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Foreword

In the last few years, the study of microstructured materials and metamaterials has
become a trend in mechanics. Very often, trends and fashions are fading quickly not
leaving deep traces in science.

This is not the case for the effort to design exotic materials, i.e., metamaterials
whose mechanical behavior is tailored to meet specific functional requirements.
They are indeed potentially of interest in applications where nonstandard
mechanical, electromechanical, and acoustical properties, not exhibited by standard
materials, are required. Their special behavior is governed by their microstructure,
intending with this term their structure at a length scale much smaller (usually,
smaller of at least one order of magnitude) than the wavelength of the macroscopic
phenomenon they affect, rather than by their constituent materials.

The reader should be warned here: The topic is so important that many groups
are working on it, by using different or sometimes very similar approaches. What is
somehow puzzling is that the same subject, the same set of scientific and techno-
logical problems, and the same methodologies are sometimes labeled with different
name (a detailed discussion of this point can be found in1 or in2). Therefore, one
finds works on architectured, advanced, multiscale, microstructured, complex,
optimized (and so on) materials. Each label characterizes rather a group of
researchers and not a really different research field.

In this foreword, and in this book, the preferred nomenclature uses the word
“metamaterial” as it seems really suggestive: They are materials which go beyond
as the Greek prefix “meta” exactly suggests this idea.

The interest of presented studies is increased by a circumstance which presented
itself only recently: Indeed, the realization of metamaterials has become

1F. dell’Isola, A. Della Corte, and I. Giorgio “Higher-gradient continua: The legacy of Piola,
Mindlin, Sedov and Toupin and some future research perspectives.” Math. Mech. Solids (2016):
doi: 10.1177/1081286515616034.
2D. Del Vescovo and I. Giorgio “Dynamic problems for metamaterials: review of existing models
and ideas for further research.” Int. J. Engng Sci 80 (2014): 153–172.
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economically viable by means of recent developments in some new manufacturing
techniques such as 3D printing, roll-to-roll processing, electrospinning,
photolithography and next-generation lithographies (extreme ultraviolet, X-ray, and
charged-particle lithographies), dry etching, wet chemical etching, wet bulk micro-
machining, thermal and mechanical energy-based removing, and micromolding.

Technology and theoretical disciplines do very often develop closely, one being
a stimulus for the others. It is naive to believe that one can still theoretically design
new products when disconnected from advanced manufacturing: For a good design,
one needs to know the latest manufacturing processes and newest materials. In fact,
changes of till-then established theoretical paradigms have been often, if not
always, due to the advancement of new technology, which allows for new
phenomenological evidence to arise. Given the availability of new technological
possibilities as the ones mentioned before, nowadays, the main challenge in the
field of metamaterials is the design of purpose-specific solutions to existing prob-
lems, for instance, in engineering and biomedical areas, by means of an intelligent
exploitation of the properties of “ad hoc” architectured materials.

The desired outcome of the ongoing current research in the field of metamate-
rials is, therefore, not only the ability to predict the behavior of already existing
materials (even with a possibly very complex behavior), but also assigned a certain
(preferably exotic) desired behavior at the macroscale, the ability to prescribe
constitutive and geometric characteristics at the microscale in order to get the
selected macroscopic behavior.

Potential applications may include acoustically active materials, which behave
like frequency filter and thus are able either to “cut” or to “pass” some frequency
intervals, wind-excited structures, whose reliability can be, for instance, improved
by means of targeted anisotropic behaviors and piezo- and flexo-electric induced
vibration damping, and bone reconstructive surgery, because implants made of
bioresorbable artificial materials guarantee a proper load-carrying capacity and a
fast substitution of the device with newly formed bone.

It is well known that the functional adaptation process in bones is strongly
related to the external load frequency. Therefore, dynamic properties of bone
bioresorbable prostheses play a key role in the bone functional adaptation. For this
reason, modal analyses are required to be performed in order to understand how
dynamic features evolve with the remodeling process and are influenced by external
mechanical factors.

In the design process, the mathematical modeling methodologies play a relevant
role: in this book, this vision is clearly shown and exploited.

Mathematical modeling of materials has been developed in the nineteenth
century on the basis of some assumptions, which are verified by the majority of
natural materials and by standard materials used up to now in engineering. Usually,
materials which show sophisticated and often unexpected behaviors are those
whose microstructure is very complex, exhibits multiple characteristic length scales,
involves coupled multiphysics phenomena, and shows strongly inhomogeneous
physical properties at every characteristic length.

vi Foreword



Clearly, that hypotheses assumed in classical physics for describing mechanical
phenomena are not anymore suitable when one wants to model exotic artificial
materials. The construction of the general theoretical framework for the description
and prediction of the behavior of advanced architectured materials is the soundest
ground for exploring those exotic phenomena.

Wave dynamics and mechanics of composite media with micro- and nanos-
tructure, which might contain arrays of cracks, defects, and, eventually, micro- and
nanosize elements coupling physical–mechanical fields of different nature, e.g.,
piezoelectric elements, are of crucial importance for the investigation of phenomena
involved in this kind of materials. New theoretical advancements in these fields are
needed to fully exploit the high potential of metamaterials and, in particular, fun-
damental methods, and models in the theory of wave problems and composite
mechanics, which have already been proved to be powerful tools, need to be further
developed. They will allow for the investigation of qualitative and quantitative
properties exhibited by metamaterials: For instance, they will make possible the
synthesis (i.e., the specification of the needed microstructure) when a desired
behavior is required.

In conclusion, it is my sincerest hope that this volume enhances networking
between some of the brightest scientists working in different fields, ranging from
physics and applied mathematics to numerical analysis and materials science.
Indeed, the published papers seem to me of the highest quality, as they show novel
and relevant improvements of the specialistic literature.

Rome, Italy
October 2016

Francesco dell’Isola
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Mathematical Models and Finite Element
Approaches for Nanosized Piezoelectric
Bodies with Uncoulped and Coupled
Surface Effects

Victor A. Eremeyev and A.V. Nasedkin

Abstract In this chapter the dynamic problems for piezoelectric nanosized bod-

ies with account for coupled damping and surface effects are considered. For these

problems we propose new mathematical model which generalizes the models of the

elastic medium with damping in sense of the Rayleigh approach and with surface

effects for the cases of piezoelectric materials. Our model of attenuation and surface

effects has coupling properties between mechanical and electric fields, both for the

damping terms and constitutive equations for piezoelectric materials on the surface.

For solving the problems stated the finite element approximations are discussed. A

set of effective finite element schemes is examined for finding numerical solutions

of week statements for nonstationary problems, steady-state oscillation problems,

modal problems and static problems within the framework of modelling of piezo-

electric nanosized materials with damping and surface effects. For transient and har-

monic problems, we demonstrate that the proposed models allow the use of the mode

superposition method. In addition, we note that for transient and static problems we

can use efficient finite element algorithms for solving the systems of linear algebraic

equations with symmetric quasi-definite matrices both in the case of uncoupled sur-

face effects and in the case of coupled surface effects.

Keywords Surface elasticity ⋅ Piezoelectricity ⋅ Finite element method ⋅ Rayleigh

damping
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2 V.A. Eremeyev and A.V. Nasedkin

1 Introduction

The most popular model of the surface elasticity [20, 32, 34] is the Gurtin-Murdoch

model [19] which used in nanomechanics, see [8, 9, 38]. The Gurtin–Murdoch

model was extended by Steigmann and Ogden [35, 36]. The mentioned models con-

sider elastic media whereas the extension for piezoelectric and magnetoelastic media

was introduced in [21, 39]. The existence of surface stresses leads to changes in

behaviour of stresses and deformations in the vicinity of stress concentrators, such

as crack tips, see [22–24]. In the media with surface stresses new type of waves is

possible, that are anti-plane (shear) surface waves [13, 14] which absent in classic

elasticity. The mathematical study of boundary-value problems in the elasticity with

surface stresses where performed in [1, 2, 10, 11, 33] where existence and unique-

ness of weak and strong solutions were proved. Existence and uniqueness of weak

solutions for modal problem considering surface effects in solids with coupling of

deformations and electric field was proved in [12, 27].

In the one of the first papers in the field of piezoelectricity with surface effects

[21] it was proposed new model of a nanosized piezoelectric solid with introduc-

tion into the functional of energy surface integrals depending on the surface stresses

and strains. Here the surface dielectric permittivities and the surface piezomoduli

are introduced as additional material parameters. For the static axially symmetric

problem for a piezoelectric ring with thin electrodes at its faces, the surface effects

are taken into account in the boundary conditions for stresses. From the mechanical

point of view the main idea of [21] consists of introduction of a piezoelectric film at

the surface of an nanosized piezoelectric solid. The constitutive equations of the film

determine the relation between the surface stresses and the surface electric displace-

ment vector with the strains and the electrical field including its component normal

to surface.

Similar approach was applied in analysis of piezoelectric nanowires, beams, and

plates in [37, 44–49, 53], of a plate oscillations in [51, 52, 54]. Propagation of the

Bleustein–Gulyaev waves in a piezoelectric half-space with thin surface piezoelec-

tric layer are studied in [6] with asymptotic expansions technique. Using atomistic

models and multiscale analysis in [31] the mechanical and electrostatic stresses of

Piola–Kirchhoff-type are reconstructed. Formulae for the effective shear modulus of

a fiber reinforced piezoelectric composite was obtained in [42] using a self-consistent

method. Investigations of effective moduli for nanoisized piezoelectric composites

were continued in [5, 15, 25, 41, 43] and etc.

Magnetoelectric nanosized composites were analysed in [17, 28, 29, 40] and etc.

Theoretical investigations of piezoelectric and magnetoelectric nanosized mate-

rials with surface effects and imperfect interface models were presented in [7, 12,

16–18, 30]. Note that dynamic models for piezoelectric and magnetoelectric nano-

sized bodies with damping and surface effects were suggested only in [27–29], but

for uncoupled dependencies between mechanical and electric or magnetoelectric sur-

face fields.
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The main goal of our investigation is to present the mathematical study of the

dynamic boundary-value problems for pizoelectric solids with damping and cou-

pling between surface mechanical and electric fields. In this paper we propose the

new models for nanosized piezoelectric bodies with surface effects in development

of corresponding investigations of nanosized active materials earlier presented in

[27–29]. Here we formulate the system of differential equations with damping prop-

erties, the special boundary conditions with taking into account the coupled surface

effects, damping and the initial conditions for piezoelectric nanosized bodies.

For numerical solution of the dynamic problems with damping and surface effects

we propose the finite element approximations and the corresponding generalized

matrix problems. We note that the standard finite element software could be used

with additional introduction of surface piezoelectric elements with structural mem-

brane option. We demonstrate that the finite element systems for coupled problems

for piezoelectric nanosized bodies can be represented in the form of a system of lin-

ear algebraic equations with symmetric saddle point quasi-definite matrices. We also

describe special efficient approaches to solve the resulting finite element equations

for transient, harmonic, modal and static problems.

2 Model of Piezoelectric Materials with Damping and
Surface Effects

Let 𝛺 ∈ R3
be a region occupied by a piezoelectric material; 𝛤 = 𝜕𝛺 is the bound-

ary of this region; 𝐧 is the vector of the external unit normal to 𝛤 ; 𝐱 = {x1, x2, x3} is

the vector of the special coordinates; t is the time; 𝐮 = 𝐮(𝐱, t) is the vector of mechan-

ical displacements;𝜑 = 𝜑(𝐱, t) is the scalar function of electric potential. The system

of differential equations for piezoelectric body with damping effects in the volume

𝛺 can be present in the form

∇ ⋅ 𝝈 + 𝜌 𝐟 = 𝜌 (�̈� + 𝛼d�̇�), ∇ ⋅ 𝐃 = q
𝛺
, (1)

𝝈 = 𝐜 ∶ (𝜺 + 𝛽d�̇�) − 𝐞T ⋅ 𝐄, (2)

𝐃 + 𝜁d�̇� = 𝐞 ∶ (𝜺 + 𝜁d�̇�) + 𝜿 ⋅ 𝐄, (3)

𝜺 = (∇𝐮 + (∇𝐮)∗)∕2, 𝐄 = −∇𝜑, (4)

where 𝝈 and 𝜺 are the second-order stress and strain tensors; 𝐃 and 𝐄 are the electric

flux density vector or the electric displacement vector and the electric field vector;

𝜌 is the mass density of the material; 𝐜 = 𝐜E is the fourth-order tensor of elastic

stiffness moduli; 𝐞 is the third-order tensor of piezoelectric moduli; 𝜿 = 𝜿
S = 𝜺

S
is

the second-order tensor of dielectric permittivity moduli; 𝛼d, 𝛽d, 𝜁d are the damp-

ing coefficients; 𝐟 is the vector of mass forces; q
𝛺

is the density of free electric



4 V.A. Eremeyev and A.V. Nasedkin

charges (usually, q
𝛺
= 0); �̇� = 𝜕𝐮∕𝜕t; �̈� = 𝜕

2𝐮∕𝜕2t; (…)T is the transpose operation;

(…)∶(…) is the double scalar product operation.

We suppose that the material moduli have the usual symmetry properties: cijkl =
cjikl = cklij, eikl = eilk, 𝜅 kl = 𝜅 lk. In addition to this for the positive definiteness of

the intrinsic energy for the piezoelectric medium the following inequalities must be

satisfied (∀ 𝜺 = 𝜺
T
, 𝐄), ∃W

𝛺
> 0:

𝜺
T ∶ 𝐜 ∶ 𝜺 + 𝐄T ⋅ 𝜿 ⋅ 𝐄 ≥ W

𝛺
(𝜺T ∶ 𝜺 + 𝐄T ⋅ 𝐄).

In models (1)–(4) for the piezoelectric material, we use a generalized Rayleigh

method of damping evaluation [3, 26, 28, 29], which is admissible for many practi-

cal applications. When 𝜁d = 0 in Eq. (3), we have the model for taking into account

of mechanical damping in piezoelectric media which is adopted in the case of elas-

tic and piezoelectric materials in several well-known finite element packages. More

complicated model (1)–(4) extends the Kelvin’s model to the case of piezoelectric

media. It has been shown that the model (2) and (3) with 𝛽d = 𝜁d satisfies the condi-

tions of the energy dissipation and has the possibility of splitting the finite element

system into independent equations for the separate modes in the case of piezoelectric

media, see also Sect. 4.

For nanosized piezoelectric body we assume that on its boundary 𝛤 the surface

stress and surface electric flux exist. For these quantities we accept the Gurtin–

Murdoch model:

𝐧 ⋅ 𝝈 = ∇s ⋅ 𝝈s + 𝐩, 𝐱 ∈ 𝛤 , (5)

𝐧 ⋅ 𝐃 = ∇s ⋅ 𝐃s − q, 𝐱 ∈ 𝛤 , (6)

where ∇s
is the surface gradient operator, associated with nabla-operator by the for-

mula ∇s = ∇ − 𝐧(𝜕∕𝜕r), r is the coordinate, measured by the normal 𝐧 to 𝛤
𝜎
; 𝝈

s
is

the second-order tensor of surface stress; 𝐃s
is the surface electric flux density vec-

tor; 𝐩 is the vector of mechanical stress; q is the surface density of electric charge.

Here, 𝐩 and q are the known (active) or unknown (reactive) surface quantities

according to the boundary conditions.

For surface stress 𝝈
s

and surface electric flux 𝐃s
in general case we take the cou-

pled constitutive relations

𝝈
s = 𝐜s ∶ (𝜺s + 𝛽d�̇�

s) − 𝐞sT ⋅ 𝐄s
, (7)

𝐃s + 𝜁d�̇�s = 𝐞s ∶ (𝜺s + 𝜁d�̇�
s) + 𝜿

s ⋅ 𝐄s
, (8)

where

𝜺
s = (∇s𝐮s + (∇s𝐮s)T )∕2, 𝐮s = 𝐀 ⋅ 𝐮, 𝐀 = 𝐈 − 𝐧⊗ 𝐧, 𝐄s = −∇s

𝜑, (9)

𝐈 is the identity matrix; 𝐜s, 𝐞s, 𝜿s
are the surface tensors of elastic stiffness moduli,

piezoelectric moduli and dielectric permittivity moduli, respectively.
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We suppose that the tensors of surface material moduli have the similar properties

that the tensors of volume material moduli, but relatively to surface strains 𝜺
s

and

surface electric field vector𝐄s
, i.e. csijkl = csjikl = csklij, e

s
ikl = esilk, 𝜅

s
kl = 𝜅

s
lk, and surface

energy is positive definiteness (∀ 𝜺
s = 𝜺

sT
, 𝐄s

), ∃W
𝛤
> 0:

𝜺
sT ∶ 𝐜s ∶ 𝜺

s + 𝐄sT ⋅ 𝜿s ⋅ 𝐄s
≥ W

𝛤
(𝜺sT ∶ 𝜺

s + 𝐄sT ⋅ 𝐄s).

The boundary and the initial conditions should be added to the system of equa-

tions (1)–(9). The boundary conditions are mechanical and electric types.

To formulate the mechanical boundary conditions we assume that the boundary 𝛤

is divided in two subsets 𝛤
𝜎

and 𝛤u (𝛤 = 𝛤
𝜎
∪ 𝛤u). We will assume that at the part

of the boundary 𝛤
𝜎

there are the surface stresses 𝝈
s

and the vector of mechanical

stress 𝐩
𝛤

, i.e.

𝐩 = 𝐩
𝛤
, 𝐱 ∈ 𝛤

𝜎
, (10)

and so, in accordance with (5)

𝐧 ⋅ 𝝈 = ∇s ⋅ 𝝈s + 𝐩
𝛤
, 𝐱 ∈ 𝛤

𝜎
. (11)

On the part 𝛤u we pose known the mechanical displacements vector 𝐮
𝛤

𝐮 = 𝐮
𝛤
, 𝐱 ∈ 𝛤u, (12)

and so, in (6) 𝐩 is unknown reactive surface load vector on 𝛤u.

To set the electric boundary conditions we assume that the surface 𝛤 is also sub-

divided in two subsets: 𝛤D and 𝛤
𝜑

(𝛤 = 𝛤D ∪ 𝛤
𝜑

).

The regions 𝛤D does not contain electrodes, and we pose known the surface den-

sity of electric charge q
𝛤

q = q
𝛤
, 𝐱 ∈ 𝛤D, (13)

i.e. in accordance with (6) on 𝛤D hold the following conditions

𝐧 ⋅ 𝐃 = ∇s ⋅ 𝐃s − q
𝛤
, 𝐱 ∈ 𝛤D, (14)

and usually, q
𝛤
= 0.

The subset 𝛤
𝜑

is the union of M + 1 regions 𝛤
𝜑j (𝛤

𝜑
= 𝛤V ∪ 𝛤Q, 𝛤V = ∪j𝛤𝜑j, j ∈

JV , JV = {0,m,m + 1,… ,M},𝛤Q = ∪j𝛤𝜑j, j ∈ JQ, JQ = {1, 2,… ,m}), that does not

border on each other and are covered with infinitely thin electrodes. At these regions

we set the following boundary conditions

𝜑 = 𝛷j, 𝐱 ∈ 𝛤
𝜑j, j ∈ JQ, (15)

∫
𝛤
𝜑j

q d𝛤 = Qj, Ij = ±Q̇j, 𝐱 ∈ 𝛤
𝜑j, j ∈ JQ, (16)
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𝜑 = Vj, 𝐱 ∈ 𝛤
𝜑j, j ∈ JV , 𝛤j0 ≠ ∅, (17)

where the variables 𝛷j, Vj do not depend on 𝐱; Qj is the overall electric charge on

𝛤
𝜑j, the sign “±” in (16) is chosen in accordance with the accepted direction of the

current Ij in the electric circuit, and by using (6) we can rewrite the relation (16) in

the other form

∫
𝛤
𝜑j

𝐧 ⋅ 𝐃 d𝛤 −
∫
𝛤
𝜑j

∇s ⋅ 𝐃s d𝛤 = −Qj, Ij = ±Q̇j, 𝐱 ∈ 𝛤
𝜑j, j ∈ JQ. (18)

For transient problems it is also necessary to pose initial conditions, which can

be written as

𝐮 = 𝐮∗(𝐱), �̇� = 𝐫∗(𝐱), t = 0, 𝐱 ∈ 𝛺, (19)

where 𝐮∗(𝐱) and 𝐫∗(𝐱) are the known initial values of the corresponding fields.

Formulas (1)–(19) represent the statement of the transient problem for piezoelec-

tric body with the generalized Rayleigh damping and with account for coupled sur-

face effects for mechanical and electric fields.

If in (7) and (8) we assume 𝐞s = 0, i.e. surface piezomoduli are equal to zero, then

we obtain the uncoupled constitutive equations, when the mechanical surface stress

𝝈
s

depend only on the surface strain 𝜺
s
, and surface electric flux 𝐃s

depend only on

the surface electric field vector 𝐄s
. This more simple model we are investigated for

different dynamic problems earlier in [12, 27–29].

3 Week Formulations of Dynamic Problem

In order to formulate the weak or generalized statement of dynamic transient prob-

lem for nanosized piezoelectric solid we scalar multiply Eq. (1) by some sufficiently

differentiable vector-function 𝐯 and functions 𝜒 , which satisfies following principal

boundary conditions, i.e.

𝐯 = 0, 𝐱 ∈ 𝛤u, (20)

𝜒 = Xj, 𝐱 ∈ 𝛤
𝜑j, j ∈ JQ, (21)

𝜒 = 0, 𝐱 ∈ 𝛤
𝜑j, j ∈ JV , (22)

where Xj are the arbitrary constant values on 𝛤
𝜑j ⊂ 𝛤Q.

By integrating the obtained equations over 𝛺 and by using the standard technique

of the integration by parts with Eqs. (2)–(18) and (20)–(22), we obtain

𝜌(𝐯, �̈�) + d(𝐯, �̇�) + c(𝐯,𝐮) + eu(𝜑, 𝐯) = L̃ u(𝐯), (23)
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− e
𝜑
(𝜒,𝐮 + 𝜁d�̇�) + 𝜅(𝜒, 𝜑) = L̃

𝜑
(𝜒) + 𝜁d

𝜕

𝜕t
L̃
𝜑
(𝜒), (24)

where

𝜌(𝐯,𝐮) =
∫
𝛺

𝜌𝐯T ⋅ 𝐮 d𝛺, d(𝐯,𝐮) = 𝛼d𝜌(𝐯,𝐮) + 𝛽dc(𝐯,𝐮), (25)

c(𝐯,𝐮) = c
𝛺
(𝐯,𝐮) + c

𝛤
(𝐯,𝐮), 𝜅(𝜒, 𝜑) = 𝜅

𝛺
(𝜒, 𝜑) + 𝜅

𝛤
(𝜒, 𝜑), (26)

eu(𝜑, 𝐯) = e
𝛺
(𝜑, 𝐯) + e

𝛤𝜎
(𝜑, 𝐯), e

𝜑
(𝜒,𝐮) = e

𝛺
(𝜒,𝐮) + e

𝛤D(𝜒,𝐮), (27)

c
𝛺
(𝐯,𝐮) =

∫
𝛺

𝜺(𝐯) ∶ 𝐜 ∶ 𝜺(𝐮) d𝛺, c
𝛤
(𝐯,𝐮) =

∫
𝛤
𝜎

𝜺
s(𝐯) ∶ 𝐜s ∶ 𝜺

s(𝐮) d𝛤 , (28)

𝜅
𝛺
(𝜒, 𝜑) =

∫
𝛺

𝐄(𝜒) ⋅ 𝜿 ⋅ 𝐄(𝜑) d𝛺, 𝜅
𝛤
(𝜒, 𝜑) =

∫
𝛤D

𝐄s(𝜒) ⋅ 𝜿s ⋅ 𝐄s(𝜑) d𝛤 , (29)

e
𝛺
(𝜑, 𝐯) = −

∫
𝛺

𝐄(𝜑) ⋅ 𝐞 ∶ 𝜺(𝐯) d𝛺, e
𝛤𝜎
(𝜑, 𝐯) = −

∫
𝛤
𝜎

𝐄s(𝜑) ⋅ 𝐞s ∶ 𝜺
s(𝐯) d𝛤 ,

(30)

e
𝛤D(𝜒,𝐮) = −

∫
𝛤D

𝐄s(𝜒) ⋅ 𝐞s ∶ 𝜺
s(𝐮) d𝛤 , (31)

L̃ u(𝐯) =
∫
𝛺

𝐯 ⋅ 𝜌𝐟 d𝛺 +
∫
𝛤
𝜎

𝐯 ⋅ 𝐩
𝛤
d𝛤 , (32)

L̃
𝜑
(𝜒) =

∫
𝛺

𝜒q
𝛺
d𝛺 +

∫
𝛤D

𝜒q
𝛤
+

∑

k∈JQ

XkQk d𝛤 . (33)

The weak form of the initial conditions (19) can be represent by the relations

𝜌(𝐯,𝐮) = 𝜌(𝐯,𝐮∗), 𝜌(𝐯, �̇�) = 𝜌(𝐯, 𝐫∗), t = 0. (34)

Further we present the functions 𝐮 and 𝜑 as

𝐮 = 𝐮0 + 𝐮b, 𝜑 = 𝜑0 + 𝜑b, (35)

where 𝐮0, 𝜑0 satisfy “homogeneous” boundary mechanical and electric conditions

and 𝐮b, 𝜑b are the given functions satisfying the inhomogeneous boundary condi-

tions, i.e.

𝐮0 = 0, 𝐮b = 𝐮
𝛤
, 𝐱 ∈ 𝛤u, (36)

𝜑0 = 𝛷 0j, 𝜑b = 𝛷 bj, 𝛷 j = 𝛷 0j +𝛷 bj, 𝐱 ∈ 𝛤
𝜑j, j ∈ JQ, (37)
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𝜑0 = 0, 𝜑b = Vj, 𝐱 ∈ 𝛤
𝜑j, j ∈ JV . (38)

Using (35), we can modify the system (23) and (24) into the form

𝜌(𝐯, �̈�0) + d(𝐯, �̇�0) + c(𝐯,𝐮0) + eu(𝜑0, 𝐯) = L u(𝐯), (39)

− e
𝜑
(𝜒,𝐮0 + 𝜁d�̇�0) + 𝜅(𝜒, 𝜑0) = L

𝜑
(𝜒), (40)

where

Lu(𝐯) = L̃u(𝐯) − 𝜌(𝐯, �̈�b) − d(𝐯, �̇�b) − c(𝐯,𝐮b) − eu(𝜑b, 𝐯), (41)

L
𝜑
(𝜒) = L̃

𝜑
(𝜒) + 𝜁d

𝜕

𝜕t
L̃
𝜑
(𝜒) + e

𝜑
(𝜒,𝐮b + 𝜁d�̇�b) − 𝜅(𝜒, 𝜑b). (42)

We denote with the Hilbert vector space Hu the closure of the set of vector func-

tions 𝐯 ∈ C1
, satisfying homogeneous principal boundary condition (20), with the

norm generated by bilinear form defined in the first relation (26) and in (28).

We also denote with the Hilbert space H
𝜑

the closure of the set of function 𝜑 ∈
C1

, satisfying boundary condition (21) and (22), in the norm generated by scalar

production from the second relation (26) and (29).

Finally, we introduce the functional spaces Qu = L2(0,T;Hu) and Q
𝜑
= L2(0,T;

H
𝜑
), where for Banach space X with norm ||.||X the space L2(0,T;X) is the space of

class functions t → f (t) from [0,T] into X which satisfy the condition

||f ||2L2(0,T;X) = ∫

T

0
||f ||2X dt < ∞.

Now we can define generalized or weak solution of dynamic problem (1)–(19)

using these functional spaces.

Definition. The functions 𝐮 = 𝐮0 + 𝐮b, 𝐮0 ∈ Qu; 𝜑 = 𝜑0 + 𝜑b, 𝜑0 ∈ Q
𝜑

are the

weak solution of dynamic problem for the piezoelectric body with damping and cou-

pled surface effects, if Eqs. (39) and (40) with (25)–(33), (41) and (42) are satisfied

for ∀t ∈ [0,T]; 𝐯 ∈ Hu, 𝜒 ∈ H
𝜑

, and the initial conditions (34) are also hold.

It is important to mark that after transfer Eqs. (23) and (24) to (39) and (40), we

obtain

e
𝛤𝜎
(𝜑0, 𝐯) = e

𝛤𝜎D(𝜑0, 𝐯) = −
∫
𝛤
𝜎D

𝐄s(𝜑0) ⋅ 𝐞s ∶ 𝜺
s(𝐯) d𝛤 , (43)

e
𝛤D(𝜒,𝐮0) = e

𝛤𝜎D(𝜒,𝐮0) = −
∫
𝛤
𝜎D

𝐄s(𝜒) ⋅ 𝐞s ∶ 𝜺
s(𝐮0) d𝛤 , (44)

where 𝛤
𝜎D = 𝛤

𝜎
∩ 𝛤D, as far as 𝐄s(𝜑0) = 0 for 𝐱 ∈ 𝛤

𝜎
⧵ 𝛤

𝜎D, and 𝜺
s(𝐮0) = 0 for

𝐱 ∈ 𝛤D ⧵ 𝛤
𝜎D.
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These equations allow us to obtain later the symmetric systems, because from

(43) and (44) with (27), (30) and (31) it is follow that

eu(𝜑0, 𝐯) = e
𝜑
(𝜑0, 𝐯), e

𝜑
(𝜒,𝐮0) = eu(𝜒,𝐮0).

4 Finite Element Approaches

4.1 Nonstationary Problems

For numerical solving the problems (34), (39) and (40) we will use the finite element

method. Let 𝛺h be the region of the corresponding finite element mesh: 𝛺h ⊂ 𝛺,

𝛺h = ∪k𝛺ek, where 𝛺ek is a separate volume or surface finite element with number

k. On this mesh we shall find the approximation to the weak solution {𝐮0h ≈ 𝐮0,

𝜑0h ≈ 𝜑0} in the form

𝐮h(𝐱, t) = 𝐍T
u (𝐱) ⋅ 𝐔(t), 𝜑h(𝐱, t) = 𝐍T

𝜑
(𝐱) ⋅𝜱(t), (45)

where 𝐍T
is the matrix of the shape functions for displacements, 𝐍T

𝜑
is the row vector

of the shape functions for electric potential, 𝐔(t), 𝜱(t) are the global vectors of nodal

displacements, electric potential and magnetic potential, respectively.

We represent the projecting functions 𝐯 and 𝜒 in finite-dimensional spaces by the

formulae

𝐯T = 𝛿𝐔T ⋅ 𝐍u(𝐱), 𝜒 = 𝐍T
𝜑
⋅ 𝛿𝜱 = 𝛿𝜱

T ⋅ 𝐍
𝜑
, (46)

Note that we can use the same nodal degrees of freedom and the shape functions

for volume and surface elements, or rather, in accordance with (9) we will consider

the surface shape functions for displacements as a reduction of volume shape func-

tion on the surface elements by formula 𝐍sT
u = 𝐀 ⋅ 𝐍T

u , and 𝐍s
𝜑
= 𝐍

𝜑
.

Substituting (45) and (46) into the problem (39) and (40) with (25)–(33), (41)

and (42) for 𝛺h, 𝛤h = 𝜕𝛺h, 𝛤
𝜎h, 𝛤Dh, 𝛤

𝜎Dh, we obtain the finite element system of

ordinary differential equations with respect to time

𝐌uu ⋅ �̈� + 𝐂uu ⋅ �̇� +𝐊uu ⋅ 𝐔 +𝐊u𝜑 ⋅𝜱 = 𝐅u, (47)

−𝐊∗
u𝜑 ⋅ (𝐔 + 𝜁d�̇�) +𝐊

𝜑𝜑
⋅𝜱 = 𝐅

𝜑
, (48)

with the initial conditions

𝐔(0) = 𝐔∗, �̇�(0) = 𝐑∗, (49)

which are derived from the corresponding initial conditions (19) or (34).
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Here,

𝐌uu =
∫
𝛺h

𝜌𝐍u ⋅ 𝐍T
u d𝛺, 𝐂uu = 𝛼d𝐌uu + 𝛽d𝐊uu, (50)

𝐊uu = 𝐊
𝛺uu +𝐊

𝛤uu, 𝐊u𝜑 = 𝐊
𝛺u𝜑 +𝐊

𝛤u𝜑, 𝐊
𝜑𝜑

= 𝐊
𝛺𝜑𝜑

+𝐊
𝛤𝜑𝜑

, (51)

𝐊
𝛺uu =

∫
𝛺h

𝐁T
u ⋅ 𝐜 ⋅ 𝐁u d𝛺, 𝐊

𝛤uu =
∫
𝛤
𝜎h

𝐁sT
u ⋅ 𝐜s ⋅ 𝐁s

u d𝛤 , (52)

𝐊
𝛺u𝜑 =

∫
𝛺h

𝐁T
u ⋅ 𝐞T ⋅ 𝐁

𝜑
d𝛺, 𝐊

𝛤u𝜑 =
∫
𝛤
𝜎Dh

𝐁sT
u ⋅ 𝐞sT ⋅ 𝐁s

𝜑
d𝛤 , (53)

𝐊
𝛺𝜑𝜑

=
∫
𝛺h

𝐁T
𝜑
⋅ 𝜿 ⋅ 𝐁

𝜑
d𝛺, 𝐊

𝛤𝜑𝜑
=
∫
𝛤Dh

𝐁sT
𝜑
⋅ 𝜿s ⋅ 𝐁s

𝜑
d𝛤 , (54)

𝐁(s)
u = 𝐋(∇(s)) ⋅ 𝐍(s)T

u , 𝐁(s)
𝜑

= ∇𝐍(s)T
𝜑

, 𝐋T (∇(s)) =
⎡
⎢
⎢⎣

𝜕
(s)
1 0 0 0 𝜕

(s)
3 𝜕

(s)
2

0 𝜕
(s)
2 0 𝜕

(s)
3 0 𝜕

(s)
1

0 0 𝜕
(s)
3 𝜕

(s)
2 𝜕

(s)
1 0

⎤
⎥
⎥⎦
.

(55)

The vectors 𝐅u, 𝐅
𝜑

in (47) and (48) are obtained from the corresponding right

parts of the weak statements (39) and (40) with (25)–(33), (41) and (42) and the

finite element representations (46).

In (52)–(54) we use vector-matrix forms for the moduli [4]: 𝐜(s) is the 6× 6

matrix of elastic moduli, c(s)
𝛼𝛽

= c(s)ijkl; 𝛼, 𝛽 = 1,… , 6; i, j, k, l = 1, 2, 3 with the corre-

spondence law 𝛼 ↔ (ij), 𝛽 ↔ (kl), 1 ↔ (11), 2 ↔ (22), 3 ↔ (33), 4 ↔ (23) = (32),
5 ↔ (13) = (31), 6 ↔ (12) = (21); 𝐞(s) is the 3× 6 matrix of piezoelectric moduli

(e(s)i𝛽 = e(s)ikl).
We note that in (50)–(54) the matrices of mass and stiffness 𝐌uu, 𝐊

𝛺uu, and nodal

mechanical force vector 𝐅u are formed in the same way as for purely elastic body, and

the matrices 𝐊
𝛺u𝜑, 𝐊

𝛺𝜑𝜑
and nodal electric force vector 𝐅

𝜑
are identical to the cor-

responding matrices and vector for piezoelectric bodies. The matrices 𝐊
𝛤uu, 𝐊

𝛤u𝜑
and 𝐊

𝛤𝜑𝜑
are defined by the surface mechanical, piezoelectric and dielectric effects.

The matrix 𝐊
𝛤uu is analogous to the stiffness matrix for surface elastic membranes

and the matrix 𝐊
𝛤𝜑𝜑

is the matrix of dielectric permittivities for surface dielectric

films. Hence, for implementing the finite element piezoelectric analysis for the bod-

ies with surface effects it is necessary to have surface piezoelectric elements with

structural membrane option along with ordinary solid piezoelectric finite elements.

4.2 Static Problems

In the case of static problems all dependencies on time t are absent, and the finite

element system (47) and (48) reduces to the form
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𝐊 ⋅ 𝐚 = 𝐅, (56)

where

𝐊 =
[
𝐊uu 𝐊u𝜑
𝐊T

u𝜑 −𝐊
𝜑𝜑

]
, 𝐚 =

[
𝐔
𝜱

]
, 𝐅 =

[
𝐅u
−𝐅

𝜑

]
. (57)

The matrix𝐊 in (56) and (57) is symmetric and quasi-definite. Thus, problem (56)

possesses the main calculating properties of finite element matrices for the theory of

piezoelectricity, and therefore it can be solved by the same effective algorithms as

the analogous problems for ordinary piezoelectric media. For example, we can use

the set of algorithms for finite element analysis with symmetric and quasi-definite

matrices represented in ACELAN package [26, 29]: the degree of freedom rotations,

boundary condition settings, LDLT -factorization or Cholesky method for solving the

system of linear algebraic equations, and others.

4.3 Steady-State Oscillation Problems

When all external loads and degree of freedom constraints vary with the same har-

monic law exp [j𝜔t], i.e. 𝐅u = �̃�u exp [j𝜔t], 𝐅𝜑
= �̃�

𝜑
exp [j𝜔t], we have the behav-

ior of steady-state or harmonic oscillations (𝐚 = �̃� exp [j𝜔t], 𝐔 = �̃� exp [j𝜔t], 𝜱 =
�̃� exp [j𝜔t]). In this case, as it is obvious from (47) and (48), we have a system of

linear algebraic equations (56) for the amplitude values �̃� with

𝐊 =
[
−𝜔2𝐌uu + j𝜔𝐂uu +𝐊uu 𝐊u𝜑

𝐊T
u𝜑 −𝜇𝐊

𝜑𝜑

]
, �̃� =

[
�̃�
�̃�

]
, �̃� =

[
�̃�u

−𝜇�̃�
𝜑

]
, (58)

where 𝜇 = (1 + j𝜔𝜁d)−1.
Then, the well-known algorithm for large symmetric complex matrices can be

applied for solution of Eq. (56) with (58).

4.4 Modal Problems

We can find the resonance frequencies fk = 𝜔k∕(2𝜋) for nanosized piezoelectric body

using the finite element approaches from the solution of the generalized eigenvalue

problem, obtained from (56) and (58) with 𝐂uu = 0, 𝜁d = 0, �̃� = 0, given by

𝐊uu ⋅ �̃� +𝐊u𝜑 ⋅ �̃� = 𝜔
2𝐌uu ⋅ �̃�, (59)

−𝐊T
u𝜑 ⋅ �̃� +𝐊

𝜑𝜑
⋅ �̃� = 0. (60)
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Eigenvalue problem (59) and (60) can be represented in the more compact form

𝐊uu ⋅ �̃� = 𝜔
2𝐌uu ⋅ �̃�, (61)

where

𝐊uu = 𝐊uu +𝐊u𝜑 ⋅𝐊−1
𝜑𝜑

⋅𝐊T
u𝜑, �̃� = 𝐊−1

𝜑𝜑
⋅𝐊T

u𝜑 ⋅ �̃�. (62)

By virtue of positive definiteness of the intrinsic bulk and surface energies, the

generalized stiffness matrix 𝐊uu is nonnegative definite (𝐊uu ≥ 0), and mass matrix

𝐌uu is positive definite (𝐌uu > 0), because 𝜌(𝐱) ≥ 𝜌0 > 0. Then, by analogy with the

classical eigenvalue problems for elastic body of usual size, the eigenvalues 𝜆k = 𝜔
2
k

(k = 1, 2,… , n; n is the order of matrices 𝐊uu and 𝐌uu) are real and non-negative.

The eigenvectors, corresponding to them, which we will denote by 𝐖k = �̃�k, form

basis inRn
. The system of these eigenvectors can be chosen orthonormal with respect

to the mass matrix 𝐌uu and orthogonal with respect to the generalized stiffness

matrix 𝐊uu

⟨𝐖k, 𝐖m⟩ = 𝐖T
k ⋅𝐌uu ⋅𝐖m = 𝛿km, 𝐖T

k ⋅𝐊uu ⋅𝐖m = 𝜔
2
m𝛿km. (63)

Thus, the coupled eigenvalue problems (59) and (60) with respect to the triple

of unknowns {𝜔, �̃�, �̃�} are the generalized eigenvalue problems (61) and (62) with

respect to the pairs {𝜔, �̃�}.

4.5 Mode Superposition Method for Steady-State Oscillation
Problems

In the case of harmonic problem with 𝛽d = 𝜁d on solution of Eq. (56) with (58), we

obtain

(−𝜔2 𝐌uu + j𝜔𝐂uu +𝐊uu) ⋅ �̃� = 𝐅u, (64)

𝐂uu = 𝛼d𝐌uu + 𝛽d𝐊uu, 𝐅u = �̃�u −𝐊u𝜑 ⋅ �̃�st, (65)

�̃� = �̃�st + (1 + j𝜔𝛽d)𝐊−1
𝜑𝜑

⋅𝐊T
u𝜑 ⋅ �̃�, �̃�st = 𝐊−1

𝜑𝜑
⋅ �̃�

𝜑
. (66)

If 𝐮
𝛤
= 0 in (12), we will find the solution of problem (64) in the form of an

expansion in eigenvectors (modes) 𝐖k of eigenvalue problem (61) with the same

homogeneous principal mechanical boundary conditions

�̃� =
n∑

k=1
z k𝐖k. (67)



Mathematical Models and Finite Element Approaches . . . 13

Substituting (67) into (64) and multiplying the obtained equation scalarly by 𝐖∗
m

and taking into account the orthogonality relations (63) and (65), we obtain

z k =
1

𝜔
2
k − 𝜔2 + 2j𝜉k𝜔k𝜔

Pk, Pk = 𝐖T
k ⋅ 𝐅u, 𝜉k = 𝛼d

1
2𝜔k

+ 𝛽d
𝜔k

2
. (68)

Thus, using the method of mode superposition, the solutions of the harmonic

problems are determined by (66)–(68).

The advantages and disadvantages of the mode-expansion method are well known

from experience of solving problems of structural analysis. Consequently, an impor-

tant advantage of the method is the possibility of a direct determination of the

damping coefficient 𝜉k of the individual modes without using the last formula from

(68). These factors can be specified from the experimentally measured value of

the coupled mechanical and electric quality factor Qk of the mode with number k:

𝜉k = 1∕(2Qk).

4.6 Mode Superposition Method for Nonstationary Problems

For transient problems with homogeneous principal boundary conditions and 𝛽d =
𝜁d we can also apply the method of mode superposition. Having solved Eq. (48) for

𝜱 and converted Eq. (47), we obtain

𝐌uu ⋅ �̈� + 𝐂uu ⋅ �̇� +𝐊uu ⋅ 𝐔 = 𝐅u −𝐊u𝜑 ⋅𝜱qst, (69)

𝜱 = 𝜱qst +𝐊−1
𝜑𝜑

⋅𝐊T
u𝜑 ⋅ (𝐔 + 𝛽d�̇�), (70)

where 𝜱qst is determined from the separate quasistatic problem

𝜱qst = 𝐊−1
𝜑𝜑

⋅ 𝐅
𝜑
. (71)

We will find the solution 𝐔 of problem (69) in the form of an expansion in modes

(67), where z k = z k(t). Substituting this expansion into Eq. (69), multiplying the

resulting equality scalarly by 𝐖T
m, and using the orthogonality relation (63), we

derive scalar differential equations for the individual functions z k(t). Solving these

equations with corresponding initial conditions, we obtain

z k =
1
𝜔k ∫

t

0
Pk(𝜏)e−𝜉k𝜔k(t−𝜏) sin[𝜔k(t − 𝜏)] d𝜏 + Ak(0)e−𝜉k𝜔kt sin(𝜔kt + 𝛿k), (72)

Pk = 𝐖T
k ⋅ (𝐅u −𝐊u𝜑 ⋅𝜱qst), 𝜔k = 𝜔k

√
1 − 𝜉

2
k , (73)
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Ak(0) =

√√√√z2k(0) +
(ż k(0) + 𝜉k𝜔kz k(0))2

𝜔
2
k

, 𝛿k = arctg
z k(0)𝜔k

ż k(0) + 𝜉k𝜔kz k(0)
, (74)

z k(0) = 𝐖T
k ⋅𝐌uu ⋅ 𝐔∗, ż k(0) = 𝐖T

k ⋅𝐌uu ⋅ 𝐑∗. (75)

Hence, using mode superposition method, the solution of problem (47) and (48)

with homogeneous principal mechanical boundary conditions and 𝛽d = 𝜁d is given

by (67) and (72)–(75) for 𝐔 and by (70) and (71) for 𝜱.

4.7 The Newmark Scheme for Solving Non-stationary
Problems

The mode superposition method requires the equality of the damping parameters for

different media and the homogeneity of the principal boundary conditions. Methods

of direct integration with respect to time are more general. We will use the New-

mark method for integrating Cauchy problem (47)–(49) in a formulation in which

the velocities and accelerations in the time layers are not explicitly given [50].

This variant of the Newmark scheme base on the average expressions on time

layer ti for the vector functions 𝐚i = 𝐚(ti), 𝐚 = {𝐔,𝜱} and its derivatives (ti = i𝜏,

𝜏 = 𝛥t is the constant time step size)

𝐚i ≈ 𝛽𝐚j+1 + 𝛽1𝐚j + 𝛽2𝐚j−1, (76)

�̇�i ≈ (𝛾𝐚i+1 + 𝛾1𝐚i + 𝛾2𝐚i−1)∕𝜏, (77)

�̈�i ≈ (𝐚i+1 − 2𝐚i + 𝐚i−1)∕𝜏2, (78)

where 𝛽1 = 1∕2 + 𝛾 − 2𝛽, 𝛽2 = 1∕2 − 𝛾 + 𝛽, 𝛾1 = 1 − 2𝛾 , 𝛾2 = 𝛾 − 1, 𝛽 and 𝛾 are

the parameters of the Newmark method.

Writing Eqs. (47) and (48) for the time layer ti, and using representations (76)–

(78), we obtain the system of linear equations for 𝐚i+1, if we count the known values

at the previous time layers ti and ti−1

𝐊eff ⋅ 𝐚i+1 = 𝐅eff
i+1(𝐚i, 𝐚i−1), (79)

where

𝐊eff =
[
𝐊eff

uu 𝐊u𝜑
𝐊T

u𝜑 −𝜆𝐊
𝜑𝜑

]
, 𝐚i+1 =

[
𝐔i+1
𝜱i+1

]
, 𝐅eff =

[ 𝐅eff
u,i+1

−𝐅eff
𝜑,i+1

]
, (80)
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𝐊eff
uu = 𝐊uu +

𝛾

𝛽𝜏
𝐂uu +

1
𝛽𝜏2

𝐌uu, 𝜆 = (1 +
𝜁d𝛾

𝛽𝜏
)−1, (81)

𝐅eff
u,i+1 = 𝐅u,i+1 +

𝛽1
𝛽
𝐅u,i +

𝛽2
𝛽
𝐅u,i−1 − (

𝛽1
𝛽
𝐊uu +

𝛾1
𝛽𝜏

𝐂uu −
2
𝛽𝜏2

𝐌uu) ⋅ 𝐔i − (82)

−(
𝛽2
𝛽
𝐊uu +

𝛾2
𝛽𝜏

𝐂uu +
1
𝛽𝜏2

𝐌uu) ⋅ 𝐔i−1 −
𝛽1
𝛽
𝐊uu ⋅𝜱i −

𝛽2
𝛽
𝐊uu ⋅𝜱i−1,

𝐅eff
𝜑,i+1 = 𝜆𝐅

𝜑,i+1 +
𝜆𝛽1
𝛽

𝐅
𝜑,i +

𝜆𝛽2
𝛽

𝐅
𝜑,i−1 +

𝜆(𝛽1 + 𝜁d𝛾1)
𝛽𝜏

𝐊T
u𝜑 ⋅ 𝐔i + (83)

+
𝜆(𝛽2 + 𝜁d𝛾2)

𝛽𝜏
𝐊T

u𝜑 ⋅ 𝐔i−1 −
𝜆𝛽1
𝛽

𝐊T
𝜑𝜑

⋅𝜱i −
𝜆𝛽2
𝛽

𝐊T
𝜑𝜑

⋅𝜱i−1.

The matrix 𝐊eff
can be factorized using the LDLT–factorization method, and only

the systems of linear algebraic equations with lower and upper triangular matrices

can be solved in each time layer.

Note that the Newmark scheme is absolutely stable when 𝛽 ≥ (1∕2 + 𝛾)2∕4;

𝛾 ≥ 1∕2, and, when 𝛽 ≥ 1∕4; 𝛾 = 1∕2, it does not have an approximation viscosity

[50]. The Newmark scheme in form (79)–(83) does not explicitly use velocities and

accelerations, and this makes it preferable in the case of the transient problems for

piezoelectric nanosized solids with account for coupled damping and surface effects.

5 Concluding Remarks

Thus, we have proposed a new model that describes the behavior of the piezoelec-

tric materials, taking into account the damping properties and surface effects at the

nanoscale.

The novelty of the model consists in taking into account the volumetric and sur-

face damping properties, as well as coupled surface material phenomena which are

important at the nanoscale. To describe the size effects, we use recently popular

theory of surface stresses and its generalization to piezoelectric media. Under this

generalization, we also consider the coupled surface mechanical and electric fields.

Other new feature is the account for the damping properties in the sense of a gen-

eralization of the conventional for the structural analysis Rayleigh damping method

for the coupled mechanical and electric fields. We also added the terms, describing

the attenuation, in the constitutive equations for the surface mechanic and electric

fields. When taking the coupled damping into account, the basic idea was that the

method of mode superposition can be applied for transient and harmonic problems

for piezoelectric bodies at the nanoscale.

After the initial-boundary value problem setting for the piezoelectric nanosized

bodies, we have obtained a weak or generalized formulation of this problem in terms
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of energy functional spaces. We note that the basic mathematical properties of this

problem are quite close to the particular case of the relevant problems for piezoelec-

tric media with uncoupled surface effects. Therefore, most of the previously estab-

lished results, valid for piezoelectric media with uncoupled surface effects, can be

extended to the more general case of piezoelectric media with coupled surface piezo-

electric effects.

In order to solve the formulated problems numerically, we use the finite element

approaches. Based on the weak formulations of the problems, we derive the finite ele-

ment equations for transient, harmonic, modal and static problems for piezoelectric

media with coupled surface effects. As we can see from the finite element systems,

the account for the surface mechanical, piezoelectric and electrical effects gives

the additional components in the stiffness, piezoelectric and permittivity matrices.

Therefore, for the computer analysis of nanoscale piezoelectric bodies one can use

the well-known finite element software with added surface piezoelectric elements

with membrane option.

We also demonstrated that for the dynamic problems our models with the same

damping coefficients allow to use the method of mode superposition which is effi-

cient tool for the analysis of the influence of individual modes and for the analysis

of the same model under various external loads. In the cases of transient and sta-

tic problems, we showed that the resulting finite element systems have symmetric

quasi-definite matrices typical for problems with a saddle point.
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On the Theory of Acoustic Metamaterials
with a Triple-Periodic System of Interior
Obstacles

M.A. Sumbatyan and M.Yu. Remizov

Abstract The paper is devoted to the calculation of the reflection and the transmis-

sion coefficients, when a plane longitudinal wave is incident on a three-dimensional

grating with a periodic array of rectangular cracks in the elastic material. In the

one-mode frequency range the problem is reduced to a system of integral equations,

which can be solved for various sizes of the cracks to give an explicit representation

for the wave field inside the cracked structure, as well as the values of the reflection

and the transmission coefficients.

Keywords Acoustic metamaterials ⋅ Periodic system of obstacles ⋅ Integral equa-

tion ⋅ Hypersingular kernel ⋅ Reflection coefficient ⋅ Transmission coefficient

1 Introduction

The study of elastic waves penetration through periodic gratings is an important sub-

ject in many practical applications in the field of mechanical, acoustical and electro-

magnetic sciences. In practice, analytical results can be obtained under assumption

of low frequency with a weak interaction regime, where some approximated results

can be established in an analytical form [1, 3, 5, 15].

The papers of Scarpetta, Sumbatyan and Tibullo [11–14] provide explicit analyt-

ical formulas for reflection and transmission coefficients in the one-mode case for

acoustic waves penetrating through a doubly and triple-periodic arrays of arbitrary-

shaped apertures and volumetric obstacles in wave propagation through a periodic

array of screens in elastic solids.
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In the previous paper we studied the 3-D normal penetration of an elastic wave

into a plane screen with an infinite doubly periodic system of cracks [7] with a

one-mode frequency assumption. Earlier, the problems of high-frequency diffrac-

tion processes by cracks in an elastic material were analyzed in [8–10].

The present work continues to study the 3-D problem for the couple of such plane

screens what forms a triple-periodic system. As shown in [7], the qualitative prop-

erties of such a geometrical structure are analogous to that in the in-plane problem.

Thus, as a particular case, we study here the two arrays with a periodic system of

cracks in each of them. The wave process is harmonic in time and all physical quan-

tities contain the factor e−i𝜔t, which is further omitted, for the sake of brevity. In the

same way as in [7] the following assumption is accepted: (a) only one-mode propa-

gation (with normal incidence) is considered, ak2 < 𝜋, where 2a is a period of the

grating, k2 is the transverse wave number; (b) the vertical cracked planes are suffi-

ciently distant from each other so that the ratio D∕a is comparatively large, where D
is the distance between the two arrays.

The aim of the present work is to generalize the results obtained before extending

explicit analytical expressions for the reflection and transmission coefficients for the

system of parallel plane screens (using the properties of the kernel of a hyper-singular

integral equation) based on the context of the in-plane problem for wave propagation

through elastic solids with a periodic array of cracks.

The obtained results are meaningful in the aspect of the so-called “acoustic mate-

rials” which become nowadays an important component of the modern technology.

The acoustic properties of such materials are prescribed not by the physical substance

they are made from, but by their internal structure. Among other helpful properties

of these materials, we note the cutoff of the transmitted acoustic energy on certain

frequency intervals, i.e. they work as acoustic filters. Typically, this is attained for

a certain periodic internal structure, like a triple-periodic system of relatively rigid

spheres embedded in the epoxy matrix [4]. The results of the present study show that

such a cutoff is an intrinsic feature caused even by simpler kinds of the periodicity.

For example, in some sense this can be attained even in the 2D problem with a pair of

parallel arrays, each of them containing a periodic linear system of coplanar cracks.

2 Mathematical Formulation of the Problem

Let us consider an unbounded (two-dimensional) elastic medium, which consists of

2 identical periodic systems of cracks, located at x = 0,D with the period 2a along

axes y, while the size of each crack is 2b. The distance between the systems of cracks,

forming the second period is D. If we study the incidence of a plane longitudinal

wave upon the grating along the positive direction of axis x, then the problem is

obviously equivalent (due to a symmetry) to a single waveguide of width 2a along

axis y, see Fig. 1. Hence, if the incident wave of a unit amplitude is assumed to

propagate normally to the planes along axis x, then the Lamè potentials in the various

regions, satisfying the Helmholtz equation, are:
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Fig. 1 Propagation of the longitudinal incident wave through a pair of the periodic arrays of cracks

𝜑
l = eik1x + Re−ik1x +

∞∑

n=1
Aneqnx cos

(
𝜋ny
a

)
,

𝜓
l =

∞∑

n=1
B1
ne

rnx sin
(
𝜋ny
a

)
, x < 0 (1a)

𝜑
1 = eik1x + F1

0 cos[k1x] + H1
0 cos[k1(x − D)]+

+
∞∑

n=1

{
F1
nch[qnx] + H1

nch[qn(x − D)]
}
cos

(
𝜋ny
a

)
,

𝜓
1 =

∞∑

n=1

{
G1

nch[rnx] + P1
nch[qn(x − D)]

}
sin

(
𝜋ny
a

)
, 0 < x < D, (1b)

𝜑
r = Teik1(x−D) +

∞∑

n=1
Cne−qn(x−D) cos

(
𝜋ny
a

)
,

𝜓
r =

∞∑

n=1
Dne−rn(x−D) sin

(
𝜋ny
a

)
, x > D. (1c)
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All capital letters are some unknown constants and

qn =
(
a2n − k21

)1∕2
, rn =

(
a2n − k22

)1∕2
, an =

𝜋n
a

(2)

where k1, k2 are the longitudinal and the transverse wave numbers, c1,
c2—corresponding wave speeds in the elastic material, R and T are the reflection

and the transmission coefficients, respectively. Let the consideration be restricted to

the one-mode case: 0 < k2a < 𝜋, then qn > 0, rn > 0 for all n = 1, 2,… . Besides,

we assume that the cracks arrays are sufficiently distant from each other, this involves

D∕a ≫ 1. For n = 0 q0 = −ik1 and r0 = −ik2, according to the radiation condition.

The components of the stress tensor can be expressed in terms of the Lamè wave

potentials, two of them are represented in the following form:

𝜎xx = −c21k
2
1𝜑 − 2c22

(
𝜕
2
𝜑

𝜕y2
− 𝜕

2
𝜓

𝜕y𝜕x

)
, 𝜎xy = c22

(
2 𝜕

2
𝜑

𝜕x𝜕y
− 𝜕

2
𝜓

𝜕x2
+ 𝜕

2
𝜓

𝜕y2

)
. (3)

The displacement field 𝐮 ≡ (ux, uy) is given by a representation of the Green-Lamè

type, as follows:

ux =
𝜕𝜑

𝜕x
+ 𝜕𝜓

𝜕y
; uy =

𝜕𝜑

𝜕y
− 𝜕𝜓

𝜕x
. (4)

In the considered structure, a longitudinal plane wave of the form

𝜑0 = eik1x, 𝜓0 = 0 (5)

is entering from x = −∞, generating the scattered fields before the first array (x < 0)
between the two of them (0 < x < D), and after the second one (x > D).

Due to the natural periodicity in the vertical direction, let us restrict the consider-

ation by the one cell |y| < a only. Accepting the continuity of the displacement field

outside the cracks at each vertical periodic system, let us introduce the following

unknown functions g(s)x (y), g(s)y (y), s = 1, 2 by

x = 0 ∶ ulx − u1x =
{

g1x(y); |y| < b,
0; b < |y| < a, (6a)

x = 0 ∶ uly − u1y =
{

g1y(y); |y| < b,
0; b < |y| < a, (6b)

x = D ∶ u1x − urx =
{

g2x(y); |y| < b,
0; b < |y| < a, (6c)

x = D ∶ u1y − ury =
{

g2y(y); |y| < b,
0; b < |y| < a. (6d)

Now Eqs. (4), (6) can be used to represent expressions for all constants appearing in

potentials (1) in terms of gx(y), gy(y). By integration of (6) over the domains |y| < a,
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one obtains

−ik1R − H1
0k1 sin(k1D) =

1
2a

b

∫

−b

g1x(𝜂)d𝜂, (7a)

−F1
0k1 sin(k1D) + ik1eik1D − ik1T = 1

2a

b

∫

−b

g2x(𝜂)d𝜂. (7b)

The orthogonality of the trigonometric functions reduces Eq. (6) to the following

relations:

(An + H1
nsh(qnD))qn+ (Bn− P1

nch(rnD))an =
1
a

b

∫

−b

g1x(𝜂) cos(an𝜂)d𝜂, (8a)

(−An + H1
nch(qnD))an− (Bn+ P1

nsh(rnD))rn =
1
a

b

∫

−b

g1y(𝜂) sin(an𝜂)d𝜂, (8b)

(Cn + F1
nsh(qnD))qn− (Dn− G1

nch(rnD))an =
1
a

b

∫

−b

g2x(𝜂) cos(an𝜂)d𝜂, (8c)

(Cn − F1
nch(qnD))an− (Dn+ G1

nsh(rnD))rn =
1
a

b

∫

−b

g2y(𝜂) sin(an𝜂)d𝜂. (8d)

When crossing each of the two arrays, x = 0 and x = D, one can see that the nor-

mal stresses on crack’s left and right faces are equal due to the boundary conditions,

and outside crack’s domain—due to continuity of the stress. This implies the conti-

nuity of the stress field for arbitrary y:

𝜎
l
xx = 𝜎

1
xx, 𝜎

l
xy = 𝜎

1
xy, x = 0, |y| < a, (9a)

𝜎
1
xx = 𝜎

r
xx, 𝜎

1
xy = 𝜎

r
xy, x = D, |y| < a. (9b)

This leads to the following relations:

−k22[F
1
0 + H1

0 cos(k1D) − R] −
∞∑
n=1

{k22[H
1
nch(qnD) − An]−

−2a2n[H
1
nch(qnD) − An] + 2anrn[P1

nsh(rnD) + Bn]} cos(any) = 0,
(10a)

∞∑
n=1

{2anqn[H1
nsh(qnD) + An] − r2n[P

1
nch(rnD) − Bn]−

−a2n[P
1
nch(rnD) − Bn]} sin(any) = 0,

(10b)
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−k22[F
1
0 cos(k1D) + H1

0 + eik1D − T] −
∞∑
n=1

{k22[F
1
nch(qnD) − Cn]−

−2a2n[F
1
nch(qnD) − Cn] − 2anrn[G1

nsh(rnD) + Dn]} cos(any) = 0,
(10c)

−
∞∑
n=1

{2anqn[F1
nsh(qnD) + Cn] + r2n[G

1
nch(rnD) − Dn]+

+a2n[G
1
nch(rnD) − Dn]} sin(any) = 0.

