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Chapter 1
Phonon-Polaritons in Nonlinear Dielectric
Medium

Igor V. Dzedolik

Abstract We discuss the properties of polaritons and obtain theoretically the
phonon-polariton spectrum in nonlinear dielectric medium with the third order
Kerr-type nonlinearity. We investigate the dependence of number of the polariton
spectrum branches on the intensity of electromagnetic field and demonstrate that the
appearance of new branches located in the polariton spectrum gap is caused by the
dispersion of the third order dielectric susceptibility at the intensive electromagnetic
field in the medium. The modulation instability of new spectrum branch waves
leads to the appearance of the spatial solitons or cnoidal waves. Also we theoret-
ically investigate the properties of scalar and vector phonon-polariton spatial soli-
tons and cnoidal waves propagating in boundless dielectric medium. These new
nonlinear waves one can use for designing the optical devices such as the optical
converter, controllable filter, all-optical logic gates, etc.

1.1 Introduction

The spectra of polaritons in the dielectric media were obtained firstly by Tolpygo
using the quantum approach [1] and by Huang using the classical approach [2] in an
ionic crystal. The polaritons are the collective dipole excitations (quasiparticles) in
different media. The phonon-polaritons [1–11] correspond to the bound states of
photons and optical phonons in a dielectric medium. The magnon-polaritons [7, 11–
13] are the bound states of magnons, photons and optical phonons in magnetic. The
exciton-polaritons [4–6, 11] are the bound states of photons and excitons in a
semiconductor. The polaritons are divided into the volume quasiparticles and the
surface quasiparticles. In the 60–70th years many theoretical and experimental
works were done researching the volume polaritons [1–10], in the 80th years the

I.V. Dzedolik (&)
Taurida National V.I. Vernadsky University, 4, Vernadsky Avenue,
95007 Simferopol, Ukraine
e-mail: dzedolik@crimea.edu

© Springer Science+Business Media Dordrecht 2016
O. Shulika and I. Sukhoivanov (eds.), Contemporary Optoelectronics,
Springer Series in Optical Sciences 199, DOI 10.1007/978-94-017-7315-7_1
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surface polaritons [14, 15], and the nonlinear polaritons [8, 9, 16–18] were also
researched.

The polariton properties still attract attention of the researchers because the
interaction of electromagnetic field with different media can be more adequately
explained by polariton conception, for example, at a nonlinear pulse propagation
[19, 20], in the periodical structures [21], or at the nonlinear wave interaction [22].
It is caused by the clear understanding of the generation, propagation, transfor-
mation and instability of the electromagnetic and polarization waves in the active
and passive media.

The phonon-polariton properties in the dielectric medium are important in
designing of the controllable filters [23], all-optical logic gates [24], time-delayed
beamsplitters [25], delay-lines [26], and other devices of the microwave and optical
circuits [27–29]. The polariton conception is applied to explain the generation of
continuous and solitary waves in the Bose-Einstein exciton condensate [30, 31].
Now the surface plasmon-polaritons [32–36] are actively investigated with the
purpose to apply them in the devices of transmission lines and processing infor-
mation. The above mentioned papers are devoted to the analysis of polariton
properties in the different media and illustrate the common interest of researchers in
this area of physics.

The polaritons in the media can be described by means of the microscopic
multiparticle quantum approach and the macroscopic classical approach with the
practically same results. The polaritons are efficiently generated when the frequency
of electromagnetic wave is close to the crystal lattice resonance frequency lying in
the terahertz range � 1012 s�1, or to the electron resonance frequency lying near the
infrared or optical ranges � 1014 s�1. It leads to enhancement of the vibration
amplitude, i.e. to the nonlinear oscillations of the ions and electrons. The nonlinear
effects also appear in the generation of polaritons out of these ranges, if the non-
linear electron response of the medium arises due to the intensive electromagnetic
wave or pulse scattering. In these cases some new branches of the phonon-polariton
spectrum appear.

The dispersion relation of the frequency x kð Þ on the wave vector k in the
nonlinear medium, D x; k;Eað Þ ¼ 0, is modified by the electromagnetic field
amplitude Ea. The polariton spectrum has a gap, where the polariton wave damps.
The input electromagnetic wave with the frequency in the spectral gap does not
propagate through dielectric medium. The enhancement of electromagnetic field
intensity leads to the increasing of the nonlinear response of the dielectric medium,
and it results in appearance of the additional branches in the polariton spectrum
gap. In order to demonstrate this effect we have obtained the phonon-polariton
spectra in the nonlinear medium considering the dispersion of the third order
nonlinear susceptibility for the first harmonic of the wave frequency.

We show how the intensity of electromagnetic field influences the number of
polariton spectrum branches. We also theoretically investigate the properties of
phonon-polariton waves propagating as the cnoidal waves and longitudinal or
transverse spatial solitons in the Kerr-type solid medium. We research the instability

4 I.V. Dzedolik



of the wave in nonlinear media, and analyze the conditions of the wave transfor-
mations. We show that polariton wave representing as polariton flow can decompose
into several flows. The envelope of the polariton wave in the transverse plane can
transform to the cnoidal wave or spatial soliton depending on the field density and
medium parameters in the self-focusing and self-defocusing medium.

1.2 Polaritons in Ionic Crystal

We investigate theoretically the properties of phonon-polariton spectrum in the non-
linear dielectric medium using the macroscopic classical approach. An electromag-
netic wave falling onto the crystal produces themoving of the electron shells and ions,
i.e. it excites the dipole excitations of the electron shells and ions in crystal lattice.

1.2.1 Theoretical Model

We consider the simple theoretical model of the classical electromagnetic field
interaction with the ions forming a crystal lattice [37]. If the electromagnetic wave
propagates in the dielectric crystal we can describe this process using the following:
(1) the equation of ion motion in a unit cell of the crystal lattice

meff
d2R
dt2

þ meffC
dR
dt

þrRUR ¼ eeff Eþ 1
c
dR
dt

� B
� �

; ð1:1Þ

where eeff ; meff are the effective ion charge and mass in the lattice cell, R ¼
rþ � r� is the displacement vector of the positive and negative layers of the ions,
UR ¼ q1R=2ð ÞR2 þ q2R=3ð ÞR3 � q3R=4ð ÞR4 þ � � � is the potential energy of the ions,
C is the damping factor; (2) the equation of outer shell electron motion of the ion

m
d2r
dt2

þ mC
dr
dt

þrrUr ¼ �e Eþ 1
c
dr
dt

� B
� �

; ð1:2Þ

where Ur ¼ q1r=2ð Þ r2 þ q2r=3ð Þ r3 � q3r=4ð Þ r4 þ � � � is the potential energy of the
electron; (3) the electromagnetic field equations

r� B ¼ c�1 _Eþ 4p _P
� �

; r� E ¼ �c�1 _B; ð1:3Þ

where P ¼ eeff NCR� eNer is the polarization vector of medium, NC is the number
of cells in the unit of volume, Ne is the number of electrons in the unit of volume,
qjr; qjR are the phenomenological elastic parameters of the medium; the overdot
denotes partial time derivative. In the system of (1.1)–(1.3) we take into account the
bound of charges by the electromagnetic field.
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We can neglect the response of the magnetic component of the high-frequency
electromagnetic field Ej j � c�1 dR=dtð Þ � B

�� ��; Ej j � c�1 d r=dtð Þ � B
�� �� in the

medium. Then we represent solutions of the motion (1.1) and (1.2) as the series
where lower index of the terms is the order of an infinitesimal
r ¼ r0 þ r1 þ r2 þ r3, R ¼ R0 þ R1 þ R2 þ R3. If the electromagnetic field is
harmonic E� exp �ixtð Þ, it is easy to obtain the polarization vector of medium by
the method of the successive approximations. Generally by this method we can
obtain the polarization vector including the first, the second and the third harmonics

P ¼ v1Ea exp �ixtð Þ þ v20EaEa þ v22EaEa exp �i2xtð Þ
þ v31E

2
aEa exp �ixtð Þ þ v33E

2
aEa exp �i3xtð Þ; ð1:4Þ

where v1 ¼ 1
4p

x2
e

~x2
1
þ x2

I
~X2

1

� �
;

v20 ¼
1
4p

ea2rx2
e

mx2
0 x2

0 � x2
� � 2þx2C2
� �� eeff a2Rx2

I

meffX
2
? X2

? � x2
� � 2þx2C2
� � !

;

v22 ¼
1
4p

ea2rx2
e

m ~x2
1

� � 2
~x2

2

� eeff a2Rx2
I

meff
~X2

1

� � 2 ~X2
2

 !
;

v31 ¼ � 1
4p

e2a3rx2
e

m2 ~x2
1

� � 3
~x2

1

� �� þ e2eff a3Rx
2
I

m2
eff

~X2
1

� � 3 ~X2
1

� ��
0
@

1
A;

v33 ¼ � 1
4p

e2a3rx2
e

m2 ~x2
1ð Þ 3

~x2
3

þ e2eff a3Rx
2
I

m2
eff

~X2
1ð Þ 3 ~X2

3

� �
are the linear and nonlinear susceptibilities of

medium, ~x2
1 ¼ x2

0 � x2 � iCx, ~x2
2 ¼ x2

0 � 2xð Þ2�i2Cx, ~x2
3 ¼ x2

0 � 3xð Þ2�
i3Cx, ~X2

1 ¼ X2
? � x2 � iCx, ~X2

2 ¼ X2
? � 2xð Þ2�i2Cx, ~X2

3 ¼ X2
? � 3xð Þ2�

i3Cx; x2
e ¼ 4p e2Nem�1, x2

I ¼ 4p e2eff NCm�1
eff are the electron and ion plasma fre-

quencies; x2
0 ¼ q1rm�1 is the electron resonance frequency, X2

? ¼ q1Rm�1
eff is the

resonance frequency of lattice; a2r ¼ q2rm�1, a3r ¼ q3rm�1, a2R ¼ q2Rm�1
eff ,

a3R ¼ q3Rm�1
eff ; C; qjr; qjR are the phenomenological parameters depending on the

linear and nonlinear properties of the medium. The susceptibility of the third order
is more than zero v31 [ 0, because the coefficients a3R ¼ �q3Rm�1

eff \0 and a3r ¼
�q3rm�1\0 are negative. The influence of optical phonon to the susceptibilities vij
is taken into account by the terms with x2

I .
Some crystals with centrums of inversion at lattices and glasses with isotropic

structure are suitable media with necessary properties for arising of examined
nonlinear polaritons. The linear and nonlinear properties of various materials are
measured and described at the present time [38, 39]. For example, the high-usage
crystal that is the zinc selenide ZnSe has the parameters: the real part of refractive
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index n1 ¼ n10 þ in100 is n01;¼ 2:67, and the imaginary part is n100 � 10�5 at the
wavelength k ¼ 0:532 lm [39]. We have used in our model the phenomenological
parameters a1R;1r; a3R;3r; xe; xI ; Ce; CI connected with the susceptibilities v1 and
v31 that are expressed after (1.4). The susceptibilities v1 and v31 are used in the
expression for permittivity e ¼ e1 þ 4pv31 Ej j2, where e1 ¼ 1þ 4p v1

0 þ iv1
00ð Þ,

v31 ¼ v31
0 þ iv31

00. The real and imaginary parts of the refractive index and the
permittivity are connected as e10 ¼ n102 � n1002 and e100 ¼ 2n10n100. The real and
imaginary parts of the linear susceptibilities of ZnSe we can calculate as v1

0 ¼
e10 � 1ð Þ=4p ¼ 0:49 and v1

00 ¼ e100=4p � 0:4� 10�5; the real part of the third
order susceptibility is v31

0 ¼ 2n02e0cc, the imaginary part of the third order sus-
ceptibility is v31

00 ¼ n02e0x�1c2b, where the measured values of the parameters are
b ¼ 5:8� 10�9 cm=W and c ¼ 6:7� 10�14 cm2=W.

1.2.2 Nonlinear Medium with the Local Inversion Centers

We consider the application of our theory only in the medium with the local centers
of inversion in the medium with the third order susceptibility v31, where the
second-order susceptibility vanishes due to the symmetry, i.e. the Kerr-type med-
ium. We represent the electromagnetic field as the set of plane waves and consider
the interaction degenerates involving only at the first harmonic E ¼ Ea

exp �ix t þ ikrð Þ. In this case the polarization vector (1.4) of the medium has the
form P ¼ v1 þ v31E

2
a

� �
E.

One can eliminate the magnetic inductance vector B from the Maxwell’s

equation (1.3), r�r� Eþ c�2 E
::
¼ �4pc�2 P

::
, and get the algebraic vector

equation

k2 � c�2ex2� �
Ea ¼ k kEað Þ: ð1:5Þ

The permittivity of medium is defined by the expression e ¼ 1þ 4pv1 þ 4pv31E
2
a .

In the expression for permittivity e both the electron and ion responses of the
medium at the electromagnetic field are considered.

We resolve the electric field vector at the transverse and longitudinal compo-
nents E ¼ E? þ Ejj relating to the wave vector k. Having assumed that the inter-
action of the electromagnetic waves and charges in the medium occurs as affected
transverse field component E?, that is kE? ¼ 0, we obtain from the (1.5) the
dispersion equation for the nonlinear polaritons in the Kerr-type medium

k2 � c�2x2 1þ 4pv1 xð Þ þ 4pv31 xð ÞE2
a

	 
¼ 0: ð1:6Þ
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Equation (1.6) allows obtaining the nonlinear phonon-polariton spectrum x ¼
x k;E2

a

� �
in this medium, where the frequency x (or energy �hx) of polariton

depends on the field density �E2
a of the polariton wave.

1.2.3 Polariton Spectrum in the Nonlinear Medium

The polariton spectrum depends on the density of electromagnetic field �E2
a in the

Kerr-type nonlinear medium. In the linear medium at 4pv31E
2
a ! 0 the spectrum of

polaritons has only three branches 1, 2, 3 (two low frequency and one high fre-
quency branches, Fig. 1.1a), and this result agrees with the deduction in [16]. In the
nonlinear medium, for example at 4pv31E

2
a ¼ 10�5, the polariton spectrum has nine

branches (Fig. 1.1b). In this case the spectrum still has the branches 1, 2, 3, but six
new branches with the numbers 4, 5, 6 and 7, 8, 9 appear. New branches 4 and 5
coincide with themselves and smoothly go up, but the branch 6 has a weak dec-
lination down. The branches 7, 8, 9 have the same behavior: the branch 7 has the
weak declination down, and the branches 8, 9 smoothly go up and completely
coincide. The appearance of new branches in the polariton spectrum is caused by
the dispersion of the third order dielectric susceptibility of the medium v31 xð Þ at
increasing of the electromagnetic field density �E2

a [see (1.4)].
The polariton spectrum in the linear medium has only two gaps, but as the

electromagnetic field density increases, the third gap appears: the first gap (between
the branch 2 and the branches 4, 5, 6), the second gap (between the branch 2 and the
branches 7, 8, 9) and the third gap (between the branch 3 and the branches 7, 8, 9).
In the linear medium the dispersion (1.6) has the sixth degree of the frequency x.

Fig. 1.1 The polariton spectra in the nonlinear medium with the dispersion of the third order
susceptibility v3: a at 4pv31E

2
a ! 0; b 4pv31E

2
a ¼ 10�5; C ¼ 0. Here �x ¼ x=X? and �k ¼ ck=X?

are dimensionless
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In the nonlinear medium the dispersion (1.6) has the eighteenth degree of the
frequency because the susceptibility of the third order v31 xð Þ possesses the dis-
persion. In other words the more high frequency polaritons of the branches 3 (and
2) decay to three low frequency polaritons of the branches 7, 8, 9 (and 4, 5, 6),
therefore the new spectrum branches appear. The spectrum curves have been
obtained numerically by solving the dispersion (1.6) at the medium and the wave
parameters X? � 1013 s�1, k ¼ 3� 102. . . 3� 103 cm�1.

Each polariton can decay to a new photon with the same frequency or two
phonons with the frequencies amount a sum equal to the initial frequency.

1.2.4 The Longitudinal Instability of Polariton Wave

We can investigate the instability of new spectrum branch waves by the equation
obtained from the electromagnetic field (1.3) for transverse electric field in the
Kerr-type transparent medium at C ¼ 0,

@2E
@z2

� e1
c2

@2E
@t2

� 4pv31
c2

@2 Ej j2E
@t2

¼ 0; ð1:7Þ

where e1 ¼ 1þ 4pv1. The factor Ej j2 depends on the wave amplitude only, and
doesn’t on the wave phase. Consider the perturbed polariton wave as
E ¼ Ea þ u t; zð Þ½ 	 exp �ix t þ ikzþ iw t; zð Þ½ 	, where x and k are the frequency and
wave vector of a spectrum branch wave, u t; zð Þ and w t; zð Þ are the slowly varying
amplitude and phase [40] of the perturbing wave propagating along the axis z. We
linearize (1.7), separate the real and the imaginary parts, and taking into account the
dispersion (1.6) for unperturbed polariton waves we obtain the set of equations for
u t; zð Þ and w t; zð Þ,

@2

@z2
� ~e
c2

@2

@t2
þ x2~e

c2
� k2

� �
u� 2Ea k

@

@z
þ xe

c2
@

@t

� �
w ¼ 0;

2 k
@

@z
þ x~e

c2
@

@t

� �
uþ Ea

@2

@z2
� e
c2

@2

@t2

� �
w ¼ 0;

ð1:8Þ

where e ¼ 1þ 4pv1 þ �I; ~e ¼ 1þ 4pv1 þ 3�I; �I ¼ 4pv31E
2
a .

One can represent the solutions of the set of (1.8) as u ¼ u0 cos Kz� X tð Þ,
w ¼ w0 sin Kz� X tð Þ, whereX and K are the complex frequency and wave vector of
the perturbing wave. We obtain the dispersion relation for the frequency X and the
wave vector K of perturbing waves from the determinant of the equation set (1.8),

X4 � a1X
2 þ a2Xþ a3 ¼ 0; ð1:9Þ
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where a1 ¼ c2 ~e�1 þ e�1ð ÞK2 þ 3x2 þ c2~e�1k2, a2 ¼ 4c2kx ~eþ eð Þ~e�1e�1K, a3 ¼
c4~e�1e�1K4 � 3c4~e�1e�1k2 þ c2x2e�1ð ÞK2.

In general case the solutions X1;2;3;4 of (1.9) have the complex values for the
perturbing wave frequency. Four values of the frequency Xj represent eight per-
turbing modes u
j ¼ u0 exp 
iXjt

� �
=2, where j ¼ 1; 2; 3; 4. The instability of

polariton wave with the frequency x and wave vector k takes place when the
solutions Xj of (1.9) have the complex values, and the amplitude
uj � exp Im Xj

� �
t

	 

of the perturbing mode exponentially increases. The convec-

tive instability [40] takes place when the imaginary part of perturbing wave fre-
quency greater than zero i Im X[ 0 and the real part of the wave vector greater
than zero too ReK[ 0 at the wave propagation along the axis z.

We may normalize (1.9) for the perturbing wave frequency as �Xj ¼ Xj=X?. The
normalized perturbing frequency satisfy the equation �X4 � �a1 �X

2 þ �a2 �Xþ �a3 ¼ 0,
where �a1 ¼ a1X

�2
? , �a2 ¼ a2X

�3
? , �a3 ¼ a3X

�4
? . The analysis of the dependence of

perturbing frequency �Xj on the normalized perturbing wave vector �K ¼ cK=X?
allows predict the instability of polariton wave of a spectrum branch (Fig. 1.1). The
dependence of �Xj on �K is presented in Fig. 1.2 for the polariton wave of new
spectrum branch with the normalized frequency �x ffi 6:4 and the wave vector
�k ¼ 4, when C ¼ 0, �I ¼ 4pv31E

2
a ¼ 0:1.

The polariton waves are stable at the perturbations represented by the roots with
the real parts ReX1 and ReX3 (Fig. 1.2a), and with the imaginary parts Im X1 ¼ 0
and Im X3 ¼ 0 (Fig. 1.2b), when �K increases. The waves are unstable at the small
perturbations ReX2 and ReX4 (Fig. 1.2a) with the imaginary parts Im X2 and Im X4

(Fig. 1.2b), when the perturbing waves become shorter. The coefficients a1;2;3 in
(1.9) depend on the electromagnetic field density �E2

a because of the permittivity.

Fig. 1.2 The dependence of the normalized perturbing frequency �Xj ¼ Xj=X? on the real part of
normalized perturbing wave vector �K ¼ cRe Kð Þ=X?
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The imaginary parts of the frequency roots Im Xj define the longitudinal in-
stability of the polariton wave. The perturbations excite the transverse and longi-
tudinal modulation instability of the nonlinear wave leading to the appearance of
the cnoidal waves and solitons [40–42]. We can represent the electric field vector of
the polariton wave of a new spectrum branch as E ¼ e t; zð Þ exp �ix tð Þ, then obtain
from (1.7) the equation for slowly varying amplitude e t; zð Þ,

@2e
@z2

þ e1x2

c2
eþ 4pv31x

2

c2
ej j2e� e1

c2
@2e
@t2

� i2x
@e
@t

� �

� 4pv31
c2

e
@2 ej j2
@t2

þ 2
@ ej j2
@t

@e
@t

þ ej j2@
2e

@t2
� i2x e

@ ej j2
@t

� i2x ej j2@e
@t

 !
¼ 0:

ð1:10Þ

We can suppose that e t; zð Þ is the “adiabatically” varying at time amplitude at
stationary process of the polariton wave propagation. In this case we reduce (1.10)

@2e
@z2

þ �eeþ �v ej j2 e ¼ 0; ð1:11Þ

where �e ¼ c�2x2e1, �v ¼ 4p c�2x2v31. For the wave of new spectrum branch the
boundary conditions at z ¼ 0 are zero value of amplitude e0 ¼ 0 and nonzero value
of the derivative of amplitude, then the integration constant is C ¼ de=dzð Þ20. We
obtain the solution in the form of elliptic cosine

e ¼ B cn K ~k
� �� �v a2=4þ C0� �1=2h i1=2

z; ~k

� �
; ð1:12Þ

where K ~k
� �

is the complete elliptic integral, ~k ¼ B= A2 þ B2ð Þ1=2 is the modulus

of elliptic integral, A2 ¼ a=2þ a2=4þ C0ð Þ1=2, B2 ¼ �a=2þ a2=4þ C0ð Þ1=2,
C0 ¼ 2C=�v, C ¼ de=dzð Þ20 þ�ee20 þ �ve40=2, a ¼ 2�e=�v. In case when the modulus tend
to unit ~k ! 1 (if a\0 and C0 ! 0), (1.12) transforms to the hyperbolic secant that
describes a longitudinal spatial soliton

e ¼
ffiffiffiffiffiffi
aj j

p
sch

ffiffi
�e

p
z

� �
: ð1:13Þ

1.2.5 The Nonlinear Optical Filter-Converter

The weak intensity waves with the frequency in a spectrum gap don’t propagate
through the medium. On the contrary the power waves with the frequency of new
spectrum branches (Fig. 1.1b) appearing in the spectrum gaps as the nonlinear
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periodic cnoidal waves [see (1.12)] or longitudinal spatial solitons [see (1.13)]
depending on the sign of the nonlinear susceptibility v31 and the value of the wave
perturbation de=dzð Þ20. Thus, the transparency of medium depends on the input wave
intensity and the imaginary parts Im Xj of perturbation frequency [see (1.9)]. The
given effects are similar to the nonlinear self-induced transparency for the power
wave or power pulse with the carrier frequency close to the resonance transition of
the medium atoms [9], but we examine the non-resonance case. The appearance of
new spectrum branch waves can be used for design and creation of the nonlinear
filter-converter that transforms the power harmonic wave to the nonlinear cnoidal
wave or spatial soliton. This transformation takes place in case when the input
harmonic wave has the carrier frequency in the polariton spectrum gap. The values
of perturbation parameters X and K determine the length of the filter-converter along
the axis of the wave propagation. Thus, the matching of the medium and input wave
parameters allows creating the concerned nonlinear filter-converter [37].

1.3 Vector Polariton Wave in Nonlinear Dielectric
Medium

It is well known that the plane harmonic wave is unstable in nonlinear medium [40,
41]. Instability of the plane wave depends on the field and medium parameters, and
it leads to transversal or longitudinal modulation and further transformation of the
plane wave to the spatial soliton, or to several polariton fluids due to the polariton
wave filamentation [41–45], i.e. to the appearance of nonlinear periodic cnoidal
wave at transverse plane. We consider the forming process of the transverse cnoidal
wave and spatial soliton from the harmonic plane polariton wave with the frequency
x in the nonlinear infinite dielectric medium with the third order susceptibility [42].

1.3.1 Theoretical Model of Nonlinear Polariton Wave

We consider a medium with local centers of inversion, i.e. the medium with
response of the third order susceptibility v3. We represent the medium polarization
vector (1.4) for harmonic electromagnetic field E� exp �ix tð Þ as

P ¼ v1Ea exp �ix tð Þ þ v31E
2
aEa exp �ix tð Þ; ð1:14Þ

and obtain the equation for vector polariton wave

�r2Eþr rEð Þ þ c�2 E
::
¼ �c�24p P

::
: ð1:15Þ
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The polaritons are generated as the bound states of transverse electromagnetic field
and optical phonons. Assuming that the electric field E ¼ 1xEx x; y; zð Þ þ
1yEy x; y; zð Þ is polarized in plane x; yð Þ we obtain from (1.15) the following set of
nonlinear equations

@2Ex

@y2
þ @2Ex

@z2
� @2Ey

@x@y
þ x2

c2
1þ 4pv1ð ÞEx þ 4px2v31

c2
Exj j2þ Ey

�� ��2� �
Ex ¼ 0;

@2Ey

@x2
þ @2Ey

@z2
� @2Ex

@x@y
þ x2

c2
1þ 4pv1ð ÞEy þ 4px2v31

c2
Exj j2þ Ey

�� ��2� �
Ey ¼ 0;

ð1:16Þ

where expressions for v1 and v31 are given after (1.4). In general case we can’t
neglect the mixed derivatives in (1.16) due to the permittivity of medium e depends
on coordinates. As it follows from the Maxwell equation r eEð Þ ¼ 0, the gradient
of the divergence of the electric field r rEð Þ 6¼ 0 doesn’t equal zero in (1.15),
because rE ¼ �e�1 Ereð Þ 6¼ 0 in this case.

1.3.2 The Equation for Envelopes of Vector Polariton Wave

The carrier harmonic may be described as Ex;y ¼ ~Ex;y x; y; zð Þ exp ik zð Þ, where
~Ex;y x; y; zð Þ are the slowly varying amplitudes of two transverse electric field
components, k is the wave vector along the axis z. If we neglect the second
derivatives on z from the slowly varying amplitudes ~Ex;y x; y; zð Þ, we obtain from the
equation set (1.16) the combined equations with mixed derivatives

i2k
@~Ex

@z
þ @2~Ex

@y2
� @2~Ey

@x@y
þ a3 ~Ex

�� ��2þ ~Ey

�� ��2� �
~Ex ¼ 0;

i2k
@~Ey

@z
þ @2~Ey

@x2
� @2~Ex

@x@y
þ a3 ~Ex

�� ��2þ ~Ey

�� ��2� �
~Ey ¼ 0;

ð1:17Þ

where a3 ¼ 4p c�2x2v31; the coefficient a3 [ 0 at v31 [ 0 in the self-focusing
medium, and a3\0 at v31\0 in the self-defocusing medium. The set of (1.17)
looks like the combined nonlinear Schrödinger-type equations describing the
nonlinear periodic and solitary polariton waves in nonlinear medium with the third
order susceptibility. But the mixed derivatives are absent in the set of Schrödinger
equations for wave function. In the special case of the absence of the mixed
derivatives of cross members, the equation set (1.17) describes the vector spatial
solitons in infinite dielectric nonlinear medium having researched in [41].

In the case when the vector polariton wave does not change the amplitude
~Ex;y x; y; zð Þ along the axis z, we can define the dependence of field on longitudinal
coordinate by the constant phase shift q as ~Ej ¼ ej x; yð Þ exp iqzð Þ, j ¼ x; y. In this
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case we obtain from the set (1.17) the equation set for complex transverse envelopes
of vector polariton wave

@2ex
@y2

� @2ey
@x@y

þ a1ex þ a3 e2x þ e2y
� �

ex ¼ 0;

@2ey
@x2

� @2ex
@x@y

þ a1ey þ a3 e2x þ e2y
� �

ey ¼ 0;

ð1:18Þ

where a1 ¼ c�2x2 1þ 4pv1ð Þ � k2 � 2kq. The equation set (1.18) may be repre-
sented as two uncoupled equations by introducing of turning coordinate axes (see
Appendix A). But we leave the combined (1.18) in order to analyze two compo-
nents of polariton wave describing the circular polarization.

1.3.3 Linearly Polarized Polariton Wave

1.3.3.1 Equation for Scalar Polariton Wave

If the polariton wave has the linear polarization, the set of (1.18) can be simplified.
The scalar equation of linear wave polarization, for example at the axis x assuming
ey ¼ 0, is

d2ex
dy2

� �a1ex þ a3e
3
x ¼ 0; ð1:19Þ

where the coefficient �a1 ¼ 2kqþ k2 � c�2x2 1þ 4pv1ð Þ[ 0 is greater than zero
because of the term 2kq. The physical meaning of the parameter a1 ¼ ��a1 is the
dispersion relation of the carrier frequency and wave vector in the medium.
Generally the parameter a1 can be greater, equal or less than zero depending on the
value of phase shift q.

The sign “plus” before the nonlinear term a3 [ 0 in (1.19) characterizes the
self-focusing medium. The linearly polarized polariton wave looks like the trans-
verse spatial bright soliton (see Appendix B) with polarization along the axis x,

~Ex y; zð Þ ¼
ffiffiffiffiffiffiffiffiffi
2�a1x
a3

r����
���� sch sch�1 e 0ð Þ

ffiffiffiffiffiffiffiffiffi
a3
2�a1x

r����
����� ffiffiffiffiffiffiffiffiffi

�a1xj j
p

y

� �
exp iqxzð Þ; ~Ey ¼ 0;

ð1:20Þ

where qx ¼ a3e2x 0ð Þ=2þ c�2x2 1þ 4pv1ð Þ � k2
	 


=2k. Besides the spatial solitons,
there is the cnoidal wave as the solution of (1.19) in the self-focusing medium. The
envelopes of cnoidal polariton waves (see Appendix B) with polarization along the
axis x has the form of elliptic cosine
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~Ex y; zð Þ ¼ ~e0x cn a02x =4þ C0
x

� � 1=4 ffiffiffiffiffi
a3

p
y� K ~kx

� �
; ~kx

� �
exp iqxzð Þ; ~Ey ¼ 0; ð1:21Þ

where ~e0x ¼ a0x=2þ a02x =4þ C0
x

� �1=2h i1=2
, a0x ¼ 2�a1x a3j j�1, C0

x ¼ 2Cxa�1
3 , Cx ¼

a3e4x 1ð Þ=2� �a1xe2x 1ð Þ, qx ¼ a3e2x 0ð Þ=2þ c�2x2 1þ 4pv1ð Þ � k2 � Cxe�2 0ð Þ	 

=2k,

K ~kx
� �

is the complete elliptic integral, ~kx ¼ 2þ a0x a02x =4þ C0
x

� ��1=2
h i1=2

=2 is the

modulus of elliptic integral. The polariton wave decomposes at the several flows in
the line of axis x, which are propagated along the axis z (Fig. 1.3).

The cnoidal wave, that described by (1.21) may be transformed to the spatial
soliton cn y; 1ð Þ ! 1= cosh yð Þ at ~kj ! 1, when the polariton wave envelope is
rapidly damped function e1 ! 0, i.e. Cx ! 0 at y ! 1.

In the self-defocusing medium at the sign “minus” before the nonlinear term
(a3\0) we obtain the solutions of (1.19) in the form of elliptic sine divided by
elliptic cosine

~Ex y; zð Þ ¼ ~~e0x

sn a0x=2þ a02x =4þ C0
x

� �1=2h i1=2 ffiffiffiffiffiffiffiffiffiffiffiffi
a3j j=2p

y; ~~kx

� �

cn a0x=2þ a02x =4þ C0
x

� �1=2h i1=2 ffiffiffiffiffiffiffiffiffiffiffiffi
a3j j=2p

y; ~~kx

� � exp iqxzð Þ; ~Ey ¼ 0;

ð1:22Þ

Fig. 1.3 The polariton wave with the envelope ex yð Þ: a one flat flow, b several flat flows;
(dimensionless units)
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where ~~e0x ¼ a0x=2� a02x =4þ C0
x

� �1=2h i1=2
, ~~kx ¼ 2 a02x =4þ C0

x

� �1=2h i1=2
a0x=2þ
	

a02x =4þ C0
x

� �1=2	�1=2. The constant C0
x determines the type of polariton wave. The

plane polariton wave splits to the narrow flows in the line of axis x, because the
function in (1.22) tends to infinity ~E yð Þ ! 1, when cn yf g ! 0. The wave
becomes instable close to the points, where cn yf g ! 0. The envelope represented

by (1.22) transforms to the hyperbolic sine sn y; 1ð Þ=cn y; 1ð Þ ! sinh yð Þ at ~~kx ! 1,
when C0

x ! 0, and gets zero value ~E yð Þ ¼ 0 at y ¼ 0.

1.3.3.2 Stability of the Scalar Polariton Wave

The transverse instability of the linearly polarized polariton wave can be examined
by small perturbation of envelope ~Ex ¼ e yð Þ þ u y; zð Þ½ 	 exp iqzþ iw y; zð Þ½ 	, where u
and w are the small perturbations. We obtain from (1.19) the linearized set of
equations by separated the real and imaginary parts

@2

@y2
þ a 0

� �
u� e00

@2

@y2
þ 2

@e00

@y
@

@y

� �
w ¼ 2ke0

@w
@z

;

e0
@2

@y2
þ 2

@e0

@y
@

@y

� �
w ¼ 2ke00

@w
@z

� 2k
@

@z
þ a00

� �
u;

ð1:23Þ

where a ¼ a0 þ ia00 ¼ 3a3e2 � �a1, the envelope e ¼ e0 þ ie00 represented by (1.20),
(1.21) or (1.22).

Consider the simple case. The field density e2 of spatial soliton or cnoidal wave
close to the longitudinal axis z at y ! 0 is the constant e 0ð Þ2 and e00 ! 0, then the
set of (1.23) looks like

@2

@y2
þ a0

� �
u ¼ 2ke0

@w
@z

; e0
@2

@y2

� �
w ¼ � 2k

@

@z
þ a00

� �
u: ð1:24Þ

We can represent the transverse perturbations as u ¼ u0 exp ik?yþ j zð Þ and
w ¼ w0 exp ik?yþ j zð Þ. In this case from the equation set (24) we obtain the
equation for j,

j2 þ a00=2kð Þjþ k2? k2? � a0
� �

=4k2 ¼ 0: ð1:25Þ

One can obtain from (1.25) the expression j ¼ � a00=2
 a002=4þ a0k2?�
�	

k4?Þ1=2	=2k for decrement �j or increment þj of the polariton wave. The value j
depends on the wave vector k? of transverse perturbation, field density e2 0ð Þ, and
medium parameters. The polariton wave damps at the negative value �j, and the
wave is unstable at the positive value þj describing the wave instability along the
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axis z due to the transverse perturbation; the phase modulation appears at
k4? [ a0k2? þ a002=4.

The wave envelope e� exp � a00=2
 a002=4þ a0k2? � k4?
� �1=2h i

L=2k
n o

is

proportional to the coefficients �a1, a3 and the wave density e2 0ð Þ, that’s why the
“life length” L of nonlinear polaritons is determined by the relation of real and
imaginary parts of a. The life length of nonlinear polariton wave is defined by the
inverse value L ¼ 1=j0 of the real part of decrement. The stability of polariton wave
can be achieved by the matching of the input wave and medium parameters.

1.3.4 Circularly Polarized Polariton Wave

The equation set (1.18) in Cartesian coordinates we can transform to the set of
equations for the polariton waves of circular polarization.

1.3.4.1 Equations for Vector Polariton Wave

We introduce the vector envelope for wave with the right spirality eþ ¼ ex þ iey ¼
e 1x þ i1y
� �

=
ffiffiffi
2

p ¼ e1þ (counterclockwise circular polarization), and with the left

spirality e� ¼ ex � iey ¼ e 1x � i1y
� �

=
ffiffiffi
2

p ¼ e1� (clockwise circular polarization);
also two dimensional rotating coordinates �n ¼ xþ iy, and �g ¼ x� iy. Than we
compound the equations obtained from the set (1.18) and get the set of complex
equations for envelopes of polariton waves with right eþ and left e� spiralities in
the rotating coordinates �n; �g

� �
,

@2eþ
@�n2

þ @2eþ
@�g2

þ i
@2e�
@�n2

� i
@2e�
@�g2

� 2
@2e�
@�n@�g

� a1 þ a3e
2

� �
e� ¼ 0;

@2e�
@�n2

þ @2e�
@�g2

þ i
@2eþ
@�n2

� i
@2eþ
@�g2

� 2
@2eþ
@�n@�g

� a1 þ a3e
2� �
eþ ¼ 0:

ð1:26Þ

The set of (1.26) describes the bound nonlinear polariton waves with right eþ and
left e� spiralities. One can restore the Cartesian coordinates x; yð Þ after obtaining
the solutions of equation set (1.26) in the rotating coordinates �n; �g

� �
.

We put the determinant Det eþ; e�ð Þ of the vector equation set (1.26) equal to
zero, and obtain the equation for envelope e �n; �g

� �
of polariton wave,

1� ið Þ @
2e

@�n2
þ 1þ ið Þ @

2e
@�g2

þ 2
@2e

@�n@�g
þ a1 þ a3e

2� �
e ¼ 0: ð1:27Þ
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Equation (1.27) in the rotating coordinates �n; �g
� �

describes the polariton flow
composed of the polaritons with both the right and left spiralities. From (1.27) we
can obtain the equation for envelope of the “scalar” polariton flow, for example with
the right spirality eþ ¼ e �n

� �
, depending only on the right spirality coordinate �n,

d2eþ
d�n2

þ a þð Þ
1 eþ þ a þð Þ

3 e3þ ¼ 0; ð1:28Þ

where a þð Þ
1 ¼ 1þ ið Þ a1=2, a þð Þ

3 ¼ 1þ ið Þ a3=2. We obtain the solution of (1.28) for
the right spirality polaritons in the self-focusing medium at a1 ¼ ��a1, a3 [ 0
similar to the solutions of (1.19) in the form of (1.20) or (1.21), and in the
self-defocusing medium at a1 ¼ ��a1, a3\0 such as (1.22) for the boundary con-
ditions e1 ¼ const, de=d�n ¼ 0 at �n

�� ��! 1 or �gj j ! 1. The elliptic sine and
cosine are the functions of the complex argument with double period [46]. The
envelopes of the scalar polariton wave with the right or left spirality decompose to
the square grid of polariton flows in the transverse plane x; yð Þ (Fig. 1.4).

In general case we obtain the solution of normalized by
ffiffiffiffiffiffiffi
a1j jp

(1.27) for the
“vector” polariton wave e �n; �g

� �
depending on the right and left spirality coordi-

nates. We obtain the solution at a1 [ 0, a3 [ 0,

e ��n; ��g
� �

¼ i

ffiffiffiffiffiffiffi
a1j j
a3j j

s
tanh C1 þ C2

��nþ i
2

C2 iþ 1ð Þ � i� 1� i2C2
2

� �1=2h i
��g

� �
;

ð1:29Þ

where ��n ¼ ffiffiffiffiffiffiffi
a1j jp

�n, ��g ¼ ffiffiffiffiffiffiffi
a1j jp

�g. The constants C1 and C2 are determined by the
boundary conditions at �n ¼ 0 and �g ¼ 0 for the polariton wave. For example, if the

Fig. 1.4 The square grid of
polariton flows at the scalar
polariton wave with the
envelope Re e �n

� �
, where

�n ¼ xþ iy; (dimensionless
units)
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value of envelope at longitudinal axis z is e 0; 0ð Þ ¼ Re i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1j j= a3j jp

tanh C1ð Þ
h i

¼ 0,

it allows to determine the constant as C1 ¼ 0, and C2 ¼ 1. We obtain from (1.29)

e ��n; ��g
� �

¼ i

ffiffiffiffiffiffiffi
a1j j
a3j j

s
tanh ��nþ 1

2
i� 1þ ffiffiffiffiffiffiffiffiffiffi

iþ 1
p	 


��g

� �
: ð1:30Þ

Equation (1.27) has the solutions at a1 ¼ ��a1, a3 [ 0 in self-focusing medium as

e ��n; ��g
� �

¼
ffiffiffiffiffiffiffi
�a1
a3j j

s
tanh ��nþ 1

2
i� 1� i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 3i

ph i
��g

� �
; ð1:31Þ

and at a1 ¼ ��a1, a3\0 in self-defocusing medium as

e ��n; ��g
� �

¼ i

ffiffiffiffiffiffiffi
�a1
a3j j

s
tanh ��nþ 1

2
i� 1� i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 3i

ph i
��g

� �
: ð1:32Þ

The envelopes described by (1.30)–(1.32) have the form of row of polariton flows
in the transverse plane (Fig. 1.5).

1.4 Conclusion

We have shown theoretically that the dispersion of the third order susceptibility
leads to the appearance of new branches in the polariton spectrum in nonlinear
dielectric medium. The new branches appear in the polariton spectrum gap, when
the electromagnetic field density increases. In other words one high frequency

Fig. 1.5 The row of polariton
flows at the vector polariton
wave with the envelope

Re e ��n; ��g
� �

, where
��n ¼ ffiffiffiffiffiffiffi

a1j jp
xþ iyð Þ,

��g ¼ ffiffiffiffiffiffiffi
a1j jp

x� iyð Þ;
(dimensionless units)
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polariton decays to three low frequency polaritons under the influence of the third
order susceptibility of the dielectric medium. The polariton waves of new spectrum
branches damp more rapidly, because they depend on the nonlinear medium
properties and the wave intensity. The instability of polariton wave depends on the
field density. The perturbations excite the longitudinal modulation wave instability
leading to the appearance of cnoidal waves and solitons. We’ve examined the
generation of the polariton continuous waves in the spectrum gap of the nonlinear
medium and their perturbations at the propagation in the non-resonance case.

The model of nonlinear polariton waves allows predicting the new effects of
nonlinear wave and their applications in bulk dielectric media. The plane polariton
wave is unstable in nonlinear medium, its transverse envelope can transform to the
cnoidal wave or spatial soliton in the self-focusing medium. The forms of transverse
envelopes of linearly polarized polariton waves may be represented by the hyper-
bolic secant (the soliton) or elliptic cosine (the cnoidal wave) in the self-focusing
medium. In the first case the polaritons propagate as the single flow, in the second
case the polariton wave decomposes into the several flat flows. In the
self-defocusing medium the plane polariton wave splits to the narrow flows in
transverse plane. We obtain the analytical cnoidal and soliton solutions for trans-
verse envelope in the forms of square grid for the nonlinear scalar waves consisting
of polaritons with the right or the left spirality only. We also obtain the analytical
solution for transverse envelope of the nonlinear vector polariton wave consisting
of polaritons with both the right and left spiralities in the form of row of the
polariton flows. The stability of the polariton wave can be achieved by the matching
of input wave and medium parameters.

Thus, the form of transverse envelope of polariton wave depends on the wave
intensity and parameters of medium, and it can be modified by changing the
intensity of input wave or the medium parameters at the wave propagation. These
properties of the polariton wave in nonlinear dielectric medium may be used for
designing new optical devices such as the optical converter, controllable filter,
all-optical logic gates, etc.

Acknowledgements The author is grateful to Anton S. Desyatnikov for fruitful discussions of the
work, and Tatiana Nurieva for the help of paper preparing, and Olga Karakchieva for the help of
plotting.

Appendix A

The set of (1.18) can be simplified for linearly polarized wave by turning of the
coordinate axes at the angle p=4,

� @

@y
@e
@x

� @e
@y

� �
þ a1 þ a3 ej j2
� �

e ¼ 0;
@

@x
@e
@x

� @e
@y

� �
þ a1 þ a3 ej j2
� �

e ¼ 0;
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where e ¼ ffiffiffi
2

p
ex ¼

ffiffiffi
2

p
ey. Introducing the “light-cone” coordinates n ¼ xþ yð Þ=2

and g ¼ x� yð Þ=2 we obtain two uncoupled scalar equations

@2e
@g2

þ 2 a1 þ a3 ej j2
� �

e ¼ 0;
@2e
@ng

¼ 0:

The first equation of equations has the cnoidal or soliton solutions e gð Þ, the second
equation has the solution e gð Þ ¼ e x; yð Þ describing a one-dimensional wave varying
in a single direction g.

Appendix B

The first integral of the equation d2e=dx2 � �a1eþ a3e3 ¼ 0 looks like
de=dxð Þ2¼ �a1e2 � a3e4=2þ C, where C is an integration constant.
The boundary conditions for soliton e ! 0, de=dx ! 0 at xj j ! 1 allow to

define the integration constant as C ¼ 0 [41]. The boundary conditions e 0ð Þ ¼
const and de 0ð Þ=dx ¼ 0 for soliton centre x ¼ 0 allow to define the phase shift as
q ¼ a3e2 0ð Þ=2þ c�2x2 1þ 4pv1ð Þ � k2½ 	=2k in case without perturbation. The
second integral of the equations for bright soliton looks like

ffiffiffiffiffiffiffiffiffiffi
a3=2

p
x ¼R

e�1 a0 � e2ð Þ�1=2
de, where a0 ¼ 2�a1a�1

3 , and after its integration we obtain
e xð Þ ¼ ffiffiffiffi

a0
p�� ��sch sch�1 e 0ð Þ= ffiffiffiffi

a0
p�� ��� ffiffiffiffiffi

�a1
p

x
� �

.
If we choose the boundary conditions as e ¼ const, de=dx ¼ 0 at xj j ! 1, i.e.

the integration constant is not equal zero C ¼ a3e41=2� �a1e21, we obtain the
cnoidal wave. In this case the phase shift at the boundary conditions e 0ð Þ ¼ const
and de 0ð Þ=dx ¼ 0 is equal q ¼ a3e2 0ð Þ=2þ c�2x2 1þ 4pv1ð Þ � k2�½
Ce�2 0ð Þ	=2k. Then the second integral of the equations for cnoidal wave looks likeffiffiffiffiffiffiffiffiffiffi

a3=2
p

x ¼ R e0 C0 þ a0 e2 � e4ð Þ�1=2de, where C0 ¼ 2Ca�1
3 .
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Chapter 2
Organic Nanomaterials with Two-Photon
Absorption Properties for Biomedical
Applications

Laura Aparicio-Ixta, Mario Rodriguez and Gabriel Ramos-Ortiz

Abstract During recent years there have been notorious advances in the devel-
opment of organic molecules and π-conjugated polymers with two-photon activity,
i.e., emission of fluorescence promoted by the molecular absorption of two photons.
Novel organic materials have reached very large two-photon activity, and many of
them have been processed successfully into nanostructured platforms. In contrast to
their inorganic counterpart, organic nanoparticles with photonic properties is a topic
that so far has not been well explored, although deserves big potential in biomedical
applications. This chapter presents recent advances in this field, particularly, in the
use of organic nanoparticles as contrast agents to obtain bioimages.

