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CHAPTER 1

INTRODUCTION

This book presents the first self-contained introduction to a newly
shaping branch of applied physics on the frontier between modern
photonics, electromagnetics, acoustics of heterogeneous media, and
design of heterogeneous metamaterials and nanostructures with spe-
cial properties unattainable in nature. This branch opens up the new
avenues in the creation of miniaturized subwavelength systems, gov-
erning wave flows by means of gradient metamaterials characterized
by technologically controlled smooth spatial distributions of dielec-
tric or elastic parameters. Some results, obtained in these fields on
a case-by-case basis, were dispersed hitherto in a number of journals
devoted to quantum electronics, optics, radiophysics and material
science; this work revealed the appearance of overlapping problems.
However, the analysis of each such problem resembled sometimes a
kind of art, and no standardized approach to these problems was
elaborated. In contrast, the generality of physical fundamentals and
the mathematical basis for wave phenomena in electromagnetics and
acoustics of gradient media pervades this entire book. The current
interest in these topics is threefold. First, the progress in fabrication
of nanogradient structures attracts growing attention due to the abil-
ity of such structures to control the propagation of electromagnetic
waves on and below the wavelength scale. Second, the possibility to
replace metallic dispersive elements in traditional plasmonics-based
photonic crystals by gradient glass and polymer films without free
carriers indicates a new way for the creation of low cost components
for optoelectronic circuitry. Third, the one-to-one correspondence
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between a series of electromagnetic and acoustic wave phenomena
in gradient structures promotes parallel researches, making the cor-
responding problems more tractable and accelerating the design of
innovative devices for science, technology, and defence.

Never before published information about new trends in directed
energy and information transfer by electromagnetic and acoustic
waves in heterogeneous media with giant artificial dispersion forms
the “skeleton” of this book. These trends are represented in the
framework of a unified consideration of physical fundamentals and
mathematical basis of wave phenomena in different subfields of elec-
tromagnetics and acoustics, namely, in gradient nanophotonics for
visible and infrared spectral ranges and acoustics of gradient solids.
The scientific dividend, earned in this way, is provided by a series
of flexible models of metamaterial structures, containing several
free parameters, which are applicable for both of these subfields
simultaneously.

This book is intended to bridge the gaps between the novel phys-
ical concepts of wave phenomena in gradient metamaterials and the
use of these phenomena for innovative engineering purposes. The
following are the main goals of this book:

1. To indoctrinate the concept of gradient wave barriers of finite
thickness as the perspective dispersive elements for photonic and
phononic crystals;

2 To highlight the effects of reflectionless tunneling of EM and
acoustical waves, habitual namely to gradient metamaterial struc-
tures, as a powerful tool for governing radiation flows in wave
circuitries;

3. To elaborate the standardized mathematical basis for optimiza-
tion of parameters of gradient barriers, providing the amplitude-
phase reflectance/transmittance spectra for any barrier and any
needed spectral range.

The following key concepts, inspired by consideration of the
above-mentioned goals, run throughout this book:

1. Strong heterogeneity-induced non-local dispersion of gradient
dielectric layers, both normal and anomalous, which can be formed
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in an arbitrary spectral range by means of an appropriate geom-
etry of refractive index profile, the host material being given.

2. Flexibility of reflectance—transmittance spectra of heterogeneous
dielectric nanofilms, controlled by the gradient and curvature of
the refractive index profiles of photonic barriers, and the appear-
ance of a cut-off frequency in barriers fabricated from dispersive-
less host materials (generalized Fresnel formulae).

3. Effective energy transfer by evanescent EM modes, tunneling
without attenuation through the “window of transparency” in
gradient dielectric photonic barriers with concave spatial profiles
of their dielectric permittivity. Manifestation of similar effects in
gradient acoustic barriers, formed by solid layers with coordinate-
dependent density and/or elasticity.

4. Formation of plasma-like dispersion in gradient dielectrics in arbi-
trary spectral ranges, imitating some dispersive properties of solid
plasmas.

5. Scalability of results, obtained by means of exactly solvable models
of gradient photonic barriers, between different spectral ranges
and different thicknesses of barriers.

This book presents an example of how an appropriate mathe-
matical language causes the creation of new physical insights, such
as, e.g. non-local dispersion or reflectionless tunneling. Due to a
coordinate-dependent velocity of wave propagation in these media
the leading and trailing parts of waveforms travel with different veloc-
ities; this difference results in distortions of waveforms. In particular,
when waves with harmonic envelopes are incident on the surface of
a stratified medium, the spatial shapes of these envelopes inside the
medium become non-sinusoidal. In this case the exact analytical solu-
tions of the wave equations for stratified media, revealing features
of the structure of the wave fields in such media, acquire funda-
mental importance. Introduction of “phase” coordinates, caused by
the spatial distributions of refractive index, is shown to enable the
solution of problems of propagation of waves of different physical
nature in a similar fashion. The mathematical fundamentals of wave
theory in gradient media, derived here “from first principles”, are
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based on the exact analytical solutions of wave equations for media
with continuous spatial variations of dielectric or elastic parameters.
These solutions, obtained beyond of the scope of any truncations,
perturbations, or other WKB-like assumptions about the smallness
or slowness of variations of wave fields or media, are needed for anal-
ysis of wave phenomena in gradient metamaterial structures with
subwavelength spatial scales, for which these simplifying assump-
tions become invalid. The wide classes of new simple exact analytical
solutions of the Maxwell equations, as well as of the acoustic wave
equations in solids, expressed sometimes via elementary functions,
are used in standardized algorithms, represented in this book for
solving the milestone wave problems for gradient metamaterials. If
they are guided by these solutions, considered to be the etalon ones,
researchers can decrease the risk of losing a great deal of physical
insight in the processes of numerical simulations.

Theoretical fundamentals of wave physics for heterogeneous
media have a time-honored history. While discussing the station-
ary propagation of a plane wave, several models of a coordinate-
dependent velocity, allowing exact analytical solutions of wave equa-
tion, can be mentioned. Maxwell was among the first to consider
inhomogeneous media in optics, when as long ago as in 1854, he
described a lens, called “fish-eye”. One of the first exactly solv-
able models was pioneered by Rayleigh as long ago as in 1880 in
a solution of the wave equation describing sound propagation in a
stratified atmosphere with a monotonic inverse square dependence
of the sound velocity on the altitude v(z) [1.1]. Later on these and
more complicated models, containing, e.g. combinations of several
exponents [1.2,1.3], attracted much attention in fields as different as
acoustics [1.4], plasma electromagnetics [1.5] and magnetic hydrody-
namics [1.6]. Treatment of a series of such problems in the frame-
work of the WKB — approximation was summarized in [1.7]. Unlike
these models, describing natural media, the advent of lasers stimu-
lated a burst of interest to man-made heterogeneous media, such as,
e.g. thin transparent layers and multilayer systems, used as optical
filters, polarizers, and antireflection coatings; during the past two
decades, the engineered dielectric properties of thin films became
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a well-developed field of microelectronics and nanotechnology [1.8]—
[1.9]. Modeling of continuous distributions of refractive index across
the transparent film by means of step-like piece-wise profiles, devel-
oped in [1.10], was complemented by analysis of reflectance of films
with sandwich-like metal-dielectric structures [1.11]. Moreover, the
interest in optics of thin films is strengthened nowadays by the over-
all attention to the tunneling of photons through nanostructured
metal films [1.12]. The enhanced optical transmittance of these peri-
odic structures, supported by surface plasmon polariton modes in
metal nanofilms, was shown to be an effective mechanism for reso-
nant transfer of EM energy in optoelectronic devices [1.13]. These
problems, covered by detailed reviews [1.14] and monographs [1.15],
lie outside the scope of this book.

In contrast, the architecture of this book is determined by a
step-by-step in-depth development of the concept of giant control-
lable dispersion of gradient metamaterials as a dominant paradigm,
applied to nanooptics (Chs. 2-7) and acoustics of heterogeneous
solids (Chs. 8-10). Harnessing of dielectrics with strong artificial
heterogeneity-induced dispersion opens new horizons for the syn-
thesis of optoelectronic systems. The physics of gradient dielectric
photonic barriers and coatings, whose optical parameters are not
connected with free carriers, constitutes the subjects of Chs. 2-7 of
this book.

Chapter 2 is intended to provide the first acquaintance with the
cornerstone concepts of gradient electromagnetics, such as an exactly
solvable multiparameter flexible model of a gradient wave barrier, its
characteristic frequencies and heterogeneity-induced dispersion, both
normal and anomalous. These types of dispersion are inherent to con-
cave and convex spatial distributions of the dielectric permittivity
inside the barrier £(z); the characteristic frequencies are determined
by the first and second derivatives of the profile £(z). Generalized
Fresnel formulae for normal incidence, illustrating the decisive influ-
ence of the gradient and curvature of the refractive index distribu-
tion across the barrier on its reflectance/transmittance spectra, are
derived “from first principles”. To help the reader to assimilate this
new approach, a simple “key model” visualizing the optical properties
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of the barrier by means of the simple elementary functions is sug-
gested, and detailed examples of analytical calculations of these spec-
tra for the suggested model are given; this model is used in several
subsequent chapters. The classical Fresnel formulae for homogeneous
films are shown to be limiting cases of the generalized expressions,
obtained, related to the special case of vanishing heterogeneity. The
list of exactly solvable models for gradient media is broadened in
Ch. 3 by examples of both symmetric and asymmetric, as well as
direct (n = n(z)), inverse (z = z(n)) and parametric dependencies
of the refractive index n on the coordinate z inside the barrier.

The intriguing effect of reflectionless, or resonant, tunneling of
EM waves through a transparent gradient dielectric barrier is con-
sidered in Ch. 4. Tunneling is a basic wave phenomenon, opening
many tempting scientific and engineering perspectives. Pioneered by
Gamow [1.16], this phenomenon gave rise to its numerous applica-
tions in optoelectronics, quantum mechanics, and solid state physics,
as well as to the long term debates concerning the “superluminality”
of tunneling processes [1.17,1.18]. The concept of the nonlocality of
matter-wave interactions linked this assumption with the inability
to localize photons in space [1.19]. However, the exponentially small
transfer of tunneling radiation through opaque barriers constricts
the effectiveness of this transfer and impedes the observations of the
tunneling effects for thick barriers. In contrast, the reflectionless tun-
neling of light in gradient media, visualized in Ch. 4, can provide a
powerful tool for governing radiation flows in wave circuitry [1.20].
A new channel for energy and information transfer is shown to exist
in media with some definite types of heterogeneity. Having nothing
in common with the widely discussed surface plasmon polariton-
assisted mechanism of tunneling of light through structured metal
films [1.13], this effect is linked with the interference of evanescent
and antievanescent waves, reflected from all the parts of gradient
layer; here the reflection coefficient can vanish at some frequency, pro-
viding complete transparency for this frequency, and almost complete
transparency in a finite spectral range surrounding this frequency.
Amplitude-phase spectra of transmitted monochromatic CW flows,
illustrating the location of these peaks of transparency and large
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phase shifts of tunneled waves, are presented in Ch. 4; the veloc-
ity of tunneling-assisted wave energy transfer through the gradient
barrier in question is found to be subluminal. Perspectives for the
design of miniaturized spectral filters and phase shifters, based on
these results, are illustrated. Another promising effect, involving the
effective energy transfer by evanescent waves, is connected with the
reflectionless tunneling of a guided mode through a smoothly shaped
narrowing in the waveguide, with the width of the slit formed by this
narrowing being 2.5-3 times smaller than the wavelength.

Gradient antireflection coatings, based on the interplay of absorp-
tion, and natural and heterogeneity-induced dispersion, are consid-
ered in Ch. 5. Attention is given here to the interaction of light
with superlattices, formed by gradient nanolayers. Propagation of
waves through these structures is examined in the framework of a
new exactly solvable model, generalizing the classical Kronig-Penny
model in solid state physics [1.21]. The same approach is used for the
calculation of reflectance spectra of superlattices containing meta-
materials with a negative refractive index n < 0 [1.22-1.24] Unlike
Chs. 2-5, focused on the normal incidence of waves on the barrier,
Ch. 6 is devoted to the oblique incidence and, respectively, to the dif-
ference of reflectance/transmittance spectra for S- and P-polarized
waves in gradient nanophotonics. Polarization-dependent tunneling
of these waves is shown to provide the potential for new types of large
angle polarizers and wide angle frequency-selective interfaces. The
lateral displacement of rays in the traditional bi-prism configuration
with an air-filled slit (Goos-Hénchen effect [1.18]) is reconsidered
for the configuration where the slit is filled by a gradient dielectric
multilayer structure; the complete tunneling-assisted transmission of
radiation through this system is shown to promote the observation
of the Goos—Héanchen effect.

By generalizing the previous analytical approach we examine in
a straightforward way the influence of different dispersive parame-
ters, characterizing the subsurface layer of a dielectric without free
carriers, on the spectra of surface electromagnetic waves (Ch. 7).
In contrast to Chs. 2-5 and 6, which treat problems of the normal
and oblique incidence of radiation on the surface of a gradient layer,
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the propagation of waves along this surface is considered. Thus, the
heterogeneity-induced dispersion of a dielectric is shown to support
the new branches of S-polarized guided waves in narrow banded
spectral intervals in the visible and infrared frequency ranges, if
their frequencies are smaller, than a cut-off frequency, defined by
the spatial distribution of £(z), decreasing in the depth of subsur-
face layer; this cut-off frequency is found by means of an exactly
solvable model of the subsurface layer. The influence of dispersion,
caused by periodically corrugated surfaces, as well as of roughness-
induced dispersion, on the spectra of surface waves are investigated
as well.

Emphasizing the paramount role of gradient nanophotonics,
which dominates currently the frontline research in this field, one
could be tempted to implement the corresponding ideas in other
branches of cross-disciplinary physics; thus, the current penetration
of concepts of heterogeneity-induced dispersion into the acoustics
of gradient solids is described in Chs. 8-10. This penetration signi-
fies the formation of a timely new topic-gradient acoustics of solid
metamaterials. The main goals of this topic are connected with the
creation of acoustic dispersion in the spectral range in need, forming
the controlled reflectance and transmittance spectra of acoustical
barriers as well as the resonant tunneling of sound through these
barriers. Thus, Ch. 8 is centered on the reflection and transmis-
sion spectra of solid layers with coordinate-dependent distributions
of density and/or elasticity, exemplified, e.g. by composite meta-
materials, metallic glasses or alloys with graded concentration of
components. Naming these layers by analogy with optics as “gra-
dient acoustic barriers”, and using again the “key model” of het-
erogeneity from Ch. 2, one can visualize the effects of non-local
acoustical dispersion in arbitrary spectral ranges [1.25]. These effects
form the physical basis for the elaboration of dispersive acoustical
reflectors, frequency filters, antireflection coatings, phase shifters.
As compared with gradient nanooptics, which deals with spatial
variations of only one parameter-the refractive index, the problems
of gradient acoustics of solids, operating in a general case with
spatial distributions of two parameters-density and elastic Young’s
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modulus — are more complicated [1.26]. Considering initially for
simplicity elastic layers with variations of either density or Young’s
modulus, we find the spectra of longitudinal and shear sound waves,
reflecting from these layers; the special algorithm, the “auxiliary
barrier” method, is elaborated in Ch. 8 for the exact analytical
solution of these problems [1.25]. Being armed by this knowledge,
we examine the reflectance of the abovementioned gradient solid
layer, characterized by independent distributions of both density and
elasticity.

Some trends of the penetration of the key concepts of gradient
electromagnetics to neighbouring fields of wave physics are shown in
the Ch. 9, devoted to the calculation of the eigenfrequencies of acous-
tic oscillations for heterogeneous strings, layers, and rods. To illus-
trate the applicability of the methods of gradient optics to these prob-
lems, the ancient acoustic problem-calculation of eigenfrequencies of
an elastic string with a heterogeneously distributed density — is
investigated in Ch. 9. This problem was treated initially by Lagrange
and Lord Rayleigh in the framework of perturbation theory. Their
results were included in Rayleigh’s classical book “Theory of Sound”
[1.27]. However, borrowing the model of density distribution from the
nanooptical problem in Ch. 2, one can obtain the eigenfrequencies of
a heterogeneous string rigorously, without any assumptions concern-
ing the smallness of its density or cross-section variations. The same
model proves to be useful for the analysis of the eigenfrequencies of a
gradient elastic layer [1.28]. The discrete spectrum of torsional oscil-
lations, inherent to the chain of elastic rods with different lengths,
is shown to represent the acoustic analogy of the Wannier—Stark
ladder, found first in the quantum mechanics [1.29]. Since the image
of an elastic string is widely used in analysis of the eigenoscillations
of distributed systems in mechanics, instrumentation, and electrical
engineering, the spectra obtained may become interesting for several
subfields.

The far reaching analogies between electromagnetic and acous-
tic waves in graded media are continued in Ch. 10. Comparison of
Secs. 7.1 and 10.1 illustrates the effects of heterogeneity-induced dis-
persion on the surface waves in optics and acoustics. Comparisons of
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Secs. 7.2 and 10.2 as well as Secs. 7.3 and 10.3 visualize the one-to-
one correspondence between the dispersive effects in spectra of light
and sound surface waves, originated by curved and rough surfaces,
respectively.

A detailed overview of each chapter is included to the relevant
chapter’s introduction; moreover, each chapter is completed by a list
of references and a short conclusion marking the next steps in the
development of the topics under discussion. A brief discussion of
several methods for fabricating gradient nanofilms is given in the
Appendix.

This book may be of interest to different groups of readers:

For scientists, interested in basic physics, this book points out
a series of new perspectives, which remained hitherto unexplored.
The concept of heterogeneity-induced dispersion, highlighted in this
book, is shown to form the cornerstone of several subfields of optics
and acoustics, which are now entering a new era. The remarkable
similarity in dynamics of wave fields of different physical nature
in gradient metamaterials promotes the development of a wvalid
“wave intuition” in the solution of corresponding problems in cross-
disciplinary physics. New intriguing horizons in the aforesaid sub-
fields, based on peculiar reflectionless tunneling of electromagnetic
and acoustic waves in gradient metamaterials, are expected to pro-
vide a key to the creation of new miniaturized dispersive elements for
photonic and phononic crystals, bridging the gap between the current
achievements in 1D and 2D structures and the future challenges in
the development of 3D photonic devices. A new analytical approach
to these problems stimulates the introduction of novel physical con-
cepts and images to modern optoelectronics and acoustics.

For designers and users of communication systems this book
can provide new trends in the miniaturization of wave circuitry
elements up to subwavelength scales, accompanied by the related
decrease of losses, which are needed in optical communication nets.
Systematic use of the heterogeneity-induced dispersion concept is
shown to enable the design of a series of key elements of such
circuitry, such as, e.g. filters, phase shifters, frequency-selective
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interfaces, large angle polarizers, and lossless antireflection coatings
of subwavelength spatial scales. Replacement of metallic foils, widely
used in plasmonics-based photonic crystals, by thin gradient glass
and polymer layers with heterogeneity-induced cut-off frequencies,
mimicking the dispersive properties of solid plasmas, can decrease
the cost of such crystals and broaden the list of materials used
in optoelectronics. Scaling between the different spectral ranges of
electromagnetic waves and, moreover, one-to-one mapping of similar
effects of gradient electromagnetics to gradient acoustics and vice
versa promotes parallel researches in these fields and optimization of
the parameters of such wave systems.

For lecturers and students the logical scheme of the book and
arrangement of information within each Chapter is suitable for didac-
tic goals and instructive analysis of wave phenomena, giving a simple
tool for the design of the next generation of wave-assisted devices,
based on novel physical fundamentals. The detailed mathematical
approach, using the recently discovered exact analytical solutions of
wave equations in complex media, yields standardized algorithms for
the calculation of wave field parameters in such media. Bringing com-
putations to masses, these standardized algorithms may be useful for
seminar discussions and self-study of wave phenomena in heteroge-
neous media. Presentation of classical results in optics of homoge-
neous media as limiting cases of effects of gradient electromagnetics,
widely used in the book, promotes the elaboration of a fresh insight
on the traditional optical concepts. Acquaintance with the rapid,
explosion-like development of this field of science can convince new-
comers that, despite the almost bicentennial history of discoveries,
even the linear branch of wave physics is not exhausted yet, while
the non-linear effects in the metamaterials are coming into play only
now [1.30].

The Chs. 1-6, 8, the Secs. 9.1 and 9.3 are written by A.B. Shvarts-
burg, the Chs. 7, 10, Appendix and Sec. 9.2 are written by A.A.
Maradudin. During the last years many people have contributed
to the authors’ understanding of this field either knowingly in sci-
entific collaboration and discussions or unwittingly through their
support and encouragement. Among those, who have contributed
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scientifically, we thank our colleagues N. Erokhin, R. Fitzgerald,
V. Kuzmiak, G. Petite, J. Polanco, and M. Zuev. The discussions
with Professors T. Arecchi, T. Brabec, P. Corcum, S. Haroche,
V. Konotop, A. Migus, L. Vazquez, V. Veselago, and E. Wolf are
highly appreciated. It is our pleasure to thank Professors V. Fortov,
A. Kuz’'michev, V. Vorob’ev, and L. Zelenii for their immutable inter-
est to this work. Authors express the deep gratitude to Prof. E. Shef-
tel and Prof. O. Rudenko for their invisible influence on this work. We
are much obliged to Prof. M.D. Malinkovich for providing the den-
sity profile of gradient photonic barrier, presented on the cover of this
book. Special thanks go to Dr. O.D. Volpian and all colleagues from
the R&D Company “Fotron—Auto Ltd”, for carrying out the first
experiments with dispersive optical nanofilms. Authors are indebted
to Dr. E. Voroshilova and Dr. S. Lokshtanov for providing Figs. 2.5—
2.7,3.4-3.5, 4.2, 5.1 and 6.2-6.3, respectively, to Prof. M. Fitzgerald
and Mr. J. Polanco for providing Figs. 7.1-7.6 and 7.8-7.10, to Dr. S.
Chakrabarti and Dr. E. Chaikina for providing Figs. 7.11-7.14 and
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CHAPTER 2

NON-LOCAL DISPERSION OF
HETEROGENEOUS DIELECTRICS

The salient features of the reflection and transmission of electromag-
netic waves through gradient dielectric wave barriers are investigated
here analytically in the framework of a simple one-dimensional prob-
lem. Let us consider propagation of a plane wave in a non-uniform
non-magnetic dielectric, whose dielectric permittivity ¢ depends
upon the z-coordinate. To stress the effects associated with the non-
uniformity of e, we assume initially, that the wave absorption and
material dispersion are insignificant in the range of frequencies w
under consideration. In this case the dependence of £(z) in the trans-
parency region € > 0 can be represented as

e(z) =ndU%2); Ul.—o=1. (2.1)

Here ng is the refractive index of the medium at the boundary z = 0,
and the dimensionless function U?(z) describes the spatial distribu-
tion of the permittivity.

The Maxwell equations for a linearly polarized wave with com-
ponents E, and H,, traveling in the z-direction through the medium
(2.1), are of the form

0B,  10H,

— 2.2
0z c Ot (2:2)
0H, niU%(2)0E,
_ — . 2.
0z c ot (2.3)

The function U?(z) still remains unknown.

15
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While discussing one-dimensional (1D) stationary propagation of
an EM wave, several models of a coordinate-dependent dielectric per-
mittivity e(z), allowing exact analytical solutions of Maxwell equa-
tions, can be outlined. One of the first such profiles was pioneered
by Rayleigh in a solution of the wave equation for the acoustic prob-
lem of sound propagation with a coordinate-dependent velocity v(z)
[2.1]. Application of this result to the wave equation, governing the
EM wave propagation, brought later the widely used model of £(z),
expressed via the function U3(z) [2.2]

-2
U2(z) = (1 + %) . (2.4)
Almost half a century ago the development of optics and microwave

physics stimulated the using of several exactly solvable models for
U? [2.3], U2 [2.4] and U2 [2.5],

-1
U =1+ %; Ui = (1 + %) . U2(z) = exp <_2fz>; (2.5)
Here the characteristic length L is a unique free parameter.

It is remarkable, that the models (2.5), which at first appear are
different, may be viewed as particular cases of one generalized dis-
tribution, containing two free parameters — the characteristic scale
L and some real number m:

U2(2) = (1 - ﬁ%) oz (2.6)

The values m = 1 and m = —1 in (2.6) relate to the profiles UZ(z)
and U2(z) in (2.5).
Moreover, by using the classical formula

1 X
lim <1 + —)
T

one can show, that in the limit m — oo the distribution (2.6) tends
to the exponential profile U2 (2.5).

=e, (2.7)

r— 00
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Models (2.4)-(2.6) describe only monotonic variations of the
refractive index. A model of a non-monotonic barrier, built from
broken straight lines (“trapezoidal barrier” [2.6]) contains several
unphysical angle points, formed by the crossing of these lines. The
restricted flexibility of models (2.4) and (2.5), containing only one
free parameter, hampers the optimization of regimes of wave propa-
gation through the realistic gradient photonic barriers. To visualize
the physically meaningful parameters, important for such optimiza-
tion, one has to use more flexible models of photonic barriers.

Unlike the exactly solvable models of U?(z), given in (2.4) and
(2.5), the series of more flexible exactly solvable models of gradi-
ent photonic barriers, containing several free parameters, will be
obtained below by means of a special transformation of Maxwell
equations (2.2) and (2.3) from physical space to a phase space. The
corresponding analytical solutions of Maxwell equations (2.2) and
(2.3) and reflectance/transmittance spectra for these barriers will be
found on this way. The spectra obtained display the decisive role
of heterogeneity-induced dispersion, depending upon the shape and
spatial scales of the profile U?(z), in wave processes inside the gra-
dient photonic barriers. Expressing the E, and H, components of
the electromagnetic wave field in terms of some generating function
U permits reducing the system of two first-order equations (2.2) and
(2.3) to one second-order equation for the ¥ function. This transform
can be accomplished by two different methods:

1. The generating function ¥ is chosen so, that Eq. (2.2) becomes
an identity, while the function U is determined from Eq. (2.3).

2. The function ¥ that makes Eq. (2.3) an identity is determined
from Eq. (2.2).

It is appropriate to consider separately the solutions and wave
propagation regimes, obtained by these methods; this Section is
focused on method 1. Section 2.1 is devoted to the artificial posi-
tive and negative dispersion for the simple model of gradient wave
barriers. Generalized Fresnel formulae for these barriers are derived
in Sec. 2.2. Multilayer systems, formed by combination of simple
barriers, examined in Sec. 2.1, are considered in Sec. 2.3.
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2.1. Giant Heterogeneity-Induced Dispersion of Gradient
Photonic Barriers

To operate in the framework of the abovementioned method 1, let us
express the field components in terms of the vector potential A

104 -
Ea, H = I'OtA. (28)

E—=_—
In the geometry of the problem under study the vector potential A
has only one component A,(A, = A, = 0). Presenting the A, com-
ponent as a product of some normalization constant Ay and dimen-
sionless generating function ¥ permits Eq. (2.3), which determines
the function ¥, to be written as

AV B n%UQ(z) RV B
022 c2 o2

One can see from Eq. (2.9), that an unknown function ¥ obeys a wave

0. (2.9)

equation with a coordinate-dependent speed of wave propagation.
Equation (2.9) can be solved by introducing new functions F' and
() and a new variable 7 [2.7]:

F

1 z
\IIZW’ U(Z):W, 77:/0 U(z)dz1. (2.10)

In this case Eq. (2.9) takes the form

O°F _n3otF _ [1 Q1 (ﬂﬂ. (2.11)

o o T |27d2 4\ dx

The coordinate-dependent coefficient is eliminated from the left side

of Eq. (2.11), but the function Q(z) still remains unknown.
Consider, for instance, a simple particular solution of Eq. (2.11),

which corresponds to the function Q(z) defined by the conditions

2 2
1pdQ 1 <%> _ 2 (2.12)

Here p? is some constant, which will be defined below. Assuming,
that the time dependence of the field F' is harmonic, Eq. (2.11) can
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be rewritten in a form

O*F niw?
e+ F () =0 (2.13)

Thus, owing to the transformations (2.10), Eq. (2.9) is reduced to a
standard equation with constant coefficients [2.7].
Introducing the quantities, linked with the constant p?,

wn 92 c2p?

g=20N, N=1-5 =L (2.14)
c w ng
one can write the solution of Eq. (2.13) in the form of a harmonic
wave, traveling along the n-direction: F' ~ exp[i(qn — wt)]; the quan-
tities ¢ and N in (2.14) play the role of wavenumber and refractive
index respectively in n-space. Substitution of this solution into (2.10)

yields the expression for the generating function W:

_ expli(an — wb)

7 T (2.15)

Till now the profile U(z) remains unknown. This profile, expressed
via the function Q(z) (2.10), can be found from the solution of
Eq. (2.12) in the form

2\ —1
U = (14 E ) s 0 w0 s

(2.16)

containing two arbitrary spatial scales L; and Ly. Here the case
s1 = —1, s9 = +1 corresponds to a convex profile, while the case
s1 = +1, s = —1 describes a concave one (Fig. 2.1). Let us stress
that, unlike profiles (2.4) and (2.5), profile (2.16) relates to a non-
monotonic distribution of the dielectric permittivity inside the gra-
dient barrier. In the case of opposite signs of s; and so profile (2.16)
has either a maximum (s; = —1, sy = +1) or a minimum (s; = +1,
s9 = —1) with a value U,,. The scales L; and Ly are linked in these
cases with the layer’s thickness d and the extremal value U, via the
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1.4 T 1 t t t t t t t

0.1 0.2 03 0.4 05 06 0.7 08 09 1
2id

Fig. 2.1. Profiles of dielectric permittivity U?(z) vs the normalized thickness in
the gradient barrier (2.16).

gradient parameter y:

Un=1+s9°)"" y=1Ly/2L; Ly=d(2y)"'; L;=d4y?) L
(2.17)

Substitution of U(z) (2.16) into (2.12) yields the value of the con-
stant p2:

2
2 51 52

=— — = 2.18
o (2.18)

p
Thus, the model (2.16) has four free parameters — the layer’s thick-
ness d, the extremal value U, and the signs s o.

Subject to the shape of the profile U(z) (Fig. 2.1), the sign sy in
(2.18) may be positive, negative or equal to zero. These possibilities
relate to different types of non-local dispersion, determined by the
parameter N in (2.14), which may be viewed as the refractive index
in dispersive n-space:

a. concave profile (so = —1); using the quantities y and barrier width
d (2.17), one can write the “refractive index” N and characteristic
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frequency €2 in the forms:

Q 2cy+/1 2
N=vV1-w? u=2="; Q= YVIty (2.19)
w nod

Expression (2.19) for N resembles the refractive index for a
plasma, where the cut-off frequency €27 is analogous to the plasma
frequency. The quantity NV increases with the increase of the fre-
quency w; here the condition w > €7 is assumed to be fulfilled.
This condition is known to determine the negative (normal) dis-
persion. The opposite case, w < 1, will be discussed in Ch. 4.

b. convex profile (s = +1); in this case one can obtain by analogy
with (2.20):

— Q 2cyy/1 — y?

w nod '
(2.20)

Unlike the monotonic dependence Q4(y), related to a concave
profile U(z), the function Q3(y) has a maximum at y?> = 0.5
(2.19). The expression (2.20), describing the increase of N due
to a decrease of the frequency w, relates to the case of positive
(anomalous) dispersion. These effects of artificial heterogeneity-
induced dispersion are shown below to play the fundamental role
in all the complex of wave phenomena in gradient barriers.

Thus, the EM fields in gradient wave barriers, described by dif-
ferent modifications of the e(z) profile (2.16), can be represented
via the amplitude-modulated harmonic waves (2.15) in dispersive
n-space. One can now use this representation for the calculation
of the complex reflectance/transmittance coefficients characterizing
these barriers.

2.2. Reflectance and Transmittance of Subwavelength
Gradient Photonic Barriers: Generalized
Fresnel Formulae

The standard way to examine the reflectance/transmittance proper-
ties of a plane layer contains the consideration of the complete field
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inside the layer, formed by the interference of forward and backward
waves, and the use of the sing of continuity conditions for electric
and magnetic field components at the boundaries of this layer and
the surrounding media. Making use of the solution (2.15), one can
write the generating function W inside the barrier (2.16) in a form of
superposition of forward and backward waves:

A , . .
= W[exp(lqn) + Q exp(—ign)] exp(—iwt). (2.21)

Here A is some normalization constant, the dimensionless quantity
Q describes the reflectivity of the far boundary z = d. Let us sup-
pose, that the wave E' = Ejexp[i(kz —wt)| is incident on the barrier
interface z = 0 from the air (z < 0). To find the complex reflection
coefficient R, one has to use the continuity conditions on the inter-
faces z = 0 and z = d. Substituting (2.21) to (2.8) and omitting for
simplicity the exponential factor exp(—iwt), one can calculate the
electric E, and magnetic H, components of the EM field inside the
barrier. The continuity condition for F, on the plane z =0 is

Eo(1+R) = E/(1+ Q). (2.22)

Use of the derivatives of profile (2.16),

1 dU S1 1 dU S1
= == = = — 2.2
U2 dz|,_, Ly U?dz|,_, Li’ (2:23)
brings the continuity condition for H, into the form
ikEo(1 — R) = %El [—%(1 + Q) +ne(l — Q)} L (2.24)
w c
k= —; = —; e = noN. 2.2
¢ wly’ fle = 10 (2:25)

It is noteworthy that the parameter n. (2.25) can be viewed as
the effective refractive index of the gradient material, describing its
heterogeneity-induced dispersion. Division of (2.22) by (2.24) yields
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the expression for the reflection coefficient R:

g lE B - 1-QurQ
-5 1-Qu+Q

The unknown parameter () in (2.26) can be found from the
boundary conditions on the far side of the barrier, z = d. Assuming
the barrier to be located on the surface of a half-space, formed by
a homogeneous lossless dispersiveless dielectric with refractive index
n, one can write the electric component of the EM field in this half-

(2.26)

space in the form F = FEj exp[i(kaz — wt)]. The continuity conditions
on the plane z = d are:

Erlexp(igno) + Q exp(—igno)] = Ea; (2.27)

. Y8 . .
ikEy { % lexp(igno) + Q exp(—igno)]

+ nelexp(igno) — Qexp(—iqng)]} = ikoFEs;  (2.28)

w

d
S 770:/0 U(z)dz. (2.29)

Division of (2.27) by (2.28) leads to the value of the dimensionless
parameter Q:

ky =

Ys
ne—I_%_n

: . 2.30
ne — 5+ +n (2:30)

Q = exp(2igno)

Finally, substitution of (2.30) to (2.26) yields the complex reflection
coefficient of the gradient photonic barrier [2.7]:

o1 + 109 .
R=———==|R|exp(i¢;);
P |Rjexpio,)

2
o1 = t<n + Vz - ni) —neysy; oa=—(n—1)§& t=tglgm);

2
X1=t<n—%+ng> +neys; x2=Mm+1)§ E=ne— ——.
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Equation (2.31) presents the generalized Fresnel formula for the
reflection coefficient of a single layer for both concave (s; = 1) and
convex (s; = —1) profiles U(z), shown in Fig. 2.1. The reflectance
spectrum, described by (2.31), is characterized by non-local disper-
sion, determined by the dependence of the parameters n, and vy (2.25)
on the normalized frequency u (2.17). The phase path length 7y, cal-
culated from (2.29), as well as the parameter y (2.17), are different for
concave and convex profiles. The explicit expressions for the quanti-
ties ne,u,y,1no and qng, determined for concave and convex profiles
U(z), are listed below:

Concave Profile U(z). Convex Profile U(z).
a. ne = oV 1 — u?; a. ne = ngV1 + u?;
2cy\/1+ y? 2cy+/1 — y?
b,y = ———; b.u=—"—;
nodw nodw
1 1
A 1 Ly=4/1-—
“v Umin ' “y Umax’
d. v = _2unoy d = M;

\/1—|—y2’ I—y2
e n= Lo 1n<1+y+Z/L2>. e n= Lo arctg 72/1/2 1=y ;
) 21+ 42 1—y z/Ly)" 12 1—yz/Ly |’

d Y+ d Yy
f.np=——=—=In (—), f.no = arctg ;
2y\/1+ y? Y- yy/ 1 —y? 1—y?

V1—u? Yt 2v1 + u? Y
g qno = In{=—); g. qnp = ———arctg| — |.
U Yy— U /1 — 92
(2.32)

The dimensionless parameters y4 are

yr =V1+y*ty; ypy- =1 (2.33)

Using the expressions for the factor @ (2.30) and the reflection
coefficient R, (2.31), one can calculate the transmission coefficients



Non-Local Dispersion of Heterogeneous Dielectrics 25

with respect to the electric Tk and magnetic Ty components of the
EM field for the lossless barrier:

21N,

T =

-  —|Tg|explidy); Ty =nTy. (2.34
costam) (1 Fing) BN T = (230

Substitution of expression for R (2.31) into (2.34) brings the formula
for the transmission coefficient with respect to energy |T|?> = TgT o
into an explicit form:

TP = 4nzn(12+ t2) '
|+ (12 (me — 230
(2.35)

‘t (n - 1—2 + ng) + neysy

All the quantities in (2.35) as well as in (2.31) have to be chosen
for concave and convex profiles of U(z) according to the defini-
tions (2.32). The reflection and transmission coefficients for stratified
media are known to be unique [2.8].

Examples of spectra of reflectance and transmittance of gradient
photonic barriers with convex and concave profiles of the refractive
index, related to different values of the gradient parameter y and
the substrate refractive index n, are shown in Figs. 2.2 and 2.3.
These spectra as well as other reflectance and transmittance spectra
for the gradient structures discussed in this book, are presented for
some given values of the refractive indices ng and n and gradient
parameter y as functions of the normalized frequency of the incident
wave wu; the values of |R|? and |T'|? from these spectra relate to the
frequency w, determined by expressions, following from the defini-

tions of the normalized and characteristic frequencies u and 2o
(2.19)—(2.20):

d 2yy/1 2
w_ — u- (2‘36)

c nou
This universal nature of the spectra in Figs. 2.2 and 2.3 allows to
use each value of |R(u)|? and |T'(u)|? for analyses of the propaga-
tion of different wavelengths through barriers with a given profile
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(a) 0.7+
0.6 -
0.5
|R|2 0.4 -
0.3 2

0.2 4

(b) 05+
0.4
0.3 4
IRI*

0.24

0.1

004+ ¥1+7—

Fig. 2.2. Reflection coefficient |R|? for a convex profile, ng = 1.47. (a): y = 0.75.
(b): y = 0.577. Curves 1, 2 and 3 correspond to the values of n = 1, 1.8 and 2.3
respectively.

U(z) but different thicknesses. Thus, e.g. fixing the value u = 0.5
we find for graph 1, depicted in Fig. 2.3(b), the value of the trans-
mission coefficient |T|? = 0.835. This value remains valid for all
the barriers (2.16) with ng = 2.3 and depth of refractive index
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(a) 1.00-
0.95
0.90
0.5

0.80

N

2 i
IT| 0.75 ]
0.70 A

0.65

0.60

0.55

os0+—r———rrr+——r—— 7
0.3 0.4 05 06 07 08 0.9 1.0

(b) 1.00+
0.95
0.90
|T|2 0.85
0.80

0.75 1

o0+
0.3 0.4 05 06 07 08 09 1.0

Fig. 2.3. Transmittance spectra for a concave barrier (no = 2.3) vs the normal-
ized frequency y for different values of the substrate refractive index n; curves 1,
2 and 3 correspond to n = 1; 1.8 and 2.3 respectively. (a) and (b) correspond to
the values of the gradient parameter y = 0.75 and y = 0.577, respectively.
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modulation n/ng = (1 + y?)~! = 0.64, meanwhile the barrier’s
width d and frequency w may be distinguished, but are linked by
the relation following from (2.36): wd/c = 0.58. According to this
relation the propagation of waves with wavelengths A = 800 (620)
nm through the barrier with width d = 74 (57) nm is characterized
by the equal transmission coefficients |T|?> = 0.835. This similarity
proves to be useful for optimization of parameters of gradient optical
structures.

2.3. Non-Fresnel Reflectance of Unharmonic Periodic
Gradient Structures

Periodic dielectric multilayer nanostructures possess a considerable
flexibility of reflection-transmission properties. The traditional mul-
tilayer structure consists of alternating homogeneous dielectric layers
of two materials with high and low refractive indices n; and no and
layer thicknesses dj, and d; respectively [2.9]. In contrast to these
structures, gradient barriers can be designed from alternating con-
cave or convex profiles as well as from more complicated configura-
tions, e.g. alternating gradient and homogeneous barriers. The series
of dielectric nanostructures, containing adjacent gradient barriers,
can form periodic systems with unharmonic profiles of the refractive
index and unusual reflectance/transmittance spectra. Side by side
with the reflection of waves due to the discontinuity of the refractive
index at the boundaries of films, habitual to adjacent homogeneous
films as well, the reflectance of waves from a gradient structure is
influenced by discontinuities of the gradient and curvature of the
profiles n(z) on these boundaries. The interplay of all these phenom-
ena provides a huge diversity of reflectance/transmittance spectra of
unharmonic periodic and sandwich structures.

Rigorously speaking, the generalized Fresnel formulae, obtained
in Sec. 2.2 for one gradient film, located on a substrate, include the
contributions of discontinuities of both refractive index U(z) and its
gradient and curvature on the boundaries of the film with homoge-
neous media — air and substrate. However, to emphasize the impor-
tance of effects of both gradient and curvature discontinuities to the
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layer’s reflectance, we will examine these effects separately, consider-
ing two configurations of adjacent films, located on a homogeneous
substrate with refractive index n:

1. The gradients n(z) on the boundary of adjacent films z = d are
unequal, meanwhile the curvatures of profile n (z) on this bound-
ary are equal [2.10].

To illustrate the details of such a generalization let us start from
a stack of similar adjacent concave barriers (Fig. 2.4(a)), supported
by a thick homogeneous dielectric substrate with refractive index
n, located on the far side of system. Considering the normalized
profile of refractive index U(z) (2.16), one can see, that the values of
grad U, expressed in normalized coordinates = = z/d, possess a jump
on the boundary z = 1 from dU/dz|,_o = 4y? to dU/dz|i1o = —4y>,
while the curvatures of both concave profiles on this boundary remain
equal: K, = 8y%(4y® + 1)(1 + 16y*)~3/2. Attributing the number
m = 1 to the first layer at the far side of the stack, we will find the
parameter A; describing the interference of forward and backward
waves inside the first barrier; this parameter, connected with the
value @ (2.30) by the relation Ay = (1 —Q)(1+ Q)™ !, is

YS1
2

n —

ne — (in+ 5) ty

— et
A1: el+

(2.37)

Here t+ = tg(qno), where the values ¢ng, as well as the quantities
v and n., are defined for concave (t;) and convex (t_) profiles in
(2.32). It is worthwhile to introduce, by analogy with parameter Aj,
determined by the first layer, the analogous parameter A,, (m > 1),
describing the interference of forward and backward waves in the
m-th layer by means of a factor @, (2.21):

_1-Cm,
1+ Qm
The formula (2.26), defining the reflectance of one gradient bar-

rier, relates to the case m = 1. Using the continuity conditions on
each boundary between adjacent layers, we’ll find a simple recursive

Am (2.38)
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Fig. 2.4. Unharmonic periodical structure, formed from gradient barriers: nor-
malized profiles of the refractive index U(z) are plotted vs the normalized coor-
dinate z/d. Figures 2.4(a) and 2.4(b) show the parts of periodic structures,
consisting of similar barriers with normal and anomalous non-local dispersion,
respectively.
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relation between parameters A,, and A,,_1:

ne(Am—l - 'it:l:) - ’i’781

A, = - ;
m ne(l — ZAm_lt:t) — 'ytisl

m > 2. (2.39)

Since the wave is incident from z < 0 on the interface of m-th layer,
one can find the reflectance of the entire periodic structure, from a
formula, that generalizes the corresponding expression for a single
gradient barrier (2.26):

R _1+m%—neAm
T - A,

(2.40)

Amplitude-phase spectra of the reflectance of periodic structures,
containing several gradient barriers with concave (Fig. 2.4(a)) and
convex (Fig. 2.4(b)) profiles n(z), are shown in Figs. 2.5-2.6. It is
worthwhile to emphasize some salient features of these spectra:

a. Spectral maxima, as well as spectral minima, of periodic gradient
systems are non-equidistant.

b. A narrow peak of total reflectance (spectral filtration) arises for
the multilayer nanostructure with normal non-local dispersion
near the frequency u = 0.22.

c. Reflectance spectra of multilayer nanostructures contain fre-
quency ranges of finite widths between 0.41 < u < 0.48 (normal
dispersion, Fig. 2.5(a)) and 0.48 < u < 0.63 (anomalous disper-
sion, Fig. 2.6(a)), characterized by total reflectance (|R|* = 1).

d. The phase shifts ¢, of reflected waves remain positive (Fig. 2.5(b))
and negative (Fig. 2.6(b)) in the aforesaid spectral ranges of
total reflectance; these phase shifts increase with the increase
of frequency (9¢,/0w > 0) in both cases, the reflectance being
constant.

2. Gradients of n(z) on the boundary of adjacent films are equal,
while the curvatures are unequal [2.11].

To display the influence of discontinuities of curvature of a
smooth profile U(z) in the gradient layer on its optical properties,
let us consider the structure, whose reflectance is governed by these



32 Waves in Gradient Metamaterials

(@ IRI*10

.

0.6 |
0.4 /

0.2 |

0.0 T
0.1

®) ¢ran-

2.5 1
2.0 1
1.5 1
1.0 4

0.5 1

n.ao

0.42 0.44 0.45 048 u

Fig. 2.5. Reflectance spectrum of a periodical structure, containing m = 20
gradient layers with normal dispersion, shown in Fig. 2.4(a) (no = 2.21875, n =
2.3, y = 0.75). (b): variations of the phase of the reflected wave ¢, under the
conditions, shown in Fig. 2.4(a), are depicted for the spectral range, corresponding
to the total reflection: |R|* = 1.

discontinuities only, the refractive index and its derivative being con-
tinuous. The relevant configuration, presenting the “smoothened”
transition layer between two media, spaced by distance d, with the
refractive indices nq and ng, is depicted on Fig. 2.7(a). The refractive
index n(z) is varying along this slit from the value ny up to ne mono-
tonically and continuously, it’s gradient, nullified at the interfaces
z =0 and z = d, is varying continuously along the slit too, however
this layer possesses three discontinuities of curvature — two at the
interfaces and one at some point z = zy inside the layer. Our goal is
to find the reflection coefficient R for this “smoothened” sandwich



Non-Local Dispersion of Heterogeneous Dielectrics 33

@ IRI" 15
0.8

056 4

0.4

0.2 4

0.40 0.80 1.20 1.60 2.00 u

(b) 2.45 0.5 0.55 0.6 0.&5

1]
8]

-2.5
-2

ﬁ- -3.5

Fig. 2.6. Reflectance spectrum of a periodic structure, containing m = 20 gra-
dient layers with anomalous dispersion, shown in Fig. 2.4(b) (no = 1.42, n = 2.3,
y = 0.75). (b): variations of the phase of the reflected wave ¢, under the condi-
tions, shown in Fig. 2.4(b), are depicted for the spectral range, corresponding to
the total reflection: |R|*> = 1.

gradient structure; the parameters nq,ns,d, zp are supposed to be
known.

Let us consider such a structure, containing gradient layers 1
and 2, characterized by different distributions of refractive indices
n_ and n4 respectively:

2\ 7!
n_ = nlUl; Ul = <1 - l_2> . (241)

Z— 20 (2—20)2 - (2.42)
Ly L2 ' '

ny = noUQ; U2 =|1-
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Fig. 2.7. Reflectance of a smooth transition layer due to an internal discontinuity
of curvature. (a): gradient transition layer between media with refractive indices
n1 and neg; distribution of refractive index and its gradient inside the layer is con-
tinuous, the discontinuity of curvatures of profiles U(z) arises at the intermediate
plane z = 2. (b): Reflectance spectra of the transition layer, shown in (a), in the
middle IR range (n1 = 1.42, no = 2.22, d = 150 nm), spectra 1 and 2 correspond
to the values zp = 50 nm, zop = 100 nm, respectively.

One can see, that distributions (2.41) and (2.42) are different forms
of model (2.16). The profiles n_ and ny cross at some point zo,
characterized by the value ng:

no =n_(z0) = n4(20); (2.43)

First of all we have to find the geometrical parameters [, L and
Lo in profiles (2.41) and (2.42). These parameters are linked by the
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condition of a smooth tangent of curves n_ and n, at the point
zZ =20
1 . 220
L1 a l2 — Zg ’

(2.44)

and by the condition that grad Us vanishes at the point z = d:

1 2(d — Zo)
—_— = . 2.45
L~ I (245)
Substitution of I and L; from (2.44) and (2.45) into continuity con-
dition n4 (d) = ng brings the value of L. Assuming, for definiteness,
ng > nq, we find:

(d — ZQ)N.

e —— nad — zo(ng — n1); (2.46)

Now one can calculate the geometrical parameters [, L1 and the value
no (2.46):

N Zodn2 nlngd
Y7 2(ng — )’ V ng —ny’ "o N (2.47)

It is worthwhile to recall, that the “tangent point” zy was chosen

freely.

With these values of [, L1 and Ls in hand we can calculate the
reflection coefficient R. The tangent of arcs U; and Us on the inter-
nal boundary zy between layers is smooth and, thus, the refractive
index and its gradient on this boundary are continuous. It is remark-
able here, that the discontinuity of curvatures of the profiles U7 and
U, at this boundary makes a contribution to the reflectance of the
sandwich. To calculate this reflectance one can use the standardized
approach, developed above for a single barrier: the wave fields in
layers 1 and 2 are represented by means of wave functions (2.21),
and the boundary conditions on the interfaces z = 0 and z = d are
formulated in (2.22)—(2.24) and (2.27)—(2.28) respectively. A peculiar
part of this analysis is connected with the boundary conditions at
the internal boundary zg, where, due to smooth tangent of profiles
Uy and U, the values of the parameter L1 in both profiles is equal.
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This condition, linking the quantities Q; and Q2 in the fields ¥y 5
(2.21), reads as:

_1-Qs
14+ Q7

; 2

(2.48)

Ny + NoA,

, N; — NoA
Q1 = exp(2iqim) [ ! & 2]

Considering the profile n_ as a half of the concave arc (2.16), one
can represent the generating function for the EM field ¥ in the form
(2.21) with the values of the “wave number” ¢; and variable 7, given

by formulae
2
w w
q1=—nmNi; Np=y/1- —
c w

= —Eln 142/
e M7 1—2/1)°

Let us restrict ourselves here to the high frequency spectral interval

(2.49)

w > wq. The expression for R can be derived in this case in a form
similar to (2.26) in the limit v — 0, corresponding to the geometry
of profile Uy near the interface z = 0:

_1—N1A1‘ _1_Q1
TI+NA T T+ Qr
The generating function ¥ for the arc Uy (Fig. 2.4(b)), treated as a

half of the convex arc (2.16), is written again in the form (2.21) with
the values of g2 and 7y given by

02
g2 = E?’LQNQ; Ny = \/ 1+ —g (251)
& w

Here the characteristic frequency for the convex arc €2y is defined in
(2.20), the variable 72 can be obtained from (2.32¢) by the replace-
ment z — z — 29, and the dimensionless parameter y = Lo/2Lq,

R

(2.50)

important for calculation of reflection coefficient, can be found by
means of (2.45)—(2.46):

(2.52)
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According to expression (2.47), the reflection coefficient R
depends on the parameter Aq, which, in its turn, depends upon the
factor Q1. The continuity conditions at the internal boundary z = zg
yield the link of (1 with the analogous factor 2, determined for the
arc Us; this link was found above in (2.48). Finally, the factor @2,
found from the boundary conditions at the interface z = d, is

) nolNo — n
Q2 = exp(2igan?) [M}

; 2.53
noNy + ng ( )

Going back along this chain of calculations and substituting Q2 from
(2.53) into (2.48), we find @);. Then, substitution of (); into (2.53)
yields the complex reflection coefficient R:

Ky —1iIy
R=——; 2.54
Xy i, (2.54)
Kl = NlNg(’rlO — ng) + ngtltg(N% — HQNQ);
Kg = NlNg(’rlo -+ ng) — ngtltg(Nf -+ HQNQ); (255)

I = HQ(Nth + ngtl) — nONlNQ(Nltl + NQtQ);
Iy = nz(Nth + ngtl) + nONlNQ(NItl + NQtQ).

Here the values N7 and Ny are defined in (2.49) and (2.51) respec-
tively, while the factors ¢1 and ¢y are:

t =tg [y/uﬁ — larctg (?)} ;U = % (2.56)
_ y Qg
ta =t 2 ¢ larctg | —=— | |; = —. 2.
2 g[\/u2 + arcg( —1—y2>]’ uz = — (2.57)

The characteristic frequencies w1, {29 and the factor y are determined
in (2.46), (2.20) and (2.52), respectively.

Formulae (2.55)—(2.57) present the complex reflection coefficient
of gradient transition layer, defined only by discontinuities of the
curvature of a smooth profile of the refractive index inside the sand-
wich structure (Fig. 2.7(b)). Variations of the location of the internal
boundary in this sandwich (point zy), the total thickness d being
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fixed, opens the possibilities to optimize the parameters of a transi-
tion layer in a fixed spectral range.

Comments and Conclusions to Chapter 2

1. It is instructive to compare and contrast the exact solution of
Eq. (2.9) in the form (2.15), which is not restricted by any assump-
tions about the smallness or slowness of variations of fields and
media, with the solution of (2.9), obtained in the framework of the
traditional WKB-approximation, when these variations of profile
U(z) are presumed to be small and slow; such a WKB-solution
may be written as [2.12]

g = ol —wt)] (2.58)
U(z)

The variable n in (2.58) is defined, as above, in (2.10). The
difference between the exact (2.15) and approximate (2.58) solu-
tions is stipulated by the value of factor N in the wavenumber ¢
defined in (2.14): in the exact solution factor N is distinguished
from unity due to the characteristic frequencies €21 and 25, which

describe the non-local heterogeneity-induced dispersion, while in
the WKB-approach these non-local effects are ignored

Li—o0; Ly—o00; Q1 —0; Q9 —0. (2.59)

and the factor N possesses the constant value N = 1. These effects
of artificial heterogeneity-induced dispersion are shown below to
play the fundamental role in all the complex of wave phenomena
in gradient barriers.

It is remarkable, that the case N = 1, corresponding to the
vanishing of heterogeneity-induced dispersion, can arise even in a
medium with non-zero values of the spatial scales L1 and Lo due to
the special relation between them: Lo = 2L;. Using this condition,
one can obtain from (2.16) the profiles of gradient dispersiveless
barriers [2.11]:

U(z) = <1 + L%) - (2.60)
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Calculation of new the variable  (2.10) by means of (2.60)
brings the expression for a wave, traveling through the barriers
(2.60), in a form

. —1
U = exp [Z“’ZOZ (1 + Li2> ] . (2.61)

. It has to be emphasized, that the classical Fresnel formulae,
describing reflectance and transmittance of homogeneous dielec-
tric layers, can be viewed as the limiting cases of more general
formulae (2.31) and (2.35) for gradient layers, corresponding to
the condition of vanishing of the heterogeneity in the profiles of

the refractive index U(z); the conditions (2.59) are supplemented
now by condition U = 1. Thus, in this limit expression (2.31) is
reduced to the well-known Fresnel formula for the reflectance of
homogeneous dielectric layer with thickness d and refractive index
ng, located on a half-space with refractive index n:

(n — nd)tga —ing(n — 1) ~ wnod.

R = = 2.62
(n + nd)tga + ing(n + 1)’ “ c '’ (262)

Correspondingly, the expression for the complex transmission
coefficient T of a gradient layer (2.34) is reduced in the same
limit to another classical Fresnel formula:

T (a) B 2in0 .
P (n+n)sina + ing(n + 1) cosa’ (263)
2.63
wnod 2y/1 + y?
== —:
c u ’
Figure 2.8 shows the transmittance spectrum |T'(u)|? for a gra-

dient barrier, calculated by means of (2.35), and the spectrum
|T(«)|? for the homogeneous rectangular barrier (2.63) for the
same frequency w; the parameters d and ng for both barriers
are equal, and the factor « is determined in (2.62). Inspection
of both spectra illustrates the drastic changes in reflectance/
transmittance spectra, caused by the smooth heterogeneous struc-
ture of the transparent barrier.
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Fig. 2.8. Effect of gradient profile n(z) in transmittance spectra for the hete-
rogeneous barrier (2.16) with normal non-local dispersion (y = 0.75, curve 1)
and a homogeneous barrier (curve 2); the refractive indices no = 2.3, n = 1 and
thickness d are equal for both barriers.