(10d)

Now Eq. (8) together with the relations obtained from (10), with the use of the

orthogonality of the trigonometric functions, form the following systems of linear

algebraic equations for x = 0,D:

𝛾0E2 − 2c22anrnE3 = 0,
−anE2 − rnE3 = G1

y ,
(11a)

qnE1 + anE4 = G1
x ,

−2anqnE1 − (r2n + a2n)E4 = 0, (11b)

qnE5 + anE8 = G2
x ,

−2anqnE5 − (r2n + a2n)E8 = 0, (11c)

−anE6 − rnE7 = G2
y ,

𝛾0E6 − 2c22anrnE7 = 0, (11d)

where

G1,2
x = 1

a

b

∫

−b

g1,2x (𝜂) cos(an𝜂)d𝜂, G1,2
y = 1

a

b

∫

−b

g1,2y (𝜂) sin(an𝜂)d𝜂,

𝛾0 = c21k
2
1 − 2c22a

2
n

and the new unknown quantities Em,m = 1,… , 8 are defined as follows:

E1 = H1
nsh(qnD) + An, E2 = −H1

nsh(qnD) + An,

E3 = P1
nsh(rnD) + Bn, E4 = −P1

nch(rnD) + Bn,

E5 = F1
nsh(qnD) + Cn, E6 = F1

nch(qnD) − Cn,

E7 = G1
nsh(rnD) + Dn, E8 = G1

nch(rnD) − Dn.
(12)

Once the solutions for both the systems (x = 0 and x = D) are constructed, one

can easily find the eight unknown constants in the following form:
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An = −
r2n + a2n
2k22qn

G1
x −

an
k22

G1
y , Bn =

an
k22

G1
x −

𝛾0

2k21c
2
1rn

G1
y ,

H1
n = 1

2sh(qnD)

(
−
r2n + a2n
k22qn

G1
x +

2an
k22

G1
y

)
,

P1
n =

1
2sh(rnD)

(
−
2an
k22

G1
x −

𝛾0

k21c
2
1rn

G1
y

)
,

F1
n =

1
2sh(qnD)

(
−
r2n + a2n
k22qn

G2
x −

2an
k22

G2
y

)
,

G1
n =

1
2sh(rnD)

(
2an
k22

G2
x −

𝛾0

k21c
2
1rn

G2
y

)
,

Cn = −
r2n + a2n
2k22qn

G2
x +

an
k22

G2
y , Dn = −

an
k22

G2
x −

𝛾0

2k21c
2
1rn

G2
y , (13)

By integration of Eq. (10) over domain |y| < a, together with relations (7), one

obtains the remaining unknown constants F1
0 ,H

1
0 ,R,T from the following algebraic

system:

⎛
⎜
⎜
⎜⎝

0 −k1 sin(k1D) −ik1 0 J1
−k1 sin(k1D) 0 0 −ik1 J2 − ik1eik1D

1 cos(k1D) −1 0 0
cos(k1D) 1 0 −1 −eik1D

⎞
⎟
⎟
⎟⎠

, (14)

where we put

J1,2 =
1
2a

a

∫
−a

g1,2x (𝜂)d𝜂. (15)

The solution to system (14) is given as follows:

F1
0 =

J1eik1D

2k1 sin(k1D)
−

J2
2k1 sin(k1D)

, H1
0 = −

J1
2k1 sin(k1D)

+
J2eik1D

2k1 sin(k1D)
,

R = −
J1
2ik1

−
J2eik1D

2ik1
, T = −

J1eik1D

2ik1
−

J2
2ik1

+ eik1D. (16)
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It can easily be shown from the previous equations that the two unknown func-

tions g1,2y are trivial: g1,2y (y) ≡ 0. Omitting some routine mathematical transforma-

tions with the assumptions (a), (b) of Sect. 1, from the equations

𝜎
l
xx + 𝜎

1
xx = 0, (x = 0, |y| < b), 𝜎

1
xx + 𝜎

r
xx = 0, (x = D, |y| < b), (17)

one finally obtains the following system of two integral equations for the unknown

functions g1,2x (y), holding over the crack |y| < b:

1
2a

b

∫

−b

g1x(𝜂)
{

1
2ik1

− 1
k42

∞∑

n=1

Rn

qn
cos

[
an(y − 𝜂)

]}
d𝜂+

+ eik1D
4aik1

b

∫

−b

g2x(𝜂)d𝜂 = 1, (18a)

eik1D
4aik1

b

∫

−b

g1x(𝜂)d𝜂+

+ 1
2a

b

∫

−b

g2x(𝜂)
{

1
2ik1

− 1
k42

∞∑

n=1

Rn

qn
cos

[
an(y − 𝜂)

]}
d𝜂 = eik1D, (18b)

where the numerator in the kernels takes the form of the Rayleigh function

Rn = (2a2n − k22)
2 − 4rnqna2n. (19)

3 The Properties of the Basic Integral Equation

Let us start from the study of the auxiliary integral equation (|y| < b):

1
2ak22

b

∫

−b

h(𝜂)K(y−𝜂)d𝜂 = 1, K(y)=
∞∑

n=1
Ln cos(any), Ln=

Rn

qn
. (20)

Notice that Ln ≈ −2(1 − c22∕c
2
1)an, n → ∞. Hence, the sum defining the kernel can

be transformed as follows:
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K(y − 𝜂) = −2

(
1 −

c22
c21

)∞∑

n=1
an cos[an(y − 𝜂)]+

+
∞∑

n=1

[
Ln+2

(
1 −

c22
c21

)
an

]
cos[an(y − 𝜂)], (21)

∼ K(y − 𝜂) = −2

(
1 −

c22
c21

)
I(y − 𝜂) + Kr(y − 𝜂). (22)

Now the second term in the kernel, Kr, is a certain regular function. The first one

consists of a regular and a singular part: I(y) = Ir(y) + Is(y).
Let us introduce the dimensionless variable ỹ = (y − 𝜂)∕a, then one rewrites:

a
𝜋
I(ỹ) =

∞∑

n=1
n cos(𝜋nỹ). (23)

By using the generalized value of the series in (23), see [6]:

∞∑

n=1
n cos(𝜋nỹ)= lim

𝜀→+0

∞∑

n=1
e−𝜀nn cos(𝜋nỹ) =

=− 1
4 sin2(𝜋ỹ∕2)

,

(
∼ − 1

𝜋2ỹ2
, y → 0

)
(24)

one obtains the kernel of the basic integral equation (21) in the following form:

K(y − 𝜂) = Kr(y − 𝜂) − 2

(
1 −

c22
c21

)
[Ir(y − 𝜂) + Is(y − 𝜂)], (25)

where the singular and the regular parts of I(ỹ) are, respectively:

Is=− a
𝜋(y − 𝜂)2

, Ir =
a

𝜋(y − 𝜂)2
− 𝜋

4a sin2[𝜋(y − 𝜂)∕2a]
. (26)

This results in the following form of the basic integral equation:

1
2ak22

b

∫

−b

h(𝜂)
[
𝛷r(y−𝜂) +

2a(1 − c22∕c
2
1)

𝜋(y − 𝜂)2

]
d𝜂 = 1, |y| < b,
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𝛷r(y − 𝜂) = −2

(
1 −

c22
c21

)
Ir(y − 𝜂) + Kr(y − 𝜂). (27)

The obtained singular behavior of the kernel for small arguments contains a 1D

hyper-singular kernel arising in the theory of cracks, well known in the linear elas-

ticity theory in unbounded media [16].

In order to provide the stability of the numerical treatment in the performed

numerical experiments, we apply a discrete quadrature formulas for the 1D hyper-

singular kernel, known as a “method of discrete vortices” [2]. Transforming the left

part of (27) to a discrete form, one obtains

1
2ak22

N∑

k=1

𝜂k

∫
𝜂k−1

h(𝜂)
[
𝛷r(yl−𝜂) +

2a(1 − c22∕c
2
1)

𝜋(yl − 𝜂)2

]
d𝜂 =

= 1
2ak22

N∑

k=1
h(𝜂k)

[
𝜀1𝛷r(yl−𝜂k) +

𝜂k

∫
𝜂k−1

2a(1 − c22∕c
2
1)

𝜋(yl − 𝜂)2
d(𝜂 − yl)

]
=

1
2ak22

N∑

k=1
h(𝜂k)

[
𝜀1𝛷r(yl−𝜂k) −

2a(1 − c22∕c
2
1)

𝜋(𝜂k − yl)
+

2a(1 − c22∕c
2
1)

𝜋(𝜂k−1 − yl)

]
, (28)

where

𝜂k = −b + k𝜀1, yl = −b +(l −0.5)𝜀1,
l, k = 1,… ,N, 𝜀1 = 2b∕N.

Finally we have the system of algebraic equations with respect to the quantities h(𝜂k):

1
2ak22

N∑

k=1
h(𝜂k)

[
𝜀1𝛷r(yl−𝜂k) −

2a(1 − c22∕c
2
1)

𝜋

(
1

𝜂k − yl
− 1

𝜂k−1 − yl

)]
=1. (29)

Let us give a short description how an efficient treatment of the regular part of

the kernel, function Kr in Eq. (21), can be arranged. This is based on the asymptotic

estimate that the qualitative behavior of the regular kernel is as follows:

Kr(y, z) ∼
∑

n=1

cos(any)
an

, (30)

Of course, this series can be calculated explicitly by using the tables [6]. How-

ever, some problems arise in this case when integrating over the small sub-intervals

(𝜂k−1, 𝜂k) in an explicit form. The simpler alternative way is to apply the explicit

integration just to the series (30) itself:
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𝜂k

∫
𝜂k−1

cos[an(𝜂 − yl)]
an

d𝜂 =
sin[an(𝜂k−yl)]−sin[an(𝜂k−1−yl)]

a2n
. (31)

Note that with such a treatment of the considered particular term of the regular ker-

nel, the factor 𝜀1 in (29) should be omitted in front of this particular term. It can

easily be seen from Eq. (31) that the convergence is rapid enough along the index

n. In practice, few hundred terms are sufficient, to guarantee 1% relative error in all

diagrams demonstrated below.

4 Calculation of the Wave Characteristics

Let us set

H =
b

∫

−b

h(t)dt. (32)

In terms of the even function h(y), we deduce from system (18):

g1x(y) =
{
[1∕(4aik1)]J1 + [eik1D∕[4aik1]]J2 − 1

}
k22h(y, z),

g2x(y) =
{
[1∕(4aik1)]J2 + [eik1D∕[4aik1]]J1 − eik1D

}
k22h(y, z), (33)

where the quantities J1, J2 are defined in Eq. (15).

The integration of Eq. (33) over the segment [−b, b] leads to the following system

of linear algebraic equations for the unknown constants J1, J2:

{
k−22 − H∕(4aik1)

}
J1 −

{
Heik1D∕[4aik1]

}
J2 = −H,

−
{
Heik1D∕[4aik1]

}
J1 +

{
k−22 − H∕(4aik1)

}
J2 = −Heik1D. (34)

Therefore, as soon as system (34) is solved, all necessary constants and the wave

field can be found. In particular, for the reflection and transmission coefficients we

obtain

R = − 1
4aik1

J1 −
eik1D
4aik1

J2,

T = − eik1D
4aik1

J1 −
1

4aik1
J2 + eik1D. (35)
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Fig. 2 Transmission coefficient versus frequency parameter: D = 4.0, line 1—b∕a = 0.15, line

2—b∕a = 0.3, line 3—b∕a = 0.4
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Fig. 3 Reflection coefficient versus crack’s size: D = 4.0, line 1—ak2 = 0.935, line 2—ak2 =
1.870

The explicit expressions for the scattering parameters developed above complete

the semi-analytical approach in the one-mode range. Some examples on the reflec-

tion and transmission coefficients versus frequency parameter, crack’s size, and the

distance between the two vertical arrays, for the elastic media with the wave speeds

ratio c1∕c2 = 1.870, are plotted in Figs. 2, 3, 4 and 5.
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Fig. 4 Reflection coefficient versus distance between the two arrays of periodic systems of cracks:

ak2 = 1.870, line 1—b∕a = 0.15, line 2—b∕a = 0.30, line 3—b∕a = 0.45
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Fig. 5 Reflection coefficient versus frequency parameter: D = 3.0, line 1—b∕a = 0.6, line 2—

b∕a = 0.8, line 3—b∕a = 0.999

5 Conclusions

The obtained results are analyzed on the subject of the cutoff properties of the

acoustic metamaterials possessing an internal periodic geometric structure, as

described in the Introduction.

It is obvious from Fig. 2 that the number of frequency intervals with suppressed

transmission, which is really a certain cutoff, grows with the increasing of the relative

crack’s size. If ak2 and D are fixed, then the reflection coefficient |R| versus relative
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crack’s size b∕amay show various behavior. It is a monotonically increasing function

for ak2 = 0.935, but when ak2 = 1.870 the monotonic character of the diagram takes

place only after the frequency passes a certain critical value, see Fig. 3. If b∕a and

ak2 are fixed, then the behavior of function |R(D)| is always wavy. For all that, the

higher maxima correspond to the higher crack’s length. It means that the strongest

reflection takes place for large cracks; this is quite natural from the physical point of

view, see Fig. 4.

Figure 5 demonstrates that the property of acoustic filters is attained for not only

long cracks, where it is natural, but also for cracks of moderate length. Of course, the

extremely long crack with b∕a = 0.999 shows almost absolute cutoff for almost all

frequencies in the considered one-mode range, which is physically natural. However,

it is also interesting that the middle-size crack with b∕a = 0.6 has a pair of relatively

long frequency intervals where the reflection coefficient approaches the unit value.

And it should also be noted that in the higher frequency part of the one-mode range

with ak2 ≈ 𝜋 the cracks of all demonstrated lengths provide the cutoff. With this

noting, let us outline that longer cracks make this upper cutoff frequency interval

longer too.

It follows from the above discussion that the desired control of the acoustic fil-

tering in the considered grating can be arranged by the appropriate choice of crack’s

length, respective frequency interval, and finally—but the distance between the two

vertical arrays containing periodic systems of cracks.

The method developed in the present work permits efficient treatment of a more

complex wave problem, when the number of vertical arrays containing the studied

periodic system of cracks may be arbitrary but finite. This only requires to solve

an alternative finite-dimensional system of linear algebraic equations, instead of the

2 × 2 system (34). This case will be studied in the authors’ next work.
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Abstract The formation of polymer coating on a solid substrate is investigated by
means of computer simulation (Monte-Carlo method). The sticking coefficient
depending on different factors affecting the adhesion of monomer units is calcu-
lated. Mechanical properties are stimulated on the base of the hybrid
discrete-continuous model, which describes the system consisting of flexible sub-
strate and polymer coating. At different temperatures and intermolecular interac-
tions constants, the dependencies of Young modulus on the deformation degree are
calculated. Ferroelectric properties of the polymer coating depending on frequency
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1 Introduction

Physics of surface and interfacial phenomena is an active research field, which
continuously allows obtaining new important results. Currently, the field of
knowledge related to the control of surface properties of new materials is inten-
sively developing. Special attention is paid to the problems of regulation of the
substrate surface wetting aimed at imparting them superhydrophobic and super-
hydrophilic properties [1–6]. Among physical and chemical methods of surface
modification, it is essentially to note such as plasma treatment, electrodeposition,
lithography, etching, polymer grafting [7–9]. The methods of polymer chains
grafting are particularly attractive, as they allow to selectively changing some
properties of substrate surface: adhesion, wettability, tribological properties; with-
out changes of physical properties of the substrate to give its surface the specific
properties of the grafted polymer [3, 8]. A wide range of grafted polymer chains
allows selecting necessary characteristics of surface of phase interface and obtain in
new hybrid materials. Moreover, this method allows obtaining rough and porous
surfaces, what gives the opportunity to imitate the lotus leaf structure. In this case,
wetting of the surface is defined both by chemical nature of the grafted compounds
and by microtexture of the coating [3].

The grafted polymer layers have a broad prospect of application for preventing
capillary condensation and icing, protection against corrosion and biofouling,
hydroprotection of reinforced concrete structures, creating waterproof textiles. The
surface-modified materials may have the ability to self-cleaning and non-wetting, to
responding the changes at environmental conditions (temperature, light radiation,
pH or solvent composition), may have antibacterial and antistatic properties.

The surfaces modified by grafted polymers are the most promising fields of
application in nanotechnologies and micromechanics. Materials of this kind are
widely used in different industries: they are used by creation of sensitive mem-
branes and filters, biochips and biosensors; for enhancing foreign bodies’ bio-
compatibility, regulation of adhesion, friction, surface wettability, as protective
coatings for glass, metal, wood, ceramics, and textiles. Modification of textile fibers
by polymer coatings allows obtaining new materials with preset properties. Formed
on the surface, nano-rough polymer film gives textile materials with both hydro-
and oleophobic properties allowing their application as protective clothing [10].
Such artificial materials the properties of which are mainly determined by their
structure (in this case, by the surface structure) are called “metamaterials”.

Recently, on the way to implementation of “smart” surfaces, the synthesis of
polymer brushes has gained particular attention [11]. Polymer brush is a monolayer
of polymer chains linked with some impermeable surface by terminal groups. There
are two fundamentally different methods to create such polymer brushes [12]. By
chemical method, terminal groups are “sewn” to some surface by chemical bond-
ing. The example of such systems is not only flat brushes in which the chains are
grafted to flat surface (Fig. 1a), but also some regularly branched polymers (stars
with a large number of branches can be considered as spherically convex brushes,
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and comb-shape polymers, as brushes around the convex cylindrical surface
(Fig. 1b and c).

By the other method of brush formation, a very important property of polymer
molecules is used, which is the basis for the organization of complex biological
structures, namely, the ability of macromolecules to self-organization. A necessary
condition for the self-organization is the existence of different groups in macro-
molecules. Usually, there are monomer units with different groups. In the simplest
cases it is sufficiently to have only two kinds of monomer units in each polymer
molecule (two-component copolymer). The driving force of self-organization is
intermolecular interaction. There are both the intra- and inter-component interac-
tions and interaction with the environment, for example with a solvent, a solid
phase surface, i.e., with particles which may be present in the system, etc. The first
effects determine self-organization, when it occurs without a solvent (or at a low
solvent content). Intermolecular interactions are much weaker than the covalent
ones. Therefore, chemical structure is not changed during the self-organization, and
everything is defined by intermolecular interactions in the system with the given
chemical structure.

Also, in recent years, delicate experimental methods have made possible to
reveal many interesting properties of solids, determined both by the influence of the
solid body surface, and primarily due to its modification during the adsorption of

Fig. 1 The flat polymer brush with the chain height h (a) and regularly branched polymers as
examples of brushes: spherical brush (b), cylindrical brush (c)
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active elements and sputtering of ultrathin multilayer structures [13, 14]. Improved
resolution of various experimental techniques and improved methods of new
materials producing allow direct measurements of surface properties. Therefore,
results and predictions of theory and computer simulation of surface characteristics
of solid bodies can be successfully tested. And better understanding of surface
properties can lead to important new applications.

For elastic nano-scale bodies, the surface tension plays a significant role and
influences on the deformation of bodies as a whole. Also, in a number of recent
works [15–19], attempts were made to use the accounting methods of surface
effects for nano-scale piezoelectric and flexoelectrical bodies. Despite a consider-
able number of approaches and results, a fairly complete and strict analytic theory
of surface effects for nano-scale piezoelectric and ferroelectric metamaterials still
does not exist. Furthermore, by taking the defining relations connecting the surface
tension and electrical activity, the problems of complete classical and generalized
statements encounter serious difficulties. For example, the theory for static prob-
lems of piezoelectricity with surface effects, presented in the work [20], see also
[17–19, 21, 22], raises a number of problems relating to the formulation of
boundary conditions, to the questions of solvability, uniqueness of solutions, etc.
Mathematical study of boundary-value problems for elastic solids with surface
stresses was performed in [23–27] where existence and uniqueness of week and
strong solutions is proved. In particular, in [24] the stiffening effect of surface
elasticity was confirmed. In the case of piezoelectric and magnetoelastic solids the
similar analysis was given in [28–30].

Therefore, in recent years, methods of computer experiment have become an
instrument used in many fields of science. Motivation for their application to the
study of physical systems is diverse. One of the main motives is elimination of the
limitations inherent in analytical models. Usually, by analytical analysis of the
problem (if it is possible in general), different approximations are used. The
application of computer simulation techniques gives the opportunity to study
complex systems, not investigated analytically previously.

In this paper, for computer simulation of mechanical and electrical properties of
metamaterials, we will apply Monte-Carlo method for numerical statistical
description of macroscopic systems, widely used for investigations of bulk prop-
erties of various materials [31, 32] and a powerful tool in the study of complex
molecular systems [15, 33, 34]. In Monte-Carlo method, the solution of dynamic
equations for particles is replaced by the generation of some stochastic process.
Such technique provides quite simple calculation of average values for various
physical quantities within the canonical ensemble. Alongside with the description
of bulk characteristics, Monte-Carlo method is used quite successfully for the
simulation of crystal growth and studying the properties of emerging surface
structures [33, 34]. The properties of crystalline surfaces are often described by
means of lattice models. Dynamics of crystal growth is simulated by random
processes of adsorption, evaporation and surface transport. The Monte-Carlo
method allows directly simulating such dynamic processes.
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2 Simulation of the Adsorption Process

Adhesive, strength, optical, isolative and other properties of polymer coatings on
solid surfaces are studied at the intersection of various fields of science: metallurgy,
thermodynamics, physical chemistry and macromolecular chemistry, solid state
physics, classical mechanics, physical and chemical mechanics, mathematical
statistics, etc. [14, 35–38].

The formation of polymer coating on substrate surface can be considered to
consist of several stages [39]:

• spreading of the adhesive over the surface and wetting (Fig. 2a);
• equilibrium setting of adhesive contact related with molecular properties of the

adhesive (Fig. 2b);
• formation of chemical and physical polymer structure during the solidification

accompanied by the occurrence of the surface layer with properties different
from ones of the bulk (Fig. 2c).

Fig. 2 The formation of
polymer coating structure:
spreading of the adhesive over
the surface and wetting (a);
equilibrium setting of
adhesive contact related with
macromolecular properties of
the adhesive (b); the
formation of chemical and
physical structure in the
polymer during the
solidification (c)
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The last stage includes shrinkage of the adhesive, possible crystallization,
allocation of new phases, etc.

Film formation occurs as a result of several physico-chemical processes: evap-
oration of solvents, latex a stabilization and dehydration, cooling of melt, resulting
to formation of the polymer coating with a specific set of properties. Change of
aggregate state of polymer is accompanied by jump like change of its specific
volume, namely, the minimum of free volume and sharp slow-down of relaxation
processes. Simultaneously, the structure formation is no characteristic for highly
elastic state of a substance. The properties of such coatings are also affected by the
content of compositions and film forming conditions.

Molecular theory treats the adhesion as the result of molecular interaction forces
between contacting molecules of adhesive and substrate. Therefore, it is important
that the adhesive and the substrate molecules possess polar functional groups
capable of interaction [40]. Thermodynamic properties of the coating can be
examined if it is considered, for example, as a set of dipoles interacting with a solid
surface and with each other. When the particle faces the surface as a result of
thermal motion, it can be mirrored from the substrate, or be firmly bound to the
surface, that is, to become adsorbed one. The opposite phenomenon of desorption is
also possible when the adsorbed particle having sufficient kinetic energy can leave
the surface. Figure 3 schematically shows the dependence of potential energy of the
particle on the distance to the flat surface [41]. In case of physical adsorption, the
monomer binds to the surface by means of weak van der Waals forces, which are
characterized by the energy Ep. These bonds are not accompanied by charge
transfer from substrate to monomer or vice versa (physical absorption). At higher
temperatures, the exchange of electrons between adsorbed monomers and the metal
surface atoms is possible, which leads to rather strong chemical bonds between
them, and then such monomer is considered as chemisorbed one [36]. To get into
this well, the monomer must overcome an energy barrier Eb. Then, the particle is in
a much deeper potential well Ec. The value Ec + Eb defines the work function W.

Fig. 3 The potential energy
of monomer versus its
distance to solid surface [36]
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(a) Simulation algorithm

The modified Langmuir adsorption model may be used for calculations of the
monomer sticking degree to the substrate. In statistical physics, a system of inter-
acting particles placed in a periodic array of equivalent elementary cells is called the
lattice gas. Two-dimensional lattice gas model corresponds to the adsorption layer;
it is one of the basic models of statistical mechanics. Classical Langmuir model is
based on the following assumptions:

• all adsorptive sites of the lattice are equivalent;
• only one particle can occupy an adsorptive site;
• influence of adsorption forces is restricted by thickness of the monolayer

coating.

Modified Langmuir model takes into account the interactions of adsorbed
molecules both with the substrate surface and between them (side or lateral inter-
actions with the energy εlat.). Since the particles included in the composition of the
adhesive are basically polar molecules [14], the energy of dipole orientational
interactions between lattice sites in this model may be represented as:

εlat. = −K∑N,M
i, j=1 ni, jni+1, j −K∑N,M

i, j=1 ni, jni, j+1, ð1Þ

where K is the constant of interaction between the dipoles. Calculations by the
Eq. (1) take into account only the interactions between the nearest lattice sites, since
orientational interactions forces decrease sufficiently rapidly with the increase of the
distance.

The substrate surface is represented as two-dimensional rectangular lattice con-
taining N sites (adsorption points) along axis X, and M sites—along axis Y. The
position of the lattice site is defined by two numbers i and j, and its employment—by
the number nij, which is equal to zero, if the adsorption point is free, and to unity—
otherwise [41].

The input parameters for the adsorption simulation program are: the temperature
of the system T, the molar mass of the adhesive, the constant of interaction between
the dipoles K, the height of the energy barrier Eb, and the potential well depth Ec,
the lattice dimensions N and M, and the number of Monte-Carlo steps NMC.

In this model, at the initial moment (t = 0), it is assumed that all the values of the
occupied lattice sites nij = 0; i.e., there is no adsorption. Further calculations are
carried out by Monte-Carlo method with the use of Metropolis algorithm, which is a
powerful tool in the study of complex molecular systems [42–44].

• The random selection of a lattice site and the calculation of the energy of the
molecule of the adsorbent located near this site:

– if ni,j = 0, the molecule of the adsorbent is free and is not captured by the
surface (non-adsorbed one). Therefore, the value of its energy ε = εM is a
random number determined by Maxwell distribution at the given
temperature;
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– if ni,j = 1, the molecule of the adsorbent is captured by the surface and its
energy is defined by the expression: ε = εM – Ec + εlat., where Ec is the
depth of the potential well, εlat. is the energy (1) of lateral interactions.

• The change of the lattice site state:

– if ni,j = 0 and ε < Eb, the adsorbent molecule cannot overcome the energy
barrier, so the lattice site state does not change;

– if ni,j = 0 and ε > Eb, the adsorbent molecule with probability 0.5 is cap-
tured by the substrate surface (if the generated random number with uniform
distribution at interval [0; 1] is greater than 0.5). In this case, the value ni,j
changes and becomes equal to the unity;

– if ni,j = 1 and ε < Eb + Ec, the adsorbent molecule is tightly bound on the
solid surface. Then, the value ni,j does not change;

– if ni,j = 1 and ε > Eb + Ec, the desorption is possible with the probability
0.5, i.e., the value ni,j becomes equal zero.

The considered operations are repeated for a certain time proportional to the
number of Monte-Carlo steps, which is set by the lattice size and the heating rate of
the coating during the solvent evaporation. Relative degree of filling of the metal
surface θ (degree of sticking) by dipoles is defined as the ratio of the number of
adsorbed sites to the total number of lattice sites:

θ=
1

NM
∑N,M

i, j=1 ni, j. ð2Þ

(b) Simulation results

Figure 4 shows the results of the calculations of time dependencies of the value θ at
the given heating rates g = ΔT/Δt during the evaporation of the solvent from the
metal sheet, but at different reduced constants of monomers interaction (K/kBT0) and
the barrier energy (Eb/kBT0), where T0 is the initial temperature of the system.
Calculations were performed on 100 × 100 lattice at periodic boundary conditions.

It can be seen, that with the increase of monomers interaction, their degree of
sticking to metal grows, that is associated with the rise of their cooperativity during
the adhesion (Fig. 4a). On the other hand, with the increase of barrier height Eb, the
value θ decreases (Fig. 4b), i.e., smaller number of monomers sticks to metal
surface.

Figure 5 shows the results of calculation of time dependencies of θ at different
heating rates of the metal sheet and at the given constant of monomer interaction
and barrier energy. It turns out that under slow heating of sheet, the degree of
sticking of monomers to metal surface is low (curve 1). At high speed of heating,
there is some sticking to the metal surface, but during further heating the value θ
decreases (curve 3). It can be seen that optimal temperature range is determined by
curve 2 in Fig. 5, when the adhesion is maximal.
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Increase of sticking degree θ with the rise of temperature in this model can be
explained by the increase of kinetic energy of monomers leading to overcoming the
energy barrier Eb (Fig. 3), which prevents the formation of the adsorbed state of

Fig. 4 Time dependencies of
the coefficient of sticking of
monomers to the metal sheet
surface at the heating rates
g = ΔT/Δt: (a) at different
reduced constants of
monomer interaction K/
kBT0 = 0 (1), 1 (2), 2 (3) and
the given barrier energy (Eb/
kBT0 = 1); (b) at different
reduced barrier energy: Eb/
kBT0 = 0, 5 (1), 1 (2), 2 (3)
and the given constant of
monomer interaction (K/
kBT0 = 1). T0 is initial
temperature, τ0 is total
simulation time

Fig. 5 Time dependencies of
the coefficient of monomers
sticking θ to the metal sheet
surface at different heating
rates g0 = ΔT/Δt (1), 2g0 (2),
3g0 (3) at the given reduced
monomer interaction constant
(K/kBT0 = 1) and the barrier
energy (Eb/kBT0 = 3). T0 is
initial temperature, τ0 is total
simulation time
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monomers on metal surface. With further increase of temperature, the degree of
sticking of monomers, conversely, decreases due to the growth of thermal fluctu-
ations in the system. The obtained result corresponds to the experimental data [45]
on the study of the adhesive strength of the polyvinyl butyral layer depending on
the temperature during formation of the polymer coating on the steel sheet surface
(Fig. 6).

3 Model “Polymer-Substrate”

Further simulation was associated with the study of systems with an already-formed
layer on the substrate surface.

The hybrid discrete-continual model is presented in Fig. 7. This model consists
of rotators of length l, connected to the substrate treated as an elastic continuum.

Within the framework of lattice multichain models of polymers [46–52], N1N2N3

rigid kinetic chain elements of length l called rotators form the curvilinear
“quasi-lattice” n ⃗ ≡ n1, n2, n3ð Þ, where indices n1, n2, n3 take the following values:
n1 = 1, …, N1; n2 = 1, …, N2; n3 = 1, …, N3.

We assume that the energy of orientational interactions H ið Þ
n ⃗, m⃗ between chain

elements located in nodes n ⃗ and m⃗ of the “quasi-lattice” depends only on the mutual
angle of their orientation. For the potential of dipole type (Keesom’s energy), the
energy is proportional to cosine of spatial angle Φn ⃗, m⃗ between their axes:

H ið Þ
n⃗, m⃗ = −Ki cosΦn⃗, m⃗, as in the Gotlib-Maksimov multichain models [48], i.e.,

H ið Þ
n ⃗, m⃗ = −Ki

l ⃗n ⃗, l ⃗m⃗
� �

l2
= −Ki

un ⃗um⃗ + vn⃗vm⃗ +wn⃗wm⃗ð Þ
l2

, ð3Þ

where un ⃗, vn ⃗ and wn ⃗ are projections on the coordinate axis of vector l ⃗n⃗, oriented
along kinetic unit located in the node n ⃗ (i = 1, 2, 3).

Fig. 6 The adhesive strength
of polyvinyl butyral on the
steel surface A versus the film
formation temperature T: the
dotted line represents the
experiment data [87], symbols
(o) are simulation results
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The energetic parameter K1 along the “longitudinal” curvilinear direction n1 of
the “quasi-lattice” describes the longitudinal orientational interactions and deter-
mines the mean cosine of the angle between neighbour kinetic units [48–50]. The
energetic parameters K2 and K3 characterize orientational interactions of neighbour
kinetic units in the transversal directions along n2 and n3 of the “quasi-lattice” [49,
50]. The estimation of their characteristic values for rigid as well as for flexible
polymer chains is provided in [53].

The potential energy of the dipole orientation interactions of the chains elements,
taking into account the interactions of the between nearest rotators, can be repre-
sented in the Cartesian coordinate system as:

Fig. 7 (a) The discrete-continual model of the three-dimensional ordered system of N2N3 chains
consisting of N1 rigid kinetic units of length l, so-called rotators, N2 and N3 are numbers of chains
along directions of the substrate cross-section. (b) The orientation vector l ⃗n⃗ of chain segment
located in the node n⃗ relatively to the Cartesian (x, y, z) and spherical (φ, θ) coordinate systems
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H = −K1 ∑ n1 −m1j j=1 ∑n2 =m2
∑n3 =m3

un⃗um⃗ + vn ⃗vm⃗ +wn ⃗wm⃗ð Þ
l2

−K2 ∑n1 =m1
∑ n1 −m1j j=1 ∑n3 =m3

un⃗um⃗ + vn ⃗vm⃗ +wn ⃗wm⃗ð Þ
l2

−K3 ∑n1 =m1
∑n2 =m2

∑ n3 −m3j j=1
un⃗um⃗ + vn ⃗vm⃗ +wn ⃗wm⃗ð Þ

l2
,

ð4Þ

or in the spherical coordinate system: in the terms of polar and azimuthal angles of
kinetic units (0≤ θn ⃗ ≤ π, 0≤φn⃗ <2 π):

H = −K1 ∑n⃗

cos θn1, n2, n3 cos θn1 − 1, n2, n3

+ sin θn1, n2, n3 sin θn1 − 1, n2, n3 cos φn1, n2, n3 −φn1 − 1, n2, n3

� �� �

−K2 ∑n⃗

cos θn1, n2, n3 cos θn1, n2 − 1, n3

+ sin θn1, n2, n3 sin θn1, n2 − 1, n3 cos φn1, n2, n3 −φn1, n2 − 1, n3

� �� �

−K3 ∑n⃗

cos θn1, n2, n3 cos θn1, n2, n3 − 1

+ sin θn1, n2, n3 sin θn1, n2, n3 − 1 cos φn1, n2, n3 −φn1, n2, n3 − 1

� �� �
.

ð5Þ

In general, the energy of the interaction between the elements-rotators is
described by the Stockmayer potential that is Lennard-Jones potential plus an
additional term that takes into account of the energy of dipole interactions (3).

The potential energy of the whole system taking into account also elastic
deformations of the substrate Hsubs. is given by the expression:

H = ∑n ⃗, m⃗ ∑3
i=1 H

ið Þ
n ⃗, m⃗ +4ε

1
rn ⃗, m⃗ ̸σ

� 	12

−
1

rn ⃗, m⃗ ̸σ

� 	6
" # !

+Hsubs. ð6Þ

In Eq. (6), the parameter ε is the depth of the pit of the Lennard-Jones potential,
rn⃗, m⃗ is the distance between nearest elements of the polymer chains, σ is the scale
distance where the energy of interactions is zero.

Analyzing the expression (6), it should be noted that, firstly, the first term
corresponds to the potential energy of orientational interactions; this term is tem-
perature dependent, unlike interactions described by Lennard-Jones potential. With
increasing the temperature, the contribution of energy of the dipole orientation
interactions becomes less significant in the potential energy of the whole system
(Fig. 8). Moreover, this fact has an effect on the density of packaging of the
elements-rotators and, respectively, the relative dimensions of the system (Fig. 9).
At the same time, both terms depend on the distance between of the interacting
elements. With increasing distance between rotators at the deformation, the con-
tribution of both terms in the potential energy (6) is decreased (Fig. 8). Therefore,
the substrate plays the dominant role at the large tension or bending of the system,
which considered as a continuum and elastic medium with the Hooke’s law.

Secondly, this result has a statistical distribution, in the contrast to analytical
calculations, because at the simulation of such systems by Monte-Carlo method, the
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random orientations of the rotators are used. Therefore, the use of the Monte-Carlo
method requires a detailed analysis of the influence of such values as the number of
Monte-Carlo steps, lattice size and type of boundary conditions etc. on the simu-
lation results.

In Fig. 10, we present the dependence of the average energy of a rotator H/K1 on
the number of Monte-Carlo steps NMC at different reduced temperatures T* = kBT/
K1 and lattice sizes for periodic boundary conditions. As can be seen from this
figure, the average value of the segment’s energy at sufficient value NMC does not
depend on the lattice dimensions. The dependence H/K1(lg(NMC)) reaches quickly a
saturation by small number of particles, but the energies have greater dispersion. It
can be concluded that the simulation of the system with the particle number less
than 103 does not allow achieving satisfactory results, even at large number of
Monte-Carlo steps NMC. An increase in the number of particles requires an increase
of the value NMC and calculations on high-performance computers.

Third, to determine the required characteristics of the system under study, it is
necessary to specify its initial configuration. A wrong choice of initial conditions
can lead to incorrect results when the Monte-Carlo method is used. In Fig. 10, we
present the calculated average energy of the rotator H/K1 on the number of
Monte-Carlo steps NMC at a fixed temperature and different initial state of the

Fig. 8 The average
normalized energy of the
dipole orientation interactions
H/K1 of the element-rotator
versus the relative distance r/
r0 between the nearest
neighbors (r0 is average
distance between adjacent
rotators in equilibrium
configuration of the system)
for different normalized
temperatures: T* = kBT/
K1 = 1, 2 (1), 0, 8 (2), 0, 4 (3)

Fig. 9 The relative length L0/
LT0 of the system in the
equilibrium initial
non-deformed state versus the
normalized temperature
T* = kBT/K1 (LT0 is the length
of the system for T* = 0)
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system: rotators are arranged in parallel configuration (curve 1) or chaotic one
(curve 2). The minimum number of Monte-Carlo steps NMC required to obtain the
correct simulation results can be determined from the lowest abscissa of the
intersection point for these curves (∼104 ÷ 105 steps for the lattice 20 × 20 × 20)
(Fig. 11).

4 Simulation of the Simplest Types of Mechanical
Deformation

In computer simulation of the simplest types of deformation, it assumed that the
system is subjected to tensile force F (Fig. 12a) or bending moment M (Fig. 12b),
simultaneously applied to the substrate and the polymer coating.

For polymer chains with polar groups, the parameters K2 and K3 can be eval-
uated from the multipolar expansion [54] of the interaction energy of two identical
dipoles with electric dipole moment p placed in neighboring chains:

Fig. 10 The average
normalized energy H/K1 of
the element-rotator versus the
number of Monte-Carlo steps
NMC for the given reduced
temperature T* = kBT/
K1 = 2. The simulation was
made on the lattices:
10 × 10 × 10 (1),
20 × 20 × 20 (2),
30 × 30 × 30 (3)

Fig. 11 The average
normalized energy H/K1 of
the element-rotator versus the
number of Monte-Carlo steps
NMC for the given reduced
temperature T* = kBT/
K1 = 2. The simulation was
made on the lattice
20 × 20 × 20 at initial
parallel (1) and chaotic (2)
orientation of the rotators
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K2 ≅K3 =
1

4πε0
⋅
p2

r3
, ð7Þ

where r is the mean distance between the neighboring chains, and ε0 is the dielectric
constant.

Therefore, during the system deformation, i.e., for stretching and bending,
parameter K2 was calculated from the dependence interactions energy of chains on
the relative displacements of chain elements:

K2 =K3 ⋅
1

r ̸r0ð Þ3 . ð8Þ

In Eq. (8), the parameter r0 is the mean distance between neighbour chain
elements in the direction of force action (along n2) at equilibrium configuration of
the system, r = r0 + Δr, where Δr characterizes the change of element position
during the deformation. The energetic parameter K3 keeps constant value during the
deformation.

Fig. 12 The schemes of
deformation of the
discrete-continuous system:
the tension under the
influence of the force
F (a) and the bending under
the influence of the moment
M(b). 1—the polymer coating
with the thickness h, 2—the
substrate with the thickness
H, 3—the position of the
neutral layer, where there no
tension/compression; ρ is the
radius of curvature of the
neutral layer corresponding to
the angular deformation Δθ,
O is the center of curvature
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(a) Simulation algorithm

Within the framework of the simulation of the presented above system by means of
the Monte-Carlo method, we generate a random process consisting of sequence of
the system configurations. Using ensembles with the large enough number of
configurations one can calculate average values of almost all equilibrium physical
quantities. We choose the following input parameters for the simulation of defor-
mations of the system shown in Fig. 12: the dimensions of the “quasi-lattice” N1,
N2 and N3 (numbers of segments in the directions n1, n2 and n3), the interaction
parameters K1 and K3, the ratio of thickness of the polymer coating and the sub-
strate h/H, the length l of element-rotator, and the number of Monte-Carlo steps. All
quantities having energetically dimension were normalized with respect to the
parameter K1 ∼ 10−20 J [53], whereas length-scale parameters were normalized
using the average distance between neighbour chains of the polymer coating
a ∼ 10−10 m. The normalized temperature of the system is defined as T* = kBT/K1,
where kB is Boltzmann’s constant. The effective tensile stiffness ktens. and the
bending stiffness kbend. of the substrate are defined through the Young modulus of
the substrate Esubs. and geometrical parameters of the system:

ktens. =
Esubs.Ssubs.

L0
, kbend. =

Esubs.Isubs.z

L0
. ð9Þ

In (9), the quantity Ssubs. is the area of the transverse substrate cross-section in
the plane X−Z, L0 is the length of the system in the non-deformable state along the
axes Y and Z, Isubs.z = ∫ x2dS is the inertia moment of the substrate cross-section with
respect to the axis Z. If the axis X and Z are the principal central inertia axes, then,
Iz = ba3/12 for the rectangular cross-section with the height a and the width
b. Since the centres of mass of the substrate and coating are not coincide we find
that Isubs.z = bH H2 + 3h2ð Þ ̸12, where H and h are correspondingly the thickness of
the substrate and the polymer coating.

For the simulation of the deformations of compression/tension and bending of
the system, we use the following algorithm:

• We assume the following initial state of the system. Chain elements located at
the interface coating-substrate as well at ends of the system along the axis Y (in
the direction n2) are fixed. At the top boundary along axis X (in the direction n1)
segments are free, and boundary conditions along the axis Z (in the direction n3)
are periodic ones since in this direction, the system is infinite. In order to
achieve faster the equilibrium state at low temperatures, all segments are parallel
each other, whereas for high temperatures, their orientation is given randomly.

• For determination of the parameter L0 in non-deformable state, we simulate its
uniform compression/extension along Y axis and find equilibrium configuration
of the system for which the energy of the polymer part (i.e., without the sub-
strate), is minimal at the given temperature. For this purpose, we imply cycle of
the Monte-Carlo steps with Metropolis algorithm and the self-consistency
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condition. If the energy of the system decreases with the change of its linear
dimensions along the Y axis, we replace the value of r0 in Eq. (8) using current
value of the distance between elements in the direction n2. If the energy does not
decrease, we keep the initial value of r0.

• We simulate the tension or the plane pure bending of the system (from the
equilibrium value L0). At each step of the bending deformation, we decrease the
curvature radius ρ of the neutral layer through the increase of the angle Δθ =
L0/ρ, whereas the distance n2 along the axis Y between segments of the polymer
coating is determined by the formula:

r= r0 +
ðH − hÞ

2
+ l n1 −

1
2

� 	� 	
L0

ðN2 − 1Þρ . ð10Þ

In Eq. (10), the quantities H and h are correspondingly the substrate and
polymer coating thickness (Fig. 12), n1 is the number of element-rotator along
the axis X. The distance between neighbour segments in Eq. (10) is defined as
the distance between their geometrical centres. Since we consider thin coatings,
the ratio h/H < 1, and the polymer layer at the simulation is always under
tension (r > r0).

• At each step of bending deformation, we calculate the energy of equilibrium
state of the system. We take the energy of elastic substrate as
Hsubs. = ktens. Δxð Þ2 ̸2 at the stretching deformation and Hsubs. = kbend. Δθð Þ2 ̸2 at
the bending deformation.

• According of Hooke’s law, the force F applied to the system is proportional to
the displacement of chain elements from their initial positions, in other words
F ∼ Δx. The work of external force during the deformations transforms to the
energy change of the system: A = −ΔH, where

A=
FΔx
2

. ð11Þ

Considering that ΔH = ksyst. Δxð Þ2 ̸2 and using the relations similar to Eq. (9)
but for whole system, we obtain that:

A=
ESsyst.
L0

Δxð Þ2
2

. ð12Þ

In Eq. (12), E is the effective Young modulus of the system, the quantity Ssyst. is
the area of the transverse cross-section of the system in the plane X−Z. As a
result, using Eqs. (11) and (12) it is possible to calculate, the value of F and
Young’s modulus E of the system in dependence on the deformation Δx.

• According to Hooke’s law the bending moment M applied to the system is
proportional to the angular displacements of the particles of the system that is
M = ksyst.Δθ, where the quantity ksyst. is the effective bending stiffness of the
system as whole. Since the value of angular strain Δθ is related with the
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curvature radius of the neutral curve Δθ = L0/ρ, we find that M ∼ 1/ρ. Note,
that the work of external loads A for an elastic system stores in the change of its
potential energy, i.e., A = ΔH, where

A=
MΔθ
2

. ð13Þ

Considering that ΔH = ksyst. Δθð Þ2 ̸2 and using the relations similar to Eq. (9)
but for the system as whole, we obtain that:

A=
EIsyst.z

L0

Δθð Þ2
2

. ð14Þ

In Eq. (14), Isyst.z = b H + hð Þ3 ̸12 is the inertia moment of the cross-section of the
system with respect to the axis Z. As a result, using Eqs. (13) and (14), we can
calculate the dependencies of the moment M and Young’s modulus E of the system
on the angular deformation Δθ, or on the curvature radius ρ of the neutral line of the
system.

(b) The simulation results

In Figs. 13, 14 and 15, we present dependencies of the force, bending moment and
Young’s modulus depending on the type of system deformation
(stretching/bending) for different interactions of the chains and temperatures. It is
seen, that with the increase of the deformations, the influence of the coating
becomes more and more negligible. With the decrease of the parameter K3

describing interactions between chains (and, therefore, with the decrease of K2), the
influence of the coating disappears faster (Figs. 13 and 14).

In Figs. 13a and b, the regions placed after peaks can be explained by the break
of the bonds between neighbour chains of polymer coating and the increase of a
role of the substrate during the system deformation. Similar stress-strain depen-
dencies have been observed during the stretching of thin films from.

crystalline polymers such as caoutchouc and gutta-percha [55], for which such
behaviour was explained by the structural transformations on material from ordered
microstructure to amorphous one. For polymers with polar groups, it is transition
from ferroelectric phase to paraelectric one. Further asymptotically linear behaviour
of the given curves demonstrates negligible influence of the coating and the
dominant role of the substrate which deformation follows Hooke’s law.

The bending stiffness of the system consisting of the substrate and the coating
(Fig. 12) with different elastic properties is given as a sum of stiffness parameters of
the system parts, i.e., it is given by

ESsyst. =Esubs.Ssubs. +Epol.Spol. for the compression ̸tensionð Þ; ð15aÞ
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EIsyst.z =Esubs.Isubs.z +Epol.Ipol.z for the bendingð Þ. ð15bÞ

In Eqs. (15a, 15b), the quantity Epol. is the elastic modulus, Spol. is the area of the
transverse cross-section in the plane X−Z, and Ipol.z = bh 3H2 + h2ð Þ ̸12 is the inertia
moment of the cross-section of the polymer coating with respect the axis Z. With the
increase of tension deformations and decrease of interactions between chains the
influence of the polymer layer on the stiffness tends to zero, i.e., Epol. → 0.
Therefore, from Eqs. (15a, 15b), it follows that the relative Young’s modulus of the
system “substrate-coating” E/Esubs. tends to the limit value which depends on the
ratio of the coating and substrate thicknesses h/H:

E
Esubs.

→
Ssubs.
Ssyst.

=
1

1+ h ̸H
for the tensionð Þ; ð16aÞ

E
Esubs.

→
Isubs.z

Isyst.z
=

1+ 3 h ̸Hð Þ2
1 + h ̸Hð Þ½ �3 for the bendingð Þ. ð16bÞ

Fig. 13 (a) The normalized
force Fa/K1 applied to the
system versus the relative
strain Δx/L0 for the given
temperature T* = kBT/
K1 = 0, 1 and renormalized
intrachain interaction
parameter (K1 = 1) and
interchain one: K3 = 0.1 (1),
0.05 (2), 0.01 (3); force Fa/K1

versus the strain Δx/L0 for the
substrate (4) (Hooke’s law).
(b) The renormalized bending
moment applied to the system
M/K1 versus the angular
deformation Δθ for the given
renormalized
temperatureT* = kBT/K1 = 0,
1 and normalized intrachain
interaction parameter
(K1 = 1) and interchain one:
K3 = 0, 15 (1), 0, 10 (2), 0,
05 (3); the bending moment
M/K1 versus the angular
deformation Δθ for the
substrate (4) (Hooke’s law)
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Within this simulation, we take that the ratio h/H = 1/3, thusthe value E/
Esubs. → 0, 75 (for the tension of the system, Fig. 14a), or the value E/Esubs. → 0,
5625 (for the bending of the system, Fig. 14b).

Fig. 14 (a) The relative
effective Young’s modulus of
the system E/Esubs. versus the
relative strain Δx/L0 for the
given temperature T* = kBT/
K1 = 0, 1 and renormalized
intrachain interaction
parameter (K1 = 1) and
interchain one: K3 = 0.4 (1),
0.7 (2), 1 (3); the limit value
of the relative Young’s
modulus for large
deformations of system (4).
(b) The relative effective
Young’s modulus of the
system E/Esubs. versus the
angular deformation Δθ for
the given temperature
T* = kBT/K1 = 0, 1 and
renormalized intrachain
interactions parameter
(K1 = 1) and interchain one:
K3 = 0, 01 (1), 0, 03 (2), 0,
05 (3); the limit value of the
relative Young’s modulus for
large deformations of the
system (4)

Fig. 15 The relative effective
Young’s modulus of the
system E/Esubs. versus the
angular deformation Δθ for
various renormalized
temperature: T* = 0 (1), 0, 5
(2), 1 (3) and renormalized
intrachain interaction
parameter (K1 = 1) and
interchain one (K3 = 0, 1)
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In Fig. 15, the dependencies of the effective Young’s modulus of the system on
the deformations level for various temperatures are shown. It is seen that with
increasing temperature, the system becomes stiffer. This stiffening can be explained
through the decrease of its dimensions (L0) along the axes Y and Z in the equi-
librium non-deformable state (Fig. 9) and, therefore, through the increase of
interactions between chains.

Varying the length of attached to the substrate chains and their density one can
analyse the dependencies of the elastic parameters of the system on its dimensions
along one direction or on number of polymer chains per unit surface area.

5 Simulation of Ferroelectric Properties of Thin Films

(a) structural transitions in thin films

In the absence of external electric field, ferroelectrics possess a spontaneous electric
polarization below the Curie temperature (T < TC). The transition to polarized state
is associated with ordering of certain structure elements, which were in disordered
state before transition (at T > TC). For the study of the effects of ordering in
ferroelectric films, we will use the three-dimensional lattice model, consisting of
N1N2N3 rigid kinetic units—rotators (Fig. 7a).

The long-range orientational order parameter is calculated as the mean cosine of
the angle of rotator orientation relative to the axis of the preferred direction:

μ= ⟨cos θð Þ⟩. ð17Þ

For ferroelectric systems, we assume that the potential energy consists of two
components:

Htotal =H +Hext . ð18Þ

The first term in Eq. (18) is the potential energy of interactions between rotators
(see Eq. 6); the second term describes the presence of external field.

Hext = p ⋅E∑i, j, k cos φi, j, k

� �
, ð19Þ

where p is the module of the vector of the rotator dipole moment, E is the external
electric field strength, φi,j,k the angle between the directions of vectors E ⃗ and p ⃗.

Periodical boundary conditions are used, it is assumed that the upper and the
lower boundaries of the film (respectively for the lattice planes with n1 = 1 and
n1 = N1) can be freely oriented or fixed.

The calculation results show that the long-range order is absent (μ = 0) in one
monolayer, even at low temperatures. However, the long-range order exists on the
surface due to bulk effects. Figure 16 shows the dependences of the long-range
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orientational order on the reduced temperature kBT/K1 in the bulk and on the surface
with free boundaries. It is evident, that the orientational order on the surface of
ferroelectric film is smaller than inside the bulk, and this difference is the greatest
nearby the phase transition. The difference between the values of the long-range
orientational order in the bulk and the film at free boundaries also depends on its
thickness. Thus, the order parameter in thicker films is larger, than in thin films
(Fig. 16).

Mutual influence of surface and bulk properties occurs in the surface layer of the
film. The authors of the work [56] suggest that the surface layer has a certain
thickness. The calculated dependencies of long-range order parameter
μk = ⟨cos φn1 = k, n2, n3

� �
⟩ in different layers at free and fixed boundary conditions are

shown in Fig. 17. As can be seen, the effective thickness of the surface layer
depends on the temperature. Nearby the phase transition point, its thickness
increases to infinity.

Depolarizing fields in ferroelectrics are related both with the induced dynamic
polarization and with the existence of spontaneous polarization occurring below the
temperature phase transition in ferroelectric state.

Fig. 16 The long-range
orientational order parameter
versus the reduced
temperature kBT/K1 inside the
ferroelectric film (1) and on
the surface at free (2)
boundary conditions.
K1 = K2 = kBT

Fig. 17 The order parameter versus the number of layers k in the ferroelectric film for free (a) and
fixed (b) boundary conditions at different reduced temperatures kBT/K1 = 0, 9 (1), 1 (2), 1, 4 (3).
K1 = K2 = K3
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The polarization of the film results in the existence of the internal electric field E ⃗.
Under the influence of this field, the free electrons move to the external boundary of
the film (n1 = N1) and create the depolarizing field Ed (Fig. 18), which value is
determined by the equation:

Ed =Ed0μe− λ N1 − n1ð Þ, ð20Þ

where Ed0 and λ are the constants determined by the number of free carriers and μ is
the orientational order parameter in ferroelectric film.

By the simulation, it is assumed that free electrons are located on the upper free
boundary (n1 = N1), and create the depolarizing field (Eq. 20). To calculate the
order parameter μk and the value of the depolarizing field Ed it is necessary to solve
the self-consistency problem. The polarization vector at free and periodic boundary
conditions can rotate freely without an external field. To eliminate this effect, at the
lower boundary of the film (n1 = 1), the fixed boundary conditions are introduced.

Figure 19a shows the dependence of the order parameter on the layer number at
different values of the constant Ed0 in Eq. (20). It is evident that if we choose a
sufficiently large value Ed0, the areas appear in the film, in which the rotators are
oriented oppositely to the direction of the internal electric field E ⃗. Thus, in this
work, the value of the constant Ed0 is chosen so that the polarization is zero at the
external boundary. Figure 19b shows the dependence of the order parameter on the
layer number at different values of the reduced temperature kBT/K1. The effective
thickness of the surface layer (where the surface order parameter differs from the
order parameter in the bulk), as in the case of the absence of depolarizing field,
depends on the temperature.

Fig. 18 Three-dimensional
lattice model consisting of
N1N2N3 rigid kinetic units
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(b) structural transitions in thin films in external electric field

From the calculated temperature dependences of the long-range order parameter
and the susceptibility (Figs. 20 and 21) by the change of the renormalized field
parameter h = E∙p/K1 it is evident that the inclusion of the electric field leads to the
increase of temperature of transition and to its “smearing”, what is consistent with
classical representations of the theory of phase transitions [57].

The dielectric susceptibility is calculated by the following formula:

χ=
1

kBT
⟨cos θ⟩2 − ⟨cos2 θ⟩

 �

. ð21Þ

(c) structural transitions in thin films in alternating external electric field

The interaction potential (18) with a continuous symmetry group has an infinite
number of energy minima, and in general, the potential relief can be represented by
a surface of rotation. Therefore, within the framework of three-dimensional model,
the repolarization process can take place continuously, without energy costs due to

Fig. 19 The order parameter versus the number of layers k in ferroelectric film at the presence of
the depolarizing field: a at different constants pEd0 = K1 (1), 2 K1 (2), 2, 5 K1 (3), kBT = K1; b at
different reduced temperatures kBT/K1 = 0, 2 (1), 1 (2), 1, 5 (3)

Fig. 20 The long-range
dipole order parameter µ
versus the reduced
temperature kBT/K1 at
different renormalized field
parameter h = pE/K1 = 0 (1),
1 (2), 3 (3)
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rotator motions near the potential minimum and without crossing the barrier. So, the
dependence of the vector of polarization on electric field strength in an ideal fer-
roelectric must be reversible (without hysteresis) [58]. However, nevertheless, there
is a hysteresis loop in real ferroelectric samples due to relaxation effects at suffi-
ciently rapid change of electric field, when a mutual orientation of rotators in the
system does not have time to change due to rotator motions near the potential
minimum without crossing the barrier.

At the harmonic time dependence of the field, the module of polarization vector
changes as:

PðtÞ= ε0χ0E0 cos ωt− δð Þ, ð22Þ

where χ0 is the susceptibility of the system in constant field, δ is the angle of retard.
In the complex form, the expression (22) has the following counterpart:

ṖðtÞ= ε0χ0E0eiωte− iδ = ε0χ0E cos δ− i sin δð Þ. ð23Þ

Thus, the inertness of polarization process results in the appearance of real
component (χ′ = χ0cosδ) and imaginary one (χ″ = χ0sinδ) of dielectric
susceptibility.

The simplest model of the polarization process of the medium has been proposed
by Debye [59], who suggested that interaction forces between particles impede the
turn of the dipole moments of the particles of the medium in the direction towards
the external electric field. These forces are proportional to the speed of the turn, i.e.,
the rotation (orientation) of the particles occurs with some “friction”. At high
enough frequencies, the susceptibility is equal to zero (χ∞ = 0).

The real and imaginary parts of the dielectric susceptibility in Debye model are
equal accordingly:

χ′ =
χ0

1 + ωτð Þ2 , χ′′ =
χ0ωτ

1+ ωτð Þ2 . ð24Þ

Fig. 21 The susceptibility χ
versus the reduced
temperature T/Tc at different
renormalized external field
parameter h = pE/K1 = 0 (1),
0, 5 (2), 2 (3) for systems of
rotators with dipole
interactions
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Another well-known model of the medium is the Drude-Lorentz model, which is
based on the assumption that under the influence of external field, charged particles
of the medium make damping harmonic oscillations with their own cyclic fre-
quency ω0 and the constant of damping time τ. In Drude-Lorentz model the real and
the imaginary parts of the dielectric susceptibility are equal:

χ′ =
χ0ω

2
0 ω2

0 −ω2
� �

ω2
0 −ω2

� �
+4ω2 ̸τ2

, χ′′ =
2χ0ωω

2
0 ̸τ2

ω2
0 −ω2

� �
+4ω2 ̸τ2

. ð25Þ

Figure 22 shows the dependencies of the real part of complex susceptibility on
the reduced frequency (in the log- scale) at different temperatures and constants of
intermolecular interactions, calculated for 3d-model of rotators by Monte-Carlo
method. The obtained dependences are similar to the curves obtained for the Debye
model: susceptibility increases with the rise of temperature below the phase tran-
sition point (T < Tc) (Fig. 22a), and, on the contrary, susceptibility decreases above
the transition point (T > Tc) (Fig. 22b).

The imaginary part of the complex dielectric susceptibility χ″ determines the
amount of absorption of energy of the electric field, which is proportional to the

Fig. 22 The real part of complex susceptibility χ, versus the reduced frequency ω/ωr of the
external field (in the log-scale) for systems with isotropic (a, b, c), and anisotropic interactions
(d) at different reduced temperatures kBT/K1 in the low-temperature region a kBT/K1 = 0.5 (o), 1
(*), 1.5 (Δ); in the high-temperature region b kBT/K1 = 3 (o), 5 (*), 10 (Δ); in the point of phase
transition c kBT/K1 = 1.3 (o), 1.5 (Δ), 2 (*); d kBT/K1 = 3. The constants of orientational
interactions K2 = K3 = K1 (o), K2 = K3 = 0.5K1 (*), K2 = K3 = 0.2K1 (Δ)
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area of the hysteresis curve. Figure 23 shows the change of hysteresis curve shape
depending on the external field frequency, so-called dispersion, explained by the
fact that the process of polarization of the medium requires a certain finite time.

The complex part of dielectric susceptibility depends on the amplitude of the
external field and the reduced temperature kBT/K1 (Fig. 24). The sample has its own
polarization at low temperatures, and weak external field is not able to destroy it
(Fig. 24a). At high values of the external field amplitude (Fig. 24b), the width of
the hysteresis curve only decreases with the increase of the reduced temperature
kBT/K1.

The kind of hysteresis curve depends on the temperature at which the process in
question occurs, namely, above or below the phase transition point. At low tem-
peratures (in subcritical area), the system has polarization in the absence of the field.
Change of the external field at low frequencies primarily affects the direction of
polarization. With the increasing field frequency due to inertness of the process of

Fig. 23 The hysteresis curves for ferroelectric systems in subcritical area at the reduced
temperature kBT/K1 = 0.2 (a) and postcritical area at reduced temperature kBT/K1 = 5 (b) at
different frequency of the external electric field ω: 0.1ωr (*), ωr (o), 5ωr (Δ), where ωr corresponds
to the number of steps NMC = 103

Fig. 24 The hysteresis curves for ferroelectric systems in subcritical area (a) and postcritical area
(b) at different reduced temperatures kBT/K1: a pE0/K1 = 1, kBT/K1 = 0.5 (x), 1 (o), 3 (Δ); b pE0/
K1 = 10, kBT/K1 = 0.2 (o), 1.5 (*), 3 (Δ), 6 (x)
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reorientation of rotators, the maximum value of the order parameter decreases and
becomes less than in the absence of the field. At temperatures above the phase
transition point (in the postcritical area) and low frequencies, there is a hysteresis
loop, since it is necessary a some time to orient the rotators in a particular direction.
With increasing the frequency, the hysteresis curve becomes wider, but the maxi-
mum value of the order parameter decreases, since at very rapid changes of the
field, rotators due to their inertness do not have time to change their orientation and
therefore the polarization vector of the medium becomes zero.

Figure 25 shows the dependencies of the long-range orientational order
parameter μ for ferroelectric system, calculated for the 3d-model of rotators on the
electric field strength, alternating according to the harmonic law E = Emax•sinωt (ω
is the cyclic frequency of the field). Form of hysteresis curves obtained depends
both on the frequency and amplitude of the external electric field, temperature, and
interactions constants. The account of the frequency of the external electric field is
as follows: the value ω must be inversely proportional to the number of
Monte-Carlo steps NMC. For example, at high frequency of the field, when the
system does not have time to restructure, a relatively small value NMC should be
taken. As the standard frequency in this work, value ωr is adopted, corresponding to
the number of Monte-Carlo steps NMC = 103 at the simulation of the system
consisting of N = 8000 rotators under periodic boundary conditions.

Figure 26 shows the dependences of the areas (Ω) of hysteresis curves μ(pE/K1)
on the logarithm of the reduced frequency of the external field, obtained for fer-
roelectric systems at different values of temperature and interaction constants.
Therefore, at a certain frequency of the dependence χ′{lg(ω/ω0)} in critical area:
near the phase transition point of the external field (ω0), the resonance occurs, and a
maximum of the imaginary part of the dielectric susceptibility (the area of hys-
teresis curve) is observed. The position of the maximum is weakly dependent on the

Fig. 25 The hysteresis dependences (pE/K1) for ferroelectric systems in the subcritical area at the
reduced temperature kBT/K1 = 0.2 (a) and the postcritical area at the reduced temperature kBT/
K1 = 4 (b) at different reduced amplitudes of the external electric field strength: pEmax/K1 = 5 (o),
10 (*), 15 (•)
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temperature and interaction constants as in Drude-Lorentz model, and the peak
height increases with the decrease of temperature and the increase of the energy of
interaction between the molecules.

6 Application to Surface Elasticity

The presented above detailed analysis of mechanical properties of polymer coatings
based on the multichain model of polymer has direct relation to the models of
surface elasticity. By the term of surface elasticity we mean the enhanced models of
the elasticity which take into account surface tension or surface stresses. Among
various models of the surface elasticity the most popular is the Gurtin-Murdoch
model [60, 61]. From the mechanical point view the Gurtin-Murdoch model
describes the deformation of a solid with attached on its surface an elastic mem-
brane. The mechanical properties of the membrane should be introduced explicitly
independently on the material behavior in the bulk. The model found various
applications in nanomechanics, see [16, 34, 62–67] and the reference therein. In
particular, it was shown that the surface enhancements leads to stiffening at the
nanoscale, that is to the positive size-effect [68–70]. For example, the apparent
Young modulus becomes dependent on the specimen size. Analysis of corre-
sponding boundary-value problems is given in [27, 62–64] where in addition to
stiffening it was shown that surface elasticity changes the smoothness of the
solutions [5, 23, 25, 26, 71–74]. The surface strain energy density for an isotropic
material within the Gurtin-Murdoch model is

U =
1
2
αϵ2nn + βϵmnϵmn, ð26Þ

where α and β are elastic moduli called surface Lame parameters, ϵmn is the surface
strains. As in the classic elasticity, instead of α and β the surface engineering
moduli can be introduced, such as surface Young’s modulus and Poisson’s ratio.

Fig. 26 The area of
hysteresis curves Ω versus the
logarithm of the reduced
frequency of the external field
calculated for ferroelectric
systems at different reduced
temperatures: kBT/K1 = 0.2
(1); 2 (2); 5 (3)
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The crucial point for the model is the determination of the parameters α and β of the
model. The direct measurements of these moduli are difficult, in general, and can be
performed for example using three-point bending tests of nanobeams. More effi-
cient calculation is based on the molecular dynamics simulations [75–78] where the
crystal lattice dynamics is considered. Mechanics of three-layered plates with
surface stresses was used in [67]. The possible scheme of mechanical tests bases on
tension and bending as shown in Fig. 12. As result, for example, for β the following
formula can be used: β= μh, where μ is the shear modulus in the bulk, and h is the
coating thickness [65].