2.1 Introduction

In the last two decades organic molecules have emerged as interesting active
materials for diverse applications. When these molecules comprise π-conjugated
systems their optical and electric properties can be enhanced. One of the most
useful optical properties exhibited by these molecules is the two-photon absorption
(TPA) process.

The number of organic compounds that exhibit TPA have increased rapidly in
recent years, with a variety of photonic and biological applications such as
two-photon laser scanning microscopy [1], frequency upconversion lasing [2, 3],
optical power limiting [4], 3-D microfabrication [5], high density optical storage [6],
sensors [7] and photodynamic therapy [8, 9]. Among these applications, two-photon
laser scanning microscopy, or simply two-photon microscopy (TPM) has gained
great acceptance in biomedical community as a tool able to provide direct obser-
vation of cells or subcellular structures, tissue and biological processes. This tech-
nique is based in the use of molecules that exhibit strong luminescence induced by
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TPA and offers several advantages such as high resolution, high penetration depth in
tissue, weak photobleaching and weak autofluorescence, minimal phototoxicity and
excitation confinement exclusively to the focal plane.

This chapter will cover recent advances in organic materials with TPA and
fluorescent properties and how they can be processed into different platforms, i.e.,
nanostructures, in order to confer them utility in biomedical applications. Figure 2.1
presents schematically the approach followed in this field, which consists in the
development of novel organic molecular systems, the subsequent characterization
of their nonlinear optical properties, and the methodologies to process them and
confer them enough biocompatibility to be inserted on biological media. This
chapter presents information on organic nanoparticles with luminescent and non-
linear absorption properties intended to obtain bio-images by using TPM. This type
of microscopy technique was reported nearly twenty five year ago and it utilizes the
localized luminescence induced by nonlinear absorption [1]. So far, TPM utilizes
commercially available contrast agents or markers, but these are dyes with rather
weak TPA activity. This open the opportunity to develop novel contrast agents or
markers based nanostructured organic materials, with enhanced optical character-
istics and multifunctionality.

It should be noted that organic nanoparticles is a topic which has not been
explored so extensively as their inorganic counterpart (metallic, semiconductor and
metallic oxide nanoparticles). The good luminescent and nonlinear properties,
combined with low cost, less toxicity that inorganics and relatively easy synthesis,
makes that of organic nanoparticles deserve enormous potential in biomedical
applications such as TPM. To further exemplify the use of TPA activity in organics,
this chapter will also cover partially photodynamic therapy (PDT) which is utilized
for the treatment of cancer.

Fig. 2.1 Scheme followed in
the development of organic
nanomaterial with TPA
properties and their
application in two-photon
microscopy (TPM) and
two-photon photodynamic
therapy (PDT)
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2.2 Two-Photon Absorption Process

The molecular TPA property is defined as the electronic excitation that is induced
by a simultaneous absorption of a pair of photons with the same or different energy
(Fig. 2.2). This phenomenon was first predicted in 1931 by Göppert-Mayer [10]
who calculated the transition probability for the absorption of two quantums of
energy. In this process a photon first interacts with the molecule and promotes a
transition from ground state to a temporary virtual state of higher energy. This is not
a real state of the molecule and it exists only for a short time interval (*10−15–
10−16 s for photon energies in the visible and near-IR ranges) [11]. If during this
interval of time other photon interacts with the molecule, the excited state can be
achieved. The adjective “simultaneous” for TPA is used to indicate that the two
photons interact with the molecule within the interval of time above mentioned and
that no real states act as intermediate states in this process.

The TPA is a third-order non-linear optical process whose magnitude is pro-
portional to the square of the light intensity. The magnitude of TPA can be
quantified by introducing the parameter called TPA cross section (σTPA). This
parameter is usually expressed in Goppert-Mayer units:
1 GM = 10−50 cm4 s/photon. Several techniques have been used to measure the
two-photon excitation cross sections of various materials for more than two dec-
ades. The two main techniques for measuring σTPA are Z-scan [12–14] and
two-photon excited fluorescence (TPEF) [15], although exist others methods as
thermal lensing [16, 17] and photoacoustic measurements [18].

Z-scan is a direct method to determine the non-linear absorption in bulk mate-
rials [12–14]; this technique consists in monitoring the transmittance of the sample
under test as a function of the incident intensity of a laser beam. In the practice this
can be achieved by varying the position Z of the sample in the vicinity of a focused
Gaussian beam, hence the term “Z-scan”. See Fig. 2.3. The Z-scan curve obtained is

Fig. 2.2 Schematic energy level diagram showing the excitation process of a molecule from the
ground state, S0, to an excited state, E1. The photons can have the same energy (degenerate case),
or different energies (non-degenerate case)
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symmetrical with respect to the focus (z = 0), with a minimum in the transmittance
(multiphoton absorption). The normalized transmittance is given by:

T zð Þ ¼ 1� 1
23=2

rTPA
CNA

�hx
I0Leff

1þ z
z0

� �2 ;

where C is the concentration of the material (usually organic materials are char-
acterized in solution), NA is Avogadro’s number, ω is the optical frequency of the
laser, z0 the Rayleigh range of the beam, I0 the peak intensity at z = 0 and Leff the
effective thickness of sample. With this technique σTPA is determined straightfor-
wardly when short laser pulses (femtosecond or picosecond) are employed by just
fitting experimental data to the expression given above. The use of nanosecond
pulses can lead to an overestimation for the σTPA since other effect different than
simultaneous TPA can also be present.

The TPEF technique is another procedure for determining σTPA and consists in
measuring the fluorescence signal generated from a solution of the material under
tests after it is excited by TPA. From the two-photon fluorescence signal a TPE
(two-photon fluorescence excitation) cross section σTPE can be determined.
A representative experimental setup is showed in Fig. 2.4. The σTPE is linearly
proportional to σTPA with the constant of proportionality being the fluorescence
quantum yield (η) of the sample σTPE = η σTPA.

Some variants of this experiment have been developed since it was first reported
by the Group of Webb [15, 19]. However, if a standard calibration sample of known
σTPE and spectra is available, then the simplest approach is to compare the
two-photon excited fluorescence spectra of the sample with the reference sample
tested under identical conditions. With this method is possible to cancel automat-
ically a large number of variables. For instance, it is not necessary to know
parameters related to the excitation (pulse energy, pulse duration, and temporal
intensity distribution) [20]. The equation to calculate the TPA cross section is
given by:

Fig. 2.3 Z-scan technique. The energy of a train of pulses is kept constant, but changes in
intensity are achieved by moving the sample along the direction Z. The transmittance is measures
at each z position of the sample
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rTPA kð Þ ¼ rTPAðref Þ kð Þ gref kð ÞCref

g kð ÞC
F tð Þh i
F tð Þh iref

nref
n

;

where C denotes the concentration of solution, FðtÞh i is the time averaged fluo-
rescence emission, n is the refractive index of the sample, and k is the excitation
wavelength. The subindex ref denotes the parameters for the dye used as reference
or standard.

The principal drawback of the TPEF method is that it cannot be used for
non-fluorescing or weakly fluorescing materials. TPEF is also difficult to implement
in compounds that exhibit wavelength-dependent emission (in either band shape or
efficiency) or dual emission, as well as in solid-state samples. In those cases the use
of Z-scan is more convenient.

A wide range of organic molecules with large TPA activity have been studied
experimentally employing Z-scan and TPEF techniques. In the following section
we present some representative samples.

2.3 Design Strategies and Structure–Property
Relationships for Organic Molecules

Many organic molecules and polymers having electronic π-conjugated systems in
their structure have showed large nonlinear optical properties. So far, the largest
values of σTPA reported in the literature are in the range of 102–104 GM. The
number of examples within this range of nonlinearities has increased notably during
the last three lustrums, and scientists have designed different family of molecules to
achieve these values. A large number of scientific articles that report new TPA
organic fluorescent materials are oriented toward the in vivo or in vitro imaging of
bio specimens, as well as the diagnosis of diseases. For these applications it is

Fig. 2.4 Typical TPEF experimental setup to measure the σTPA in organic materials. The
photoluminescence promoted by the absorption of two photons in a solution of the material under
test is detected and compared with that from a standard tested under the same experimental
conditions
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necessary to have organic molecules with high quantum yield and large TPA cross
section values, in addition to low cell-toxicity and compatibility with aqueous
media. In particular, the architecture of organic molecules that have been investi-
gated for their two-photon absorption and fluorescent properties could be classified
in two principal groups: (a) linear and (b) two-dimensional architectures. For both
structures there are some requirements for maximizing the TPA cross-section
response: a long conjugated π-backbone system with a planar conformation; the
presence of electron-donor (D) and electron-acceptor (A) groups able to promote an
intense displacement of charge during the transition from the donor-centered
HOMO (highest occupied molecular orbital) to the acceptor-centered LUMO
(lowest unoccupied molecular orbital) [20]. The energy difference between the
HOMO and LUMO is the optical gap corresponding to the excitation transition
promoted by TPA. Depending on symmetry of the organic molecule, this gap can
be the same or different than that promoted by one photon transition (linear
absorption). For instance, in centrosymmetric molecules the maximum TPA usually
appears at higher energies than the peak corresponding to the one-photon absorp-
tion transition. This is because one-photon and two-photon transitions are regulated
by different dipole selection rules.

In the case of organic chromophores with linear architecture, including polymers
and small molecules, effective molecular architectures have been used to enhance
the two-photon absorption. Arrangement such as donor–bridge–acceptor (D–π–A)
dipolar structures (Fig. 2.5a), donor–bridge–donor (D–π–D), acceptor–bridge–
acceptor (A–π–A), donor–acceptor–donor (D–π–A–π–D) and acceptor–donor–
acceptor (A–π–D–π–A), the latter four corresponding to quadrupolar structures
(Fig. 2.5b, c), have been designed and synthesized [21–23]. In this context the term
bridge refers to a π-backbone system. The appropriate donor-acceptor architecture
in organic π-systems can enhance the TPA activity through an increase in the
transition dipole moment or the dipole moment difference between the ground state
and excited state. Experiments indicate that quadrupolar architectures in some cases
are more efficient that dipolar ones. For quadrupolar systems the best results have
been obtained for architectures containing D groups in the periphery and A in the
core. For molecules that possess two dimensional structures the best results cor-
respond to architectures containing an A group in the core and D groups in a
multi-branched configuration (Fig. 2.5d). These type of structures have octupolar
response A–(π–D)3. Typical D groups are amino moieties as diphenylamino

Donor

(a)
(b)

(c)

(d)

Acceptor

Fig. 2.5 Molecular architectures for the optimization of TPA responses in organic compounds:
a dipolar, b, c quadrupolar, d octupolar
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(NPh2), dimethylamino (NMe2) or diethylamino (NEt2) which are the most
employed, while some of the fragments used as A are antracene, fluorine, benzo-
thiadiazole, triazyne, porphyrine or bodipys derivatives. For the π-bridge between D
and A is common to utilize aromatic (phenyl or fluorene) or heteroaromatic rings
(thiophene) to favor the planar structure. However, some reports indicate that
carbon triple bond is also an excellent π-bridge. Figures 2.6 and 2.7 presents
examples of organic molecular systems with dipolar, quadrupolar and octupolar
character. These organic systems include fluorene based molecules and polymers,
porphyrines, bodipy’s, dendrimers, etc. and have large TPA activity with linear
(Fig. 2.6) and two-dimensional (Fig. 2.7) designs.

Upon excitation, molecules with TPA properties undergo substantial intramo-
lecular charge transfer (ICT) over the π-backbone. Enhancement of the σTPA is
achieved with a correct design of the molecular structure able to modify properly the
ICT. The environment is a factor that can affect the ICT process and in turn the
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Fig. 2.7 Two-dimensional structures of organic molecules with TPA properties

32 L. Aparicio-Ixta et al.



nonlinear optical response. For instance, the linear TPA dye 8 having dipolar
architecture showed intense solvatochromic effect such that in cyclohexane
(non-polar solvent) solution exhibits a large σTPA value of 6670 GM which is
reduced in DMF (high polar solvent) to 1450 GM. In low polar solvents, such as
toluene, the linear quadrupolar structure 17 showed σTPA of 7080 GM while the
two-dimensional molecule 23 has an acceptable σTPA of 5300 GM. Other
two-dimensional structures show much higher optical nonlinearities than linear
structures. Examples of the latter are polymers with quadrupolar architectures (29)
and dendrimers (32) which in different solvents exhibit interesting values of 9860
and 56,000 GM, respectively.

It must be observed that in general the organic molecules are hydrophobic and
soluble only in highly toxic solvents. To emphasize this fact, Table 2.1 summarizes
the main optical properties of the molecules shown in Figs. 2.6 and 2.7 and the
cases in which the molecules can be processed into nanoparticles (NPs) susceptible
to be suspended in biocompatible media, i.e., aqueous solutions. Also, as a refer-
ence, the Table 2.1 includes the nonlinear optical properties of representative
inorganic nanomaterials, i.e., quantum dots (QD) and gold nanorods which are also
being studied extensively in the literature for biomedical applications.

Usually organic molecules and polymers, as those shown in Figs. 2.6 and 2.7,
exhibit one-photon excitation (linear absorption) in the UV-Vis of the spectrum.
Accordingly, their maximum two-photon excitation (assuming that the peak of the
two-photon absorption spectrum is located at twice the wavelength of the
one-photon absorption) occurs in the Vis-IR range. For biomedical applications, the
interest is focused in molecules with TPA in the red and near-infrared region (650–
1000 nm). Effective two-photon excitation at this range of wavelengths is observed
with organics with relative small optical band gap. Further, the effectiveness in
nonlinear absorption must be accompanied by a second molecular functionality. For
instance, when a molecule or polymer is intended as a fluorescent label or contrast
agent in multiphoton microscopy, it needs to exhibit a large value of quantum yield,
η. This is not always achieved, as it can be observed in Table 2.1. Sometimes, large
σTPA values are obtained in detriment of η. In these cases, or in other cases where
the needed functionality is other than fluorescence, the energy transfer concept can
work satisfactorily. For instance, an effective fluorescent dye (energy acceptor) with
poor two-photon activity is indirectly excited through resonant energy transfer from
an effective TPA dye unit (energy donor). This concept will be further exemplified
in the last section of this chapter for the application of photodynamic therapy.

2.4 Methods Used to Incorporate TPA Materials
in Aqueous Suspensions

As mentioned in the previous section, intense studies have been focused on
developing efficient TPA organic molecules that can be excited in the 650–1000 nm
region, since they deserve potential application in two-photon microscopy
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Table 2.1 TPA properties of organic materials shown in Figs. 2.6 and 2.7

Organic
Material

Quantum yield
(η)

σTPA (solution)
GM/technique

σTPA (NPs) GM Reference

Linear structures

1 0.025 (in
solution)
0.13 (NPs)

172/Nonlinear
transmission

217 [39]

2 1 (solution)
0.49 (SNPs)

*400/TPEF – [59]

3 0.65 (solution)
0.28 (SNPs)

1200/TPEF 1000 [37]

4 0.87 (solution)
0.83 (NPs)

1000/TPEF 514 [30]

5 0.03 (solution) 2800/TPEF – [76]

6 0.082 (solution) 5250/TPEF – [77]

7 0.027 (solution) 5956/TPEF [78]

8 0.805 (solution) 6670/TPEF – [79]

9 0.61 (solution) 10,870/Z-scan – [80]

10 – 17,000/TPEF – [81]

11 *0.5 (aqueous
solution)
1.0 (ACN
solution)

3000 ACN/TPEF
*6000 Water/TPEF

[82]

12 – 9100/Z-scan – [83]

13 – 13,200/Z-scan – [83]

14 – 41,200/Z-scan – [83]

15 – 93,600/Z-scan – [84]

16 0.017 (solution) 1.0 × 106/TPEF
(5.3 × 104/dimer)

– [85]

17 *0.25 (in
toluene)
0.08 (SNPs)

*7080/TPEF 6800 [86]

18 – TPEF 200,000/particlea [87]

19 0.99 (solution) 128 – [88]

20 0.05 (solution)
0.16 (NPs)

264/TPEF – [40]

Two-dimensional materials

21 – 1100/Z-scan – [89]

22 0.43 2990/TPEF – [90]

23 0.86 (solution)
0.56 (NPs)

5300/TPEF 2790 [31]

24 0.25 (NPs) TPEF 2015 (covered with
DSPE-PEG)
2241 (without
DSPE-PEG)

[51]

0.009 (solution)
0.4 (NPs)

8629/Z-scan – [91]

(continued)
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(TPM) and photodynamic therapy [24]. For these kind of applications is mandatory
that the molecules can show excellent TPA activity in aqueous medium, however,
most of them are hydrophobic and those that are soluble in water commonly exhibit
low values of σTPA and η [15, 25, 26]. For instance, water-soluble TPA dyes with
σTPA * 300 GM have been used as fluorescent markers in biological media [27]. It
is important to notate that water not only has a high dielectric constant, which
influences the ICT, but it is also capable of producing effective hydrogen bonding
and can therefore interact with donor groups in the ground and the excited state
[26]. The hydrophobic nature for most of the TPA organic molecules means that
organic polar solvents as tetrahydrofuran (THF), dimethylsulfoxide (DMSO),
dichloromethane (DCM) or dimethylformamide (DMF) are required to prepare
molecular solutions. These and other solvents imply high cytotoxicity. For this
reason, a strategy based in the concept of water-dispersible fluorescent organic
nanoparticles which are purely composed of hydrophobic molecular aggregates has
been studied [28]. This approach works fine, although sometimes promotes
aggregation-induced quenching (AIQ) and severe reduction of fluorescence inten-
sity is detected (see Table 2.1). Recently, a new category of TPA fluorescent dyes
with exactly the opposite characteristic to the AIQ, aggregation-induced emission
(AIE), has been developed [29]. In this context an excellent option is to develop

Table 2.1 (continued)

Organic
Material

Quantum yield
(η)

σTPA (solution)
GM/technique

σTPA (NPs) GM Reference

25 0.57 9068/TPEF – [92]

26 0.49 (solution)
0.22 (NPs)

25,000/TPEF 9750 [93]

27 – 25,318/Z-scan – [94]

28 0.55 11,000/TPEF – [95]

29 1 (solution)
0.95 (NPs)
0.75 (SNPs)

9860/TPEF 8481 (NPs)
8686 (SNPs)

[41]

30 – 43,000 – [83]

31 0.36 (solution) 435/TPEF 87,000 [96]

32 0.48–0.75 *56,000 GM/TPEF – [97]

33 0.09 (CPNs) – 11,000/TPEFa [52]

Inorganic materials

Au
(nanorods)

– – 2320/TPEFa [98]

CdSe-ZnS
(QD)

– – 47,000/TPEFa [99]

These properties correspond to materiales in molecular solution and in the form of nanoparticles
aIn these cases it is reported the two-photon fluorescence excitation cross section σTPE, namely the
product between σTPA and η
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active TPA materials with high σTPA and η values such that when they are dispersed
in water maintain their optical properties. In this section we will mention some
methods that have emerged to incorporate hydrophobic materials into aqueous
suspensions. These methods comprise the fabrication of organic nanomaterials in
the range from 1 to 100 nm. Figure 2.8 presents schematically different possibilities
to generate nanoparticles, i.e., nanoaggregates (NPs), nanoparticles covered by a
biocompatible polymer (NPs-PEG) and fluorescent silica nanoparticles (FSNPs).

From the four preparation methods schematized in Fig. 2.8, the reprecipitation
technique is the most facile and commonly used to assist the formation of NPs in
aqueousmedia.Reprecipitationmethod induces the formationof nano-size aggregates
that canbe stabilizedwith a surfactant agent (CTAB, tritonX-100, albumin,SDS, etc.).
The use of surfactants not only stabilizes the suspensions but also protects the surfaces
of the formed fluorescent NPs. According to experimental results, these NPs tend to
conserve the nonlinear properties showed by the correspondingmolecules in solution,
although in some cases they showed high cytotoxicity [29, 30]. Recently, it has been
demonstrated that the hydrophobic TPA material 23 (see Fig. 2.7; Table 2.1) can be
nanostructured by the use micelles generated by dispersing an amphiphilic block
copolymer, namely poly(methacrylic acid)-block-polystyrene (PMAA-b-PS), into
water. The σTPAvalues for23 in toluene solution is of 5300GMand after it is processed
into nanoparticles still exhibits a large σTPA (2790GM) and high η (0.56) [31]. Another
polymer used for the fabrication of NPs dopedwith hydrophobic TPA dyes is the poly
(D,L-lactide-co-glycolide)whichhas theadvantageof increasing thecompatibilitywith
biological environmental conditions [32].

To further reduce the cytotoxicity of NPs and increase their circulation time
in vivo studied, they can be encapsulated with polyethylene glycol (PEG). PEG is
considered an ideal biocompatible polymer with low toxicity and high water solu-
bility. Some attractive TPA chromophores as silole and hexa-peri-hexabenzocorone

Fig. 2.8 Scheme of different methods to fabricate nanostructures from TPA chromophores
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(*1000 GM) have been covered with PEG derivatives to form NPs-PEG with
nonlinearities *350 GM [33, 34].

It is important to note that specific inorganic materials, such as calcium phos-
phate, have been also used as shells of TPA organic materials to reduce the toxicity,
protect and improve their transportation in biological medium. In particular, the
inherent properties of calcium phosphate accentuate the potential of this system to
enclosed low-weigh organic TPA dyes. A general method to encapsulate small
fluorescent organic molecules in well-disperse calcium phosphate nanoparticles
with diameter under 100 nm was reported [35].

The doping of fluorescent TPA materials (inorganic and organic) into silica NPs
is also well-established in the literature. The fabrication of these fluorescent silica
nanoparticles (FSNPs) is performed by using a microemulsion method. The
advantages of FSNPs are their optical transparency, nonantigenicity, and rich sur-
face chemistry for facile bioconjugation. The silica shell protects the dyes from
photobleaching and prevents their interaction with the biological environment. The
absorption and emission of the nanoparticles are determined by the properties of
encapsulated fluorophores. One of the major disadvantages of using this type of
nanoparticles is the phenomenon of aggregation induced fluorescence quenching of
the loaded materials [36]. Organic chromophores can also be covalently encapsu-
lated in silica nanoparticles. As an example of this, we can mention the photo-
sensitizer 3 whose TPA properties were retained in the FSNPs, with approximately
1000 GM per unit [37, 38], although the total value per nanoparticle was estimated
to be of the order of 8 × 106 GM. The TPA dye 9,10-bis[4′-(4″-aminostyryl)styryl]
anthracene derivative (1) reported by Sehoon Kim et al., showed AIE in the
aggregated state. The value of TPA cross-section of 1 in the aggregated state is 217
GM at 775 nm. This TPA dye was used to fabricated organically modified silica
(ORMOSIL) nanoparticles with diameter <30 nm [39].

Our group has oriented investigations in the development of fluorescent TPA
chromophores (small organic molecules, dendrimers and polymers) for the fabri-
cation of NPs, NPs-PEG and FSNPs. For instance, we demonstrated that TPA
properties of dye 4 (η = 0.87, σTPA = 1000 GM in THF) with architecture D-A-D is
reduced with solvent polarity and hydrogen bonding. However, the formation of
aggregates improve the photostability and tend to retain the third-order nonlinear
properties (η = 0.83, σTPA = 514 GM in water) [30]. In addition, typical fluorescent
chromophores as BODIPYs have been encapsulated with PEG polymers for
bio-imaging applications, see for instance 20 [40]. Similarly, the polymer 29 was
investigated in organic solvents and in the form of aggregated and encapsulated
structures. In this case, such a polymer showed excellent optical properties, i.e.,
σTPA = 9860 GM and η = 1 in THF. When the polymer was processed into NP by
using the reprecipitation method with CTAB as surfactant, the values of these
optical parameters were σTPA = 8481 GM and η = 0.95. Further, for FSNPs fab-
ricated by microemulsion technique the two-photon activity remained similar:
η = 0.75, σTPA = 8686 GM. In addition, the photostability of 29 increased from THF
solutions to silica nanoparticles comprising also high cell viability. With the use of
this polymer we exemplified that is possible to process polymers into
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nanostructures such that their TPA activity is conserved while simultaneously the
requirements for biomedical applications are satisfied. These advantageous char-
acteristics of polymer 29 were used to implement it as sensitive fluorescent contrast
agent in TPM for the imaging of lung cancer cell line (A549) and human cervical
cancer cell line (HeLa cells), as it is presented in Sect. 2.5 [41]. Thus, for TPM
application is important that organic molecules maintain their TPA effect when they
are processed into nanostructures. Other examples of organic molecules that tend to
maintain their TPA activity are the molecules 1, 3 and 17 (see Table 2.1). Contrary
to this examples, other molecules exhibit detriment of such nonlinear optical
property, see for instance the cases of 4, 23 and 26.

2.5 Biological Applications of TPA Organic Molecules

For organic NPs there are several scientific applications in biomedicine [42]. In this
section we briefly describe those associated with TPA properties: two-photon laser
scanning microscopy and photodynamic therapy.

2.5.1 Two-Photon Microscopy (TPM)

Fluorescent microcopy is one of the most versatile techniques in biomedical
research. TPM is a three-dimensional imaging technology that was first demon-
strated by Denk et al. [1] and is based on the detection of the fluorescence induced
by TPA in biomedical samples. For instance, several biological systems often
possess endogenous fluorophores, proteins such as tryptophan, tyrorosine, phyco-
erythrin and green fluorescent protein (GFP), neurotransmitter serotoin, coenzyme
nicotinamide adenine dinucleotide phosphate [NAD(P)H], etc., such that they
represent the source of fluorescence. Exogenous fluorophores can be also artificially
added to the biological system under study to enhance the level of signal. The
fluorescence produced either by exogenous or endogenous agents provides a direct
mechanism for the visualization of cells or subcellular structures, tissue, biological
processes and clinical imaging. It should be noted, however, that exogenous
fluorophores can surpass in various orders of magnitude the TPA activity of
endogenous ones.

To implement TPM a focused laser beam of long wavelength is used to scan the
sample under study. In most of the cases the biological sample is stained with an
exogenous fluorophores. The excitation is absorbed by the sample via the TPA
exhibited by a fluorophore and the emitted fluorescence is collected to create an image
point apoint of the sample.TPMoffers anumberof uniqueadvantages, suchas reduced
specimen photodamage, excitation at low energies (typically infra-red wavelengths)
with emission in the visible, enhanced penetration depth, three-dimensional locali-
zation of the excitation volume, and high signal-to-background ratio fluorescence

38 L. Aparicio-Ixta et al.



detection [43]. Some of these advantages are consequence of the fact that being the
TPA a nonlinear optical process, the magnitude of the induced absorption is intensity
dependent so that it can be strongly confined to small volume of excitation within a
femtoliter size. In practice, reduced volume of excitation is achieved by tightly
focusing laser beams using powerful microscope objectives. Note that optical
microscopy based in fluorescence induced by one photon excitation is not able to
provide such small volumesof excitation as such absorption is not intensity dependent.
Currently,oneof theprincipalmotivations in thefieldoffluorescencemicroscopy is the
development of novel active materials with enhanced TPA properties in order to use
them as exogenous fluorophores. These are also known as contrast agents or
bio-markers.

ThefirstTPAdyes studied in1972 [44]were theRhodaminederivativeswhichhave
σTPAvalues of65 (Rhodamine6G)and140GM(RhodamineB) inmethanol solutionat
the wavelength range 798–802 nm. Later a series of typical one-photon fluorophores
(alexa, fluorescein, rhodamines and others) [45, 46] were also investigated for their
TPA properties in water or other solvents compatible with biological medium.

Table 2.2 summarizes the optical properties of commercially available TPA dyes
[46, 47]. Note that the commercially available dyes in Table 2.2 have rather weak
optical properties compared with those novel dyes displayed in Table 2.1.

As mentioned previously (Sect. 2.3), recent investigations have produced a large
variety of molecules with σTPA > 1000 GM. The optimization of the nonlinear prop-
erties of organic molecules has two central motivations: (a) the reduction of the laser
excitation intensity required for imaging (less photodamage) and consequently (b) the
opportunity of using less expensive laser systems. On the other hand, various pro-
cessingmethods are being implemented to give to thesemolecular systems advantages
andviability forbio-applications [48].Here someexamples forTPAdyes in the formof
NPs, NPs-PEG and FSNPs are presented when they are utilized in TPM to obtain bio
imaging of several cell lines. In all cases, the searched features of TPA
fluorescence-based contrast agents for TPM are: (a) high quantum yield and high
two-photon absorption; (b) adequate dispersibility in the biological environment;
(c) non-toxicity; (d) resistance to photobleaching; (e) in vitro and in vivo stability. For
comparison purposes, some inorganic materials are also presented as reference.

Photoswitchable fluorescent NPs were fabricated and their surface was bio-
conjugated with anti-Her2 antibody, these NPs were employed to analyze the
human breast cancer cell line (SK-BR-3) by TPM [49]. Polymers have been
employed to protect and stabilized NPs to generate contrast agents. NPs fabricated
from a fluorescent resonance energy transfer (FRET) pair, the known hexaphe-
nylsilole and TPA dye 1 inside the micelle of amphiphilic block copolymers poly
(methacrylic acid)-b-poly(styrene) (PMAA-b-PS), were employed to obtain
high-quality fluorescent images of RAW cells [34]. Some biopolymers were used to
protect NPs, in this context derivatives from PEG are the most employed. BODIPY
19 in NPs-PEG was used as red emissive contrast agent to obtain images of MCF-7
breast cancer cell [40]. Organic TPA dye (2-ter-butyl-0,10-di(naphthalene-2-yl)
antracene (TBADN) was employed to fabricate NPs in which the surface was
modified with the surfactant poly(maleic anhydride-alt-1-octadecene)-polyethylene
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glycol (C18PMH-PEG) and then bioconjugated with folic acid, bioimaging showed
a selectivity for KB cell [50]. Folic acid-functionalized NPs-PEG of TPA chro-
mophore 24 were used for targeting MCF-7 cancer cell by TPM technique [51].
Conjugated polymers are also attractive candidates to address the requirements for
TPM imaging. NPs from conjugated polymer poly(p-phenylene ethylene) (33) were
prepared by ultrafiltration technique. Average size for these NPs was of 8 nm and
with a σTPA of 11,000 GM at 730 nm. The hydrophilicity and nontoxicity of 33-NPs
were employed to obtain several bio-images of endothelial cell by TPM [52]. In the
case of inorganic materials with excellent luminescence and nonlinear properties,
there are many examples of how NPs have been also applied as contrast agents in
TPM. For instance, bio-conjugated QDs (CdSe/CdS/ZnS) with anti-caludin-4 were
reported as optical contrast agent for imaging pancreatic cell in vitro using trans-
ferrin as targeting biomolecule [53]. In another example, aqueous dispersable
NaYF4 nanocrystals of 20–30 nm coped with RE ions Tm3+ and Yb3+ (UCNPs)
were applied for in vitro TPM imaging, while the red emission (*800 nm) of
UCNPs was used for obtain the imaging of pancreatic cancer cell, no apparent

Table 2.2 TPA activity for
commercial fluorophores in
water

Dyes Wavelength (nm) η × σTPA (GM)

Alexa350 700 35

Alexa480 750 100

Alexa568 780 180

Alexa594 780 100

Bodipy 930 18

Ca-Crimson 870 100

Ca-Green 950 60

Cascade blue 740 2.5

Coumarine307a 800 15

DAPI 700 100

Di-4-ANEPPSb 950 5

Di-8-ANEPPSb 950 10

Dila 700 95

dsRed 1000 110

eGFP 930 180

Fluorescein 780 38

Fluo-3 800 13

Riboflavina 700 1

Retinol 700 0.1

Folic acid 700 0.01

Lucifer yellow 850 1.4

mCerulean 850 78

mCFP 850 190

NADH in PBS 700 0.09
aTested in methanol
bTested in ethanol
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cytotoxicity was observed [54]. Many other examples of inorganic nanoparticles
employed for bio-imaging can be found in the literature [27].

Fluorescent SNPs have received strong interest in various cancer imaging
applications [55–57]. FSNPs loaded with 25 % of TPA chromophore 1 (*2500
molecules per nanoparticles) were used as efficient probes for TPM with extraor-
dinary signal output, without any sign of cytotoxicity in Hela cell [58]. FSNPs
doped with TPA dye 2 were fabricated and the surface bioconjugated with folic
acid; these FSNP were employed to study in vitro the selectivity for HeLa cell
cancer by TPM [59]. To increase the stability of FSNPs for in vivo imaging PEG
derivatives are often introduced to their surface (FSNP-PEG). FSNPs-PEG doped
with derivate 2-(2,6-bis((E)-2-(7-(diphenylamino)-9,9-diethyl-9Hfluoren-2-yl)
vinyl)-4H-pyran-4-ylidene) malononitrile (DFP) bioconjugated with folic acid
derivate have been employed to mark HeLa cells due to folate receptor interaction
for in vivo analysis [60]. Of course, the use of SNPs loaded with inorganic materials
has been also extensively reported in the literature. For instance, SNPs doped with
Gold NPs were fabricated, these materials glow brightly when are excited by
near-infrared light exhibiting σTPA of 2300 GM, which demonstrate the potential
application to obtain biological imaging in bulk by two-photon-induced photolu-
minescence [61]. QDs and magnetic (Fe3O4) were co-encapsulated within SNPs
and their surface was bioconjugated with transferrin, the magnetic properties of
these SNPs were used in vitro to guide into Human pancreatic carcinoma (Pacn-1)
line cell line and optical for obtain TPF-bioimaging [62].

Our group has fabricated NPs, NPs-PEG and FSNPs from organic dyes and
polymers. One of our major interests is to study how nonlinearities can be con-
served or changed as these TPA materials are processed into nano-structured sys-
tems intended to be used as contrast agents in TPM. Some of our results were
presented in Sect. 2.4 regarding the conjugated polymer 29, and it was discussed
that this polymer tend to conserve its TPA action in the form of NPs, NPs-PEG and
FSNPs as compared with that exhibited in molecular solution [41]. Taking
advantage of this characteristic of our organic nanoparticles, the imaging of human
cervical cancer cell line (HeLa cell) was performed. Figure 2.9 presents images
from fluorescence microscopy obtained using the polymer 29 as contrast agent
excited with either one-photon (488 nm) or two-photons (740 nm), showing the
equivalence of the so obtained images, but in the latter case the use of infrared
wavelengths is advantageous in the terms of less photodamage provoked (less
invasive) to the biological specimen. For comparison purposes, we also present the
images obtained for the same cellular line stained with the corresponding monomer
of 29 (denoted as M29). M29 and 29 were processed as NPs by reprecipitation
technique and stabilized with surfactant (CTAB). These NPs showed large fluo-
rescence and high photostability compared with the data collected in solution.
The TPEF experiments for NPs of M29 showed values of η * 1 and σTPA of 72
GM, while for NPs of 29 a higher value of σTPA (8481 GM) was obtained with
η = 0.95. According to the images presented in Fig. 2.9, similar results are obtained
with the use of M29 or 29. Nevertheless, the use of big molecules (polymers,
hyperbranched polymers, dendrimers) as contrast agents is attractive because in
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many cases they exhibit enhanced nonlinearities (per repeated unit of the polymer
chain) in comparison to small organic molecules. Further, in our work it was
demonstrated that it is possible to fabricate FSNPs with the polymer 29 to be used
as contrast agents in TPM [41]. Notice that most of the attention given to FSNP in
the literature is related to small organic molecules.

2.5.1.1 Photodynamic Therapy

Photodynamic therapy (PDT)has emerged as an alternativenon-invasive and selective
tool for bloodpurification and todestroy small cancerous tumors [8, 37, 63], i.e., for the

Fig. 2.9 One-photon (first row) and two-photon (second row) fluorescence images of HeLa cells
treated with NPs of the monomer M29 (first column) and the corresponding polymer 29 (second
column). The excitation wavelengths are indicated to the left of the columns. The NPs penetrated
nonspecifically into the cell and remained in the cytoplasm (green emission). The dye Hoechst
33258 was used to specifically stain the nucleus cell (blue emission). The fluorescence of this dye
was obtained in all cases with one-photon excitation and the so obtained image merged to that
corresponding to the two-photon excitation. The chemical structure ofM29 is shown in the picture
of the first row and first column. The chemical structure of 29 is presented in Fig. 2.7
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treatmentof superficial tumors inoesophagus, bladder andmelanomacancer [64].This
technique involves the use of a photosensitizer (PS) which, upon irradiation at specific
wavelengths in the presence of oxygen, leads to the generation of cytotoxic species
(singlet oxygen 1O2) and consequently to irreversible cell damage (Fig. 2.10).Usually,
conventional photosensitizers (porfimer sodium Photofrin®, 5-aminovulinic acid
ALA-Levulan®, verteporfin Visudyne® and methyl ester of ALA Metvix®) require
very high intensity of excitation [65] (close to the threshold of tissue photodamage) at
visiblewavelengths. PDT combinedwith two-photon absorption in the near-IR region
can circumvent this limitation. This approach offers newperspectives for the treatment
of tumors providing a technique which is less invasive since the photodynamic effect
can be limited to the area of interest, leaving the surrounding healthy tissues and cells
undamaged. This is because, as it was discussed previously, the TPA is a process that
depends on the intensity of excitation, and such a process only takes place when laser
pulses are strongly focused in small volumes. Nevertheless, a bottle neck to make
practical this application via TPA is that the commercially available PSs have weak
two-photon absorption cross sections. Thus, there is an opportunity to develop newPS
materials with a high TPA response in the biomedical window (650–1000 nm).

Recently novel organic materials and nanostructures have been tested as inter-
esting supplies for PDT by using TPA properties [63]; some water soluble polymers
[66], aggregated species [67] and modified silica nanoparticles [68] have been
studied. In this respect, colloidal carriers for PSs, such as oil-dispersion, liposomes,
low-density lipoproteins, polymeric micelles and silica nanoparticles, offer advan-
tages as cell permeability and retention effect and active targeting by using surface
modification. There are two main approaches for optimization of NPs systems for

Fig. 2.10 Jablonski diagram depicting the photophysical processes for one-photon excitation and
two-photon excitation of PDT. Excitation state of organic dyes is obtained by absorption of one or
two photon (pulsed laser light). After excitation in either case, the molecule relaxes to the lowest
vibrational level of the first singlet excited state. From here, it can emit photon (fluorescence) or
undergo intersystem crossing (ISC) into the first triplet state. From the triplet state, this can emit
phosphoresce or nonradiatively transfer its energy to convert the molecular oxygen 3O2 to the
cytotoxic singlet oxygen 1O2. Singlet oxygen can then activate the apoptotic cell death pathway
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PDT (Fig. 2.11): (i) design of new photosensitizers or chemical modification of the
existing ones to produce efficient sensitization through TPA process, (ii) employ the
energy-transfer process from efficient TPA toward typical PS. For the latter, the PS
(energy acceptor) is indirectly excited through fluorescent resonance energy transfer
(FRET) from the TPA dye (energy donor) [69–71]. In general, commercial PS used
in PDT as Verteporfin, Photofrin® and protoporphyrin IX (PpIX) have very low
σTPA value, in this case 31, 7.5 and 10 GM, respectively [63, 72]. To increase their
activity (cytotoxicity induced by the singlet oxygen generation) at infrared wave-
lengths they are encapsulate in SNPs with some efficient TPA dye (energy donor)
[73]. As examples of this approach, we can mention the PDT employing SNPs
doped with no commercial TPA dye 3 and bioconjugated with mannose to treat
retinoblastoma cancer cells (Y-79) [74] or SNPs loaded with PpIX to treat HeLa
cells [75].
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Chapter 3
Optical Properties of Ultrathin
InGaN/GaN Quantum Wells Subject
to Indium Surface Segregation

Oleksiy V. Shulika, Mykhailo V. Klymenko and Igor A. Sukhoivanov

Abstract We investigate theoretically the influence of indium surface segregation
in InGaN/GaN single quantum wells on its optical properties. Obtained results
show that the influence of the surface segregation on the dipole matrix element is
not equal for all optical transition. This effect results from the joint action of the
piezoelectric polarization and indium surface segregation which change selection
rules. Quantum well structures having different indium amount are analyzed and
found that the influence of the indium surface segregation on absorption spectra is
more pronounced in quantum well structures with high indium amount, in particular
it shall be taken into account in structures containing over 10 % of indium.

3.1 Introduction

InGaN/GaN quantum-well structures are basic materials for optoelectronic devices
operating in the spectral range from the visible up to the ultraviolet [1, 2].
Designing and following improvement of laser diodes, light-emitting diodes and
electro-optical modulators based on these structures are rather difficult due to the
fact that all their optical characteristics are strongly dependent on the growth
conditions [3] consisting of the substrate temperature, components fluxes etc. One
of the difficulties of the growth of nitride semiconductor structures is lack of cheap
substrate lattice matched to the heterostructure. At the moment three kinds of the
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substrates are used for epitaxial growth of nitride heterostructures: the sapphire
(Al2O3), gallium nitride (GaN), and silicon carbide (SiC) [4, 5]. The best quality of
a heterostructure one achieve using GaN substrate due to its best matching to the
lattice of a nitride heterostructure. However, it is rarely used in mass production of
nitride optoelectronic devices due to the cost issues in the growth of bulk GaN
monocrystals. Due to difficulties in making GaN substrates of large area, these
substrates are few orders of magnitude costly than GaAs substrates [5]. Although
the growth technology of Al2O3 and SiC is mature and cheaper, lattice mismatch of
these substrates to gallium nitride and indium nitride is large; the lattice constant of
the sapphire is 1.5 times larger of the gallium nitride lattice constant [6], which
results in high density of the crystalline defects. A way to decrease the defect
density is to use the GaN buffer layer grown at low temperatures [6]. The buffer
layer is incorporated in between the substrate and the active region. As it is shown
in Fig. 3.1 the buffer layer contains a lot of crystalline defects due to large mismatch
of the lattices. The vertical lines on the figure represent defects on the edges
between volumes with different polarity of the crystalline lattice (directions [0001]
and [000�1] in the wurtzite lattice are not equivalent which results in two different
polarities of the crystalline lattice).

Two principal methods of epitaxial growth of InGaN/GaN quantum well het-
erostructures are molecular-beam epitaxy (MBE) and metalorganic chemical vapour
deposition (MOCVD). Figure 3.2 shows spatial distribution of indium in
InGaN/GaN three-quantum-well heterostructure grown by MBE. The distribution
shown has been obtained by transmission electron microscopy [7]. These data
together with data from other works [8–12], are evidence of gradual variation of the
indium mole fraction from zero to 10 % on the heterojunction instead of sharp
distribution. The indium mole fraction deviates from the nominal one in the whole
area of the quantum wells, and fission is observed in the vicinity of heterojunctions.
The difficulty to obtain a heterojunction with sharp variation of the indium mole

Fig. 3.1 Cross-sectional
transmission electron
microscopy image of the
buffer GaN layer on the
sapphire substrate, [4]

52 O.V. Shulika et al.



fraction is connected with the effect of surface segregation which arises due to large
difference between enthalpies in GaN and InN [8].

Degree of segregation depends on the growth method. However, comparison of
MBE and MOCVD made in [9], suggest that both methods lead to the surface segre-
gation, although in a different extent. The MBE shows more pronounced effect of
segregation. However, MOCVD shows more pronounce cauterization at weaker seg-
regation. Indium spatial distribution in MBE made heterostructures can be viewed as
reaction of crystalline structure to switching on/off of the indium evaporator. It results in
different potential profiles of the leading and trailing edges of the quantum well.

There are several direct and indirect methods for observation of indium surface
segregation (ISS) in InGaN/GaN quantum wells. They are transmission electron
microscopy (TEM) [3, 10] reflection high-energy electron diffraction (RHEED)
[11], X-ray diffraction (XRD) [13], and cathodeluminescence (CL) [14]. However,
all of them have substantial drawbacks which influence precision of measurements,
when applying to the InGaN/GaN quantum wells. TEM can lead to additional strain
effects in the crystalline lattice due to prolonged exposure to electron beam [12].
Degree of strain depends on intensity and time of exposure. This effect leads to a
systematic error in a measured data. RHEED measurements are usually made
during the growth process, in situ, and cannot be applied to the grown structure.
XRD is characterized by low sensitivity to the inhomogeneities less than 1 nm, and
quantum well thickness of ultrathin quantum wells is 0.5–10 nm. Another drawback
of XRD method is complexity to interpret the measured data which is angular
distribution of the intensity of diffracted X-ray radiation. These data shall be pro-
cessed using complex mathematical model in order to obtain measured parameters
like composition of solid solution and thickness of the layers. TEM and RHEED, in
contrast to XRD, produce more intuitive data which are more accessible for direct
interpretation. CL method allows analysis of indium distribution only on the sample
surface.
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Fig. 3.2 Indium surface segregation (adopted from [7]). a Measurement data of TEM; b Indium
distribution along [0001] direction averaged along [11�21]
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Laser spectroscopy is devoid of majority of the drawbacks described, but needs a
theoretical model allowing interpretation of its data. Here we present briefly the-
oretical model of the optical response of a InGaN/GaN quantum well hetero-
structure and investigate various aspects of manifestation of indium surface
segregation in optical absorption spectra. We will focus on the ISS effect in the
Ga-face grown InxGa1−xN/GaN single quantum well (SQW) structures having
different indium molar fractions. The first one is 4 nm In0.1Ga0.9N/GaN SQW
structure [15], the second one is 2 nm In0.37Ga0.63N/GaN SQW structure [16].

Up to now, the influence of ISS on the optical characteristics have been studied
in relation to the substrate temperature and ratio of III/V components fluxes which
have effect on the segregation lengths. However, there is significant lack of
information about the influence of the indium molar fraction on optical manifes-
tations of the ISS. In this paper, we will show that even if the segregation lengths
are independent on the indium flux, there is strong dependence of ISS optical
manifestations on the indium molar fraction which is realized via the interplay
between the piezoelectric polarization and ISS.

3.2 Indium Distribution and Potential Profiles

The potential profile or the band diagram defines dispersion of the charge carriers,
which is starting point for calculation of the gain and absorption spectra [17, 18],
gain suppression factor [19] (also known as gain compression and nonlinear gain
factors), Auger recombination rate [20], and charge transport in the real space [21–
23]. However, the theory is lacking for describing connection between the optical
spectroscopic data and parameters of the structure imperfections with quantitative
accuracy. It makes difficult to interpret the measured photoluminescense spectra and
predict the optical spectral characteristics of the ultrathin QWs. The indium surface
segregation appears during the crystal growth due to large difference between free
binding enthalpies of GaN and InN semiconductor materials [8]. This effect was
observed in many experiments including the transition electron microscopy [24],
reflected high energy electron diffraction [11], cathodoluminescence [14] and
X-rays diffraction [13]. As has been reported in [9], both molecular beam epitaxy
and metalorganic vapour phase epitaxy are accompanied by the ISS with slight
distinctions.

