþ j sinf
, (4:31c)

and

S41 ¼ 0, (4:31d)

where it is assumed that the phase shift f (or the phase velocity) for the even and odd
modes is roughly the same (which is in turn an assumption valid for quasi-TEM wave
propagation). Coupling (i.e., S31) depends on the electrical length of the coupled lines
and on the coupling factor, k, given by

k ¼ Zoe � Zoo
Zoe þ Zoo

: (4:32)

FIGURE 4.46 Topology of the backward (a) and forward (b) wave couplers with indication
of port designations.
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The optimum coupling is obtained for f ¼ p/2. In this case, coupling is C ¼ jS31j ¼
k. Thus, in these backward wave couplers, maximum coupling depends on the differ-
ence between the characteristic impedance for the even and the odd modes. In prac-
tice, to achieve significant coupling levels, a high contrast between these impedances
is required, and this is difficult to achieve in edge-coupled couplers, because too small
distances between the coupled lines are required for this purpose. In other words, the
coupling levels achievable with these couplers are very limited. This is the main
drawback of these type of couplers. However, they are relatively small, because
908 lines (or shorter, depending on the required coupling) are used, and bandwidth
is reasonably good.

Let us now briefly consider the forward wave couplers. In these devices, the dis-
tance between the coupled lines is deliberately large (i.e., Zoe � Zoo and k � 0). This
means that signal is not transmitted to the so-called coupled port of the backward
wave coupler (which is now the isolated port). Indeed, according to equations
(4.31) and (4.32), all the input power should be collected in the through port. This
trivial situation may change, however, if the phase velocities for the even and the
odd modes are not identical, which is what actually occurs in real structures, that
is, exhibiting quasi-TEM, rather than TEM, wave propagation. In this case, the scat-
tering parameters are

S11 ¼ 0, (4:33a)

S21 ¼ exp
�j(be þ bo)l

2

� �
cos

(be � bo)l
2

� �
, (4:33b)

S31 ¼ 0, (4:33c)

and

S41 ¼ �j exp
�j(be þ bo)l

2

� �
sin

(be � bo)l
2

� �
, (4:33d)

where be and bo are the phase constants for the even and odd modes, respectively,
and l is the length of the coupled lines. The coupled port is the crossing port and
coupling is now given by C ¼ jS41j. Hence, forward coupling is obtained, which jus-
tifies the name given to the device. According to equation (4.33d), coupling depends
on the length of the device, and optimum coupling is obtained for the coherence
length, lc, given by

lc ¼
p

be � boj j : (4:34)

Due to the comparable phase velocities for the even and the odd modes, the coher-
ence length (or the typical length to achieve substantial couplings) is too long for
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practical applications, this being the main limitation of this type of coupler. In the
case of asymmetric forward wave couplers, the analysis is more complicated, but
the same conclusion concerning device length is inferred (expression 4.34 holds
but with the phase constants modified following be ! bc and bo ! bp to account
for the c and p modes of the asymmetric structure [61,62]).

Let us now analyze how the previous limitative aspects can be improved through
the use of metamaterial transmission lines. With regard to forward couplers, the idea
is to replace the coupled lines (or eventually only one of the coupled lines) by left-
handed lines [63,64]. If both lines are backward lines, power is coupled forward
(i.e., between port 1 and 4 in Fig. 4.46), although due to the left-handed nature of
the coupled lines, wave propagation is backward. If only one of the coupled lines
is backward, and it corresponds to that line connecting the input and through ports
(line 1–2 according to Fig. 4.46), injected power into port 1 propagates towards
port 2. However, due to left-handedness, waves propagate backward towards port 1.
As coupling in this kind of couplers preserves the phase direction at both lines (coup-
ling occurs through evanescent waves), it follows that phase and power in line 3–4
propagates to port 3, which is now the coupled port. Thus, power is coupled back-
ward, rather than forward. This is a fundamental difference with the conventional
(symmetric or asymmetric) forward wave coupler and with the forward coupler
implemented by means of two coupled left-handed lines.30 However, the coupling
mechanism is identical. The key advantage of using left-handed lines in these cou-
plers is the possibility of designing devices of small size and with enhanced coupling
(compared to conventional forward wave couplers). The reason is the unusual dis-
persion diagram of left-handed lines. For couplers with identical left-handed
coupled lines (symmetric coupler), an analysis similar to that shown above for con-
ventional forward couplers leads us to the conclusion that coupling increases by
decreasing frequency31 (in contrast to conventional couplers, where high frequencies
or long coupled lines are required to achieve maximum coupling). In asymmetric cou-
plers implemented by a conventional and a left-handed line, the phase constants of
expression (4.34) can be replaced with the phase constants of the conventional and
left-handed lines [64].32 As the phase constant of the left-handed line is negative,
the sign in the denominator is positive and the coherence length is thus reduced.
Alternatively, size reduction and high coupling in these type of couplers have been
interpreted on the basis of coupled-mode theory [66]. To this end, the coupled-
mode dispersion diagram for the coupled-line coupler has been inferred, and it has
been concluded that operation in the stop-band for the coupled-mode system leads
to continuous power leakage from one line to the other [66].

As an example, Figure 4.47 illustrates a fabricated prototype device corresponding
to a mixed conventional/left-handed asymmetric coupler, where the left-handed line

30To avoid the incoherence of calling forward couplers to those metamaterial-based couplers implemented
by means of only one left-handed line (where power is actually coupled backwards), Caloz and Itoh have
termed these devices phase couplers in their textbook [65].
31This is due to the frequency dependence of the phase constant in left-handed lines.
32This is valid for very weak coupling between the lines.
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is implemented by LC loading a microstrip line. Near 0 dB backward coupling in a
broad fractional bandwidth of roughly 50% is obtained in this coupler [64] (see
Fig. 4.47). Alternatively, these mixed couplers have been implemented by loading
the left-handed line with CSRRs and series gaps (Fig. 4.48) [67]. Simulation of elec-
tric field propagation (Fig. 4.49) indicates that power is coupled backward, as
expected. The measured S-parameters for the coupler of Figure 4.48 are depicted
in Figure 4.50, where they are compared with the simulated S-parameters of a conven-
tional (backward) 908 parallel coupled-line coupler with identical distance between
the coupled lines and substrate. For the metamaterial-based coupler, the coupling
level at the design frequency, 4.3 GHz, is in the vicinity of 24 dB, whereas it is
lower than 220 dB in the conventional backward coupler. It is also possible to
design DB mixed conventional/left-handed couplers by loading the left-handed
line of the coupler with two sets of CSRRs of different dimensions, as Figure 4.51
illustrates [67].

With regard to the improvement of the conventional backward wave coupler pre-
sented above, this is relatively complex and it has been considered in detail in [65,68].
The considered coupler, composed of two identical left-handed balanced lines, is
symmetric and even/odd analysis is thus applicable in this case. Operation of the
coupler in the stopband for either mode (even/odd) leads to enhanced bandwidth

FIGURE 4.47 Mixed conventional/left-handed coupled-line coupler (a), simulated (b), and
measured frequency responses (c). (Source: Reprinted with permission from [64]; copyright
2004, IEEE.)
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FIGURE 4.48 Top (a) and bottom (b) photographs of the fabricated CSRR-based coupler.
The device consists of a conventional line and a three-cell CSRR/gap loaded left-handed line.
To further appreciate the details of the topology, the layout of the three-cell left-handed lines is
depicted in (c). The device has been fabricated in the Rogers RO3010 substrate (dielectric con-
stant 1r ¼ 10.2, thickness, h ¼ 1.27 mm). CSRR dimensions are external radius, rext ¼ 2 mm,
width, c ¼ 0.2 mm and separation, d ¼ 0.2 mm. Gap distance is 0.2 mm and the period of the
structure is 4.2 mm. (Source: Reprinted with permission from [67]; copyright 2006, JohnWiley
& Sons.)

FIGURE 4.49 Simulation of the electric field propagation in a 15-cell mixed conventional/
left-handed coupler based on CSRRs. CSRR dimensions and separation are identical to those
values of Figure 4.48.

4.3 SYNTHESIS OF METAMATERIAL TRANSMISSION LINES 251



and high coupling. As pointed out in [65], any arbitrary level of coupling can be
achieved with these couplers, even with a large distance between the coupled
lines. The detailed analysis of this type of couplers is outside the scope of this
book, but the authors recommend reference [65] to the interested reader.

4.4 ANTENNA APPLICATIONS

Antennas have become one of the most exciting applications of metamaterials due
to the possibility of significantly improving their performance. Indeed, many

FIGURE 4.50 Measured S-parameters of the CSRR-based coupler of Figure 4.48 (a) and
simulated S-parameters for a 908 parallel coupled-line coupler with similar dimensions (b).
(Source: Reprinted with permission from [67]; copyright 2006, John Wiley & Sons.)
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papers have been published since the boom of metamaterials in 2000. We will
start by describing some pioneering work that focuses on the elemental
properties of antennas and, later, we will continue with antenna applications of
metamaterials.

It has been well established that pairs of media with positive and negative refrac-
tion indexes are analogous to reactive impedances of opposite sign, in that they are
able to resonate. Alternatively, similar responses can be achieved by means of
pairs of media exhibiting positive or negative permittivity or permeability [69].
Therefore, it follows that metamaterial structures can be useful to introduce
changes in antenna impedance and, consequently, to obtain an improvement in
antenna response. This was proposed in [70], where the authors show that it is
possible to match an electrically small dipole to the free-space impedance thanks
to the use of a metamaterial spherical cover with negative index of refraction.
Further details concerning the expressions of the radiated fields, radiated power,
lumped-element equivalent-circuit models, quality factor, and other properties of
such elemental antennas when enclosed in right-handed or left-handed media, are
presented in [70]. An interesting tunnel-effect interpretation of this impedance-
matching phenomenon and a reciprocal scattering description are presented in [69].
Another surprising consequence of the structure proposed in [70] is that an important
increase in the radiated power and a reduction of the reactance are simultaneously
possible, thus allowing circumvention of the Q radiation limit of Chu [70].

FIGURE 4.51 Topology of the dual CSRR-based coupler (a) and simulated S-parameters
(b). (Source: Reprinted with permission from [67]; copyright 2006, John Wiley & Sons.)
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A paper dealing with the study of the radiation properties of a traveling wave at the
interface between a left-handed and a right-handed medium was published by
Alú and Engheta [71], where the electromagnetic field distribution and the wavevec-
tor and Poynting vector orientation in both left-handed and right-handed half-
spaces were calculated. Further analysis of metamaterial radiating structures can be
found in [72].

The increasing effect on radiated power has encouraged research in antenna appli-
cations of metamaterials. For example, in [73] it is proposed to use an annular left-
handed material ring inside a microstrip patch resonator antenna, where the resonance
frequency can be decreased by proper design of ring dimensions relative to the rest of
the patch antenna. This suggests, at least in theory, the possibility of very compact
antenna design for relatively low frequencies. A theoretical study of patch antenna,
including a left-handed medium, is presented in [74], and the use of SRRs as a
magneto-dielectric substrate for patch antennas is proposed in [75].

The first experimental results of radiation in left-handed media were motivated by
the demonstration of reversed Cerenkov radiation as predicted by Veselago [1]. In
this regard, two simultaneous contributions appeared in 2002 [76,77], where back-
ward, leaky wave radiation in dual transmission lines, analogous to reversed
Cerenkov radiation, was experimentally demonstrated. Indeed, backfire-to-endfire
radiation in these structures can be achieved by properly engineering the dispersion
diagram.33 A very interesting property of these leaky-wave antennas is their operation
in the fundamental mode.34 This reduces the feeding structure complexity and allows
for broadside radiation, thanks to the nonzero group velocity (traveling wave).
Moreover, continuous backfire-to-endfire radiation can be electronically achieved,
which is very interesting for the design of electronically scanned antennas [78–83]
(see Fig. 4.52). Backward leaky waves can also be achieved in SRR-based left-
handed structures [84].