3. The spectral ranges of total reflectance, shown in Fig. 2.5(a) and
Fig. 2.6(a), possess the potential for the design of effective broad-
band reflectors in the middle IR range.

4. The substantial dispersion of the phase shift of the reflected wave
(Figs. 2.5(b) and 2.6(b)) may become useful for fast phase modu-
lation of broadband IR radiation, keeping its amplitude invariant.
Thus, considering, e.g. the thickness of gradient films d = 150 nm,
one can find the critical frequencies Q; = 1.7 x 10 rads™!
(Fig. 2.5(b)) and Q5 = 2.1 x 10 rads~! (Fig. 2.6(b)); the deriva-
tives ¢, /0w, defined from these graphs, are 3.15 x 10719 s for the
normal dispersion and 1.95 x 10715 s for the anomalous one.

5. The exactly solvable model of a gradient barrier U(z), (2.16),
possess several salient features:

a. flexibility, stipulated by interplay of two free parameters (s;
and s9), yields the possibility to examine non-monotonic (both
convex and concave) profiles of gradient photonic barriers; here
the widely used monotonic Rayleigh profile (2.4) proves to be a
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limiting case of (2.16), related to the value so = 0; moreover, as
it follows from (2.18), the cut-off frequency Q = ¢/2noL(L =
L) and wavenumber ¢ (2.14) retain the same values for both
concave (s; = +1) and convex (s; = —1) Rayleigh barriers.

b. mathematical simplicity, providing a standardized analytical
calculation of reflectance/transmittance spectra of gradient
photonic barriers by means of exact analytical solutions of the
Maxwell equations, expressed by elementary functions in a spe-
cial n-space.

c. scalability of results, which can be applied to waves of different
physical nature described by wave equation (2.9); examples of
such scalability will be shown below in the analysis of acoustic
waves in gradient elastic media [2.13].

Owing to these features the model (2.16) is considered to be
a key model for several problems touched in this book. A series
of improvements of this model, which bring it closer to the real
materials, are discussed in Ch. 3.
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CHAPTER 3

GRADIENT PHOTONIC BARRIERS:
GENERALIZATIONS OF THE
FUNDAMENTAL MODEL

The simple model of a gradient photonic barrier presented in Ch. 2
shows, nonetheless, several salient features of such structures:

1. A strong technologically managed non-local dispersion, which may
be fabricated to be either normal or anomalous;

2. The possibility to design controlled reflectance/transmittance
spectra in any visible and IR spectral ranges;

3. Miniaturized, even subwavelength, spatial scales.

The essential dependence of the reflectance /transmittance of gra-
dient barriers on their geometric parameters, illustrated in Ch. 2
in the framework of the key model (2.16), stimulated attempts to
broaden the variety of these spectra by means of new exact analyti-
cal solutions of Maxwell equations (2.2) and (2.3) for gradient media,
characterized, unlike (2.16), by other profiles U(z). Moreover, the
analysis of optical properties of gradient photonic barriers (2.16) in
Ch. 2 revealed their strong dependence on the gradient and curva-
ture of the profiles U(z) on the boundaries of the barriers. However,
while modeling some fabricated barrier by means of model (2.16)
and using its technologically controlled parameters — width d and
extremal values Upax or Upin — one has to attribute some fixed
values to the aforesaid gradient and curvature of U(z) on both sides
of the barrier. To make the model (2.16) more practical and flexible,

43
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and, still, analytically solvable, the following generalizations are
required:

1. The slope of the profile U(z) near to the barrier boundary, e.g. z =
0, may be characterized by the dimensionless factor £, determined
by the derivative

e

=20U,|,—0; €& =2dUU,|,—o. (3.1)
dz |,

The factor £, calculated for profile (2.16), is fixed: using the rela-
tion between d and Ly (2.17), we find a constant value of &:
281d

- — _8g11/%. 3.2
§ I 51y (3.2)

Thus, the dependence of reflectance/transmittance spectra on the
slope of the profile U(z) near the barrier boundaries cannot be
considered in the framework of model (2.16). To investigate this
dependence, a more general model of the barrier, containing an
additional free parameter, is considered below in Sec. 3.1.

2. Some models of asymmetric barriers with thickness D, character-
ized, unlike (2.16), by the property U(0) # U(D), can be obtained
by a simple truncation of the symmetrical profile (2.16) (Sec. 3.2).

3. It has to be emphasized, that, side by side with the explicit expres-
sion for the refractive index profile U(z), like (2.16), there is a
multitude of exactly solvable implicit models, presented both by
means of inverse dependence z = z(u) and in parametric form
(z = z(n), U = U(n), where n is some parameter); the examples
of such presentations, illustrating the algorithm for the formation
of implicit models, is discussed in Sec. 3.3.

3.1. Effects of the Steepness of the Refractive Index
Profile near the Barrier Boundaries
on Reflectance Spectra

To visualize the sensitivity of the reflectance spectra of a barrier U(2)
on the variable gradient of its profile, the other barrier parameters
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being fixed, let us consider the generalized model of barrier U (2)

s1z 22

—H
U, (Z) = <1 + L—l + L_%> = [U(Z)]‘u (33)

Here the profile U(z) is given by the key model (2.16), where the
dimensionless power p is the new free parameter, determining the
slope of profile Uy (z) with respect to the boundaries of the barrier;
thus, the model (2.16) may be viewed as the limiting case of (3.3),
related to the value p = 1. The extrema of the symmetric profiles
(3.3) are (see (2.17)):

Un=(1+ 51y2)_“. (3.4)

Other relations between the width d, heterogeneity scales L; and
Ly in (2.17) remain valid for the profile (3.3) as well. Substituting
the function Uj(z) instead of U(z) into the wave equation for the
generating function ¥ (2.9), and introducing, by analogy with (2.10),
the new variable 1 and new functions F' and Y

F=9\yU(z); Uz)=[Y(2)]" n= /OZ[U(zl)]“dzl, (3.5)

one can rewrite Eq. (2.9) in a generalized form

d’F wnp\2 v vl Y? Y..
ap T {(T) ) {(1 + %)y~ | ) =0

(3.6)

Till now no suppositions concerning the numbers v and u have been
made. However, when these numbers obey the condition

v = —1, (3.7)

one can reduce Eq. (3.6) to the form (2.11). Moreover, assuming the
conditions (2.12) and (2.13) to be fulfilled, the generating function ¥
for profile (3.3) can be represented in a form, coinciding with (2.15)
after the replacement U(z) — Uj(z), and the use of the variable 7,
defined in (3.5). Following further the scheme of analysis, described in
Sec. 2.2, we obtain a formula for the reflection coefficient R, valid for
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an arbitrary value of the parameter y; this formula, resembling (2.31),
obtained for = 1, is distinguished from (2.31) due to replacement

Y = Y, (3.8)

and the new expression for the factor ¢ = tg(gno), where ny = n(d)
has to be calculated, unlike (2.32g), from (3.5) for each value of the
parameter p. Thus, integration in (3.5) for the values p = 0.5 and
u = 1.5 for, e.g., the concave profiles U;(z), leads to the expressions:

1
O(y1)y/ 2 1] ;
@(yl) = 2\/ 1+ y%arc sin <\/1y7—]"-_—y2>,
1

@(yz)\/; ;

nw=205 t=tg

(3.9)
pw=15 t=tg

)

1 V1+y2 4y
O(y2) = y2 + = 1n yg 2.
2 1+3/2 1+y2_y2

The values y; and ys are defined here for the given U, from (3.4).
Reflection coefficients R (2.31) with the correctly defined param-
eters t and v enable the calculation of the reflectance for any barrier
(3.3); here the case =1 relates to the key model (2.16). To empha-
size the importance of the slope of profiles (3.3) for the effectiveness
of the reflectance/transmittance, it makes sense to compare, e.g. the
reflectance spectra for profiles characterized by equal widths d and
equal extrema U,,, but different slopes ¢ (3.1), depending on the
power p. Thus, the equality of minima Uy, (3.4) for two concave
profiles with i = 1 and p # 1 yields the condition, linking the values

of y(u=1) and y1 (p# 1):
1+y% = (1+y2)H (3.10)

Substitution of 31, calculated from (3.10), into the expression for the
slope parameter ¢ yields finally for concave profiles (2.16):

£(w) = —8ul(1 + 42 —1]. (3.11)



Gradient Photonic Barriers: Generalizations of the Fundamental Model — 47

1.0+
0.9+
0.8+
m 2

0.7 4

0.6 4

54—+
0.2 0.3 04 05 0.6 07 08 0.9 1.0

u

Fig. 3.1. Reflectance spectra for the generalized profile (3.3). Curves 1, 2, 3 relate
to concave profiles with the values of the parameter p = 0.5, 1, 1.5, respectively;
no =2.3;y=0577,n=1.

The difference between barriers, related to these values of the power
pin (3.3), is formed near the film boundaries z = 0 and z = d; the
smaller value of p, providing the bigger slope (3.11) at the periphery
of the profile [U(z)]*, results in the flattening of its central part, the
profile minimum U, (3.4) being fixed.

Thus, the profile [U(z)]* for =0.5 is more flattened in its central
part, than the profile with 4 = 1.5. The reflectance spectra for profile
(3.3), calculated for the abovementioned values p = 0.5, 1 and 1.5,
are shown in Fig. 3.1. Determining the slope (3.11) for these profiles,
we see the drastic variety of reflectance, caused by the decrease of
the slopes (3.12): £(0.5) = —3.104; £(1) = —2.664; £(1.5) = —2.536,
other parameters of photonic barriers being the same.

3.2. Asymmetric Photonic Barriers

The barrier (3.3) with thickness d is symmetric with respect to the
plane z = d/2, containing its extremum U,,(U(0.5d — z) = U(0.5d +
z)). Violations of this symmetry can provide significant changes of the
barrier’s reflection spectra. To illustrate some reflection tendencies
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for asymmetric barriers with thickness D, one can consider two
different types of profiles U(z):

a. The barrier is formed due to truncation of concave or convex
symmetric profiles (2.16), characterized by thickness d, at same
point D < d, so, that U(0) # U(D);

b. The opposite case of an asymmetric barrier, where U(0) = U(D),
but the profile is not symmetric with respect to its extremum U,,.

Considering the first case, it is instructive to examine here a
special profile, related to a half of the symmetric barrier (2.16), when
the extremum of the profile U, is located at the far side of the
asymmetric barrier U(z) with thickness D = 0.5d; in this case one
can find from (2.17):

1

(3.12)
In this geometry the gradient of the refractive index n(z) at the
interface z = D vanishes (U,|,—p = 0); however, the curvature of
the profile n(z) at this interface will be shown to have an influence
on the reflectance of the barrier even in the case where neither the
index, nor its gradient possess any discontinuity at the plane z = D.
The continuity conditions at the plane z = 0, given by (2.24) and
(2.25), remain valid, as well as the expression (2.26) for the reflection
coefficient R; however, the factor () has to be redefined from the
continuity conditions at the interface z = D (n(D) =n1,7 =0):

E[exp(ign) + Q exp(—ign)]

VUn,
Einey/Upnlexp(iqn) — Q exp(—ign)] = nEs. (3.14)

Division of (3.14) by (3.13) yields the dimensionless factor Q:

= Ey; (3.13)

. neUm — N
Q = exp(2igm) <m> (3.15)

On substituting Q (3.15) into the general expression (2.26) and tak-
ing into account the relation, valid for the “half” of barrier (2.16)
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n1 = 0.519, we obtain finally an explicit expression for the reflection
coefficient R for the asymmetric barrier under discussion:

nt — Legmsl —n2Upt — i(nne — 1%L — n,Uy,) '

R= NeUms . nts ’
nt + 1egmit 4 20Ut 4 i (nne — 1572 4 neUpy, )
t=tg (‘12&) (3.16)

Expressions for the product gny for both concave (s; = 1) and convex
(s1 = —1) profiles were presented in (2.32g).

The examples of transmittance spectra |T'|? of truncated pro-
files of gradient barriers, calculated due to substitution of the reflec-
tion coefficient (3.16) into equation |T|?> = 1 — |R|?, are depicted on
Fig. 3.2 for concave profiles with different values of U,,.

The effect of truncation is seen in a comparison of spectra 1 and
2 of Fig. 3.2 with spectrum 1 in Figs. 2.3(a) and 2.3(b) respectively;
the spectra in Figs. 2.3(a) and 2.3(b) relate to the “complete” pro-
files (2.16), the values of U, as well as the refractive indices n for
each of the pairs compared being equal. The increase of the gradient
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Fig. 3.2. Transmittance spectra for asymmetric barrier, represented by “half” of
a symmetric concave barrier, shown by curve 1 (Fig. 2.1). Spectra 1 and 2 relate
to the values y = 0.75 and y = 0.577, respectively, no =n = 1.8.
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film thickness increases the film’s transparency, while the effect of
reflectance from the discontinuity of profile’s curvature produces the
opposite tendency. The interplay of these tendencies permits opti-
mizing the thickness of the film, which is needed to provide, e.g. a
better transmittance in some fixed spectral range: thus, in the vicin-
ity of the normalized frequency u = 0.53 the transmission coeffi-
cient |T|? of the film with the “complete” profile is |T'(u=0.53)|> =1
(Fig. 2.3(a), y=0.75), while the truncated barrier is characterized
for the same frequency by the smaller value |T'(u=0.53)]>=0.94
(Fig. 3.2, curve 1). However, for lower frequencies (u > 0.61) the
values of |T'|? for the truncated barrier exceed those values for the
“complete” one: thus, for u = 0.9 the values |T|? for the truncated
and “complete” barriers are 0.94 and 0.8, respectively. Similar ten-
dencies can be revealed for the spectrum, shown in Fig. 3.2(b).

Recalling the profile (2.16) with thickness d, one can consider
another asymmetric barrier, characterized, again, by the aforesaid
inequality U(0) # U(d), when, however, the signs s; and sy are the
same: s1 = s9 = *1, so that these profiles U(z) are monotonic. Thus,
in the case of a monotonically decreasing profile (2.16), related to
the case s1 = s9 = +1, one can express the scales Ly and Lo via the
values of the function U(z) at the boundary of barrier z = d and at
some point inside the barrier, e.g. at the mid plane z = d/2:

d 2\ *!
U =U(d) = 1+ —+ )
(@) <+L1+L§>

d d 2 \!
U U<2> < +2L1+4Lg> (3.17)

Substitution of these values L; and Lo into Eq. (2.18) yields the
values of the factor p? and cut-off frequency €, determining the non-
local dispersion of the gradient photonic barrier with monotonically
decreasing profile (2.16):

1 4 2 1 /1 8
2 [ — PR S
<Um 1) T (Uc i 2>

P

(3.18)
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The reflectance of these profiles can be examined by means of the
familiar solutions (2.15) by analogy with the general approach, pre-
sented in Sec. 2.2, although the continuity conditions at z = d are
distinguished from the corresponding expressions for the symmetric
profile (2.32g).

Let us consider now some other exactly solvable models of asym-
metric barriers, belonging to the aforesaid type (b). An example of
such a barrier, formed, e.g. by a concave asymmetric profile, is given
by the equation

(1—z)v2 z

U(z) = —+—; = —. 3.19
()= tirape T 1 (3.19)
The concave profile (3.19), possessing two free parameters — the

spatial scale I and dimensionless index r-is depicted in Fig. 3.3.
The minimum of this profile U2, is located at the point z,, = v//2.
The normalized thickness of this barrier, z(, can be calculated as the
non-zero solution of the equation U(zp) = 1; this barrier is asym-
metric with respect to its mid plane, x,, # 0.5z.

To solve the wave equation (2.9) with the barrier (3.19) it is

worthwhile to represent the function (3.19) as the product of two

U(x)
Pl T
/ S
151 e T
/ i
/ TS
/ e
-
e N
—
/ W
1 =
1
0.5
1 | | | | | | | 1 X |
a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3.3. Asymmetric profiles U?(z), & = z/L. Curve 1 corresponds to (3.19)
with the value of the parameter v = 1.128; Curve 2 represents the profile (3.28)
with v = 1.5, g = 0.2916.
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functions

UQ(Z) _ Ulg(z)UQQ(Z); U12(Z) = ﬁ; UQQ(Z) = <1 —l’> .

1+
(3.20)

Following the scheme of solution developed in Sec. 2.1, let us intro-
duce in Eq. (2.9), according to (2.10), the new variable n and new
function F:

F=0\/T(); n:/OZUl(zl)dz1:§1n<1+x>. (3.21)

1—=x

The use of the variable 7, (3.21), transforms (2.9) into the form:

d*F w?n
dn? c2

U2(z) — é) F=0. (3.22)

It is worthwhile to introduce the normalized variable ¢ and to express

the function U2(2) (3.20) via ¢

%; U2(z) = exp(—2u5). (3.23)
Owing to this transformation Eq. (3.21) can be reduced to the stan-
dard form of the Bessel equation

g:

d*F 1dF , 8 wnoL
R T 2 VF=o0: _ .
R <q 7'2> ’ 2cv
1
s=g555 T= exp(—vg). (3.24)

Solution of Eq. (3.24) may be written as the superposition of for-
ward and backward waves, given by Hankel functions of the first and
second kind H. él)((ﬁ') and H (g7) [3.1]. Finally, substitution of this
superposition into the definition of the generating function ¥ (3.20)
yields the solution of wave equation (2.9) with the asymmetric barrier

(3.18),
v=a1- SHO @+ HPr). (329

Here the constants A and Q have to be calculated, as usual, from
the boundary conditions. The value of product g7, found from
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(3.20), is

1 (1-a)2 Q c
[ Cu=— 0= 2
T 7 duw <1 +a:> T 2ngL (3:26)

While calculating these constants, it is convenient to use the expres-
sions for the Hankel functions in terms of the Bessel and Neumann
functions Jg and Nj:

H{(qr) = Js(q7)+iN(qr); HP(qr) = Jo(qm) —iNs(q7). (3.27)

Another type of asymmetric barrier is given by the profile
Z\ 2 1 1 Z\ 2V
U2(z) = (1 —) 14=— - (1 —) . 3.28
@=(1+7) 12 (147 (328)

Unlike profile (3.19), profile (3.28) is characterized by three free
parameters-length scale L and dimensionless real parameters g and v;
for definiteness, let us consider the convex asymmetric profile (g > 0),
shown in Fig. 3.2. The maximum of this profile is located at the point
ZTm, determined from the equation

14+v z
= : xr = —.
1+g’ L

(1 + zn) (3.29)

Inspection of Fig. 3.2. shows that profile (3.28) is essentially asym-
metric, its maximum is strongly shifted towards the plane z = 0.
Following the algorithm of analysis, developed above, we will repre-

sent the function (3.28), by analogy with (3.19), as the product of
two functions:
1 1

Ui(z)=(1+z)% Uiz)=1+ i 5(1 +x)". (3.30)

Note, that U; in Eq. (3.30) is the familiar Rayleigh profile (2.4). Intro-
ducing the new variable n and the new function F according to (3.20),

n= /Z Ul(zl)dzl = Lln(l + l‘) (3,31)
0
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we rewrite wave equation (2.9) in a dimensionless form, similar to

(3.21):
2 —2v
wnoL 1 e 1 "
]_ —_ — —_ — = N = —.
< c > < Ty Ty ) 4] BT

(3.32)

er
dc?

+ F

Substitution of 7 = exp(—wv¢), analogous to (3.23), transforms Eq.
(3.32) into the Bessel equation (3.24) with

2 2
2= 1 fwnoL 2o 111 . 1 wnoL '
g\ cv V2 |4 g c

(3.33)

Since ¢? < 0, solution of Eq. (3.33) in the case s> > 0 is known to
be represented by the modified Hankel functions, expressed, in their
turn, by means of modified Bessel and Neumann functions Is(p7)
and K(p7) by analogy with (3.27); here p?> = —¢? > 0. Finally, the
generating function ¥ for the wave equation (2.9) with barrier (3.28)
is obtained, according to (3.20), in a form resembling (3.25):

U = AV1+z{ls(0) + iK(0) + Q[Is(0) — iKs(0)]}; (3.34)

wnoL

(1+2)". (3.35)

o =pTr=
cv

Representation of the generating function ¥ in the form (3.34) is
valid under the condition s > 0; this means that this solution is

valid for low frequencies w, obeying the condition:

c /g
< = — . 3.36
W= Wer 2noL \ g+ 1 ( )

Thus, for the values of the refractive index nyg = 1.8, spatial scale
L = 100nm and g = 0.2915 the critical frequency w,,, found from
(3.36), is wer = 3.96101 rad /s, which relates to the infrared spectral
range (A. > Ao = 4.65 um). The thickness of this barrier d (3.28),
given by the non-zero solution of equation U?(d/L) = 1, for, e.g.
v=15,isd/L =1, d =100nm. Using the standard procedure, i.e.
satisfying the continuity conditions on the both sides of this gradient
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asymmetric barrier (z = z/L = 0 and = = 1), one can find the
reflectance/transmittance spectra of this asymmetric barrier.

Considering asymmetric barriers one can recall the simplest
monotonic model of such a barrier, exemplified by the one-parameter
Rayleigh profile (2.4); more complicated non-monotonic distributions
of dielectric susceptibilities, given by asymmetric profiles (3.19) and
(3.28), contain two and three free parameters, respectively. A huge
variety of asymmetric profiles U(z), which may be needed for creation
of controllable reflectance/transmittance spectra, can be achieved
in multilayer nanostructures, containing groups of gradient pho-
tonic barriers, spaced by homogeneous layers of unequal thicknesses
[3.2-3.4].

3.3. Inverse Functions and Parametric Presentations —
New Ways to Model the Photonic Barriers

It was mentioned in Sec. 2, that the system of Maxwell equations
(2.2) and (2.3) can be reduced to one equation by introducing another
generating function 0 [3.5], distinguished from function ¥ (2.8):

100 1 06
v=oar B iamas (3.37)

Here the function U(z) describes again an unknown barrier, which
will be found below. Due to the representation (3.18), Eq.(2.3)
becomes an identity, while the generating function 6 is governed by
the equation, following from (2.2),

2 2 dU df
U2 = L L (3.38)

dz?

2 (2)

To examine the regime of wave propagation through the gradi-
ent barrier U?(z), let us introduce the variable 7 in a different way
from (2.10)

(2) = /0 U22))dz. (3.39)
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Using this variable, one can rewrite Eq. (3.38) in a form:

0 wnd 0

2 + C—QUQ—(Z) =0. (3.40)
Equation (3.40) contains simultaneously both the function ¢, depen-
dent on the variable 7, and the function U, dependent on the
variable z. The function U(z) remains unknown, and, to find any
solutions of (3.38), one has to assume some link between the func-
tion U(z) and the function U(7), describing the profile of the barrier
via the new variable 7. Since the choice of this link is not restricted
by any preliminary conditions, let us consider, e.g. the following link

U?(2)U%(1) = 1, (3.41)

which transforms Eq. (3.38) into a form similar to Eq. (2.9), examined
above in Ch. 2, but written in 7-space due to the replacement n — 7:

d?0  wn
dr? c?
Combination of the condition (3.41) with the definition of the vari-

able 7, (3.39), written in differential form dr = U?(z)dz, produces
the equation governing the function U(7):

U%(1)8 = 0. (3.42)

dz = U*(r)dr. (3.43)

To solve Eq. (3.42), it makes sense to continue the analogy between
(2.9) and (3.42) and to consider the function U(7) in a form, coincid-
ing with (2.16) after the replacement n — 7; putting for simplicity,
s;1 = 0 in (2.16), we obtain:

2

U(r) = <1 - %) - (3.44)

Differentiating Eq. (3.44), condition (3.41) is taken into account, and
substitution of the expression for the differential dr into (3.43) leads
to the equation [3.5]

dz dU (z)

L 2U2(2)/1-U(z)

(3.45)
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Fig. 3.4. Exactly solvable models of asymmetric gradient photonic barriers
U?(x), represented by implicit functions (3.46) and (3.71)—(3.73), are shown by
profiles 1 and 2, respectively, = z/L, the maximum value of U?(z) for profile 2
is U2, = 1.5625.

The integral of Eq. (3.45), written by means of (3.41), represents the
normalized profile U(z) in an inverted form:

z 1{v1=-U 1-v1-U
—=r=—-|—7-In|——|. (3.46)
L 21 U VU

Profile (3.46) is shown in Fig. 3.4; one can see from (3.46), that

U(0) = 1. However, this function z = z(U) cannot be converted into
an explicit dependence U = U(z).

Although the profile of this gradient barrier U(z) is represented
by means of an inverted dependence, the analytical solution of
Maxwell equations (2.2) and (2.3), reduced to Eq. (3.38), can be
obtained in an explicit form. Using the formal similarity between
Eqgs. (2.9) and (3.42) and introducing in (3.42), by analogy with
(2.10), the new function # and new variable ¢

f (3.47)

:\/%; g:/OTU(Tl)dTl.

We obtain the solution of (3.42) in a form of superposition of forward
and backward waves, traveling in ¢-space:

Alexp(igs) + Q exp(—igs)]
U(r)

f= (3.48)
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Here the wavenumber g is given by the familiar formula (2.14), with
p = L' and, thus, the cut-off frequency € is defined as

Q=c/ngL. (3.49)

Calculation of reflection/transmission coefficients can be per-
formed now by means of standard continuity conditions on the planes
z=0(tr =¢=0) and z = d. To find the value ¢(d) one has to find
first ¢(7) from the integral (3.47). Expressing 7 via U(z) from (3.44),

% = /1-U(2), (3.50)
we’ll obtain
14+ /1—
S 1+V1-Uz) ' (3.51)
L 1—+/1-U(2)

The value ¢(d) is determined by U(d) from (3.51), defined from
(3.46). Thus, we have obtained an exactly solvable model for an
asymmetric gradient photonic barrier, expressed via the inverse
dependence z = z(U).

Another exactly solvable model of a photonic barrier U(z) is con-
nected with the representation of the coordinate z and profile U as
functions of some parameter while, unlike (3.46), the link between
and U cannot be written in an explicit form. Propagation of waves
through the gradient barrier U(z), described by Eq. (3.38), can be
examined for different barrier profiles, that can not be represented
by a direct coordinate dependence of the dielectric susceptibility
e = €(z). Let us use again the variable n (2.10) and introduce the
new functions f and W:

W2(z) = : (3.52)

By means of substitutions (3.52), Eq. (3.38) can be rearranged to
give [3.6]
O*f  ng0*f f o Pwn)

G RoE WE o (3.53)
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The right side of Eq. (3.53) contains the functions W (z) and W (n),
dependent on different arguments; here the variables 7 and z are
linked by the transformation (2.10). Till now these functions in
Eq. (3.53) remain unknown, and one can assume any link between
them, keeping in mind the link between the variables n and z, given
in (2.10). Let us make, for simplicity, two assumptions:

a. W(z) =-Wi(n);
b. the right side of Eq. (3.53) is equal to some real constant p?.

These assumptions result in the equation, governing the function
W(n):

2
_%d ?:]2(?7) = p2. (3.54)

Substitution of (3.54) into (3.53) permits rewriting the latter for a
harmonic time dependence of the EM field in a form, that coincides
with (2.13):

H? néw?
a—ﬁf +f < gQ —p2> = 0. (3.55)

Using this analogy, one can represent the solution of (3.55) as a super-
position of forward and backward harmonic waves, traveling along
the n-direction, (f ~ exp[+i(gqn — wt)]). To define the wavenumber
g one has to examine the solution of Eq. (3.54), taking into account
that these solutions depend on the sign of the constant p?. Thus, in
the case p? > 0 the function W () can be written as:

W (n) = cos(pn) + M sin(pn). (3.56)

This solution contains two unknown constants: the scale parameter
p and the dimensionless factor M. To express these quantities via
the extremal value of the refractive index n,,, = U,, and the barrier’s
thickness d, which are assumed to be known, let us write by means
of (3.52) the expression for profile U(n) [3.7]:

U(n) = [cos(pn) + M sin(pn)] > (3.57)



60 Waves in Gradient Metamaterials

Calculating the extremal value U, of the function (3.57), we find
the constant M, connected with Upin:

1

Umin = 13377

(3.58)
Thus, the profile of U(n), related to barrier (3.57), is concave:
Unin < 1.

To find the profile U(z) one can follow the method developed
above: let us rewrite formula (2.10), determining the variable 7, in
the differential form dn = U(z)dz; then, making, according to (3.52),
the substitution U(z) = W~2(n), where the function W (n) is given
by (3.56), we obtain the differential equation, defining the coordinate
z inside the barrier as a function of the variable n:

dz = W?(n)dn. (3.59)
Integration of Eq. (3.59) yields the link between z and n

(L+M?)pn (1 — M?)sin(2pn)
+
2 4
To express the unknown parameter p via the barrier thickness
d, let us emphasize, that the condition U(z) = 1 is satisfied at the
boundaries z = 0 and z = d of the barrier, corresponding on the

7 axis to the points n; and 7y, which are the roots of the equation
Wi(n) =1:

pz = + M sin’(pn). (3.60)

_ 2arctgM
, .

Substitution of the value 72 from (3.61) into (3.60) yields the scale
factor p:

m=0; mn (3.61)

1
p=SM+(1+ M?)arctgM)]. (3.62)

Finally, manipulations with (3.52) and (3.56) result in the presenta-
tion of the profile U(z) = U(n) in the form:

U(z) = [(1 + M?) cos®(pn — arctgM)]™'; 0 < pn < 2arctgM.
(3.63)
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Fig. 3.5. Exactly solvable models of symmetric gradient photonic barriers U? (z),
described by the parametric representations (3.60), (3.63), are shown by profiles
1 and 2, corresponding respectively to the values M = 0.5 and M = 0.75 in
representation (3.60), x = z/d.

Expressions (3.60) and (3.63) determine the parametric representa-
tion of profile U(z) for symmetric gradient barrier with thickness d
and minimum value Uy, (3.58) shown in Fig. 3.5.

To emphasize the differences between profiles (3.63) and (2.16)
even in the case their thicknesses d and minimum values Uy, are
equal, one can compare the slope factors &; 2 (3.1), calculated for the
profiles (2.16) and (3.63) respectively. Setting in this case the values
y (2.17) and M (3.58) to be equal and, using (3.2), we can find the

ratio

& _ 2[1 + (M + M "arctgM] ™! < 1. (3.64)

3
Inequality (3.64) shows that the profile (3.63) is more steepened near
the ends, and, thus, flatter in the central part, than profile (2.16).
To calculate the field components, determined by this generating
function 6, one has to represent the field 0 inside the gradient layer
as a sum of forward and backward waves in n-space:

0 = VUlexp(iqn) + Q exp(—iqn)] exp(—iwt). (3.65)

Here the wave number ¢ is defined by analogy with (2.14) as ¢ =
w?ndc=2 — p?; however, the value of the scale factor p is given,
unlike (2.18), by formula (3.62).
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Substitution of the solution (3.65) into definitions (3.37) yields
explicit expressions for the E, and H, components of the EM fields
inside the gradient barrier. The usual continuity conditions for these
components produce the expression for the complex reflection coef-
ficient R. Thus, despite the parametric representation of the profile
U(z), this representation proves to be an exactly solvable model of a
gradient photonic barrier.

It is remarkable that the approach used here for implicit and
parametric presentations of exactly solvable models of photonic bar-
riers U(z) can also be used for finding new explicit models of these
barriers. Thus, returning to Eq. (3.43) and setting U(7) = (cos 7)1,
we find from (3.43), that z = tg7. Substitution of this result into rela-
tion (3.41) yields an explicit exactly solvable model of a of photonic
barrier, that coincides with the well known Caushy distribution:

z

U2(z) = [1 + (E)Q]_l. (3.66)

Equation (3.42), describing wave propagation through the barrier
(3.66), reads

d?0  wnk 0
T2t TR s 0. (3.67)
Solutions of this type of equation, useful for analysis of oblique prop-
agation of waves through gradient media, will be examined below
in Ch. 6.

Finally, let us note that solution (3.56)—(3.65) relates to the case
p? > 0 (concave profile U(z), characterized by Upn (3.58)). In the
opposite case p? < 0 the function W (n) (3.56) can be written as.

W (n) = cosh(pn) + M sinh(pn). (3.68)

The representation (3.68) corresponds to a convex profile U(z) with a
maximum Up,ax = (1 — M?)~1. Here the additional condition M? < 1
arises, and all the subsequent analysis has to be carried out accord-
ing to the scheme (3.59)-(3.63). It is worth emphasizing, that pro-
files (3.56) and (3.68) correspond to the conditions p? > 0 and
p?> < 0, respectively. However, the special case p = 0 deserves
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to be mentioned too. In this case it follows from Eq. (3.54), that
W(n) =14 sinL~!; here s; = 1, L is some unknown spatial scale.
Substitution of this function W (n) into Eq. (3.59) and use of (3.52)
yields an explicit representation of the photonic barrier. Thus in the
case s1 = 1 we have

U(2) = (1 + 3%>_% : (3.69)

The unknown parameter L can be found from the value of function
(3.69) at the boundary of the barrier z = d. The solution of Eq. (3.55)
under the condition p = 0 reads

1
wnon n 32\ 3
= +—; ==(14+4—) —1. .
! exp< p ) 7 <+L> (3.70)

The solution (3.70) represents a wave traveling in the heterogeneous
dielectric, that does not possess heterogeneity-induced dispersion.
Side by side with profile (2.63) model (3.69) exemplifies a disper-
sionless gradient photonic barrier.

Comments and Conclusions to Chapter 3

1. The thicknesses of gradient photonic barriers, intended for oper-
ating in some spectral range, are several times thinner than the
wavelengths from the corresponding spectral range; this property
is important for the design of miniaturized subwavelength disper-
sive elements.

2. The solution of wave equation (3.40) with the distribution of
dielectric permittivity, represented by the implicit function (3.46),
can be generalized by the replacement of model (3.44) by the more
flexible one, obtained due to mapping the model U(z) (2.16) to
r-space: U(7) = (14 7/L; — 72/L3)~L. By using the same algo-
rithm, one can find that integration of Eq. (3.45) leads in this
case to the convex profile, given by an implicit function, contain-
ing both ascending and descending branches, shown in Fig. 3.4.
by curve 2. The ascending branch

T=an—21(8); €= &H<ELL &=U,' (3.71)
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is located in the interval 0 < x < x,,,; the value x,,, corresponding
to the maximum of profile U(z), is z, = z1(&o),

[‘/? o (%ﬂ (3.72)

The descending branch, located in the segment x > x,, is

_3

z1(§) = 5

r=x,+r1(8); 0<E<1. (3.73)

This profile, given by Egs. (3.71)-(3.73), will be used in Sec. 5.2.
for the analysis of spectra of graded left-handed metamaterials.
Note, that the exactly solvable models of gradient barriers, exam-
ined above, are based on continuous distributions of the dielectric
permittivity e(z). However, these distributions, owing to tech-
nological conditions, are actually formed by plane layers of dif-
ferent optical and geometrical thicknesses. Thus, it is necessary
to check the accuracy of the reflectance/transmittance spectra
calculated for continuous profiles €(z), by comparing them with
spectra, found due to the approximation of €(z) by multilayer
structures. The goal of such a comparison is the optimization of
parameters of a technologically controlled multilayer structure,
approaching continuous profile £(z). An example of such opti-
mization is shown below for the reflectance of a nanofilm with
the linear profile U? = 1+ z/L, which is known to admit an exact
analytical solution, expressed via Airy functions [3.8]. The reflec-
tion coefficients |R|? in the visible spectral range for this film were
calculated analytically by means of these functions. Other results
for the coefficients |R|? in the same spectral range were obtained
by approximating this profile by a multilayer structure, containing
n layers; the difference of the results as a function of the number
of layers is depicted in Fig. 3.6.

Inspection of Fig. 3.6. shows that the discrepancy between the mean
square deviation of | R|?, found by means of Airy functions, from | R|?,
calculated in the framework of a multilayer model, does not exceed
1% for discretizing into 5 layers. Discretizing into 6 layers in this case
seems to be optimized, since the subsequent increase of the number
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Fig. 3.6. Comparison of the reflectance of the gradient barrier, calculated by
means of the exactly solvable model of the dielectric permittivity U? = 1 + z/L,
and by an n-layer step-like distribution approximating this profile. The discrep-
ancy A,, between the mean square deviation of reflection coefficients |R|* found
in the framework of the exactly solvable model U? = 14-z/L, from | R|? calculated
by means of a multilayer model, is plotted as a function of the number of layers
n; parameters of the barrier are ng = 1.5, n = 1.47, d = 500nm, L = 10*cm™*.
The optimized discretization, providing a discrepancy smaller than 1%, contains
6 layers.

of layers does not result in a significant decrease of the discrepancy.
However, in the case of a more complicated profile £(z) the number
of layers in the equivalent multilayer structure can be increased.

Bibliography

[3.1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover
Publications, NY, 1968).

3.2] P. Han and H. Wang, JOSA B 22, 1571-1575 (2005).

[3.3] M. Deopura, C. K. Ullal, B. Temelkuran and Y. Fink, Opt. Lett. 26,
1197-1199 (2001).

[3.4] L. Martin-Moreno, F. J. Garsia-Vidal, H. J. Lezek, K. M. Pellerin, T. Thio,
J. B. Pendry and T. B. Ebbesen, Phys. Rev. Lett. 86, 11141117 (2001).

[3.5] A. Shvartsburg, V. Kuzmiak and G. Petite, Physics Reports, 452, 33-88
(2007).



66 Waves in Gradient Metamaterials

[3.6] A. Shvartsburg, Physics — Uspekhi, 170, 1297-1324 (2000).
[3.7] A. Shvartsburg, V. Kuzmiak and G. Petite, Fur. Phys. J. B, T2, 77-88
(2009).

[3.8] P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied
Optics, 1997.



CHAPTER 4

RESONANT TUNNELING OF LIGHT THROUGH
GRADIENT DIELECTRIC NANOBARRIERS

Tunneling is one of the fundamental processes in the dynamics of
waves of different physical nature. The first steps in studies of these
phenomena were taken in optics more than a century ago in the
theoretical analysis of total internal reflection (TIR) of light, per-
formed by A. Eikhenwald as long ago as in 1908 [4.1]. Using Maxwell
equations, Eikhenwald showed, that the light wave, while incident
on the boundary between two transparent dielectrics under an angle
exceeding the critical angle for total internal reflection, does not van-
ish on this boundary, but penetrates partially into the subsurface
layer of the reflecting medium. This penetration is accompanied by
an exponential attenuation of the wave, the characteristic spatial
scale of attenuation being about one wavelength. Unlike this effect
of total internal reflection of a wave from the dispersiveless trans-
parent half-space, the partial reflection from a non-transparent bar-
rier of finite thickness, named “frustrated total internal reflection”
(FTIR), began to attract attention in wave dynamics of dispersive
media. However, the burst of interest in these intriguing phenomena
of wave penetration into the forbidden area (tunneling effect) arose
after Gamow’s work [4.2], devoted to nuclear alpha-decay, connected
with the penetration of an alpha-particle with energy E through a
potential barrier a with maximum Uy, surrounding the nucleus, under
the paradoxical condition £ < Up. In the framework of Gamow’s
approach alpha-decay of atomic nucleus was explained namely
by tunneling of de Broglie waves, describing the alpha-particle,
through this potential barrier. The exponentially small probability

67
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of this effect was calculated in this work by means of the formal
analogy between equations governing electromagnetic and de Broglie
waves.

Later on this approach catalyzed the applications of the tunnel-
ing concept to numerous EM wave phenomena in different spectral
ranges — from optics [4.3] up to electromagnetics of a heterogeneous
plasma [4.4]. These applications were based on the formal similarity
between the stationary Schrodinger equation in quantum mechanics
and the Helmholtz equation in the classical wave theory; tunnel-
ing of quantum particles through the forbidden zone was confronted
with the propagation of an EM wave through a dispersive medium
[4.5], the wave frequency being smaller than the cut-off frequency of
the medium. Based on this equivalence, the electronic tunnel effect
and the frustrated optical transmission phenomenon were shown to
be related [4.6]. This opened up the opportunity to perform experi-
ments with light beams, easier to perform and interpret than those
with electron waves, since optical tunneling requires a micrometer
or even hundreds of nanometers sized barrier. In these problems the
tunneling effects were discussed from the viewpoint of wave propaga-
tion in heterogeneous media with so-called photonic barriers formed
by metal nanofilms or heterogeneties of the dielectric permittivity &
in dielectric layers. However, the standard models of wave barriers,
used in these topics (box-like barrier and linear potential), resulted
in an exponentially small transmission; processes of highly effective
energy transfer due to tunneling through more complicated barri-
ers remained beyond of the scope of these models. The advent of
nanotechnologies opened the avenue to creation of gradient dielec-
tric films with feasible controlled spatial distributions of &, provid-
ing, in particular, a series of unusual tunneling phenomena for EM
waves [4.7]. The researches in this field are focused mainly on the
effects of frustrated total internal reflection (FTIR) and penetration
of evanescent waves through dispersive photonic barriers of finite
thickness, demonstrating the growing potential for applications of
gradient metamaterials in electromagnetics.

To compare and contrast the tunneling of waves through homo-
geneous and gradient photonic barriers it is worthwhile to recall
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some results of the theory of the interaction of an EM wave with a
homogeneous layer of a metallic plasma with electron density N; this
layer can be characterized by a plasma frequency w, and dielectric
permittivity e:

o 4me’N wf,

Wp = — gw)=1-—3, (4.1)

where m is the electron mass. Considering the normal incidence of a
linearly polarized wave on a lossless plasma layer, one can find the
generating function W for the EM field inside the layer by means
of Eq. (2.9). This layer is known to act as a high-pass filter: a high
frequency wave (w > w),) propagates through the plasma, while a low
frequency wave (w < wp) displays significant reflection and attenua-
tion inside the plasma; this regime, considered to be the tunneling of
the wave, is accompanied by a small transmission. To examine the
last case, let us solve Eq. (2.9), by putting there U? = ¢ (4.1). The
generating function ¥ in this case (Ree < 0), written as

U = Alexp(—pz) + Q exp(pz)] exp(—iwt),

w w
p=—-Vut—-1;, u=-2L>1,

C w

(4.2)

which represents the result of the interference of two monochromatic
fields with imaginary wave numbers and A is the normalization con-
stant. Substitution of (4.2) into (2.8) yields the field components E,
and H, inside the plasma layer:

E, = %[exp(—m) + Q exp(pz)],
Hy = —pAlexp(—pz) — Qexp(pz)]. (4.3)

Denoting the boundaries of the layer as the planes z = 0, border-
ing with air, and z = d, bordering with a homogeneous dielectric
substrate with refractive index n, and using the standard bound-
ary conditions of continuity of E, and H, on these planes, one
can calculate the parameter Q in (4.3); after this the complex
reflection/transmission coefficients R and T of the plasma layer in the
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tunneling regime can be found by means of the standard procedure,
used repeatedly in Chs. 2 and 3:

1 —ineA 1-Q
14 in.A’ 14+ Q’
n—1in
- _ ) = e =Vu2—1. 4.4
Q exp( pd)<rl+ine>, n u (4.4)

Manipulations with the quantities @@ and A in (4.4) results in the
representation of R in the form (2.31):

o1+ i09 9
=—— - oy =tn+n), o09=-—-nc(n—1),
X1+ ixz (n+mc) eln=1) (4.5)

x1=t(n—n2), xa=ne(n+1), t=rth(pd).

The complex transmission coefficient Tr may be written by analogy
with (2.34):
21 1—t2
Ty = 2V 278
X1+ X2
where ¢; is the phase shift of the transmitted wave. Finally, the

transmission coefficient with respect to intensity |T|? = TgTj =
n|Tg|? is

= |Tr|exp(idr), (4.6)

4nn?(1 —t?)

T =1—|R]* = (4.7)
IXI?
The phase shift of the transmitted wave is
(n — n2)th(pd)
= arctg | —— 22— . 4.
¢ = arc g[ (ot e (4.8)

Inspection of formulae (4.6) and (4.7) permits outlining the main
features of EM wave tunneling through a homogeneous layer of elec-
tronic plasma:

1. The transmittance decreases exponentially, when the barrier
thickness d increases: when pd > 1, one has from (4.7): |T|? o
exp(—2pd); hence |R|? — 1, and a weakly attenuated (reflection-
less) regime cannot arise.
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. The velocity of energy transfer through the barrier may be found
from the z-component of the Poynting vector P, and the energy
density W for a dispersive (¢ = (w)) non-magnetic medium [4.8]:

P, c .
Ug = W’ PZ = ERG(ExHy),
W= 2 L0 )| EL + 1P (4.9)
871 | Qw c ' ’

Calculating P, and W by means of the expressions for @) (4.4)
and e(w) (4.1), we find

2(n? — n?) exp(—2pd)

Q+Q = n2+n2 ’
. dinngexp(—2pd
Q_Q = 82 (2 )7 ‘Q|2:exp(_4pd)
n“ +nz;
5 5 5 (4.10)
P_cMnne. W—% g2 e,
S 2402’ 2 nZ+n2)’
M= 1 |wAexp(—pd) 2'
m c

thus, both P, and W are decaying exponentially in the depth
of the plasma layer. Substitution of P, and W (4.10) into the
expression for v, (4.9), and use of the definition nZ = u* —1 (4.4)
produces a simple expression for the velocity of energy transfer in
this tunneling regime:

(I 2n

¢ l+n?tu? (4.11)

The result obtained shows, that the velocity v, is always sublu-

minal (vy < ¢) and possesses a constant value at any point inside
the homogeneous plasma layer.
. Analysis of the expressions for R (4.5) and Tgr (4.6) permits
establishing a link between the phases of the reflected (¢,) and
transmitted (¢;) waves. It is worthwhile to present the complex
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reflection coefficient R in the form

= |R| exp(i¢;), 1/ ‘U = /0% + 03 (4.12)

The quantities o1 2 and |x| are defined in (4.5) and (4.6), respec-
tively, while the phase ¢, is given by the relations:

o +o . o9 — X20
cos ¢y = M’ sin ¢, = X192 = X201 (4.13)
x| x|
Introducing an auxiliary phase ¢, via the equalities
o o
Sin gy = —, oS py = —2, (4.14)
o o

and substituting it together with the definition of the phase of the
transmitted wave ¢, (4.8) into (4.13), we find the relation between
the phases ¢, and ¢;: ¢ = ¢t — po. In the simplest case, when the
plasma layer is considered without a substrate (n = 1, o9 = 0), it
follows from (4.14), that ¢, = 7/2 and, thus [4.9],

@—@zg (4.15)

Note, that under the barrier no phase shift is accumulated, and
the entire phase shift comes from the boundaries [4.10].

A widely used model of a gradient layer, providing a continuous
transition between regions with ¢ > 0 and € < 0 is given by a linear
profile of the normalized dielectric permittivity U?(z) = 1 — z/L.
The exact analytical solutions of wave equation (2.9) for this profile
U?(z) are given by Airy functions [4.11], presenting the EM field both
in traveling (¢ > 0) and tunneling (¢ < 0) regions. These solutions
are discussed in details in many text books, devoted to geophysics
[4.12] and plasma electromagnetics [4.13] and, therefore, this stan-
dard model of a linear distribution of dielectric susceptibility remains
beyond of the scope of this book.

In contrast, this chapter is focused on the salient features of EM
waves tunneling through gradient transparent dielectric nanofilms
without free carriers. The effect of non-local dispersion, described
above in Chs. 2-3, is shown here to provide a new mechanism



Resonant Tunneling of Light Through Gradient Dielectric Nanobarriers 73

of tunneling in dielectrics with Ree > 0; this condition reveals the
principal distinction between the gradient and abovementioned homo-
geneous layers. Such an unusual situation, examined in Sec. 4.1, is
shown to arise for photonic barriers (2.16) with a concave profile U?(z)
(Fig. 2.1). Transmission spectra T'(u) for such photonic barriers illus-
trate the possibility of weakly attenuated, almost reflectionless tun-
neling of light (|7|?> — 1, |R|> — 0) in some spectral ranges below
the cut-off frequency w = €2;. These transmission spectra, as well as
the velocity of EM energy transmission through gradient barriers by
evanescent waves, are examined in Sec. 4.2. Note, that these phenom-
ena of weakly attenuated tunneling of light are caused by the interfer-
ence of waves, reflected from every point inside the gradient layer. In
contrast, Sec. 4.3. is devoted to the propagation of waves through a
homogeneous transparent plane layer, located in the curvilinear nar-
rowing of a waveguide; the interference of waves, reflected from every
point of these curvilinear boundaries, is shown to provide the weakly
attenuated tunneling through the subwavelength narrowing.

4.1. Transparency Windows for Evanescent Modes:
Amplitude — Phase Spectra of Transmitted Waves

It was emphasized in Sec. 2.1, that the gradient dielectric pho-
tonic barriers with a concave profile of dielectric permittivity U?(z)
(Fig. 2.1) possess the normal waveguide-like dispersion and cut-
off frequency Qq (2.19), determined by non-local dispersion of
the dielectric nanobarrier. This feature can change drastically the
reflectance/transmittance spectra for EM waves in the low frequency
spectral range (w < ). Such spectra are examined below for waves
incident normally from the air (2 < 0) on the plane interface of the
photonic barrier (z = 0). The EM field inside this barrier is deter-
mined, instead of (2.21), by the generating function ¥; and imaginary
wave number g = ip [4.14]:

)] exp(—iwt)

)

g, — Alexp(=pn) + Qexp(py
VU(Z)
p:wnea ne:n(]\/uz_la

(4.16)

Q
u:—1>1.
w
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Considering a barrier with thickness d, located on a homogeneous
substrate with refractive index n, one can calculate the parameter
(@, describing the contribution of the backward wave to the field
inside the barrier:

n—<—in 2unoy
Q=—exp(=2pm) | —2—— ], 7=—F—. (417
n— 3 +1ine V14y

Proceeding by analogy with the derivation of formulas for the reflec-
tion and transmission coefficients R and T in the travelling regime
(Ch. 2.2), we obtain these coefficients for a gradient barrier in the
tunneling regime, written in forms (4.5) and (4.6), respectively:

n_ o1 + 109
X1+ ixe’
-2
o=t <n+ T —i—ni) —ne, 02 =—(n— 1), (4.18)
72 2 "yt
X1:t<n_z_ne>+’yn€7 X2:(n+1)§7 é.:ne_ga

n?=n3(u?—-1), t=th(lvV1—-u"2),

V1+y?+y 2ungy
l ln( 1+y2—y>7 ~y \/W (4.19)
Expression (4.18), determining the reflection coefficient for an asym-
metric optical structure (air-gradient layer-substrate), can be easily
generalized for a symmetric structure, containing the gradient layer
between two similar homogeneous substrates with equal refractive
indices n. The reflection coefficient for this symmetrical structure
can be presented in the standard form (4.18), where

’72
o1 :t<n2+z+ng> —Yne, 02 =0,
(4.20)

2
X1 =1 <n2— % —ni) + e, X2 = 2n&.

In view of subsequent applications it is worthwhile to rewrite the
expression for the complex transmission coefficient Tp by separating
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its real and imaginary parts:

) 2n.v1 — t2
Te = |Tg|exp(idy), |Tr|= E‘T
X1
@@=jgalAV=ka+hﬂ? (4.21)

Now one can find the complex transmission coefficient of the gradient
barrier with respect to intensity |T'|? = TeT} = n|Txr|>. Examples of
spectra |T'|? and the phase of the transmitted wave ¢;, characterizing
the single photonic barrier, are depicted in Fig. 4.1. These spectra
show a high transmittance (|T|> > 0.85), decreasing monotonically
at the longer wavelengths. Note, that, putting in expressions for oy 2
and x1,2 (4.18) the value y = 0 we obtain again formulae (4.5) and
(4.6) for the homogeneous layer.

The multilayer gradient barrier, containing m (m > 1) similar
adjusted barriers, can be examined in the same way. Attributing the
number m = 1 to the first layer at the far side of this stack, we write
the reflection coefficient for this stack R, by means of continuity
conditions on its near side z = 0

1+ F-mdn  1-Qm

R, = : , = .
" 1—%+in6Am " 1+ Qm

(4.22)

The parameters A,, in (4.22) are linked by the chain of recursive
relations, obtained from the continuity conditions on the interfaces
between the (m + 1)-th and (m)-th barriers (m > 1):

ne(Am—l + t) -

A, = .
ne(1 4+ tAp_1) — 7t

(4.23)

The first term in this chain Aq, related to the far layer in the stack,
is defined via the quantity @ (4.17):

1-Q  n—Ytinet
1+@Q t(n—%)+ine

Transmittance spectra for a periodic structure, containing several
similar adjacent gradient barriers with concave profiles n(z) (2.16),

Ay (4.24)
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Fig. 4.1. Transmission coefficient |T'|* (a) and phase shift of transmitted wave
¢¢ (b) are plotted vs u = Q/w for a gradient barrier with the profile n(z), shown
in Fig. 2.1; ng = 2.3; n,, = n = 1.47. Curve ¢o shows the phase shift accumulated
by a wave with the same frequency w, traveling in a free space along the distance
d, equal to the barrier’s thickness.
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Fig. 4.2. Resonant transmission spectra \T|2 for waves tunneling through a peri-
odic structure, containing m gradient nanobarriers (2.16), supported by a homo-
geneous thick substrate with refractive index n = 2.3; the nanobarrier thickness
d = 100nm. (a): no = 1.8928, y = 0.577, cut-off frequency Q = 2.1210'° rad/s;
(b): no = 2.2187; y = 0.75, cut-off frequency Q = 2.45 10"° rad/s; spectra 1 and 2
relate to nanostructures, containing m = 1 and m = 20 nanobarriers respectively.

are shown in Fig. 4.2. The following features of these spectra have to
be emphasized:

1. The photonic barriers with cut-off frequencies €21, restricting the
spectral range of the tunneling regime, can be formed in trans-
parent gradient dielectric structures (Ree > 0). The wave energy
is transmitted through these structures by means of evanescent
modes.

2. Interference of evanescent modes in the stack of gradient layers
results in the complication of their transmittance spectra sub-
ject to the number of layers: thus, the monotonic decrease of



78 Waves in Gradient Metamaterials

the transmittance of a single layer, shown by curves 1 in the
Figs. 4.2(a) and 4.2(b), is replaced by periodic transmittance
spectra, inherent to the stack containing 10 layers. Thus, instead
of frustrated total internal reflection in the homogeneous plasma
layer, arising for low frequencies (w < wy,), this structure possesses
complete transmittance.

3. The reflectionless tunneling (|R,,|> — 0,|T,,|> — 1) is shown
to arise for a series of frequencies in a periodic gradient structure
containing several nanofilms (Fig. 4.2). Comparison of Figs. 4.2(a)
and 4.2(b) shows that the increase of refractive index ngy as well
as the increase of the depth of this index modulation in the gradi-
ent structure, characterized by the parameter y = \/ng/nmin — 1,
results in an increase in the number of peaks with |T|2, — 1,
accompanied by a narrowing of these peaks.

4.2. Energy Transfer in Gradient Media
by Evanescent Waves

Inspection of amplitude-phase spectra of waves traversing the gra-
dient barrier in the tunneling regime (4.16), shows the link between
the amplitude and phase of the transmitted wave. To optimize the
properties of the transmitted radiation it is worthwhile to consider
its amplitude and phase spectra separately. Let us outline first some
salient features of amplitude spectra:

1. Until now we were discussing the transmittance spectra for trav-
elling (u < 1) and tunneling (u > 1) monochromatic waves sepa-
rately. The expressions, describing these spectra were shown to
possess the transition from travelling to tunneling regime due
to the simple replacement v/1 —u2 — ivu2 — 1 [4.14] in these
expressions. However, to examine the energy transfer by poly-

chromatic waves and pulses, containing both subcritical (u < 1)
and supercritical (u > 1) frequencies, it makes sense to consider
their transmittance spectra in the vicinity of the transition point
(u = 1). Recalling the expressions for the complex transmission
coefficients Ty for traveling (2.34) and tunneling (4.21) waves, one
can see, that the transmission coefficient with respect to energy
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|T|? is continuous at the transition point; its value is:

2
dnnj

[l (n— %) +7n0r + (n+1)2 (no - %)
(4.25)

. The components of a tunneling wave inside the gradient layer
possess a complicated spatial structure and coordinate-dependent
mutual phase shift. To examine the spatial structure of low fre-
quency (u > 1) E'and H components of tunneling fields, represented
inside the barrier (0 < z < d) by evanescent modes, one has to
substitute the generating function ¥; (4.16) into equations (2.8):

E= Egjé) lexp(—pn) + Qexp(pn)], M = i—R, T = 2,
= —iEgM~\/U {[ 1—2z)— ne} exp(—pn)
+Q[ (1= 22) + n.] exp(pn) }. (4.26)

For simplicity the temporal factor exp(—iwt) is omitted in
Eq. (4.26). Factors @ and R, determining the amplitude of evanes-
cent mode, were calculated in (4.16) and (4.17) from the usual
continuity conditions on the boundaries z = 0 and z = d. Equa-
tions (4.26) illustrate the heterogeneous distribution of the field
energy density inside the gradient layer, which is needed for the
calculation of the energy transfer velocity.