We use error functions to parameterize the indium distribution profile across the
QW [8]:

nInðzÞ ¼
0; z� z1
n0erf z�z1

L1

� �
z1 \ z\z2

n0erf z2�z1
L1

� �
1� erf z�z2

L2

� �h i
z2 � z

;
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>>:
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here nInðzÞ is the indium distribution profile, n0 is the nominal molar fraction of
indium in the quantum well layer, z1 and z2 are coordinates of quantum well
interfaces, L1 and L2 are the segregation lengths.

This expression gives an asymmetric indium distribution with two fitting
parameters. It leads to better agreement with experimental data as compared with
the symmetrical one. Usually, segregation lengths L1 and L2 are not equal. Existing
kinetic theory of the MBE growth [3] gives dependencies of segregation lengths on
the substrate temperature and ratio of III/V component fluxes. They states that the
segregation lengths are independent on the indium flux at high substrate tempera-
tures. Hereafter, we consider only this case deeming the segregation lengths are the
same for both SQW heterostructures under examination.

In the InxGa1−xN/GaN heterostructures, the indium distribution determines
potential profiles of the band edges. A large indium amount leads to the significant
mismatch of the lattice constants in semiconductor layers. The lattice mismatch
causes strong strain giving origin to piezoelectric effects [25]. In this work, we
neglect the spontaneous polarization that is a good approximation if the indium
amount in the InxGa1−xN alloy is large enough. To compute the piezoelectric
polarization, we use non-linear relations for ternary alloys derived in [25]. The
resulted internal electrostatic field in the quantum well is a superposition of electric
fields formed by the piezoelectric charges and space charge of depletion layers
produced due to doping. In the quantum well, computed internal electric field
equals 0.5 MV/cm for the 4 nm In0.1Ga0.9N/GaN SQW structure and 4.3 MV/cm
for the 2 nm In0.37Ga0.63N/GaN SQW structure. In barrier layers, internal fields
equal 0.6 and 1.1 MV/cm respectively.

3.3 Band Structure

The computation of the interband absorption requires knowing of the band struc-
ture. In this paper, conduction and valence band structures have been computed
separately using the envelope function approximation [26]. The conduction band
structure and corresponding envelope functions have been obtained using the
BenDaniel-Duke Hamiltonian [27]. For the valence band, we apply the six-band
model including into consideration band mixing effects between the subbands. Such
an approach is widely used for semiconductor nitrides with wurtzite crystal struc-
ture [2]. The numerical solution of resulted differential equations has been obtained
by applying the finite difference method [28] with Dirichlet boundary conditions.
Excepting the band gap energies, all position-dependent material parameters have
been computed using linear interpolation formulas. For the band gaps, we use the
second order interpolation with bowing parameters. Band structure parameters for
the constituent binary semiconductors have been taken from [29].

The ISS has an effect on optical characteristics via the influence on the potential
relief of band edges. As is illustrated in Fig. 3.3, the bottom of the potential well
undergoes significant energy blueshift DEc ¼ 288 meV if the piezoelectric
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polarization is strong enough. In the case of weak internal fields, the shift DEc is
small, being of 17 meV. In both cases, segregation lengths have been taken as
L1 ¼ L2 ¼ Ls ¼ 2 nm. The magnitude of the piezoelectric polarization is related to
the indium molar fraction. Therefore, changes in the potential profile caused by the
ISS effect are dependent on the nominal indium molar fraction in the quantum well.

Such a behavior of potential profiles reflects on the transition energy dependence
on the indium molar fraction. Comparing results for three cases presented in
Fig. 3.4, one can separately estimate contributions to the transition energy form the
ISS and piezoelectric polarization. Results of the band structure computations
evidence that increasing of the indium molar fraction leads to the red shift of the
transition energy. This is caused by the piezoelectric polarization which gives rise
to the quantum confinement Stark effect [30]. In this case, the energy shift is
dependent on the quantum well width [16]. The ISS has also effect on the transition
energy leading to the blue shift for all magnitudes of the molar fraction. This result
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Fig. 3.3 Positional dependence of conduction band edges (solid curves), piezoelectric potential
(dotted curves) and depletion layers potential (dashed curve) for a 4 nm In0.1Ga0.9N/GaN SQW
and b 2 nm In0.37Ga0.63N/GaN SQW with ISS (red curves) and without ISS (black curves).
Segregation lengths equal 2 nm in both cases
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Fig. 3.4 Indium molar fraction dependence of the transition energy between the first conduction
subband and first valence subband for the quantum well width of a 2 nm and b 4 nm

56 O.V. Shulika et al.



coincides with that one obtained in [31]. As follows from Fig. 3.3a, b, the energy
shift caused by the ISS is dependent on internal electric fields that is manifestation
of the interplay between the piezoelectric polarization and ISS. In turn, the pie-
zoelectric polarization is determined by the indium molar fraction that makes the
ISS effect be dependent on the indium amount even if the segregation lengths are
invariable. At the same time, the influence of the quantum well width on the ISS
effect is not so dramatic. Especially, this emerges at large indium amounts. For
example, in structures having the indium molar fraction of 0.4, the energy shifts
caused by the ISS equal to 412 meV in the 2 nm wide quantum well and 392 meV
in the 4 nm wide quantum well. The difference amounts 20 meV that is approxi-
mately 5 % of the maximal magnitude. Variations of the quantum well width has
more pronounced effect on the manifestation of the ISS effect only in ultrathin
quantum wells. For narrow quantum wells, electron or holes wave function is
affected by the ISS at both interfaces, while in wide quantum well the wave
functions undergo the ISS effect only at one interface where charge carriers are
localized. For the last case, increasing of the width does not change the shape of the
wave functions for electrons and holes leading only to their shift in space relative
each other. In other words, wave functions does not fill both heterointerfaces being
localized by the piezoelectric polarization at the only one of heterojunctions.

In 4 nm wide quantum wells, localized states of electrons and holes exist for all
considered magnitudes of the indium molar fraction. If the quantum well width
equals 2 nm, there are no localized states for the indium molar fraction been less
than 0.18. If the ISS is neglected, the localization is observed starting from the
molar fraction of 0.16. These magnitudes are denoted by the black thick points in
Fig. 3.4a. Thus, appearing of localized states in the quantum well is also affected by
the ISS.

3.4 Global Sensitivity Analysis

Overall conclusion of the previous section is that increasing of segregation lengths
leads to decreasing of the matrix element. However, segregation at each interface of
a QW is not equal. Therefore, to resolve its influence much more data should be
analyzed. To do that we use here global sensitivity analysis [32]. This approach
allow to estimate the sensitivity of the matrix elements with respect to variations of
ISS parameters separately and without large number of computations.

Using the global sensitivity analysis we try to clarify how strong the response of
the system on the ISS effect is, what ME the most sensitive to the segregation is,
and what segregation parameter having the strongest effect on the dipole matrix
element is.

As a rule, the global sensitivity analysis is performed in connection with the
Monte-Carlo method. In this paper, the procedure of the analysis is as follows.
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1. First, we set the N × M matrix of parameters using a random-number generator.
We use uniform distributions of random numbers. N is a number of
Monte-Carlo experiments, and M is a number of input parameters. In our case,
the input parameters are the segregation lengths L1 and L2 (M ¼ 2).

2. The investigated mathematical model S acts N times on randomly generated
input parameters.

Lð1Þ1 Lð1Þ2

..

. ..
.

LðjÞ1 LðjÞ2
..
. ..

.

LðNÞ1 LðNÞ2

2
6666664

3
7777775
�!s

lð1Þ11 lð1Þ13

..

. ..
.

lðjÞ11 lðjÞ13
..
. ..

.

lðNÞ11 lðNÞ13

2
66666664

3
77777775
: ð3:2Þ

The output parameters are dipole matrix elements l11 and l13 at the center of the
Brillouin zone (kjj ¼ 0) in the case of TE polarization.

3. After series of Monte-Carlo numerical experiments, one obtains the matrix of
output parameters. Indexes of columns correspond to different dipole matrix
elements, and row indexes reflect the order number of a numerical experiment.
The computed data can be plotted as a scatterplot. Then, dependences of output
parameters on input ones is approximated by linear functions applying the
least-square linear regression. From the linear dependence, one can get sensi-
tivity coefficient defined as:

s
lij
Lm ¼ rLm

rlij

@lij
@Lm

; ð3:3Þ

here rLm and rlij are standard deviations for segregation lengths and dipole
matrix elements respectively.

The result of the global sensitivity analysis is set of sensitivity indices which are
shown in Fig. 3.5. The magnitude of each index indicates relative sensitivity of the
given output parameter to variations of the input parameter of the system.

Fig. 3.5 Impact of the
indium distribution
parameters on the dipole
matrix elements
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With increasing of the number of a subband, the impact of the quantum-well
width is decreased while the influence of the indium molar fraction is increased. At
the same time, the indium surface segregation effect at each heterointerface remains
the same for all subbands being less than one order of magnitude in comparison
with other parameters.

3.5 Absorption Spectra

Absorption spectra have been computed using semiconductor Bloch equations in
the quasi-equilibrium approximation. At the same time, electron-electron interac-
tions are considered at the Hartree-Fock level of the approximation applying the
constant dephasing time for high-order correlations. The dephasing time has been
taken to be 41 ps. The temperature dependence of characteristics is modelled using
semi-empirical Varshni formula [2]. This set of approximations allows to take into
account excitonic effects and the transition energy renormalization caused by the
exchange interactions [33].

Composition fluctuations in lateral directions cause the inhomogeneous broad-
ening of the spectral characteristics. For the 4 nm In0.1Ga0.9N/GaN SQW structure,
we use inhomogeneous broadening with FWHM = 31 meV that has been derived in
[7]. For the 2 nm In0.37Ga0.63N/GaN SQW, the FWHM of the inhomogeneous
broadening is taken as 38 meV.

The obtained results are shown in Figs. 3.6 and 3.7 and indicate that the inho-
mogeneous broadening leads to disappearing of excitonic resonances in absorption
spectra. However, even when the inhomogeneous broadening equals zero, excitonic
effects are very weak despite high exciton binding energy in the bulk GaN semi-
conductor [34]. This anomalous behavior can be explained considering expression
for the interband Coulomb interaction potential in a quantum well [33]:

Vi;jðqÞ ¼ 2pe2

e0L2q

Z
dzdz0j/v;iðzÞj2j/c;jðz0Þj2e�qjz�z0j; ð3:4Þ

where L is the lateral length of the heterostructure, q is the wave number for
in-plane directions, z and z0 are position coordinates in the growth direction, i and
j are subband indices, /c;jðzÞ and /v;iðzÞ are electron and hole envelope functions. It
is evident from (3.4) that better overlap between envelope functions /c;jðzÞ and
/v;iðzÞ leads to stronger coupling between electron and holes which form excitons.
In InGaN/GaN quantum well structures, electrons and holes are straddling in the
space due to the piezoelectric polarization. According to (3.4), this leads to sig-
nificant decay of the binding energies and, therefore, excitonic resonances in
absorption spectra. Thus, excitonic effects are more pronounced in the thin quantum
well where space separation of electrons and holes is not so large.
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The results of our mathematical modelling affirm that the ISS leads to the blue
shift of spectral characteristics [31] (see Figs. 3.6 and 3.7). In the case of the
In0.1Ga0.9N/GaN SQW structure, the ISS leads to the spectral shift of 15 meV,
while for the another structure this value amounts 112 meV. Thus, the ISS effect is
observed more clear for large magnitudes of the piezoelectric polarization. This
dependence is resulted from the joint action of the piezoelectric polarization and
surface segregation. When the piezoelectric polarization is high enough, carriers are
localized near the quantum well interfaces where the indium segregation appears.
Obtained results suggest that even when the segregation lengths are relatively large,
the ISS effect is negligibly small in the square quantum well where the resulted
internal field equals zero. However in this case manifestations of the ISS are
determined by the quantum well width for narrow quantum wells.

(a) (b)

Fig. 3.6 Absorption spectra for the 2 nm In0.37Ga0.63N/GaN SQW characterized by the
inhomogeneous broadening with a FWHM of a 0 meV and b 38 meV

(a) (b)

Fig. 3.7 Absorption spectra for the 4 nm In0.1Ga0.9N/GaN SQW characterized by the
inhomogeneous broadening with a FWHM of a 0 meV and b 31 meV
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3.6 Summary

In summary, we discover that the interplay between the piezoelectric polarization
and ISS makes the structure with high indium amount more sensitive to the ISS
effect. Hence, the influence of the ISS on absorption spectra is more pronounced for
the large indium molar fractions. The obtained results evidence that neglecting of
the ISS leads to high inaccuracy of simulation data if the indium molar fraction is
large. However, if the indium molar fraction is less than or equal to 0.1, it is a good
approximation. Results for this case has been affirmed in [35] by comparison
computed and measured gain spectra.
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Chapter 4
Grating Resonances on Periodic Arrays
of Sub-wavelength Wires and Strips: From
Discoveries to Photonic Device
Applications

Tatiana L. Zinenko, Volodymyr O. Byelobrov, Marian Marciniak,
Jiří Čtyroký and Alexander I. Nosich

Abstract This chapter reviews the nature and the history of discovery of the
high-quality natural modes existing on periodic arrays of many sub-wavelength
scatterers as specific periodically structured open resonators. Although such modes
can be found on various finite and infinite arrays made of metallic and dielectric
elements, we concentrate our discussion around infinite arrays of silver wires and
strips in the optical range. The grating modes (G-modes), like any other natural
modes, are the “parents” of the corresponding resonances in the electromagnetic-
wave scattering and absorption. Their wavelengths in either case are determined
mainly by the period and the angle of incidence that has been a reason of their
misinterpretation as Rayleigh anomalies. On the frequency scans of the reflectance or
transmittance coefficients, G-mode resonances are usually observed as Fano-shape
(double-extremum) spikes, while in the absorption they always display conventional
Lorentz-shape peaks. If a grating is made of sub-wavelength size noble-metal ele-
ments, G-modes exist together with better known localized surface-plasmon modes
(LSP-modes) whose wavelengths lay in the optical range. Thanks to high tunability
and considerably higher Q-factors, the G-mode resonances can potentially supple-
ment or even replace the LSP-mode resonances in the design of nanosensors, nano-
antennas, and nanosubstrates for solar cells and surface-enhanced Raman scattering.
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4.1 Introduction

Noble-metal nanowires are known to display intensive localized surface-plasmon
(LSP) resonances in the visible range if illuminated with the H-polarized light (i.e.
polarized orthogonally to the scatterer axis). The LSP resonance wavelengths
depend primarily on the shape of the scatterer cross-section. For instance, a thin
circular metal wire of the relative dielectric permittivity emet located in an infinite
host medium with eh [ 0 has a single broad peak in the scattering and absorption
cross-sections slightly above the wavelength value kP where Re emetðkPÞ ¼ �eh.
For a silver wire in free space, this yields kP � 350 nm [1]. The plane-wave scat-
tering by such a wire can be studied analytically using the separation of variables
and can be further simplified using the small-argument asymptotics of cylindrical
functions. This study shows that the wire possesses infinite number of closely
spaced double-degenerate LSP eigenmodes of the azimuth orders n ¼ 1; 2; . . .,
appearing as complex poles of the field as a function of the wavelength. However
the corresponding resonance peaks overlap because the noble metals are lossy in the
visible range, although the largest contribution comes from the dipole terms with
n ¼ 1. Non-circular wire scattering analysis needs more elaborated techniques such
as volume or boundary integral equations. They also reveal shape dependent
LSP-modes of different types and symmetries.

In scattering, LSP-resonances are the signatures of the underlying LSP-modes. If
the shape of a metal wire is fixed, their wavelengths are specific for every host
medium that makes possible the “sensing” of the medium refractive index by means
of measuring the LSP wavelength [2]. The Q-factors of the LSP-resonances are
low, of the order of �Re emetðkPÞ=Im emetðkPÞ � 10 in the visible range.

Although the optical properties of LSP modes of pairs (dimers) or small clusters
of coupled metal wires or strips have been well documented [3], large periodic
ensembles of them, i.e. chains, arrays and gratings, remain less studied and inter-
pretation of the other, periodicity caused G-resonances is still controversial. Below
we present a brief narrative of related publications and demonstrate the remarkable
properties of these non-LSP resonances on nanogratings of circular wires and thin
strips. For simplicity, the gratings are assumed to be suspended in free space.

4.2 Circular-Wire Gratings

The scattering of plane waves by free-standing infinite periodic gratings of circular
cylinders or wires (see Fig. 4.1) made of metals and dielectrics has been extensively
studied as a canonical scattering problem since the late 1890s [4–10]. Here,
important research instrument was introduced by Rayleigh [5]: Floquet expansion
of the field function in terms of spatial harmonics also called diffraction orders.
Each Floquet harmonic is a homogeneous or inhomogeneous plane wave depending
on the wavelength k, period d and angle of incidence β.
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It was in 1979 when Ohtaka and Numata reported [11], apparently for the first
time, that the scattering of light by an infinite one-period grating of thin dielectric
circular cylinders showed unusually narrow total-reflection resonances. For the host
medium with dielectric constant eh they appear near to (but not precisely at) the
Rayleigh-Wood anomalies (RA) or “passing-off wavelengths,”

kRA�m ¼ ðd ffiffiffiffi
eh

p
=mÞð1� cos bÞ; m ¼ 1; 2; . . . ð4:1Þ

These are the resonances on G-modes. However the found effect did not attract
any specific attention of research community and remained unclaimed for the next
25 years. Thus, it is an example of discovery that was done ahead of its time.

Although the G-resonances on dielectric-wire gratings in the cases of both E- and
H-polarization can be noticed in some earlier papers (for instance, see Figs. 4.2 and
4.3 of [10]), they became an object of specific investigation only in 2006 [12–14]. In
these papers, the authors used the dipole approximation to study the narrow total
reflection resonances appearing on the extinction spectra just above the RA wave-
lengths. Experimental verification of this effect has been published in [15].

As already mentioned, the scattering resonances of various types are caused by
the presence of the “parent” complex-valued poles of the field as a function of the
wavelength. Unlike them, RAs are associated with the branch points and exist only
for the infinite gratings. Therefore one can guess that the reason of the misinter-
pretation of the G-resonances in the studies related to infinite dielectric and metal
wire gratings before 2006 was their extreme proximity to the RA branch-point
wavelengths kRAm , especially for the gratings made of thin wires.

Narrow resonances and high-Q eigenmodes need fine computational tools able
to provide numerical results with many correct digits. Such a full-wave analysis of
both wave-scattering and eignenvalue problems for the dielectric-wire gratings in
free space was presented in [16, 17] using the meshless mode-expansion algorithm
whose convergence is guaranteed. It refined earlier approximate results of [10–14].

Effects of both G- and LSP-resonances on infinite gratings of silver wires in free
space (in the H-polarization case) have been studied numerically in [17, 18]. Here,
the dielectric function emet was taken from [1]. Sample spectra of reflectance,
transmittance and absorbance of silver-wire gratings are shown in Fig. 4.2.

Fig. 4.1 Cross-sectional geometry of an infinite grating made of circular cylinders or wires
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Fig. 4.2 Spectra of
reflectance (a), transmittance
(b), and absorbance (c) of
infinite circular silver wire
gratings of different periods
with wire radius
a ¼ 48:85 nm. H-polarization,
normal incidence
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As seen in Fig. 4.2, the LSP-resonance is present as a broad Lorentz peak near to
350 nm for all gratings. The G-modes usually display Fano-shape resonances in the
reflectance and transmittance however simple Lorentz shape in absorbance.
Important finding relates to the case of high-Q G-resonance on a grating of infinite
number of wires with period tuned exactly to the wavelength of low-Q
LSP-resonance. In this situation, the G-mode induces a narrow band of optical
transparency cutting through the much wider band of intensive reflection associated
with the LSP mode—see the curves for d = 350 and 700 nm.

In [18], new asymptotic expression for the complex-valued frequencies of
G-modes was derived; it showed that if the wire radius or its dielectric contrast goes
to zero then their wavelengths kG�m tend to the purely real RA wavelengths (4.1).
Hence their Q-factors rise to infinity both for lossless and lossy wires.

In [16, 17] it has been discovered that if the grating is made of quantum wires
(i.e. can be pumped to display gain) then the G-modes demonstrate ultra-law
thresholds of lasing that can be much lower than the threshold of the SP-mode.

It is interesting to check how these optical effects manifest themselves on finite
gratings that possess no RAs. Finite gratings of many thin wires remain relatively
unclaimed area of research although early theoretical [6] and experimental papers
[7, 19] noted unusual effects taking place near to the RA wavelengths. Accurate
results of numerical study obtained by the convergent algorithm of [16, 17] have
been published in [18, 20] for finite silver nanowire gratings where LSP and
G-modes exist together. The resonances on G-modes become visible in the spectra
of reflectance and transmittance (see [20] for the definition of these quantities for
finite gratings) provided that the number of wires is at least N = 10. If it gets larger,
the mode Q-factors tend to their limit values observed for infinite gratings.

4.3 Thin-Flat-Strip Gratings

Flat gratings made of thin noble-metal strips (see Fig. 4.3) have been always
attractive in optics as easily manufactured components able to provide the wave-
length and polarization discrimination. The scattering by strip gratings was initially
studied assuming their infinite extension, zero thickness, perfect electric conduc-
tivity (PEC), and free-space location [4, 21–23].

Fig. 4.3 Cross-sectional geometry of an infinite flat grating made of thin flat strips
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Under these rude assumptions, the reflection and transmittance spectra of infinite
gratings show only the RAs at wavelengths kRAm . In contrast, a gold-strip grating
lying on a dielectric substrate displays both LSP and G-resonances [24] provided
that the substrate is sufficiently thick; and even a PEC-strip grating on a dielectric
substrate has no LSP-resonances however has strong G-resonances [25].

The G-resonances on the free-standing infinite non-PEC strip gratings were
found at first for thin dielectric strips in 1998 [26] although in the H-case narrow
peaks of G-resonances were missed because of too coarse grid of computation
points. This was clarified in the subsequent studies of impedance-strip [27] and
silver-nanostrip [28] gratings. In [28], it has been shown analytically that the
wavelengths of G-modes tend to kRAm if the strip width or thickness gets smaller (see
also (4.2) further in this section). Numerical study of both LSP and G-resonances on
finite gratings of many silver strips has been published in [29–31].

It should be added that G-resonances have been also studied theoretically and
experimentally on chains and gratings of 3-D particles—see, for instance, [32–42].

The controversy around the G-resonances on various gratings of metal scatterers
consists in the fact that, in the early studies, they were frequently mixed up with
more conventional LSP resonances. The failure to recognize their specific nature
can be seen in the use of plasmon-related terminology such as “radiatively
non-decaying plasmons,” “supernarrow plasmon resonances,” “subradiant lattice
plasmons,” and “plasmon resonances based on diffraction coupling of localized
plasmons.” This started changing recently when the terms like “collective reso-
nance” of [39–41] and “photonic resonance” of [42] appeared. The fact that the
G-modes and resonances exist in the scattering by the gratings of both metallic and
dielectric elements and in the both of two principal polarizations makes it clear that
they are caused solely by the periodicity and are not exotic plasmons.

To highlight the inter-relation between the conventional LSP-resonances and
G-resonances in the visible-light scattering by periodic noble-metal scatterers, we
present some numerical data computed using the convergent algorithm, based on
the analytical regularization [28], for an infinite grating of thin silver strips illu-
minated by a normally incident H-polarized plane wave of the unit amplitude. The
dispersion of the complex dielectric permittivity of silver has been taken into
account using the measured data for the real and imaginary parts from [1].

The plots of reflectance, transmittance and absorbance as a function of the
wavelength are presented in Fig. 4.4. The silver strip dimensions are taken as
50 × 150 nm2 that results in the same area of cross-section as for the circular wires
corresponding to Fig. 4.2. They demonstrate one broad LSP-resonance of enhanced
reflection and absorption at 410 nm, associated with the first-order standing-wave
mode built on the short-range surface plasmon wave bouncing between the edges of
each strip. Besides, one can see one or two much sharper G-resonances at the
wavelengths slightly larger than the period and half-period of the grating; these
resonances, if well separated from LSP-ones, display the Fano shapes (two closely
spaced extremums). If the wavelength of one of them coincides with the LSP-mode,
a narrow-band optically induced transparency is observed.
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Fig. 4.4 Spectra of
reflectance (a), transmittance
(b), and absorbance (c) of
infinite strip gratings of
different periods with silver
strip dimensions of
50� 150 nm2,
H-polarization, normal
incidence
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In Fig. 4.5, we demonstrate this effect in detail for the grating made of 10-nm thin
silver strips. Such a reduced thickness is usual for today’s nanotechnologies oper-
ating with electron-beam lithography and other techniques. Here one can see two
broad LSP-resonances in the visible-light range around 640 and 380 nm, associated
with the first and third-order LSP modes on each strip. Besides of them, one can also
see an extremely sharp band of the optically induced transparency at the wavelength
slightly larger than the period—see zoom in Fig. 4.5b. This is the effect of the
G-mode resonance whose near-field patterns are shown in Figs. 4.6 and 4.7.

According to [28], in the normal-incidence case the normalized frequencies
j ¼ d=k of the G-modes on a material strip grating with thickness h=d � 1 have
the following asymptotic values:

jGE;GHm ¼ m� m3ðvE;H2pwhÞ2d�4 þ Oðjejv2E;Hm4h4d�4Þ; ð4:2Þ

Fig. 4.5 Reflectance,
transmittance, and absorbance
spectra for the scattering of
the H-polarized plane wave
by infinite grating of silver
nanostrips. The angle of
incidence is β = π/2, the strip
width is 2w = 150 nm, the
thickness is h = 10 nm, and
the grating period is d =
643 nm
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where vE ¼ e and vH ¼ 1. This means that, unlike LSP-mode, the G-mode quality
factors Qm ¼ �Im jm=2Im jm tend to infinity if h=d ! 0 both for the lossy and
lossless dielectric and metal materials in either polarization.

In the scattering problem, if the incident wave length approaches the real part of
the mth natural G-mode wavelength, then the mth Floquet harmonic amplitude am
takes a large value proportional to the mode Q-factor. This value is not restricted by
the power conservation law because Re jm\m and hence the mth harmonic
exponentially decays in the normal to the grating direction.

Fig. 4.6 The near-field pattern on three spatial periods for the scattering of the H-wave by infinite
grating of thin silver nanostrips (shown using white boxes) in the combined LSP-G resonance (λ =
643.116 nm). Other parameters are the same as for Fig. 4.5

Fig. 4.7 The profile of the
near field magnitude along the
line y = 0 for the scattering of
the H-wave around combined
LSP-G resonance at λ =
643.082, 643.116, and
643.15 nm. Other parameters
are the same as for Fig. 4.5
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In resonance, under the normal incidence, the optical field near the grating is
dominated by the intensive standing wave built of two identical Floquet harmonics
with numbers ±m. For the plots in Fig. 4.5, m ¼ 1 and hence

H � 2a1eika1jxj cosðkb1yÞ � QG1 expð�jx=djQ�1
G1Þ cosð2py=dÞ: ð3Þ

This is fully consistent with the near field patterns observed in Figs. 4.6 and 4.7.
Note that, in the G-resonance, very large values of the near field stretch to the
distance of some 50 periods on the both sides of the silver-strip grating and the peak
value is around 95. This is *25 times larger than in the LSP-resonance whose
near-field bright spots are small and stick to the strips [28].

In the case of finite silver-strip gratings, the G-mode near-field pattern is well
visible along the grating except a few periods near the ends. Additionally,
in-G-resonance far field scattering patterns demonstrate intensive sidelobes in the
plane of grating, explained by the mentioned Floquet modes excitation [29, 30].
Note that Q-factors of G-modes on finite grating depend on the number of strips N.

4.4 Comparison Between Two Shapes and Two
Polarizations

The LSP-mode resonances are always observed on the deep sub-wavelength metal
scatterers with Re emetðkPÞ\0. This is because the underlying physical phenomena
have essentially static nature. Indeed, as it was shown in [43], the associated 2-D
static problem of a non-magnetic cylinder in the uniform electric field possesses a
set of discrete eigenvalues �e in terms of the dielectric constant. They depend on the
shape of cylinder’s cross-section and are negative real values. For a circular cyl-
inder in free space, the single eigenvalue is �e ¼ �1, while for a rectangle it depends
on the side lengths ratio. These eigenvalues have their projections to the
H-polarized wave-scattering characteristics of the same 2-D metal scatterers whose
dielectric permittivity is a function of the wavelength. The resonances on the LSP
modes are found at the wavelengths near to those where Re emetðkÞ ¼ �e.

Note that in the E-polarization case, duality of the magnetic and electric fields
suggests that similar properties take place for the magnetic permeability function
lðkÞ. However for all non-magnetic objects, there are no eigenvalues of e and hence
no E-polarized LSP-modes and associated to them scattering resonances.

Keeping in mind manufacturing issues and applications, it is interesting to
compare the characteristics of gratings made of comparable silver wires and silver
strips. To verify the polarization selectivity of considered gratings, it is also nec-
essary to compare the scattering and absorption by each type of gratings in two
alternative polarization regimes. Such comparison is presented in Fig. 4.8.
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Here the wire and strip have the same area of cross-section, and the period is
fixed at d = 800 nm. As one can see, in the case of H-polarization (Fig. 4.8a) each
grating displays a broad Lorentz-shape SP-resonance at the corresponding wave-
length. Besides of that, each grating produces two super-narrow G-resonances at the
wavelengths slightly red-shifted from the ±1-st and ±2-nd RAs in accordance to
(4.2). Note that LSP-mode wavelengths are generally different however the G-mode
ones agree well provided that the cross-sectional areas of elements are the same.
The optical response to the G-modes varies from the universal Fano shape to the
optically induced transparency after tuning to the LSP-mode wavelength.

Fig. 4.8 Optical characteristics spectra of infinite silver gratings with period d = 800 nm
illuminated by the H-polarized (a) and E-polarized (b) normally incident plane waves. The strip
width is 2w = 150 nm and the thickness is h = 50 nm, while the wire radius is a = 48.85 nm
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In the case of E-polarization depicted in Fig. 4.8b, no resonances are visible. As
mentioned above, no E-polarized LSP-mode poles exist on any metal grating. The
G-mode poles, in contrast, exist for both dielectric and metal gratings in both
polarizations—see [11–16, 26, 28]. The reason that they are not seen in Fig. 4.8b
can be found on examining (4.2): the Q-factors of G-modes in the E-case are in jej2
times lower than in the H-case that is a factor varying from 25 at 400 nm to 1100 at
800 nm. This “invisibility” of G-modes in the E-polarization scattering regime has
apparently hindered correct identification of their nature because it had suggested
that they might have something common to LSP modes, non-existing in this regime
at all. Still if a metal nanograting is placed on a dielectric substrate, the
G-resonances become visible in the E-polarization spectra as well [24, 25].

The only visible feature of the optical spectra of either grating in the E polari-
zation is the transmittance maxima exactly at the RAs (4.1). The curves of
equal-area gratings are very close to each other in the whole visible range. Note that
the largest difference in the optical responses for two alternative polarizations takes
place near to the H-polarization LSP and G-mode resonances for either grating.

4.5 Applications to Photonic Devices

One of the main applications of conventional localized LSP-resonances is the
sensing of the changes of refractive index of the medium hosting a plasmonic
scatterer [2]. This is performed by measuring the position of the peak scattering or
extinction and considered as key enabling technology in biological and chemical
nanosensors. Therefore it is not a surprise that remarkable properties of the recently
verified G-mode resonances have immediately attracted attention of scientists and
engineers designing the sensors based on metallic nanogratings. In this community,
such devices are called (erroneously) “Rayleigh-anomaly sensors” apparently
because of the nearness of the G-resonances to the RA wavelengths [44–47]. The
paper [47] is remarkable for the expressed there confidence that these resonances
and Rayleigh anomalies are different phenomena (although G-mode resonances are
still interpreted as some specific plasmons). Such sensors were proposed in [46]
where a concentric gold ring nanograting was placed on the facet of optical fiber.
As the G-resonance wavelength is given, in the main term, just by the RA value of
(4.1), one can expect very attractive linear dependence of the scattering peak on the
refractive index. Then the sensitivity, in wavelengths per refractive-index-unit,
equals to the grating period. This is true however only provided that the analyte
material is infinitely thick, while in practice it is usually a liquid making a finite
overlay. Hence the location of the G-mode peak strongly depends on the overlay
thickness, so that thinner than the wavelength overlays seem impractical. Only for
thicker overlays the refractive-index sensitivity approaches the ultimate bulk-index
sensitivity value of such a sensor [47].
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4.6 Conclusions

We have demonstrated and discussed the main features of the grating or lattice
resonances on the periodic arrays of circular silver wires and strips. As it became
clear rather recently, these resonances are caused by specific poles of the field
function and the associated modes have much higher Q-factors than those of the
LSP modes. Therefore the G-resonances may serve as a superior alternative to LSP
ones for various applications in chemical and biological sensing, photovoltaics, and
SERS. The interplay between two types of resonances depends on the angle of
incidence and the grating period and to a lesser extent on the size of each wire or
strip. Choosing these parameters in optimal manner may help design nanosensors,
absorbers, and SERS substrates with improved features.
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Chapter 5
Electromagnetic Wave Diffraction
by Periodic Planar Metamaterials
with Nonlinear Constituents

V. Khardikov, P. Mladyonov, S. Prosvirnin and V. Tuz

Abstract We present a theory which explains how to achieve an enhancement of
nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic
structure specially designed to bear a trapped-mode resonant regime. In particular,
the possibility of a nonlinear thin metamaterial to produce the bistable response at a
relatively low input intensity due to a large quality factor of the trapped-mode
resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based
planar metamaterial which can provide an extremely sharp resonant reflection and
transmission is proposed. The designed metamaterial is envisioned for aggregating
with a pumped active medium to achieve an enhancement of quantum dots lumi-
nescence and to produce an all-dielectric analog of a ‘lasing spacer’.

5.1 Introduction

One of the current trends in the theory of metamaterials is the development of
two-dimensional planar periodic systems (metasurfaces, metamaterials) constructed
in the form of arrays of resonant metallic or dielectric particles, which are arranged
periodically on a thin (compared with the wavelength) dielectric layer. It is known
that such planar metamaterials can create an environment whose electromagnetic
characteristics are similar to those achieved in the traditional cavity resonators, but,
unlike the latter, planar structures can have a much smaller size.

The metamaterial optical properties significantly depend on the resonant features
of its constituent particles. It turns out that the particles with a special form of
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symmetric split rings or squares exhibit resonant properties, which result in a sudden
change in the effective parameters of the metamaterial in a certain frequency band [1,
2]. Such resonances have quasi-static nature, since the size of the unit cell of the
metamaterial is small. Thus, the particles can be seen as an oscillatory circuit, which
has its eigen frequency and quality factor. Unfortunately, the presence of large radi-
ation losses which appear due to the strong electromagnetic coupling of the system to
free space, and a relatively small size (compared with the wavelength) of particles do
not allow to reach the high-Q resonances in conventional planar metamaterials.

Nevertheless there is a possibility to achieve strong electromagnetic field con-
finement and localization in planar metamaterials which support a trapped-mode
resonant regime [3, 4]. These resonances exist in two-dimensional planar periodic
metamaterials with complex doubly or multi-connected metallic or dielectric par-
ticles, which have a low degree of asymmetry. In the near-infrared band it was
shown theoretically [5] and confirmed experimentally [6] that introducing two
slightly asymmetric metallic elements into the periodic cell can lead to the antiphase
current trapped-mode excitation. In this case the electromagnetic coupling of
conductive elements with free space is very weak, which provides low radiation
losses and, therefore, high Q-factor resonances.

Such strong field localization in the mentioned metamaterials opens prospects
for their application in laser and nonlinear optics. Thus, in [7, 8], the idea of using
resonant enhancement of the electromagnetic field which is strongly localized on
the surface of metallic nanoparticles is proposed to create nanoscale devices, in
order to amplify or generate radiation in the visible and infrared bands. Further, in
the development of this idea, a compact planar periodic structure is considered [9].
The proposed system provides strong field localization due to the trapped-mode
excitation and acts like a conventional laser cavity.

In the present days, the theory of nonlinear metamaterials is actively developing
[10–13] in the fields of controlling light with light [14], and parametric conversion
of optical harmonics [15]. Here a particular interest is to study the peculiarities of
intense light interaction with planar structures which sustain the trapped-mode
resonant regime, and contain nonlinear components. In our opinion, strong field
localization, which can be achieved in such structures, opens wide prospects for
their application in the area of nonlinear optics.

5.2 Planar Metamaterials with Metallic Particles

5.2.1 Trapped-Modes: Concept

Let us assume an electromagnetic plane wave

~Ei ¼ ~P exp½�jð~ki �~rÞ� ð5:1Þ
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incidents on a doubly periodic planar array of identical particles with a complex
shape which are placed on a thin dielectric substrate. In (5.1) ~P is the polarization
vector. Throughout this chapter the time dependence is assumed to be expðjxtÞ.
The reflected and transmitted fields can be represented as a superposition of partial
waves

~Er ¼
X1

m¼�1

X1
m¼�1

~amn

� exp �j~vmn~qþ cð~vmnÞz½ �f g; z� 0;

ð5:2Þ

~Et ¼
X1

m¼�1

X1
m¼�1

~bmn exp �j~vmn~qþ cð~vmnÞðzþ hÞ½ �f g; z��h; ð5:3Þ

where ~vmn ¼~exðkix þ 2pn=dxÞ þ~eyðkiy þ 2pn
�
dyÞ, dx and dy are the periods of the

array, ~q ¼~exxþ~eyy, cð~vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � v2

p
, and Re c� 0, Im c� 0.

Let us note that the propagation direction of any spatial partial wave in the
reflected (5.2) and transmitted (5.3) fields depends only on directions of periodicity
in the plane of array, sizes of its periods, the direction of initial plane wave inci-
dence, and the wavelength. If a plane wave is incident on the double periodic array,
the defined set of spatial partial waves is formed in space. As it can be easily
derived, the propagation directions of spatial partial waves in this set do not change
if the initial plane wave is incident upon the same array at any other direction
provided that this direction coincides with the propagation direction of any spatial
partial wave in the set.

The method of moments is generally used to solve the problem of electro-
magnetic scattering by arrays of metallic particles [16]. In the framework of this
method it is implied that the metallic pattern is a very thin conductor. The method
also takes into account the fact that the array is placed on a thin lossy dielectric
substrate. By enforcing the impedance boundary condition

~Etan
��
z¼0¼ Zs~Js; ð5:4Þ

a vector integral equation is derived which is related to the current induced on a
particular particle (here Zs represents the surface impedance of this particular par-
ticle). The integral equation is reduced to an algebraic one by using the standard
spectral-Galerkin technique. So, using the method of moments allows us to
determine both the distribution and magnitude of the current J which flows along
the metallic particles and further to calculate the reflection r and transmission
t coefficients.

As a result of calculations of the current distribution and optical response of
planar metamaterials with particles of different shape it is revealed that if these
particles possess specific structural asymmetry, in a certain frequency band, the
antiphase current oscillations with almost the same amplitudes appear on the
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particles parts (arcs). The scattered electromagnetic field produced by such current
oscillations is very weak, which drastically reduces its coupling to free space and
therefore radiation losses. Indeed, both the electric and magnetic dipole radiations
of currents oscillating in the arcs of the neighbor particles are cancelled. As a
consequence, the strength of the induced current can reach very high value and
therefore ensure a high-Q resonant optical response. Such a resonant regime is
referred to so-called ‘trapped-modes’, since this term is traditionally used in
describing electromagnetic modes which are weakly coupled to free space.

The most remarkable property of the trapped-modes is that they allow in prin-
ciple to achieve high-Q resonances in a very thin structure. The trapped-modes are
normally inaccessible in the systems with particles of a symmetrical form, but can
be excited if these particles have a certain structural asymmetry that allows reaching
weak coupling to free space. Nevertheless, in the arrays with symmetric configu-
ration of particles the excitation of the trapped-modes is also possible if the shape of
these particles is specially designed. It is important that in the latter case the system
can become polarization-insensitive.

Further we consider two particular configurations of metallic particles with
asymmetric [4] and symmetric [17] designs which can support the trapped-mode
excitation (see Fig. 5.1). In the first case, the unit cell consists of metallic particles
in the form of asymmetrically split rings (ASRs). Each ASR contains two identical
strip elements positioned opposite each other. The right-hand split between the
strips φ1 is a little different from the left-hand one φ2, so that the square unit cell is
asymmetric with regard to the y-axis. In the second case, the unit cell of the studied
metamaterial contains a single double-ring (DR). The radii of the outer and inner
rings are fixed at a1 and a2, respectively. Suppose the width of the metal rings in
both configurations is 2w, and the arrays are placed on a thin dielectric substrate

Fig. 5.1 Fragment of the
planar metamaterial and its
elementary unit cells
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with thickness h and permittivity ε. We consider a normal incidence on the structure
of a linearly polarized monochromatic plane wave with an amplitude A and fre-
quency ω. Assume that the direction of the vector ~E of the incident wave coincides
with the direction of the y-axis.

In the case of such a polarization of the incident field, in the structure of the first
type, the trapped-mode excitation can be reached. Due to the 4-fold symmetry of
the unit cell of the structure of the second type, its resonant properties do not
depend on the direction of the vector ~E of the normally incident wave, i.e., as it was
mentioned before, the second configuration is polarization-insensitive.

Typical frequency dependences of the transmission coefficient and current
magnitudes calculated with the method of moments for ASR and DR structures are
presented in Fig. 5.2. One can see that at the dimensionless frequency nearly æ = d/
λ ≈ 0.3, a sharp resonance occurs in the structures of both types (see the shaded
areas in Fig. 5.2). This resonance corresponds to the excitation of a trapped-mode
because equal and opposite directed currents in the two arcs of each complex
particle of array radiate a little in free space. The resonance has a high-Q factor, and
the current magnitude reaches its maximum exactly at this frequency. Remarkably,

Fig. 5.2 Frequency dependences (æ = d/λ) of magnitudes of the transmission coefficient and
squared average current (in a.u.) of the metamaterial with (a, c) ASR and (b, d) DR particles;
(a, c) d = dx = dy = 900 nm, φ1 = 15°, φ2 = 25°; (b, d) d = dx = dy = 800 nm
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as the permittivity of the substrate increases, the resonant frequency shifts down to
low values (Fig. 5.2a). Also as the value of ohmic losses in the metamaterial
substrate increases, the magnitude of current and quality factor of the resonance
decrease (Fig. 5.2b) but, nevertheless, the resonance remains to be well observed.
We expect that such a high-Q resonant regime is promised to enhance some non-
linear effects, since at the frequency of trapped-mode excitation the field is strongly
localized inside the system.

5.2.2 Inner Field Intensity Estimation

In order to understand the ability of the proposed structures to enhance some
non-linear effects, it is required to estimate the intensity of the inner field which is
localized within the system. The special geometry of the metamaterial with sym-
metrical DR allows us to obtain an analytical expression for this demand [12, 13].
So, at the trapped-mode resonance, the electromagnetic energy is confined to a very
small region between the rings. Therefore, the approximation based on the trans-
mission line theory is used here to estimate the field intensity between the rings.
According to this theory, conductive rings are considered as two wires with a
distance b between them. Along these wires the currents flow in opposite directions.
Thus the electric field strength is defined as

Ein ¼ V=b; ð5:5Þ

where V = ZJ is the line voltage, b = a1 − a2 − 2w, J is the magnitude of current
which flows along the DR-element, and Z is the impedance of line. The impedance
is determined at the resonant dimensionless frequency �0 ¼ d=k0,

Z ¼ �0
60l
dC0

; ð5:6Þ

where l ¼ pða1 þ a2Þ=2, and

C0 ¼ 1
4
ln

p
2w

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2w

� �2
�1

r" #
; ð5:7Þ

is the capacity in free space per unit length of line, p = a1 − a2. From this model it
follows that the electric field strength between the rings is directly proportional to
the current magnitude J. Since the unit cell is small in comparison with the
wavelength, the current magnitude J can be substituted with its value averaged
along the metallic ring, �J. From our estimations it can be concluded that the
intensity of the incident field Iinð�JÞ which is enough for the nonlinearity to become
apparent is about 10 kW/cm2.
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5.2.3 Optical Bistability and All-Optical Switching

The effect of optical bistability (or, generally, multistability) is a basis of numerous
applications such as all-optical switching, differential amplification, unidirectional
transmission, power limiting, pulse shaping, optical digital data processing, and
others [14, 18]. A classical example of the bistable device is a Fabry-Perot inter-
ferometer filled with a Kerr-type nonlinear material. In this case, the resonator
provides feedback, which is essential to obtain a multivalued intensity at the
structure’s output. However, in such a system, both relatively strong light power
and/or large enough volume of the nonlinear optical material are generally needed
to achieve a sizeable nonlinear response.

A promising way to realize an optical switching in compact devices can be found
in using planar metamaterials. In particular, at the trapped-mode resonance the
electromagnetic energy is confined to a limited extent around the particles, where
the energy density reaches substantially high values. This makes the response of the
metamaterial operating in the trapped-mode regime extremely sensitive to the
dielectric properties of the substrate.

If a metamaterial is under an action of intense light (i.e. in the nonlinear regime),
the substrate permittivity e becomes to be depended on the value of the average
current �Jðe ¼ e1 þ e2Iinð�JÞÞ. Thus, the appropriate average current magnitude for a
given e can be found using the next nonlinear equation

�J ¼ ~AF�Jðx; eðIinð�JÞÞÞ; ð5:8Þ

where ~A is a dimensionless coefficient which depicts how many times the incident
field magnitude A is greater than 1 V/cm. Thus, the magnitude A is a parameter of
(5.8), and, at a fixed frequency ω, the solution of this equation is the average current
magnitude �J which is depended on the magnitude of the incident field ð�J ¼ �JðAÞÞ.
Further, on the basis of the current �JðAÞ found by a numerical solution of (5.8), the
permittivity of the nonlinear substrate e ¼ eðIinð�JÞÞ is obtained and the reflection
and transmission coefficients are calculated as functions of the frequency and
magnitude of the incident field.

If the structure substrate is made of a Kerr-type nonlinear material, the curves of
the average current magnitude versus incident field magnitude have a form of S-like
hysteresis loops (Fig. 5.3a) [10]. Such a form of the input-output characteristic of
the studied metamaterial is inherent to the most optical bistable devices. The
presence of hysteresis results in abrupt switching between two distinct states with
small and large levels of transmission nearly the frequency of the trapped-mode
excitation (Fig. 5.3b).

The origin of such a bistable response can be explained as follows. Suppose that
the trapped-mode resonant frequency is slightly higher than the incident field fre-
quency. As the intensity of the incident field rises, the magnitude of currents on the
metallic particles increases. This leads to increasing the field strength inside the
substrate and its permittivity as well. As a result, the frequency of the resonant
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mode decreases and shifts toward the frequency of incident wave, which, in turn,
enhances further the coupling between the current modes and the inner field
intensity in the nonlinear substrate. This positive feedback increases the slope of the
rising edge of the transmission spectrum, as compared to the linear case. As the
frequency extends beyond the resonant mode frequency, the inner field magnitude
in the substrate decreases and the permittivity goes back towards its linear level, and
this negative feedback keeps the resonant frequency close to the incident field
frequency.