Through leaky wave analysis, the study of the radiation characteristics of left-
handed (or CRLH) lines (including resonant and nonresonant structures) is possible.
Indeed this analysis can also be extended to other periodic structures based on meta-
materials not necessarily providing backward leaky waves. Comparison between the
phase constant, b, and the free-space wavenumber, ko, can be used to predict the fre-
quency bands where these structures can radiate. Specifically, if jbj , ko, then radi-
ation may occur; and the angle, u, between the radiation beam and the propagation
axis can be calculated as

cos u ¼ b

ko
, (4:35)

where this angle can be positive or negative, depending on the sign of the phase con-
stant. According to this, backward leaky wave radiation is expected if jbj , ko and

33Infact, the dual transmission lines exhibit a CRLH behavior that makes it possible to achieve backward or
forward leaky waves.
34Conversely, operation of conventional periodic-type leaky-wave structures is based on spatial harmonics.
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b, 0, whereas forward leaky wave radiation will occur if jbj , ko but b . 0. It has
been demonstrated that CPW structures simply loaded with SRRs are able to produce
forward leaky waves (Fig. 4.53) [84]. Conversely, if shunt-connected strips are added
to the structure, a left-handed pass band results above the resonance frequency of the
SRRs, and the radiation is backward (Fig. 4.54) [84]. The dispersion characteristics of
these structures are depicted in Figure 4.55. In Figure 4.55a, the existence of a left-
handed band for the structure shown in Figure 4.54 is verified. It corresponds to the
zone of the dispersion diagram where the phase constant and its derivative with
frequency have opposite signs (antiparallel group and phase velocities). The attenu-
ation constant is small in most of this region. The upper part of such a band lies within
the radiation region (jbj, ko), hence predicting the existence of a frequency range
where the Bloch mode becomes leaky. As has been explained, the left-handed

FIGURE 4.52 Prototype of electronically scanned CRLH microstrip leaky-wave antenna (a)
and measured radiation patterns at different bias voltages (b). (Source: Reprinted with per-
mission from [83]; copyright 2004, IEEE.)
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behavior of the structure will result in a reversal of the direction predicted for the
leaky wave radiation. The phase-matching condition along the interface between
the left-handed structure and the medium where the energy is radiated (free space,
and therefore a right-handed medium) implies that the radiated energy will necess-
arily have to propagate in the opposite direction. This can also be explained by
means of equation (4.35), as b is negative for waves propagating energy from left
to right (which is the usual convention), and therefore u will be included in the
second quadrant, that is, corresponding to radiation from broadside (u ¼ 908) to back-
fire (u ¼ 1808) direction. This phenomenon can be seen as analogous to the reversal
of Cerenkov radiation in left-handed materials, as predicted by Veselago in his
seminal work [1].

FIGURE 4.53 Layout of a forward leaky-wave structure consisting of a CPW loaded
with SRRs in the back substrate side (a) and measured far-field radiation pattern (b).
E-plane (continuous line) and H-plane (dashed line). (Source: Reprinted with permission
from [84].)
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FIGURE 4.54 Layout of a backward leaky-wave structure consisting of a CPW loaded with
SRRs in the back substrate side and shunt-connected strips in the upper side (a) and measured
far-field radiation pattern (b). E-plane (continuous line) and H-plane (dashed line). In (c) a CST
Microwave Studio simulation of the E-plane pattern as frequency changes is depicted. (Source:
Reprinted with permission from [84].)
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Figure 4.55b shows the dispersion diagram for the CPW structure loaded only
with SRRs (Fig. 4.53). In this case, there is a frequency band where strong rejection
occurs due to the negative value that magnetic permeability exhibits in that band. In
that region the attenuation constant is much larger than the phase constant. Both the
rejection band and the lower part of the second pass band are included in the radiation
region (jbj , ko). However, the high attenuation constant present in the stop-band
prevents the structure from radiating, making the leakage almost completely reactive
at these frequencies [84]. On the other hand, in the low-frequency region of the
second pass band, the structure radiates (small attenuation constant), and because it
is right-handed (parallel phase and group velocities), the radiation beam will be con-
tained in the first quadrant, from broadside to endfire direction (positive value for b).

Several envisaged applications of metamaterial-based leaky-wave structures
include tunable antennas using distributed thin-film ferro-electric and ferro/
i-magnetic materials, anisotropic minimum-impedance-path metamaterials for
beam-forming structures, full-space scanning 2D leaky-wave antennas for a possibly
inexpensive alternative to complex conventional phased arrays, compact-range wave
generation and measurements, or endfire antennas. More details of these possible
applications are described in [79,80].

PROBLEMS

4.1. Synthesis of filters based on the hybrid model. Under the approximation that
the series reactance of the circuit model of Figure 4.18b is constant along the
left-handed passband, demonstrate that the shunt impedance is Zp ¼ jZo/2 and
infinity, respectively, at the 23 dB frequencies (v1 and v2) of the structure.
From this, infer expressions (4.9) and (4.10).

4.2. Tunable notch filters based on VLSRRs. In reference to Figure 4.33,
explain the variations in the frequency response (gap width and rejection
level) that result under different bias polarizations. Hint: Express the simplified
circuit model of Figure 4.34 as that depicted in Figure 3.23b (by taking into
account the parallel resistance of the resonant tank) and obtain the Q-factor of
this tank.

4.3. Synthesis of left-handed lines based on CSRRs. As was discussed in Chapter
3, the left-handed transmission lines based on the dual and resonant-type
approach can be considered as artificial transmission lines, where impedance
and phase can be tailored over a wide margin at a given operating frequency
within the band. Specifically, for the circuit depicted in Figure 3.38 (which
models a CSRR-based left-handed line), the phase varies in the interval
(2p, 0) in the backward wave band, whereas the characteristic impedance is
zero at the onset of the left-handed band, then increases progressively, and
(ideally) tends to infinity at the upper edge of the band. Demonstrate that it
occurs if the resonance frequency of the series branch is higher than the reson-
ance frequency of the CSRRs (i.e., the series capacitance dominates over the
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series inductance in the backward wave band). Under these conditions (i.e.,
neglect the series inductance L), obtain the equations that univocally determine
the circuit parameters Cg, C, Lc, and Cc from the required impedance, Zn, and
phase fn at the operating frequency fn. The two additional inputs to solve this
problem are the limits of the backward wave band, fL and fH.

4.4. Bandwidth enhancement in metamaterial transmission line based devices.
It was demonstrated in Section 4.3.2 that metamaterial transmission lines can
be used for the design of enhanced-bandwidth components, and several proto-
type device examples are provided in that section. One of the devices is a
1 : 4 power divider, where the 3608 transmission lines that are used in the

FIGURE 4.55 Phase (bold line) and attenuation constant (thin line) for the structures of
Figure 4.54 (a) and 4.53 (b). The radiation region is shown with dotted lines. (Source:
Reproduced with permission from [84].)
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conventional implementation to achieve in-phase signals, are substituted by
zero-degree artificial lines in the metamaterial counterpart. Discuss if it is
always possible to improve the bandwidth of conventional lines through meta-
material transmission lines regardless of the electrical length of such lines.
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CHAPTER FIVE

Advanced and Related Topics

5.1 INTRODUCTION

In previous chapters we have developed the central concepts of metamaterials science
and its main technological applications as they are perceived by the authors. In
addition, metamaterial concepts often act as shortcuts to many other concepts and
applications that probably would not be developed (or would be developed in a differ-
ent way) without the current interest in metamaterials. Some of these topics are
described in this chapter. The choice is, of course, arbitrary, and has much to do
with author’s personal experience and taste. We have chosen those topics that, in
our opinion, would likely give rise to practical applications in the near future. We
hope that our intuition will not be too wrong.

The chapter begins with the analysis of admittance surfaces designed from SRRs
and CSRRs (see Chapters 2 and 3), whose reflection and transmission properties can
be related through Babinet principle. We hope that these structures may find appli-
cation as frequency-selective surfaces, polarizers, and polarization converters. We
also feel that the reported admittance surface approach could be useful for the analysis
of two-dimensional micro- and nanostructured metal–dielectric surfaces with exotic
electromagnetic properties (meta-surfaces).

Magneto-inductive waves—and the complementary electro-inductive waves—
excited in one-, two-, and three-dimensional arrays of metamaterial elements are
the next topic analyzed in this chapter. Magneto-inductive waves are of theoretical
interest as a specific kind of waves that can be excited in metamaterial structures.
They could find application in alternative waveguiding devices and systems,
which may exploit their slow-wave characteristics. They could be also useful for
near-field subdiffraction imaging.

Imaging is the last topic addressed in this chapter. Subdiffraction imaging is one
of the most exciting applications of metamaterials. In this chapter, we will analyze
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some subdiffraction imaging devices—other than the left-handed slab analyzed in
Chapter 1—that provide similar results with a simpler design. These devices
include plasmonic slabs, ferrite slabs, and coupled arrays of magnetic resonators.
Finally, this last section also includes a brief report on some newly proposed
imaging devices, based on light canalization.

5.2 SRR- AND CSRR-BASED ADMITTANCE SURFACES

Both SRRs and CSRRs are planar small resonators, which can be easily printed on a
low-loss dielectric circuit board in order to configure resonant surface arrays with
interesting electromagnetic properties. Duality [1] and the Babinet principle [2]
impose that the behavior of SRR and CSRR surface arrays must be approximately
dual (small deviations from this duality may arise from the effects of the dielectric
substrate on which SRRs and CSRRs are printed). Moreover, as far as the electrical
size of the elements and the periodicity can be considered small, the surface admit-
tance concept appears a useful tool for the analysis of such configurations.
Throughout this section, these concepts will be developed in order to provide a
first approach to the behavior and applications of SRR and CSRR surface arrays.

5.2.1 Babinet Principle for a Single Split Ring Resonator

In the most general case, when it is illuminated by some external field E0, B0, a single
edge-coupled SRR (EC-SRR) will show a set of polarizabilities given by (see
Chapter 2)

mz ¼ amm
zz B0

z � aem
yz E

0
y , (5:1)

py ¼ aee
yyE

0
y þ aem

yz B
0
z , (5:2)

and

px ¼ aee
xxE

0
x , (5:3)

where, near the first EC-SRR resonance, the polarizabilities in expressions (5.1) and
(5.2) take the general form

a ¼ a0
v2
0

v2
� 1

� ��1

, (5:4)

where a0 is a geometrical factor (the remaining polarizability aee
xx has a nonresonant

behavior at v ¼ v0). The effect of an incident electromagnetic field on a single
EC-SRR is illustrated in Figure 5.1a. The magnetic and electric dipolar moments
(5.1)–(5.3) are generated in the SRR, and, in the long wavelength approximation,
determine the scattered fields E0 and B0. The total fields are the superposition of
the incident and the scattered fields. Let us now consider the complementary
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screen, that is, the complementary resonator (CSRR). If the screen is a perfect con-
ductor of negligible thickness, and the effects of the dielectric substrate are ignored
(or it has a negligible dielectric susceptibility), the behavior of this CSRR can be
deduced from classical diffraction theory and the Babinet principle [2]. The CSRR
behavior when it is illuminated by the complementary fields

E0
c ¼ cB0; B0

c ¼ �(1=c)E0 (5:5)

(c is the velocity of light in vacuum), incident from the left (z, 0), is illustrated in
Figure 5.1b. At the right-hand side of the screen (z. 0), the fields are those produced
by the electric and magnetic dipolesm and p. These electric and magnetic dipoles are
given by

pz ¼ bee
zzE

0
z � bem

yz B
0
y , (5:6)

my ¼ bmm
yy B0

y þ bem
yz E

0
z , (5:7)

and

mx ¼ bmm
xx B0

x , (5:8)

where, from the Babinet principle [2] and the well-known expressions for the electro-
magnetic fields of the electric and magnetic dipoles, it follows that [4]

bmm
xx ¼ �c2aee

xx; bmm
yy ¼ �c2aee

yy; bem
yz ¼ �aem

yz ; bee
zz ¼ � 1

c2
amm
zz : (5:9)

According to diffraction theory [2], the fields at the left-hand side of the screen (z, 0)
are the superposition of the incident field (5.5), the field that would be reflected by a
perfect metallic screen at z ¼ 0 (E0,r

c , B0,r
c ), and the field created by some

magnetic and electric dipoles, which are the opposite of equations (5.6)–(5.8).
Note that this change of sign for the induced dipoles at the right- and left-hand
sides of the screen ensures that both the total magnetic polarization perpendicular
to the screen and the total electric polarization parallel to the screen vanish, as
must be for a plane screen.