Steigmann and Ogden [79, 80] extended the Gurtin-Murdoch

U =
1
2
αϵ2nn + βϵmnϵmn +

1
2
γk2nn + τkmnkmn, ð27Þ

where kmn is the tensor of curvature change. In (27) we have introduced new elastic
moduli γ and τ related to bending stiffness parameters. As a result, in the
Steigmann-Ogden model there more material parameters. It can be shown that the
Steigmann and Ogden model leads to more stiffening effects than the
Gurtin-Murdoch model [26].

In addition to the Gurtin-Murdoch and Steigmann-Ogden models there are other
generalizations of the surface elasticity, considering the changes of the thickness
during deformations, orientational interactions, etc., see [65, 81, 82] and reference
therein. Let us note that from mechanical point of view the considered here mul-
tichain model is quite similar to the continuum models based on Cosserat approach.
Indeed, the orientational interactions between dipoles bring us rotations as inde-
pendent kinematical variable as in the Cosserat continuum. Moreover, the multi-
chain model can be treated as more general model, since its kinematics is described
by more kinematic variables, so we come to multipolar models of continuum.
Another similarity there is between multichain model and the recently discovered
structured based on woven fabrics called pantographic lattices [83–86]. In fact,
nearly inextensible fibers in woven fabrics can be modelled as chains as shown in
Fig. 7. Thus, the models of polymers used in the polymer science can be also
treated as a foundation of models generalized continua that are continua with
additional internal degrees of freedom.

Presented here calculations of mechanical properties of polymeric coatings
extend the previous calculations [75–78] in order to take into account the real
microstructure of polymeric brushes. Similar idea for modelling of coatings with
complex inner structure was discussed in [65]. Now, having in hands the
mechanical properties of the polymeric coating we can use these parameters for any
model of surface elasticity. The simplest case is the Gurtin-Murdoch model for
which we can directly use obtained parameters such as Young’s modulus.
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7 Conclusion

In this work, by means of analytical methods and computer simulation (by
Monte-Carlo method), we have investigated the processes of forming of the poly-
mer coating on the solid substrate, namely, on the metal surface, and some
mechanical and electrical properties of metamaterials.

The results of the study of the polymer coating formation and the adsorption
process by means of computer simulation show that at the increase of monomers
interaction, their degree of sticking to metal grows, that is associated with the rise of
their cooperativity during the adhesion process. It is proved that under slow heating
of metal sheet, the degree of sticking of monomers to its surface is low. At high
speed of heating, there is some sticking to the metal surface, but during further
heating the sticking coefficient decreases due to the increase of thermal fluctuations
in the system. Optimal temperature range is found, in which the coating adhesion is
maximal.

Hybrid discrete-continuum model has been developed to study the system
consisting of flexible substrate and polymer coating in depending on intermolecular
interactions and temperature. It was obtained that at the increase of deformation
degree, the polymer coating surface gradually ceases to affect the investigated
dependences. When the interchain interaction parameter decreases, the influence of
the coating disappears more quickly. The dependencies of the effective Young
modulus for the system on the strain at different temperatures shown that with the
increase of temperature, the system becomes more rigid.

In this study we also have investigated ferroelectric properties of thin films
depending on the frequency and amplitude of the external electric field, temperature
and interchain interactions. We found that the presence of the electric field leads to
the increase in the transition temperature and to its “smearing”, what is consistent
with classical concepts in the theory of phase transitions. The form of obtained
hysteresis curves depend on both the frequency and amplitude of the external
electric field, and on temperature and of interaction constants. The analysis of
hysteresis curves shows that the polarization of the medium requires a finite time.

Thus, the results of theoretical study and computer simulation of characteristics
of metamaterials obtained in this study, allow to come to better understanding of
their surface properties and can lead to identification of new important and inter-
esting properties of such materials.
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Identification of Arrays of Cracks
in the Elastic Medium by the Ultrasonic
Scanning

M.A. Sumbatyan and M. Brigante

Abstract In the present paper we study the problem on image identification for

clusters of linear cracks located inside an unbounded elastic medium, by using a

circular Ultrasonic echo-method. The parameters to be reconstructed are the number

of cracks, their size, location and the slope of each defect. The scanning is performed

by an ultrasonic transducer of a fixed frequency placed at a certain distance in a

far-zone, which can generate an ultrasonic wave incident to the system of cracks at

arbitrary angle. The input data, used for the reconstruction algorithm, is taken as the

back-scattered amplitudes measured in the echo method for the full circular interval

of the scanning angle. The diffraction of the elastic waves is studied in the scalar

approximation. The proposed numerical algorithm is tested on some examples with

clusters of cracks whose position and geometry are known a priori.

Keywords Crack identification ⋅ Array of cracks ⋅ Ultrasonic circular scanning ⋅
Inverse problem ⋅ Optimization ⋅ Boundary Integral Equation

1 Introduction

Recently, many published works have been devoted to inverse identification prob-

lems. This interest is caused by the importance of such investigations to many

practical applications, in particular—in the Ultrasonic (US) Nondestructive Test-

ing (NDT). Chronologically, first recognition methods were based upon an approxi-

mation of weak wave interaction, namely upon the theories of Ramm [1]. The well
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developed methods of the acoustical tomography based on the Radon transformation

are also related to the class of theories using the hypothesis of weak scattering [2].

Unfortunately, the defects in solids cannot be considered as weak scatterers. That

is why many recent methods of identification are based on the strict diffraction the-

ories aimed at both direct and inverse diffraction problems [3–5].

In the ambit of the NDT the acoustic and electromagnetic methods are based on

wave properties of damaged materials and their difference from analogous proper-

ties of perfect (undamaged) bodies. The problem of identification of the near-surface

texture and the defects arising in masonry structures is being successfully stud-

ied by using both acoustic and electromagnetic waves [6–8]. In particular, the US

methods [9] demonstrate high efficiency in defect identification. Other acoustic

methods are based on the measurement of the wave field over some parts of the

sample’s boundary, when the latter is loaded by a certain time-harmonic outer force.

The theoretical results show that in many cases the shape of the boundary uniquely

determines the geometry of the internal defects [10–12]. A contiguous method is

founded upon measurements of the natural mode frequencies of the sample. This

permits the reconstruction on the basis of alternative ideas, taking into account that

the geometry of the internal defects influences significantly the measurable set of the

natural frequencies [13].

It should be noted that from the mathematical point of view the image identifi-

cation problem is a typical inverse problem. This is intensively developing nowa-

days [3, 4, 14]. This theory is connected with the so-called ill-posed problems [15],

which generate instability when one applies standard direct numerical methods to

construct the solution. The present authors have published a series of works on the

image identification of defects and other related problems of the US scanning in var-

ious theoretical and practical aspects [16–19]. The US methods demonstrate high

efficiency even in the case of multiple scattering [20, 21].

The main goal of the present work is to develop an efficient algorithm to solve

the identification problem for a set of linear cracks located in the unbounded elastic

medium. The investigation is performed under the assumption of scalar US wave

propagation [9]. This means that in the case of solid medium, where both longitu-

dinal and transverse types of waves may propagate through the medium, we assume

that the transverse wave is predominant in the considered anti-plane problem, so that

the longitudinal one can be neglected. We first reduce the wave problem in the dam-

aged medium to a Boundary Integral Equation (BIE), which by using the standard

“displacement discontinuity method” [22] further reduces the problem to a system

of linear algebraic equations (SLAE). Then we formulate the inverse reconstruc-

tion problem. We assume that an US transducer is placed in a far zone to work in

the echo-scanning regime. It is also assumed that this sensor can record the back-

scattered US signal in the whole angular interval 𝛼 ∈ (0, 2𝜋), with the measured

amplitude of the reflected signal forming the data base for the formulated inverse

identification problem. We do not pay much attention to such fundamental questions

as existence and uniqueness. Instead we develop an efficient algorithm for practical

recognition. We demonstrate some examples on cracks’ identification problem, for

various dimension of the cluster. In the identification algorithm we do not assume
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that the number of cracks is known a priori, and cluster’s dimension is an additional

unknown parameter, among other unknown quantities, to be determined.

It should also be noted that the analogous problem for a cluster of linear cracks,

located inside a rectangular elastic specimen, has recently been studied by the present

authors in [23].

2 Basic Equations of the Elasticity Theory for Anti-plane
Mode of Deformation

Let a finite array of linear cracks be located in a linear isotropic homogeneous elastic

medium, inside a certain bounded domain, ln (n = 1,… ,Nc) denotes the surface of

n-th crack, and l =
Nc⋃
n=1

lm denotes the full set of cracks. Let us choose the origin of

the Cartesian coordinate system somewhere in this domain, close to the cluster of

cracks. In order to identify the geometry of each crack in this array, we apply a

circular scanning by an US sensor which works in the echo-regime, see Fig. 1. The

current position of the sensor is given by the Cartesian coordinates (R cos 𝛼,R sin 𝛼),
and it is assumed that the amplitude of the back-scattered impulse is known for the

full angular scanning: 𝛼 ∈ (0, 2𝜋).
Let us cite the governing equations to the formulated problem. In the case of the

so-called “anti-plane” (or “shear-stress”, SH) problem, this stress is directed perpen-

dicularly to the considered plane (x, y), so that the mode of deformation is identical

for all cross-sections z = const [24]. Then in a fixed rectangular Cartesian coordinate

system Oxyz the components of the displacement vector are ū = {0, 0, uz(x, y)}, this

determines the two non-trivial components of the stress tensor as follows:

Fig. 1 The circular

scanning of the array of

linear cracks by an US

transducer in the

echo-regime
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𝜏xz(x, y) = 𝜇
𝜕uz(x, y)

𝜕x
, 𝜏yz(x, y) = 𝜇

𝜕uz(x, y)
𝜕y

, (1)

where 𝜇 is the shear elastic modulus. Under such conditions the equations of motion

reduce to the single scalar Helmholtz equation regarding function uz(x, y) [9, 24]:

𝜕
2uz(x, y)
𝜕x2

+
𝜕
2uz(x, y)
𝜕y2

+ k2uz(x, y) = 0, k = 𝜔

cs
, (2)

where k is the wave number related to the transverse wave speed, the time-dependent

factor e−i𝜔t is omitted in all formulas, and cs is the transverse wave speed.

The internal stress vector T̄ = {Tx,Ty,Tz} over arbitrary elemental area with the

normal n̄ = {nx, ny, 0} in the considered case of anti-plane deformation has the only

non-trivial component:

Tx = Ty = 0, Tz = 𝜏xznx + 𝜏yzny = 𝜇

(
𝜕uz
𝜕x

nx +
𝜕uz
𝜕y

ny

)
= 𝜇

𝜕uz
𝜕n

. (3)

Then the boundary conditions over the set of cracks l located in the medium should

be satisfied over the faces of all defects which are free of load. Let us represent the

full wave field as a sum of the incident and the scattered ones:

uz = uincz + uscz (x, y), uincz (x, y) = e−i k(x cos 𝛼+y sin 𝛼), w(x, y) = uscz (x, y),
Tz = Tinc

z + Tsc
z , Tinc

z = −i k𝜇(nx cos 𝛼 + ny sin 𝛼) e−i k(x cos 𝛼+y sin 𝛼), (4)

where 𝛼 is the angle of incidence.

It is obvious that the boundary condition for the scattered wave field implies the

cracks’ faces to be loaded by the tangential stress:

Tz||l = 0, ∼Tsc
z
|||l = − Tinc

z
|||l, ⟹

𝜕uz
𝜕n

||||l
= 0, ∼ 𝜕w

𝜕n
||||l
= −

Tinc
z

𝜇

|||||l
. (5)

3 Mutual Influence of the Elementary Cracks

In the forthcoming investigation of the array of cracks we follow the so-called “dis-

placement discontinuity method” [22]. This method is allied to the standard BEMs,

see for example [25]. Let us begin with a single linear elementary crack 𝛤 of small

length 𝜀 located horizontally in the chosen Cartesian coordinate system (x, y), see

Fig. 2. If the length of the elementary crack is small, then the stress Tz may be set

constant over such a short interval (−𝜀∕2, 𝜀∕2).
By using the well known Green’s function for the Helmholtz equation in the two-

dimensional space, 𝛷(𝜉, 𝜂, x, y) = (i∕4)H(1)
0 (kr), r =

[
(𝜉 − x)2 + (𝜂 − y)2

]1∕2
, one
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Fig. 2 The elementary

crack of the length 𝜀 under

the anti-plane stress field

can write out the basic integral representation of the classical potential theory [25]:

w (x, y) =
∫
𝛤

[
uz(𝜉, 𝜂)

𝜕𝛷(𝜉, 𝜂, x, y)
𝜕n

−𝛷(𝜉, 𝜂, x, y)
𝜕uz(𝜉, 𝜂)

𝜕n

]
dl, (6)

where both the outer unit normal vector 𝐧(𝜉, 𝜂) and the elementary arc of length

dl(𝜉, 𝜂) are connected with the point (𝜉, 𝜂), not (x, y). Besides, we imply that contour

𝛤 represents itself a smooth closed contour surrounding the elementary crack under

consideration. Note that the basic integral representation (6) is valid for a smooth

closed surrounding contour, but the latter can be arranged arbitrarily close to the

elementary linear crack [25]. It should also be noted that the second integral in (6)

is equal to zero, due to boundary condition (5), therefore

w (x, y) =
∫
𝛤

uz(𝜉, 𝜂)
𝜕𝛷(𝜉, 𝜂, x, y)

𝜕n(𝜉, 𝜂)
dl(𝜉, 𝜂), (7)

Now, by bringing nearer the surrounding smooth contour 𝛤 close to the faces of

the crack under consideration, it can easily be seen that with this limit the following

relations hold:

[
𝜕𝛷(𝜉, 𝜂, x, y)

𝜕n(𝜉, 𝜂)

]

+
= 𝜕𝛷

𝜕𝜂

||||𝜂=0
,

[
𝜕𝛷(𝜉, 𝜂, x, y)

𝜕n(𝜉, 𝜂)

]

−
= − 𝜕𝛷

𝜕𝜂

||||𝜂=0
, (8)

where the subscript+ is related to the upper side y = +0 of the elementary crack, and

the subscript − is related to the lower side y = −0 of the crack, see Fig. 2. As a result,

the displacement field at arbitrary point (x, y) caused by the elementary displacement

discontinuity g, see Fig. 2, can directly be extracted from (7), in the following form:
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w (x, y) =
𝜀∕2

∫

−𝜀∕2

g(𝜉) 𝜕𝛷
𝜕𝜂

||||𝜂=0
d𝜉 =

i ky g
4

𝜀∕2

∫

−𝜀∕2

H(1)
1

[
k
√
(𝜉 − x)2 + y2

]

√
(𝜉 − x)2 + y2

d𝜉, (9)

where

g(𝜉) = uz(𝜉,+0) − uz(𝜉,−0) = w(𝜉,+0) − w(𝜉,−0) (10)

is the difference of the displacement between the upper and the lower faces of the

elementary crack. The kernel in Eq. (9) possesses a hyper-singular behavior when

the argument of the Hankel function tends to zero [5]. By extracting explicitly the

singularity of the Hankel function at origin [26], one can develop the more efficient

representation for the kernel:

w (x, y) =
iy g
4

𝜀∕2

∫

−𝜀∕2

K(𝜉 − x, y) d𝜉, K(x, y) =
kH(1)

1

(
k
√
x2 + y2

)

√
x2 + y2

=

= − 2i
𝜋(x2 + y2)

+ Q(x, y), Q(x, y) =
kH(1)

1

(
k
√
x2 + y2

)

√
x2 + y2

+ 2i
𝜋(x2 + y2)

. (11)

Now, since Q(x, y) is a regular function when compared with K(x, y), the integration

in Eq. (11) can be performed explicitly:

w (x, y) =
i g
4

{
𝜀y
2

[
Q
(
𝜀

2
− x, y

)
+ Q

(
𝜀

2
+ x, y

)]
+

+2i
𝜋

(
arctan

𝜀∕2 − x
y

+ arctan
𝜀∕2 + x

y

)}
. (12)

The integration of the hyper-singular, first function in Eq. (11), has been performed

here by using a tabulated integral, while the integration of the regular function Q
is performed accepting that this function is almost constant on the short interval of

length 𝜀. Besides, instead of to take the value of respective integrand at the cen-

tral point 𝜉 = 0 multiplied by 𝜀, we apply an arithmetic average of the integrand at

the end-points. Such a treatment can guarantee that the arising expressions have no

singular values which may occur in the case x2 + y2 = 0.

Expressions (11) and (12) permit calculation of the components of the stress ten-

sor, on the basis of Eq. (1):

𝜏
sc
xz (x, y)
𝜇

=
𝜕w(x, y)

𝜕x
=

i y g
4

𝜀∕2

∫

−𝜀∕2

𝜕

𝜕x
K(𝜉 − x, y) d𝜉 =

= −
i y g
4

𝜀∕2

∫

−𝜀∕2

𝜕

𝜕𝜉
K(𝜉 − x, y) d𝜉 = −

i y g
4

[
K
(
𝜀

2
− x, y

)
− K

(
−𝜀

2
− x, y

)]
,
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Fig. 3 Mutual influence of

i-th and j-th elementary

cracks

𝜏
sc
yz (x, y)
𝜇

=
𝜕w(x, y)

𝜕y
=

i g
4

{
𝜀

2

[
Qy

(
𝜀

2
− x, y

)
+ Qy

(
𝜀

2
+ x, y

)]
+

+2i
𝜋

[
x − 𝜀∕2

(x − 𝜀∕2)2 + y2
+

x + 𝜀∕2
(x + 𝜀∕2)2 + y2

]}
, Qy(x, y) =

𝜕

𝜕y
[
yQ (x, y)

]
=

= k
[
ky2

r2
H(1)

0 (kr) +
x2 − y2

r3
H(1)

1 (kr)
]
+

2i(x2 − y2)
𝜋r4

, r =
√
x2 + y2. (13)

Let us consider the pair of elementary displacement discontinuities which are

described, respectively, by the data {xi, yi, n̄i, t̄i} and {xj, yj, n̄j, t̄j} in a fixed Cartesian

coordinate system (x, y). Here the first two quantities designate coordinates of the

central point, and the quantities t̄, n̄ are directed along the elementary crack and in

direction to its normal, see Fig. 3. Let us study the contribution of j-th element to

the tangential stress at i-th element. For this aim we couple with i-th crack the local

Cartesian axes (x′, y′), and with j-th point the local axes (x′′, y′′). It is obvious from

Fig. 3 that if the radius-vector of point i in the coordinate system (x′′, y′′) is denoted

by r̄′′i = {x′′i , y
′′
i }, then

r̄′′i = r̄j − r̄i, x′′i = r̄′′i ⋅ t̄j = (r̄j − r̄i) ⋅ t̄j, y′′i = r̄′′i ⋅ n̄j = (r̄j − r̄i) ⋅ n̄j. (14)

Therefore, in the coordinate system (x′′, y′′) one obtains, see Eq. (13):

𝜏
′′sc
xz (xi, yi)

𝜇
= −

i y′′i gj
4

[
K
(
𝜀

2
− x′′i , y

′′
i

)
− K

(
−𝜀

2
− x′′i , y

′′
i

)]
,

𝜏
′′sc
yz (xi, yi)

𝜇
=

i gj
4

⟨
𝜀

2
Qy

(
𝜀

2
− x′′i , y

′′
i

)
+ Qy

(
𝜀

2
+ x′′i , y

′′
i

)
+

+2i
𝜋

[
x′′i − 𝜀∕2

(x′′i − 𝜀∕2)2 + (y′′i )2
+

x′′i + 𝜀∕2
(x′′i + 𝜀∕2)2 + (y′′i )2

]⟩
. (15)
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Then in the coordinate system (x′′, y′′) the stress vector on i-th elementary area is

Tsc
z (xi, yi) = 𝜏

′′sc
xz n′′i x + 𝜏

′′sc
yz n′′i y = 𝜏

′′sc
xz n̄i ⋅ t̄j + 𝜏

′′sc
yz n̄i ⋅ n̄j, (16)

where quantities 𝜏
′′sc
xz , 𝜏

′′sc
yz are defined by expressions (15). This form is very close to

a certain one containing only the quantities expressed in the basic coordinate system

(x, y). The remaining local variables in Eq. (15) can obviously be determined from

Eq. (14) as follows:

x′′i = (xj − xi)tj x + (yj − yi)tj y, y′′i = (xj − xi)nj x + (yj − yi)nj y. (17)

Expressions (15)–(17) determine the influence of the displacement discontinuity

gj located at j-th point to the shear stress Tsc
z (xi, yi) acting on the elementary area

at i-th point, and all quantities are now defined in the basic coordinate system. If

the total number of elements is I, then the complete contribution of all elements to

Tsc
z (xi, yi) is a superposition of elementary expressions taken in the form (16). This

can be written symbolically as follows:

Tsc
z (xi, yi)

𝜇
=

I∑

j=1
Kij gj, i = 1,… , I. (18)

with some known quantities Kij. By taking into account boundary condition (5), with

quantity Tinc
z defined in (4), the problem is finally reduced to the following system

of linear algebraic equations (SLAE):

I∑

j=1
Kij gj = i k(nix cos 𝛼 + niy sin 𝛼) e−i k(x i cos 𝛼+y i sin 𝛼), i = 1, 2,… , I. (19)

where the unit vector {−cos𝛼,−sin𝛼} defines the direction of the incidence.

Once this system is numerically solved, the value of the scattered stress field at

arbitrary point (x, y) inside the medium can directly be calculated by formula coin-

ciding with (18), applied at such interior point (x, y) instead of the element-location

point (xi, yi). We thus can conclude that the solution of the direct diffraction problem

for the array of linear cracks is reduced to the SLAE (19), with further summation

in Eq. (18). The imaginary unit in the argument of the exponential function cannot

be confused with the subscript i in the arising elements of vectors and matrices.

It should be noted that every elementary crack considered in the present section

may be a small part of a certain crack from the full array of cracks under diffraction.

If n-th elementary crack from the system of Nc real cracks at hand is divided to Jn
small elementary cracks, then it is obvious that the total number of elementary cracks

is I =
Nc∑
n=1

Jn.
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4 Identification Problem and Some Details
of the Numerical Algorithm

As indicated in the final part of the previous section, when integral equation (19)

is solved, i.e. all quantities gj, (j = 1,… , I) are defined, the acoustic wave field at

any point in the medium can be calculated from Eq. (9), as a superposition of all

particular contributions with g = gj. Let us calculate the diffracted wave field in the

far zone. Operating in the local coordinate system connected with the i-th elementary

crack, as shown in Fig. 2, let us estimate the quantity

√
(𝜉 − x)2 + y2 in the far zone,

i.e. when R =
√
x2 + y2 → ∞:

√
(𝜉 − x)2 + y2 =

√
x2 + y2 − 2x 𝜉 + 𝜉2 = R

√
1 − 2x 𝜉

R2 + 𝜉2

R2 ∼

∼ R

[
1 + 1

2

(
−2x 𝜉

R2 + 𝜉
2

R2

)
− 1

8

(
−2x 𝜉

R2 + 𝜉
2

R2

)2
]
∼

∼ R − x𝜉
R

+ 𝜉
2

2R
− x2𝜉2

2R3 ∼ R − 𝜉 cos 𝛽, (x = R cos 𝛽, y = R sin 𝛽), (20)

if rejecting infinitesimal terms.

After that, by applying the far-field asymptotic of the Hankel function, one obtains

from (9):

w(x, y) = w(R, 𝛽) =
i ky gi
4

𝜀∕2

∫

−𝜀∕2

H(1)
1

[
k
√
(𝜉 − x)2 + y2

]

√
(𝜉 − x)2 + y2

d𝜉 ∼ Ay gi ×

×
𝜀∕2

∫

−𝜀∕2

exp
[
k
√
(𝜉 − x)2 + y2

]

[
(𝜉 − x)2 + y2

]3∕4 d𝜉 ∼ By gi

𝜀∕2

∫

−𝜀∕2

exp[i k(R − 𝜉 cos 𝛽)]
R3∕2 d𝜉 =

=
Bgi sin 𝛽√

R
eikR

𝜀∕2

∫

−𝜀∕2

e−i k𝜉 cos 𝛽 d𝜉 = Dgi tan 𝛽 ⋅ sin(k cos 𝛽 ⋅ 𝜀∕2), (R → ∞), (21)

where the quantities B and D are certain constants if the wave number k and the

distance R are fixed. Since we apply the circular US scanning with a certain large

fixed value of R at a fixed scanning frequency of the transducer in the echo-method,

hence in our case the quantity B in the final representation in (21) is constant indeed.

Expression (21) is written in the coordinate system coupled with the i-th elemen-

tary crack. Let us pass to the main Cartesian coordinate system. It is obvious that

angle 𝛽 in Eq. (21) is the angle between the unit tangential vector t̄i and the direction

of the incidence. Therefore,
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cos 𝛽 = tix cos 𝛼 + tiy sin 𝛼, (22)

which should be substituted into Eq. (21). After that the full amplitude of the back-

scattered far-field wave can be calculated as a sum of all elementary contributions

given by Eq. (21):

A(𝛼)=
||||||
D

I∑

i=1
gi tan[arccos(tix cos 𝛼 + tiy sin 𝛼)] sin[k(tix cos 𝛼 + tiy sin 𝛼)𝜀∕2]

||||||
. (23)

Further we give the details of a reconstruction algorithm, which reduces the iden-

tification problem to an optimization problem for a certain strongly nonlinear objec-

tive functional. A special stochastic numerical technique is applied to solve this opti-

mization problem.

If the geometry of the array of linear cracks is known then, in the discretization,

the length of the elementary cracks depends upon the wave length connected with

the frequency of oscillations, as well as upon the length of the current crack. In any

way, one should take at least ten nodes along the wave length. In order to be more

specific, let us take into account the fact well known in the US detection: it is not

realistic to detect cracks whose length is smaller than the wave length 𝜆. We thus

assume, when developing our algorithm, that the length of all cracks under detection

is greater than the wave length (it is admitted that the two quantities may be equal

too). Starting from this assumption, we accept each elementary crack to be of the

length which is less than 𝜆∕10. This guarantees that in the worst case, when the

length of the crack is equal to 𝜆, the minimum number of grid nodes over the current

crack from the system at hand is 10. Once again, the total number of elementary

cracks is I =
Nc∑
n=1

Jn.

Let the system under identification consist of array of linear cracks ln, n = 1,… ,

Nc. Each crack is defined by its central point with its Cartesian coordinates (an, bn),
by its length 𝜁n, and by the angle of slope 𝜃n (|𝜃n| ≤ 𝜋∕2) with respect to x-axis. If

n-th crack contains Jn elementary cracks of the length hn = 𝜁n∕Jn, then the full set of

elementary cracks is a union of ones when running over the given system of linear

cracks:

{
xi = an+[hn(q−0.5)−𝜁n∕2] cos 𝜃n,

yi = bn+[hn(q−0.5)−𝜁n∕2] sin 𝜃n,
(q = 1,… , Jn; n = 1,… ,Nc). (24)

It should be noted that the grid nodes over any given linear crack are distributed

so that they are situated just at the half-way point between the end-points of a current

elementary segment. Such an arrangement provides a symmetry so desired for any

algorithm.
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Coming to the formulated identification problem, let us estimate the total num-

ber of the unknown parameters to be reconstructed. If the number of linear cracks

is Nc then for each of them one has four unknown parameters: an, bn, 𝜁n, 𝜃n, (n =
1,… ,Nc). Therefore, the total number of the unknown parameters, to be recon-

structed, is 4Nc.

In order to find all these unknowns, we construct an objective functional, and

reduce the reconstruction to an optimization problem for this functional. For this

purpose let us represent system (19) in the operator form:

𝐊 g = f , 𝐊 = {Kij}, g = {gi}, f = {fi}, (i, j = 1,… , I), (25)

whose solution can be expressed in terms of the inverse matrix, as follows

g = 𝐊−1 f , ⟹ gi =
(
𝐊−1 f

)
i . (26)

Obviously, the right-hand side in Eq. (26) depends upon all 4Nc unknown parame-

ters, as well as upon angle of incidence 𝛼: 𝐊−1 f = (𝐊−1 f )(an, bn, 𝜁n, 𝜃n, 𝛼).
Now, let us pass to the question what is the measured information which can be

used as input data for the inverse identification problem. We assume that the scanning

US sensor can measure the amplitude of the echo-impulse at a fixed distance R, in a

far zone, for M positions of the sensor corresponding to the values of the irradiation

angle 𝛼 = 𝛼m, (m = 1,… ,M). For the sake of brevity, we assume that the values 𝛼m
are uniformly distributed over the full circular interval (0, 2𝜋). The registered values

of the back-scattered amplitude form the array of the input data Fm, (m = 1,… ,M).
In our numerical experiments the quantities Fm may be taken as the amplitude A(𝛼)
calculated from the solution to respective direct problem: Fm = A(𝛼m), see Eq. (23).

In order to simulate the more realistic noisy input experimental data, the calculated

quantities Fm are artificially subjected to some noisy perturbations which form the

noisy input data F∗
m. Then, by substituting (26) into (23), one comes to the system

of nonlinear equations for parameters an, bn, 𝜁n, 𝜃n written in the following discrete

form:

||||||
D

I∑

i=1
(𝐊−1 f )(an, bn, 𝜁n, 𝜃n, 𝛼m) tan[arccos(tix cos 𝛼m + tiy sin 𝛼m)]×

× sin
[k(tix cos 𝛼m + tiy sin 𝛼m)𝜀

2

]|||||
= F∗

m, (m = 1,… ,M). (27)

It is interesting to compare the number of the unknown parameters and the num-

ber of equations. As indicated above, the first quantity is 4Nc. Obviously, the sec-

ond one is equal to the number of sensor positions, M. Subject to which quantity

is greater among these two ones, system (27) may be underdetermined, overdeter-

mined, or well determined. In every case it is unclear how one can solve this sys-

tem directly. Intuitively, one could suppose the more sensor measurement points the
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higher precision of the reconstruction. The method proposed here works well for any

input data. It is thus indifferent to which case from the three ones described above

takes place indeed and what is the real number of the sensor points. Obviously, the

number of the sensor points may affect the precision of the reconstruction. However,

the technique itself is universal with respect to this number.

The system of equations (27) can be resolved by a minimization of the discrepancy

functional:

min[𝛺(an, bn, 𝜁n, 𝜃n)], 𝛺(an, bn, 𝜁n, 𝜃n) =

=
||||||

||||||

||||||
D

I∑

i=1
(𝐊−1 f )(an, bn, 𝜁n, 𝜃n, 𝛼m) tan[arccos(tix cos 𝛼m + tiy sin 𝛼m)]×

× sin
[k(tix cos 𝛼m + tiy sin 𝛼m)𝜀

2

]|||||
− F∗

m

|||||

|||||

2

=

=
M∑

m=1

{||||||
D

I∑

i=1
(𝐊−1 f )(an, bn, 𝜁n, 𝜃n, 𝛼m) tan[arccos(tix cos 𝛼m + tiy sin 𝛼m)]×

× sin
[k(tix cos 𝛼m + tiy sin 𝛼m)𝜀

2

]|||||
− F∗

m

}2

. (28)

It should be noted that in the case of absolute precision of the input data the true

geometry of the cracks cluster returns zero minimum value to functional𝛺. However,

there arises the problem of uniqueness since we cannot prove that only true geometry

of the cracks makes this functional trivial.

The minimization of functional (28) can be attained by any classical method of

optimization [27, 28]. However, the main restriction of regular iterative schemes

is that they give a local minimum of respective functional only. Another difficulty

is connected with a non-uniqueness of the solution, the question already discussed

above but to be concerned again in a different aspect. Namely, it is not evident that a

local minimum is at the same time the global minimum of the functional. In fact, it

is well known that for nonlinear equations such values of local minima may be too

far from the desired value 𝛺 = 0.

For this reason, we used in our numerical experiments a version of the method

of global random search [29] contiguous to the one described in detail in [30]. This

algorithm is developed to seek maxima, but it can be applied to minima too. It is

constructed so that it moves both up and downhill and as the optimization process

proceeds, it focuses on the most promising area. As a first step, it randomly chooses

a trial point within the step of the user selected starting point. The function is evalu-

ated at this trial point and its value is compared to its value at the initial point. In the

minimization problem, all downhill moves are accepted and the algorithm continues

from that trial point. The relationship between the initial value of F and the result-

ing step length is function dependent. This algorithm shows perfect convergence

for many problems, also for our inverse identification problem, but unfortunately
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sometimes it arrives at a local extremum, instead of the global one, in the cases

when there are a lot of global minima of the objective function.

The algorithm applied is a slight modification of this idea. It possesses the two

following specific features: (1) random sampling of values in the neighborhood of the

points, for which the values of the functional are smaller, happens more frequently

than in the neighborhood of worse points, and (2) the domains, in which random val-

ues of variables are chosen, are gradually contracted to the small neighborhoods of

the points with smaller values of the functional. This technique demonstrates remark-

able convergence for all considered examples.

Let us test the proposed method on some examples of the simultaneous iden-

tification of several cracks. If one applies US probes with the cyclic frequency

f = 1mHz and the wave speed in the medium is 6 km/s, then the wave length is

𝜆 = 6 × 103∕1 × 106 = 6 × 10−3 m=6mm.

For all examples listed below the input data for the reconstruction is taken from

the solution of respective direct problem, with some stochastic perturbations of the so

obtained data, in order to model the input data with a certain error. In our simulation

we always used M = 72 points of measurements, uniformly distributed over the total

circular interval of the incident polar angle 𝛼m ∈ (0, 2𝜋), m = 1,… ,M, with the step

360◦∕72 = 5◦. For all examples demonstrated below the maximum possible number

of cracks in the cluster is taken Nc = 4. The real number of cracks is the additional,

fifth parameter to be identified. It should be noted that the intersection of cracks is

also permissible.

Let us estimate the efficiency of the proposed algorithm, in the case related to

typical examples considered below and applied with 500 iterations in the described

stochastic search, with 30 trials on each iteration step, for every of Nc combina-

tions of the number of cracks. The algorithm thus uses 30 × 500 × 4 = 60,000 trials

of the objective functional 𝛺 that takes near one hour of calculations when imple-

mented on PC with AMD Athlon Core2 processor of 6.0 HGz CPU clock (recall

that each trial requires solution of a certain SLAE of dimension I × I, see Eq. (19)).

If anyone applies a direct random search, without any acceleration technique, then

one should calculate functional 𝛺 depending upon desired scale in the precision of

the identification of all geometric parameters of the cracks. Let with a rough treat-

ment one seek the system of cracks in a 40 × 40mm square domain, of dimension

(−20, 20) × (−20, 20)mm, as shown in Fig. 4. Then with the scale step 1 mm one

should take 40 values for each of the two parameters a and b. Let then the maxi-

mum crack length be 20 mm and the minimum one 6 mm (coinciding with the wave

length), with the same scale 1 mm, and at least 10 possible values for the slope angle

𝜃. Then for each crack one should apply 40 × 40 × 15 × 10 = 240,000 trials. In the

total, one should apply (240,000)
Nc trials, where Nc = 4 is the maximum possible

number of cracks. The reader can easily understand that the calculation time for such

“direct” numerical experiments exceeds the capabilities of any existing computer.
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Fig. 4 The array of four

cracks to be identified in the

(−20, 20) × (−20, 20)mm

quadratic domain

Table 1 Identification of the single crack (1), see Fig. 4, noise level 10%

Configuration a (mm) b (mm) 𝜁 (mm) 𝜃

Exact 6.000 −3.000 12.000 −𝜋∕9 = −0.349
One crack 6.292 −2.179 12.063 −0.344
Two cracks 7.184 −1.441 11.985 −0.344

19.101 −16.204 19.049 −0.768

Three cracks 5.685 −3.798 12.108 −0.344

15.497 11.536 12.200 0.303

−2.863 −12.732 9.715 1.170

Four cracks 6.630 −2.995 11.989 −0.344

8.342 8.657 18.003 −1.401

−16.966 −11.689 14.631 0.832

14.160 17.624 6.851 −0.249

It is obvious that the proposed algorithm, in the particular case when the admitted

maximum number of cracks is Nc = 1, can be used for any single crack reconstruc-

tion. Some examples on the reconstruction of a single crack and arrays of cracks are

presented in Tables 1, 2, 3 and 4. All sizes are given in mm. The configuration of the

system of cracks is shown in Fig. 4.

For multiple cracks array the algorithm works so that this selects the most likely

geometry, sequentially for Nc = 1, 2, 3, 4 number of cracks. Then the algorithm

makes a choice on the best value of functional 𝛺, among these 4 geometries, to

come to the true solution, including the recognition of the true number of cracks by

itself.
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Table 2 Identification of the two cracks (1) and (2), see Fig. 4, noise level 0%

Configuration a (mm) b (mm) 𝜁 (mm) 𝜃

Exact 6.000 −3.000 12.000 −𝜋∕9 = −0.349
−1.500 4.000 16.000 𝜋∕3 = 1.047

One crack 6.872 6.404 15.952 1.048

Two cracks 11.363 0.367 12.065 −0.351
3.981 7.435 16.033 1.047

Three cracks 16.228 1.016 11.987 −0.357

5.661 13.488 15.804 1.050

−17.602 −0.689 10.338 1.353

Four cracks 17.085 −9.321 10.858 −0.349

−5.497 −2.791 16.021 1.050

12.574 −14.159 10.004 0.447

4.851 12.337 18.869 0.085

Table 3 Identification of the three cracks (1)–(3), see Fig. 4, noise level 10%

Configuration a (mm) b (mm) 𝜁 (mm) 𝜃

Exact 6.000 −3.000 12.000 −𝜋∕9 = −0.349
−1.500 4.000 16.000 𝜋∕3 = 1.047
−10.000 −6.000 11.000 −𝜋∕4 = −0.785

One crack 15.973 15.093 16.176 1.050

Two cracks −1.743 −0.588 12.917 −0.526

−8.586 −2.220 16.895 1.017

Three cracks 5.302 −9.656 12.020 −0.370
−5.303 −8.662 17.214 1.050
−14.496 −17.069 12.818 −0.788

Four cracks −11.336 −6.188 13.504 −0.374

−16.966 −11.689 14.631 0.832

−4.815 −11.485 10.936 −0.798

14.160 17.624 6.851 −0.249

5 Conclusions

It is clear from the tables that, for any configuration of Nc cracks to be identified, the

algorithm tries to find an appropriate system of 1,2,3,4 cracks sequentially. Phys-

ically, such a problem is solvable only for the true number of cracks Nc, the cells

which are marked in the tables by the bold font. Mathematically, this means that the

minimum value of the functional 𝛺 close to 0 can be attained only if Nc is true. Of

course, for arbitrary number of cracks chosen, the algorithm approaches to a certain
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Table 4 Identification of the four cracks (1)–(4), see Fig. 4, noise level 0%

Configuration a (mm) b (mm) 𝜁 (mm) 𝜃

Exact 6.000 −3.000 12.000 −𝜋∕9 = −0.349
−1.500 4.000 16.000 𝜋∕3 = 1.047
−10.000 −6.000 11.000 −𝜋∕4 = −0.785
−4.000 −12.200 19.000 𝜋∕6 = 0.524

One crack −7.592 −6.829 9.331 0.766

Two cracks −8.465 10.833 18.015 1.112

−5.137 12.156 19.529 0.560

Three cracks 4.627 0.840 8.123 −0.356

0.755 −12.263 17.862 0.991

9.958 −4.747 16.079 0.498

Four cracks −10.940 19.407 10.587 −0.337
12.259 0.785 16.449 1.048
−4.169 13.786 9.401 −0.816
−6.472 −6.611 19.298 0.521

minimum value of the functional. However, our calculations show that the attained

minimum for the true value of Nc is at least by one order smaller than for other three

cases.

From the presented tables as well as from other numerous calculations performed

the following conclusions can be extracted:

1. The main conclusion is that the position of the cracks forming the array is never

identified correctly. This is easily explained by the fact that the far-field scattered

wave field, expression (23), is free of coordinates xi, yi, being dependent upon the

angle of the incidence only. It is obvious that one cannot hope to identify the real

position of a reflector if only the information from the far-field input data is used.

2. The number of cracks Nc for the particular configuration, as a rule, is recon-

structed correctly. Below it is discussed that this question is resolved successfully

not always; this strongly depends on the geometry of the configuration, see point

7 of the Conclusions.

3. Two geometrical parameters, the length of the crack 𝜁 and the slope angle 𝜃, can

typically be identified quite precisely. Physically, this can be explained by the

fact that for a short-wave diffraction in the echo-regime the reflected amplitude

diagram has a sharp maximum just when the incidence is orthogonal to the faces

of the crack. This predetermines a sufficiently precise identification of the angles

of slope for all cracks from the array, except those cases described in point 7, see

below.

4. In the reconstruction of single crack the behavior of the convergence is typically

monotonic, in the sense that with the increasing number of iterations the two

parameters 𝜁 and 𝜃 become closer to their exact values, and so is the value of the
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functional 𝛺. Recall that exact values of the parameters in our test examples are

known a priori since they are constructed from respective direct problems.

5. If we construct the input data from a respective direct problem, without any ran-

dom perturbation, then it is obvious that theoretically the value of the discrep-

ancy functional is zero for the exact solution. In practice, when implementing

the proposed numerical algorithm, the attained minimal value is small but not

trivial. However, the behavior of 𝛺 versus number of iteration steps is typically

monotonic, even in the case of multiple cracks.

6. The convergence of the reconstructed parameters versus iteration number is typ-

ically not monotonic. This means that after more iteration steps some parameters

may approach closer to their exact values, however some other parameters some-

times may be slightly more distant from respective exact values. This is quite

natural in multidimensional optimization, since a smaller value of the discrep-

ancy functional does not always mean closer values for all variables to their exact

quantities.

7. One more interesting conclusion is that the identified arrays of cracks, found with

an incorrect number of cracks, contain, as a rule, some correct cracks. This can

be explained by the fact that the circular scanning cannot reconstruct correctly

those cracks which are hidden in a “shadow” of some other long ones. In fact,

imagine a pair of cracks parallel and close to each other, like those located on the

two opposite sides of a narrow rectangle. It is very hard to believe that the circular

scanning can recognize this pair of cracks separately, not as only a single crack.

Such “hidden” configuration can be imagined for arbitrary number of cracks, for

example every time when a system of large cracks obstructs a short crack; then the

latter is practically invisible with the US scanning. In such cases the number of

cracks in the array are identified with error, even if some cracks from the array are

identified correctly. The typical examples are given by the case “Three cracks” in

Table 1, by the case “Three cracks” in Table 2, by the case “One crack” in Table 3,

and many others.

8. Typically, the error in the identification of the inclination angle 𝜃 does not exceeds

few percents in the case of exact input data, and does not exceed the error level of

10% in the case of the input data subjected to the noisy perturbation. The error in

the identification of cracks’ length 𝜁 is typically from few percents for the single

crack to the value of 10–15% for multiple cracks. In all cases, the error of the

identification grows with the increasing of the number of cracks.

9. To improve the precision of the identification, we should resign the fixed fre-

quency hypothesis and the time-harmonic regime of oscillations. In fact, by using

the well known “time-of-flight” information, one may hope to improve the pre-

cision of the reconstruction operating with the real transient US impulse. Appar-

ently, the precision of the identification can also be improved by using several

carrier frequencies, instead of only one fixed frequency. The time-of-flight infor-

mation can considerably improve the identification of cracks’ position, two first

parameters a and b.
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Short-Wave Diffraction of Elastic
Waves by Voids in an Elastic Medium
with Double Reflections
and Transformations

Nikolay V. Boyev

Abstract The classical diffraction problem of high-frequency waves emitted from a
point source in an elastic medium with a void or a system of voids is considered. The
voids are bounded by arbitrary smooth surfaces. Single reflection cases of longitudinal
and transverse waves are studied by taking into account their transformations on the
boundary surface. Double reflection cases are investigated for two different possi-
bilities of transformations of elastic waves: the longitudinal wave transformed to the
transverse one, and vice versa. The developed method of the research is based on the
evaluation of diffraction integrals by means of multidimensional stationary-phase
method. The novel approach allows us to obtain the leading asymptotic term of the
diffracted displacement field as a closed-form expression in the cases of single and
double reflections, which corresponds to the geometrical theory of diffraction (GTD).

Keywords Short-wave diffraction ⋅ Elastic waves ⋅ Double reflection and
transformations ⋅ Defects

1 Introduction

The classical problem of the diffraction by the boundaries in continuous media has
important technical applications. In the acoustic media the reflected waves contain
the necessary information about the shape of the obstacle. In the ultrasonic
non-destructive testing this information serves as a basis for the reconstruction of the
characteristic size and the shape of the defects. In the case of single reflection of
elastic waves, the solution to such a problem in a two-dimensional case is attained by
different methods in [2, 4, 22]. For a three-dimensional case in [3, 11] the
short-wavelength approximation is obtained in a closed form for the pressure of
acoustic wave in the case of a single reflection, and in [3] for multiple reflections
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from arbitrary smooth boundaries. The short-wavelength diffraction approaches
developed in the present chapter can be efficiently applied to the study of elastic
media with concentration of solid inclusions, namely, metamaterials. Such materials
are known to be used as wave filters [10]. Some analytical and numerical approaches
for two-dimensional problems of acoustic and elastics waves propagation, mainly in
low-frequency range, are developed in [12, 14–17, 21] and in a number of other
works. Similar three-dimensional problems are discussed in [18, 19, 23].

2 Problem Statement

Suppose the spherical monochromatic high-frequency wave falls from the point x0
of an infinite elastic medium on the boundary of the flaw located in this medium
(Fig. 1). The wave is generated by the local force Qe− iωt concentrated at this point
x0, where ω is the oscillation frequency.

At the same time, the displacements of the point y in the elastic medium are
defined by the Kupradze matrix [9]:

UðkÞ
j ðy, x0Þ=UðkÞ

jp ðy, x0Þ+UðkÞ
js ðy, x0Þ, k, j=1, 2, 3

UðkÞ
jp y, x0ð Þ= −

1
4πρω2

∂
2

∂yk∂yj

eikpR0

R0

� �
, R0 = x0 − yj j,

UðkÞ
js y, x0ð Þ= 1

4πρω2 k2s δkj
eiksR0

R0

� �
+

∂
2

∂yk∂yj

eiksR0

R0

� �� �
,

ð1Þ

where ρ is density, λ, μ are Lamè coefficients, kp =ω ̸cp , ks =ω ̸cs, cp, cs are the
wave numbers and the wave speed of the longitudinal and the transverse waves,

Fig. 1 Scattering of the
high-frequency longitudinal
wave in the longitudinal
reflection (p-p reflection) and
transformation of the
longitudinal wave to the
transverse one (p-s
transformation), on the free
boundary of the cavity located
inside the elastic medium
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respectively, δkj are the Kronecker symbols. The goal of the present study is to find
the amplitude characteristics of the scattered field on the stress-free cavity surface.

3 Method of Solution

The time-dependence parameter of the problem is monochromatic, in particular, for
the displacement in an elastic media it can be written as: u x1, x2, x3, tð Þ=
Re u x1, x2, x3ð Þ exp − iωtð Þ½ �. The Kupradze matrix defines the displacements of the
longitudinal (p-wave) and transverse (s-wave) waves at the point y, in the direction
of the radial axis: q= x0y

jx0yj.

u pð Þ
q ðyÞ=Qqq

k2p
4πρω2 1 + i

2
kpR0

−
2

kpR0
� �2

 !
eikpR0

R0
, Qq = Q, qð Þ ð2Þ

u sð Þ
q1
ðyÞ=Qq1q1

k2s
4πρω2 1− i

1
ksR0

−
1

ksR0ð Þ2
 !

eiksR0

R0
, Qq1 = Q, q1ð Þ ð3Þ

The tangential direction q1 is perpendicular to q, Qq and Qq1 are the projections
of the force Q in the directions q and q1. The displacement vector components at
the point x of the wave scattered by the stress-free boundary surface are defined by
the following the Somigliana integral [13]:

ukðxÞ=
ZZ

S
Ty½UðkÞðy, xÞ� ⋅uðyÞdSy, ð4Þ

Ty UðkÞðy, xÞ
h i

=2μ
∂UðkÞ

∂n
+ λndiv UðkÞ

� 	
+ μ n× rot UðkÞ

� 	� 	
ð5Þ

where the Kupradze matrix Ukðy, xÞ is obtained from the matrix Ukðy, x0Þ (1), by
substituting x0 for x and R0 for R= jy− xj, Ty is a force vector at the point y, uðyÞ
is a vector of the full displacement field on the boundary surface, n is normal to the
surface S. Let us extract the terms defined by the longitudinal (pÞ and the transverse
(sÞ waves in the full displacement vector (4) on the boundary surface and in the
force vector at the point y (5).

ukðxÞ=
ZZ

S
Ty½U kð Þ

p ðy, xÞ� ⋅ uðy; pÞdSy +
ZZ

S
Ty½U kð Þ

s ðy, xÞ� ⋅ uðy; pÞdSy +

+
ZZ

S
Ty½U kð Þ

p ðy, xÞ� ⋅ uðy; sÞdSy +
ZZ

S
Ty½U kð Þ

s ðy, xÞ� ⋅ uðy; sÞdSy
ð6Þ

here u y; pð Þ (u y; sð ÞÞ is the full displacement vector on the boundary S produced by
the incidence of the longitudinal (transverse) wave on the boundary S. The first and
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the last terms in (6) describe p− p and s− s reflections, where the second and the
third p− s and s− p reflections are transformations.

As in the classical geometric theory of diffraction developed in the scalar
acoustic problems [5] and extended to the problems of dynamical theory of elas-
ticity [1], one should distinguish between high-frequency asymptotics in the local
and the global senses. In the global formulation, the problem of computing the full
field at the point x is being put forward. In such a case, applying the Eq. (6), the full
field at the point x of the elastic medium is constructed by the four terms in (6) and
the incident spherical wave. The asymptotic solution presented below is local in
character and provides the leading asymptotic term of the amplitude of the dif-
fracted field in a small neighborhood of any ray emitted from the point x0, reflected
by the surface at the point y* and arriving at the point x. Evidently, such rays can
only exist if both point y* and x lie in the illuminated area.

4 Single Reflection of the Longitudinal Wave
by the Cavity Surface

Let us analyze in detail the problem of the propagation of the longitudinal (pÞ term
(2) of the spherical wave (1) in the fixed direction q in an elastic media, when p-
wave interacts with a free boundary of the cavity and reflects from it. In such a case
the longitudinal wave is reflected to the p-wave (p− p reflection) and will be
transformed to the transversal s-wave (p− s transformation). The receiving points x
in the case of p− p reflection and x ̃ in the case of p− s transformation is different
being located on the rays, along which the reflected longitudinal and transverse
waves propagate. In this case the point y* of the intersection of the smooth cavity

surface with the direction q= x0y*

jx0y*j is the specular reflection point of the incident p-

wave (2). Below, we obtain the expressions for the amplitudes of the reflected
waves at the receiving points x and x ̃.

The case of the p− p reflection. Let us refer the incident direction of wave
q= f− cosα, − cosβ, − cosγg to the right Cartesian coordinate system OX1X2X3 at
the point y* , where axis OX3 coincides with the outer normal vector n towards the
cavity boundary oriented in the direction of the elastic medium, and axes OX1 and
OX2 coincide with tangent lines to the curvature lines of the boundary at the point
y* (Fig. 1). In such a coordinate system vector q1 has the following coordinates
= f− ctgγcosα, − ctgαcosβ, − sinγg and normal n= f0, 0, 1g.

The coordinates of the displacement vector in the reflected wave are defined by
the first term of the Eq. (6) which we write out here in the expanded form:
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uðpÞk xð Þ=
ZZ

S
μ ∑

2

m=1

∂U kð Þ
mp

∂y3
+

∂U kð Þ
3p

∂ym

 !
um y; pð Þ

"
+

+ 2μ
∂UðkÞ

3p

∂y3
+ λdivU kð Þ

p

 !
u3ðy; pÞ

#
dSy

ð7Þ

To perform an asymptotic estimation of the integrals (7) at kp →∞ , the fol-
lowing asymptotic representation is used:

divU kð Þ
p y, xð Þ= i

k3p
4πρω2

eikpR

R
∂R
∂yk

1+O kpR
� �− 1
� 	h i

ð8Þ

∂U kð Þ
j

∂ym
= i

k3p
4πρω2

eikpR

R
∂R
∂ym

∂R
∂yk

∂R
∂yj

1+O kpR
� �− 1
� 	h i

, k, j,m=1, 2, 3

y y1, y2, y3ð Þ; x x1, x2, x3ð Þ; y∈ S,
∂R
∂y1

=
y1 − x1

R
= − cos α,

∂R
∂y2

=
y2 − x2

R
= − cos β,

∂R
∂y3

=
y3 − x3

R
= cos γ.

ð9Þ

Here f− cosα, − cosβ, cosγg are the direction cosines of the vector yx.
After substitution (8) and (9) in (7), we obtain:

uðpÞk ðxÞ= i
k3p

4πρω2

ZZ
S
Φ yð Þ ∂R

∂yk

eikpR

R
dSy

Φ yð Þ=2μ
∂R
∂y1

u1 y; pð Þ+ ∂R
∂y2

u2 y; pð Þ
� �

∂R
∂y3

+ 2μ
∂R
∂y2

� �2

+ λ

" #
u3 y; pð Þ

We now pass on to the spherical coordinate system r, θ, ψ at the point y*. The
displacement vector components are reduced to the form

uðpÞr ðxÞ= i
k3p

4πρω2

ZZ
S
Φ yð Þ e

ikpR

R
dSy, u

ðpÞ
θ ðxÞ=0, uðpÞψ ðxÞ=0

Φ yð Þ= − 2μ cos αu1 y; pð Þ+ cos βu2 y; pð Þ½ � cos γ + 2μ cos2 γ + λ

 �

u3 y; pð Þ
ð10Þ

When an asymptotic estimate of the Kirchhoff integral in the Eq. (10) is per-
formed, the components of the full displacement field ukðy; pÞ, k=1, 2, 3 under the
integration sign should be taken as a solution of a local diffraction problem of the
plane incident p-wave scattered by the flat boundary in the elastic half-space [6, 8].
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um y; pð Þ= 1+Vpp yð Þ− ks
kp sin γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

k2p
k2s

sin2 γ

s
Vps yð Þ

 !
u pð Þ
mq yð Þ,m=1, 2

u3ðy; pÞ= 1−Vpp yð Þ− tgγVps yð Þ� �
u pð Þ
3q yð Þ

ð11Þ

where Vpp and Vps are the coefficients of p− p reflection and p− s transformation
[6, 8].

Vpp =
1
z

4ctgγctgγ1 − 1− ctg2γ1
� �2h i

,Vps =
4
z
ctgγ 1− ctg2γ1

� �
z=4ctgγctgγ1 + 1− ctg2γ1

� �2 ð12Þ

The substitution of the relations (12) to (11) and (2) in the expression under the
integral sign (10), and taking the non-oscillating functions out of the integral sign in
the high-frequency approximation, leads to the following main integral represen-
tation of the radial displacement u pð Þ

r ðxÞ

u pð Þ
r xð Þ= Qq

4πμ
i
k2p
k2s

⋅
kp
2π

cos γ
L0L

Vpp y*
� �ZZ

S
eikpφppdS

φpp = x0 − yj j+ y− xj j,L0 = x0 − y*
 ,L= y* − x

 .
ð13Þ

The asymptotic estimation of the integral in the representation (13) by the
two-dimensional stationary phase method [7] is given in [3] for the scattering
problem of acoustic wave by the boundary of an obstacle. Using this estimation, we
can write out the leading term of the radial displacement amplitude in the reflected
p-wave:

u pð Þ
r xð Þ= Qq

4πμ

k2p
k2s

Vpp y*
� �

cos γ
exp i kp L0 + Lð Þ+ π

4 δ ppð Þ
2 − 2

� 	h in o
L0L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D ppð Þ

2

� 	 r ð14Þ

where D ppð Þ
2 is the Hessian matrix with symmetric structure ðdij = dji; i, j=1, 2Þ and

δðppÞ2 = signDðppÞ
2 is the difference between the number of positive and negative

eigenvalues of matrix DðppÞ
2 . By calculating the determinant in the denominator and

taking into account that d12 = d21, we can write out the Eq. (14) in the explicit form:

u pð Þ
r xð Þ=

B×Vpp y*ð Þ exp i kp L0 + Lð Þ+ π
4 δ ppð Þ

2 − 2
� 	h in o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0 + Lð Þ2 + 2L0L L0 +Lð Þ k2 sin2 α+ k1 sin2 β

� �
cos− 1 γ +4L20L2K

 q
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B=
Qq

4πμ

k2p
k2s

ð15Þ

Here K = k1k2 is the Gaussian curvature, k1, k2 are principal curvatures of the
boundary at the point y*. Equation (15) provides the leading asymptotic term of
pressure at kpL0 ≫ 1, kpL≫ 1, kpR1 ≫ 1, kpR2 ≫ 1. The structure of the function in
the denominator of the Eq. (15) for the reflected longitudinal wave is the same as in
the case of a single reflection of acoustic wave [3]. The presence of the coefficient
Vppðy*Þ in the numerator of the Eq. (15) indicates that the qualitative characteristics
of the reflection of the longitudinal—to longitudinal wave remain the same as in the
case of the wave scattered from the tangential plane towards the point of the
specular reflection. Let us extract two extreme cases for the Eq. (15). If k1 = k2 = 0,
then the well-known result follows from (15) for the radial displacement in a wave
scattered by the free boundary plane:

u pð Þ
r xð Þ= Qq

4πμ

k2p
k2s

Vpp y*
� �ðL0 + LÞ− 1 exp ikp L0 + Lð Þ
 � ð16Þ

In the case of back scattering, (Vpp = − 1Þ in a far field Eq. (15) for radial
displacement coincides with the relation for the pressure in the scalar case [20].

u pð Þ
r xð Þ= − 0.5QqiL− 2

0

ffiffiffiffiffiffiffiffiffiffi
R1R2

p
exp i 2kpL0 +

π

4
δ ppð Þ
2

� 	h i
ð17Þ

The relation (15) is obtained for the case when the high-frequency longitudinal
wave falls on the convex part of the boundary surface of the elastic medium. If a
wave is incident on a concave surface, then the principal curvatures k1 and k2
should be taken negative. The Eq. (15) differs from the analogous one in [3, 11] for
the pressure pðxÞ in a scattered high-frequency acoustic wave in the scalar case only
by the presence of the reflection coefficient Vpp in the case of elastic medium. The
expression for the pressure in a wave scattered just once by the acoustically hard
boundary is obtained in monography [11] in the light of the geometrical theory of
diffraction (GTD) and in [3] making use of the estimation of the diffraction integral
by the two-dimensional stationary phase method. It means, that the leading
asymptotic term t in (15) of the diffraction integral agrees with the calculations of
the pressure in the scattered wave using GTD.

The case of p− s transformation. In this case the Cartesian components of the
displacement vector usk , k=1, 2, 3 are defined by the second term of the integral
representation (6)

u sð Þ
k x ̃ð Þ=

ZZ
S
Ty U kð Þ

s y, x ̃ð Þ
h i

⋅ u y; pð ÞdSy
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By implementing the transformations in the same manner as in the previous case,
the displacement usθðx ̃Þ is reduced to the form (after taking in high-frequency
approximation non-oscillating functions behind the integral sign)

u sð Þ
θ x ̃ð Þ= −

Qq

4πμ
i

kp
2π

� �
cos γ1
L0L1

Vps y*
� �ZZ

S
eikpϕpsdS ð18Þ

φps = x0 − yj j+ ks
kp

y− x ̃j j, L 0 = x0 − y*
 , L 1 = y* − x ̃

 . ð19Þ

The leading asymptotic term of the integral (18) can be obtained by applying the
two-dimensional stationary phase method [7]

u sð Þ
θ x ̃ð Þ= −

Qq

4πμ
cos γ1Vps y*

� � exp i kpL0 + ksL1 + π
4 δ psð Þ

2 − 2
� 	h in o

L0L1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D psð Þ

2

� 	 r ð20Þ

where the elements of the symmetric (d12 = d21) Hessian matrix DðpsÞ
2 = dij, i, j=1, 2

are defined by the Eqs. (21), δðpsÞ2 = signDðpsÞ
2 ;

d11 = L− 1
0 sin2 α+

ks
kp

L− 1
1 sin2 α1 − k1 cos γ −

ks
kp

cos γ1

� �

d12 = − L− 1
0 cos α cos β+

ks
kp

L− 1
1 cos α1 cos β1

� �

d22 = L− 1
0 sin2 β+

ks
kp

L− 1
1 sin2 β1 + k2 cos γ −

ks
kp

cos γ1

� � ð21Þ

The resulting expression (21) for the tangential displacements u sð Þ
θ ðx ̃Þ at p− s

reflection contains the determinant of the Hessian matrix detðDðpsÞ
2 Þ, whose ele-

ments contain a larger number of parameters than in the case of p− p scattering.
The leading asymptotic term of the displacement in the reflected s-wave at p− s
transformation can be written out in the explicit form, however, in order to attain
the result for a specific case, it is reasonable to use direct calculation of the

determinant detðDðpsÞ
2 Þ. The presence of the transformation coefficient Vpsðy*Þ in the

Eq. (20) indicate that the qualitative characteristics at p− s transformation in
the case of the surface remain the same just as in the case of the wave reflection by
the tangential plane to the surface at the point of the specular reflection.
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5 Single Reflection of the Transverse Wave by the Cavity
Surface

The calculation of the full diffracted field on the boundary of an obstacle in general
case (6) also includes the waves scattered at the incidence of the tangential com-
ponent (3) of a spherical wave (1). As it was done for the previous case, let us study
the amplitude characteristics of the reflected s-waves and p-waves with the inci-
dence of the tangential s-wave (3). This analysis is performed in the same coor-
dinate system as in the case of p-wave reflection. Let us present the final
expressions for displacements.

The case of s− s reflection.

u sð Þ
θ xð Þ= −

Qq1

4πμ
Vss y*
� � exp i ks L0 + L1ð Þ+ π

4 δ ssð Þ
2 − 2

� 	h in o
L0L1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðD ssð Þ

2 Þ
 r ð22Þ

where DðssÞ
2 is the Hessian matrix of a symmetric structure (dij = dji; i, j=1, 2Þ, and

δðssÞ2 = signDðssÞ
2 . By calculating the determinant in the denominator and taking into

account that d12 = d21, we write out the Eq. (22) in the explicit form:

u sð Þ
θ xð Þ=

B1 ×Vss y*ð Þ exp i ks L0 + L1ð Þ+ π
4 δ ssð Þ

2
− 2

� 	h in o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0 +L1ð Þ2 + 2L0L1 L0 +L1ð Þ k2 sin2 α1 + k1 sin2 β1

� �
cos− 1 γ1 + 4L20L

2
1K

 q

B1 = −
Qq1

4πμ
ð23Þ

Here − cos α1, − cos β1, − cos γ1f g is the vector defining the incident direction
of ray x0 − y* in the chosen coordinate system.

The case of s− p transformation.

u pð Þ
r xð Þ= Qq1

4πμ
kp
ks
Vsp y*
� �

cos γ
exp i ksL0 + kpL+ π

4 δ spð Þ
2 − 2

� 	h in o
L0L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D spð Þ

2

� 	 r ð24Þ

where the elements of the symmetric Hessian matrix DðspÞ
2 = dij , i, j=1, 2 are

defined by the expressions (25), δðspÞ2 = signDðspÞ
2 .
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d11 =
ks
kp

L− 1
0 sin2 α1 +L− 1 sin2 α+ k1

ks
kp

cos γ1 − cos γ
� �

d12 = −
ks
kp

L− 1
0 cos α1 cos β1 +L− 1 cos α cos β

� �

d22 =
ks
kp

L− 1
0 sin2 β1 +L− 1 sin2 β+ k2

ks
kp

cos γ1 − cos γ
� � ð25Þ

Thus, in the first two cases all possible single reflections and transformations of
the longitudinal and the transverse waves on the free boundary of elastic media
have been studied.