At once, the frequency dependence of the transmission coefficient magnitude
manifests some impressive discontinuous switches to different values of transmis-
sion, as the frequency increases and decreases in the resonant range for the suffi-
ciently large intensity of the incident wave. The shifting of the peak of the
resonance and the onset of a bistable transmissivity through the ASR structure is
similar to that of the reflection from a Fabry-Perot cavity (Fig. 5.4a). However, the
trapped-mode resonance is Fano-shaped rather than the Lorentzian, as is the
characteristic of 1D Fabry-Perot cavities. This Fano resonance can lead to a peculiar
transmission spectra and bistable behavior. In particular, the transmission resonance
of the ASR structure may loop back on themselves (Fig. 5.4b).

The most appropriate form for the realization of optical switching has the
spectral characteristics of the DR-metamaterial [11–13]. While the dependence of
the inner field intensity versus the incident field magnitude has the form of the S-
like hysteresis loop (Fig. 5.5a), the frequency dependence of the magnitude of the
transmission coefficient has a sharp asymmetric Fano-shape of the spectral line
where the transmission coefficient changes from low to high level in a very narrow
frequency range (Fig. 5.5b). Such a form of resonance is very suitable to obtain
great amplitude of switching since there are gently sloping bands of the high
reflection and transmission before and after the resonant frequency.

Fig. 5.3 The square of a the current magnitude (in a.u.) averaged along split ring and b the
magnitude of the transmission coefficient versus the incident field magnitude in the case of the
ASR nonlinear metamaterial (e1 ¼ 4þ 0:02i, e2 ¼ 5� 10�3 cm2/kW). The arrows indicate a
bistable switching between two distinct levels of transmission. All other parameters are the same as
in Fig. 5.2
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5.2.4 Strong Field Confinement in Bilayer-Fish-Scale
System

Another type of metamaterials which supports Fano-shape trapped-mode reso-
nances is a planar metamaterial which consists of an equidistant array of continuous
meandering metallic strips placed on a thin dielectric substrate (the fish-scale
structure [19]). In this system the trapped-mode resonance appears due to a special
form of strips, and this form is designed in view of the polarization of the incident
field. A way to expand the functionality of such a fish-scale structure lies in the
placement of the second grating on the back side of a thin dielectric substrate. In
this case additional trapped-mode resonance can appear due to interaction of the

Fig. 5.4 Frequency dependences of a the square of the current magnitude (in a.u.) averaged along
split ring (on the logarithmic scale) and b the magnitude of the transmission coefficient in the case
of the ASR nonlinear metamaterial (e1 ¼ 4þ 0:02i, e2 ¼ 5� 10�3 cm2/kW). All other parameters
are the same as in Fig. 5.2

Fig. 5.5 Magnitude of the inner field intensity a versus magnitude of the incident field and b the
frequency dependences of the magnitude of the transmission coefficient in the case of the DR
nonlinear metamaterial (e1 ¼ 4:1þ 0:02i, e2 ¼ 5� 10�3 cm2/kW). All parameters are the same as
in Fig. 5.2
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antiphase current oscillations between two adjacent gratings [20, 21]. This con-
figuration is of particular interest in the case when the substrate is made of a field
intensity dependent material (for example, a Kerr-type medium) because the strong
field localization between the gratings can significantly enhance the nonlinear
effects.

We consider a bilayer structure which consists of two gratings of planar perfectly
conducting infinite strips placed on each side (z = 0, z = –h) of a thin dielectric
substrate (Fig. 5.6). The unit cell of the structure under study is a square with sides
dx = dy = d. The width of the metal strips and their deviation from a straight line,
respectively, are 2w=d ¼ 0:05 and D=d ¼ 0:25. Suppose that the normally incident
field is a plane monochromatic wave polarized in parallel to the strips (x-
polarization).

Due to the bilayer configuration of the structure under study there are two
possible current distributions which correspond to the trapped-mode resonances.
The first distribution is the antiphase current oscillations in the arcs of each grating.
In this case the structure can be considered as a system of two coupled resonators
which operate at the same frequency because the gratings are identical. We have
labeled this resonant frequency in Fig. 5.7 by the letter æ1. Obviously that the
distance h between the gratings will strongly effect on the resonant frequency
position since this parameter defines the electromagnetic coupling degree. The Q-
factor of this resonance is higher in the bilayer structure than that one existed in a
single-layer structure but their similarity lies in the fact that the current magnitude in
the metallic pattern depends relatively weakly on the thickness and permittivity of
the substrate.

The second distribution is the antiphase current oscillations between two adja-
cent gratings. Similarly we have labeled this resonant frequency in Fig. 5.7 by the
letter æ2. It is well known that the closer are the interacting metallic elements, the
higher is the Q-factor of the trapped-mode resonance. Thus varying both the dis-
tance between the gratings and substrate permittivity changes the trapped-mode

Fig. 5.6 Fragment of the
bilayer-fish-scale
metamaterial and its
elementary unit cell
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resonant conditions and this changing manifests itself in the current magnitude.
Remarkably that in this type of current distribution the field is localized between the
gratings, i.e. directly in the substrate, which can sufficiently enhance the nonlinear
effects if the substrate is made of field intensity dependent material.

This circumstance is depicted in Fig. 5.8 where typical curves of the inner field
intensity and the transmission coefficient magnitude are given as functions of the
frequency and the incident field intensity in the nonlinear regime.

For these calculations the structure parameters are chosen in such a way that the
both resonances are closely settled and the frequency æ1 of the first resonance is
less than the frequency æ2 of the second one (æ1 < æ1). One can see that as the
intensity of the incident field rises, the frequency dependences of the inner intensity
magnitude take a form of the bent resonances and a bistable regime occurs. An
important point is that this bending is different for the first and second type of
resonances due to the difference in the current magnitude changing at these two

Fig. 5.7 The surface current distribution along the strips in the bilayer structure composed of
gratings with wavy-line metal strips

Fig. 5.8 The frequency dependences of a the inner field intensity (on the logarithmic scale) and
b the transmission coefficient magnitude versus the different incident field intensity in the case of
the nonlinear permittivity (e ¼ e1 þ e2jIinj2, dimension of Iin is in kW/cm2); ε1 = 3.0,
ε2 = 0.005 cm2/kW; curve 1—I0 = 1 kW/cm2, curve 2—I0 = 200 kW/cm2, curve 3—
I0 = 300 kW/cm2
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frequencies. Thus at the resonant frequency æ2 the magnitude of currents which
flow along the strips of both gratings are significant, and they are greater than the
magnitude of currents which flow nearly the resonant frequency æ1 (Fig. 5.8a), and,
in the nonlinear regime, the bending of the peak æ2 is greater than that one of the
peak æ1. As a result, the spectral curves of the transmission coefficient magnitude
experience different changes nearly the trapped-mode resonant frequencies. At the
frequency æ1 the curve transforms into a closed loop that is typical for the sharp
nonlinear Fano-shape resonances. The second resonance æ2 is smooth but it
undergoes more distortion in the wider frequency band, and at a certain incident
field intensity this resonance can overlap the first one (Fig. 5.8b). Evidently that in
this case the transmission coefficient has more than two stable states, i.e. the effect
of multistability occurs.

5.3 All-Dielectric Planar Metamaterials

5.3.1 Trapped-Modes in All-Dielectric Arrays

Unfortunately huge energy dissipation which is inherent to metal in the infrared and
visible parts of spectrum results in increasing ohmic losses in plasmonic metama-
terials [22–25] and decreasing Q-factor of the trapped-mode resonance [5].
Moreover, the trapped-mode resonance completely degrades in metamaterials with
low degree of the particle asymmetry. Thus, using all-dielectric low-loss structures
which are capable to support the trapped-mode excitation in the infrared and visible
ranges is extremely good idea [26].

Let us consider the plane wave diffraction on a double-periodic structure which
consists of two dielectric elements within the periodic cell (Fig. 5.9). These

Fig. 5.9 Fragment of the
all-dielectric metamaterial and
its elementary unit cells
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dielectric elements create an electromagnetic environment similar to that one
existed in the open dielectric resonators, and, unlike structures with metallic par-
ticles, a form of these dielectric elements does not entail a substantial increase of the
resonant wavelength. Note that a material with high refractive index is required for
designing the array of subwavelength elements to provide the resonant light
interaction with the system. In particular, we propose to construct such elements in
the form of two closely spaced parallelepipeds with different length or width similar
to those ones which are shown in Fig. 5.9. In particular, in this figure the
double-periodic array of dielectric bars placed on a silica substrate with thickness Ls
is presented. The unit cell of the array includes a pair of dielectric bars which have
different length (l1 � l2, h1 ¼ h2 ¼ h) or width (h1 � h2, l1 ¼ l2 ¼ l) but are iden-
tical in thickness (La) and are made from the same material. The sizes of the square
periodic cell are chosen to be identical dx = dy = d. The period cells of both
structures are symmetric relative to the line drawn through the cell center parallel to
the y-axis.

We suppose a normal incidence of the linearly x-polarized plane waves on the
structure. The resonant response of the array is studied in the near-infrared wave-
length range from 1000 to 2500 nm. The substrate is assumed to be made from the
synthetic fused silica whose refractive index is approximately 1.44 in the wave-
length range under consideration [27]. Refractive index of the dielectric bars is nd .
The diffraction problem is solved numerically using the mapped PSTD method
[28, 29].

The wavelength dependences of the reflection coefficient magnitude of the arrays
with a single dielectric bar (lines 1 and 2) and a pair of dielectric bars (line 3) within
the periodic cell are shown in Fig. 5.10. In this figure the arrows and Roman
numeral I indicate the high-Q resonance which appears in the array consisted of a
pair of dielectric bars with different length. Each dielectric bar within the periodic
cell interacts with light like a half-wavelength open dielectric resonator and the
resulting field has antiphase distribution within the pair of these resonators, and,
hence, this resonant regime can be referred to the trapped-mode excitation [6]. The
main distinctive feature of the trapped-mode resonance in the two-element dielectric
array is a great red shift of its wavelength compared to the resonant wavelengths of
the corresponding single-element arrays (see Fig. 5.10). This feature of the
trapped-mode resonant regime of the proposed all-dielectric metamaterial is quite
important in view of its possible application in the infrared and visible parts of
spectrum. First, the ratio of the array pitch to the wavelength may be decreased to
design more homogeneous metamaterials. Second, as the resonant wavelength
shifts up the field confinement increases since the radiation losses decrease.
Remarkably, these behaviors are especially important when designing artificial
nonlinear and gain artificial media.

The proposed array can be made of semiconductor in the wavelength range
where semiconductor has a transparency window. In particular, the transparency
windows of germanium and silicon lie between 1.9 and 16 µm, and 1.2 and 14 µm,
respectively [30]. The semiconductor interacts with light as a good dielectric within
these transparency windows. The typical value of the dissipation losses tangent of
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the mentioned semiconductors within these bands do not exceed 10�3. Also the
semiconductor refractive index has extremely small variation of its value within the
transparency windows. The germanium refractive index changes from 4.15 to 4.0,
and silicon refractive index changes from 3.41 to 3.52, respectively.

The wavelength dependences of the reflection coefficient magnitude for the
periodic array made from a pair of germanium bars in the periodic cell are shown in
Fig. 5.11. One can see that both the Q-factor and the value of red shift of the
trapped-mode resonance increase as the asymmetry of bars within the periodic cell
decreases. The calculated Q-factors of the trapped-mode resonances are 203 and
1080 for the structures with germanium bars having geometrical parameters
l1 ¼ 780 nm, l2 ¼ 877 nm and l1 ¼ 838 nm, l2 ¼ 877 nm, respectively (see lines 2
and 3 in Fig. 5.11). These values of Q-factor are ten orders of magnitude greater
than those ones reached in the plasmonic metamaterials.

5.3.2 Saturation Effect in Active Metamaterial

We have proposed a simple design of an all-dielectric low-loss silicon-based planar
metamaterial [31] which can produce an extremely sharp resonant reflection and
transmission in the wavelength of about 1550 nm due to both low dissipation losses
and the trapped-mode excitation. The Q-factor of the resonance exceeds in ten times

Fig. 5.10 Wavelength dependences of the reflection coefficient magnitude of the metamaterial
with single dielectric bar (lines 2 and 3) and pair of dielectric bars (line 1) in periodic cell;
d = 975 nm, Ls = ∞, La = h = 195 nm, nd = 5.5. Line 1 corresponds to bars with sizes l1 = 780 nm
and l2 = 877 nm, line 2 corresponds to bars with size l = 877 nm, and line 3 corresponds to bars
with size l = 780 nm
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the Q-factor of resonances in known plasmonic structures. The designed metama-
terial is envisioned for aggregating with a pumped gain medium to achieve an
enhancement of luminescence, and we report that in the designed metamaterial the
essential enhancement of luminescence (more than 500 times) in a layer which
consists of pumped quantum dots (QD) can be reached. This value significantly
exceeds the known values of the luminescence enhancement in known plasmonic
planar metamaterials [32].

The model of a gain nonlinear medium assumes the introducing negative fre-
quency dependent conductivity in the form:

rðxÞ ¼ 1
1þ I=Is

� r0ð1þ ixsÞ
ð1þ x2

0s
2Þ þ 2ixs� x2s2

; ð5:9Þ

where ω0 = 1.26 × 1015 s−1 corresponds to the wavelength λ0 = 1550 nm,
τ = 4.85 × 10−15 s, εQD = 2.19 corresponds to the refractive index nQD = 1.48 of the
non-pumped quantum dot laser medium, and σ0 = −500 Sm/m corresponds to an
emission factor tgδe = −0.021 by analogy with a lossy factor of media. Small value
of τ results in a wide-band QD spectral line and enables us to exclude from con-
sideration the effects caused by displacement of metamaterial dissipation peak and
maximum of exciton emission line of QDs. Let us notice that the pump level (σ0) is
in one order of magnitude less than it is needed in the case of plasmonic metam-
aterials because there is a low degree of losses in the all-dielectric array. The factor
ð1þ I=IsÞ�1 allows us to consider the effect of the luminescence enhancement of
the gain saturation effect which is inherent to the active media. Here the parameter

Fig. 5.11 Wavelength dependences of the reflection coefficient magnitude of the metamaterial
with pair of germanium bars in periodic cell; d = 975 nm, Ls = ∞, La = h = 195 nm, l2 = 877 nm,
the germanium refractive index is nd = 4.12 which is actual for wavelength 1900 nm. Line 1, 2 and
3 correspond to bars with sizes l1 = 877 nm, l1 = 838 nm, and l1 = 780 nm, respectively
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Is is proportional to the saturation intensity and displays the effect of inversion
population reducing in the gain medium by simulated emission. It is proportional to
the maximum of the internal field (I). The saturation factor ½ð1þ I=IsÞ�1� is cal-
culated separately for each point of the spatial grid which takes into account the
heterogeneity of the QD layer. We should note that the small value of an emission
factor results in independence of the QD refractive index on the saturation factor.
Thus the effect of saturation versus the luminescence enhancement of QD layer
hybridized with the all-dielectric metamaterial can be considered under this model.

The diffraction approach proposed in [31] is further used to calculate the
luminescence enhancement in the QD layer hybridized with the all-dielectric
metamaterial. This approach consists of evaluation of considered structure lumi-
nescence through the difference of the energy dissipation in the passive and active
(pumped) structure. The dissipation energy is calculated from the solution of the
corresponding diffraction problem for the separate plane wave. The luminescence
enhancement equals to the ratio of the luminescence of the hybridized structure to
the luminescence of the 210 nm homogeneous QD layer placed on 50 nm silica
substrate. The wavelength dependences of the luminescence enhancement of the
QD layer hybridized with the all-dielectric metamaterial for different values of the
saturation intensity are shown in Fig. 5.12. The reducing of the luminescence
enhancement with decreasing of the saturation intensity can be explained by
exciting strong local field in the hybridized structure which results in the saturation
factor decreasing. The distribution of the saturation factor in cross section
(z = −155 nm) is depicted in Fig. 5.13. One can see the burning holes appearance in
the distribution (see dark areas in Fig. 5.13). The energy of optical pumping within
these holes is completely spent by simulated emission. The effect of gain saturation
does not strongly affect on the photoluminescence in the system but it needs to be
taken into account when designing optical amplifiers and lasing spacers.

Fig. 5.12 The wavelength
dependences of the
luminescence enhancement
(in a.u.) of the QD layer
hybridized with the
all-dielectric metamaterial for
different value of Is

96 V. Khardikov et al.



Acknowledgements This work was supported by the Ukrainian State Foundation for Basic
Research, the Project no. Φ54.1/004, and National Academy of Sciences of Ukraine, Program
‘Nanotechnologies and Nanomaterials’, the Project no. 1.1.3.17.

References

1. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer,
H. Giessen, Resonances of split-ring resonator metamaterials in the near infrared. Appl. Phys.
B 84(1–2), 219–227 (2006)

2. N. Liu, H. Guo, L. Fu, H. Schweizer, S. Kaiser, H. Giessen, Electromagnetic resonances in
single and double split-ring resonator metamaterials in the near infrared spectral region. Phys.
Stat. Sol. (b) 244(4), 1251–1255 (2007)

3. S. Prosvirnin, S. Zouhdi, Resonances of closed modes in thin arrays of complex particles, in
Advances in Electromagnetics of Complex Media and Metamaterials, ed. by S. Zouhdi, M.
Arsalane (Kluwer Academic Publishers, Dordrecht, 2003), pp. 281–290

4. V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Sharp trapped-mode
resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99
(14), 147401 (2007)

5. V. Khardikov, E. Iarko, S. Prosvirnin, Trapping of light by metal arrays. J. Opt. 12(4), 045102
(2010)

6. Z.L. Samson, K.F. MacDonald, F. DeAngelis, B. Gholipour, K. Knight, C.C. Huang, E. Di
Fabrizio, D.W. Hewak, N.I. Zheludev, Metamaterial electro-optic switch of nanoscale
thickness. Appl. Phys. Lett. 96(14), 143105 (2010)

7. D.J. Bergman, M.I. Stockman, Surface plasmon amplification by stimulated emission of
radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett.
90(2), 027402 (2003)

8. D.J. Bergman, M.I. Stockman, Can we make a nanoscopic laser? Laser Phys. 14(3), 409–411
(2004)

9. N.I. Zheludev, S.L. Prosvirnin, N. Papasimakis, V.A. Fedotov, Lasing spacer. Nature
Photonics 2(6), 351–354 (2008)

10. V. Tuz, S. Prosvirnin, L. Kochetova, Optical bistability involving planar metamaterials with
broken structural symmetry. Phys. Rev. B 82(23), 233402 (2010)

Fig. 5.13 The distribution of
saturation factor in the cross
section z = −155 nm;
λ = 1553 nm; Is = 0.4

5 Electromagnetic Wave Diffraction by Periodic Planar … 97



11. V. Tuz, S. Prosvirnin, All-optical switching in metamaterial with high structural symmetry—
bistable response of nonlinear double-ring planar metamaterial. Eur. Phys. J. Appl. Phys. 56
(3), 30401 (2011)

12. V. Tuz, V. Butylkin, S. Prosvirnin, Enhancement of absorption bistability by trapping-light
planar metamaterial. J. Opt. 14(4), 045102 (2012)

13. V. Dmitriev, S. Prosvirnin, V. Tuz, M. Kawakatsu, Electromagnetic controllable surfaces
based on trapped-mode effect. Adv. Electromagn. 1(2), 89–95 (2012)

14. H.M. Gibbs, Optical bistability: controlling light with light (Academic, Orlando, 1985)
15. M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic

metamaterials. Science 313(5786), 502–504 (2006)
16. S.L. Prosvirnin, S. Zouhdi, Multi-layered arrays of conducting strips: switchable photonic

band gap structures. AEÜ Int. J. Electron. Commun. 55(4), 260–265 (2001)
17. S.L. Prosvirnin, N. Papasimakis, V. Fedotov, S. Zouhdi, N. Zheludev, Trapped-mode

resonances in planar metamaterials with high structural symmetry, in Metamaterials and
Plasmonics: Fundamentals, Modelling, Applications, ed. by S. Zouhdi, et al. (Springer, The
Netherlands, 2009), pp. 201–208

18. S.I. Tarapov, YuP Machekhin, A.S. Zamkovoy, Magnetic resonance for optoelectronic
materials investigating (Collegium, Kharkov, 2008)

19. V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, N.I. Zheludev, Planar electromagnetic
metamaterial with a fish scale structure. Phys. Rev. E 72(5), 056613 (2005)

20. N. Papasimakis, V.A. Fedotov, N.I. Zheludev, S.L. Prosvirnin, Metamaterial analog of
electromagnetically induced transparency. Phys. Rev. Lett. 101(25), 253903 (2008)

21. P.L. Mladyonov, S.L. Prosvirnin, Wave diffraction by double-periodic gratings of continuous
curvilinear metal strips placed on both sides of a dielectric layer. Radio Physics and Radio
Astronomy 1(4), 309–320 (2010)

22. C. Jansen, I. Al-Naib, N. Born, M. Koch, Terahertz metasurfaces with high Q-factors. Appl.
Phys. Lett. 98(5), 051109 (2011)

23. I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki,
R. Morandotti, Appl. Phys. Lett. 101(7), 071108 (2012)

24. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in
metamaterials. Phys. Rev. Lett. 101(4), 047401 (2008)

25. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, X. Zhang, Plasmonically
induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric
double bars. Opt. Express 18(17), 18229–18234 (2010)

26. V. Khardikov, E. Iarko, S. Prosvirnin, A giant red shift and enhancement of the light
confinement in a planar array of dielectric bars. J. Opt. 14(3), 035103 (2012)

27. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc.
Am. 55(11), 1205–1208 (1965)

28. G. Xian, M.S. Mirotznik, S. Shi, D.W. Prather, Applying a mapped pseudospectral
time-domain method in simulating diffractive optical elements. J. Opt. Soc. Am. A 21(5),
777–785 (2004)

29. V.V. Khardikov, E.O. Iarko, S.L. Prosvirnin, Using transmission matrix and pseudospectral
time-domain method to study of light diffraction on planar periodic structures. Radiophysics
and Radioastronomy 13(2), 146–158 (2008)

30. H.H. Liu, Refractive index of silicon and germanium and its wavelength and temperature
derivatives. J. Phys. Chem. Ref. Data 9(3), 561–658 (1980)

31. V.V. Khardikov, S.L. Prosvirnin, Enhancement of quantum dot luminescence in all-dielectric
metamaterial. arXiv:1210.4146 [physics.optics], October 2012

32. K. Tanaka, E. Plum, J.Y. Ou, T. Uchino, N.I. Zheludev, Multifold enhancement of quantum
dot luminescence in plasmonic metamaterials. Phys. Rev. Lett. 105(22), 227403 (2010)

98 V. Khardikov et al.



Chapter 6
Gaussian Beam Tunneling Through
a Gyrotropic-Nihility Finely-Stratified
Structure

Vladimir R. Tuz and Volodymyr I. Fesenko

Abstract The three-dimensional Gaussian beam transmission through a
ferrite-semiconductor finely-stratified structure being under an action of an external
static magnetic field in the Faraday geometry is considered. The beam field is
represented by an angular continuous spectrum of plane waves. In the long-
wavelength limit, the studied structure is described as a gyroelectromagnetic
medium defined by the effective permittivity and effective permeability tensors. The
investigations are carried out in the frequency band where the real parts of the
on-diagonal elements of both effective permittivity and effective permeability ten-
sors are close to zero while the off-diagonal ones are non-zero. In this frequency
band the studied structure is referred to a gyrotropic-nihility medium. It is found out
that a Gaussian beam keeps its parameters unchanged (beam width and shape) when
passing through the layer of such a medium except of a portion of the absorbed
energy.

6.1 Introduction

The conception of nihility was firstly introduced in the paper [1] for a hypothetical
medium, in which the following constitutive relations hold ~D ¼ 0;~B ¼ 0. So,
nihility is the electromagnetic nilpotent, and the wave propagation cannot occur in
nihility, because r�~E ¼ 0 and r� ~H ¼ 0 in the absence of sources therein.
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Further, in [2], this conception of nihility was extended for an isotropic chiral
medium whose constitutive relations are: ~D ¼ e~E þ iq~H;~B ¼ l~H � iq~E, whereq is
the chirality parameter. Thus, a possible way for composing such a medium in the
microwave band was proposed using canonical chiral wire particles. The effective
material parameters are calculated on the basis of the Maxwell-Garnett mixing rule,
and in a certain narrow frequency band it is found out that the real parts of both
effective permittivity and effective permeability become close to zero
(e0 � 0; l0 � 0) while the real part of the chirality parameter is maintained at a finite
value (q0 6¼ 0). It was revealed that in such an isotropic chiral-nihility medium there
are two eigenwaves with right (RCP) and left (LCP) circularly polarized states,
whose propagation constants depend only on the chirality parameter, and these
propagation constants of the RCP (cþ) and LCP (c�) waves are equal in magnitude
but opposite in sign to each other (c� ¼ �k0; q ¼ �c). Thereby one of these ei-
genwaves experiences the forward propagation while the other one experiences the
backward propagation. Here, the sign of the chirality parameter, which in turn
depends on the chiral particles handedness, determines which of the eigenwaves
appears as a backward propagating one. In particular, this feature results in some
exotic characteristics in the wave transmission through and reflection from a single
layer and multilayer systems which consist of such a chiral-nihility medium [3, 4].

Besides chiral media, the circularly polarized eigenwaves are also inherent to
magneto-optic gyrotropic materials (e.g. ferrites or semiconductors) in the presence
of an external static magnetic field, when this field is biased to the specimen in the
longitudinal geometry relative to the direction of wave propagation (in the Faraday
configuration) [5]. Such gyrotropic media are characterized by the permeability or
permittivity tensor ~D ¼ ê~E;~B ¼ l̂~H with non-zero off-diagonal elements (gyro-
tropic parameters). Apart from getting double-negative conditions [6–10], com-
bining together gyromagnetic (ferrite) and gyroelectric (semiconductor) materials
into a certain unified gyroelectromagnetic structure [6] allows one to reach the
gyrotropic-nihility effect within a narrow frequency band [11]. In particular, in a
finely stratified ferrite-semiconductor structure such a condition is valid in the
microwave band nearly the frequencies of ferromagnetic and plasma resonances. In
this case the real parts of on-diagonal elements of both effective permeability and
effective permittivity tensors of such an artificial medium simultaneously acquire
zero while the off-diagonal ones are non-zero. It is revealed that in this medium the
backward propagation can appear for one of the circularly polarized eigenwaves
which leads to some unusual optical features of the system and provides an
enhancement of the polarization rotation, impedance matching to free space, and
complete light transmission.

Since a gyrotropic-nihility medium with appropriate parameters can support
backward propagating eigenwaves and is impedance matched to free space, it
becomes substantial to study the focusing properties of a finite thickness slab in
which the gyrotropic-nihility condition holds [12]. It involves consideration of the
field in the form of a spatially finite wave beam, in particular, as a Gaussian beam
which is presented as a continual superposition of plane waves. On the other hand,

100 V.R. Tuz and V.I. Fesenko



it is also known that there are several beam phenomena such as displacement of the
beam axis, beam splitting, focal and angular shifts which are not found in the
reflection and transmission of separate plane waves [13–16], and so they require
particular consideration. These studies are usually based on a two-dimensional
beam formulation, which is quite efficient [17, 18]. Nevertheless, in gyrotropic
media a three-dimensional model of beam representation should be considered to
take into account the polarization effects and to predict the change in the ellipticity
of the scattered beam [19, 20].

In this chapter, we demonstrate the phenomenon of the three-dimensional
Gaussian beam transmission through a ferrite-semiconductor finely-stratified
structure being under an action of an external static magnetic field biased along
the structure periodicity. The investigations are carried out for two different fre-
quencies. The first one is chosen to be far from frequencies of the ferromagnetic and
plasma resonances and the second one is selected to be at the gyrotropic-nihility
frequency. The main goal is to show that such a finely-stratified structure is able to
tunnel a Gaussian beam practically without any distortion of its form when the
gyrotropic-nihility condition holds.

6.2 Problem Formulation and Methods of Solution

6.2.1 Magnetic Multilayer Structure Under Study

A stack of N identical double-layer slabs (unit cells) which are arranged periodically
along the z axis is investigated (Fig. 6.1). Each unit cell is composed of ferrite (with
constitutive parameters e1; l̂1) and semiconductor (with constitutive parameters
ê2; l2) layers with thicknesses d1 and d2, respectively. The structure’s period is
L = d1 + d2, and in the x and y directions the system is infinite. We suppose that the
structure is finely-stratified, i.e. its characteristic dimensions d1, d2 and L are sig-
nificantly smaller than the wavelength in the corresponding layer d1 � k; d2 �
k; L � k (the long-wavelength limit). An external static magnetic field ~M is
directed along the z-axis. The input z� 0 and output z	NL half-spaces are
homogeneous, isotropic and have constitutive parameters e0; l0.

We use common expressions for constitutive parameters of normally magnetized
ferrite and semiconductor layers with taking into account the losses. They are
defined in the form [21–23]:

e1 ¼ ef ; l̂1 ¼
lT1 �ia 0
ia lT1 0
0 0 lL1

0
@

1
A; ê2 ¼

eT2 �ib 0
ib eT2 0
0 0 eL2

0
@

1
A; l2 ¼ ls; ð6:1Þ

where for ferrite the auxiliary values are lT1 ¼ 1þ v0 þ iv00, v0 ¼ x0xm x2
0 � x2

�
ð1� b2Þ
D�1, v00 ¼ xxmb x2

0 � x2ð1þ b2Þ� �
D�1, a ¼ X0 þ iX00, X0 ¼ xxm
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x2
0 � x2ð1þ b2Þ� �

D�1, X00 ¼ 2x2x0xmbD�1, D ¼ x2
0 � x2ð1þ b2Þ� �2 þ 4x2

0

x2b2, x0 is the Larmor frequency and b is a dimensionless damping constant; for

semiconductor layers the auxiliary values are eL2 ¼ e0 1� x2
p½xðxþ imÞ
�1

h i
; b ¼

e0x2
pxc xððxþ imÞ2 � x2

cÞ
h i�1

; eT2 ¼ e0 1� x2
pðxþ imÞ½xððxþ imÞ2 � x2

cÞ
�1
h i

;

e0 is the part of permittivity attributed to the lattice, xp is the plasma frequency, xc

is the cyclotron frequency and m is the electron collision frequency in plasma.
The frequency dependences of the permeability and permittivity parameters

calculated using (6.1) are presented in Fig. 6.2. Note that the values of ImðlT1 Þ,
ImðaÞ and ImðeT2 Þ, ImðbÞ are so close to each other that the curves of their fre-
quency dependences coincide in the corresponding figures.

6.2.2 Gaussian Beam Representation

The auxiliary coordinate system xin, yin, zin (see, Fig. 6.1) is introduced to describe

the incident beam field [13, 14, 20]. In it, the incident field ~win ¼ ~Ein; ~Hin is defined
as a continued sum of the partial plane waves with the spectral parameter~jin (it has
a sense of the transverse wave vector of the partial plane wave):

~win ¼~t
Z Z1

�1
U ~jinð Þ exp i~jin ~rin þ~ainð Þ þ icin zin þ a3ð Þ½ 
d~jin: ð6:2Þ

In (6.2) the vector ~t is related to E (~t ¼~ein) or H (~t ¼~hin) field, respectively;
~ein ¼ ~PVp �~bin �~PVs, ~hin ¼ ~PVs þ~bin �~PVp where the vector ~P ¼~z0 �~n
describes the field polarization. In the structure’s coordinates x, y, z, the vector~n is
characterized via the next components cos hin cosuin; cos hin sinuin; 0ð Þ, where

Fig. 6.1 A periodic stack of
one-dimensional double-layer
ferrite-semiconductor
structure under the Gaussian
beam illumination
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hin ¼ 90� � win; ~z0 is the basis vector of z-axis, and the vector ~bin ¼
ðcos hin cosuin; cos hin sinuin; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0l0 � cos2 hin

p
Þ describes the direction of the

incident beam propagation; U ~jinð Þ is the spectral density of the beam in the plane
zin ¼ 0; cin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 �~jin �~jin

p
; 0\ argð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 �~jin �~jin

p
Þ\p, and ~ain ¼ ða1; a2Þ.

The transformation from the structure’s coordinate system {x, y, z} to the beam’s
one {xin, yin, zin} can be realized in the standard means [24]: by rotating around the
z-axis on the angle uin; by rotating around the y-axis on the angle win; by shifting
the point of origin to the point a1; a2; a3ð Þ. Taking into account the coordinate
system transformation, the reflected and transmitted fields are obtained as follows:

~wref ¼ ~PVt

Z Z1

�1
U ~jinð ÞRtt exp i~j �~r � icz½ 
d~jin

�~bref �~PVt0

Z Z1

�1
U ~jinð ÞRt0t exp i~j �~r � icz½ 
d~jin;

~wtr ¼ ~PVt

Z Z1

�1
U ~jinð ÞTtt exp i~j �~r þ ic z� NLð Þ½ 
d~jin

�~btr �~PVt0

Z Z1

�1
U ~jinð ÞTt0t exp i~j �~r þ ic z� NLð Þ½ 
d~jin;

ð6:3Þ

Fig. 6.2 Frequency dependences of the permeability and permittivity of ferrite (a) and
semiconductor (b) layers, respectively. We use typical parameters for these materials in the
microwave region. For the ferrite layers, under saturation magnetization of 2000 G, parameters are
x0=2p ¼ 4:2 GHz, xm=2p ¼ 8:2 GHz, b ¼ 0:02, ef ¼ 5:5. For the semiconductor layers,
parameters are: xp

�
2p ¼ 4:5 GHz, xc=2p ¼ 4:0 GHz,v=2p ¼ 0:05 GHz, e0 ¼ 1:0, ls ¼ 1:0
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where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 �~j �~j

p
; 0\ argð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 �~j �~j

p
Þ\p; Rtt, Rt0t and Ttt, Tt0t are the

complex reflection and transmission coefficients (t; t0 ¼ s; p) of the partial plane
electromagnetic waves, respectively. They depend on the frequency of the incident
field, angles win, uin and other electromagnetic and geometric parameters of the
structure. The coefficients with coincident indexes (tt) describe the transformation
of the incident wave of the perpendicular (t ¼ s) or the parallel (t ¼ p) polarization
into the co-polarized wave, and the coefficients with distinct indexes (t0t) describe
the transformation of the incident wave into the cross-polarized wave at the
structure output. The left and right indexes correspond to the polarization states of
the incident and reflected (transmitted) waves, respectively. The corresponding
reflection and transmission coefficients are determined through the rigorous solution
of the Cauchy problem related to the tangential field components on the structure’s
boundaries; the reader is referred here to [5, 11] for further details.

6.2.3 Effective Medium Theory

In the long-wavelength limit, when the characteristic dimensions of the structure
(d1, d2, L) are significantly smaller than the wavelength in the corresponding layer
(d1 � k, d2 � k, L � k), the interactions of electromagnetic waves with a periodic
gyromagnetic-gyroelectric structure can be described analytically using the effec-
tive medium theory. From the viewpoint of this theory, the periodic structure is
represented approximately as an anisotropic (gyroelectromagnetic) uniform medium
whose optical axis is directed along the structure periodicity, and this medium is
described with some effective permittivity and permeability tensors ê and l̂ [11]. By
this means, the investigation of the wave interaction with an inhomogeneous
periodic structure is reduced to the solution of the boundary-value problem of
conjugations of an equivalent homogeneous anisotropic layer with surrounding
spaces.

Let us consider a unit cell of the studied structure. It is made of two layers
0� z� d1 and d1 � z� L of dissimilar materials whose constitutive relations are as
follows:

~D ¼ e1~E
~B ¼ l̂1~H

�
0� z� d1;

~D ¼ ê2~E
~B ¼ l2~H

�
d1 � z� L: ð6:4Þ

In general form, in the Cartesian coordinates, the system of Maxwell’s equations
for each layer has a form

ikyHz � @zHy ¼ �ik0ðêj~EÞx; ikyEz � @zEy ¼ ik0ðl̂j~HÞx;
@zHx � ikxHz ¼ �ik0ðêj~EÞy; @zEx � ikxEz ¼ ik0ðl̂j~HÞy;
ikxHy � ikyHx ¼ �ik0ðêj~EÞz; ikxEy � ikyEx ¼ ik0ðl̂j~HÞz;

ð6:5Þ
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where @z ¼ @=@z, kx and ky are the wavevector transverse components, k0 ¼ x=c is
the free-space wavenumber, j ¼ 1; 2, ê1 and l̂2 are the tensors with e1 and l2 on
their main diagonal and zeros elsewhere, respectively (̂e1 ¼ e1 Î, l̂2 ¼ l2 Î, Î is the
identity tensor). From six components of the electromagnetic field ~E and ~H, only
four are independent. Thus the components Ez and Hz can be eliminated from the
system (6.5) and derived a set of four first-order linear differential equations related
to the transversal field components inside each layer of the structure [5]. For the
ferrite (0� z� d1) and semiconductor (d1 � z� L) layers these systems, respec-
tively, are:

@z

Ex

Ey

Hx

Hy

0
BB@

1
CCA ¼ ik0

0 0 kxky
�
k20e1 þ ia lT1 � k2x

�
k20e1

0 0 �lT1 þ k2y
.
k20e1 �kxky

�
k20e1 þ ia

�kxky
�
k20l

L
1 �e1k20þk2x

�
k20l

L
1 0 0

e1�k2y
.
k20l

L
1 kxky

�
k20l

L
1 0 0

0
BBBB@

1
CCCCA

Ex

Ey

Hx

Hy

0
BB@

1
CCA;

ð6:6Þ

@z

Ex

Ey

Hx

Hy

0
BB@

1
CCA ¼ ik0

0 0 kxky
�
k20e

L
2 l2 � k2x

�
k20e

L
2

0 0 �l2 þ k2y
.
k20e

L
2 �kxky

�
k20e

L
2

�kxky
�
k20l2 � ib �eT2þk2x

�
k20l2 0 0

eT2�k2y
.
k20l2 kxky

�
k20l2 � ib 0 0

0
BBBB@

1
CCCCA

Ex

Ey

Hx

Hy

0
BB@

1
CCA:

ð6:7Þ

The sets of (6.6) and (6.7) can be abbreviated by using a matrix formulation:

@z~U zð Þ ¼ ik0A zð Þ~U zð Þ; 0\z\L: ð6:8Þ

In this equation, ~U ¼ Ex; Ey; Hx; Hyf gT is a four-component column
vector (here upper index T denotes the matrix transpose operator), while the 4 × 4
matrix function A zð Þ is piecewise uniform as

A zð Þ ¼ A1; 0\z\d1;
A2; d1\z\L;

�
ð6:9Þ

where the matrices A1 and A2 correspond to (6.6) and (6.7), respectively.
Since the vector ~U is known in the plane z = 0, the (6.7) is related to the Cauchy

problem [25] whose solution is straightforward, because the matrix A zð Þ is piece-
wise uniform. Thus, the field components referred to boundaries of the double-layer
period of the structure are related as1

1The series expðXÞ ¼ IþP1
m¼1

1
m!X

m converges for square matrices X, i.e. function expðXÞ is
defined for all square matrices [25].
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~U Lð Þ ¼ M2~U d1ð Þ ¼ M2M1~U 0ð Þ ¼ M~U 0ð Þ ¼ exp ik0A2d2½ 
 exp ik0A1d1½ 
~U 0ð Þ;
ð6:10Þ

whereMj andM are the transfer matrices of the corresponding layer and the period,
respectively.

Suppose that cj is the eigenvalue of the corresponding matrix k0Aj

ðdet½k0Aj � cjI
 ¼ 0Þ, j = 1, 2 and I is the 4 × 4 identity matrix. When jcjjdj � 1
(i.e., both layers in the period are electrically thin), the next long-wave approxi-
mations can be used [26]

exp ik0A2d2½ 
 exp ik0A1d1½ 
 ’ Iþ ik0A1d1 þ ik0A2d2: ð6:11Þ

Let us now consider a single layer of effective permittivity êe, effective per-
meability l̂e and thickness L. Quantity Ae is defined in a way similar to (6.6), (6.7):

@z

Ex

Ey

Hx

Hy

0
BB@

1
CCA ¼ ik0

0 0 kxky
�
k20e

L
e þ iae lTe � k2x

�
k20e

L
e

0 0 �lTe þ k2y
.
k20e

L
e �kxky

�
k20e

L
e þ iae

�kxky
�
k20l

L
e � ibe �eTeþk2x

�
lLe k

2
0 0 0

eTe�k2y
.
k20l

L
e kxky

�
k20l

L
e � ibe 0 0

0
BBBB@

1
CCCCA

Ex

Ey

Hx

Hy

0
BB@

1
CCA;

ð6:12Þ

and (6.10):

~U Lð Þ ¼ Me
~U 0ð Þ ¼ M~U 0ð Þ ¼ exp ik0AeL½ 
~U 0ð Þ: ð6:13Þ

Provided that ce is the eigenvalue of the matrix k0Ae ðdet½k0Ae � ceI
 ¼ 0Þ and
jcejL � 1 (i.e., the entire composite layer is electrically thin as well), the next
approximation follows

exp ik0AeL½ 
 ’ Iþ ik0AeL: ð6:14Þ

Equations (6.11) and (6.14) permit us to establish the following equivalence
between bilayer and single layer:

Ae ¼ f1A1 þ f2A2; fj ¼ dj
�
L: ð6:15Þ

In the case when the directions of both wave propagation and static magnetic
field are coincident (kx ¼ ky ¼ 0), the following simple expressions for the effective
constitutive parameters of the homogenized medium can be obtained:

lTe ¼ f1l
T
1 þ f2l2; eTe ¼ f1e1 þ f2e

T
2 ; ae ¼ f1a; be ¼ f2b: ð6:16Þ

The effective constitutive parameters calculated according to the formula (6.16)
are given in Fig. 6.3. The whole frequency range can be divided into three specific
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bands where parameters of the tensors l̂e and êe acquire different properties. In the
first band, located between 2 and 3 GHz, lTe , e

T
e , ae and be have positive values of

their real parts and small imaginary parts. In the second band, between 3 and
4.5 GHz, the real parts of parameters vary from positive values to negative ones as
the frequency increases. These transitions occur at the frequencies of the ferro-
magnetic resonance of ferrite (ffr = 4.2 GHz) and the cyclotron resonance of
semiconductor fpr = 4.0 GHz), respectively. In this band the medium losses are very
significant. Finally, in the third frequency band, located from 4.5 to 5.5 GHz, the
real parts of parameters have a transition from negative to positive values while
their imaginary parts are small. The latter band is given in the insets of Fig. 6.3 on a
larger scale. One can see that there is a frequency fgn ≈ 4.94 GHz where real parts of
lTe and eTe simultaneously reach zero. It is significant that, by special adjusting
ferrite and semiconductor type, external static magnetic field strength and thick-
nesses of layers, it is possible to obtain the condition when real parts of lTe and eTe
acquire zero at the same frequency. Exactly this situation is marked in the insets of
Fig. 6.3 with circles. Note that at this frequency, the real parts of ae and be are far
from zero and the medium losses are small.

6.2.4 Eigenvalue Problem

The formulation of the eigenvalue problem on the matrix Ae (det½Ae � geI
 ¼ 0),
whose coefficients are defined as (6.16), gives us the characteristic equation on the
effective refractive index ge of the medium:

Fig. 6.3 Frequency dependences of a effective permeability and b effective permittivity of the
homogenized ferrite-semiconductor medium. Parameters of the ferrite and semiconductor layers
are the same as in Fig. 6.2; d1 = 0.05 mm, d2 = 0.2 mm. The circles mark the situation when
ReðlTe Þ and ReðeTe Þ are close to zero while ReðaeÞ 6¼ 0, ReðbeÞ 6¼ 0 and losses in the ferrite and
semiconductor layers are small
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g4e � 2g2e eTe l
T
e þ aebe

� 	þ eTe l
T
e

� 	2� lTe be
� 	2� eTe ae

� 	2þ aebeð Þ2¼ 0; ð6:17Þ

whose solutions are

ðg�e Þ2 ¼ eTe � be
� 	

lTe � ae
� 	 ¼ e�l�: ð6:18Þ

Here the signs ‘�’ are related to two different eigenwaves with propagation
constants c�e ¼ k0g�e . It is well known that in an unbounded gyrotropic medium
they have right (RCP, cþe ) and left (LCP, c�e ) circular polarizations [21].

Especially interesting situation appears if the real parts of lTe and eTe are close to
zero and the medium losses are small. In this case there is je�l�j � ja0eb0ej, and the
propagation constants become as:

ce ¼ �cþe ¼ c�e � k0
ffiffiffiffiffiffiffiffiffiffiffiffi
ja0eb0ej

q
: ð6:19Þ

Thus, the propagation constants of the RCP (cþe ) and LCP (c�e ) waves are equal
in the magnitude but opposite in sign to each other, and the backward propagation
appears for the RCP wave while for the LCP wave it is forward one (see also,
Chap. IV of [27]). Recall that the backward wave is the wave in which the direction
of the Poynting vector is opposite to that of its phase velocity [28]. The similar
peculiarity of the RCP and LCP waves propagation occurs also in the chiral-nihility
media [2–4], so in the analogy with them, the condition (6.19) is related to the
gyrotropic-nihility media [11]. The frequency band, at which the gyrotropic-nihility
condition is satisfied for the RCP wave, is depicted in Fig. 6.4. Particularly, the
gyrotropic-nihility frequency fgn is marked in the inset of this figure with circles.

Fig. 6.4 Frequency dependences of the material parameters of the equivalent gyrotropic medium
for the a RCP and b LCP eigenwaves. Parameters of the ferrite and semiconductor layers are the
same as in Fig. 6.2; d1 = 0.05 mm, d2 = 0.2 mm
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6.3 Numerical Results: Reflected and Transmitted Fields

6.3.1 Spectral and Angular Behaviors

It is anticipated that if the frequency of the electromagnetic wave which incidents
on a finite layer of such a composite medium is chosen to be nearly the frequency
fgn of the gyrotropic-nihility condition, the transmitted and reflected fields will
acquire some unusual properties. In order to demonstrate this, in the
long-wavelength limit, the reflection and transmission coefficients can equivalently
be calculated using the rigorous solution (6.10) or the approximate solution (6.13)
of (6.8) because these solutions give the same result. In particular, we are interested
here in the study of the energy relations between the transmitted and reflected fields,
i.e. the polarization effects do not discuss in this chapter. Nevertheless we refer the
reader to [11] where some polarization features of the studied structure are revealed.