FIGURE 5.1 Illustration of the behavior of an SRR (a) and a CSRR (b) when they are illu-
minated by an external field E0; B0 (a) or E0

c ¼ cB0; B0
c ¼ �(1=c)E0 (b) coming from z, 0.
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5.2.2 Surface Admittance Approach for SRR Planar Arrays

Let us now consider the behavior of a plane array of EC-SRRs. For simplicity, a
square array of periodicity awill be considered (see Fig. 5.2). The considered incident
field will be a plane wave of arbitrary polarization, incident on this array from the left-
hand side (z , 0). As far as the size of the SRRs can be considered small with regard
to the wavelength, the far field produced by the surface currents on the array can be
approximated by the field created by the average currents on it. Such average currents
arise from the mean surface electric Ps and magneticMs polarizations generated in the
SRR array. Such polarizations are generated from the electric and magnetic fields

FIGURE 5.2 A planar square array of EC-SRRs (a), and its complementary screen, a planar
array of CSRRs (b). In the calculations both arrays are supposed to extend to infinity at both
sides.
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incident upon each SRR through expressions (5.1)–(5.3). Therefore, there is a linear
relation between the mean surface currents and the average fields on the array of the
kind [5]

Js,x
Js,y

� �
¼ Yxx Yxy

Yyx Yyy

� �
� Ex

Ey

� �
: (5:10)

The surface current density Js comes from the surface polarization Ps ¼ pya�2 ŷ, and
the surface magnetization Ms ¼ mza�2 ẑ through [6]

Js ¼ jvPs � ẑ�rMs,z, (5:11)

where the last term comes from the identity r�Ms ; � ẑ�rMs,z. The surface
admittances Yi, j; i, j ; x, y, can be deduced from the SRR polarizations (5.6)–(5.8)
through the appropriate homogenization procedure.

The more simple homogenization procedure equates the local field seen by each
SRR with the average field in equation (5.10).1 In such a approximation—which is
strictly valid only for very sparse arrays—the dipolar moments px, py, and mz are
given by expressions (5.1)–(5.3) with E0 ¼ E and B0 ¼ B. Taking into account
Faraday’s law (r� E ¼ �jvB) and equation (5.11), the averaged surface current
density on the SRR array can be expressed as

Js,x ¼ jv
aee
xx

a2
Ex �

aem
yz

a2
@Ey

@y
þ j

amm
zz

va2
@2Ey

@x@y
� @2Ex

@y2

� �
, (5:12)

and

Js,y ¼ jv
aee
yy

a2
Ey þ

aem
yz

a2
@Ex

@y
� j

amm
zz

va2
@2Ey

@x2
� @2Ex

@x@y

� �
, (5:13)

which, for the particular case of an incident plane wave (E0 / exp( jvt � jkr))
reduces to [5]

Yxx ¼ jv
aee
xx

a2
þ
k2ya

mm
zz

v2a2

( )
, (5:14)

Yyy ¼ jv
aee
yy

a2
þ
k2xa

mm
zz

v2a2

� �
, (5:15)

Yxy ¼ jv
aem
yz ky
va2

� kxkyamm
zz

v2a2

� �
, (5:16)

1An example of another—and more accurate—homogenization procedure is developed in the next section
for the analysis of magneto-inductive surfaces. In this section, however, we will use this simpler homogen-
ization, because we are mainly interested in a qualitative description of the most important physical effects
associated with this kind of meta-surface.
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and

Yyx ¼ jv �
aem
yz ky
va2

�
kxkyamm

zz

v2a2

� �
, (5:17)

where kx and ky are the transverse components of the wave vectors of the incident
field. It is worth noting that, for loss-less SRRs, aem

yz is imaginary, whereas aee
yy and

amm
zz are real numbers (see Chapter 2). Therefore Yyx ¼ �Y�

x,y, as is imposed by
energy conservation.

It should be kept in mind that expressions (5.14)–(5.17) were obtained from the
simplest approximation, only valid for sparse arrays of weakly coupled SRRs.
However, (equation 5.10) is completely general, provided the long wavelength
approximation is assumed. From this expression, provided the surface admittance
matrix is known, the reflection and transmission coefficients of the array can be
obtained (see Sections 5.2.4 and 5.2.5) for any angle of incidence.

5.2.3 Babinet Principle for CSRR Planar Arrays

Let us now consider the complementary array of Figure 5.2b. It is possible, in prin-
ciple, to develop an admittance approach for this planar array, similar to that devel-
oped in the previous paragraphs. However, if the effects of the screen thickness and
conductivity, as well as the dielectric board polarizability, are neglected, the trans-
mission and reflection coefficients of such as array can be obtained directly from
those of the SRR array by applying the Babinet principle.

Let us consider the complementary incident field (5.5) on the CSRR array. The
Babinet principle [2] states that the total magnetic field of the SRR array, B, and
the total electric field of the CSRR array, E c, at the shadowed region (z . 0) are
related by

cBþ Ec ¼ cB0: (5:18)

Therefore, the transmission coefficient for the CSRR array illuminated by the
complementary wave (5.5), tc, is related to the transmission coefficient for the SRR
array, t, by

t þ tc ¼ 1: (5:19)

Therefore,

tc ¼ �r and rc ¼ �t, (5:20)

where r and rc are the reflection coefficients for the SRR array and for the CSRR array
(illuminated by the complementary wave), respectively. Therefore, as is expected, the
transmission and reflection coefficients for the SRR and the CSRR array interchange
their roles when the CSRR array is illuminated by the complementary incident wave.

The aforementioned results are valid for the copolarized components of the
reflected and transmitted waves (i.e., for the reflected and transmitted waves having
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the same polarization as the incident one). However, because the admittance matrix in
experssion (5.10) may not be diagonal, cross-polarized reflected and transmitted
waves can be generated at the SRR and CSRR arrays. If the cross-polarization trans-
mission coefficients, t0 and t 0c, are considered, from expression (5.18) it follows that
t0 þ t0c ¼ 0. And, as it must be that r0 þ t0 ¼ 0 for the cross-polarization coefficients,
we finally obtain

t0 ¼ �r0 ¼ �t0c ¼ r0c: (5:21)

As has already been mentioned at the beginning of this section, the above results are
strictly valid for perfectly conducting screens of negligible thickness, and for sub-
strates of negligible polarizability. In practice, these results must be considered as a
first approximation. For realistic structures, the most important deviations from the
above results come from the ohmic losses in the screens, and from the deviations
in the frequency of resonance between the SRR and CSRR arrays, due to the
effect of the substrate. This last effect can be approximately taken into account by
introducing the CSRR frequency of resonance in place of v0 in equations (5.1)–(5.3).

5.2.4 Behavior at Normal Incidence

For normal incidence kx ¼ ky ¼ 0 and the admittance matrix in equation (5.10) is
diagonal. Therefore, no cross-polarization effects appear. That is, for the two orthog-
onal polarizations (E0 ¼ E0 x̂, and E0 ¼ E0 ŷ), the transmitted and reflected waves
have the same polarization as the incident wave. As aee

yy is resonant and a
ee
xx is not, the

behavior of the SRR array for both orthogonal polarizations is quite different. For
waves polarized with the electric field along the x-axis, the SRR array is almost trans-
parent. Of more interest is the behavior for waves polarized along the y-axis. A strong
reflectivity can be expected for such waves near the SRR frequency of resonance.
Therefore, near such frequency, the SRR array acts as a polarizer, which is transparent
for x-polarization and opaque for y-polarization.

Let us now analyze in detail the behavior for the most interesting polarization of
the incident wave: E0 ¼ E0 ŷ exp( jvt � kz). In such a case, from equations (5.10)
and (5.14)–(5.17), it follows that the SRR array is characterized by a surface
admittance Ys given by

Js ¼ YsE; Ys ¼ jv
aee
yy

a2
: (5:22)

The transmission and reflection coefficients for the SRR array can now be obtained
from equation (5.22) and the appropriate boundary conditions for the tangential com-
ponents of the electric and magnetic fields at the screen. The final result is [5]

t ¼ 1þ r ¼ 2
Ysh0 þ 2

, (5:23)
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where h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m0=10

p
is the free-space impedance. This equation predicts a total

reflection peak when Ys ! 1, that is, at the frequency of resonance of the SRRs.
It also predicts a total transmission frequency point when Ysh0 ¼ 0. According to
the expression for aee

yy given in Chapter 1, this point must be located above the
frequency of resonance of the SRRs.

The behavior of the complementary CSRR array for complementary excitation,
that is, for a plane incident wave polarized along the x-axis, can be deduced from
the above equations and from equation (5.20): a strong transmission peak is predicted
at the CSRR frequency of resonance, as well as a total reflection peak just above this
frequency. These results are exact only for the very strict conditions mentioned at the
end of Section 5.2.3.2 However, they still describe most of the physics of the analyzed
devices. In practice, deviations from Babinet correspondence (5.20) can be expected
as a consequence of substrate effects and ohmic losses. In addition, deviations of the
aforementioned SRR-reflection and CSRR-transmission peaks frequencies from the
resonant frequencies of the SRR and CSRR must be expected as a consequence of
the coupling between array elements (which were ignored in equations 5.14–5.17).

An experimental confirmation of the behavior described in the previous paragraph
is shown in Figure 5.3, where the aforementioned strong SRR-reflection and CSRR-
transmission peaks can be clearly appreciated. As was already mentioned, the fre-
quency shift between these peaks can be attributed to the presence of the dielectric
substrate, and the deviation from total transmission in the CSRR array to ohmic
losses. It may be worth mentioning here that the presence of such extraordinary
transmission/reflection peaks at normal incidence is a consequence of the cross-
polarization effects in the EC-SRR, already analyzed in Chapter 2. In fact, these
effects would dissapear if nonbianisotropic elements—such as the NB-SRRs or
BC-SRRs reported in Chapter 2—were used. Finally, it may be worth noting (in
order to judge the accuracy of the proposed models) that the frequency of resonance
of the SRRs considered in Figure 5.3, predicted by the model reported in Chapter 2, is
v0 ¼ 2p� 4:41 GHz, and the frequency of resonance of the CSRRs, predicted by
the model reported in Chapter 3, is v0 ¼ 2p � 4.65 GHz.