6 The Double Re-Reflection of Elastic Waves in View
of All Possible Transformations

The application of GTD, which is based on the use of divergence coefficients, even
in the case of double wave reflection is sufficiently lengthy. In our opinion, studying
the problem of the re-reflection of a high-frequency wave by the boundary of an
elastic body, with all possible resulting wave transformations of arbitrary number
N of times, it is more convenient to start with the evaluation of 2 N-dimensional
diffraction integral by the multiple stationary-phase method. The basis for studying
a general case of an arbitrary number of re-reflections is the problem of double
scattering (Fig. 2) which is considered below.

Fig. 2 Double p− s− p
transformation of a
high-frequency longitudinal
wave along the ray
x0 − y*1 − y*2 − x3 on the free
boundary surfaces of two
cavities placed in the elastic
medium

100 N.V. Boyev



A direct application of the integral representation (6) on all area of “light” for the
reflected waves is impossible [5], since it is not suitable for the case of wave
multiple reflections. If we take the Somigliana’s formula (6) and substitute uðyÞ
with the values (2) and (3) of the primary field, then the integral Eq. (6) gives only a
primary reflection.

A double-reflected wave can be attained only when the values u yð Þ include both
primary field and its primary reflection. To solve the problem of a double
rereflection we rely on the modification [5] of the integral formula (6). Following
this modification the doubly reflected waves can be obtained by the integration of
rays received from a single reflection by the neighborhood S1 of the first specular
reflection point y*1 over the neighborhood S2 of the second specular reflection point
y*2. Such a modification means that when finding a leading asymptotic term of the
quadruple diffraction integral, we deal with the GTD calculations of the displace-
ment amplitude in a doubly reflected wave.

Further we investigate the re-reflection of the high-frequency wave by using as
an example the reechoing of the ray x0 − y*1 − y*2 − x3 illuminated from the point x0
(p− wave (2)) and received at the point x3 with possible transformation p− s− p.
The components of the displacement vector of p− wave at the point x3 are given by
the following equation

u pð Þ
k x3ð Þ=

ZZ
S2
Ty2 U kð Þ

p y2, x3ð Þ
h i

⋅ u y2; sð ÞdS2 ð26Þ

Here u y2; sð Þ is a full displacement vector at the point y2 ∈ S2 in the neighbor-
hood of the specular reflection point y*2, which should be defined after the first p− s
transformation in the neighborhood S1 of the point of specular reflection y*1.

For the purpose of the asymptotic estimation of the Kirchhoff integral in
Eq. (26), the components of the full displacement field vector uk y2; sð Þ, k=1, 2, 3
under the integration sign should be taken as a solution of the local diffraction
problem for the scattering incident plane s− wave, formed at p− s transformation
in the neighborhood S1 of the point of specular reflection y*1.

umðy2; sÞ= Vss y2ð Þ− 1− tgγ1Vsp y2ð Þ� �
u sð Þ
m y2ð Þ,m=1, 2

u3 y2; sð Þ= Vss y2ð Þ+1+
kp

ks sin γ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

k2s
k2p

sin2 γ1

s
Vsp y2ð Þ

 !
u sð Þ
3 y2ð Þ

ð27Þ

where Vssðy2Þ and Vspðy2Þ are the coefficients of s− s reflections and s− p trans-
formations [6, 8]. At the same time, the components of the displacement vector

uðsÞk y2; sð Þ, k=1, 2, 3 are expressed by a similar equation

u sð Þ
k y2ð Þ=

ZZ
S1
Ty1 U kð Þ

p y1, y2ð Þ
h i

⋅ u y1; pð ÞdS1
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where the vector of the full displacement field at the point y1 ∈ S1 of the y*1
neighborhood is defined by Eqs. (11). After substitution of Eqs. (11), (27), (28) to
Eq. (26), and then the transition to the spherical coordinate system r, θ,ψ at the
point y*2, we can write out the displacement components at the point x3.

u pð Þ
r x3ð Þ= −

Qq

4πμ
kp
ks

kp
2π

� �2 kp
2ks

� �2cos γ1 cos γ3
L0L1L2

Vps y*1
� �

Vsp y*2
� �

×

×
ZZ

S2

ZZ
S1
eikpφpspdS1dS2

ð28Þ

u pð Þ
θ x3ð Þ=0, u pð Þ

ψ x3ð Þ=0

φpsp = x0 − y1j j+ ksk − 1
p y1 − y2j j+ y2 − x3j j

L0 = x0 − y*1
 ,L1 = y*1 − y*2

 ,L2 = y*2 − x3
 

ð29Þ

As in the case of single reflections, the neighborhoods S1 and S2 of the specular
reflection points y*1 and y*2 are associated with the right Cartesian coordinate system

OiX
ðiÞ
1 XðiÞ

2 XðiÞ
3 , i=1, 2 defined by normals n1(axe O1X

ð1Þ
3 ) and n2 (axis O2X

ð2Þ
3 ) and

tangents to the curvature lines (axes OiX
ðiÞ
1 , OiX

ðiÞ
2 , i=1, 2Þ.

Let the basis vectors in the local coordinate systems at the points y*1 and y*2 be
ði1, j1,k1Þ and ði2, j2,k2Þ. If the shapes of the reflecting surfaces are known, then the
local coordinate systems and basis vectors can be recovered. Along the curvature

lines we count the arc length Δsð1Þ1 and Δsð1Þ2 in the neighborhood S1 of point y*1 and

Δsð2Þ1 and Δsð2Þ2 in the neighborhood S2 of point y*2. The increments of the arcs

ΔsðiÞ1 ,ΔsðiÞ2 ði=1, 2Þ are infinitely small quantities. The asymptotic representation of
the stationary distances in the phase function (29) up to an infinitesimal of the
second order inclusive has the form:

x0 − y1j j= L0 −Δs 1ð Þ
1 cos α−Δs 1ð Þ

2 cos β+0.5 L− 1
0 sin2 α+ k 1ð Þ

1 cos γ
� 	

Δs 1ð Þ
1

� 	2
−

−L− 1
0 cos α cos βΔs 1ð Þ

1 Δs 1ð Þ
2 + 0.5 L− 1

0 sin2 β+ k 1ð Þ
2 cos γ

� 	
Δs 1ð Þ

2

� 	2
ð30Þ

y2 − x3j j= L2 +Δs 2ð Þ
1 cos α3 +Δs 2ð Þ

2 cos β3 + 0.5 L− 1
2 sin2 α3 + k 2ð Þ

1 cos γ3
� 	

Δs 2ð Þ
1

� 	2
−

− L− 1
2 cos α3 cos β3Δs

2ð Þ
1 Δs 2ð Þ

2 + 0.5 L− 1
2 sin2 β3 + k 2ð Þ

2 cos γ3
� 	

Δs 2ð Þ
2

� 	2
ð31Þ

At p− s− p transformation, − cos α, − cos β, − cos γf g is the vector which
defines the incident direction of p− wave (2), vector − cos α1, − cos β1, cos γ1f g
defines the direction of the p− wave reflected at the point y*1, vector
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− cos α2, − cos β2, − cos γ2f g is the incident direction of s− wave reflected at the
point y*1 relative to the coordinate system of the point y*2,
− cos α3, − cos β3, cos γ3f g is the direction of p− wave reflected at the point y*2.
Let us find the distance y1 − y2j j= jy2y1j in the phase φpsp (29). We find this

distance in the right coordinate system O2X
ð2Þ
1 Xð2Þ

2 Xð2Þ
3 with the origin O2 at the

point y*2. In this coordinate system let us denote the coordinates of the points as
y2 ξ2, η2, ζ2ð Þ, y1 ξ1, η1, ζ1ð Þ, y*1 ξ02, η

0
2, ζ

0
2

� �
. With this in view the vectors y2y1 in

this coordinate system are represented in the form:

y2y1 = y*2y
*
1 +Ay*1y1 − y*2y2

y2y1 = fξ1 − ξ2, η1 − η2, ς1 − ς2g; y*2y
*
1 = fξ01, η01, ς01g

y*i yi = ΔsðiÞ1 ,ΔsðiÞ2 , − 0.5 kðiÞ1 ΔsðiÞ1
� 	2

+ kðiÞ2 ΔsðiÞ2
� 	2� �� �

, i = 1, 2

Here the coordinates of the vector y*i yiði=1, 2Þ are written out in the local
coordinate systems at the points y*1 and y*2. Matrix A= aij

� �
, i, j=1, 2, 3 - orthog-

onal transition matrix from the basis of the rectangular coordinate system

O2X
ð2Þ
1 Xð2Þ

2 Xð2Þ
3 at the point y*2 to the basis of the Cartesian coordinates

O1X
ð1Þ
1 Xð1Þ

2 Xð1Þ
3 at the point y*1. The asymptotic presentation of the distance (32) with

the accuracy up to an infinitesimal of the second order inclusive is written out on
the basis of its coordinate calculations.

y1 − y2j j= L1 +

+ cos α1Δs
ð1Þ
1 + cos β1Δs

ð1Þ
2 − 0.5 cos γ1 kð1Þ1 Δsð1Þ1

� 	2
+ kð1Þ2 Δsð1Þ2

� 	2� �
−

− cos α2Δs
ð2Þ
1 − cos β2Δs

ð2Þ
2 − 0.5 cos γ2 kð2Þ1 Δsð2Þ1

� 	2
+ kð2Þ2 Δsð2Þ2

� 	2� �
+

+L− 1
1 0.5 sin2 α1 Δsð1Þ1

� 	2
+ 0.5 sin2 β1 Δsð1Þ2

� 	2
− cos α1 cos β1Δs

ð1Þ
1 Δsð1Þ2

�
+

+0.5 sin2 α2 Δsð2Þ1

� 	2
+ 0.5 sin2 β2 Δsð2Þ2

� 	2
− cos α2 cos β2Δs

ð2Þ
1 Δsð2Þ2 +

+ cos α1 cos α2 − a11ð ÞΔsð1Þ1 Δsð2Þ1 + cos β1 cos α2 − a12ð ÞΔsð1Þ2 Δsð2Þ1 +

+ cos α1 cos β2 − a21ð ÞΔsð1Þ1 Δsð2Þ2 + cos β1 cos β2 − a22ð ÞΔsð1Þ2 Δsð2Þ2

i
ð32Þ

where a11 = ði1, j1Þ, a12 = ðj1, i2Þ, a21 = ði1, j2Þ, a22 = i2, j2ð Þ. Then we use expres-
sions for x0 − y1j j, ksk − 1

p y1 − y2j j, jy2 − x3j, see (30)–(32), the Snell law of refrac-
tion kp sin γ = ks sin γ1, ks sin γ2 = kp sin γ3, as well as relationships
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cos α
sin γ

=
cos α1
sin γ1

,
cos β
sin γ

=
cos β1
sin γ1

,
cos α1
sin γ1

=
cos α2
sin γ2

,
cos β1
sin γ1

=
cos β2
sin γ2

,

It can be shown, that terms ΔsðiÞ1 and ΔsðiÞ2 , i=1, 2 are absent in the phase φpsp

(30). This means that points y*1 ∈ S1 and y*2 ∈ S2 of the direct ray reflection corre-
spond to the stationary phase φpsp value,

φpsp = x0 − y1j j+ ksk − 1
p y1 − y2j j+ y2 − x3j j=L0 + ksk − 1

p L1 +L2 +

+ 0.5d11 Δs 1ð Þ
1

� 	2
+ d12Δs

1ð Þ
1 Δs 1ð Þ

2 + d13Δs
1ð Þ
1 Δs 2ð Þ

1 + d14Δs
1ð Þ
1 Δs 2ð Þ

2 +

+ 0.5d22 Δs 1ð Þ
2

� 	2
+ d23Δs

1ð Þ
2 Δs 2ð Þ

1 + d24Δs
1ð Þ
2 Δs 2ð Þ

2 +

+ 0.5d33 Δs 2ð Þ
1

� 	2
+ d34Δs

2ð Þ
1 Δs 2ð Þ

2 + 0.5d44 Δs 2ð Þ
2

� 	2
ð33Þ

where

d11
d22

� �
=

1
L0

sin2 α
sin2 β

� �
+

ks
kpL1

sin2 α1
sin2 β1

� �
+2 k 1ð Þ

1

k 1ð Þ
2

( )
cos γ +

ks
kp

cos γ1

� �

d33
d44

� �
=

ks
kpL1

sin2 α2
sin2 β2

� �
+

1
L2

sin2 α3
sin2 β3

� �
+2 k 2ð Þ

1

k 2ð Þ
2

( )
ks
kp

cos γ2 + cos γ3

� �

d12 = −L− 1
0 cos α cos β− ksk − 1

p L− 1
1 cos α1 cos β1

d34 = − ksk − 1
p L− 1

1 cos α2 cos β2 −L− 1
2 cos α3 cos β3

d13 = ksk − 1
p L− 1

1 cos α1 cos α2 − a11ð Þ, d14 = ksk − 1
p L− 1

1 cos α1 cos β2 − a21ð Þ,
d23 = ksk − 1

p L− 1
1 cos β1 cos α2 − a12ð Þ

d24 = ksk − 1
p L− 1

1 cos β1 cos β2 − a22ð Þ.

The final result is obtained from Eq. (28) by applying the four-dimensional
stationary phase [7].

u pð Þ
r x3ð Þ=B2 ×

exp i kpL0 + ksL1 + kpL2 + π
4 δ pspð Þ

4 − 4
� 	h in o

L0L1L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det D pspð Þ

4

� 	 r

B2 =
Qq

4πμ
kp
ks
Vps y*1
� �

Vsp y*2
� �

cos γ1 cos γ3

ð34Þ

where DðpspÞ
4 = dij

� �
, i, j=1, 2, 3, 4 is the Hessian matrix with its elements dij, i≤ j

provided in the Eq. (33), δðpspÞ4 = signDðpspÞ
4 . Applying the developed and presented
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above method, any other possible reflections and transformations of the ray
x0 − y*1 − y*2 − x3 can be considered. It can also be used for ray reflections and
transformations arbitrary finite (N times) number of times. As an example, for the
repeated transformation s− p− s the non-zero amplitude of the displacement

u sð Þ
θ ðx3Þ can be obtained from Eqs. (33)–(34) for p− s− p transformation by

swapping the types of waves p and s in all the indexes of the included character-
istics and directions of the incidence and the reflection of waves at the specular
reflection points.

7 Conclusion

The single and the double reflection of the high-frequency spherical wave from the
surface of one cavity and the system with two cavities, located in the infinite elastic
medium, is studied within the framework of the modified Kirchhoff approximation.
The leading asymptotic term for the displacements in a doubly reflected wave with
regard to different possible transformations is obtained in an explicit form, which is
in good agreement with the GTD. The trajectory of the doubly reflected rays is
represented by spatial polygonal lines. The amplitude of the re-reflected wave is
expressed through the determinant of a banded matrix. The elements of the
determinant are written out in an explicit form and defined by the geometrical and
the mechanical parameters of the problem.

Acknowledgements The work is performed within the framework of the Project № 15-19-10008
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Finite Element Modeling and Computer
Design of Anisotropic Elastic Porous
Composites with Surface Stresses

A.V. Nasedkin and A.S. Kornievsky

Abstract The chapter presents mathematical modelling and computer design of

effective properties of anisotropic porous elastic materials with a nanoscale random

structure of porosity. This integrated approach includes the effective moduli method

of composite mechanics, the simulation of representative volumes with stochastic

porosity and the finite element method. In order to take into account nanoscale sizes

of pores, the Gurtin-Murdoch model of surface stresses is used at the borders between

material and pores. The general methodology for determination of effective mechan-

ical properties of porous composites is produced for a two-phase bulk (mixture) com-

posite with special conditions for stresses discontinuities at the phase interfaces. The

mathematical statements of boundary value problems and the resulting formulas to

determine the complete set of effective stiffness moduli of the two-phase compos-

ites with arbitrary anisotropy and with surface stresses are described; the general-

ized problem definitions are formulated and the finite element approximations are

given. It is used, that the homogenization procedures for porous composites with

surface effects can be considered as special cases of the corresponding procedures

for the two-phase composites with interphase stresses if the moduli material of the

second phase (nanoinclusions) are negligibly small. These approaches have been

implemented in the finite element package ANSYS for a model of nanoporous sil-

icon with cubic crystal system for various values of surface moduli, porosity and

number of pores. Model of representative volume was built in the form of a cube,

evenly divided into cubic solid finite elements, some of which had been declared as

pores. Surface stresses on the boundaries between material and pores were modeled

by shell finite elements with the options of membrane stresses. It has been noted that

the magnitude of the area of the interphase boundaries has influence on the effective

moduli of the porous materials with nanosized stochastic structure.
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Keywords Porous elastic composite ⋅ Nanosized pore ⋅ Surface stress ⋅ Effective

moduli ⋅ Representative volume ⋅ Stochastic porosity ⋅ Finite element method

1 Introduction

As it is known from many experiments, a scale effect can be observed for nanoscale

bodies, which results in the change of effective stiffnesses and other material moduli

compared to the corresponding macroscale bodies. Among various approaches that

explain this phenomenon, the models of theory of elasticity with surface stresses are

widely used now. The idea of surface stresses in solids has been formulated long

time ago [30]. However, significant development of this idea was done later in [15,

28]. As it was shown further, the theory of surface stresses can be considered as a

particular case of the models with imperfect interface boundaries.

At present the theory of surface stresses, commonly referred to as the model

of Gurtin-Murdoch, has been become widely used for describing scale effects at

nanolevel, which can be seen, for example, from overviews given in [8, 16, 32]. In a

range of papers this theory was applied to model elastic nanoscale composites. For

example, in [1–6, 9, 11, 20, 21, 26, 27, 33] and etc. the mechanical properties of

composites with spherical nanoinclusions (nanopores), fiber and another nanocom-

posites were studied in the frames of the theory of elasticity with surface stresses.

The methodology of finite element approximations for elastic materials with surface

effects and the numerical examples was demonstrated in [10, 18, 19, 29, 31].

This chapter considers anisotropic elastic materials with randomly located nano-

pores. In order to take into account nanoscale level at the borders between material

and pores, the Gurtin-Murdoch model of surface stresses is used. The paper is orga-

nized as follows. Section 2 presents the mathematical statement of a homogenization

problem for two-phase elastic composites with conditions for stresses discontinuities

at the phase interface boundaries. Both composite phases are assumed to be elastic

materials of arbitrary classes of anisotropy. The boundary value problem statements,

their generalized or weak formulations and the resulting formulas for determination

of the full set of effective constants for a two-phase composite with arbitrary types

of phase anisotropy and surface stresses are also described. We note that homoge-

nization procedures for porous composites with surface stresses can be regarded as

special cases of the corresponding procedures for two-phase composites with imper-

fect interface boundaries under negligibly small stiffnesses for nanoinclusions.

The finite element approximations of the considered homogenization problems

are given in Sect. 3. We note that homogenization problems for the composites under

investigation can be solved with the help of known finite element software, using

shell finite elements with membrane stresses options in order to take into account

interphase surface stresses.

Section 4 describes an implementation of the proposed approaches in the finite

element software ANSYS with using its command language APDL. Model of repre-

sentative volume was built in the form of a cube, evenly divided into cubic solid elas-

tic finite elements, some of which had been declared as the elements with negligibly
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small stiffnesses, i.e. porous elements. We suggest an algorithm for automatic deter-

mination of interphase boundaries and location of shell elements on them, which

will work for various sizes of representative volumes, built in a form of cubic lattice

of hexahedral elastic finite elements. As an example, in Sect. 5 we consider the mod-

els of porous silicon material of cubic crystal system for various values of surface

moduli, porosity and number of pores. As in [6, 8, 9], we note the influence of the

magnitudes of the surface stiffness moduli and of area of interphase boundaries on

the values of the effective moduli for porous material with nanoscale structure.

2 Homogenization of Two-Phase Elastic Nanocomposite
by Effective Moduli Method

Let 𝛺 be a representative volume of two-phase bulk (mixture) composite elastic

body with nanodimensional inclusions; 𝛺 = 𝛺
(1) ∪𝛺

(2)
; 𝛺

(1)
is the volume occu-

pied by the primary material of the first phase (matrix); 𝛺
(2)

is the set of the volumes

occupied by the material of the second phase (inclusions); 𝛤 = 𝜕𝛺 is the external

boundary of the volume 𝛺; 𝛤
s

is the set of frontier surfaces of materials with differ-

ent phases (𝛤
s = 𝜕𝛺

(1) ∩ 𝜕𝛺
(2)

); 𝐧 is the external unit normal vector to the bound-

ary, outward with respect to 𝛺
(1)

, i.e. to the region occupied by the material of the

matrix; 𝐱 = {x1, x2, x3} is the vector of the Cartesian coordinates. We suppose that

the volumes 𝛺
(1)

and 𝛺
(2)

are filled with different elastic materials of an arbitrary

anisotropy classes. Then in the framework of linear static theory of elasticity we have

the following system of differential equations

𝜎ij,j = 0, 𝜎ij = cijkl𝜀kl, 𝜀ij = (ui,j + uj,i)∕2, (1)

where 𝜎ij are the components of the second rank stress tensor 𝝈; 𝜀ij are the com-

ponents of the second rank strain tensor 𝜺; ui are the components of the displace-

ment vector 𝐮; cijkl are the forth rank tensor of elastic stiffness moduli; cijkl = c(m)ijkl ,

𝜎ij = 𝜎
(m)
ij , 𝜀ij = 𝜀

(m)
ij , ui = u(m)i , 𝐱 ∈ 𝛺

(m)
.

The material moduli of the elastic medium have usual properties of symmetry

(cijkl = cjikl = cklij) and positive definiteness

∃ c
𝛺
> 0 ∶ ∀ 𝜀ij = 𝜀ji, 2𝛱

𝛺
(𝜺) = cijkl𝜀ij𝜀kl ≥ c

𝛺
𝜀ij𝜀ij. (2)

In vector-matrix symbols in R3
the formulas (1) can be rewritten in the form

𝐋∗(∇) ⋅ 𝐓 = 0, 𝐓 = 𝐜 ⋅ 𝐒, 𝐒 = 𝐋(∇) ⋅ 𝐮, (3)

where
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𝐋∗(∇) =
⎡
⎢
⎢⎣

𝜕1 0 0 0 𝜕3 𝜕2
0 𝜕2 0 𝜕3 0 𝜕1
0 0 𝜕3 𝜕2 𝜕1 0

⎤
⎥
⎥⎦
, ∇ =

⎧
⎪
⎨
⎪⎩

𝜕1
𝜕2
𝜕3

⎫
⎪
⎬
⎪⎭

, (4)

𝐓 = {𝜎11, 𝜎22, 𝜎33, 𝜎23, 𝜎13, 𝜎12} is the array of the stress components; 𝐒 = {𝜀11, 𝜀22,

𝜀33, 2𝜀23, 2𝜀13, 2𝜀12} is the array of the strain components; 𝐜 is the 6 × 6 matrix

of elastic moduli; c
𝛼𝛽

= cijkl, 𝛼, 𝛽 = 1,… , 6, i, j, k, l = 1, 2, 3 with correspondence

law 𝛼 ↔ (ij), 𝛽 ↔ (kl), 1 ↔ (11), 2 ↔ (22), 3 ↔ (33), 4 ↔ (23) ∼ (32), 5 ↔ (13) ∼
(31), 6 ↔ (12) ∼ (21); (...)∗ is the transpose operation; (...) ⋅ (...) is the scalar prod-

uct operation between two vectors or matrix—vector multiplicator. The matrix 𝐜 is

symmetric and positive defined by virtue of the properties (2)

∃ c
𝛺
> 0 ∶ ∀𝐒 = {S1, S2, S3, S4, S5, S6}, 2𝛱

𝛺
(𝜺) = 𝐒∗ ⋅ 𝐜 ⋅ 𝐒 ≥ c

𝛺
𝐒∗ ⋅ 𝐒. (5)

In accordance with Gurtin–Murdoch model for surface stresses we will assume

that on nanosized interphase boundaries 𝛤
s

the following equation is satisfied

𝐋∗(𝐧) ⋅ [𝐓] = 𝐋∗(∇s) ⋅ 𝐓s
, 𝐱 ∈ 𝛤

s
, (6)

where [𝐓] = 𝐓(1) − 𝐓(2)
is the stress jump; ∇s

is the surface gradient operator, asso-

ciated with spatial nabla-operator by the formula ∇s = ∇ − 𝐧(𝜕∕𝜕r), where r is the

coordinate, measured by the normal𝛤
s
;𝐓s = {𝜎s

11, 𝜎
s
22, 𝜎

s
33, 𝜎

s
23, 𝜎

s
13, 𝜎

s
12} is the array

of surface stresses 𝜎
s
ij.

We adopt that the surface stresses 𝐓s
are related to the surface strains 𝐒s by the

surface Hooke’s law

𝐓s = 𝐜s ⋅ 𝐒s, 𝐒s = 𝐋(∇s) ⋅ 𝐮s, 𝐮s = 𝐀 ⋅ 𝐮, 𝐀 = 𝐈 − 𝐧𝐧∗, (7)

where 𝐜s is the 6 × 6 matrix of surface elastic moduli; 𝐈 is the 3 × 3 identity matrix.

The properties of the matrix of surface elastic moduli 𝐜s are analogous to the cor-

responding properties of the matrix 𝐜, i.e. cs
𝛼𝛽

= cs
𝛽𝛼

, and in local coordinate system,

attached with tangent orts 𝝉1, 𝝉2 and normal 𝐧, the transformed matrix �̃�s has the

following features

∃ c
𝛤
> 0 ∶ ∀𝐒s = {Ss1, S

s
2, 0, 0, 0, S

s
6}, 2𝛱

𝛤
(𝜺s) = 𝐒s∗ ⋅ �̃�s ⋅ 𝐒s ≥ c

𝛤
𝐒s∗ ⋅ 𝐒s,

(8)

that follow from the condition of the positive definiteness of the surface energy den-

sity 𝛱
𝛤
(𝜺s) relative to surface strain 𝐒s.

Setting the appropriate boundary conditions at 𝛤 = 𝜕𝛺, we can find the solutions

of the problems (3)–(7) for heterogeneous medium in the representative volume 𝛺.

Then the comparison of the averaged stress and strain fields with analogous values

for homogeneous medium (the comparison medium) will permit to determine the

effective moduli for the composite material. We note that for anisotropic media in
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order to determine the full set of the effective moduli it is necessary to solve several

problems for different types of boundary conditions.

Here the main tasks consist in the choice of the representative volume and bound-

ary problems for the heterogeneous medium and the comparison medium, as well as

the technologies for solving the problems for heterogeneous media. According to

the previously developed methods of modeling the composite materials of ordinary

sizes [23, 24], we consider analogous approaches for the elastic problems with sur-

face stresses.

For homogeneous elastic comparison medium we adopt that the same equations

(1) or (3), (4) are satisfied with constant moduli 𝐜 eff , which are to be determined.

For determination of the moduli 𝐜 eff let us assume that at the external boundary

𝛤 the following relations take place

𝐮 = 𝐋∗(𝐱) ⋅ 𝐒0, 𝐱 ∈ 𝛤 , (9)

where 𝐒0 = {𝜀011, 𝜀022, 𝜀033, 2𝜀023, 2𝜀013, 2𝜀012}; 𝜀0ij are some constant values that

do not depend on 𝐱. Then 𝐮 = 𝐋∗(𝐱) ⋅ 𝐒0, 𝐒 = 𝐒0, 𝐓 = 𝐓0 = 𝐜 eff ⋅ 𝐒0 will give the

solution for the problem (3)–(7) in the volume 𝛺 for the homogeneous comparison

medium.

Let us solve now problem (3)–(9) for heterogeneous medium and assume that

for this medium and for the comparison medium the averaged stresses are equal

⟨𝐓⟩ = ⟨𝐓0⟩, where hereinafter the angle brackets ⟨(...)⟩ denote the averaged by the

volume 𝛺 and by the interface surfaces 𝛤
s

values

⟨(...)⟩ = 1
|𝛺|

(
∫
𝛺

(...) d𝛺 +
∫
𝛤 s
(...)s d𝛤

)
. (10)

Therefore we obtain that for the effective moduli the equation 𝐜 eff ⋅ 𝐒0 = ⟨𝐓⟩ is

satisfied, where 𝐒0 are the given values from the boundary conditions (9). Hence,

even in the assumption of the anisotropy of the general form for the compari-

son medium, all the stiffness moduli c eff
𝛼𝜁

can be computed. Indeed, setting in (6)

𝐒0 = 𝜀0𝐡𝜁 , 𝜀0 = const, where 𝜁 is some fixed index mark (𝐡
𝜁

is the vector from

six-dimensional basic set for the components for strain tensor basic set; 𝐡j = 𝐞j𝐞j,
j = 1, 2, 3; 𝐡4 = (𝐞2𝐞3 + 𝐞3𝐞2)∕2; 𝐡5 = (𝐞1𝐞3 + 𝐞3𝐞1)∕2; 𝐡6 = (𝐞1𝐞2 + 𝐞2𝐞1)∕2; 𝐞j are

the orts of the Cartesian coordinate system), we get the computation formulas for

the elastic stiffness moduli: c eff
𝛼𝜁

= ⟨T
𝛼
⟩∕𝜀0, 𝛼 = 1,… , 6.

Note that the boundary value problems (3)–(9) differ from the usual linear elastic

problems by the presence of the interface boundary conditions (6), (7) which are

typical for the Gurtin–Murdoch model of surface stresses for nanosized bodies.

For the numerical solution of the problem (3)–(9) we derive its weak or general-

ized statements. Previously we introduce the space of the vector functions 𝐮, defined

on 𝛺.

On the set of vector functions 𝐮 ∈ C1
which satisfy the homogeneous boundary

condition (9), i.e. 𝐮 = 0 on 𝛤 , we introduce the scalar product (𝐯,𝐮)H1
u
= ∫

𝛺
𝐒(𝐯)∗ ⋅
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𝐒(𝐮) d𝛺 + ∫
𝛤 s 𝐒s(𝐯)∗ ⋅ 𝐒s(𝐮) d 𝛤 . The closure of this set of vector functions 𝐮 in the

norm generated by the indicated scalar product will be denoted by H1
u .

In order to formulate the generalized or weak solution we scalar multiply the

first equation (3) by arbitrary vector function 𝐯 ∈ H1
u . After integration the obtained

equation on 𝛺, and using the standard technique of the integration by parts with

Eqs. (3)–(9), we obtain the following integral relations

c(𝐯,𝐮) = 0, (11)

where

c(𝐯,𝐮) = c
𝛺
(𝐯,𝐮) + c

𝛤 s (𝐯,𝐮), (12)

c
𝛺
(𝐯,𝐮) =

∫
𝛺

𝐒∗(𝐯) ⋅ 𝐜 ⋅ 𝐒(𝐮) d𝛺, c
𝛤 s (𝐯,𝐮) =

∫
𝛤 s
𝐒s∗(𝐯) ⋅ 𝐜s ⋅ 𝐒s(𝐮) d 𝛤 . (13)

Further, we present the solution 𝐮 of the problem (3)–(9) in the form

𝐮 = 𝐮d + 𝐮b, (14)

where 𝐮d satisfies homogeneous boundary conditions and ad hoc fitted function 𝐮b
satisfies the inhomogeneous boundary conditions on 𝛤 , i.e.

𝐮d = 0, 𝐮b = 𝐋∗(𝐱) ⋅ 𝐒0, 𝐱 ∈ 𝛤 , (15)

and therefore, 𝐮d ∈ H1
u .

By using (14) we can rewrite Eq. (11) in the form

c(𝐯,𝐮d) = L(𝐯), L(𝐯) = −c(𝐯,𝐮b). (16)

Now we can define the generalized or weak solution of the static elastic problem

with surface stresses (3)–(9) using previously introduced functional space. Namely,

the function 𝐮, in the form (14), (15) is the weak solution of the problem (3)–(9), if

Eq. (16) with (12), (13) is satisfied for ∀ 𝐯 ∈ H1
u .

So far we have been discussing the two-phase composites. However, we can note

that the presented models also describe homogenization procedures for porous com-

posites with surface effects, if we put the stiffness moduli negligible.

3 Finite Element Approximations

For solving problem (11) or (16) for elastic body with surface stresses in weak forms

we will use classical finite element approximation techniques. Let 𝛺h be a region

of the corresponding finite element mesh composed of volume elements, 𝛺h ≈
𝛺,𝛺h = 𝛺

(1)
h ∪𝛺

(2)
h , 𝛺

(j)
h ≈ 𝛺

(j)
, 𝛺h = ∪k𝛺ek, where 𝛺ek is a separate
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volume finite element with number k. Let also 𝛤
s
h be a finite element mesh of surface

elements conformable with the volume mesh 𝛺h, 𝛤
s
h = 𝜕𝛺

(1)
h ∩ 𝜕𝛺

(2)
h , 𝛤

s
h ≈ 𝛤

s
,

𝛤
s
h = ∪m𝛤

s
em, 𝛤

s
em is a separate surface finite element with number m, and the ele-

ments 𝛤
s
em are the faces of the suitable volume elements 𝛺ek located on the interface

boundaries.

We will use the classic Lagrangian or serendipity volume finite elements with

nodal degrees of freedom of displacements. Note that due to the structure of sur-

face mechanical fields (6), (7), for the elements 𝛤
s
em we can use standard shell or

plate elements with elastic membrane stresses options, i.e. only with nodal degrees

of freedom of displacements. For these elements we can take a fictitious unit thick-

ness so that the surface moduli from (6) to (7) can be determined by the product of

specially defined volume moduli and shell thickness.

On these finite element meshes we will find the approximation to the weak solu-

tions {𝐮h ≈ 𝐮} for static elasic problem (11) in the form

𝐮h(𝐱) = 𝐍∗(𝐱) ⋅ 𝐔, (17)

where 𝐍∗
is the matrix of the shape functions for displacements, 𝐔 is the vector

of nodal displacements. Here, the surface shape functions are the reduction on the

boundaries 𝛤
s
h of the volume shape functions.

According to conventional finite element technique, we approximate the contin-

uous weak formulations of the elastic problems by the corresponding problems in

finite-dimensional spaces. Substituting (17) and similar representations for projec-

tion functions into integral relations (11) for 𝛺h, we obtain the following finite ele-

ment system

𝐊 ⋅ 𝐔 = 0, (18)

where

𝐊 = 𝐊
𝛺
+𝐊

𝛤
, (19)

𝐊
𝛺
=
∫
𝛺h

𝐁∗ ⋅ 𝐜 ⋅ 𝐁 d𝛺, 𝐊
𝛤
=
∫
𝛤

s
h

𝐁s∗ ⋅ 𝐜s ⋅ 𝐁s d 𝛤 , (20)

𝐁(s) = 𝐋∗(∇(s)) ⋅ 𝐀 ⋅ 𝐍∗
. (21)

Also, we can represent the finite element solutions in the another variants con-

sidering the main boundary conditions similarly to the reforming (14)–(16): 𝐮h =
𝐮dh + 𝐮bh, 𝐮dh ≈ 𝐮d, 𝐮dh = 𝐍∗

d ⋅ 𝐔d, 𝐮bh ≈ 𝐮b, 𝐮bh = 𝐍∗
b ⋅ 𝐔b, 𝐍 = {𝐍d,𝐍b},

𝐊 =
[
𝐊dd 𝐊db
𝐊bd 𝐊bb

]
, 𝐔 =

{
𝐔d
𝐔b

}
, (22)

where 𝐔b is the vector, known from the main boundary conditions.
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So, after using these expressions we can obtain from Eq. (18) the reduced system

with respect to only unknown vector 𝐔d:

𝐊dd ⋅ 𝐔d = 𝐅d, 𝐅d = −𝐊db ⋅ 𝐔b. (23)

Thus, the homogenizing problems for elastic composite with surface stresses can

be solved by finite element approaches. The resulting finite element systems (23)

with (19)–(22) differ from similar systems for the bodies of usual sizes by the matrix

𝐊
𝛤

in (20). This matrix arises due to the surface stresses.

4 Modeling of Representative Volumes

The presented approaches were implemented in the finite element software ANSYS

for elastic composites of cubic anisotropy class. The representative volume 𝛺 was

taken in a shape of cube divided in L × L × L geometrically equal small cubes which

were 20-node hexahedral structured solid finite elements SOLID95. As a result in

grand cube 𝛺 there were n × n × n finite elements of the size l = L∕n, where n was

an integer. In such two-phase composite the finite elements of the first phase had

material properties of the original elastic material, and the pores had negligibly small

elastic stiffness moduli by simple random method. Then the elements with the pore

properties were selected according to the adopted microstructure of the composite.

In the case of slightly porous material of irregular stochastic structure depending on

the given porosity, some of the finite elements were announced as pores. It can be

noted that such model is easy to build but it does not support the connectivity of

the elements of the first phase and does not reflect the connectivity structure of the

elements of the second phase (closed or open pores). Other methods that support the

connectivity of the skeleton consisting of the elements of the first phase or supporting

the cluster properties for the elements of the second phase are described [23].

For automatic coating of the inner boundaries of the pores in a cubic represen-

tative volume the following algorithm has been used. At first the finite elements

with the pore material properties are selected. Then the external boundaries of the

obtained array of elements are covered by target contact elements TARGE170 using

the command TSHAP, QUA8. Hence, the edges of all finite elements with the pore

properties lying on the external surfaces of the set of these elements get covered

by eight node contact elements (TARGE170 of the shape QUA8). Then the con-

tact elements, located on the external border of the whole representative volume,

are deleted and the remaining finite elements are changed to the eight node shell

elements SHELL281 with the membrane stress only option. As a result, all con-

tact boundaries where elastic structural elements are in contact with pores have been

coated by the membrane finite elements which simulate the effect of surface stresses.

At the next stage the problems (2)–(6) were solved for the representative volume

by finite element method using the described above technology. Then in the ANSYS

postprocessor the average stresses were calculated according to (7) both over solid
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Fig. 1 One variant of cubic representative volume 𝛺 for p = 20%, n = 10: a matrix; b pores;

c interphase boundaries

and surface finite elements. In the end, using the corresponding formulas for the

averaged stresses, the effective stiffness modules of porous composite with surface

effects were obtained.

We note that as the pores in the described above algorithm were chosen with the

help of the random number generator, each new launch of the program will give

different distribution of these elements. Therefore for different location of the pores

the total area of the membranes 𝛤
s

will change and consequently the total stiffness

of the volume will change too. However, for small porosity p these effects will not

have significant influence on the resulting values of the effective moduli for each

new launch of the program.

Figure 1 shows the elements of the first phase (Fig. 1a), the elements of the sec-

ond phase (Fig. 1b) and the interphase surface elements (Fig. 1c) for one run of the

algorithm at p = 20% and n = 10, when the ratio r(Sp) = |𝛤 s|∕|𝛤 | of the pores area

to the total area of the volume is equal to 1.465.

It is interesting to note the fact that for the same size L of the volume 𝛺 depending

on the number of elements along the axes n, the size l = L∕n of the finite elements

changes and therefore the size of the separate pores also changes. Hence, for the

fixed percentage of porosity p when the value of n increases the size of the pores

will decrease but the total amount of pores Np will increase and as a result the total

area of the boundary 𝛤
s

will increase.

Figure 2 shows the surface elements for the porosity p = 10% for n = 10 (Fig. 2a),

for n = 15 (Fig. 2b), and for n = 20 (Fig. 2c). In the shown runs of the algorithm the

ratio of the pore area to the total area of the volume was equal to r(Sp) = 0.803 for

n = 10, r(Sp) = 1.121 for n = 15, and r(Sp) = 1.700 for n = 20. As it can be seen,

the last value obtained for p = 10%, n = 20 is larger than the one obtained for Fig. 1

(r(Sp) = 1.465) for the larger porosity p = 20% and smaller number of elements

n = 10.
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Fig. 2 Three variants of interphase boundaries for p = 10%: a n = 10; b n = 15; c n = 20

5 Numerical Results and Discussion

As an example let us consider a nanoporous silicon. As it is known [17], the conven-

tional silicon is an anisotropic material of cubic system, and therefore the structure

of its material constants has the form

𝐜 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

. (24)

For calculation we assume the following values of the material macro moduli

of silicon with zero porosity ([17]): c11 = 16.56 × 1010 (N/m
2
), c12 = 6.39 × 1010

(N/m
2
), c44 = 7.95 × 1010 (N/m

2
), where superscript

(1)
is absent (c

𝛼𝛽
∼ c(1)

𝛼𝛽
, etc.)

The material constants for the pores (marked by superscript
(2)

) were taken equal to

the following values: c(2)
𝛼𝛽

= 𝜅c(1)
𝛼𝛽

, 𝜅 = 1 × 10−10.

As it can be seen, the considered elastic material of macrosize in the static prob-

lems is characterized by three material elastic stiffness moduli: c11, c12, c44. For

nanoporous silicon we can also introduce the surface moduli of the same cubic

classes of anisotropy: cs11, cs12 and cs44. However, currently there is not enough experi-

mental data for the surface moduli values, and existing data is quite contradictory. In

this connection we assume cs
𝛼𝛽

= he𝜅sc
𝛼𝛽

, where he is the formal multiplier, which

we can accept as thicknesses for shell elements in ANSYS; 𝜅
s

is the multipliers, by

which we will define the resulting values of the surface moduli.

Let us assume that the models of the representative volumes do not have explicit

geometric anisotropy and hence the porous silicon also belongs to the class of

anisotropic materials of cubic system. Then for the full set of effective stiffness mod-

uli it is enough to solve two problems (3)–(9) with various boundary conditions in

(9)
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I 𝐒0 = 𝜀0𝐡1 ⇒ c eff1j = ⟨Tj⟩∕𝜀0 = ⟨𝜎jj⟩∕𝜀0, j = 1, 2, 3, (25)

II 𝐒0 = 𝜀0𝐡4 ⇒ c eff44 = ⟨T4⟩∕𝜀0 = ⟨𝜎23⟩∕𝜀0, (26)

where in (25) for the computations it should be c eff12 ≈ c eff13 .

Thus, two boundary-value problems for the representative volumes, that dif-

fer by their boundary conditions, enable to calculate three main material elastic

constants of nanoporous silicon: c eff11 , c eff12 and c eff44 . From these values we can

find other important constants: the elastic compliances s eff11 = (c eff11 + c eff12 )∕𝛥 eff
c ,

s eff12 = −c eff12 ∕𝛥 eff
c , 𝛥

eff
c = (c eff11 )2 + c eff11 c eff12 − 2(c eff12 )2; the Young’s modulus E eff =

1∕s eff11 ; the Poisson’s ratio 𝜈
eff = −s eff12 ∕s eff11 = c eff12 ∕(c eff11 + c eff12 ) and the bulk mod-

ulus K eff = E eff ∕[3(1 − 2𝜈 eff )].
In the calculations, we have changed the values of multiplier 𝜅

s
from 10−4 to 1

with immobile factor he = 1 (m).

Figures 3, 4 and 5 show the dependencies of the relative effective moduli with

respect to the factor ks in the logarithmic scale (lg ≡ log10): elastic stiffness modulus

r(c11) = c eff11 ∕c11 (Fig. 3a), Young’s modulus r(E) = E eff ∕E (Fig. 3b), stiffness mod-

Fig. 3 Dependencies of the relative effective moduli c eff11 (a) and E eff
(b) versus the multiplier ks

for porosity p = 10%: 1—n = 10; 2—n = 15; 3—n = 20

Fig. 4 Dependencies of the relative effective moduli c eff12 (a) and G eff
(b) versus the multiplier ks

for porosity p = 10%: 1—n = 10; 2—n = 15; 3—n = 20
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Fig. 5 Dependencies of the relative effective moduli K eff
(a) and 𝜈

eff
(b) versus the multiplier ks

for porosity p = 10%: 1—n = 10; 2—n = 15; 3—n = 20

ulus r(c12) = c eff12 ∕c12 (Fig. 4a), shear modulus r(G) = G eff ∕G, G = c44 (Fig. 4b),

bulk modulus r(K) = K eff ∕K (Fig. 5a), and Poisson’s ratio r(𝜈) = 𝜈
eff ∕𝜈 (Fig. 5b).

Here the porosity remains unchanged p = 10%, and the curves 1, 2, 3 correspond

to the values n = 10, n = 15 and n = 20, respectively. As we can see, the behaviors

of effective moduli c eff11 , ceff12 , E eff
, G eff

and K eff
, depending on the surface moduli

values, qualitative coincide, but moduli c eff11 and E eff
increase a few rapidly when

increasing ks, and at that Young’s modulus increases most rapidly. For ks ≤ 10−2 the

surface effects have only a slight influence on the values of stiffness moduli. Approxi-

mately from the values ks ≈ 10−2, stiffness moduli begin to grow quite rapidly. Thus

for fixed porosity p = 10% with increasing n = 10, 15, 20 the pore size decreased,

but number of pores and its total area increased. As a result of the surface effects

are manifested in a greater extent, and stiffness moduli (Figs. 3, 4 and 5a) increase

(curves 1 are located lower than curves 2, and curves 2 are located lower than curves

3). It should be noted that for great values of surface stiffness moduli the overall

effective stiffness modules of porous nanomaterials may exceed the relevant mod-

uli of the continuous material. In Figs. 3, 4 and 5a, this effect is observed when the

relative values of the moduli are more than 1.

Figure 5c shows that the behavior of the Poisson ratio with an increase of the

surface module is the opposite to the behavior of stiffness moduli c eff11 , c eff12 , E eff
,

G eff
and K eff

, that it can be explained to an increase of the overall stiffness of the

material.

In order to analyze the influence of the surface effect on the effective modules

with different porosity, we have calculated the relative effective stiffness moduli with

a fixed number of elements n = 10, but with different porosity and with different, but

not too large, values of the factor ks. The results of these calculations are shown in

Figs. 6, 7 and 8.

As is seen from these Figures, for the small values of the factor ks (curves 3 and

4) the surface effects do not affect to the stiffness moduli. However, for any porosity

the surface stresses increase the effective stiffnesses of the porous material. More-

over, as mentioned earlier, there are cases where the nano-porous material will have
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Fig. 6 Dependencies of the relative effective moduli c eff11 (a) and E eff
(b) versus the porosity for

n = 10 and for multiplier ks: 1—ks = 0.1; 2—ks = 0.05; 3—ks = 0.01; 4—ks = 0.001

Fig. 7 Dependencies of the relative effective moduli c eff12 (a) and G eff
(b) versus the porosity for

n = 10 and for multiplier ks: 1—ks = 0.1; 2—ks = 0.05; 3—ks = 0.01; 4—ks = 0.001

Fig. 8 Dependencies of the relative effective moduli K eff
(a) and 𝜈

eff
(b) versus the porosity for

n = 10 and for multiplier ks: 1—ks = 0.1; 2—ks = 0.05; 3—ks = 0.01; 4—ks = 0.001

greater stiffness than the same solid material. This situation takes place with ks = 0.1
for stiffness modulus c eff11 if p ≤ 45%, for Young’s modulus E eff

if p ≤ 54%, and for

shear modulus K eff
if p ≤ 33%, (see the dashed lines in the Figures, where we have

the inequalities r(...) > 1). When ks = 0.05, that is more consistent with the experi-

mental data for other materials, only the effective Young’s modulus is much greater

than the Young’s modulus of solid material, but this effect is observed in a suffi-

ciently wide range of porosity p ≤ 30%.
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Note that the porosity and the surface effects have the opposite influence on the

effective stiffness: a simple increase of porosity leads to a decrease in stiffness mod-

uli, but surface effects increase stiffness. The growth of porosity for nanoporous

materials entails an increase of the boundaries areas with surface stresses. There-

fore, with the increase of porosity the stiffness moduli of nanomaterial may increase.

For example, for large values of surface moduli the increase of porosity for small p
(p ≤ 33% for ks = 0.1 and (p ≤ 18% for ks = 0.05) leads to a growth of the effec-

tive Young’s modulus, and with further increase of p the effective Young’s modulus

begins to decrease.

Thus, as in [6, 8, 9], from the results of computational experiments the following

trends have been observed. If we compare two similar bodies with ordinary dimen-

sions and the nanoscale, then for the nanosized body at the expense of surface stresses

the effective stiffness will be greater than for the body of ordinary size. Furthermore,

for the porous body of the macroscopic size the effective elastic stiffness decreases

with increase of porosity. Meanwhile, the effective stiffness of nanocomposite porous

body with the same porosity may either decrease or increase depending upon the val-

ues of surface moduli, dimensions and number of pores. This effect is explained by

the fact that the sizes of surface pore with surface stresses depend not only on the

overall porosity, but also on the configuration, size and number of pores.

The described methodology could be also applied for mixture anisotropic nanos-

tructured composites with other type of connectivity for different physic-mechanical

fields, such as poroelastic, thermoelastic, piezoelectric, magnetoelectric (magneto-

electroelastic) and other nanocomposites ([7, 12–14, 22, 25, 34], etc.) At the ele-

ment level it allows to take into account local types of inhomogeneities, such as,

for example, a rotation of the polarization vectors (element coordinate systems) in

the vicinity of the pores for porous piezoceramic materials. For example, for porous

piezoelectric nanosized composites the analogous approaches can be applied with

taking into account both mechanical and electric surface effects.
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Acceleration Waves in Media
with Microstructure

Victor A. Eremeyev

Abstract Within the unified approach to modelling of media with microstructure

we discuss the propagation of acceleration waves. We describe a medium with

microstructure as an elastic continuum with strain energy density which depends

on deformations and additional internal variable and their first gradients. We use a

Nth-order tensor as a kinematical descriptor of the microstructure. By acceleration

wave we mean an isolated surface propagating in medium across which second deriv-

atives of some fields undergo discontinuity jump. Here we formulate the conditions

of existence of acceleration waves as algebraic inequality expressed using acoustic

tensor.

Keywords Acceleration waves ⋅ Media with microstructure ⋅ Acoustic tensor ⋅
Micropolar medium

1 Introduction

Among many types of nonlinear waves observed in solids and fluids where the ana-

lytical solutions are rare, the acceleration waves are exceptional since their condi-

tions of propagation can be reduced to algebraic equations. An acceleration wave

called also wave of weak discontinuity of order two is a solution of motion equa-

tions with discontinuities in the second derivatives on some surfaces that are called

singular. It means that the acceleration wave can be represented by an isolated trav-

eling smooth enough surface which is a carrier of discontinuity jumps of the second

derivatives with respect to the spacial coordinates and time whereas the solution and
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its first derivatives are continuous. Existence conditions of acceleration waves can

be reduced to a spectral problem for an acoustic tensor and positivity of its eigen-

values. From the mathematical point of view the conditions of existence of accel-

eration waves coincide with the condition of strong ellipticity of the equilibrium

equations. Ellipticity is a natural property of the equilibrium equations in the case of

infinitesimal deformations. On the other hand the violation ellipticity for nonlinear

media means that for certain deformations discontinuities may appear. Such discon-

tinuous solutions may model such phenomena as shear-bands, phase transitions, slip

surfaces, etc. Thus, analysis of conditions of propagation of acceleration waves plays

an important role in the mechanics of materials.

Within the nonlinear elasticity including compressible, incompressible and media

with constraints, acceleration waves are studied in many works, see, e.g., the original

papers by [2, 6, 7, 19, 33, 34, 42–44], see also [21, 49, 50] where the generalization

to thermoelasticity and viscoelasticity is also presented.

For the media with microstructure acceleration waves are considered in a number

of papers. In particular, the propagation of acceleration waves is studied in porous

media [3, 8–10, 22, 26, 46], in random materials [35, 36], in piezoelectric solids

[29]. Acceleration waves are also studied in various types of fluids with complex

constitutive equations, see [41, 45, 47] and the reference therein.

In nonlinear elastic micropolar media acceleration wave are studied in [23]. In

[28] a generalization of these results in the case of is presented in elastic and vis-

coelastic micropolar media are given. Equivalence of existence of acceleration waves

and the condition of strong ellipticity of the equilibrium equations is discussed in

[12]. For micropolar thermoelasticity acceleration waves studied in [1, 14]. In order

to describe the strain localizations in micropolar elastoplasticity the derivation of

acoustic tensor and analysis of its properties is performed in [11].

The paper is organized ad follows. First we introduce the motion equations for a

medium with microstructure. Then, using Maxwell’s theorem we obtain the condi-

tions of propagations of acceleration waves. As an example the acceleration waves

in the micropolar medium is considered.

In what follows we use the direct tensor notations [24]. In particular, all vectors

and tensors are denoted by semibold Roman font.

2 Basic Equations of a Hyperelastic Media with Internal
Variables

Deformation of a non-linear elastic solid is described by the mapping from known

state called initial configuration into another state called actual configuration. The

mapping is given by

𝐱 ≡ 𝐱(𝐗, t) = 𝐗 + 𝐮(𝐗, t). (1)
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Here vector 𝐱 describes the position of a material point in the actual configura-

tion at instant t, whereas 𝐗 determines the position of the same material point in the

reference configuration, and 𝐮 is the displacement vector. In addition to deformation

𝐱 for a medium with microstructure we introduce internal variable 𝐖 which can be

scalar, vector, second-order tensor, or even Nth-order tensor. Among examples of

such internal variables are porosity in the theory of poroelasticity [4, 46], micro-

rotation tensor in micropolar mechanics [13, 16], microdeformations in the micro-

morphic media [16–18], damage tensor [5, 25, 27]. As a result, the deformation of

a solid with microstructure is determined by two fields

𝐱 ≡ 𝐱(𝐗, t), 𝐖 = 𝐖(𝐗, t). (2)

Following the equipresence principle [50] for an hyperelastic medium we intro-

duce the strain energy density

W = W(∇𝐱,𝐖,∇𝐖;𝐗). (3)

Here ∇ is the gradient (nabla) operator in Lagrangian coordinates [24]. The spe-

cific form of functional dependence (3) depends on the nature of microstructural

tensor 𝐖. For brevity we omit here also discussion on the objectivity of 𝐖 and form

of W consistent with the principle material frame indifference. We assume W to be

a twice continuously differentiable function. We use the following notations:

W
,∇𝐱 =

𝜕W
𝜕∇𝐱

, W
,𝐖 = 𝜕W

𝜕𝐖
, W

,∇𝐱∇𝐱 =
𝜕
2W

𝜕∇𝐱𝜕∇𝐱
, W

,∇𝐖∇𝐖 = 𝜕
2W

𝜕∇𝐖𝜕∇𝐖
.

In addition to (3) we define the kinetic energy density as a positive quadratic form

depending on velocity 𝐯 ≡ �̇� and �̇�

K = 1
2
𝜌𝐯 ⋅ 𝐯 + 𝐯 ⋅ 𝐉1 ∶ �̇� + �̇� ∶ 𝐉2 ∶ �̇�. (4)

Here the overdot stands for the derivative with respect to time t, ⋅ denotes scalar

(inner) product, whereas ∶ denotes the full product in the space of tensors of arbitrary

order. 𝜌 is the density in the reference configuration, 𝐉1 and 𝐉2 are N + 1th-order and

2Nth-order tensors of microinertia, respectively. The simplest form of K is

K = 1
2
𝜌𝐯 ⋅ 𝐯 + j�̇� ∶ �̇�, (5)

where j ≥ 0 is a scalar measure of microinertia.

Considering the principle of least action in the form

𝛿H = 0, H [𝐱,𝐖] =

t2

∫
t1

∫

V

(K − W)dVdt, (6)
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where V is the volume occupied by the medium in the reference configuration, 𝛿 is

the variation symbol, t1 and t2 are two instants, we derive motion equations for the

medium with energies (3) and (5) in the following form

∇ ⋅ 𝐏 = 𝜌�̇�, ∇ ⋅𝐆 − 𝜕W
𝜕𝐖

= j�̈�, (7)

where we introduced the Lagrangian stress measures of Piola-Kirchhoff type

𝐏 = 𝜕W
𝜕∇𝐱

, 𝐆 = 𝜕W
𝜕∇𝐖

. (8)

Let us note that here we neglect any volume loading.

3 Acceleration Waves

We consider such deformations of the medium when discontinuities of considered

fields appear at a smooth surface S(t) called singular, see Fig. 1. We assume existence

of unilateral limit values at S(t) for all considered quantities. We denote a jump of

any quantity across S(t) by the double squared brackets, for example, [[𝐟 ]] = 𝐟+ − 𝐟−.

Let us note that S is non-material surface propagating across material points.

From (7) it follows the following balance equations on S

𝜌V [[𝐯]] = −𝐍 ⋅ [[𝐏]] , jV
[[
�̇�
]]
= −𝐍 ⋅ [[𝐆]] . (9)

where 𝐍 is the unit normal to S and V is the intrinsic speed of propagation of S(t) in

normal direction, see [49].

An acceleration wave (or weak discontinuity wave, or singular surface of the sec-
ond order) is a traveling singular surface S(t) at which the second spatial and time

derivatives of the position vector 𝐱 and of the microstructural tensor 𝐖 have jumps,

while 𝐱 and 𝐖 together with all first derivatives are continuous. So on S(t) we have

the following system of equations:

[[∇𝐱]] = 𝟎, [[∇𝐖]] = 𝟎, [[𝐯]] = 𝟎,
[[
�̇�
]]
= 𝟎. (10)

Fig. 1 Propagation of a

singular surface
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From (9) and (10) it follows that

𝐍 ⋅ [[𝐏]] = 𝟎, 𝐍 ⋅ [[𝐆]] = 𝟎.

Equation (10) imply continuity of 𝐏 and 𝐆 at S(t):

[[𝐏]] = 𝟎, [[𝐆]] = 𝟎.

Obviously, the balance equation (9) are also fulfilled.

In what follows we use Maxwell’s theorem which states that, see [49, 50].

Theorem 1 (Maxwell) For a continuously differentiable field 𝐘 such that [[𝐘]] = 𝟎
the following relations hold

[[
�̇�
]]
= −V𝐲, [[∇𝐘]] = 𝐍⊗ 𝐲, (11)

where 𝐲 is the tensor amplitude of the jump of the first gradient of 𝐘; the tensor
amplitude is a tensor of the order equal to the order of 𝐘.

Here ⊗ is the tensor product.

Straightforward application of Maxwell’s theorem to the continuous fields of 𝐯,

�̇�, 𝐏, and 𝐆 results in the system of relations

[[�̇�]] = −V𝐚, [[∇𝐯]] = 𝐍⊗ 𝐚,[[
�̈�
]]
= −V𝐰,

[[
∇�̇�

]]
= 𝐍⊗ 𝐰,

V [[∇ ⋅ 𝐏]] = −𝐍 ⋅
[[
�̇�
]]
,

V [[∇ ⋅𝐆]] = −𝐍 ⋅
[[
�̇�
]]
,

(12)

where 𝐚 and 𝐰 are the vectorial and tensorial amplitudes of the jumps. With these

relations the motion equations transform into

𝐍 ⋅
[[
�̇�
]]
= 𝜌V2𝐚, 𝐍 ⋅

[[
�̇�
]]
= jV2𝐰. (13)

Calculating �̇� and �̇� we obtain

𝐍 ⋅
(
W

,∇𝐱∇𝐱 ∶ (𝐍⊗ 𝐚) + W
,∇𝐱∇𝐖 ∶ (𝐍⊗ 𝐰)

)
= 𝜌V2𝐚,

𝐍 ⋅
(
W

,∇𝐖∇𝐱 ∶ (𝐍⊗ 𝐚) + W
,∇𝐖∇𝐖 ∶ (𝐍⊗ 𝐰)

)
= jV2𝐰.

With matrix notation, we rewrite the latter equations in a more compact form:

Q(𝐍) ⋅ 𝜉 = V2B ⋅ 𝜉, (14)

where 𝜉 = (𝐚,𝐰) and
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Q(𝐍) ≡
[W

,∇𝐱∇𝐱{𝐍} W
,∇𝐱∇𝐖{𝐍}

W
,∇𝐖∇𝐱{𝐍} W

,∇𝐖∇𝐖{𝐍}

]
, B ≡

[
𝜌𝐈 𝟎

𝟎 j𝐈(N)

]
.

Here 𝐈 and 𝐈(N)
are three-dimensional and N-dimensional unit tensors, respec-

tively, and we introduced the following operation for arbitrary Mth-order tensor

𝐇 and vector 𝐍. For tensor 𝐇 and vector 𝐍 represented in a Cartesian basis 𝐢k
(k = 1, 2, 3), so that

𝐇 = Hi1i2...iM 𝐢i1 ⊗ 𝐢i2 ⊗…⊗ 𝐢iM
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

M times

, 𝐍 = Nk𝐢k,

𝐇{𝐍} denotes the following (M − 2)th-order tensor:

𝐇{𝐍} ≡ Hi1i2…iM Ni1NiM−N
𝐢i2 ⊗…⊗ 𝐢M
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

M−2 times

. (15)

Q(𝐍) is the acoustic tensor for the medium with microstructure. From existence

of the strain energy W it follows that Q(𝐍) is symmetric. This implies that the

squared velocity of propagation of an acceleration wave is real-valued. For positivity

of V we need additional requirement, that is Q(𝐍) has to be positive definite

𝜉 ⋅Q(𝐍) ⋅ 𝜉 > 0, ∀ 𝜉 ≠ 𝟎, ∀ |𝐍| = 1. (16)

Note that inequality (16) coincides with the condition of strong ellipticity of the

equilibrium equations for considered elastic medium with microstructure.

Inequality (16) can be written in the form more convenient for calculations

𝐍 ⋅
(
W

,∇𝐱∇𝐱 ∶ (𝐍⊗ 𝐚) + W
,∇𝐱∇𝐖 ∶ (𝐍⊗ 𝐰)

)
⋅ 𝐚

+𝐍 ⋅
(
W

,∇𝐖∇𝐱 ∶ (𝐍⊗ 𝐚) + W
,∇𝐖∇𝐖 ∶ (𝐍⊗ 𝐰)

)
⋅ 𝐰 > 0,

∀ 𝐚 ≠ 𝟎, 𝐰 ≠ 𝟎, ∀ |𝐍| = 1.

The condition is also equivalent to

d2
d𝜀2

W(∇𝐱 + 𝜀𝐍⊗ 𝐚,𝐖,∇𝐖 + 𝜀𝐍⊗𝐖)
||||𝜀=0

> 0,

∀ 𝐍 ∶ |𝐍| = 1, 𝐚 ≠ 𝟎, 𝐖 ≠ 𝟎.
(17)

The latter form relates with the convexity properties of W.
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4 Example: Micropolar Media

Straightforward application of the presented above formulae depends on the form

of constitutive equations and the nature of the microstructure tensor. As an example

of presented approach let us consider a micropolar medium. For this medium the

microrotation tensor 𝐐 plays a role of the microstructural tensor 𝐖: 𝐖 = 𝐐, 𝐐−1 =
𝐐T

. Thus, the strain energy density of the micropolar medium is

W = W(∇𝐱,𝐐,∇𝐐).

Application of the principle of material frame indifference [50] leads to the fol-

lowing form [37]

W = W(𝐄,𝐊), 𝐄 = ∇𝐱 ⋅𝐐T
, 𝐊 = −1

2
𝜖 ∶ (∇𝐐) ⋅𝐐T

,

where 𝐄 and 𝐊 are the strain tensor and wryness tensor, respectively, 𝜖 ≡ −𝐈 × 𝐈
is the permutation tensor. Detailed discussion on strain measures in the micropolar

continuum is given in [37, 38].

For the physically linear isotropic material W is a quadratic function

W = W1(𝐄) + W2(𝐊), (18)

2W1(𝐄) = 𝛼1tr
(
𝐄 ⋅ 𝐄T) + 𝛼2tr𝐄2 + 𝛼3tr

2𝐄,
2W2(𝐊) = 𝛽1tr

(
𝐊 ⋅𝐊T) + 𝛽2tr𝐊2 + 𝛽3tr

2𝐊,
(19)

where 𝛼k and 𝛽k (k = 1, 2, 3) are elastic moduli.

Now acoustic tensor Q(𝐍) is given by

Q(𝐍) ≡
[
Q1(𝐍) 𝟎

𝟎 Q2(𝐍)

]
, Q1(𝐍) = W1,𝐄𝐄{𝐍}, Q2(𝐍) = W2,𝐊𝐊{𝐍}.