So, the transmittance is calculated as a function of the frequency and the angle of
incidence (Fig. 6.5a). One can see that this function exhibits an expanded flat area
of the transmittance at the frequency where the gyrotropic-nihility condition holds.
At this frequency the complete transmission of the partial plane monochromatic
waves takes a place almost in the entire range of angles of incidence except the
range of glancing angles. Such a high transmittance appears due to the peculiarities
of the medium impedances (Z� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

l�=e�
p

) related to the RCP and LCP waves. It
is particularly remarkable that in the vicinity of the gyrotropic-nihility frequency
fgn, the parameters αe and βe are close in value to each other and their real parts
approach to unit which can be clearly seen in Fig. 6.3. It leads to the fact that the
medium becomes to be impedance matched to free space [11]. Directly at the

Fig. 6.5 a Transmittance as a function of the frequency and the angle of incidence of the plane
monochromatic wave for the equivalent gyrotropic layer with finite thickness (NL = 2.5 mm).
b The angular dependences of the transmittance, reflectance and absorption coefficient at the
gyrotropic-nihility frequency (top figure) and far from it (bottom figure). Parameters of the ferrite
and semiconductor layers are the same as in Fig. 6.2; d1 = 0.05 mm, d2 = 0.2 mm
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gyrotropic-nihility frequency, the impedances related to the RCP and LCP waves

become indistinguishable: Z ¼ Zþ ¼ Z� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja0ej

�jb0ej
q

.

This feature is also confirmed by the data plotted in Fig. 6.5b where the
reflectance, transmittance and absorption coefficient are calculated at two different
frequencies for a comparison. Thus the first frequency is chosen at the
gyrotropic-nihility condition and the second one is selected to be far from the
frequencies of gyrotropic-nihility condition and the ferromagnetic and plasma
resonances. At the frequency of f = 10 GHz, the curves have typical form where the
transmittance monotonically decreases and the reflectance monotonically increases
as the angle of incidence rises. On the other hand, at the gyrotropic-nihility fre-
quency, the curves of the transmittance and reflectance are different drastically from
that ones in the first case. Thus, the level of the transmittance/reflectance remains to
be invariable almost down to the glancing angles. At the same time, the reflectance
is small down to the glancing angles because the medium is impedance matched to
free space.

6.3.2 Gaussian Beam Transmission

Since the beam field is represented by an angular continuous spectrum of plane
waves, the transmitted beam distribution depends on the angular characteristic of
the transmission coefficient of spatial plane monochromatic waves at a particu-
lar frequency. We consider an incident Gaussian beam with the spectral

density assigned due to the law Uð~jinÞ ¼ exp½�ð~w �~jinÞ2
.
16
Hmðkxinwx

� ffiffiffi
2

p ÞHn

ðkyinwy
� ffiffiffi

2
p Þ, where ~w ¼ fwx;wyg, wx and wy are the beam widths along xin and yin

axis, respectively, Htð�Þ is the Hermit polynomial of t-th order (t ¼ m; n). In this
chapter we restrict ourselves to the case of the zero-order (m = n = 0) beam. The
final distribution of the transmitted beam is presented in Figs. 6.6 and 6.7 in two-
and three-dimensions. As before the results are obtained for two distinct
frequencies.

So, at the frequency fgn where the gyrotropic-nihility condition holds, the studied
gyroelectromagnetic medium is well impedance matched to free space, and spatial
plane monochromatic waves can completely pass through the system up to the
glancing angles. As a result, the transmitted beam pattern does not acquire any
significant distortion of its form nearly the frequency fgn, while this feature is not
inherent to the pattern of the transmitted beam to be far from this frequency. It
should be noted that this shape retention of the transmitted beam pattern remains
unchanged even under the oblique incidence of the primary beam and this effect is
polarization insensitive.

In conclusion, the peculiarities of the Gaussian beam interaction with a
ferrite-semiconductor finely-stratified structure being under an action of an external
static magnetic field in the Faraday geometry is presented in this chapter. In the
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long-wavelength limit, when the structure layers are optically thin, the effective
medium theory is developed, and the effective constitutive parameters of the
equivalent uniform anisotropic medium are obtained analytically. On the basis of
these parameters the peculiarities of the eigenwaves propagation are studied and the
possibility of achieving the gyrotropic-nihility condition is predicted.

The reflection, transmission and absorption of waves in the system are studied in
vicinity of the gyrotropic-nihility frequency. It is found out that under the oblique
incidence of the spatial plane monochromatic wave on the studied structure, the
level of the transmission/reflection remains to be invariable almost down to the
glancing angles when the gyrotropic-nihility condition is satisfied. As a result, at
the frequency of the gyrotropic-nihility condition the Gaussian beam can pass
through such a system keeping its parameters unchanged (beam width and shape)
except of a portion of the absorbed energy even under the oblique incidence of the
primary beam.

Fig. 6.6 The two-dimensional distribution of the absolute value of the incident beam |Einc|
2 and

the transmitted beam |Etr|
2 for different (a, c) angles of incidence of the primary beam and

(b, d) number of structure’s periods. The field distribution is normalized to the maximum value of
the normally incident beam. Parameters of the ferrite and semiconductor layers are the same as in
Fig. 6.2. The incident beam parameters are: k0wx = k0h = 10, φin = 0°. Other structure parameters
are: d1 = 0.05 mm, d2 = 0.2 mm
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Chapter 7
Gyrotropic Metamaterials
and Polarization Experiment
in the Millimeter Waveband

S.I. Tarapov, S. Yu Polevoy and N.N. Beletski

Abstract The paper deals with the analysis of modern situation in physics of
artificial gyrotropic media. Most widespread techniques of experimental and the-
oretical finding constitutive parameters are under analysis. Besides, the original
results obtained by authors while studying polarization features for some types of
magnetically controllable metamaterials, possessing the gyrotropic/chiral features in
the millimeter wavelength range are presented. The results of measurements are
under discussion.

7.1 Introduction

It is well known that the term “gyrotropy”, which was used for description of con-
densed media dozens years ago, can be applied successfully to the electrodynamics of
artificial media (metamaterials). Moreover, a lot of terms, which describe the ability
of medium to rotate the polarization of linearly polarized wave (“chirality”, “mag-
netoactivity”, “bianisotropy”) came from the condensed media physics. They are
used widely in physics of metamaterials today. Let consider them more detailed.

In most general case the constitutive parameters (_e and _l) for the bianisotropic
medium [1, 2], represent themselves matrixes, where all components are not equal
to zero. The gyrotropic medium as the special case of bianisotropic medium, has
anti-symmetric tensor parameters _e and _l [3] with non-zero nondiagonal compo-
nents (a12 ¼ �a21 6¼ 0). If the gyrotropic medium has nondiagonal components
a12ð~kÞ ¼ a12ð�~kÞ, a21ð~kÞ ¼ a21ð�~kÞ, where ~k is the propagation constant of the
media, it is a non-reciprocal medium. Note this medium is represented in our paper
by magnetoactive media. The chiral medium, as another special case of gyrotropic
medium is a reciprocal medium [4, 5] with nondiagonal components
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a12ð~kÞ ¼ �a12ð�~kÞ, a21ð~kÞ ¼ �a21ð�~kÞ. Note that the wave propagation in the
gyrotropic media for the condensed media were studied in details (for example,
[6, 7]), namely for the physics of crystals for the optical frequency band.

The paper presented should be considered as a next step in experimental research
of artificial gyrotropic media with electrical and magnetic activity in microwave
band. Namely main objectives of study are:

• the development of the experimental technique for determining the effective
constitutive parameters of chiral media in the millimeter waveband;

• learning the possibility of experimental control of the rotation angle of the
polarization plane of electromagnetic wave by changing the “specific density” of
the structure;

• to study both theoretically and experimentally the polarization properties of
one-layered and multilayered magnetoactive metamaterial depending on static
magnetic field;

• the experimental and numerical demonstration of the Faraday effect enhance-
ment for the case of gyrotropic magnetic layer inserted into special
one-dimensional (1D) photonic crystal.

The task of research of chiral metamaterials is interesting both for fundamental and
for applied physics. These structures can be used for design the compact magnetically
controllable microwave devices, (for inst. polarizers, using the Faraday effect).

Bulk chiral metamaterials are promising, because they can realize rotation of
polarization plane of the electromagnetic waves on large angles in the millimeter
wavelength range. For example, in [8, 9], the chiral metamaterials used for the
rotation of the polarization plane at angles up to several hundred degrees per
wavelength, which is several orders of magnitude larger than for the natural media
with optical activity. In spite a lot of studies are carrying out now (for example [10,
11]), a plenty of tasks for the millimeter waveband which is important today from
the application point of view, are unsolved yet.

Probably, Hetch and Barron [12], Arnaut and Davis [13] were the first who
introduced planar (2D) chiral structures into the electromagnetic research. However,
2D chirality does not lead to the same electromagnetic effects which are conven-
tional for 3D chirality so, it became a subject of special intense investigations [14]. It
is known, that bulk (3D) chiral artificial structures [1] manifest a reciprocal optical
activity [15]. The typical constructive object of 3D chiral media is a spirally con-
ducting cylinder. Besides, in some particular cases, quasi-2D planar chiral metallic
structures can be asymmetrically combined with isotropic substrates to distinguish a
reciprocal optical response inherent to true 3D chiral structures. In such metama-
terials, at normal incidence of the exciting wave, an optical activity appears only in
the case, when their constituent metallic elements have finite thickness, which
provides an asymmetric coupling of the fields at the air and substrate interfaces.

The planar chiral structure placed on a ferrite substrate [10, 15] (one layered
magnetoactive structure) and multilayered ferrite-dielectric structures [16] are even
more interesting objects from both fundamental and application points of view. The
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appearanceof so-calledFaradayEffectEnhancement (FEE)has significant application
perspectives. Namely, they can be used successfully to design non-reciprocal mag-
netically controllable microwave devices based on the Faraday effect.

A number of principal features of gyrotropy of magnetoactive medium can be
extracted while studying the bounded photonic crystal (PC) [17]. In particular, we
note the appearance of a sharp transparency peak (Tamm peak) in the band gap of
such a structure. This effect is based on the well-known Tamm state effect [18, 19].
This phenomenon is well studied experimentally for magnetoactive one-dimensional
and two-dimensional periodical media [20–23] (in non-gyrotropic approximation).
But the presence of gyrotropy is in such medium is of special interest. The wave
propagation in the photonic crystal substantially depends on the material which
includes into PC, and on the material placed as a boundary of the PC. For the
gyrotropic boundary medium we can obtain the Faraday Effect Enhancement
(FEE) [17] also. It reveals here as a strong rotation of the polarization plane by such
PC on the frequency of Tamm state. A significant Faraday Effect Enhancement
(FEE) in the case when magneto-optical PC, bounded by almost reflecting medium
was described theoretically in [16]. The FEE for microwave band was observed for
bounded PC, which is formed by magnetoactive elements [17]. So the FEE effect can
be considered as a resonance effect in gyrotropic resonator without intrinsic volume.

Note that in contrast to optical frequency range photonic crystals, in the
microwave band we are dealing with magnetic gyrotropy instead electric gyrotropy.
One of the most actual directions of the photonic and magnetophotonic crystals
study is searching ways to control the spectral properties of such structures in the
microwave frequency range. It allows to produce a novel generations of high-speed
electronically controlled devices that may find wide application in the area of
telecommunications, computing and physical electronics.

7.2 The Polarization Rotation Enhancement
in the Dielectric Bulk Chiral Metamaterial

7.2.1 The Experimental Setup

The experimental setup for the determination of effective constitutive parameters of
chiral media is shown on Fig. 7.1 [24]. Investigated bulk chiral structure is placed
between the transmitting and receiving rectangular horns which are fitted to the
Vector Network Analyzer Agilent N5230A by means of coaxial-waveguide junc-
tions and cables. The main functions of the Analyzer are measuring S-parameters,
its processing and transforming into the graphical form. Absorbing screen can be
placed in the vicinity of the structure under study to eliminate the influence of
diffraction on the edges.

The horns are located on the same axis passing perpendicularly to the structure
through its center at a distance larger than ten wavelengths. If necessary, the
phase-correction lenses can be placed close the horns that make the wavefront flat.
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Receiving horn can be rotated around its axis. With help of the analyzer the param-
eters S21 and S11 in the frequency range of 22–40 GHz are registered. The calibrating
procedure for the measuring setup provides the reduction in the influence of parasitic
reflections occurred due to the non-ideality matching of the spatial elements.

The determination of the chirality parameter was carried out using the model
bulk dielectric chiral structure (Fig. 7.2). It consists of several subsequent layers of
planar chiral structures in the form of 2D array of chiral elements on the fiberglass
substrate. Planar chiral structures were etched on the foil side of the fiberglass by

Horns with 
lenses

Vector
Network
Analyzer

Structure
under test

Fig. 7.1 The experimental setup for study of gyrotropic/chiral metamaterials

Fig. 7.2 Model dielectric
bulk chiral structure under
study

118 S.I. Tarapov et al.



photolithography. Chiral elements are rotated around its axis by 15° relative to the
elements in each subsequent layer.

7.2.2 Determination of the Effective Constitutive Parameters
of Chiral Media

To obtain the comprehensive information about the gyrotropic medium it is neces-
sary to have technique of mathematical description of its constitutive parameters.
Since there are several forms of writing the constitutive equations for chiral media, so
first we must select a convenient form of the constitutive equations, such as [4, 25]:

~D ¼ _e~E þ i _j~H; ~B ¼ _l~H � i _j~E; ð7:1Þ

where ~E, ~H are vectors of the electric and magnetic fields intensity; ~D,~B are vectors
of electric and magnetic induction, _e, _l are the complex permittivity and perme-
ability; _j is the complex chirality parameter.

To make the problem clearer let’s consider the task about the propagation of the
electromagnetic wave through the chiral layer of finite thickness L. Let’s consider
the case of normal incidence of the plane electromagnetic waves. In this case, the
chiral medium is a uniaxial medium in the direction of wave propagation (z axis).

Using the transfer matrix method, we can obtain the relations between the
components of the electric and magnetic fields intensities (Ex, Ey, Hx, Hy) on the
input and output boundary of the chiral layer (z = 0 and z = L) and its constitutive
parameters (_e, _l, _j):

W Lð Þ ¼ M̂W 0ð Þ; ð7:2Þ

W Lð Þ ¼
Ex Lð Þ
Ey Lð Þ
Hx Lð Þ
Hy Lð Þ

0
BB@

1
CCA; W 0ð Þ ¼

Ex 0ð Þ
Ey 0ð Þ
Hx 0ð Þ
Hy 0ð Þ

0
BB@

1
CCA;

where M̂ is the transfer matrix 4� 4 with coefficients:

M11 ¼ M22 ¼ M33 ¼ M44 ¼ cosð _kLÞ cosðk0 _jLÞ;

M12 ¼ �M21 ¼ M43 ¼ �M34 ¼ cosð _kLÞ sinðk0 _jLÞ;

M13 ¼ M24 ¼ �i
_l
_n
sinð _kLÞ sinðk0 _jLÞ;

M14 ¼ �M23 ¼ i
_l
_n
sinð _kLÞ cosðk0 _jLÞ;
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M31 ¼ M42 ¼ i
_n
_l
sinð _kLÞ sinðk0 _jLÞ;

M41 ¼ �M32 ¼ i
_n
_l
sinð _kLÞ cosðk0 _jLÞ;

where _k ¼ k0 _n, _n ¼ ffiffiffiffiffi
_e _l

p
, and k0 is the propagation constant of the vacuum.

Thus, using the relation (7.2) and setting the constitutive parameters, we can find
the transmission coefficients for the electric and magnetic fields intensity, and
polarization characteristics of chiral layer.

However, an inverse problem of determining the effective constitutive parame-
ters of such media using experimentally measured transmission and reflection
coefficients exists as well. It appears to be even more important from the experi-
mental point of view. There are several approaches of experimental determination
of the effective constitutive parameters of uniaxial chiral media [5, 25].

The first approach described in [9, 25], consists of measuring the transmission and
reflection coefficients of electromagnetic waves interacting with the metamaterial for
two mutual orientations of transmitting and receiving horns. This means—the
“parallel” (co-polarization) and “perpendicular” (cross-polarization) horns locations.
Measured transmission and reflection coefficients for co-polarization ( _Tjj, _Rjj), and
for cross-polarization ( _T?, _R?) are associated with the transmission and reflection
coefficients of electromagnetic waves with right (RCP) and left (LCP) circular
polarizations [9]:

_T� ¼ _Tjj � i _T?; _R� ¼ _Rjj ¼ _R: ð7:3Þ

Calculating the values of _Tþ and _T� allows to calculate the chirality parameter _j
and polarization characteristics: the rotation angle of the polarization plane of the
transmitted wave θ and the ellipticity angle η [25].

Permittivity _e, permeability _l and chirality parameter _j for the chiral medium are
determined by the following relations [25]:

_e ¼ _n= _Z; _l ¼ _n _Z; _j ¼ ð _nþ � _n�Þ=2; ð7:4Þ

where _n ¼ ð _nþ þ _n�Þ=2 ¼ ffiffiffiffiffi
_e _l

p
is the average refractive index for RCP and LCP

waves. The refraction coefficients _nþ, _n� of the RCP and LCP waves and impedance
_Z are determined from transmission _T� and reflection _R� coefficients [25].

Thus, by measuring the transmission and reflection coefficients for the waves on
co-polarization and cross-polarization with the horns, we can calculate the effective
constitutive parameters of the structure, and its polarization characteristics.

There is also a second approach of determining the chirality parameter _j and the
polarization characteristics of the transmitted wave for the chiral structure. It is
suggests the direct measurement of the angle θ using the receiving horn, which can
be rotated around its longitudinal axis [5]. The angle θ is that rotation angle of the
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receiving horn at which the transmission coefficient of electromagnetic waves is
maximal ( _Tmax). If we measure the minimum transmission coefficient ( _Tmin) at a
rotation angle of the receiving horn θ + 90°, then we can determine the ellipticity
angle g of the transmitted wave by the following relation:

g ¼ arctg
_Tmin

�� ��
_Tmax

�� �� : ð7:5Þ

Let us find the relation between the polarization characteristics of the structure and
its chirality parameter. The rotation angle of the polarization plane is directly
proportional to the angular frequency x, the real part of the chirality parameter and
the chiral layer thickness [4, 26]:

h ¼ k0Lj
0 ¼ xLj0

c
: ð7:6Þ

The ellipticity angle of the transmitted wave depends on the imaginary part of the
chirality parameter [27] as:

g ¼ arctg½thðk0Lj00Þ�: ð7:7Þ

Finally according to the experimental values θ and η one can calculate the chirality
parameter:

_j ¼ h
k0L

þ i
arcthðtggÞ

k0L
: ð7:8Þ

7.2.3 Experimental Finding of Chirality Parameter
Features

In order to investigate the dependence of the polarization properties of the dielectric
bulk chiral structure on its “specific density” the experimental dependences of the
rotation angle of the polarization plane hðf Þ on the frequency of the electromagnetic
wave f ¼ x=ð2pÞ for four values of the structure thickness L (Fig. 7.3a) were ana-
lyzed [28]. Structure thickness L was varied from 10.5 to 12.6 mm by increasing the
distance d between its layers from 1.5 to 1.8 mm. The “specific density” of the
structure/metamaterial has been varied thereby. According to the experimental
curves the frequency dependences of the chirality parameter real part j0ðf Þ for several
values of the structure thickness L (Fig. 7.3b) were calculated using the relation (7.8).

For the frequency dependence of the angle hðf Þ for the structure thickness
L = 10.5 mm (Fig. 7.3a, curve 1) near the frequency of 31.2 GHz the area of
maximal dispersion of the θ = 90° at the ellipticity angle η = 20° was defined. Near
the frequency of 30 GHz the angle θ = 50° at the η = 2°. As can be seen, the
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frequency dependence of the chirality parameter j0ðf Þ is resonant at the same
frequencies as for hðf Þ. The maximum for chirality parameter module reaches about
0.23. The dependence j0ðf Þ is similar to the dependence hðf Þ in accordance with
formula (7.8).

Figure 7.4a clearly shows a monotonic increasing of the frequency fres of the area
of the maximal dispersion of the angle θ from 31.2 to 36.3 GHz with the structure
“specific density” increasing. Such behavior can be assigned to existence of
high-quality “magnetic” mode [8, 29], appeared in the given chiral medium. This
“magnetic mode” has anomalous frequency dependence, i.e., when the distance
between the layers of the chiral structure increases its frequency increases too. Such
dependence is typical for media with negative dispersion. Note that in this bulk
chiral structure, as well as structures in [8, 30] exists the “electric” mode, which has
a conventional frequency dependence, i.e., when the distance between the layers of
the chiral structure (the “specific density”) increases its frequency decreases.

Besides the decreasing of the maximum value of chirality parameter real part j0res
from 0.23 to 0.16 (Fig. 7.4b) is registered at the same frequencies. The most
probable reason for the decreasing of j0res is the exhausting of the structure with an
increasing of the distance between its layers.
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7.3 Faraday Effect Enhancement (FEE)
in the Magnetoactive Bulk Metamaterial

7.3.1 The Experimental Technique

For the studying of the magnetoactive metamaterials with longitudinal magneti-
zation another one experimental setup was design (Fig. 7.5). It is similar to the
experimental setup described above, however, the structure and horns in it are
located along the axis of the electromagnet that controlled by a computer. More
detailed technique of this experiment is described in [15, 17].

The magnetoactive metamaterial being under investigation is designed as a
single-layered structure, which consists of the planar chiral periodic structure placed
on the ferrite (L14H) plane-parallel slab. The chiral structure is made of fiberglass,
one side of which is covered with copper foil. The foil side of this structure is
patterned with the periodic array whose square unit cell consists of the planar chiral
rosette (see Fig. 7.2).

The polarization properties of the magnetoactive bulk metamaterial (Fig. 7.6),
represents a multilayered structure. It consists from the set of single-layered mag-
netoactive structures described above.

7.3.2 Experimental. Polarization Rotation

Let consider some experimental results to demonstrate the influence of the mag-
netodependent elements involved into chiral media on its gyrotropy features under
conditions of longitudinal magnetization:

0H

Structure under test

0

Horn

→

H

Fig. 7.5 The experimental setup for the study of magnetoactive structures with longitudinal
magnetization
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• the polarization rotation angle θ of linearly polarized wave, propagating through
a single ferrite slab (Fig. 7.7a);

• the polarization rotation angle θ of linearly polarized wave propagating through
the magnetoactive bulk metamaterial consisting of planar chiral structure with
period d = 5 mm loaded with a ferrite slab (Fig. 7.7b).

One can see that the surface plotted for the ferrite slab (Fig. 7.7a) is much
smoother (colors variation is more weak) than that one for the one-layered mag-
netoactive metamaterial (Fig. 7.7b). Also, for the magnetoactive metamaterial, a
monotonic growth of θ on the field strength takes place. Moreover, near the fre-
quency of the metamaterial resonance dip (fr = 25.5–26.5 GHz), this dependence
acquires a pronounced resonant character (dashed line), and for θ → θr achieves
significantly higher values than that one for the ferrite slab (up to θr ≥ 45°).

It can be seen that the value θr (Fig. 7.7b) also depends on the magnetic field
strength, and the maximum of θr is observed at H0 ≈ 4800 Oe (see arrow in

Fig. 7.6 The layered bulk magnetoactive metamaterial
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Fig. 7.7 Experimental dependencies of the polarization rotation angle θ(f, H0) for: a the single
ferrite slab; b the one-layered magnetoactive metamaterial
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Fig. 7.7b). In this region the real part of permeability has extreme value, that
explains the extreme in the dependency of θr(H0).

The distinct feature of the bulk 1-layered magnetoactive chiral metamaterial is
larger sensitivity of its polarization properties to the static magnetic field strength
compared with single ferrite slab. This phenomenon can be explained by the fact
that the resonant character of the magnetic permeability component of ferrite is
superimposed on the resonant character of oscillations in the planar chiral structure.

Note that a similar situation, which was called as the amplification of the
Faraday rotation has been detected by authors in the millimeter wave range earlier,
but in more simple resonant structures (the two-mirror resonator [31]).

The similar measurements of the polarization characteristics for the layered bulk
magnetoactive metamaterial (Fig. 7.6) were performed for the same values of the
static magnetic field and microwave frequencies. At the frequency of 22.91 GHz at
the static magnetic field of about 5000 Oe the rotation angle of the polarization
plane reaches 75° (Fig. 7.8), that is sufficiently higher than for a single-layer
magnetoactive chiral structure (Fig. 7.7b).

7.4 Faraday Effect Enhancement (FEE) in aMagnetoactive
Bounded Photonic Crystal

7.4.1 The Experimental Technique

To realize the Faraday effect enhancement in the PC, that is limited by negative
permittivity “boundary medium” described earlier experimental setup has been
upgraded. The magentoactive element (ferrite disk) is placed between PC and the
boundary medium (Fig. 7.9a). For the registration of the transmission coefficient of
PCs in a given frequency range under the static magnetic field the technique [17]
and the setup was used (Fig. 7.5). The electrodynamic cell (Fig. 7.9b) is a
single-mode circular waveguide (with fundamental mode TE11) contained the
structure under research.
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Fig. 7.8 The dependence of
the rotation angle of the
polarization plane on the
static magnetic field for the
layered bulk magnetoactive
metamaterial
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The investigated photonic crystal structures (Fig. 7.9b) consists of dielectric
disks of different thicknesses and materials, so that the band gaps of such PC are
located in the frequency range 22–40 GHz. As the boundary medium of PCs, the
copper wire medium (Fig. 7.9c) and the copper thin film medium were used. The
static magnetic field H0 is directed along the axis of the cell.

7.4.2 Polarization Rotation in Magnetoactive Bounded
Photonic Crystal. Experiment

Let consider the structures with the boundary medium as a thin metal film. Analysis
of the transmission spectrum [17] of the unloaded PC (without boundary medium)
and for the PC, loaded with ferrite slab and metal layer, shows that in the latter case,
a surface state mode in the bandgap of PC (“surface peak” in Fig. 7.10) occurs. The
peak has a common origin with the known Tamm peak [22, 32], so it will be also
called as the Tamm peak.

0

photonic crystal ferrite 

boundary medium 

H

(a) (b) (c)

Fig. 7.9 a The model of investigated PC structure, loaded with magentoactive element and
boundary medium; b The appearance of the electrodynamic cell for research in the cylindrical
magnetophotonic structures; c the appearance of copper wire medium as the boundary of the
photonic crystal
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Fig. 7.10 The transmission spectrum of unloaded PC structure and PC structure loaded with
ferrite slab and metal film for two different polarization angles of the incident wave
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A detailed analysis allows to identify this peak as the peak associated with the
excitation of TE11 mode, which is excited due Faraday effect in the ferrite layer. It
can be seen (Fig. 7.10), when the angle between the polarization of the waveguide
sections (transmitting and receiving) is ψ = 90°, we can see more intense signal on
the Tamm peak frequency in comparison with the case ψ = 0°. Thus the Faraday
effect enhancement takes place.

To check the nature of Tamm peak, we analyzed the dependence of its position
on the static magnetic field, and the dependence of the peak intensity on the
polarization angle (Fig. 7.11). It can be see that if the peak associated with the
Faraday effect, while increasing the magnetic field shifts in the higher frequency
range. The numerical calculations [17] lead to the same conclusion. Really, in
Fig. 7.11a typical experimental and calculated frequency-field dependences of the
Tamm-peaks exhibit a similar behavior.

Polarization properties of the structure were studied experimentally by rotating
the transmitting and receiving sections relatively to each other. Figure 7.11b shows
the typical dependence of the surface state peak intensity on the angle ψ at some
certain magnetic field H = 8070 Oe. It can be seen that with the increasing of the
angle ψ the transmission coefficient is also increases. Its maximum is occurred at
ψ = 90°. This means that the polarization of the wave at the output of the structure is
changed on 90° relative to the polarization at the input of the structure.

7.5 Conclusions

To conclude, let’s list some outcomes of the research performed. Thus in the
millimeter waveband:

1. Two experimental approaches for determining the effective constitutive
parameters of the bulk chiral media are realized. The frequency dependence of
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Fig. 7.11 a Tamm peak frequency versus: the static magnetic field; b the Tamm peak intensity
versus the angle ψ
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the real part of the chirality parameter of the bulk chiral metamaterial based on
array of planar chiral structures is defined.

2. The ability to control the resonant frequency of the rotation angle of the
polarization plane of electromagnetic wave by changing the “specific density” of
the bulk metamaterial is demonstrated experimentally. The existence of
left-handed “magnetic” mode is shown.

3. The transmission of electromagnetic waves through the multilayered and
one-layered magnetoactive chiral metamaterial has been studied. The range of
frequencies and magnetic field strength where the angle of polarization rotation
appears essentially higher than that one related to a single ferrite slab (Faraday
effect enhancement) is defined. The amplification of the polarization rotation for
multilayered structure in comparison with one-layered structure is shown.

4. The surface state peak (the Tamm peak) was detected in the spectrum of the
magnetoactive bounded photonic crystal. It was shown that the Tamm peak
frequency depends on the external magnetic field.

Acknowledgments The authors thank Ruban V. P. for help in preparing of the investigating
samples. The paper is supported partially by STCU grant #5714.
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Chapter 8
Dynamic Singular Vector Speckle Fields
and Their Hurst Exponent Time Analysis

Marat Soskin and Vasyl Vasil’ev

Abstract The generic developing vector speckle fields were realized first by the
“optical-damage” effect in the photorefractive crystal LiNbO3:Fe. Singularities
evolve through loop and chain reactions. Loop trajectories are limited in time and
evolve in one speckle. Chain reactions are not limited in space and time. They obey
installed topological sum rules: equal quantity of paired nucleations, annihilations
and dislocation lines interconnections. Techniques of the Hurst (H) exponent, firstly
used in dynamic singular optics, allowed install space-time autocorrelation of
speckle fields development. Measured high values of the exponent H = 0.56–0.89
for the C points chain reactions witness realization of the long-term positive
autocorrelation processes during generic development of singular vector speckle
fields.

8.1 Introduction

Classical optics was cardinally changed when lasers were realized in sixties. They
create new chapters of modern optics: nonlinear optics, laser spectroscopy,
holography, etc. The physical backgrounds of singular optic were created by J. Nye
and M. Berry in 1974 [1], summarized in J. Nye monograph [2] and first review [3].
They have considered basic unique properties of optical singularities, where
wavefront parameters are undefined in their centers. At the beginning of nineties,
the new actual and rapidly developing chapter of modern optics “singular optics”
was established. Our division in Institute of physics NAS of Ukraine (Kiev,
Ukraine) was focused firstly on experimental realization of singular laser beams
from smooth Gaussian beams by computer generated “fork” holograms [4].
Systematic investigations of singular light beams basic properties were performed.
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Speckled scattering of propagating laser beam was discovered immediately after
lasers realization. In general, speckle phenomena play essential role in modern
optics and optical quantum electronics [5, 6]. Singularities are evolving especial
interest in developing optical fields. In general, this subject belongs to the dynamic
singular optics started by us [7]. In reality, successful development of dynamic
singular optics started, when unique “optical damage effect” [8] in photorefractive
media was exploiting [9]. It opened firstly possibility realize and investigate
comprehensively the topological regularities of singular scalar and vector speckle
fields development.

Today state-of-art of this subject together with latest new results is presented in
this overview.

8.2 Experimental Technique and Data Processing

Our main new approaches to the investigation of wave fields with optical singu-
larities are their comprehensive topological analysis. It demands in turn the precise
measurement of all actual parameters of singularities and establishment of general
topological regularities of speckles field with nested singularities development. The
ideal space resolution of optical measurements of any type is limited by pixel size
of used CCD camera. We have used CCD camera with 5.7 × 4.6 mm2 input screen
and 576 × 720 pixels of 8 × 8 µm2 dimensions.

The optimized schemes for writing of dynamic scalar and vector speckle fields
and for their comprehensive analysis is presented in Fig. 8.1. We call for short fields
with fixed (changeable) orientation of electric vector E as “scalar” (vector) ones.

The lens L diminishes the chosen scattered-light fragment to *1.5 × 10−4 srad
divergence. The scalar developing speckle fields are created, when laser beam
propagates orthogonal to the crystal axis c with fixed orientation of electrical vector
E orthogonal to both of them (Fig. 8.1). The developing vector speckle fields were
created sequentially by two shown orientations of the polarization vector in the
incident laser beam Fig. 8.1b. For the beginning, electrical vector E was oriented
perpendicularly to beam axis c as in previous case of scalar field writing [the
position (a)]. It was written during 1800s up to practical saturation of scalar speckle
field created by “optical-damage” effect. E was turned then to angle 56° by rotation
of λ/2 plate (Fig. 8.1). This allowed realize full gamut of induced noisy diffraction
gratings and the polarization ellipses accordingly. The collimated speckle field
fragments allowed usage the standard stokes-polarimetry technique [10]. All Stokes
parameters were obtained by combination of quarter-wave plate (λ/4) and polarizer
P with various orientations of polarization vector needed for measurement of the
Stokes parameters of the incident laser beam. Laser beam was blocked by movable
screen S during all time of optical elements readjustment what eliminated fully
possible distortions of measured dynamics for the developing speckle fields.
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Linearly polarized Gaussian beam of standard He-Ne laser (633 nm) with
0.5 mm diameter and 0.5 W/cm2 intensity irradiates lithium niobate crystal.
Measurement of each Stokes component was realized faster than 15 ms and four of
them during 100 ms. The used 15 s interval between measured cadres allowed fix
all stages of topological/morphological dynamics for developing singular speckle
fields. Therefore, all presented trajectories are dotted lines. The transverse coordi-
nates and topology of dynamic singularities were measured in the output plane of
PRC (Fig. 8.1a). Its image was projected on input screen of used CCD camera.

8.3 Topology of Dynamic Vector Speckle Fields
and Optical Singularities. “Sign Paradox”

Investigated vector speckle fields develop due to the unique “optical-damage” effect
in photorefractive crystals (PRC) [8] (in our case LiNbO3:Fe crystal) firstly used by
us in stationary and dynamic singular optics [7, 9]. Speckle fields in laser beam after
its propagation through PRC appear due to initial random distribution of Fe3+ ions
and drift of exited electrons in conduction band due to inner electrical fields [8].
When they recombine with empty traps, the new dynamic local inhomogeneities of
refraction index are created in crystal matrix. This “optical-damage” effect is
developing in time, what induces in turn development of created speckle field. The
interference of scattered light components with random directions and polarization
produces family of random gratings, which possess micron-scale space period.
Propagating laser beam diffracts on them and self-interferes. As a result, developing
speckle field is created. Its scattered light diagram possesses the “butterfly” form
oriented along crystal c axis, where electro-optical tensor possesses the largest
value. The “optical-damage” effect for typical photorefractive crystal LiNbO3:Fe
develops nearly 1 h up to practical saturation. Main stages of its development are

Fig. 8.1 Optical schemes for writing and investigation of developing “scalar”, i.e. linearly
polarized in one direction (a) and vector (b) speckle fields. Structure of vector speckle fields and
morphology of C points were measured by the short-time Stokes-polarimetry [9]. The small
fragment of scattered light cone propagating after crystal was cut by 5 mm diameter hole in screen
and projected on the CCD camera input window
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shown in Fig. 8.2 for initial stage 510 s (a), mean time 900 s (b), and for 1400 s,
when optical damage started saturate (c).

Genericity is general property of surfaces, field structure etc. It has strict
mathematical definition. This fundamental notion was introduced to physical optics
by J. Nye with new sense: “Generic means that the object in question occurs
without special preparation and conditions” [2]. According to it, OVs with topo-
logical charges ±1 are generic once. All written and investigated structures and
phenomena in such developing speckle fields were generic ones automatically,
because they appear really in natural way “without special preparation and
conditions”.

The minima between two speckles become exactly zero in some point. This
moment pair of generic single-charged optical vortices (OVs) is born in this point
and propagates inside the incident laser beam.

Space and phase structures of OVs are described by the simple formula (8.1):

Wlð~rÞ ¼ uðr; zÞe�i k ze�i l h ð8:1Þ

Zero-amplitude center of an OV in cross-section appears due to full destructive
interference of scattered light in this point. It possesses the indefinite phase and
handedness automatically contrary to all other ordinary points on the OV wave
front with their definite values. The zero-amplitude z axis of an OV is the dislo-
cation line [2]. This is very important for singularities dynamics. Scalar wave front
around z axis possesses helicoidal form with right/left handedness. Namely this is
the origin of term “optical vortex” [11].

Each point of vector speckle field possesses random elliptical polarization. Their
parameters vary inhomogeneously from point to point during development of
induced vector speckle fields. Each polarization ellipse can be decomposed on left
and right circular components with different amplitude and phase values. The

Fig. 8.2 Structure and space diagram of scattered light, which possess “butterfly” form with
pronounced speckle structure. It is oriented across crystal axis c. The round screen in the center of
the scattered light blocks direct incident laser beam. Small white rectangle on “butterfly” right
periphery marks the part of scattered light used for measurements [9]. Only in this case, obtained
results show the real properties of singular speckle fields and are generic ones
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stronger circular component defines its general handedness. When smaller com-
ponent becomes zero in the center of OV, polarization ellipse transforms auto-
matically to the circularly polarized singular C point [2]. As the result, all C points
are located exactly above centers of correspondent OVs. This is starting point of the
fixed “sign paradox” in singular vector speckle fields, when handedness of all C
points and surrounding ellipses is equal in the frames of closed linearly polarized L
lines [2] contrary to opposite signs of underlying pairs of positive/negative charged
OVs.

Experiment shows that the polarization ellipses in vector speckle fields form
compact areas with equal right or left handedness delimited by the closed linearly
polarized L lines [2] (Fig. 8.3).

Specific is the arrangement of ellipses around C points. M. Berry and J. Hannay
have shown analytically that each C point arranges the long axes of surrounding
ellipses in three possible morphological configurations: stars (S), monstars (M) and
lemons (L) [12] for right/left polarized C points (Fig. 12.2 in J. Nye monograph
[2]). This is not mistake and misprint. It shows that around C points ellipses rotate
clockwise for stars, and counterclockwise for monstars and lemons for both signs of
C points. Therefore, their indices equal −½ for stars and +½ for monstars and
lemons don’t depend from handedness of surrounding ellipses. But what parameters
of underlined OVs define them? We have supposed that this is done by their
handedness. Indeed, direction of rotation of polarization ellipses around a C point
and their morphological forms during circumference around it are defined auto-
matically: clockwise for stars, counterclockwise for monstars and lemons for C
points of both signs. To confirm experimentally correctness of our explanation of
the fixed “sign paradox” we have chosen two fragments of vector field with
opposite handedness (Fig. 8.4).

Fig. 8.3 The measured polarization structure of generated elliptic speckle fields. Areas with
RH/LH polarizations are shown by grey/white colors at 495 s (a), 750 s (b) and 1650 s (c). They
are delimited by black linearly polarized L lines [3]. Fragments of the dynamic elliptic singular
speckle field are presented as distribution of b(x, y) axis amplitudes of polarization ellipses and
field handedness distribution. As it is seen, C points with all morphological forms are attended
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Obtained structures show unambiguously that for both polarizations the S/L
morphologies are realized for negative/positive charged OVs in full accord with our
suggestion. These results confirm completely our explanation of the “sign paradox”
and resolve it completely.

Let us move now to analyses of general distribution of ellipses handedness in the
real developing speckle fields. One remark has to be given for the beginning. As
was shown by I. Freund, all polarization singularities are accompanied by so called
“optical diabolos” (OD) [13]. Their surfaces are formed by minor axes b of sur-
rounding ellipses. ODs were realized firstly in our group [14]. ODs possess two
forms: elliptic and hyperbolic ones according to structure of their cross-section.
Elliptics have Poincaré index IP = +1 and are realized when C point is located on
the top of a speckle. They are marked by the oval. Hyperbolics with IP = 0 are
settled on speckle slopes. They are marked by the triangle. Both elliptic and
hyperbolic C points are seen in Fig. 8.3.

Experiment confirmed that the polarization ellipses form compact areas with
equal right or left handedness ellipses delimited by the closed linearly polarized L
lines (Fig. 8.3). L lines are new type of singularities, namely singularities of
handedness! The shown fragments possess three left-handed C points. The lower L
and middle S are located in neighbor speckles. As will be shown later, pair of
elliptic and hyperbolic C points of equal handedness nested in neighbor speckles
gives origin of singular topological chain reactions. Figure 8.3b, c demonstrates
essential changes of vector speckle field topology during field development.

It happens due to indefinite phase in the zero-amplitude centers of vortices,
which underline each C point pair. This nontrivial property is the first essential
feature of the “sign paradox” fixed and resolved by us firstly due to our knowledge.
As was shown, each C point besides handedness possesses one of three possible
morphological forms, which don’t depend from C point sign. But what OV features
define morphology of upperlying C points? We have supposed that this is done by
the handedness underlined OVs: direction of rotation of polarization ellipses and
correspondent morphological forms is defined automatically: clockwise for stars,

Fig. 8.4 Morphology of C points in a the left handed and c the right handed fragments of vector
speckle fields. The handedness of underlined OVs in the left and the right fragments of these
vector speckle fields is shown in (b, d) pictures. They were measured with right/left polarized
reference waves for left/right polarized vector fields
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counterclockwise for monstars and lemons for C points of both signs. This is the
second nontrivial feature of the “sign paradox”. To confirm it experimentally we
have chosen two fragments of vector field with opposite handedness (Fig. 8.4). It
shows unambiguously that for both polarizations S/L are realized for
negative/positive charged OVs in accord with our suggestion.

Last essential item of general properties of vector speckle field is distribution of
the handedness of polarization ellipses as the function of C point morphology
(Fig. 8.5). It shows that C points of arbitrary morphology possess the same
handedness in accord with mentioned Fig. 12.2 in [2].

8.4 Loop and Chain Trajectories

The one of main goals of our investigations are topological regularities of dynamic
vector speckle field development, when multitude of singularities are born and
annihilate. They are defined by properties of born pairs of vector singularities,
trajectory of their movement during PRC illumination by a laser beam up to their
annihilation. Of course, they are accompanies by opposite handedness OVs. Optical
singularities nucleate, interact and annihilate as pair.

Only two types of trajectories are allowed topologically: when born and moving
singularities interact (1) in pairs or (2) with singularities from other pairs born
independently. The simplest loop trajectories developing in frame of one speckle
are realized in the first case (Fig. 8.6).

There are no topological obstacles for annihilation of born pair in the frames of
the same speckle. Namely this circumstance defines short time of the loops exis-
tence. Typical example of the measured loop trajectory is shown in Fig. 8.6a. It
starts from nucleation of star-monstar pair at 720 s in common speckle (b). They

Fig. 8.5 All ellipses in right
(grey) and left (white)
polarized areas delimited by
linearly polarized L lines
possess equal handedness
indeed
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repel at 735 s (c), attract then at 750 s (d) and annihilate finely at 765 s. Most of
reactions in developing generic speckle fields are loops.

Another type of topological reactions is realized in the second category of
topologically allowed trajectories when interact singularities from independent
singularities pairs. We have shown that they aren’t limited in space and time. We
call them chain trajectories due to their analogy to well known nuclear and
chemical chain reactions [15, 16]. Nuclear reaction can start even from one active
neutron. Topology of particles don’t play crucial role in both chain reactions.

Topological chain reactions originate then and only then, when born C point pair
attract strongly and occupies different neighbor speckles (central lower elliptic
lemon and higher hyperbolic star in Fig. 8.3a, b). Therefore, there are two types of
topological chain reactions: star (S) and lemon (L) ones with the starting and
conserving total charge −1/+1. Regularities of topological chain reactions are
defined completely by general topological lows of singular optics. Chain reactions
are realized, when born C points pair (star S and lemon L) are located on two
neighbor speckles, what prevent them from immediate easy annihilation. Each of
such singularities can start independent chain reactions of S or L type. Figure 8.7
presents complicated elucidate structure of L type chain reaction.

Trajectory in Fig. 8.7a exists during its more than 1500 s development. It started
at 0 s from sequence of L singularities. Pair of S and L singularities nucleates at
75 s. S and first L approach and annihilate at 150 s. This moment upper and lower
fragment reconnect and lower L link #1 moves long way nearly 1400 s to next
annihilations. In between new pair of S-M nucleates, and star and lemon links #2, 3
moves. Ends of first and second chains annihilate at 1415 s and second reconnection
takes place.

Fig. 8.6 The loop trajectory: a the space-time structure, b–e nucleation, movement and
annihilation of polarization singularities pair in one speckle
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The chain reaction of L type (Fig. 8.7a) contains short link #1 from previous link
and #2 of L and S singularities accordingly and three extra long links #3–5 of L
singularities. Two nucleations take place at 75 and 450 s. They initiate two anni-
hilations A1 and A2 of S-L pairs at 150 and 1415 s followed by two instantaneous
reconnections of links 1 and 3, 3 and 5. The reason of appearance of extra long #3–
5 is lows of topology. Indeed, pair of opposite sign singularities can annihilate then
and only then, when they are located in the frame of common speckle. But it is seen
that they are arranged in different speckles during neighbor links development.
They annihilate indeed when neighbor links #1, 2 and 3, 4 attract, C points with
opposite sign get in one speckle and annihilate soon: events A1 and A2.

Something other scenario is realized in S-type chain reaction (Fig. 8.7b). The
upper links #1 comes from previous chain. Two pairs of opposite sign C points
nucleate independently at 1315 and 2340 s in different points. The links #1 and #3
approach and annihilate at 795 s. Then links #2 and #4 approach and annihilate also
at 895 s. Left link #5 remains and moves to next links as in previous chain reaction.

It is seen that both chain reaction differ in space structure but obey the same
“iron” topological scenario. The measured topological chain reactions allow install
their simple sum rules: Nnucl = Nan = Nrecon.

Description of shown chain reactions by the structure of correspondent speckles
is presented in Figs. 8.8 and 8.9. One preliminary topological remark has to pro-
ceed. Each transformation of speckle field is realized with minimal changes of its
structure. Due to this only S-M pair is realized during nucleation and annihilation of
C points pair because their two auxiliary morphological straight lines are parallel in
these moments [2]. But M form is unstable and transforms to L when S-M pair
repel. All these transformations are seen in Figs. 8.8 and 8.9.

Fig. 8.7 Space-time chain trajectories of L (a) and S (b) types. Arrows show directions of
singularities movement after their nucleation to annihilation. Moments of C point pair
nucleation/annihilation are marked by rectangles N/A. Instantaneous reconnection of two chain
trajectories lines after singularities pairs annihilations are shown by dotted arrows

8 Dynamic Singular Vector Speckle … 139



Fig. 8.8 Topology of chain reaction (Fig. 8.7a) presented throw evolution of correspondent
speckles structure. The starting speckle a contains coming L singularity. Pair of S-M singularities
is born (b). S moves to L and they annihilate soon (c). The left lower M transforms to L form and
travels (d). Second S-M nucleates and S moves to L (e). Finally it annihilates with lemon
transformed to monstar and left M transformed to L travels (f)

Fig. 8.9 Topology of chain reaction shown in Fig. 8.7b presented by evolution of correspondent
speckles structure. Singularity S is coming from preceding link of S-type chain reaction (a) and
travels (b–c). Two new C pairs nucleate (c). Two pairs of C points annihilate then (d) and left S
started its long way (d–f)
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8.5 Space-Time Autocorrelation of Dynamic Speckle
Fields Development Installed by the Hurst Exponent
Technique

As we see, birth, movement and topological reaction of singularities are defined by
local transformations of developing speckle fields. The last crucial question of
dynamic singular optics is checking of the time correlation for all perturbation
processes during singular speckle field generic development. It’s evident that the
loop trajectories are fully correlated because they appear and develop up to anni-
hilation in the frames of single speckle with very stable structure. But this is not
evident for totality of chain reactions not limited in space and time. English scientist
Hurst has discovered the essential statistical method called normalized scope (R/S),
or H exponent method, which can answer this principal question [17]. H exponents’
method is used often enough for analysis of the fractal time series [18]. The H
values in the range 0.5 < H < 1 indicates the time series with long-term positive
autocorrelation.