5.2.5 Behavior at General Incidence

In order to obtain the transmission and reflection coefficients for an arbitrary angle of
incidence, the boundary conditions on the surface z ¼ 0,

Js,x ¼ Hi
y þ Hr

y � Ht
y, (5:24)

Js,y ¼ �Hi
x � Hr

x þ Ht
x, (5:25)

0 ¼ Ei
x þ Er

x � Et
x, (5:26)

2And, because the particular homogenization procedure has a limited scope, only for weakly coupled
SRRs/CSRRs arrays.
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and

0 ¼ Ei
y þ Er

y � Et
y, (5:27)

must be substituted in equation (5.10). Using Faraday’s law, expressions (5.24) and
(5.25) can be expressed in terms of the derivatives of the electric fields on the SRR
array. Then, after some manipulations, the following equations are obtained for the
electric fields of the reflected and transmitted waves at z ¼ 0:

Ex

Ey

� �r

¼ A� Yxx B� Yxy
B� Yyx C � Yyy

� ��1

� Yxx Yxy
Yyx Yyy

� �
� Ex

Ey

� �i

(5:28)

Ex
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¼ A� Yxx B� Yxy
B� Yyx C � Yyy

� ��1

� A B
B C

� �
� Ex

Ey

� �i

, (5:29)

where A, B, and C are given by

A ¼ � 2
vm0

k2x þ k2z
kz

, (5:30)

B ¼ � 2
vm0

kxky
k0

; k0 ¼ v
ffiffiffiffiffiffiffiffiffiffi
10m0

p
, (5:31)

FIGURE 5.3 Measured transmission coefficient through a CSRR (solid line) and an SRR
(dashed line) square planar array. The CSRRs and SRRs are etched on a commercial
low-loss microwave circuit board with permittivity 1 ¼ 2:4310, thickness h ¼ 0.49 mm, and
metallizations of copper with a thickness t ¼ 35mm. The CSRR and SRR parameters are
rext ¼ 3.5 mm, c ¼ 0.4 mm, and d ¼ 0.4 mm. The CSRRs and SRRs are arranged in a cubic
lattice with periodicity a ¼ 8 mm. The characteristics of the incident waves are described in
the text. (Source: Reprinted with permission from [3]; copyright 2004, the American
Physical Society.)
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and

C ¼ � 2
vm0

k2y þ k2z
kz

, (5:32)

with

kx ¼ kix ¼ krx ¼ ktx (5:33)

ky ¼ kiy ¼ kry ¼ kty (5:34)

and

kz ¼ kiz ¼ �krz ¼ ktz: (5:35)

From equations (5.28) and (5.29), the transmission and reflection coefficients for the
co- and cross-polarization components can be obtained for any polarization and angle

of incidence, ui ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2y Þ=kz

qn o
, of the incoming wave.

The main effects that appear for oblique incidence are analyzed in [4], where
an experimental confirmation of these effects is also provided. From equations
(5.28)–(5.35), it follows that strong reflections peaks will appear in the SRR arrays
(for the appropriate polarization of the incident waves) near the frequency of
resonance of the SRRs. This independence of the surface resonances of the angle
of incidence is a remarkable property of the analyzed SRR/CSRR arrays.
Regarding cross-polarization effects, from equations (5.28)–(5.35) it follows that
cross-polarization effects are present in general. However, for the two orthogonal
main planes of incidence (i.e., the x2 z and the y2 z planes), from equations
(5.28)–(5.35) it follows that cross-polarization only occurs if Yyx or Yxy are
nonzero. That is, cross-polarization effects do not appear for incidence in the x 2 z
plane. The experimental results for transmittance through the SRR array already con-
sidered in Figure 5.3, corresponding to a TE wave with this kind of incidence (or TEy

wave3), are shown for several angles of incidence in Figure 5.4a (the transmittance for
a TMy wave is, as expected, near unity for all angles of incidence). The experimental
results confirm the absence of cross-polarization effects, as well as the presence of a
high reflectivity around the frequency of resonance of the SRRs. From the Babinet
principle, a complementary behavior is expected for TMy waves incident upon a
CSRR array. This behavior is shown in Figure 5.4b.

For incidence not in the x2z plane, cross-polarization effects are unavoidable.
This effect can be seen in Figure 5.5a, where the measured transmittances for
plane TMx waves incident upon the same SRR array are shown. These experimental
results confirms the presence of strong cross-polarization effects near the SRR reson-
ance. The same effect can be observed in Figure 5.5b, where the transmittance for the

3In our notation, the subindex, x or y, indicates the polarization of the main field component (electric for TE
waves and magnetic for TM waves), which should also be perpendicular to the plane of incidence.
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complementary TEx waves incident upon the CSRR array are shown. From the
general form of the cross-polarization aem

yz , it follows that for loss-less arrays Yxy is
imaginary, and Yxx, Yyy are real quantities. Therefore, from equations (5.28)–
(5.35), it follows that the co- and cross-polarized transmitted (or reflected) waves
must be in quadrature.4 That is, when cross-polarization is present, the transmitted
and reflected waves are elliptically polarized. When both components are of equal
magnitude, the transmitted or reflected wave is circularly polarized. This possibility
is confirmed by the experimental results shown in Figure 5.5 for both arrays.

FIGURE 5.5 Measured transmittance through the SRR (a) and the CSRR (b) arrays of
Figure 5.3 for incidence in the y�z plane at several angles. Incident waves are TMx for the
SRR array and TEx for the CSRR array. (Source: Reproduced with permission from [4]; copy-
right 2006, Taylor & Francis Group, LLC.)

FIGURE 5.4 Measured transmittance through the SRR (a) and the CSRR (b) arrays of
Figure 5.3 for incidence in the x�z plane at several angles. Incident waves are TEy for the
SRR array and TMy for the CSRR array. (Source: Reproduced with permission from [4]; copy-
right 2006, Taylor & Francis Group, LLC.)

4Note that for this incidence B ¼ 0.
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SRR and CSRR arrays belong to a family of planar devices presenting enhanced
transmission and/or reflection in some frequency band. As has already been men-
tioned, the transmission and reflection properties of SRR/CSRRarrays do not crucially
depend on periodicity. Therefore their behavior is closer to a frequency-selective
surface than to a diffraction screen. In addition, their transmission and reflection
properties—which, in some cases, may include polarization conversion—strongly
depend on the polarization of the incident wave. Such a high variety of effects
present in SRR/CSRR surface arrays may find application in devices such as artificial
impedance and/or frequency-selective surfaces, as well as polarizers and/or polari-
zation converters. As it will be shown in Section 5.4, they may also find application
in the design of microwave lenses with enhanced resolution.

5.3 MAGNETO- AND ELECTRO-INDUCTIVE WAVES

Although some historical precedents can be found (see [7] and references therein)
magneto-inductive waves (MIWs) were first reported and systematically studied in
the frame of metamaterial science in [8,9], and subsequent works from the same
group. Magneto-inductive waves were first reported in one-, two-, and three-
dimensional arrays of capacitively loaded metallic rings. After such seminal works,
MIWs were soon reported in arrays of swiss rolls [11]5 and SRRs [10]. Magneto-
inductive waves are quasimagnetostatic waves, where the field behavior is mainly
governed by Ampére’s and Faraday’s laws. Therefore, the effects of the displacement
current—for instance, retardation—are ignored. As usual in quasistatic waves,6 this
approach is only valid in the short wavelength limit (k � k0 ; v

ffiffiffiffiffiffiffiffiffiffi
10m0

p
).

Therefore, MIWs are slow waves, with phase and group velocity usually much
smaller than the velocity of light in free space. In bulk (three-dimensional)
SRR arrays, MIWs can be considered as a special kind of magnetostatic wave,
arising when the internal wavelength is of the same order as the interspacing
between the SRRs. In fact, if the bianisotropic effects are ignored (or nonbianiso-
tropic elements, such as BC-SRRs or NB-SRRs, are used) and the internal wave-
length is of the same order as the SRRs’ interspacing, it can be expected that
interactions between nearest neighbors through Faraday’s law dominate. In such
case we are in the realm of the magneto-inductive approximation. Thus, we can
distinguish between three kinds of waves in three-dimensional SRR arrays:

† Electromagnetic waves, where the internal wavelength is large with regard to
SRR interspacing and of the same order as the free-space wavelength;

5Swiss rolls were introduced as a mechanism to obtain magnetic flux channelization in the megahertz range
[12] (see also Section 5.4).
6Other examples of quasistatic waves are surface plasmons in metallic interfaces [13] or magnetostatic
waves in ferrite samples [14,15].
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† Conventional magnetostatic waves (see Problem 2.10), where the internal wave-
length is large with regard to SRR interspacing, but short with regard to the
free-space wavelength;7 and

† MIWs, where the internal wavelength is of the same order as SRR interspacing,
and short with regard to the free-space wavelength.8

Electro-inductive waves (EIWs) can be considered as the quasielectrostatic
counterpart of magnetoinductive waves. In such a case, the wave equation is domi-
nated by the quasielectrostatic interaction (Coulomb’s law) between the elements
of the structure. Electro-inductive waves in chains of metallic resonators have
been known for a long time [16]. More recently, the interest in this kind of quasielec-
trostatic waves has been renewed in connection with the problem of the generation
and guidance of electromagnetic slow waves at optical frequencies [17,18]. In this
section, we will restrict our analysis to the electro-inductive waves guided by one-
and two-dimensional arrays of CSRRs [19]. Such specific EIWs can be considered
as the dual counterpart of the aforementioned magneto-inductive waves in
SRR arrays.

5.3.1 The Magneto-Inductive Wave Equation

Let us consider the one-dimensional chains of conducting NB-SRRs9 shown in
Figure 5.6. Considering loss-less rings and neglecting other than nearest-neighbor
interactions, the current on the nth NB-SRR, In, is given by

jvLþ 1
jvC

� �
In ¼ �jvM In�1 þ Inþ1ð Þ, (5:36)

where L and M are the self and mutual inductances of the NB-SRRs, and C is the
NB-SRR total capacitance.10 The dispersion equation for MIWs propagating along
the chain is computed from equation (5.36) assuming a current dependence of the
kind In ¼ exp{�jk(m� n)a}Im, where k is the propagation constant and a the

7In fact, in many practical SRR arrays, where the electrical size of the elements is �1/10 of the free-space
wavelength, this region may be very small or irrelevant.
8Therefore, the magneto-inductive approach can be very useful for the analysis of waves propagating in
bulk SRR-based metamaterials in the short wavelength region (see Section 2.4.3 of Chapter 2).
9This particular configuration has been chosen for simplicity. However, a similar analysis will hold for
other SRR designs such as BC-SRRs or EC-SRRs (provided cross-polarization effects are not present,
or can be neglected), as well as for similar arrays of capacitevely loaded rings, metallic swiss-rolls, and
other similar elements.
10That is, C ¼ prCpul/2, where Cpul is the per-unit-length capacitance in the slot between the rings, and r is
the average radius of the NB-SRR (see Chapter 2).
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periodicity of the array. The final result is [9]

v2
0

v2
¼ 1þ 2M

L
cos(ka), (5:37)

where v0 is the frequency of resonance of the isolated NB-SRR

v2
0 ¼

1
LC

¼ 2
prCpul

: (5:38)

The parameters L and C appearing in equation (5.37) can be calculated following the
procedure developed in Section 2.3.1. The mutual inductance is more difficult to
evaluate in a closed form, because it depends on the specific disposition of the
NB-SRRs. Losses in magneto-inductive waveguides are mainly related to ohmic
losses in the resonators. They can be easily taken into account (see Problem 5.4)
by including the ring ohmic resistance in the current equation (5.36).