. The velocity of energy transfer by evanescent modes v, can be
found by substitution of (4.26) into formulae (4.9). Calculation of
the energy flux P, and energy density W yields the expressions:

p _ C1Eol’|M[*nng exp(—2pmo)
4 |A‘2 9

| Eo[2| M *n2U exp(—2pno)
27| A2

0<z<1, U=U(z)=[+4x(1—-2)]"

W = % +n2 +~4%(1 —2)?), (4.27)
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The quantity |A|> was determined in (4.21). The definition of the
energy flux P, (4.9) shows that the forward as well the as backward
wave alone produces no energy flux; only their superposition (4.15)
represents the tunneling electromagnetic flux. Substitution of (4.27)
into Eq. (4.9) brings the value of the normalized velocity V'

vy 2n[l +4yPx(l — )]

V=24 _— . 4.28
¢ n?24nd+92(1—2x)? ( )

In the limiting case, where the heterogeneity is vanishing (y — 0,y —
0), Eq. (4.28) is reduced to a well-known expression for normalized
the group velocity in a homogeneous transparent layer, located on a
substrate:
2n
V —

= —. 4.29
n? + n? ( )

The spatial distribution of Vacross the gradient layer (Fig. 4.3) shows
that the velocity of energy transfer v, by the tunneling mode is
frequency- and coordinate-dependent; however, this velocity always
remains subluminal (V' < 1). Moreover, in the case, where the homo-
geneous layer and the substrate are produced from the same material
(n = ng), Eq. (4.29) reduces to the well known expression for the

0.6

0.5

sesa
Ty el

-
-
-

0.4
Vix)
0.3
0.2
- /
on? . /,a/
o -
01f,

I 1 I 1 I 1 \ \ \
0 0.1 0.2 0.3 04 x 0.5 0.6 0.7 0.8 0.9 1

Fig. 4.3. Spatial distributions of normalized velocity of energy transfer V(x) =
vy/c by waves tunneling through the gradient barrier (y> = 0.5646; ng = 2.3)
located on a homogeneous substrate with refractive index n = 1.47; x = z/d — the
normalized coordinate across the barrier. Curves 1, 2, 3 relate to the normalized
frequencies u = 1; 1.5; 2.



Resonant Tunneling of Light Through Gradient Dielectric Nanobarriers — 81

normalized group velocity in a homogeneous non-dispersive medium:
V=n"1

Now let us consider some tunneling-related phase effects in the
transmitted waves:

1. It is seen that tunneling of a wave through a homogeneous layer
is always accompanied by a non-vanishing reflection; this means,
that the condition R = 0, where the reflection coefficient R is
defined in (4.5), never can be fulfilled. In contrast, this condition
can be fulfilled for some gradient structures, shown, e.g. in Fig. 4.2,
for the frequencies, related to the cases |T| = 1. In the case, cor-
responding to tunneling through the simple symmetric structure,
containing one gradient layer, located between two homogeneous
substrates (4.20), the condition of reflectionless tunneling R = 0
is reduced to the equation

2 —1
Yne =t <n2 + ’YZ + n§> : (4.30)
Substitution of Eq. (4.30) into the definition of the phase shift ¢
(4.21) permits calculating ¢, in the case R = 0:

¢r = arctg <L — 2n6>. (4.31)
nt

Thus, the structure discussed can be viewed as a phase shifter,
leaving the wave amplitude unchanged.

2. In the tunneling spectral range phase shift ¢; can exceed the phase
shift ¢, accumulated by the wave with the same frequency w,
traversing the same distance d in free space; according to the
definition (2.19) the phase shift ¢y can be found as

2y+/1 2
_wd Vit yr (4.32)

c nou

%o

this superluminal effect (¢; > ¢o) is shown in Fig. 4.1(b).
3. The phase shift ¢; is linked with an another important character-
istic of tunneling phenomena — the so-called phase time 7, [4.15]

_ o

ry= S (4.33)
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It is worthwhile to compare this time 75 with another time scale
to = d/c, determining the travel time of radiation with the free
space light velocity through the distance d, equal to the width of
gradient layer [4.16]. Bringing together the quantities 7 and ¢
we find from Eq. (4.33)
s _ 299 (4.34)
to ¢o Ou
Here the phase ¢¢ is defined in (4.32). Using the phase spectra ¢,
and ¢g, depicted in Fig. 4.1, one can see that in the spectral range
1.5 < u < 3 we have 75 > tg, namely, 75 ~ (1.2+2.5)ty. Note, that this
time does not relate to any “phase velocity of the tunneling wave”,
since no phase shift of an evanescent wave is accumulated inside
the gradient barrier [4.16], and the phase shift ¢; of the transmitted
wave is governed by the boundary conditions on the interfaces of the
gradient layer. However, the subluminal speed of energy transfer in
the tunneling region (4.28) may be considered as the tunneling speed
of light [4.17].

4.3. Weakly Attenuated Tunneling of Radiation
Through a Subwavelength Slit, Confined
by Curvilinear Surfaces

Another family of heterogeneous wave barriers, producing the reso-
nant tunneling of light, may be formed in directional systems, con-
taining a slit, confined by curvilinear interfaces. This peculiar type
of heterogeneity-induced tunneling proves to be controlled by the
geometrical parameters of the confining interfaces. To examine this
effect, let us consider the propagation of the TE1g mode with EM field
components Fy, H,, H, along the single-mode waveguide with axis z
and thickness d(—d/2 < x < d/2), filled by a dielectric with dielectric
permittivity €. The waveguide contains a symmetric smoothly shaped
narrowing in the area (—b/2 < z < b/2), and the planes x = d/2 and
x = —d/2 are assumed to be perfectly conducted (Fig. 4.4). Our
goal is to examine the wave propagation through the slit, formed by
these convex curves, determining its complex reflection/transmission
coefficients [4.18].
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HX

| Bo x=d/2

| x=-d/2

Fig. 4.4. Geometry of the narrowed waveguide. The following geometrical
parameters are indicated: the narrowing length b, the distance between the waveg-
uide walls d; the distance between the tops of the coordinate lines Gy and —fo
determines the minimal width s.

To calculate these coefficients let us consider the narrowings,
formed by hyperbolic or elliptical surfaces. To do this its convenient to
introduce in the (x, z) plane the curvilinear coordinate system (c, (3),
formed by mutually orthogonal ellipses o and hyperbolas 3 [4.19]:

x = achasin 3, z = asha cos [. (4.35)

The values & < 0 (o > 0) relate to the half-plane z < 0 (z > 0),
the line @ = 0 corresponds to the z-axis. Analogously, the values
B >0 (8 <0) relate to the upper (lower) half-planes, the line 5§ =0
coincides with the z-axis. Let us consider, e.g. the slit, formed by sym-
metrical hyperbolas, located between the points © = d/2,z = +b/2
and © = —d/2,z = +b/2. In the coordinate system (a,(3) these
hyperbolas coincide with the coordinate lines Gy and —Gy. Designat-
ing the minimal width of the slit (the distance between the tops of
hyperbolas) as s, one can define the parameters 3y and a:

d? — s2 s
= darct - - - = 4.36
() e
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The components of a TE 1y mode travelling in this waveguide are
known to be expressed via the generating function W:

low o ov o
ox

— = 4.
Y c 81‘:’ ( 37)

The wave equation governing the generating function ¥ inside the
slit, is derived from the Maxwell equations. Using the («, 3) coordi-
nates and separating the variables ¥ = F(«)f(/3), one can find the
equations, determining the unknown functions F'(a) and f(53):

d’F s wla’e

2 2 _
W +p (Ch o — A)F = 0, p = 82 5 (438)
Pf .2

Here A is some dimensionless constant, which will be determined
below from the boundary conditions.

Rigorously speaking, the regular solutions of Egs. (4.38) and
(4.39) can be written in terms of Mathieu functions, which are known
to be expressed via power series. However, for our goals it makes sense
to present the solutions of these equations directly by power series,
defining simultaneously the eigenvalues A. The linearly independent
solutions of Eq. (4.38) may be written by means of even F; and odd
F5 functions

oo oo
Py =) Fipa®™, F=)» Fpa®th (4.40)
n=0 n=0

Substitution of the function ch?cq, expanded in a Taylor series, into
Eq. (4.38) yields the coefficients Fy,, and Fy, in the solutions (4.40).
The values of the first coefficients are:

21-A
Fio =1, F11=—p7( 5 )’

2 1.2 2
p° [p*(1 —A)
Flo=—|——— —1 4.41

12 12[ 2 ’ ( )
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(1-A
Fy =1, Foy = —%,
2 1.2 2
_p (P-4
Py = 20[ . 1. (4.42)

Since, according to (4.37), the electric field component E, is given
by E, = EoF(«)f(f8), the function f(5) satisfies the boundary

condition:

f(Bo) = f(—=Bo) = 0. (4.43)

Due to condition (4.43) one has to use below only an even solution
of Eq. (4.39):

_°° on B B p2A 2 2A2
f—;fnﬂ, fo=1, h=-L2 p= <1+ : >

(4.44)

The parameter A, indicating the separation constant, till now

remains unknown. Substitution of solution f (4.44) to condition

(4.43) yields an infinite set of values of A; each of these values relates

to some mode of the field in the range (—b/2 < z < b/2). Thus, using
the series

ﬁ‘*ﬁ

sin?3 = g% — 5

(4.45)

and restricting ourselves to the first two terms in (4.45), we obtain
from (4.43) for a single mode approximation for the field inside the
slit:

2
(pBo)?
To evaluate the accuracy of this approximation one has to take into
account that the rectangular waveguide with walls d and I(d > )

supports the propagation of waves in the TE ¢y mode in the following
spectral range of wavelengths A

dye < \ < 2dy/e. (4.47)

Ag =

(4.46)
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Choosing the waveguide’s side d, obeying condition (4.47) for the
spectral range under discussion, we can find from (4.36) the value
0o, related to the width of the slit s and the size of narrowing b
(Fig. 4.4). The field inside the slit is characterized by values of the
variable (3, located in the interval 8y > 8 > — 9.

Determining the value 3y, we can neglect the 3% and subsequent
terms in (4.45), if B3 < 3; putting, e.g. 82 = 0.3 (|Go| = 0.55), we
can represent the field in the narrowing by one mode (4.46).

To examine the reflectance and transmittance of the narrowed
section of waveguide, one has to use the continuity conditions on the
planes z = —b/2 and z = b/2, bounding the narrowed section. The
components of the TEjg mode, incident on the slit from the area
z = —b/2, are described by the generating function ¥y

. u [w?
Uy = By cos(kyx)expli(yz —wt)], kL= T Y=\ 2 k2,

where Bj is the normalization constant. Substitution of function ¥y
into definitions (4.37) yields the expressions for the mode compo-
nents. Omitting for simplicity the phase factor, we obtain:

Ey _ ’inl

cos(kix), H,=1iyBjcos(k, x),
c

H, = —k; B;sin(k ). (4.49)

For simplicity we will examine below the salient features of wave
propagation through the slit in the framework of a one mode approx-
imation. In this case the generating function for the field in the nar-
rowing can be written as

Uy = B[l () + QF 5 ()] f(B). (4.50)

The functions Fi, F» and f are determined in (4.40)—(4.44), the con-
stant () will be defined from the continuity conditions on the plane
z = b/2. To use these conditions, one has to express the values of
the variables a and g as functions of the variable x on the planes
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z = +b/2. The relations needed can be derived directly from (4.35):

a(z) = Farcch (@)
B(z) = +arcsin (@) z = %l, (4.51)
@ o e

Substitution of (4.51) and (4.52) into (4.49) yields the function ¥a(x)
on the planes z = +b/2, the dimensionless variable u varies here in
the range —1 < u < 1.

To find the complex reflection coefficient R of the TE;y mode
on the slit one has to represent the field components on the planes
z = +b/2 by means of Fourier transforms of the eigenfunctions of
a rectangular waveguide. In a single-mode waveguide its spectrum
is characterized by only one eigenfunction coskx. The continuity
condition for electric field £, on the plane z = b/2 can be written due
to the Fourier transform of the function Wa(x) (4.50) as (according
to (4.48) and (4.51) ki x = Ju):

Bi(1+R) = %(Xl + Qx2)- (4.53)
! T
X1 = /_1 Fi(a)f(B) cos (5“) du,

1
X2 = / Fy(a) f(B) cos (gu) du. (4.54)
~1

The continuity condition for the longitudinal magnetic compo-
nent H, (4.49) coincides with (4.53); however, such a condition for
the H, component, defined, according to (4.49), via the derivative
0/0z, needs special consideration. Making use of (4.35), we can
express this derivative via the derivatives d/0« and 0/00:

0 1 0 .0
5= @ <Ch0< cos ﬁa—a — sharsin ﬁ%> (4.55)
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The quantity ¢g in (4.55) is determined in (4.52). Substitution of
the generating function Vo (4.50) into (4.55) yields, after a Fourier
transformation, the continuity condition for the H, component on
the plane z = b/2:

ivBi(1—-R) = %(01 + Qo2). (4.56)
1

o1 = /_1 d?u [cha cos ﬁ%f(ﬁ) — shasin SF; (a)%} . (4.57)
1

09 = /_1 d?u [cha cos ﬁ%f(ﬁ) — shasin ﬁFg(a)%} . (4.58)

To carry out the integration in (4.54), (4.57) and (4.58), the variables
a and 3 have to be expressed via the variable v by means of (4.51)
and (4.52); the quantities x12 and o1 are dimensionless. Finally,
manipulating with Egs. (4.53) and (4.56) one finds the reflection
coefficient R

ivax1 — o1 + Q(ivaxe — 02)

R = - - )
ivax1 + o1 + Q(ivazx2 + 02)

(4.59)

The factor @ in (4.59) can be calculated from the continuity
conditions on the plane z = —b/2. This calculation is based on the
following symmetry properties of the functions Fy, Fy and f, follow-
ing from their definitions (4.40)-(4.44):

0Fy OFy
Fileej2 = Filep2; Do |, b/2 " da —bj2
0F, 0F
Byl 2 = —Folampyo, Do L =~ o —b/2’ (4.60)

X1\z:—b/2 = X1|z:b/2a X2|z:—b/2 = _X2|z:b/27
Ul‘z:—b/2 = _Ul‘z:b/Za 0'2‘2:—6/2 = UZ‘z:b/Q-
By denoting the complex amplitude of the transmitted mode as Bs,

and using these properties, one can write the continuity conditions
for field components E, and H, by analogy with (4.53) and (4.56),
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respectively:
Bod Bod .
TQ(Xl - Qx2) = Bs, %(—01 + Qo) = iyBs. (4.61)

Manipulations with Eq. (4.61) yield the factor Q:

_haato (4.62)
ivaxs + oo '

Finally, substitution of (4.62) into (4.59) yields the complex reflection
coefficient R

R (va)*x1x2 + 0102
A 9
A = (’ya)gxlxg — o109 — iya(x102 + X201). (4.64)

(4.63)

The complex transmission coefficient, defined as the ratio of the
transmitted and incident amplitudes T = Bs/Bj, can be obtained
by the substitution of (4.62)—(4.64) into Eq. (4.61)

T —iya(x102 — X201)

= A . (4.65)

The denominator A in (4.65) is defined in (4.64). It is worthwhile
to present the coefficients R and T, visualizing their amplitudes and
phases, in the forms R = |R|exp(i¢,) and T' = |T| exp(i¢;):

2
R - |(va)*x1x2 +a102|7 T = /1= |RE. (4.67)

|A
b, = arctg [ va(x102 + x201) }
' (’YG)QX1X2 — o102’
¢; = arctg [0102 — (70)2X1X2] (4.68)
va(x102 + x201)

Comparison of the phases of reflected and transmitted waves in he
waveguide shows the relation ¢, — ¢, = /2, coincident with the same
relation (4.15), established for waves tunneling through the gradient
layer.

This analysis illustrates the influence of each of the geometric
parameters describing the waveguide slit (distance d, slit length b
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Fig. 4.5. Dependence of the transmittance on the slit width s in the range
225nm < s < 300nm, while b = 1400nm, d = 500 nm are kept fixed and the
wavelength range is determined according to Eq. (4.47); curves 1, 2, 3 and 4
relate to the values of width s = 225, 250, 275 and 300 nm, respectively.

and its width s) on the tunneling of waves through the slit. Thus, the
transmittance spectra |T'|? as functions of the variations of slit width,
while the other parameters are kept fixed, are shown in Fig. 4.5. A
narrow peak in transmittance with |7'|?> — 1 belonging to the funda-
mental TEy; mode starts to appear at the lower end of the wavelength
range 700nm < A < 1200nm, when s = 225nm (curve 1). When
the width s is increased a splitting of the peak occurs (curve 2).
The subsequent increase of the slit width results in the decrease
of the transmittance (curve 4).

The effect of the resonant tunneling of the fundamental mode
of radiation through a subwavelength slit, formed by a smoothly
shaped narrowing in the waveguide, is caused by the interference of
waves, reflected from the different parts of curvilinear slit with the
different phases. Unlike the exponential weakening of the fundamen-
tal mode, tunneling through the rectangular “undersized” segment in
the waveguide [4.20], an effective energy transfer by evanescent waves
proves to become possible due to the geometry of the curvilinear slit.
This interference of evanescent and antievanescent waves is shown to
provide the possibility of reflectionless transmittance for waves with
wavelengths 2.5-3 times longer than the width of the slit.
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Comments and Conclusions to Chapter 4

Side by side with the academic interest in the effects discussed, some

trends, promising for the design of tunneling-assisted phenomena in
photonic crystals, can be outlined.

1.

Tunneling of light through a gradient nanolayer, fabricated from
a dielectric with (z) > 0 proves to be possible for some concave
spatial distributions of (z).

. Tunneling phenomena in gradient nanophotonics open the poten-

tial of subwavelength nanofilms for the design of broadband antire-
flection coatings.

. The speed of energy transfer through the gradient medium is

shown to be subluminal.

. Unlike the tunneling of light through nanostructured metallic

films, caused by narrow-banded plasmon-polariton resonances
[4.21], the weakly attenuated tunneling propagation in gradient
dielectrics, caused by artificial non-local dispersion, can be real-
ized in a wide spectral range, determined by technologically con-
trolled parameters of the metamaterial. The effect of tunneling of
EM waves, based on non-local dispersion in gradient dielectrics,
can result in a broadening of the list of materials, promising for
gradient nanophotonics.

. To increase the accuracy of the calculation of the tunneling-

assisted transparency of the slit, one can take into account the
term with 8% in (4.45); in this case larger values of 32 can be
considered (32 < 15/2). This approximation results in two eigen-
values A for the two modes regime:

_ 6 1 p?65
Ay = E (1i’/§_1—>' (4.69)

Substitution of |Fy| into (4.36) leads to a more precise value of
the hyperbolic parameter a. Following the procedure, developed
in Sec. 4.3, one can specify the values of the transmission coeffi-
cients; the same algorithm is applicable to the subsequent approx-
imations as well [4.18].
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CHAPTER 5

INTERACTION OF ELECTROMAGNETIC
WAVES WITH CONTINUOUSLY
STRUCTURED DIELECTRICS

The analyses in Chs. 2-4 were focused on calculations of refle-
ctance/transmittance spectra of thin gradient dielectric films.
To emphasize the peculiar effects of technologically controlled
heterogeneity-induced dispersion on these spectra, a series of exactly
solvable models of £(z) was examined. These models demonstrate the
influence of the geometrical parameters of the profiles £(z), e.g. their
steepness, curvature, symmetry, on the amplitude-phase structure of
propagating and evanescent waves, traversing the film. However, the
dependence of the spectra discussed on such physical features of gra-
dient media as absorption, natural dispersion, resonances, bordering
the passbands, remained beyond of scope of these models. To extend
the physical insight on the diversity of nanogradient optical phe-
nomena in photonic barriers, the interplay of heterogeneity-induced
dispersion with the aforesaid features is discussed in this Chapter.
Absorption spectra of radiation in sputtered gradient dielectric
films are known to possess some narrow-banded peaks in the IR range
[5.1]. Thus, the X-rays measurements of gradient films had revealed
the cluster structure of a series of typical materials (TiOg, TagOs,
Si0g), used in these films. These clusters are characterized by reso-
nant absorption peaks in the IR range, e.g., for (SiO3)s the resonant
frequencies are 6.531 10'3 rad/s and 8.291 10*¥rad/s [5.2]. Outside
this resonant IR range, stipulated by eigenfrequencies of intermolec-
ular vibrations, the absorption in dielectrics usually can be assumed
to be frequency-independent [5.3]. To generalize the expressions,

93
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obtained above for spectra of reflectance R and transmittance 1" for
lossless films, let us note, that in the course of the derivation of these
expressions the refractive indices of gradient films and substrates
were not assumed to be purely real. Thus, while considering the spec-
trum of a lossy film with a complex value of its dielectric permittivity
€ = €1+1e9, one can use the obtained formulae for R and 7', replacing
the refractive index ny — ng(1+ix). The values ny and « are linked
with the real and imaginary parts of dielectric permittivity e:

/-2 2 _
ng = °2 oo VEITE T (5.1)

I

\/2(\/8%4-6%—81) =

This approach is used in the analysis of the reflectance and trans-
mittance of a lossy gradient barrier in Sec. 5.1. Here no assumptions
about the smallness of radiation losses in the barrier are made.

The natural dispersion of materials, as well as the absorption, was
ignored in the above analysis. Many transparent non-polar dielectric
materials do not possess cut-off frequencies in the visible and near
IR spectral ranges, meanwhile the dependence of the refractive index
n on the wavelength A\ is smooth, and its variations don’t exceed
several percents. For example, the values of n for fused silica are
known to decrease monotonically in the visible and near infrared
ranges from n(A=400nm)=1.47012 to n(A=2010nm) = 1.43794,
so that the relative variation of n in this spectral range does not
exceed 2-2.5% [5.4]. Thus, the natural dispersion of optical materials
in these ranges is usually weak and negative. In contrast, the artificial
non-local dispersion in gradient media was shown to provide drastic
changes in the function n(\) as well as controlled formation of both
positive or negative dispersion in the given host material. This way
to strengthen and control dispersion seems to be especially useful for
the visible spectral range, where the dispersion of a natural material
proves often to be weak.

However, the interplay between natural (local) and artificial
(non-local) dispersive effects may become important in some media
for definite spectral ranges in the vicinity of resonances, caused, e.g.
by plasmon or polariton excitations. Propagation of light through
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such barriers, influenced simultaneously by both natural and artificial
dispersion, is considered in Sec. 5.2 by means of exactly solvable
models of £(z), describing the saturation of dielectric functions in
the depth of gradient dielectrics. Simultaneous action of natural and
artificial dispersion in these media is illustrated by the use of gen-
eralizations of dielectric functions, widely used for analysis of both
plasmon (5.2) and polariton (5.3) resonances [5.5, 5.6]:

2 2
B Wy o 4me*Ne
E=ECx — E, U)p = e . (52)
2 2
w” —w
W —wp

Here e, is the frequency-independent background dielectric con-
stant, the plasma frequency w, in (5.2) depends upon the electron
density N, and electron charge e and effective mass m.; wr and wy,
in (5.3) are the frequencies of transverse and longitudinal vibration
modes, forming the edges of the stop band for radiation in the spec-
tral range between wy, and wr.

Another effect of heterogeneity-induced dispersion in artificial
resonant media is connected with a frequency-dependent magnetic
permeability p(w), produced by an array of non-magnetic conducting
elements, which exhibit a strong resonant response on the magnetic
component of electromagnetic field. These elements, so-called split-
ring resonators (SRR), formed by a pair of plane opened contours,
embedded in a plastic plate, were shown to provide the effective
permeability [5.7, 5.8]

Y w?

pw)=1- 5

. 5.4
T (5.4)

Here wy is the resonance frequency, determined by the split-ring res-
onator geometry, Y is a the geometrical factor; for convenience damp-
ing effects are neglected in the model (5.4). Note, that a medium with
a positive constant value of € supports the propagation of a wave with
frequency w in the spectral ranges w? > w2(1—Y) ! and w? < w? in
which p(w) is positive. The interval wi < w? < w3(1 —Y)~!, where
u(w) < 0, relates to the stop band; owing to technical limitations the
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values of wg are reported recently to be about 1 THz (A ~ 3nm) [5.9].
An array of SRR, characterized by spatial dimensions about 300 nm,
thickness about 90 nm, and the distance between SSR about 600 nm
[5.10], embedded in a plastic plate, may be viewed as an effective
continuous medium for the mid-IR radiation; heterogeneity of this
structure can be caused by varying the spacing between the adjacent
elements. The influence of heterogeneties of ¢(z) and p(z) on spectral
properties and skin layers of these heterogeneous structures, modeled
by distributions

e(z) = e(WU?(2),  p(z) = pw)@*(2), (5.5)

is examined in Sec. 5.2.

The potential of gradient nanophotonic barriers for control of
radiation flows stimulated interest in periodic arrays of such ele-
ments — so-called gradient superlattices. Historically, the first super-
lattices were composed from a sequence of ultrathin alternating
semiconductor layers, consisting either of a sequence of two different
semiconductor materials, or of a sequence of n- and p-doped lay-
ers. The reflectance and transmittance spectra of these structures,
unattainable in natural materials, were designed by an appropri-
ate choice of superlattice period and semiconductor species. Later
on progress in fabrication of gradient nanofilms has made feasi-
ble the realization of dielectric superlattices, based on controlled
heterogeneity-induced dispersion and formed by periodic distribu-
tions of dielectric permittivity; some examples of such structures,
possessing periodic discontinuities of the gradient e(z) in non-
magnetic media, were considered in Sec. 2.3 (Fig. 2.4). In contrast,
Sec. 5.3 is focused on more flexible models of gradient superlattices,
providing continuous periodic profiles of the refractive index n(z)
with smooth transitions between its alternating maxima and minima.
Interaction of radiation with these structures can be viewed as the
optical analogies of electron scattering in the Kronig—Penny model in
the solid state physics [5.11]. Attention is given to periodic structures
with a distributed negative magnetic response p(z), when combined
with plasmonic wires, which exhibit a negative dielectric permittiv-
ity [5.12]; these structures should produce a negative refractive index
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material, a so-called left-handed material, distinguished by intriguing
parameters: e(w) < 0, p(w) < 0, n < 0. A negative £(w), occurring
in some spectral range, being combined with a negative p(w), allows
the formation of a pass band with negative n [5.13]. Strongly dis-
persive gradient superlattices, fabricated both from these structures
and right-handed materials (¢ > 0, > 0,n > 0), are examined by
means of new exactly solvable models in Sec. 5.3.

5.1. Reflectance/Transmittance Spectra of Lossy
Gradient Nanostructures

Analysis of reflectance/transmittance spectra for lossless photonic
nanobarriers, carried out in Chs. 2-4, was simplified due to the
relation between intensity reflection and transmission coefficients
|R|? + |T|?> = 1. However, this relation becomes invalid for lossy
media, and one has to derive the formulae, describing each of the
complex coefficients R and T for gradient absorbing barriers inde-
pendently [5.14]. To illustrate the interplay between absorption and
heterogeneity-induced dispersion effects it makes sense to consider
first the case of normal dispersion, examining the tunneling and
propagation regimes in gradient barriers with concave profile U(z)
separately. For simplicity we will restrict ourselves below to an anal-
ysis of the simplest configuration, containing one barrier, located on
a substrate; here both the real and imaginary parts of the complex
refractive index n(z) are assumed to be modulated by the same func-
tion U(z): n(z) = noU(2)(1 + ix) [5.15].

Tunneling through a lossy barrier can be described by means of
the replacement of the refractive index ng in the expression for the
effective refractive index n. (4.18) by the model representation of
no (5.1):

ne =noN, N =+/u?—(1+4ir)?>=a—ib. (5.6)

The factor N in (5.6) becomes complex, its real and imaginary
parts are:

a,b= \/% [\/(qﬂ—1+m2)2+4m2i(u2—1+m2)] (5.7)
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The subsequent substitutions of (5.6) and (5.7) into the formula for
the reflection coefficient R (4.17) permits one to exploit (4.17) for
lossy barriers, using the generalized values of the factors oy 2 and x1 2:

oy = [n + 7; +n2a— z‘bﬂ sh <%N> ~ ~no(a — ib)ch <%N>
= [n= 2 e =) sh () amota - pen (1),
xa = (n+ 1) [mofa — e (51) = Zon ()], (5.9

(2)-af)om(2)- () (1)
() = () s () () (2). 50

Formula for complex reflection coefficient T (4.19) and intensity
coefficient |T'|> prove to be valid for

The expression for the complex reflection coefficient T (4.19)
and the intensity coefficient |T|?> prove to be valid for tunneling
through lossy barriers as well, the expressions (5.6) for n. and (5.9)
for x1,2 are used:

_ 2ing(a —ib)
X1 +ix2

To carry out a similar analysis for the propagation regime in the

Ty ;TP =n|Tg| (5.11)

case of normal dispersion one has to represent the effective refractive
index by ne = ngN, where the factor N differs, according to (2.32),
from the expression given by (5.6):

N =+/(1+ik)? —u? = a+ib. (5.12)

The values @ and b in (5.12) differ from those given by (5.7) and are:

a,b:\/% [\/(1—u2—52)2—|—4f£2:l:(1—u2—f£2)] (5.13)
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Substitution of (5.12) and (5.13) but now into the expression (2.31)
for the complex reflection coefficient R in the propagation regime
(2.31) yields formula (2.31), valid for the following values of the fac-
tors 01,2 and x12:

2

o1 = [n + ,YZ —né(a+ ib)ﬂ sin (@) — ngy(a + ib) cos <@> ,
u

u

gy = —(n —1) [ng(a +ib) cos <%> - %sin (%)} (5.14)

2
X1 = [n — PYZ +n(a + ib)ﬂ sin <lﬁ> + ngy(a + ib) cos <l7N>,
u

XQ:(n+1)Pmaw+%yms<%¥>-%an<%¥>} (5.15)

an () = (1) (1) s (1) (1),
o (1) o (1) (2 i (2 (). o0

Formula (2.34) for the transmission coefficient can be generalized for
lossy medium as

B 2in0 (a + ’Lb)

Tk .
X1+ X2

, T =n|Tg|*. (5.17)

Note, that the frequency u = ug = v/ 1 — k% separates the spectral
ranges, corresponding to the tunneling (v > up) and propagating
(u < up) regimes; the values of @ and b, determined from (5.7) and
(5.13), become equal at u = ug: a = b = \/k. Substitution of these
values into (5.8) and (5.14) and using the formulae

sh[9(1 —i)] = —isin[d(1 +4)];  ch[¥(1 —4)] = cos[I(1 + )],
(5.18)
valid for real values of factor ¥ (in the case discussed ¥ = I\/ku, D,

shows that the values of reflection and transmission coefficients | R|?
and |T'|? are continuous at this frequency wuq.
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Spectra |R|? and |T|? for lossy barriers are depicted in Fig. 5.1(a)
and Fig. 5.1(b), respectively; for comparison the spectra |R|?> and
|T|? for lossless barriers, other parameters of these barriers being
the same, are also presented in these figures; according to the given
value of x the normalized frequency ug = 1.054. Inspection of these
figures shows, that absorption provides an increase of the barrier’s
reflectance and a decrease of its transmittance. The phase spectrum
¢+(u) of a wave, transmitted through the lossy barrier (Fig. 5.1(c)), is
characterized by a non-monotonic variation of ¢;. The characteristic
frequency we,, separating tunneling and propagation ranges in these
spectra |R|? and |T|?, is increased, due to the influence of losses,
from the value w.. = 1, corresponding to the lossless case, up to
the value we,. = Q1 /V1 — k2.

Proceeding in a similar fashion one can examine the influence
of absorption on the spectra of a photonic barrier with abnormal
dispersion (2.20) as well. Moreover, the general formulae (2.31) and
(2.34), describing the reflectance/transmittance spectra of a gradient
film supported by a substrate, remain valid for a lossy substrate,
characterized by a complex refractive index n.

The model discussed is characterized by heterogeneity-induced
dispersion, the natural dispersion of the material is presumed to be
insignificant. Note, that the spectral range, characterized by strong
artificial dispersion, is determined by the technologically controlled
profile of dielectric permittivity £(z) and, thus, can be chosen far
from the absorption range of the barrier material. This possibility,
as well as the miniaturized subwavelength thickness of the barrier,
can provide a significant decrease of losses for waves passing through
a gradient barrier.

5.2. Interplay of Natural and Artificial Dispersion
in Gradient Coatings

To extend the physical insight on the diversity of nanogradient opti-
cal phenomena, the interplay of natural and artificial dispersion is
illustrated below in the framework of simple examples of thin gra-
dient coatings or transition layers. The dielectric functions of these
layers are supposed to contain resonant frequencies, habitual to either
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Fig. 5.1. Spectra of reflectance (a) and transmittance (b) for photonic barriers
(2.16) with normal heterogeneity-induced dispersion (no = 2.3, y = 0.75), located
on a substrate with n = 1.47; u is the normalized frequency. Curves 1 and 2
correspond to the models of lossless (k = 0) and lossy (k = 0.3162) barriers. (c):
continuous variation of the phase of transmitted wave ¢ due to transition from
tunneling to propagation regime in the lossy barrier, characterized by curve 2
in (b).
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plasmon or polariton mechanisms of dispersion in dielectrics. These
frequencies are known to border the transmittance bands in the afore-
said dielectrics. The simultaneous influence of natural resonances and
artificial dispersion on transmittance bands of a gradient transition
layer are examined here by means of a dielectric function, that varies
continuously across the subsurface layer, and saturates in the depth
of medium. This approach is based on generalizations of two mod-
els of dielectric permittivity, widely used for analysis of a series of
homogeneous lossless semiconductors and dielectrics. These models
relate to stopbands of both semi-infinite and finite width.

1. Plasma, characterized by semi-infinite transparent and semi-
infinite opaque spectral ranges, separated by the plasma frequency
wp. This frequency, dependent on the electron density N, is deter-
mined by the well known formula (5.2). If the density N is coordinate
dependent, N.(z) = NoU?(z), one can write the dielectric function
of this heterogeneous plasma for the frequency w
2 2 2
_ et w2y = 2N, (5.19)

Me

£(2) = eco 2

Here e, is the frequency-independent background dielectric con-
stant; the dimensionless function U?(z), describing the distribution
of electron density in the transition layer, can be represented, e.g. as
[5.16]

1
U(2) =1+~ — , W(E=0)=1, W(z— o) —0.

(5.20)

To outline the effect produced by the plasma heterogeneity
(5.19), one can use the simple one-parameter models of the distribu-
tion W (z):

Wi(z) = (1 + %>_1 , Wi(z) =exp (—%) (5.21)

The spatial scale L and dimensionless factor g are the free param-
eters of model (5.20), where, the growth (decrease) of the electron
density N, in the depth of plasma relates to a positive (negative)
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sign of g. Thus, in the case g > 0 both distributions (5.21) indicate
the increase of N, from the value N, = Ny at the interface z = 0
up to the same value N, = No(1 + g~!) in the depth of the medium
(z > L). However, the spatial structures of the EM fields in the
heterogeneous subsurface layers, described by models (5.21), are dif-
ferent. This difference may become drastic, when the medium is not
transparent for the wave discussed, and the radiation field proves to
be localized in a subsurface skin layer.

Let the wave be incident normally from vacuum on the inter-
face z = 0. The generating function ¥, determining the wave field
inside the medium (z > 0), is governed by the equation, obtained by
substitution of (5.20) into the wave equation (2.9):

v v 5 9 1 W(z)
o 5 { Eoow?® — 1+ = — = 0. 5.22
d22+c2 {5 w wpo[ —I—g p ( )

By using Eq. (5.22) we can examine the influence of each of the
distributions W (z) on the structure of the skin layer. Considering
first the model W (z) = (1+2/L)~! and introducing the new function
f and new variables 77 and g,

F=UW(), n= /OZ W(z1)dz, <=exp (%), (5.23)

we obtain the equation for the function f in a standard form of the
Bessel equation:

Lf 1df [, &
- _ =0. .24
dg2+gdg+<q g2>f 0 (5.24)
2= Lweoe —wpo(1+g7Y)] 2_1 L2wiy n2— ¢
c? ’ 4 2g 0T
(5.25)

Inspection of the expression for the parameter ¢ (5.25) reveals the
cut-off frequency we = wpo/1 + g7 1/\/Ex, that separates the trans-
parent (w > we,¢? > 0) and non-transparent (w < w,, ¢> < 0) spec-
tral ranges. Introducing in the last case the quantity ¢ = —q%, one
can write the solution of Eq. (5.24) that decreases in the depth of the
plasma by means of a modified Bessel function [5.17] f = K4(qi5).
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Substitution of this function f into (5.23) and using the relation
¢ =1+ z/L yields the generating function ¥ in an explicit form,

U=A/1+ %Ks [ql (1 + %)} exp(—iwt). (5.26)

A is the normalization constant; according to (2.8) the electric field
E(2) can be written as F = iwc™'W. To visualize the spatial distri-
bution of field E(z) it makes sense to calculate the normalized field
e(z) = U(2)¥~1(0):

e(z) = /1+ %K [q1 (1 n %)} K74 q). (5.27)

The spatial distribution of e(z) (Fig. 5.2(a)) illustrates the mono-
tonic weakening of the field inside the skin layer, characterized by an
e-folding length of weakening close to the spatial scale of heterogene-
ity L.

In contrast, a non-monotonic field structure in the skin layer can
be produced by the distribution W (z) = exp(—z/L) (5.21). In this
case the generating function W is governed by the Bessel equation
(5.24) after the replacement f — W, however, the parameters ¢ and
s are now different from those given in (5.25):

q ; ; (5.28)

o 1w\ 2 LAwy(1+g71) — wiend]
g c?

It is remarkable, that solutions of (5.24) can describe low fre-
quency fields (w < w.) tending to zero in the depth of the medium,
where the electron density is increasing, the values of both param-
eters g% and s2 (5.28) are positive. In this case the field amplitude
in the subsurface layer grows up to some maximum, that exceeds its
value on the interface. The damping of the amplitude, habitual for a
skin layer, arises after this maximum. Thus the field structure in the
skin layer proves to be non-monotonic. To illustrate these structures
one can recall, that solutions of (5.24) for half-integer values of order
s =m+0.5 (m = 0;1;2...) are known to be expressed via elementary
functions [5.18]; choosing the solutions, tending to zero in the depth
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Fig. 5.2. Monotonic and non-monotonic distributions of normalized electric field
e(x) in the gradient transition layer (5.20), related to profiles W (z) = (1+2/L)™"
(a) and W(z) = exp(—z/L) (b), are plotted vs. the dimensionless coordinate
z = z/L. The values of the parameters s and ¢ in Eq. (5.24), determining the
distribution e(z), are s = 0.325, ¢ = 0.75 (a); curves 1 and 2 on (b) show the
distributions of e(x) (5.29) and (5.67), corresponding to the values s = 0.5, ¢ = 2
and s = 1.5, ¢ = 3, respectively.
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of the medium (¢ — 0) we have, e.g. the normalized distribution of
the electric field in the skin layer in a simple case m = O:
sin[g exp(—z)] exp (%) z

e(x) sing  TET (5.29)

Examples of such non-monotonic field distributions in the skin layer,
corresponding to the cases m =0 and m = 1, are shown in Fig. 5.2(b).

2. Now let us turn to another spectral structure, related to a stopband
of finite width. It is worthwhile to illustrate this model by means of
a dielectric with a polariton gap, e.g. MgO or ZnSe [5.19], bounded
by the resonant frequencies wr and wy, (5.3). Recalling the relation
between these frequencies w? = w2 (1 + B/ex) [5.20], where J3 is
the so-called “oscillator strength” that characterizes the polarization
of molecules, one can use the distribution of w%(z), produced by a
continuously varying content of polarized molecules in the subsurface
layer of the medium:

wi(2) = wioU?(2); (5.30)

Using the distribution (5.30) one can represent the generalized profile
£(z) (5.3) in the form

w? —w? U?(2)
T

Assuming the distribution U?(2) in (5.31) in the form (5.20), one
can follow the approach developed above for the analysis of a gra-
dient plasma layer in both models (5.21). Thus, in case of model
W (z) = exp(—z/L) this approach brings the equation for the gener-
ating function into the form (5.24) with parameters

7= 1 <wn0L>2 w?,

g c w? — wi’
2 wnOL ? W%O(l + g_l) B wg 5.32
o c w? — w2 ' (5.32)
T

This similarity opens the possibility of “double use” of each solution of
Eq. (5.24) for treatment of EM wave processes in gradient dielectrics,
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possessing both plasmon and polariton resonances, if the values of
the dimensionless parameters ¢ and s, calculated for these dielectrics,
coincide. Manipulations with the expressions for the parameters ¢>
and s? (5.32) yields the relation

w? ) s?
T+g(1-2-) =2 5.33
o(1-5) -7 (5.39)

Thus, referring to curve 1 in Fig. 5.2(b) corresponding to the values
qg=2,8s=0.5,g=0.333, we find from (5.33) the wave’s frequency,
w = 1.95wr0, located in the broadened stop band w? (1 + ¢g~') >
w? > w%. To illustrate the spectral properties of a spatially varying
stop band one can consider the light wave, incident normally on the
gradient subsurface layer in dielectric ZnSe, possessing a polariton
bandgap between wyg and wy. Taking into account that this material
in a natural state is characterized by the refractive index ng = 2.365
and a polariton gap, determined by frequencies from the near IR
range wr = 0.47 10 rad/s, wro = 0.88 10 rad/s [5.19], one can
calculate w = 1.715 10 rad /s (A = 1.08 p1); here the condition ¢ = 4
yields the gradient scale L = 160nm. On the other hand, to apply
the same Fig. 5.2(b) for the gradient plasma layer in a semiconductor
with free carriers, one has to use the expressions ¢°> and s? from
(5.28); in this case the replacement w?/w?; — w2€oo/w§0 in Eq. (5.33)
has to be done. Putting again ¢ = 2, s = 0.5, g = 0.333, we find for
€00 = O the ratio w = 0.875wyo; for an electron density N, = 6.5
%10 em™3 (wpo = 4.35 x 10¥rad/s) the frequency w (A = 50 um)
belongs to the far IR range, and the growth of the electron density is
characterized by the spatial scale L = 8 um. Thus, the interaction of
natural and artificial dispersion in a gradient dielectric can produce
an enhancement of the electric field in the subsurface transition layer.

An interesting manifestation of this interaction can arise in the
left-handed materials, whose magnetic permeability p is modeled by
the Lorentz-type oscillator (5.4). To take into account the values of
1, distinguished from unity, we introduce the generating function W,
generalizing the representation (2.8):

_tov o 10w

c= o M= g (5.34)
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Owing to representation (5.34) the set of Maxwell equations for a
monochromatic wave is reduced to the equation

v w? 1dpdv

ot el = ﬁd_l,:%' (5.35)
To emphasize the effects produced by a negative magnetic permeabil-
ity u(w), let us consider a so-called “single-negative metamaterial”
[5.21], characterized by a positive value of €, assuming, for simplic-
ity, ¢ = nZ = const. In contrast, the spatial distribution of yu(z) is
modeled, according to (5.5), as u(z) = pu(w)®?(z). It is worthwhile
to use the analogy between Egs. (5.35) and (3.38), which becomes
obvious due to the replacement ®(z) — U(z) in (5.35). Continuing
this analogy, introducing the variable 7 (3.39), and following the
algorithm (3.40)—(3.51), we present the solution of Eq. (5.35) for the
profile (3.46), depicted in Fig. 3.4, in a form, similar to (3.48):

U = A\/U(2)[exp(igs) + Q exp(—igs)]. (5.36)

~ wnogN B _Q_Q _c
=" N=fuw) - g Q=g (530)

The generating function W can be expressed via the propagating

waves (5.36) when the wave number ¢ (5.37) is real; the spectral
ranges, providing this condition, are determined from the inequality
pw(w) — Q%w=2 > 0. Substitution of the model p(w) (5.4) into this
inequality permits rewriting it in the form:

(W — wi)(w? = wd)
P — D)

>0,

1

(5.38)
Analysis of formula (5.38) reveals the relation between the frequen-

cies wp, wy and we: w1 > wy > wo. Taking into account this rela-
tion it is convenient to examine the inequality (5.38) in four spectral
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ranges:

Dw>wi, 2w >w>wy, B)w>w>wr, (4)wr>w.
(5.39)

The condition p(w)—Q%w=2 > 0 is satisfied in spectral ranges (1) and
(3); it means that the gradient structure with magnetic permeability
(5.4), distributed according to (3.46), is transparent in these ranges.
The opposite condition, p(w)—Q%w™2 < 0, satisfied in spectral ranges
(2) and (4), indicates the non-transparent range. This analysis shows
the drastic changes in reflectance/transmittance spectra of a dielec-
tric with an artificial dispersive magnetic permeability, produced by
its spatial heterogeneity.

Note, that negative p(w) was shown to be possible, when a polari-
ton resonance exists in the dielectric permeability such as in the
antiferromagnetics MnFy and FeFy [5.21].

5.3. EM Radiation in Gradient Superlattices

Progress in crystal growth techniques has made feasible the real-
ization of periodic dielectric structures, composed from ultrathin
layers with alternating high and low refractive indices [5.22]. The
periods of these artificial one-dimensional structures significantly
exceed the natural periods of crystal lattices, constituting these
structures, the so-called superlattices. The distribution of refractive
index in these structures, modeled by broken straight lines, formed
the basis for the design of systems for spectral filtration of radia-
tion, e.g. transparency windows [5.23]. The flexibility of the param-
eters of these dielectric non-magnetic structures can be improved by
the use of graded metamaterials, characterized by frequency depen-
dent dielectric and magnetic parameters, providing both positive
and negative values of £(w) and p(w). These artificial materials
attract growing attention now owing to their unusual electromagnetic
properties.

To display these properties, a new exactly solvable model of a
multilayer gradient photonic barrier, providing a smooth transition
between adjacent layers is developed. This model can be viewed as
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a generalization of profile (5.20) containing, unlike (5.20), three free
parameters L, M and g [5.11]:

n?(z) =ndU%z), U?*(z)=1- é + @,
W(z) = [cos (%) + M sin (%)} - . (5.40)

The values of L, M and g depend on the gap’s width d, the minimum
(maximum) refractive index 7inmax and the slope £ of the profile
n(z) near the gap’s boundaries, the planes z = 0 and z = d (3.1).
Considering the symmetrical profile (W (0) = W(d) = 1), one can
link these quantities with the physical and geometrical parameters
of the gap:

d 2 2 M

T = 2arctgM, Mmin,max — "0 [1 N m ’
1 dn? 2M
1 dn® _ M. 5.41
n3 dz |,_, gL ¢ .

Manipulations of Eq. (5.41) lead to an explicit expression for deter-
mining the quantity M via these parameters ng, nmin, g, and &:

2
M S ( = M) (5.42)
(1 + M?)arctgM &d ng
Substitution of the quantity M, calculated from (5.42), into (5.41)
yields the unknown values g and L.

Inspection of expressions (5.41) shows that positive (negative)
values of the parameter g correspond to concave (convex) profiles
of the refractive index U?(z). Moreover, the positive values of g are
restricted by the condition g > M?(1 4 M?)~L. The examples of the
dimensionless profiles of refractive index U?(z) shown in Fig. 5.3,
illustrate the profiles of equal width d and equal minimum /maximum
values U? characterized, however, by different shapes.

min,max’
By introducing the variable 1 and normalized variable ¢,

n= /OZ W (z1)dz, (5.43)
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Fig. 5.3. Profiles of dielectric permittivity (5.40) U?(z/d), characterized by a
variable half-width, their maximum (minimum) and width d being fixed; convex
profiles 1 and 2 in (a) relate to the values ¢ = —0.5, M = 0.6255 (g = —1.5,
M = 2.3238), concave profiles 3 and 4 in (b) correspond to the values g = 1.1,
M =0.9632 (g = 2.1, M = 3.3627), respectively.
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], me =1+ M2+ M,

In
L 1+ M? 1—m_tg(55)
(5.44)
nv 1+ M?2
¢ = L — S0, S0 = ln(m—i-)a dz:(] = —<0; §|z:d = <0,
(5.45)
one can write an explicit expression for the function W(s):
chg

W(s) = ———, W(wn)=W(-x)=1 (5.46)

V1+ M2

Let a wave with components F, and H, be incident normally
on the interface (¢ = 0) of gradient barrier (5.40). To obtain an
exact analytical solution of wave equation (2.9) for this barrier let us
rewrite this equation by introducing the new function f = ¥v/W and
the new variable ¢ (5.45). After these transformations the equation
governing the function f reads as

df 2 A )
dg? f( ch%¢ (547)
271242 1 1 212n2 1
2= 2‘*’ n02 S Ao 222, (5.48)
g1+ M?) 4 4 c2 g

Thus, the equations for both concave and convex barriers are pre-
sented in similar forms [5.16]. This similarity simplifies the following
analysis. To find the solutions of Eq. (5.47) it is worthwhile to intro-
duce the new function F' and new variable v by

v _2th<7 f = (che) " F(v), (5.49)
2
v(1_v)‘%+h— (1+a+ﬁ)v]‘fl—f CaBF=0.  (5.50)

Equation (5.50), well known in quantum mechanics [5.24], is the stan-
dard form of the hypergeometric equation, where parameters a;, 3, ~y
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are defined via the quantities ¢? and A (5.48):

1 L 1
Y=1+2, af=c+pE21-= =2/
c g
(5.51)

The hypergeometric equation (5.50) has two linearly-independent
solutions. Since the parameters «, 3,7y are linked by the relation
Re(a+ 4+ 1) = 27, these solutions are given by hypergeometric
functions Fy and Fy [5.18]:

FIZF(CLB”Y’U)’ F2:F(O‘7B7’771_’U)' (552)

The hypergeometric series F; and Fy are known to converge abso-
lutely inside the circle |[v| = 1 under the condition Re(a+ 3 —7) < 0
[5.18]. According to (5.51), o + 8 — v = 2p. This means that the
series F1 and F5 converge absolutely if the value of p is negative,
which means, in its turn, if the condition ¢ < 0 is satisfied. This
simple case will be considered below.

Introducing the definition 2p = —I(l > 0),l = y/—¢?, one can
represent the explicit solution of wave equation (2.9) for the barrier
(5.40) in the form

U = A(cho)"2[Fy (v) + QF,(1 — v)]. (5.53)

Substitution of the generating function ¥ (5.53) into definition (2.8)
brings the expression for both the electric component of EM field
E, = iwc U and the magnetic component, determined by the
derivative of the function ¥ with respect to z. Calculation of this
derivative by means of the equalities

dg_ch_g dv 1

Sl S 54
dz L’ dz 2Lche’ (5.54)
yields the expression for H,:
B A(chg)l_% F — QF;
H, = —a7 (20 — 1)(Fy + QFy)she — e | (5.55)
F! F:
F{:dl i S A, (5.56)

v’ TP dh
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To find the reflection/transmission coefficients for barrier (5.40) by
means of standard procedure, based on the continuity of the fields
E, and H, across the boundaries z = 0 and z = d of the barrier, the
values of the variables ¢ and v on these boundaries are needed:

1 M
z=0: ¢=—In(my), v=ur =g 1+7W,

h:v_:%<1—¢%>. (5.57)

z=d: <¢=In(my), v=v_, h=uv;. (5.58)

It is remarkable that the concave and convex arcs (5.40) can
be viewed as the constitutive blocks of a smoothly shaped gradient
superlattice. The periodic sequence of such alternating arcs provides
the profile of a superlattice, continuous across the boundaries of each
arc: U?(z = 0) = U%(z = d) = 1. The demand for a smooth tangent
of adjacent n-th and (n + 1)-th arcs at the contact points U = 1
results in a condition linking the parameters M,g and L for these
arcs,

Mn _ Mn+l
gnLn gn+1Ln+l

(5.59)

Different profiles of superlattices, created from barriers with height
H = U2, — 1 and wells with depth D = 1 — U2, , measured from
the level U = 1, are shown in Fig. 5.4. The flexibility of the parame-
ters of these structures, combining smoothly the blocks with H = D
(Fig. 5.4(a)), as wellas H < D (Fig. 5.4(b)) and H > D (Fig. 5.4(c)),
opens the way to the design of new types of sophisticated superlat-
tices and multilayer coatings.

Side by side with these non-magnetic dielectric structures it
makes sense to pay attention to another type of gradient superlat-
tices, consisting of arrays of fine wires and split-ring resonators [5.25],
embedded in a plastic matrix. This composite medium is character-
ized by spatial distributions of its dielectric permittivity; assuming
these distributions to be described by even functions, one can write
the dielectric permittivity ¢ = e(w)U?(2) and magnetic permeability
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Fig. 5.4. Constituent blocks of smoothly shaped superlattices, consisting of pro-
files, shown in Fig. 5.3. All the concave arcs in Figs. 5.4(a)-5.4(c) are charac-
terized by parameters: M; = 2.02, g1 = 1.35. Convex arcs correspond to the
values My = 2.02, go = —1.35 (a), M2 = 4.739, g2 = —2.036 (b); M> = 2.843,
g2 = —0.971 (c), respectively. All the profiles and their gradients are continuous
at the tangent points, located at the level U = 1.
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w(z) = p(w)®@2(2) (5.5). In the case of normal incidence of radiation
on such a metamaterial layer the wave field inside the layer is gov-
erned by Eq. (5.35).

Consider the model of a left-handed medium, characterized by
negative refractive index (ng < 0) and coinciding distributions U = @
(5.5), the functions £(w) and p(w) being arbitrary. Transformation
of (5.35) to the new variable 7 (3.39) leads to a simple equation

2V wnk
—— +
dr? 2

The solution of (5.60), given by harmonic waves in 7-space,

U=0, no=—e(w)uw). (5.60)

U = exp (i“%) o og= (5.61)

c

describes both propagating (n3 > 0) and tunneling (ng < 0) regimes
in right- and left-handed metamaterials. The dispersion in this bar-
rier is determined by the coordinate-independent function ng, while
heterogeneity-induced dispersion in this heterogeneous medium does
not arise. Note, that due to the condition ng < 0 the waves, traveling
in a left-handed material in the direction z > 0 (z < 0), are character-
ized, in contrast to a right-handed material, by wave numbers —q(q).

It is remarkable that solution (5.61) of Eq. (5.35) is rather gen-
eral: it is valid for arbitrary functions e(w) and p(w) and arbitrary
distributions U(z) under the condition U(z) = @®(z). Moreover,
the solutions (5.61) describe the waves in homogeneous layers in
T-space; thus, the well developed algorithms for the design of super-
lattices, built from homogeneous layers in conventional z-space, can
be used for the design of gradient superlattices containing left-handed
materials.

Note, that the generating function ¥ can be introduced, side by
side with (5.34), by the familiar representation (3.37)

10¥ 1oV
g0z’ Yoocot’
The equation, governing this newly introduced function coincides

with (5.35) after the exchanges ¢ — p, p — ¢ in (3.38). This fea-
ture of the representations (3.37) and (5.34) can be considered as a

E, =— (5.62)
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manifestation of the invariance of the Maxwell equations under the
replacements B — —D, E — H (duality principle) [5.26].

Comments and Conclusions to Chapter 5

1. When the gradient photonic barrier U(z), fabricated from a
gyrotropic material, is placed in an external magnetic field Hy
normal to the barrier interface, the conventional magnetooptical
effects are influenced by the heterogeneity-induced dispersion of
the barrier. Maxwell’s equations, describing the wave field inside
this gradient magnetooptical medium, are

. 10H . 10D
th = ———— tH = ———. 5.63
o cot’ c ot (5.63)
The electric displacement D in the wave discussed can be repre-

sented by means of the Verdet constant v as [5.27]:
D = n2U%(2)(E + i~[EHy)), (5.64)

where ; is the unit vector, oriented in the direction of the exter-
nal magnetic field ﬁo. Consider a wave incident normally on the
barrier U(z) (2.16). On introducing the generating functions ¥y
and ¥y by,

| I R 7
R, T Yoot Y e ot
0¥y Fi9
H,=—— U5 = = 5.65
0z 12 U() (5.65)

and using the familiar variable n (2.10), we find F12 = Aj2exp
(igsm), where

wng\ 2 wng

@ = (—) (1 —u?)+~y—. (5.66)
c c

The splitting of the wave number q into two values, corresponding

to the =+ signs in (5.66), is known to describe the Faraday rotation
of the polarization state [5.27]; here the factor 1 — u? arises from
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the gradient profile of the refractive index; the variable 7 is defined
in (2.32).