Figure 8.8 shows space-time correlation of L type chain reaction (Figs. 8.10 and
8.11).

In general, linear dependence was founded for all measured chain reactions with
exponent values 0.56–0.89. This witnesses high level of autocorrelation during

Fig. 8.10 Space-time autocorrelation of dynamic speckle fields development (L chain reaction)
installed by the Hurst exponent technique
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dynamic speckle field development. Shown long-time trajectories of chain reactions
explain this essential result in natural way. Indeed, they develop in frame of single
speckles, which are auto correlated automatically.

8.6 Conclusion

1. The generic developing vector speckle fields were realized first by the
“optical-damage” effect in the photorefractive crystal LiNbO3:Fe. They were
investigated by advanced methods of dynamic singular optics and technique of
the Hurst exponent. They develop through topological short-time loop in frame
of one speckle and space/time unlimited chain reactions developing in different
speckles. Their topological space-time regularities were established.

2. The morphological form of ellipses arrangement around each C point of any
sign is defined by the helicity of underlying circularly polarized OVs (estab-
lished and resolved “sing paradox”).

3. The measured extra long-time links of chain reactions appeared due to existence
of alone singularities in actual speckles against needed pair of opposite-sign C
points for their annihilation. Their existence explains measured high values of
the Hurst exponent H ≈ 0.56–0.89.

Fig. 8.11 Space-time autocorrelation of dynamic speckle fields development (S chain reaction)
installed by the Hurst exponent technique
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Chapter 9
Synthetic Structures with Parity-Time
Symmetry

Tsampikos Kottos and Alejandro B. Aceves

Abstract Parity-time (PT) symmetric wave mechanics is a rapidly developed field
with applications in various areas of physics and mathematics. Although originally
proposed in the framework of Quantum Field Theory, it was recently recognized to
be a natural mathematical language necessary to describe novel wave transport
phenomena in synthetic structures where balanced gain and loss mechanisms
coexist. Examples of its successful implementation can be found in areas ranging
from integrated photonics and electronic circuitry to antenna theory and
meta-materials. The objective of this chapter is to highlight some of these successes,
both in modeling and experimental implementations, of PT-symmetric optical and
electronic systems.

9.1 Introduction

Modern history in Optics provides multiple examples where system properties and
functionalities emerge in direct analogies with quantum mechanical counterparts.
Examples include, photonic band-gap crystals, quasi-crystals, Anderson localiza-
tion of light, tunneling etc. [1]. In all these cases the index of refraction (the
equivalent of the potential in quantum mechanics framework) of the optical med-
ium was considered to be real. Recently, however, it was proposed to extend the
optics/quantum mechanics analogies to cases where optical gain and loss mecha-
nisms are involved. In the quantum-mechanical framework this scenario assumes
the existence of complex potentials associated to non-Hermitian Hamiltonians.
Although such extension of traditional quantum mechanics is highly controversial,
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Bender and colleagues have shown [2] that a class of non-Hermitian Hamiltonians,
which commute with the joint parity-time (PT) symmetry, can emerge as a phe-
nomenological description of systems in quantum field theories. PT-symmetry
impose the following constrain to the complex potential VðxÞ ¼ V�ð�xÞ in
Schrödinger’s equation, which might result into situations where the spectrum can
still be real. This concept has been brought to the optical framework by the authors
of [3]. In their work, they assumed that the complex index of refraction has the
same PT-symmetry property, nðxÞ ¼ n�ð�xÞ. Not only this property is manageable
in optical devices by engineering the loss/gain profile in the optical structure, but
also the strength of this component can be tuned resulting to exotic phase transition
phenomena. Moreover, one can enrich the overall dynamics by use of a nonlinear
optical response. Finally, many of these studies can be carried out in an experi-
mentally friendlier platform provided by RLC circuits.

This chapter illustrates the behavior of optical and electronic PT-symmetric
structures. While it is by no means a comprehensive discussion, thus we do not cite
the hundreds of publications on PT-symmetric wave mechanics, we hope that the
examples discussed below illustrate the canonical dynamics dictating all these many
different PT-symmetric models that have been reported in the literature and which
can be summarizes as follows: PT-symmetric structures present the opportunity of
phase transitions from a pseudo-conservative (Hamiltonian)-like behavior to an
unstable dynamics which departs from the Hamiltonian-like nature.

9.2 A Simple Example of a PT-symmetric Optical
Structure: The PT-symmetric Coupler

In this section we will briefly review the basic properties of the linear PT-symmetric
coupler [2, 4–9]. In optics this simple PT-system can be realized in the form of two
coupled waveguides, with only one of them being optically pumped to provide gain
c for the guided light, whereas the neighbor waveguide experiences equal amount
of loss. For this system we will analyze the dependence of the propagation con-
stants on the gain/loss parameter and the structure of the associated super-modes.
Then we will investigate the beam evolution in the paraxial approximation. Finally
we will discuss how the PT-dynamics is modified in the presence of a Kerr
non-linearity.

9.2.1 Beam Dynamics of the Linear PT-symmetric Coupler

Using the coupled-mode approach, the optical-field dynamics in the two-coupled
waveguides are described by the following set of equations:
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i
dw1

dz
þ w2 � icw1 ¼ 0; i

dw2

dz
þ w1 þ icw2 ¼ 0; ð9:1Þ

where w1;2ðzÞ are modal electric field amplitudes in the amplifying and lossy
waveguide channels, z represents a dimensionless propagation distance, normalized
in units of coupling lengths, and γ is a scaled gain (loss) coefficient, also normalized
to the coupling strength. The Hamiltonian corresponding to the linear problem of
(9.1), is written as

H ¼ ic �1
�1 �ic

� �
: ð9:2Þ

It is straightforward to show that Hamiltonian H of (9.2) commutes with the
combined PT operator. A surprising result associated with this class of problems is
the possibility that such a PT-symmetric Hamiltonian H can have an entirely real
energy spectrum, despite the fact that it is non-Hermitian [7, 8].

For the specific example of the non-Hermitian Hamiltonian of (9.2), a direct
diagonalization gives the following set of eigenvalues [8]:

E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
; ð9:3Þ

which are real as long as the gain (loss) parameter γ is smaller than some critical
value, cPT ¼ 1 (exact PT-symmetric phase). As the gain (loss) parameter c increases
above cPT , the eigenvalues becomes complex (broken PT-symmetric phase). The
transition point for which the spectrum changes from a real-valued to a
complex-valued is known as the spontaneous PT-symmetric phase transition point.
The behavior of the eigenmodes is shown in Fig. 9.1 (left).

The eigenvector problem for the non-hermitian Hamiltonian (9.2) involves a left
and right bi-orthogonal set of eigenvectors that are defined via the following set of
equations:

H �Rj i ¼ E� �Rj i; �Lh jH ¼ E� �Lh j; ð9:4Þ

with the ortho-normalization condition �Lh j�Ri ¼ dþ;�. The corresponding
eigenvectors are then found to be [8]

þj i ¼ 1ffiffiffiffiffiffiffiffiffi
2 cos a

p eia=2

e�ia=2

� �
;

�j i ¼ 1ffiffiffiffiffiffiffiffiffi
2 cos a

p ie�ia=2

�ieia=2

� �
; sinðaÞ ¼ c

: ð9:5Þ

In the exact PT-symmetric phase, both the H and PT operators share the same set
of eigenvectors. In this regime, the mode intensity is symmetric with respect to the
mirror axis of the two waveguides, see Fig. 9.1 (right). As c increases above cPT the
eigen-functions of H cease to be eigenfunctions of the PT operator, despite the fact
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that H and the PT operator still commute. This happens because the PT operator is
anti-linear, and thus the eigenstates of H may or may not be eigenstates of PT. In
the broken PT-symmetric phase, the spatial distribution of the modes is asymmetric,
one of them living predominantly in the amplifying site and the other in the lossy
one, see Fig. 9.1 (right). At the phase-transition point c ¼ cPT the two eigenfunc-
tions and their corresponding eigenvalues coalesce leading to an “exceptional”
point singularity.

The beam dynamics associated with (9.1) was investigated theoretically in [6, 8].
It is relatively straightforward to analyze the dynamics. To this end the Hamiltonian
(9.2) is first written in the form H ¼ E�j j~rn̂ ¼ E�j jrn where rn is the Pauli matrix
along the n̂ ¼ ð1= E�j jÞð1; 0; cÞ direction. Using the identity expðizrnÞ ¼ cosðzÞ1̂þ
i sinðzÞrn (1̂ is the identity matrix), the effective evolution operator ÛðzÞ takes the
form:

ÛðzÞ ¼ expð�izHÞ ¼ cosð E�j jzÞ1̂� i sinð E�j jzÞH= E�j j: ð9:6Þ

Application of the above operator to a generic initial preparation wðz ¼ 0Þ ¼
c1; c2ð ÞT allow us to evaluate the beam wðzÞ at a propagation distance z

wðzÞ � w1ðzÞ
w2ðzÞ

� �
¼ 1

cos a
c1 cosð E�j jz

2 � aÞ � c2i sinð E�j jz
2 Þ

c2 cosð E�j jz
2 þ aÞ � c1i sinð E�j jz

2 Þ

 !
ð9:7Þ

Fig. 9.1 Left Eigenvalue spectra of the Hamiltonian system (9.1, 9.2). Red points correspond to
the real part of the eigenvalues while black to the imaginary part. At the exact phase,
corresponding to c\ cPTj j, the imaginary part (black points) is zero. For gain/loss values greater
than cPT (marked with the blue arrows) the spectrum becomes complex and the eigenvalues appear
in pairs with elements that are complex conjugates of one another. Right Typical spatial
distribution of the supermodes of a system consisting of two PT-symmetric coupled waveguides
(low inset). For c\cPT (maroon line) the modal intensity is respecting the PT-symmetry of the
problem and it is equally distributed between the two waveguides. As the gain/loss parameter
increases beyond the spontaneous PT-symmetry breaking point, each of the two modes becomes
isolated in each waveguide (blue and yellow curves)
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The total light intensity IðzÞ ¼ w1ðzÞj j2þ w2ðzÞj j2 is not any more a constant of
motion. Its dependence on the paraxial distance z can be easily evaluated from (9.7):

IðzÞ ¼ 1
2 cos2 a

cos2ð E�j jz
2

� aÞ
�

þ cos2ð E�j jz
2

þ aÞ þ 2 sin2ð E�j jz
2

Þ
� : ð9:8Þ

In Fig. 9.2 we plot the theoretical expressions (9.7, 9.8) describing the beam
dynamics associated with the PT-symmetric coupler for some typical values of the
gain/loss parameter c [6]. The associated experimental measurements have been
performed in [4, 5]. These authors recognized that as the gain (loss) parameter c
reaches cPT , the total beam power starts growing exponentially [see Fig. 9.2 (right)],
while for c\cPT power oscillations are observed [see Fig. 9.2 (left)]. The former
behavior is rooted in the complex nature of the propagating constants in the broken
phase, while the latter is due to the bi-orthogonal nature of the super-modes. At
c ¼ cPT the intensity grows in a power law manner with respect to the propagation
distance z. This is due to the existence of a defective eigenvalues (exceptional
point). All these cases can be easily derived analytically from (9.7). In all cases the
beam evolution is non-symmetric (see Fig. 9.2). Specifically, the beam propagation
pattern differs depending on whether the initial excitation is on the left or right

Fig. 9.2 Beam dynamics for a PT-symmetric coupler. The waveguides are colored according to
the gain/loss parameter (red for gain and green for loss). Left At the exact phase, corresponding to
c\cPT the system is in the exact phase, with real-valued propagation constants. The PT-symmetric
nature of the dynamics can be seen in the variation of the total light intensity (orange line), which
shows oscillatory behavior. Moreover the dynamics is non-symmetric for different initial
conditions (e.g. incident beam at the gain—upper- or loss—lower—waveguides), with respect to
the z-axis of symmetry of the structure. Center The beam dynamics at the exceptional point
c ¼ cPT . Notice that now the total field intensity (orange line) grows in a power law with the
propagation distance z. Right The beam dynamics in the broken phase corresponding to c[ cPT .
In this case the beam intensity grows exponentially (notice the log-scale in the vertical axis),
whereas the beam propagation is again non-symmetric with respect to the mirror axis of the two
waveguides [6]
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waveguide. This has to be contrasted with the c ¼ 0 case, where the beam prop-
agation is insensitive to the initial condition i.e. if the incident beam is launched in
the left or right waveguide.

9.2.2 Beam Dynamics of the Non-linear PT-symmetric
Coupler

In this section, we review a new mechanism, first reported in [9], for unidirectional
optical transport based on configurations involving nonlinear optical materials with
PT-symmetry. Specifically it was shown that the interplay of non-symmetric
dynamics arising from PT-symmetry, and self-trapping phenomena associated with
Kerr nonlinearities [10], can mold the flow of light in a surprising way. Such novel
directed dynamics could be exploited in the realization of a new generation of
optical isolators.

Even though the validity of this mechanism can be demonstrated for a variety of
non-linear PT-configurations, below, we will highlight its basic principles, using the
simplest possible arrangement, consisting of two PT-coupled waveguide elements
with Kerr nonlinearity of strength v. Each of the waveguides is single-mode—one
providing gain and the other an equal amount of loss (see Fig. 9.3). Nonlinear PT-
symmetric optical coupled systems can be realistically synthesized on semicon-
ductor wafers-known for their high Kerr-like nonlinearities [11].

We begin our presentation by providing the mathematical model that describes
optical wave propagation in a Kerr nonlinear PT—symmetric coupled dual wave-
guide arrangement. The two modal field amplitudes are governed by the evolution
equations:

i
dw1

dz
þ w2 � icw1 þ v w1j j2w1 ¼ 0; i

dw2

dz
þ w1 þ icw2 þ v w2j j2w2 ¼ 0 ð9:9Þ

Fig. 9.3 Beam propagation in two coupled nonlinear waveguides with non-linearity strength v
and a complex PT-symmetric refractive index profile. Waveguides are color coded, indicating
balanced gain (red) and loss (green) regions (c ¼ 0:1). Left subfigure Corresponds to an initial
excitation at the gain waveguide port, while right subfigure corresponds to an initial excitation at
the lossy waveguide. The non-linearity strength is v ¼ 8[ vd [9]
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where all variables are the same as the ones in (9.1)—and v is the strength of the
Kerr-nonlinearity. In (9.9) c is a scaled gain/loss coefficient, also normalized to the
coupling strength.

Equation (9.9) can be re-written in terms of the Stokes parameters S0 ¼ w1j j2þ
w2j j2; S1 ¼ w�

1w2 þ w1w
�
2; S2 ¼ iðw1w

�
2 � w�

1w2Þ; and S3 ¼ w1j j2� w2j j2. We note
that Stokes parameters always satisfy the relation S20 �~S �~S ¼ 0. In this represen-
tation, (9.9) take the form [9]:

dS0
dz

¼ ~E �~S; d~S
dz

¼ S0~E þ~S�~B; ð9:10Þ

where ~E ¼ ð0; 0; 2cÞ, ~B ¼ ð2; 0; vS3Þ and ~S ¼ ðS1; S2; S3Þ is the three-dimensional
Stokes vector.

For c ¼ 0 the dynamics has two constants of motion: The total energy
H = ðv=2ÞS23 þ 2S1 and the total beam intensity S0 inside the two waveguides.
However, when c 6¼ 0 these two quantities are not any more conserved. Instead PT-
symmetry enforces two other constants of motion [9]:

C2 ¼ ðvS1 � 2Þ2 þ ðvS2Þ2; J ¼ S0 þ 2c
v
sin�1 vS1 � 2

C

� �
: ð9:11Þ

For the specific initial conditions S0ð0Þ ¼ 1; S3ð0Þ ¼ �1; S1ð0Þ ¼ S2ð0Þ further
theoretical calculations for the evaluation of the Stokes parameters can be carried
out. It can be shown [9] that there is a critical value of nonlinearity vd ¼ 4� 2pc
for which the beam evolution is unidirectional, i.e., the output beam remains in the
gain channel, irrespective from the input channel.

Examples of the resulting beam dynamics for c ¼ 0:1 and representative
non-linearity strength v ¼ 8[ vd is reported in Fig. 9.3. One can see that the output
field always leaves the sample from the waveguide with gain (red-colored) irre-
spective of the preparation of the input beam. At the same time the output beam
intensity at the lossy waveguide becomes zero for waveguides longer than some
critical length zd [9]. The behavior shown in Fig. 9.3 implies that such systems can
be used to realize a new class of optical isolators. Finally, it is important to point
that the nonlinear PT-symmetric isolator discussed in this section is polarization
insensitive, it does not rely on higher harmonic generation and it can be fabricated
as an on-chip element. Furthermore it provides a broadband nonreciprocal action.

The isolation action in the nonlinear PT-symmetric dimer is a result of
dynamical decoupling. Above the critical value of non-linearity the input beam
from the lossy channel experience a low index of refraction, therefore it tunnels to
the gain waveguide. On the other hand, once the light is at the gain waveguide, it
experiences a high index of refraction, which confines it to this waveguide. As a
result it cannot tunnel back to the lossy waveguide. In the backward process the
beam initiated from the gain waveguide from the very beginning is self-trapped and
there is no tunneling to the lossy waveguide.
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9.3 An Alternative Framework: PT-symmetric Electronics

While the impact of PT-symmetric wave mechanics ideas within the framework of
non-Hermitian optics it possess various experimental difficulties (see, however,
recent experimental results along these lines [4, 5, 12, 13]), it is possible to explore
(generalized) PT-symmetry using electric circuits where complex potentials can be
synthesized with the help of resistors and amplifiers [14]. In fact, there exist an
exact isomorphism that maps an RLC array to a discrete Hamiltonian, termed a
tight-binding (TB) Hamiltonian. TB Hamiltonians have been used in the past for the
mathematical description of electrons on lattices, or wave propagation in coupled
waveguide arrays. More recently TB Hamiltonians with PT symmetric potentials,
were used in the theoretical studies of PT systems (see for example [15]).

To demonstrate the relation between a TB Hamiltonian and a generic RLC array
with amplification and attenuation we consider the electrical circuit of classical
impedances Zn and zn shown in the upper panel of Fig. 9.4. Application of
Kirchhoff’s Loop Rule to three successive unit cells of the circuit leads to the
following linear relation between the voltages V in the (n − 1)-th, n-th and (n + 1)-th
cells

bnVnþ1 þ bn�1Vn�1 ¼ ðBn þ bn�1 þ bn � iGnÞVn; ð9:12Þ

where Bn ¼ =mðZ�1
n Þ; bn ¼ =mðz�1

n Þ are the corresponding susceptances and
Gn ¼ <eðZ�1

n Þ is the conductance. At the same time the generalized TB
Hamiltonian describing a particle moving on a lattice (lower panel of Fig. 9.4) is
given by the equation:

hnwnþ1 þ hn�1wn�1 ¼ ðE � enÞwn; ð9:13Þ

Zn+1

zn-1

Zn-1 Zn

zn zn+1

hn-1∑
n-1

hn hn+1
∑

n
∑

n+1

Fig. 9.4 Up Three sequential units of an RLC array coupled capacitively. Down The
corresponding tight-binding system
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where n ¼ 1; . . .;N is the site index, wn is the eigenmode amplitude at site n while
hn is the coupling element between nearby sites. Comparison between (9.12) and
(9.13) indicate that these two equations are isomorphic if we assume
ðhn;en;EÞ ! ðbn;dn þ iGn;bn þ bn�1 þ �BÞ. Here the value of the susceptance Bn is
split into its mean value �B ¼ Bnh i and a possible fluctuating part dn ¼ �B� Bn. In
the simple case where hn�1 ¼ hn ¼ h the Hamiltonian described by (9.13) is PT-
symmetric if the complex on-site potential en ¼ bn þ icn satisfies the constraint
en ¼ e�Nþ1�n. In this case, the isomorphism between (9.12) and (9.13) is complete
once we set en=h ¼ ðdn þ iGnÞ=b and E=h ¼ 2þ �B=b. Obviously, PT-symmetry
requires that dn þ iGn ¼ dNþ1�n þ iGNþ1�n. The above discussion demonstrates
that RLC lattices, appropriately augmented, with positive (attenuated) and negative
(amplified) <eðZnÞ ¼ Rn elements, can be used for the experimental study of PT-
dynamics.

9.3.1 Experimental Demonstration of PT-symmetric RLC
Circuits

The authors of [14], have provided a simple experimental realization which displays
all the novel phenomena encountered in a minimal PT-symmetric structure: a pair
of coupled, active RLC circuits, one with amplification and the other with equiv-
alent attenuation. This active dimer, illustrated at the left subpanel of Fig. 9.5, is
implemented with simple electronics, and allows a direct observation of the
spontaneous PT-symmetric breaking phase transition by measuring the

Fig. 9.5 Left Electronic implementation of a PT-symmetric dimer. The negative resistance (gain
element) is provided by feedback from a voltage-doubling buffer. The coils are inductively
coupled, and V1 and V2 provide access to the system variables; Center parametric evolution of the
experimentally measured eigenfrequencies (in units of x0 ¼ 1=

ffiffiffiffiffiffi
LC

p
), versus the normalized

gain/loss parameter c=cPT . A comparison with the theoretical results (solid lines) indicates an
excellent agreement. In all cases, we show only the <eðxlÞ[ 0 eigenfrequencies. The open circles
in the lower panel are reflections of the experimental data (lower curve) with respect to the
=mðxlÞ ¼ 0 axis; Right Experimentally measured temporal dynamics of the capacitance energy
Etot
C ðsÞ of the total system for various c-values. As c ! cPT the s2 behavior signaling the

spontaneous PT-symmetry breaking is observed [14]
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eigenfrequencies. Kirchhoff’s laws, lead to the following set of equations for the
charge Qn on the capacitors (n = 1 correspond to the amplified and n = 2 to the lossy
sides)

d2Q1

ds2
¼ � 1

1� l2
Q1 þ l

1� l2
Q2 þ c

dQ1

ds
;

d2Q2

ds2
¼ l

1� l2
Q1 � 1

1� l2
Q2 � c

dQ2

ds
;

ð9:14Þ

where s � x0t, c ¼ R�1
ffiffiffiffiffiffiffiffiffi
L=C

p
is the gain/loss parameter, l ¼ M=L is the rescaled

mutual inductance and x0 ¼ 1=
ffiffiffiffiffiffi
LC

p
(see left subpanel of Fig. 9.5). Direct

inspection of (9.14) indicates that they are invariant under a combined P (i.e.
n ¼ 1 $ n ¼ 2) and T (i.e. t ! �t) transformation.

The measured eigen-frequencies are presented in the center panel of Fig. 9.5,
indicating a transition from real (exact phase) to complex (broken phase) valued as
the attenuation/amplification parameter c increases. At the spontaneous PT-break-
ing point cPT , the normal modes coalesce and the relative phase differences of their
components acquire a definite value dictated by the inductive coupling [14]. The
consequences of the phase-transition in the spatiotemporal energy evolution (right
subpanel of Fig. 9.5) were identified and traced back to the properties of the normal
modes. Specifically, for c\cPT , it was observed energy oscillations due to the
bi-orthogonal nature of the eigen-modes, while an exponential increase of the
energy was found for c[ cPT . It has to be stressed that the experimental realization
of [14] was the first one that allowed for an actual spatio-temporal study of PT-
symmetric structures. Work that will follow is to include nonlinear effects arising in
the loss/gain term where c ! cð1� Q2

j Þ.1 By use of weakly nonlinear theory
(multiple-time scales) one derives modulation equations for the amplitudes of the
linear eigenfunctions. We then expect to capture the correction to the bifurcation
value and the subsequent nonlinear dynamics.

Other subsequent achievements involving PT-symmetric scattering set-ups can
be found in [16–19]. Being free of theoretical approximations, and due to its
relative simplicity in the experimental implementation, the RLC-network with PT
symmetry can offer new insights into the study of PT-symmetric systems and a
practical means for testing new concepts with direct applications in RF systems. It
is also worth mentioning that RLC circuits are often used to describe the dynamics
in split-ring resonator metamaterials. While in recent years the focus in metama-
terial research has been to develop new avenues that will minimize the tremendous
losses via integration of optical gain, it is expected that the investigations of PT-
symmetric RLC circuitry will lead to new and more efficient design schemes.

1Notice that such a nonlinear RLC dimer was already realized experimentally in [19] where its
scattering properties have been investigated.
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9.4 Large PT-symmetric Array Systems

In this section we pay attention to large array systems formed by waveguides [20],
lattices [15, 21–26], and similar to the RLC arrays presented above, metamaterial
nano-resonators [27, 28] all of which have the PT-symmetry property. Starting with
what would be a natural extension of the coupler previously discussed, the authors
in [20] modified an otherwise homogeneous waveguide array by inserting a
gain-loss coupler. What they observed in their numerical studies was that
symmetry-breaking thresholds were different for planar versus circular array con-
figurations, thus making PT-symmetry breaking topologically sensitive. It was
shown that the beam dynamics is shaped by guides at locations away from the
coupler, an indication of nonlocality. PT-symmetric lattices can have a spatially
extended gain/loss region [21, 22] and can be nonlinear. As with classical optical
lattice systems, modeling depends of whether you are considering truly discrete
modes or extended (long-wave) modes. In the second case, it is common to find
theoretical models like the nonlinear Schroedinger equation with a complex
potential [22],

i
@w
@z

þ @2w
@x2

þ VðxÞwþ rjwj2w ¼ 0; ð9:15Þ

where the lattice geometry is described by the periodicity of the complex potential
Vðxþ dÞ ¼ VðxÞ, the PT-symmetry results in the condition V�ð�xÞ ¼ VðxÞ. In the
linear regime, Floquet-Bloch (FB) modes have been found with novel dynamic
properties like power oscillations and unique diffraction patterns, some exhibiting
phase singularities [5]. In the simplest case where VðxÞ ¼ VrðxÞ þ icViðxÞ, the
starting point is the known solutions for c ¼ 0 many of which had been known for a
long time; one then uses continuation techniques from bifurcation theory to track
the deformation of solutions of the Hamiltonian model up to a critical value where
they no longer exist. As an example, in [23] the authors show solitons bifurcating
from the FB-modes; these solitons are stable up to a critical value of the strength of
the imaginary part of the potential and in some instances the unstable behavior leads
to unbounded energy grow of the propagating beam (see Fig. 9 in [23]).

Interestingly, discrete models are by necessity binary-like. Three examples fol-
low: the first one is of particular interest simply because it illustrates PT-symmetry
in a discrete system outside the realm of optics and electronics. In the tight-binding
model (Fig. 1 in [21]), the governing equations are

i
dan
dt

¼ �jbn � rbn�1 � qeiuanþ1 � qe�iuan�1 þ igan;

i
dbn
dt

¼ �jan � ranþ1 � qeiubnþ1 � qe�iubn�1 � igbn;
ð9:16Þ

where the loss/gain property is described by the last term in each equation. This
model is a non-Hermitian extension of the Rice-Mele dimerized lattice of
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conjugated diatomic polymers. In [21], the author demonstrates analytically and
numerically that the PT-induced phase transition can be either convective or
absolute.

Optical lattices with PT-symmetry have also been studied for different config-
urations and applications. In each case, the discrete symmetry allows to study
optical phenomena of interest. In [24] the basic unit of the linear lattice is the one
considered in the linear loss/gain coupler studied in Sect. 9.2. These lattices support
the Talbot effect of self-imaging revivals for input patterns whose periodicity are
dictated not only by the discreteness of the lattice but by the strength of the
loss/gain parameter as well, which could be used for image quality control.
A second geometry that has been studied is that the basic unit forms a honeycomb
lattice [25] where conical diffraction solely depends on the gain/loss parameter. In
fact, for linear lattices one can work on the “inverse” problem [26] where one
simulates transformations among discrete PT-symmetric systems by suitable cou-
pling maps so that the spectra remains real and then see the role nonlinearity plays
in the dynamics.

Rather that discussing the analytical tools used for these models, we dedicate the
remainder of this section to a more detailed discussion of recent work on an array of
split-ring resonators studied in [27, 28]. The array shown in Fig. 9.6 (similar to
Fig. 1 in [28]), whose governing equations for the charges in the odd and even
resonators are,

d2Am

dt2
þ Am ¼ �k

0
M
d2Bm

dt2
� kM

d2Bmþ1

dt2
þ e0 sinðXtÞ � aA2

m � bA3
m � c

dAm

dt
;

d2Bm

dt2
þ Bm ¼ �kM

d2Am�1

dt2
� k

0
M
d2Am

dt2
þ e0 sinðXtÞ � aB2

m � bB3
m þ c

dBm

dt
;

ð9:17Þ

Fig. 9.6 Left figure Tight binding array model studied in [21]. Right figure Split ring resonator
array studied in [27]
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where as in the previous example, the last terms in the system describe loss/gain. In
[28], the authors demonstrate numerically that discrete breathers in such a dimer
chain are generic though their long-term stability is compromised when the balance
between gain and loss is not exact. It is not clear though if a symmetry breaking
bifurcation typical of PT-systems. Since it is the case that all coefficients in the right
hand side of the model are small, we can apply weakly nonlinear (multiple time
scale) theory to what at the first order of approximation are uncoupled identical
oscillators. This approach gives equations for the slowly varying amplitude
modulations,

amðsÞ; bmðsÞ;Amðt; sÞ ¼ amðsÞeit þ cc;Bmðt; sÞ ¼ abmðsÞeit þ cc; ð9:18Þ

where s is the slow time. Because of the applied periodic voltage to the resonators,
three regimes arise: at resonance (X ¼ 1), near resonance (X ¼ 1þ ex; e � 1) and
far away from resonance. If in addition, we restrict the study to extended breathers
where the continuum approximation is valid, one arrives to the coupled system
(CME) of partial differential equations (for the non-resonant case):

�i
@b
@s

þ @a
@x

¼ 1
kM

aMa� 3bjbj2bþ icb
h i

;

i
@a
@s

þ @b
@x

¼ 1
kM

�aMbþ 3bjaj2aþ ica
h i

;

ð9:19Þ

where the continuum approximation means:

anðsÞ ! aðx ¼ n; sÞ; bnðsÞ ! bðx ¼ n; sÞ:

In [28], we found that for c ¼ 0 there are exact soliton solutions describing
extended breathers in the array. In the general case, these breathers can propagate
across the array. In the stationary regime, we find analytically that breathers persist
up to the critical value cc ¼ aMj j at which a bifurcation arises. Work that will follow
is what type of nonlinear modes and their corresponding bifurcation properties for
the near resonant and the resonant cases described by the system below

�i
@b
@s

þ @a
@x

¼ 1
kM

aMa� 3bjbj2bþ icb� i
e
2
f

h i
;

i
@a
@s

þ @b
@x

¼ 1
kM

�aMbþ 3bjaj2aþ icaþ i
e
2
f

h i
;

ð9:20Þ

where f ¼ 1ðf ¼ eidsÞ for the in(near) resonance case. Finally, we expect to apply
this approach and study long arrays of the coupled RLC circuits discussed in the
previous section. The starting point as we did here is to find amplitude equations in
the slow-time, long-wave limit and analyze them with techniques suitable for
Hamiltonian PDE’s.
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9.5 Beam Dynamics in PT-symmetric Waveguides

In the previous section we mentioned that lattice potentials could be described in
the continuum approximation by the NLSE. Similarly, planar nonlinear waveguides
with gain (loss) for x\ð[ Þ0 are modeled by the same equation. Take for example
a complex Scarff II potential VðxÞ ¼ V0sech2ðxÞ þ iW0sechðxÞ tanhðxÞ. In [29], the
authors obtained exact guided modes of (9.15) of the form:

w ¼ AsechðxÞeil tan�1 sinhðxÞ½ 	þiz; l ¼ W0=3; A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� V0 þ ðW0=3Þ2

q
: ð9:21Þ

This solution was numerically tested to be linearly stable for values of the
gain/loss coefficientW0 above the bifurcation value V0 þ 1=4 of the linear case. The
nontrivial phase form explains that the stable behavior results from the fact that the
momentum S ¼ i=2½ww�

x � cc	 ¼ ðW0A2=3Þsech3ðxÞ is always positive implying
that power always flows from the gain to the loss direction. An exact balance of this
flux allows for the existence of a stationary propagating mode.

While there is not much work reported in two-dimensional PT-symmetric
structures, it would be interesting in particular to extend this work for
two-dimensional nonlinear waveguides. For real 2d potentials (classical waveguide
theory), at low powers linear-like guided modes exist, whereas a blow-up singu-
larity triggered by the instability of the Townes soliton would destabilize such
modes at high powers. The question is then what would be the role of having a
gain/loss potential. One would expect a similar flux feature as in the 1-d case, which
perhaps would stabilize confined beams at high powers.

9.6 Conclusions

As we indicated in the Introduction, this short review is by no means a complete
presentation of the many new results on PT-symmetric structures that have
appeared and continues to appear in the literature. For example, in our presentation
we did not discuss optical structures with defocusing nonlinearities, where vortices
play the role of solitons in the focusing regime [30]. Similarly, we did not review
the unique scattering properties of PT-symmetric systems and their possible
application in producing unidirectional reflectionless PT-metamaterials [31].
Finally, following the extension of PT-symmetry to optics and electronics, there are
some recent studies investigating the possibility to realize (pseudo-)PT-symmetric
dynamics in the framework of (ultra)-cold atoms [32–35]. If anything, this only
suggests that the story is just beginning.
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Chapter 10
Nonlinear Plasmonic Waveguides

José Ramón Salgueiro and Yuri S. Kivshar

Abstract Recent results on plasmonic waveguides are summarized. After a brief
introduction to motivate the use of plasmonic structures for optical integrated
devices and to present the main characteristics and potential applications, the
metal-dielectric-metal slot waveguide is studied. The way to calculate the complex
modes, which are necessary for a proper modeling taking optical losses into
account, is presented for the linear and nonlinear cases. This calculations are then
used to obtain the dispersion curves and to show the way modes transform when
losses go from negligible to realistic values. The calculation of nonlinear modes
leads to the study of the power dispersion curves considering optical losses and to
the comparison with the non lossy case. Also, the way to simulate the propagation
of light in this structures, using the finite-difference time-domain technique is
discussed. The last part of the text deals with specific devices: nonlinear directional
couplers applied to optical power switching. Finally, the use of tapered waveguides
for the directional coupler is proposed, as a way to avoid the negative effect of
optical loss and to enhance the coupler performance.

10.1 Introduction

The field of plasmonics has recently attracted a lot of attention from the scientific
community due to many interesting optical properties of metals in the presence of
electromagnetic fields and new effects which may have potential technological
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applications [1–3]. Plasmonics deals with plasmons as elementary excitations.
A plasmon is created by an electromagnetic wave interacting resonantly with col-
lective electronic oscillations in a metal, that produces a coupled hybrid state. One
of the most typical realizations of a plasmon wave is an optical mode propagating
along an interface separating a dielectric medium and a metal. Boundary conditions
for the electromagnetic field at the interface require the electric field to be polarized
perpendicularly (the so-called TM mode) and that is why this modes are called
surface plasmon polaritons [4, 5]. Exponential tails of a plasmon decaying into
both dielectric and metal, define a range of the order of half-wavelength and
skin-depth respectively.

A small skin depth into the metal makes possible a high confinement of the
optical field in plasmonic structures, specially if the dielectric layer is bounded by
metals on both sides resulting a structure of a three-layer plasmonic slot waveguide.
The confinement can reach tenths of nanometers, two orders of magnitude smaller
than the wavelength, making possible a design and fabrication of integrated circuits
at the nanoscale [6, 7]. On the other hand, the optical field can penetrate nanometer
apertures overpassing the diffraction limits [8]. The reason for this is the coupling of
the optical field to the plasmon modes supported by the bored screen. Another
interesting property is the possibility of nanofocusing since some optical modes do
not possess a cutoff [9], even for arbitrarily narrow waveguide cores. The sizes
reached for the optical modes and fabrication techniques used for patterning these
integrated devices are compatible with those of nowadays electronics, making easy
the fabrication of optoelectronic devices for guiding, high-sensitive sensing and
signal processing. All this made plasmonics an actual and active research field on
the development of devices at the nanoscale and led to the arising of what is now
called nanoplasmonics [10].

The advantageous properties of plasmonic devices make them useful for many
applications. For example, metals are excellent candidates for making metamaterials,
particularly those presenting negative refractive index [11]. In fact, the requirements
of negative electrical permittivity and magnetic permeability is naturally fulfilled for
the permittivity in the case of metals. Collimators to obtain nanometric size beams
can be possible using a screen with a nanometric hole surrounded by some structure
patterned on the screen [5]. This beam can be useful for writing or reading infor-
mation in high-density data-store devices. Also, the properties of surface plasmon
polaritons are very sensitive to modifications in the properties of the media and this
makes such systems suitable for high sensitivity optical sensors [12]. Another
application is for high speed modulators [13]. In this case, a plasmon polariton is
coupled (input) and decoupled (output) to an silica-aluminum interface by a dif-
fraction grating patterned on the silica. The modulation takes place by irradiating the
boundary with laser fs-pulses which control the propagating wave via nonlinear
effects triggered into the metal. Finally, another interesting application is the per-
formance enhancement of solar cells [14–16].

The main drawback of plasmonic devices are the large losses they present when
operating at optical frequencies because at such frequencies metals are far from
perfect conductors. This means that a small tail of the field exists inside the metallic
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layers and this makes power conversion into heat via electronic collisions. Power
losses could in principle be admissible in integrated devices due to the small
dimensions implied but in any case, a realistic description and modeling of devices
based on plasmonics require from taking into account such power losses.

The high confinement of optical fields possible with this kind of structures
means high power densities and consequently high nonlinear effects. So, devices
based on plasmonics are potentially suitable for nonlinear control of optical signals.
Different nonlinear systems combining the properties of plasmons and solitons have
been studied [17–19] as well as metal-dielectric interface waveguides [20–23] and
slot waveguides [24] when the dielectric shows the Kerr nonlinearity. Different
nonlinear processes have been also demonstrated in plasmonic systems as optical
limiting and self-phase modulation with nanoparticles [25] or second harmonic
generation [26–28]. Also, applications in signal processing as for instance the
design of all-optical logic gates [29].

Here, recent results on plasmonic waveguides which are basic components of
optical integrated devices are summarized. In the following section the basic
aspects of linear and nonlinear waveguides, like mode calculation or dispersion
properties, will be presented, while Sect. 10.3 deals with the specific application of
nonlinear directional couplers applied to optical power switching.

10.2 Plasmonic Waveguides

The most basic device of an integrated circuit is a waveguide. When metals are
present the simplest one is the single interface between a dielectric and a metal, able
to support surface plasmon polaritons (SPP). However, other different types of
waveguides made of three layers are also possible. In that way three layer wave-
guides presenting additional advantages as to make power coupling by the end-fire
method more efficient, keeping the optical field better confined in a nanometric size
(metal-dielectric-metal waveguide) or increase the sensitivity of the optical mode
properties to external changes (dielectric-metal-dielectric waveguide) were pro-
posed. The linear wave propagation in this kind of structures was studied in the past
[9, 30–32]. Also the nonlinear propagation was already studied for single interface
waveguides, when the dielectric shows the Kerr nonlinear response and the metal is
considered linear [20–23]. On the other hand, slot nonlinear Kerr dielectric-metal
waveguides were studied [24], and due to the fact that both interfaces are wave-
guides themselves, they can support asymmetric modes in a similar fashion as a
nonlinear directional coupler.

The studies referred above do not consider optical losses in the metallic layers.
Nevertheless, the need of taking them into account has been proved necessary
because they influence strongly the behaviour of optical devices based on plas-
monics. Additionally, metals are strongly dispersive media and a correct description
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requires the use of a model to express the permittivity (em) as a function of fre-
quency (x). The simplest one is the classical Drude’s model which describes
electric permittivity as

emðxÞ ¼ 1� x2
p

x2 þ iCx
¼ 1� x2

p

x2 þ C2

 !
þ i

C
x

x2
p

x2 þ C2

 !
; ð10:1Þ

where xp is the plasma frequency and C the electronic collision frequency which
ultimately describes the effect of power losses as it makes the permittivity a
complex number.

Power losses usually spoil the performance of any guiding device at optical
frequencies. However, it is well-known that at microwave frequencies metallic
waveguides are currently used with a negligible effect of losses. The reason is the
almost perfect conductive behaviour of metals at those frequencies, that prevents
the electric field to exist inside any metallic layer (Fig. 10.1a). This avoids energy
dissipation via electronic collisions, even though at such frequencies many colli-
sions could take place in a wave period (the permittivity is a large negative
imaginary number). Nevertheless, at optical frequencies, there is a negligible
number of collisions in a wave period, but the fact that there is a significant fraction
of the field inside the metal (Fig. 10.1b) makes losses relevant. In this case the
permittivity is a complex number with a large negative real part and a small
imaginary part. Finally, at very high frequencies (x[xp) metals turn into trans-
parent media because the electrons cannot follow the wave oscillations.

According to all this, a plasmonic waveguide at optical frequencies can be
considered an intermediate case between the planar parallel guide used at micro-
wave regime and the dielectric slab (Fig. 10.1), being losses the particular effect to
take into account at this regime. Losses were already demonstrated to affect dra-
matically the performance of devices, not only decreasing optical power but also
spoiling the operation efficiency as was demonstrated for instance for power
switching using a nonlinear directional coupler [33]. Taking losses into account in a
rigorous way requires the consideration of the so called evanescent modes, which

Fig. 10.1 Different types of waveguides and the shape of the fundamental supported modes.
a Parallel-plate waveguide, b plasmonic slot waveguide, c dielectric slab waveguide
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are complex fields with an also complex propagation constant, whose imaginary
part induces a exponential decaying of the field amplitude upon propagation. This
modes are usually overlooked in weak lossy systems since their decaying distance
is small compared with the propagation of the optical field. In fact, the usual way to
account for losses is to solve the problem as though there were no losses at all and
then introduce losses as a perturbation to the non-lossy system. Nevertheless, in
systems containing metals, losses can be so large that the field amplitude decays in
a short propagation distance and complex evanescent modes become relevant for a
proper description of the system.

Evanescent modes were already studied in waveguides and other plasmonic
structures [34, 35], and the main results indicate that those modes transform
themselves when losses increase and become mixed with the usual propagating
modes, becoming undistinguishable when optical loss is large. This again reveals
the need of taking such modes into account for a rigorous description of wave-
guiding systems with large optical losses.

10.2.1 Mode Calculation

Let us take a waveguide made of a dielectric core of width d embedded in metallic
layers (cladding). The dielectric function is considered to be constant inside the core
(e ¼ ed), and described by the classical Drude model (10.1) in the cladding
[e ¼ emðxÞ]. The calculation of modes is made using the Maxwell’s equations to
describe the evolution of the harmonic modal fields ~Eðr; tÞ and ~Hðr; tÞ of the form,

~Eðr; tÞ ¼ EðxÞ exp �iðbz� xtÞ½ �; ð10:2Þ
~Hðr; tÞ ¼ HðxÞ exp �iðbz� xtÞ½ �=ðl0cÞ; ð10:3Þ

where l0 is the vacuum magnetic permeability, b the propagation constant, t the
time and r ¼ ðx; y; zÞ are spatial coordinates normalized by the vacuum wave-
number k0 ¼ x=c, being c the speed of light. The structure is considered to lay
along the x direction and the mode propagates along the z-direction. If we consider
a TM mode E ¼ Exx̂þ iEzẑ, H ¼ Hyŷ and replace both fields into the Maxwell’s
equations the following system of differential equations for the mode components
are got,

@xHy ¼ �eEz; ð10:4Þ

@xEz ¼ ð1� b2=eÞHy; ð10:5Þ

together with the relationship bHy ¼ eEx. This problem is equivalent to the fol-
lowing second order differential equation,
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eðxÞ@x 1
eðxÞ @x
� �

þ eðxÞ
� �

Hy ¼ b2Hy; ð10:6Þ

which describes the usual eigenvalue problem to solve for modal shapes [HyðxÞ]
and propagation constants (b2).

The interest is now set on solutions with a general complex propagation constant
b ¼ b1 þ ib2 and so the field components in the equations above should be also
complex. It is worthy to remark that even when losses are neglected, so that eðxÞ is a
real function, the problem described by (10.5) or (10.6) still have complex solu-
tions. The reason is the fact that the function eðxÞ changes its sign for different
intervals of the domain as for metals it is a negative number [36]. This also makes
that (10.6) cannot be considered a proper Sturm-Liouville type problem.

A slot metal-dielectric-metal waveguide is first considered in a linear regime,
and then in a nonlinear regime with a dielectric core showing the Kerr nonlinearity.
In such a way, since the metals will always be considered linear, there will exist
analytical solution at the claddings in the form of exponential functions

A expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � em

p
xÞ, where the sign inside the exponential function is chosen to

obtain a decaying behaviour when x ! �1 respectively. The numerical problem
will consequently reduce to obtain the solution inside the core that fulfill the
boundary conditions at both core-cladding interfaces, i.e. continuity of both fields
Hy and Ez. This conditions are,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � em

q
Hy � emEz ¼ 0; ð10:7Þ

where em is the value of the permittivity of the metal obtained from Drude’s model
(10.1). In the expression above the positive and negative signs are used respectively
at the left and right boundaries. Once the solution at the core is numerically
obtained, it is augmented into the cladding using the analytical expression above,
where constant A is chosen to adapt the value at the boundaries to the one of the
calculated solution inside the core.

The fact that in (10.5) appears the eigenvalue as b2 means that two different
solutions for b are got, being only one of them physically significant. There exist
two types of modes, forward and backward, and there are two way to describe them
at this point. The first one [36] considers all the modes propagating in a fix direction
of z (say positive, z[ 0). Then, as the spatial phase evolves in the way expð�ibzÞ
(10.2) the physical solution is that with b2\0, since the mode amplitude has to
decrease as z increases. The sign of the real part of the propagation constant b1 for
this solution describes the modal type, forward (positive phase velocity) or back-
ward (negative phase velocity). Another alternative description [35, 37] fixes the
sign of b1 (for instance b1 [ 0) and relies on the corresponding sign of b2 to
determine the direction of propagation: z[ 0 (forward modes) or z\0 (backward
modes) so that amplitude decays upon propagation. We will use the second
description.
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The spectrum of modes can be divided in a discrete part (point spectrum),
formed by the guided or proper modes, and a continuous part formed by the
radiation or improper modes (see Fig. 10.2). The point spectrum is formed by real
or propagating modes (imaginary part is null) and complex or evanescent modes
(imaginary part different from zero) which lay on the continuous spectrum. Due to
the negative value of em, the point spectrum is not restricted to the region below the
core permittivity value, in contrast to the case of a dielectric slab waveguide.

