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Preface

In modern photonics, there is the evident inclination in favor of numerical methods
in order to describe, for example, the optical properties of metamaterials (MMs) at
the expense of physical intuition. There is no doubt that modern numerical algo-
rithms and available computer facilities provide the main way to investigate more or
less complicated problems. Nevertheless, the qualitative approximate type models
can provide a deeper understanding of the basic physical processes, stimulate
discussion of new effects, and even provide new paradigm for optimization of a
particular design. The qualitative models are complementary to the numerical ones,
taking advantages of careful comparison with the results of rigorous numerical
calculations, but at the same time remaining analytically treatable. In order to create
this type of model, accurate approximations have to be made in order to simplify
the respective consideration, at the same time keeping the main physical effects and
interplay between them in the model. In turn, it requires specific mathematical
apparatus and specific methods, which give especially useful results if a wide range
of the problems is considered in the frame of the same, unified, and self-consistent
approach. The qualitative models allow us to show mutual self-consistency of the
physical theory (in this particular case in application to the MM), which otherwise
could be seen as a huge leap from independent experimental to theoretical facts.
Elaboration of the qualitative models in the frame of the unifying paradigm appears
to be useful not only for the consideration of the specific problems but also for the
teaching of the respective courses as well.

The developed multipole approach assumes an expansion of the charge
dynamics in atom/molecules, which in the case of the MM has to be replaced by the
charge dynamics in the metaatoms (MAs). This gives us a unique avenue for the
creation of a unified approach to all possible types of MMs: charge dynamics in the
MAs can be described in the frame of classic or quantum models, but the algorithm
for the calculation remains the same. It motivates us, in turn, to try to create a
unified approach, which would unify classic, quantum, or semi classic MM.

v



Authors are extremely thankful for the long-term support of the colleagues from
Friedrich-Schiller University of Jena. Authors also specially acknowledge ines-
timable editing support received from Dr. Alex Brown.

Darmstadt, Germany Arkadi Chipouline
Franko Küppers

vi Preface



Contents

1 Introduction to Optical Metamaterials: Motivation and Goals . . . . 1
1.1 Appearance and Development of Metamaterials . . . . . . . . . . . . 1
1.2 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 General Concept of the Modern Education . . . . . . . . . . . . . . . . 6
1.4 What Could Be Revisited: An Example

of a Developed Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Homogenization of Maxwell Equations—Macroscopic
and Microscopic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Microscopic Maxwell Equations and Averaging Procedure . . . . 23
2.2 System Under Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Frequency Range of Homogenization . . . . . . . . . . . . . . . . . . . . 29
2.4 Different Representations of Material Equation . . . . . . . . . . . . . 30
2.5 Serdyukov-Fedorov Transformations . . . . . . . . . . . . . . . . . . . . 36
2.6 Transformations Between Different Representations . . . . . . . . . 39
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Phenomenological Versus Multipole Models . . . . . . . . . . . . . . . . . . 47
3.1 Phenomenological Model

(“L&L” and “C” Representations) . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1 “L&L” Representation . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 “C” Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.3 Transformation Between “C” and “L&L”

Representations in Case of Strong Spatial
Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.4 Reduction to Material Equations for Bianisotropic
Media in Case of Weak Spatial Dispersion . . . . . . . . . 62

vii



3.2 Multipole Expansion (“C” Representation) . . . . . . . . . . . . . . . . 64
3.2.1 Multipole Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.2 Dispersion Relation Elaboration . . . . . . . . . . . . . . . . . . 68
3.2.3 Physical Interpretation of Phenomenological

Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.4 Origin Dependence of the Multipole Moments . . . . . . . 73
3.2.5 Toroidal/Anapole Metamaterials . . . . . . . . . . . . . . . . . 79

3.3 Introducing of Effective Parameters . . . . . . . . . . . . . . . . . . . . . 83
3.3.1 Elaboration of Effective Parameters . . . . . . . . . . . . . . . 83
3.3.2 Impossibility of Unambiguous Effective Parameters

Determination for Bulk Materials . . . . . . . . . . . . . . . . 85
3.3.3 Effective Retrieved Parameters and Their Relation to

the Effective Parameters . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Multipole Approach for Homogenization of Metamaterials:
“Classical” Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 Charge Dynamics in Isolated Plasmonic Metaatoms:

Antisymmetric Modes as a Source for Magnetization . . . . . . . . 91
4.2 Dispersion Relations and Effective Parameters for

Metamaterials: Asymmetric Structures . . . . . . . . . . . . . . . . . . . 94
4.3 Dispersion Relations and Effective Parameters for

Metamaterials: Symmetric Structures (Retarded Field) . . . . . . . . 96
4.4 Validation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Applications of the “Classical” Metamaterial Model—Optical
Activity and Electromagnetically Induced Transparency . . . . . . . . 105
5.1 Review of Optical Activity with Metamaterials . . . . . . . . . . . . . 105
5.2 Example of Calculation Procedure for SRR Metaatoms . . . . . . . 107
5.3 Results for L-Type of Metaatoms . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Results for S-Type of Metaatoms . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Metamaterial Analogy of Electromagnetically Induced

Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Applications of the “Classical” Metamaterial Model—
Metamaterials with Interaction Between Meta-Atoms . . . . . . . . . . . 125
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Dispersion Relations for Material Eigenwaves . . . . . . . . . . . . . 127

6.2.1 Periodic Chain of Coupled Dipoles . . . . . . . . . . . . . . . 127
6.2.2 Periodic Chain of Coupled Quadrupoles . . . . . . . . . . . 128

viii Contents



6.3 Dispersion Relations for Electromagnetic Waves . . . . . . . . . . . 130
6.3.1 Periodic Chain of Coupled Dipoles . . . . . . . . . . . . . . . 130
6.3.2 Periodic Chain of Coupled Quadrupoles . . . . . . . . . . . 132

6.4 Numerical Solution of the Dispersion Relations . . . . . . . . . . . . 135
6.4.1 Verification of the Computer Code . . . . . . . . . . . . . . . 135
6.4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Applications of the “Classical” Metamaterial Model—Disordered
Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Modeling of Positional Disorder . . . . . . . . . . . . . . . . . . . . . . . 149
7.3 Case of Randomly Positioned Dipoles . . . . . . . . . . . . . . . . . . . 151
7.4 Case of Randomly Positioned Quadrupoles . . . . . . . . . . . . . . . 153
7.5 Method of Numerical Implementation . . . . . . . . . . . . . . . . . . . 156
7.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.7 Other Forms of Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8 Applications of the “Classical” Metamaterial Model—Nonlinear
Metamaterials: Multipole (Second Order) and Third Order
Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 Nonlinear Wave Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.3 Linear Optical Properties: Effective Material Parameters . . . . . . 171
8.4 Nonlinear Optical Properties: Second Harmonic Generation . . . . 173

8.4.1 Exact Numerical Solution . . . . . . . . . . . . . . . . . . . . . . 173
8.4.2 Undepleted Pump Approximation . . . . . . . . . . . . . . . . 175

8.5 Third Harmonic Generation from Fishnet Structure . . . . . . . . . . 176
8.5.1 Measurement of Third Harmonic Generation . . . . . . . . 176
8.5.2 Discussion and Modeling of Third Harmonic

Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.6 Sources of Nonlinearity in Maxwell Equations: General

Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9 Multipole Approach for Homogenization of Metamaterials:
“Quantum” Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.1 Introduction: Quantum Dynamics Versus Classical One . . . . . . 191
9.2 Coupled Dynamics of Plasmonic Resonator and Quantum

Elements: General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.2.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.2.2 Nano-Laser (Spaser) [3, 8, 14, 15] . . . . . . . . . . . . . . . . 197

Contents ix



9.2.3 Luminescence Enhancement [5, 10] . . . . . . . . . . . . . . . 197
9.2.4 Nonlinear Response Enhancement [6, 16] . . . . . . . . . . 198
9.2.5 Enhancement of Magnetic Dipolar Response [17] . . . . . 199
9.2.6 Quantum Magnetic Metamaterials [17] . . . . . . . . . . . . 199
9.2.7 Linear and Nonlinear Response

of SQUIDs [18, 19] . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.3 Extension on the Case of Double Wires Based Metaatoms

(Metaatoms with Magnetic Response) . . . . . . . . . . . . . . . . . . . 200
9.4 Modeling of Metamaterials Made of Plasmonic Metaatoms