. Solutions of Eq. (5.24), related to half-integer values of the param-

eter s, can be used to Illustrate the influence of the parameters
g and L of gradient structure (5.20) and (5.21) on the possible
enhancement of the electric field e(z) in the transition layer. Thus,
side by side with the distribution (5.29), corresponding to the case
s = 0.5, one can consider the distribution e(z) for s = 1.5:

e(z) = %, l = @ — cos(q), (5.67)
o= exp (g) {exp(:c) sinE}qexp(—x)] _ cosfg exp(—x)]}.

The expression sin(g) indicates the sine function whose argument
is equal to ¢ radians. An example of distribution (5.67) for ¢ = 3
is shown by curve 2 in Fig. 5.2(b). Let us recall that curve 1 in
Fig. 5.2(b) corresponds to the frequency w = 3.8 x 10'3 rad /s, inci-
dent on the transition layer in a solid plasma, characterized by the
spatial scale L = 8 ym. Considering, e.g. the transition layer with
a more sloping profile of the density L = 12 ym, other parameters
of the medium being unchanged, we find from (5.28) the value
g = 3. Thus, curve 2 in Fig. 5.2(b) presents the distribution e(x)
for a wave with the lower frequency w = 3.5 x 1013 rad/s.
Solution (5.61) describes the waves in the so-called transition
metamaterials, characterized by gradual changes of £(z) and pu(2)
from positive to negative values. Thus, considering the profile
defined by the odd function, U(z) = ®(z) = th(z/L) [5.28], we
find from (2.10) that n = LIn[ch(z/L)]. The wave traveling in this
layer in the z-direction, is written as

U= [ch (%)}qL (5.68)

The wave number q was defined in (5.61). Note that the refractive
index ng (5.60) conserves its value for any given frequency in both
half-spaces z < 0 and z > 0. This means, that the wave travels
from z < 0 to z > 0 without any reflection from the plane z = 0.
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CHAPTER 6

POLARIZATION PHENOMENA IN
GRADIENT NANOPHOTONICS

This section is devoted to two-dimensional reflectance-transmittance
problems for waves, incident on a gradient dielectric lossless non-
magnetic layer at an arbitrary angle 0. Unlike the case of normal
incidence, here the waves have different polarization structures and
are described by different equations. The standardized approach,
based on exactly solvable models of gradient nanofilms, illustrat-
ing the diversity of wave reflectance spectra subject to their polar-
izations and angles of incidence, is developed in this Chapter. The
analysis of these spectra is complicated due to the vector structure
of polarized fields. Side by side with some distributions of dielectric
susceptibility €(z), suitable for analytical consideration of gradient
effects for both S- and P-polarized fields, this approach reveals pro-
files €(z) providing unusual reflectance spectra for S-polarized waves
only.

To develop a common mathematical basis for analysis of S- and
P-polarized fields in a gradient layer, different generating functions
¥, and U, related to each of these polarizations, are required. Denot-
ing the normal to the layer as the z-axis, and choosing the projection
of the wave vector on the layer’s interface as the y-axis, one can
write the Maxwell equations, describing the polarization structure
of an S-wave by means of its electric component FE,, parallel to the
interface z = 0, and magnetic components Hy, and H., situated in

121
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the plane of incidence (y, z):

OB,  10H, 0E, 10H. 0H. 0H, ¢(z)0E,
0z ¢ Ot Oy ¢ Ot Oy 0z ¢ Ot
(6.1)

div(eE) = 0, div(pH) = 0. (6.2)

Components of a P-wave (H,, parallel to the interface z = 0, and
electric components E, and FE;, located in the plane of incidence)
are also linked by Egs. (6.2), but Egs. (6.1) have to be replaced by:

OH, e(z)9E, OH,  c(2)0E, 0E. 90E, 10H,

9z ¢ Ot oy ¢ ot 9y 0z ¢ ot
(6.3)

It is worthwhile to express the field components in the Maxwell equa-
tions by means of the following polarization-dependent generating
functions ¥, and ¥, [6.1]:

1d¥y
S-polarization: E, = R
=% - —dd‘zs, (6.4)
P-polarization: H, = l%,
c dt
Eyzﬁ%, Ezz—ﬁdd—q;’. (6.5)

Using such presentations, one can reduce the system (6.1)-(6.3) to
two equations, governing S- and P-waves respectively. Restricting
ourselves by plane waves we can write these equations as:

0?W wn3U? 2 wnq sind
022 * ( 2 kl’) Yo =00 ky = c (6.6)
0%V, wnU? 2 2 dU oV
_ U, = 2 77P )
022 i < c? ky> P U dz 02 (6.7)
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By introducing the new variable 7 and new functions f, and f):
= U NU, f,= / Ul(z1)dz. (6.8)

one can present Egs. (6.6) and (6.7) for S- and P-waves in similar

forms:
d2 ; U U2
d*f, Upy _ 3Us
ae T (“ w az) (6.10)
where
_(wmoN?_ Ry _dU _dU
K_(c> U2’ Un_dn’ T dn?

Equations (6.9)—(6.10) are valid for arbitrary profiles of photonic
barriers U(z) and all angles of incidence 0. Owing to the transforma-
tions (6.8), which provide the presentation of equations for both S-
and P-polarized waves in coinciding forms, the following analysis of
polarization effects proves to be standardized.

The continuity conditions on the boundaries of a reflecting
nanofilm are distinguished for S- and P-polarizations. Considering
the plane wave Wy = Ag{ilwni(zcosd + ysind)c™! —#]}, incident
from the homogeneous medium with refractive index n; under the
angle 6 on the film boundary z = 0, one can write these conditions,
which are needed for a calculation of polarization — dependent reflec-
tion coefficients Ry and R, as:

S-polarization: P-polarization:
AO(l + Rs) = As\l’s‘z:m Ao(l + RP) = AP\IJP|2:07
iwn1Agcosé(1 — Rs) _ A AV iwAgcosd(l — Rp) _ Ap d¥p
c *dz |,y cny e(z) dz |,
iwniAgsind(l + R . wAgnysind(l + R )
= c ( o) = thy AsWs|.=0, - - ( ») = iky ApWp|z=0.

(6.11)
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If the reflecting films are located on a homogeneous substrate with
refractive index n, the continuity conditions, given on the boundary
z = d, link the wave components (6.4) and (6.5) in the film with
the corresponding components of the plane wave ¥ = Aexp{ijw(z
\/n2 —n?sin? 6 + yny sind)e~! — ¢]} in the substrate.

The difficulty of obtaining the simultaneous solutions of
Egs. (6.9) and (6.10), describing S- and P-polarized fields for one
model U(z), result in a limitation on the number of exactly solvable
models U(z). Section 6.1 is focused on a peculiar effect, inherent in
the oblique propagation of waves through gradient nanofilms: profiles
e(z), providing either traveling or tunneling regimes for any frequen-
cies and arbitrary angles of incidence of both S- and P-polarized
waves, are examined. Moreover, another example of a polarization
selecting distribution e(z), ensuring the total transmittance of an
S wave, incident under a specific angle, is presented; this hetero-
geneity — induced phenomenon can be viewed as an analogue of
Brewster effect (total transmittance for P waves), well known in the
optics of homogeneous media [6.2]. Section 6.2 is devoted for polar-
ization — dependent filtration of fields in periodical nanogradient
dielectric structures; examples of inclined propagation of polarized
fields in the metamaterials with continuously distributed dielectric
and magnetic response are exemplified too. Reflectionless tunneling
of S wave through the multilayer stack of gradient nanofilms and
Goos-Hanchen effect for this structure are considered in Sec. 6.3.

6.1. Wideangle Broadband Antireflection Coatings

Elaboration of antireflection coatings, effective simultaneously in
broad spectral intervals and wide ranges of angles for arbitrary polar-
izations, is known to be an actual task in the optics of thin films.
It is remarkable, that some gradient layers with distributions e(z),
considered above in the framework of the 1D problem (normal inci-
dence), can also be used as exactly solvable models for 2D problems
(oblique incidence). This feasibility can pave the way to the design of
gradient antireflection coatings and frequency — selective interfaces
with parameters unattainable with homogeneous layers.
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To compare and contrast gradient and homogeneous coatings let
us recall films with simple distributions of refractive index n(z) =
noU(z), and examine two different profiles U(z)

Ui(z) = (1 + %)_1 , Us(z) = exp (—%) (6.12)

We start by considering profile Uy(z). On substituting U;(z) into
(6.8), we define the variable n = L1n(1 + z/L). Equations (6.9) and
(6.10), governing the functions fs and f,, are reduced in this case to
the standard Bessel equation (5.24). Keeping in mind applications of
this equation to the analysis of some other problems, we rewrite it,
changing some definitions:

dgfs,p Ldfsp 2 lg,p Ui

d,f[,‘2 + E d,f[,‘ + fs,p qs’p - ? — 0, r = z, (613)
. 2
2= wLsin 2 _ 1 1_i ’
c P 4 u2
Q c

= O= ) 6.14
“ w’ 2n0L ( )

Here the indices s and p correspond to S- and P-polarizations, € is
some characteristic frequency, which cannot be viewed here, unlike
(2.19), as a cut-off frequency. The linearly-independent solutions of
Eq. (6.13) in the case ¢*> < 0 are known to be given by the Bessel
function of imaginary argument I; and the Macdonald function K;
[6.3]. To examine the field in a layer of finite thickness d, it is worth-
while to use their linear combinations 1951’2) = [} + 1K, similar to
Hankel functions, related to the values ¢> > 0. Bringing together
these solutions of Eq. (6.13) and the representations (6.8), we obtain
the generating functions for S- and P-polarized waves:

U, = (1 n %)2 for U, = (1 n %)_5 for (6.15)
fS,P = [191(1) (§) + Qs,pﬁl@) (§)]7 S = w (616)

C
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The phase factors exp|[i (kyy — wt)| are omitted for simplicity in
the expressions for generating functions ¥, and ¥, in (6.15) and in
what follows; the quantities Qs and @) in (6.16) have to be defined
from the continuity conditions at the air-film boundary z = 0 and
the film-substrate boundary z = d. The wave components (6.4)—
(6.5) as well as the reflectance spectra for these waves |R(u)|? can
be found by means of a standard procedure, using the boundary
conditions (6.11).

Examples of such spectra for polarized waves |R(u)|* are shown
in Fig. 6.1. While computing |R(u)|?> we have expressed the vari-
able ¢ in (6.16) via the normalized frequency u and the value of the
distribution Uy (6.12) at the film-substrate boundary z = d:

‘ 2

sin

d _1

L

To illustrate the effects of the film’s gradient structure, its spectra
|R(u)|? are compared with the reflectance spectra for homogeneous
films; here all the parameters of the incident waves, such as their
polarization states, frequencies w, angles §, as well as all the param-
eters of the reflecting structure — the refractive indices of the film
and substrate ng and n, and thickness d are equal in both cases. The
complex reflection coefficients for S- and P-polarized waves from a
homogeneous film, located on a substrate, are [6.4]:

_ Mgcosd —ry —it(cosd —ri M)

R = . 6.18
® Mgcos§ + 1 — it(cos d + ry M) ( )
R, — Mpnz cosd — 1y — zt(nz cosd — rlMp)' (6.19)
Myn?cosd + ry —it(n?cosd + riMp)
! n’ 2 )
Ms:g, Mp:Msn_g’ r1 = 4/ng — sin“ 9,
S o wdry
ro = Vn?—sin“J, t=tg : (6.20)
c

To compare these coefficients Ry and R, for a homogeneous film
with reflection coefficients for a gradient film, calculated at the same
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Fig. 6.1. Effects of the gradient structure of a nanofilm with the distribution
of refractive index n(z) = no(1+ z/L)~" in the reflection of S- and P-polarized
waves incident under the angle of illumination § = 45° are shown in (a) and
(b), respectively; ng = 1.9, the refractive index of the substrate n = 1.5, and
u is the normalized frequency. Since the reflection coefficients for the gradient
nanofilms for the same frequencies and polarizations |R(u)[Z, and |R(u)[Z, are
much smaller than those for the homogeneous nanofilms |R(u)|3, and |R(u)},,
depicted on the curves 2, the values ng, n and 6 being equal, curves 1 on both
figures are intended for calculation of |R(u)|Z, and |R(u)|Z, by means of values
|R(u)|3s and |R(u)|3,, given by the conventional curves 1: |R(u)|2, = 0.09|R(u)|s,
|R(u)|2, = 0.12|R(u)|},. Curves 2 show the reflectance spectra for homogeneous
nanofilms |R(u)|7, and |R(u)|3,.

frequencies, one has to substitute into (6.18)—(6.20) the values of the
factor t = tg(wdric™t), expressed via the factors u and U,,:

1-U,
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Inspection of Fig. 6.1. shows several features of reflectance spectra
of gradient films with a refractive index U (z) profile:

1. Owing to the heterogeneity-induced dispersion the tunneling
regimes arise in the Rayleigh barrier Uj(z) for both S- and P-
waves simultaneously; radiation transfer through this barrier is
provided for both S- and P-polarized fields by evanescent modes
only;

2. The reflectance of these films in a wide spectral range is about an
order of magnitude smaller, than the reflectance of homogeneous
films, other parameters of the films and radiation being the same;

3. The films with profile U;(z) are shown to produce a significant
decrease of the reflectance despite their subwavelength thickness:
thus, using the definition of the variable u (6.14) one can find the
link between wavelength A and thickness d, corresponding to any
given value of the variable w:

d — ﬂ (6.22)
A ArungUy,
According to Fig. 6.1(a), the reflection coefficient of a gradient
nanofilm for an S-wave, corresponding, e.g. to the value u = 1.5
is |R(u) gs = 0.0165; this means, that all the waves, obeying to

Eq. (6.22) are characterized by this reflection coefficient. In particu-
lar, under the conditions corresponding to Fig. 6.1(a), we have from
(6.22): d = 0.007); thus, for the infrared S- wave with A = 14.28,
incident on the gradient nanofilm with thickness d = 100 nm under
the angle § = 45°, the reflection coefficient is as small as 0.0165; the
replacement of this film by a homogeneous film will result, according
to Fig. 6.1(a), in an increase of the reflectance by a factor of 10:
|R(u)[?> = 0.168. Thus, these gradient films can be viewed as the
broadband antireflection nanocoatings in a middle IR range.

Now let us consider nanofilms with an exponential profile of the
refractive index Us(z) (6.12); in this case it is convenient to examine
the propagation of S- and P-polarized waves separately.

Substitution of model Us(z) into Eq. (6.6) brings the equation
governing the generating function ¥, into the form of the familiar
Bessel equation (6.13); however, the variable 2 and parameters ¢
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and [2 have to be redefined:

z wnoL \ 2 wLsiné\?
x:exp<—5>, q2:< cO > , l§:< - ) . (6.23)

Let us emphasize that the value of ¢ in (6.23), related to model

Us(z), is always positive, in contrast to (6.14), where ¢?, related
to Ui(z), is always negative. Due to this difference the linearly-
independent solutions of Eq. (6.13) in this case are given by the
Hankel functions Hl(l’z) = J; £ 1N;, where J; and N; are Bessel and
Neumann functions [6.3], I =[5 (6.23); therefore generating function
for S-waves in the model Us(z) can be written as

L
U= HVQ+ QAP =ep (7). (624)

The generating function ¥,,, distinguished from W, can be calculated
in the same way:

W) = exp <_%> [Hl(l)(g) + Qsz(Q) (g)]7

Lsi 2
l:zp:\/H <“’ zm5> . (6.25)

The variable ¢ for both functions ¥, (6.24) and ¥, (6.25) has the
same value, defined in (6.24). The derivation of the reflection coeffi-

cients, these functions being known, does not pose any mathematical
problems.

Comparing the distributions U; (z) and Us(z), one can note some
features of their difference and similarity:

1. In contrast to profile Ui (z), both S- and P-polarized waves with
any frequencies, incident under any angles, traverse the film with
the profile n(z) = noUs(z) as propagating modes.

2. Interaction of waves with films, possessing the refractive index
profiles ni(z) = noUi(z) and na(z) = noUz(2), illustrate the sen-
sitivity of these interactions to the details of the distributions
Ui(z) and Us(z): despite the equalities Uj(z = 0) = Uz(z = 0)
and even in the case, where the scale parameters L are equal
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for both distributions (gradUi|,—q = gradUs|,—q = —L~ 1), the
regimes of wave propagation through these media are shown to
be different.

3. A simultaneous analytical solution of two Egs. (6.9) and (6.10),
describing S- and P-polarized fields, is hampered due to the neces-
sity of finding one common model U(z), suitable for solution of
both these equations; some of these models are exemplified by
distributions (6.12). However, restricting ourselves to the analysis
of S-polarized fields only, one can develop a new insight on some
well-known phenomena.

Thus, one can recall the Brewster effect — the vanishing of reflec-
tion for P-polarized waves, incident on the boundary of a homoge-
neous half-space with refraction index n under the angle § = arctg(n)
(Brewster angle) [6.4]. This effect is known to arise for P-waves only.
One can see from (6.18), that the reflectionless interaction of S-waves
with a homogeneous medium is impossible. However, in gradient
media reflectionless propagation can arise for S-polarized wave as
well.

To visualize this new possibility let us examine the oblique inci-
dent of an S-polarized wave from a homogeneous dielectric with index
ny on a gradient film, characterized by the familiar profile U(z)
(5.40), [6.5], shown in Fig. 5.3(b). The wave structure in this film,
determined by the unknown function Wy, is governed by Eq. (6.6).
To find ¥y one has to substitute the profile (5.40) into Eq. (6.6)
and follow the procedure, developed in section 5.3: introduce the
new function f; = W,v/W and new variables 7 (5.43)(5.44) and
¢ (5.45); after the replacement of W(z) (5.40) by W(s) (5.46) the
equation, governing the function fs, is Eq. (5.47). Here the expres-
sion for the parameter ¢® in Eq. (5.47) coincides with (5.48), while
the value of the parameter A in Eq. (5.47) differs from the definition
(5.48):

o =n3(g—1) —n3gsin? . (6.26)
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Now let us turn aside from an outline of the general solution of
Eq. (5.47) used in Sec. 5.3, and focus the attention on the special
case A = 0 (6.26). If the parameters of the reflecting structure
ni, ng,g, and L are given, the following analysis is valid for any
frequencies w and angles of incidence ¢, linked by the condition
A = 0. Under this condition Eq. (5.47) is reduced to the simple
form:

d2fs 9 5 1 n%
=0, == |0 4] 2
gz TT)s=0a 4[p(1+M2) (6.27)

We will consider here the case ¢° > 0, where the solution of Eq. (6.27)
is presented by forward and backward harmonic waves in ¢-space.
Taking into account the link between the functions fs; and ¥y intro-
duced above (fs = U W ), one can write the generating function
U, as [6.5]:

z

. z . .
U, = \/cos (f) + M sin (E) [exp(igs) + Qexp(—igs)];  (6.28)
Expressing the wave components via Wy, (6.4), and using the conti-
nuity conditions (6.11), we find the complex reflection coefficient Rj:

iB— M — 2igY /1 + M?

B+ M +2igY V1 + M2’

y = (i) ~ Qexplign) p _ Wwlmcosd oo

exp(—igso) + Q exp(igso)’ c

The quantities ¢ and ¢y in (6.29) are defined in (6.27) and (5.45),
respectively. The value of parameter (), derived from the standard
continuity conditions on the interface z = d, is:

0=_ (M +iBy — 2igV'1 + M?) exp(2ig<o)
M +iBy + 2igV/1 + M? ’

2wly/n? —n? sin2 ¢
B . (6.30)

C




132 Waves in Gradient Metamaterials
Manipulations with formulae (6.29) and (6.30) yield finally the
expression for the reflection coefficient R in a familiar form (2.31):

R, = % t = tg(2q), (6.31)
o1 = t[BB + M? — 4¢*(1 + M?)] — 4Mq\/1 + M2,
o3 = (B — B1)(2qV/1 + M2 — Mt),
X1 = t[BBy — M? + 4¢%(1 + M?)] + 4Mq\/1 + M2,
X2 = (B + B1)(2¢V'1 + M? — Mt).

On setting 01 = 02 = 0 in (6.31), we obtain the condition for the
vanishing of reflection, Rs = 0, for frequencies and angles, linked by
the condition A = 0:

BBy = M? 4 4¢*(1 + M?). (6.32)

After substitution of the values of B (6.29) and B; (6.30) into (6.32)
and elimination of the parameters L and ¢ by means of (5.41) and
(6.27), the Eq. (6.32) can be rewritten as

2

/ 225
pn cos d4/n? — n¥sin®§

The right side of Eq. (6.33), being independent of the frequency w
and the thickness of the gradient nanofilm d, is determined by the
parameters of the gradient film (5.41) and (5.42) (ng, M, L, g), refrac-
tive indices of the homogeneous media surrounding this film (n; and
n), and the angle of incidence . Specifying these parameters, we’ll
determine the dimensionless factor wdc™! (6.33), with the use of this
factor one can calculate the thickness of the nanofilm d, that provides
the total reflection of an S-wave with frequency w, incident under
the angle § on this reflecting nanostructure with the concave profile
U(z) shown in Fig. 5.3(b). Thus, in the case no=1.9, M =0.9632,
g=2.1,n1=1.433,n=2.28 we find that for the angle § = 60° and
d=100nm the reflection vanishes for w=3.878 10" rad/s (wave-
length A=485nm). If the S-wave is incident from an air (n;=1)

d
“’7 — (arctgM) (6.33)
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under the angle, e.g. 6 =45°, on the nanostructure with parameters
ng=19, M =0.9632, g=1.3, n=2, d=100nm, the reflectionless
regime arises for A=693 nm. Using of thicker films, other quanti-
ties in (6.33) being fixed, results in the shift of the wavelengths of
reflectionless regimes to the infrared range.

Let us outline some salient features of these polarization-
dependent effects:

1. The reflectionless interaction of an S-wave with the gradient
nanofilm (5.40) resembles the Brewster effect, inherent in the
optics of homogeneous media for P-polarized waves only; owing
to heterogeneity-induced dispersion new possibilities of reflection-
less penetration of radiation through the boundary between two
dielectrics arise.

2. Unlike the optics of homogeneous dielectrics, the angle of illu-
mination §, which is needed for observation of this Brewster-like
effect in the gradient nanostructure (5.40), is determined by the
frequency w according to Eq. (6.33), other parameters of structure
being fixed.

3. The nanofilms discussed above can be viewed as broadband antire-
flection coatings, effective, in particular, for large angles §. These
coatings are based on single layer models. The reflectance of mul-
tilayer gradient structures is considered below in Sec. 6.2.

6.2. Polarization-Dependent Tunneling of Light
in Gradient Optics

Conditions for the appearance of propagating or evanescent waves
in nanofilms with profiles of refractive index (6.12) were shown to
be independent of both the polarization of the waves and their fre-
quency. In contrast, this section is devoted to more versatile nanos-
tructures with heterogeneity-induced dispersion, supporting both
traveling and evanescent modes subject to their polarization and
frequency. These properties will be illustrated first by means of an
exactly solvable single-layer model; later we will examine a periodic
structure, constructed from such layers.
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A simple model of a gradient layer possessing these properties can
be obtained from the distribution (5.40) in the limiting case g = 1,
M =0, U(z) = W(z); on this way we’ll consider the concave sym-
metrical barrier U(z) with thickness d, varying from the minimum
value U =1 in the center of the barrier (z = 0) up to the maximum
value Uy, at the interfaces z = +d/2 [6.6]:

U(z) = |:COS (%)} o . Un=m"Y m=cos <%> (6.34)

In this case the variables n (5.44), ¢ (5.45), and the distribution U (<)
(5.46) are written as:

n

L:

1+tg (5)
—— =2 (= —, U(g) = chg. (635)
1—tg (%) L

Substitution of the distribution U(s) (6.35) into the basic equations
(6.39) and (6.10) yields a common equation for both functions fs and
fp, connected with S- and P-polarized waves in the film (6.34):

d2f5P 2 ASP
’ ; —IsR ) —, 6.36
de? T fs (q chZ¢ (6.36)
1/1 wLsins\? 1
2
——(=—-1 Ay = -,
wLsins\? 3
A, = _ 2. .
o= () -3 (637

The value of the normalized frequency u, defined in (6.14), remains
valid here also.

Following the solution of the similar Eq. (5.47), we introduce
the new variable v and the new function F(v) (5.49), governed by
the hypergeometric equation (5.50) with parameters «,  and 7 that
have to be defined now via the quantities ¢*, A5 and A, (6.37). Note,
that the sign of the parameter ¢ (6.37) changes when w = , and let
us consider the low frequency spectral range w < Q, ¢> < 0. In this
case the value of the exponent —2p = y/—¢? = [ in the representation
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of both functions f and f, (5.49) remains positive (I > 0), and the
definition v = 1 — [ (5.51) is also valid for both waves; however, the
values of the parameters o and (3 have to be specified for each wave.
Let us start the analysis with the S-wave. In this case we find:

1 isind
=—_ -1+ . 6.38
Qs s B Mot ( )
Since as + Bs + 1 = 2v, two linearly-independent solutions of

Eq. (5.50) are given by the hypergeometric functions F'(as, Bs,7,v)
and F'(as, Bs,7,1 —v), denoted below for compactness as F'(v) and
F(1 — v). Moreover, due to the condition Re(as + s — ) < 0 the
series representing these functions converge absolutely [6.3]. Contin-
uing the analogy, one can be convinced that the generating function
U, (6.8) coincides with (5.53), where the parameters as and (s are
defined in (6.38). Standard manipulations with the continuity con-
ditions on the boundaries z = +d/2 yield the complex reflection
coefficient Ry:

- iB1Fy + My + Qs(iB1 Fy + My)

R, =" : , 6.39

*iB1Fy — My + Qs(iB1Fy — M) (6.39)

Blsz085, BQZm nz—sin25’ (6.40)
nou nou

My — iB, F:
0. — - (ﬁ) Myo=s(2l—1)Fyo £ m2F],.  (6.41)

Here F; and F5 are the hypergeometric functions

dF(OéS, ﬁsa 7’ V)

F1,2 = F(Oésaﬂsa’% Vl,?)a FI,,Q = d ) (64'2)
v V:V172
1+s 1 1
— — 2 — —
V1’2— B s S = l—m, ’7—1-[, l—§ 1-&

(6.43)
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Proceeding in a similar fashion we obtain the generating function ¥,
(6.8) and the reflection coefficient for P-polarized wave R,:

1C1P1 + M3 + Qp(z'Cl(I)g + My)

R, = - - , 6.44
P i@y — Ms + Qp(iC1 @y — My) (6.44)
2 _ «in2
oy = ng COS(S’ Oy — ng n2 sin 5’ (6.45)
mu n4mu

My —iCy®
Qp — _<W>7 M374:5(2l+1)<13172:l:m2<13’172. (646)

Here ®; and ®5 are the hypergeometric functions, dependent,
unlike (6.42), on the parameters o, and G):

d®(ayp, By, v, V)

4
. . (647)

v=r12

1 | sin?§
O‘paﬁp=§—li 1—W7 y=1-1 (6.48)

The values of the quantities v192, s and 7, defined in (6.43) for
S-waves, are also valid for P-waves.

(D1,2 = (I)(QPJ/B]N,‘%VLQ)? (Dg.,Q =

Reflectance spectra for inclined incidence of S- and P-polarized
waves on the gradient films (6.34) are depicted in Fig. 6.2. Inspection
of these spectra illustrates the following polarization-related effects:

1. Reflection of S waves exceeds the reflection of P waves for both
illumination angles 45° and 75°. Note, that all the spectra in
Fig. 6.2. are calculated by means of the general solutions of
Eq. (6.36), obtained for the case ¢ <0, i.e. u < 1. However, sub-
ject to the parameters of reflecting nanostructure and incident
wave (frequency, angle of illumination, polarization state), these
solutions describe different regimes of propagation of these waves
through the structure, corresponding either to propagating or to
evanescent modes. The conditions for the appearance of these
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Fig. 6.2. Reflectance spectra for S- and P-polarized waves incident on a single
gradient nanofilm (6.34), m = 0.75, are shown by curves 1,2 and 3,4, respectively,
u is the normalized frequency (6.14). Curves 1(3) and 2(4) correspond to the
illumination angles 45°(75°), curve 0 — normal incidence; n = 2.3, no = 1.47.

regimes are determined by the sign of the expression in brack-
ets in Eq. (6.36),

Ngp = q* — 212’; : (6.49)
The cases g > 0, X, > 0 (X; < 0, X, < 0) correspond to the
propagating (evanescent) modes for both polarizations, the mixed
cases Ng > 0, 8, < 0 or Ny < 0, N, > 0 characterize different
regimes of propagation of S- and P-waves. After substitution of
the quantities ¢, A; and A, from (6.37) into (6.49) these inequal-
ities define the spectral ranges containing any given propagation
regime. Designating the normalized frequencies u for S (P) polar-
ization as us(up), we have, e.g. the conditions of appearance of
evanescent S and P modes in the gradient nanostructure (6.34):

o ch®¢ —ny?sin?§ 5 ch® —ny?sin?§

> Uy >
° ch?¢+1 7 ch?¢ -3
An opposite inequality for ug or wu, indicates the formation of a

propagation regime for the corresponding mode. The values of
the function chg, describing the profile (6.34), are located in the

U

(6.50)
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segment 0 < ch¢ < m~!. Substituting the data, corresponding
to Fig. 6.2, into inequalities (6.50), one can see that the S wave
is traversing the film as an evanescent mode, unlike the P wave,
which is propagating in a traveling regime. The tunneling regime
in a film is known to hamper usually the penetration of wave’s
energy through the film interface, and this effect can cause the
better reflectance of the S wave shown in Fig. 6.2.

. The frequency dispersion of reflectance spectra in the spectral

range 1 < u < 2.5 (Fig. 6.2) is insignificant, and, therefore, these
nanostructures can be viewed as broadband polarizers. Thus,
rewriting the definition of frequency € (6.14) for the profile (6.35)
in a form

carc cos(m)

Q= , (6.51)

ngd
and taking, e.g. the thickness of the gradient layer d = 100 nm,
one can consider these polarizers for the infrared radiation in the
range of wavelengths 1.25 pm < A < 3.2 pm.
The difference in reflection and transmission of S- and P-polarized
waves can provide a potential for broadband wide angle filtration
and separation of S- and P-polarized waves: thus, comparison of
curves 2 and 4, related to the large angle 6 = 75°, indicates the
ratio of reflection coefficients |R;s|*/|R,|? = 12 for the frequency
u = 2.5; the ratio of transmission coefficients for the same fre-
quency is |T,|?/|Ts[* = 2.3. In this way the reflected and trans-
mitted portions of the radiation prove to be enriched by S- and
P- polarized components, respectively. Moreover, comparison of
curves 1, 2, 3 and 4 with curve 0, corresponding to normal inci-
dence, shows an important general property of these spectra: an
increase of the illumination angle results in a weakening of the
reflectance of P waves and in the increase of the reflectance of
S waves. The monotonic nature of the spectral variations of the
reflectance/transmittance spectra has to be noted also.

To generalize these results to periodic structures, containing k >

1 films (6.34), one can follow the analyses (6.36)—(6.48). Attribut-
ing the number k = 1 to the first film on the far side of structure,
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contiguous to the substrate, we define the parameter (), describing
the interference of forward and backward waves in this film. It is
worthwhile to examine the propagation of S and P waves separately.
In the case of S waves the parameter ()1 coincides with the param-
eter Qs (6.41). Introducing the designation Q51 = Qs we have the
recurrence linking the values Q) and Qg —1 for k-th and (k-1)-th
contiguous films (k > 2):

| FiMy + By My + 2 Mo Qs
20 My + (Fi My + Fo M) Qs -1 |
The quantities M 2 and F} 5 are defined by Eqs. (6.41) and (6.42),

respectively. Substitution of the quantity Qs (6.52) instead of @
into Eq. (6.39) yields the expression, defining the complex reflection

Qs = (6.52)

coefficient a for periodic nanostructure, containing k films:

iBy — Ty m?(F{ — Qs 1F3)
Rop= 2L sk po 9~ 1)/1—m?+ :
Sk 7By + sk ok = ) Fy + Qs I
(6.53)

All the quantities in Egs. (6.53) are defined in expressions (6.40),
(6.42), and (6.43), derived for a single gradient layer.

The same algorithm has to be used in a calculation of the reflec-
tion coefficient R, ;. for P waves:

1C1 +Tp i m2((1)’1 -Q k(I),Q)
=—— " Tyr=0Ql+1)vV1-m2+ P, .
P,k ZCl _ Fp,k p;k ( ) (131 + Qp,k(DQ
(6.54)

The recurrence relation linking @, , and @, r—1 for k > 2 reads:

[ @1My + PoMy + 202 MpQp i
20, M + (P1 My + ®2M1)Qpr1 |’

Qp,k =

The quantity @, for k =1 is given in (6.46); the values C1 2, M3 4,
functions ®; 5 and their derivatives, defined in (6.45), (6.46)—(6.48),
coincide with the corresponding values for a single film.

The reflection coefficients for periodic nanostructures, contain-
ing 5 and 10 reflecting films, are shown in Fig. 6.3. On comparing
these spectra with the spectra, depicted in Fig. 6.2 for the angle
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Fig. 6.3. Reflectance spectra for S- and P-polarized waves, incident under the
angle 75° on a periodic multilayer nanostructure, built from the gradient layers
(6.34), m = 0.75, are shown by curves 1(2) and 3(4), respectively, u is the nor-
malized frequency (6.14). Curves 1(3) and 2(4) relate to the structures containing
5(10) gradient nanofilms.

d = 75° (curves 2 and 4), one can conclude, that an increase in the
number of films results in an increase of the reflectance of P waves
by 1.5-2 times; a decrease of the reflectance of S waves can be
noted for some spectral ranges. The interference effects, producing
the non-monotonic behaviour of the spectra of both S and P waves,
are well expressed for a 10-layer gradient nanostructure. Spectra
for S and P polarized waves coincide for normal incidence, when
the difference between S and P polarizations vanishes [6.6]. Note,
that this analysis reveals the similarity of the optical properties of
periodic nanostructures, discussed above, and of gradient dielectric
superlattices [6.7, 6.8].

6.3. Reflectionless Tunneling and Goos—Hénchen
Effect in Gradient Metamaterials

Total internal reflection of light is known to arise when the light
wave impinges from a dielectric medium (index n;) on an another
dielectric medium (index n) with n; > n, for an angle of incidence
d > . = arcsin(n/ny) [6.4]. This condition, valid for homogeneous



Polarization Phenomena in Gradient Nanophotonics 141

non-dispersive media, has to be reconsidered if, at least one of the
media possesses natural or heterogeneity-induced dispersion; as was
shown in Sec. 5.2, the effect of total internal reflection (TIR) is pos-
sible in these cases even for normal incidence. The new opportunities
for the appearance of TIR phenomena, diversified due to oblique inci-
dence, are examined below; to illustrate the drastic changes, intro-
duced into the classical concept of TIR by gradient effects without
the use of massive mathematics, we restrict ourselves to an analysis
of S-polarized waves.

Let us recall Eq. (6.27), presented in the case ¢ > 0, a simple
example of propagating modes in a gradient layer (5.40). In con-
trast, our attention will be focused here on the evanescent modes,
described by the same Eq. (6.27) under the same condition A = 0,
but in the opposite case ¢ < 0. Introducing the parameter ¢ = —p?,
where p? > 0 and following the scheme of solution of Eq. (6.27), we
obtain the generating function Wy for the evanescent waves in the
case discussed:

Alexp(=ps) + Q exp(ps)]

v/ che

The analogy between the functions Wy, written in the forms (6.55)

U, = (6.55)

and (6.28) for the cases ¢ < 0 and ¢? > 0, respectively, allows one
to present the reflection coefficient Ry in the case ¢> < 0 in the
form (6.31), related to ¢ > 0, by making in (6.31) the following
replacements:

@ — —p% q—ip; t=1tg(2g%) — ith(2ps). (6.56)

Let us examine the condition for the reflectionless tunneling of
S waves (Rs; = 0), supported by evanescent modes (6.55), through
the symmetrical structure n; = n, B = By. After the replacements
(6.56) this condition can be derived from expression (6.31)

gy AMpYTE -
thCro) = Zrap T ar); (6.57)

Thus, choosing the parameters of the nanostructure n; = 1.415, ng =
1.8, M = 0.9632, g = 1.5, d = 110nm, we find from (6.57), that
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reflectionless tunneling arises for an S wave with A = 800 nm, § = 22°;
in this case the wave energy is transferred through the film by an
evanescent mode.

To examine the reflectance of a periodic nanostructure containing
k > 2 adjoined films (5.40), one can attribute the number k = 1
to the first film on the far side of the structure, contiguous to the
substrate; the parameter ()1, describing the interference of forward
and backward waves in this film, can be obtained by means of making
the replacement (6.56) in (6.30). Use of the continuity conditions on
the interfaces of contiguous films in the consecutive order yields the
recurrence relation linking the values of Q) and Qr_1 for k > 2:

Qr = exp(—2p<o)

M exp(pso) + Qr—_1(2pV'1 + M2 + M) exp(—pso)
(2pV1 4 M? — M) exp(pso) — MQr—1 exp(—p<o))
(6.58)

The reflection coefficient of a stack containing k such nanofilms, can
be written as

_’iB—M+2p\/1+M2Ak A _1—Qk
FTUB+ M -2 T MA, 14 Qi

Recalling the marked possibility of radiation transfer through one
gradient nanofilm due to an appropriate choice of the parameters of
the film and radiation, we can find by means of Egs. (6.58) and (6.59)
that the same choice of parameters yields reflectionless tunneling
through the multilayer stack containing several, e.g. five or ten such
layers.

Note, that the similar effect of reflectionless tunneling was dis-

(6.59)

cussed in Ch. 4 for normal incidence; in this case the direction of
energy flow (Poynting vector), normal to the interface of gradient
layer, remained unchanged inside the layer as well. However, in case
of oblique incidence, the directions of the Poynting vectors P for inci-
dent and tunneling waves are different; this difference causes some
lateral shift of the ray at the output of the layer (Goos-Hénchen
(G-H) shift). To visualize the underlying physics of this effect it
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—™d
Fig. 6.4. Frustrated total internal reflection (waves 1-2) and Goos-Hénchen shift

Y of transmitted wave 3, tunneling in a bi-prism configuration; the slit between
prisms is filled with a gradient multilayer nanostructure.

makes sense to recall first the traditional bi-prism configuration for
the demonstration of the G-H shift: two prisms of refractive index
n1 are placed with their hypotenuses in close proximity, forming a
narrow gap of width d between them, filled by air (Fig. 6.4). The
traditional theory of the lateral displacement of a wave, tunneling
through this air gap (G-H shift), is based on the so-called frustrated
total internal reflection of light (FTIR), incident from the medium
with the larger value of the refractive index n; on the boundary of
the gap (z = 0) with smaller value n = 1; subject to the value of the
ratio d/\ some part of the radiation is transferred through the gap
in the FTIR regime [6.9,6.10].

For simplicity of calculations let us consider the an incident
S wave; to find its G-H shift one can use the generating function
for evanescent wave inside the air gap

U = Alexp(—p12) + Q exp(p12)], (6.60)

P = %N, N = y/n2sin6 — 1. (6.61)

Substitution of (6.60) into Eq. (6.4) yields the wave components
E,,H,, H, inside the gap, and allows us to calculate the reflection
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coefficient
1 — Dth(pid
R=—; (ni — Dth(p1d) . (6.62)
(nfcos?d — N2)th(pid) + 2ini N cos §
and the components of the Pointing vector P [6.2]
c c
P, = S Re(E,H*), P,=——Re(E,HY). .
CRe(EH;), Py=—oRe(BH). (669

The ray trajectory in the (yz) plane is described by a differential
equation that links the displacements of photons, tunneling with
group velocity ¥, during the time dt, in the y- and z-directions

dy = vgydt, dz=wvgdt, T,=PW,L (6.64)

Wem is the density of electromagnetic field energy in the medium
[6.4]. Combining the equalities (6.64) we obtain the differential equa-
tion of ray trajectory,
P
dy = “Zdz. 6.65
y=7pd (6.65)
After substitution the of expressions for P, and P, (6.63) into
Eq. (6.65) this equation can be rewritten as
_tgd o 22 2
dy = Nz [(n{ — 1)ch(2p1d) — nicos” d + N7|dz. (6.66)
Integration of Eq. (6.66) brings finally the coordinate Y of the point,
where the ray trajectory, passing at the layer boundary z = 0 through
the point y = 0, is crossing it’s another boundary z = d; the value Y
is the G-H shift [6.11]
Y tgd [(n? —1)sh(2pid)

_ 2 .2 2
7 = N2 Sprd —njcos®d+ N*|. (6.67)

Unlike the shift, inherent to a ray traveling through a transparent
refractive layer, the shift (6.67) is formed by evanescent waves.

The G-H shift for a gradient layer can be found in the same way.
Substitution of the generating function (6.55) into (6.4) yields the
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expressions for the field components E,, H,, H.. Calculating the P,
and P, components we can write the ratio P,/P, in Eq. (6.65) as
Py ash®[p(s — s0)] + beh®[p(s — )] + hsh[2p(s — )]

_ . (668
P, 8¢2V/1 + M?chg ( )

a=M?*+B? b=4¢*(1+ M?),

h =4¢M~/1+ M?, ¢ =1In(my). (6.69)

The fraction P,/P, (6.68) has to be substituted into Eq. (6.65) as
well as the differential dz, represented due to manipulations with
(5.43) and (5.46), in the form

B d dg
~ 2(arctgM) chg’
After these substitutions the G-H shift Y can be obtained due to
integration of Eq. (6.65):
Yy I
d  16q2v/1+ M2 (arctgM)’

S0 gh2 _
I=al +bly+hls, I = / s[p(s — o)
—% ch<g

(6.70)

(6.71)

dg,

<o h2 _
I, = 2thgy + 1, ]3:/ Mdg.

—% ch’¢

Comparing the examples of frustrated total internal reflection
and the G-H shift in the bi-prism configuration (Fig. 6.4) for an air
gap (case I) and a gap filled by a gradient structure (case II), we
can outline some drastic differences between these cases. For conve-
nience, we will illustrate these differences, carrying out the numerical
evaluations for the bi-prism, characterized by the values of param-
eters n; = 1.415 and d = 110nm, which were used earlier in this
section for demonstration of TIR for an S wave with wavelength
A = 800 nm.

1. The critical angle in case I is §.. = arcsin(n;') = 45°; mean-
while, in case II, the angle of illumination, providing TIR, is
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much smaller: § = 22°; therefore, the simple condition of TIR
on the interface between homogeneous media § > J. proves to be
broken due to the heterogeneity of one of the bordering media.
The appearance of TIR in case II is determined by a more com-
plicated condition, dependent on the spatial profile n(z) in the
heterogeneous layer.
Designating the normalized G-H shifts in cases I and II as Yj/d
and Y1r/d and calculating Yi/d by means of Eq. (6.67) for the
illumination angle 6 = 55° > 0. we have: Y;/d = 1.8; thus the
G-H shift exceeds in this case the width of the gap. A decrease
of the angle § to its critical value d.. results in an increase of
the G-H shift (6.67), since the slope of the tunneling ray with
respect to the z-axis is increasing, approaching the y-direction
(Fig. 6.4). Experimental measurements of this shift attract atten-
tion, because these data could open the way for computation of
the velocity of tunneling photons in vacuum [6.9-6.11]. Inspection
of Egs. (6.67) and (6.62) shows two opposite trends in these exper-
iments: from one viewpoint, the G-H shift is increasing exponen-
tially when the gap width d is large enough: p1d > 1 (6.67). How-
ever, this trend, useful for observations, gives rise to an increase
of the reflectance |R|?> — 1 (6.62) and, thus, to an exponential
decrease of the transmittance of the gap |T'|> = 1 —|R|? — 0; this
exponential weakening of radiation flow impedes the observations.
In contrast, the normalized G-H shift in the case II (6.71), cal-
culated for the aforesaid parameters of the gradient nanostructure
ng = 1.8, M = 0.9632, g = 1.5, proves to be much smaller, than
Y1/d: Yi1/d = 0.25. However, unlike the case I, the reflectance
of gap, filled by nanostructure in this case was shown to vanish
and, therefore, the transmittance of the gap in case II is almost
complete: |T'|? — 1.
Note, that the G-H shift, formed by reflectionless tunneling
through the bi-prism configuration (Fig. 6.4), can be increased by
placing a multilayer gradient nanostructure in the gap. In this case
the width of the gap increases. However, unlike in the case I, the
regime of reflectionless tunneling was shown to arise in this geom-
etry. Thus, the multilayer gradient configuration under discussion
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illustrates a way to increase the G-H shift without any appreciable
attenuation of the transmitted radiation.

Comments and Conclusions to Chapter 6

1.

Introduction of the new variable n = n(z), widely used in Ch. 6, is
not a universal method for the solution of the Maxwell equations
in gradient media. In dealing with some profiles U(z) it is worth-
while to operate directly with the variable z. Thus, exploring the
solution of Eq. (6.6) for the convex profile

o= [ (3) - ()]

U(e) = (1= %) e (2 - ] o (6.72)
g:%m(%), 0< M <1,

and substituting (6.72) into Eq. (6.6) we can rewrite this equation
in a familiar form (5.47), where the variable ¢ and parameters ¢>

and A are:
. 2 2
_Z o (wLsing _ (wL 1
‘T I ¢oa= ( c >’ A= <c> 1— M2
(6.73)

Now the solution of Eq. (5.47), given in (5.49)(5.58), can be used.

. The models of gradient dielectric films, discussed above, can be

used for analysis of the reflectance of some gradient metamate-
rial layers with negative refraction (ng < 0). Thus, let us consider
the oblique incidence of an S wave; introducing the generating
function ¥ by analogy with (5.34),
10V 1oV

E, = H,

_1o¥ 1a¥
c Ot’

oz’ T udz

and assuming that the spatial distributions of the dielectric per-
mittivity £(z) and magnetic permeability p(z) are given by the
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same function ®(z) [6.12], so that

e(z) = e(w)®(2), p(z) = pw)e(z), (6.74)
we obtain the equation governing the generating function W,
v W? 1 d®(z)dV

+ C—2[n%(1>2(z) —sin? §]W = (6.75)

dz? ®(z) dz dz’

Transforming Eq. (6.75) to a new variable 7,

n= /OZ P(21)d21. (6.76)

one can eliminate its right side to obtain
d*v w\2[ 5 sin%d
— — ———| ¥ =0. 6.77
dn? * (c) [no @2(2)] (6.77)

Note, that the function ®(z) until now remains unknown and can
be chosen freely. To use the solution of Eq. (6.36), let us choose
®(z) in the form

®(z) =chs, ¢=—, (6.78)

I

where L is some unknown spatial scale. Bringing together the
equality (6.76), written in the differential form dn = ®(z)dz, and
Eq. (6.78), we can obtain the link between the variables z and 7,

Z n
Z ) =th (-) .
8 <2L) g (6.79)
Substitution of (6.79) into Eq. (6.78) brings the explicit form of
the profile ®(z)

z

D(z2) = [cos (z)} o . (6.80)

Since profile (6.80) coincides with Eq. (6.34), we can express the
unknown scale L via the width of the layer d by means of (6.34):
d

L=—"——/ 6.81
2arc cos(m) (6.81)
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Now Eq. (6.77) coincides with Eq. (6.36), and we can use its solu-
tion (6.37)—(6.43).

3. Reflectance spectra for oblique incidence of polarized waves on
gradient structures are presented usually by more complicated
expressions than the expressions for such spectra for normal inci-
dence; therefore it is useful to check these expressions by means of
limiting cases, which have to coincide with formulae, well known
from the optics of homogeneous media. Thus, in the limit d — 0,
no — 1 expressions (6.18)—(6.20) for layered media are reduced to
the usual Fresnel formulae, describing the reflection of waves from
a homogeneous half-space.

Let us consider now a more intricate problem, connected with the
verification of reflection coefficients for gradient layers (6.34), given
by Egs. (6.39) and (6.44). It is worthwhile to rewrite Eq. (6.39),
replacing the quantity @ by its expression (6.41):

_i(FiMy — FoMs)(By — By) + M} — M3 + B1By(F? — F3)
i(FyMy — FyMy)(By 4+ By) — M} + M3 + B\ By(F — F3)'
(6.82)

R

When the heterogeneity vanishes (L — oo), we have from (6.34) and
(6.43): m — 1,5 — 0; in this case it follows from (6.41)-(6.43) that
v = vy = 0.5; F1 = Fy; F| = Fj; My = —M>. Substitution of these
values into Eq. (6.82) yields the result

B - By

Ry = ——.
B+ By

(6.83)

By using the definitions of B; and Bz (6.40), we obtain from (6.83)
the well-known formula, describing the reflection of an S wave from
a homogeneous half-space:

cosd —\/n2 —sin? s
cosd +\/n2 —sin?§

Ry =

(6.84)
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The same scheme of calculations, applied to Eqgs. (6.44)—(6.47), yields
another classical expression for the reflection of a P wave:

n2cosd —\/n? —sin’®s

R, = ; (6.85)
n2cosd + /n2 —sin?6
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CHAPTER 7

GRADIENT OPTICS OF GUIDED AND SURFACE
ELECTROMAGNETIC WAVES

A planar interface between a semi-infinite homogeneous dielectric
medium and a semi-infinite homogeneous metal cannot support a
surface electromagnetic wave of S polarization [7.1]. This is because
the solutions of Maxwell’s equations in both media that vanish at infi-
nite distances from the interface are descending exponentials. While
the continuity of these fields across the interface can be achieved, the
continuity of their normal derivatives across the interface cannot be
achieved. For the same reason an S-polarized surface electromagnetic
wave cannot be supported by a planar interface between two different
semi-infinite homogeneous dielectric media. What is needed, there-
fore, to produce an S-polarized electromagnetic wave that is localized
to the interface in either of these situations is to relax the assumption
of the homogeneity of at least one of the two media in contact across
a planar interface in such a way that an S-polarized electromagnetic
field in that medium still decreases exponentially at a distance far
from the interface, but now has an oscillatory dependence on the
coordinate normal to the interface in the neighborhood of the inter-
face, so that the continuity of its normal derivative can be achieved.
The resulting electromagnetic field, strictly speaking, is not that of a
surface wave, since it does not display purely exponential decay into
each medium. Rather, it is a guided wave.

Guided waves in asymmetric planar waveguides have been stud-
ied theoretically and experimentally for many years. Perhaps the
simplest purely dielectric structure that acts as such a waveguide is a
film whose dielectric constant is €5 sandwiched between semi-infinite
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dielectric constants €; ad €3 [7.2]. Solutions of Maxwell’s equations
for S-polarized fields that decay exponentially in each of the media
surrounding the film can be found. If ¢y is larger than both €; and
€3, standing wave solutions can be found for the field within the
film. Their oscillatory nature enables the satisfaction of the bound-
ary conditions at both surfaces of the film, which gives rise to a series
of discrete eigenmodes that propagate in a wavelike manner in direc-
tions parallel to the surfaces of the film, but whose fields are localized
to the vicinity of the film. One of the earliest experimental investiga-
tions of optical wave propagation in such slab waveguides was carried
out by Osterberg and Smith in 1964 [7.3]. Today these guided waves
form the basis for much of integrated optics technology [7.4].

A different approach to the fabrication of integrated optics waveg-
uides consists of diffusing a suitable material into a substrate that
increases the refractive index near its surface [7.5]. Alternatively,
the refractive index of a dielectric compound such as LiNbOg can
be increased in the vicinity of its surface by out-diffusion of LisO
from the surface [7.6]. These procedures produce asymmetric graded
index waveguides in which the index of refraction decreases in a con-
tinuous fashion with increasing distance into the substrate from its
surface.

The guided waves supported by such graded index waveguides
have been studied by several authors who used a variety of methods
in their investigations. A commonly used approach is the use of the
Wentzel-Kramers-Brillouin (WKB) method [7.7] to obtain approxi-
mate results for the dispersion relation for these waves and the corre-
sponding field profiles [7.8-7.13]. Exact dispersion relations have been
obtained in analytic form for a continuous index profile consisting of
several straight line segments [7.8], and one having an exponentially
decreasing profile [7.14]. Numerical methods have also been used in
obtaining the dispersion relations and field profiles of the modes of
graded-index waveguides [7.15-7.18]. In Sec. 7.1 of this chapter we
will present a new graded-index profile that yields analytic expres-
sions for the dispersion relation for guided waves of s polarization,
and the corresponding field profiles, that display features not present
in the modes studied in earlier work.
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To produce S-polarized guided waves at a vacuum-metal inter-
face, which do not exist when the interface is planar, we show in
Sec. 7.2, that it is sufficient for the interface to be a portion of a
circularly cylindrical interface between vacuum and a homogeneous
metal. When the metal is concave to the vacuum this interface sup-
ports S-polarized guided waves. The constant radius of curvature of
the vacuum-metal interface is equivalent to a planar interface between
vacuum and a metal that is no longer homogeneous but is character-
ized by a dielectric function that varies with increasing distance into it
from the interface in a manner that allows it to support guided waves.

Since a portion of a circular vacuum-metal interface supports S-
polarized electromagnetic guided waves, it is perhaps not surprising
that a rough vacuum-metal interface, which can be regarded as com-
posed of many such segments, can support surface electromagnetic
waves of S polarization. In Sec. 7.3 we study the propagation of
surface waves of this polarization on vacuum-metal interfaces that
are periodically corrugated and on vacuum-metal interfaces that are
randomly corrugated. These are surface electromagnetic waves that
do not exist at planar vacuum-metal interfaces. They are disper-
sive, and possess features that can make them useful in technological
applications.

7.1. Narrow-Banded Spectra of S-polarized Guided
Electromagnetic Waves on the Surface of a
Gradient Medium: Heterogeneity-Induced
Dispersion

In this section we describe a new type of S-polarized guided electro-
magnetic wave in a system consisting of a semi-infinite vacuum in
contact across a planar interface with a semi-infinite graded-index
dielectric medium of a special type. In earlier work [7.19,7.20] it was
shown that such waves can be realized by the use of a dielectric func-
tion that has the simple free electron [7.19] or Drude [7.20] form with
a plasma frequency that is a smooth continuously varying function
of the coordinate normal to the interface in one of the two dielectric
media in contact. Thus, the medium characterized by such dielectric
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functions can be considered to be an n-type semiconductor with a
spatially varying conduction electron number density.

In contrast, in this section we assume that the medium in the
region z > 0 contains no conduction electrons. It is characterized by
a real, positive, dielectric constant that is frequency independent and
decreases with increasing z until it saturates at a bulk value. It is
given by

9 1 1
e(z) =ng |1 g+g(1+%)2 ; (7.1)
where ng is the (real) index of refraction at z = 0. The parameter
g is assumed to be greater than unity. Therefore, as z — oo the

dielectric constant (7.1) saturates at the value n3[l — (1/g)] = n2,

which satisfies the inequality n? < n2. It is further assumed that
n, > 1. The region z < 0 consists of vacuum. We note that this
system is invariant in the y direction.

This structure yields an exact dispersion relation and electric field
profiles of the S-polarized guided waves it supports in analytic forms.
This was noted briefly in the review article [7.21], but no results were
presented there. In this section, following Ref. [7.22], we expand on
the work reported in Ref. [7.21], and present plots of the dispersion
curves and the associated electric field profiles of these guided waves.

The electric and magnetic vectors of an S-polarized field propa-
gating in the = direction have the form

E(x,zt) = (0, Ey(x, 2;t),0) (7.2a)
H(x,z;t) = (Hy(x, 2;t),0, H,(z, 2;1)). (7.2b)

Maxwell’s equations for the electromagnetic field in the dielectric
medium z > 0 become

oE; B _laHf

or ¢ Ot (7.32)
O0E; 10H>
y _ - T
0z ¢ Ot (7.3b)
> > o0D> OE>
OHy OH: 1905 _ 1 )% (7.3¢)

0z dr ¢ Ot c ot -
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Since we are seeking a solution that describes a wave propagating
in the x direction, we write the field components in the following
forms,

E; (z,2t) = B (z|w) explikz — iwt] (7.4a)
H (x,2;t) = H (z|w) explikz — iwt] (7.4b)
H? (x,2;t) = H (z|w) exp[ikz — iwt]. (7.4c)

When we substitute Egs. (7.4) into Eqgs. (7.3) we find that the
amplitude F (z|w) satisfies the equation

(oo

We seek a solution of this equation that decays to zero as z — oo.
To obtain such a solution we assume that

Ey (2lw) = u f(u), (7.6)
where
u=1+ % (7.7)

On substituting Eq. (7.6) into Eq. (7.5) and making use of Egs. (7.1)
and (7.7), we find that the function f(u) satisfies the equation

dzf(“) 1 df (u) 2 92 5”
- — L - = .
o Pt g | flw) =0, (7.8)
where
2
2 _ W9 2
p° = c_2(b —n3) (7.92)
1 w?
2 _
with
b=k (7.10a)
= - )
c 1
Q.= — (7.10b)
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Equation (7.8) is the equation satisfied by the modified Bessel
functions. In order to have a solution that decays to zero
exponentially as u (and hence z) tends to infinity, the coefficient
p? should be positive. We can assume that p is real and positive.
From Egs. (7.9b) and (7.10b) we see that this restricts the allowed
values of the wavenumber k to lie in the region k& > n,(w/c). Then
the solution of Eq. (7.8) is given by the modified Bessel function of
the second kind and order s,

f(u) = AKS(Lpu), (7'11)

where A is an arbitrary amplitude. The coefficient s in Eq. (7.8),
however, can be either positive or negative. Either choice produces a
solution f(u) that decreases to zero exponentially as u — oo [7.23].