For (18), requirement (16) results in inequalities

𝛼1 > 0, 𝛼1 + 𝛼2 + 𝛼3 > 0, 𝛽1 > 0, 𝛽1 + 𝛽2 + 𝛽3 > 0. (20)

Then the solutions of (14) are given in [12]

V1,2 =
√

𝛼1
𝜌
, 𝜉1,2 = (𝐞1,2, 𝟎), V3 =

√
𝛼1 + 𝛼2 + 𝛼3

𝜌0
, 𝜉3 = (𝟎,𝐍),

V4,5 =

√
𝛽1
j
, 𝜉4,5 = (𝐞4,5, 𝟎), V6 =

√
𝛽1 + 𝛽2 + 𝛽3

j
, 𝜉6 = (𝟎,𝐍),

(21)
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where 𝐞1, 𝐞2, 𝐞4, 𝐞5 are arbitrary unit vectors in the tangential plane to S(t) such that

𝐞1 ⋅ 𝐞2 = 𝐞1 ⋅ 𝐍 = 𝐞2 ⋅ 𝐍 = 0, 𝐞4 ⋅ 𝐞5 = 𝐞4 ⋅ 𝐍 = 𝐞5 ⋅ 𝐍 = 0.

Solutions (21)1,2 describe transverse and longitudinal acceleration waves, respec-

tively, whereas (21)4,5 describe transverse and longitudinal acceleration waves of

microrotation. Vk coincide with the limits of the phase velocities of plane harmonic

waves (acoustic waves) in linear micropolar elasticity when the frequency of the

waves tends to infinity, see [16, 32].

In a similar way the propagation of the acceleration waves can be analyzed in

micromorphic media [16, 31] where the strain energy density depends on deforma-

tion gradient and microstrain 𝐒 and its gradient: W = W(∇𝐱,𝐒,∇𝐒), where 𝐒 is a

second-order tensor. This analysis will be performed in forthcoming papers.

5 Conclusions

Within the unified approach based on the representation of the strain energy as a

function of deformation gradient and the microstructural tensor and its gradient we

derived the conditions of propagation of acceleration waves. The latter reduced to the

analysis of generalized spectral problem for acoustic tensor. With presented approach

one can formulate the conditions of existence of acceleration waves in more com-

plex media. Let us note that violation of the conditions may results in discontinuous

solutions with a priori unknown surfaces of discontinuity. For example, this may be

important for analysis of damaged solids. In addition to detailed analysis of wave

propagation near non-ideal interfaces, cracks, lattices, and other media with defects,

see for example [15, 20, 30, 39, 40, 48] and the reference therein, these conditions

may be used for nondestructive evaluation of damage.

Acknowledgements The author acknowledges the Russian Science Foundation (RSCF), for its

support within the Project 15–19-10008.

References

1. Altenbach, H., Eremeyev, V.A., Lebedev, L.P., Rendón, L.A.: Acceleration waves and elliptic-

ity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)

2. Bleach, G.P., Reddy, B.D.: The influence of constraints on the properties of acceleration waves

in isotropic thermoelastic media. Arch. Ration. Mech. Anal. 98, 31–64 (1987)

3. de Boer, R., Liu, Z.: Propagation of acceleration waves in incompressible saturated porous

solids. Trans. Porous Media 21, 163–173 (1995)

4. Capriz, G.: Continua with Microstructure. Springer, New York (1989)

5. Chaboche, J.L.: Continuum damage mechanics: Part II Damage growth, crack initiation, and

crack growth. J. Appl. Mech. 55(1), 65–72 (1988)

6. Chen, P.J.: Growth of acceleration waves in isotropic elastic materials. J. Acoust. Soc. Am. 43,

982–987 (1968)

7. Chen, P.J.: One dimensional acceleration waves in inhomogeneous elastic non-conductors.

Acta Mech. 17, 17–24 (1973)



Acceleration Waves in Media with Microstructure 131

8. Ciarletta, M., Straughan, B.: Poroacoustic acceleration waves. Philos. Trans. R. Soc. Lond. A

462, 3493–3499 (2006)

9. Ciarletta, M., Straughan, B.: Poroacoustic acceleration waves. Proc. R. Soc. Lond. A: Math.

Phys. Eng. Sci. 462(2075), 3493–3499 (2006)

10. Ciarletta, M., Straughan, B.: Thermo-poroacoustic acceleration waves in elastic materials with

voids. J. Math. Anal. Appl. 333(1), 142–150 (2007)

11. Dietsche, A., Steinmann, P., Willam, K.: Micropolar elastoplasticity and its role in localization.

Int. J. Plast. 9, 813–831 (1993)

12. Eremeyev, V.A.: Acceleration waves in micropolar elastic media. Dokl. Phys. 50(4), 204–206

(2005)

13. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics.

Springer, Heidelberg (2013)

14. Eremeyev, V.A., Lebedev, L.P., Rendón, L.: On the propagation of acceleration waves in ther-

moelastic micropolar medias. Revista Colombiana de Matemáticas 41(2), 397–406 (2007)

15. Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface

energy. Mech. Res. Commun. 74, 8–13 (2016)

16. Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York

(1999)

17. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng.

Mech. 135(3), 117–131 (2009)

18. Forest, S.: Micromorphic media. In: Altenbach, H., Eremeyev,V.A. (eds.) Generalized Con-

tinua from the Theory to Engineering Applications, CISM International Centre for Mechanical

Sciences, vol. 541, pp. 249–300. Springer Vienna (2013)

19. Fu, Y.B., Scott, N.H.: The transistion from acceleration wave to shock wave. Int. J. Eng. Sci.

29, 617–624 (1991)

20. Gorbushin, N., Mishuris, G.: Dynamic crack propagation along the interface with non-local

interactions. J. Eur. Ceram. Soc. 36(9), 2241–2244 (2016)

21. Hetnarski, R.B. (ed.): Encyclopedia of Thermal Stresses, vol. 1–11. Springer, Dordercht (2014)

22. Jordan, P.M.: Growth and decay of acoustic acceleration waves in Darcy-type porous media.

Philos. Trans. R. Soc. Lond. A 461, 2749–2766 (2005)

23. Kafadar, C.B., Eringen, A.C.: Micropolar media - I. The classical theory. Int. J. Eng. Sci. 9,

271–305 (1971)

24. Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics.

World Scientific, New Jersey (2010)

25. Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin (1986)
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1 Introduction
Finite element package ACELAN (ACoustoELectric ANalysis), developed about 15

years ago, was initially intended for computer design of piezoelectric devices for two-

dimensional plane and axisymmetric compound areas, as well as three-dimensional

regions of the generalized cylindrical shape. Basic methods and algorithms, under-

luimg in the first version ACELAN, were described in [1, 12]. Later releases of

ACELAN package apart from the models of the elastic, piezoelectric and acoustic

media, were also supplemented with more complicated problems with connectivity

of mechanical, electrical, magnetic and thermal fields [20].

In the recent time an increased interest has been observed to the investigations of

composite materials of complex structure that exhibit very effective properties for

many practical applications. Two-phase magnetoelectric composites consisting of

piezo- and magnetoactive phases demonstrate the ability to mutual transformation of

magnetic and electric fields, whereas each single phase does not have such property.

Modern magnetoelectric composites have high effectiveness of the magnetoelectric

transformation, relatively high temperatures of phase transitions and considerable

technological resource [11].

Recently magnetoelectric composites became of interest to many researchers

which resulted in considerable increase in the number of works devoted to the mod-

elling of the effective properties of these composites (see [7, 8, 11, 26, 29], etc.).

Piezoelectric composites are studied much better and have numerous familiar prac-

tical applications [21, 27]. Meanwhile, the active composites with connectivity of

mechanical, electrical, magnetic and thermal fields clearly have not been studied

enough yet [6, 9, 10], and modern well-known finite element packages do not have

the capabilities of their simulation.

Thermopiezomagnetoelectric composites as special cases allow us to investigate

in ACELAN also elastic, thermoelastic, piezoelectric, piezomagnetic, pyroelectric

and magnetoelectric composites of any type of anisotropy. In Sect. 2 similarly to

[13–15, 19] we present different mathematical setting of the homogenization prob-

lems for active composite materials with connectivity between mechanical, electric,

magnetic and heat fields. We formulate basic statements to validate the homogeniza-

tion procedures. We derive the set of essential and natural boundary conditions for

which the stress, strain, electric and magnetic fields, electric and magnetic flux den-

sities, heat flow and heat gradient are constant for homogeneous congruence mate-

rials. At the end we formulate the set of boundary problems to define the full set of

effective moduli for thermopiezomagnetoelectric materials of arbitrary anisotropic

classes.

The finite element approaches to solve the stated homogenization problems in

representative volumes are given in Sect. 3. We present the finite element systems of

symmetrical structures with quasi-definite matrices (matrix structure for the prob-

lems with a saddle point), and we note that the set of effective algorithms for solving

finite element systems with symmetric quasi-definite matrices are implemented in

ACELAN package.
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In Sect. 4 we describe the modelling procedure of inhomogeneous polarization

processes which are more important for piezoelectric and piezomagnetic materi-

als. We note that the effective original algorithms for modelling of irreversible

processes of polarization and repolarization for composite ferroelectric materials are

implemented in ACELAN. Sections 5 and 6 are devoted to software architecture of

ACELAN package and software implementation for pre- and post- processors, for

modelling the inhomogeneous polarization processes and for modelling the repre-

sentative volumes with different basic structures of active multiphase composites.

2 Effective Moduli Method for
Thermopiezomagnetoelectric Composites

Let 𝛺 be a volume of thermopiezomagnetoelectric composite heterogeneous body;

𝛤 = 𝜕𝛺 is the boundary of the region; 𝐧 is the vector of the external unit normal to

𝛤 ; 𝐮 = 𝐮(𝐱) is the displacement vector-function; 𝜑 = 𝜑(𝐱) is the electric potential

function; 𝜙 = 𝜙(𝐱) is the magnetic potential function; 𝜃 = 𝜃(𝐱) is the increment of

the temperature T(𝐱) from the temperature T0 of the natural state, i.e. 𝜃 = T − T0.

We denote by 𝜺 the second-order strain tensor; 𝝈 is the second-order stress tensor;

𝐄 is the electric field intensity vector or the electric field vector; 𝐃 is the electric flux

density vector or the electric displacement vector; 𝐇 is the magnetic field intensity

vector or magnetic field vector;𝐁 is the magnetic flux density vector,𝐆 is the thermal

gradient vector, 𝐪 is the heat flow. The fields 𝜺, 𝐄, 𝐇 and 𝐆 are determined from the

functions 𝐮, 𝜑, 𝜙 and 𝜃 by the following form

𝜺 = (∇𝐮 + (∇𝐮)∗)∕2, 𝐄 = −∇𝜑, 𝐇 = −∇𝜙, 𝐆 = ∇𝜃 . (1)

where superscript “*” denotes the transposition operation.

On the boundary 𝛤 we will consider the mechanical stress vector 𝐩, surface den-

sities of electric charges 𝜎e, magnetic (pseudo-) charges 𝜎m and heat flow qs:

𝐩 = 𝐧 ⋅ 𝝈, 𝜎e = −𝐧 ⋅ 𝐃, 𝜎m = −𝐧 ⋅ 𝐁, qs = −𝐧 ⋅ 𝐪 . (2)

As usual, we will denote the volume-averaged quantities in the broken brackets

as:

⟨(...)⟩ = 1
|𝛺| ∫𝛺

(...) d𝛺 . (3)

We will formulate auxiliary lemmas for thermopiezomagnetoelectric body fol-

lowing the proof of the effective moduli method for more simple medium. These

affirmations are substantiated under similar techniques that are used for poroelastic,

thermoelastic [18], piezoelectric [15, 19] and magnetoelectric bodies [13–15].

Lemma 1 These representations take place for the field characteristics (1) averaged
in the volume 𝛺 by means of the appropriate values on the boundary 𝛤 :
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(a) ∀ 𝜺 = 𝜺
∗ ∶ ⟨𝜺⟩ = 1

2|𝛺| ∫𝛤 (𝐮𝐧
∗ + 𝐧𝐮∗) d𝛤 ;

(b) ∀ 𝐄, 𝐇, 𝐆 ∶ ⟨𝐄⟩ = − 1
|𝛺| ∫𝛤 𝐧𝜑 d𝛤 , ⟨𝐇⟩ = − 1

|𝛺| ∫𝛤 𝐧𝜙 d𝛤 ,

⟨𝐆⟩ = 1
|𝛺| ∫𝛤 𝐧𝜃 d𝛤 ;

(c) ∀ 𝝈 = 𝝈
∗ ∶ ∇ ⋅ 𝝈 = 0, ⟨𝝈⟩ = 1

2|𝛺| ∫𝛤 (𝐩𝐧
∗ + 𝐧𝐩∗) d𝛤 ;

(d) ∀ 𝐃, 𝐁, 𝐪 ∶ ∇ ⋅ 𝐃 = 0, ⟨𝐃⟩ = − 1
|𝛺| ∫𝛤 𝐱𝜎e d𝛤 ,

∇ ⋅ 𝐁 = 0, ⟨𝐁⟩ = − 1
|𝛺| ∫𝛤 𝐱𝜎m d𝛤 ,

∇ ⋅ 𝐪 = 0, ⟨𝐪⟩ = − 1
|𝛺| ∫𝛤 𝐱qs d𝛤

Here, for (a), (b) the formulae (1) are required; while 𝐩, 𝜎e, 𝜎m and qs in (c), (d)
are connected with 𝝈, 𝐃, 𝐁 and 𝐪 by representations (2).

Lemma 2 For 𝐱 ∈ 𝛤 we have the following relations:
(a) if 𝐮 = 𝐱 ⋅ 𝜺0, where 𝜺0 = 𝜺

∗
0 = const, i.e. 𝜺0 is the arbitrary symmetric indepen-

dent on 𝐱 second rank tensor, then ⟨𝜺⟩ = 𝜺0;

(b) if 𝜑 = −𝐱 ⋅ 𝐄0, where 𝐄0 = const, i.e. 𝐄0 is the arbitrary independent on 𝐱
vector, then ⟨𝐄⟩ = 𝐄0;

(c) if 𝜙 = −𝐱 ⋅𝐇0, where 𝐇0 = const, i.e. 𝐇0 is the arbitrary independent on 𝐱
vector, then ⟨𝐇⟩ = 𝐇0;
(d) if 𝜃 = 𝐱 ⋅𝐆0, where𝐆0 = const, i.e.𝐆0 is the arbitrary independent on 𝐱 vector,
then ⟨𝐆⟩ = 𝐆0;
(e) if 𝐩 = 𝐧 ⋅ 𝝈0, where 𝐩 is the stress vector from (2), 𝝈0 = 𝝈

∗
0 = const, then ⟨𝝈⟩ =

𝝈0;
(f) if 𝜎e = −𝐧 ⋅ 𝐃0, where 𝜎e is the surface density of electric charges from (2),
𝐃0 = const, then ⟨𝐃⟩ = 𝐃0;
(g) if 𝜎m = −𝐧 ⋅ 𝐁0, where 𝜎m is the surface density of magnetic charges from (2),
𝐁0 = const, then ⟨𝐁⟩ = 𝐁0;
(h) if qs = −𝐧 ⋅ 𝐪0, where qs is the heat flow from (2), 𝐪0 = const, then ⟨𝐪⟩ = 𝐪0.

Lemma 3 If for 𝐱 ∈ 𝛤 :

(a) 𝐮 = 𝐱 ⋅ 𝜺0, 𝜺0 = 𝜺
∗
0 = const, and the equilibrium equation ∇ ⋅ 𝝈 = 0 takes place

for any given symmetric second rank stress tensor 𝝈, then we have ⟨𝝈 ∶ 𝜺⟩ = ⟨𝝈⟩ ∶
⟨𝜺⟩, where the symbol”:“denotes the double scalar product operation between two
tensors (𝝈 ∶ 𝜺 = 𝜎ij𝜀ji);
(b) 𝜑 = −𝐱 ⋅ 𝐄0, 𝐄0 = const, and the equation of electrostatics ∇ ⋅ 𝐃 = 0 takes
place for any given electric flux density vector 𝐃, then we have ⟨𝐃 ⋅ 𝐄⟩ = ⟨𝐃⟩ ⋅ ⟨𝐄⟩;
(c) 𝜙 = −𝐱 ⋅𝐇0, 𝐇0 = const, and the equation of magnetostatics ∇ ⋅ 𝐁 = 0 takes
place for any givenmagnetic flux density vector𝐁, then we have ⟨𝐁 ⋅𝐇⟩ = ⟨𝐁⟩ ⋅ ⟨𝐇⟩;
(d) 𝜃 = 𝐱 ⋅𝐆0,𝐆0 = const, and the equation of stationary thermal conductivity ∇ ⋅
𝐪 = 0 takes place for any given heat flux vector 𝐪, then we have ⟨𝐪 ⋅𝐆⟩ = ⟨𝐪⟩ ⋅ ⟨𝐆⟩;
(e) 𝐩 = 𝐧 ⋅ 𝝈0, 𝝈0 = 𝝈

∗
0 = const, where 𝐩 is the stress vector from (2), and the equi-

librium equation ∇ ⋅ 𝝈 = 0 takes place, then we have ⟨𝝈 ∶ 𝜺⟩ = ⟨𝝈⟩ ∶ ⟨𝜺⟩;
(f) 𝜎e = −𝐧 ⋅ 𝐃0,𝐃0 = const, where 𝜎e is the surface density of electric charges from
(2), and the equation of electrostatics∇ ⋅ 𝐃 = 0 takes place, then we have ⟨𝐃 ⋅ 𝐄⟩ =
⟨𝐃⟩ ⋅ ⟨𝐄⟩;
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(g) 𝜎m = −𝐧 ⋅ 𝐁0, 𝐁0 = const, where 𝜎m is the surface density of magnetic charges
from (2), and the equation of magnetostatics ∇ ⋅ 𝐁 = 0 takes place, then we have
⟨𝐁 ⋅𝐇⟩ = ⟨𝐁⟩ ⋅ ⟨𝐇⟩;
(h) qs = −𝐧 ⋅ 𝐪0, 𝐪0 = const, where qs is the surface heat flow from (2), and the
equation of stationary thermal conductivity ∇ ⋅ 𝐪 = 0 takes place, then we have ⟨𝐪 ⋅
𝐆⟩ = ⟨𝐪⟩ ⋅ ⟨𝐆⟩.

In accordance with eight equivalent fundamental forms of constitutive relations

between mechanical, electric and magnetic field variables with thermal effects we

will introduce the moduli of thermopiezomagnetoelectric medium:

—𝜀EH𝜃—form (𝜺, 𝐄, 𝐇, and 𝜃 are considered as independent variables)

𝝈 = 𝐜E,H,𝜃 ∶ 𝜺 − 𝐞H,𝜃∗ ⋅ 𝐄 − 𝐡E,𝜃∗ ⋅𝐇 − 𝜸
E,H

𝜃 , (4)

𝐃 = 𝐞H,𝜃 ∶ 𝜺 + 𝜿
𝜀,H,𝜃 ⋅ 𝐄 + 𝜷

𝜀,𝜃 ⋅𝐇 + 𝐠𝜀,H𝜃 , (5)

𝐁 = 𝐡E,𝜃 ∶ 𝜺 + 𝜷
𝜀,𝜃∗ ⋅ 𝐄 + 𝝁

𝜀,E,𝜃 ⋅𝐇 +𝐦𝜀,E
𝜃 , (6)

—𝜎EH𝜃—form (𝝈, 𝐄, 𝐇, and 𝜃 are considered as independent variables)

𝜺 = 𝐬E,H,𝜃 ∶ 𝝈 + 𝐝H,𝜃∗ ⋅ 𝐄 + 𝐛E,𝜃∗ ⋅𝐇 + 𝜶
E,H

𝜃 , (7)

𝐃 = 𝐝H,𝜃 ∶ 𝝈 + 𝜿
𝜎,H,𝜃 ⋅ 𝐄 + 𝜸

𝜎,𝜃 ⋅𝐇 + 𝐩𝜎,H𝜃 , (8)

𝐁 = 𝐛E,𝜃 ∶ 𝝈 + 𝜸
𝜎,𝜃∗ ⋅ 𝐄 + 𝝁

𝜎,E,𝜃 ⋅𝐇 + 𝐧𝜎,E𝜃 , (9)

and similarly for 𝜀DH𝜃, 𝜎DH𝜃, 𝜀EB𝜃, 𝜎EB𝜃, 𝜀DB𝜃, 𝜎DB𝜃—forms with corre-

sponding independent variables.

Here in Eqs. (4)–(6) 𝐜E,H,𝜃
is the fourth rank tensor of elastic stiffness moduli,

𝐞H,𝜃
is the third rank tensor of piezoelectric moduli, 𝐡E,𝜃 is the third rank tensor of

magnetostriction moduli, 𝜸
E,H

is the second-order tensor of thermal stresses, 𝜿
𝜀,H,𝜃

is

the second rank tensor of dielectric permittivity moduli, 𝜷
𝜀,𝜃

is the second rank tensor

of magnetoelectric coupling coefficients, 𝐠𝜀,H is the vector of pyroelectric constants,

𝝁
𝜀,E,𝜃

is the second rank tensor of magnetic permittivity moduli, 𝐦𝜀,E
is the vector

of pyromagnetic constants, and the upper indexes indicate for which constant fields

calculate these moduli.

For indicated above constitutive relations we have to add the Fourier’s law

𝐪 = −𝐤 ⋅𝐆 , (10)

where 𝐤 is the second rank tensor of thermal conductivities.

Let now 𝛺 be the representative volume of heterogeneous thermopiezomagne-

toelectric composite material. We will determine the effective moduli �̃�E,H,𝜃
, �̃�H,𝜃

,

�̃�E,𝜃 , �̃�
E,H

, �̃�
𝜀,H,𝜃

, �̃�
𝜀,𝜃

, �̃�𝜀,H , �̃�
𝜀,E,𝜃

, �̃�𝜀,E
, �̃� by the following technique, similar to the
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well-known procedures for poroelastic, thermoelastic, piezoelectric and magneto-

electric composites [13–19].

At first we consider the static thermopiezomagnetoelectric problem for represen-

tative volume 𝛺 with constant thermal field (𝜃 = 𝜃0):

∇ ⋅ 𝝈 = 0, ∇ ⋅ 𝐃 = 0, ∇ ⋅ 𝐁 = 0, ∇ ⋅ 𝐪 = 0, 𝐱 ∈ 𝛺 , (11)

𝐮 = 𝐱 ⋅ 𝜺0, 𝜑 = −𝐱 ⋅ 𝐄0, 𝜙 = −𝐱 ⋅𝐇0, 𝜃 = 𝜃0, 𝐱 ∈ 𝛤 . (12)

We call the problem (11), (12) with (1), (4)–(6), (10) as the problem I, and denote

the solution of this problem by 𝐮I ,𝜑I
,𝜙

I
, 𝜃

I
(𝜃

I = 𝜃0). After solving this problem and

by using (1), (4)–(6) we find 𝜺
I
, 𝐄I

, 𝐇I
, 𝝈

I
, 𝐃I

and 𝐁I
, where 𝝈

I = 𝝈(𝐮I , 𝜑I
, 𝜙

I
, 𝜃

I),
etc. We note from Lemma 2, that for the problem I: ⟨𝜺I⟩ = 𝜺0, ⟨𝐄I⟩ = 𝐄0 and ⟨𝐇I⟩ =
𝐇0.

We supply in conformity to the initial heterogeneous medium some “equivalent”

homogeneous medium with effective moduli �̃�E,H,𝜃
, �̃�H,𝜃

, �̃�E,𝜃 , �̃�
E,H

, �̃�
𝜀,H,𝜃

, �̃�
𝜀,𝜃

, �̃�𝜀,H ,

�̃�
𝜀,E,𝜃

, �̃�𝜀,E
, �̃�. The constitutive equations for “equivalent” medium, similar to (4)–

(6), are in the forms:

𝝈0 = �̃�E,H,𝜃 ∶ 𝜺0 − �̃�H,𝜃∗ ⋅ 𝐄0 − �̃�E,𝜃∗ ⋅ �̃�0 − �̃�
E,H

𝜃0 , (13)

𝐃0 = �̃�H,𝜃 ∶ 𝜺0 + �̃�
𝜀,H,𝜃 ⋅ 𝐄0 + �̃�

𝜀,𝜃
⋅𝐇0 + �̃�𝜀,H𝜃0 , (14)

𝐁0 = �̃�E,𝜃 ∶ 𝜺0 + �̃�

𝜀,𝜃∗
⋅ 𝐄0 + �̃�

𝜀,E,𝜃 ⋅𝐇0 + �̃�𝜀,E
𝜃0 . (15)

For the problem I we accept the following equations such as relations for defini-

tion of effective moduli from (13) to (15)

⟨𝝈I⟩ = 𝝈0, ⟨𝐃I⟩ = 𝐃0, ⟨𝐁I⟩ = 𝐁0 . (16)

The moduli, found from these conditions, are marked with superscripts “I”. Note,

that due to Lemma 3 the average energies are equal for heterogeneous and for “equiv-

alent” homogeneous thermopiezomagnetoelectric media:

⟨𝝈I ∶ 𝜺
I + 𝐃I ⋅ 𝐄I + 𝐁I ⋅𝐇I⟩∕2 = (𝝈0 ∶ 𝜺0 + 𝐃0 ⋅ 𝐄0 + 𝐁0 ⋅𝐇0)∕2 . (17)

Now, by using Eqs. (13)–(15), we can select such boundary conditions, at which

the obvious expressions for effective moduli are obtained. For example, we consider

the problem I (11), (12) with

𝜺0 = 𝜀0(𝐞k𝐞m + 𝐞m𝐞k)∕2, 𝐄0 = 0, 𝐇0 = 0, 𝜃0 = 0 , (18)

where k, m are some fixed numbers (k,m = 1, 2, 3); 𝐞k are the unit vectors of Carte-

sian basis. Then, from (13)–(15), (18) we obtain:
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c̃E,H,𝜃 I
ijkm = ⟨𝜎I

ij⟩∕𝜀0, ẽH,𝜃 I
jkm = ⟨DI

j ⟩∕𝜀0, h̃E,𝜃 Ijkm = ⟨BI
j ⟩∕𝜀0 . (19)

If in I (11), (12) we accept

𝜺0 = 0, 𝐄0 = E0𝐞k, 𝐇0 = 0, 𝜃0 = 0 , (20)

then from (13) to (15), (20) we find

ẽH,𝜃 I
kij = −⟨𝜎I

ij⟩∕E0, �̃�
𝜀,H,𝜃 I
kj = ⟨DI

j ⟩∕E0, 𝛽
𝜀,𝜃 I
kj = ⟨BI

j ⟩∕E0 . (21)

Similarly, if in the problem I (11), (12) we accept

𝜺0 = 0, 𝐄0 = 0, 𝐇0 = H0𝐞k, 𝜃0 = 0 , (22)

then from (13) to (15), (22) we find

h̃E,𝜃 Ikij = −⟨𝜎I
ij⟩∕H0, 𝛽

𝜀,𝜃 I
jk = ⟨DI

j ⟩∕H0, �̃�
𝜀,E,𝜃 I
kj = ⟨BI

j ⟩∕H0 . (23)

Finally, if in I (11), (12) we suppose

𝜺0 = 0, 𝐄0 = 0, 𝐇0 = 0, 𝜃0 ≠ 0 , (24)

then from (13) to (15), (24) we obtain

�̃�
E,H I
ij = −⟨𝜎I

ij⟩∕𝜃0, g̃𝜀,H I
j = ⟨DI

j ⟩∕𝜃0, m̃𝜀,E, I
j = ⟨BI

j ⟩∕𝜃0 . (25)

Note, that the quantities 𝜎
I
ij, D

I
j and BI

j in (19), (21), (23) and (25) are different,

since they are calculated from the solutions of the problem I with different boundary

conditions (12): (18), (20), (22) and (24).

In order to determine the effective coefficients of the tensor �̃� we solve the uncou-

pled thermal problem tI

∇ ⋅ 𝐪 = 0, 𝐪 = −𝐤 ⋅𝐆, 𝐆 = ∇𝜃, 𝐱 ∈ 𝛺; 𝜃 = 𝐱 ⋅𝐆0, 𝐱 ∈ 𝛤 , (26)

where 𝐆0 is some constant vector that does not depend on 𝐱.

It is obvious that 𝜃 = 𝐱 ⋅𝐆0, 𝐆 = ∇𝜃 = 𝐆0, 𝐪 = 𝐪0 = −�̃�tI ⋅𝐆0 will give the

solution of the problem (26) in the volume 𝛺 for the homogeneous comparison

medium. Then having solved the problem (26) for heterogeneous medium, we can

set that for this medium and for the comparison medium the averaged heat fluxes

are equal ⟨𝐪⟩ = 𝐪0. As a result we get the equation for the effective thermal conduc-

tivity moduli of the composite: �̃�tI ⋅𝐆0 = −⟨𝐪⟩. Then for the comparison medium

with anisotropy of general form it is not difficult to obtain computation formulas for

thermal conductivity moduli k̃tIil . Indeed, setting in (26),
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𝐆0 = G0𝐞l , (27)

where G0 = const, l = 1, 2, 3 is some fixed index, we get computation formulas for

the moduli k̃tIil :
k̃tIil = −⟨qi⟩∕G0 . (28)

We note from Lemmas 2, 3, (d), that for the problem tI between the heat flux

and temperature gradient fields for the heterogeneous medium and the comparison

medium the following equalities take place ⟨𝐆⟩ = 𝐆0, ⟨𝐪 ⋅𝐆⟩ = 𝐪0 ⋅𝐆0, where the

last relation has the energy sense.

In addition to described technique, by analogy with poroelastic, thermoelastic,

piezoelectric and magnetoelectric composite media [13–19], for thermopiezomag-

netoelectric media it is possible to suggest the other ways of introducing effective

moduli, by considering the problems with other mechanical, electric and magnetic

boundary conditions from Lemma 2. Indeed, we can consider the following prob-

lems:

—the problem II with boundary conditions for mechanical stress vector 𝐩, electric

potential 𝜑, magnetic potential 𝜙 and temperature 𝜃

𝐩 = 𝐧 ⋅ 𝝈0, 𝜑 = −𝐱 ⋅ 𝐄0, 𝜙 = −𝐱 ⋅𝐇0, 𝜃 = 𝜃0, 𝐱 ∈ 𝛤 ; (29)

—the problem III with boundary conditions for displacement 𝐮, surface density of

electric charges 𝜎e, magnetic potential 𝜙 and temperature 𝜃

𝐮 = 𝐱 ⋅ 𝜺0, 𝜎e = −𝐧 ⋅ 𝐃0, 𝜙 = −𝐱 ⋅𝐇0, 𝜃 = 𝜃0, 𝐱 ∈ 𝛤 ; (30)

—the problem IV with boundary conditions for mechanical stress vector 𝐩, surface

density of electric charges 𝜎e, magnetic potential 𝜙 and temperature 𝜃

𝐩 = 𝐧 ⋅ 𝝈0, 𝜎e = −𝐧 ⋅ 𝐃0, 𝜙 = −𝐱 ⋅𝐇0, 𝜃 = 𝜃0, 𝐱 ∈ 𝛤 ; (31)

—the problems V–VIII, where as distinct from the problems I–IV the boundary con-

ditions for magnetic potential 𝜙 = −𝐱 ⋅𝐇0 are replaced by the boundary conditions

for surface density of magnetic charges 𝜎m = −𝐧 ⋅ 𝐁0.

In the all these problems the field equations of equilibrium, electrostatic, magne-

tostatic and steady-state heat (11) are considered. Here for the problem II the consti-

tutive equations (7)–(9) are used and originally the effective moduli �̃�E,H,𝜃 II
, 𝐝H,𝜃 II

,

�̃�E,𝜃 II , �̃�E,H II
, �̃�

𝜎,H,𝜃 II
, �̃�

𝜎,𝜃 II
, �̃�𝜎,H II

, �̃�
𝜎,E,𝜃 II

and �̃�𝜎,E II
are defined.

Indeed, we can solve the problems II (11), (29) with (1), (7)–(9), (10) for differ-

ent boundary conditions in (29), and in the result we obtain the full set of effective

moduli from (7)–(9):

— problems II, a

𝝈0 = 𝜎0(𝐞k𝐞m + 𝐞m𝐞k)∕2, 𝐄0 = 0, 𝐇0 = 0, 𝜃0 = 0 , (32)
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s̃E,H,𝜃 II
ijkm = ⟨𝜀IIij ⟩∕𝜎0, d̃H,𝜃 II

jkm = ⟨DII
j ⟩∕𝜎0, b̃E,𝜃 IIjkm = ⟨BII

j ⟩∕𝜎0 , (33)

— problems II, b

𝝈0 = 0, 𝐄0 = E0𝐞k, 𝐇0 = 0, 𝜃0 = 0 , (34)

d̃H,𝜃 II
kij = ⟨𝜀IIij ⟩∕E0, �̃�

𝜎,H,𝜃 II
kj = ⟨DII

j ⟩∕E0, �̃�
𝜎,𝜃 II
kj = ⟨BII

j ⟩∕E0 , (35)

— problems II, c

𝝈0 = 0, 𝐄0 = 0, 𝐇0 = H0𝐞k, 𝜃0 = 0 , (36)

b̃H,𝜃 II
kij = ⟨𝜀IIij ⟩∕H0, �̃�

𝜎,𝜃 II
kj = ⟨DII

j ⟩∕H0, �̃�
𝜎,E,𝜃 II
kj = ⟨BII

j ⟩∕H0 , (37)

— problem II, d
𝝈0 = 0, 𝐄0 = 0, 𝐇0 = 0, 𝜃0 ≠ 0 , (38)

�̃�
E,H II
ij = ⟨𝜀IIij ⟩∕𝜃0, p̃𝜎,H II

j = ⟨DII
j ⟩∕𝜃0, ñ𝜎,E II

j = ⟨BII
j ⟩∕𝜃0 . (39)

Respectively, for the problems III–VIII the constitutive equations for 𝜀DH𝜃,

𝜎DH𝜃, 𝜀EB𝜃, 𝜎EB𝜃, 𝜀DB𝜃, 𝜎DB𝜃—forms are used and corresponding effective

moduli are defined.

Note, that from Lemma 3 for all these problems, similarly to the problem I, the

average energy is conserved, i.e. the relation (17) is satisfied with replace of the

superscript “I” by “II”–“VIII”. This fact is fundamental for the effective moduli

method.

In any of these problems from the obtained effective moduli we can find other

moduli from constitutive equations for 𝜀EH𝜃, 𝜎EH𝜃, 𝜀DH𝜃, 𝜎DH𝜃, 𝜀EB𝜃, 𝜎EB𝜃,

𝜀DB𝜃, 𝜎DB𝜃—forms for “equivalent” homogeneous medium. We note, that the

effective moduli, found from different problems, will differ, i.e., 𝐜E,H,𝜃 I ≠ 𝐜E,H,𝜃 II ≠

... ≠ 𝐜E,H,𝜃 VIII
, etc.

Similarly, instead of determination of effective thermal conductivities coefficients

from (26) we can consider thermal problem tII

∇ ⋅ 𝐪 = 0, 𝐪 = −𝐤 ⋅𝐆, 𝐆 = ∇𝜃, 𝐱 ∈ 𝛺; qs = −𝐧 ⋅ 𝐪 = −𝐧 ⋅ 𝐪0, 𝐱 ∈ 𝛤 ,

(40)

where 𝐪0 is some constant vector that does not depend on 𝐱. Then 𝐪 = 𝐪0, 𝜃 = 𝐱 ⋅𝐆0,

𝐆 = ∇𝜃, 𝐆 = 𝐆0, 𝐆0 = −�̃� tII ⋅ 𝐪0 give the solution of the problem (40) for homo-

geneous comparison medium, moreover, by Lemma 2, (h) for any solution of the

problem (40) with heterogeneous coefficients 𝐤(𝐱) = 𝐫−1(𝐱) the following equality

holds ⟨𝐪⟩ = ⟨𝐪0⟩. Therefore for the determination of the effective inverse thermal

conductivities coefficients r̃ tII
il we can set: ⟨𝐆⟩ = ⟨𝐆0⟩, where 𝐆 is the gradient of

the temperature field, calculated for heterogeneous medium. This condition leads to

the relation �̃� tII ⋅ 𝐪0 = −⟨𝐆⟩, from which, assuming in (40)
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𝐪0 = q0𝐞l , (41)

where q0 = const, l = 1, 2, 3 is some fixed index, we get the computation formulas

for the effective thermal resistance (inverse thermal conductivities) coefficients:

r̃ tII
il = −⟨Gi⟩∕q0 . (42)

As for the problem tI, by Lemma 3, (h) the choice of the boundary condition

𝐧 ⋅ 𝐪 = 𝐧 ⋅ 𝐪0 in (40) can be justified by the energy equality for the heterogeneous

medium and the comparison medium: ⟨𝐪 ⋅𝐆⟩ = ⟨𝐪0 ⋅𝐆0⟩.
Note that use of different constitutive equations of problems II–VIII and tI, tII can

be useful to determine effective moduli of the inhomogeneous structures by dealing

with mainly one- or two-dimensional movements, for example, for thermopiezomag-

netoelectric rods, plates and disks, etc.

In addition to the described above models, in the finite element package ACELAN

the model of active composite materials with interface boundary conditions we also

plan to implement. Such models with the interface and surface effects can be used

to simulate nanoscale multi–field composites.

3 Finite Element Technologies
For solving thermopiezomagnetoelectric problems (11) with corresponding bound-

ary conditions for heterogeneous two-phase composite material in the representative

volume 𝛺 we can pass to their weak settings and use classical technique of finite ele-

ment approximations. Let𝛺h be the region filled by the finite element mesh,𝛺h ⊂ 𝛺,

𝛺h = ∪m𝛺
em

, where 𝛺
em

is a separate finite element with the number m. For static

problems we can find the approximate solution {𝐮h ≈ 𝐮, 𝜑h ≈ 𝜑, 𝜙h ≈ 𝜙, 𝜃h ≈ 𝜃}

at the finite element mesh 𝛺h in the form

𝐮h(𝐱) = 𝐍∗
u(𝐱) ⋅ 𝐔, 𝜑h(𝐱) = 𝐍∗

𝜑
(𝐱) ⋅𝜱, 𝜙h(𝐱) = 𝐍∗

𝜙
(𝐱) ⋅ 𝐀, 𝜃h(𝐱) = 𝐍∗

𝜃
(𝐱) ⋅ 𝐓 ,

(43)

where 𝐍∗
u is the matrix of the shape functions for the displacements, 𝐍∗

𝜑
is the row

vector of the shape functions for the electric potential, 𝐍∗
𝜙

is the row vector of the

shape functions for the magnetic potential,𝐍∗
𝜃

is the row vector of the shape functions

for the temperature, 𝐔, 𝜱, 𝐀, 𝐓 are the global vectors of the nodal displacements,

the electric potential, the magnetic potential and the temperature, respectively.

According to usual technique we approximate the continuum weak formulation

of the thermopiezomagnetoelectric problem in finite-dimensional spaces related to

the basis functions 𝐍∗
u, 𝐍∗

𝜑
, 𝐍∗

𝜙
, 𝐍∗

𝜃
. Substituting (43) and analogous representations

for projecting functions into the weak setting of the thermopiezomagnetoelectric

problem for 𝛺h, we get the finite element system

𝐊uu ⋅ 𝐔 +𝐊u𝜑 ⋅𝜱 +𝐊u𝜙 ⋅ 𝐀 −𝐊u𝜃 ⋅ 𝐓 = 𝐅u , (44)
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−𝐊∗
u𝜑 ⋅ 𝐔 +𝐊

𝜑𝜑
⋅𝜱 +𝐊

𝜑𝜙
⋅ 𝐀 −𝐊

𝜑𝜃
⋅ 𝐓 = 𝐅

𝜑
, (45)

−𝐊∗
u𝜙 ⋅ 𝐔 +𝐊∗

𝜑𝜙
⋅𝜱 +𝐊

𝜙𝜙
⋅ 𝐀 −𝐊

𝜙𝜃
⋅ 𝐓 = 𝐅

𝜙
, (46)

𝐊
𝜃𝜃

⋅ 𝐓 = 𝐅
𝜃
. (47)

Here, 𝐊uu =
∑a

m𝐊
em
uu , 𝐊u𝜑 =

∑a
m𝐊

em
u𝜑, 𝐊u𝜙 =

∑a
m𝐊

em
u𝜙 etc. are the global matri-

ces, obtained from the corresponding element matrices by the ensemble operation

(
∑a

m), and the element matrices are in the forms

𝐊em
uu =

∫
𝛺em

𝐁em∗
u ⋅ 𝐜 ⋅ 𝐁em

u d𝛺, 𝐊em
u𝜑 =

∫
𝛺em

𝐁em∗
u ⋅ 𝐞∗ ⋅ 𝐁em

𝜑
d𝛺 , (48)

𝐊em
u𝜙 =

∫
𝛺em

𝐁em∗
u ⋅ 𝐡∗ ⋅ 𝐁em

𝜙
d𝛺, 𝐊em

u𝜃 =
∫
𝛺em

𝐁em∗
u ⋅ 𝜸 𝐍em∗

𝜃
d𝛺 , (49)

𝐊em
𝜑𝜑

=
∫
𝛺em

𝐁em∗
𝜑

⋅ 𝜿 ⋅ 𝐁em
𝜑

d𝛺, 𝐊em
𝜑𝜙

=
∫
𝛺em

𝐁em∗
𝜑

⋅ 𝜷 ⋅ 𝐁em
𝜙

d𝛺 , (50)

𝐊em
𝜑𝜃

=
∫
𝛺em

𝐁em∗
𝜑

⋅ 𝐠𝐍em∗
𝜃

d𝛺, 𝐊em
𝜙𝜙

=
∫
𝛺em

𝐁em∗
𝜙

⋅ 𝝁 ⋅ 𝐁em
𝜙

d𝛺 , (51)

𝐊em
𝜙𝜃

=
∫
𝛺em

𝐁em∗
𝜙

⋅𝐦𝐍em∗
𝜃

d𝛺, 𝐊em
𝜃𝜃

=
∫
𝛺em

𝐁em∗
𝜃

⋅ 𝐤 ⋅ 𝐁em
𝜃

d𝛺 , (52)

𝐁em
u = 𝐋(∇) ⋅ 𝐍em∗

u , 𝐁em
𝜑

= ∇𝐍em∗
𝜑

, 𝐁em
𝜙

= ∇𝐍em∗
𝜙

, 𝐁em
𝜃

= ∇𝐍em∗
𝜃

, (53)

𝐋∗(∇) =
⎡
⎢
⎢⎣

𝜕1 0 0 0 𝜕3 𝜕2
0 𝜕2 0 𝜕3 0 𝜕1
0 0 𝜕3 𝜕2 𝜕1 0

⎤
⎥
⎥⎦
, (54)

where 𝐍em∗
u , 𝐍em∗

𝜑
, 𝐍em∗

𝜙
, 𝐍em∗

𝜃
are the matrices and the row vectors of approximate

shape functions for 𝐮h, 𝜑h, 𝜙h, 𝜃h, respectively, defined on separate finite elements

with numberm. The vectors 𝐅u,𝐅
𝜑

, 𝐅
𝜙

,𝐅
𝜃

in (44)–(47) are obtained from the bound-

ary conditions, the corresponding right parts of the weak statements, and the finite

element approximations.

In (48)–(54) we use vector-matrix forms for the moduli [5]: 𝐜 is the 6x6 matrix of

elastic moduli, c
𝛼𝛽

= cE,H,𝜃

ijkl ; 𝛼, 𝛽 = 1, ..., 6; i, j, k, l = 1, 2, 3 with the correspondence

law 𝛼 ↔ (ij), 𝛽 ↔ (kl), 1 ↔ (11), 2 ↔ (22), 3 ↔ (33), 4 ↔ (23) = (32), 5 ↔ (13) =
(31), 6 ↔ (12) = (21); 𝐞 is the 3x6 matrix of piezoelectric moduli (ei𝛽 = eH,𝜃

ikl ); 𝐡
is the 3x6 matrix of piezomagnetic moduli (hi𝛽 = hE,𝜃ikl ); 𝜸 ={𝛾E,H11 , 𝛾

E,H
22 , 𝛾

E,H
33 , 𝛾

E,H
23 ,

𝛾
E,H
13 , 𝛾

E,H
12 }.

Note that for problem I–VIII the vector of nodal temperature is known 𝐓 = 𝐓0,

because 𝜃 = 𝜃0, and from (44)–(46) we have the finite element system relative to
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unknown vector 𝐚 = {𝐔,𝜱,𝐀}:

𝐊 ⋅ 𝐚 = 𝐅 , (55)

where

𝐊 =
⎡
⎢
⎢⎣

𝐊uu 𝐊u𝜑 𝐊u𝜙
𝐊∗

u𝜑 −𝐊
𝜑𝜑

−𝐊
𝜑𝜙

𝐊∗
u𝜙 −𝐊∗

𝜑𝜙
−𝐊

𝜙𝜙

⎤
⎥
⎥⎦
, 𝐅 =

⎧
⎪
⎨
⎪⎩

𝐅u + 𝐊u𝜃 ⋅ 𝐓0
−𝐅

𝜑
−𝐊

𝜑𝜃
⋅ 𝐓0

−𝐅
𝜙
−𝐊

𝜙𝜃
⋅ 𝐓0

⎫
⎪
⎬
⎪⎭

. (56)

Then for the problems I–VIII we can solve system (55) with symmetric quasi-

definite matrix (matrix structure for the problems with a saddle point [3, 4, 28])

𝐊 from (56). For the problems tI and tII we have the system (47) with symmetric

positive definite matrix.

Thus, as has been described in [1, 12, 15], in ACELAN we can use effective

algorithms with symmetric positive definite and quasi-definite matrices for solving

finite element Eqs. (47) and (55), (56). Additionally, all the procedures, that we need

in finite element manipulations (the degree of freedom rotations, mechanical and

electric boundary condition settings, etc.), can be also provided in a symmetric form.

4 Modelling of Inhomogeneous Polarization

In the simulation of the effective properties of active composites original inhomoge-

neous structure plays important role. For example, the moduli of piezoelectric and

piezomagnetic phases may be determined by the polarization vectors, which depend

on the spatial coordinates. For the calculation of the initial heterogeneity associated

with polarization, ACELAN package has capabilities for solving nonlinear problems

of irreversible processes of polarization of polycrystalline ferroelectric materials.

The pre-polarized ferroelectric ceramics are examples of such materials.

This section presents the basic mathematical models of nonlinear problems of

irreversible processes of polarization that are in the form of software moduli,

implanted in the ACELAN package. They are described in detail in [2, 23, 24].

Image graphics software package and the results of the respective modules will be

presented in the following sections. We consider a body of polycrystalline ferro-

electric material the boundary of which is affected by slow time-varying external

electrical and mechanical stresses of high intensity, as shown in Fig. 1. The poly-

crystalline ferroelectrics have very complex structure, and their structure is being

changed in the process of polarization. Therefore, it is obvious that for the modeling

of irreversible processes it is necessary to take into account that the changes occur

in the body.

Figure 2 shows the ferroelectric perovskite structure at the macro-, micro- and

nano- levels. Nevertheless, the developed model may be successfully applied for

other types of ferroelectrics.
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Fig. 1 General view and boundary conditions

Fig. 2 Structure at the macro-, micro- and nano- levels

As in Sect. 2, let 𝐮 be the macroscopic displacement field, 𝜑 is the macroscopic

scalar potential, 𝝈 is the macroscopic mechanical stress and 𝐃 is the electrical

displacement. In order to formulate the electromechanical boundary value problem,

the surface 𝛤 of the considered body is divided into mechanical and electrical parts

𝛤 = 𝛤
𝜎
∪ 𝛤u and 𝛤 = 𝛤D ∪ 𝛤

𝜑
, respectively. The essential boundary conditions on

𝛤u and 𝛤
𝜑

as well as the natural boundary conditions on 𝛤 = 𝛤
𝜎

and 𝛤 = 𝛤D are

𝐮 = 𝐮
𝛤

on 𝛤u, 𝜑 = 𝜑
𝛤

on 𝛤
𝜑

, 𝐧 ⋅ 𝝈 = 𝐩
𝛤

on 𝛤
𝜎
, 𝐧 ⋅ 𝐃 = 0 on 𝛤 = 𝛤D.

We need to determine the displacements 𝐮, stresses 𝝈, electric field 𝐄 in the area

of body, and arising field of the residual polarization 𝐏0 and residual strain 𝜺0 for any

values of boundary functions, i.e. of the displacement vector 𝐮
𝛤

, the vector mechan-

ical stresses 𝐩
𝛤

and the electric potential 𝜑
𝛤

. The basic equations are obtained from

the relations of balance of impulse, momentum, Gauss’s law and Faraday’s law. In

differential form we obtain the field equations:

∇ ⋅ 𝝈 + 𝜌𝐟 = 0, ∇ ⋅ 𝐃 = 0 ,

to which we add two first geometric relations between displacement vector 𝐮 and

electric potential 𝜑 with strain tensor 𝜺 and electric field vector 𝐄 from Eq. (1).

The polarization process, as well as plasticity is an irreversible process. Therefore

along with the parameters of state we have to input the parameters of process. For

this purpose, the strain tensor and the polarization vector is presented in the form of

reversible (elastic) and irreversible (remaining) parts
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𝜺 = 𝜺e + 𝜺0, 𝐃 = 𝜀0𝐄 + 𝐏e + 𝐏0. (57)

To obtain a closed system of equations, one must add the defining relations.

Firstly, this is a ratio for reversible components of the polarization vector and strain

tensor. And, secondly, it is necessary to formulate the law to determinate the rate of

change for the irreversible components of the polarization and deformation. We also

note that the vector 𝐏0 of ceramics polarization together with the tensor 𝜺 describes

the changes of the structure material.

Constitutive relations for reversible components are obtained by using a common

approach of thermodynamics of irreversible processes, as described in detail in [24].

Such relationships are the linear algebraic equations relating the reversible part of

the strain and electric induction on the one hand and the stress tensor and vector of

the electric field on the other hand. They have the form:

𝜺 = 𝜺 − 𝜺0 = 𝐬 ∶ 𝝈 + 𝐝∗ ⋅ 𝐄, 𝐃e = 𝐃 − 𝐏0 = 𝐝 ∶ 𝝈 + 𝜿 ⋅ 𝐄, (58)

where the elastic compliance tensor 𝐬, piezoelectric coefficients 𝐝 and the dielec-

tric constants 𝜿 depend on the parts of irreversible polarization and strain 𝐒(𝜺0,𝐏0),
𝐝(𝜺0, 𝐏0),𝜿(𝜺0,𝐏0). These components are changed with the change of irreversible

components. It is known that thermally depolarized ceramic is an isotropic mater-

ial in terms of mechanical and electrical properties, and does not have piezoelectric

properties. Therefore, we adopted the following law for these tensors

𝐬 = 𝐬0 +
|𝐏0|
psat

𝐬1, 𝐝 =
|𝐏0|
psat

𝐝1, 𝜿 = 𝜿0 +
|𝐏0|
psat

𝜿1 .

In the unpolarized state these tensors are

𝐬 = 𝐬0, 𝐝 = 0, 𝜿 = 𝜿0 ,

and in a state of saturation polarization

𝐬 = 𝐬sat, 𝐝 = 𝐝sat, 𝜿 = 𝜿sat.

Then the correction tensor

𝐬1 = 𝐬sat − 𝐬0, 𝐝1 = 𝐝sat, 𝜿1 = 𝜿sat − 𝜿0 .

The appearance of the residual polarization changes the structure of the material,

resulting in a phase transition “body – the body”, in which the class of an anisotropy

of the material is changed. If we polarize an initially unpolarized ceramic, then the

isotropic material becomes anisotropic. The appearance of the residual polarization

vector in the material induces polar electrical and mechanical properties. Therefore,

it is natural to assume that even a partially polarized ceramics belongs to a class of

transversely isotropic body. If the electric fields, causing polarization in the ceramic
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are heterogeneous, it is customary to speak of locally transversely isotropic body in

which the anisotropy axis coincides with the direction of the residual polarization. If

mechanical stresses with electric field in the depolarization of ceramics are present,

then they fundamentally alter residual strain tensor. And if none of the principal axes

of the tensor residual deformation coincides with the direction of residual polariza-

tion, then in this case the class of anisotropy is not defined. Such situation requires

additional research to identify a class of anisotropy and piezoelectric properties of

the material.

The most complex and least developed part of this research is the construction

of constitutive relations for irreversible components of strain and polarization. Cur-

rently proposed several models, among which we mention the model associated with

the methods of the theory of plasticity, the effective medium model, the models of

orientational and energetical switchings, models of locked walls and some others. As

previously noted, the irreversible parameters are the process parameters and there-

fore the constitutive relations do not include the parameters themselves but their

velocities. In the case of quasi-static processes instead of velocities the increments

of these parameters are examined. In our studies the dynamics of dipole switching

is not taken into account, so the quasi-static polarization process is presented as a

sequence of equilibrium states. For each state we determine the residual polarization

and the residual strain. The increments of irreversible parameters are determined in

the transition from one equilibrium state to another. On the other hand, all models

are built for the representative volume. Therefore, at a finite element implementation

each single finite element is considered as the representative volume.

For plane and axisymmetric problems we use one-dimensional model of the

locked wall, which was generalized to the two-dimensional case. This model is a fur-

ther development of Jile-Atherton model [2]. This model assumes that the mechan-

ical stresses are small and do not affect the polarization process that is carried out

only by electric field. In this case, the residual strain can be easily found from the

condition of incompressibility of the material, and the residual strain tensor does not

affect elastic, piezoelectric and dielectric properties of partially polarized material.

For three-dimensional models we also use a model of the locked wall, but with

the addition of the energy criterion. This approach allowes us to find the values of

the residual polarization and the residual strain for any concurrent acting stress and

electric field in the current state.

The fundamental principle of our study is the assumption that the whole process

of polarization can be represented as a sequence of equilibrium states C(0)
,C(1)

, ...,

C(N)
, where the C(0)

is initial state, and C(N)
is the final state. This permits to shorten

the process of integration over time and replace it by finding of the finite increments.

To determine the conditions of equilibrium for the current state C(i)
we use the prin-

ciple of virtual displacements, which also allows us to use the finite element method.

This approach, on the one hand, the execute integration by coordinates, and, on the

other hand, enables to build the non-uniform field of residual polarization and strain,
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∫
𝛺

(
△𝝈

(i) ∶ 𝛿 △ 𝜺
(i) −△𝐃(i) ⋅ 𝛿 △ 𝐄(i) − 𝜌△ 𝐟 (i) ⋅ 𝛿 △ 𝐮(i)

)
d𝛺−

∫
𝛤
𝜎

△𝐩(i)
𝛤
⋅ 𝛿 △ 𝐮(i)d 𝛤 = 0 ,

where the symbol “△” denotes increment, “𝛿” is the variation. The parameters

are subjected to variation only during the transition from one equilibrium state to

another. Applying the principle of virtual displacements should be supplemented by

constitutive relations for increments of known and unknown parameters. For this

purpose we use the relations (58) in two neighboring equilibrium states. Neglect-

ing of magnitudes of smaller order magnitude, such relations in increments can be

written as

△𝜺e
(i) = 𝐬(P(i)

0 ) ∶ △𝝈
(i) + 𝐝∗(P(i)

0 ) ⋅ △𝐄(i)
,

△𝐃e
(i) = 𝐝(P(i)

0 ) ∶ △𝝈
(i) + 𝜿(P(i)

0 ) ⋅ △𝐄(i)
.

These relations can be also written in the form of

△𝝈
(i) = 𝐜(P(i)

0 ) ∶ △𝜺e
(i) − 𝐞∗(P(i)

0 ) ⋅ △𝐄(i)
,

△𝐃e
(i) = 𝐞(P(i)

0 ) ∶ △𝜺e
(i) + 𝐠(P(i)

0 ) ⋅ △𝐄(i)
,

where

𝐜(P(i)
0 ) = 𝐬−1(P(i)

0 ), 𝐞(P(i)
0 ) = 𝐝(P(i)

0 ) ∶ 𝐬
−1(P(i)

0 ) ,

𝐠(P(i)
0 ) = 𝜿(P(i)

0 ) − 𝐝(P(i)
0 ) ∶ 𝐬

−1(P(i)
0 ) ∶ 𝐝

∗(P(i)
0 ) .

It is easy to see that the constitutive equations contain the increments of reversible

strains and electrical displacements, so they may be represented by the increments

of the residual parts of (58), but now we should take the value of the increments of

residuals parts from the previous state. Then we get

△𝝈
(i) = 𝐜(P(i)

0 ) ∶ △𝜺
(i) − 𝐞∗(P(i)

0 ) ⋅ △𝐄(i) + 𝐜(P(i)
0 ) ∶ △𝜺0

(i)
,

△𝐃(i) = 𝐞(P(i)
0 ) ∶ △𝜺e

(i) + 𝐠(P(i)
0 ) ⋅ △𝐄(i) −△𝐃(i−1) − 𝐞(P(i)

0 ) ∶ △𝜺0
(i−1)

.

To determine the increments of irreversible parts in our study we use a locked

wall model, which also is called a Jile-Atherton model. This model was general-

ized to the three-dimensional case (for plane and axisymmetric problems on the

two-dimensional case). In addition we introduced an amendment concerning the

definition of the effective field. The main positions of this model can be found in
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[2, 23]. We would like to note that in order to determine the increment of the resid-

ual polarization it is necessary to solve a system of equations in differentials

−𝐏0 = −𝐏∞ + k
d𝐏0

|d𝐄( ef f)|
.

The solution of this system of equations in two-dimensional and axially symmet-

ric case can be formally written as

P(i)
O𝜁 = P(i−1)

O𝜁 +

△E(i−1)
𝜁

∫

(E(i−1)
𝜁

,P(i−1)
O𝜁 )

f (E(i−1)
𝜁

,P(i−1)
O𝜁 , sign(△E(i−1)

𝜁
))d𝜁,

P(i)
O𝜂 = P(i−1)

O𝜂 +

△E(i−1)
𝜂

∫

(E(i−1)
𝜂 ,P(i−1)

O𝜂 )

f (E(i−1)
𝜂

,P(i−1)
O𝜂 , sign(△E(i−1)

𝜂
))d𝜂,

P(i)
O𝜉 = 0.

In that case, when sufficiently small mechanical stresses are considered, the strain

in local axes are determined from a condition of incompressibility material. This

means that in the direction of remanent polarization vector a particle undergoes elon-

gation deformation, and the strain in the transverse direction is the strain of compres-

sion, i.e.

𝜺
(i)
0 =

𝜀sat𝐏
(i)
0

psat

(
𝐞1𝐞1 −

1
2
𝐞2𝐞2 −

1
2
𝐞3𝐞3

)
.

Then, using the standard scheme of the finite element method, we obtain a system

of algebraic equations for determining all of the desired characteristics.

𝐊uu ⋅ 𝐔 +𝐊u𝜑 ⋅𝜱 = 𝐟1 + 𝐟
𝜀
,

𝐊∗
u𝜑 ⋅ 𝐔 −𝐊

𝜑𝜑
⋅𝜱 = 𝐟2 + 𝐟

𝜑
,

where 𝐊uu, 𝐊u𝜑, 𝐊
𝜑𝜑

are the same matrices, as in Sect. 3,

𝐟1 =
∫
𝛤
𝜎

𝐍u ⋅ △𝐩(i) d𝛤 +
∫
𝛺m

𝐍u ⋅ △𝐟 (i)d𝛺, 𝐟
𝜀
=
∫
𝛺m

𝐁∗
u ⋅ 𝐜 ⋅ △𝜺

(i−1)
0 d𝛺 ,

𝐟2 =
∫
𝛤D

𝐍
𝜑
⋅ △𝐃(i)

n d𝛤 , 𝐟
𝜑
=
∫
𝛺m

𝐁∗
𝜑
⋅ 𝐞 ⋅ △𝜀

(i−1)
0 d𝛺 −

∫
𝛺m

𝐁∗
𝜑
⋅ △𝐏(i−1)

0 d𝛺 .
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The right parts of this system include not only the increment of boundary condi-

tions and the increment of the residual parameters. The determinant of the system is

changed with changing of values of residual parameters, but it satisfies all the condi-

tions of solvability, as is the case of the model of electroelasticity with polarization

to saturation.

All these algorithms were implemented in ACELAN software package. A prob-

lems definition of residual fields polarization and strain are solved in two stages.

At the first step we have to create a geometric image of the object with appropri-

ate boundary conditions. Here we should determine the elastic and the ferroelectric

regions, and introduce physical characteristics of materials in these regions in a non-

polarized state and in a state of polarization for saturation. For unpolarized state

we define elastic and dielectric constants. For the state of polarization for satura-

tion we introduce a complete set of elastic, piezoelectric and dielectric constants, as

described in [2]. At the end of the first stage the input data for all selected areas is

saved.

At the second step we need to specify the variation of intensity of the electrical

potential across the electrodes in the form of a function that varies over time (the

package allows users to select some elementary functions). Further actions are stan-

dard, and they are associated with the usual actions for any problem solving process.

In the pop-up menu we need to select action “polarization” and after that the program

calculates the field of residual polarization at each finite element, saving information

about the residual polarization vector and the residual strain in the principal axes. For

example, for the plane stress or plane strain problem a table with dimension 5 × N
is saved, where N it the number of finite elements for ferroelectric area. It should

be noted that the change of the field of the residual polarization is indicated on the

second screen.

The final step of the second stage is to save all data associated with finite element

cells for all considered areas and residual polarization and strain. Some examples and

the fields of residual polarization and strain will be provided in subsequent sections

of this paper.

5 New Opportunities of ACELAN

Computer-aided engineering (CAE) programs are usually based on distributed mod-

uli architecture that allows to simplify development of individual units and make

reusable agile code base. Basic functionality of ACELAN package was achieved

by developing the following parts: problem storage format, pre-processing graphi-

cal user interface (GUI), script language for imperative model description, mater-

ial library, finite element library, boundary condition library, mesh generator, linear

algebra package, post-processing model, common GUI shell and internal and exter-

nal program interfaces. Starting from the first versions of the ACELAN package we

have been updating its programming languages and tools. Following, programming

languages were used in different versions of the package: two-dimensional mod-

elling tools: Fortran, C+11 (ISO/IEC 14882:2011), three-dimensional modelling
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tools—C# and .Net libraries. For advanced web-based client visualization applica-

tion JavaScript was used.

In order to discuss specific features of the described package, let us focus on inho-

mogeneous materials models, custom storage formats and three-dimensional mater-

ial distribution models for some classes of mixed composites.

Inhomogeneous properties can be taken into account during the process of build-

ing the local stiffness matrices. Each inhomogeneous property can be described as

one or several scalar fields, common form for such distribution presented below:

moduli 𝐜 = 𝐜E,H,𝜃
, 𝐞 = 𝐞H,𝜃

, 𝜿 = 𝜿
𝜀,H,𝜃

, others material constants from (4)–(6) and

density 𝜌 will be evaluated as functions depending on geometrical position of point:

𝜌 = 𝜌(𝐱), 𝐜 = 𝐜(𝐱), 𝐞 = 𝐞(𝐱), 𝜿 = 𝜿(𝐱) .

In the case of piezoelectric materials the mechanical and electrical properties can

depend on inhomogeneous polarization:

for 𝐜 and 𝜿 ∶ 𝐠 = 𝐠(i) + |P | (𝐠(a) − 𝐠(i)) ,

for 𝐞 ∶ 𝐠 = |P| 𝐠(a) ,

where 𝐠 stands for the corresponding tensors, superscript (i) describes the isotropic

non-polarized state of the material, superscript (a) describes the anisotropic prop-

erties, factor |P | affects the properties which will be manifested to a greater extent,

and will be zeroes for isotropic materials. There can be several rules describing dif-

ferent properties in single body and the whole model can consist of several bodies

with independent properties. In the case of vector field (e.g. polarization) it can be

separated into scalar fields. In two-dimensional models we use polar coordinates to

describe polarization as modulus and angle in every node of the mesh.