To solve the problem we will separate fields in their real and imaginary part as

HyðxÞ ¼ h1ðxÞ þ ih2ðxÞ;

EzðxÞ ¼ e1ðxÞ þ ie2ðxÞ: ð10:8Þ

Once these expressions are replaced into (10.4), (10.5) and (10.7) the problem is
transformed in a real valued one. When the system is considered linear (10.4) and
(10.5) are a complex eigenvalue problem and there exists analytical solution for the
optical modes, though the values of the propagation constant have to be obtained by
a numerical iterative method, solving an algebraic dispersion equation. The fact that
the solutions to be hunted are complex makes the problem a little more compli-
cated, but there are available methods like the argument principle method
(APM) [36, 38]. On the other hand when the problem is nonlinear, the system of
differential equations should be solved numerically (at least in regions presenting
nonlinearities) to obtain modal fields and propagation constants. The need of using
a numerical solving code for the nonlinear case, made recommendable to treat the
linear problem also numerically (though there exists an analytical solution), and use
the same code for the sake of simplicity.

Fig. 10.2 Sketch of the general spectrum of a plasmonic waveguide (real part). The permittivity
profile is shown for reference. The coloured band stands for the continuous spectrum (b pure
imaginary). Points (square) overlapped to the band are the point complex spectrum. Circle points
over em level are the point real spectrum
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As coordinates are rescaled by the wavenumber, from now on a rescaled fre-
quency x will be also used, in such a way that it takes the unity value x ¼ 1 at a
chosen reference wavelength k0. This can be always done, since according to (10.2)
and (10.3) it only affects to the units taken for the time. For the calculations carried
out the values of the taken parameters were d ¼ 0:5 (waveguide width), ed ¼ 2:25
(linear permittivity of the dielectric core) and em ¼ �8:25, corresponding to silver
at a wavelength k0 ¼ 480 nm [39] which will be also the chosen reference wave-
length (for x ¼ 1).

10.2.2 Dispersion of Linear Modes

When the complex field functions (10.8) are replaced in (10.4) and (10.5) a system
of four differential equations involving the real-valued functions h1;2ðxÞ and e1;2ðxÞ
is obtained. Also, since these equations constitute an eigenvalue problem, the
system is completed with two additional equations for the propagation constant:
@xb1 ¼ 0, @xb2 ¼ 0. This system is then numerically solved at the waveguide core
using a relaxation method to obtain the modal fields and the values of the propa-
gation constant. Along with the continuity of the fields at the core-cladding
boundaries (four equations) two additional conditions are required and they come
from the linearity of the problem. In fact, a solution can be multiplied by an
arbitrary complex constant to get an equivalent solution. In such a way, the value of
two of the functions is fixed at a particular point (say one of the boundaries xb),
obtaining the two necessary conditions, h1ðxbÞ ¼ c1, h2ðxbÞ ¼ c2, being c1 and c2
constants. Besides, to make easier the calculation of propagating (real propagation
constant, i.e. h2ðxÞ ¼ 0) and evanescent modes at a time it is quite convenient to fix
c2 ¼ 0.

In Fig. 10.3 the dispersion curves for the linear modes are shown for the case
when losses are neglected (C ¼ 0) and for two different values of the electronic
collision frequency which correspond to weak (C ¼ �0:01) and strong (C ¼ �0:1)
loss. A realistic case would be in between these values. It is important to remark at
this point that the negative sign of C is a result of the sign convention taken for the
wave phase in (10.2) and (10.3). According to this, to get a z-decreasing amplitude
wave it is necessary that the imaginary part of em is negative what is fulfilled if
C\0 (10.1).

In Fig. 10.4 few examples of low order modes are shown. When losses are
neglected (C ¼ 0), the dielectric constant for the metallic cladding is real and
modes with a real value of b (propagating modes) and an infinite number of modes
with a complex value of b (evanescent modes), coming in complex conjugate pairs
[36] may be found. In Fig. 10.3a, d we show the dispersion curves for the lowest
order modes. For the particular taken values of the parameters, the waveguide
supports only a propagating (fundamental) mode (see Fig. 10.4a) below the surface
plasma resonance (xsp) and two (fundamental and first order) above the resonance.
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The pair of first order modes, forward and backward, present conjugate propagation
constants being described by symmetric branches whose imaginary part turn to zero
and join together in a bifurcation point at x ¼ xsp (point O in Fig. 10.3d). From
this point, for increasing frequency, both modes are degenerated and propagating
(zero imaginary part).

When losses are considered (C 6¼ 0) all modes become complex and they no
longer come in complex conjugate pairs so the symmetry of the branches is
destroyed. Both types of modes, propagating and evanescent, transform themselves
and merge together. In Fig. 10.3 (second and third columns) we show the dispersion
curves when passing from null to weak and then to strong loss. Degeneracy of the
first order mode at xsp is removed and that mode joins to the first order backward
mode. The fundamental (originally propagating) mode joins now at x ¼ xsp to the
the branch of the second mode (Fig. 10.4d). In general each mode joins at xsp to the
next order mode of the same symmetry. These results are in agreement with pre-
vious studies [34, 35].

Fig. 10.3 Dispersion curves for the linear slot waveguide. The three columns correspond to three
different values for the optical losses: no loss (a, d), weak loss (b, e) and strong loss (c, f). Top row
shows the real part of the propagation constant, bottom row shows the imaginary part. Points
marked on the figure correspond to the examples shown in Fig. 10.4. Continuous and dashed lines
represent propagating and evanescent modes respectively. xsp represents the surface plasmon
resonance frequency
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10.2.3 Nonlinear Power Dispersion

In order to study the nonlinear modes a waveguide core made of a dielectric
showing the nonlinear Kerr response is considered, i.e. described by a dielectric
function edðxÞ ¼ el þ ajEj2, being el the linear dielectric constant and a the Kerr
coefficient, which can be suppressed from equations just considering both fields H
and E rescaled by a factor a�1=2. The numerical solution can be obtained in a
similar way as for the linear case, after expressing the dielectric function above in
terms of the components Hy and Ez, using (10.2) and (10.3) and the relation
eEx ¼ bHy to obtain the following cubic equation [40],

e3 � ðed þ E2
z Þe2 � b2H2

y ¼ 0: ð10:9Þ

It is easy to demonstrate that this equation has only one real solution which can
be obtained using Cardano’s method. Once this solution is replaced in (10.5) the
system of ordinary differential equations is numerically solved in a similar way as
for the linear problem.

This nonlinear problem has a family of solutions of different power parame-
terized by the propagation constant. Since the nonlinearity depends only on the field
modulus but not on the phase, only part of the propagation constant (say the real

Fig. 10.4 Examples of propagating and evanescent modes when losses are neglected:
fundamental propagating mode (a), first (b) and second (c) order evanescent modes. Also, the
second order mode for the lossy case (d). The labels correspond to the points shown in Fig. 10.3.
Continuous and dashed lines represent real and imaginary part respectively
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part) can be fixed so that it is necessary to solve for the other (imaginary part) as an
eigenvalue. Consequently, the system has now only one additional equation
(@xb2 ¼ 0) and boundary condition: it is possible to arbitrary fix the phase of one of
the fields (say H) at a particular point (say a boundary, xb),
a tan½h2ðxbÞ=h1ðxbÞ� ¼ c. For the sake of simplicity the constant c is taken as zero.

Dispersion curves are now calculated in terms of the mode power for a fixed
value of the frequency (x ¼ 1). When losses are not considered and for the taken
values of the system parameters, the modes symmetric, antisymmetric and asym-
metric are propagating [24]. The antisymmetric mode, however, is characterized by
a negative power flux due to the small core width of the waveguide. As was studied
in [24] the sign of the flux of the antisymmetric mode depends on the width of the
waveguide core in such a way that it is negative for small width and positive for
large width. For an intermediate width it can happen to exist a value of the prop-
agation constant b for which the sign changes from negative to positive.

Power is obtained integrating the time-averaged Poynting vector, which for
harmonic fields is P ¼ R ðE�H�Þẑdx ¼ b

R ðjHyj2=eÞdx. In Fig. 10.5 (top) power

Fig. 10.5 Top Power dispersion curves for nonlinear modes, showing power against the real part
of the propagation constant for the propagating symmetric and asymmetric modes of the
waveguide. Dashed, thin continuous, and thick lines correspond respectively to the lossless
(C ¼ 0), weak lossy (C ¼ �0:01) and strongly lossy case (C ¼ �0:1). Bottom examples of some
nonlinear asymmetric modes. Labels correspond to the points on the power diagram (top). Thin
and thick lines are the real and imaginary part respectively
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versus the real part of the propagation constant for the symmetric and asymmetric
modes is plotted. Also, in Fig. 10.5 (bottom), some examples of modes for the case
of a strong loss are presented. For the case C ¼ 0 (no loss) the already studied
power diagram is obtained (dashed lines) [24]. When losses are present the curve
corresponding to the symmetric mode turns back at a certain value of b1 and then,
after describing a loop turns up so that power increases indefinitely. This is in sharp
contrast with the non lossy case were power was limited to a maximum value and
the propagation constant could reach arbitrarily large values. A possible explanation
for this behavior is the fact that losses inside metallic layers induce a progressive
decreasing in the negative contribution to power flux, allowing total power to
increase due to the nonlinear contribution inside the core. The asymmetric mode,
however, that bifurcates from the symmetric one at points A (strong loss) and B
(weak or no loss) also turns back, describing a loop and joining again to the
symmetric curve at new bifurcation points E, F that have no analog in the non lossy
case.

10.2.4 Propagation and Stability

Modeling structures which are smaller than the wavelength and, additionally,
strongly dispersive, requires the use of the finite-difference time-domain technique
(FDTD). This technique discretizes Maxwell’s equations in time and space and
solves for the fields at subsequent time steps. Maxwell’s equations are solved
exactly and the goodness of the result depends directly on how good are the models
used to describe the different media, i.e. how good is the model for the electrical
permittivity and magnetic permeability functions.

In order to model metallic regions a scheme for cold plasmas based on Drude’s
theory was used, necessary to take into account the strong dispersion of metals. The
dispersion is introduced in Maxwell’s equations using a polarization current term
[41] J ¼ @tP which is introduced in the Ampère law equation, @tD ¼ r�H� J,
being D the electric displacement, and modeled by solving an additional differential
equation, @tJþ CJ ¼ x2

pE, where xp is the plasma frequency and C is the electron
collision frequency describing the power losses. This equation is the time-domain
version of Drude’s model (10.1). Parameters xp and C can be obtained from the
literature directly or from the optical constants. Using the normalized units
described above, for silver at x ¼ 1 (k0 ¼ 480 nm), the optical constants are
ReðeÞ � �8:25 and ImðeÞ � 0:3 [39], and so it is obtained from (10.1) xp ¼ 3:043
and C ¼ 0:031.

For the dielectric showing the Kerr nonlinearity a model based on an instanta-
neous response of the medium [42, 43] is used, valid for a CW or even for non
ultrashort pulses. According to this, the relationship D ¼ eðjEj2ÞE is used taking the
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nonlinear permittivity as described by the Kerr model edðxÞ ¼ el þ ajEj2. For the
simulations we took ed ¼ 2:25 (pure silica) though the nonlinear model is general
for any Kerr material just re-scaling back the fields by the factor a1=2, a is the Kerr
coefficient, after the simulation. At each time step, after obtaining the magnetic
component and then the two components for the displacement vector, Dx and Dz,
the calculation of the electric field components requires the solution of a nonlinear
cubic equation at each point of the mesh. This is efficiently done by a single
Newton step, starting from the value of the electric components at the previous time
step. The FDTD technique to model the metal and the nonlinear dielectric in the
way described above will be used in the following section to simulate propagation
of light through different coupling structures.

10.3 Plasmonic Nonlinear Couplers

A directional coupler is a very interesting and widely studied device because of its
applications in telecommunications for optical signal processing and switching.
Particularly when nonlinear effects are present it can be useful for power switching,
i.e. the discrimination of signals according to their power level. The device is made
of two waveguides running parallel and separated a distance so that the cladding
tails of both modes overlap causing power to pass from one to the other. Since
metal-dielectric interfaces are waveguides themselves the slot waveguide studied
above is a kind of directional coupler, though more efficient devices can be obtained
by placing two of such waveguides close together. Directional couplers of different
geometries based on plasmonic waveguides were already studied [44–48]. They
were also proposed for the mode transition from a dielectric waveguide into a
plasmonic mode propagating along a metal stripe [49].

A directional coupler present two low order modes, one antisymmetric and
another one symmetric (Fig. 10.6b, c), which are a result—at least for weakly
coupling waveguides—of a combination of the fundamental modes of each separate
waveguide. This fact is responsible for the periodic coupling of light from one
guide to the other. For nonlinear devices there is also an asymmetric mode
(Fig. 10.6d) which has no analog in linear systems and exists only above a power
threshold. In the case of plasmonic waveguides, this asymmetric mode bifurcates
from the antisymmetric mode [40] and is the key for power switching operation.

10.3.1 Switching

One of the applications of a nonlinear directional coupler is power switching. The
idea is the change of state when power overpasses a certain threshold. For the
coupler this shows as a change of the waveguide to which output power is directed.

10 Nonlinear Plasmonic Waveguides 175



In Fig. 10.6a, the power switching curve for the dual-core plasmonic coupler is
presented. Optical power is coupled to one of the waveguides and the output power
is measured at the same waveguide after propagation by a beat length, i.e. the
distance for which all power transfers to the second waveguide in a linear regime.
The curve plots the ratio between output and input power against input power.
According to this, for small input power the value of the ratio remains close to zero
since most of the power transferred to the second waveguide. When power rises
over the threshold where the asymmetric mode starts to exist, light remains mostly
on the first waveguide producing an increase in the output power. The slope of the
curve measures the efficiency of the optical switching when the threshold value is
overpassed.

Losses have an important effect on the performance of the device as is shown in
Fig. 10.6a where curves corresponding to both lossless and lossy cases are ploted.
When losses are taken into account, the maximum of the power curve decreases
since energy is lost (reaching a maximum of less than 20 %) but also the slope of
the curve dramatically decreases revealing a degradation in the switching efficiency.
In Fig. 10.7 both cases are illustrated as FDTD simulations. Images (a–c) respec-
tively correspond to the low, intermediate and large power cases when losses are
neglected, and illustrate how power remains in the first core when the threshold is
overpassed. Images (d–f) are the same cases when losses are taken into account,
revealing the decrease of power on propagation.

Fig. 10.6 a Switching curve ratio of the output power to the input power against input power for
the case of null loss and realistic loss. b–d Shape of the modes antisymmetric, symmetric and
asymmetric for b ¼ 5:0
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10.3.2 Efficiency Enhancement Using Tapers

Tapered waveguides can be employed in the plasmonic directional coupler to
overcome the effect of losses, increasing the field amplitude inside the cores and
raising the switching efficiency. The increase of power density inside the core of a
single waveguide was already demonstrated resulting that the phenomenon can
even reach nanofocusing [50–52]. This solution is also effective to enhance the
switching performance of plasmonic couplers. In order to measure performance we
consider how fast is the change from one state of the coupler to the other when
input power is increased. Ideally one would desire a fast change, but as it was
shown in the previous section power losses in metals completely spoil the sharpness
of the change [40].

First, the proper angle range leading to the compensation of loss has to be sought
considering a linear regime. From a set of experiments for different taper angles,
measuring total power at each waveguide and also the irradiance inside both cores,
it is deduced that for angles slightly lower than h ¼ 2:0 degrees loss is compensated
by the focusing effect of the taper waveguides. It should be remarked that irradiance
is a more convenient parameter than power for this study as it represents the optical
density inside the waveguide core, so that it results enhanced by a progressive
decrease of the core width. The total power, however, will always decrease as an
effect of the optical loss in the metallic layers and this decrease is even larger for an
increasingly narrow core. This is due to the fact that when the waveguide core
width is smaller a larger fraction of the modal field lies inside the metallic cladding
and relative loss increase. Nevertheless the irradiance inside the core increases
when the angle increases because the power concentration inside the core partially
compensates loss.

The switching properties of this nonlinear tapered coupler were then studied. In
Fig. 10.8 we show images of FDTD simulations presenting the modulus of the field

Fig. 10.7 FDTD simulations of the plasmonic coupler for different values of input power showing
power switching. a–c are respectively the low, intermediate and high power cases when losses are
neglected. d–f are the same cases taking losses into account. The images show the magnetic
component modulus, jHyj
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(magnetic component) for different power regimes using tapered waveguides at an
angle of h ¼ 1:9 deg. The three images correspond to linear, intermediate and
nonlinear regimes reached when input power is increasingly larger. Though loss
still exist, the irradiance inside the core is enhanced and this is the reason why
switching results more effective. This is clearly seen in the switching curves shown
in Fig. 10.9 where the relative irradiance for a beat length is plotted against the
input irradiance. As the taper angle increases, the curve slope becomes increasingly
larger and reaches a larger fraction of the input irradiance, dramatically improving
the efficiency of the device.

Fig. 10.8 Simulation of the nonlinear coupler with tapered waveguides. The three images
correspond to the cases with no loss, weak losses and strong losses respectively

Fig. 10.9 Switching curves
for different values of the
taper angle. Ratio of the
output power to the input one
against input power
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Chapter 11
Oppositely Directional Coupler: Example
of the Forward Backward Waves
Interaction in the Metamaterials

A.I. Maimistov and E.V. Kazantseva

Abstract We consider the coupled electromagnetic waves propagating in a non-
linear coupler and in nonlinear waveguide array, which consists of alternating
waveguides of positive and negative refraction indexes. The forward wave and
backward wave interaction is realized in these devices. Gap solitons in a nonlinear
oppositely directional coupler with one channel or both channels fabricated from
nonlinear medium having negative refraction index are discussed. Generalization of
the usually waveguide array is zigzag array. Due to zigzag configuration there are
interactions between both nearest and next nearest neighboring waveguides exist.
The system of evolution equations for coupled waves has the steady state solution
describing the electromagnetic pulse running in the array. Numerical simulation
demonstrates robustness of these solitary waves.

11.1 Introduction

If the phase velocity and the Pointing vector of the incident electromagnetic wave
are directed in the same direction but the phase velocity and the Pointing vector of
the refracted electromagnetic wave are opposite directed, than refraction angle is
negative one. The Snell’s formula can be used in this case, if the refractive index is
considered as negative index. This phenomenon is referred to as negative refraction.
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Antiparallel orientation of the phase velocity (vph) and the Pointing vector (S) was
first discussed in [1, 2]. In [3] it was indicated that antiparallel orientation of vph and
S results in negative refraction. Subsequently, this idea was developed by
Mandelstam in [4]. It has been predicted that when the real parts of the dielectric
permittivity and magnetic permeability in the medium simultaneously take on
negative values in some frequency range, antiparallel orientation of vph and
S occurs [5, 6] and the property of negative refraction appears [7].

The existence of the media characterized by negative refractive index (NRI) was
demonstrated experimentally first in the microwave and then in the near-infrared
ranges [8–12]. Reviews of the properties NRI materials are presented in [13–16].

The present technological level does not yet allow for the fabrication of 3D
materials of sufficient size and small enough losses for experiential verification of
the effects described above. However, a considerable effort aimed at loss reduction
and improvement of nanofabrication technology gives hope that the considered
device will be manufactured.

It is well known that two closely located waveguides can be coupled due to the
tunneling of light from one waveguide to the other. A coupler using tunneling,
fabricated from materials with a positive refractive index (PRI), preserves the
direction of light propagation, and for this reason it is named a directional coupler.
It is much used device in integral optics.

If one of the waveguides of the coupler is fabricated from a material with a
negative refractive index, this device is taking new features. The radiation entering
one waveguide leaves the device through the other waveguide at the same end but
in the opposite direction. For this reason, this device can be called the oppositely
directional coupler. The properties of this coupler and different generalization of
oppositely directional couplers will be discussed here.

11.2 Oppositely Directional Coupler

The principal property of the oppositely directional coupler is governed by the
spectral features of linear wave. Unlike wave in usual directional coupler the
spectrum of waves in the opposite directional coupler has the forbidden zone (i.e.,
gap). In this case the coupler acts like to distributed mirror.

11.2.1 Linear Oppositely Directional Coupler

The electric field of an optical wave propagating in linear directed coupler in the
positive z direction can be represented as follows

182 A.I. Maimistov and E.V. Kazantseva



Eðx; y; z; tÞ ¼
X
J¼1:2

X
m

AðJÞ
m ðz; tÞWðJÞ

m ðx; yÞ exp½�ix0t þ ibðJÞm z�: ð11:1Þ

The mode function for a particular m-th mode of channel J is denoted by

WðJÞ
m ðx; yÞ, and AðJÞ

m is a slowly varying envelope of the electric field corresponding

to this mode. Parameters bðJÞm are propagation constants. Omitting the details we can
write the general coupled equations which are governed by normalized envelopes

QJðf; sÞ ¼ AðJÞ
m ðz; tÞA�1

0

i~k1
@Q1

@ z
þ i

1
vg1

@Q1

@ t
þ K12Q2 expfþiDbzg ¼ 0;

i~k2
@Q2

@ z
þ i

1
vg2

@Q2

@ t
þ K21Q1 expf�iDbzg ¼ 0:

The coefficients K12 and K21 are the coupling constants between neighboring
waveguides. The phase mismatch is taking into account by Db ¼ bð2Þm � bð1Þm . vg1
and vg2 are group velocities. If in these equations we put ~k1 ¼ þ1 and ~k2 ¼ �1 in
corresponding to PRI and NRI cases respectively, we get the mathematical models
describing the linear oppositely directional coupler.

It is suitable to introduce new variables

q1 ¼
ffiffiffiffiffiffiffi
K21

p
Q1 expf�iDbz=2g; q2 ¼

ffiffiffiffiffiffiffi
K12

p
Q2 expfþiDbz=2g; ð11:2Þ

and the new variables according to following formulae f ¼ z=Lc, s ¼ t�1
0

ðt � z=V0Þ, where d ¼ DbL=2 and

Lc ¼ ðK12K21Þ�1=2; t0 ¼ Lðvg1 þ vg2Þ=2vg1vg2;
V0 ¼ ðvg2 � vg1Þ=2vg1vg2:

The system of the linear equations is rewritten as

i
@

@ f
þ @

@ s

� �
q1 � dq1 þ q2 ¼ 0; i

@

@ f
� @

@ s

� �
q2 þ dq2 � q1 ¼ 0: ð11:3Þ

Using the Fourier transformation we can find the dispersion relation for the
harmonic waves x ¼ d� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

(Fig. 11.1). Thus, this spectrum of harmonic
waves has the gap Dx ¼ 2. It should be pointed out that in the case of the PRI
medium of both channels the gap is absent.
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11.2.2 Nonlinear Oppositely Directional Coupler

If the channels of directed coupler are prepared from a nonlinear medium, the
system of the general coupled equations describing the nonlinear opposite direc-
tional coupler (NLODC) will contain additional terms. If normalized variables are
used then the system of equations reads [17–19]

i
@

@ f
þ @

@ s

� �
q1 � dq1 þ q2 þ r1jq1j2q1 ¼ 0; ð11:4Þ

i
@

@ f
� @

@ s

� �
q2 þ dq2 � q1 � r2jq2j2q2 ¼ 0: ð11:5Þ

There parameters r1 and r2 are the nonlinearity measure for each waveguide
[18]. By using real variables q1;2 ¼ a1;2 expðiu1;2Þ, one can obtains from (11.4) to
(11.5) the system of the real variables equation.

@

@ f
þ @

@ s

� �
a1 ¼ a2 sinU;

@

@ f
� @

@ s

� �
a2 ¼ a1 sinU;

@

@ f
þ @

@ s

� �
u1 ¼ �dþ a2

a1
cosUþ r1a

2
1; ð11:6Þ

@

@f
� @

@s

� �
u2 ¼ d� a1

a2
cosU� r2a

2
2;

where U ¼ u1 � u2:

Fig. 11.1 The dispersion relation for linear waves in oppositely-directional couplers
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11.2.2.1 CW-Limit of Nonlinear Opposite Directional Coupler

Let be d ¼ 0. Here the NLODC of normalized length l will be considered [17].
From (11.6) the two integrals of motion result

a21 � a22 ¼ c20; ð11:7Þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � c20

q
cosU ¼ ðr1 þ r2Þa31 � 2r2c20a1; ð11:8Þ

where constant c0 is defined by boundary condition a2(l) = 0. Using these
expressions one can reduce the (11.6) to equation for a1 that can be solved. Finally,
amplitudes of the directed waves are

a21ðfÞ ¼ c20
dn 2ðf� lÞ=m;m½ � þ 1
2dn 2ðf� lÞ=m;m½ � ;

a22ðfÞ ¼ c20
dn 2ðf� lÞ=m;m½ � � 1
2dn 2ðf� lÞ=m;m½ � :

ð11:9Þ

The parameter c0 is defined now by transcendental equation

a20 ¼ c20
dn 2l=m; m½ � þ 1
2dn 2l=m; m½ � : ð11:10Þ

Reflection coefficient of the NLODC is

< ¼ 1� a21ðlÞ=a20 ¼ 1� c20
a20

¼ 1� 2dn 2l=m; m½ �
1þ dn 2l=m; m½ � ¼

1� dn 2l=m; m½ �
1þ dn 2l=m; m½ � :

ð11:11Þ

The elliptic function dn(z, m) is periodically variable from unit to some positive
value that is less unit. Hence, there are value of the a20, such that reflection coef-
ficient is zero. From (11.9) and (11.10) one can find the dependence output power
a21ðlÞ versus input power a20. Example of this dependence is represented by plot in
Fig. 11.2. There are some interval of a20, where one value of the input power
corresponds two values of the output power. (In really, there are two stable values
and one unstable value.) This phenomenon is referred as bistability. The bistability
is famous phenomenon in nonlinear optics [18].

The nonlinear transmission properties of nonlinear oppositely directional coupler
with one waveguide made of positive index material and the other waveguide made
of negative index material while only one of the waveguide is nonlinear has been
considered in [19, 20]. In these papers the phase mismatch effect was taken into

11 Oppositely Directional Coupler … 185



account. The effect of nonlinearity and mismatch on the multistable behavior for
this coupler was studied.

11.2.3 Gap Solitons in Opposite Directional Coupler

In [21] the solitary wave propagation was considered in frame of the system of
(11.4)–(11.5). In the case of r2 = 0 the solitary wave propagation was investigated
in [22]. The existence of the steady state solitary waves was found in both cases.
The robustness of these solitary waves in relation to small perturbation has been
demonstrated. The system of (11.4)–(11.5) does not belong to the class of com-
pletely integrable equations. Hence the solution of these equations does not rep-
resent true soliton. However, we denote them as gap solitons by analogy with gap
solitons in nonlinear periodic structures.

To consider the solitary steady state waves in NLODC we have start from the
(11.4)–(11.5) or (11.6). Suppose that solutions of these equation depend only on

single variable n ¼ ðfþ bsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
, with free parameter b. Let be

ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p
a1 ¼

u1 and
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
a2 ¼ u2. System of (11.6) after some transformations takes the

following form

@

@ n
u1 ¼ u2 sinU;

@

@ n
u2 ¼ u1 sinU; ð11:12Þ

@

@n
U ¼ � 2dffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
p þ u1

u2
þ u2
u1

� �
cosUþ h1u

2
1 þ h2u

2
2; ð11:13Þ

where

h1 ¼ r1 ð1þ bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bÞ=ð1þ bÞ

ph i�1
; h2 ¼ r2 ð1� bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ=ð1� bÞ

ph i�1
:

Let us consider the case of zero mismatch d ¼ 0. Solitary wave corresponds with
the following boundary condition a1;2 ! 0 at n ! �1. This system of equations

Fig. 11.2 Bistable behavior of the NLODC [17]
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has the following integrals of motions correlated with boundary condition under
consideration

u21 � u22 ¼ 0; 4 cosUþ ehu21 ¼ 0;

where h ¼ h1 þ h2, e ¼ �1. By the use these relations the analytical solution of the
system of (11.12)–(11.13) can be obtained. This solution describes the coupled pair
of the forward and backward solitary wave propagating as single wave packet over
both waveguides, i.e., gap soliton. Real amplitudes and phases for gap soliton
localized at point n0 are represented by following expressions [21]

a21ðnÞ ¼
4

hð1þ bÞ cosh 2ðn� n0Þ
; a22ðnÞ ¼

4
hð1� bÞ cosh 2ðn� n0Þ

;

/1ðnÞ ¼ ð1� 4h1=hÞ arctan e2ðn�n0Þ; u2ðnÞ ¼ ð1� 4h2=hÞ arctan e2ðn�n0Þ � p=2:

ð11:14Þ

The negative value of the parameter b corresponds to solitary wave which
propagates in the direction of the axis n. The solitary wave characterized by positive
value of the parameter b propagates in the opposite direction. Large amplitudes of
the solitary waves correspond to large positive values of the parameter b (which
determines pulse velocity). When parameter b is negative the gap solitons with
smaller values of the parameter b correspond to smaller amplitudes, however the
absolute value of velocity determined by the parameter b is larger for less powerful
solitary waves.

The gap soliton formation in the NLODC has a threshold character. A small
amplitude electromagnetic pulse, introduced into one of the waveguides, is emitted
in the opposite direction from the other waveguide. When the amplitude of the input
pulse exceeds a certain threshold, then the pair of coupled pulses propagating in
both waveguides is formed. Numerical simulation of the gap soliton formation was
produced in [23] under condition that r2 ¼ 0; r1 ¼ r:

Gradually increasing incident pulse amplitude a1ðf ¼ 0Þ it is possible to
approach the threshold value of the amplitude ath; when steady state pulse propa-
gating along NLODC is formed (Fig. 11.3).

Using the expressions (11.9)–(11.11) approximately value for ath can be found.
It is suggested that soliton is formed on one coupling length, i.e., lc ¼ 1. In this case
the coupler will be transparent: < ¼ 0; that results in dn 2=m; m½ � ¼ 1: It means that
modulus of the elliptical function dn(z, m) satisfies to equation mKðmÞ ¼ 1: The
transparency of NLODC means that c0 ¼ ath; and one can write for modulus the

following formula m ¼ 1þ ðra2th=4Þ2
h i�1=2

: Under assumption that modulus is a

small value the complete elliptic integral KðmÞ can be estimated as p=2. Thus the
threshold value of the amplitude ath is defined from the following equation

1þ ðra2th=4Þ2
h i1=2

¼ p=2. Finely, we have
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ra2th ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þ2 � 1

q
� 4847: ð11:15Þ

It is important to emphasize that this expression provides the good estimation for
numerical results of [23].

11.3 Alternating Nonlinear Optical Waveguide Zigzag
Array

The optical waveguide array provides a convenient setup for experimental inves-
tigation of periodic nonlinear systems in one dimension [24]. Nonlinear optical
waveguide arrays (NOWA) are a natural generalization of nonlinear couplers.
NOWA with a positive refractive index have many useful applications and are well
studied in the literature (see for example [25–27]). If the sign of the index of
refraction of one of waveguides in NOWA is positive and the index of refraction of
other neighboring waveguide is negative the alternated NOWA will be obtained
[16, 28, 29].

Usually the coupling between nearest neighboring waveguides is taken into
account. It is correct approximation for strong localized electromagnetic wave in
waveguide. However, the coupling between both nearest neighboring waveguides
and the next nearest neighboring ones can be introduced by the use of a zigzag
arrangement [30, 31] (Fig. 11.4a). Let 0b is an angle between the lines connecting
the centers of neighboring waveguides. In a linear array this angle is p. In a zigzag
like array at 0b � p=2 the coupling between the nearest neighboring waveguides

Fig. 11.3 Gap soliton formation in NLODC. Upper panels are corresponding for incident pulse
amplitude that is less threshold value. Lower panels are corresponding for incident pulse amplitude
that is over threshold value [23]
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and the next nearest neighboring ones is approximately the same. Nonlinear optical
waveguide zigzag arrays can be considered as generation of NOWA.

11.3.1 Model and the Base Equations

Let us assume that waveguide having numbers n is characterized by positive
refractive index (PRI), the nearest neighboring waveguides with numbers n� 1 and
nþ 1 possess negative refractive index (Fig. 11.4b). If the electromagnetic radia-
tion is localized in each waveguide the coupled wave theory can be used. In the
case of the array is deformed in the form of zigzag, where the angles between the
lines connecting waveguides are equal approximately 0b � 2p=3, interaction
between both the nearest neighboring and the next nearest neighboring waveguides
will be important. The configuration of these alternating waveguides will be
remarked as alternating nonlinear optical waveguide zigzag arrays (ANOWZA).

The system of equations describing the wave propagation in ANOWZA reads as

i
@

@ f
þ @

@ s

� �
qn þ c1 qn�1 þ qnþ1ð Þ þ c2 qnþ2 þ qn�2ð Þ þ r1jqnj2qn ¼ 0; ð11:6Þ

i
@

@ f
� @

@ s

� �
qnþ1 � c1 qn þ qnþ2ð Þ � c3 qnþ3 þ qn�1ð Þ � r2jqnþ1j2qnþ1 ¼ 0;

ð11:7Þ

where qnðf; sÞ is the normalized envelope of the wave localized in nth waveguide.
Coupling between neighboring PRI and NRI waveguides is defined by parameter
c1. The c2(c3) is coupling constant between neighboring PRI (NRI) waveguides.
The phase mismatch is taken equal to zero. The all functions qnðf; sÞ, independent
variables f, s and other parameters are expressed in terms of the physical values
represented in [32].

Fig. 11.4 A schematic illustration of zigzag coupled waveguides array (a); and zigzag
positive-negative coupled waveguides array (b) [32]
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11.3.2 Linear Waves in Alternating Waveguide Zigzag
Arrays

In [32] the asymmetrical ANOWZA was investigated. In this case NRI waveguides
are linear ones (r2 ¼ 0). To find the linear wave spectrum we can employ the
presentation of the envelopes in the form of harmonic waves.

qn ¼ Ae�ixsþikfþinu; qnþ1 ¼ Be�ixsþikfþiðnþ1Þu:

Substitution of this expression in the linear version of the (11.6) and (11.7) leads to
a system of the algebraic linear equations respecting A and B. This system of linear
equations obeys the nonzero solutions if the following condition

ðxþ x0Þ2 ¼ c21 þ ðk � k0Þ2;

will be held. Here the parameters c1 ¼ 2c1 cosu, c2 ¼ 2c2 cos 2u, c3 ¼ 2c3 cosu,
and 2x0 ¼ c2 þ c3, 2k0 ¼ c2 � c3 were introduced. Thus, the linear waves in
ANOWZA at r1 ¼ 0 and r2 ¼ 0 are characterized by the dispersion relation

xðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ðk � k0Þ2

q
� x0: ð11:8Þ

This expression shows that (a) the forbidden zone (gap) in spectrum of the linear
waves exist Dx ¼ 2jc1j, (b) spectrum is shifted along both frequency axis and wave
numbers axis, (c) the form of spectrum likes the spectrum for linear
oppositely-directional coupler [17, 21, 22]. The gapless spectrum appears only
when condition u ¼ p=2 is hold. In this case the radiation propagates along
waveguides with the same refractive indexes. It should be noted that energy flux
between neighboring waveguides is zero.

11.3.3 Nonlinear Waves in Alternating Waveguide Zigzag
Arrays

The intriguing kinds of the nonlinear waves in ANOWZA can be found by the use
the following ansatz

qnðf; sÞ ¼ Aðf; sÞeinu; qnþ1ðf; sÞ ¼ Bðf; sÞeiðnþ1Þu;

where Aðf; sÞ and Bðf; sÞ are the envelopes of the quasi-harmonic waves. It allows
to do reduction of the (11.6)–(11.7) and to obtain the equations
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@

@ f
þ @

@ s

� �
Aþ c1Bþ c2Aþ r1jAj2A ¼ 0; ð11:19Þ

i
@

@ f
� @

@ s

� �
B� c1A� c3B� r2jBj2B ¼ 0: ð11:20Þ

These equations have the solutions that describe both steady state wave and
spreading waves. The steady state waves correspond to solution of the wave
equation depending only one particular variable, for example,

n ¼ ðfþ bsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
. The case of linear NRI waveguides (r2 ¼ 0) and zero

mismatch condition will be discussed now. As above the real variables can be
exploited to read the following equations [32]

@

@ n
u1 ¼ u2 sinU;

@

@ n
u2 ¼ u1 sinU; ð11:21Þ

@

@n
U ¼ dþ u1

u2
þ u2
u1

� �
cosUþ 0u21; ð11:22Þ

where u1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ b

p jAj, u2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� b

p jBj are new normalized amplitudes and

d ¼ c3
c1

ffiffiffiffiffiffiffiffiffiffiffi
1þ b
1� b

s
þ c2
c1

ffiffiffiffiffiffiffiffiffiffiffi
1� b
1þ b

s !
; 0 ¼ r1

c1ð1þ bÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� b
1þ b

s
:

From (11.21) and (11.22) the integrals of motion follow

u21 � u22 ¼ C1; 4u1u2 cosUþ 2du21 þ 0u41 ¼ C2:

The boundary conditions u1 ¼ u2 ¼ 0 at n ! �1 result in following value of
theses integrals C1 ¼ C2 ¼ 0.

Taking into account the integrals of motion the (11.21) and (11.22) can be
solved. The solutions describing the steady state solitary waves are represented by
the following expressions

jAj2 ¼ 4D2

j0jð1þ bÞ cosh½2ðn� ncÞ� þ d=2f g ; ð11:23Þ

jBj2 ¼ 4D2

j0jð1� bÞ cosh½2ðn� ncÞ� þ d=2f g ; ð11:24Þ

where D2 ¼ 1� d2=4. The phase difference U evolves according to expression
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UðnÞ ¼ sgn0 arctan
De2ðn�ncÞ

1þ ðd=2Þe2ðn�ncÞ �
p
2
: ð11:25Þ

The expression (11.23)–(11.25) describe the exponentially decaying wave
fronts. However some times the solitary waves can be decreasing as n�2. The
solutions found here are correct if �2\d\2. However, on the boundaries of this
interval we have to refine behavior of the solitary waves. When d ! �2 the
solution of the (11.21), (11.22) take the form of the algebraic soliton [32]

jAj2 ¼ 8

j0jð1þ b1Þ½1þ 4ðn� ncÞ2�
; jBj2 ¼ 8

j0jð1� b1Þ½1þ 4ðn� ncÞ2�
:

ð11:26Þ

Here b1 corresponds with d ¼ �2. On the other hand, the amplitudes of the solitary
waves are equal to zero if d ! þ2.

11.3.4 Robustness of the Solitary Waves in ANOWZA

To investigate of the solitary wave’s stability the collision between two solitary
waves has been simulated. To produce a collision between two solitary waves we
used solutions of the (11.21) and (11.22) with parameters b ¼ 0:4 and b ¼ �0:4 as
initial conditions for these equations. The pulse with b ¼ 0:4 was located at fc ¼ 50
and pulse with b ¼ �0:4 was located at fc ¼ 0. For simplicity the coupling con-
stant c1 was set as unite, whereas c2 and c3 are assumed equal. Parameter c2 was
varied from 0.001 to 0.2.

It was found that the collision between counter propagating pulses is elastic for
the coupling constant c2 that is taken from interval [0.001, 0.0075] (Fig. 11.5).
Little radiation appears where the coupling constant c2 is more then 0.0075. The
amplitude of the radiation is increasing and at c2 [ 0:02 the reflected wave appears

Fig. 11.5 Collision of two steady state pulses in the case of c2 = 0.01. Left panels are
corresponding for PRI waveguides, right panels are corresponding for NRI waveguides [32]
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in NRI waveguide as a result of the reflection of the incident solitary wave
(b ¼ �0:4) from solitary wave (b ¼ 0:4) propagated in the opposite direction in
ANOWZA (Fig. 11.6).

However, if the coupling constants belong to interval [0.08, 0.135] the steady
state solitary waves are akin to elastic interacting waves. There is no radiation after
collision, but the velocities of the scattered pulses can be strongly varied with
respect of initial values.

The interaction of the incident solitary wave corresponding to b ¼ 0:4 with
quasi-harmonic wave has been considered. Initial incident pulse was located at
fc ¼ 50, the quasi-harmonic wave was generated at f ¼ 0 and it is characterized by
frequency xbg.

It was found that initial steady state solitary wave is extremely prone to damage
if the coupling constants c2 ¼ c3 are less than 0.05. Thus, the numerical simulation
demonstrates robustness of these solitary waves.

11.4 Conclusion

Here the propagation of electromagnetic solitary wave in nonlinear coupler where
one of the waveguide is fabricated from a material with a negative refractive index.
The zigzag positive-negative coupled waveguide array is generalization of this
simple device. These waveguide systems are present the situation in where forward
and backward electromagnetic waves interact with each other. Alternate positive
and negative refractive indexes result in the gap in linear wave spectrum. That is
dissimilarity from a convenient couplers or waveguide array.

In nonlinear coupler and zigzag waveguides array the solitary forward and
backward waves can be combined into single solitary wave, which is referred as
gap soliton. It should be noted that the term gap soliton is often referred to as
nonlinear pulses propagating in periodic structures. The waveguide structure con-
sidered here, however, is homogeneous. Hence, the existence of a gap soliton, and

Fig. 11.6 Collision of two steady state pulses in the case of c2 = 0.06. Left panels are
corresponding for PRI waveguides, right panels are corresponding for NRI waveguides [32]
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the bistability of continuous waves in an oppositely directed coupler represent new
effects due to the positive-negative refraction phenomenon.

Recently the new intriguing properties of the twisted alternating waveguide array
were predicted in [33]. It was show that forbidden zone in spectrum of linear waves
can be controlled by the twist of waveguide array.
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Chapter 12
Characterization of Photonic Crystal
Fibers: Selected Methods and Experience

Krzysztof Borzycki and Kay Schuster

Abstract Several techniques for characterization of photonic crystal fibers (PCFs)
are reviewed, focusing on measurements of attenuation, optical uniformity, selected
polarization parameters, and effects of temperature and mechanical strain applied to
the fiber. PCF properties often radically differ from those of conventional fibers
used in communications networks, and available lengths are generally short,
therefore different approach to characterization is required. Comparisons of alter-
native methods for selected tests are made, and examples of errors in PCF handling
and testing are discussed. Examples of results obtained for silica single-mode PCFs
with GeO2-doped core are also presented, accompanied by geometrical and com-
positional fiber data.

12.1 Introduction

Photonic crystal fibers, also called “microstructured” or “holey” fibers constitute
very diverse class of optical fibers [1, 2], different from conventional single mode
and multimode fibers made of solid glass, used in communication networks,
industrial control, sensors, etc. In particular, PCF characteristics like:

• chromatic dispersion,
• polarization properties,
• optical nonlinearity,
• mode propagation behavior,
• sensitivity to external factors,
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can be dramatically modified by changing geometry of core and photonic structure
and infiltration of gas or liquid into holes or deposition of metal on their surfaces.
This spurred development of PCFs for specific applications [1], including:

• sensing (temperature, gas, strain, magnetic field, …),
• signal processing (wavelength conversion, dispersion compensation, …),
• supercontinuum generation,
• optical fiber lasers,
• tunable and switchable optical devices,
• absorption cells filled with HCN or C2H2 gas for frequency standards.

Except for hole-assisted fibers (HAF) [3], PCFs are not used as transmission
medium in communications networks. Contrary to early expectations, scattering
produced by surface capillary waves limits minimum attenuation of hollow-core
PCFs to 0.1–0.2 dB/km, making them no better than existing telecom fibers [4].

Manufacturing of “holey” fibers, dominated by the stack-and-draw method for
silica fibers, is far from maturity. In particular, repeatability of product parameters is
poor, as the stack-and-draw process is sensitive to variations in temperature,,
inflation pressure, moisture absorption, drawing speed, etc. [2, 5, 6]. Correct and
uniform hole sizes are particularly difficult to get as glass surface tension closes
holes during preform making and fiber drawing. Materials other than silica, like
polymers and chalcogenide glasses are also used. There are no standards so far.
Usual applications need short lengths of PCF: few meters, not 10–200 km in typical
telecom link. As result, PCF characterization has its challenges:

• wide range of fiber parameters,
• working with short samples,
• difficult optical coupling to PCF,
• unstable behavior due to infiltration of humidity, dust, etc. [7].

For sensing applications, measurements of sensitivity of specific PCF parameter
to external factor(s) are required, rather than verifying insensitivity to temperature,
bending, humidity, etc. of conventional telecom fibers.

The following sections deal with specifics of PCF characterization, drawing
primarily on experience with single-mode silica fibers. The list is far from complete:
particular applications require characterization of additional properties like optical
nonlinearity, group refractive index or effects of ionizing radiation.

12.2 Fiber Geometry

Obtaining of desired PCF properties requires strict control of dimensions. Fiber
geometry is checked by examination of cleaved end, using either:

(a) optical microscope (Fig. 12.1),
(b) scanning electron microscope (SEM) (Figs. 12.2 and 12.3).
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Fig. 12.1 80 μm PCF (IPHT 252b5) seen with optical microscope. Note poor resolution

Fig. 12.2 Image of 80 μm PCF (IPHT 252b5) obtained with SEM. Part of cladding not shown.
Excellent resolution, but no ability to observe light propagation in the fiber
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Method (a) is attractive due to widely available equipment and possibility for
cross section control during fiber fabrication. Image is recorded with camera
attached to microscope, and analyzed with software, after calibrating equivalent
pixel size. Distortion, chromatic aberration and other imperfections of optics can be
corrected with image editing software. Microscope resolution (d) is restricted by the
Abbe diffraction limit, according to formula:

d ¼ k=2NA;

where λ is light wavelength and NA numerical aperture of microscope lens. For
NA = 0.65 (40× lens) and wavelengths of 0.55 μm (green light) and 0.45 μm (blue
light), corresponding resolution limit is 0.42 and 0.35 μm, respectively. Those
values are close to hole size in many index-guided PCFs. Even if small holes are
visible, their deformations and lack of symmetry of holey structure are often
undetectable (Fig. 12.1). The Abbe limit makes observation at infrared wave-
lengths, e.g. 1.55 μm rather impractical, although suitable cameras are available.

Because of short equivalent wavelength of accelerated electrons, method (b) is
free of this limit, showing small details (Figs. 12.2 and 12.3). Other advantages of
electron microscope include:

Fig. 12.3 SEM image of central part of PCF (IPHT 252b5). Doped core visible in the center
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• excellent depth of field due to low NA of electron optics,
• ability to detect some variations in glass composition (Fig. 12.3).

Results depend on cleave quality: good for glass fibers, much worse for mi-
crostructured polymer optical fibers (MPOF), made of polymethyl methacrylate
(PMMA), cyclic olefin copolymer (TOPAS) or fluoropolymers (CYTOP). MPOFs
cannot be cleaved by scribing and breaking under load due to anisotropic properties
of drawn fiber, and are cut with blades. Cleave quality depends on temperature of
fiber and blade, preferably 70–80 °C for PMMA [8, 9] or 40 °C for TOPAS [9] and
cutting speed. To reduce influence of scribing marks and other blemishes, diameters
are measured by fitting a circle or oval superimposed on image of fiber cladding or
other part of interest.