When s is real and positive (0 < w < €,), the function K,(z)
has the integral representation [7.24]

Ks(z) = /0 dze M7 cosh sz, (7.12)

is real for z real and positive, is non-negative, and is an even function
of s. For fixed s and 2z — 0+ [7.25]

Ky(z) ~ %F(s) (g)_ (7.13)

where I'(z) is the gamma function. For fixed s and large z it has the
asymptotic form [7.26]

1 2 2 2
T™\2 _ 4s* —1  (4s* —1)(4s* —9)
K, ~ zJ1 N
(2) (2,2) ¢ { e 21(82)2 *
(7.14)
If we set s = —s? (w > ), the solution for f(u) becomes
f(u) = AKs, (Lpu). (7.15)

The function K, (z) has the integral representation [7.27]

(e}
Kis, (2) = / dre N cog g1 2, (7.16)
0
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is real for s1 real and z real and positive, and is an even function of s1.
For fixed s; and z approaching zero through real positive values,
K5, (z) is an oscillatory function of z [7.23],

1
Kis (z) = — <5151nﬂm> i [Sin (slﬁng) — ¢51,0} +0(z?)
(7.17)
with
¢s,.0 =arg{l'(1 +1is1)}. (7.18)
For fixed s1 and large z it has the asymptotic form

1 2 2 2

T\2 _ 4s7+1  (4s7+1)(4s7+9)

Ko (2) ~ (—) 211 b
w2~ {g) e { 82 21(82)2 *

(7.19)

We turn now to the electromagnetic field in the vacuum region
z < 0. The three nonzero components of this field satisfy the equations

OE;  10HZ

= 2
ox c Ot (7.20a)
0Es 10HZ
L =__z 20b
0z c Ot (7.20D)
OH B OHZ B 18Dy< - laE?f (7.200)

0z ox ¢ Ot c Ot

We will seek these field components in the form of a wave of frequency
w propagating in the x direction,

Ey(z,2t) = By (z|w) explikz — iwt] (7.21a)
Hy(x,2;t) = Hy (2|w) expliky — iwt] (7.21b)
Hy(z,2;t) = HS (2|w) explikz — iwt]. (7.21c)

The substitution of Egs. (7.21) into Egs. (7.20) yields the result
that the amplitude E,(z|w) satisfies the equation

{% K- (%)2} } E(zlw) = 0. (7.22)
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The solution of this equation that tends to zero as z — —oo can
be written as

E; (zlw) = Bexpl|fo(k,w)2], (7.23)
where
Bokyw) = [1@ - (%)1 * Refo(k,w) > 0,
ImpBy(k,w) < 0. (7.24)

For the expansion given by Eqs. (7.23) and (7.24) to represent
an electric field that decays to zero exponentially with increasing
distance into the vacuum from the plane z = 0 requires that k& >
(w/c). However, since we will be interested in structures for which
n, > 1, the condition on k obtained above, namely that & > n,(w/c),
is the more restrictive one, and it is in this range of values of k that
the dispersion relation for the surface-localized guided waves will be
sought.

We are now in a position to satisfy the boundary conditions at
the interface z = 0. These require the continuity of the tangential
components of the electric and magnetic fields across this interface,
and can be written as

E; (2|w)]z=0 = E; (2|w)]2=0 (7.25a)
dE; dE>
Byl _ 2By ew) (7.25b)
dz 2=0 dz 420

With the results given by Eqs. (7.6) and (7.23) these equations take
the forms

B = u? f(u)ut (7.262)

ﬂo(k,w)B:% [ 11 (u)+u§f'(u)} : (7.26b)

u=1

where the prime denotes differentiation with respect to argument.
There are now two cases to consider.
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711 0 < w < Q¢

When the frequency w lies in the interval 0 < w < €., the function
f(u) is given by Eq. (7.11). The dispersion relation for guided elec-
tromagnetic waves in the region 0 < w < Q¢, k > ny(w/c) of the
(w, k) plane is therefore

1 K (Lp)
L = _ 4+ Lp—=~ 2
where
1 w2\ 2

Equation (7.27) has to be solved numerically. The resulting disper-
sion curve is plotted in Fig. 7.1, and consists of a single branch. The
values of the material parameters assumed in obtaining Fig. 7.1 are
n, = 1.05, ng = 2, and L = 30 nm.

An approximate analytic solution of Eq. (7.27) can be found in
the case where (Lp)? < 1. In this limit K,(Lp) can be approximated
by Eq. (7.13). Substitution of this approximation into Eq. (7.27a)

0.9t
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O 07_
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0.1 0.15 0.2 0.25 0.3 0.35
kL

Fig. 7.1. The dispersion curve for an s-polarized guided electromagnetic wave in
the frequency range 0 < w < 2. propagating on a graded index dielectric medium
characterized by the values n, = 1.05,n0 = 2, and L = 30nm [7.22].
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yields the equation
2LBy(k,w) =1 — 2s. (7.28)

It is convenient now to introduce the dimensionless frequency v =
Qc/w > 1, where €, is defined by Eq. (7.10b). With the substitution
of Egs. (7.9b) and (7.24) into Eq. (7.28), we obtain an explicit expres-
sion for the dependence of the wave number k on the frequency v,

2_w2 1

zt AL22[v + V12 — 1]2

To determine the spectral range of existence of the wave with this
dispersion relation, we recall the inequality n? < b? that follows from
the necessity of p? being positive. With the expression for b given by
Eq. (7.10a), the expression for k? given by Eq. (7.29), and the defi-
nition of . given by Eq. (7.10b), this inequality can be rewritten as

(7.29)

(ny — D+ V2 —1)?

2

1>
ng —n?

(7.30a)

or

1
2 2\ 2
<”0 ””) —v> Vo1 (7.30D)

n2—1
This inequality is satisfied for

ng—1
l<v<y. = - (7.31)
2[(ng — 1)(n§ —n3)]2
Thus, the S-polarized guided wave whose dispersion relation is given
by Eq. (7.29) exists in the frequency range defined by the inequal-
ity (7.31).

The dielectric constant defined in Eq. (7.1) contains two free
parameters, the dimensionless factor g and the gradient scale L.
The factor g defines the relation between the value of the refractive
index ng on the surface of the medium and its value deep inside the
medium, ng = n,/(1 — g_l)% > n,. The cutoff frequency €. defined
by Eq. (7.10b) depends on both g and L. By varying the values of
these two parameters it is possible to place the domain of existence
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of the surface wave whose dispersion relation is given by Eq. (7.29)
in different spectral ranges.

The spectral range of existence is defined in terms of its lim-
iting frequencies, namely w; =Q.(v=1), and wy =Q./v.. Thus, for
example, let us choose a dielectric medium with n, =1.42, ng=2,
and L =50nm. In this case we find that v.=1.05642, w; =2.13 x
10'° rad /s (A =884.5nm) and ws =1.99 x 10" rad/s (A= 945.5nm).
The S-polarized guided electromagnetic wave exists in a spectral
range of width AX =61 nm in the near infrared. However, if we reduce
the gradient scale L to 30nm, keeping the values of the remain-
ing material parameters unchanged, we obtain w; = 3.55 x 10'° rad /s
(A=530.95nm) and wo = 3.35 x 10'° rad /s (A =560.89 nm). Thus, in
this case the surface electromagnetic surface wave exists in a nar-
rower spectral range A\ = 29.95 nm in the visible region of the optical
spectrum.

The preceding analytic treatment of S-polarized guided electro-
magnetic waves is based on the assumption that (pL)? < 1. On
combining Egs. (7.9a), (7.29), and (7.10b), we obtain

oLy = L L m-l (732
PE) = (v+V2=1)2 ni-nZ] '

At v = 1, this expression becomes

1 n?—1
L=~ (1— = ; .
(PL)"|v=1 4< ng—ng>’ (7.33a)

At v = v, we find that
(PL)?|y=v, = 0. (7.33b)
If we assume the values n, = 1.05 and ng = 2, Eq. (7.33a) becomes
(pL)*|y=1 = 0.2412. (7.34)

The function (pL)? decreases monotonically from this value to zero as
v increases from v = 1 to v = v,, where v, = 2.75244 from Eq. (7.31).
Thus, the condition (pL)? < 1 is satisfied better the closer v is to
v, = 2.75244. For example, if we assume the value v = 2, we find
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Fig. 7.2. Plots of the dispersion curve for an s-polarized guided electromagnetic
wave in the frequency-range 0 < w < ). propagating on a graded index dielectric
medium characterized by the values n, = 1.05,n0 = 2 and L = 30nm. The
numerical solution of Eq. (7.27a) is depicted by a solid curve; the solution of
Eq. (7.29) is plotted as a dash-dotted curve; and the solution of Eq. (7.37) is
depicted by a dashed curve [7.22].

from Eq. (7.32) that
(pL)?|,—2 = 0.002276. (7.35)

In this case the assumption that (pL)? < 1 is well justified.

In Fig. 7.2 we plot the dispersion curve given by Eq. (7.29) as a
dash-dotted curve for the case that n, =1.05, ng =2, and L =30 nm,
for comparison with the exact result given by a numerical solution
of Eq. (7.27a), which is plotted as a solid curve. The approximate
dispersion curve is seen to be a good approximation to the exact
curve only when w/Q,=1/v is close to 1/v,=0.3633, as is expected,
but deviates from it significantly as kL increases.

A more accurate approximate analytic dispersion relation is
obtained from Eq. (7.27a) by retaining the next term in the expansion
of K4(z) is powers of z beyond the expression given by Eq. (7.13). In
the case that 0 < s < 1/2 this results in

2K (2) 2sT'(1 —8) /228
K =T TaT) () . (7.36)

- 2
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With this result the dispersion relation given by Eq. (7.27a) becomes

2s
Lho(h,w) = 3 — 5 % (%) | (7.37)

The solution of this equation is plotted as a dashed curve in Fig. 7.2.
It is seen that this refined approximate dispersion curve is in very
good agreement with the exact dispersion curve given by the numer-
ical solution of Eq. (7.27a) over nearly the entire frequency range
within which this surface wave exists.

The electric field amplitude E,(z|w) corresponding to a typi-
cal point on the dispersion curve plotted in Fig. 7.1 is presented
in Fig. 7.3. The field in the vacuum is seen to be well localized to the
interface z = 0, but the field in the graded index dielectric penetrates
more deeply into it. However, for a value of L = 30 nm, as in the result
plotted in this figure, a 1/e decay length in the dielectric medium
of 100L = 3 um is approximately six times the vacuum wavelength
of the guided wave. Thus, it is still well localized to the interface
z=0.

E,(zlo)
N

S0 0 200 400
z/L

Fig. 7.3. The electric field amplitude Ey(z|w) as a function of z for the guided
wave corresponding to the point on the dispersion curve plotted in Fig. 7.1 defined
by kL = 0.18, w/Q. = 0.57978 [7.22].
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7.1.2. w> Q.

When the frequency w lies in the range w > Q., the function f(u) is
given by Eq. (7.15). The dispersion relation for guided electromag-
netic waves in the region w > Q., k > n,(w/c) of the (w, k) plane is
then

L) = & 4 pplis (EP) (7.38)
0 ,(U _2 pK181(Lp)7 . a
where
1
1 [ w? 2

Equation (7.38) also has to be solved numerically. The calculations of
K, (%) and its derivative were carried out by the use of the algorithms
due to Gil et al. [7.28,7.29]. Due to the oscillatory nature of Kj,(z)
as z approaches zero through real positive values, a multiplicity of
solutions can be found. The resulting dispersion curves are plotted
in Fig. 7.4.

157

10;

o/Q

0O 1 2 3 4 5

kL
Fig. 7.4. The three lowest frequency branches of the dispersion curve for
s-polarized guided electromagnetic waves in the frequency range w > €. propa-
gating on a graded index dielectric medium characterized by the values n, = 1.05,
no =2, and L = 30nm [7.22].
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The electric field amplitudes E,(z|w) corresponding to typical
points on the dispersion curves plotted in Fig. 7.4 are presented
in Fig. 7.5(a)~(c). They have the forms of the fields of waveguide
modes with oscillations in the vicinity of the plane z = 0 and expo-
nential decay as z — +o00. The number of nodes in the fields equals
their branch numbers if the lowest frequency branch in this frequency
range is labeled the zero branch.

The results obtained in this section can be summarized as follows.

(1) The surface localized waves supported by the dielectric struc-
ture considered here have different natures in the two frequency
regions 0 < w < . and w > €.

(2) In the low frequency region (0 < w < €2.) only a single guided
wave exists, and the spectral range in which it exists is a narrow
one that is defined by the technologically controlled heterogene-
ity scale L.

(3) In the high frequency region (w > €.) a multiplicity of guided
waves exist that are characterized by an oscillatory dependence
of their electric fields on z in the gradient medium.

(4) The existence of the critical frequency Q. and the different
natures of the modes with frequencies below and above it does
not appear to occur in the slab optical waveguides or in the
continuously graded-index optical waveguides studied until now.

(5) Large values of €., caused by the negative gradient of the dielec-
tric permittivity of the gradient medium afford the possibility
of extending the domain of existence of these S-polarized guided
electromagnetic waves to the near infrared, and even to the vis-
ible region of the optical spectrum.

7.2. Surface Electromagnetic Waves on a Curvilinear
Interface: Geometrical Dispersion

We have noted earlier that a planar interface between a semi-infinite
dielectric, e.g. vacuum, and a semi-infinite metal cannot support an
S-polarized surface electromagnetic wave. The situation is quite dif-
ferent if the dielectric-metal interface is not planar but curved. In this
section we consider the propagation of an S-polarized electromagnetic



166 Wawves in Gradient Metamaterials

(a) 25

15

E (z]o)x 10°

(b)

o]

E (z]o)x 10*
N N [9)]

y

N

y
o

E (z|o)x 10*

'
N

45 0 5 10 15
z/L

Fig. 7.5. The electric field amplitudes E,(z|w) as functions of z for the guided
waves corresponding to the points on the three lowest frequency branches of the
dispersion curve plotted in Fig. 7.4 defined by (a) kL = 3.5, w/Q. = 8.2758; (b)
kL = 3.5,w/Q = 10.0514; () kL = 3.5,w/Q0 = 10.8332.
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wave propagating circumferentially around a portion of the circular
boundary between a metal and vacuum. The electromagnetic fields
in this case are not required to be single valued. We show that under
suitable conditions the curvature of the interface can localize the
wave to its vicinity, producing thereby an S-polarized surface plas-
mon polariton.

Azimuthal surface electromagnetic waves on cylinders have not
been studied extensively in the literature. When they have been stud-
ied the structures studied have been either corrugated conducting
cylinders [7.30], or dielectric-clad conducting cylinders [7.30,7.31].
Moreover, it was assumed in these studies [7.30] that the surface
waves propagated completely around the cylinder, so that the cor-
responding electromagnetic fields had to satisfy a single-valuedness
condition.

The propagation of a P-polarized electromagnetic wave around a
portion of a cylindrical boundary between a vacuum and a metal was
studied many years ago by Berry [7.32]. Among the several results
obtained in this work was the result that in the case that the metal
is convex toward the vacuum the wave is not perfectly bound to the
interface, but is attenuated as it propagates around it, the lost energy
being radiated to infinity in the vacuum. In contrast, when the metal
is concave toward the vacuum no attenuation of the wave occurs, and
the wave is a true surface wave bound to the interface.

Because P-polarized surface electromagnetic waves exist at a
dielectric-metal interface in the absence of any curvature of it, and in
light of Berry’s thorough treatment of P-polarized azimuthal surface
waves on a portion of a cylindrical surface, we have opted to focus
our attention here on the case of S-polarized azimuthal surface elec-
tromagnetic waves propagating circumferentially around a portion
of a cylindrical vacuum-metal interface, where the curvature of the
interface can induce the existence of a wave that does not exist in its
absence [7.33].

In the propagation of an S-polarized electromagnetic wave around
a portion of the circular boundary between a metal and vacuum, the
only non-zero components of the electric and magnetic fields in the
system in cylindrical coordinates (7, ¢, z) are E,(r, ¢|w), H,(r, p|w),
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and Hy(r, ¢|w). The Maxwell equations satisfied by these components
are

10F, _w
_OE: ey (7.39b)
or ¢ ¥ '
1[0 OH,| w
- [5(7’1%) " 99 } = —ie_E, (7.39¢)

where € is the dielectric function of the medium in which the fields
are being calculated. When Egs. (7.39a) and (7.39b) are used to
eliminate H, and H, from Eq. (7.39¢c), we find that the equation
satisfied by E,(r, ¢|w) is

O’E, 10E, 10°E, w*
- — —F.=0. 4
or? * r Or + r2 Qg2 te c2 0 (7.40)

We solve Eq. (7.40) by separating the variables. We write
E.(r, ¢|w) = R(r)®(¢), (7.41)
and find that ®(¢) and R(p) satisfy the equations

d2P

2
—_— d=0 7.42
d¢2+u : (7.42)
2R 1dR [ ? 2
T —_ _F\VR=0 7.43
dr2+rdr+<602 7’2> ’ ( )

respectively, where 2 is the separation constant. The sign of ;> was
chosen so that a wavelike solution of Eq. (7.42) is possible.
We now consider two cases.

(i) Metal convex to vacuum

We consider first the case where the region 0 < r < R is occupied
by the metal, which is characterized by the dielectric function e(w),
while the region r > R is vacuum (Fig. 7.6). In this case we choose
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Fig. 7.6. A portion of a cylindrical interface between vacuum and a metal when
the metal is convex toward the vacuum.

the solution of Eq. (7.42) to have the form

®(¢) = exp(iud), (7.44)

so that it represents a wave propagating in a clockwise sense around
the cylinder. Thus, we initially assume that p is real and positive.

Since we are considering propagation over only a portion of a
cylindrical boundary, it is not necessary to impose a single-valuedness
requirement on the electric field component F,(r, ¢|w), and hence on
®(¢). Thus, p need not be an integer. If we rewrite Eq. (7.44) in the
form

®(¢) = expli(n/R)(Ro)], (7.45)

and recall that R¢ is the path length measured along the cylindrical
surface, we see that

k (7.46)

o=

can be regarded as the wave number characterizing the propagation
of this cylindrical wave.
We turn now to Eq. (7.43). We recognize it as Bessel’s equation.
If we wish to obtain a solution that decreases exponentially into the
cylinder with increasing distance from the surface r = R, we have to
work in the frequency range in which the metal’s dielectric function
€(w) is negative. For in this frequency range Eq. (7.44) becomes
2 2
R" + %R’ — <\e\°c"—2 + & > R=0. (7.47)

r2
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The solutions of this equation are the modified Bessel functions
Li(y/|e()|(w/e)r) and K,(\/|e(w)|(w/c)r). The former of these
functions decays exponentially away from the surface » = R toward
the origin » = 0, as the field of a surface wave should. The field
E.(r, ¢|w) inside the metal can therefore be written as

ES(r,plw) = Ae™L,(\/|e(W)|(w/e)r) 0<r <R, (7.48)

where A is an arbitrary constant.

Turning now to the field outside the cylinder, r > R, where € = 1,
the solution of Eq. (7.42) is still given by Eq. (7.44).

With this result the equation for the function R(r) is obtained
from Eq. (7.43) in the form

d’R  1dR w? P
- Z— _CVYRrR=0 7.49
dr2+rdr+<02 1"2) (7.49)

This is Bessel’s equation, and its solutions are the Bessel functions
of the first and second kinds, J,((w/c)r) and Y,((w/c)r), or the
Hankel functions of the first and second kinds H;(Ll)((w/c)r), and
H ,32) ((w/c)r). Each of these functions is an oscillatory rather than an
exponentially decreasing function of (w/c)r, as is any linear combina-
tion of them. This tells us that surface waves whose amplitudes decay
purely exponentially into each medium with increasing distance from
the surface r = R cannot exist.

We have chosen for the solution of Eq. (7.49) the Hankel function
of the first kind and order u, R”(r) = H,Sl) ((w/e)r). In choosing this
solution we have used the fact that it is the only one that describes
an outgoing wave as r — oo. Thus, we find that S-polarized surface
electromagnetic waves that decay with increasing r cannot exist in
the situation under consideration: they must radiate. In this case the
field E,(r, ¢|w) in the vacuum region r > R becomes

EZ (r,plw) = Bei“¢ngl)((w/c)r) r > R. (7.50)
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The boundary conditions satisfied by E(r, ¢|w) and EZ (r, ¢|w)
on the surface r = R require the continuity F, and its normal
derivative OF, /Or across it,

AL(|e|? (w/¢)R) = BH{D((w/c)R), (7.51a)
Alel2I,(|e|? (w/e)R) = BH" ((w/e)R), (7.51b)

where the prime denotes differentiation with respect to argument.
The solvability condition for this pair of homogeneous equations is

1 [e(@)](w/c)R) HY" ((w/¢)R)
VIew |f' we<w>\ R H<”<< /e)R)
(1)

Because H,’'((w/c)R) is a complex function of its argument, this
equation has no real solution. The surface wavenumber k = p/R is
now a complex function of (real) w

=1. (752

k(w) = kr(w) + ik (w), (7.53)

where kr(w) > 0 and kr(w) > 0. This means that the wave decays
as it propagates around the cylinder, with the lost energy radiated
to infinity. The last statement follows from the outgoing wave nature
of H l(})(z) for large values of its argument.

However, no solution of this equation has been found up to now.
It is conjectured [7.33] that no physically acceptable solution exists,
namely one for which kr(w) > 0, kr(w) > 0, and kr(w) < kr(w),
just as no S-polarized surface plasmon polariton exists at a planar
dielectric-metal interface.

(ii) Metal concave to vacuum
In the case that vacuum occupies the region 0 < r < R (Fig. 7.7),
the electric field component E.(r, ¢|w) satisfies the equation

# 1o 1o
or2  ror r28gz§2

w2
)E =0, 0<r<R, (7.54)
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Fig. 7.7. A portion of a cylindrical interface between vacuum and a metal when
the metal is concave toward the vacuum.

in this region, and the equation

2 10 1 0 w?
(W‘F;E‘FEW"FECT)E,Z—O’ "">R> (7'55)

in the region r > R. We consider them in turn.
When 0 < r < R, the method of separation of variables leads to
the following pair of equations:

R 1dR (“’_2 _ “_2> R(r) = 0, (7.56)

dr2 7 dr c2  r?
d>®

We again choose the solution of Eq. (7.57) to be ®(¢) = exp(iug).
The solution of Eq. (7.56) will be taken to be J,((w/c)r). This choice
for the solution is dictated by the following consideration. The Bessel
function J,,(z) for a fixed value of (real, nonzero) p increases expo-
nentially with increasing = until a value of x ~ u is reached, at which
it acquires an oscillatory dependence on « that continues for = > pu.
Such an oscillatory dependence of J,,((w/c)r) for r ~ R makes it pos-
sible to satisfy the boundary condition at r = R, as we will see. Since
we are concerned with a solution for r in the range of 0 < r < R that
is localized for  in the vicinity of R, i.e. is small for » — 0, J,,((w/c)r)
has this behavior provided p is of the order of (w/c)R. The field
component F,(r, ¢|w) in the region 0 < r < R is therefore given by

ES(r,¢lw) = Ae™ ], ((w/c)r), 0<r<R. (7.58)
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When r > R the method of separation of variables leads to the
following pair of equations:

d’R  1dR w2

& Trar T <6 2 7'_2> B=0, (7.59)
o + 1*® =0. (7.60)
agz T T '

The solution of Eq. (7.60) is again chosen to be ®(¢) = exp(iug).
In order to obtain a solution of Eq. (7.59) that decays to zero
exponentially as r tends to infinity, we have to work in the frequency
region in which e(w) is negative. The solution of Eq. (7.59) in this
frequency range that we choose is K, (\/|e(w)|(w/c)r), where K, (x)
is the modified Bessel function of the second kind of order u. The
field component E,(r, ¢|w) in the region r > R is therefore given by

EZ (r,¢lw) = Be" K, (\/|e(w)|(w/c)r), > R. (7.61)

The boundary conditions at » = R take the forms
AJu((w / JR) = BK ( le(w )I(W/C) ) (7.62a)
AJ'( ¢)R) = By/|e K’ (V]e(w)|(w/c)R). (7.62b)

The dispersion relation for the surface electromagnetic waves in the
case that the metal is concave to the vacuum becomes

1 Ku(Vlew )\(w/c) ) Ju((w/c)R)
VIe)] K1, (v/e)[(w/e)R) Ju((w/c)R)

This is a real equation with real solutions that relate u = kR to w.

= 1. (7.63)

If we assume that the dielectric function of the metal has the simple
free electron form

w2
e(w)=1- w_g (7.64)

where w), is the plasma frequency of the electrons in the bulk of the
metal, these solutions must be sought in the region 0 < w < w,. In
the numerical calculations whose results are reported here the value
wp = 12.708 x 10" 57! was used.
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Equation (7.63) was solved numerically by assuming a value of
k = p/R, increasing w in steps of equal size in the interval 0 < w <
wp, and looking for sign changes in the difference between the left-
and right-hand sides of this equation. A new value of k£ was selected
and the calculation was repeated. In this way a plot of w/w, as a
function of kR was constructed.

The resulting dispersion curve possesses several branches in the
frequency range 0 < w < wy,. Typical results are plotted in Fig. 7.8. It
is seen that with an increase of the radius R the number of branches
increases and their separation in frequency decreases. The modes are
seen to be dispersive. This is due in part to the frequency dependence
of €(w), and in part to the presence of a characteristic length in the
present problem, namely the radius R.

The radial dependencies of E.,(r, ¢|w), namely

Rs(r) = J,((w/c)r) 0<r<R
(7.65a)

_ Jy((w/C)R) KV(|€(W)|%(W/C)T)7 r> R, (765b)

Ky (Je()]? (w/c)R)

corresponding to typical points on the three lowest frequency
branches of the dispersion curve plotted in Fig. 7.8 are presented
in Fig. 7.9. It is seen that the field is corresponding to each branch
possesses as many nodes in the region of the metal as the number
of the branch, if the lowest frequency branch is denoted the zero
branch, and decays exponentially with increasing radial distance into
each medium from the concave surface of the cylinder. Thus, these
modes are more appropriately described as waveguide modes, with
the lowest frequency mode — the fundamental mode — possessing
several properties of a surface wave. In fact, the cylindrical surface
is equivalent to a planar asymmetric graded-index waveguide, as can
be seen by carrying out a coordinate transformation that maps the
circular boundary into a planar one. The resulting spatial dependence
of the dielectric constant in each medium is such that it is larger in
the vicinity of the interface than it is far from it in each medium. We
will see a simple example of this in Sec. 10.2.1.
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Fig. 7.8. Dispersion curves for S-polarized guided plasmon polaritons propa-
gating circumferentially around a portion of a cylindrical interface between vac-
uum and silver when the metal is concave toward the vacuum. (a) R = 0.5 pum,
wp = 12.708 x 10" rad s™* (b) R = 1.0 ym, wp, = 12.708 x 10" rad s~ '.

Thus, in this section we have shown that guided electromagnetic
waves of S polarization can propagate circumferentially around a por-
tion of a cylindrical vacuum-metal interface when the homogeneous
metal is concave to the vacuum. A surface electromagnetic wave
of this polarization does not exist at the planar interface between
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The radial dependencies of the electric field amplitude Rs(r) corre-
sponding to the points indicated by open circles on the three lowest frequency
branches of the dispersion curve depicted in Fig. 7.8(a). (a) kR = 10,w/w, =

0.6514, (b) kR = 10,w/w, = 0.8271; (¢) kR = 10,w/w, = 0.9841.
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vacuum and a homogeneous metal. The dispersion relation for such
waves possesses several branches within the frequency region in which
dielectric function of the metal is negative.

7.3. Surface Electromagnetic Waves on Rough Surfaces:
Roughness-Induced Dispersion

The dispersion relation of a surface plasmon polariton propagating
along the planar interface between vacuum and a metal characterized
by the simple free electron dielectric function (7.64) is [7.34]

e(w)Bo(k,w) + Bk, w) =0, (7.66)
where
Bolk,w) = [k — (w/c)?]z, Refo(k,w) >0
ImpBy(k,w) <0 (7.67a)
Bk, w) = [k — e(w)(w/c)*]2, Ref(k,w) >0
Imf(k,w) <0.  (7.67b)
Its solution [7.35]
wo(k) = {%wf, + c?k? — [iwg + c4k4]%}§ : (7.68)
— ck
E—0 (7.69a)
—_— Wp/\/§
k— o0 : (7.69D)

is dispersive, i.e. the phase and group velocities of this surface elec-
tromagnetic wave are functions of the wavenumber k. This is due to
the presence of a hidden characteristic length in this system, namely
the wavelength corresponding to the plasma frequency wy,, A\, =
(2mc) /wp, which in turn corresponds to a wavenumber &, = wy,/c. For
values of k larger than £, the effects of retardation are unimportant:
light propagates over the short distances that correspond to such
values of k essentially instantaneously. For values of k smaller than
k, the finite speed of light has to be taken into account in consider-
ing its propagation over such larger distances. The surface plasmon
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polariton dispersion relation has a qualitatively different form in each
of these limits, which produces a dispersive dispersion curve.

This dispersion can be enhanced by structuring the vacuum-
metal interface, either periodically or randomly. The additional dis-
persion induced in this manner can be termed roughness-induced
dispersion. In addition, in the case of a periodically corrugated inter-
face, the surface plasmon polariton dispersion curve can acquire addi-
tional, higher frequency, branches, whose number depends on the
period of the grating and the plasma frequency of the metal.

In this section we study the roughness-induced dispersion pro-
duced by a periodic interface as well as by a randomly corrugated
interface, and see how these features arise. Although the propagation
of surface plasmon polaritons on doubly periodic [7.36] and on two-
dimensional randomly rough [7.37-7.40] metallic surfaces has been
studied, we have chosen to study this propagation on one-dimensional
periodically and randomly rough surfaces when the sagittal plane
is perpendicular to the generators of these surfaces. The dispersion
curves obtained for these surfaces display the significant features pos-
sessed by the corresponding curves obtained for the two-dimensional
surfaces, and are derived more simply.

We begin by considering a general system consisting of vacuum
in the region z > ((z), and a metal, characterized by an isotropic,
frequency-dependent dielectric function e(w) in the region z < ((z).
In common with most determinations of the dispersion relations of
surface plasmon polaritons we will assume that the dielectric func-
tion €(w) is real. The surface profile function ((z) is assumed to
be a single-valued function of x that is differentiable. It is assumed
that a surface plasmon polariton propagates in the x direction along
the interface z = ((z). It is convenient to work with the single
nonzero component of the magnetic field in this system, namely
Hy(x;t) = Hy(x,z|w)exp(—iwt), since it satisfies a scalar wave
equation in each medium,

2 2 2
<% % + i—2> H;(x,z\w) =0, z>((x), (7.70a)

2 2 2
<% + % + e(w)(;)—2> Hy<(x, zlw) =0, z<{(x). (7.70b)
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The boundary conditions at the interface z = ((x) require the con-
tinuity of the tangential components of the magnetic and dielectric
fields in the system across it:

H;(x,z\w)\zzg(x) = Hy<(:c,z|w)|zzc(m), (7.71a)
0 1 0

H> EE— 71
L LG R D

In these equations

— 72
8x+82 (7.72)

9 g {—c’m

0 0
on ’

is the derivative along the normal to the surface at each point of it,
directed from the metal into the vacuum. We also assume vanishing
boundary conditions at infinity.

The solutions of Egs. (7.70) that satisfy the boundary conditions
at |z| = oo can be written as

* d
Hy> (x, z|w) = / —qA(q,w) expligr — Po(q,w)z]z > (max,

oo 2m

(7.73a)

and

 d
;o) = [ SLBla.w) explige + 5(a.0)2)2 < Gun
(7.73b)

where

Bolq,w) = [q2 — (w/c)z]%,Reﬂg(q,w) >0, Imfy(q,w) <0,
(7.74a)

B(q,w) = [¢* — e(w)(w/e)?]2, Refg,w) > 0, Imf(q,w) < 0.
(7.74b)

Strictly speaking, the expressions for the fields given by Eq. (7.73)
are exact only outside the grooves and ridges of the surface. We will
invoke the Rayleigh hypothesis [7.41], which is the assumption that
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these fields can nonetheless be continued in to the interface itself and
used in satisfying the boundary conditions (7.71). When this is done
we obtain the following pair of homogeneous integral equations for
determining the amplitude functions A(q,w) and B(q,w):

/_: %{[A(Q,w) expligz — Bolq,w)((z)]

~ Blg,w) explige + B(a. w><<x>1} —0,  (v.75a)

g |
()

{ —igC'(@) — folg, )| Alg, ) expligz — fo(q, w)C()]
1

- ol (@) + Bla )] Bla. ) explias + ﬁ(q,w)C(fc)]} 0
(7.75b)

It is much simpler to work with a single integral equation than
with two coupled integral equations. We can eliminate the amplitude
functions B(q,w) from the pair of equations (7.75) to obtain a single
homogeneous integral equation satisfied by the amplitude function
A(q,w) alone. We do this by first multiplying Eq. (7.75a) by [ip’(x)+
B(p,w)] exp[—ipz + B(p,w)((x)] and then integrating the result with
respect to x. We then multiply Eq. (7.75b) by —e(w)exp[—ipx +
B(p,w)((x)] and integrate the result with respect to x. We finally
add the resulting pair of equations to obtain

[pq — B(p,w)fo(q,w)]A(q) =0,
(7.76)

/OO dq I(B(p,w) — Bolg,w)lp — )
—oo 2T B(p;w) — Bolq,w)

where we have introduced the function I(v|Q) through

explC(@ / 1(11Q) exp(iQx). (7.77)
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It follows from this result that

@) expho)] = [ LG es(iQe). (17

—oo 2T

Both of these relations were used in obtaining Eq. (7.76). For the
evaluation of I(y|Q) we need the inverse relation

101Q) = [ dvexp(-iQa) explg(e)]. (7.79)

—00

Equation (7.76) was first obtained in Ref. [7.42] by a different
approach.

As we will see later, it is sometimes convenient to remove a delta
function from the function I(v|Q) by rewriting Eq. (7.79) as

164]Q) = / " dr exp(—iQa){1 + exphr((@)] — 1}

—0o0

=27m6(Q) +7J(7|Q), (7.80)

where

J(1Q) = / T exp(—iQm)w. (7.81)

—00

On substituting Eq. (7.80) into Eq. (7.76) we obtain the equation
satisfied by A(g,w) in the form

€(w)Bo(p,w) + B(p,w)
elw)—1

A(p,w)

= /_OO %J(ﬁ(pw — Bo(qw)lp — @)[pg — B(p,w)Bo(q, w)]A(g, w).
(7.82)
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The identity

p2_/8(p7w)/80(p7w) — _G(W),Bo(p,W)"‘ﬂ(p,W)
,B(p,(x)) _ﬂO(paw) 6(&1) -1 ’
was used in obtaining Eq. (7.82).

We now turn to an application of the results obtained in this
section to the determination of the dispersion relation for surface

(7.83)

plasmon polaritons on a periodically corrugated surface and on a
randomly rough surface.

7.3.1. Periodically corrugated surfaces

We assume that the surface profile function {(x) is a periodic function
of z with a period a, ((x+a) = ((z). In this case the function I(v|Q)
defined by Eq. (7.79) becomes

(n+ a)
17|Q) = Z / dx exp(—iQw) exp[y( ()]

n=—oo

= Z /2 dx exp[—iQ(x + na)] exp[y((x + na)]

= Z exp(—iQna) /ja dx exp(—iQz) exp[y((z)]
= Y 2m0(@ ~ (2mm/a))Zn(y), (7.84)

where

The result that

o0 o0

> exp(—iQna) = Z - <Q—27T—m> (7.86)

n=—oo m=—0oQ

was used in obtaining Eq. (7.84).
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We must also express the amplitude function A(g,w) in the form

W) = 2 i An(k)S <q . 2%”) (7.87)

in order that the expression for the magnetic field H (z,z|w),
Eq. (7.73a), that results,

(2, 2lw) = Z An( exp[ <k+2—”>4

X exp [—ﬂg <k n 2%” w> z] , (7.88)

satisfy the Bloch-Floquet theorem [7.43], H (z +a, z|w) = exp(ika)
H (r,z|w). The wavenumber k entering Eq. (7.88) is thus the wave
number of the surface plasmon polariton.

When the expansions (7.84) and (7.87) are substituted into
Eq. (7.76), it becomes

- . . kmkn - ﬂ(km,W)ﬂo(k}n,w)
m:z_:oo 271'(5(1) km) nzz_:oo /B(km,w) — ,Bo(kn,w)

X Ly (B(km, w) — Bo(kn,w))An (k) =0, (7.89)

where we have introduced the notation k,, = k + (2rm/a). This
equation can be satisfied only if the coefficient of 27d(p — k;,) van-
ishes for each m. In this way we obtain the equation satisfied by the

{An(k)} [7.44]:

o0

kmkn - ﬁ(kma W)ﬁ(](km W)
n:z_oo B(Fmsw) — o (Fons )
X T (B, ) — Bo(kn,w))Ap(k) =0 m = 0,£1,42. ..
(7.90)

The dispersion relation for surface plasmon polaritons on a grating
is obtained by equating to zero the determinant of the matrix of
coefficients in Eq. (7.90).

The solutions w(k) of this dispersion relation have two gen-
eral properties. The first is that w(k) is a periodic function of the
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wavenumber k with a period 27/a. The second property of w(k) is
that it is an even function of k. These two properties of w(k), which
are independent of the surface profile function, have the consequence
that all the distinct solutions of the dispersion relation are obtained
if the wave number k is restricted to the interval 0 < k < 7/a.

In addition, it is not difficult to determine from Eq. (7.74a) that
if k is real, is in the interval (0, 7/a), and is larger than w/c, fo(ky,w)
is real and positive for all n when w is also real. (Since we are working
in a frequency range where €(w) is negative, because it is in such a
range that a surface plasmon polariton exists, 3(ky,,w) is real for
all n. From Eq. (7.88) we see that the magnetic field in the vacuum
region tends to zero as z — oo. Thus, the Bloch-like surface plasmon
polaritons that are true eignemodes of the corrugated structure exist
only in the triangular region of the (w, k) plane bounded from the left
by the vacuum light line w = ck, and from the right by the boundary
of the first Brillouin zone k = 7/a. This region is called the non-
radiative region of the (w, k) plane. The region of the (w, k) plane in
which £ is smaller than w/c, and which is bounded on the left by
the line £ = 0 and on the right by k = 7/a is called the radiative
region. In this region fy(k,,w) can become purely imaginary with a
negative sign(Eq. (7.74a)) for some values of n, and the expansion
(7.88) describes a wave that radiates energy into the vacuum as it
propagates along the surface, and is attenuated thereby. In this case
the solutions of the dispersion relation for real £ become complex,
w(k) = wi(k) — iwe(k), and the lifetime of the energy of the wave,
7(k), is given by 7(k) = [2w2(k)] L. Solutions of the dispersion rela-
tion will be sought only in the non-radiative region.

These general properties of the dispersion curve are present in the
results of a numerical solution of the dispersion relation. We assume
a sinusoidal surface profile function

((x) = (pcos(2mz/a), (7.91)
for which the function Z,,() defined by Eq. (7.86) is given by

where [,,(z) is a modified Bessel function of the first kind and
order m. For the dielectric function e¢(w) we assume the simple free
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electron form (7.64). We assume for the plasma frequency the value
wp = 12.708 x 10"s~ L. The grating profile was characterized by the
values a = 5000 A and ¢y = 0 and 500 A.

In the numerical calculations of the dispersion curves the infi-
nite determinant formed from the matrix of coefficients in Eq. (7.90)
was replaced by the determinant of the (2N + 1) x (2N + 1) matrix
obtained by restricting m and n to run from —N to N. The zeros
of this truncated determinant were found numerically by fixing k,
increasing w from 0 to ck in small increments Aw, and looking for
changes in the sign of the determinant. The convergence of the solu-
tions found in this way was tested by increasing N and seeing if they
approached stable limiting values.

In Fig. 7.10 we plot the dispersion curves for surface plas-
mon polaritons propagating on this metallic grating. It is seen to
consist of three branches. The two lowest frequency branches are
separated by a gap at k = m/a. Any other branches in this case

0.9
0.8
/‘/
O i bt

0.6 e

0.8 1

" kalx

Fig. 7.10. The dispersion curves for surface plasmon polaritons on a silver grat-
ing defined by the profile function ¢(z) = (o cos(2mz1/a), for ¢o = 500 A and
a = 5000A; w, = 12.708 x 10%s7* ( ). The dispersion curve for a surface
plasmon polariton on a planar silver surface is also presented (- - - -), together
with the dispersion curve w =ck (- - - - - ).
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have higher frequencies and lie outside the non-radiative region. The
three branches inside the non-radiative region in first approximation
are obtained by plotting the dispersion curve for surface plasmon
polaritons on a planar vacuum-metal interface in the reduced zone
scheme, i.e. by folding the portions of this curve that lie in the second,
third, ..., Brillouin zones of the grating into the first Brillouin zone
by translating them to the left and to the right by suitable integer
multiples of 27 /a. The higher frequency branch terminates when it
crosses the vacuum light line w = ck, and the corresponding wave
becomes a radiative mode. The gap at the zone boundary opens up
when the grating is turned on because the dispersion curve of the
unperturbed structure is degenerate at the wavenumbers k = +7/a
that are separated by a translation vector of the reciprocal lattice
of the grating, 27 /a. Since the Fourier coefficient %CO of the surface
profile function corresponding to this translation vector is nonzero,
degenerate perturbation theory tells us that the degeneracy is lifted
when the grating is turned on. A gap therefore opens up in the dis-
persion curve at the zone boundary.

In the limit & — 0 the lower frequency branch is tangent to the
dispersion curve for a surface plasmon polariton on a planar surface
for any value of (p/a. In addition, we see that the lowest frequency
branch displays the phenomenon of wave slowing, namely the phase
and group velocities of the wave are smaller than those of the surface
plasmon polariton at a planar vacuum-metal interface. The slowing
down of a surface plasmon polariton wave packet by this mechanism
was recently observed experimentally [7.45]. This is a consequence
of the periodicity of w(k), w(k + (27/a)) = w(k), and its evenness,
w(—k) = w(k), which force each branch of w(k) to come into the
Brillouin zone boundary k = 7/a with zero slope. This, in turn, forces
the lowest frequency branch of the dispersion curve to bend away
from the planar surface dispersion curve, and this bending of the
dispersion curve reduces the group and phase velocities of this wave.

As the value of (j is increased the lower frequency branch moves
to lower frequencies, the width of the gap increases, and at some
critical value of (y the highest frequency branch moves into the
radiative region, and ceases to be a true surface wave.
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7.3.2. A randomly rough surface

A convenient starting point for the determination of the dispersion
relation for a surface plasmon polariton on a one-dimensional ran-
domly rough vacuum-metal interface is Eq. (7.82) [7.46]. This is
because when the surface profile function {(x) is identically zero, the
right-hand side of this equation vanishes, and the equation becomes

6(w)ﬁ0(p,w) + ﬁ(p,ch)
elw)—1

A(p,w) = 0. (7.93)

A nontrivial solution of this equation requires that

e(w)Bo(p;w) + B(p,w) = 0. (7.94)

This is recognized as the dispersion relation for surface plasmon
polaritons at a planar vacuum-metal interface, Eq. (7.66). Thus, the
right-hand side of Eq. (7.82) represents a correction to this dispersion
relation in the presence of surface roughness.

The surface profile function ((z1) of a randomly rough surface is
unknown in general. This forces us to characterize it by certain statis-
tical properties. Underlying this characterization is the assumption
that there is not a single function ¢(x). Instead there is an ensemble
of realizations of this function. Physical properties associated with
a statistically rough surface are to be averaged over this ensemble,
and it is assumed that this ensemble average does not differ from the
spatial average over a single realization of the surface in the limit of
a large surface.

In common with most theoretical treatments of random surface
roughness we assume that the surface profile function ¢(z) is a single-
valued function of x that is differentiable and constitutes a zero-
mean, stationary Gaussian random process defined by

(C(z)) =0, (7.95a)
(¢(2)¢(a") = W (| — ). (7.95b)

In Egs. (7.95) the angle brackets denote an average over the ensemble
of realizations of the function ((z). The quantity ¢ appearing in
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Eq. (7.95b) is the rms height of the random surface
5= ((3(x))k. (7.96)

The normalized surface height autocorrelation function W (|x|)
possesses some important general properties. It follows from
Egs. (7.95b) and (7.96) that

W(0) = 1. (7.97)

W (|z|) is clearly an even function of x1, because ({(z)((x")) = (¢(2')
¢(x)). Tt is also easy to show that W (|z|) satisfies the inequalities

—1 < W(jz|) < L. (7.98)

In addition, from the fact that on a statistically rough surface the
heights of the surface at two widely separated points are uncorre-
lated, W (|z|) tends to zero as |x| — oc.

It is necessary to introduce the Fourier representation of the sur-
face profile function:

o) = [~ FE@esp(ia). (7.99)

The Fourier coefficient ¢(Q) is now a random process. Since ¢(z) is
a real function of z, ((Q) has the property ((—Q) = ¢*(Q). With
the aid of the Fourier inversion theorem and the results given by
Egs. (7.95a) and (7.95b) we find that

~

(C(@) =0, (7.100a)
(CQ)(Q) =2m3(Q + Q)3*9(Q). (7.100b)

The function ¢(Q) appearing in Eq. (7.100b) is called the power
spectrum of the surface roughness, and is defined by

9(Q) = /OO dxW (|z|) exp(—iQx).

—00

= 2/00 dx W(|z|) cos Q. (7.101)
0
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This result shows that in fact g(Q) is a real and even function of Q.
It can also be shown to be a non-negative function of Q.
From the inversion formula

*d
Wila) = [ T20(@ exp(iu). (7102)
and Eq. (7.97) we see that ¢g(Q) is normalized according to
/_ @ -1 (7.103)

In the numerical calculations whose results will be presented later
in this section, we will adopt a Gaussian form for W (|z|),

W(|z|) = exp(—22/a?), (7.104)

where the characteristic length a is called the transverse correlation
length of the surface roughness. It is a measure of the average dis-
tance between consecutive peaks and valleys on the surface [7.47].
The power spectrum of the surface roughness corresponding to the
autocorrelation function (7.104) is

9(Q) = Vraexp(—a’Q’/4). (7.105)

To obtain an analytic result for the dispersion relation of a sur-
face plasmon polariton at a one-dimensional randomly rough vacuum-
metal interface, we will make the small roughness approximation [7.40].
In this approximation the function J(v|Q) in Eq. (7.82), which is
defined by Eq. (7.81), is expanded in powers of the surface profile func-
tion, and only the leading nonzero term in this expansion is retained:

T01Q) = E0(Q) + 575D (@) + -+ (7.106)

where
(M) =<(@) (7.107a)
() (Q) = /_ Z do exp(—iQz)C" (z), n > 1. (7.107b)
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In this approximation Eq. (7.82) takes the form

6(“})&0 (pa w) + ﬁ(pa w)

e(w)—1 Alp,w)

- [ 3K o - )l Ale). (7.108)

Equation (7.108) is a stochastic integral equation because of the
presence of the stochastic function f (p—q) in its kernel. The solution
A(q,w) therefore is also a stochastic function. Instead of seeking the
probability density function of A(g,w) we will seek its first moment
(A(q,w)), which describes the propagation of the mean wave across
the random surface.

To extract the equation satisfied by (A(q,w)) from Eq. (7.108)
satisfied by A(g,w) we introduce the smoothing operator P that aver-
ages everything on which it acts over the ensemble of realizations
of the surface profile function: Pf = (f) [7.48]. We also introduce
the complementary operator () that produces the fluctuating part
of everything on which it acts: Qf = f — (f). We now apply these
operators in turn to both sides of Eq. (7.108):

e(w)Bo(p,w) + B(p,w)

ew) — 1 PAp.w)
— [ SEPi- 0l - 6(p.w)(e.)
x [PA(q,w) + QA(q, w)] (7.109a)
e(w)Bo(p,w) + B(p,w)
Oe(w) — QA(p,w)

_ / " Q0 )lpa — B, w) ol )]

—00

x [PA(q,w) + QA(q,w)]. (7.109b)
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Since P{(p — ¢) = 0, Eq. (7.100a), Eq. (7.109a) can be rewritten as

E(W)ﬁO(p>w) + ﬁ(paw) PA
e(w)—1

- /_Oo %P $p = a)lpa — Bp,w)Bo (g, )| QA(q,w). (7.110)

(p,w)

We seek the right-hand side of this equation only to second order in
¢(Q). Therefore we need to solve Eq. (7.109b) for QA(q,w) only to
first order in ¢(Q). This solution is given by

e(w)ﬁo(q,w) + ﬁ(%w)
e(w)—1

= /Oo g—;f(q—r)[qr—ﬂ(q,w)ﬂo(r,w)]PA(r,w). (7.111)

—00

QA(q,w)

On substituting Eq. (7.111) into Eq. (7.110) we obtain the equation
for (A(q,w)) in the form

[e(w)Bo(p,w) + B(p,w)(Alp,w))

— [ew) — 12 / / 0 —1)

o P4 = B(p.w)Po(q, w)llar — (g, w)Fo(r,w)
e(w)Bo(q,w) + Bg,w)

= etw) 12 [ Slato—0)

— 00

(A(r,w))

o [Pa = B(p.w)Bo(q, w)llap — A(a,w) o (p,w)]
e(w)pfo(q,w) + B(gq,w)

(A(p,w))-
(7.112)

The dispersion relation for a surface plasmon polariton on a one-
dimensional randomly rough vacuum-metal interface is thus found
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to be

e(w)Bo(p,w) + B(p,w) = 6*[e(w) — 1]?

> dq [pg — B(p,w)Bo(q,w)]lap — B(gq,w)Bo(p,w)]
<) ()Bo(e, @) + B(a,) |

(7.113)

A surface plasmon polariton propagating on a planar vacuum-
metal interface is attenuated by the dissipative processes in the bulk
of the metal, i.e. by the processes that give rise to the imaginary part
of its dielectric function. An expression for the attenuation length
of the surface plasmon polariton in this case can be obtained by
inserting the complex dielectric function €(w) = €;(w) +iez(w) of the
metal into the dispersion relation for the surface plasmon polariton
on a planar surface, e(w)fy(p,w) + B(p,w) = 0, and obtaining the
wavenumber p(w) in the form p(w) = p;(w)+ip2(w). The attenuation
length for energy flow is then £y,(w) = (2pa(w))~L.

In contrast, in the presence of surface roughness a surface plas-
mon polariton is attenuated even if the dielectric function e(w) is
real. This attenuation is due to the roughness-induced scattering of
the surface plasmon polariton into volume electromagnetic waves in
the vacuum traveling away from the surface, and into other surface
plasmon polariton modes. Both scattering processes remove energy
from the incident beam and attenuate the surface plasmon polari-
ton thereby. This is the situation on which we wish to focus our
attention. Therefore, to separate the attenuation of a surface plas-
mon polariton that has its origin in surface roughness from that
due to dissipation we have assumed that e(w) is real everywhere
in Eq. (7.113), except in the denominator €(w)fy(q,w) + ((¢g,w) in
the integrand on the right-hand side of this equation. The inclu-
sion of an infinitesimal positive imaginary part of the dielectric
function here is only for the purpose of defining the way in which
the poles of the integrand that occur at the values of ¢ at which
e(w)Po(q,w) + B(q,w) = 0 are to be treated in the evaluation of the
integral over q.
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If we introduce the definitions

F(paw) = E(W)ﬁO(paw) + ﬁ(paw) (7114)
G(p,w) = /_OO g—ig(p —q)

[pg — B(p, w)Bo (g, w)]lgp — B(g, w)Bo(p,w)]
X
G(W)ﬁo (qa W) + ﬁ(qa W)
=G (p,w) —iGP (p,w), (7.115)
and denote the solution of the equation F(p,w) = 0 by wo(p), the
frequency of a surface plasmon polariton on a planar vacuum-metal
interface, then the solution of Eq. (7.113) for the frequency of a sur-

face plasmon polariton on a randomly rough interface can be written
in the form

w(p) = wo(p) + A(p) — iL'(p), (7.116)
where to lowest nonzero order in &

G(l) (p7 “o (p))

A(p) = 6[e(w —1)? , 7.117a

(p) [ ( 0(p)) ] 8€)F(p7w)‘w=wo(l7) ( )
G (p,wo(p))

T(p) = 6%[e(w —1]? 7.117b

(p) [ ( 0(p)) 1] a?uF(paw)‘w:wo(p) ( . )

The attenuation length of the surface plasmon polariton, £, (p), is
the distance over which the energy of the surface wave decays to 1/e
of its initial value. It is given by

lolp) = LEP) (7.118)

2T'(p)’
where vg(p) is the energy transport velocity of the surface plasmon
polariton. In the absence of dissipation it is equal to the group veloc-
ity of the surface plasmon polariton:

1
o p (Gwy+ciph)z —c*p?

wo(p) (wi + c4p4)%

vp(p) =c (7.119)
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The inverse decay length of the electromagnetic field of the sur-
face plasmon polariton in the vacuum region is given by the real
part of

bolpso0) = {57 = lerlo) + AWIE + 5T

1
2

+iZ () + AGITG) | (7.120)

Numerical results for wg(p) and the roughness induced shift of it,
A(p), are plotted in Fig. 7.11. The damping constant I'(p) and the
contributions to it from the conversion of the surface plasmon polari-
ton into volume waves in the vacuum and from its scattering into
other surface plasmon polaritons are plotted in Fig. 7.12. The energy
mean free path £,(p) is presented in Fig. 7.13. The inverse decay
length of the electromagnetic field of the surface plasmon polariton
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Fig. 7.11. The frequency wp(p) of a surface plasmon polariton, on a planar silver
surface ( ), and the roughness induced shift of it, A(p) (- ---- - ). The rough-
ness is characterized by a Gaussian power spectrum ¢(Q) = v/7a exp(—a’Q?/4)
with a = 5000 A, while § = 500 A. The plasma frequency is w, = 13.12 x 10> s7*
[7.46].
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Fig. 7.12. The roughness induced damping constant, I'(p), of a surface plasmon
polariton on a one-dimensional randomly rough silver surface ( ) together with
the contributions to it from the conversion of the surface plasmon into volume
electromagnetic waves in the vacuum (-« ------- ) and from its scattering into other
surface plasmon polaritons (- - - - - ). The material and roughness parameters are
those of Fig. 7.11 [7.46].

in the vacuum region in the absence and in the presence of surface
roughness are shown in Fig. 7.14.

In carrying out these calculations the metal was assumed to
be silver. It was characterized by a dielectric function with the
free electron form, Eq. (7.64). The plasma frequency assumed was
wp = 13.12 x 10" s71. The values of § and a used in the calculations
were § = 500 A and a = 5000 A.

The frequency shift A(p) is seen to be negative for all values of
p, i.e. surface roughness depresses the frequency of a surface plasmon
polariton below its value for a planar surface. This is similar to the
depression of the frequency of the lowest branch of the dispersion
curve of a surface plasmon polariton propagating on a grating by the
periodic corrugation of its surface.