Inhomogeneous polarization problems are mostly two-dimensional due to limita-

tions of applied mathematical model. There are two visualization tools: one for set-

ting inhomogeneous polarization for problems, and one for post-processing analysis

in case of determining polarization for predefined electrode configuration.

Important part of modelling continuous functions as material properties in finite

element method is a discretization technique. We used two approaches: the first one

was based on an assumption that functions are constant inside finite elements. In

the second approach the nodes of numerical integration were used to achieve better

accuracy. Depending on element type, the number of additional operations to handle

the second approach can grow, but CPU and memory consumption remains relatively

small compared to the procedures of global matrix assembling and solving.

GUI for describing inhomogeneous properties was developed on .NET plat-

form with Windows Forms tools. Program has built-in visualization tool for two-

dimensional case. Screen shots are presented in Figs. 3 and 4 with interface in

Russian.

In some cases, analytical representation of the function is available for spe-

cific purposes. Therefore, there are some classes of functions that can be used in
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Fig. 3 GUI for setting inhomogeneous properties

Fig. 4 GUI for viewing inhomogeneous properties

ACELAN by specifying coefficients: exponential function, polynomial function,

Heaviside function, trigonometrical functions. In other cases, we have to deal with

tabular functions or sets of values in some points. Transferring such data to different

meshes can be achieved with splines.

Program interface and library of classes for importing discrete geometry represen-

tations was developed. Imported geometry can be converted to internal in-memory

ACELAN model, serialized binary file based on .NET library. Geometry data can

be supplemented with material properties and boundary conditions. Several widely

used in industry CAD formats were considered for importing geometry. Currently

Gmsh format is used for importing external geometries. The model can also be rep-

resented as relational database. Local databases created with SQLite are used for

such purpose and also provide material editor information storage. Elastic, electrical,

magnetic, thermal and acoustic properties can be presented in materials in different

combinations. Simplified model database is shown in Fig. 5.
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Fig. 5 Simplified relational model for mesh, materials, boundary conditions and results

Idea of using relational database as storage format instead of plain text or binary

format is based on such characteristics of finite element models, as large sizes, sep-

arated multiple results sets, multiple sets of initial and boundary conditions. The

possibility to load sets of data separately is essential for improving performance of

post-processing tools and for back-end part of client-server application. Variety of

available storage formats allows to perform complicated post-processing analysis

with reduced resource requirements.

Linear algebra operations, including sparse matrices creation and editing, were

performed by custom algorithms in two-dimensional versions. In three-dimensional

version several solutions were used: in C++ version Intel MKL and CSparse libraries

and custom triplet-based storage scheme were tested, in C# version AlgLib package

was used with additional specific functions for operation with large sparse matrices.

Time efficiency is achieved by in-built multithreading of linear algebra packages.

Application interface allows to switch between linear algebra packages with the same

storage formats, including mixing managed and unmanaged libraries.

Mixed composite materials were simulated using cubic elements (octants) in the

representative volume. The absence of intersections between adjacent octants leads

to the requirement of distinct elements at the atomic or molecular level. Initial vol-

ume is divided into octants using Octree algorithm, size and number of elements

may vary depending on physical properties of material or needed accuracy. Octants

can easily be used as finite elements on regular mesh. Structural elements of the

same material are united into the composite component. Each component has a com-

munication property: any element belonging to the component, is reachable from

any other component element of the transition between the adjacent elements. This

approach allows to model specific materials created with mixtures.



154 N.V. Kurbatova et al.

6 Examples of Computer Design of Active Bulk
Composites in ACELAN

In [24, 25] some models with inhomogeneous polarization were discussed, including

examples of piezoelectric transducers with advanced electro-mechanical properties:

higher electro-mechanical coupling coefficient and larger bandwidth. Some of mod-

eled polarization fields are presented in Figs. 6 and 7.

In series of numerical experiments, by using the resources of ACELAN pack-

age for modelling the inhomogeneous polarization, optimal designs have been found

for some piezoelectric devices. For example, in [24, 25] the electromechanical cou-

pling coefficient was enlarged up to 3.5 times for specific modes of one-layered non-

homogeneously polarized transducer.

The package allows building regular meshes for specific material with up to

262144 distinct elements with 274625 nodes, that leads to 1373125 degrees of free-

dom for the most complicated case of 5 degrees of freedom per node for electro-

magneto-elastic materials. Large number of degrees of freedom is one of the

reasons for using the client-server architecture available in the newest versions of

the package.

Different types of available topologies are presented in Figs. 8, 9 and 10.

Thus, the current version of ACELAN package has capability of modelling active

materials with inhomogeneous properties, including inhomogeneous polarization.

This feature allows optimizing output properties of piezoelectric transducers, for

example, storage devices for green energy. Module for modelling multi-component

composite materials with different connectivity types can be used for two purposes:

direct problems solving with such materials and building representative volumes to

define physical properties of the materials.

Fig. 6 Predefined polarization described by analytical function

Fig. 7 Results of solving

the polarization direct

problem
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Fig. 8 Regular mesh for composite with pillar topology (a) and material with inclusions: inclu-

sions only (b) and whole composite (c)

Fig. 9 Inclusions topology depending on number of elements

Fig. 10 Two components of material, each has connectivity property, depending on number of

elements

7 Conclusion

Thus, in this paper, we have described the models of active composites and the pos-

sibilities of their simulation in the finite element software ACELAN. Other features

of ACELAN package for solving common problems for active devices with coupled

different physical and mechanical fields have been presented previously [12, 15, 18,

20]. Here we have restricted ourself only to simulation of the homogenization prob-

lems for active composites. The approach allows us to find the effective moduli on

the basis of the main statements of composite mechanics and based on advanced
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possibilities of modeling of representative volumes for multiphase inhomogeneous

anisotropic media with different connectivity of physical and mechanical fields. In

addition, we have implemented in ACELAN package the calculation procedures and

the basis for further use of the inhomogeneous polarization fields [2, 23–25] for

piezoelectric and piezomagnetic phases.

Other possibilities of ACELAN package, which is now being actively developed

[16, 17, 20], are associated with the modeling of surface effects and surface finite

elements for considered active composite media on the micro- and nanoscale.

Analysis of the well-known finite element software shows that the models and

technologies adopted in new version of ACELAN package significantly increase the

facilities for analyzing complex active multiphase composite materials and provide

the methods of solving new actual problems with coupled physico-mechanical fields,

including the problems for nanoscale and composite bodies.
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On the Models of Three-Layered Plates
and Shells with Thin Soft Core

Victor A. Eremeyev and Konstantin Naumenko

Abstract We discuss here the mechanics of thin three-layered plates and shallow

shells with thin soft core. Recently such thin-walled structures are widely used in

engineering, among examples are laminated glasses and photovoltaic panels. We

briefly consider layer-wise and first-order shear deformable plates and shells theories

in order to model these structures.

Keywords First order shear deformable plate ⋅ Layer-wise theory ⋅ Three-layered

plate ⋅ Soft core ⋅ Effective stiffness

1 Introduction

Recently the interest grows to application of mechanics of plates and shells to such

thin-walled structures as laminated glasses and photovoltaic panels [1–6]. Among

them are three-layered structures with soft thin internal layer (core) with high con-

trast in the mechanical properties of faces and core. For example, the ratio of the shear

moduli Gc∕Gf for materials used in photovoltaic panels is in the range between 10−5
and 10−2, where Gf and Gc are the shear moduli of the glass faces and the polymeric

core, respectively, see [7–9].

Among models of layered plates and shells there various theories based on dif-

ferent approximations of displacement fields along the thickness. One of the often

used models is the first order shear deformation theory (FSDT) of plates [10–17].

Within this model one uses the hypothesis of straight normal. In other words, the
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normal fiber to the middle surface of a plate or shell behaves like rigid rod. In this

theory the basic kinematic variables are three translations of the middle surface and

two rotations. The so-called drilling moment is not taken into account here.

Another approach uses zig-zag and/or layer-wise approximations of displace-

ments along the thickness. Within this approach the displacements are approximated

by piecewise functions with respect to the thickness coordinate such that the com-

patibility in displacements between the layers is fulfilled. Then the governing equa-

tions of the three-dimensional elasticity are reduced to the two-dimensional plate

equations by means of variational methods or asymptotic techniques [1, 3, 5, 8, 9,

18–25]. Analysis of differences between theories can be found for example in [22,

26, 27].

The aim of the paper is to briefly discuss both approaches. The paper is orga-

nized as follows. In Sects. 2 and 3 we consider layer-wise model of plates and shells,

respectively. Within this approach for each layer thin-walled structure we introduce

independently translation and rotation fields. As a result we derived the system of

equations for few basic variables describing mean deflection and shearing between

layers. The influence of boundary conditions is also discussed. In Sect. 4 we con-

sider the Mindlin-Reissner plates. Here the model contains five degrees of freedom,

that are three translations and two rotations. We present formulas for effective tan-

gential, bending and transverse stiffness parameters. In particular, the dependence of

the transverse shear stiffness on the elastic moduli relations is discussed. Through

the paper we use the coordinate-free tensor notations [28].

2 Layer-Wise Models of Plates

Following [22] we present the basic equations of the layer-wise theory of plates. For

the derivation of the two-dimensional equations, the through-the-thickness integra-

tion of the three-dimensional equilibrium equations was used.

2.1 Equilibrium Conditions

The stress resultants can be obtained by the through-the-thickness integration of the

stress tensor 𝝈 as follows, e.g. [28]

𝐓k = ⟨𝐏 ⋅ 𝝈⟩k = 𝐍k +𝐐k ⊗ 𝐧, 𝐌k = −⟨z𝐏 ⋅ 𝝈 × 𝐧⟩k, (1)

Nk
𝛼𝛽

= ⟨𝜎
𝛼𝛽
⟩k, Qk

𝛼

= ⟨𝜎
𝛼3⟩k, Mk

𝛼𝛽

= ⟨z𝜎
𝛼𝛽
⟩k,

𝐏 = 𝐢
𝛼
⊗ 𝐢

𝛼
, ⟨…⟩k =

∫

hk∕2

−hk∕2
(…)dz, k = T,C,B,
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where 𝐏 is the projector, 𝐢1, 𝐢2, 𝐧 are the Cartesian base vectors and the corresponding

coordinates x1, x2 and z are used. hT , hC, and hB denote the thicknesses of the top,

core and bottom layers, respectively. Hereinafter all quantities related to the top,

core and bottom layers, will be denoted by subscripts T , C, and B, respectively. The

origin for z-coordinate is placed in the midplane of the core layer, so −hB − hC∕2 ≤

z ≤ hC∕2 + hT .

The equilibrium equations for each layer take the form

∇ ⋅ 𝐓T + (qT + q)𝐧 + 𝐬T + 𝐬 = 𝟎, ∇ ⋅𝐌T + 𝐓T× +𝐦T = 𝟎, (2)

∇ ⋅ 𝐓C + (qB − qT )𝐧 + 𝐬B − 𝐬T = 𝟎, ∇ ⋅𝐌C + 𝐓C× +𝐦C = 𝟎, (3)

∇ ⋅ 𝐓B − qB𝐧 − 𝐬B = 𝟎, ∇ ⋅𝐌B + 𝐓B× +𝐦B = 𝟎, (4)

where ∇ = 𝐢
𝛼

𝜕

𝜕x
𝛼

is the plane nabla operator, 𝐓× denotes the vectorial invariant

of the stress resultant tensor 𝐓, see [28], the components of interaction force vec-

tors between the layers include the tangentially distributed forces ±𝐬T (interactions

between the layers T and C) and ±𝐬B (interaction between the layers C and B) as

well as the corresponding normally distributed forces ±qT𝐧 and ±qB𝐧. We assume

that the top face of the plate is subjected to the normal 𝐪 = q𝐧 and tangential 𝐬 loads,

whereas the bottom face is free. In addition we introduced moments

𝐦T =
hT
2
𝐧 × (𝐬 + 𝐬T ), 𝐦C =

hC
2
𝐧 × (𝐬T + 𝐬B), 𝐦B =

hB
2
𝐧 × 𝐬B (5)

The equilibrium equations can be transformed into

∇ ⋅ 𝐍T + 𝐬T + 𝐬 = 𝟎, ∇ ⋅𝐐T + qT + q = 0, (6)

∇ ⋅ 𝐍C + 𝐬B − 𝐬T = 𝟎, ∇ ⋅𝐐C + qB − qT = 0, (7)

∇ ⋅ 𝐍B − 𝐬B = 𝟎, ∇ ⋅𝐐B − qB = 0 (8)

∇ ⋅ 𝐋T −𝐐T +
hT
2
(𝐬T + 𝐬) = 𝟎, ∇ ⋅ 𝐋C −𝐐C +

hC
2
(𝐬B + 𝐬T ) = 𝟎, (9)

∇ ⋅ 𝐋B −𝐐B +
hB
2
𝐬B = 𝟎, (10)

where instead of 𝐌k we introduce 𝐋k as follows

𝐋k = 𝐌k × 𝐧 = Mk
𝛼𝛽

𝐢
𝛼
⊗ 𝐢

𝛽
.
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2.2 Constitutive Equations

For the linear-elastic materials the constitutive equations for the stress resultants of

thin plate layers can be formulated as follows

𝐍k = 𝐂k ⋅ ⋅𝜺k, 𝐐k = 𝜞 k ⋅ 𝜸k, 𝐋k = 𝐃k ⋅ ⋅𝝌 k, (11)

where the strain measures are defined as follows

𝜺k ≡
1
2
(
∇𝐮k + (∇𝐮k)T

)
= 𝜀k

𝛼𝛽

𝐢
𝛼
⊗ 𝐢

𝛽
, 𝜸k ≡ ∇wk + 𝝋k = 𝛾k

𝛼

𝐢
𝛼
, (12)

𝝌 k ≡
1
2
(
∇𝝋k + (∇𝝋k)T

)
= 𝜒k

𝛼𝛽

𝐢
𝛼
⊗ 𝐢

𝛽
(13)

Here 𝜺k is the membrane strain tensor, 𝐮k is the in-plane displacement vector, 𝜸k is

the transverse shear strain vector,𝝋k is the normal rotation vector,wk is the deflection

and 𝝌 k is the curvature change tensor of the k-th layer. 𝐂k and 𝐃k are fourth-order

membrane and bending stiffness tensors, while 𝜞 k is the second-order transverse

shear stiffness tensor.

For isotropic and homogeneous materials the fourth-order membrane and bending

stiffness tensors for the skin layers can be represented as follows

𝐂k =
Ek𝜈khk
1 − 𝜈

2
k

𝐏⊗ 𝐏 +
Ekhk

2(1 + 𝜈k)
(𝐢
𝛼
⊗ 𝐏⊗ 𝐢

𝛼
+ 𝐢

𝛼
⊗ 𝐢

𝛽
⊗ 𝐢

𝛼
⊗ 𝐢

𝛽
), k = T ,B,

(14)

𝐃k =
Ek𝜈kh3k

12(1 − 𝜈
2
k )
𝐏⊗ 𝐏 +

Ekh3k
24(1 + 𝜈k)

(𝐢
𝛼
⊗ 𝐏⊗ 𝐢

𝛼
+ 𝐢

𝛼
⊗ 𝐢

𝛽
⊗ 𝐢

𝛼
⊗ 𝐢

𝛽
), k = T ,B,

(15)

where Ek and 𝜈k are the Young modulus and the Poisson ratio of the kth skin layer,

respectively. For the core layer the shear stiffness tensor is given by

𝜞 C = 𝛤C𝐏, 𝛤C = 𝜅GChC, (16)

where GC is the shear modulus and 𝜅 is the shear correction factor.

2.3 Compatibility Conditions and Further Assumptions

In what follows we imply that the layers are rigidly connected on interfaces. In other

words, sliding and delamination between the layers are not allowed. Thus, for 𝐮k and

𝝋k the following compatibility relations are fulfilled



On the Models of Three-Layered Plates and Shells with Thin Soft Core 163

𝐮T +
hT
2
𝝋T = 𝐮C −

hC
2
𝝋C, 𝐮B −

hB
2
𝝋B = 𝐮C +

hC
2
𝝋C. (17)

Furthermore, we assume that the layers have the same deflections

wB = wC = wT = w. (18)

Equations (2)–(16) form the system of governing equations for a three-layered

plate. These equations can be further simplified with the use of following assump-

tions [22].

1. The skin layers can be modelled using the Kirchhoff straight normal hypothesis,

so we assume that

𝝋T = −∇wT , 𝝋B = −∇wB. (19)

Thus, from (18) it follows that

𝝋T = 𝝋B = −∇w. (20)

We observe that cross section rotations of the skin layers are the same. For the cur-

vature tensors we obtain

𝝌T = 𝝌B = −∇∇w. (21)

Using 𝝋T = 𝝋B the compatibility conditions can be reduced to

𝐮T + 𝐮B −
hT − hB

2
∇w = 2𝐮C, 𝐮T − 𝐮B −

hT + hB
2

∇w = −hC𝝋C. (22)

The assumption 1 is also applied in [3, 8, 9, 20] for the analysis of laminated glass

beams and plates.

2. The membrane stiffness of the laminate is primarily determined by the mem-

brane stiffness of the skin layers.

3. The core layer is moments-free. So, in equilibrium equations the tensor 𝐋C can

be neglected. As a result the following relationship can be obtained

𝐐C =
hC
2
(𝐬T + 𝐬B). (23)

2.4 Differential Equations for Relative In-Plane
Displacements and Deflection

From the engineering point of view a deflection and in-plane displacements play the

most important role in the description of deformations. So we consider the relative

in-plane displacement vector
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𝐮
𝛿
= 𝐮T − 𝐮B (24)

and the deflection function of the laminate w as primary variables.

Introducing two scalar potentials 𝛺 and 𝛹 such that

𝐮
𝛿
= ∇𝛺 + ∇ × (𝛹𝐧) (25)

we obtain the following differential equations for 𝛺 and 𝛹 [22]

𝛥𝛺 −
2(1 − 𝜈

2
T )

EThT

𝛤C

h2C
𝛺 =

1 − 𝜈
2
T

EThT
S − 2H

1 − 𝜈
2
T

EThT

𝛤C

h2C
w, 𝛥𝛹 −

4(1 + 𝜈T )
EThT

𝛤C

h2C
𝛹 = 0,

(26)

where 𝛥 = ∇ ⋅ ∇ is the Laplace operator, H = hC + hT+hB
2

, and S is a potential of the

applied tangential forces

𝐬 = −∇S. (27)

For deflection w we obtain the equation

𝛥𝛥w + 3 H
h2T

𝛥𝛥𝛺 =
q

2DT
, DT ≡

ETh3T
12(1 − 𝜈

2
T )
. (28)

Changing variables using relation

w̃

(
1 + 3H

2

h2T

)
= w + 3 H

h2T
𝛺

we transform (28) and (26)1 into the form

𝛥𝛥w̃ =
q
D
, D ≡ 2DT

(
1 + 3H

2

h2T

)
, (29)

𝛥𝛺 − 𝛽
2
𝛺 =

1 − 𝜈
2
T

EThT
S − H𝛽

2w̃, 𝛽
2
≡

2(1 − 𝜈
2
T )

EThT

𝛤C

h2C

(
1 + 3H

2

h2T

)
, (30)

where D is the effective bending stiffness of the laminate.

2.5 Maximal Deflection of the Three-Layered Strip

Considering the bending of a three-layered strip of length l and thickness H the

maximum deflection wmax = w(l∕2) is obtained in [22]
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Fig. 1 Normalized maximum deflection vs. shear stiffness parameter for various boundary condi-
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(31)

where

𝛽
2 =

2(1 − 𝜈
2
T )

EThT

𝛤Cl2

h2C

(
1 + 3H

2

h2T

)
.

The dimensionless parameter 𝛽 = 𝛽l characterizes the shear stiffness.

Figure 1 shows the normalized maximum deflection as a function of 𝛽. For 𝛽 → ∞
the maximum deflection tends to deflection calculated using the Kirchhoff theory, see

Fig. 1. Analysis shows also that for laminates with 𝛽 > 20 the FSDT can be applied

instead of more general layer-wise theory. For small 𝛽 the FSDT overestimates the

deflection. Moreover, for small 𝛽 there is a significant difference for various bound-

ary conditions.
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3 On Layer-Wise Models of Shells

In this section we briefly discuss necessary changes in the case of three-layered shal-

low shells. In general, all presented un Sect. 2 steps can be applied in the case of shells

but with technical difficulties. The stress resultant and couple stress tensors are now

given by

𝐓k = ⟨(𝐏 − z𝐁)−1 ⋅ 𝝈⟩k, 𝐌k = −⟨z(𝐏 − z𝐁)−1 ⋅ 𝝈 × 𝐧⟩k, (32)

where 𝐁 = −∇𝐧 is the curvature tensor,

𝐏 = 𝐢
𝛼
⊗ 𝐢𝛼 = 𝐈 − 𝐧⊗ 𝐧, ⟨…⟩k =

∫

hk∕2

−hk∕2
(…)Gdz, G = det(𝐏 − z𝐁), k = T,C,B.

With accuracy of h‖𝐁‖ we can use the formulae as in the case of plates

𝐓k = ⟨𝐏 ⋅ 𝝈⟩k = 𝐍k +𝐐k ⊗ 𝐧, 𝐌k = −⟨z𝐏 ⋅ 𝝈 × 𝐧⟩k, (33)

and using components we have

Nk
𝛼𝛽

= ⟨𝜎
𝛼𝛽
⟩k, Qk

𝛼

= ⟨𝜎
𝛼3⟩k, Mk

𝛼𝛽

= ⟨z𝜎
𝛼𝛽
⟩k.

For small deformations we use the following constitutive relations (here we omit

the index of the layer for brevity)

𝐍 = 𝐂 ⋅ ⋅𝜺, 𝐐 = 𝜞 ⋅ 𝜸, 𝐌 = −𝐃 ⋅ ⋅𝝌 × 𝐧, (34)

where

𝜺 ≡
1
2
(
∇𝐮 ⋅ 𝐏 + 𝐏 ⋅ (∇𝐮)T

)
− w𝐁, (35)

𝜸 ≡ ∇w + 𝝋 + 𝐁 ⋅ 𝐮, 𝝌 ≡
1
2
(
∇𝝋 ⋅ 𝐏 + 𝐏 ⋅ (∇𝝋)T

)
. (36)

Here 𝜺 is the membrane strain tensor, 𝐮 is the in-plane displacement vector, 𝜸 is the

transverse shear strain vector, 𝜸k is the normal rotation vector, w is the deflection and

𝝌 is the curvature change tensor. 𝐂 and 𝐃 are fourth-order membrane and bending

stiffness tensors, while 𝜞 is the second-order transverse shear stiffness tensor.

For the in-plane displacement vectors 𝐮i and vectors of cross section rotations 𝝋i
we assume the following compatibility relations

𝐮T +
hT
2
𝝋T = 𝐮C −

hC
2
𝝋C, 𝐮B +

hB
2
𝝋B = 𝐮C +

hC
2
𝝋C. (37)
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With respect to the deflections we assume the following relation

wB = wC = wT = w. (38)

We apply the same assumptions as for plates:

1. The skin layers can be assumed to be shear rigid. With the Kirchhoff–Love kine-

matic hypothesis (straight normal hypothesis) it follows that

𝝋T = −∇wT − 𝐁T ⋅ 𝐮T , 𝝋B = −∇wB − 𝐁B ⋅ 𝐮B. (39)

With the kinematical constraints (39) the shear forces 𝐐T and 𝐐T are not defined

by the constitutive equations anymore. They can be computed from equilibrium

conditions.

2. The membrane stiffness of the laminated plate is primarily determined by the

membrane stiffness of the skin layers.

3. The core layer is moment-free.

The main difference between plates and shells consist of in coupling between in-

plane deformations and bending. As a result, the governing equations become cou-

pled and cannot be splitted as in the case of plates. The detailed analysis of shallow

three-layered shells will be performed in forthcoming papers.

4 First-Order Shear Deformable Plate Model

Here we consider the first-order shear deformable model of plates called also five-

parameter plate theory or Reissner–Mindlin plate model [10, 13, 29, 30]. Let us

note that the model is implemented in various commercial software, so the model

can be treated as classical one. But for calculations within the model one may need

to change properly the stiffness parameters such the transverse shear stiffness.

4.1 Equilibrium Conditions

The equilibrium equations have the following form:

∇ ⋅ 𝐓 + 𝐪 = 𝟎, ∇ ⋅𝐌 + 𝐓× +𝐦 = 𝟎, (40)

where 𝐓, 𝐌 are the stress resultant and couple stress tensors, 𝐪, 𝐦 are the surface

force and moment densities, ∇ is the surface nabla operator, 𝐮,𝝋 are the vectors of

the displacements and the rotations, respectively, and 𝜌 is the surface mass density.
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The static and kinematic boundary conditions are given by

𝝂 ⋅ 𝐓 = 𝐟 , 𝝂 ⋅𝐌 = 𝐥 (𝐥 ⋅ 𝐧 = 0) or 𝐮 = 𝐮0, 𝝋 = 𝝋
0

along S, (41)

where 𝐟 and 𝐥 are external force and couple vectors acting along the contour of the

plate S, whereas 𝐮0 and 𝜑
0

are given displacements and rotations, respectively. 𝝂 is

the unit normal vector to S (𝜈 ⋅ 𝐧 = 0). Clearly, mixed types of boundary conditions

may be also useful.

4.2 Constitutive Equations

The surface strain energy density is given by the following quadratic form

W(𝝁, 𝜸,𝜿) = 1
2
𝝁⋅⋅𝐀⋅ ⋅ 𝝁 + 𝝁⋅⋅𝐁⋅ ⋅ 𝜿 + 1

2
𝜿⋅⋅C ⋅ ⋅𝜅 + 1

2
𝜸 ⋅ 𝜞 ⋅ 𝜸 + 𝜸⋅(𝜞 1⋅⋅𝝁 + 𝜞 2⋅⋅𝜿). (42)

Here we introduced strain measures

𝝁 = (∇𝐮 ⋅ 𝐏)sym, 𝜸 = ∇𝐮 ⋅ 𝐧 + 𝐜 ⋅ 𝝋, 𝜿 = ∇𝝋. (43)

and stiffness tensors 𝐀, 𝐁, 𝐂, 𝜞 1, 𝜞 2, and 𝜞 .

The tensors 𝝁, 𝜸 and 𝜿 are the tensor of in-plane strains, vector of transverse shear

strains and tensor of the out-of-plane strains, respectively. Here 𝐧 is the unit normal

vector, 𝐜 = −𝐏 × 𝐧 is the discriminant tensor, (…)sym denotes symmetric part of the

tensor. The stiffness tensors 𝐀, 𝐁, 𝐂 are fourth-order tensors, 𝜞 1 and 𝜞 2 are third-

order tensors, and 𝜞 is a second-order tensor.

The relations between 𝐓, 𝐌 and W are

𝐓 ⋅ 𝐏 = 𝜕W
𝜕𝝁

= 𝐀⋅⋅𝝁 + 𝐁⋅⋅𝜿 + 𝜸 ⋅ 𝜞 1, 𝐓 ⋅ 𝐧 = 𝜕W
𝜕𝜸

= 𝜞 ⋅ 𝜸 + 𝜞 1⋅⋅𝝁 + 𝜞 2⋅⋅𝜿,

(44)

𝐌T = 𝜕W
𝜕𝜅

= 𝜇⋅ ⋅ 𝐁 + 𝐂⋅ ⋅ 𝜅 + 𝛾 ⋅ 𝛤2. (45)

For isotropic materials and for plates of symmetric structure the stiffness tensors

take the form

𝐀 = A11𝐚1 ⊗ 𝐚1 + A22(𝐚2 ⊗ 𝐚2 + 𝐚4 ⊗ 𝐚4), 𝐂 = C22(𝐚2 ⊗ 𝐚2 + 𝐚4 ⊗ 𝐚4) + C33𝐚3 ⊗ 𝐚3,
(46)

𝜞 = 𝛤𝐏, 𝐁 = 𝟎, 𝜞 1 = 𝟎, 𝜞 2 = 𝟎,
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where

𝐚1 = 𝐚 = 𝐞1 ⊗ 𝐞1 + 𝐞2 ⊗ 𝐞2, 𝐚2 = 𝐞1 ⊗ 𝐞1 − 𝐞2 ⊗ 𝐞2,

𝐚3 = 𝐜 = 𝐞1 ⊗ 𝐞2 − 𝐞2 ⊗ 𝐞1, 𝐚4 = 𝐞1 ⊗ 𝐞2 + 𝐞2 ⊗ 𝐞1,

and 𝐞1, 𝐞2 are unit basis vectors.

The tangent C and bending D stiffness parameters relate with 𝐀 and 𝐂 as follows

C ≡ A11 + A22, D ≡ C33 + C22.

4.3 Stiffness Parameters

Since the middle layer is soft and thin we can assume that

hc ≪ hf , Ec ≪ Ef , Gc ≪ Gf , 𝜌c0 ≪ 𝜌f0.

Finally, the tangential, bending and transverse shear stiffness take the following val-

ues [30]

C = 1
2

Efh
1 − 𝜈

2
f

, D = 1
12

Efh3

1 − 𝜈
2
f

, 𝛤 = 1
3𝛼

Gch, where 𝛼 =
hc
h
.

Clearly, C and D are entirely determined by thickness and stiffness of faces, whereas

𝛤 depends on the stiffness and thickness of the core. Factor 1∕3𝛼 differs 𝛤 from the

Reissner’s value 𝛤R = Gch which is valid for classical sandwich plates.

5 Conclusions

Recent developments in the manufacturing and design of new thin-walled structures

with the increase of efficiency and accuracy of used models require also to develop

new nonclassical models of plates and shells or make certain modifications in classi-

cal theories. Here we discussed such relatively new structures as laminated glasses,

photovoltaic panels and others layered structures with high contrast in material prop-

erties. It was shown that depending on the material parameters such as the transverse

shear stiffness the first-order theories of plates and shells may lead to the overesti-

mation of deflection. In particular, we also mention that for layer-wise theories the

influence of nonclassical boundary conditions may be important.

Acknowledgements V.A.E. acknowledges the support by the Russian Science Foundation (grant
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Ray Tracing Method for a High-Frequency
Propagation of the Ultrasonic Wave Through
a Triple-Periodic Array of Spheres

Nikolay V. Boyev and M.A. Sumbatyan

Abstract The Ray method is applied to study the propagation of a high-frequency

plane wave through a triple-periodic system of the spherical obstacles. The initial

plane wave is taken as a superposition of spherical waves, which in discretization

are reduced to a system of waves, each of them being studied by the Ray method in

a local formulation. On the first step, we calculate the geometric parameters of the

trajectory of each ray transmitted through the system of spherical obstacles, which is

a spatial broken polyline. On the second step, we calculate the wave characteristics,

by using methods of the short-wave diffraction.

Keywords Ray tracing method ⋅ Periodic arrays of spheres ⋅ Acoustic filter ⋅
Ultrasonic impulse ⋅ Geometrical diffraction theory

1 Introduction

The Ultrasonic (US) wave propagation through arrays of obstacles in the acoustic and

elastic media are nowadays under intensive investigation. As a simplest approxima-

tion, one may consider acoustic media where only longitudinal type of US waves can

propagate. The most popular obstacles are solids and voids of canonical shapes: rec-

tangles, circles, ellipses—in the two-dimensional (2d) problems, spheres and ellip-

soids (3d case), thin scatterers like plates, slabs, etc. One of practically important

problems for the acoustic media is the propagation of the impulse through periodic

obstacles in the 2d and 3d cases, in both low and high frequency regimes. In the

2d problems about propagation of acoustic and elastic waves through periodic sys-

tems of obstacles some analytical and numerical methods have been developed in
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[8–12, 14–18, 20, 22] and some other works, mainly in the low-frequency case.

Some practical aspects of the Ultrasonic detection are studied in [4, 13, 21]. In those

works the reader can find some further helpful references.

2 Formulation of the Problem

In an infinite acoustic medium there is located a triple-periodic system of equal

spheres of radius a located inside a cubic domain. The edge of the cube is (2a + b)M.

The global coordinate system OXYZ = OX1X2X3 is chosen so that the sides of the

cube are parallel to the coordinate planes. The period of the grating is (2a + b), along

all three Cartesian directions. The case M = 3 is shown in Fig. 1, where the spherical

obstacles are approximated by a set of plane facets. The minimal distance from the

spheres to the cube sides is b∕2. In this coordinate system the governing equations

of the spheres are given by the following equation:

[x1 − m1(2a + b)]2 + [x2 − m2(2a + b)]2 + [x3 − m3(2a + b)]2 = a2,
m1,m2,m3 = 1,… ,M. (1)

Fig. 1 Triple-periodic system of 3 × 3 × 3 = 27 equal spherical obstacles located in an acoustic

medium: three Cartesian projections and an isometric projection
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Note that in Fig. 1 axis x for symmetry is shown with a shift.

From one of these sides of the cube there is introduced an impulse into the

cube, with a tonal filling by several periods of a plane high-frequency monochro-

matic acoustic wave, and on the opposite face of the cube a through-transmitted

wave is received. Such a structure of the impulse permits calculation of the through-

transmitted characteristics in the time-harmonic regime. After the wave has been

passed through the system of obstacles, on the opposite side of the cube a modified

impulse is received. The problem is to calculate the characteristics of the through-

transmitted impulse on the opposite side of the cube and to compare them with the

characteristics of the impulse introduced into the cube.

3 The Applied Method of Solution

The receiving face of the considered cube is divided to N1 × N1 small quadrates

and the plane acoustic wave is changed by a set of point sources of the spherical

longitudinal wave, emitted from the centers of these small quadrates. The spatial

angle with the vertex at a source directed to the obstacles is divided toM1 ×M1 small

spatial angles, each of them containing respective ray of the propagating acoustic

wave. Therefore, the problem is reduced to a short-wave diffraction of the acoustic

wave in a local formulation, whose solution is constructed in two steps. The first step

is fully geometric—we find the trajectory of each ray arriving at the opposite side.

On the second step, by using the found trajectory and the known point of mirror

reflection, we determine the acoustic pressure in the through-transmitted wave on

the receiving side, on the basis of the Geometrical Diffraction Theory (GDT).

The total wave on the receiving side is a sum of rays passed through the system

of spheres, which may be of one of the following types: (1) the rays passed across

the system of obstacles without any reflection; (2) the rays reflected from the spheres

only once; (3) the rays with multiple reflections. The rays free of reflection are those

which propagate from the point sources of the spherical waves in the thin free layer

of thickness b between the layers of obstacles. In the case of sufficiently gentle inci-

dence of the ray at the extreme obstacles tangent to the upper and the lower bound-

ary planes of the acoustic layer, a single reflection of the acoustic wave may happen,

after which it falls at the face of the receiver. The search of the multiply reflected

rays is a more complex diffraction problem. Generally, the trajectory of each such a

ray through-transmitted across the system of spheres is a spatial polyline. This takes

into account only the directions which form an acute angle with the direction of

propagation of the initial plane wave.

4 High-Frequency Analytical Representations

In this section we write out the explicit formulas at the receiving point for the acoustic

pressure, for each of three types of waves.
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1. For the rays passing inside the cube without any reflection, in the high-

frequency regime of oscillations with k → ∞, in the direction of the incident ray,

the pressure in the incident wave at the receiving point is

pinc(y) = eik|x0−y|
|x0 − y| , (2)

where k = 𝜔∕c, c is the wave number and the speed of the acoustic wave, 𝜔 is the

frequency of the oscillations.

2. In [2], with the use of the GDT, and in [9] on the basis of the physical Kirchhoff

diffraction theory, there have been obtained the expression for the high-frequency

acoustic wave once reflected from the rigid obstacle bounded by an arbitrary smooth

surface, along the ray x0 − y∗ − x. We write out it here in the case of the spherical

obstacles. It is a leading asymptotic term of the diffraction integral which is devel-

oped in [9] by using the two-dimensional stationary phase method [5, 6]:

p(x) = cos 𝛾
exp

{
i
(
k(L0 + L) + 𝜋

4
(𝛿2 − 2)

)}

L0L
√

||det(D2)||
,

where 𝛿2 = signD2 is the difference between the number of positive and negative

eigenvalues of the Hessian matrix D2 of a symmetric structure (dij = dji, i, j = 1, 2),
with the following elements:

d11 =
(

1
L0

+ 1
L1

)
sin2 𝛼 + 2 cos 𝛾

a
,

d12 = −
(

1
L0

+ 1
L1

)
cos 𝛼 cos 𝛽,

d22 =
(

1
L0

+ 1
L1

)
sin2 𝛽 + 2 cos 𝛾

a
.

By calculating the determinant in the denominator, taking into account that d21 =
d12, we write out the obtained formula in the explicit form:

p(x) =
exp

{
i
[
k(L0 + L) + 𝜋

4
(𝛿2 − 2)

]}

√|||(L0 + L)2 + 2L0L(L0 + L)a−1(cos−1 𝛾 + cos 𝛾) + 4L20L2a−2
|||

,

L0 = ||x0 − y∗|| , L = |y∗ − x| . (3)

Here {−cos𝛼,−cos𝛽,−cos𝛾} is the vector which determines the direction of inci-

dence of the ray x0 − y∗ in the local Cartesian coordinate system, defined by the

normal and the tangent to the curvature lines at the point of mirror reflection.

Formula (3) is obtained in the case when the high-frequency wave is incident on
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the convex surface. If the wave is incident on the concave surface then the sec-

ond term in the denominator should be taken with the negative sign. Formula (3)

gives the leading asymptotic term of the acoustic pressure, under the condition that

kL0 ≫ 1, kL ≫ 1, ka ≫ 1.

3. The most complex problem is the calculation of the acoustic pressure in the

multiple reflection from non-plane reflectors. If the shape of the boundary surface of

an isolated acoustically hard obstacle, and the geometry and the shape of the array

of obstacles located in the acoustic medium admit multiple (N-fold) reflection, then

the diffraction of the high-frequency wave can be studied in frames of an integral

representation. The basis for this integral representation for the acoustic pressure in

N times reflected acoustic wave is given by a modification of the Kirchhoff integral

representation [3], realized in the case of double reflection in [2]. The general 2D

theory is proposed in [19].

Let the high-frequency spherical wave (2) propagates from point x0. Let us assume

that the ray propagates along the polyline x0 − y∗1 − y∗2 − y∗3 −⋯ − y∗N − xN+1, where

the points of mirror reflection y∗1, y
∗
2, y

∗
3,… , y∗N may belong either to the same reflec-

tor or to different surfaces of N reflectors. Also, we admit the cases of sequential

location of some mirror reflection points on the surfaces of certain reflectors, while

other reflectors contain only one reflection point. The wave is received at point xN+1
of the acoustic medium. Further, we consider only the local approach where in the

high-frequency regime the pressure at the receiving point is defined by the reflection

from small vicinities S∗1, S
∗
2,… , S∗N of the boundary surfaces at the points of mirror

reflection y∗1, y
∗
2, y

∗
3,… , y∗N .

Let us describe the representation for the pressure p(xN+1) in the reflected wave

at the receiving point xN+1 in more detail. The pressure in N times reflected wave at

point xN+1 is sought by integration over surface S∗N of the vicinity of the last reflection

point y∗N , obtained with the single reflection from the vicinity S∗N−1 of the point of

mirror reflection y∗N−1. The pressure at the receiving point p(xN+1) is given by the

following formula:

p(xN+1) =
∫∫S∗N

2p(yN)
𝜕𝛷(yN , xN+1)

𝜕nN
dSN . (4)

Here p
(
yN

)
is the pressure in the incident wave at point yN ∈ S∗N of the vicinity of

the reflection point y∗N which is defined after the reflection over the vicinity S∗N−1 of

point y∗N−1, 𝐧N is the normal to the surface S∗N at point yN , directed to the acoustic

medium.

At the same time, pressure p
(
yN

)
itself is defined as a integral representation

in terms of the wave incident to the vicinity S∗N , arriving after reflection from the

vicinity S∗N−1:

p(yN) =
∫∫S∗N−1

2p(yN−1)
𝜕𝛷(yN−1, yN)

𝜕nN−1
dSN−1. (5)
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The same approach can be extended, to form the reflected wave from arbitrary

vicinity S∗n along the considered ray. In frames of such a modification the pressure at

points of the vicinity yn ∈ S∗n, (n = 2, 3,… ,N) is expressed by the formula

p(yn) =
∫∫S∗n−1

2p(yn−1)
𝜕𝛷(yn−1, yn)

𝜕nn−1
dSn−1. (6)

in which p
(
yn
)

is the pressure at point yn ∈ S∗n, p(yn−1) is the pressure in the incident

wave at point yn−1 ∈ S∗n−1 of the vicinity y∗n−1, which is defined after the reflection

on the vicinity S∗n−2 of point y∗n−2,𝐧n−1 is the normal to the surface S∗n−1 at point yn−1,

directed to the acoustics medium.

Traveling along the re-reflected ray in the inverse direction, i.e. in direction xN+1 −
y∗N −⋯ − y∗2 − y∗1 − x0, we come to the forming of the wave on the vicinity S∗2.

At points y2 of the vicinity S∗2 of the second mirror reflection y∗2 the integral rep-

resentation p(y2) has the form:

p(y2) =
∫∫S∗1

2pinc(y1)
𝜕𝛷(y1, y2)

𝜕n1
dS1, (7)

where

pinc(y1) =
eik|x0−y1|
|x0 − y1|

defines the incident field, corresponding to the point source x0 (2).

By collecting together all integral representations in Eqs. (4)–(7), we obtain the

following 2N-fold integral, to determine p(xN+1):

p(xN+1) = 2N
∫∫S∗N

∫∫S∗N−1

…
∫∫S∗2

∫∫S∗1

𝜕𝛷

𝜕n1
𝜕𝛷

𝜕n2
… 𝜕𝛷

𝜕nN−1
𝜕𝛷

𝜕nN
×

× dS1dS2 … dSN−1dSN . (8)

The asymptotic solution constructed below has a local character, giving the lead-

ing asymptotic term for the amplitude of the diffracted field in the small vicinity of

any ray emitted from point x0 and reflected from the surfaces of the obstacles sequen-

tially at points y∗1, y
∗
2, y

∗
3,… , y∗N and arriving at point xN+1. Obviously, such rays exist

only in the case when all reflection points y∗1, y
∗
2, y

∗
3,… , y∗N , as well as the receiving

point xN+1, all are located in the “light” zone.

In order to construct the leading asymptotic term, let us apply the asymptotic

representation for the derivative 𝜕𝛷
(
yn−1, yn

)
∕𝜕nn−1 of the fundamental potential

𝛷(yn−1, yn) =
eik|yn−1−yn|

4𝜋 |yn−1 − yn|
, (9)

with k → ∞:
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𝜕𝛷(yn−1, yn)
𝜕nn−1

= ik cos 𝛾n−1
eik|yn−1−yn|

4𝜋 |yn−1 − yn|
[
1 + O(k−1)

]
,

n = 1, 2,… ,N + 1, y0 = x0, yN+1 = xN+1, (10)

where 𝛾n−1 is the angle between the normal 𝐧n−1 and the direction of incidence of the

ray yn−2 − yn−1, and ||yn−1 − yn|| is the distance between the reflection points yn−1 ∈
S∗n−1 and yn ∈ S∗n. It should be noted that the incident y∗n−1 − y∗n and the reflected

y∗n − y∗n+1 rays belong to the same plane with the normal 𝐧n at point y∗n.

Let us denote the distances
|||x0 − y∗1

||| = L0,
|||y

∗
n − y∗n+1

||| = Ln,
|||y

∗
N − xN+1

||| = LN ,
n = 1,… ,N − 1. After the slowly varying functions in the asymptotic representa-

tions for normal derivatives of Greens functions (10) are taken out of the sign of

integral (8), we can write out the following integral representation for the pressure

at the receiving point:

p(xN+1) =
( ik
2𝜋

)N
L−10

N∏

n=1
L−1n cos 𝛾n

∫∫S∗N
∫∫S∗N−1

…
∫∫S∗1

eik𝜑 ×

× dS1 … dSN−1dSN , (11)

𝜑 = |x0 − y1| + |y1 − y2| +⋯ + |yN−1 − yN| + |yN − xN+1|. (12)

In the factors in front of the integral there are taken the values of cos 𝛾n for the

ray incident at the point of mirror reflection y∗n.

Let us relate the vicinities S∗1, S
∗
2,… , S∗N to the right Cartesian coordinate system,

which are defined by the normals 𝐧1,𝐧2,… ,𝐧N to the surfaces at points y∗1, y
∗
2,… , y∗N

directed to the acoustic medium and by the tangents to the curvature curves. Let us

designate as OnX
(n)
1 X(n)

2 X(n)
3 , n = 1, 2, 3,… ,N the Cartesian coordinate system with

the center at point y∗n.

To introduce the coordinates of the current point yn ∈ S∗n, n = 1, 2,… ,N, on each

vicinity y∗n ∈ S∗N , we count along the curvature lines the arc lengths 𝛥s(n)1 , 𝛥s(n)2 .

Then the current point yn of the convex surface Sn in the local coordinate system

OnX
(n)
1 X(n)

2 X(n)
3 has the following coordinates:

yn =
(
𝛥s(n)1 , 𝛥s(n)2 , −0.5

(
k(n)1

(
𝛥s(n)1

)2
+ k(n)2

(
𝛥s(n)2

)2
))

,

where k(n)1 , k(n)2 are the principal curvatures, and

(
k(n)1

(
𝛥s(n)1

)2
+ k(n)2

(
𝛥s(n)2

)2
)

is

the second quadratic form of the surface S∗n at point y∗n.

The forming of the asymptotic representation of the phase 𝜑, up to infinitesimals

of the second order in the general case (12), we show on the example of the triple

re-reflection of the ray x0 − y∗1 − y∗2 − y∗3 − x4:
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𝜑 = |x0 − y1| + |y1 − y2| + |y2 − x3| + |y3 − x4| = L0 + L1 + L2 + L3 +

+ 0.5d11
(
𝛥s(1)1

)2
+ d12𝛥s

(1)
1 𝛥s(1)2 + d13𝛥s

(1)
1 𝛥s(2)1 + d14𝛥s

(1)
1 𝛥s(2)2 +

+ 0.5d22
(
𝛥s(1)2

)2
+ d23𝛥s

(1)
2 𝛥s(2)1 + d24𝛥s

(1)
2 𝛥s(2)2 +

+ 0.5d33
(
𝛥s(2)1

)2
+ d34𝛥s

(2)
1 𝛥s(2)2 + d35𝛥s

(2)
1 𝛥s(3)1 + d36𝛥s

(2)
1 𝛥s(3)2 +

+ 0.5d44
(
𝛥s(2)2

)2
+ d45𝛥s

(2)
2 𝛥s(3)1 + d46𝛥s

(2)
2 𝛥s(3)2 +

0.5d55
(
𝛥s(3)1

)2
+ d56𝛥s

(3)
1 𝛥s(3)2 +

0.5d66
(
𝛥s(3)2

)2
. (13)

In the general case of the N-fold re-reflection in the phase 𝜑 (12) there are absent

the terms with the first power of 𝛥s(n)j (j = 1, 2; n = 1, 2,… ,N). This approves that

the points y∗n ∈ S∗n of the direct ray reflection correspond to the stationary value of

the phase 𝜑.

The leading asymptotic term for the pressure p(xn1 ) of N times re-reflected wave

at the receiving point xN+1 can be obtained from expression (11) by applying the

multidimensional (2N-fold) stationary phase method [5, 6], as follows:

p
(
xN+1

)
= 1

L0

N∏

n=1

cos 𝛾n
Ln

exp
{
i
[
k
∑N

n=0 Ln +
𝜋

4

(
𝛿2N − 2N

)]}

√|||det
(
D2N

)|||

, (14)

where D2n = (dij), i, j = 1, 2,… , 2N is the symmetric Hessian matrix of the bended

structure of the width equal to 7. Parameter 𝛿2N = signD2N is the difference between

the number of positive and negative eigenvalues of the matrix D2N .

Let us demonstrate the matrix to indicate non-trivial elements dij:

D2N =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

d11 d12 d13 d14 0 0 … 0 0 0
d21 d22 d23 d24 0 0 … 0 0 0
d31 d32 d33 d34 d35 d36 … 0 0 0
d41 d42 d43 d44 d45 d46 … 0 0 0
. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 … d2N−3,2N−4 d2N−3,2N−3 d2N−3,2N−2 d2N−3,2N−1 d2N−3,2N
0 0 0 0 … d2N−2,2N−4 d2N−2,2N−3 d2N−2,2N−2 d2N−2,2N−1 d2N−2,2N
0 0 0 0 … 0 d2N−1,2N−3 d2N−1,2N−2 d2N−1,2N−1 d2N−1,2N
0 0 0 0 … 0 d2N,2N−3 d2N,2N−2 d2N,2N−1 d2N,2N

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

The Hessian matrix D2N = (dij), i, j = 1, 2, 3,… , 2N is symmetric dij = dji with the

following non-trivial elements dij, i ≤ j:
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the diagonal elements (n = 1,… ,N):

d2n−1,2n−1 =
(
L−1n−1 + L−1n

)(
1 −

(
𝐪(n)0 , 𝐞(n)

𝜃

)2
)
− 2a−1

(
𝐪(n)0 , 𝐞(n)r

)
,

d2n,2n =
(
L−1n−1 + L−1n

)(
1 −

(
𝐪(n)0 , 𝐞(n)

𝜑

)2
)
− 2a−1

(
𝐪(n)0 , 𝐞(n)r

)
, (15)

the elements out of the principal diagonal:

d2n−1,2n =
(
L−1n−1 + L−1n

) (
𝐪(n)0 , 𝐞(n)

𝜃

)(
𝐪(n)0 , 𝐞(n)

𝜑

)
,

d2n−1,2n+1 = L−1n
((

𝐪(n)0 , 𝐞(n)
𝜃

)(
𝐪(n+1)0 , 𝐞(n+1)

𝜃

)
−
(
𝐞(n)
𝜃
, 𝐞(n+1)

𝜃

))
,

d2n−1,2n+2 = L−1n
((

𝐪(n)0 , 𝐞(n)
𝜃

)(
𝐪(n+1)0 , 𝐞(n+1)

𝜑

)
−
(
𝐞(n)
𝜃
, 𝐞(n+1)

𝜑

))
,

d2n,2n+1 = L−1n
((

𝐪(n)0 , 𝐞(n)
𝜑

)(
𝐪(n+1)0 , 𝐞(n+1)

𝜃

)
−
(
𝐞(n)
𝜑
, 𝐞(n+1)

𝜃

))
,

d2n,2n+2 = L−1n
((

𝐪(n)0 , 𝐞(n)
𝜑

)(
𝐪(n+1)0 , 𝐞(n+1)

𝜑

)
−
(
𝐞(n)
𝜑
, 𝐞(n+1)

𝜑

))
, (16)

where n = 1,… ,N for the first equation in (16), and n = 1,… ,N − 1 for the others.

The elements of the Hessian are written for the considered case of the triple peri-

odic system of spherical obstacles related to a global Cartesian coordinate system,

which is defined by the edges of the cube, outgoing from the same vertex. All vector

quantities in expressions (15) and (16) are given in this coordinate system. In numer-

ical implementation of the algorithm, when forming the trajectories of the multiple

ray re-reflected at the mirror reflection points, it is necessary to consider also the local

spherical coordinates. In Eqs. (15) and (16)

(
𝐞(n)r , 𝐞(n)

𝜃
, 𝐞(n)

𝜑

)
is the orthonormal basis

of the local spherical coordinate system at the point of mirror reflection
(
x∗n, y

∗
n, z

∗
n
)
,

𝐪(n)0 = { q(n)01 , q
(n)
02 , q

(n)
03 } are the components of the unit vector 𝐪(n), which defines the

direction of the incident wave in the global Cartesian coordinates at point
(
x∗n, y

∗
n, z

∗
n
)

of the sphere. Let us calculate the local spherical coordinates (a, 𝜃n, 𝜑n) of the point

of mirror reflection
(
x∗n, y

∗
n, z

∗
n
)
, located on the boundary surface of respective sphere

with certain parameters m1,m2,m3:

𝜃n = 𝜃
(m1,m2,m3)
n = arccos

((
z∗n − 2m3a

)
∕a

)
, 0 ≤ 𝜃n ≤ 𝜋,

𝜑n = 𝜑
(m1,m2,m3)
n =

{
arccos

(
(x∗n − 2m1a)∕a

)
, y∗n − 2m2a ≥ 0,

𝜋 + arccos
(
(x∗n − 2m1a)∕a

)
, y∗n − 2m2a < 0, 0 ≤ 𝜑n ≤ 𝜋.

(17)

Let us write out the local basis vectors 𝐞(n)r , 𝐞(n)
𝜃
, 𝐞(n)

𝜑
in terms of the global basis

vectors 𝐢, 𝐣,𝐤 at point
(
x∗n, y

∗
n, z

∗
n
)
:
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𝐞(𝐧)𝐫 = 𝐢 sin 𝜃n cos𝜑n + 𝐣 sin 𝜃n sin𝜑n + 𝐤 cos 𝜃n,
𝐞(𝐧)
𝜃

= 𝐢 cos 𝜃n cos𝜑n + 𝐣 cos 𝜃n sin𝜑n − 𝐤 sin 𝜃n,
𝐞(𝐧)
𝜑

= −𝐢 sin𝜑n + 𝐣 cos𝜑n.

(18)

The local coordinates of the direction of the incident wave at point
(
x∗n, y

∗
n, z

∗
n
)

are

defined by the following expressions:

q(n)r =
(
𝐪(n)0 , 𝐞(n)r

)
, q(n)

𝜃
=
(
𝐪(n)0 , 𝐞(n)

𝜃

)
, q(n)

𝜑
=
(
𝐪(n)0 , 𝐞(n)

𝜑

)
. (19)

For the reflected ray,

q(n+1)r = −q(n)r , q(n+1)
𝜃

= q(n)
𝜃
, q(n+1)

𝜑
= q(n)

𝜑
.

The coordinates of the reflected ray 𝐪(n+1) =
{
q(n+1)1 , q(n+1)2 , q(n+1)3

}
in the global

coordinate system,

q(n+1)1 = −q(n)r sin 𝜃n cos𝜑n + q(n)
𝜃

cos 𝜃n cos𝜑n − q(n)
𝜑

sin𝜑n,

q(n+1)2 = −q(n)r sin 𝜃n sin𝜑n + q(n)
𝜃

cos 𝜃n cos𝜑n + q(n)
𝜑

cos𝜑n,

q(n+1)3 = −q(n)r cos 𝜃n − q(n)
𝜃

sin 𝜃n.
(20)

5 Application of the Ray Tracing Method

For more detailed study in the present section we develop an alternative technique,

additionally to the GDT theory. This is the Ray Tracing (RT) method which is

founded on another fundamental concept connected with the sound beams, see for

example [1, 7, 9]. This method is also valid for high-frequency regimes being

applicable, like the GDT, under the condition that the characteristic size of the obsta-

cle is significantly smaller that the wave length.

In the computer realization of the developed RT model, the algorithm uses a huge

number of sound rays, up to 500,000, which are irradiated from the source of the

sound uniformly along all directions. These rays travel over a closed space, and if

the reflecting surfaces possess some sound absorption then the traveling ray loose

their energy after each reflection, according to the absorption coefficient of a current

reflecting surface. In the problem under consideration we accept the “no absorption”

hypothesis. Therefore, the energy of the ray keeps its initial value when flying out

from the source; we accept this is of a unit value in a dimensionless form.

In the proposed algorithm the key role is played by a reflection of the rays. Since

the traditional treatment is founded upon the approximation of arbitrary reflect-

ing surface by a set of plane facets, we describe this for plane reflectors only.
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If the reflection is specular then the parametric representation for the incident ray

in the vector form is

𝐫 = 𝐫𝟎 + 𝜏𝐪, (21)

where 𝐫𝟎 = (x0, y0, z0) is the point of the previous reflection, 𝐪 is the unit directing

vector defining the direction of the incidence. First of all, we find the point of inter-

section of this ray with the reflecting surface, point (x0, y0, z0), and the distance to

this reflecting plane is

𝜏 =
nx(x1 − x0) + ny(y1 − y0) + nz(z1 − z0)

nx qx + ny qy + nz qz
. (22)

Here 𝐧 = (nx, ny, nz) is the vector of the unit normal to the current reflecting surface.

After that by using formula

𝐪𝟏 = 𝐪 − 2(𝐧 ⋅ 𝐪)𝐧 (23)

we determine the new directing vector of the ray reflected at point (x1, y1, z1).
Under some conditions, the reflection may happen to be not specular, if the reflect-

ing surface is rough enough. However, we assume that all reflections are strictly

specular.

The realization of this method as a computer algorithm consists of the following.

The algorithm traces each ray irradiated from the source, when the ray travels over

the closed space under consideration, registering all recorded impulses in the pas-

sages of the ray across a small 𝜀-vicinity of the receiver, whose radius is taken as

1 mm.

It is very interesting to clarify how the amplitude of the impulse arriving at the

receiver can decrease in time, under the condition of zero absorption the energy

carried by every ray is equal to the unit value and does not vary in time. This is

equivalent to the amplitude decay with distance since the distance increases when a

ray travels in the space. In frames of the GDT the decreasing amplitude with distance

is clearly seen from formulas like (3) and further ones, prescribing that the amplitude

is an inversely proportional function of distance with distance increasing. On the

contrary, in frames of the RT method the decreasing amplitude with times at the

receiving point is formed because of decreasing number of rays (in our case, all with

the same amplitude) per a certain unit of time, say per 1µs.

A typical diagram of the impulse received at a point located behind the last spher-

ical layer, along the direction of the wave propagation, is shown in Fig. 2. This is con-

structed in the case when the system of 27 spheres under consideration is located in

the open unbounded acoustic space. In the example demonstrated in Fig. 2 the source

is located at a distance b from the first spherical layer, if counting along axis x, and

the receiver is located at the same distance b behind the last (third) layer. Parameter

b is in two times smaller than spheres’ radius a∶b = a∕2. For all examples below

each of 27 spherical surfaces are approximated by 48 flat reflecting facets. Therefore,
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Fig. 2 US impulse through-transmitted along the triple-periodic array of 27 spherical obstacles in

the unbounded space and recorded at the receiving point: b = a

the total number of the reflecting faces for the RT method is 48 × 27 = 1296. It is

seen from the diagram that only few rays reach, after some multiple re-reflections

from neighbor spheres, the small 𝜀-vicinity of the receiver, for the chosen pair of the

source and the receiver.

The next example is related to the same geometry, with the only difference that

the array of 27 spherical obstacles, together with the source and the receiver, are

placed into the cubic domain. The four lateral faces of the surrounding cube are

absolutely reflecting (the absorption is zero), and the back and the front walls are

absolutely absorptive. Since the lateral cubic’s surfaces are at the distance b = a∕2
from the nearest sphere, it can be proved that, due to the natural symmetry, the prob-

lem becomes equivalent to the same through-propagation of the US impulse in the

unbounded space like in the previous example, but for a periodic system of spher-

ical obstacles infinitely repeated in the lateral directions, i.e. along axes y and z.
One thus comes to the three layers of the doubly-periodic infinite system of spheres.

The diagram in Fig. 3, which shows the US impulse versus time, for this geometry

unlike the one in Fig. 2 possesses the absolutely different qualitative behavior. In fact,

this demonstrates a number of resonances in the initial period of time. These reso-

nances are connected with a specific interference which predetermines that the peri-

odic structures under consideration possess the properties of acoustic filters. Typ-

ically, such filters can provide a cutoff of the through-transmitted energy on some

frequency intervals. This is related to the so-called “metamaterials” whose proper-

ties are defined by their internal structure rather than by the medium which the solid

is made of.
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Fig. 3 US impulse through-transmitted along the triple-periodic array of 27 spherical obstacles

inside the cubic space with four absolutely reflecting lateral sides and two absolutely absorbing

back and front sides, recorded at the receiving point: b = a

The property described in the previous paragraph can be translated to the form

of the Amplitude-Frequency characteristics. If the full flight of the n-th ray at the

chosen point receiver is Ln, n = 1,… ,N registered at the moment tn, then in the

time-harmonic regime the total amplitude is

A(k) =
||||||

N∑

n=1
eikLn

||||||
, Ln = c tn, (24)

where c is the wave speed.

This function is calculated on a dense set of the point receivers distributed over

the front side of the cube, as described above. If we model the base of the receiving

US transducer as coinciding with the mentioned side of the cube that the amplitude

of the full registered impulse is a sum of the complex-valued quantities under the

modulus sign in Eq. (24). After that the final true value is the modulus of the obtained

complex-valued quantity.

Such a treatment, applied to the two Amplitude-Time relations shown in Figs. 2

and 3, gives the results represented in Fig. 4, by lines 1 and 2, respectively. Line

1 approves that the through-transmission amplitude is a quasi-monotonic decreas-

ing function of frequency. This means that only 3 × 3 × 3 layers cannot provide

real filtering. On the contrary, if the three layers of the spherical obstacles are infi-

nitely extended along two coordinate axes, such a structure can guarantee some max-

ima and minima of the through-transmitted amplitude over certain frequency inter-

vals. Apparently, this property becomes more expressive if the number of doubly-

periodic arrays of spherical obstacles, packed along the direction of wave propaga-

tion, becomes greater than 3.
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Fig. 4 Amplitude of the through-transmitted US signal versus frequency, b = a. Line 1 3 × 3 × 3 =
27 spherical obstacles in the open unbounded space; Line 2 the same geometry inside the cubic shell

with absolutely reflecting lateral faces and absolutely absorbing back and front faces

6 Conclusions

In frames of the GDT we write out the explicit expressions for the acoustic pres-

sure, for each type of the acoustic wave through-transmitted across the triple peri-

odic system of spheres: the waves directly passed through the medium, and the waves

passed with single and multiple reflections from the obstacles. There is developed

the explicit expression (14) for the leading asymptotic term of the diffracted field in

the case of multiple reflection of the acoustic wave. The formula (14) for the pres-

sure in the re-reflected wave establishes that this depends upon parameters of the

problem, which are the principal curvatures of the surfaces at the points of mirror

reflection, the distances between the points of mirror reflection, the distance of the

wave source from the first reflection point, and the distance of the receiving point

from the last reflection point, as well as depends upon the directions of the incident

waves.

We also develop a Ray Tracing algorithm, by approximating each spherical reflec-

tor by a number of plane facets, hence the trajectory of each irradiated ray in its travel

across the specimen with multiple reflections can be calculated in a simpler way. The

resulting signal recorded at the receiving point is a sum of all arriving rays taking

with respective phase shift determined by the full time of flight of the current ray.

This allows us to construct both the Amplitude-Time and the Amplitude-Frequency

diagrams. With so doing, it is approved that the chosen triple-periodic structure under

investigation can provide the properties of acoustic filtering, although with not very

expressive quality.
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An Experimental Model of the Ultrasonic
Wave Propagation Through
a Doubly-Periodic Array of Defects

Vladimir V. Zotov, Vitaly V. Popuzin and Alexander E. Tarasov

Abstract In the present chapter we consider both computer and natural experi-
mental approaches for the wave propagation through an elastic material with the
doubly-periodic system of holes. The numerical study is performed by applying the
Boundary Integral Equation method with further discretization to the algebraic
system by the Boundary Element Method. A wide range of numerical experiments
is conducted for different setups of the doubly periodic system, varying distances,
sizes of the holes and their locations. The influence of hole cross-sections on the
wave-transmission coefficient is examined by considering different star-like shapes.
Natural experiments are based on the ultrasonic testing performed for the steel and
plastic materials with the system of small holes. The experimental data are analyzed
from the point of their spectral characteristics as well as the amplitude-time
dependence.