The group velocity associated with the dispersion relation (5.37) is

vg ;
@v

@k
¼ M

L
v0a sin(ka) 1þ 2

M

L
cos(ka)

� ��3=2

: (5:39)

It can be easily realized by inspection that the mutual inductance,M, is positive in the
axial configuration and negative in the coplanar configuration of Figure 5.6.
Therefore, MIW propagation is forward in the axial configuration, and backward in
the co-planar configuration. The bandwidth for the excitation of MIWs can also be
deduced from equation (5.37). Assuming, as usual, that jM=Lj � 1, it is
easily deduced from equation (5.37) that MIWs can be excited in the frequency

FIGURE 5.6 One-dimensional chain of NB-SRRs of periodicity a. Axial configuration (a)
and coplanar configuration (b).
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interval v0 � dv , v , v0 þ dv, with

dv ¼ v0
jMj
L

: (5:40)

The dispersion equation (5.37) can be easily generalized to two- and three-
dimensional arrays of SRRs and similar elements. For a three-dimensional cubic
array of NB-SRRs, similar to that shown in Figure 2.12, considering only interactions
between nearest neighbors, the dispersion relation is

v2
0

v2
¼ 1þ 2Mc

L
cos(kxa)þ cos(kya)
� �

þ 2Ma

L
cos(kza), (5:41)

whereMc andMa are the mutual inductances in the coplanar and axial configurations,
respectively. The magneto-inductive wave equation can also be generalized to the
case when the nearest-neighbor approximation is not enough to characterize the
system. If the interactions between all the elements are taken into account, the
magneto-inductive wave equation (5.41) becomes

v2
0

v2
¼ 1þ

X
l

X
n

X
m

2Mlnm

L
cos a(lkx þ nky þ mkz)

� 	
, (5:42)

where the notation is rather obvious. Regarding the usefulness of the nearest-neighbor
approximation, it becomes less and less accurate when the dimensionality of the
system increases. In fact, for rings located beyond some critical distance, the
dipolar approximation must be valid. For such rings the mutual inductances decay
as 1/d3, where d is the distance to these rings. However, the number of rings
located at such a distance varies as 1, d, and d2 for one-, two-, and three-dimensional
configurations, respectively. Therefore, the influence of the rings located far away
from a given ring substantially increases with the dimensionality of the configuration.
The usefulness of the nearest-neighbor approximation also depends on the specific
characteristics of the elements.11

The coupling between magneto-inductive and electromagnetic waves in a compo-
site including SRRs has also been investigated [20]. In this analysis such coupling is
modeled as the coupling between a chain of SRRs and a transmission line. The equiv-
alent circuit proposed in [20] is similar to the circuit model reported in Figure 3.23,
but also including the magnetic coupling between nearest SRRs through a mutual
inductance. As this circuit model implies a nearest-neighbor approximation, the accu-
racy of the reported model is higher for shorter internal wavelengths. Thus, for left-
handed composites, the model is expected to provide better accuracy at the lower
end of the left-handed pass band. For the same reason, better accuracy is expected
for low-dimensional structures (one- and two-dimensional structures).

11For instance, it is not appropriate for one-dimensional chains of swiss rolls [11].
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5.3.2 Magneto-Inductive Surfaces

Two-dimensional square planar arrays of NB-SRRs and similar configurations
support magneto-inductive waves, which, in the nearest-neighbor approximation,
satisfy the equation

v2
0

v2
¼ 1þ 2Mc

L
cos(kxa)þ cos(kya)
� �

: (5:43)

When the incidence of plane waves on the array is analyzed, solutions to equation
(5.43) must appear as poles of the transmission and reflection coefficients for imaginary
values of the transverse wavevector kz (see Chapter 1). This effect cannot be taken into
account by the simple homogenization procedure used in Section 5.2.2. Throughout
this section, we will develop a modification of such homogenization, which takes
into account the excitation of MIWs in the surface array. This modified formalism is
based on the analysis developed in [22] for plane arrays of coupled resonators.

For simplicity, a plane array of NB-SRRs will be considered. Therefore, cross-
polarization effects are not present, a fact that substantially simplifies the analysis.
The size of the NB-SRRs, as well as the periodicity of the array will be assumed
electrically small. Therefore, the admittance approximation (5.10) holds. However,
because the NB-SRRs do not exhibit cross-polarization effects, the array is isotropic
in the x–y plane. Therefore, equation (5.10) is substituted by the simpler equation

Js ¼
1
Za

Ek, (5:44)

where Za is the array impedance and Ek is the component of the average electric field
parallel to the array. A cell impedance, Zc, is now defined. This impedance relates the
surface current on the array with the field of the incident wave

Js ¼
1
Zc

Ei
k, (5:45)

where Ei
k is the component of the incident field parallel to the array. The average field

Ek is related to the incident field by

Ek ¼ Ei
k �

1
2
Z0Js, (5:46)

where the second term accounts for the electric field of the TE wave created by the
surface currents on the array. In this equation Z0 is simply the wave impedance for
TE waves,

Z0 ¼
vm0

kz
; kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v210m0 � k2x � k2y

q
(5:47)
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with Im(kz) , 0. In the quasistatic approximation, this expression reduces to

Z0 ¼
jvm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q


 


 : (5:48)

Equations (5.46)–(5.48) are the basis for the new homogenization procedure. The
cell impedance Zc can be calculated from the NB-SRR polarizabilities as will be
shown later, and the array impedance is obtained from equations (5.44)–(5.46):

Za ¼ Zc �
1
2
Z0: (5:49)

The average surface current on the array can be obtained from equation (5.11) with
Ps ¼ 0 (cross-polarization effects are not present) andMs¼ mza�2 ẑ, where mz is the
magnetic moment induced in the NB-SRRs. This magnetic moment can be obtained
from the external magnetic field, Bext ¼ jr� Eext=v, seen by each NB-SRR through
(see Chapter 2)

mz ¼ aBext
z ; a ¼ p2r4

L

v2
0

v2
� 1

� ��1

, (5:50)

where r is the mean radius of the NB-SRR. In the nearest-neighbor approximation,
this external magnetic field can be expressed as

Bext
z ¼ Bi

z þ
2M
p2r4

cos(kxa)þ cos(kya)
� �

mz: (5:51)

In this equation, Bz is the magnetic field of the incident wave, and the last term
accounts for the magnetic flux through the NB-SRR due to its four nearest neighbors.
Putting all this together, the cell impedance (5.45) is found as

Zc ¼
jvm0a

2

k2x þ k2y

1
m0a

� b

� �
, (5:52)

where

b ¼ M

2m0p
2r4

cos(kxa)þ cos(kya)
� �

: (5:53)

It can be realized from this expression that the MIWs supported by the array (5.43)
correspond to the zeroes of the cell impedance Zc. That is, they correspond to a situ-
ation on which, according to equation (5.45), there is a nonvanishing surface current
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on the array in the absence of any incident wave. Finally, from equations (5.49)
and (5.52), it is concluded that the surface impedance of the considered array of
NB-SRRs is

Za ¼
jvm0a

2

k2x þ k2y

1
m0a

� b

� �
� 1
2
Z0: (5:54)

The transverse transmission matrix of the NB-SRR array can be defined as in
Chapter 1,

Eþ
1

E�
1

� �
; T

¼
� Eþ

2
E�
2

� �
¼ T11 T12

T21 T22

� �
� Eþ

2
E�
2

� �
, (5:55)

where E+
1 (E+

2 ) is the electric field for the positive/negative waves at the left-(right-)
hand side of the array (see Chapter 1 for more details on the notation). This matrix can
be obtained from the boundary conditions at both sides of the array (continuity of the
tangential electric field and Ampère’s law for the magnetic field), and from equation
(5.44). The final result is12

T
¼
¼ 1

2
2þ Z0=Za Z0=Za
�Z0=Za 2� Z0=Za

� �
: (5:56)

Magneto-inductive waves correspond to solutions of equation (5.55) with
Eþ
1 ¼ E�

2 ¼ 0. That is, T11 ¼ 0 or Za ¼ �Z0=2. From equation (5.54) it can be
easily realized that this condition is actually fulfilled by MIWs with the dispersion
relation (5.43).

Although the above analysis has been carried out for a particular kind of element
(the NB-SRRs), it is also valid for any array of magneto-inductive rings, provided
cross-polarization effects can be neglected and the nearest-neighbor approximation
can be considered valid. In fact, the extension of this analysis to situations where
the aforementioned conditions are not fulfilled is cumbersome but straightforward.

5.3.3 Electro-Inductive Waves in CSRR Arrays

As has already been mentioned, propagation of electromagnetic waves through chains
of electrically coupled resonators has long been known at microwave frequencies
[16], and more recently at optical frequencies [17,18]. In this section we will
address the propagation of such types of waves in chains of CSRRs. For simplicity,
it will be assumed that cross-polarization effects are not present or can be neglected.
Figure 5.7a shows an example of such a kind of chain, whose unit cell is a
complementary NB-SRR (C-NB-SRR) etched on a metallic plate. As was shown
in Chapter 3, these resonators behave as an LC circuit, presenting a strong electric
polarizability at resonance. Therefore, the coupling between the elements of the

12There is a small difference regarding the expression reported in [22] due to the different definitions for the
transmission matrix.
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chain is capacitive. The equivalent circuit for the unit cell is shown in Figure 5.7b,
where CG is the capacitance to ground of the internal disk of the C-NB-SRR, and
LC the self-inductance of the resonator.13 The mutual capacitance CM is the capaci-
tance between the inner disks of two consecutive C-NB-SRRs. Considering an
infinite chain, the dispersion equation arising from this equivalent circuit is [19]

v2

v2
0

¼ 1þ 2v2CMLC cos(ka), (5:57)

where

v2
0 ¼

1
(CG þ 2CM)LC

: (5:58)

As CG þ 2CM ¼ CC is approximately the total capacitance between the inner disk
of an isolated C-NB-SRR and the ground, this v0 is approximately the frequency
of resonance of an isolated C-NB-SRR. The C-NB-SRR chain is, in fact, the dual of
the coplanar NB-SRR chain shown in Figure 5.6b. Therefore, the dispersion relation
must be the same for both configurations (see Problem 5.6).

The same considerations made in Section 5.3.1 for two-dimensional arrays of NB-
SRRs (it is apparent that three-dimensional arrays of C-NB-SRRs cannot be made)
can be extended to two-dimensional arrays of C-NB-SRRs (see Problem 5.7). The
coupling between CSRRs and transmission lines, taking into account the mutual
capacitive couplings between the nearest CSRRs, has been studied in [23]. This
analysis can be considered as the dual counterpart of the analysis developed in [20].

5.3.4 Applications of Magneto- and Electro-Inductive Waves

Magneto-inductive waves have potential applications in radio-frequency (RF), micro-
wave, and millimeter-wave applications, that is, from the megahertz to the terahertz
range. Such applications may take advantage of the versatility and simplicity of MIW
devices, as well as from its relatively easy mathematical analysis. Magneto-inductive
waveguides and devices, including bends, power dividers, couplers, and phase shifters,

FIGURE 5.7 Chain of complementary NB-SRRs (C-NB-SRRs) etched on a metallic plate
(left) and equivalent circuit for the unit cell (right).

13As was shown in Chapter 3, this self-inductance comes from the connection in parallel of the inductances
of the co-planar waveguide formed between the inner disk of the C-NB-SRR and the ground.
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have been demonstrated and described in [24] and [25] among others (see also [7] and
references therein). As an example, Figure 5.8 reproduces the design of a power
divider and a backward-wave coupler in MIW technology.