The damping function I'(p) is positive for all values of p.
This means that the surface plasmon polariton is attenuated as it
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Fig. 7.13. The energy mean free path of a surface plasmon polariton on a one-
dimensional randomly rough silver surface. The material and roughness parame-
ters are those of Fig. 7.11 [7.46].
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Fig. 7.14. The inverse decay lengths of the electromagnetic field of a surface plas-
mon polariton on a silver surface in the vacuum region in the absence (— — — — — )
and in the presence (——) of surface roughness. The material and roughness
parameters are those of Fig. 7.11 [7.46].
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propagates for all values of p. For values of p in the range 0 < pa < 2.3
the dominant contribution to I'(p) is from the roughness-induced
scattering of the surface plasmon polariton into other surface plas-
mon polaritons. For pa > 2.3 the dominant contribution to I'(p)
comes from the conversion of the surface plasmon polariton into vol-
ume electromagnetic waves in the vacuum. The energy mean free
path of the surface plasmon polariton due to surface roughness,
Lep(p), is a decreasing function of the wavenumber p. For comparison
we have also plotted in Fig. 11.13 the mean free path of a surface
plasmon polariton on a planar but lossy silver surface characterized
by a Drude dielectric function
w2

ew)y=1- m (7.121)

The expression for the damping function I'(p) in this case is
12, 22
Py =21 |12 | (7.122)
T Gogren)!

to lowest order in . The values of w, and ~ used in this calculation
were obtained by fitting the value of the dielectric function of silver
at a wavelength A = 612.7nm, e(w) = —17.2 4 0.498 [7.49], by
the expression (7.121). The values obtained in this way are w, =
13.12 x 10571 and v = 0.8412 x 10" s™! = 0.06411w,. It is seen
that the mean free path associated with random surface roughness is
smaller than that due to ohmic losses in the metal for the roughness
parameters assumed.

Finally, Refy(p,w(p)) is larger than [y(p,wo(p)). Thus the sur-
face plasmon polariton is more strongly bound to a randomly rough
metal surface than it is to a planar metal surface.

Comments and Conclusions to Chapter 7

The dielectric structure supporting the electromagnetic waves stud-
ied in Sec. 7.1 is a graded-index waveguide. In the frequency range
0 < w < Q. the dispersion relation (7.27a) has only a single solution
that exists in a narrow spectral range whose lower edge is defined by
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Eq. (7.31) and whose upper edge is given by 2. Its electromagnetic
field as a function of z possesses a single maximum and no nodes
in the region of the waveguide, and decays to zero exponentially
as z — =oo. There are no higher frequency branches of the dis-
persion curve in this frequency range. This mode thus resembles a
surface plasmon polariton in its localization to the surface z = 0,
even though the maximum of its electromagnetic field occurs inside
the graded-index medium. It differs from a surface plasmon polariton
in that it exists in a narrow spectral domain, which can range from
the near infrared to the visible region of the optical spectrum. The
technologically controlled parameter — the heterogeneity scale L —
defines the narrow spectral range within which the low frequency
wave exists, which is bounded from above by the critical frequency
Q., while the waveguide acts as a high-pass filter. Since it occurs in
a dielectric structure, which has small ohmic losses, its energy mean
free path can be longer than that of a surface plasmon polariton.
Finally, it can be used in applications in situations, such as in an
oxidizing atmosphere, where a metallic surface cannot be used.

In the frequency range w > €1, the corresponding dispersion rela-
tion, Eq. (7.38a), possesses a multiplicity of solutions, of which we
have considered only the three lowest frequency modes. The electro-
magnetic field of the lowest frequency branch has a single maximum
and no nodes in the region of the waveguide, and decays to zero
exponentially as z — +oo. However, in this frequency range there
exist higher frequency branches of the dispersion curve, whose elec-
tromagnetic fields possess nodes whose number equals the branch
number, if the lowest frequency branch is denoted the zero branch.
They also decay to zero exponentially as z — +oo. These features
are characteristic of waveguide modes.

In Sec. 7.2 we have shown that electromagnetic waves of S
polarization can propagate circumferentially around a portion of a
cylindrical vacuum-metal interface, and be localized to it, when the
homogeneous metal is concave to the vacuum. A surface electromag-
netic wave of this polarization does not exist at the planar interface
between vacuum and a homogeneous metal. The dispersion rela-
tion for such waves possesses several branches within the frequency
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region in which dielectric function of the metal is negative, and their
electromagnetic fields have the nature of the fields of waveguide
modes in a medium with a gradient index induced by the curvature
of the vacuum-metal interface.

The dispersion curve of a surface plasmon polariton propagat-
ing on a periodically corrugated vacuum-metal interface can consist
of several branches in the non-radiative region of the (w, k) plane.
The group and phase velocities of the lowest frequency branch of the
dispersion curve are depressed by the periodic roughness, and the
corresponding surface plasmon polariton displays the phenomenon
of wave slowing. The dispersion curve of a surface plasmon polariton
propagating on a randomly rough surface consists of a single branch.
It also displays the phenomenon of wave slowing. The surface plas-
mon polariton is damped as it propagates on the randomly rough
surface, and it has a shorter energy mean free path than that of a
surface plasmon polariton on a planar but lossy metal surface. It
is more strongly bound to the rough surface than to a planar sur-
face. The ability to modify the dispersion curve of a surface plasmon
polariton propagating on a vacuum-metal interface by structuring
the interface, or to induce the existence of a surface electromagnetic
wave that otherwise could not exist by structuring the interface or
the system on which it propagates, can be useful in applications of
these surface waves [7.50].
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CHAPTER 8

NON-LOCAL ACOUSTIC DISPERSION
OF GRADIENT SOLID LAYERS

This chapter is devoted to the physical fundamentals and mathemat-
ical basis of the theory of gradient acoustical barriers. Such barriers
are formed by finite thickness layers of an inhomogeneous elastic
medium with continuous distributions of density and elastic modu-
lus in the medium inside the layer. The advent of artificial materials
(metamaterials) [8.1-8.3] stimulated the development of qualitatively
new concepts of gradient acoustical barriers, based on new exact ana-
lytical solutions of acoustical wave equations in heterogeneous media.
This concept is being developed now in connection with the prob-
lems of sound reflection and transmission in layers of inhomogeneous
alloys [8.4], composite materials [8.5] and porous structures [8.6]. The
reflectance/transmittance spectra of such layers can differ drastically
from the spectra of homogeneous media:

1. Gradient acoustical barriers have characteristic frequencies deter-
mined by the shape of the spatial distributions of the density
and elastic properties of the barrier as well as its thickness. The
influence of these frequencies on the propagation of sound waves
results in a strong heterogeneity-induced non-local dispersion of
reflectance/transmittance spectra of the barrier. This artificial
dispersion, which can be made both normal and anomalous in a
given spectral range, proves to be especially important for solids,
whose natural acoustical dispersion in this range is insignificant.

2. Subject to the heterogeneity-induced dispersion of the barrier the
interference of forward and backward waves can cause the peculiar
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effects of weakly attenuated tunneling of longitudinal and shear
acoustic waves through the barrier.

3. The exact analytical solutions of wave equations for gradient
acoustic barriers, illustrating the mathematical analogies between
acoustics and electromagnetics of gradient media, open the way to
use some obtained results of gradient optics for analysis of related
acoustical problems.

To illustrate the generalization of concepts of gradient optics for
acoustics we consider the interaction of sound with gradient barriers
in the simplest geometry. We assume, that a plane acoustic wave
is incident from the side z < 0 normally on the boundary of an
isotropic layer coinciding with the plane z = 0; another boundary
of the layer is formed by the plane z = d. It is known, that in this
configuration two acoustic waves, corresponding to longitudinal and
transverse (shear) modes, can propagate in a homogeneous layer. The
velocities vy and v; of these modes as well as their wave numbers kg ;
for each frequency w are given by [8.7]:

BQ-w o, B
p(L+p)(1—=2u)" " 2p(1+p)

Here E is the Young modulus, p is the density of the medium and p
is Poisson’s ratio. Sound dispersion in medium (8.1) is absent.

Unlike (8.1), the density p and quantities £ and p depend in
the gradient layer on the coordinate z across the layer. These depen-
dencies can be conveniently represented by introducing dimensionless
differentiable functions F2(z) and W?2(z). For the density profile p(z)
we assume

w
k’g’t - —. (81)

’U% = =
Ut

p(z) = poF?(2),  ple=o=po, Fl=o=1. (82)

Shear waves can be described by relating the function W?(z) to the
coordinate-dependent shear modulus G(z):

E

G(z) = GoW?(2), Go=—1,
(2) = GoW=(2) il

Wl.eo = 1. (8.3)

The values E, ;1 and Gy in (8.3) correspond to the barrier boundary
z=0.
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Theoretical problems of sound propagation in elastic media are
considered based on the equations of motion relating the displace-
ment i of particles of a medium to the components o;;. of the stress
tenso [8.7]:

82ui . 8Uik
8t2 n 8:ck

p (8.4)
Here the density p and the tensor components o, in gradient media
depend continuously on the coordinates x;. We will analyze by means
of (8.4) two types of acoustic waves with frequency w, propagating
along the z direction:

1. Longitudinal wave, propagating with velocity v; (8.1), and char-
acterized by the displacement u = u, exp(—iwt); in this case the
right-hand side of Eq. (8.4) depends on only the component o,
of the stress tensor, which is determined as [8.7]:

E(l—p) Ou
(1+p) (1 —2p) 0z

(8.5)

Ozz =

2. Transverse wave, propagating with velocity v; (8.1), and charac-
terized by the displacement u = u, exp(—iwt), where x 1z (shear
wave); in this geometry only one stress tensor component o, (z)
has to be taken into account in Eq. (8.4):

E_ Ou
2(1+p) 0z

Oz (8.6)
It has to be noted, that the local acoustical dispersion can arise
in solids containing homogeneously distributed inclusions with elas-
tic properties different from those of the host material [8.8]. The
elastic moduli of such homogeneous structured materials are charac-
terized by two constants, g and h, having the dimension of length
and related to the potential and kinetic energies of inclusions in the
wave field; for example, applied to the acoustics of solid porous bio-
materials, this approach gives the estimate g ~ h ~ 107°m [8.9].
The phase velocities of longitudinal V; and shear V; waves, defined
in this approach, depend upon the corresponding wave numbers k;
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and k; [8.10]

Vie=v

) )

Here v;; are the phase velocities of longitudinal and shear waves in
the absence of the inclusions (8.1).

In contrast, we will consider in this chapter the non-local acous-
tical dispersion in heterogeneous elastic solids, which is distinguished
in principle from the local effect, described by (8.4). This non-local
effect can be exemplified, e.g. in the acoustics of concentrationally
graded alloys, where the concentration of components depends con-
tinuously upon the coordinates. This dependence determines the spa-
tial distribution of the density and elastic properties inside the alloy.
Thus, in the simple case of a normal stress being applied along the
slab of a binary alloy, a weighted mean between the Young moduli
of the two components is [8.11, 8.12]:

E, = B\Vi + EyVs. (8.7)

Here Ei2 and Vi are the Young modulus and volume fraction of
each of two components. The alloy’s layer with a technologically con-
trolled spatial distribution of volume fractions, e.g. the layer with a
one-dimensional distribution of V; across the layer in the z direction
(Vi = Vi(2)), can be exemplified as the gradient acoustic barrier
E.(z). The reflectance and transmittance spectra of acoustic waves in
gradient barriers can have a strong frequency dispersion produced in
the required wavelength range by means of specially selected spatial
distributions of the density F2(z) or of the elastic properties W?(z)
across the barrier. We will consider distributions F?(z) and W?2(z),
for which the wave field inside the barrier is described by exact ana-
lytical solutions of Eq. (2.3). The reflectance/transmittance spectra
are calculated from the continuity conditions for displacements and
stresses at the barrier boundaries. For the normal incidence of waves
on the boundary z = 0, these conditions may be written

a. as the equality of displacements u;: u;|,——o = w;| ,=+0; (8.8)

b. as the equality of normal stresses 0;.: 0, |.=—0 = 04z|.=+0- (8.9)
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This chapter is devoted to the reflectance spectra of gradient acous-
tical barriers in the case of normal incidence of both longitudinal and
shear waves. The spectra obtained are based on the exact analytical
solutions of the wave equations for gradient solid barriers, obtained
without the use of any assumptions about the smallness or slow-
ness of the variations of fields or media. For simplicity we assume
below that the elastic media on the left and right of the barrier are
identical. The expressions for spectra include the contributions to
the reflection of sound caused not only by the difference of acous-
tical impedances, but also by gradients and curvatures of spatial
distributions of density and elasticity inside the barrier; this analysis
can be viewed as the parallel counterpart of an approach developed
in gradient optics (Sec. 8.1). The reflectance spectra for the solid
barrier with a heterogeneous distribution of density and homoge-
neous elastic properties is considered in Sec. 8.1 in the framework of
this approach. The opposite situation (variable elastic properties and
constant density) is analyzed in Sec. 8.2 by means of the special “aux-
iliary barrier” method. Although such a separation of medium prop-
erties is conventional, it allows choosing the approach to the design of
gradient acoustic materials with specified reflectance/transmittance
spectra. In contrast, the examples of gradient media with “con-
sistent” spatial variations of density and elasticity are considered
in Sec. 8.3.

8.1. Gradient Acoustic Barrier with Variable Density:
Reflectance/Transmittance Spectra of Longitudinal
Sound Waves

Propagation of a longitudinal sound wave incident along the direction
z normally on a variable-density layer can be examined using the
equation of motion (8.4), assuming, that u = u,, p(z) = poF?(2),
W = 1. Substitution of the value o, (8.5) to (8.4) yields the equation
governing the displacement u:
2 2
U = o, (8.10)

2 2
dz Vg

Here vy = v; is the longitudinal sound velocity, defined at the plane
z =0 by Eq. (8.1) with p = po.
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Equation (8.10) resembles the Eq. (2.9), used in gradient optics,
and we can consider the function F?(z), coinciding with U (2)? (2.16),
assuming the density distribution to have the form

2\ —2

Ly L3
Here the spatial scales of heterogeneity L and Ly are the free param-
eters of the distribution (8.11). The minimum and maximum values
of the density as well as the parameters L1 and Lo are determined
via the density pg and barrier’s width d,
L0 Lg d d
. :7’ :—7 L :—7 L = —F=. 8.12

pmln,max (1 n y2)2 ) 2L1 2 2y 1 ( )
Recalling the exact analytical solution of Eq. (8.10), obtained in
Sec. 2.2, we can write

exp(igqn) + @ exp(—1 N w
= SPlan) + Qexp(—ign) / Fle)dz, q= Ny
F(z) 0 Uo

(8.13)

Effective refractive indices N are different for positive (/N1 ) and neg-
ative (N_) dispersion, corresponding, accordingly to Sec. 2.1, to the
concave and convex profiles (8.11)

0
Ny =41+ 82 szf, 0. =00, 0, =21 T 42

d
(8.14)

While using here the exactly solvable model (8.11), initially intro-
duced in optics, we designate the ratio Q/w as S in order to avoid
any confusion with optics, where this ratio is designated as u (2.19).
The characteristic frequencies Q4 are expressed in (8.14) via the
parameter d/vg, indicating the travel time of a wave, travelling with
velocity vg through a distance d, and dimensionless form factors 64,
dependent on the shape of the gradient profile. This representation of
the characteristic frequencies will be used below for different barriers,
distinguished by expressions for the form factors ..
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The reflection spectrum under discussion is calculated from the
continuity conditions (8.8) and (8.9) at the boundaries of the layer
z = 0 and z = d. Representing a longitudinal wave incident from a
homogeneous medium z < 0 with density p; and wave velocity v;
on the layer boundary z = 0 in the form u = A; expliw(z/v1 — t)],
let us consider, e.g. the concave profile (N = N_); introducing the
complex reflection coefficient, we can write the boundary conditions
as

A1+ R) = A,(1+0Q), (8.15)
iwpon(1 = R)A; = Apood | -2 Hig(1- Q) (8.10)

From (8.15) and (8.16) we find:
:ia—%—iN_A _1-Q
i+ 3 +iN_A’ 1+Q

(8.17)

The parameter « in (8.17) is the ratio of the acoustic impedances
I, 5 of the adjacent media (I = pv), v is a dimensionless parameter

proc % 25y
povo’ wlhy /142

Assuming for simplicity that the medium in the region z > d is the
same as in the region z < 0 we can find the quantity ¢ from the
continuity conditions on the boundary z = d:

(8.18)

N_+%7—oz

— 2 |, o =1(d). 8.19
N —Zia| ™ n(d) (8.19)

Q = exp(2igno)

Substitution of @ from (8.19) into (8.17) yields the expression for
complex reflection coefficient of the gradient acoustic barrier, pre-
sented in a form similar to (2.31):

o1 + 109

= — (8.20)
X1+ X2

’72
0'1:t<042—|-z—N3>—’yN_, o9 = 0,
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7 "
N_
t=tglam), am=—gIn <y_+> Coy= o
Y- Pmin

Formulae (8.20) and (8.21) solve the problem of the reflection
of a longitudinal sound wave from the gradient layer (8.11) with the
concave density profile; here the function ¢ = ¢(w) corresponds to the
negative dispersion. The similar problem, related to the reflectance
of a layer with a convex profile p(z), described by model (8.11) with
s; = 1, sy = —1 (positive dispersion), is solved by the analogous
algorithm. Reflection spectra calculated in this way can be written
due to the following replacements in (8.21):

2S5y

i B —7,@7

2N. Y
t=tglgmo), qno = +arctg — |, y=4/1— Po )
S 1- y2 Pmax

N_ — Ny, (8.22)

(8.23)
Reflectance spectra for longitudinal waves |R(S)[?, are shown
in Fig. 8.1. for negative (Figs. 8.1(a) and 8.1(b)) and positive
(Fig. 8.1(c)) dispersion. These graphs illustrate the controlled flexi-
bility of the spectra |R(S)|? subject to the ratio of impedances and
depth of density modulation in the gradient acoustical barrier, deter-
mined by the parameters « (8.18) and y (8.12), respectively.

8.2. Heterogeneous Elastic Layers: “Auxiliary Barrier”
Method

The reflection of shear waves from a medium with spatially dis-
tributed density (8.2) and shear modulus (8.3) can be studied using
the equation of motion (8.4). In the case of normal incidence of
shear wave on the layer boundary z = 0 the only component of
the stress tensor entering (8.4) can be represented by means of the



Non-Local Acoustic Dispersion of Gradient Solid Layers 211

08

0.6 -

IR(S)[*

041

08

0.6 -

R(S)’

04

02~

0s -

IRLS)

04

0

(©)

Fig. 8.1. Spectra of reflection of longitudinal sound from the gradient barrier,
described by Eq. (8.11); (a) and (b) correspond to the normal non-local dispersion;
the ratios of impedances of barrier and surrounding media are « = 0.3 and o =
1.25, respectively; (c¢) relates to the anomalous non-local dispersion, o = 0.3;
curves 1 and 2 on all graphs correspond to the values of the parameter y = 0.45
and y = 0.7, respectively.



212 Waves in Gradient Metamaterials

dimensionless function W?2(z) in the form

FE duy,

MEWQ(Z)' (8.24)

022(2) =
Substituting (8.24) into the equation of motion (8.4), taking into
account (8.2), and designating u, = u, we can rewrite (8.4) as

Pu  w? ou

i F2( Yu + 2WW,— = 0. (8.25)

W2(z) 5~ 5,

Here W, = %—VZ and vy = v, where v, defined in (8.1), is the shear
wave velocity on the layer boundary. The choice of model functions
F%(z) and W2(z) in Eq. (8.25) is limited so far only by conditions
F2(0) = W2(0) =1
To separate the effects caused by the distribution W?2(z), we

assume that the medium density is independent of the coordinates
(p = po, F = 1); in this case Eq. (8.25) takes the form

dPu W ou 2W, du

@—’_EWQ(Z) =W 4 (8.26)
Equation (8.26) differs in its right-hand side from Eq. (8.10), used
in the problem of wave propagation through the variable-density
medium, and is therefore solved using a special algorithm based on
the auxiliary barrier method [8.13]. This method involves the follow-
ing steps:

1. Differentiation with respect to z in (8.26) is replaced by differen-
tiation with respect to a new variable n, which is now, unlike (8.13),
defined by the relation

dz
dn = ——. 8.27
T W) (8.27)
Passing to the variable 7 removes the right-hand side in Eq. (8.26):
du W,

The function v in Eq. (8.28) depends on two variables, z and 7. To
solve this equation it is necessary to specify the function W?(z) and
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express it in terms of 7. In particular, Eq. (8.28) is reduced to Eq.
(8.10) solved previously by introducing an auxiliary barrier F2(n) in
the n space:

W2(z) = F2(n). (8.29)

The function F?(n) in (8.29) can be chosen arbitrarily. However,
if it is taken in the form (2.16) with z replaced by 7, we can use
the ready-made solution (8.13). We can write the function F?(n),
corresponding, for example, to the convex profile (s; = —1, s = 1),
in the form

n

Fiz)=(1-2yz+23)72% z=-"L.
Loy

(8.30)
The characteristic lengths L; and Ls as well as the parameter y in
(8.30) are unknown.

2. Substituting expressions (8.29) and (8.30) into (8.27) and using
the condition 7|,—o = 0, following from Egs. (8.29) and (8.30), we
can find the dependence of z upon x by integrating (8.27)

2z) = L arctg Y + arctg A
L o(— ) Vi-g Vi-i
+/1 -2 <y+ Ty 2>} (8.31)

1—y?+ (z—vy)

To find y in (8.31), we note, that according to (8.29), the convex pro-
file F2(z) corresponds to the convex profile W2(z) and the maximum

of the convex profile F2,, > 1 corresponds to the maximum of profile

W2,.=F2. .. Substituting the value F2_ = (1 —y*)~2, we find:
T (8.32)
y Wmax ' '

The parameter z in (8.31) can be easily found by substituting (8.30)
into (8.29), solving the resulting equation for z, and replacing y by
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means of (8.32):

1 " 1 1
Wmax W Wmax '
Expressions (8.31)—(8.33) determine implicitly the coordinate depen-
dence of the shear modulus inside the barrier W?(z); as follows from
(8.30) the variable x ranges within the interval 0 < z < 2y. In this
case z(0) = 1, and the barrier width d, determined by the distance
between the points where W (0) = 1 and W (2y) = 1, are related to
the characteristic size Log:

x(W)=4/1—

(8.33)

d= ng(2y) = QLQBl, (834)

he <1— 2)3 [M_—mdg(ﬂﬂ'

Thus, knowing the width d and the height W2, of the barrier W?(z),

max
specified implicitly, we can find the spatial scales L1 and Ly of the
auxiliary barrier F2(n), specified explicitly in (8.30). The height and
width of the auxiliary barrier, W2

max

(8.35)

and d;, as well as the charac-
teristic lengths L1 and Lo, are expressed in terms of the width d and
parameter y:

yd d d

di =2yleo=——, L1 =—, Lo=—. 8.36
1 YLz B, ) 1 4yBl ) 2 2y ( )
The convex barrier W?(z) and corresponding auxiliary barrier F2(z)

are shown in Fig. 8.2(a).

3. To calculate the reflection coefficient of the barrier W2(z), one has
to find the field inside the barrier described by Eq. (8.28). Under the
condition (8.29) Eq. (8.28) coincides formally with (8.10). Introduc-
ing the variable

_ /0 " Fn)dn, (8.37)

we can write the solution of Eq. (8.28) in the form, similar to (8.13),

- A, lexp(igT) + Q exp(—igT)] . (8.38)

F(n)
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Fig. 8.2. Gradient barriers formed by parametrically specified shear modulus
distributions (curves 2) and the corresponding auxiliary barriers (curves 1);
(a) and (b) correspond to the convex and concave barriers.

Continuing this analogy we can calculate the reflection coefficient R
for the heterogeneity of shear modulus inside the barrier (8.31). This
coefficient is expressed by the same formula (8.21) as the reflection
coefficient, related to the heterogeneity of density F?(z) (8.11). In
this case the characteristic frequency {2, entering the parameter S,
differs from (8.14) by the form factor

1= 1 _2y2 [y\/l "2 + arctg (\/%_?ﬂﬂ . (8.39)

4. Reflection from the concave profile W?2(z), characterized by the
minimum Wiy, can be studied by choosing the concave profile of
the auxiliary barrier F?(x), with s; = 1, s, = —1. Repeating the
analysis in (8.29)-(8.32), we find the parameter y

y= /Wt -1, (8.40)
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and the implicit expression for the gradient shear modulus profile
inside the barrier:

z(;v): ! = < arcth V) tareth | —2—
Ly (14422 Vity? V1ity?

-y
+ 1+y2[y+ ]}, 8.41
L+y2 = (z—y)* Sy

1 1 1

The auxiliary barrier width do and characteristic lengths L and Lo
can be expressed, similarly to (8.36), in terms of the width d of the
barrier W?(z) and parameter y (8.40):

yd d d
=2 Li=—"" L=+ 8.43
2 B27 1 4y327 2 2ya ( )
1 Y
By = —— |y 1+ y?| +arcth | —— |. (8.44)
(1—|—y2)% [ } V1+y?

The concave barrier W?2(z) and the corresponding auxiliary barrier
(8.41), characterized by negative dispersion, are shown on Fig. 8.2(b).

The reflection coefficient for the concave barrier is calculated
from expressions (8.20) and (8.21), where the parameter y is defined
in (8.40) and the frequency Q_ is given by (8.14) but with a different
form factor 6_(y):

0_(y) (8.45)

y\/1+ y2 + arcth <L>

Wi

a. The main results in this section are the expressions for reflection

coefficients for longitudinal and shear waves, reflected from gra-
dient wave barriers formed by spatial distributions of the den-
sity and elastic properties. As the heterogeneity is weakening
(L1 — 00,Ly — o0), the parameters y,v and the characteristic
frequencies 24 and _ tend to zero, while expression (8.20) is
reduced to the well-known formula for the reflection of normally
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incident sound from a homogeneous layer:

tgd(a? — 1) _ wd

= = —. 8.46
tgd(a? + 1) + 2ia’ V0 (8.46)

b. It is remarkable, that the analysis of sound reflection from gra-
dient barriers involves the characteristic frequencies €24 and €2_
determined by the travel times of waves with velocity vy through
the gradient barrier with width d and by the geometric param-
eters 04 of the layer. These frequencies enter to the expressions
for N1 (8.14), whose structure resembles that of refractive indices
in the electrodynamics of dielectrics with positive and negative
dispersion.

Nonlocal artificial dispersion, formed by the geometric parame-
ters of the barrier allows selecting the spectral range for the spec-
ified frequency band far from the absorption band of the acoustic
medium.

¢. Within this unified approach the auxiliary barrier method reveals
the similarity and difference of reflection spectra caused by phys-
ically different gradient structures (for example, heterogeneties of
the density and elastic parameters of the medium). In the frame-
work of this approach the reflection spectra of acoustic waves
reflected from barriers with negative and positive non-local dis-
persion are described by the general expressions (8.20) and (8.21),
which are valid after the substitution of the corresponding values
of the parameters y, Ny, and the form-factors 6; 2(y). This gen-
erality can be extended, as is shown in Sec. 8.3, to some other
classes of gradient acoustic barriers, formed by the common action
of heterogeneities of density and elasticity.

8.3. Double Acoustic Barriers: Combined Effects
of Gradient Elasticity and Density

Unlike the sound dispersion, caused by either the density distribu-
tion F2(z), or the elastic parameter distribution W?(z), considered
in Secs. 8.1 and 8.2, the dispersion of gradient barriers discussed here
depends upon the spatial distributions of both the density and elas-
tic parameters simultaneously. Such combined dependences attract
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attention in the acoustics of organic materials [8.14], glasses [8.15],
composite and granulated metamaterials [8.16,8.17]. Combined
action of these mechanisms leads to competing dispersion effects
in the sound reflectance/transmittance spectra of gradient barriers.
Since both these effects are simultaneously manifested in one barrier,
we can speak about “double” barriers and their complicated spectra.
Some specific features of the formation of these spectra can be dis-
tinguished by consideration of two qualitatively different problems:

a. finding the reflection spectrum of barrier in which the changes
in F2(z) and W?(z) inside the barrier are described by different
functions;

b. finding the spectral characteristics of a gradient barrier in which
the distributions F?(z) and W?(z) are equal.

Simple examples of such spectra are examined below.

1. “Double” gradient barrier: interplay of positive and negative
dispersion.

We consider a shear wave inside the gradient layer described by Eq.
(8.25) and introduce a new variable by means of formula (8.27).
Then Eq. (8.25) takes the form

du Ww? 9
e + EF (2)W*(z)u = 0. (8.47)
By describing the distributions F2(z) and W?2(z) inside the barrier
of width d with the help of characteristic lengths /1 and Iy

-1
W(z) =1+ % F(z) = (1 + %) . (8.48)
we can study the effects caused by the increase or decrease in the
density and elastic parameters inside the double barrier in a general
form, considering both positive and negative values of the lengths I}
and [o independently. To distinguish these lengths, related to models
of different physical quantities, from the lengths L1 and Lo, charac-
terizing the distribution of one quantity, e.g. the density in model
(8.11), the lowercase letters are used in models (8.48).
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Substitution of the function W?(z) (8.48) into (8.27) yields the
explicit expression of the variable n via z:

n=z <1 + %) o (8.49)

Owing to (8.49) the product of functions W(z) and F(z) reads as a
function of n:

F()W(z) = Un) = (1+ ?) - (8.50)

- lily
=y
By substituting (8.50) into (8.47), we can rewrite this equation in
n-space in a form similar to (8.10):

dPu w?
e + U—QUQ(n)u = 0. (8.52)
0

(8.51)

This equation is simple to solve using the algorithm, that was already
applied in Secs. 8.1 and 8.2. Introducing the new variable 7

T:/OWU(m)dm =[Iln [%]a

we can represent the solution of Eq. (8.52) in the form of forward
and backward waves, traveling along the T-axis

(8.53)

o, = Arlexp(igr) + Qexp(—igr)] (8.54)

U(n)

The wave number ¢ in (8.54) corresponds to the plasma-like disper-
sion of the gradient layer

w 02 Vg
q=—

UO - §7 — m (855)

The characteristic frequency 2 in (8.55) depends via the parameter [
on the spatial scales of variations of the density and elastic properties
[ and [5. Taking into account the boundary conditions (8.8) and (8.9)
at the barrier boundary n = 0 (2 = 0), we can write the expression
for the reflection coefficient R in a form resembling (8.17). However,
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the parameter @), describing the contribution of the backward wave
to the field inside the barrier, unlike the one presented in (8.19), is
asymmetric: U(n = 0) # U(ng) where the coordinate 7y corresponds
to the far boundary of the barrier z = d,

d

~1
w=n=a(148) . to=vi = ol

Cl(d+1h)’

Designating the coordinate 7 (8.53), corresponding to the far bound-
ary of the barrier z = d as

(8.56)

7o = 7(d) = —In U, (8.57)
and using the relations

dn 1 dr  F(z)
W) A W) (8.58)

following from distributions (8.48), we write the continuity conditions
for displacements and stresses at this boundary 7 = 7q:

A, lexp(igmo) + Q exp(—igmo)]

VUo

2
+iN_Uplexp(igmo) — Qexp(—iqm)]} = iaAs. (8.60)

= Ay, (8.59)

Manipulations of Eqs. (8.59) and (8.60) and use of Eq. (8.56) give
the value of parameter @

- (8.61)
af+ 3 +N_Uy

8= <1 + %) <1 + %) . (8.62)

Here A, is the amplitude of the transmitted wave, « is the ratio
of impedances (8.18); it is assumed, for simplicity, that the densi-
ties and elastic parameters of the media surrounding the barrier are
equal. After substitution of @) from (8.61) into expression (8.17), the

Q = —exp(2iqm) (aﬁ ks N_U()) ,
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formula for the complex reflection coefficient R can be presented in
the standard form (8.20), where:

2
N_
o1 = <a2ﬁ - ’YZ - NEUO) + 77(1 — Vo),

09 =« [lt(l + B) + N_(Uy —ﬂ)] :

N
t =tg(qm), qmo= —ﬁln Ug.

Expressions (8.63), determining R, are written for positive values of
the parameter [ (8.51). It can be seen from (8.51), that the condition
[ > 0 becomes possible for three density and shear modulus profiles:

1. 11 > lg; I > 0; s >0.
2. 11 >1y; 11 <0; I5<0. (864)
3. 1 < lg; lh < 0; s >0.

Each of these combinations (1-3), determining the spatial structure
of the gradient layer, corresponds, via the value of the parameter G
(8.62), to its own reflection coefficient.

2. Let us consider now an another example of a “double” bar-
rier, where the distributions of density and elastic parameters are
characterized, unlike (8.48), by coinciding normalized distributions
F%(z) = W?(z2). In this case Eq. (8.47) takes the form

du w?_,
d—?72 + %F (Z)’U, =0. (865)

Equation (8.65) can be readily solved by the “auxiliary barrier”
method, developed in Sec. 8.2.

We first consider a convex profile F'(z), containing two free
parameters: the characteristic length L and the dimensionless



222 Waves in Gradient Metamaterials

parameter M:

z z z
= — in (— < =< .
F(z) cos(L)—i—Msm(L>, O_L_ﬂ' (8.66)
The value of i can be found by substituting the function W? = F?

into (8.27):

Lt
14+ Mt

z

t=tg (—) (8.67)

" I

Using (8.67), we can express F2(z) in terms of 7,
—1

2M 1+ M?
(+27%) 2] . (8.68)

FZ(Z):ll—Tn—F 7z

It is important, that the function F?(z), written in the form (8.68), is
similar to the frequently used model F'(n) (8.11), if we set in (8.11)
s1 = —1, s = 1 and find the characteristic lengths L1, Lo and
parameter y of model (8.11) by comparing it with (8.68):

2M 1 (14 M%) 1 Ly M <1
L Lz 1z Yo igaeE
(8.69)

The function F2(n) thus defined forms an auxiliary convex barrier
allowing the representation of Eq. (8.65) in a form that coincides
with (8.10)

d*u  W?

pre + EFZ(n)u =0. (8.70)

The maxima of the “auxiliary barrier” F(n) and of the barrier F2(z),
located in n- and z-spaces, respectively, are equal: Fr%ax(z) = Finax
(n) = 1+ M2 The width d of the symmetrical barrier in z-space,
determined from the condition F(0) = F(d) = 1, is given by

d = 2L arctg(M). (8.71)
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The width d; of the auxiliary barrier in n- space is determined from
the condition (8.12)

2ML

dy =2yl = ———.
S R VP

(8.72)
By reducing Eq. (8.65) for the convex barrier to the form (8.70), coin-
cident formally with (8.10), we can use the solution (8.13) to obtain
the reflection coefficient of the “double” gradient barrier, given by
distributions F?(z) = W?(z), in a form (8.20), where the charac-
teristic frequency 2 = 4 and the phase shift of reflected wave gng
(2.31) are given by:

() 2M 2N arctg(M)
Q == _0 9 - T - .
+ +, + 1 ro) qmo S (8 73)

The “auxiliary barrier” method also allows finding the reflectance
spectrum of a concave profile, containing two free parameters L and
M as in (8.66), under the same condition F?(z) = W?2(z):

z
L

Using the algorithm developed in (8.67)—(8.70) for the convex profile
and substituting (8.74) into (8.27), we introduce the new variable 7

F(z) = ch (%) —Msh( )zW(z), 0<M<1.  (8.74)

- %ﬁm t = th (i) (8.75)

" I

Expressing the function F2(z) in terms of 77, we obtain the concave
profile of the auxiliary barrier

F2(z) = 1+T77— 72

2M ﬂﬁ] B . (8.76)

Profile (8.76) coincides with the model (8.11), if the characteristic
lengths L; and Lo and the parameter y of model (8.11) are defined
by the expressions

2M 1 1-M* 1 M
a RV ey VA

_— = — 8.77
e bt (8.77)
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The widths d of barrier (8.74) and d; of auxiliary barrier (8.76) are

(8.78)

2M 2M L
d = L arcth < > , 1

1+ M2 1M

The minima of barrier F?(z) (8.74) and of auxiliary barrier (8.78)
coincide (F2, =1 — M?). The reflection coefficient for the concave
profile (8.74) can be calculated from expression (8.20) by using the
expressions

v _2M _ 2N_arcth(M)
Q=—0-, O-=7—5 an= 5 ;

58
w
(8.79)

Note, that the reflection spectra for gradient solid layers with
spatial distributions of density F?(z) and elasticity W?2(z), described
by different “consistent” models, are given by the general expression

(8.20), which depends on the characteristic frequencies of the nonlo-

cal dispersion 4. It is remarkable that in reflection upon the con-

cave profiles of F2(z) and W2(z) in the low frequency region S > 1,
N? < 0 the phase shift ¢gny (8.79) becomes imaginary. A peculiar

effect of tunneling of sound through such acoustical barriers will be

considered in Sec. 9.3.

Comments and Conclusions to Chapter 8

1. To examine the propagation of shear waves in a gradient material
with a spatially variable density and constant shear modulus one
can use Eq. (8.25), putting there W = 1, W, = 0 and, respectively,
1 = z. The equation, obtained under this condition, coincides for-
mally with Eq. (8.10), describing the propagation of longitudinal
waves through this barrier; thus one can calculate the reflection
of shear waves from this barrier, using the exact solution (8.13),
keeping in mind, that the symbol vy designates now the velocity
of shear waves vy = v; (8.1).

2. Analysis of the “double” barrier (8.48) with the equal character-
istic scales [ = [y reveals a particular case when, according to
Eq. (8.51), we have | — oo and, thus, Q — 0, N_ = 1. The values
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of the quantities U, 7, and the phase shift g7y in this limit are

wd d\
U—1, 7=n, qm==——<1+~—) . (8.80)
Vo ll

Substitution of (8.80) into (8.63) yields the value of the reflection
coefficient in the limit discussed. The non-local dispersion in this
case vanishes.

3. Another particular case of dispersionless propagation through the
“double” barrier is described by Eq. (8.47) under the condition
F2(2)W?(z) = 1. The solution of Eq. (8.47) under this condition

reads
U = exp <w> + Qexp <—w> . (8.81)
Vo Vo

Considering, e.g. the familiar density profile F2(z) (8.66), we find
the variable 7, determined by expressions (8.67). Forward and
backward waves (8.81) are represented in 7-space by harmonic
waveforms with constant wave numbers k = w/vg, while the prop-
agation in z-space is accompanied by the reshaping of waveforms.
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CHAPTER 9

SHEAR ACOUSTIC WAVES IN GRADIENT
ELASTIC SOLIDS

This chapter is devoted to the diversity of the effects of heterogeneity-
induced dispersion in the complex of acoustic wave phenomena in
gradient solids. At first glance the formal similarity of the equations
governing the optical and acoustic wave processes in heterogeneous
media, opens the way to the direct use of physical concepts and math-
ematical solutions, elaborated in gradient optics, in the correspond-
ing acoustic problems (acousto-optical analogy). However, the optics
of gradient dielectrics, developed above, is usually deals with only one
spatially distributed parameter (£(z)), so this one-to-one conformity
proves to be useful for solids described by models of the spatial distri-
bution of only one normalized parameter-either density F?(z) (8.2)
or Young’s modulus and connected with it the shear elastic modulus
W?2(z) (8.3); for simplicity the variations of Poisson coefficient are
ignored here. On the other hand the more complicated dependence of
heterogeneity-induced acoustic dispersion on two quantities-spatially
distributed density and elasticity, represented by the functions F2(z)
and W2(2), has no optical counterpart and, thus, the corresponding
mathematical basis for operating with these two independent func-
tions has to be elaborated from the very beginning (see, e.g. Sec. 8.3).
Both of these groups of models can be applied to real solids, e.g.
composites or binary alloys.

The first type of exactly solvable models (p = p(z), Young’s mod-
ulus E = const) is used in Sec. 9.1 for the solution of a historical long
time existing theoretical problem concerning the eigenoscillations
spectra of strings with variable density [9.1]. The spectra obtained
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provide examples of the explicit dependence of the eigenfrequencies
on the distribution p=p(z) and the conditions at the string end-
points. The same model is used in this section for a calculation of
the fundamental eigenfrequency of a concentrationally graded plane
layer. Being developed for this specific aim, the model discussed may
become useful for other problems, connected with binary alloys, in
cases, where the concentration dependence of the elastic parameters
of a solid solution is insignificant; this effect is inherent, e.g. for Al-Mg
alloy, where the admixture of Mg results in a decrease of the alloy’s
density, retaining the value of Young’s modulus close to it’s value
for Al, as long as the Mg content doesn’t exceed 10 mass % [9.2].

The discrete spectrum of torsional eigenoscillations of an elastic
rod, formed from an array of circular cylinders with equal radii and
decreasing lengths, is considered in Sec. 9.2. This mechanical effect
broadens the family of Wannier—Stark-like ladders, observed initially
in solid state physics [9.3] and in gradient optics [9.4]. The Wannier—
Stark ladder can be viewed as the frequency domain counterpart
of the Bloch oscillations of an electron accelerated by a constant
external electric field and travelling in a periodic potential, e.g. in a
crystal [9.5]. The optical analogue of electronic Bloch oscillations was
demonstrated by oscillations in light beam in an optical superlattice,
possessing a linear variation in the optical thickness of the layers
along the propagation direction; this gradient is the optical counter-
part of the external electric field, used for acceleration of particles
in an electronic superlattice [9.4]. The similar gradient effect in the
analogue of Wannier-Stark ladder in acoustics, shown in the Sec. 9.2,
is imitated by the suitable distribution of lengths of elastic cylinders,
supporting the propagation of torsional eigenmodes.

The peculiar effects of acoustical tunneling through a gradient
elastic layer, including reflectionless tunneling, are exemplified in
Sec. 9.3. These effects, resembling the tunneling of light through
a gradient dielectric nanofilm, are considered for solid layers with
a variable density as well as for layers with spatial distributions
of both density and Young’s modulus. The exactly solvable model,
developed here for the solution of the latter problem, can be applied
to the analysis of acoustic waves in binary alloys, such as, e.g. Ti—Hf,
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Al-Si or Cu—Ni, where the variations of density are accompanied by
variations of Young’s modulus [9.6].

9.1. Strings with Variable Density

The equation of elastic oscillations of a thin homogeneous string
became the standard equation for many problems in optics, radio-
physics, and acoustics. This equation, which follows from (8.25) with
F =W =const =1, coincides with the one-dimensional wave equation

d%u 1 0%u

52 woe (9-1)

which describes a bending wave, propagating at the speed v along a
thin string with a constant cross-section S and constant density per
unit length pg, stretched by the force T, where [9.7]

9 T

v = =
Spo

(9.2)
The spectrum of eigenfrequencies €2, of a homogeneous string
stretched between the points z=0 and z=d such, that the string
displacement at these points is zero, is described by the classical
formula [9.8]
VTN

Wn = —— n=123... (9.3)

Rayleigh extended the applications limits of expression (9.3) for per-
turbations of the density and studied the spectrum of oscillations of
a “string with a linear density not quite constant” [9.1]. The small
corrections to the spectrum (9.3) for weak density variations, based
on the perturbation theory, were found in [9.1].

To illustrate the applicability of the methods of gradient acous-
tics, presented in Ch. 8, it is useful to reconsider this classical problem
again and to find the oscillations spectrum of a variable density string
without the assumption of the smallness of density variations [9.9].
Let us analyze first the oscillations of a string of length d with a
convex symmetrical density distribution p = py F2(z), described by
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(8.11) with s; = —1, s =1, and characterized by the maximum of the
distribution, located at the point z=0.5d. The unknown lengths L;
and Ly in (8.11) are expressed in terms of the length d by means of the
dimensionless parameter y (8.12), and the parameter y is related to
the distribution maximum pyax (8.23). Recalling the exact analytical
solution of Eq. (8.10), written in the form (8.13) and (8.14),

exp(ign) + Q exp(—i ? w
= XPlan) + Qexp(—ign). 77:/ Fla)dz: q= 2N,
F(2) 0 v

(9.4)

we can present the solution of Eq. (8.10), describing the stand-
ing waves, vanishing at the string endpoints in 7-space (n=0 and
n=mn(d)) in the form

(9.5)

The eigenfrequencies of standing waves (9.5) are given by the
condition

qn(d) = mn. (9.6)

The value of n(d) is calculated from (9.4) as a product of string length
d on some form-factor A, dependent upon the density distribution
along the string,

1 Yy
d)=dA, A=-——arctg| — |. 9.7

Substituting the values of ¢ from (8.13) and n(d) from (9.7) into the
condition (9.6), and taking the characteristic frequency Q4 (8.14)
into account, we find the discrete mode spectrum of a gradient string
with the convex density distribution along the string specified by
function (8.11) with s; = —1, sy = 1:

(4 )n = wnDy. (9.8)
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Here wy, is the eigenfrequency (9.3) of homogeneous string and D,, is
the dimensionless correction coefficient

D, = \/A—z _ M (9.9)

m2n?

The mode spectrum of the string with a concave density profile,
characterized by the value ppiy, related to the values s; = 1,59 = —1
in (8.11), is determined similarly. Taking the values ¢, N_,Q_ from
Eq. (8.14), and linking the parameter y with pminvia (8.21), we find
the function 7(d) by analogy with (9.7):

n(d) =Bd, B=(2yv/1+y?) 'In <z—+> y+ =V1+y ty.
(9.10)

The mode spectrum (2_),, of the string with the concave density
profile (8.11) can be written in the form (9.8) by introducing the
correction coeflicient H,,:

4y*(1 +¢?)

- (9.11)

(Q—)n =w,H,, H,= \/3_2 +

m2n2

We note that the mode spectrum of the variable-density string
(8.11) was calculated without assuming of the smallness of the den-
sity variations. Formulae (9.9) and (9.11) illustrate the influence of
the maximum and minimum values of the string density, expressed
via the parameter y, on the correction coefficients D,, and H,,. Plots
of these coefficients are shown in Figs. 9.1(a) and 9.1(b), respectively.
In the limit of the vanishing inhomogeneity (y — 0) it follows from
(9.8) and (9.11) that

lim Dy |y—o = 1;  lim Hy|y—o = 1;
Em(Qy ) |y—o = Hm(Q2-)p|y—0 = wp. (9.12)

As expected, the spectra (9.8) and (9.11) of gradient strings are
reduced in this limit to the classical formula (9.3) for the homo-
geneous string.
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Fig. 9.1. Correction coefficients Dy (y) (9.9) and Hy(y) (9.11) are shown in (a)
and (b), respectively. (a) and (b) relates to the convex (concave) profile of density
distribution along the string (8.11), the parameter y is linked with the maximum
(minimum) value of the density by Egs. (8.23) and (8.21), respectively.

The solution of one-dimensional wave equation for the gradient
medium (9.5) can be used for the calculation of the acoustic eigenfre-
quencies of a gradient layer with a variable density [9.10]. Unlike the
aforementioned string, both of whose endpoints z = 0 and z = d are
immobile, let us consider the layer with thickness d, whose boundary
z = d, located on a rigid substrate, is assumed to be immobile, while
the other boundary z = 0 is free. The boundary conditions at these
planes are:

ou
Ul —q = 0; % = 0. (9.13)
2=0
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The solution of Eq. (9.4), satisfying to the first of the conditions
(9.13), can be written as

u = m“?—yg)], no = n(d). (9.14)

Let us examine, for definiteness, a concave profile of the density dis-
tribution p = poF?(z); substitution of the solution (9.14) into the
second of conditions (9.13) yields the dispersion equation, determin-
ing the eigenfrequencies of this elastic structure

tg(gmo) = 2qL1. (9.15)

Recalling the definition of the quantity gng, given in (8.21), we can
present the dispersion equation (9.15) in the form

tg(lVS2—1) _ V1+4? I —In Vityl+y (9.16)
N y Vity —y) '

To solve Eq. (9.16) it is worthwhile to introduce the function p(¥):

p(¥) = %. (9.17)

Using this function p(1}) we rewrite Eq. (9.16) as
V1492

Here ¥ = 1v/S72 —1; Eq. (9.18) defines the frequency-dependent
quantity ¢ as a function of the parameter y: ¥ = J(y). Considering
for simplicity only the fundamental eigenfrequency of oscillations of
the gradient layer under discussion, wg, we find from (9.18):

_ Ve ;L GOl (9.19)

wo

This analysis relates to the case of the concave profile of the density
F(z) (8.11) inside the layer; in a case of the convex profile F'(z) the
right side of Eq. (9.15) changes its sign, and the resulting equation
reads as tg(qno) = —2qL1; the subsequent calculations are performed
in a similar fashion.
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In the limit of vanishing heterogeneity (y — 0) the values of the

parameters [ and 9 are
lim iy o = 2y; limd, o = g (9.20)

Expression (9.19) is reduced in this case to the well known formula for
the fundamental eigenfrequency of a homogeneous elastic layer [9.7]:

Vo
2d -

Inspection of the obtained results shows, that:

wo = (9.21)

a. the spectral intervals between the eigenfrequencies of a string
with a heterogeneously distributed density are unequal; the influ-
ence of heterogeneity on the spectra of eigenoscillations decreases
with the growth of the mode number n; thus, the difference
between the spectra of the 2nd and 3rd eigenmodes in Fig. 9.1(a)
is insignificant;

b. spectra (9.9) and (9.11), found for the shear waves, remain valid
for the longitudinal waves after the replacement vy — vy;

c. spectra (9.3) and (9.21) of the eigenoscillations of a string with
the variable density (8.11) prove to be limiting cases of the more
general results of gradient acoustics [9.9].

9.2. Torsional Oscillations of a Graded Elastic Rod

The graded media we have considered up to now have all had material
or geometrical properties that were continuously varying functions of
coordinates. In this section we consider a graded structure in which
the geometrical properties are discrete functions of the spatial coordi-
nates. Specifically, we study the torsional vibrations of an elastic rod
with free ends formed from a linear array of circular cylinders with a
constant radius but with a decreasing length, separated by identical
very small cylinders. The mass density and shear elastic modulus of
both sets of cylinders are constants independent of position along the
rod. The interest in this problem has the following origins.

In the 1950’s Wannier studied the motion of an electron in a
periodic potential to which a constant, uniform external electric field
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is applied. He showed that the energy spectrum of the electron, which
has a band structure in the absence of the electric field, consists of
equidistant discrete energy levels in the presence of the electric field,
with the separation between consecutive levels proportional to the
electric field strength. These equally spaced energy levels have come
to be called an electronic Wannier—Stark ladder [9.11].

Wannier’s prediction was controversial [9.12,9.13], but some 20
years after it was made it was confirmed theoretically by computer
simulations for simple one-dimensional models [9.14,9.15], and sub-
sequently in experiments on high quality semiconductor superlattices
[9.16].

Despite the observation of electronic Wannier—Stark ladders,
experimental and theoretical searches were carried out for simpler
systems, consisting of electrically neutral particles, instead of elec-
trons, displaying this phenomenon. In early efforts of this kind a
Wannier—Stark ladder was observed in a system consisting of atoms
moving in an accelerating optical lattice formed by two interfering
laser beams [9.17].

A major impetus to the search for such systems was the real-
ization of analogies between the electrons in a crystal and the flow
of light in photonic crystals [9.18]. This stimulated the search for
macroscopic systems that can display optical analogues of Wannier—
Stark ladders.

The earliest theoretical study of the existence of the optical
Wannier—Stark ladder was carried out by Monsivais et al. [9.19], who
studied the transmission of transverse electromagnetic waves through
a stratified structure whose dielectric constant at a given frequency w
was the sum of a periodic function of the coordinate normal to the
interfaces of the structure and a linear function of that coordinate.
The transmission coefficient as a function of [(w/c)sin 6], where
was the angle of incidence of the electromagnetic wave, displayed
a Wannier—Stark ladder structure for some values of the parame-
ters characterizing this structure. The experimental observation of
an optical Wannier—Stark ladder was reported several years later for
a structure consisting of a linearly chirped Moiré grating written in
the core of an optical fiber [9.20].



236 Waves in Gradient Metamaterials

Analogues of Wannier—Stark ladders have also been studied in
mechanical systems. These include stratified elastic media in which
the square of the shear wave speed has a periodic dependence on the
coordinate normal to the interfaces of the structure, supplemented
by a term that increases linearly with this coordinate [9.21]; strat-
ified piezoelectric media, in which the ratio of the mass density to
the stiffened shear elastic modulus has the same dependence on the
coordinate normal to the interfaces [9.22]; and the torsional waves
of special rods with free ends [9.23]. Of these the last is the sim-
plest to analyze, and it is a system that has been studied experi-
mentally. In the remainder of this section we direct our attention
to it, following the treatments of Gutiérrez et al. [9.23] and Morales
et al. [9.24].

Thus, we study a special elastic rod with free ends whose torsional
waves have some analogies to a Wannier—Stark ladder. This rod,
which is depicted in Fig. 9.2, consists of a set of NV circular cylinders
of radius R and varying length ¢,, n = 1,2,..., N, separated by very
small cylinders of length € < £,,, and a radius r such that r < R < £,,.

In order to design this system so that its torsional oscillations
display an analogue of a Wannier—Stark ladder, we start with an
independent rod model in which each cylinder oscillates indepen-
dently from the rest. The frequencies f](n) of the normal torsional

I iiRipi

Fig. 9.2. The graded elastic rod whose torsional vibrations are studied in this
section [9.23].
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modes of rod n of length ¢,, and wave velocity ¢, are given by [9.25]

n) _ Cn .
.22
19 = 9.22)
where j = 1,2,3,... is the number of nodes in the amplitude of

the wave. We seek a structure with equidistant frequencies. Thus
we take circular rods with ¢, = ¢/(1 +nvy), n = 1,2,3,..., N, and

= (u/p)%, where p is the shear elastic modulus of rod n, p is
its mass density, and ¢ is a fixed arbitrary length. We note that in
circular rods the wave velocity ¢, is independent of their radius [9.25].
From these results and Eq. (9.22) we find that the frequencies f;n)
are given by

£ = ufp(1+nv)j/2e, (9.23)

so that the differences A f;n) = f;"ﬂ) —f ;") are given by

A= AFY = ulovif2t, (9.24)

and are independent of the index n.

When the arbitrary parameter « is set equal to zero, we have a
finite periodic rod. The torsional oscillations of this finite periodic
rod possess a band spectrum [9.24]. When v # 0 a completely new
spectrum occurs, which resembles a Wannier-Stark ladder.

Before deriving these results it is useful to carry out a qualitative
analysis to determine what kind of spectrum is to be expected for
the independent rod model. At the lowest frequencies, the wavelength
A is of the order of magnitude of the length of the rod L, and the
entire rod is excited. However, when A\ is decreased and becomes
of the order of ¢; = ¢/(1 + ), the longest rod, rod 1, is excited
in a state equivalent to its lowest frequency normal mode (j=1).
The remaining N — 1 cylinders are out of resonance, so the ampli-
tude of this mode decreases with increasing distance from rod 1.
This state is therefore localized about rod 1. If we next increase the
exciting frequency by A the rod with length ¢, = ¢/(1 + 27) will
be excited, while the remaining N — 1 rods will be out of resonance.
The amplitudes of the oscillations therefore decrease with increasing
distance from rod 2. Therefore, at this higher frequency the wave
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amplitude is localized about rod 2. It has a shape similar to that of
the wave amplitude localized about rod 1, but is slightly deformed,
squeezed, and translated from rod 1 to rod 2. The same arguments
can be made when the exciting frequency is increased by A,,_1 when
rod n of length ¢, = ¢/(1 + n7) is excited.

Thus, we have produced a finite Wannier—Stark ladder, namely
N localized states with a constant frequency difference given by
Eq. (9.24) with j = 1. More ladders can exist, however, since normal
modes with two or more nodes can also be excited in each rod. For
example, if we take j = 2 in Eq. (9.23) a second ladder is obtained.
From Eq. (9.24) we see that the frequency difference between consec-
utive steps of this ladder is twice that for the ladder corresponding
toj =1.

We can now put the preceding qualitative results on a firm
foundation by calculating the eigenmode properties of the system
depicted in Fig. 9.2 rigorously by a transfer-matrix method [9.24].

The wave amplitude in cylinder ¢ can be written as

Pilz) = AiH ) 4 Bemike—si), (9.25)

for zi1 < 2 < 2,1 =1,2,...,2N + 1. The boundary conditions
satisfied by torsional modes at z = z; are

i i1
2 v 2 i+
Si az . e Si+1 az Z:Zi, (927)

where s; = 777“1-2, and r; is the radius of cylinder 7, which is defined as
occupying the region z; < z < z;41.

The boundary conditions (9.26) and (9.27) are only approximate,
however. The wave amplitude in fact is a function of both z and the
radial coordinate, and the latter dependence has not been considered
here. It has been shown by Morales et al. [9.24] that if instead of
the actual value n = r/R that enters the boundary condition (9.27)
an effective value neg is used, a more accurate result is obtained.
The value of 7eg is

n

N — 9.28
(1+ar/e)s (9:28)

Tleff =
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where ar is a constant that depends on the shear modulus p. In their
work Morales et al. determined a7 from a least-squares fit of theo-
retical results for the frequencies of the torsional waves in the system
depicted in Fig. 9.2 to experimental values for these frequencies.