Keywords Defects ⋅ Periodic array ⋅ Numerical modeling ⋅ Natural
experiment ⋅ Acoustic filtering ⋅ Acoustic metamaterials

1 Introduction

In the past two decades a great number of studies have been devoted to study the
properties in the wave propagation through the materials with internal periodic
structures [2, 3, 5, 13, 14]. The wave behavior in such a structured medium reveals
new different phenomena which are absent in regular materials. This leads to a great
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number of new interesting applications of such structured materials. Most of the
research in this field has focused on the electromagnetic waves and resulted in finding
such interesting properties as band-gapping, filtering, cloaking and others [10]. Many
of these new features also appear in the case of acoustic and elastic waves. For
example, sonic crystals can be considered as an analogue of photonic crystals in
electromagnetics because they have similar filtering properties [9].

However, these properties of acoustic meta-materials are not uniform for all
frequencies [11]. Thus, the main aim of this chapter is to extensively study various
geometrical arrangements of the doubly-periodic array of holes with different
cross-sections to attain the most universal wave transmission properties. Since one
of the main parameters of interest is the boundary contour of the holes, it is natural
to use the Boundary Integral Equation (BIE) approach, to model the problem under
consideration. One of the advantages of this method is that when the problem is
discretized to the linear algebraic system (LAS) via the Boundary Element Method
(BEM), the matrix of the LAS has a smaller size when compared to the Finite
Element Method. Nevertheless, this matrix is fully-dense and the solution of such
LAS by a direct numerical approach requires cubic number of arithmetic opera-
tions. In our numerical implementation we use bi-conjugate gradient method to
solve the problem with less computer resources involved.

The natural experiment is described in the next sections. The ultrasonic
flaw-detector in conjunction with low-frequency ultrasonic transducers are used to
perform a full-scale study.

2 Problem Statement

Let us consider the propagation of the ultrasonic wave through a bounded
doubly-periodic system of obstacles demonstrated in Fig. 1. The incident wave is
generated by the harmonic oscillations of an ultrasound transducer of length
D placed above the system of obstacles, while the receiver of the same size is
placed on the opposite side of the array.

For simplicity, we study wave propagation in a steady-state regime, when the
dependence on the time parameter for all quantities implies the multiplication by
exponential term e− iwt, where w is the angular frequency of the wave, i is the
imaginary unit and t is time. Moreover, we restrict the discussion to the acoustic
case considering only propagation of longitudinal waves. Then, the wave behavior
in the medium is described by the Helmholtz equation for the full pressure:

Δp+ k2p=0, ð1Þ

where k is the wavenumber and full pressure p is a sum of the incident and reflected
wave fields:
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p=pinc +psc. ð2Þ

In the case of the normal incidence of the plane wave pinc = eikx2 the problem can
be considered in frames of a two-dimensional approach. Thus, each nm-th obstacle
is described by its center and the geometry of its contour lnm. As shown in Fig. 1,
we use matrix notation to the obstacle subscripts where the first index n=1, . . . ,N
corresponds to the number of the horizontal line of the array and the second one—
to the column number m=1, . . . ,M If we denote by L the sum of all boundary
contours l located in the medium L=∑N

n=1∑
M
m=1lnm, then the presence of the holes

can be described by the impermeability condition (Neumann-type boundary con-
ditions for the case of the acoustically hard boundary)

vnjL =0∼
∂p
∂n

����
L
=0∼

∂pinc

∂n

����
L
= −

∂psc

∂n

����
L
, ð3Þ

Here, the second and third conditions simply follow from the evident relation-
ship between the normal component of the velocity vector and the normal
derivative of the pressure vn =1 ̸iρw * ∂p ̸∂n, where ρ is the mass density of the
medium and n represents the outward unit normal vector to the boundary contour.

The application of the BIE method [15] to the system (1)–(3) reduces it to the
linear second kind Fredholm integral equation over the total boundary L

Fig. 1 Arrangement of the doubly-periodic array of cylindrical obstacles with the star-like shape
of cross-section areas
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pðy0Þ
2

−
Z
L
p yð Þ ∂Φ y0 − yj jð Þ

∂ny
dL=pinc y0ð Þ, y0 ∈ L ð4Þ

In the considered two-dimensional problem, the Green function is given by the

Hankel function of the first kind Φ rð Þ= i ̸4 *Hð1Þ
0 ðkrÞ, where r= rj j= y0 − yj j is the

distance between two points on the boundary. With the help of this representation
the normal derivative can be reduced to a more suitable form

∂Φ rð Þ
∂ny

=
∂Φ rð Þ
∂r

∂r
∂ny

=
∂Φ rð Þ
∂r

ðr,nyÞ
r

= −
ik
4
Hð1Þ

1 krð Þ r,ny
� �

r
, ð5Þ

In the present chapter we restrict our consideration to the case of star-like
obstacles which are described in the cylindrical coordinate system by the polar
equation of its radial coordinate ρðϕÞ, ϕ=0, . . . , 2π. Thus, “inner” and “outer”
variables can be written out in its two-dimensional coordinate representation as
follows:

ynm =
ρ θð Þ cos θð Þ+ m− 1ð Þd1 +X
ρ θð Þ sin θð Þ+ n− 1ð Þd2 + Y

�
, yuw0 =

ρ ϕð Þ cos ϕð Þ+ w− 1ð Þd1 +X
ρ ϕð Þ sin ϕð Þ+ u− 1ð Þd2 + Y

�

where d1 and d2 are the horizontal and vertical distances between the centers of two
neighbor obstacles, X is the x1-coordinate and Y is the x2-coordinate of the first
column of the doubly-periodic array (see Fig. 1). Thus, the coordinate of the out-
ward normal vector is expressed by

ny =
1

jnnmy j
∂

∂θ
ynm2 , − ynm1

� �
=

ρ θð Þ cos θð Þ+ ρ′ θð Þ sin θð Þ, ρ θð Þ sin θð Þ− ρ
0
θð Þ cos θð Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 θð Þ+ ρ′2 θð Þp

where nnmy
��� ���= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 θð Þ+ ρ′2 θð Þp
.

The radius-vector between two points has the form

r= yuw0 − ynm =
ρ ϕð Þ cos ϕð Þ− ρ θð Þ cos θð Þ+ ðw−mÞd1
ρ ϕð Þ sin ϕð Þ− ρ θð Þ sin θð Þ+ u− nð Þd2

�

By using the trigonometric identity for an arbitrary phase shift, we arrive to the
following representation for the scalar product

r,ny
� �

= −
ρ2 θð Þ
nnmy
��� ��� +

R

nnmy
��� ��� ρ θð Þ sin θ+ψRð Þ− ρ′ θð Þ cos θ+ψRð Þ� �

+ ρ ϕð Þsinðθ−ϕ+ψnÞ
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where the phase shift is calculated as follows:

ψn:
sin ψnð Þ= ρ θð Þ

nnmyj j ,
cosðψnÞ= ρ0 θð Þ

nnmyj j

8<
: ; ϕR:

sin ψRð Þ= w−mð Þd1
R ,

cosðψRÞ= u− nð Þd2
R

(

and R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw−mÞ2d21 + u− nð Þ2d22

q
is the distance between the centers of nm-th and

uw-th obstacles.
Taking this into account, we can rewrite the integral Eq. (4) in a more explicit

form

pðyuw0 Þ
2

+
ik
4

∑
N

n=1
∑
M

m=1
∫
2π

0
p ynmð ÞH 1ð Þ

1 krð Þ r,ny
� �

r
nnmy
��� ���dθ=pinc yuw0

� �
, ð6Þ

where yuw0 ∈ luw.
The solution of the integral Eq. (4) gives the value of the full pressure field on

the boundary contour of each obstacle. In order to obtain a scattered wave at an
arbitrary point z= z1, z2f g∉L inside the medium, the following integral formula
should be used

psc zð Þ=
Z
L

p yð Þ ∂Φ z− yj jð Þ
∂ny

dLy = −
ik
4

∑
N

n=1
∑
M

m=1

Z
lnm

p yð ÞHð1Þ
1 ðkrÞ ðr,nyÞ

r
dl ð7Þ

3 Numerical Treatment and the Solution

The series of the numerical experiments has been performed with the use of the BIE
approach, which is described in the previous section for the system of star-like
contours. In order to represent the integral notation in the form adapted to the
computer calculations, we use the Boundary Element Method [4]. Under this
approach we divide each contour lnm into Q small arc-intervals with a uniform step
over the angle coordinate hθ =2π ̸Q. The nodes of the grid are placed in accordance
with the collocation technique equally for “internal” and “external” variables
ynm0q = ynmq = ynmðθqÞ at angles θq = q− 0.5ð Þ * hθ, q=1, . . . ,Q. Then, assuming that
the integrand function is a constant on each elementary arc-interval, we can sub-
stitute the integration by its approximate sum, which leads to the following LAS

pðyuw0j Þ
2

+
ik
4

∑
N

n=1
∑
M

m=1
∑
Q

q=1
p ynmq
	 


Hð1Þ
1 krð Þ r,ny

� �
r

nnmy
��� ���hθ =pinc yuw0j

	 

ð8Þ

where j=1, . . . ,Q.
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However, when the “external” and “internal” variables belong to the same point,
the singularity appears in the argument of Hankel function [1]. This term can be
calculated by the explicit integration over corresponding small arc-interval. Nev-
ertheless, its contribution to the integral equation is relatively small in comparison
with the contribution ½ of the first term and can be neglected in the approximate
numerical calculations.

It is convenient to rewrite Eq. (8) in the matrix notation. For this purpose we
introduce the following indexes through: index a= j+ w− 1+ u− 1ð Þ *Mð Þ *Q,
corresponds to the “inner” variable yuw0g , g=1, . . . ,Q,w=1, . . . ,M, u=1, . . . ,N,
while for the “outer” variable we use index b= q+ m− 1+ð
n− 1ð Þ *MÞ *Q, q=1, . . . ,Q, m=1, . . . ,M, n=1, . . . ,N. This notation leads to
the matrix form of Eq. (8)

Gp= pinc ð9Þ

with matrix elements gf gab = ik
4 H

ð1Þ
1 krð Þ r,nyð Þ

r nnmy
��� ���hθ.

Due to the nature of BEM, the matrix G of system (9) is fully-dense with
N *M *Qð Þ2 non-zero elements. Thus, the solution of such a system by applying
classical direct approaches requires N *M *Qð Þ3 arithmetic operations. In the case
of high-frequency regime, a dense numerical grid on the boundary of each contour
should be taken, in order to adequately describe the wave-like nature of the
problem, at least 10 nodes per each wave-length. This leads to the huge size of the
algebraic system (9) and as a result, the direct solution requires too much com-
putational time even on a modern PC. It becomes even more critical in performing a
wide range of numerical experiments which involve varying boundary geometry
and obstacles dispositions.

In our current study we use the iterative bi-conjugate gradient method, to solve
the problem (9) with less computational cost than it requires when using direct
approaches. This method can be written out as simple relations:

αj = eĵ− 1, ej− 1
� �

̸ sĵ,Gsj
� �

,

pj = pj− 1 + αjsj,

ej = ej− 1 − αjGsj,

eĵ = eĵ− 1 − αjGTsĵ,
βj = e ̂j, ej

� �
̸ e ̂j− 1, ej− 1
� �

,

sj+1 = ej + βjsj,

sĵ+1 = eĵ + βjsĵ.

ð10Þ

For the first iteration we set e0 = pinc −Gp0 where initial guess p0 can be set zero
or taken from some physical assumption. Further reduction of the computational
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time can be attained by application of the modern fast algorithms [6–8, 12], to
perform the fast matrix-vector multiplication in the right-hand sides of
relations (10).

4 Numerical Results

In order to test the influence of the obstacle geometry on the wave propagation, a
series of numeric computations has been performed on the basis of the numerical
representation of the problem described above. For the purpose of a more general
analysis we suppose the normal incidence of the plane wave with a unit amplitude
pincðx2Þ= eikx2 . Physically, it corresponds to the far-field of the transducer with its
length D significantly larger than the total horizontal area of the periodic array of
obstacles.

In the accomplished calculations one of the main investigated parameters is the
transmission coefficient. However, the distribution of the wave pressure transmitted
through the material is non-uniform and the plane-wave structure is not retained at
the receiver. Thus, we consider the average value of the full field on the +interval
x1 = − 0.003; 0.031½ �m at the receiver position x2 = − 0.026m which is placed
below the periodic structure.

The first set of experiments is devoted to different geometries of the hole
boundaries, starting from a simple circle shape to more complex polar-rose shapes
with two, three and four leaves. This is adjusted by putting the polar distance of the
contour equal to ρ θð Þ=A 1−Ratioð Þ+Ratio * cos leaf * θð Þð Þ, where the parameter
leaf corresponds to the number of leaves in the contour, and Ratio represents the
impact of the polar-rose shape on the contour and A is used for an appropriate scale
on the contour (see Fig. 1). Obviously, the case Ratio=0 gives the circular shape of
the contour with the radius equal to A.

The transmission coefficient for various values of these parameters is given in
Fig. 2, where on the right-hand side of each diagram the shapes and their corre-
sponding Ratio are presented. The computations have been made for the following
conditions: the speed of the longitudinal wave in the medium c=2200m ̸s, the
doubly periodic array hasM =8 number of rows and N =6 number of columns with
Q=26 = 64 points of the numerical grid on each boundary contour, the holes’
radius is A=1mm and they are placed at distances d1 = d2 = 2A, the first row starts
at the x2-coordinate Y = − 3A, while x1-coordinate X=0.

From the presented figures one can observe that the transmission coefficient in a
low-frequency range (up to 0.4 MHz) weakly depends on the contour shape and
significant changes appear only at higher frequencies. Parameters leaf =2 and
Ratio=0.3 give the widest band gap (dashed line on the top diagram in Fig. 2) on
the interval ≈ 0.49, 0.91½ �MHz when compared to other boundary contours.
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Fig. 2 Band-gapping at low frequencies: transmission coefficient jT j versus frequency f ðMHzÞ
for various cross-section contours l of holes in doubly-periodic arrays

196 V.V. Zotov et al.



The lowest transmission coefficient (≈0.1) is attained for the four-leaf rose with
Ratio=0.4 in the range ≈ 0.75, 1½ �MHz. The three-leaf rose is the only
non-symmetrical contour which is placed at an angle with respect to the incident
wave. As a result, it is difficult to provide a uniform distribution of the transmission
coefficient for the wide frequency range.

The distribution of the amplitudes of the full pressure in the current three con-
figurations is presented in Fig. 3. Predictably, we can notice the symmetry of the
pressure field for the four-leaf and two-leaf contours, while the wave transmitted
through the array of holes with the three-leaf contours is asymmetric. In this case
we can also notice a high concentration of the transmitted wave energy on the left
side of the figure. An interesting beam-forming of the wave is shown for the case 3
with parameters ρ θð Þ=0.6+ 0.4 * cosð2 * θÞ at f =2.49MHz. However, from cases
4 and 5 we can conclude that such behavior is not retained for other frequencies or
other Ratio values.

Another series of experiments have been performed in order to test the influence
of the hole positions on the wave propagation. For these purpose, parameters d1 and
d2 are varied and the results are presented in Figs. 4 and 5. The transmission
coefficient jT j in this cases is calculated as the average value of the full pressure on
the interval x1 = − 0.003; 0.031 * d1 ̸0.04½ �m at the receiver position
x2 = − 0.026+ 0.02 * ð1− d2 ̸0.04Þm. It is noticeable that such changes in the
arrangement of the array can affect the low-frequency range. The horizontal
parameter d1 can extend the first band gap and the vertical distance d2 makes higher
the value of the lower frequency of this band gap. As expected, the decreasing of
the horizontal distance between the nearest neighbor holes reduces the transmitted
wave energy.

It is also interesting to test the effect of the horizontal shift of each second row in
the doubly-periodic array. Corresponding calculations are reflected in Fig. 6 where
X denotes the horizontal coordinate of the center of the first hole in each second row
in the doubly-periodic array. Surprisingly, wave behavior for this arrangement in
the low-frequency range is identical to the array without such a shift. In the range
f = 0.4; 1.1½ �MHz the array with the shift gives the highest transmission coefficient
for all performed tests demonstrated above.

Another set of experiments are demonstrated in Fig. 7 for the material with
sound speed c=6000m ̸s, where the impact of the number of rows in the
doubly-periodic array of cylindrical holes to the transmission properties of the
material is evaluated. It is clear from this figure that with increasing number of rows
a smaller amount of the wave energy passes through the array of holes. However,
the array with shift X =2mm of each second row is less sensitive to this effect than
the array with normal arrangement. Nevertheless, at low frequencies the coefficient
jTj demonstrates only small perturbations around the unit value for both the arrays.
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Fig. 3 Full pressure magnitude jpj outside (left) and inside (right) doubly-periodic array of holes.
Array 1—ρ θð Þ=0.7+ 0.3 * cosð4 * θÞ at f =2.31MHz; Array 2—ρ θð Þ=0.8+ 0.2 * cosð3 * θÞ at
f =1.71MHz; Array 3—ρ θð Þ=0.6+ 0.4 * cosð2 * θÞ at f =2.49MHz; Array 4—ρ θð Þ=
0.6+ 0.4 * cosð2 * θÞ at f =1.74MHz; Array 5—ρ θð Þ=0.7+ 0.3 * cosð2 * θÞ at f =2.5MHz
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5 Full-Scale Experiment

The natural experiments have been performed using industrial low-frequency
ultrasonic flaw detector UDC-60 N with the working frequency range from 0.04 to
2.5 MHz (see Fig. 8). Several samples from different materials have been prepared
by drilling doubly-periodic arrays of holes. We restrict our experimental study to
the case of simple cylindrical holes, since it is difficult to produce more complex
contour shapes with appropriate accuracy. Moreover, it should be noted that the
energy transition of the wave energy is lower at high-frequencies due to the
damping properties of the material. This is especially noticeable for the plastic
materials with high damping. Nevertheless, some characteristic features predicted
by numerical calculations can be approved experimentally with the use of the
through transmission scanning pattern demonstrated in Fig. 8.

Fig. 4 Transmission coefficient jTj versus frequency f ðMHzÞ for various horizontal distances
between the centers of the neighbor holes in the doubly-periodic array

Fig. 5 Transmission coefficient jT j versus frequency f ðMHzÞ for various vertical distances
between the centers of the neighbor holes in the doubly-periodic array
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Fig. 7 Transmission coefficient jT j versus number of rows N in the doubly-periodic array of
cylindrical holes without shift (solid line) and with shift X =2mm (dashed line)

Fig. 8 Measurement
equipment and through
transmission scanning pattern

Fig. 6 Comparison between transmission coefficient jT j for doubly-periodic arrays with different
horizontal shift of each second row
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In Fig. 9 the comparison of the numerical calculations (right-hand side of the
figure) and full-scale experiment data is presented for the steel sample with
doubly-periodic array of cylindrical holes of radius A=1mm and distances
between two neighbor holes d1 = d2 = 4A, where sound speed is equal to
c=6000m ̸s. At the left-hand side of the figure the normalized spectrum charac-
teristics of the transmitted wave measured at the receiver is shown over the range
0, 1½ �MHz. The sample with holes is marked by the solid line, while the dashed line
represents the sample without any defects. The experiment has been performed for
four different probes with the leading frequencies 1, 0.61, 0.33, 0.24MHz, respec-
tively. Detailed analysis of this comparison shows that the true behavior predicted
by the numerical calculations is predicted with a small error.

Another set of experiments has been performed to examine the influence of the
vertical distance d2 between rows in the periodic array. For this purpose, two
samples have been prepared from plastic materials with the sound speed
c≈ 2200m ̸s. The measured amplitude-time characteristics is reflected in Fig. 10
where the first row presents the wave transmitted through the material free of holes,
the second row demonstrates the data for the material with the array arrangement
A=1mm, d1 = d2 = 4mm, and the bottom row shows the measurements for the
sample with A=1mm, d1 = 4mm, d2 = 2.4mm. This should be compared with
Fig. 5 from the previous section. As it is predicted numerically, the transmission in
the last sample is higher than in the shown low-frequency region because its first

Fig. 9 Comparison of the natural (at the left) and numerical (at the right) experimental data for the
sample with array of cylindrical holes with parameters a=1mm, d1 = d2 = 4mm, c=6000m ̸s. At
the left normalized spectral characteristic of the wave measured at the receiver position for the
sample without array of holes (dashed line) and with array of holes (solid line) in the frequency
range 0, 1½ �MHz. At the right transition coefficient predicted by the numerical method
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band-gap starts with a higher frequency. However, the second sample demonstrates
better transmission before this band-gap, which is in good agreement with the
numerical experiments.

In order to verify the prediction which is reflected in Fig. 5, two samples have
been prepared made of plastic material with c=2200m ̸s. The first one contains a
doubly periodic array of holes with parameters A=1mm, d1 = d2 = 4mm with no
shift. The second sample is made with the same parameters as the previous one but
with the shift of each second row equal to X =2mm. These samples are scanned by
the through transmission ultrasonic technique with the ultrasonic transducer which
has two dominant frequencies, one at ≈0.25MHz and the other at ≈0.7MHz. The
results is reflected in Fig. 11, where the graph at the left side represents the signal
transmitted through the material free of voids, the central graph shows the wave
transmitted through the sample with the array of holes without any shift, and the
one at the right demonstrates the transmission through the sample with the shift of
each second row in the array. Note, that for demonstration purposes, the last two
graphs are presented with double amplification. As can be sees from the central

Fig. 10 Amplitude-time characteristics measured for three plastic samples with different
frequencies

Fig. 11 Comparison of the impulse and the spectrum characteristics for the wave transmitted
through a continuous sample (at the left), the sample with the array of holes without any shift (at
the center), the sample with the shift of each second row in the hole array (at the right)
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diagram, the propagation of the wave through the sample without shift “cleans” the
signal from its high-frequency components, which is reflected both on impulse
response and on the spectrum. From the right-hand side of the diagram we can
conclude that the second sample permits transmission of the high-frequency
component, as it is predicted numerically (see Fig. 6). However, the impact of the
high-frequency component is small, due to the high damping of the used material.

6 Conclusions

• The boundary elements method is a powerful tool, which gives accurate pre-
diction for the wave behavior in the medium with doubly-periodic array of holes
and can be successfully applied to the study of the properties of the modern
acoustic meta-materials.

• As numerical experiments show, small changes in the hole cross-section can
significantly effect the transmission properties of the material. Such adjustments
can give high amplification on certain frequencies, concentrating and redirecting
the wave energy in a specific way. However, such resonance properties are not
maintained even for small changes of the hole boundaries. Thus, the
low-frequency range is not sensitive to the contours shape.

• The horizontal and vertical distance between the neighbor holes in the
doubly-periodic array effect the low-frequency range of the transmission coef-
ficient, namely the variation of the horizontal distance changes the width of the
first band gap and the variation of the vertical distance can translate this
band-gap to higher frequency range.

• The transition coefficient in the frequency range before the first band-gap is
weakly sensitive to the number of rows in the doubly-periodic array, while at the
higher frequencies the increasing number of rows decreases considerably the
transmitted wave energy. The array with the horizontal shift of each second row
demonstrates more resistances in the wave process.

• The Ultrasonic non-destructive testing technology with the through transmission
scanning pattern can verify some properties predicted by the calculations.
Nevertheless, high damping of some materials constricts verification on higher
frequencies. Thus, it is more convenient to use immersion ultrasonic tests in
such cases.

Acknowledgements The work is performed within the framework of the Project № 15-19-10008
of the Russian Science Foundation (RSCF).

An Experimental Model of the Ultrasonic Wave Propagation … 203



References

1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1965)
2. Achenbach, J.D., Li, Z.L.: Reflection and transmission of scalar waves by a periodic array of

screens. Wave Motion 8, 225–234 (1986)
3. Achenbach, J.D., Kitahara, M.: Harmonic waves in a solid with a periodic distribution of

spherical cavities. J. Acoust. Soc. Am. 81, 595–598 (1987)
4. Banerjee, P.K.: The Boundary Element Methods in Engineering, 2nd edn. McGraw-Hill,

London (1994)
5. Banerjee, B.: An Introduction to Metamaterials and Waves in Composites. CRC Press, Boca

Raton (2011)
6. Bron, S.: Efficient numerical methods for non-local operators. EMS Tracts Math. 14 (2010)
7. Brunner, D., Junge, M., Rapp, P., Bebendorf, M., Gaul, L.: Comparison of the fast multipole

method with hierarchical matrices for the helmholtz-BEM. Comput. Model. Eng. Sci. 58,
131–158 (2010)

8. Cheng, H., Crutchfield, W.Y., Gimbutas, Z., et al.: A wideband fast multipole method for the
Helmholtz equation in three dimensions. J. Comput. Phys. 216, 300–325 (2006)

9. Deymier, P.A.: Acoustic Metamaterials and Phononic Crystals. Springer, Berlin (2013)
10. Guenneau, S., Craster, R.V.: Acoustic Metamaterials Negative Refraction, Imaging, Lensing

and Cloaking. Springer, Netherlands (2013)
11. Liu, Z., Zhang, X., Mao, Y., et al.: Locally resonant sonic materials. Science 289, 1734–1736

(2000)
12. Cho, M.H., Cai, W.: A wideband fast multipole method for the two-dimensional complex

Helmholtz equation. Comput. Phys. Commun. 181, 2086 (2010)
13. Scarpetta, E., Sumbatyan, M.A.: On wave propagation in elastic solids with a doubly periodic

array of cracks. Wave Motion 25, 61–72 (1997)
14. Scarpetta, E., Sumbatyan, M.A.: Wave propagation through a periodic array of inclined

cracks. Eur. J. Mech. A/Solids. 19, 949–959 (2000)
15. Sumbatyan, M.A., Scalia, A.: Equations of Mathematical Diffraction Theory. CRC Press,

Boca Raton (2005)

204 V.V. Zotov et al.



Finite Element Simulation of Thermoelastic
Effective Properties of Periodic Masonry
with Porous Bricks

A.V. Nasedkin, A.A. Nasedkina and A. Rajagopal

Abstract In this work an integrated approach has been proposed for the determi-

nation of the effective mechanical and temperature properties of thermoelastic peri-

odic brick masonry wall with various porous structures. According to the classical

method of determining effective moduli of composites, in order to describe internal

micro- or macrostructure, we consider a representative volume cell, which enables us

to describe effective properties of the equivalent homogeneous anisotropic material.

The problems for representative cells are simulated and analyzed as thermoelastic

boundary value problems, using special programs in APDL language for ANSYS

finite element package. The post processing of the solution gives averaged charac-

teristics of the stress–strain state and thermal flux fields that allow computing the

effective moduli of the composite. The proposed method has been applied to several

examples of periodic masonry with porous, hollow and porous–hollow bricks. A

periodic part of masonry with porous, hollow and porous–hollow bricks was chosen

as a representative cell with thermoelastic tetrahedral and hexahedral finite elements.

In order to take into account the porosity of the bricks in the masonry, using similar

approaches we have preliminary solved at the microlevel the problems of the effec-

tive moduli detection for the porous bricks as thermoelastic composite bodies with

random porosity structures. After that at the macrolevel the material of porous brick

was considered as a homogeneous body with its own effective properties. The results

of numerical experiments showed that the structures of the representative cells and

porosity could significantly affect the values of the effective moduli for the consid-

ered brick masonry walls.

A.V. Nasedkin (✉) ⋅ A.A. Nasedkina

Institute of Mathematics, Mechanics and Computer Science, Southern Federal University,

Milchakova Street 8a, Rostov-on-Don 344090, Russia

e-mail: nasedkin@math.sfedu.ru

A. Rajagopal

Department of Civil Engineering, Indian Institute of Technology Hyderabad,

Kandi, Hyderabad 502285, Telangana, India

e-mail: rajagopal@iith.ac.in

© Springer Nature Singapore Pte Ltd. 2017

M.A. Sumbatyan (ed.), Wave Dynamics and Composite Mechanics
for Microstructured Materials and Metamaterials,
Advanced Structured Materials 59, DOI 10.1007/978-981-10-3797-9_12

205



206 A.V. Nasedkin et al.
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nization ⋅ Thermoelastic effective moduli ⋅Basic unit cell ⋅Representative volume ⋅
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1 Introduction

Masonry is a composite material consisting of bricks and mortar which are normally

arranged in a periodic manner. Global behaviour of masonry structure is determined

by the behaviour of its phases, namely, the brick units and the joints between the

units. However, modeling each unit and joint in the structure would be impractical

for a large masonry structure.

The composite behaviour of masonry in terms of average stresses and strains can

be described using the homogenization theory so that the compound material can be

considered as an elastic homogeneous material with effective properties. Homoge-

nization procedure is a very important step in masonry modelling. There are different

approaches to the homogenization techniques described in literature, which can be

analytical, semi-analytical and numerical. These methods fall into two general cate-

gories of one-step and two-step methods.

The two-step methods are analytical and are aimed at representing the complex

geometry of the basic cell by a simplified geometry. When the homogenisation is

being performed in two steps, head joints and bed joints are introduced successively,

so that the masonry can be considered as a layered material. Some examples of such

techniques can be found in [17, 18]. In [17] a multilayer system with alternating

mortar joints was considered. In a two-step technique of [18] for the first step the

homogenized matrix with head joints as elliptical inclusions was considered and

the second step consisted in the consideration of a laminate structure with contin-

uous bed joints. The final result of the two-step homogenization methods depends

on the step order. Also in these approximate methods of homogenization the unit-

mortar interface, bond patterns and thickness of masonry wall are often not taken

into account.

A one-step fully analytical homogenization technique was proposed in [5] were

parallelepiped-shaped units where approximated by elliptic cylinders which were

considered as inclusions. However, most of the one-step homegenization methods

are semi-analytical by nature. They imply rigorous application of the homogenisa-

tion theory for the basic cell with adequate boundary conditions and exact geometry.

Because of the complexity of masonry structure, these methods include the numeri-

cal solution of the problem with the help of the finite element method. For example,

a mixed one-step homogenization by using asymptotic method in combination with

the finite element method was considered in [8]. Later in [7] an analytical multi-

step and a numerical single-step technique were compared to determine mechanical

characteristics of CFRP reinforced masonry walls. Homogenization process of strat-

ified masonry was discussed in [6] where a three-dimensional problem was studied

by asymptotic techniques using variational approach. In [3] in-plane elastic char-
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acteristics of masonry were derived through homogenization theory with periodic

boundary conditions and the numerical solution was obtained by the finite element

method.

A strain energy approach was used in [23] for a one-step periodic eigenstrain

homogenization method, where the periodicity of field quantities was imposed by

Fourier series, and the Eshelby tensor for the unit cell was derived to relate the distur-

bance field with the eigenstrain field. This approach was also applied in [11] to calcu-

late effective properties of masonry by finite element method using stress-prescribed

or strain-prescribed analysis.

The question of whether plane stress, plane strain or three-dimensional mod-

elling should be used for the simulation of periodic masonry was discussed in [4].

This study took into account the thickness of masonry wall and concluded that two-

dimensional assumptions had little influence on the mascorscopic elastic behaviour

of masonry in the linear range, but could affect its non-linear response and there-

fore three-dimensional computations were unavoidable when the characteristics of

masonry varyied through the masonry wall thickness.

A nonlinear homogenization procedure for periodic masonry has been discussed

in several papers. For example, linear constitutive relationship for the bricks and

nonlinear constitutive law for mortar joints was proposed in [20]. Nonlinear homog-

enization technique to describe the damage of the masonry structure subjected to

alternating tension-compression cyclic loads was applied in [19] where a linear elas-

tic constitutive law was considered for the bricks and the unilateral damage model

was implemented for the mortar. In [24] homogenization technique and damage

mechanics theory were used to model a three-dimensional masonry basic cell and

numerically derive the equivalent elastic properties, strength envelope, and failure

characteristics of masonry material. The basic cell was modelled with distinctive

consideration of non-linear material properties of mortar and brick. Recent non-

linear methodology for the analysis of masonry was implemented [1] where a

macro-element based on the equivalent frame approach was used. An improved

micro-mechanical model for the masonry homogenisation in the non-linear domain

was proposed and validated by comparison with experimental and numerical results

in [25–27].

Most of the papers concerning masonry structures deal with periodic masonry.

However, some of real masonry structures, such as old masonry walls made up of

stones, are non-periodic. For example, the concept of representative volume was used

instead of the concept of periodic cell in case of quasi-periodic masonry [10] where

the representative volume element was obtained by using test-window method and

by increasing its finite dimensions.

Meanwhile, the thermoelastic properties of masonry porous structure have not

been studied enough [14, 22].

In this chapter we apply the effective moduli method for thermoelastic compos-

ites to calculate the effective properties of various masonry structures. The paper has

the following structure. In Sect. 2 we describe the mathematical statement of stan-

dard effective moduli method for thermoelastic composites of arbitrary anisotropy

class. We formulate six static elastic problems for the calculation of the effective

stiffnesses, one problem of thermal stresses for the calculation of the effective ther-
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mal stress coefficients and three heat conduction problems for finding the effective

thermal conductivities. We also note that in the case of isotropic medium we can

solve only three problems: one elastic problem, one problem of thermal stresses and

one heat conduction problem.

In Sect. 3 we consider a periodic masonry basic structure as a representative vol-

ume of masonry wall one brick thick. We investigate the mechanical and thermal

properties of masonry wall made of different porous and hollow bricks with the

same total porosity. For the case of porous brick with only stochastic microporosity

at first we calculate the effective moduli of the isotropic thermoelastic material with

microporosity of stochastic structure. Then we consider the porous brick material as

a homogeneous isotropic medium with effective properties. We describe solid and

finite element models for the case of porous bricks, for the case of bricks with hol-

lows made of dense brick material, and for the case of porous–hollow bricks made

of porous material with the hollows. In the end of Sect. 3 we present the computation

results for the effective moduli obtained in ANSYS finite element package.

In Sect. 4 we discuss the results. We note that for all cases the masonry basic

structure has orthotropic class of anisotropy for the mechanical and thermal moduli.

We discuss the values of the various moduli and the influence effects of porosity and

hollows on the masonry strength and on its thermal insulation properties.

2 Effective Moduli Method for Linear Thermoelastic
Composite Materials

Let us consider heterogeneous anisotropic thermoelastic material in a representa-

tive volume 𝛺 of a composite body. Then in the frames of static linear theory of

thermoelasticity [13] we have the following system of equations

𝜎ij,j = 0, 𝜎ij = cijkl𝜀kl − 𝛽ij 𝜃, 𝜀ij = (ui,j + uj,i)∕2 , (1)

qj,j = 0, qi = −kij𝜃,j , (2)

where 𝜎ij are the components of the second rank stress tensor 𝝈; 𝜀ij are the compo-

nents of the second rank strain tensor 𝜺; ui are the components of the displacement

vector 𝐮; 𝜃 is the temperature increment from natural state, cijkl are the forth rank

tensor 𝐜 of elastic stiffness moduli; 𝛽ij are the thermal stress coefficients; qi are the

components of the heat flux vector 𝐪; kij are the components of the tensor 𝐤 of ther-

mal conductivities.

In vector-matrix symbols in R3
the formulas (1), (2) can be presented in the form

𝐋∗(∇) ⋅ 𝐓 = 0, 𝐓 = 𝐜 ⋅ 𝐒 − 𝜷 𝜃, 𝐒 = 𝐋(∇) ⋅ 𝐮 , (3)

∇∗ ⋅ 𝐪 = 0, 𝐪 = −𝐤 ⋅ ∇𝜃 , (4)
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where

𝐋∗(∇) =
⎡
⎢
⎢⎣

𝜕1 0 0 0 𝜕3 𝜕2
0 𝜕2 0 𝜕3 0 𝜕1
0 0 𝜕3 𝜕2 𝜕1 0

⎤
⎥
⎥⎦
, ∇ =

⎧
⎪
⎨
⎪⎩

𝜕1
𝜕2
𝜕3

⎫
⎪
⎬
⎪⎭

, (5)

𝐓 = {𝜎11, 𝜎22, 𝜎33, 𝜎23, 𝜎13, 𝜎12} is the stress array; 𝐒 = {𝜀11, 𝜀22, 𝜀33, 2𝜀23, 2𝜀13,

2𝜀12} is the strain array; 𝐜 is the 6 × 6 matrix of elastic moduli; c
𝛾𝜁

= cijkl, 𝛾, 𝜁 =
1, ..., 6, i, j = 1, 2, 3 with correspondence law 𝛾 ↔ (ij), 𝜁 ↔ (kl), 1 ↔ (11), 2 ↔ (22),
3 ↔ (33), 4 ↔ (23) = (32), 5 ↔ (13) = (31), 6 ↔ (12) = (21); 𝜷 = {𝛽11, 𝛽22, 𝛽33,

𝛽23, 𝛽13, 𝛽12}; (...)∗ is the transpose operation; and (...) ⋅ (...) is the scalar product

operation.

Setting the appropriate principal boundary conditions at 𝛤 = 𝜕𝛺, we can find the

solutions of the problems (1), (2) or (3)–(5) for heterogeneous medium with 𝐜 = 𝐜(𝐱),
𝜷 = 𝜷(𝐱) and 𝐤 = 𝐤(𝐱) in the representative volume 𝛺. Then the comparison of the

averaged over 𝛺 stresses and heat fluxes with analogous values for homogeneous

medium (the comparison medium) similarly to [12, 14, 15] will permit to determine

the effective moduli c eff
𝛾𝜁

, 𝛽
eff
𝛾

and k eff
ij for the composite material.

Thus, for finding the effective stiffness moduli c eff
𝛾𝜁

and the effective thermal stress

coefficients 𝛽
eff
𝛾

we assume the following boundary condition

𝐮 = 𝐋∗(𝐱) ⋅ 𝐒0, 𝜃 = 𝜃 0, 𝐱 ∈ 𝛤 , (6)

where 𝐒0 = {𝜀011, 𝜀022, 𝜀033, 2𝜀023, 2𝜀013, 2𝜀012}; 𝜀0ij, 𝜃 0 are some constant values

that do not depend on 𝐱.

Note, that in the region 𝛺 for 𝜃 = 𝜃 0 the Eq. (4) are satisfied identically, and

therefore we can solve the elastic problem with thermal stresses with respect only to

the displacement vector 𝐮

𝐋∗(∇) ⋅ 𝐓 = 0, 𝐓 = 𝐜 ⋅ 𝐒 − 𝜷 𝜃 0, 𝐒 = 𝐋(∇) ⋅ 𝐮 , (7)

𝐮 = 𝐋∗(𝐱) ⋅ 𝐒0, 𝐱 ∈ 𝛤 . (8)

Thus, setting in (7), (8)

𝜃0 = 0, 𝐒0 = 𝜀0𝐡𝜁 , 𝜁 = 1, 2, ..., 6 , (9)

where 𝜀0 = const, 𝜁 is some fixed index mark (𝐡
𝜁

is the vector from six-dimensional

basic set for the components of the strain tensor basic set; 𝐡j = 𝐞j𝐞j, j = 1, 2, 3; 𝐡4 =
(𝐞2𝐞3 + 𝐞3𝐞2)∕2; 𝐡5 = (𝐞1𝐞3 + 𝐞3𝐞1)∕2; 𝐡6 = (𝐞1𝐞2 + 𝐞2𝐞1)∕2; 𝐞j are the orts of the

Cartesian coordinate system), we obtain the computation formulas for the elastic

moduli c eff
𝛾𝜁

:

c eff
𝛾𝜁

= ⟨T
𝛾
⟩∕𝜀0. (10)
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Here, the angle brackets ⟨(...)⟩ denote the averaged by the volume values

⟨(...)⟩ = (1∕|𝛺|)
∫
𝛺

(...) d𝛺 .

If we assume

𝜃 0 ≠ 0, 𝐒0 = 0 , (11)

then from the boundary problem (7), (8) we find the thermal stress effective moduli:

𝛽
eff
𝛾

= −⟨T
𝛾
⟩∕𝜃 0 . (12)

To determine the effective thermal conductivities kij we solve uncoupled thermal

problems (4) with the boundary conditions

𝜃 = G0𝐱∗ ⋅ 𝐞l = G0xl, G0 = const, l = 1, 2, 3, 𝐱 ∈ 𝛤 , (13)

and from the results we can calculate the effective thermal conductivity coefficients

k eff
il = −⟨qi⟩∕G0 . (14)

In the case of material of arbitrary anisotropy class, in order to determine the

complete set of effective moduli we have to solve six elastic problems (7)–(9) for the

calculation of the effective stiffnesses by (10), one problem (7), (8), (11) of thermal

stresses for the calculation of the effective thermal stress coefficients by (12) and

three heat conduction problems (4), (13) for finding the effective thermal conductiv-

ities by (14).

For certain crystalline composites systems the number of problems can be

reduced, since some problems will provide the same (or nearly the same) values of

effective moduli. The type of the composite crystalline system is defined by the both

crystalline systems of the initial phases and the geometrical and structural features

of the representative volume of the composite.

If the initial phase is made of isotropic materials and the geometry of the com-

posite has no peculiarities in different directions, then the homogenised material

will also be isotropic. In this case, a module structure of the initial phases and of the

homogenized material will have the form

𝐜 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c66 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, 𝜷 =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝛽

𝛽

𝛽

0
0
0

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

, 𝐤 =
⎡
⎢
⎢⎣

k 0 0
0 k 0
0 0 k

⎤
⎥
⎥⎦
, (15)

where c66 = (c11 − c12)∕2.
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Thus, an isotropic material is characterized by four moduli from (15): two elastic

stiffness moduli c11 and c12, thermal stress coefficient 𝛽 and thermal conductivity

k. In practice we usually know other elastic and thermal moduli are obtained, for

example, the Young’s modulus E, the Poisson’s ratio 𝜈, or the bulk modulus K, the

shear modulus G, and the thermal expansion coefficient 𝛼. The main moduli E, 𝜈

and 𝛼 are related to c11, c12 and 𝛽 for isotropic materials by formulae

c11 =
(1 − 𝜈)E

(1 + 𝜈)(1 − 2𝜈)
, c12 =

𝜈E
(1 + 𝜈)(1 − 2𝜈)

, 𝛽 = 𝛼
E

(1 − 2𝜈)
, (16)

and G = c66 = E∕[2(1 + 𝜈)], K = E∕[3(1 − 2𝜈)].
Then for isotropic case we can solve the problems (7), (8) with two variants of

boundary conditions, such as

iI) 𝜃0 = 0, 𝐒0 = 𝜀0𝐡1 ⇒ c eff11 = ⟨𝜎11⟩∕𝜀0, c eff12 = ⟨𝜎22⟩∕𝜀0 , (17)

iII) 𝜃0 ≠ 0, 𝐒0 = 0 ⇒ 𝛽
eff = −⟨𝜎11⟩∕𝜃 0 , (18)

and one thermal problem (4) with the boundary condition (13), for example, with

j = 1
iIII) 𝜃 = G0x1 ⇒ k eff = −⟨q1⟩∕G0 . (19)

Next, we will model the periodicity cell of masonry, consisting of the elements of

bricks and mortar. In turn, the brick can be regarded as solid, porous, hollow, porous

and hollow.

On the macro level we will consider the porous material of brick as a homoge-

neous body with effective moduli, depending on the porosity. This material may be

considered isotropic, and its moduli can be found using the above-described pro-

cedures from solutions of three problems for representative volumes with stochastic

porosity. Here, after finding the effective moduli c eff11 , c eff12 , 𝛽
eff

, k eff
from (17)–(19),

we can also calculate the effective moduli E eff
, 𝜈

eff
and 𝛼

eff
in sequence from (16)

by formulae

E =
(c11 − c12)(c11 + 2c12)

(c11 + c12)
, 𝜈 =

c12
(c11 + c12)

, 𝛼 = 𝛽

(c11 + 2c12)
.

We will also model the mortar as an isotropic material. Thus, the periodicity cell

of brick masonry will consist of two isotropic materials and macrocavities in bricks.

Despite the fact that all the phases of the composite materials are isotropic, the effec-

tive characteristics of the composite will have the module structure of anisotropic

material, since the geometry of the masonry and arrangement of macrocavities dif-

fer in various directions.

As a result, to determine the effective thermoelastic constants of brick masonry

all ten boundary value problems should be solved as in the case of the material of an

arbitrary anisotropic class (six problems (7)–(9), one problem (7), (8), (11) and the

three problems (4), (13)).
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3 Computer Design of the Effective Properties of Masonry
Made of Porous, Hollow and Porous–Hollow Bricks

For numerical example we will consider a periodic masonry basic structure as a rep-

resentative volume of masonry wall one brick thick (Fig. 1) that represents the cell of

periodicity in horizontal and vertical directions [11, 16]. The basic cell illustrated in

Figs. 1 and 2a, contains two half-sized in length brick units, two half-sized in height

brick units, and mortar joints between the bricks. Such choice of a representative

volume enables to describe the microstructure of masonry in exact way, and some

numerical experiments have shown that the extension of periodic masonry structure

does not essentially improve the results.

We will investigate the mechanical and thermal properties of masonry wall for

different types of bricks with the same total porosity p = Vp∕V , where Vp is the

volume of pores and voids (hollows), V = abc, a is the length, b is the width and c
is the height of brick.

For hollow brick we will consider eight identical parallelepiped hollows located

on the top surface of the brick with the length ah, width bh and height ch, where all

these dimensions are related to the corresponding dimensions of brick (a, b and c,

respectively). We denote by pm microporosity of the brick material, Vh = 8ahbhch is

the total volume of hollows.

In the case of porous–hollow brick, in order to obtaine the same porosity p we

will select the dimensions ah, bh and ch of hollows so that their total volume Vh can

be represented by formula: Vh = V(p − pm)∕(1 − pm).
We will examine the case of porous brick with only stochastic microporosity (P),

the case of brick with hollows made of dense brick material (H), and the case of

porous–hollow brick made of porous material with the hollows (PH). Basic data for

all considered cases is summarized in Table 1.

Fig. 1 Brick masonry wall with periodic structure
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Fig. 2 Case 1P of basic cell: solid model (a) and finite element model (b)

Table 1 Data for different cases of computation basic cell

Case p pm ah (m) bh (m) ch (m)

1P 0.1 0.1 – – –

1H 0.1 – 0.03 0.02 0.041

1PH 0.1 0.05 0.03 0.02 0.021

2P 0.2 0.2 – – –

2H 0.2 – 0.042 0.028 0.041

2PHa 0.2 0.05 0.038 0.025 0.041

2PHb 0.2 0.1 0.03 0.02 0.045

2PHc 0.2 0.15 0.03 0.02 0.024

Table 2 Material properties

Material E (GPa) 𝜈 𝛼 (10
−6

K
−1

) k (W m
−1

K
−1

)

Non-porous brick 16.7 0.15 5.5 0.8

Mortar 1.0 0.15 10.0 1.0

For all these cases, we consider the following standard input data: brick length

a = 0.25 (m), brick width b = 0.12 (m), brick height c = 0.065 (m), and thickness

of mortar layer h = 0.01 (m). We also adopt the moduli for dense brick and mortar

materials presented in Table 2.

At the beginning we will calculate the effective moduli of the brick with micro-

porosity of stochastic structure. For this case the representative volume 𝛺 was

constructed in ANSYS finite element package in a shape of cube consist from in

n × n × n small geometrically equal cubes which were 20-node hexahedral finite

elements SOLID226 with KEYOPT(1) = 11 [2]. In such two-phase composite the

finite elements of the first phase had material properties of the non-porous brick

from Table 2, and the pores had negligibly small elastic stiffness moduli and ther-

mal conductivities of air: kp = 0.025 (W m
−1

K
−1

). Then the elements with the pore
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Table 3 Effective moduli for porous brick materials

Porosity pm E (GPa) 𝜈 𝛼 (10
−6

K
−1

) k (W m
−1

K
−1

)

0.05 15.49 0.15 5.5 0.75

0.10 14.313 0.15 5.5 0.7

0.15 13.093 0.15 5.5 0.654

0.20 11.973 0.15 5.5 0.607

properties were selected according to irregular structure of the composite. Stochastic

structure was simulated so that for the given value pm of porosity, [pmn3] of the finite

elements by random algorithm were modified to pore material properties ([...] is the

number integer part). For the obtained representative volume we applied different

boundary conditions from (8), (17)–(19), solved the problems (7), (8), (17), (19) and

(4), (19), and in the result we have found the effective moduli of the brick material

with porous stochastic structure given in Table 3.

Further the porous brick material was consider as a homogeneous isotropic

medium with effective properties from Table 3.

For masonry wall from bricks without hollows we mesh the solid model of the

representative unit periodic cell (Fig. 2a) with 3-D 20-node hexahedral structural ele-

ments SOLID95 for elastic and thermal stress problems or with 20-node hexahedral

thermal elements SOLID90 for steady-state thermal problems with the element size

of 5 mm. The corresponding finite element model of the representative unit cell is

shown in Fig. 2b. The resulting regular finite element mesh consists of 38688 ele-

ments and 165779 nodes.

The step of solid model construction is more complicated for masonry wall made

of bricks with hollows (Figs. 3 and 4a). Here, the resulting models differ for the case

cs ≥ c (Fig. 3a) and for the case cs ≤ c (Fig. 4a), because the periodic masonry struc-

ture consists of two half-sized in height brick units. For these complicated periodic

masonry structures we create the finite element meshes with 3-D 10-node tetrahedral

structural elements SOLID92 for elastic problems and for thermal stress problems or

with 10-node tetrahedral thermal elements SOLID87 for steady-state thermal prob-

lems with the same element size of 5 mm (Figs. 3 and 4b). For these cases the sizes

of resulting tetrahedral finite element meshes depend on the dimensions of hollows.

For example, tetrahedral finite element mesh for problem 1H (Fig. 3b) consists of

272809 elements and 387949 nodes, and the finite element mesh for problem 1PH
(Fig. 4b) consists of 293847 elements and 413862 nodes.

Note that we choose sufficiently small value of the element size with two elements

along mortar thickness. Because we also use the accurate midside node serendipity

elements, we obtain high-order finite element system with approximately one million

equations for elastic problems. The coarser meshes or less precise finite elements

give qualitatively similar data, but of course less accurate. We remind that for each

case in order to determine effective moduli we need to solve six boundary elastic

problems, one problem of thermal stresses and three heat conduction problems.
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Fig. 3 Case 1H of basic cell: solid model in transparent image (a) and finite element model (b)

Fig. 4 Case 1PH of basic cell: solid model in transparent image (a) and finite element model (b)

In the results of finite element calculation in ANSYS we obtain the effective elas-

tic stiffness moduli c eff ,TV
𝛾𝜁

(GPa), thermal stress coefficients 𝛽
eff ,TV
𝜁

(MPa/K) and

thermal conductivities k eff ,TV
il (W m

−1
K

−1
) for eight cases of bricks in masonry wall

from Table 1. We present these results by the following formulas, where superscript

"TV" indicate types of the cases (1P, ..., 2PHc):

— effective moduli for the problem 1P

𝐜 eff ,1P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

10.775 1.020 1.769 0 0 0
1.020 6.511 1.130 0 0 0
1.769 1.130 12.529 0 0 0
0 0 0 3.357 0 0
0 0 0 0 4.819 0
0 0 0 0 0 2.987

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (20)

𝜷
eff ,1P = {0.077, 0.052, 0.086, 0, 0, 0} , 𝐤 eff ,1P =

⎡
⎢
⎢⎣

0.748 0 0
0 0.741 0
0 0 0.750

⎤
⎥
⎥⎦
, (21)
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— effective moduli for the problem 1H

𝐜 eff ,1H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

10.498 0.959 1.511 0 0 0
0.959 6.384 0.990 0 0 0
1.511 0.990 11.439 0 0 0
0 0 0 3.163 0 0
0 0 0 0 4.042 0
0 0 0 0 0 2.956

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (22)

𝜷
eff ,1H = {0.073, 0.049, 0.078, 0, 0, 0} , 𝐤 eff ,1H =

⎡
⎢
⎢⎣

0.739 0 0
0 0.735 0
0 0 0.718

⎤
⎥
⎥⎦
, (23)

— effective moduli for the problem 1PH

𝐜 eff ,1PH =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

10.665 0.973 1.651 0 0 0
0.973 6.228 1.070 0 0 0
1.651 1.070 12.048 0 0 0
0 0 0 3.241 0 0
0 0 0 0 4.482 0
0 0 0 0 0 2.928

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (24)

𝜷
eff ,1PH = {0.075, 0.049, 0.083, 0, 0, 0} , 𝐤 eff ,1PH =

⎡
⎢
⎢⎣

0.746 0 0
0 0.729 0
0 0 0.739

⎤
⎥
⎥⎦
,

(25)

— effective moduli for the problem 2P

𝐜 eff ,2P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

9.209 0.937 1.522 0 0 0
0.937 5.899 1.025 0 0 0
1.522 1.025 10.526 0 0 0
0 0 0 2.934 0 0
0 0 0 0 4.071 0
0 0 0 0 0 2.647

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (26)

𝜷
eff ,2P = {0.066, 0.047, 0.073, 0, 0, 0} , 𝐤 eff ,2P =

⎡
⎢
⎢⎣

0.669 0 0
0 0.657 0
0 0 0.673

⎤
⎥
⎥⎦
, (27)

— effective moduli for the problem 2H



Finite Element Simulation of Thermoelastic Effective Properties . . . 217

𝐜 eff ,2H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

9.352 0.833 1.195 0 0 0
0.833 5.553 0.790 0 0 0
1.195 0.790 9.510 0 0 0
0 0 0 2.515 0 0
0 0 0 0 3.302 0
0 0 0 0 0 2.586

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (28)

𝜷
eff ,2H = {0.065, 0.042, 0.065, 0, 0, 0} , 𝐤 eff ,2H =

⎡
⎢
⎢⎣

0.671 0 0
0 0.628 0
0 0 0.634

⎤
⎥
⎥⎦
, (29)

— effective moduli for the problem 2PHa

𝐜 eff ,2PHa =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

9.142 0.848 1.222 0 0 0
0.848 5.633 0.830 0 0 0
1.222 0.790 9.469 0 0 0
0 0 0 2.612 0 0
0 0 0 0 3.294 0
0 0 0 0 0 2.588

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (30)

𝜷
eff ,2PHa = {0.064, 0.042, 0.065, 0, 0, 0} , 𝐤 eff ,2PHa =

⎡
⎢
⎢⎣

0.662 0 0
0 0.636 0
0 0 0.634

⎤
⎥
⎥⎦
,

(31)

— effective moduli for the problem 2PHb

𝐜 eff ,2PHb =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

9.001 0.878 1.286 0 0 0
0.878 5.823 0.888 0 0 0
1.286 0.888 9.577 0 0 0
0 0 0 2.762 0 0
0 0 0 0 3.371 0
0 0 0 0 0 2.629

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (32)

𝜷
eff ,2PHb = {0.064, 0.045, 0.066, 0, 0, 0} , 𝐤 eff ,2PHb =

⎡
⎢
⎢⎣

0.658 0 0
0 0.651 0
0 0 0.639

⎤
⎥
⎥⎦
,

(33)

— effective moduli for the problem 2PHc
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𝐜 eff ,2PHc =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

9.080 0.887 1.402 0 0 0
0.887 5.650 0.955 0 0 0
1.402 0.955 10.030 0 0 0
0 0 0 2.810 0 0
0 0 0 0 3.726 0
0 0 0 0 0 2.586

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

, (34)

𝜷
eff ,2PHc = {0.065, 0.045, 0.070, 0, 0, 0} , 𝐤 eff ,2PHc =

⎡
⎢
⎢⎣

0.664 0 0
0 0.645 0
0 0 0.658

⎤
⎥
⎥⎦
. (35)

4 Discussion and Conclusions

As it can be seen from (20)–(35), the effective elastic stiffnesses, thermal stress coef-

ficients and thermal conductivities of the composite have significantly different val-

ues in the directions x1 (along the wall length), x2 (along the wall height) and x3
(along the wall width). The obtained orthotropic class of anisotropy for the mechan-

ical and temperature moduli is due only to the geometric structure of the masonry

wall, as all phases of masonry are taken to be isotropic.

As the Young’s moduli of brick and mortar differ by one order of magnitude, the

brick material will be stiffer in the directions where there is less mortar material.

Hence, the overall stiffness of the structure has the largest value in the direction of

the masonry wall thickness, i.e. in the axis x3. In this case under the extension along

x3 in the major part of the composite the directions of tension along the thickness

go only along the brick material, which is stiffer. In the case of the extension along

the length, i.e. in the axis x1, the directions of tension cross both materials of brick

and mortar. However, the zones filled by the mortar go along the whole basic unit

cell, therefore the whole structure remains almost as stiff as in the case of the tension

along x3. The masonry composite is softer along the direction of the height of the

masonry wall, i.e. in the axis x2, because here under the tension along the whole

layer the soft mortar is undergoing uniform tension.

The moduli c
𝛾𝜁

at 𝛾 ≠ 𝜁 , 𝛾, 𝜁 = 1, 2, 3 are considerably smaller than the axial

tension-compression moduli, because both brick and mortar Poisson’s ratios are

small for the considered basic unit cell. The shear moduli are smaller than the axial

moduli because of the same reason, and also because the shear strains entirely affect

the soft layers of mortar for all homogenization shear problems. Note that these

trends for the elastic moduli previously have been mentioned for other types of

masonry in [16].

The thermal stress coefficients 𝛽
eff ,TV
𝛾

with 𝛾 = 1, 2, 3 are related to each other in

the same manner as the stiffness moduli c eff ,TV
𝛾𝛾

. The reason for this is that the thermal

stress coefficients are proportional to the stiffness moduli from the corresponding

matrix row (𝛽
𝛾
= c

𝛾𝜁
𝛼
𝜁
, where 𝛼

𝜁
are the thermal expansion coefficients).
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Thermal conductivities k eff ,TV
ii for each fixed type of brick differ from each other

to a lesser extent. Since we accept that the thermal conductivity of the mortar is

greater that the thermal conductivity of solid brick, then, depending on the porosity

and on the direction in masonry wall, there may be cases when different coefficients

k eff ,TV
ii dominate.

If we compare the results for the laying of bricks of different types, we can make

the following conclusions.

In the cases 1P, 1H, 1PH, i.e. for low porosity, elastic stiffness moduli, thermal

stress coefficients and thermal conductivities have the largest value in the case of

porous brick and have the smallest values in the case of bricks with hollows, because

c eff ,1P
𝛾𝜁

≥ c eff ,1PH
𝛾𝜁

≥ c eff ,1H
𝛾𝜁

, 𝛽
eff ,1P
𝜁

≥ 𝛽
eff ,1PH
𝜁

≥ 𝛽
eff ,1H
𝜁

, k eff ,1P
ii ≥ k eff ,1PH

ii ≥ k eff ,1H
ii ,

except k eff ,1PH
22 .

Thus, among the cases 1P, 1H, 1PH the masonry made of porous bricks is more

stable, but has worse thermal insulation properties.

The moduli of masonry from (20)–(35) decrease with an increase of total poros-

ity. However, for total porosity p = 0.2 the comparative values of moduli for the

cases 2P, 2H, 2PHa, 2PHb and 2PHc depend on the size of the hollows in different

directions, and we cannot make simple conclusions about all moduli. Nevertheless,

these results allow us to draw conclusions about the advantages and disadvantages

for each case of the brick structure.
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Spectral Properties of Nanodimensional
Piezoelectric Bodies with Voids
and Surface Effects

G. Iovane and A.V. Nasedkin

Abstract This chapter considers the eigenvalue problems for nanodimensional

piezoelectric bodies with voids and with account for uncoupled mechanical and

electric surface effect. The piezoelectric body is examined in frictionless contact

with massive rigid plane punches and covered by the system of open-circuited and

short-circuited electrodes. The linear theory of piezoelectric materials with voids

for porosity change properties according to Cowin-Nunziato model is used. For

modelling the nanodimensional effects the theory of uncoupled surface stresses and

dielectric films is applied. The weak statements for considered eigenvalue prob-

lem are given in the extended and reduced forms. By using methods of functional

analysis, the discreteness of the spectrum, completeness of the eigenfunctions and

orthogonality relations are proved. A minimax principle for natural frequencies is

constructed which has the properties of minimality, similar to the well-known min-

imax principle for problems with pure elastic media. As a consequence of the gen-

eral principles, the properties of an increase or a decrease in the natural frequencies,

when the mechanical, electric and “porous” boundary conditions and the moduli of

piezoelectric body with voids change, are established. All of these results have been

determined for both problems with and without account for surface effects.

Keywords Piezoelectricity ⋅ Nanomechanics ⋅ Surface effect ⋅ Porous material ⋅
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1 Introduction

As it is well known, a several nanomaterials have anomalous physical properties the

differ considerably from usual analogous macromaterials. One of the factors that are

responsible of the behavior of nanomaterials can be the surface effects. Numerous

recent investigations (see reviews [23, 24]) show, that for nanosize bodies the sur-

face stresses play a considerable role and affect to the change of mechanical stiffness.

Lately, in several works the theory of elasticity with surface stresses was extended

for piezoelectric solids, see [7, 9–11, 13, 20, 21, 25] among others. Following these

paper, similar to the elastic bodies, when analyzing the piezoelectric nanosize media

one can introduce uncoupled surface stresses and distributed electric charges (dielec-

tric films). This approach is used in the present work for investigation of the natural

oscillations of the piezoelectric nanosize bodies with voids.

The present paper is performed in the context of the linear theory of piezoelec-

tric materials with surface effects and with voids in accordance with porosity change

properties in the Cowin-Nunziato’s theory [4–6, 14–17]. Here, we restrict our atten-

tion to eigenvalue problems for piezoelectric media with surface effects and voids.

The investigated problem also becomes complicated if we consider non-classical

contact mechanical boundary conditions with rigid stamps (punches) and electric

boundary conditions for the system of open-circuited and short-circuited electrodes.

Note that the boundary conditions for covered electrodes surfaces are required for

modelling the real piezoelectric devices. The similar statments for the correspondent

electroelasticity problem has been considered in [2], but only for pure piezoelectric

body without taking into account surface effects and mass characteristics of punches,

in [14] for elastic body with voids without taking into account surface effects and the

piezoelectric properties of material, in [15] for piezoelectric body with voids without

taking into account surface effects, and also in [8, 19] for piezoelectric body with

surface effects, but without taking into account porosity change properties.

After having formulated the usual statement of eigenvalue problem for piezoelec-

tric media with voids and surface effects, we obtain the weak or generalized settings

of these problems. For the displacement function and for electric potential func-

tion by analogy with [2, 14, 15] we introduce special spaces of displacement func-

tions conformable to possible motions of rigid stamps and special spaces of electric

potential functions satisfying homogeneous boundaries conditions for the system of

open-circuited and short-circuited electrodes, but with modifications related to tack-

ing into account the uncoupled mechanical and electric surface effects [8, 19]. We

also introduce the usual Sobolev space of porosity change function [14, 15].

Reducing the porosity function and the electric potential function from quasi-

static equations we get a generalized statement of eigenvalue problem only for the

functions of mechanical displacements. The properties of this problem turn out to be

analogous to the properties of the problem for purely elastic medium. This allows to

easily determine its spectral properties and minimax principle for natural frequencies

of the piezoelectric body with voids and surface effects.
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Then, following the concept in [2, 8, 14, 15, 19], we investigate the properties

of eigenvalues changes depending on the modifications of the surface effects, the

material properties or the types of mechanical, electric and “porous” boundary con-

ditions.

2 Classical Formulation of Eigenvalue Problems for
Piezoelectric Media with Voids and Surface Effects

Let 𝛺 be a region occupied by the piezoelectric material with voids; 𝛤 = 𝜕𝛺 is

the boundary of the region, 𝐧 is the vector of the external unit normal to 𝛤 . We

will assume that the region 𝛺 and its boundary 𝛤 are subjected to the following

conditions: 𝛺 is the sum of a finite number of sets, star-shaped with respect to any

spheres contained in them, while 𝛤 is a Lipschitz boundary of class C1
.