12.3 Coupling of Light to Fiber Sample

The bulk of fiber characterization is devoted to transmission of light through the
sample, which requires coupling the PCF sample to given test setup, usually at both
ends. The coupling must meet the following requirements:

(a) PCF excitation approximating steady-state light distribution,
(b) acceptable loss,
(c) stability for duration of a given test (minutes–weeks).

For many tests, requirement (c) is more important than (b), if optical measure-
ments are relative, not absolute. Examples include measurements of polarization
mode dispersion (PMD), loss measurements with cutback method or testing sen-
sitivity of fiber to temperature, radiation, etc. Two common arrangements are:

(a) free-space coupling to cleaved PCF with microscope lens,
(b) butt-coupling to intermediate optical fiber (Fig. 12.4),
(c) splicing of PCF to lengths of conventional fiber, usually telecom single-mode

fiber (SMF), fitted with connectors at other end (pigtails)—Fig. 12.6.

Fig. 12.4 Butt-coupling between 80 μm PCF (IPHT 252b5, left) and SMF (right). Fibers aligned
with 10 μm gap using micropositioner. Because of different core diameters, loss was 5.79 dB at
1558 nm. Loss of fusion splice after pre-forming of the same fibers was about 1 dB
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Method (a) is relatively fast, work being limited to cleaving and alignment.
Coupling setup can be easily modified, e.g. by changing lens (to match fiber NA) or
adding filter. It works with any PCF, including those for which a matching con-
ventional fiber cannot be found. Disadvantages include:

• infiltration of PCF by humidity, dust, etc. through open ends, causing attenua-
tion and scattering of light in the sample [7],

• reflections from lenses,
• slow transfer of sample to another test setup,
• problematic medium-term stability.

Butt-coupling (b) is also fast and simple. The PCF and intermediate fiber leading
to other part of test system (light source, interferometer, etc.) are cleaved, aligned
for best optical coupling and kept either with small air gap (Figs. 12.4 and 12.5) or
put into direct contact. Insertion loss of butt-coupling depends on:

• compatibility of fibers, defined by mode area (single mode-fibers), core diameter
(multimode fibers) and mode distribution,

• fiber alignment; preferably to within 10 % of core diameter,
• cleave quality.

As seen in Fig. 12.4, butt-coupling and alignment with micropositioner are
particularly useful when working with fibers having different diameters, PCFs with
large NA, large mode field, or suspended core. Fusion splicing in such situations is
usually complicated and time consuming. Best alignment is achieved by monitoring
of coupling loss with optical power meter or other instrument. For fibers of identical
cladding diameters, V-groove coupling without index matching fluid can be used.
For PCF-PCF coupling, relative rotation of fibers with loss monitoring is often
required to align their non-circular cores and photonic structures.

By introducing deliberate perpendicular offset, selective coupling to certain part
of PCF photonic structure rather than core is possible. If necessary, increase of gap
between fibers can be used for power adjustment.

Fusion splicing (c) is preferable for testing PCFs with instruments for conven-
tional telecom fibers (Fig. 12.6), having interfaces for such fibers terminated with

Fig. 12.5 Butt-coupling between 125 μm PCF (IPHT 282b4) and SMF (left). Loss of
butt-coupling was 2.37 dB at 1558 nm, while loss of fusion splice was 1.25 dB
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connectors—even if their internal components like detectors have free-space cou-
pling (optical spectrum analyzers, power meters). Important is ubiquity of such
instruments, mostly made for testing of telecom single mode fiber (SMF) [10], and
low-cost fiber pigtails. Range of covered wavelengths is extended with introduction
of new fiber systems and test instruments, e.g. operating at 1625 nm (maintenance
of fiber networks) or 1490 nm (fiber access networks). CWDM transponders cover
1271–1611 nm span in 20 nm increments, being suitable as light sources.

Fusion splicing was preferred for single-mode silica PCFs intended for signal
processing or sensing, working in wavelength bands characteristic for communi-
cation systems, usually 1300–1600 nm. Splicing to pigtails ensures:

• stable coupling, resistant to vibration, temperature variations, etc.,
• hermeticity of PCF sample,
• rapid portability of sample between multiple test instruments,
• grip on PCF ends through protection sleeves during mechanical tests [11].

An advantage of fusion splice with respect to butt-coupling is reduction of
reflections and loss (Figs. 12.4 and 12.5), because the Fresnel reflection at glass-air
interface is greatly reduced for solid-core PCFs; this reduces loss by approx. 0.4 dB.
Low reflectivity is important for testing with OTDR or laser sources, which
otherwise require optical isolator. Unfortunately, fusion splicing has several
disadvantages:

• PCF splicing is complicated and time-consuming,
• procedure must be tailored to each fiber on trial-and-error basis [11, 12],
• fusion splicing of “exotic” PCFs is impossible, or splice loss is high.

Silica PCFs can be spliced on arc fusion splicers for telecom fibers, but splicing
procedure is modified substantially [11–18]. Dedicated fusion splicers for PCFs are
available, but expensive. Such machines employ either modified arc fusion or hot
filament method and are capable of achieving much lower splice loss, with added
features important for splicing PCFs and other specialty fibers, like:

• rotation during alignment of fibers (for PCF-PCF splicing),
• extended range of low temperature settings,
• pre-forming of hot fibers: necking, expansion of core, etc.

Test 
instrument(s)  Connectors

SMF

PCF
Fusion 
splices 

SMF

Fig. 12.6 Connection of PCF sample to test instrument with spliced SMF pigtails. Arrangement
for measurements with OTDR is presented in Sect. 12.4
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Fusion splicing of polymer fibers is not possible for multiple reasons. Polymers
burn and do not flow when hot as the glass does; soft plastic fibers are not com-
patible with hardware like V-groove holders, fixtures and connectors made for rigid
silica fibers, being easily damaged [10]. Coupling of MPOF on fusion splicer
micropositioner is difficult, too, because unsupported length of several millimeters
of soft plastic fiber sags badly under its own weight.

A solution intermediate between (a) and (b) is fixing cleaved PCF in a
connector-style bare fiber adaptor, plugged into instrument having a connector
interface with free-space optics inside, not a fiber-fiber contact. Direct contact of
cleaved glass PCF with fiber connector can scratch both, and shall be avoided.
Suitable instruments include optical power meters (Fig. 12.7), optical spectrum
analyzers (OSA), fiber inspection microscopes (useful for checking PCF structure,
cleave quality and cleanliness) and several attenuators, but no PMD analyzers or
OTDRs.

It is also possible to connect cleaved PCF mounted in adaptor to connector with
another (conventional) fiber leading to other part of test setup; risk of scratching is
more acceptable here because of low cost of commercial fiber pigtails.

PCF endface shall be checked for cleave quality and cleanliness with micro-
scope. Dust can be removed by contact with sticky tape, but only selected products
are suitable [19]. No solvents or index-matching fluids are allowed with PCF, as
those penetrate holes, producing high loss.

12.4 Loss, Attenuation and Uniformity

The reference test method for measuring loss of a length of optical fiber is the
cutback method [20]; the principle is shown in Fig. 12.7.

Insertion loss IL [dB] and attenuation α [dB/km] of fiber section with length L
[km] are calculated from difference between optical powers measured [in dBm]
before (P1) and after the fiber is cut (P2):

P1
Optical 

power meter
L 

Fiber length L removed  

Bare fiber adaptor 

P2
Light 
source 

Step 1 

Step 2 

Fiber cut

Light 
source 

Optical 
power meter

Fig. 12.7 Fiber loss measurement by cutback method
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IL ¼ P1�P2; a ¼ P1�P2ð Þ=L:

Spectral measurements of loss and attenuation can be made with:

• tunable laser source and optical power meter,
• multiple fixed wavelength sources and optical power meter,
• broadband source (LED, tungsten lamp, supercontinuum source) and OSA.

While a robust method for long conventional fibers, cutback works less well
with short samples of holey fibers. Variations in coupling to optical power meter or
OSA caused primarily by imperfect cleaving easily reach 0.1–0.2 dB. With two
connections required, uncertainty in measured loss is doubled: 0.2–0.4 dB. For
50 m long fiber, this produces 4–8 dB/km uncertainty in attenuation measurement.

Situation is worse, when PCF sample is spliced to SMF pigtails (Fig. 12.6), and
insertion loss of such assembly measured without cutting fiber. Combined loss of 2
splices and 1 connector is 1.5–5 dB. PCF-SMF splice loss may vary with wave-
length, if mode diameters of both fibers change with wavelength in a different way.
This causes “baseline problem” in spectral measurements: differences between loss
values at specific wavelengths, say OH- absorption peaks versus surrounding bands
are known accurately, but absolute values are not certain (Fig. 12.8).

Alternative test method is the measurement with optical time domain reflec-
tometer (OTDR), widely used for testing conventional fibers [20]. Key advantage of
OTDR is elimination of errors produced by variable loss of coupling to fiber under
test [21, 22], as it measures difference between intensity of radiation backscattered
from different locations in the fiber. OTDR allows selecting a part of fiber trace for
loss calculations, and to avoid non-uniform parts of trace, splices, etc. (Fig. 12.9).
Attenuation measured with OTDR can be used to correct results of spectral loss
measurements, except for spectral dependence of splice loss (Fig. 12.8).

OTDR has a “dead zone”: initial length of fiber after location with strong localized
loss or reflection of light, where no useful measurements are possible. Additionally, it
can measure splice loss and difference between intensity of backscattering in fibers,
but correct results are obtained only after measurements from both ends of the optical
circuit. For these reasons, it is recommended to splice the PCF sample between two
sections of SMF, each at least 100 m long, as in Fig. 12.10, or place suitably long
SMF between OTDR and PCF spliced to SMF pigtails.

OTDRs sold for testing of telecom SMFs at 1310, 1550, 1490 and 1625 nm are
suitable for single-mode PCFs as well; most useful are high-resolution and short
dead zone instruments developed for testing passive optical networks (PON). For
characterization of MPOF, 500, 650 and 850 nm OTDRs with 0.1 m or better
spatial resolution exist, developed for aerospace applications and testing of con-
ventional polymer fibers [23].

OTDR allows inspecting optical uniformity of fiber. This is important for PCFs,
whose manufacturing still lacks consistency. Testing short samples requires short
pulses; the lowest setting in telecom OTDRs is 0.2 m [24], good for characterization
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of 5 m sample of PCF, if its attenuation is high enough [22]. Short pulse reduces
OTDR dynamic range; but PCFs the authors measured—with cores of un-doped or
highly doped silica always produced backscattering stronger than SMF, for which
the instruments are specified. Resulting improvement of OTDR dynamic range was
up to 11 dB—see examples in Figs. 12.9 and 12.11.

Fig. 12.8 Loss spectra of two lengths of IPHT 282b4 fiber spliced to SMF pigtails [20]. Added
attenuation due to OH- peak at 1385 nm is similar in both measurements: 146 dB/km. Contribution
of wavelength-dependent splice loss is visible: PCF loss measured with OTDR was 6.48 dB
(104 m)/0.77 dB (12.4 m) at 1550 nm, and 7.21 dB (104 m)/0.86 dB (12.4 m) at 1310 nm
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Measurement with OTDR requires certain value of fiber loss to overcome noise
from electronics and fiber non-uniformities (TN), usually 0.02–0.10 dB (p-p).
Minimum loss of measured fiber section LMIN [dB] needed to achieve relative error
LERR [%] in 2-point loss measurement (Figs. 12.9 and 12.11) is set by formula [22]:

LMIN ¼ 100
TN

LERR
:

Consequently, high fiber attenuation enables accurate measurement in propor-
tionally shorter sample. Figure 12.11 shows a good example.

Fig. 12.9 Attenuation measurement of IPHT 282b4 fiber with OTDR. Wavelength: 1550 nm,
pulse width: 10 ns (1 m). PCF was preceded by a 1650 m long SMF (lower trace on the left) and
FC/PC connector. Backscattering in PCF with highly doped core was approx. 80 times stronger
than in SMF. This reduced noise in PCF trace and improved OTDR dynamic range by 9.5 dB

Fusion splices

SMF 
pigtail 1 

PCF

OTDR 

SMF 1 SMF 2

SMF 
pigtail 2 

Fig. 12.10 Setup for measurements of single-mode PCF and splices with OTDR
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Many PCFs, especially of “suspended core”, “hollow core” or similar type have
effective refractive index (neff) much lower than default value, approx. 1.47 for
SMF, programmed by manufacturer or set by previous user of the instrument. With
lowest values of neff reported for microstructured fibers approaching 1.02, large
errors in measuring fiber length and attenuation coefficient are possible.

12.5 Polarization Parameters

Photonic crystal fibers often lack radial symmetry by design, and even if nominally
symmetrical, frequently exhibit deformed holes or core (Fig. 12.3), accompanied by
internal strain. Non-symmetry of core and surrounding photonic structure (pro-
ducing form birefringence) and strain left from drawing process (producing stress
birefringence) contribute to birefringence and polarization mode dispersion
(PMD) in the fiber. PCF can have birefringence and PMD comparable to PANDA
or Bow-Tie fibers, with differing dependence on temperature, twist or strain, useful
for making sensors or tunable optical devices [1, 21]. PMD is also an indicator of
fiber geometry imperfections. Therefore, modeling and characterization of polari-
zation parameters and their sensitivity to strain, twist, hydrostatic pressure, tem-
perature, etc. are of considerable interest [25–30].

Fig. 12.11 Attenuation measurement of IPHT 252b5 fiber with OTDR. Wavelength: 1310 nm,
pulse width: 10 ns (1 m). PCF was preceded by a 910 m SMF and FC/PC connector.
Backscattering in PCF was 135 times stronger than in SMF, increasing dynamic range by 11.3 dB
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Commercial PMD analyzers are dedicated to measuring telecom SMF; it is best
to splice the sample to SMF pigtails, as shown in Fig. 12.6.

Test setups for polarization parameters are very sensitive to mechanical distur-
bances to either pigtails or PCF under test, because elastooptic effects in the fibers
produce rotation of polarization plane, mixing of polarization modes or other
interference, while measurement using tunable laser and Jones Matrix
Eigenanalysis (JME) method takes 5–60 min. Fibers shall be laid on stable support
and fixed to prevent movement [19], see Fig. 12.12.

During fiber characterization with JME method, differential group delay (DGD)
between polarization modes is measured over a certain spectral range. The result
may be either a spectrum of DGD (Fig. 12.13) or its average value—the PMD.

Shape of DGD spectrum (Fig. 12.13) provides important information: flat (top
graph) is typical for strain-related PMD, rising (bottom graph)—for
geometry-related PMD [29]. Irregular DGD spectrum and sub-linear increase of
PMD with fiber length indicate propagation of higher order modes, or mixing of
polarization modes in long sample, which appeared in the 104 m long section of
IPHT 282b4 fiber. For the latter reason, PCF samples shall be short, preferably in
the 0.5–20 m range.

Design, modeling and measurements of birefringence in IPHT 252b5 fiber in
another laboratory are presented in references [26, 29].

Fig. 12.12 PCF sample (left) fixed to PMMA plate for measurements of polarization parameters
with tunable laser (center) and PMD analyzer (top). Fibers were fixed with tapes to prevent
movement during test
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12.6 Effects of Temperature

We focus here on measuring temperature dependence of PMD. More details and
test results are included in papers [19, 21, 30]. The basic rules for characterization
of sensitivity of fiber parameter to certain factor like temperature are:

• stable connections between test instruments and sample,
• elimination of all other external influences,
• optimization of instruments settings to reduce random noise of readings.

Fig. 12.13 Examples of DGD spectra. PMD in the IPHT 252b5 fiber was high: 1.127 ps/m. Note
opposite slope of DGD characteristics
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As the goal is to establish variations of PMD with temperature, accuracy of
absolute calibration of test setup is less important, as long as the expected (fre-
quently small) differences between PMD values at several temperatures can be
reliably measured. This rule applies generally to characterization of sensitivity of
any fiber parameter to any external factor.
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Fig. 12.14 Variations of PMD coefficient with temperature
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Unlike bulky equipment or cables, thin, light and exposed fibers respond quickly
to varying temperature, so exposure time is dictated by characteristics of climatic
chamber (temperature settling time) and duration of PMD measurement, which in
case of JME setup may take up to 30 min for high-PMD fiber. The main problem is
prevention of fiber shaking by vibrations from cooling system or forced flow of air
in the climatic chamber. Besides careful fixing of fibers, temporary stopping of the
chamber for duration of measurement may be needed [19].

If an irregular DGD spectrum of PCF shows signs of (even weak) multimode
propagation, or mixing of polarization modes, the test cannot be done, because
resulting random variations of PMD will mask true temperature dependence [19].
One may try to use a shorter sample, or modify optical coupling to PCF in order to
reduce excitation of unwanted modes.

Examples of PMD-temperature characteristics (Fig. 12.14) are presented for the
same fibers as in the preceding section, allowing to compare them with DGD
spectra in Fig. 12.13.

Temperature coefficients of PMD were:

• 2.13 × 10−4/K for IPHT 252b5 (λ = 1540–1560 nm),
• 9.7 × 10−4/K for IPHT 282b4 (λ = 1490–1590 nm). PMD in this fiber is

produced by strain resulting from differential shrinking of parts during drawing.

12.7 Effects of Fiber Twist

Strain produced by fiber twisting affects birefringence and PMD of single-mode
fiber (both conventional and microstructured) in special way: PMD is first quickly
reduced with progressive twist, than begins to linearly rise with further twisting
[30]. This complex behavior is explained by (a) rapid reduction of existing fiber
birefringence by circular strain, and simultaneously (b) creation of new birefrin-
gence proportional to circular strain [18, 31].

In actual testing of highly birefringent fibers, only regime (a) is observed, as fiber
breaks, or test is stopped before PMD starts to rise again [18]. This happened also
during our experiments, whose results are presented in Fig. 12.15. In both fibers,
and several others, PMD reduction was essentially independent of twist direction.

Lower twist sensitivity of IPHT 252b5 fiber is explained by 50 % smaller core
diameter and correspondingly lower strain in core area at given twist, as well as
almost 10× higher initial PMD coefficient (Table 12.1). According to theory [31],
PMD reduction in regime (a) depends on square of twist per unit length of fiber.

PMD in microstructured fiber is modified also by axial strain [28] and bending.
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12.8 Chromatic Dispersion

Chromatic dispersion (CD) is important for several applications of microstructured
fibers, including CD compensation, generation of optical supercontinuum (SC) in
fiber optically pumped with picosecond laser pulses, or use as transmission medium
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Fig. 12.15 Variations of PMD with fiber twist

Table 12.1 Data of PCFs

Parameter Unit IPHT 252b5 IPHT 282b4

Cladding diameter μm 82.7 124.4

Hole diameter (d) μm 3.6 0.7

Hole spacing (Λ) μm 4.2 4.2

Diameter of holey package μm 42.8 43.0

Diameter of doped core μm 0.5/2.0/4.1 1.2/3.9/7.3

Attenuation @ 1310 nm dB/km 43.8 69.3

Attenuation @ 1550 nm dB/km 58.3 60.2

PMD (1460–1590 nm) ps/km 1127 117.9

Dimensions measured with optical microscope
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in communication networks. CD characteristics of PCF can be dramatically mod-
ified by changing geometry of photonic structure and fiber materials, and needs to
be measured over a wide spectral range.

Two methods widely adopted for measuring CD in long (1–100 km) lengths of
telecom single mode fibers: phase shift method and pulse delay method [20] are not
suitable for characterization of short pieces of fiber due to insufficient resolution.
Unfortunately, kilometer-length PCF may be unavailable, have high loss, or
insufficient longitudinal uniformity. Most CD test instruments for telecom fibers
have spectral range limited to 1310 and 1550 nm bands, while the range of interest
for microstructured fibers is wider, often extending down to 800 nm or less [26, 29,
35]. This applies in particular to nonlinear PCFs intended for supercontinuum
generation, where fiber CD dictates spectral range of operation.

Chromatic dispersion in short, approx. 1 m long sample of optical fiber can be
measured with white-light interferometry. Several variants of this technique are
described in literature [32–37]; most of them share the following features:

• broadband light source (tungsten-halogen lamp, LED, SC),
• insertion of sample into Michelson or Mach-Zehnder interferometer,
• finding “equalization wavelength”, corresponding to equal delay in both arms of

interferometer, for multiple lengths of adjustable arm, using spectrometer/optical
spectrum analyzer,

• fitting of test data to analytical function, usually 3- or 5-term Sellmeier function
recommended for this purpose by ITU-T [20].

Figure 12.16 shows typical test setup with Mach-Zehnder interferometer. With
minor changes to equipment, white-light interferometry is also suitable for

Beamsplitter 1 

Beamsplitter 2 

Mirror 
2

Mirror 
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Collimator Lens 1 Lens 2 
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Mirror 
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Mirror 
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Motorized Drive 
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Optical  
Spectrum 
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Personal 
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Fig. 12.16 Setup for CD measurements with Mach-Zehnder interferometer [35, 36]. Fiber
between light source and collimator shall be single-mode over the spectral range of measurement.
The read fiber between interferometer and optical spectrum analyzer (or spectrometer) may be
multimode, e.g. 50/125 μm. For broadband measurements, achromatic lenses are required
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characterization of conventional optical fibers or bulk materials [33]. This method is
also standardized by ITU-T for testing of telecom fibers [20].

Best results are obtained with supercontinuum sources due to their high spectral
power density and broad emission spectrum: CD measurements over a spectral span
of over 1000 nm were reported [35, 37]. Paper [37] presents CD characterization of
nonlinear PCFs developed at IPHT, but different from fibers dealt with in this
chapter.

All-fiber setup can be assembled, with moving mirrors replaced by length of
stretched single-mode fiber (SMF), and 2 × 2 fiber coupler instead of beamsplitter
[32, 34]. It is, however, harder to calibrate as elasto-optic effect in stretched fiber
must be taken into account. Propagation delay produced by stretching conventional
single-mode fiber (SMF) is only 75–80 % of delay produced by adding the same
length of strain-free fiber; exact proportionality factor depends on fiber type and
wavelength.

12.9 Fiber Data

Tests presented in preceding sections were done on two silica photonic crystal
fibers with core highly doped with germania (GeO2)—up to 36 % mol, designed as
nonlinear optical medium for signal processing, supercontinuum generation, etc.
Fibers were designed and made at Institute of Photonic Technology Jena (IPHT),
Jena, Germany, using MCVD method for graded-index doping of core rods
(Fig. 12.17) and stack-and-draw process for preform assembly [26, 29]. Data of
fibers are presented in Table 12.1, and their structures in Fig. 12.18.

Fig. 12.17 Refractive index
profile of doped rod measured
at 633 nm; from [29]
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12.10 Conclusions

We have reviewed methods for characterization of selected properties of photonic
crystal fibers, with accent on comparing and recommending practical solutions and
warning the reader of common errors or difficulties. Results presented in this
chapter demonstrate also how a relatively minor differences in dimensions and
geometry imperfections of such fibers can dramatically change their parameters and
behavior during use. We hope this information will be useful for researchers and
manufacturers of such fibers, but we also realize that due to a variety of fiber
designs, requirements and test instruments, it cannot be universally applicable.
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Chapter 13
All-Normal-Dispersion Photonic Crystal
Fibers Under Prism of Supercontinuum
Generation and Pulse Compression

Igor A. Sukhoivanov, Sergii O. Iakushev, Oleksiy V. Shulika,
Antonio Diez, Miguel V. Andrés, Igor V. Guryev,
José Amparo Andrade Lucio and Oscar G. Ibarra Manzano

Abstract We discuss properties of all-normal-dispersion photonic crystal fibers in
context of supercontinuum generation and compression of ultrashort pulses. The
application of pump pulses typical for the state of the art Ti:Sapphire lasers allows
obtaining quite flat and broad spectra extending more than one octave in this fiber.
The influence of initial pump pulse parameters such as pulse energy, duration, and
pump wavelength on the SC generation was investigated. It was shown that
compression of pulses with such SC spectra allows obtaining a few cycle pulses up
to 8.1 fs, if a simple quadratic compressor is used and single cycle pulses up to
2.5 fs, if full phase compensation is provided.

13.1 Introduction

Supercontinuum (SC) generation is very active field of research during the last
decade. Light with an initially narrow optical spectrum can undergo an extreme
spectral broadening known as supercontinuum generation, when the light is propa-
gating in a nonlinear medium. This phenomenon was at first reported by Alfano and
Shapiro in bulk glass using a picosecond laser as the light source [1, 2].
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Supercontinuum generation was investigated in wide variety of nonlinear media,
including solids, organic and inorganic liquids, gases, and various types of
waveguide [3]. The nonlinear effects responsible for the spectral broadening require a
high light intensity sustained in the medium. This could occur in the bulk glass due to
spatial nonlinear effects resulting in self-focusing of the beam. The advent of low loss
optical fibers has provided novel efficient nonlinear media. The advantage of optical
fibers is that the beam is confined in the transverse plane, so that a high intensity of the
light can be sustained over larger propagation distances. This reduces the requirement
of high power pump laser for efficient broadband supercontinuum generation.

Supercontinuum generation makes it possible to create light sources with an
optical spectrum covering several hundreds of nanometers (more than one octave in
frequency domain). The SC spectrum is not only broad, but is also spatially
coherent, contrary to light from, e.g., a tungsten lamp, and has higher brightness.
Due to its unique properties the supercontinuum has found numerous applications
in optical communications, optical coherence tomography, frequency metrology,
extremely short pulse generation, dispersion measurements, remote sensing [3, 4].

A huge interest in this field was inspired by application of specially designed
photonic crystal fibres (PCFs) which have allowed SC generation in much wider
range of source parameters than it has been possible with bulk media or conven-
tional fibers. Particularly it was reported SC generation applying various pump
sources such as femtosecond lasers [5], as well as picosecond [6] and nanosecond
lasers [7] and even CW sources [8]. Standard optical fibers consist of a cylindrical
glass core surrounded by a cladding, with the cladding having a slightly lower
index of refraction than the core. The light is confined in the core due to total
internal reflection at the interface between core and cladding. Photonic crystal fibers
offer a fundamentally different way of guiding the light, namely the photonic band
gap effect. A PCF typically consists of silica glass and air-holes comprising a
transverse microstructure along the fiber. The most common type of PCF used for
SC generation however is the index-guiding PCF, which relies on an effective index
difference between the solid silica core and the surrounding silica cladding with
air-holes, for a modified total internal reflection guiding mechanism [9]. This allows
single-mode guidance over broad wavelength ranges in smaller cores, so that a
higher intensity can be obtained, leading to more efficient nonlinear effects [10].
However, the key features of novel fibers important for producing of SC is flex-
ibility in tailoring the dispersion profile, by varying the parameters of the micro-
structure, e.g., the size of the air-holes and the distance between them.

The relationship between the input pump wavelength and the dispersion profile
of the fiber directly governs the various properties of generated SC. At first for SC
generation was proposed PCF fibers with a single zero dispersion wavelength
shifted to the shorter wavelengths. Then it was applied for SC generation fiber with
two ZDWs, and recently was proposed application of all-normal dispersion PCF
without any ZDWs. All these dispersion profiles can be obtained in standard PCF
with a solid core and hexagonal lattice of air holes by varying geometrical
parameters, shown in Fig. 13.1a. The solid core is formed by removal of an air hole
in the center introducing a defect associated with a locally elevated refractive index,
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and guided wave propagation within this elevated-index region occurs through an
equivalent total internal reflection. The examples of dispersion profiles of those
fibers are shown in Fig. 13.1.

It was found that the broadest SC spectra are generated when injecting the pump
pulse into the anomalous group velocity dispersion (GVD) region near the
zero-dispersion wavelength (ZDW) of the fiber [11]. In this case SC generation
appears in the anomalous dispersion region of the optical fibers. Owing to that the
broadening mechanism here is dominated by soliton dynamics and soliton fission,
which is sensitive to the input pulse fluctuations and the pump laser shot noise [12].
This leads to the several problems, such as complex temporal profile, the spectral
fine structure, lack of spectral flatness, increment of noise, and low-coherence
characteristics [13–15]. Then, it was proposed fibers with two closely spaced ZDWs
for SC generation [16]. This resulted in the stable and coherent SC spectrum gen-
eration, but having two distinct spectral peaks on the normal dispersion side of each
ZDW [16–18], which is undesirable if continuous broadband spectrum is required.

However, recently it was shown that all-normal dispersion photonic crystal
fibers (ANDi PCFs) which exhibit convex dispersion profiles lying completely in

Fig. 13.1 a Cross section of the solid core PCF with hexagonal lattice of air holes in the cladding
region; b dispersion curve of PCF with a single ZDW; c dispersion curve of PCF with a two ZDWs;
d dispersion curve of ANDi PCF without any ZDW. Insets show the design parameters of PCFs
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the normal dispersion region can be successfully fabricated. Pumping near the
flattened top of such ANDi PCF provides generation of highly coherent, flat-top and
octave-spanning SC preserving a single pulse in temporal domain [19, 20]. The
physical mechanism of SC generation in ANDi PCF is drastically different as
compared to that one in anomalous region of the fibers. In normal dispersion region
spectral broadening appears preliminary due to the action of self-phase modulation
(SPM) and four-wave mixing (FWM) induced by optical wave breaking
(OWB) [19, 21]. It was shown that the pumping near the flat top of dispersion curve
is highly important providing the maximal spectral broadening and spectral flatness
[21], whereas pumping far away from a flat top leads to the degradation of the
spectral flatness [19]. Up to now there were proposed a few designs of ANDi PCFs
with a flat top of dispersion curve located at near-infrared *1060 nm wavelength
[20, 22] and in the visible range at 650 nm [19]. Practically important is also
wavelength 800 nm where Ti:Sapphire lasers and Erbium-doped fiber lasers with
second harmonic generation generate. It was shown that at this wavelength one can
use ANDi PCF with a flat top at 650 nm [19], however such fiber is difficult in
fabrication and usage due to the extremely small geometrical parameters (pitch
0.67 µm, relative hole diameter 0.6).

Recently we have designed ANDi PCF with a flat top located exactly at 800 nm
with a larger geometrical parameters (pitch 1.0 µm, relative hole diameter 0.5) and
shown that this fiber is attractive for parabolic pulse generation at 800 nm [23].
Moreover our recent theoretical results show that such fiber is also attractive for
pulse preserving SC generation in normal dispersion region [24, 25]. Here, we
investigate in a detailed way the applicability of this fiber for SC generation with
femtosecond pulses delivered by conventional Ti:Sapphire lasers. It is investigated
also the compression of pulses with SC spectra obtained at the output of ANDi PCF
and the influence of deviations of fiber’s geometrical design parameters which can
appear during fabrication of the fiber on the SC generation.

13.2 Theory of SC Generation in PCFs

During the optical pulse in a medium the electromagnetic field interacts with the
atoms of the medium. This generally means that the pulse experiences loss and
dispersion, where the latter effect occurs because the different wavelength com-
ponents of the pulse travel at different velocities due to the wavelength dependence
of the refractive index. These effects are termed the linear response of the medium.
If the intensity of the pulse is high enough, the medium also responds in a nonlinear
way. Most notably is the Kerr effect when a nonlinear electronic polarization
generated in the medium, which itself modifies the propagation properties of the
light [26]. The Kerr effect is the effect of an instantaneously occurring nonlinear
response, providing that the refractive index of the medium becomes intensity
dependent. Time-dependent refractive index change leads to self-phase modulation,
when a time-dependent phase shift is induced during pulse propagation according
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to the time dependence of the pulse intensity. For very short and broadband pulses
Kerr effect leads also to the self-steepening of the pulse, due to the to the intensity
dependence of the group velocity. Owing to that the velocity with which the peak of
the pulse propagates is reduced and thus leads to an increasing slope of the trailing
edge of the pulse. A non-instantaneous nonlinear response is caused by vibrations
of the crystal (or glass) lattice. When these vibrations are associated with optical
phonons, the effect is called Raman scattering. These nonlinear effects are the basis
for the spectral broadening mechanisms in optical fibers.

A propagation equation describing the evolution of the optical pulse envelope in
an optical fiber is derived from Maxwell’s equations under the assumption of
slowly varying envelope approximation [26]. This allows writing the electric field
of a pulse linearly polarized along the x-axis and propagating in the fundamental
mode of an optical fiber in the following form [26]:

Eðx; y; z; tÞ ¼ 1=2xfFðx; yÞAðz; tÞ exp½iðb0z� x0tÞ� þ c:c:g; ð13:1Þ

where x is the polarization unit vector, Fðx; yÞ describes the transverse field dis-
tribution, Aðz; tÞ is the slowly varying pulse envelope, and b0 is the mode propa-
gation constant bðxÞ at the center angular frequency x0 of the pulse spectrum. The
change in pulse envelope Aðz; tÞ as the pulse propagates along the fiber axis z is
described by the generalized nonlinear Schrödinger equation (GNLSE) [4, 11, 26].
We apply here GNLSE for the electric field envelope Aðz; TÞ in a retarded reference
time frame T ¼ t � b1z in the following form:

@Aðz; TÞ
@z

¼ ðD̂þ N̂ÞAðz; TÞ; ð13:2Þ

where D̂ is a linear operator, and N̂ is a nonlinear operator. Linear operator D̂ can be
written in the following form [4, 11]:

D̂ ¼ � a
2
þ ðbðxÞ � ðx� x0Þb1 � b0Þ: ð13:3Þ

The left-hand side of the operator D̂ gives the linear loss in the fiber α, whereas the
right-hand side describes dispersion. In (13.3) dispersion is given directly applying
the propagation constant bðxÞ and the dispersion coefficients b0, b1 associated with
the Taylor series expansion of the propagation constant bðxÞ about the center
frequency x0.

Nonlinear operator N̂ in (13.2) is written by the following way:

N̂ ¼ ic
1

Aðz; TÞ 1þ isshock
@

@T

� �
� Aðz; TÞ

Z1

�1
RðT 0Þ Aðz; T � T 0Þj jdT 0

0
@

1
A:

ð13:4Þ
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The expression (13.4) includes self-phase modulation (SPM) associated with a non-
linear coefficient γ. The time derivative in the nonlinear operator (13.4) includes the
effects of self-steepening and optical shock formation, characterized on a time scale
sshock ¼ 1=x0. The response functionRðtÞ ¼ 1� fRð ÞdðtÞ þ fRhRðtÞ includes both the
instantaneous electronic and delayed Raman contributions, with fR ¼ 0:18 repre-
senting the fractional contribution of the delayed Raman response. For the Raman
response function of the silica fiber, hRðtÞ, the analytical expression is used [27]:

hRðtÞ ¼ s21 þ s22
s1s22

exp � t
s2

� �
sin

t
s1

� �
; ð13:5Þ

where the parameters s1 ¼ 12:2 fs and s2 ¼ 32 fs are two adjustable parameters
and chosen such that to provide a good fit to the actual Raman-gain spectrum [27].
The inverse time scale 1=s1 gives the phonon frequency and 1=s2 determines the
bandwidth of the Lorentzian line. Nonlinear coefficient γ is defined as following:

c ¼ x0n2ðx0Þ
cAeffðx0Þ ; ð13:6Þ

where n2 ¼ 2:9� 10�20 m2=W is the nonlinear refractive index of the silica glass,
c is the vacuum speed of light, Aeff is the effective mode field area of the fiber.
GNLSE (13.1) is well described SC generation in PCFs [4, 11]. Here it is solved
numerically by means of method proposed in [4], which implies finding the solution
in the frequency domain while making use of a change of variables to shift into the
so-called interaction picture.

13.3 Design and Fabrication of ANDi PCF

The optimal supercontinuum generation in all-normal dispersion fiber requires
pumping near the flattened top of dispersion curve. Up to now there were proposed
a few designs of ANDi PCFs with a flat top of dispersion curve located at
near-infrared *1060 nm wavelength [20, 22] and in the visible range at 650 nm
[19]. Here, we have designed ANDi PCF with a flat-top located at 800 nm, suitable
for pumping with Ti:Sapphire lasers. The dispersion profile and mode field diameter
(MFD) of the PCF were calculated with the analytical method described in [28, 29].
They are shown in Fig. 13.2. The designed ANDi PCF has the fused silica solid
core and hexagonal lattice of air holes in the cladding region, with pitch K ¼ 1 lm
and a relative hole size d=K ¼ 0:5. The solid core is formed by removal of an air
hole in the center introducing a defect, the diameter of the core here is 1:5 lm.
Dispersion and nonlinear coefficient of this fiber at 800 nm are following:
D ¼ �40 ps/(nm km), c ¼ 1131=ðW km).

Fabrication of the designed ANDi PCF was made by stack-and-draw method.
This technique provides high versatility, allowing complex lattices to be assembled
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from individual stackable units [30–32]. Solid, empty or doped glass regions can be
incorporated, without involving chemical processes. The fiber is fabricated typically
in a few steps. The first step implies drawing capillaries, when the circular silica
tubes and rods of several centimeters external diameter are drawn on the
fiber-drawing tower in order to reduce its diameter to about 1.0 mm. The ratio of
inner diameter to outer diameter of the capillaries must be chosen to closely match
the air-filling fraction (d=K) of the final structure. Next step is building a necessary
stack form the capillaries typically 10 mm in diameter in order to obtain the desired
hexagonally air–silica structure. The core is formed by replacing the capillaries near
the center with solid silica rods. When the stack is complete, it is inserted into a tube
and then drawing into typically meter-long preforms with a few millimeters
diameter. In the final step, the resulting preform is drawn down to the typical fiber
dimensions (a few hundred microns) using a fiber-drawing tower.

Figure 13.3 shows microphotography of the cross-section and the core of the
fabricated ANDi PCF. The shown PCF sample has following parameters: pitch

Fig. 13.2 Calculated dispersion profile and MFD of the designed ANDi PCF, inset shows cross
section of a PCF

Fig. 13.3 Microphotography of the cross-section and the core of the fabricated ANDi PCF
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K ¼ 1 lm and hole’s diameter d ¼ 0:53 lm. That is the hole’s diameter is a little bit
larger than nominal value, this is happened due to the fabrication errors occurred
during the fabrication process. This small deviation form a nominal value does not
lead to the sufficient changes of fiber characteristics.

13.4 Supercontinuum Generation in ANDi PCF

At first we investigate supercontinuum generation in the designed ANDi PCF. For
pumping has been choosing initial unchirped Gaussian pulses similar to that one
produced by conventional Ti:Sapphire lasers with pulse duration (FWHM) 50–
100 fs and pulse energy 5–10 nJ (repetition rate 80 MHz). Figure 13.4 shows
simulation results of pulse temporal and spectral profile evolution in ANDi PCF
over the fiber’s length.

From Fig. 13.4 we can see that in temporal domain the main feature is preserving
of a single pulse without splitting, only temporal broadening is occurred. In spectral
domain we can see supercontinuum generation process. One can see that at first
(<1 cm) pulse spreading is appeared due to the self-phase modulation and typical
multi-peak spectral structure is formed. But further spectral shape becomes smother
at the center of the spectrum and also lateral spectral bands are developed due to the
four-wave mixing induced by optical wave breaking (OWB) [19, 21]. This resulted
in quite smooth and broad spectrum already at 10 cm, after that distance pulse shape
and width do not change sufficiently.

Figure 13.5 shows the simulation results of SC generation in the designed
ANDi PCF using 10 cm fiber’s piece.

Figure 13.5a shows pulses in temporal domain for different variations of initial
pulse energies and durations. One can see that in temporal domain pulse shape at

Fig. 13.4 Pulse evolution over the fiber’s length in a logarithmic scale: a temporal pulse intensity
evolution; b spectral pulse intensity evolution
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the output of ANDi PCF is not already a Gaussian one and pulse duration increases
up to a few picoseconds. Figure 13.5b shows the corresponding spectra of those
pulses. One can see that the best flatness of the SC spectrum is achieved for smaller
pulse energy −5 nJ and larger pulse duration −100 fs. However, spectral width in
this case is smaller *572 nm. If we increase initial pulse energy up to 10 nJ,
spectral width is increased up to 710 nm corresponding to *1.3 octave. Spectral
width is also increased up to 711 nm, if we use initial pulses with smaller duration
−50 fs. Thus, increasing of initial pulse energy or application of shorter initial
pulses allows obtaining wider spectral width. However, the price for that is worse
spectral flatness. Additional spectral broadening is accompanied by the depletion of
central part of the spectrum such that a dip appears at the pumping wavelength.
Spectral splitting is appeared as a result of complex dynamic of pulse evolution in
the ANDi PCF involving nonlinear effects of self-steepening, frequency depen-
dence of the nonlinear coefficient, in combination with the SPM and an optical
wave breaking induced FWM process [21]. Here we can see that spectral splitting is
appeared, when initial pulse with higher energy or shorter duration is used. This
corresponds to the higher peak power of initial pulse which is responsible for the
strength of nonlinear effects during pulse propagation in the fiber. Therefore, one
has to find some compromise between spectral flatness and maximal spectral width
by varying initial pump pulse.

Another important issue is spectral changes appeared when the pump wave-
length is shifted from the top of dispersion curve of ANDi PCF, here it is 800 nm.
The tuning range of typical Ti:Sapphire lasers is 700–900 nm, therefore we
investigated what is happened if pumping is made within this tuning range.
Figure 13.6 shows SC spectra generated at different pump wavelengths.

From Fig. 13.6 we can see that pumping far away from the top of dispersion
curve leads to the strong asymmetry of the SC. At 700 nm red part of the spectrum
is amplified, whereas the blue spectral part is depleted. The opposite picture appears

Fig. 13.5 Supercontinuum generation in ANDi PCF of 10 cm length for different pulse energies
and durations. a Pulse profiles in temporal domain; b corresponding pulse spectra
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at 900 nm. One can see that sufficient spectral asymmetry still exists for 750 and
850 nm pumping. Thus, we suppose that the optimal pump wavelength range for
obtaining of SC spectra with a good flatness in the designed ANDi PCF
is *760 nm\kp\840 nm.

Similar spectral distortions were observed experimentally, when the pumping
wavelength was shifted to shorter wavelength on *200 nm as compared to the top
of dispersion curve [19]. Here we can see actually that spectral asymmetry appears
when pump wavelength shifts to the both side from the top of dispersion curve.
Moreover, the strong spectral asymmetry appears here faster already for
�100 nm shift. We suppose this is related to the stronger curvature of dispersion
curve of the designed ANDi PCF at 800 nm, whereas fiber NL-1050-NEG-1 [22]
used in [19] has wider flattened top at 1060 nm.

13.5 Pulse Compression

Because of SC generation in ANDi PCF is accompanied by preserving of a single
pulse with a smooth profile in temporal domain, it is attractive for subsequent pulse
compression. Previously it was reported compression of pulses with SC spectra
generated in ANDi PCF up to 26 fs [20], 5.0 fs [33], 3.64 fs [34]. The most
attractive is the possibility to generate a few-cycle pulses because such pulses are
highly important in time-resolved studies of fundamental processes in physics,
chemistry and biology [35]. Previous studies [33, 34] used commercially available
fiber with a flat top located at 1060 nm [22] as well as special oscillators which
produce already very short pulses for fiber’s pump (15 fs in [33] and 6 fs in [34]).
Here we examine the applicability of specially designed ANDi PCF with a flat top
at 800 nm in combination with conventional Ti:Sapphire lasers for pulse com-
pression. The chirp of pulses produced at the output of ANDi PCF is already quite
close to a linear one [21], thus one can expect that applications of even a simple

Fig. 13.6 Supercontinuum
spectra generated in ANDi
PCF of 10 cm length for
different pump wavelengths.
In all cases initial pulse
energy is 5 nJ, pulse duration
is 100 fs
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compression technique allow obtaining good compression results. Therefore, at first
we investigate application of a simple quadratic compressor for compression of
only a linear chirp, this can be done for example by gratings or prism pairs.
Figure 13.7a shows simulation results of pulse compression for pulses obtained at
the output of ANDi PCF shown in Fig. 13.5a. The amount of group delay dis-
persion of compressor in each case was chosen such that to obtain the highest peak
power of the compressed pulse, this usually corresponds to the shortest pulse
duration as well. From Fig. 13.7a we can see that in all case compressed pulse
durations are *8 fs, which corresponds to the *3 cycles of optical filed of the
pulse at 800 nm. The highest peak power corresponds naturally to the pulse with
larger initial energy (10 nJ, 100 fs). The unexpected feature is that application of
shorter initial pulse (5 nJ, 50 fs) or larger energy pulse (10 nJ, 100 fs) does not give
a shorter compressed pulse as compared to the pulse with small energy and large
duration (5 nJ, 100 fs). From Fig. 13.3b we can see that increasing of initial pulse
energy or decreasing of pulse duration provides larger spectral bandwidth, thus one
could expect shorter compressed pulse duration in these cases. We suppose that this
is not observed in Fig. 13.7a because of a larger amount of nonlinear chirp acquired
by pulse in the fiber owing to the stronger impact of nonlinear effects when initial
pulse duration is shorter or pulse energy is larger. The visible results of nonideal
compression are excessive oscillated pulse tails in Fig. 13.7a.

Nonlinear chirp remains uncompressed, if quadratic compressor is used.
However, more sophisticated compression techniques can be also applied, which
are able compensate also nonlinear chirp [34, 36, 37] and providing shorter pulses
up to the transform-limited one. Therefore, we investigate here also the case of full
phase compensation. Figure 13.7b shows simulation results of pulse compression
for pulses obtained at the output of ANDi PCF when full phase compensation is
applied. We can see that now the potential of wider spectral bandwidth is fully
exploited and shorter pulses are obtained from initial pulses with higher energy

Fig. 13.7 Compression of pulses obtained at the output of ANDi PCF shown in Fig. 13.5a.
a Compensation of only a linear chirp; b full phase compensation
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(10 nJ, 100 fs) and with shorter duration (5 nJ, 50 fs). In these cases pulse duration
is as short as 2.5 fs which corresponds to the one cycle of optical filed of the pulse
at 800 nm. Thus, application of specially designed ANDi PCF with a flat at 800 nm
together with conventional Ti:Sapphire laser allows obtaining of a few cycle pulses,
if a simple quadratic compressor is used and a single-cycle pulses, if full phase
compensation is provided.

To conclude, we have investigated numerically supercontinuum generation in
the specially designed all-normal dispersive photonic crystal fiber with a flat top at
800 nm. It was shown that pumping at 800 nm by pulse with energy 5 nJ and
duration 100 fs provides a good compromise between spectral width and flatness.
Application of pump pulses with larger energy or shorter pulse duration provides
wider spectrum, but spectral flatness becomes worth due to the appearance of a dip
in the central part. The shifting of the pump wavelength from the 800 nm leads to
the appearance of strong spectral asymmetry. In order to maintain good spectral
flatness one have to pump within ±40 nm wavelength range around the top of
dispersion curve. It was shown that compression of pulses with SC spectra gen-
erated in the designed ANDi PCF allows obtaining a few cycle pulses up to 8.1 fs,
if a simple quadratic compressor is used and single cycle pulses up to 2.5 fs, if full
phase compensation is provided.
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