When Eq. (9.25) is substituted into Eqs. (9.26) and (9.27), the
amplitudes A;;1 and B;;1 are found to be related to the amplitudes
A; and B; by the transfer matrix M;_.; 1 according to

Ai+1 _ o Az
<Bi+l> — Mz—»z—l—l <Bz> )

4 4
[1 +< i )]eik(Zi—Zi—l) [1 _< T )]e—ik(zi—zi_l)
1 Ti+1 Ti+1
2 4 4
[1 _< T )]eik(Zi—Zi—l) 1 +< " ]e—ik(zi—zi—l)
Tit1

Ti+1
From this result we find that the amplitudes Aan41 and Boyy are
related to the amplitudes Ay and By by

where

M, i1 =

(9.29)

4 A
<B§Z+1> = Mononvi1Moy—1-on ... MasMio <Bi>
+
(9.30a)
Ay
=M -30b
<Bl> o
My M12> <A1>

_ ' 9.30c
<M21 Maz ) \ B o

We assume that the ends of the rod are stress free. This assump-
tion is expressed by the pair of boundary conditions

M1(2) =0 (9.31)
82 z=z0=0 '
o =0. (9.32)
0z z=zoNy1=L
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The first condition yields the relation

Ay — B =0. (9.33)
The second condition yields
A2N+1eik(L_Z2N) — BgN+1€_ik(L_Z2N) = 0. (934)

When Eq. (9.30¢) is used to express Aaony11 and Baonyg in Eq. (9.34)
in terms of A; and Bj, the result together with Eq. (9.33) leads to a
pair of coupled homogeneous equations for A; and By,

Ay
P = '
(131) 0 (935)
where
1 ~1
P = Mneik’(L—ZzN) M12eik’(L—z2N) . (936)
— Myye—ik(L=22n) — Mygeik(L=22n)

This result corrects an error in Eq. (17) of Ref. [9.24]. The solvabil-
ity condition for Eq. (9.35), det(P) = 0, gives the allowed values
of the wavenumber k for a given value of v. They are obtained by
fixing the value of 7 and scanning the determinant as a function
of k, and searching for changes in its sign. When a change of sign
is found, an accurate value of k£ at which det(P) vanishes can be
obtained by a standard root-finding routine [9.26]. When the roots
have been found the wave amplitudes can be calculated by the use
of Eq. (9.25).

The frequencies and amplitudes of the torsional normal modes
of a notched metallic rod with free ends of the kind depicted in
Fig. 9.2 have been measured by the use of an electromagnetic acoustic
transducer (EMAT) [9.27].

This EMAT consists of a simple coil and a permanent magnet
(Fig. 9.3). In the configuration depicted in Fig. 9.3, it can be used to
excite and detect torsional elastic waves. When it is used to excite
these waves the time-varying magnetic field of the coil induces a time-
varying eddy current in the metal. The field of the permanent mag-
net then generates a Lorentz force on the eddy current accelerating
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Fig. 9.3. A diagram showing an EMAT configuration for detecting or exciting;:
(a) compressional oscillations, (b) bending oscillations, and (c¢) torsional oscilla-
tions [9.27].

the rod. When it is used as a detector the motion of the rod induces
a variable magnetic flux in the rod due to the field of the permanent
magnet. This variable magnetic flux, according to Faraday’s law, gen-
erates an emf, which in turn produces eddy currents. The variable
magnetic field caused by these eddy currents is then detected by
the coil of the EMAT. The emf produced by the EMAT detector is
proportional to the acceleration of the surface of the rod because the
eddy current is proportional to the time derivative of the magnetic
flux and, in first approximation, this is proportional to the speed
of the surface of the metal. Because the emf induced in the coil is
proportional to the time derivative of the field produced by the eddy
current, this emf, again in first approximation, is proportional to the
acceleration of the surface of the rod. To excite or detect torsional
waves the magnet axis must be perpendicular to the coil axis, and
both must be perpendicular to the axis of the rod. In this geometry
the eddy current is perpendicular to the static magnetic field, so that
this device will detect the torsional waves, and in the excitation mode
will apply torque to the rod. The EMAT developed in Ref. [9.27]
operates at frequencies from a few hertz up to hundreds of kilohertz.

In Fig. 9.4 theoretical and experimental results for the normal
mode frequencies of the rod shown in Fig. 9.2 are depicted for
~v=0.091 for j=1,2,3. For each value of j the left-hand column
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Fig. 9.4. Normal mode frequencies of the system depicted in Fig. 9.2 that dis-
play a finite Wannier—Stark ladder. For each value of j the left-hand column
corresponds to the experimental values, the middle column presents the numer-
ical results obtained by the transfer-matrix method, and the right-hand col-
umn shows the approximate results obtained from the independent rod model
[9.23].

presents the experimental values, the middle column presents the
numerical results obtained by the transfer matrix method, and
the right-hand column presents the approximate results obtained by
the independent rod model. The metal from which the system is fab-
ricated is aluminium. The number of cells in it is N = 14, ¢/ = 10.8 cm,
€ = 2.52mm, and \/u—/p = 3104.7m/s. The radii of the small and
large cylinders are r = 2.415mm and R = 6.425 mm, respectively.
An effective value of n = r/R given by Eq. (9.28) with ar = 0.88 mm,
namely ne.g = 0.3488, was used in these calculations. It is seen that
the theoretical results agree very well with the experimental ones.
Moreover, the approximate results obtained by the independent rod
model represent quite a good first approximation to the experimen-
tal ones. It is seen from Fig. 9.4 that the frequencies of the torsional
oscillations form a set of Wannier—Stark ladders for each value of
j. The frequencies at the ends of each ladder do not have the same
difference in frequency as those in the middle of the ladder. This is
due to edge effects on the amplitude of the waves localized near the
free ends of the cylinder.
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9.3. Tunneling of Acoustic Waves Through a Gradient
Solid Layer

Tunneling of sound in gradient elastic media is stipulated by
heterogeneity-induced acoustic dispersion of these media. The simple
example of acoustical tunneling can be examined in the framework
of a model of concentrationally graded solid, whose density varia-
tion is given by the familiar concave distribution (8.11). Let us con-
sider shear acoustical waves, assuming for simplicity the shear elas-
tic modulus of material to be coordinate-independent (see Sec. 8.2).
The wave field of these waves is governed by equation (8.10) with
vg = v; solution of (8.10), describing the tunneling regime, related
to low frequencies (S > 1), reads by analogy with (9.4):

. Alexp(—pn) + Qexp(pn)]’ p= ﬁN, N =+/52 _ 1.
Ut

F(z)

(9.37)

The cut-off frequency, determining the upper boundary of the
tunneling-related spectral interval, is given in (8.18): Q_ =1,
d='0_(y), where 0_(y) is the form-factor for the structure under
discussion

0_(y) =2y\/1+y2. (9.38)

Standard calculations, based on continuity conditions, yield the
reflection coefficient R, presented in the form (8.20); the quantities
012 and x12 in the case of tunneling are obtained from the corre-
sponding terms (8.21) by the replacements

N_ —iN; N? - —N? t=th(qgn). (9.39)

The complex transmission coefficient for the evanescent sound mode
can be found in the form

2aN+/1 — t2 '
VialZ+ xel?

‘ 2

T = [T|exp(ign); [T| = tgdr = —.  (9.40)
Transmittance spectra |T'(S)|* for shear waves, tunneling through

the concentrationally graded layer (8.11) are depicted in Fig. 9.5.



244 Waves in Gradient Metamaterials

i __—,'?‘.—T'm.-__.__—_
e
ng /
L I _,f ,'.
G /.
= / .
s B
s
L | , I
.
04, 2 2 ; : : |
(a)
2 [ ——
"
09 -
a ’//1
i -~
B onEp /
07 -—/
| 1 1 | | . I
i 1 2 25 3 13 4 43 5

(b)

Fig. 9.5. Transmittance spectra for shear waves tunneling through the gradient
acoustical barrier, formed by density distribution (8.11) subject to the density-
related and impedances-related parameters y (8.21) and « (8.18). (a): spectra 1
and 2 correspond to the values of y = 0.45 and y = 0.7, respectively, a = 0.3.

(b): spectra 1 and 2 relate to the values @ = 0.3 and a = 1.25, respectively,
y =0.3.

Inspection of these graphs shows the variation of |T(S)[? induced
by changes of the parameters y and «, connected with the density
minimum (8.21) and the ratio of impedances (8.18), respectively.
Curve 2 on Fig. 9.5(b) exemplifies the high transmission coefficient
in the regime of acoustical tunneling, tending to unity in a wide
spectral range 2 < S < 5.

It is remarkable, that the tunneling of sound through a gradient
elastic layer can be characterized by zero reflectance of this layer.
Making the replacements (9.39) in the expression for o; (8.20) we
can write the condition for the occurrence of the reflectionless regime
(01 = 0, R = 0) for the tunneling wave, connected with the ratio of



Shear Acoustic Waves in Gradient Elastic Solids 245
impedances o (8.18),

2 N
o?2=-L N2 22

7 = (9.41)

Here the quantities 7, N and gng are defined in (8.18), (9.37) and
(8.21) respectively. The vanishing of the reflectance under the con-
dition (9.41) yields the complete transmittance; here the unchanged
amplitude of the tunneling wave acquires the phase shift ¢;

2

at
|T‘ = 1, ¢t = arctg (m) . (942)

This change ¢; is distinguished from the phase shift ¢g = wdv, L
accumulated by the shear sound wave with the same frequency w,
travelling with velocity vy through the same distance d; expressing
the quantity ¢g via the parameter y and normalized frequency S we
have

2y+/1 2
yvity” (9.43)

S

Comparison of phase shifts ¢; (9.42) and ¢¢ (9.43) shows that this
structure, containing a gradient elastic layer between two homoge-
neous elastic media, acts like a sound phase shifter, retaining the
amplitude of the transmitted wave unchanged.

This example shows the effect of reflectionless tunneling of sound
through a gradient layer with continuous spatial variation of its den-
sity and a constant shear elastic modulus. The influence of both den-
sity and elasticity distributions on the acoustical tunneling through
the solid layer, can be illustrated by the generalization of the results
of Sec. 8.3, describing the propagation of sound through the dou-
ble acoustic layer in the framework of model (8.48). Thus, making
the replacements (9.39) in (8.63), we find the complex transmission
coefficient T" for the double layer (8.48) in a form (9.40) with

¢o =

2
N
X1 =1 <a2ﬂ + % - N2U0> - 77(1 — ). (9.44)
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Yo =a [%’5(1 —B8)+ N(Uo + ﬂ)} . (9.45)

(9.46)

_ 92
t=thigro); gro = =2 l[ll(dﬂz)]

2 la(d+ 1)

According to Eq. (8.55), the normalized frequency S in (9.37) has to
be defined as S = v;(2lw)~!. Using the expression for the complex
transmittance coefficient 7' (9.40) and substituting the values x; and
X2 from (9.44) and (9.45), we obtain the equation |T|> = 1, deter-
mining the condition of reflectionless tunneling through the double
layer in the form

402 N2(1 — 1) = |xa|* + [xe2|% (9.47)

Since Eq. (9.47) is transcendental, its solution, defining the frequency
S, related to the regime of reflectionless tunneling, has to be calcu-
lated numerically.

Note, that the effects of reflectionless tunneling of both sound and
light waves through gradient layers, defined by the same normalized
distributions (8.11) and (2.16), respectively, are described by the same
exact analytical solutions of the wave equation. This similarity illus-
trates the simplest example of acousto-optical analogy in gradient
media. This analogy opens the way for the use of more complicated
solutions of wave equation, corresponding to distributions of the refrac-
tive index in dielectric optical nanofilms, examined in Chs. 2 and 3, for
reaching the goals of gradient acoustics of elastic solids.

Comments and Conclusions to Chapter 9

1. The cut-off frequency €)_, separating the travelling and tun-
neling spectral ranges, is proportional to the form-factor 6_(y)
(8.14). In the case of a variable density and a constant shear
elastic modulus, considered in Sec. 9.3, the form factor of the
gradient acoustic layer 6_(y), defined in (9.38), is increasing
monotonically with the increase of density minimum inside the
layer: lim 0_(y)|y—o = 2y*. In the opposite case (spatially dis-
tributed shear elastic modulus and constant density), represented
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by the model (8.41)—(8.42), the variations of the form-factor 6_(y),
defined in (8.45), are non-monotonic: the values of §_(y) increase
only in the interval 0 < y < y,,, = 1.515; 0_(y,,) = 2.4. The
subsequent growth of values of y results in the saturation of form-
factor values: lim6_(y)|y—o = 2; thus, in this case the cut-off
frequency does not exceed the value Q_ = 2.4v,d .
. The formal analogy between the expressions for evanescent wave
fields in optics (4.16) and acoustics (9.37) of gradient media per-
mits comparing and contrasting the tunneling effects for both
these fields. Thus, to provide the reflectionless tunneling of light
through a gradient dielectric layer, located on the homogeneous
substrate with the refraction index n, the value n has to obey
to equation, derived from condition R = 0, where the reflection
coefficient R is defined in (4.31):
2

n? = —Vz —n? 4+ -
Considering the substrate, fabricated from a dispersionless mate-
rial, we have n > 1; this means that the value of the right side
of Eq. (9.48) has to exceed unity, and this restriction impedes the

(9.48)

choice of parameters of the gradient layer for the given frequency.
On the other hand, the condition for reflectionless tunneling of
sound, having the similar form (9.41), coincides with (9.48) due
to replacement a®> — n?; however, the quantity o, determined by
the ratio of impedances (8.18), can be chosen, unlike the refractive
index n, in the entire interval o > 0; this flexibility broadens the
possibilities for reflectionless acoustical tunneling.
. It is worthwhile to stress the analogy between the tunneling
of sound through the double acoustical barrier described by
Eq. (8.25), and the transmission line (TL) with distributed param-
eters. The dynamics of the electric current I and voltage V' in the
lossless TL is governed by the well-known system of equations [9.9]:
% + C(Z)aﬁ_‘t/ =0, 68—‘2/ + L(Z)% =0. (9.49)

Here C(z) = CoW%(z) and L(z) = LoF?(z) are the distributions
of capacity and self-inductance per unit length, dependent on the
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coordinate z along the line. Introducing the generating function
U by means of the representations

W ov
N Co 0z ’ N ot ’
we find, that the first equation in the pair (9.49) is reduced to

an identity, while the second one coincides with Eq. (8.25), which
describes the displacement inside the gradient layer, characterized

V() (9.50)

by the distributions of density F?(z) and shear elastic modulus,
W?2(z) respectively. This analogy can become useful for the mod-
elling of complicated acoustical fields in gradient media by means
of a transmission line.
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CHAPTER 10

SHEAR HORIZONTAL SURFACE ACOUSTIC
WAVES ON GRADED INDEX MEDIA

In 1887 Lord Rayleigh [10.1] showed that a semi-infinite, homoge-
neous, isotropic elastic medium, bounded by a single, stress-free,
planar surface, supports a surface vibrational mode that is wavelike
in directions parallel to the surface of the solid with an amplitude
that decays exponentially with increasing distance into the solid from
its surface with a decay length that is of the order of the wavelength
of the wave along the surface. The displacement vector of this wave
lies in the sagittal plane, i.e. the plane defined by the direction of
propagation of the wave and the normal to the surface. This wave is
an acoustic wave in that its frequency is a linear function of the mag-
nitude of the two-dimensional wave vector characterizing its propaga-
tion along the surface. It is consequently non-dispersive, i.e. its speed
of propagation, either its phase velocity or its group velocity, is inde-
pendent of its wavelength parallel to the surface. This property is due
to the absence of any characteristic length in the system supporting
the wave. The frequency of this surface wave lies below the continuum
of frequencies allowed the normal vibration modes of an infinite elas-
tic medium for the same value of the two-dimensional wave vector.
Such surface acoustic waves are now known as Rayleigh waves.

Surface acoustic waves of shear horizontal polarization in which
the displacement vector is perpendicular to the sagittal plane, cannot
exist in the system studied by Lord Rayleigh.

However, if the constraints of the planarity of the surface and the
homogeneity of the elastic medium are lifted, surface acoustic waves
that are non-dispersive in the presence of these constraints become

251
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dispersive, and other types of acoustic waves localized to the surface,
e.g. surface acoustic waves of shear horizontal polarization, become
possible.

In this chapter we study the propagation of surface acoustic waves
of shear horizontal polarization on the planar surface of an inhomo-
geneous elastic medium whose mass density and elastic moduli are
functions of the distance into the medium from its surface, and on
curved surfaces of several types on homogeneous media. The restric-
tion of this study to surface acoustic waves of shear horizontal polar-
ization is prompted by the following consideration. Surface acoustic
waves of sagittal polarization on the planar surface of a homogeneous
elastic medium are nondispersive. The introduction of inhomogene-
ity into the material properties of the medium supporting them, or
curvature of its boundary, introduces dispersion into their dispersion
curves, but is not necessary for their existence. In contrast, inhomo-
geneity of material properties or surface curvature is essential for the
existence of surface acoustic waves of shear horizontal polarization,
a much more dramatic consequence of these departures from homo-
geneity and planarity than their effect on surface acoustic waves of
sagittal polarization. References to work in which the latter effects
are studied will be given at appropriate points in what follows.

10.1. Surface Acoustic Waves on the Surface of a
Gradient Elastic Medium

The earliest studies of surface waves were prompted by the problem
of the propagation of seismic shocks in the earth’s crust. Because
the radius of the earth is much larger than the wavelength of the
seismic disturbance, this problem was simplified by neglecting the
curvature of the earth and considering the surface of the earth to
be a plane bounding a semi-infinite elastic medium. It was on the
basis of this model that Lord Rayleigh predicted the existence of the
surface acoustic waves, on the stress-free, planar surface of a semi-
infinite, homogeneous, isotropic elastic medium that now bear his
name [10.1].

Some twenty-five years after the pioneering work on surface
acoustic waves by Lord Rayleigh the first calculations were carried
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out that took into account the fact that the earth’s crust has dif-
ferent elastic properties from those of the underlying material. In
a planar model this situation is represented by an isotropic plate
bonded rigidly to an isotropic half space (or substrate) having differ-
ent material properties [10.2]. The guided acoustic waves supported
by this structure initially were of interest to seismologists. However,
they have taken on a new importance in recent years in the context
of high frequency surface acoustic wave devices for electronic signal
processing [10.3].

Even more complicated structures consisting of multiple layers
of different materials are often required in the context of seismolog-
ical problems. Properties of surface acoustic waves in such layered
media are described in the books by Brekhovskikh [10.4] and Ewing,
Jardetzky, and Press [10.5].

The displacement vector of the surface acoustic waves predicted
by Lord Rayleigh lies in the sagittal plane, i.e. the plane defined
by the direction of propagation of the wave and the normal to the
surface. Shear horizontal surface acoustic waves, whose displacement
vector is perpendicular to the sagittal plane, do not exist on the sur-
face of the homogeneous medium studied by Lord Rayleigh, due to
the impossibility of satisfying the stress-free boundary condition on
the surface of the semi-infinite medium with a displacement field that
decays exponentially with increasing distance into the medium from
the surface. The first surface acoustic waves of shear horizontal polar-
ization were predicted by Love [10.2], who studied the vibrational
modes of a plate on a semi-infinite medium. These modes have the
nature of standing waves in the plate, and their amplitudes decay
exponentially with increasing distance into the substrate from the
plate-substrate interface. The existence of these Love waves requires
that the speed of shear elastic waves in the plate be smaller than the
speed of shear elastic waves in the substrate. Their dispersion curve
consists of an infinite number of branches.

Although systems consisting of a slab of one material on a sub-
strate of a second material, or of several layers of different materials
on a substrate, are met frequently in applications, and provide models
for systems whose material properties vary with distance from the
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surface, situations arise in which it is desirable to take into account
a continuous, rather than a discrete, variation of these properties.
For example, a sheet of metal that has been cold rolled might be
expected to have a mass density and elastic moduli whose values in
the vicinity of its surfaces differ from those in the interior, with an
essentially continuous variation of these properties across its thick-
ness. Properties of surface acoustic waves propagating on the surface
of such a medium have not been studied intensively.

In this section we outline an approach [10.6] to obtaining the
dispersion relation and associated displacement field of a surface
acoustic wave of shear horizontal polarization propagating along the
planar surface of a semi-infinite anisotropic elastic medium occupy-
ing the region z > 0, in which the mass density p and the elastic
modulus tensor C,g,, are continuous functions of the distance into
the medium from the stress-free surface z = 0. We formulate the
problem in some generality, but will quickly go to a specific example
to illustrate the approach presented here.

We begin by writing the mass density and elastic moduli of the
elastic medium in the forms

p(z) = 6(2)p(z) (10.1a)
Caﬁlw(z) = Q(Z)éaﬂuu(z)- (101}))

In Egs. (10.1), () is the Heaviside unit step function. Its presence

indicates explicitly our assumption that the medium occupies the

region z > 0. The elastic modulus tensor C,g,, is symmetric in «

and 3; in g and v; and in the interchange of the pairs a8 and uv.
The equations of motion of the medium are [10.7]

2
p(2) ol Z s oo ), (10.2)

where u,(x,t) is the o Cartesian component of the elastic displace-
ment field at the point x in the medium, at the time ¢, while T,(x, t)
is an element of the stress tensor

Top(x,1t) ZCM;W u#(x,t). (10.3)
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When Egs. (10.1) and (10.3) are substituted into Eq. (10.2), we
obtain

D 82 A déaz L(2) | Ou x,1
O)P(2) g tta(x,8) = D [3(2) Caspu (0) + 0(2) =2 (2) gi« )
v v
0u,(x,t)
+ D 0(2)Capyu (2)——-—, (10.4)
%; ﬂu 81658;6,,

where we have used the result that df(z)/dz = §(z). The Dirac delta
function in Eq. (10.4) must be interpreted as a one-sided delta func-

tion, in the sense that
o0
/ d(z)dr = 1. (10.5)
0

Its presence in Eq. (10.4) indicates that the stress-free boundary
conditions

Taz(xat)|Z=0 - 07 o =2x,Y,z, (106)

are incorporated into the equations of motion of the medium. In the
following we will understand that z > 0, and will not write the step
functions in Eq. (10.4) explicitly.

In a homogeneous medium surface acoustic waves whose displace-
ment vector is perpendicular to the sagittal plane can exist only if
the sagittal plane is a plane of reflection symmetry for the medium
or is perpendicular to a two-fold rotation axis [10.8]. This is also
true in the present case of an inhomogeneous medium whose mate-
rial properties are functions only of z. Thus, in what follows we will
study the case of a wave of shear horizontal polarization propagating
in the [100] direction (x direction) on the (001) surface of a cubic
crystal, a geometry in which both of these conditions are satisfied.
The nonzero elements of the elastic modulus tensor of a cubic crystal
whose cube axes are parallel to the coordinate axes are

Cxxxx = Lyyyy — szzz = C'117
meyy = nyzz = szxw = 012,
nymy = Cyzyz = Czzza = C’447 (107)
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(recall the remark following Eq. (10.1b). The last of each of these
equations expresses the corresponding elastic moduli in the Voigt
contracted notation.

The displacement field in this case has the form

u(x,t) = (0, 4y (k,w|2),0) exp(ikz — iwt), (10.8)
and the equations of motion (10.4) reduce to a single equation

diiy (k,w|2) N dCus(2) dity (k,w|2)
dz dz dz
d?, (k,w|z)
dz?

—p(2)w ity (k,w]2) = Cua(0)3(2)

+ Cua(2) | =k, (k,w|2) +
(10.9)

We can solve Eq. (10.9) for arbitrary dependencies of p(z) and
Cy4(z) on the variable z, subject to the restriction that (6'44(0/[)(0))%
< (Cpa(oo/ ,E)(oo))%, which is a necessary condition for the existence
of Love waves in this medium. We do so by expanding 1, (k,w|z)
according to

y(k,w|2) Zan k,w)pn(z; ), (10.10)
n=0
where
On(z;a) = a%e_%o‘an(az) = |n). (10.11)

In Eq. (10.11) L,(z) is the n* Laguerre polynomial [10.9]. The first
few Laguerre polynomials are

1
LQ(.’L‘) = 1,L1(1,‘) =1-—uz, L2(x) =192+ 51,2’

(10.12)

and higher-order polynomials can be obtained by means of the recur-
rence relation [10.10]

(n+1)Lps1(z)=2n+1—2)L,(x) — nL,—1(x), (10.13)
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for n > 1, or from the generating function [10.11]

exp{= [‘i/_ls_ i Z s" L ( (10.14)

The parameter « in Eq. (10.11) is arbitrary, and can be varied
to improve the rate of convergence of the expansion (10.10). The
functions {¢,(z; )} are complete and orthonormal in the interval
0<z <0,

/OO dzdm(z;0)bn (25 0) = O (10.15)
0

The {¢n(z; )} are a convenient set of basis functions in which to
expand 4, (k,w|z), as they decay exponentially for large z, which is
the behavior we expect for i, (k,w|z).

If we substitute Eq. (10.10) into Eq. (10.9), multiply the resulting
equation from the left by ¢,,(z;a), and integrate the product over z
from 0 to oo, we obtain the matrix equation

o0
w2ZNmnan(k,w Zan Yan(k,w) m=0,1,2...,

n=0
(10.16)
for the coefficients {a,(k,w)} in Eq. (10.10), where
Ninn = (m|p(2)|n), (10.17)
¢ Ay g @Cu(@) @
Mo (K) = ~Ca(0){mI6(2) ) — (| T L

R R 2
(| Caa(2) ) — <m\c44(z)j7|n>, (10.18)

and we have introduced the notation
(m|0|n) = / dzpm(2;)0(2)Pn (2; ). (10.19)
0

The dispersion relation for surface acoustic waves of shear horizon-
tal polarization is obtained by solving the nonstandard eigenvalue
equation represented by Egs. (10.16)—(10.18).
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If the functions p(z) and Cys(z) are known analytically or
numerically, the matrix elements entering Eq. (10.16) can always be
evaluated numerically if not analytically. However, if p(z) and Cyq(2)
can be expanded in terms of the descending exponential function,

= Z pie” * (10.20a)
Cua(z Z ez, (10.20b)

which suffices to model the depth dependence of a large variety of
inhomogeneities, all of the required matrix elements can be evaluated
analytically.

To see how this can be done, we start with the generating function
for the functions {¢,,(z; «)}, that is obtained in a straightforward way
from Egs. (10.11) and (10.14),

_2 }4‘3 00
1e s
af—a——— = Z s (25 ). (10.21)
m=0
Therefore, for example
00 —saz 1t‘: —Llop it
/ deasC gt T L
0 1—s 1—1t
oo [e.9]
= Z Zsmtn<m|e_ﬁz|n>
m=0n=0
o

~(a+B=pt) = (B+ (a—B)t)s

m B+ (a =B
_O‘Z (a4 3 — Bt)ym+1

min(m,n)

n (m+n—p)!
_az Zt Z m — p)!{(n — p)p!

o= s

(OL +ﬁ)m+n+1—p ’

(10.22)
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On equating the coefficients of s™t™ on both sides of this equation
we obtain

min(m,n)

mle=P%|n) = (m+n—p)! ala—pBpgmtn-2»
mle™In) = > o = il (a T gy

p=0
(10.23)
In a similar fashion we obtain the additional results
<m‘n> = 5mna (10.24&)
(mlo(2)-Ln) = —a? (n+ (10.24b)
dz" 2)’ ’
d 2 13
-8z @ __ 2 _*
(mle 7 |n) o Gmn = =~ ) Gmp, (10.24c¢)
p=0
(I n) = = 8,00~ abn —m — 1) (10.24d)
ml——|n) = =5 0mn — af(n —m , .
d? a? 9
(m\@\m = Iém"+a (n—m)f(n —m—1), (10.24e)
d2 n—1
<m|e_ﬁ2@|n> = Qmn +4Zamp(n—p), (10.24f)
p=0
where (n) = 1 for n = 0,1,2,..., and 6(n) = 0 for n =
—1,-2,-3,..., while
3 min(m,n) Y _ a\p amAn—2p
== Y (mtn-—p! (a=BPB . (10.25)
4 = (m=p)n—p)p! (a+ pymrneie
To illustrate the use of the preceding results, we choose
p(z) = p(o0)(1 + Ae™ %) (10.26a)
Caa(2) = Cua(00)(1 + Be™%?). (10.26b)
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Table 10.1. The parameters defining
the different speed profiles studied.

Case A a(pm™) B  b(um™)

1 1 1 0.5 1.5
1 1 0.5
3 1 1 0.5 2

1.00

C1(2)/Cre

0.90

080 (RS TN TN N [N TN TN TN TN (NN TN NN TN SN SN TR TN SN SO N S S S
0
bz

Fig. 10.1. The relative transverse speed of sound as a function of bz for the speed
profiles generated by the parameters presented in Table 10.1. Cases 1, 2, and 3
correspond to the solid, dashed, and dash-dotted curves [10.6].

The different values of A,a, B,b used are given in Table 10.1. We
define a depth dependent speed of transverse waves cp(z) by

() _ 14 Be™b*
c2(00) 1+ Aemaz’

(10.27)

where c%(00) = Cia(c0)/p(00), and plot this speed in Fig. 10.1 for the
values of the parameters given in Table 10.1. In each case the speed at
the surface is smaller than the speed at infinite depth. This property
of the speeds makes guided (Love-like) waves possible; therefore, at
a given frequency w several waves with different wave numbers k£ can
exist.

The nonstandard eigenvalue problem posed by Eq. (10.16) can
be solved, for example, by the EISPAK subroutine RGG [10.12].
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The number of Laguerre functions kept in the expansion (10.10)
in order to obtain a converged solution determines the size of the
matrix eigenvalue equation (10.16). So, in general, at a given fre-
quency more eigenvalues are obtained than the number of physically
possible modes at that frequency. In all cases the unphysical modes
have phase velocities greater than that of a wave with the transverse
speed cr(o0), the largest speed consistent with the infinite depth
solution to the wave equation. Plots of the displacement field for
these frequencies show increasing, rather than decreasing amplitudes
as the depth increases.

The dispersion curves for the three lowest frequency Love-like
modes corresponding to the Case 1 speed profile are plotted in
Fig. 10.2. It should be emphasized that surface acoustic waves of
this polarization do not exist in the absence of the depth dependence
of p(z) and Cyy(z). These modes are clearly dispersive, which is due
to the presence of characteristic lengths, a=! and ™!, in the sys-
tem being studied. In performing these calculations the parameter
« entering Eq. (10.11) was chosen to equal the parameter b entering
Eq. (10.26b). No effort was made to optimize its value to accelerate
the convergence of the series (10.10). Except for small k/b and large
k/b, where 20 to 30 Laguerre functions were needed in Eq. (10.10) to
obtain four significant figure accuracy for the frequencies, only the
first three Laguerre functions were needed in Eq. (10.10) to achieve

075 L v v L
0
k/b

Fig. 10.2. The three lowest frequency branches of the dispersion curve for a
shear horizontal surface wave corresponding to the Case 1 speed profile [10.6].
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Fig. 10.3. The displacement amplitude i, (k,w|z) as a function of bz for the
modes at k/b = 5 shown in Fig. 10.2. The line types correspond to those in the
latter figure [10.6].

the same kind of accuracy. In general, the frequency of a given mode
converges more rapidly than the frequency of the next higher fre-
quency mode. In Fig. 10.3 we show the displacement 4, (k,w|z) cal-
culated for k/b = 5 as a function of depth for the three modes whose
dispersion curves are shown in Fig. 10.2. The amplitudes of these
physically acceptable solutions clearly decay with increasing z.

10.2. Surface Acoustic Waves on Curved Surfaces

We have seen in Sec. 7.2 that the curvature of a vacuum-metal inter-
face along which a surface plasmon polariton propagates can produce
surface electromagnetic waves that cannot exist at a planar interface.
The same is true of the propagation of a surface acoustic wave on a
curved stress-free surface of a solid. The curvature of such a surface
can bind to it a surface acoustic wave that does not exist on a planar
surface, such as a wave of shear horizontal polarization. That this can
happen can be understood in a qualitative way by noting that if a
coordinate transformation is carried out that maps the curved surface
into a planar surface, the equation of motion in the new coordinate
system contains additional terms that give it the form of a wave equa-
tion with a speed of transverse sound that increases with distance
from the surface. As we have seen in Sec. 10.1 this is just the con-
dition required for the binding of a shear horizontal surface acoustic
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wave to a planar surface. In addition, the curvature of a surface can
make a Rayleigh surface acoustic wave, which is non-dispersive when
it propagates on a planar surface, into a dispersive surface wave.

In this section we will investigate the propagation of surface
acoustic waves on two different types of curved surfaces. We begin
with a study of the propagation of a surface wave circumferentially
around a portion of a cylindrical surface, a situation in which the
radius of curvature of the surface is a constant. We then consider
an example of the propagation of a surface wave circumferentially
around a surface with a variable radius of curvature. These two forms
of surface curvature can make Rayleigh waves dispersive, and can
bind shear horizontal surface waves to the surface. However, as was
discussed in Sec. 10, in this discussion of surface acoustic waves on
curved surfaces we will confine our attention to the case of surface
acoustic waves of shear horizontal polarization, because their exis-
tence requires the presence of the curvature, while surface acoustic
waves of sagittal polarization already exist in its absence. Finally, we
will study the propagation of a shear horizontal surface acoustic wave
on a periodically corrugated surface and a randomly rough surface.
We will find that these kinds of departures of a surface from planarity
can also bind a wave of this polarization, which does not exist in the
absence of the roughness.

Although in some of these investigations we will be using curvi-
linear coordinate systems in which the surface over which the wave
propagates is a surface of constant coordinate, it is convenient to set
the stage for these calculations with some general comments concern-
ing the propagation of a wave on a curved surface.

The system we consider consists of an elastic medium in the
region y < ((z) and vacuum in the region y > {(z). Thus the system
is invariant in the z direction. The surface profile function ((z) is
assumed to be a single-valued function of x that is differentiable.

The equations of motion of the elastic medium within the linear
theory of elasticity, are [10.7]

Tap

,()/:la = - 8(176’ a=1,Y,z, (1028)
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where p is the mass density of the medium, assumed to be constant,
uq(x;t) is the a Cartesian component of the displacement of the
medium at the point x and the time ¢, and T},3 is an element of the
stress tensor. The latter is given by Hooke’s law.

ouy,

Tog =) Copw gt B =2,9.2 (10.29)
v v

where the {Cyp,,} are the elements of a fourth rank tensor called
the elastic modulus tensor.
When we combine Eqs. (10.28) and (10.29) we obtain the equa-
tion of motion of the medium in the form
2
Pl = Z CQBW%, a=ux9,z. (10.30)
Buv

If the elastic medium occupies a volume V' bounded by a surface
S that is assumed to be stress free, the boundary conditions on the
displacement field that express this assumption can be written as

> Tagig
3

=0, a=ux9,2, (10.31)
S

where 0 is the unit vector normal to the surface S at each point of
it, directed away from the volume V.

For an isotropic elastic medium, which we assume here due to its
simplicity, the elastic modulus tensor is given by [10.13]

Cop = p(ci — 26;)0apOm + pC; (Sand, + davdpu), (10.32)

where ¢, and ¢; are the speeds of longitudinal and transverse sound
waves in the medium, respectively.

We apply the preceding results to the case of a shear horizon-
tal wave whose sagittal plane is the zy plane. The single nonzero
component of the displacement field can be written in the form
uy(z, y|lw) exp(—iwt). With the use of Eq. (10.32) this component
of the elastic displacement field is found to satisfy the equation of
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motion

0? 02 w?
in the region y < ((x).
The unit vector normal to the surface y = ((x) and directed from
the elastic medium into the vacuum is

(—C/(l’), 170)
1+ (¢'(2))2)

where the prime denotes differentiation with respect to z. In the
geometry assumed there are only two nonzero elements of the stress

: (10.34)

n=

tensory. These are

Ty, =T, = PCt oz (1035&)

(10.35b)

On combining Eqs. (10.34) and (10.35), the boundary condition on
the surface z = ((x) becomes

ou u
A ~ 2 z /i z i
(Teatia + Toyiy)ly—c(x) = PC7 <%nx T 8—yny>y=c<x>

ou,, N Ouz}
Or 0y |y—¢()

pct )
= |—((7)
1+ (¢'(x))?]2 [

0

2

= pc; —u,(z, z|w) =0, (10.36)

on y=(a)

where
0 1 , .0 0 ]
A S— T W 10.37
oLt ()2 [ “or oy e

is the derivative along the normal to the surface y = ((z) at each
point of it, directed from the solid into the vacuum.
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10.2.1. Surface acoustic waves on a cylindrical surface

The circumferential propagation of surface acoustic waves around a
cylindrical boundary was studied first by Lord Rayleigh [10.14], who
showed that in addition to the Rayleigh wave other types of waves
bound to the curved surface can exist. These waves have come to be
called “whispering gallery” waves.

The study of surface acoustic waves propagating circumferen-
tially around a circular cylinder was subsequently studied theoret-
ically [10.15-10.20] and experimentally [10.16] by several authors.
In this section we follow primarily the treatment of Brekhovskikh
[10.19].

The system we consider consists of a cylindrical surface of radius
R in contact with vacuum. The cylindrical surface can be either
convex toward the vacuum or concave toward it. We introduce a
cylindrical coordinate system (r,6, z), where the z axis is directed
along the axis of the cylinder, while » and 6 are polar coordinates
in a plane perpendicular to the z axis. In this and the next section
we consider only the plane problem in which the displacement field
is independent of the coordinate z. We also assume a harmonic time
dependence of the displacement field of the form exp(—iwt).

In cylindrical coordinates the elements of the stress tensor o;; for
an isotropic elastic medium are given by [10.21]

oy = A0+ 2uey;, (10.38a)
oij = 2pei; (i # J), (10.38b)

where A and p are the Lamé constants,
0=V -u=e.,+ep+e,.,, (10.39)

and the elements of the strain tensor are

ou,

rr = "o s 10.4
e 5 (10.40a)
10pug 1
=204 Zy,, 10.40b
€90 - 00 ru (O 0 )
_ Ous (10.40¢)

€2 = B2
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1 /10u, Oug ug\ _
€rog = 5 <; 0 + W - ?> = €fr, (1040(1)
1 (Ou,  Ouy\ _
Cry = 5 < o + 92 > = €Ezr, (10406)
L (Oupg 10u,\
c0: =3 ( FERT ) - (10.406)

In these expressions u,(r, 0, z;t), ug(r, 0, z;t), and u,(r, 0, z; t) are the
components of the displacement vector.
The equations of motion of the medium are

. 0oy 180’7"9 o, Oryr — 000

i, = : 10.41
pu or r 00 0z T (10.41a)
. Jorg 100py Oog, 2
= — —0.0, 10.41b
pus or r 00 0z + ro 0 (10 )
. do,, 100y, O0Oo,, 1
pU, = ar + 700 20 + ;Urz, (10.41c¢)

where p is the mass density of the medium. These equations have to
be supplemented by the boundary conditions on the surface r = R of
the cylinder, namely that the stresses acting on the surface vanish.

We now apply these results to the study of the propagation of sur-
face acoustic waves of shear horizontal polarization around a portion
of the cylinder. The displacement vector for such waves is parallel to
the axis of the cylinder, and has the form

u(r, 8, z;t) = zu.(r, f|lw) exp(—iwt). (10.42)

From Egs. (10.40) we find that the nonzero elements of the strain
tensor in this case are

10u, 10u,
= —— = —— 10.4
Crz 2 87’ ) €0z 2 89 ) ( 0 3)
so that the nonzero elements of the stress tensor are
Ous _ 1ou (10.44)

Tr= = W 00T g



268 Waves in Gradient Metamaterials

Equations (10.41c) and (10.44) yield the equation satisfied by the
amplitude u,(r, f|w),
2 10 10?2 WP
ST e A ,0lw) =0, 10.45
(87’2 * r or * r2 062 * c? ) (1, 6lw) ( )
where we have introduced the speed of transverse acoustic waves ¢
through the relation y/p = c¢2. This equation must be supplemented
by the condition that the stresses acting on the surface r = R of the
cylinder must vanish. The only stress acting on the surface is o,.,, so
that from Eq. (10.44) the boundary condition can be written as

ou,
Urz‘r:R = or =0. (10.46)
r=R

We solve Eq. (10.45) by separating the variables. We write
uy(r,0|lw) = R(r)O(0), (10.47)

and find that ©(0) and R(r) satisfy the equations

2 ) e—o (10.48a)
02 U o

d? 1d w2 2
—t—-——+—=—-——=|R=0 10.48b
<d7“2 +7“dr+ c? 7“2> ’ ( )

respectively, where v? is the separation constant. The sign of % has
been chosen in such a way that the solution of Eq. (10.48a) describes a
wave propagating around the cylinder in a clockwise fashion, namely

0(f) = . (10.49)

Because we are considering propagation of the wave over only a por-
tion of a circular boundary, it is not necessary to impose a single-
valuedness requirement on the displacement component wu,(r,0|w),
and hence on ©(f#). Thus, v need not be an integer. If we rewrite
Eq. (10.49) in the form

O(f) = ¢'r(F0), (10.50)
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R

/

Fig. 10.4. A shear horizontal surface acoustic wave propagating circumferentially
around a portion of a cylindrical surface on an isotropic elastic medium that is
convex toward the vacuum.

and recall that R is the path length measured along the cylindrical
surface, we see that v/R = k can be regarded as the wave number
characterizing the propagation of this circumferential wave.

In solving Eq. (10.48b) there are two cases to consider: (i) the
solid is convex toward the vacuum; and (ii) the solid is concave toward
the vacuum. We consider these two cases in turn.

(i) Solid Convex Toward the Vacuum

In the case that the solid is convex to the vacuum (Fig. 10.4) we
seek a solution of Eq. (10.48b) that increases with increasing r, as is
required of a wave that is bound to the surface r = R. The solutions
of Eq. (10.48b) are Bessel functions, and from among the several
types of these functions we choose for the solution of Eq. (10.48b)

R(r)=J, (%) (10.51)

where J,(x) is a Bessel function of the first kind of order v. The
displacement component wu,(r,#|w) thus takes the form

u,(r,0|w) = const.J, <c£7“> e?, (10.52)
t

Substitution of Eq. (10.52) into the boundary condition (10.46)
yields the equation that relates the wave number k& = v/R and the
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frequency w of the circumferential wave,

J, <5R> — 0, (10.53)
Ct
where the prime denotes differentiation with respect to argument.
Our choice of the Bessel function J,,(Z”—t'r) as the solution of
Eq. (10.48b) was dictated by the following property of this function.
For a fixed value of (real, nonzero) v, J,(z) increases exponentially
with increasing x, until a value x ~ v is reached, at which it acquires
an oscillatory dependence on x that continues for x > v. Since we are
interested in a solution for 7 in the range 0 < r < R that is localized
for r in the vicinity of R, i.e. tends to zero as r — 0, J,,((w/c¢)r) has
this behavior provided that v is of the order of (w/c;)R. This require-
ment on v is consistent with the boundary condition (10.53), which
requires that » = R be in the range of r where J,((w/ct)r) has an
oscillatory behavior rather than an exponentially increasing nature.
To solve Eq. (10.53) we therefore need a representation of .J/,(z) in
the transition region where the order v is comparable to the argument
x. For a fixed value of z, large |v|, and | arg v| < 7/2, we have the
result that [10.22]

22/3 y 1 4 z

1/3
+ 24—BA2'(—2§Z){<§23 - 1) + - -}+ o2,
v

ol

J,(v+ 2v

5 5
(10.54)
where Ai(—x) is an Airy function. If we now set
YR=v+ 2?3, (10.55)
Ct
then
w z
— =k |14+ —==]. 10.56
= G ool

Thus, if we wish to obtain (w/c;) to the lowest nonzero order in
(kR)~1, we see from Eq. (10.56) that we need only the approximation
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to z that is independent of ¥ = kR. From Eqs. (10.53) and (10.54)
we see that this approximation is given by the solutions of

Ai'(=2Y32) = 0. (10.57)

The only zeros of Ai'(x) occur for negative values of x. If we denote
these zeros by —x;, i = 1,2,3..., the first few of them are [10.23]

21 =1.019, 29 =3.248, z5=4820,... (10.58)

The dispersion relation (10.56) thus finally takes the form

w x; o
<c_t>._k [HW} i=1,2,3,...  (10.59)

(2

We have shown that a homogeneous, isotropic elastic cylinder
with a stress-free surface that is convex to vacuum can support an
infinite number of shear horizontal surface acoustic waves that propa-
gate circumferentially around its surface. These waves are dispersive,
i.e. their phase velocities are functions of their wavelength. This fea-
ture is due to the presence of a characteristic length in the problem,
namely the radius R of the cylinder. These phase velocities are also
larger than the speed ¢; of bulk shear waves in the medium. Such
waves are not possible if the surface is planar. They are bound to the
surface by its curvature. Indeed, from Eq. (10.59) we see that in the
limit as R — oo the phase velocities of all of the waves approach ¢,
i.e. they become surface skimming bulk transverse waves.

The surface acoustic waves studied in this section are the whis-
pering gallery waves that were first studied by Lord Rayleigh [10.14].

We noted in Sec. 10.2 that the binding of a shear horizontal
wave to the surface of a circular cylinder arises because a coordinate
transformation that maps the circular surface of the cylinder into
a planar surface introduces terms into the transformed equation of
motion that impart a depth dependence to the speed of transverse
waves of the kind that gives rise to Love-like waves. To see this we
carry out the coordinate transformation

R

z=Rln ot (10.60)
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and define R(r) = R(z) = R(RIn(R/r)). The region z > 0 corres-
ponds to the interior of the cylinder (0 < r < R), while the region
z > 0 corresponds to the vacuum outside the cylinder (r > R).
Equation (10.48b) is then transformed into
d? 9 w? 1 -
- = R(z) =0 10.61
dz? c? (z)] (2) ’ ( )

where k = v/R, and

c2(z) = ¢ exp <2i> . (10.62)

=y

The boundary condition satisfied by R(z) becomes

L i)

— 0. 10.
- 0 (10.63)

z=0

Equation (10.61) resembles the equation of motion of shear hor-
izontal waves on a planar surface of a medium whose speed of trans-
verse sound waves increases exponentially with increasing distance
into the medium. A comparison of Eq. (10.61) with Eq. (10.9), shows
that this analogy is imperfect, however, because the latter equa-
tion of motion contains terms not present in Eq. (10.61) that are
associated with a spatial derivative of the elastic modulus 6'44(2).
Nevertheless, the analogy is a good one for a slowly varying Cu (2).
Since c¢;(z) is smaller at the surface of the medium than in the
interior, this is just the kind of situation that gives rise to Love
waves. Thus, we can say that shear horizontal surface acoustic waves
propagating circumferentially around the stress-free surface of an
isotropic elastic cylinder that is convex toward vacuum are analogous
to Love waves on a planar stress-free surface in which ¢; increases
exponentially with increasing distance into the medium from the
surface.

In the immediate vicinity of the surface, where z/R is small,
Eq. (10.61) takes the form

d? w? w? 2] -
R+ 42 I R(2) = 10.64
dz? c? 2 R (2) =0, (10.64)
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Rc%>2/3< wrz o, w2>
i} 22 L2 )| (10.65)
<2w2 2 R c?

The dispersion relation obtained from the boundary condition

(10.63) is
_ Rc? 2/3 g w2

Thus, we have that

2\ 2/3 2
<%> <k2 - ‘;’—2> = —a, (10.67)
t

from which we obtain

which is just the result obtained earlier (Eq. (10.59)).
These whispering gallery waves are often interpreted in terms

which has the solution

A

R(z) = Ai

of rays propagating along the boundary and undergoing successive
reflections from it (Fig. 10.5). A whispering gallery wave whose phase
velocity is ¢; = ¢;[1 + ;/2'/3(kR)?/3] impinges on the surface of the
cylinder at an angle x; measured from the tangent to the surface at

Bl
Al N A

Fig. 10.5. Whispering gallery waves interpreted as rays propagating along the
cylindrical boundary of a solid and undergoing successive reflections from it
(rays AA1A2 - 7BBlBQ .. ) [10.19}.
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the point of impact, and is reflected from the surface at the same
angle from the tangent. This tangent is perpendicular to the radius
vector to this point. The value of x; is obtained from

[(wi/er)? — K?)2

gy = — (10.69)
where k = (wi/c)[l + 2;/23(kR)*3]7!. In the limit that
2;/2Y3(kR)?/3 < 1, Eq. (10.69) becomes

2N
(= /2. 10.

(i) (10.70)

or
2\
Xi = <E> x;'”. (10.71)

As the wave travels around the boundary, due to the circularity of the
latter and the fact that the tangent to it is perpendicular to the radius
vector at each point of it, the wave strikes the surface and is scattered
from it at equidistant points along it, with the angles of incidence
and scattering given by y; measured from the tangent at each point
of contact. It follows from simple geometrical considerations that the
maximum departure of the ray from the boundary is z = (R/2)x?.

(i) Solid Concave to Vacuum
When the cylinder is concave to the vacuum (Fig. 10.6) we choose
the solution of Eq. (10.48b) to be

R(r) = HV <3r>, (10.72)

Ct

where HV (x) = Jy(z) + 1Y, (x) is a Hankel function of the first kind

and order v. For a fixed value of v and |z| — oo J2% (z) has the
asymptotic form

i~ (2) eofi(s-te-2)] 0

This choice for R(r) describes a wave that radiates energy into the
interior of the medium from the surface. It is therefore attenuated as
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AN

R

Fig. 10.6. A shear horizontal surface acoustic wave propagating circumferentially
around a portion of a cylindrical surface on an isotropic elastic medium that is
concave toward the vacuum.

it propagates around the cylinder. This means that the wave number
k = v/R that is the solution of the dispersion relation

/
j# (%) <3R> =0, (10.74)
Ct
which follows from Egs. (10.36), (10.37), and (10.59) is complex for
real w, k = kg + ik, with both kr and kj positive.
Solutions to the equation 2% () = 0 in the limit as © — oo
were obtained by Franz [10.24]. The first three of them are

v=a+e32/30.808617 — e '3271/30.145463 + - - (10.75a)
v=a+e3/32.578096 — e '527/30.260341 + - (10.75b)
v=a+e32'/33.825715 — e P37 1/30.514009 + - (10.75¢)

Let us consider the solution given by Eq.(10.75a). With the replace-
ments v = kR and x = wR /¢, it becomes

ol
ol

kR= YR+ ¢35 <3R> 0.808617 — ¢~ i% (£R> 0.145463 + -
Ct Ct Ct

(10.76)
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On separating the right-hand side of this equation into its real and
imaginary parts we obtain k = kg + tk; where

w | 040431  0.07273 w \ 2
Y - d 10.
kn |1+ ERPE (2R 10 ((CtR> )] (10.77a)

Ct

w [ 070028  0.12597 W\ 2
k= ¢ (ZR)2/3 + (ZU_tR)4/3 +0 <<c_tR> )] (10.77b)

Ct

Similar results are obtained for the remaining modes.

Thus, when the elastic medium is concave to the vacuum an
infinite number of leaky shear horizontal, surface acoustic waves can
propagate circumferentially around its cylindrical boundary. These
waves are attenuated as they propagate because they radiate energy
into the interior of the solid. The wave number k of each mode is
greater than that of the surface skimming bulk shear acoustic wave
on a planar surface, w/c, and approaches the latter as the radius R
of the cylinder approaches infinity. In this limit the attenuation of
the wave vanishes. Surface acoustic waves of this nature do not exist
on a planar surface.

10.2.2. A wvariable radius of curvature

The cylinder considered in the preceding section, around which a
shear horizontally polarized surface acoustic wave propagated cir-
cumferentially, had a constant radius of curvature, namely its radius
R. It was found that when the cylinder is convex to the vacuum
an infinite number of surface acoustic waves exists, while when the
cylinder is concave to the vacuum an infinite number of leaky sur-
face acoustic waves exists. It is natural to ask what happens when
the cylinder has a variable radius of curvature.

In this section we examine the propagation of a shear horizon-
tal surface acoustic wave circumferentially around a portion of the
surface of a solid bounded by a parabolic profile. In this case it is con-
venient to work in the parabolic cylinder coordinate system (&, 7, z)
defined by [10.25]

r=¢n, —o00<{<oo, 0<n<o (10.78a)
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y=507 - &) (10.75)
z=z. (10.78c¢)

In this coordinate system Eq. (10.33) takes the form [10.26]

1 0? 0? ) w2]
=3z tas )t | w@nle) =0 (10.79)
{52 + 7 <8£2 om*) <

where we have introduced the definition

uz(z, ylw) = (&0 |w). (10.80)
Equation (10.79) can be rewritten as

o 97 WP

5E Tt @ )| iEnlo) =0 (1081

We assume that the elastic medium occupies the region 0 < n < nq,
—00 < ¢ < o (see Fig. 10.7). Thus, we are dealing with the case in
which the solid is convex toward the vacuum.

From Eq. (10.78) it is straightforward to show that the surface
1 = 1p in parabolic cylinder coordinates corresponds to the surface

1/, z?
== - — 10.82
v=3(i-5). (10.82)

in Cartesian coordinates, and that the elastic medium occupies the
region y < 2 — (/)7

Equation (10.81) must be supplemented by a boundary condition
that expresses the requirement that the surface n = ng be free of
stresses. Equation (10.36) in this case becomes

B
(€, = 0. 10.83
o (&nlw) o (10.83)

We solve Eq. (10.81) by separation of variables. Thus we write
U, (&,m|w) as the product

(€, nlw) = F(§)G(n), (10.84)
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Tom, o

Fig. 10.7. Parabolic cylinder coordinates. This figure shows the cross sections
of the surfaces of constant £ and n. The z axis is perpendicular to the drawing.
The boundary of the elastic medium is the surface n = 719. The solid occupies the
region 1 < 1o.

and find that F'() and G(n) satisfy the equations

w?

PO+ (Se @) Fo=0 (o)
w?

() + (—277 - ;ﬂ) G(n) =0, (10.85b)

where 2 is the separation constant.
We begin by considering the solution of Eq. (10.85b). With the
changes of variables

1= (&) G = o) =0 ((2—”) % n>, (1050

we find that the function g(y) satisfies the equation

2
ddgy(Qy) N (in B a) g(y) =0, (10.87)
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where

- 26; 12, (10.88)
The solutions of Eq. (10.87) are parabolic cylinder functions
[10.27]. We seek a solution of this equation that increases exponen-
tially with increasing ¥y, as we require of a surface wave, and then
becomes an oscillatory function of y so that the boundary condition
(10.83) can be satisfied. The solutions of Eq. (10.87) are of exponen-
tial type for —2y/a < y < 2y/a, and are oscillatory functions of y for
ly| > 24/a [10.28]. The standard solutions of Eq. (10.87) are denoted
by W(a,+y), and are defined by [10.29]

W (a, +y) = 23/4< Glz 1/ ) (10.89)

where

Gi(a) = ‘r G + %za) . Gsla) = ’r (Z + %m) . (10.90)

and I'(x) is the gamma function. The functions y;(a,z) and
ya2(a,z) are

2 4 6
x s 1\ = 3 7T\
yl( ) 1+a§+<a—§>m+<a—§a>a+

(10.91a)
(a,x) = x+ax—3+ a2—§ x_5+ a3_§a x_7_,_
Y 3! 2) 5! 2%)
(10.91b)
in which non-zero coefficients a,, of 2™ /n! are connected by
1
ap42 = Adp — Zn(n - 1)an—2, (1092)

with ap = 1 and a; = 1. Of the two standard solutions W (a, +y) of
Eq. (10.87) it is W (a, —y) that increases exponentially with y until y
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reaches a value of approximately 21/a, at which it begins to oscillate
as y increases beyond this value. The boundary condition satisfied
by the function g(y) then becomes

d

d—yg(y) (10.93)

Y=Yo

where

1
2w\ 2
Yo = <—> Mo- (10.94)
Ct

This is the equation that connects the frequency w of the wave to
the parameter u for a given value of 7.

Equation (10.93) has to be solved numerically. However, for y in
the vicinity of 2y/a an approximate solution of Eq. (10.87) is

g(y) = Ai(—as (y — 2V/a)), (10.95)

where Ai(z) is an Airy function, provided that |y — 2v/a|] < 4y/a,
a condition that can be readily satisfied. The boundary condition
(10.93) now becomes

Ail (—af (yo — 24/@)) = 0, (10.96)

so that

NI

as (yo — 2v/a) = z;, (10.97)

where we have denoted the zeros of Ai'(x) by —x;. The first few of
them are given by Eq. (10.58). Equation (10.97) can be rearranged
into

2/3
w W 1 <2w> x;
Z=-r4 - (== —_, 10.98
Mo 20 \ pl/3 ( )

or

w 1% Ty .
Yy K 1+7], i=1,2,3,..., (10.99
<0t>i o [ 21/3 (nop)?/3 (1099)
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to lowest nonzero order in (nou)~!. This result is valid provided that
(?70#)2/ 3> )/ 21/3_ Tt only remains to relate the parameter y to an
effective wavenumber for the wave.