We consider linear piezoelectric material with voids where the porosity is sim-

ulated under Cowin-Nunziato model with memory effect for the intrinsic equili-

brated body force [4, 6]. Confining ourselves to investigate the harmonic vibration

exp(j𝜔t) with a circular frequency 𝜔, we will only use the amplitude values for all

physical quantities without additional conditions. Let 𝐮 = 𝐮(𝐱) denote the vector of

mechanical displacements; 𝜑 = 𝜑(𝐱) is the electric potential; 𝜓 = 𝜓(𝐱) is the poros-

ity change function (the change in the volume fraction from the reference configura-

tion); (𝐱) = {x1, x2, x3} = {x, y, z}. By the first two functions one can determine the

second-order strain tensor 𝜺 = 𝜺(𝐮) and the electric field vector 𝐄 = 𝐄(𝜑)

𝜺 = (∇𝐮 + (∇𝐮)T )∕2 , 𝐄 = −∇𝜑 , (1)

where by (...)T we define the transpose operation.

In the context of the linear theory, we assume the constitutive equations for piezo-

electric bodies similarly to [5] with missing some terms [15]

𝝈 = 𝐜 ∶ 𝜺 − 𝐞T ⋅ 𝐄 + 𝐁𝜓 , (2)

𝐃 = 𝐞 ∶ 𝜺 + 𝜿 ⋅ 𝐄 − 𝐠𝜓 −𝐆 ⋅ ∇𝜓 , (3)

𝐡 = 𝐀∇𝜓 +𝐆 ⋅ 𝐄 , g = −𝐁 ∶ 𝜺 − 𝐠 ⋅ 𝐄 − 𝜉𝜓 , (4)

where 𝝈 is the second-order stress tensor; 𝐃 is the electric displacement vector; 𝐡
is the equilibrated stress vector; g is the intrinsic equilibrated body force; 𝐜 = 𝐜E

is the forth-order tensor of elastic modules, measured at constant electric field; 𝐞
is the third-order tensor of piezomoduli; 𝜿 = 𝜿

S = 𝜺
S

is the second-order tensor of

dielectric permittivities, measured at constant strain; 𝐀, 𝐁, 𝐠, 𝐆 and 𝜉 are the con-

stitutive constants characterizing the properties of porosity changes (𝐀, 𝐁, 𝐆 are the

second-order tensors, and 𝐠 is the vector; and the symbol “:” denotes the double
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scalar product operation between two tensors). Note that in comparison with [5] we

use some different definitions and neglect dependencies from the temperature. We

also omitted some terms so that when considering materials without piezoelectric

connectivity we could get the relationships adopted in [4] for the case of pure elastic

materials with voids.

In the case of homogeneous harmonic problem for piezoelectric medium with

voids without damping and inertia effect, caused from porosity, we have the follow-

ing system of field equations

− ∇ ⋅ 𝝈 = 𝜌𝜔
2𝐮 , (5)

∇ ⋅ 𝐃 = 0 , (6)

∇ ⋅ 𝐡 + g = 0 , (7)

where 𝜌 is the density of material.

We suppose that the density function 𝜌(𝐱) is piecewise-continuous and ∃𝜌0 > 0 ∶
𝜌(𝐱) ≥ 𝜌0. The material moduli of the medium in (2)–(4) are piecewise-continuous

together with their first derivatives by 𝐱 with usual symmetry conditions (cijkl =
cjikl = cklij, eikl = eilk, 𝜅kl = 𝜅lk, Akl = Alk, Bkl = Blk, Gkl = Glk), and for the positive

definiteness of intrinsic volumetric energy 𝛱
𝛺
(𝜺,𝐄, 𝜓,𝐛) the following inequality

should satisfy ∀ 𝜺 = 𝜺
T
, 𝐄

∃ c
𝛺
> 0 ∶ 𝛱

𝛺
(𝜺,𝐄, 𝜓,𝐛) ≥ c

𝛺
(𝜺T ∶ 𝜺 + 𝜓

2 + 𝐛T ⋅ 𝐛 + 𝐄T ⋅ 𝐄) , (8)

where

𝛱
𝛺
(𝜺,𝐄, 𝜓,𝐛) = 1

2
(𝜺T ∶ 𝐜 ∶ 𝜺 + 𝜉𝜓

2 + 2𝐁T ∶ 𝜺𝜓 + 𝐛T ⋅ 𝐀 ⋅ 𝐛 + 𝐄T ⋅ 𝜿 ⋅ 𝐄) . (9)

The formulas (1)–(7) give the coupled system of equations for piezoelectric body

with voids relatively to the components of the vector of mechanical displacements 𝐮,

the functions of electric potential 𝜑 and the porosity change function 𝜓 . For eigen-

value problem we must add to the system (1)–(7) the homogeneous boundary condi-

tions. The boundary conditions are of three types: mechanical, electric and “porous”.

To formulate the mechanical boundary conditions we will assume that the bound-

ary 𝛤 can be split into two subsets: 𝛤
𝜎

and 𝛤u (𝛤 = 𝛤
𝜎
∪ 𝛤u). We suggest that at the

boundary 𝛤
𝜎

there are surface stresses 𝝉
s

in accordance with the Gurtin – Murdoch

model [12], i.e.

𝐧 ⋅ 𝝈 = ∇s ⋅ 𝝉s
, 𝐱 ∈ 𝛤

𝜎
, (10)

where ∇s
is the surface gradient operator, associated with spatial nabla-operator by

the formula ∇s = ∇ − 𝐧(𝜕∕𝜕r), where r is the coordinate, measured by the normal

𝛤
𝜎
; 𝝉

s
is the second-order tensor of surface stresses.
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Fig. 1 Contact boundary

with rigid plane punch

As for purely elastic body, when taking into account the surface stresses we adopt

that the surface stresses 𝝉
s

are jointed only to the surface strains 𝜺
s

by the uncoupled

mechanical constitutive relations

𝝉
s = 𝐜s ∶ 𝜺

s
, 𝜺

s = (∇s𝐮s + (∇s𝐮s)T )∕2 , 𝐮s = 𝐀 ⋅ 𝐮 , (11)

where 𝐜s
is the forth-order tensor of surface elastic moduli; 𝐀 = 𝐈 − 𝐧⊗ 𝐧, 𝐈 is the

unit tensor in R3
.

The properties of the tensor of surface elastic moduli 𝐜s
are analogous to the

corresponding properties of the tensor 𝐜, i.e. cs
ijkl = cs

jikl = cs
klij, and for all 𝜺

s
with

structure (11)

∃ c
𝛤
> 0 ∶ 𝛱

𝛤m(𝜺s) = 1
2
𝜺

sT ∶ 𝐜s ∶ 𝜺
s
≥ c

𝛤
𝜺

sT ∶ 𝜺
s
, (12)

that follow from the condition of the positive definiteness of the surface energy den-

sity 𝛱
𝛤m(𝜺s).

Suppose that 𝛤u = ∪𝛤uj; j = 0, 1, ...,L; 𝛤u0 ≠ ∅, 𝛤uj do not border one another,

while among 𝛤uj there are L + 1 − l rigidly clamped surfaces (j ∈ Jr = {0, l + 1, l +
2, ...,L}) and l plane regions (j ∈ Jp = {1, 2, ..., l}), in contact with rigid massive

punches. We will connect with region 𝛤uj, j ∈ Jp the local coordinate system

O(j)
𝜉
𝜉
(j)
1 𝜉

(j)
2 𝜉

(j)
3 so that the axis 𝜉

(j)
3 coincides in direction with direction of external

normal 𝐧 in the point O(j)
𝜉

and the axes 𝜉
(j)
1 and 𝜉

(j)
2 will be the main axes of inertia

for the punch j (see Fig. 1). Then, we can assume the following boundary conditions

on 𝛤uj

𝐧T ⋅ 𝐮 =
2∑

k=0
𝛼

u
jk𝜉

(j)
k , (𝜉(j)0 = 1), 𝐱 ∈ 𝛤uj, j ∈ Jp , (13)

∫
𝛤uj

𝜉
(j)
p 𝐧T ⋅ 𝝈 ⋅ 𝐧 d𝛤 = 𝜔

2
𝛼

u
jpM(j)

p , p = 0, 1, 2, j ∈ Jp , (14)
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𝐧 ⋅ 𝝈 − (𝐧T ⋅ 𝝈 ⋅ 𝐧)𝐧 = ∇s ⋅ 𝝉s
, 𝐱 ∈ 𝛤uj , j ∈ Jp , (15)

𝐮 = 0, 𝐱 ∈ 𝛤uj, j ∈ Jr, 𝛤u0 ≠ ∅ , (16)

where in (13), (14) the summation by repeating index j and p is missing; 𝛼
u
j0 is the

normal displacement of the punch with number j; 𝛼ju
j1 = −𝜃(j)2 , 𝛼

u
j2 = 𝜃

(j)
1 are the punch

rotation angles about axes 𝜉
(j)
2 and 𝜉

(j)
1 respectively; M(j)

0 is the mass of punch; M(j)
1 =

J
𝜉
(j)
2 𝜉

(j)
2

, M(j)
2 = J

𝜉
(j)
1 𝜉

(j)
1

are the inertia moments of punch.

Note that, in the frictionless contact of the nanodimensional body with a rigid

plane punch, the tangential stresses are not zero but, according to (15), are counter-

balanced by the action of surface stresses, just as in (10).

To set the electric boundary conditions we assume that the surface 𝛤 is also

divided in two subsets: 𝛤D and 𝛤
𝜑

(𝛤 = 𝛤D ∪ 𝛤
𝜑

).

The region 𝛤D does not contain electrodes, and the following uncoupled electrical

constitutive conditions are satisfied on them:

𝐧T ⋅ 𝐃 = ∇s ⋅ 𝐝s
, 𝐱 ∈ 𝛤D . (17)

where 𝐝s = 𝐀 ⋅ 𝜿s ⋅ 𝐀 ⋅ 𝐄s
, 𝐄s = −∇s

𝜑, 𝜿
s

is the second-order dielectric permittivity

tensor that is symmetrical positive definite relatively to the vectors 𝐄s
.

The subset 𝛤
𝜑

itself is subdivided into M + 1 subdomains 𝛤
𝜑j (j ∈ JQ ∪ JV ), JQ =

{1, 2, ...,m}, JV = {0,m + 1, ...,M}), which are not adjacent to one another, coated

by infinitely thin electrodes. We will specify the following boundary conditions on

these areas

𝜑 = 𝛷j, 𝐱 ∈ 𝛤
𝜑j, j ∈ JQ, 𝛷j = const , (18)

∫
𝛤
𝜑j

𝐧T ⋅ 𝐃 d𝛤 = 0, 𝐱 ∈ 𝛤
𝜑j, j ∈ JQ , (19)

𝜑 = 0, 𝐱 ∈ 𝛤
𝜑j, j ∈ JV , 𝛤j0 ≠ ∅ . (20)

By (18), (19) there are m open-circuited electrodes on which the electric poten-

tial 𝛷j are initially unknown, but the overall electric charges on each electrode are

equal to zero. The remaining M + 1 − m electrodes are assumed to be short-circuited

with zero value of the potential. The cases m = 0 and m = M are not ignored. In the

case of m = 0 all the electrodes are short-circuit. With m = M the electric poten-

tial appears to be defined up to an arbitrary constant, and without loss of generality

for the uniqueness of the solution we can adopt the condition (20) for one of the

electrodes, for example, for 𝛤j0.

For clearness, a variant of mechanical boundary conditions (13)–(16) for L = 2,

l = 1 and a variant of electric boundary conditions (18)–(20) for M = 3, m = 2 are

shown on Fig. 2, (a) and (b), respectively.
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Fig. 2 Examples of boundary conditions: mechanical boundary conditions for L = 2, l = 1 (a);

electric boundary conditions for M = 3, m = 2 (b)

To specify the “porous” boundary condition we suppose that the boundary 𝛤

is also split into two parts: 𝛤
𝜓0 and 𝛤

𝜓n (𝛤 = 𝛤
𝜓0 ∪ 𝛤

𝜓n). We take the principal

condition (Dirichlet condition) on the surface 𝛤
𝜓0

𝜓 = 0, 𝐱 ∈ 𝛤
𝜓0 , (21)

and we accept the Neumann condition on 𝛤
𝜓n

𝐧T ⋅ 𝐡 = 0, 𝐱 ∈ 𝛤
𝜓n . (22)

Note that in real situations the boundary condition (21) is usually absent.

Here we assume that all the areas 𝛤
𝜎
, 𝛤uj, 𝛤D, 𝛤

𝜑j, 𝛤𝜓0 and 𝛤
𝜓n have the Lipschitz

boundaries of the class C1
.

Problem (1)–(22) is the eigenvalue problem of natural oscillations of piezoelectric

body with voids and with surface effects and this problem consists in the determi-

nation of natural frequencies 𝜔 (or eigenvalues 𝜆 = 𝜔
2
) and corresponding eigen-

functions 𝐮, 𝜑, 𝜓 , which give non-trivial solutions of the homogeneous boundary

problem.

The spectral properties of this problem will be set using the approaches applied

in [1, 2, 8, 14, 15, 19, 20].

3 Generalized Problem Formulations

We transfer from the formulations (1)–(22) of the eigenvalue problems for piezo-

electric bodies with voids and surface effects to their generalized or weak settings.

Previously we will introduce the space of functions 𝜑, 𝜓 and of vector functions

𝐮, defined on 𝛺, which we will need later.

We denote by H0
𝜌

the space of vector functions 𝐮 ∈ L2 with scalar product

(𝐯,𝐮)H0
𝜌

=
∫
𝛺

𝜌𝐯T ⋅ 𝐮 d𝛺 . (23)

On the set of vector functions 𝐮 ∈ C1
which satisfy (16) on 𝛤uj, j ∈ Jr, and (13)

for arbitrary 𝛼
u
jk on 𝛤uj, j ∈ Jp, we introduce the scalar product
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(𝐯,𝐮)H1
ul
=
∫
𝛺

(∇𝐯)T ∶ (∇𝐮) d𝛺 +
∫
𝛤
𝜏

(∇s𝐯s)T ∶ (∇s𝐮s) d𝛤 , (24)

where 𝛤
𝜏
= 𝛤

𝜎
∪ (∪j∈Jp

𝛤uj), 𝐯s = 𝐀 ⋅ 𝐯.

The closure of this set of vector functions 𝐮 in the norm generated by scalar prod-

uct (24) will be denoted by H1
ul, where l is the number of rigid punches.

On the set of functions 𝜑 ∈ C1
which satisfy (20) on 𝛤

𝜑j, j ∈ JV , and (18) for

arbitrary 𝛷j on 𝛤
𝜑j, j ∈ JQ, we will introduce the scalar product

(𝜒, 𝜑)H1
𝜑m

=
∫
𝛺

(∇𝜒)T ⋅ ∇𝜑 d𝛺 +
∫
𝛤D

(∇s
𝜒)T ⋅ ∇s

𝜑 d𝛤 . (25)

The closure of this set of functions 𝜑 in the norm generated by scalar product (25)

will be denoted by H1
𝜑m, where m is the number of open-circuite electrodes.

We will introduce the scalar product on the set of functions 𝜓 ∈ C1
which satisfy

(21)

(𝜂, 𝜓)H1
𝜓

=
∫
𝛺

(∇𝜂)T ⋅ ∇𝜓 d𝛺 . (26)

The closure of this set in the norm generated by scalar product (26) will be denoted

by H1
𝜓

.

In order to formulate the generalized or weak solution of eigenvalue problem for

piezoelectric media with voids and surface effects we multiply equations (5) by arbi-

trary vector function 𝐯 ∈ H1
u, equation (6) by some function 𝜒 ∈ H1

𝜑m, and Eq. (7) by

function 𝜂 ∈ H1
𝜓

. By integrating the obtained equations on 𝛺 and by using the stan-

dard technique of the integration by parts, with Eqs. (1)–(4) and formulated boundary

conditions, we obtain the following integral relations

c(𝐯,𝐮) + e(𝜑, 𝐯) + b(𝐯, 𝜓) = 𝜔
2
�̃�(𝐯,𝐮) , (27)

− e(𝜒,𝐮) + 𝜅(𝜒, 𝜑) + g(𝜒, 𝜓) = 0 , (28)

b(𝐮, 𝜂) − g(𝜑, 𝜂) + a(𝜂, 𝜓) = 0 , (29)

where

�̃�(𝐯,𝐮) = 𝜌(𝐯,𝐮) +
l∑

j=1

2∑

k=0
𝛼

v
jk𝛼

u
jkM(j)

k , 𝜌(𝐯,𝐮) = (𝐯,𝐮)H0
𝜌

, (30)

c(𝐯,𝐮) = c
𝛺
(𝐯,𝐮) + c

𝛤
(𝐯,𝐮) , 𝜅(𝜒, 𝜑) = 𝜅

𝛺
(𝜒, 𝜑) + 𝜅

𝛤
(𝜒, 𝜑) , (31)

c
𝛺
(𝐯,𝐮) =

∫
𝛺

𝜺(𝐯) ∶ 𝐜 ∶ 𝜺(𝐮) d𝛺, c
𝛤
(𝐯,𝐮) =

∫
𝛤
𝜏

𝜺
s(𝐯) ∶ 𝐜s ∶ 𝜺

s(𝐮) d𝛤 , (32)
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e(𝜑, 𝐯) =
∫
𝛺

𝐄(𝜑) ⋅ 𝐞 ∶ 𝜺(𝐯) d𝛺 , b(𝐯, 𝜓) =
∫
𝛺

𝐁 ∶ 𝜺(𝐯)𝜓 d𝛺 , (33)

𝜅
𝛺
(𝜒, 𝜑) =

∫
𝛺

𝐄(𝜒) ⋅ 𝜿 ⋅ 𝐄(𝜑) d𝛺 , 𝜅
𝛤
(𝜒, 𝜑) =

∫
𝛤D

𝐄s(𝜒) ⋅ 𝜿s ⋅ 𝐄s(𝜑) d𝛤 ,

(34)

g(𝜒, 𝜓) =
∫
𝛺

(∇𝜒 ⋅𝐆 ⋅ ∇𝜓 + 𝐠T ⋅ ∇𝜒 𝜓) d𝛺 , (35)

a(𝜂, 𝜓) =
∫
𝛺

(∇𝜂 ⋅ 𝐀 ⋅ ∇𝜓 + 𝜉𝜂𝜓) d𝛺 . (36)

As it can be easily noted, an account for surface effects for piezoelectric bodies in

relations (27)–(36) is reduced to adding the forms c
𝛤
(𝐯,𝐮) and 𝜅

𝛤
(𝜒, 𝜑). Therefore

we can use the approaches from [2, 8, 14, 15] for conventional eigenvalue problems

for elastic and piezoelectric bodies only with voids or only with surface effects.

By virtue of the properties assumed earlier, the forms �̃�(𝐯,𝐮), c(𝐯,𝐮), 𝜅(𝜒, 𝜑)
and a(𝜂, 𝜓) are symmetrical, bilinear and positive defined in L2, H1

ul, H
1
𝜑m and H1

𝜓

respectively, while e(𝜑, 𝐯), b(𝐯, 𝜓) and g(𝜒, 𝜓) are bilinear forms.

We will transform the system (27)–(29) by consecutive elimination of the func-

tions 𝜓 and 𝜑.

Since for fixed 𝐮 ∈ H1
ul, 𝜑 ∈ H1

𝜑m and 𝜓 ∈ H1
𝜓

the forms b(𝐮, 𝜂), g(𝜑, 𝜂) and

a(𝜂, 𝜓) are linear-bounded functionals in H1
𝜓

, by Riesz’ theorem [22] the elements

b𝐮, g𝜑, a𝜓 ∈ H1
𝜓

exist and are unique so for that for 𝜂 ∈ H1
𝜓

b(𝐮, 𝜂) = (b𝐮, 𝜂)H1
𝜓

, g(𝜑, 𝜂) = (g𝜑, 𝜂)H1
𝜓

, a(𝜂, 𝜓) = (𝜂, a𝜓)H1
𝜓

. (37)

It is obvious that b𝐮, g𝜑 and a𝜓 are linear operators acting from H1
ul into H1

𝜓
,

from H1
𝜑m into H1

𝜓
and from H1

𝜓
into H1

𝜓
, respectively, and an inverse exists for the

operator a𝜓 . Then it follows from (29) and (37) that

a𝜓 = −b𝐮 + g𝜑, 𝜓 = −B𝐮 + G𝜑, B = a−1b, G = a−1g , (38)

where the operators B and G act from H1
ul into H1

𝜓
and from H1

𝜑m into H1
𝜓

, respec-

tively, and are linear and bounded.

Using (37), (38) we can reduce system (27)–(29) to the form

c̃(𝐯,𝐮) + ẽ(𝜑, 𝐯) = 𝜔
2
�̃�(𝐯,𝐮) , (39)

− ẽ(𝜒,𝐮) + �̃�(𝜒, 𝜑) = 0 , (40)

where

c̃(𝐯,𝐮) = c(𝐯,𝐮) − a(B𝐯,B𝐮) , (41)
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ẽ(𝜑, 𝐯) = e(𝜑, 𝐯) + a(B𝐯,G𝜑), �̃�(𝜒, 𝜑) = 𝜅(𝜒, 𝜑) + a(G𝜑,G𝜒) . (42)

Note that for obtaining the system (39), (40) with (41), (42) we used the transform

b(𝐯, 𝜓) = (b𝐯, 𝜓)H1
𝜓

= (aa−1b𝐯, 𝜓)H1
𝜓

= a(B𝐯, 𝜓) and similar chains of equalities.

By excluding the porosity change function 𝜓 we obtain the system (39), (40),

which describe the natural vibrations for porous nanosized electroelastic medium

with modified piezoelectric properties. By virtue of positive definited potential vol-

umetric and surface energies of material (9), (12) and similar for electric surface

energy 𝛱
𝛤 e(𝐄s) = (1∕2)𝐝sT ⋅ 𝐄s

, the forms c̃(𝐯,𝐮) and �̃�(𝜒, 𝜑) are positive defined

in H1
ul and H1

𝜑m, respectively. Therefore we can proceed with reduction of system

(39), (40) by eliminating the function of electric potential 𝜑.

Analogously, since for fixed 𝐮 ∈ H1
ul and 𝜑 ∈ H1

𝜑m ẽ(𝜒,𝐮) and �̃�(𝜒, 𝜑) are linear-

bounded functions in H1
𝜑m, by Riesz’ theorem the elements ẽ𝐮, �̃�𝜑 ∈ H1

𝜑m exist and

are unique so for that for 𝜒 ∈ H1
𝜑m

ẽ(𝜒,𝐮) = (𝜒, ẽ𝐮)H1
𝜑m
, �̃�(𝜒, 𝜑) = (𝜒, �̃�𝜑)H1

𝜓

. (43)

It is obvious that ẽ𝐮 and �̃�𝜑 are linear operators acting from H1
ul into H1

𝜑m and

from H1
𝜑m into H1

𝜑m, respectively, and an inverse exists for the operator �̃�𝜑.

From (40) and (43) we obtain that

�̃�𝜑 = ẽ𝐮, 𝜑 = Alm𝐮, Alm = �̃�
−1ẽ , (44)

where the operator Alm acting from H1
ul into H1

𝜑m, is linear and bounded and the

subscripts l, m indicate to the problem with l rigid punches and m open-circuited

electrodes.

Using (43), (44) we can represent system (39), (40) in the final form

c̃lm(𝐯,𝐮) = 𝜔
2
�̃�(𝐯,𝐮) , (45)

where

c̃lm(𝐯,𝐮) = c̃(𝐯,𝐮) + �̃�(Alm𝐯,Alm𝐮) . (46)

Definition. We will call the set of quantities (𝜔2
, 𝐮 ∈ H1

ul, 𝜑 ∈ H1
𝜑m, 𝜓 ∈ H1

𝜓
)

which satisfies (45) for arbitrary vector function 𝐯 ∈ H1
ul or, which is equivalent (39),

(40) for arbitrary 𝐯 ∈ H1
ul, 𝜒 ∈ H1

𝜑m or (27)–(29) for arbitrary 𝐯 ∈ H1
ul, 𝜒 ∈ H1

𝜑m,

𝜂 ∈ H1
𝜓

, a generalized solution of eigenvalue problem for piezoelectric body with
voids and with uncoupled surface mechanical and electric effects.

By repeating the topics presented in [3], we can show that the space H1
c , which

is the closure of the set of vector function 𝐮 ∈ C1
, satisfying (13) and (16) in the

norm generated by the scalar product (46), is the equivalent to H1
ul, and the next two
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theorems follow from the complete continuity of the embedding operator from H1
ul

into H0
𝜌
, as in the general situation [18] (see, also [8, 15, 19]).

Theorem 1 The operator equation (45) for piezoelectric body with voids and with
surface effects has a discrete spectrum 0 < 𝜔

2
1 ≤ 𝜔

2
2 ≤ ... ≤ 𝜔

2
k ≤ ...; 𝜔

2
k → ∞ as

k → ∞, and the corresponding eigenfunctions 𝐮(k) form a system that is orthogonal
and complete in the spaces H0

𝜌
and H1

c .

Theorem 2 (The Courant–Fisher minimax principle).

𝜔
2
k = max

𝐰1,𝐰2,...,𝐰k−1∈H1
ul

⎡
⎢
⎢
⎢
⎢⎣

min
𝐯≠0, 𝐯∈H1

ul

�̃�(𝐯,𝐰j)=0; j=1,2,...,k−1

Rlm(𝐯)

⎤
⎥
⎥
⎥
⎥⎦

where Rlm(𝐯) is the Rayleigh quotient

Rlm(𝐯) =
c̃lm(𝐯, 𝐯)
�̃�(𝐯, 𝐯)

. (47)

Note that these theorems are important for the justification of the mode superpo-
sition method of solving harmonic and transient problems for piezoelectric media
with voids and with surface effects.

We observe that the orthogonality conditions in Theorem 1 can be presented in
the forms

(𝐮(i),𝐮(j))H0
𝜌

= 0, (𝐮(i),𝐮(j))H1
c
= 0, i ≠ j , (48)

and also in the extended writing (i ≠ j)

c(𝐮(i),𝐮(j)) + e(𝜑(j)
,𝐮(i)) + b(𝐮(i), 𝜓 (j)) = 0 , (49)

− e(𝜑(i)
,𝐮(j)) + 𝜅(𝜑(i)

, 𝜑
(j)) + g(𝜑(i)

, 𝜓
(j)) = 0 , (50)

b(𝐮(j), 𝜓 (i)) − g(𝜑(j)
, 𝜓

(i)) + a(𝜓 (j)
, 𝜓

(i)) = 0 , (51)

where 𝜑
(i) = Alm𝐮(i), 𝜓 (i) = −B𝐮(i) + G𝜑

(i).
There are another reduced forms of the orthogonality relations between (𝐮(i), 𝜑(j))

and (𝐮(i), 𝜓 (j)) similarly to stated in [15].
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4 Theorems about Changes of Eigenfrequencies

We establish some consequences from variation descriptions of natural frequencies

of piezoelectric bodies with voids and surface effects. We will formulate these con-

sequences in the form of the theorems about the change of natural frequencies under

the changes of boundary conditions and material parameters of the medium. These

changes will be indicated explicitly in the formulations of the following theorems,

and for the initial and modified problems not specified in formulations of theorems

the determining parameters are assumed to be identical. The proofs of further the-

orems will be omitted as they can be carried out analogously to the corresponding

theorems for elastic and piezoelectric bodies with voids and without voids [2, 14,

15] and for elastic and piezoelectric bodies with surface effects [1, 8, 19].

At the beginning we note the influence of the surface effects. Along with the prob-

lem formulated we will also consider the corresponding problems without account

of surface stresses (mechanical surface effects) or without account of surface electric

charges (electric surface effects). We note different variables for the problems with-

out surface stresses by subscripts “fu”, and the variables for the problems without

surface dielectric films by subscripts “f𝜑”.

In the problem without surface stresses instead of the boundary condition (10) we

use conventional natural condition 𝐧 ⋅ 𝝈 = 0 , 𝐱 ∈ 𝛤
𝜎
, and instead of the bound-

ary condition (15) we use natural condition 𝐧 ⋅ 𝝈 − (𝐧T ⋅ 𝝈 ⋅ 𝐧)𝐧 = ∇s ⋅ 𝝉s
, 𝐱 ∈

𝛤uj , j ∈ Jp.

Thus, for the solution 𝐮 and the projection functions 𝐯 in the problem without

surface stress we can introduce the functional space H1
ful with the norm

(𝐯,𝐮)H1
ful
=
∫
𝛺

(∇𝐯)T ∶ ∇𝐮 d𝛺 .

By analogy, in the problem without account for surface electric charges (without

surface dielectric films) we change the boundary condition (17), setting 𝐝𝐬 = 0, and

also introduce the functional space H1
f𝜑m with the norm

(𝜒, 𝜑)H1
f𝜑m

=
∫
𝛺

(∇𝜒)T ⋅ ∇𝜑 d𝛺 .

From comparison of the space H1
ul, H

1
𝜑m H1

ful, H
1
f𝜑m, it can be concluded that

H1
ul ⊂ H1

ful, H1
𝜑m ⊂ H1

f𝜑m , (52)

as for the functions from H1
ul H1

𝜑m additional smoothness at the boundaries 𝛤
𝜏

and

𝛤D is required.

Obviously, the following inequalities take place
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cfu(𝐯, 𝐯) = c
𝛺
(𝐯, 𝐯) ≤ c(𝐯, 𝐯), ∀ 𝐯 ∈ H1

ul , (53)

𝜅f𝜑(𝜒, 𝜒) = 𝜅
𝛺
(𝜒, 𝜒) ≤ 𝜅(𝜒, 𝜒), ∀𝜒 ∈ H1

𝜑
. (54)

Using the relations –, we can conclude, that similarly [8, 19], for the problem of

natural vibrations for piezoelectric bodies with voids and with surface effects such

theorems hold.

Theorem 3 The natural frequencies 𝜔k for the problem of oscillations with account
for surface stresses are not less than the corresponding natural frequencies 𝜔fuk for
the problem without account for surface stresses, i.e. 𝜔2

fuk ≤ 𝜔
2
k for all k.

Theorem 4 The natural frequencies 𝜔k for the problem of oscillations with account
for surface electric charges are not greater than the corresponding natural frequen-
cies 𝜔f𝜑k for the problem without account for surface electric charges, i.e. 𝜔2

k ≤ 𝜔
2
f𝜑k

for all k.

We will also call problem (1)–(22) the lm-problem, emphasizing by this the pres-

ence of l areas 𝛤uj, j = 1, 2, ..., l in contact with rigid plane punches and m open-

circuited electrodes 𝛤
𝜑j, j = 1, 2, ...,m.

We will consider two similar lm- and pm-problems, which solely differ in the

number l and p of contacting surfaces of 𝛤uj in (13)–(15). All the remaining input

data from (1)–(22) in the lm- and pm-problems are assumed to be the same. Thus,

the following theorems take place.

Theorem 5 If 0 ≤ l < p ≤ L, for any k the kth natural frequency 𝜔lmk of lm-problem
is no less than kth natural frequency 𝜔pmk of pm-problem, i.e. 𝜔2

lmk ≥ 𝜔
2
pmk.

We note that in conditions of Theorem 5 we do not change the boundary 𝛤u.

When passing from lm-problem to pm-problem we only change conditions of fixed

boundary by the conditions of contact with punches on the parts of 𝛤uj.

Theorem 6 If 0 ≤ m < n ≤ M, for any k the kth natural frequency 𝜔lmk of lm-
problem is no greater than kth natural frequency 𝜔lnk of ln-problem, i.e. 𝜔2

lmk ≤ 𝜔
2
lnk.

Let us also investigate the natural frequencies under the changes of certain para-

meters of the problem. We will explicitly point these changes in the formulations of

the theorems, and all the variables related to the modified problems will be marked

with a star. As above, for the initial and modified problems the parameters that are

not specified in the theorem formulations are assumed to be identical. Thus, the fol-

lowing theorems hold.

Theorem 7 If the rigid clamped and contacting with punch pats of boundaries of
two problems are such that 𝛤u ⊃ 𝛤∗u, 𝛤uj ⊃ 𝛤∗uj, j = 0, 1, 2, ...,L we have 𝜔

2
lmk ≥

𝜔
2
∗lmk for all k.
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Theorem 8 If the elastic moduli, piezomoduli, the constitutive constants charac-
terizing the properties of porosity changes, the densities and the masses and the
inertia moments of the punches of two problems are such that c̃lm(𝐯, 𝐯) ≥ c̃∗lm(𝐯, 𝐯),
𝜌(𝐯, 𝐯) ≤ �̃�∗(𝐯, 𝐯) for ∀ 𝐯 ∈ H1

ul, then 𝜔
2
lmk ≥ 𝜔

2
∗lmk for all k.

Theorem 9 If the electrode boundaries of two problems are such that 𝛤
𝜑
⊃ 𝛤∗𝜑,

𝛤
𝜑j ⊃ 𝛤∗𝜑j, j = 0, 1, 2, ...,M we have 𝜔

2
lmk ≤ 𝜔

2
∗lmk for all k.

Theorem 10 If the permittivities of two problems are such that 𝜅(𝜒, 𝜒) ≥ 𝜅∗(𝜒, 𝜒)
∀𝜒 ∈ H1

𝜑m, then 𝜔
2
lmk ≤ 𝜔

2
∗lmk for all k.

Theorem 11 If the “porous” Dirichlet boundaries of two problems are such that
𝛤
𝜓0 ⊃ 𝛤∗𝜓0 we have 𝜔

2
lmk ≥ 𝜔

2
∗lmk for all k.

Theorem 12 If the diffusion coefficients for porosity change of two problems are
such that a(𝜂, 𝜂) ≥ a∗(𝜂, 𝜂) for ∀ 𝜂 ∈ H1

𝜓
, then 𝜔

2
lmk ≥ 𝜔

2
∗lmk for all k.

We note that the results of Theorems 5–12 are valid for both problems with and

without account for surface effects.

We will summarize the results of Theorems 5–12.

If on certain areas of 𝛤uk we replace the boundary conditions of rigid fixing (16)

by the contact boundary conditions (13)–(15), then, by Theorem 5, the natural fre-

quencies can only decrease.

On the other hand, if on certain areas of 𝛤
𝜑k we replace the boundary conditions

for short-circuited electrodes (20) by the electric boundary conditions of contact type

(18), (19) for open-circuited electrodes, then by Theorem 6 the natural frequencies

can only increase.

Note that the natural frequencies in the problem with all operation short-circuited

electrodes are usually named as electric resonance frequencies, while the natural

frequencies in the problem with some open-circuited electrodes are electric antires-
onance frequencies. Therefore Theorem 6 also asserts that the electric antiresonance
frequencies are not less than the electric resonance frequencies with the same order
numbers.

By Theorems 7 and 8 a reduction in the boundaries𝛤uj of rigid fixing or contacting

with rigid punches or a specific reduction in the elastic moduli and an increase in the

density or in the massive characteristics of punches can lead only to a decrease in

the natural frequencies.

Conversely, by Theorems 9 and 10 a reduction in the electrode boundary 𝛤
𝜑 j or

a specific reduction in the permittivity moduli can lead only to an increase in the

natural frequencies.

Comparing the effects reflected in Theorems 5–10 we can conclude that a similar

change in the mechanical and electric boundary conditions or in elastic and permit-

tivity moduli leads to an opposite change in the natural frequencies.

Meanwhile, by Theorems 11 and 12 a reduction in the boundary 𝛤
𝜓0 or a specific

reduction in the diffusion coefficients for porosity change can lead only to a decrease
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in the natural frequencies. Comparing the effects reflected in Theorems 7, 8, 11 and

12, we can conclude that similar changes in the elastic and porous boundary con-

ditions or in the elastic moduli and in the constitutive constants characterizing the

properties of porosity lead to an uniform changes in the natural frequencies.

It can be noted that the changes in mechanic conditions lead to the known changes

in natural frequencies [18] which have clear physical explanations. Thus, if the body

is more rigidly fixed, then its mechanic vibrations become more constrained, there-

fore his eigenvalues can only increase. If the changes in volumetric and surface

moduli and physical properties are such that the total volumetric and surface poten-

tial energies increase and kinetic energy decreases then the natural frequencies also

increase.

As it can be seen, the piezoelectric effect shows up so that the similar effects,

caused by the change electric conditions, lead to be opposite in comparison to the

change in mechanical conditions. On the contrary, the changes in the properties and

boundary conditions related with porosity lead to the similar changes for eigenvalues

as analogous changes of mechanical properties and boundary conditions.

5 Concluding Remarks

This chapter has considered the problems of natural oscillations of piezoelectric nan-

odimensional bodies with voids in the framework of the piezoelasticity theory with

account for uncoupled surface effects induced by surface stresses and surface elec-

tric charges (dielectric films). We have investigated also the bodies with voids in the

context of Cowin-Nunziato theory for porosity change function. Classical and gen-

eralized settings of the spectral problems were formulated in expanded and reduced

forms. For generalized settings the corresponding functional spaces were introduced.

It was proved that with the disregard of damping for bounded piezoelectric body with

voids the spectrum was discrete and real and the eigenvectors were orthogonal.

The theorems that establish the dependencies of natural frequencies of piezoelec-

tric nanodimensional bodies were formulated with account for uncoupled surface

mechanical and electric effects, and the change of the rigidly fixed boundary, bound-

aries with punches and electrodes, and material parameters of piezoelectric nanosize

bodies.

It was shown that under an increase of stiffness moduli and porosity change mod-

uli bringing to an increase of total volumetric and surface potential energies the nat-

ural frequencies also increase. The natural frequencies also increase under an exten-

sion of the surfaces with the mechanical rigidly clamped or contacting with rigid

punches boundaries and the boundaries with principal conditions for the porosity

function. On the contrary, an increase of electric permittivity moduli and an increase

of boundaries with electrodes can lead only to a decrease in the natural frequencies.

Appropriate results of changes of natural frequencies have been found also for

the replacement of the boundary conditions of rigid fixing by contact boundary con-
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ditions and for the replacement of the boundary conditions for short-circuited elec-

trodes by boundary conditions for open-circuited electrodes.

All these dependencies were established for the piezoelectric bodies with voids

as without surface effects, as well as for the bodies with account for surface stresses

and surface dielectric films.

The given results for natural frequencies generalize the known results for purely

elastic and piezoelectric bodies [2, 26]. for elastic and piezoelectric bodies with

voids without surface effects [14–16], and for the elastic and piezoelectric with sur-

face uncoupled effects [1, 8, 19, 20] to the problems for bounded piezoelectric nan-

odimensional bodies with voids and with surface effects.
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A Review on Models for the 3D Statics
and 2D Dynamics of Pantographic Fabrics

Emilio Barchiesi and Luca Placidi

Abstract A review on models for the statics of out-of-plane deformable panto-

graphic fabrics is presented, along with a model describing the dynamics of in-plane-

only deformable pantographic fabrics. We discuss those models able to describe

the mechanical exotic properties conferred by the peculiar microstructure possessed

by pantographic metamaterials, when three-dimensional deformations and in-plane

dynamics are separately involved. For each approach, model formulation and mod-

elling assumptions are discussed along with the presentation of numerical solutions

in exemplary cases, and no attempt is made to model damage and failure phenomena.

Keywords Pantographic fabrics ⋅ Metamaterials ⋅ Higher gradient continua ⋅
Review ⋅ Microstructure ⋅ Dynamics ⋅ Out-of-plane deformations

1 Introduction

In the wide current research literature about mechanical and acoustic metamateri-

als, pantographic fabrics [1, 9, 16, 18, 20, 22, 23, 26, 28, 29, 37, 39, 40, 58, 67,

69, 71] (see Fig. 1) represent one of the very promising topics, being both of great

practical and theoretical interest. Indeed, their potentially high strength-to-weight

ratio yields pantographic fabrics particularly suitable for some class of applications

(see [4, 36, 38]), while their great theoretical interest derives from the fact that, in

order to describe their exotic phenomenology, one has to resort to higher gradient

continuum theories [5, 45] or micromophic theories [2, 49] with the related prob-

lem of homogenization [59] and of different strategies for the numerical integration
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Fig. 1 A pantographic structure

[8, 10]. The field of fiber-reinforced materials [31, 44, 53, 54, 68] and of elastic

sheets with bending stiffness [41–43, 55, 60] is certainly not new in the literature.

In the following sections we are going to present a concise survey of mathemati-

cal models which have been purposely developed for out-of-plane deformable pan-

tographic structures, with regard to their statics, and for in-plane deformable ones,

with regard to their dynamics. In [57] a review on models for the description of

the mechanical behavior, at equilibrium, of pantographic sheets undergoing planar

deformations only, i.e. models whose placement functions are 𝜒 ∶ ℝ2
⊇ B → ℝ2

,

is presented. The present paper can hence be considered a sequel of [57] as, instead of

considering only placement functions 𝜒 ∶ ℝ2
⊇ B → ℝ2

, we consider herein also

placement functions𝜒 ∶ ℝ2
⊇ B → ℝ3

and𝜒 ∶ ℝ3
⊇ B → ℝ3

, thus allowing out-

of-plane deformations. Moreover, while [57] is only concerned with the quasi-static

case, this paper also deals with models able to account for the dynamics and, in

particular, suitable for the study of wave propagation. In Sect. 2, the standard for-

mulation of a 3D Cauchy continuum, postulating isotropy and homogeneity of the

material which the fibers are made of, is firstly sketched. The domain shape to be

employed in order to accomplish a satisfactory predictivity with such a first gradient

model and its numerical restrictions are successively discussed. We conclude by pre-

senting some recently published results about the numerical identification of a 2D
second gradient continuum model, i.e. a continuum model in which the strain-energy

density function depends on the first and second gradients of the deformation, using a

3D standard Cauchy model. In Sect. 3, we show some results about the use of arrays

of Euler beams in order to describe the dynamic behavior of in-plane deformable

pantographic rectangular “long” wave-guides. Finally, in Sect. 4, we present the for-

mulation of a second gradient continuum model in which pantographic sheets are

regarded as elastic surfaces endowed with suitable kinematic descriptors. For each

approach, numerical results are shown for some exemplary problems as those listed

in [57].
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2 Standard 3D Cauchy Continuum

In this section we recall the formulation of a standard Cauchy model. Let B ⊂ ℝ3

a regular domain which will be referred to as the reference shape. In the framework

of a Lagrangian description of Kinematics, let p ∈ B be the position of a material

particle in the reference configuration and let its image through the suitably regular

map 𝝌 ∶ B → ℝ3
be its position in the current configuration. Accordingly with

classical notation, we introduce the deformation gradient tensor 𝖥 = ∇𝝌 and the

Green–St-Venant strain tensor

𝖤 = 1
2
(
𝖥𝖳𝖥 − 𝖨

)
. (1)

By introducing the displacement

𝐮(p) = 𝝌(p) − p (2)

we can recast Eq. (1) as

𝖤(p) = 1
2
(
∇u + ∇𝐮𝖳 + ∇u𝖳∇u

)
.

Assuming the constitutive relation for isotropic and homogeneous materials, the

Piola stress tensor can be evaluated as

𝖳 = 𝜆tr𝖤 𝖨 + 2𝜇 𝖤 (3)

where 𝜆 and 𝜇 are the Lam parameters. Furthermore, the strain energy density is

defined as

Wm(𝖤) =
1
2
𝖳 ∶ 𝖤 (4)

where the symbol “:” stands for the double contraction of tensors. The governing

equations are derived from Eq. (4) by means of a variational principle as follows

𝛿
∫B

Wm(𝖤) dV = 0 ∀ 𝛿u. (5)

An interesting remark can be done about the domain (reference) shape. The

domain we shall consider when dealing with the modelling of pantographic sheets

is the one represented in Fig. 2, thus one resembling the microstructure of the spec-

imen. Indeed, in the 3D Cauchy continuum case we can not consider the domain to

be just a plain parallelepiped as we could do, e.g., when using higher gradient con-

tinuum models. This is because one basic assumption of Cauchy stress theory is that

the mechanical contact interaction between two parts of the material is only due to
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Fig. 2 3D domain employed in the standard Cauchy continuum model

a surface density of contact forces concentrated on the “cut”, i.e. on the dividing

surface. When dealing with materials exhibiting a pantographic microstructure, at

the macroscopic level this basic assumption can not be considered any longer valid.

The issues discussed above imply that, in order to correctly describe the mechanical

behavior of pantographic structures with a standard 3D Cauchy model, a somewhat

involved domain, resembling the microstructure of the specimen, must be employed.

Moreover, the mesh size required to successfully solve numerically the field equa-

tions of the model with, e.g., the finite elements method is much smaller than the one

required by higher-gradient continua. Hence, the domain complexity and the mesh

size restrictions yield a heavy computational burden, resulting in the actual non fea-

sibility of the use of a fully 3D Cauchy model to perform numerical simulations of

pantographic structures, even for simple problems.

2.1 Numerical Identification

The above-discussed inappropriateness, mainly for numerical reasons, of a fully 3D
Cauchy model for the description of pantographic structures can be overcome by

employing, for example, higher-gradient reduced-order models. Recently, in [33] a

fully 3D Cauchy continuum model is used as a reference model for the identification

and validation of a higher-gradient model, accounting only for planar deformations,

firstly proposed in [25] and successively reviewed also in [57]. Without going into

much details, being the reader referred to the aforementioned papers, we recall that

the higher-gradient model employed in [33] originates from a heuristic homogeniza-

tion technique, analogue to the one first used by Piola to formulate a continuum fully

non-linear beam model, applied to a discrete spring model. Moreover, by using the

strain measures introduced in [33] and assuming the parameters 𝕂𝛼

a , 𝕂𝛼

b and 𝕂p,

appearing in the deformation energy, to be such that
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1. 𝕂1
a = 𝕂2

a∶ = KI
2. 𝕂1

b = 𝕂2
b∶ = KII

3. 𝕂p∶ = Kp
4. KI , KII and Kp are independent of the position,

the strain energy density of the homogenized model conveniently recasts as

WM(𝜀𝛼, 𝜅𝛼, 𝛾) =
∑

𝛼

(1
2
KI𝜀

2
𝛼
+ 1

2
KII𝜅

2
𝛼

)
+ 1

2
Kp𝛾

2
. (6)

The parameter identification that we are going to show is a numerical one, in the

sense that it requires fitting the constitutive parameters KI , KII and Kp of the homog-

enized model using several numerical simulations performed with the 3D Cauchy

one. In more detail, a number of bias extension test simulations (see [57]) using both

the standard Cauchy model and the higher-gradient model, for several displacements

imposed on the shorter side of the specimen, are performed. Successively, for each

simulation, the overall stored energy and two representative deformations at specific

points are computed.

The two quantities are chosen to be the angles 𝜓C and 𝜓V , evaluated at the probe

points shown in Fig. 3 i.e. at the center C of the specimen and at the corner V of the

“quasi-rigid” triangle near a base of the specimen.

The material parameters of the macro model KI , KII and Kp are estimated solv-

ing a multi-objective optimization problem i.e. minimizing the squared errors for

the overall stored energy and the two angles 𝜓C, 𝜓V , when computed both with the

homogenized model and the standard Cauchy one.

The two angles 𝜓C, 𝜓V have been chosen among other possible control quantities

because each of them is strongly related to one of the last two energy terms in (6),

being in turn this two energy terms dependent only on one parameter each.

Indeed, the energy involved in the distortion angle at the center is mostly gov-

erned by the parameter Kp, while the distortion angle at the triangle vertex depends

for the most part on the bending energy characterized by KII , thus allowing to easily

find the minimum of the squared error for the two angles by separately tuning Kp

Fig. 3 The two control angles employed in the identification procedure
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Fig. 4 Comparison of the

total energy between the

Cauchy model (points) and

the second gradient model

(solid line)

and KII i.e. with separate regressions. Finally, the last parameter KI is derived by

considering the whole stored energy. Indeed a coherent estimate of the total defor-

mation energy in the equilibrium configuration, which is clearly dependent on the

expression of the postulated deformation energy density, as a function of the imposed

relative displacement is of great importance in the applications, as the capability of

the considered structure to resist to damage progress is clearly related to this physical

quantity.

In Figs. 4 and 5 (left), the total energy and the angles 𝜓C and 𝜓V used for fitting

the second gradient model are shown as the imposed displacement relative to the

bias test is varying.

In Fig. 5 (right), in order to get a better insight into the regression results, a com-

parison between the total reaction of the micro model and the one evaluated with the

macro model is plotted versus the imposed displacement.

Fig. 5 Comparisons between the Cauchy model (points) and the regression with the second gra-

dient model (solid line). Angle at the center 𝜓C (blue line) and angle at the corner 𝜓V (green line)

on the left; total reaction on the right
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Fig. 6 Overlap between simulations of bias extension tests with the Cauchy model (gray) and

with the second gradient model (colors indicate the shear strain relative to the initial fiber axes) for

different imposed displacements

Indeed, in the context of the bias extension test, the total external resultant force

which must be applied to get a given relative displacement, i.e. the constraint reac-

tion, is a very important physical quantity, which was computed as a function of

the imposed displacement by means of Castigliano’s first theorem i.e. by comput-

ing the first derivative of the equilibrium total energy with respect to the imposed

displacement.

As far as relatively small displacement are concerned, the accordance between the

two models is quite satisfactory, while at u0 = 6 cm a discrepancy is observed (see

Fig. 6). This phenomenon can be explained by considering that the Cauchy model has

a richer kinematics than the homogenized one. Indeed, the former model allows twist
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Fig. 7 3D deformation details; the colors in the zooms indicate the stored elastic energy density

for the 3D Cauchy model

and possibly out-of-plane bending of fibers to occur as well as shear distortion, bend-

ing and possibly extension of pivots; while the latter model does not. We observe (see

Fig. 7) that for the more refined Cauchy model a non-negligible amount of energy

is stored as deformation energy for configurations which are not accounted for in

the coarser second gradient model. Therefore, equating the two total energies of the

examined models and evaluating the constraint reactions, we expect a discrepancy

between the two reactions. Looking at Fig. 5 (right) we can confirm this last state-

ment at the largest displacement, which is likely to be the one where deformation

energies due to the richer kinematics of the refined model start to gain significance.

3 Wave Propagation

The model which is about to be introduced in this section was first presented in [24]

and was thereafter employed in a number of papers, as [22, 48], in order to numeri-

cally study some dynamically interesting cases. In those papers pantographic rectan-

gular “long” wave-guides are considered, in which imposed boundary displacements

can induce the onset of traveling waves. In this model we consider two families of

orthogonal 1D straight continua arranged in a rectangle in the reference configura-

tion. Each continuum Ci has a standard linearised Euler elastic potential given by

Ui =
1
2 ∫Ci

kM
(
u′′(s)

)2 + kN
(
w′(s)

)2 ds (7)
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Fig. 8 Reference configuration (left) and time history of the impulse (right)

Fig. 9 Wave propagating after an imposed vertical displacement on the upper side (left). Wave

propagating after double impulse (right)

with s an abscissa introduced on each Ci, kM a bending stiffness coefficient, kN an

axial stiffness coefficient, u and w, respectively, the magnitudes of the transverse and

axial displacements. Dots in Fig. 8 (left) stand for the presence of hinges which do

not oppose to rotations and do not interrupt the continuity of the beams.

In the examined literature, every kind of displacement imposed on the structure

is analytically represented by an impulse function ℑ = u0 ∗ sech
[
𝜏(t − t0)

]
with 𝜏

being a parameter affecting the duration of the impulse. In Fig. 8 (right) the amplitude

of the impulse is plotted as a function of time.

In Fig. 9 (left) some snapshots of the deformed shape of a propagating wave gen-

erated by a vertical impulse, uniformly applied at the upper side of the specimen
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while its lower side remains clamped, are shown. Colors represent the magnitude of

the total rotation of the cross section of the beams. Dispersion is sharp, since the area

of the perturbed region is clearly increasing in time. In addition, in Fig. 9, a reflec-

tion on the lower side is recognizable in the last snapshots, having as a result the

summation of those waves departing from the lower side with those going toward it.

In Fig. 9 (right) some snapshots of the deformed shape of a propagating wave, after

a double impulse is applied at the middle height of the specimen, are shown, along

with colors representing, as before, the magnitude of the total rotation of the cross

section of the beams.

By double impulse we mean a couple of displacements, having the same orien-

tation but opposite directions, oriented in one of the two orthogonal characteristic

directions of the pantographic sheet. Such displacements are imposed on two points

at the opposite ends of two adjacent beams, i.e. consecutive beams belonging two

the same orthogonal family of 1D continua, and their amplitude over time is shown

in Fig. 8. Such a double impulse should correspond, in the continuous homogenized

limit case, to a double force, i.e. to a pair of forces with null resultant and moment.

Since such a kind of forces can not be included in a first gradient continuum theory,

in order to capture with a continuum model the dynamic features shown in Fig. 8,

one has to resort to a second gradient continuum.

In Fig. 10 the bending moment of beams, arranged in a lattice discontinued by

a set of hinges along its horizontal middle line, is shown. The hinges, which allow

Fig. 10 Bending moment in a lattice discontinued by a set of hinges along its horizontal middle
line (left)
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Fig. 11 Wave propagation in two identical lattices connected by an array of vertical beams

energy-free relative angular displacements between the upper and the lower part of

each beam, in this case, do interrupt the continuity of the beams. Nevertheless, due

to the kind of internal connections at nodes of the lattice, i.e. internal hinges not

interrupting the continuity of beams, the bending moment at snapshots where the

perturbation has reached the center of the specimen does not change its qualitative

distribution. Also in this case reflection is observed.

In Fig. 11 some snapshots of the deformed shape of a propagating wave are shown,

along with colors representing the magnitude of the total rotation of the cross section

of the beams, which are arranged in a lattice discontinued by a set of vertical beams

along its horizontal middle line. The amplitude of the displacement as a function

of time is, as before, the same shown in Fig. 8 but, in this case, the displacement

imposed at the upper side of the specimen is parallel to one of the two families of

beams. We can clearly see that in Fig. 11 an interesting phenomenon arises. Indeed,

the energy of the system remains substantially confined in the upper half of the wave-

guide and propagation of waves beyond the discontinuity is negligible. Therefore,

such a kind of discontinued pantographic structures result in a simple, but still attrac-

tive, damping filter for this new type of metamaterial.

In Fig. 12, again, some snapshots of the deformed shape of a propagating wave are

shown, along with colors representing the magnitude of the total rotation of the cross

section of the beams. In this case, the displacement imposed at the upper and lower

sides of the specimen is parallel to one of the two families of beams and results in two

waves travelling toward each other which, after a while, end up summing together.
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Fig. 12 Propagation of two waves traveling in opposite directions

4 Elastic Surfaces

In this section, following the approach employed in [27], we will present the formu-

lation of a model for pantographic sheets, regarded as elastic surfaces, embedded in

a three dimensional Euclidean space, endowed with suitable kinematic descriptors

and an associated second-gradient areal strain-energy density which depends on the

first and second gradients of the deformation (Figs. 13 and 14).

We will now proceed in a way very similar to what was done throughout [57]. In

order to account for the fact that fibers are arranged in two material directions we

introduce a Lagrangian Cartesian orthonormal coordinate system whose associated

basis of unit vectors is (𝐃1,𝐃2), which is constituted by two orthonormal vectors

representing the directions of the families of fibers constituting the pantographic

structure in the reference configuration. Let us now consider a 2D continuum whose

reference shape is given by a rectangular domain B ⊂ ℝ2
. The current shape of

B is described by means of the suitably regular macro placement 𝝌 ∶ B → ℝ3
,

whose target space is worth to be emphasized. Indeed, unlike the models presented
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Fig. 13 Numerical simulation of the bias extension test using the elastic surface model presented

above. Colors represent the shear strain

Fig. 14 Numerical simulation of torsion of a square sheet (𝜃 = 60◦) using the elastic surface model

presented above. Colors represent the out-of-plane component of the displacement, u3
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in [57], this model does include out-of-plane motions and therefore the Pipkin-Rivlin

decomposition employed, e.g., in [21, 26, 58] does not hold even for inextensible

fibers. As customary, 𝐝1 and 𝐝2 are defined as the push-forward vectors in the current

configuration of the vectors 𝐃1 and 𝐃2 respectively, i.e. 𝐝
𝛼
= 𝐅𝐃

𝛼
, 𝛼 = 1, 2 where

𝐅 = ∇𝝌 . In the sequel we will denote the fiber stretches ‖𝐝
𝛼
‖ as 𝜆 and 𝜇.

Thus,

𝐅 = 𝐝1 ⊗ 𝐃1 + 𝐝2 ⊗ 𝐃2 = 𝜆𝐝1 ⊗ 𝐃1 + 𝜇𝐝2 ⊗ 𝐃2, (8)

where 𝐝
𝛼
= 𝐝

𝛼

‖𝐝
𝛼
‖ are the unit vectors associated to 𝐝

𝛼
. Following the same kind of

definition given, e.g., also in [25], in [27] such vectors are used to define the fibers’

shear deformation 𝛾 as sin 𝛾 = 𝐝1 ⋅ 𝐝2. Nevertheless, it is worth to be noted that the

shear deformation introduced in this model is different from the one defined in the

Pipkin continuum model in [21, 26, 58].

With this notation, we have from (8) for the Cauchy-Green deformation tensor

𝐂 = 𝐅𝖳𝐅 = 𝜆
2𝐃1 ⊗ 𝐃1 + 𝜇

2𝐃2 ⊗ 𝐃2 + 𝜆𝜇 sin 𝛾
(
𝐃1 ⊗ 𝐃2 + 𝐃2 ⊗ 𝐃1

)
.

We also have

J𝐧 = 𝐅𝐃1 × 𝐅𝐃2 = 𝐝1 × 𝐝2,

with 𝐧 the unit normal of the deformed surface field and J = 𝜆𝜇| cos 𝛾| the local

areal dilation due to the deformation. In [27] the following representation formula is

proven

∇∇𝝌 =
(
g1 + K1𝐧

)
⊗ 𝐃1 ⊗ 𝐃1 +

(
g2 + K2𝐧

)
⊗ 𝐃2 ⊗ 𝐃2 + (𝜞 + T𝐧)⊗

(
𝐃1 ⊗ 𝐃2 + 𝐃2 ⊗ 𝐃1

)

(9)

with

g1 = 𝜆𝜂1𝐩 +
(
𝐃1 ⋅ ∇𝜆

)
𝐝1; g2 = 𝜇𝜂2𝐪 +

(
𝐃2 ⋅ ∇𝜇

)
𝐝2 (10)

𝜞 =
(
𝐃1 ⋅ ∇𝜇

)
𝐝2 + 𝜆𝜇𝜙1𝐪 =

(
𝐃2 ⋅ ∇𝜆

)
𝐝1 + 𝜆𝜇𝜙2𝐩 (11)

𝐪 = 𝐧 × 𝐝2; 𝐩 = 𝐧 × 𝐝1 (12)

K1 = 𝜆
2
𝜅1; K2 = 𝜇

2
𝜅2; T = 𝜆𝜇𝜏. (13)

The quantities 𝜂1 and 𝜂2 appearing in (10) are the geodesic curvatures of the

deformed fibers, 𝜙1 and 𝜙2 appearing in (11) are the so-called Tchebychev curva-

tures, 𝜅1 and 𝜅2 appearing in (13) are the normal curvatures of the deformed fibers

and 𝜏 measures the twist of the deformed surface. In [27] explicit expressions for

geodesic and Tchebychev curvatures are provided and we have
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J𝜂1 = 𝐃1 ⋅ ∇(𝜇 sin 𝛾) − 𝐃2 ⋅ ∇𝜆
J𝜂2 = 𝐃1 ⋅ ∇(𝜇) − 𝐃2 ⋅ ∇(𝜆 sin 𝛾)
J𝜙1 = J𝜂2 + 𝜆𝐃2 ⋅ ∇(sin 𝛾)
J𝜙2 = J𝜂1 + 𝜇𝐃1 ⋅ ∇(sin 𝛾).

Moreover, in [35] a strain-energy density function depending on the first and second

gradients of the deformation and incorporating the orthotropic symmetry property

conferred by the reference fibers arrangement is proposed and reads as

W = w(𝜆, 𝜇, J) + 1
2
(A1|g1|2 + A2|g2|2 + A

𝛤
|𝜞 |2 + k1K2

1 + k2K2
2 + +kTK2

T )

where A1, A2, A𝛤
, k1, k2, kT are constitutive constants.

A linear elastic second gradient orthotropic two-dimensional model, invariant

under rotation and for mirror transformation, is considered also in [56] where such

anisotropy is exploited together with some original gedanken experiments to com-

pletely characterize the set of constitutive parameters in terms of the fibers’ base

material parameters (i.e. its Young modulus), of the fibers’ cross section parameters

(i.e. its area and its moment of inertia) and of the distance between the nearest piv-

ots. Afterwards, a strain energy is derived in terms of the displacement fields and,

remarkably, it closely resembles the strain energy of simple Euler beams.

5 Conclusions

The development of some advanced manufacturing techniques like, e.g., 3D print-

ing, electrospinning and roll-to-roll processing could represent a turning point in

the manufacturing industry, allowing the large-scale production of micro- and nano-

enginereed materials exhibiting interesting macroscopic properties not found in nat-

ural materials. Successfully exploiting these new technological advancements calls

for a highly multidisciplinary theoretical work in mathematical modelling, numerical

analysis, computer-aided design and many other subjects.

The aim of this paper was to provide a review on some 3D models directed to

the description of the statics of pantographic lattices and on a 2D model directed

to the study of the dynamics of such structures, thus extending [57]. Our model

selection was guided by some important features such as computational complexity

and predictivity.

In Sect. 2, the formulation of a standard 3D Cauchy continuum, where isotropy

and homogeneity of the material which the fibers are made of is assumed, was firstly

presented. Subsequently we did a digression, discussing the domain shape to be

employed in order to accomplish a satisfactory predictivity with such a first gradient

model and the resulting computational unfeasible burdens. We concluded Sect. 2 by

outlining some results obtained in [33], addressing the issue of numerically deter-

mining the parameters of the homogenized second-gradient model discussed in, e.g.,



254 E. Barchiesi and L. Placidi

[25, 57] using the standard Cauchy one. Comparing the total reaction of the Cauchy

model and the one evaluated with the homogenized second-gradient model, as the

imposed displacement on the shorter side of the specimen was varying, we finally

remarked that, when the more detailed Cauchy model exhibits a significant three-

dimensional deformation, the agreement between the two models is lost. In Sect. 3,

we have shown some results about the use of arrays of Euler beams, i.e. two families

of orthogonal 1D straight continua connected at their intersecting point by internal

hinges, in order to describe the dynamic behavior of in-plane deformable panto-

graphic rectangular “long” wave-guides, possibly interrupted by horizontal arrays

of hinges or vertical beams. Some numerical simulations were presented, in cases

where dispersion, reflection and damping filtering occurred. Finally, in Sect. 4, we

sketched the formulation of a second gradient continuum model in which out-of-

plane deformable pantographic sheets are regarded as elastic surfaces endowed with

suitable kinematic descriptors. It is a commonly accepted fact that features exhib-

ited by systems made up of simple interacting elements, like the system presented in

Sect. 3, which involves Euler beams, can be very much richer than those shown by

its constituting elements, when considered singularly.

Further developments in this research field include the investigation of damaged

pantographic structures [70] with different methods [13–15] and a better under-

standing of their dynamical behaviour [7, 17, 30, 46, 47, 50], with a focus on

eigenfrequency analysis [11, 12] accounting for all the necessary inertial properties.

Buckling modes in pantographic lattices have already been analysed in [34]. How-

ever, the instability properties could be also investigated with methods presented

in [3, 32, 51, 52, 61–66]. Finally, an interesting approach can be deduced also by

analysing numerical results concerning particle systems, employing methods devel-

oped within the field of 2D swarm of robots interacting with closer neighbors [6,

19].

Hence, in conclusion, the study of the statics and of the dynamics in non-trivial

structures like pantographic fabrics, especially in a 3D setting, still deserves further

studies. Very likely, new exotic and interesting phenomenological behaviors could

be unveiled, such as in the case of the above discussed damping filtering properties.
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