Applications of MIWs in conventional microstrip microwave technology have also
been proposed. Transduction from conventional microstrip to planar magneto-
inductive waveguides is possible by simply etching the magneto-inductive waveguide
on the microstrip dielectric substrate [10].14 A five-step microstrip MIW transducer is
shown in Figure 5.9. This device provides a transmission coefficient of 25 dB
between the input and output microstrips, with a bandwidth of 0.5 GHz centered at
4.5 GHz. As has already been mentioned, MIWs are slow waves, which can be
excited in a narrow frequency band. Such properties strongly suggest the usefulness
of the reported MIW transducers as microwave filters and/or delay lines. Specifically,
they have potential interest as an alternative to surface acoustic wave and/or ferrite
delay lines. The time delay provided by the microstrip MIW transducer of
Figure 5.9 is also shown in the figure. It corresponds to a slow-wave factor
c=vg � 100. This value, although high, is still smaller than those provided by conven-
tional surface acoustic or ferrite delay lines. However, MIW transducers have a much
simpler design and, due to the scalability of the SRRs, they can be designed over a
much wider bandwidth (from RF to terahertz). Electro-inductive wave transducers
in microstrip technology, with performances quite similar to the aforementioned
microstrip MIW transducers, have also been reported [19].

FIGURE 5.8 Schematic of a power divider (a) and a coupler (b) in planar magneto-inductive
waveguide technology. (Source: Reprinted with permission from [7], copyright 2006, Elsevier.)

14Care must be taken, however, in placing the transition from the microstrip to the magneto-inductive wave-
guide near the region where current in the microstrip has a maximum, and in such a way that the magnetic
flux lines are properly coupled to the magneto-inductive elements. This configuration can be seen in
Figure 5.9, where the first SRR is placed at a quarter-wavelength from the microstrip open circuit.
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Finally, magneto-inductive devices may also find interesting applications in RF and
microwave imaging devices [12,26,27]. Wewill return to this topic in the next section.

5.4 SUBDIFFRACTION IMAGING DEVICES

After the seminal paper of Pendry [28] on the ability of left-handed slabs to overcome
the diffraction limit for lens resolution (see Chapter 1), this issue became one of the

FIGURE 5.9 Photograph (a), sketch (b), and delay time (c) provided by the planar MIW
transducer proposed in [10]. The input and output ports are conventional microstrip lines,
and MIWs are guided by a chain of modified NB-SRRs of rectangular shape (in order to
enhance mutual inductance) etched on the dielectric substrate. (Source: Reprinted with per-
mission from [10], copyright 2004, American Institute of Physics.)
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most active research topics in metamaterial science. It was already noted by Pendry in
his seminal paper that, for near-field subdiffraction imaging, it is not necessary to
have a left-handed slab, but simply a slab with only negative permittivity (for TM
polarization). This was the first proposal of a device different from the left-handed
perfect lens (see Chapter 1) able to produce subdiffraction imaging. Other proposals
came soon after, such as imaging by planar circuit arrays [29], imaging by anisotropic
media with negative parameters or indefinite media [30], ferrite slabs [31], coupled
arrays of weakly coupled electric resonators [22], coupled magneto-inductive sur-
faces [27], and plane slabs of two- and three-dimensional photonic crystals
[32,33]. Although this list is probably incomplete, it gives an idea of the intense
research activity on this topic. Among the motivations of such proposals was the
desire to find more practical devices, easier to manufacture than a left-handed slab.
In this section, we will examine some such proposals, with emphasis on potential
practical advantages. However, before developing this analysis, some general charac-
teristics of any subdiffraction imaging device will be analyzed.

In addition to the above devices, which can create subdiffraction images of sources
located at some distance from the lens, some metamaterial structures can produce
pixel-to-pixel image translation between front- and back-side interfaces. Some
examples of such devices are the hexagonal swiss-roll structure proposed in [12],
the wire media proposed in [34], and the photonic band gap collimation effect ana-
lyzed in [35]. This image translation is based on mechanisms quite different from
that described in Chapter 1 for Pendry’s super-lens. Such devices, which can be
more properly termed as canalization devices, will be briefly analyzed at the end
of this section.

5.4.1 Some Universal Features of Subdiffraction Imaging Devices

The main characteristics of subdiffraction imaging by left-handed slabs have already
been reported in Chapter 1, and include

1. Field decay at the backward side of the lens, which implies that there is no
focusing of energy in spots of subdiffraction size;

2. Matching capabilities, which imply that some apparent three-dimensional
focuses may appear in the image detection process, as a consequence of the
tunneling of power between the source and the detector;

3. High sensitivity to material losses, which restricts the usefulness of such
devices to near-field imaging.

Although the analysis in Chapter 1 was mainly focused on left-handed slabs, it can be
shown that the above properties are actually independent of the specific nature of the
lens, thus being general characteristics of any subdiffraction imaging device [36]. In
fact, regarding the first property, this comes directly from the fact that the transfer
function in free space for any evanescent spatial Fourier harmonic must be an expo-
nential decaying function, regardless of the specific nature of the lens. Therefore,
the restoration of evanescent spatial Fourier harmonics at some distance from the
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back-side interface of the lens, implies necessarily the presence of fields decaying
from this interface towards the image.

In order to illustrate such an effect, let us consider a hypothetical optical system
(see Fig. 5.10) able to reproduce some time–harmonic excitation field imposed at
some plane (the source plane at x ¼ 0 in Fig. 5.10) at some other plane (the image
plane, at x ¼ xi in Fig. 5.10) with a resolution D. Such an optical system is located
between x1 and x2 (0 , x1 , x2 , xi). For simplicity, the excitation field will be
assumed to be a delta function in the x ¼ 0 plane

ce(0, y, z) ¼ (2p)2d( y, z), (5:59)

where ce is some component of the electric/magnetic field tangential to the plane x ¼
0 (for simplicity, the remaining tangential component of the excitation field is sup-
posed to vanish at x ¼ 0). The total field for x. 0 will be the superposition of the
excitation field and the scattered field created by the optical system. For x. 0 the
excitation field can be expanded as a Fourier integral of plane waves:

ce(x, y, z) ¼
ð1
�1

dky

ð1
�1

dkz e
�jkxx�jkyy�jkzzþjvt, (5:60)

where kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v210m0 � k2y � k2z

q
. In order to have physical fields, the sign of the

square root has to be chosen with Re(kx) . 0, Im(kx) ¼ 0 for propagative waves,

FIGURE 5.10 Illustration of the image formation by an optical device. A point excitation is
located at z ¼ 0, creating the excitation field ce(0, y, z) ¼ (2p)2d( y, z) at such a plane. The
imaging device, located between x ¼ x1 and x ¼ x2, restores the excitation field at the image
plane with a resolution D. As a result, a two-dimensional spot of size �D is created at the
image plane. Outside this spot, the field rapidly vanishes in the x ¼ xi plane.
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and with Re(kx) ¼ 0, Im(kx) , 0 for evanescent waves. Because the optical system is
supposed to reproduce the excitation field at x ¼ xi with a resolution D, the total field
at x ¼ xi must be

c(xi, y, z) �
ðkmax

�kmax

dky

ðkmax

�kmax

dkz e
�jkyy�jkzzþjvt , (5:61)

where the resolution D is given by

kmax ¼ 2p=D: (5:62)

As there are no sources for x . x2, the total field for x2 , x , 1 is the analytical
continuation of equation (5.61); that is

c(x, y, z) �
ðkmax

�kmax

dky

ðkmax

�kmax

dkz e
�jkyy�jkzz�jkx(x�xi)þjvt: (5:63)

If D , l ¼ 2p=k0, some of the plane waves included in equation (5.63) are evanes-
cent, decaying from x ¼ x2 towards x!1. Figure 5.11 shows several field distri-
butions around x ¼ xi, corresponding to some values for the resolution D. The field
distribution is calculated from equation (5.63) with kmax given by equation (5.62).
The focusing of energy in a three-dimensional spot at the image can be clearly
seen when D . l. However, a field decay from the lens towards the image can be
clearly observed when D, l. Such field decay is compatible with image formation
at the image plane (x ¼ xi) with a resolution D, according to equation (5.61).

Regarding the second characteristic of the above list, this comes directly from the
fact that evanescent electromagnetic waves do not carry power. Therefore, any detec-
tion process, which actually implies some amount of power transmitted between the
source and the detector, must imply a substantial perturbation of the field created by
the source in the presence of the lens alone. This detection process was actually ana-
lyzed in Sections 1.9.2 and 1.9.4, and the main conclusions of such an analysis can be
extended without modification to other subdiffraction imaging devices. Therefore,
care must be taken in any image measurement in order to avoid artifacts arising
from the matching capabilities of such devices [37,38]. The presence of apparent
three-dimensional focusing in imaging measurements can be one such artifact [39].
To avoid them, probes that do not substantially affect the field at the back side of
the lens must be used. Small electric dipoles and/or magnetic loops, as well as resis-
tive loads in the receiving antenna can be used for this purpose [36,39]. On the other
hand, future practical applications based on such matching capabilities of subdiffrac-
tion imaging devices can also be envisaged.

The high sensitivity of subdiffraction imaging devices to material losses also
comes from the exponential decay of the field at the back side of the lens. This
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field decay implies that, in order to have a good image at some distance from the back
interface of the lens, very high densities of energy must be present just at this inter-
face. As material losses are proportional to the field intensity, this behavior implies
very high losses inside the lens (see also Section 1.10). In order to avoid such

FIGURE 5.11 The total field intensity jc(x, y, z)j obtained from equation (5.63) at both sides
of the image plane x ¼ xi, for several values of the resolution D: (a) D ¼ 3l; (b) D ¼ l; (c)
D ¼ l=3. (Source: Reprinted with permission from [36], copyright 2006, American Institute
of Physics.)
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losses, it is better to place the lens in such a way that the image is formed near its back
interface.15 Due to this high sensitivity to losses, subdiffraction imaging devices are,
in practice, near-field devices. To overcome losses in such devices, multilayer con-
figurations have been proposed [41,42]. However, it must be clarified that such
proposals, although enlarging the distance between the source and the image, do
not enlarge the available distances between the image (or the source) and the lens.

5.4.2 Imaging in the Quasielectrostatic Limit: Role of
Surface Plasmons

Because metamaterial super-lenses are near-field devices, it may be of interest that the
analysis of quasistatic devices is able to produce similar effects. In fact, quasistatic
approaches are approximately valid when the scale of the spatial variations of the
field is small with regard to the free-space wavelength, which is, indeed, the main
characteristic of near-field devices. In the quasielectrostatic limit E ¼ �rf, where
f is the quasielectrostatic potential. Quasielectrostatic plane waves are TM waves,
which, in a homogeneous and isotropic medium, satisfy Laplace’s equation
r2f ¼ 0. Surface plasmons (see Chapter 1, Problems 1.2 and 1.3) are examples
of such waves. In order to develop our analysis, it will be of interest to determine
the quasielectrostatic transverse transmission matrix (see Sections 1.7 and 1.8) for
an air–dielectric interface, and for a dielectric slab in air. According to the definitions
of Chapter 1, TM quasielectrostatic positive/negative waves of the form
f+ ¼ f0 exp{�jkz+ ax} will be considered, where, from Laplace’s equation,

a ¼ jkj: (5:64)

The transverse transmission matrix for a dielectric interface perpendicular to the
x-axis is defined as
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� fþ

2
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2
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¼ T11 T12
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2
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, (5:65)

where f+
1 (f+

2 ) stand for the potentials at the left-(right-)hand side of the interface.
This matrix is readily calculated from the boundary conditions at the dielectric inter-
face: continuity of the quasistatic potential f ¼ fþ þ f� and continuity of the
normal component of the field displacement vector Dx ¼ 1(afþ � af�). The
result is

T
¼
d ¼

1
211

11 þ 12 11 � 12
11 � 12 11 þ 12

� �
, (5:66)

15In fact, it has been reported that the best resolution is obtained when the image is formed just on this
interface [40].
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where 11(12) is the dielectric constant at the left-(right-)hand side of the interface.
From this result, the transverse transmission matrix for the dielectric slab of
Figure 5.12 (from x1 to x2) can be easily found:

T
¼
s ¼

1
4101

10 þ 1 10 � 1

10 � 1 10 þ 1

� �
� ejkjd 0

0 e�jkjd

� �
� 1þ 10 1� 10

1� 10 1þ 10

� �
: (5:67)

For the specific case when 1 ¼ �10, which corresponds to the condition for exci-
tation of surface plasmons at an air–slab interface (see Chapter 1, Problem 1.2),
this matrix becomes

T
¼
s ¼ e�jkjd 0

0 ejkjd

� �
: (5:68)

Thus, the quasistatic transverse transmission matrix between x ¼ 0 and x ¼ 2d in
Figure 5.12 is the identity

T
¼

0!2d ¼
1 0
0 1

� �
: (5:69)

That is, there is perfect matching, as well as amplitude and phase compensation for all
the TM quasielectrostatic waves between x ¼ 0 and x ¼ 2d. Therefore, for 1 ¼ 210
the quasielectrostatic field at x ¼ 0 is reproduced at x ¼ 2d, which is the condition for
perfect lens behavior. Moreover, from equations (5.67)–(5.69), it follows that the
amplitude of the quasielectrostatic potential has the decaying-growing-decaying
behavior shown in Figure 5.13, just as in the left-handed perfect lens analyzed in
Chapter 1. However, it must be taken into account that the quasielectrostatic analysis
developed in this section is approximate, and valid only for jkj � k0 ; v

ffiffiffiffiffiffiffiffiffiffi
10m0

p
.