To this end we now turn to the solution of Eq. (10.85a). We
introduce the changes of variables

= (L) e PO=1@)=1 ((i—f) % §>, (10.100)

and find that the equation for f(x) is

2
ddj;(f) + Ga@ + a) fla) =0, (10.101)
where a has been defined in Eq. (10.88). We seek a solution of this
equation that describes a wave propagating in the positive x direc-
tion. As a is real and positive, the solutions of Eq. (10.101) are
oscillatory for all = [10.28]. Two linearly independent solutions of
Eq. (10.101) are yi(—a,z) and yo(—a,z), where yj 2(a, z) have been
defined by Egs. (10.91).

We seek the linear combination of yi(—a,x) and y2(—a,z) that
has the form of a wave propagating in the positive z direction. It is
found to be

f(x) = yi(~a,x) + iaZys(—a, ). (10.102)
This is easily seen if we seek a solution of Eq.(10.101) in the form
() = expli(arz + aga® + aga® + -], (10.103)

and require that a; = a%, since the solution of Eq. (10.101) that
has the form of a wave traveling in the positive z direction when
a > 2% is f(x) = const.exp(iy/az). On substituting Eq. (10.103)
into Eq. (10.101) we obtain the equation
i(2ag + 6asx + 12a422 + 20as2> + - )
1
—(a1 + 2a9x + 3asz? + dagx® + -+ )2 + Z:L‘Z +a=0.
(10.104)
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By equating to zero the coefficient of each power of x on the left-hand
side of this equation we obtain for the first few coefficients a,,

al] = az,
a2 = 07
as = 07
7
= 10.105
U (10-105)
1
az
as

Thus Eq. (10.103) becomes

1
f(z) =exp <—E:E4+ %1‘6 +- >

1 3/2
X eXp [z <a%1‘ + %1‘5 - fQle 4. )] . (10.106)

This solution is of the form we seek. If we expand the product of
exponentials in powers of z, we find that the result is that given by
Eq. (10.102). With the use of Egs. (10.100) we obtain F'(§) from the
result given by Eq. (10.106) in the form

l (w 24 L oo
5(0) ¢ (“5““"‘)]
comdinler L (9) e 22 (2 gy
exp i | F 55 <ct>5 315 <ct>§ U

(10.107)

It is convenient to rewrite the solution for F(§) in a form in
which the arc length of the distance traveled by the wave appears in
the exponent. The coefficient multiplying the arc length can then be
identified as an effective wave number of the surface wave. Because

F(§) = exp

the radius of curvature of the parabolic boundary is not a constant,
we expect that this wavenumber will not be a constant as it is in
the case of a shear horizontal surface wave propagating around a
cylindrical boundary.
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In parabolic cylindrical coordinates the fundamental metrical
form is [10.30]

= (&2 + n?)(d€? + dn?). (10.108)

If we specialize to the case that n = ng, so that dn = 0, the arc length
along this curve is

- /0 Cdg (€ + o)}
pifanc £ L[ ()}
1+(13<50>2—4i< > < >] (10.109)

We next invert this result to obtain

S 183 13 s
§=—— s 5t o009
no  6ng 120 ng

=no§

+0(s9). (10.110)

When this expression is substituted into Eq. (10.107), the result can
be written as

F(§) = eikntikr)s (10.111)
where
7 152 |13 1 (w)® ,| s
e e e et p, (10112
b e () W) o
1 /w\?[s 2 il
kI:_(_) [__< + 0) +. } 10.112b

The presence of an imaginary part in the effective wave number
of the surface wave is due to the non-constant radius of curvature of
the parabolic surface of the elastic medium. For, if we adopt the ray
picture discussed at the end of Sec. 10.2.1 to describe the propagation
of these surface waves around the parabolic boundary, we find that
for a grazing angle of incidence and reflection x; at some point on
the boundary, the angle of incidence and reflection of the ray at
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the next point on the surface struck by it will no longer be 1, but
will have a different value y,. As the ray continues to propagate
along the boundary its angles of incidence and reflection will continue
to change, and the points on the boundary at which it is struck
by the ray are not equally spaced. Eventually a point is reached at
which the angle of reflection is so large that the boundary is not
struck again by the ray, which is then reflected into the interior of
the elastic medium, i.e. the wave peels off from the boundary and
radiates energy into the medium. The wave is attenuated thereby,
not by any losses in the medium but by scattering out of the incident
beam.

10.3. Surface Acoustic Waves on Rough Surfaces

We have noted earlier in this chapter that a Rayleigh surface acoustic
wave is non-dispersive because there is no characteristic length in
the system that supports it, namely a planar vacuum-solid interface,
and that a shear horizontal surface acoustic wave does not exist in
the same system. However, if the planar surface is roughened, either
periodically or randomly, the Rayleigh wave becomes dispersive, and
a shear horizontal surface acoustic wave can now be supported by the
surface. These effects are examples of what can be termed roughness-
induced dispersion.

The motivation for studies of surface acoustic waves on such
rough surfaces arises in part from the technological applications of
the propagation of Rayleigh waves on periodically corrugated sur-
faces in the acousto-electrical fields. It is characteristic of periodic
structures, such as a grating ruled on a planar surface, that they cause
wave slowing, and create band gaps, i.e. stop bands. The degree of
this slowing, and the positions and widths of the bandgaps are useful
characteristics in the design of Rayleigh wave delay lines, filters, and
resonators. Moreover, periodic surface roughness can convert, in a
controllable way, surface wave energy into bulk waves, and vice versa,
and can thus serve as a surface-bulk or bulk-surface transducer..

The propagation of a Rayleigh wave on a one-dimensional peri-
odically corrugated surface has been studied by several authors
[10.31-10.35]. We are not aware of any studies of the propagation
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of a Rayleigh wave on a doubly periodic surface. Rayleigh waves
on one-dimensional randomly rough surfaces were studied in
Refs. [10.36, 10.37], and on two-dimensional randomly rough surfaces
in Refs. [10.37-10.44]. These waves have their frequencies shifted
(depressed) from their values for a Rayleigh wave on a planar sur-
face. They are also attenuated as they propagate along the surface
due to their roughness-induced scattering into bulk acoustic waves
in the solid, and into other Rayleigh waves. The former is the dom-
inant attenuation mechanism. In Refs. [10.38-10.40] only the atten-
uation of a Rayleigh wave was calculated. In Refs. [10.41-10.44] the
roughness-induced shift in the frequency of a Rayleigh wave, as well
as its attenuation, was calculated.

A primary reason for the study of Rayleigh waves on randomly
rough surfaces is that surface roughness appears to be the dominant
mechanism for the attenuation of Rayleigh waves [10.45]. However,
large amplitude random roughness is difficult to treat theoreti-
cally, so that all studies of it until now have been perturbative in
nature, which implies small-amplitude, small slope, roughness.

Surface acoustic waves of shear horizontal polarization on one-
dimensional periodically corrugated surfaces have been studied by
many authors [10.37,10.46—10.49]. Their propagation on doubly
periodic surfaces does not appear to have been studied until now.

The study of shear horizontal surface acoustic waves on period-
ically corrugated surfaces has been motivated in part because they
constitute a new type of surface acoustic wave that does not exist on
a planar surface, and in part because they display a significant wave
slowing, which can be useful in technological applications.

The properties of shear horizontal surface acoustic waves on one-
dimensional randomly rough surfaces have been studied theoreti-
cally in Refs. [10.36,10.37] and [10.50]. These waves are dispersive,
display wave slowing, and are attenuated due to their roughness-
induced scattering into bulk waves in the solid. The frequency shift
and attenuation rate of shear horizontal surface acoustic waves
on a two-dimensional randomly rough surface were calculated in
Refs. [10.37,10.51]. Some errors in Ref. [10.51] were corrected in
Ref. [10.37].
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In this section we discuss the properties of surface acoustic waves
on periodic and randomly rough surfaces. We restrict ourselves, as in
the preceding sections of this chapter, to surface waves of shear hor-
izontal polarization on surfaces defined by a one-dimensional surface
profile function. The results we obtain display the general features
found in the dispersion curves of surface acoustic waves of sagittal or
shear horizontal polarization, on two-dimensional randomly rough
surfaces, their determination is simpler than for two-dimensional
rough surfaces, and since surface waves of this polarization do not
exist on a planar surface, their existence is a particularly dramatic
consequence of surface roughness for surface acoustic waves.

We begin by considering the general problem of the propagation of
a shear horizontal surface acoustic wave on the surface of an isotropic
elastic medium, characterized by a mass density p and a speed of
transverse sound ¢; that occupies the region z > ((x). Its sagittal
plane is the xz plane. The region z < ((x) is vacuum. The surface
z = ((x) is assumed to be stress-free. The surface profile function ( ()
is assumed to be a single-valued function of x that is differentiable.

The elastic displacement field in the region z > ((x) in this case
has the form

u(x;t) = (0,uy(x, z|w),0) exp(—iwt). (10.113)

The equation of motion satisfied by u,(z, z|w) in this region is

5 9 82 62
—W Uy = C; <W + @) Uy - (10114)

The stress-free boundary condition at the surface z = ((z) can be
written as

=0. (10.115)

0 0
[—C,(-f)% + g] Uy

In addition, we require that u,(z, z|w) vanish as z — oo.
The solution of Eq. (10.114) in the region z > ((&)max that sat-
isfies the boundary condition at infinity can be written as

2=((z)

uy(z, zlw) = /OO d—pA(p,w) explipz — B(p,w)z], (10.116)

oo 2T
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where

Blp,w) = [p* — (w/cr)?]2, ReB(p,w) >0, ImB(p,w) < 0.
(10.117)

(SIS

We next invoke the Rayleigh hypothesis and use the represen-
tation (10.116) in satisfying the boundary condition (10.115). This
yields a homogeneous integral equation satisfied by the amplitude
function A(p,w):

/ I\ ipc! () — B(p,w)] explipz — B(p,w)C(2)|A(p,w) = 0.

27
(10.118)
We now introduce the representations
© J0 .
exp[—((z)] = /_ gf (71Q) exp(iQz), (10.119)
d
¢'(a)expl—r(a)] === L[ 2ai6lQ)ep(iqn). (0120

where
101Q) = [ dresplac@len(-iQe).  (10.121)

On substituting Egs. (10.119) and (10.120) into Eq. (10.118), the
latter becomes

| Stexptian) [~ PIPEEZD g - (o)A w) = .

(10.122)

When we equate to zero the gth Fourier coefficient on the left-hand
side of Eq. (10.122), and then interchange the roles of ¢ and p, we
obtain the integral equation satisfied by A(p,w) in the form

/ dq I(B(g,w)lp — @)
2 Bgw)

This is the exact equation for A(k,w) within the Rayleigh hypothesis.

[pq — (w/cr)*]A(q,w) = 0. (10.123)
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It will be convenient for some purposes to remove the delta function
from the function I(|Q). We do this by writing Eq. (10.121) as

il - | " exp(—iQu){1 + exp|—¢(x)] — 1}

— 255(Q) — 1T (1Q), (10.124)
where
J(7Q) = /_OO dx exp(—iQx) Lo epr[Y_WC(x)]. (10.125)

With the use of Eq. (10.124), we obtain the equation satisfied by
A(p,w) in the alternative form

) g—ij(ﬂ(%w)\k — q)[kq — (w/cr)*A(q, w).

(10.126)

(b, w)A(k) = [

—00

We now apply the preceding results to the cases where the surface
profile function ((z) is a periodic function of z and where it is a
random function of z.

10.3.1. A periodic surface

When the surface profile function is a periodic function of x with a
period a, ((x+a) = ((z), the function I(y|Q), Eq. (10.121) becomes

o0

I0|Q) = Y 2md(Q— (2mm/a)In(r),  (10.127)

m=—00

where

o=

(7)) = %/_; dx exp(—i(2rm/a)x — y((x)).  (10.128)

We also need to express the amplitude function A(q,w) in the form

Alqw)= Y 2md(q—k— (2nn/a))An(k),  (10.129)

n=—0oo
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so that the displacement field u,(z, z|w), Eq. (10.116), takes a form

(x, z|w) = Z A, (k) explikpz — B(kn,w)z],  (10.130)

n=—oo
that satisfies the Bloch-Floquet theorem,
uy(z + a, z|w) = exp(ika)uy (z, z|w). (10.131)

When Egs. (10.127) and (10.129) are substituted into Eq. (10.123)
we obtain as the equation for the coefficients {4, (k)}

o0

j-m—n(ﬂ(knaw)) —(wle 2 —
n:z_:oo ﬂ(kn,w) [kmkn ( / t) ]An(k) =0,
m=0,+1,+2,... (10.132)

The dispersion relation for shear horizontal surface acoustic waves
propagating normally to the grooves and ridges of a periodically cor-
rugated surface is obtained by equating to zero the determinant of
the matrix of coefficients in Eq. (10.132).

As in the case of surface plasmon polaritons propagating on a
periodic corrugated vacuum-metal interface, discussed in Sec. 7.3.1,
the solutions w(k) of the dispersion relation obtained from
Eq. (10.132) are periodic functions of k with a period 27 /a, and
are even functions of k. True surface waves are found only in the
non-radiative region of the (w,k) plane bounded from the left by
the dispersion curve of bulk transverse waves, w = ¢k, and from
the right by the boundary of the first Brillouin zone of the periodic
surface, k = 7/a.

Dispersion curves obtained by a numerical solution of the dis-
persion relation have been calculated for a sinusoidal surface profile
function

((x) =y cos(2mx/a). (10.133)
The function Z,, () defined by Eq. (10.128) is given by
Ln(7) = (=1)"™ L (Cov), (10.134)

where I,,(z) is a modified Bessel function of the first kind and order m.
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By restricting m and n to run from —N to N the infinite deter-
minant formed from the coefficients in Eq. (10.132) was replaced by
the determinant of a (2N + 1) x (2N + 1) matrix. A value of k was
selected and the value of the determinant was calculated as w was
increased from 0 to ¢;k in small increments Aw. A change in sign
of the determinant was the signal of a zero at that value of w. A plot
of the dispersion curve was generated in this way. The convergence of
the solution was tested by increasing N and seeing if it approached
a stable limiting value.

We recall that a surface acoustic wave of shear horizontal polar-
ization does not exist on a planar surface. A planar surface supports
a surface-skimming bulk transverse wave whose dispersion relation
is w = ¢k, but this is not a true surface wave. The existence of a
surface wave of this polarization on a periodically corrugated surface
is due entirely to the corrugation of the surface.

In Fig. 10.8(a) we plot this dispersion curve for the case that
Co/a = 0.5 and ¢; = 3 x 10 ms™!. It consists of a single branch
that is tangent to the dispersion curve of the surface skimming bulk
transverse waves as k — 0, and displays wave slowing as k increases.
The entire range of frequencies w > w(m/a) is a stop band for shear
horizontal surface acoustic waves in this case.

As the ratio (p/a increases, this branch is shifted to lower frequen-
cies, and at a critical value (p/a = 0.58 a second, higher frequency,
branch enters the non-radiative region of the (w, k) plane at the point
[ct(m/a), m/a]. With a further increase of (y/a both branches shift to
lower frequencies. In Fig. 10.8(b) the two branches of the dispersion
curve are plotted for the case (y/a = 1.0.

The results presented in Figs. 10.8(a) and 10.8(b) were obtained
by the use of determinants no larger than 43 x 43.

These results are in agreement with those obtained by Baghai-
Wadji and Maradudin [10.49], which were obtained by a different
approach for surface acoustic waves of shear horizontal polarization
propagating perpendicularly to the grooves of a lamellar grating ruled
on the surface of a cubic elastic medium.

These results also indicate that the Rayleigh hypothesis can be
used in numerical studies of the propagation of surface acoustic waves
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Fig. 10.8. Branches of the dispersion curve for surface waves of shear horizontal
polarization propagating normally to the grooves and ridges of the grating defined
by Eq. (10.133). An isotropic elastic medium characterized by a speed of trans-
verse sound ¢; = 3 x 10°ms ™! has been assumed. (a) (o/a = 0.5; (b) (o/a = 1.0.
[10.35].

on periodically corrugated surfaces that are significantly rougher that
those for which the Rayleigh hypothesis is rigorously valid. For the
sinusoidal profile defined by Eq. (10.133) the Rayleigh hypothesis
is expected to be valid only as long as (p/a < 0.07126 [10.35]. It
is argued that the convergence of the results obtained for values of
(o/a as large as 1.0 is asymptotic in nature [10.52,10.53]. By this
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is meant that as more terms are kept in the expansion (10.130),
i.e. as N is increased, the frequencies of the surface acoustic wave
approach limiting values, only to diverge from them as the number
of plane waves increases beyond some critical value. Thus, in the
calculations that produced Fig. 10.8 the number of plane waves used
was increased until the difference in going from N to N 42 plane was
not smaller than it was in going from A" — 2 to A/ plane waves. The
results obtained with A plane waves were used in obtaining Fig. 10.8.

10.3.2. A randomly rough surface

In discussing the propagation of a surface acoustic wave of shear hor-
izontal polarization on a one-dimensional randomly rough surface we
assume that the surface profile function {(x) possesses the statistical
properties described in Sec. 7.3. The starting point for this discussion
is Eq. (10.126). In the small roughness limit, which is defined by the
approximation j(ﬂ(q, w)k—q) = é(kz — q), this equation becomes

o0

Bk, 0)A(hw) = [~ 5180~ a)lka — (/e Alg.0). (10135

—00

As in Sec. 7.3.2 we seek the equation satisfied by the mean wave
propagating on the random surface. To this end we operate on both
sides of Eq. (10.135) with the smoothing operator P introduced in
Sec. 7.3.2 and obtain

B(k,w)PA(k,w)
_ / Y pé(h — )k — (w/e))PA(g,w) + QA(g,w)]

oo 2T
N /_OO Z_gpé(k — )lkq — (w/er)*|QA(q, w). (10.136)

We next apply the complementary operator () = 1 — P to both sides
of Eq. (10.135), with the result that

B(q,w)QA(q,w)
B / ;_;Qé(q —r)[gr — (w/ce)?)[PA(r,w) + QA(r,w)].

— 00

(10.137)
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We wish to obtain the right-hand side of Eq. (10.136) only to 0(¢?).
Since from Eq. (10.137) QA(q,w) is of O((), we can write the solution
of Eq. (10.137) as

Q) = 5o [ §hdla=nlar = (/e IPAG.)
(10.138)

When Eq. (10.138) is substituted into Eq. (10.136), we obtain the
equation satisfied by PA(k,w)

Bk, w) PA(k,w) = / /—Pc )éa—7)
|

kq = (w/ce)?llgr — (w/e)?]
Blq,w) e

— (w/e)?]?
:52/_ ;li (k — )[%PAU@@ .

(r,w)

(10.139)

The dispersion relation for a shear horizontal surface acoustic wave
is finally obtained in the form

ﬂ(k,w):éQ/_ ‘;‘f (k — )%. (10.140)

To solve Eq. (10.140) to obtain w as a function of k we write

w E? — 62 A% (k) (10.141)
c? ’ '
so that
A%(k
w(k) = cik [ — ! 2152 )} : (10.142)

to lowest nonzero order in §. If we note that the departure of
(w/ct)? from k is of O(6%), the expression for A(k) that follows from
Eq. (10.140) becomes

A(k‘) = Al(k) + ZAQ(k), (10.143)



294 Waves in Gradient Metamaterials

where

—k B
b = [ 5otk - o Fa =)

oo 2T (2 — k2)z
00 _ 1.2)\2
+/k %g(k‘—q}%, (10.144a)
_(Mdg (kg —K?)?
Ao(k) = / = s (10.144b)

If we make the changes of variable k — ¢ = 2ku and k — ¢ = —2ku in
the first and second integrals on the right hand side of Eq. (10.144a),
respectively, and the change of variable ¢ — k = 2ku in the inte-
gral on the right-hand side of Eq. (10.144b), we obtain the simpler
expressions

Ay(k) = E /OO duLﬂg@ku) + /OO du7fu3/2g(2ku)
™ | L w-1z Jo (u+1)z |

(10.145a)

4 r1 3/2
Aoy = 2 / 92k, (10.145b)
™ Jo (1—u)2

For the Gaussian power spectrum ¢(Q) given by Eq. (7.105), the
expressions for A (k) and Ay (k) can be transformed into

2%

A o(k) = de(l‘),

(10.146)

where

di(z) =2 / df cosh® § exp(—z? cosh? 0)
0
+2 / df sinh* f exp(—z?sinh*0),  (10.147a)
0

w/2
do () :2/ df sin* § exp(—z? sin 6), (10.147Db)
0
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and we have defined ka = x. The behaviors of these two functions
for small x are

1 3

dy(z) ~ ol Zlnx + O(1), (10.148a)
3 35

do(2) ~ g - ngQ +O0(zh). (10.148b)

The frequency of the surface wave can now be obtained from
Egs. (10.142) and (10.146) in the form

54 54
wik) = ek |1+ —gwi () —i—gwa(w) |, (10.149)

where the universal functions wi(z) and wy(z) are defined by

wi(z) = —;a: O[d3 (x) — d3(x)], (10.150a)

() = %xﬁdl(x)dg(x). (10.150b)

In the long wavelength limit Eq. (10.149) becomes
20" o
w(k) = ¢k (1 - ——x2> - z'ctk§— : (10.151)

mat

Finally, the inverse decay length of the displacement field with
increasing distance into the solid from the surface is obtained from
Egs. (10.117), (10.141), and (10.146) in the form

22
Va®
In the long wavelength limit this expression becomes

2 52 2
28, AR,
Va3 1 @

In Fig. 10.9 we have plotted di(x) and dy(z) as functions of x.
The functions w;(z) and wy(x) are plotted in Fig. 10.10.

The functions d;(x) and da(x) are seen to be positive for all val-
ues of x. One of the consequences of these results is that the inverse

decay length of the displacement field into the solid, Ref(k,w(k)),
is always positive. Thus, the wave is bound to the surface for all

Bk, w(k)) = 6 [d1 () + ida ()] (10.152)

Bk, w(k)) =

(10.153)
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Fig. 10.9. The functions d;(z) and d2(z) defined by Egs. (10.147) of the text
[10.36].

values of z = ka. In the long wavelength limit Ref(k,w(k)) is pro-
portional to k2, Eq. (10.153). A second consequence of the positivity
of di(x) and dy(z) is that Imw(k) = —cik(5/a)* (428 /7)dy (2)d2 () is
negative for all x. This means that the surface wave is attenuated as
it propagates along the randomly rough surface for all values of x.
In the long wavelength limit Imw(k) is proportional to &° which,
in view of Eq. (10.151) means that it is proportional to the fifth
power of its frequency. The explanation for this dependence lies in
the fact that the frequency dependence of Rayleigh scattering is w1,
where d is the dimensionality of the scatterer. The ridges and grooves

responsible for the scattering of a shear horizontal surface wave in the



Shear Horizontal Surface Acoustic Waves on Graded Index Media 297

2.8 prr
2.4

2.0

Fig. 10.10. The functions w1 (z) and wa(z) defined by Egs. (10.149) and (10.150)
of the text, for shear horizontal surface acoustic waves on a random grating [10.36].

present case are two dimensional, since they are defined by the equa-
tion z = ((z). Thus, the Rayleigh scattering law in the present case
gives us an w? frequency of the scattering rate in the low-frequency,
long-wavelength limit. The remaining factor of w? arises because the
penetration depth of this wave into the solid is proportional to the
square of its wavelength parallel to the surface (see Eq. (10.153)),
increasing the interaction volume thereby.

Since in the absence of surface roughness a shear horizontal sur-
face acoustic wave cannot exist, the attenuation of the roughness-
induced shear horizontal surface acoustic waves studied here is due
entirely to their scattering into bulk elastic waves. These waves also
display the phenomenon of wave slowing (wi(z) < 0) for small .
However, w(z) becomes positive for values of = greater than some
critical value z. ~ 1.5. Thus, although in this range of = values the
wave is still bound to the surface, Ref(k,w) > 0, its phase velocity
is greater than the speed of bulk transverse waves c¢;, so that the
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surface wave turns out to be in the radiative region of the (w,k)
plane [10.37].

Experimental confirmation of the results obtained in this section
has yet to be achieved.

Comments and Conclusions to Chapter 10

An approach to the calculation of properties of acoustic waves on pla-
nar surfaces of inhomogeneous semi-infinite elastic materials, where
the inhomogeneities can be represented as functions of the distance
z from the surface, has been presented in Sec. 10.1. This approach,
which is based on the use of a coordinate-dependent mass density and
coordinate-dependent elastic modulus tensor, and on an expansion of
the elastic displacement field in a series of orthonormal functions, can
be used to study surface acoustic waves of sagittal or shear horizontal
polarization. We have illustrated it here by determining the disper-
sion relation and displacement field of a shear horizontal surface wave
on the surface of such a medium, a wave that does not exist on the
planar surface of a homogeneous medium.

Although this approach is computational in nature, the calcula-
tions required are not difficult, and it has the attractive feature that it
is not tied to a particular dependence of the mass density and the elas-
tic modulus tensor of the semi-infinite medium on the coordinate z.
It is readily extended to the situation in which the surface wave prop-
agates in an arbitrary direction on a surface of low symmetry and
hence its displacement field is not perpendicular to the sagittal plane.

The method is probably best suited for problems where only the
first few lowest frequency modes are of interest, because the num-
ber of terms in the Laguerre series increases as the mode number
increases. If only a few modes are required greater computational effi-
ciency will be achieved by the use of eigen-methods designed to pro-
duce just those few. The method used here is not designed to do this.

The discovery of a new type of surface wave is interesting for basic
science reasons and for applications of such waves. An addition to
the taxonomy of surface acoustic waves enlarges the range of possible
applications of these waves, but also provides new insights into mech-
anisms that bind waves to surfaces.
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In Sec. 10.2.1 we have shown that shear horizontal surface acous-
tic waves can propagate without attenuation circumferentially on a
portion of an elastic cylinder of circular cross section, when the elastic
medium is convex to the surrounding vacuum. In fact, these waves
have the nature of the shear horizontal waveguide modes propagating
on the planar surface of an elastic medium whose shear elastic modulus
increases with increasing distance into the medium from its surface.

When the elastic medium is concave to the vacuum it supports
an infinite number of leaky shear horizontal guided acoustic waves.
They are attenuated as they propagate because they radiate energy
into the interior of the solid, i.e. due to scattering out of the beam.

The experimental observation of these modes, and their applica-
tion in devices has yet to be realized.

An isotropic elastic medium bounded by a parabolic boundary
that is convex to the vacuum surrounding it is shown in Sec. 10.2.2
to support dispersive leaky surface acoustic waves of shear horizontal
polarization propagating circumferentially on it. Again, we empha-
size that surface acoustic waves of this polarization do not exist on
the planar surface of an isotropic elastic medium. In the present case
they are trapped by the curvature of the surface. This medium, by a
coordinate transformation, can be shown to be equivalent to an elas-
tic medium bounded by a planar surface, whose shear elastic modulus
is a function of the coordinate z perpendicular to the planar surface
that increases with increasing distance into the solid. This kind of
graded medium has been shown in Sec. 10.1 to support guided waves
analogous to Love waves. However, due to the variable radius of cur-
vature of the parabolic boundary, the shear modulus of the graded
medium is also a function of the coordinate x parallel to the planar
surface. A surface or guided wave impinging on this kind of elastic
inhomogeneity is scattered by it into the interior of the solid. This
gives rise to the attenuation of the surface wave by scattering out of
the incident beam, not by dissipation.

We conjecture that such waves will also exist on other curved
surfaces with a variable radius of curvature. Their existence under
the conditions assumed in Sec. 10.2.2 is an example of geometrical
dispersion.
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The result that the Rayleigh method can be used to calculate
dispersion curves of surface acoustic waves on periodically corrugated
surfaces defined by the surface profile function (10.133) for values of
(p/a significantly larger than that for which the method is rigorously
convergent, in particular for values for which additional branches
occur, should be tested on surfaces defined by other profile functions,
to determine the range of its validity. If it is found to be valid for
surface profiles other than the one given by Eq. (10.133) this will be
a very useful result due to its simplicity in calculations of dispersion
curves of surface acoustic waves.

The binding of a shear horizontal surface acoustic wave to a ran-
domly rough surface is additional evidence that the surface skimming
bulk transverse acoustic wave on a planar surface is unstable. A slight
change in the boundary condition is enough to convert it into a sur-
face wave.
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APPENDIX

FABRICATION OF GRADED-INDEX FILMS

Gradient-index optics has a long history that dates back to Maxwell’s
development of the fish-eye lens, which has a spherically symmet-
ric index gradient that sharply images every point of a region of
space [A.1l], and continues with Wood’s creation of a lens having
two plane surfaces and an index of refraction that varies radially
from a symmetry axis that is perpendicular to the surface [A.2],
and Luneberg’s design of a lens with a spherically symmetric index
gradient that focuses every bundle of parallel rays into a point [A.3].
Despite this long history it is only since about the 1970’s that meth-
ods for fabricating and characterizing gradient-index materials have
been developed. It is still the case that theoretical developments
in gradient-index optics outpace the development of techniques for
producing good quality gradient materials.

The major applications of gradient-index media in optics at the
present time are to telecommunications in the form of gradient-index
optical fibers and gradient-index waveguides, and to imaging systems
in the form of gradient-index lenses.

There are three types of index of refraction gradients. The first
is the axial gradient, in which the index of refraction varies in a
continuous fashion along the optical axis of a lens system. The sur-
faces of constant index of refraction are planes perpendicular to the
optical axis. Gradient index anti-reflection coatings are examples of
this type of gradient. Rugate optical filters [A.4] are usually defined
as optical coatings with a continuous variation of refractive index
in the direction perpendicular to the plane of the film, i.e. with an
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axial index gradient. Some authors reserve this name for filters with a
sinusoidal or more generally periodic variation of the refractive index
in the direction normal to the plane of the film.

The second type of gradient is a cylindrical gradient, in which
the index of refraction varies continuously with distance from the
optical axis. The surfaces of constant refractive index in this case are
cylinders whose axis is the optical axis. An example of an optical
system that is based on this type of gradient is the gradient-index
fiber, in which the index of refraction varies radially from its center,
so that it is larger along the center of the fiber than it is at its surface.

The third type of gradient is the spherical gradient, in which
the index of refraction is symmetric about a point. The surfaces of
constant refractive index in this case are spheres. The center of sym-
metry of the gradient need not coincide with the center of curvature
of the surface. The Maxwell fish-eye lens [A.1] and the Luneberg
lens [A.3] are examples of gradient-index optical systems in which
the centers of symmetry of the gradient and of the curvature of the
surface coincide.

These three types of refractive index gradients are discussed in
detail in the book by Marchand [A.5], which is devoted primarily to
the application of gradient-index media to the creation of gradient-
index lenses. Axial gradient media in the form of thin films and
coatings are treated in the books by Willey [A.6] and Baumeister
[A.7]. The topics covered in these books include how to design a
gradient-index optical system that, for example, acts as an anti-
reflection coating over some range of wavelengths of the incident
light; ray-tracing and other approaches to the determination of the
paths light rays follow in propagating through an inhomogeneous
medium; how to determine the index profile experimentally given a
gradient-index medium; and methods for producing gradient-index
materials. However, there is little discussion in these books and in
the periodical literature about the aspect of gradient-index optics of
greatest interest in the context of this book, namely how to produce
a gradient-index system with a specified continuous spatial variation
of the index of refraction.

Of the three types of index of refraction gradients described
above, it is the axial gradient that is most relevant to the wave effects
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discussed in this book. In this section we present brief descriptions
of several approaches that offer the possibility of fabricating samples
with specified axial index gradients together with examples of films
prepared by them.

A.1. Co-Evaporation

A continuous change of the chemical composition of a film with posi-
tion in it changes its electrical, mechanical, and optical properties. A
smooth graded refractive index change is required for the fabrication
of rugate filters for use in optical applications. It can be achieved by
producing a film with a prescribed variation of composition within it.

Such a film can be fabricated by the coevaporation of materials
of low and high refractive indices by the use of two thermal sources
[A.8]. Thus, Boivin and St.-Germain [A.9] produced inhomogeneous
films with a graded index of refraction designed to serve as broad-
band or narrowband filters, i.e. to possess a given spectral reflectiv-
ity. The approach to producing such a film was based on the result
that under some simple assumptions the logarithm of the index pro-
file with respect to the optical thickness is the Fourier transform of
the reflection amplitude of the film [A.9]. The optical thickness 7 is
defined by

v = 2/02 n(z")dz, (A.1)

where n(z) is the refractive index profile as a function of the mechan-
ical thickness of the film measured from the substrate. These films
were prepared by the coevaporation of lead chloride (n = 2.18) and
cryolite (n = 1.35) inside a vacuum chamber where the pressure
was lower than 1078 Torr. The rate of deposition of the low-index
material was kept constant, while the rate of deposition of the high-
index material was controlled by an automated shutter that deliv-
ered a rate of deposition proportional to a preset reference function.
The reference function corresponding to a desired index profile was
stored in a memory, and as the deposition proceeded the rate con-
troller delivered the appropriate amount of material in the mixture
to produce the desired refractive index. The reference function was
determined in the following way.
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The index of refraction of the mixture was calculated as a func-
tion of the volume fraction C' of the dispersed material by the use
of the Maxwell Garnett formula extended for ellipsoidal particles
[A.10, A.11]

Le+(1—L)ey  Leg+ (1 —L)ey’

€—€x €4 — €0 (A2)

Here € is the dielectric constant of the mixture, ep is the dielectric
constant of the dispersed material, ep is the dielectric constant of
the host material, L is the shape factor of an ellipsoid, and C' is the
volume fraction.

When the cryolite was deposited at a rate of 0.5 nm/s, the shape
factor for lead chloride was found to be L, = 0.78 for 0 < C' < 1.

Since the refractive index is known as a function of the mechan-
ical thickness z, it can be re-expressed as a function of time. Then
Eq. (A.2) yields the volume fraction C' as a function of time. If 7. and
rp are the rates of deposition of the cryolite and the lead chloride,
respectively, one obtains

B Cr,
C1=C"

Tp (A.3)
for the rate of deposition of lead chloride as a function of time. It is
this function that was stored in memory.

Coevaporation has been used to produce gradient index profiles
of a variety of inhomogeneous films, for example, mixtures of Ge with
MaFs, CeF3, ZnS, and CdTe [A.12], mixtures of NagAlFg and PbCly
and of MgFy and PbCly [A.11], mixtures of SiOy and TiO2 [A.13],
and mixtures of Ge and ThFy [A.14].

A positive feature of this approach to the fabrication of graded
index films is that large surface area films can be produced by its use.

A.2. Physical and Chemical Vapor Deposition

Several vapor deposition methods have been developed over the years
for the creation of films on substrates. They are described briefly in
this section and in the next.
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In physical vapor deposition (PVD) [A.15], the plate to be coated
is placed at the top of a bell jar that is then sealed and evacuated. An
evaporation source is also present in the bell jar below the plate. It
is electrically heated. The vapor emitted by the evaporation source
rises and impinges on the plate, where it sublimes to form a solid
film with a composition that has essentially the same stoichiometry
as the evaporation source.

An advantage of using physical vapor deposition to produce a
film coating a substrate is that relatively small amounts of material
may be evaporated. This is important when expensive materials such
as gold or rhodium are to be deposited.

Physical vapor deposition has its drawbacks, however. The sub-
strates are usually heated to make the deposited film mechanically
hard. Substrates such as plastics cannot survive under such treat-
ment. Moreover, it is difficult and expensive to evaporate downward
or sideways. The upward evaporation used requires that expensive
tooling must be created to hold the plates to be coated.

A second deposition technique that is used for coating a substrate
is chemical vapor deposition (CVD) [A.16-A.18]. In this method the
substrate that is to be coated is exposed to one or several vapor-
ized compounds or reagent gases, some or all of which contain con-
stituents of the material to be deposited. A chemical reaction is then
initiated, often by the application of heat. This reaction preferably
occurs near or on the substrate surface, and produces the mate-
rial to be deposited as a solid-phase reaction product that con-
denses on the substrate. The reaction often produces gases, e.g.
HCl, CO, and Hjy, which are then removed from the deposition
chamber. By adjusting the deposition conditions so that the reac-
tion takes place near or on the substrate surface (a heterogeneous
reaction) the formation of a powdery deposit, which results if the
reaction takes place in the gas phase (a homogeneous reaction), is
avoided.

Chemical vapor deposition is similar to physical vapor deposition
in that in both methods the deposit is formed from a vapor phase.
The main difference between these two deposition methods is that
in chemical vapor deposition the formation of the deposit occurs
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due to a chemical reaction near or on the substrate surface, and
does not involve a mean free path of the gas molecules that is larger
than or comparable with the dimensions of the deposition chamber
as a major necessity for the functioning of the deposition process
[A.19]. Moreover, chemical vapor deposition may be carried out at
low pressures or in a high vacuum, depending on the structure of the
deposit one desires or on effectively transporting the reactant species
to or from the substrate.

Advantages of chemical vapor deposition are that it produces a
coating of uniform thickness, if the temperature in the deposition
chamber is relatively uniform, and a greater packing density than is
achieved with physical vapor deposition. The greater packing den-
sity results in a layer of higher refractive index than is produced by
physical vapor deposition.

Disadvantages of chemical vapor disposition are that usually
higher substrate temperatures are required than for physical vapor
deposition; the layers produced are usually mechanically stressed,
which can limit the thickness of the coating; the reactive gases used
in the deposition process and their reaction products are often highly
toxic, explosive, or corrosive; and the uniformity of the layer is often
hard to control.

Physical and chemical vapor deposition are generally not used to
produce films with a graded index of refraction. We have described
them in this section as an introduction to another vacuum deposition
approach that has been, and is being used for the fabrication of
compositionally varying thin films, and hence films with a spatially
varying refractive index. This method is plasma-enhanced chemical
vapor deposition, and we now turn to a description of it.

A.3. Plasma-Enhanced Chemical Vapor Deposition
(PECVD)

An approach to the fabrication of a film with a prescribed vari-
ation of composition within it that produces a given variation of
its refractive index is provided by plasma-enhanced chemical vapor
deposition (PECVD) [A.20-A.23]. In this approach a substrate is
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situated in a vacuum chamber. A gas mixture is introduced into the
chamber. Electrical energy is then used to transform the gas mixture
into reactive radicals, ions, neutral atoms and molecules, and other
highly excited species. In earlier times this was accomplished by the
use of a DC glow discharge, but in recent times RF or microwave
pulses are used for this purpose. Any gas in which a significant frac-
tion of the atoms or molecules are ionized is called a plasma. With
each microwave pulse the gases in the chamber decompose and react
chemically to form a solid layer on the substrate whose composition
is determined by which gases have been introduced into the chamber.
Again the residual gases created in this reaction are then removed
from the chamber.

In plasmas with low fractional ionization the electrons are so light
compared with atoms and molecules that energy exchange between
the electrons and the neutral gas is very inefficient. Consequently, the
electrons can be kept at a very high equivalent temperature — tens of
thousands of kelvins — while the neutral atoms or molecules remain
at the ambient temperature. The energetic electrons can induce many
processes, such as dissociation of molecules and creation of large
quantities of free radicals, that are improbable at low temperatures.
Since the formation of the reactive and energetic species in the gas
phase occurs by collisions in the gas phase, the substrate can be
kept at a relatively low temperature, of the order of 300°C. This
film formation can occur on substrates at lower temperatures than is
possible by the conventional chemical vapor deposition method. The
thickness of the film produced by this technique is governed by the
number of rf or microwave pulses.

In an early application of PECVD to the creation of composi-
tionally inhomogeneous dielectric films, Lim et al. [A.23] used it to
realize inhomogeneous silicon oxynitride (SiON) layers. The process
gases used for the growth of these layers were silane (SiHy) diluted in
helium (2.01% SiHy in He), nitrogen (Ng2), and nitrous oxide (N2O)
diluted in helium (5% N2O in He). Nitrous oxide is very reactive
compared with nitrogen. Consequently small variations of the NoO
flow rate lead to large variations in the refractive index of the film. For
this reason the flow rates of SiHy and N, as well as the RF power,
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chamber pressure, and substrate temperature, were kept constant,
only the NoO flow rate was subject to real time control, by the use
of a programmable microprocessor. The realization of a given com-
positional profile was achieved by the use of a calibration chart in
which the refractive index and deposition of uniform layers of SION
are plotted as functions of the NyO/Ng flow rate. Linearly graded
SiON layers with refractive indices varying from 1.46 to 2.05 were
designed and fabricated in this manner on silicon substrates. The
compositional profile was analyzed by Auger electron spectroscopy
sputter profiling.

In the work of Lim et al. [A.23] as well as in that of Greenham
et al. [A.24], rugate filters of silicon oxynitride were fabricated on
substrates of silicon and silica, respectively, by PECVD.

An extensive review of the deposition of transparent dielectric
optical films and coatings by PECVD has been written by Martinu
and Poitras [A.25]. Included in this review is a discussion of the
fabrication of graded index films.

The benefits of using PECVD in producing gradient-index
films include lower deposition temperatures than are required in
co-evaporation, a rapid deposition rate, and the production of
mechanically hard and dense films.

There are drawbacks to the use of PECVD for the preparation
of films with a graded index of refraction. The number of parame-
ters involved in this technique is large, which makes the deposition
difficult to control. Moreover, the substrate temperature can be high
enough to be incompatible with important optical materials, such
as the polycarbonates, which decompose at relatively moderate tem-
peratures. In some versions of a plasma enhanced chemical vapor
deposition reactor, the microwave field must penetrate the substrate.
Such an apparatus could not be used to coat a metallic substrate.

A variant of PECVD is electron cyclotron resonances plasma-
enhanced chemical vapor deposition (ECRPECVD) [A.26]. In this
approach the ionized plasma is produced by superimposing a static
magnetic field, which causes the electrons to move in circular
orbits at an angular frequency called the cyclotron frequency, and
a high-frequency electromagnetic field at the electron cyclotron
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frequency. The energy added to the electrons through their motion
in cyclotron orbits increases their effective temperature. The colli-
sions of these energetic electrons with the atoms or molecules in the
gas mixture in the vacuum chamber lead to more ionized atoms or
molecules in the plasma than is the case in the absence of the mag-
netic field. A higher plasma density enables a low temperature depo-
sition process with deposition rates comparable to those achievable
by chemical vapor deposition. This method has been used to fabricate
graded index oxynitride films with specific linear and parabolic index
profiles [A.27].

A.4. Pulsed Laser Deposition (PLD)

An approach to preparing a film with a graded index of refraction
that is free from one of the drawbacks of PECVD, namely the high
temperature of the substrate, is provided by pulsed laser deposi-
tion (PLD) [A.28]. In one application of this method [A.29] a high
intensity excimer laser beam is incident on a sintered SigNy target,
typically oriented at a 45° angle with respect to the beam, in the
presence of oxygen gas. A silicon (100) wafer, positioned near and
directly opposite to the target, serves as the substrate on which the
laser ablated silicon nitride and the oxygen are deposited to produce a
silicon oxynitride (SiOxNy ) film. Because the plume from the ablated
target strikes a region of the substrate approximately 5 millimeters
in length, this substrate needs to be rotated during the deposition
to produce uniformly deposited layers [A.30]. These layers have a
diameter of approximately 1cm, and their thickness decreases in the
radial direction outside this region. The ablation process is controlled
by means of the number of laser pulses, the output power, the kind
of gas, and the gas pressure. In the work reported in Ref. [A.29]
the laser fluence, number of pulses, and repetition rate were kept
fixed in all depositions. To obtain different stoichiometries the par-
tial pressure of the oxygen gas was smoothly varied. The growth of
the film was monitored by a phase modulated ellipsometer at a fixed
photon energy. An effective medium approximation [A.31] was used
to analyze the ellipsometric equation.
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In this way Machorro et al. [A.29] were able to produce inhomo-
geneous films of SiOxNy on a silicon substrate.

Pulsed laser deposition is a low temperature technique for pro-
ducing such films. It does not require that the substrate be at a
high temperature. However, the small sample sizes produced by this
method reduces its applicability to the fabrication of practical optical
filters. In addition, software for controlling the film growth process so
that it produces a specified spatial variation of the film’s refractive
index is lacking at this time.

A.5. Graded Porosity

A porous air-glass interface reduces the index of refraction of a glass
film by creating a mixture of air and glass at the interface that in turn
reduces the reflection from the glass caused by the index mismatch
there. Fraunhofer created porous antireflection coatings by etching a
glass surface with acid [A.31].

When the porosity of a layer is structured suitably, a continuous
gradient can be formed in it that can reduce the reflection even more.
More generally, a continuously graded porosity can produce a smooth
variation of the refractive index with distance from a surface of the
kind needed for the observation of many of the effects considered in
this book.

Thin films deposited at non-normal angles of incidence grow with
densities lower than that of the bulk material, and at sufficiently large
angles of incidence self-shadowing becomes the dominant growth
mechanism, resulting in extremely porous films [A.33, A.34].

This result underlies the technique of glancing angle deposition
(GLAD) for the fabrication of films with graded refractive indices
(GRIN). Kennedy and Brett [A.35] exploited this property of oblique
deposition, and used the angle of incidence as a means of controlling
the porosity and therefore the refractive index of a dielectric coating.
The density p of an obliquely deposited film was modeled as a func-
tion of the angle of incidence v by Tait et al. [A.36], and a similar
method was used by Robbie et al. [A.37] to produce rugate filters
with a sinusoidal index variation. When the density as a function of
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« is inverted to obtain « as a function of the density, the following
result is obtained for the angle of incidence as a function of film
thickness:

a(z) = cos{[2p,(z) — 171}, (A4)

where z is the film thickness. In their work Kennedy and Brett [A.35]
chose a Gaussian profile for p,(z),

or(5) = 22— exp [—m (2 )] (A.5)

o

where z( is the total thickness of the film, py = p(z0), and m is
a parameter that can be adjusted to obtain the profile that pro-
duces the minimum amount of reflection from the antireflection coat-
ing they were studying. Ideally, one would produce a GRIN GLAD
antireflection coating by depositing the same material as the sub-
strate to eliminate an index mismatch at the substrate interface. In
fact, in their experimental work Kennedy and Brett deposited SiO»
on a barium borosilicate glass substrate.

In fabricating the graded index film the substrate was rotated
rapidly during the deposition around an axis normal to it. This pro-
duced a film with a vertical, columnar, structure of its surface profile,
rather than the slanted posts that would result in the absence of the
rotation. The software controlling the motion of the substrate was
programmed with Eq. (A.5) for the angle of incidence, so that the
porosity as a function of thickness was accurately controlled dur-
ing the deposition. During the deposition the angle of incidence was
varied from normal incidence to highly oblique angles according to
Eq. (A.4). The deposition rate was monitored by a crystal thickness
monitor, and the film thickness was obtained by integrating the rate.
As the crystal thickness monitor measured the deposition rate only
for deposition normal to the substrate, to obtain the film’s thickness
due to oblique growth at non-normal incidence, an empirical formula
was used for the ratio of the deposition rate at the substrate to that
at the crystal thickness monitor as a function of the angle of incidence
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in degrees, namely

Rfilm

=098 +0.00330 - 0.000140/2. (A.6)
ctm

This relation is specific to the system studied by Kennedy and Brett.
A different dependence of the density p(z) on z than the one given
by Eq. (A.5) will lead to a different form for the right hand side of
Eq. (A.6).

The transmissivity of the graded index films fabricated by the
method described was measured as a function of the wavelength of
the incident light in the interval from 400 nm to 1000 nm. The exper-
imental results were compared with calculated results obtained by
the use of effective medium theories applied to the known porosity
of the film. Two such theories were used: the simple Drude model
that is based on the assumption that the electromagnetic field in the
effective medium is not affected by the polarization of the matrix
medium, and the Maxwell Garnett theory [A.38, A.39] supplemented
by a A~* Rayleigh factor that accounts for the increased scattering
from the rough porous medium that decreases the transmissivity as
the wavelength approaches the size of the porous projections of the
film. Good agreement between the modified Maxwell Garnett model
results and experimental data was found, suggesting that the method
of fabricating the porous graded index film is able to reproduce the
desired index profile.

A drawback to porous films is that the structures of the films
created are delicate. Scraping the surface can break off the colum-
nar projections that are crucial for the performance of such films as
antireflection coatings. Moreover, porosity implies a rapid ambient
degradation. Water, mainly from the atmosphere, enters the pores
and reacts with the layer or creates a fungus. Under controlled lab-
oratory conditions, however, where optics can be protected against
rough treatment, GRIN GLAD films can provide performance that
is superior to that of other types of antireflection coatings. It is also
the case that such layers display notable loss in transmission when
the wavelength of the incident light in the blue part of the visible
spectrum, due to scattering from surface structures and finite-sized
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microstructures [A.35]. This loss is not significant for wavelengths
greater than approximately 500 nm.

A.6. Ion-Assisted Deposition (IAD)

Situations can arise in which a graded index film with a columnar
surface structure is undesirable. Several deposition techniques now
exist that eliminate the formation of columnar surface structures.
One such technique is ion-assisted deposition (IAD) [A.40, A.41].

In this approach a separate ion source directs a beam of ions at
the growing film during the deposition process. The fact that the
ion source is a separate source allows the ion energy, current den-
sity, angle of incidence, and species to be controlled independently
from the material deposition process. The thin films deposited in this
fashion can display an increased packing density, improved stability,
and improved stoichiometry [A.40, A.42-A .45].

Although this technique has been extensively used to produce
films with a good stoichiometry [A.45] or to change their index of
refraction [A.41, A.43] for example, the films produced have mostly
been homogeneous in their composition and hence in the dependence
of their refractive indices on film thickness. Comparatively little use
of this technique has been made in producing films with a graded
index profile, especially films with a specified index profile. An exam-
ple of the fabrication of such a film by IAD is provided by the prepa-
ration of a graded refractive film of silicon oxynitride (SiOxNy) by
Snyder et al. [A.46]. In this work the film was deposited on a 50 nm
diameter Si(100) substrate in a Balzers 760 system [A.47]. The sub-
strate was heated to about 300°C by a quartz halogen heater. The
vacuum in the deposition system was kept at a pressure of 1.50x 1076
Torr. High purity silicon was evaporated by an electron evaporation
source. The substrate was simultaneously bombarded by nitrogen
ions from a Kaufmann ion source [A.48], with beam energy and
current set at 500 eV and 100 mA, respectively. The relative arrival
ratio of nitrogen ions to silicon atoms was about 1:1. The composition
of the film as a function of its thickness was controlled by linearly
varying the ratio of nitrogen flowing into the ion source and oxygen
in the backfill.
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The optical properties of the film were characterized by spec-
troscopic ellipsometry (SE) [A.49]. In ellipsometry linearly polarized
light is incident non-normally on a surface. The reflected light is
generally elliptically polarized. Its polarization state is determined
by the use of a polarizer prism. The ellipsometrically measured data
are tanty and cos A, defined by R,/Rs; = tant exp(iA), where R,
and R are the complex reflection coefficients for p-polarized and
s-polarized light, respectively. The ellipsometrically measured spec-
tra were analyzed with several filling models that were constructed on
the basis of the variation of the film’s composition profile measured
by sputter depth profiling by Auger electron spectroscopy. These
filling models were produced by the use of the Bruggeman effec-
tive medium approximation [A.50], and the assumption that SiOxNy,
is a physical mixture of two distinct phases, silicon dioxide (SiOj)
and silicon nitride (SigNy4). To take into account that the film pro-
duced in the manner described was heterogeneous, two fitting models
were constructed to analyze the SE data. In the first a simple lin-
ear decrease of the relative volume fraction of SisNy from 100% at
the film/substrate interface to an unknown value at the surface of
the film was assumed. In the second model another linearly graded
interfacial layer was added near the substrate, which was less steeply
graded than the layer above it. Each of the two graded layers was
subdivided into many (~ 10) sublayers of equal thickness. Each sub-
layer had a homogeneous composition, and the composition from one
sublayer to the next was varied in a linear staircase manner.

The experimentally determined values of the ellipsometric
parameters ¢ and A were numerically fitted by the results of cal-
culations of the reflectivities of p- and s-polarized light from each
of the two models of the inhomogeneous deposited layer. The fitting
parameters were the thickness of each linearly graded layer, and its
initial and final layer volume fractions. The refractive indices of SiO,
Siz, N4, and the Si substrate were taken to be the bulk values given
in the literature [A.52]. The quality of a fit was judged quantitatively
by the biased estimator ¢ defined by

1 i [(w;” — )’
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where N is the total number of measurements, and the superscripts
m and ¢ denote the measured and calculated data. The experimental
errors in ¢; and A; are given by dv; and §4;, and are estimated
values.

The best fit to the experimental data was obtained from the sec-
ond fitting model. The results showed that the refractive index profile
of the SiONy film was graded nonuniformly, and its dependence on
the distance from the substrate was determined, together with the
thickness of the film.

We note that the ellipsometric technique used to characterize
thin films produced by ion-assisted deposition has also been used
to characterize thin films fabricated by the method of pulsed laser
deposition described in Sec. A.4.

Ton assisted deposition is a low temperature method. Thus it is
suitable for the preparation of graded index films from materials that
decompose at elevated temperatures, such as polycarbonates.

For this method to be useful for fabricating films with the kinds
of graded index profiles that are investigated in this book, a method
must be devised to control the ion beam and the material deposition
process so that the film produced has a specified graded refractive
index profile. This has not been done yet.

A.7. Sputtering

The oldest vacuum process for producing thin films is sputtering. In
this method high energy (10-5000 eV) positive ions bombard a solid
surface, called the target or the cathode, knocking out atoms from
the surface. The ejected atoms then travel until they collide with a
solid surface, the substrate, to which they give up their energy and
condense, producing the film sought.

The ejection of atoms from the surface of the target by highly
energetic ions is called sputtering. It is the cause of the erosion of
the cathode in glow discharge. Pulker [A.52] indicates that sputtering
was discovered by Grove [A.53] in 1852 and Pliicker [A.54] in 1858,
in gas discharge experiments. Soon after, in 1877, metal sputtering
was used to deposit mirror coatings by Wright [A.55]. However, the
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widespread use of sputtering for the production of optical coatings
did not begin until approximately the 1960s. This was likely due to
the slow rates of deposition achievable by this method in the early
days of its use, the difficulty of depositing insulating materials, and
the rapid growth in the use of evaporation and condensation in a
high vacuum for the deposition of optical films.

The technology of sputtering has evolved significantly in the past
five decades, which has made it attractive for a variety of applica-
tions, including the production of optical coatings. It is beyond the
scope of this Appendix to cover the subject of sputtering in any
detail. We will instead describe briefly two versions of this technique
for producing optical coatings, namely ion-beam sputtering and mag-
netron sputtering. Together with ion-assisted deposition these are
the most important energetic deposition processes used in producing
optical coatings today.

In ion-beam sputtering [A.56, A.57] an ion source is used to
bombard a target with high energy ions. The sputtered atoms are
then deposited on a substrate to produce a filter. This technique
was developed at about the same time as ion-assisted deposition
(Sec. A.6). However, the deposition rate is much slower than that of
ion-assisted deposition. As a consequence for many applications it is
not an economical process.

In magnetron sputtering [A.58—A.60] a magnetic field is used to
confine a plasma above a target, which is kept at a negative volt-
age. This causes ions from the plasma to bombard the target, and
the atoms ejected from the target are deposited on the substrate to
be coated. When it is used in a suitable low pressure environment
magnetron sputtering produces high quality coatings. In comparison
with ion-beam sputtering it possesses a higher deposition rate and is
therefore a less expensive method.

An important feature of planar magnetron sputtering methods is
that the energy of the sputtered atoms arriving at the substrate is at
least an order of magnitude greater than that of an atom produced
by vacuum evaporation. This produces films that are physically more
dense and adhere more strongly to the substrate. It is also com-
paratively simple to sputter mixtures of coating materials either by
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bombarding a target composed of a mixture or by co-bombarding
two different targets.

Comments and Conclusions to the Appendix

The various wave effects discussed in the preceding chapters would
be of limited interest if samples with the required continuous spa-
tial variation of their index of refraction could not be fabricated.
In this section we have described several approaches to the fabrica-
tion of films with axial index gradients. The development of these
approaches has been stimulated in recent years by a renewal of inter-
est in gradient-index thin films due to their use as optical filters,
as broadband and narrow band antireflection coatings, as interfaces
between two media with different refractive indices, as waveguides,
etc. The approaches described do not exhaust the methods available,
but serve to indicate that methods exist that offer the possibility
of being used for fabricating the kinds of gradient-index media con-
sidered in the preceding chapters of this book, even if they have not
been used for this purpose up to now. It is hoped that the theoretical
predictions made in this book will stimulate experimental efforts to
do so.
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