FIGURE 5.12 A slab of nonmagnetic medium of width d.
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As has already been mentioned, quasistatic subdiffraction imaging by negative
permittivity media was first proposed in [28] as a useful alternative to left-handed
perfect lenses at infrared and optical frequencies. In fact, the complex permittivity
of metals is mostly real and negative at such frequencies [2]. Experimental
confirmation of such an effect in thin silver slabs has been provided in [43] and
in [44].

As the above analysis find its main application in imaging by thin metallic slabs, a
deeper analysis of the transfer function when the slab is made of a medium that
satisfies a Drude model for its permittivity is of interest. The lens transfer function
is defined as the transmission coefficient between x ¼ 0 and x ¼ 2d of Figure 5.12,
which can be deduced from equation (5.67) as

T(jkj,v) ¼ e�ad

[Ts]11
¼ 4101e�jkjd

(1þ 10)2ejkjd � (1� 10)2e�jkjd , (5:70)

which takes the desired value of T ¼ 1 when 1 ¼ 210. For our purposes it is con-
venient to rewrite this transfer function, as well as the complex permittivity of the
slab (Eq. 2.78 of Chapter 2), in terms of the dimensionless variables k0 ¼ jkjd and
v0 ¼ v=vp, and the dimensionless parameter f 0 ¼ fc=vp:

T(k0,v0) ¼ 4101e�k0

(1þ 10)2ek
0 � (1� 10)2e�k0

, (5:71)

where

1 ¼ 10 1� 1
v0(v0 � jf 0)

� �
: (5:72)

FIGURE 5.13 Variation along the lens of the amplitude of the quasielectrostatic potential in
a quasielectrostatic quasiperfect lens.
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A plot of T(k0,v0) for f 0 ¼ 10�2 (which can be considered a typical value for good
conductors) is shown in Figure 5.14. The two crests that appear in this plot corre-
spond to the surface plasmons supported by the slab (see Chapter 1). Between
these crests there is a region where the transfer function is flat and approximately
equal to unity. This is the region of the (v0, k0) plane for which the restoration of
spatial Fourier harmonics takes place. Maximum values of k0 inside this region
(i.e., better resolution) are obtained for v0 ¼ 1=

ffiffiffi
2

p
, which corresponds to the fre-

quency of excitation for the quasistatic surface plasmons at the interface of a semi-
infinite slab. As resolution is limited by the maximum value of k for which T � 1,
it is clear from Figure 5.14 that resolution is better for thinner slabs (k ¼ k0=d
reaches higher values for thinner slabs). However, it is also clear from the figure
that, for very high values of k0 ¼ kd, the bandwidth of both surface plasmons col-
lapses to a single band, and the transfer function cannot reach values near unity.
Thus, it can be concluded that super-resolution in plasmonic super-lenses is
limited to that region of the (v, k) plane where two different surface plasmons can
be clearly identified in the slab, and disappears when the bandwidth of both
surface plasmons collapse to a single frequency band.

5.4.3 Imaging in the Quasimagnetostatic Limit: Role of Magnetostatic
Surface Waves

Quasimagnetostatics, like quasielectrostatics, can also be applied to the analysis
and design of near-field devices. It is apparent, from duality, that a slab with
1 ¼ 10 and m ¼ �m0, (which could be made from an appropriate array of small
size SRRs) can also produce subdiffraction imaging. However, this possibility does
not have too much practical interest because—unlike negative-1 media—such

FIGURE 5.14 Plot of the transfer function (5.71) as a function of the dimensionless vari-
ables k0 and v0, for f 0 ¼ 10�2. The values for v0 are centered around v0 ¼ 1/

p
2 which corre-

spond to Re(1) ’ �1.
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kinds of materials are not directly available in nature. Of much more interest is finding
and analyzing quasimagnetostatic subdiffraction imaging devices that can be made
from available materials. Because ferrites exhibit regions of negative permeability
at microwave frequencies (see Chapter 2), they are good candidates for such a
purpose. Moreover, from the role played by surface plasmons in quasistatic
imaging devices, and the similarities between surface plasmons and magnetostatic
surface waves (MSSWs), it can be guessed that such waves can play a similar role
in quasimagnetostatic subdiffraction imaging. Therefore, we will analyze the trans-
mission of quasimagnetostatic waves through the ferrite slab of Figure 5.15, which
has the proper magnetization for the excitation of MSSWs propagating along
the y-axis at each interface (see Problems 2.11–2.13 of Chapter 2). In the
quasimagnetostatic approximation H ¼ �rc, where c is the quasimagnetostatic
potential, which satisfies the magnetostatic wave equation (see Chapter 2)

r � ��m � rc ¼ 0, (5:73)

where ��m is the Polder tensor,

��m ¼ m0

��mt 0
0 mz

� �
¼ m0

m jk 0
�jk m 0
0 0 1

0
@

1
A, (5:74)

where the external magnetic field is assumed along the z-axis, H0 ¼ H0 ẑ, and

m ¼ 1þ vMvH

v2
H � v2

(5:75)

k ¼ vvM

v2
H � v2

(5:76)

(see Chapter 2 for more details on these definitions).

FIGURE 5.15 Near-field quasimagnetostatic ferrite lens made of a ferrite slab magnetized
along the direction parallel to the slab.
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As in Chapter 1, we will classify the magnetostatic waves into positive and nega-
tive plane waves, with the field dependence c+ ¼ c0 exp{�jky+ ax}, where, from
equation (5.73), a and k are related through

a ¼ jkj: (5:77)

The transverse transmission matrix for such waves can be obtained from the boundary
conditions at the air–ferrite interfaces of Figure 5.15. Such boundary conditions are
as follows: continuity of c ¼ cþ þ c� and continuity of Bx ¼ mHx þ jkHy. When
this last condition is put in terms of the quasimagnetostatic potential, it takes the form

cþ
1 � c�

1 ¼ (mþ jk)cþ
2 � (m� jk)c�

2 , (5:78)

where j ¼ +1 for k_ 0. This equation is valid for the air ! ferrite interface of
Figure 5.15 (at x ¼ x1) and, as in the previous section, c+

1 =c+
2 stands for potentials

at the left-/right-hand side of the interface. From such boundary conditions, the
quasimagnetostatic transverse transmission matrix for an air ! ferrite interface is
obtained as

T
¼
a!f ¼

1
2

1þ mþ jk 1� mþ jk

1� m� jk 1þ m� jk

� �
: (5:79)

The dependence on the sign of k of this matrix is closely related to the nonreciprocity
of ferrites [15], and with the fact that MSSWs—which correspond to the zeroes of
[Ta!f ]11—can only be excited at an air–ferrite interface for a specific sign of k
(see Problem 2.13 of Chapter 2). The quasimagnetostatic transverse transmission
matrix for the ferrite ! air interface of Figure 5.15 (at x ¼ x2) is

T
¼

f!a ¼ T
¼
a!f

n o�1
¼ 1

2m
1þ m� jk �1þ m� jk

�1þ mþ jk 1þ mþ jk

� �
: (5:80)

Finally, from equations (5.79) and (5.80), the transverse transmission matrix for the
ferrite slab of Figure 5.15 (between x ¼ x1 and x ¼ x2) can be found from

T
¼

¼ T
¼
a!f � ejkjd 0

0 e�jkjd

� �
� T
¼

f!a: (5:81)

The frequency of excitation of MSSWs at an isolated ferrite ! air interface mag-
netized as the right-hand side interface of the ferrite slab (i.e., such as the interface
located at x ¼ x2 in Fig. 5.15) can be obtained from [T f!a]11 ¼ 0. This equation
has two positive frequency solutions. For k, 0 (i.e., for j ¼ 1), the solution is
v ¼ vH, which is not a practical solution because it corresponds to the ferrimagnetic
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resonance. However, for k . 0 (i.e., for j ¼ �1), equation [T f!a]11 ¼ 0 becomes

1þ mþ k ¼ 0, (5:82)

which corresponds to the frequency

v ¼ vH þ vM=2: (5:83)

At this frequency, the ferrite slab transverse transmission matrix (5.81) becomes

T
¼
þ ¼

e�jkjd �2
1þ m

m
sinh(jkjd)

0 ejkjd

0
@

1
A, (5:84)

for k. 0 (or j ¼ 21). For k, 0 (or j ¼ 1) it is

T
¼
� ¼

e�jkjd 0

2 1þ m
m sinh(jkjd) ejkjd

0
@

1
A: (5:85)

In both cases the transmission coefficient is

t ¼ 1=[T+]11 ¼ ejkjd, (5:86)

which corresponds to the condition for the restoration at the image plane (x ¼ 2d) of
the amplitude of the incident quasimagnetostatic wave at x ¼ 0. This result, which is
valid for any value of k, shows that a properly magnetized ferrite slab can reproduce
the incident quasimagnetostatic field at the source plane (x ¼ 0 in Fig. 5.15) at the
image plane (x ¼ 2d in Fig. 5.15).

The main difference between quasimagnetostatic subdiffraction imaging by mag-
netized ferrite slabs, and the quasielectrostatic imaging analyzed in the previous
section is the nondiagonal form of the transverse transmission matrices (5.84) and
(5.85) for ferrites. This nondiagonal form introduces some key differences. In
fact, for k. 0 the reflection coefficient r ¼ [Tþ]12=[Tþ]11 vanishes.16 However, if
k, 0, the reflection coefficient r ¼ [T�]12=[T�]11 is not zero. Because a general
field distribution at x ¼ 0 must incorporate Fourier harmonics with positive and nega-
tive values of k, it is clear that, in general, the ferrite slab will not reproduce at the
image the whole field at the source plane (which is the sum of the incident field
and the reflected field), in spite of the fact that it reproduces the incident field (i.e.,
the field created by the source alone). This behavior makes a substantial difference
with previously reported subdiffraction imaging devices, which are matched to free

16That is, in general, for k/ H0 � n, where n is the outward normal of the back-side lens interface.
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space (i.e., do not produce reflected fields). As other obvious difference is the aniso-
tropy of the device, which is only able to reproduce two-dimensional sources, of
(practically) infinite extent in the z-direction (i.e., the direction of magnetization).
The main advantage of near-field subdiffraction imaging by ferrite slabs is tunability.
In fact, the frequency of operation of such devices can be tuned by changing the value
of the external magnetization H0. This can be a crucial advantage, because all sub-
diffraction imaging devices reported to date are intrinsically very narrow-band
devices. Quasistatic subdiffraction imaging by ferrite slabs was first reported in
[31]. In this paper, the relation between the whole fields at the image and source
planes was analyzed. It was shown that the field at the image plane is a combination
of the field at the source plane and its Hilbert transform.

5.4.4 Imaging by Resonant Impedance Surfaces:
Magneto-Inductive Lenses

Let us consider an arbitrary surface, characterized by some transverse transmission
matrix

Eþ
1

E�
1

� �
; T

¼
1 �

Eþ
2

E�
2

� �
¼ a b

c d

� �
� Eþ

2
E�
2

� �
: (5:87)

The corresponding transverse transmission matrix for a pair of identical coupled
surfaces, separated by a distance d (see Fig. 5.16) will be

T
¼
2 ¼

a b
c d

� �
� ead 0

0 e�ad

� �
� a b

c d

� �
(5:88)

or

T
¼
2 ¼ a2 ead þ bc e�ad ab ead þ bd e�ad

ac ead þ c2 e�ad cb ead þ d2 e�ad

� �
, (5:89)

where only evanescent waves in the transverse direction are considered, and a(v) is
the attenuation constant of such waves.17 It is clear that, in order to have the proper
transmission coefficient for evanescent wave amplification through the device,
(t ¼ 1=T11 / exp{ad}) it must be that

a ¼ 0 and bc ¼ constant: (5:90)

17In the quasistatic limit, where the effects of the displacement current are neglected, a ¼ jkj, where k is the
propagation constant of the considered surface wave.
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It can be easily realized that the first condition corresponds to the excitation of surface
waves in a single impedance surface (allowing for solutions to equation 5.87
with Eþ

1 ¼ E�
2 ¼ 0). However, it must be taken into account that, in order to have

an imaging device, the above condition must be simultaneously satisfied for all
values of the propagation constant k. In practice, this means that the dispersion
relation for such surface waves must be very flat, so that all the wavevectors are
excited in a small frequency band. If this condition is fulfilled, the goal is to obtain

a(v, k) � 0 and b(v, k)c(v, k) � constant, (5:91)

for a wide region of the (v, k) plane.
As has already been mentioned, the key concepts of subdiffraction imaging

devices made of a pair of coupled arrays of resonators were first proposed in [22].
Subsequently, this approach has been applied in [45] to the analysis of the
magneto-inductive lens previously reported in [27]. As was shown in Section
5.3.2, a two-dimensional array of magnetic resonators—such as SRRs or capacitively
loaded metallic rings—can support MIWs whose dispersion relation is given (in the
nearest-neighbor approximation) by equation (5.43). Such surface MIWs can be
excited in the interval jv� v0j 	 dv, where

dv ¼ 2v0
M

L
: (5:92)

Except for very close rings, M=L . 0:1, which implies that a pair of coupled
magneto-inductive surfaces can be a good candidate for the design of subdiffraction
imaging devices. The transfer function for such devices is the transmission coefficient

FIGURE 5.16 Two coupled impedance surfaces, separated by a distance d.
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FIGURE 5.17 (a) Three-dimensional plot of the transfer function T(kx, ky ¼ 0, v) for a
magneto-inductive lens such as that shown in Figure 5.16 when the surfaces at x ¼ x1, x2
are square arrays of capacitively coupled rings. The transfer function is calculated for the fol-
lowing parameters: distance d ¼ 4.5mm, periodicity a ¼ 12.5mm, ring resistance R ¼ 0.04V,
ring capacitance C ¼ 82pF, ring inductance L ¼ 16.3nH, frequency of resonance of the rings
v0 ¼ 2p� 137:5 MHz, and ring inductanceM ¼ 20.015L. The average radius of the rings is
r ¼ 4.5mm. (b) Two-dimensional plot of the transfer function T(kx, ky ¼ 0, v) at
v ¼ 2p� 140 MHz. (Source: Data reproduced with permission from [45], copyright 2006,
American Institute of Physics.)
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between x ¼ 0 and x ¼ 2d in Figure 5.16

T(jkj, v) ¼ e�ad

[T2]11
¼ e�jkjd

a2 ejkjd þ bc e�jkjd ; jkj ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, (5:93)

where, from equation (5.56)

a b
c d

� �
¼ 1

2
2þ Z0=Za Z0=Za
�Z0=Za 2� Z0=Za

� �
, (5:94)

with Z0 and Za given by equations (5.48) and (5.54), respectively. If
a ¼ 2þ Z0=Za � 0, then bc � �1, and equation (5.91) is satisfied. Figure 5.17
shows a three-dimensional plot of the transfer function (5.93) for two coupled
square arrays of capacitively coupled rings of periodicity a, separated a distance
d. The plot is shown in the first Brillouin zone 0 , k , p=a. As can be seen, a
flat transfer function with jT(jkj, v)j � 1 is obtained at frequencies around the
frequency of resonance of the rings, which is also the center of the bandwidth for
the excitation of MIWs in a single array. Such a flat transfer function frequency
region is limited by two crests, which corresponds to the two MIWs that can be
excited in the pair of coupled magneto-inductive arrays. As has already been
mentioned, this behavior is typical of a subdiffraction imaging device. It can also
be seen from equations (5.89) and (5.90) that the reported magneto-inductive
lens (as well as any other similar lens made from two identical resonant impedance
surfaces) is not matched to free space. That is, it produces reflected fields that can
affect the source field. However, by using two different surfaces, it is possible—
atleast theoretically—to obtain a matched lens [22] (see Problem 5.10). An extensive
analysis of magneto-inductive lenses, including experiments, has been reported
in [45].

5.4.5 Canalization Devices

Canalization devices are devices that are able to translate a field distribution, pixel to
pixel, from one interface to another. There can be many designs allowing such
image translation, and probably the simpler one is the wire media lens proposed
in [46] and subsequently demonstrated in [34]. The device is sketched in
Figure 5.18, and is made from a square array of conducting wires of periodicity
a � l and length l ¼ nl=2, where l is the free-space wavelength at the operation
frequency. The device can reproduce at the exit interface any quasielectrostatic
field distribution imposed at the input interface, with a resolution that is limited
by the array periodicity a. This behavior has been explained as a consequence of
the specific properties of the homogenized wire media [47]. In this paragraph we
will give an alternative and perhaps even simpler explanation. The wire array can
be seen as a multiconductor TEM transmission line that supports N 2 1 orthogonal
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degenerate TEM modes (N is the total number of wires), all of them propagating
with the vacuum phase constant k ¼ v

ffiffiffiffiffiffiffiffiffiffi
10m0

p
.18 If the condition l ¼ nl=2 is

imposed on the total length of the device, it becomes a Fabry–Perot resonator,
which can support standing waves corresponding to any combination of the afore-
mentioned TEM modes, bouncing back and forth between both ends of the
device. These resonator modes, which can have an arbitrary voltage distribution
on the wires, have zero currents and maximum voltages on each wire end. When
a given quasielectrostatic voltage distribution is imposed at the input interface
(l ¼ 0), it excites the resonator mode that most closely matches this voltage distri-
bution, which is reproduced at the output interface (l ¼ nl=2) with the aforemen-
tioned resolution a. In fact, it can be easily realized that the transfer function of
the device is T ¼ +1, where the + sign applies to even/odd values of n.

The wire lens described above operates in the quasielectrostatic limit; that is, it can
canalize only TM field distributions, being almost insensitive to TE incident fields.
One quasimagnetostatic canalization device, able to reproduce TE incident fields,
is the swiss-roll hexagonal array proposed in [12] for operation at radio frequencies.19

Canalization of light seems also to be the main mechanism for imaging in some
recently reported photonic crystal devices [35,46].

FIGURE 5.18 Sketch of the wire lens proposed in [46]. (Source: Reprinted with permission
from [46], copyright 2005, American Physical Society.)

18It is clear that the simpler choice for this set of orthogonal modes is to define the ith mode by Vi / e+jkz

on the ith wire and V ¼ 0 on the remaining ones.
19The mechanism of operation of such device has been further analyzed in [26], where the effect of
magneto-inductive waves excited in the array was also studied.
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PROBLEMS

5.1. Polarizabilities of the CSRR. Using the Babinet principle (5.18), deduce
equations (5.6)–(5.8) for a CSRR etched on a perfect conducting plate.

5.2. Circular polarization in SRR arrays. Consider a plane wave incident upon
a loss-less SRR array. The incident wavevector is in the y–z plane, forming
an angle u with the normal to the surface (i.e., with the z-axis). The incident
wave is polarized with the magnetic field perpendicular to the plane of inci-
dence (p-polarization). Find, as a function of the SRR polarizabilities, the
angle of incidence for which the transmitted wave is circularly polarized.

5.3. Circular polarization in CSRR arrays. Consider the plane wave incident
upon a loss-less CSRR array. Discuss, as a function of the CSRR polarizabil-
ities, the angle of incidence and polarization for which the transmitted wave is
circularly polarized.

5.4. Lossy magnetoinductive waves. By including the ohmic resistance of the
rings in the equation for the current

jvLþ 1
jvC

þ R

� �
In ¼ M In�1 þ Inþ1ð Þ, (5:95)

find the attenuation constant of MIWs propagating on one-, two-, and three-
dimensional arrays of NB-SRRs. Assume that the nearest-neighbor approxi-
mation is valid.

5.5. MIWs in sparse arrays of SRRs. By using the dipole approximation (each
SRR is assumed to be equivalent to an elemental dipole), find closed
expressions for the dispersion relation of a magneto-inductive waveguide
formed by a one-dimensional coplanar array of capacitively loaded rings. Use

L ¼ m0r ln
16r
d

� �
� 2

� �
, (5:96)

where r and d are the ring radius and the wire diameter, respectively, as an
approximation of the ring inductance. Discuss the conditions for the validity
of this approach.

5.6. Duality between MIWs/EIWs in NB-SRR/C-NB-SRRs arrays. Taking
duality into account, find the relations between the capacitance and the induc-
tance of the equivalent circuit of an NB-SRR (see Chapter 2) and those of the
equivalent circuit of its complementary, the C-NB-SRR (see Chapter 3). From
this result show that, in the limit jMj=L � 1, the dispersion equation (5.57) for
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the C-NB-SRR chain of Figure 5.7a is approximately given by

v2

v2
0

� 1� 2M
L

cos (ka), (5:97)

where L and M are the self- and mutual-inductances of the dual chain of NB-
SRRs. It is clear that, in the limit jMj=L � 1, this expression coincides with
(5.37). This limit is a natural condition for the validity of the assumed
nearest-neighbor-approach.

5.7. EIWs in two-dimensional CSRR arrays. Find, in terms of the NB-SRR
polarizabilities (see Chapter 1) the dispersion relation for EIWs propagating
on a two-dimensional sparse square array of C-NB-SRRs of periodicity a.

5.8. Surface plasmons in a slab of negative permittivity. Find, from equation
(5.67), the dispersion relation k(1; d) for the quasistatic surface plasmons sup-
ported by a metallic slab of width d. Assume a Drude–Lorentz model for the
permittivity of the metal.

5.9. MSSWs in a ferrite slab. Find from equation (5.81) the dispersion equation
for MSSWs in a ferrite slab with an external magnetization parallel to the slab.

5.10. Matched impedance-surface lens. Consider two distinct parallel coupled
surface impedances separated by a distance d, as in Figure 5.16. Find the con-
ditions that must satisfy its respective array impedances Za and Z0a in order to
obtain a perfectly matched lens (t / ejkjd; r ¼ 0) from such configuration
(see [22]).
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