Coupled with Quantum Elements . . . . . . . . . . . . . . . . . . . . . . . 202
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10 Application of the Model of “Quantum” Metamaterials:
Metamaterial Caused Enhancement of Nonlinear Response . . . . . . 205
10.1 Modeling of Metamaterials Caused Enhancement

of Nonlinear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.1.1 Model Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.1.2 CNT Alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.1.3 Metamaterial Alone . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.1.4 CNTs Combined with Metamaterial . . . . . . . . . . . . . . . 212

10.2 Experimental Investigation of Enhancement of Nonlinear
Response in Carbon Nano Tubes (CNT) . . . . . . . . . . . . . . . . . 214
10.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

10.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

11 Application of the Model of “Quantum” Metamaterials:
Regular and Stochastic Dynamics of Nanolaser (Spaser) . . . . . . . . 225
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
11.2 Regular Spaser Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.3 Spaser Dynamics in Case of Multimode Generation . . . . . . . . . 236
11.4 Stochastic Properties of Spasers . . . . . . . . . . . . . . . . . . . . . . . . 244
11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

12 Plane Wave Propagation in Metamaterials with Gain . . . . . . . . . . . 257
12.1 Introduction and General Approach . . . . . . . . . . . . . . . . . . . . . 257
12.2 Propagation of a Plane Wave in a Metamaterial

with Dipole-Like Metaatoms . . . . . . . . . . . . . . . . . . . . . . . . . . 259
12.2.1 Master System of Equations . . . . . . . . . . . . . . . . . . . . 259
12.2.2 Loss Compensation by Completely Uncoupled

QS ðd ¼ 0Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

x Contents



12.2.3 Loss Compensation by Completely Coupled
QS ðd ¼ 1Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

12.2.4 Loss Compensation by Partially Coupled
QS ð0\d\1Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

12.3 Propagation of Plane Wave in Metamaterial
with Quadrupole-Like Metaatoms . . . . . . . . . . . . . . . . . . . . . . 263
12.3.1 Master System of Equations . . . . . . . . . . . . . . . . . . . . 263
12.3.2 Loss Compensation by Completely Uncoupled

QS ðd ¼ 0Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
12.3.3 Loss Compensation by Completely Coupled

QS ðd ¼ 1Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
12.3.4 Dynamics of Symmetric and Antisymmetric Modes in

MAs at the Propagation in Case of Completely
Coupled QS ðd ¼ 1Þ . . . . . . . . . . . . . . . . . . . . . . . . . . 268

12.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

13 Relaxation of Inverted Quantum System Coupled
with Metallic Nanoobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.2 The Accepted Approach for Estimation of Purcell Effect . . . . . . 272
13.3 Concerns About the Commonly Accepted Approach . . . . . . . . . 275
13.4 Can Quantum Dynamics Be Described by Harmonic

Oscillator Equation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
13.5 Relaxation in the Frame of Density Matrix Formalism . . . . . . . 277
13.6 Physical Picture of Interaction Between QS

and Nanoresonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
13.7 On the Luminescent Measurement . . . . . . . . . . . . . . . . . . . . . . 280
13.8 Time Dynamics of Relaxation in Presence of Nanoresonator . . . 281
13.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

14 On the Question of Radiative Losses in the Frame of Classic
and Quantum Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
14.2 Dynamics of Classical and Quantum Dipole . . . . . . . . . . . . . . . 288

14.2.1 Dynamics of Classical Dipole . . . . . . . . . . . . . . . . . . . 288
14.2.2 Dynamics of Quantum Dipole . . . . . . . . . . . . . . . . . . . 289

14.3 Math Formalism for Coupled Dynamics
with Radiative Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
14.3.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
14.3.2 Stationary State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
14.3.3 Relaxation Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 293

Contents xi



14.4 Radiative Losses for Classic and Quantum Dipole
in Free Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
14.4.1 Stationary State in Free Space . . . . . . . . . . . . . . . . . . . 293
14.4.2 Relaxation Dynamics in Free Space . . . . . . . . . . . . . . . 297

14.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

xii Contents



Chapter 1
Introduction to Optical Metamaterials:
Motivation and Goals

It is necessary to reconstruct the textbooks and change some
pedagogical methods in lecturing of electrodynamics… It
turned out to be necessarily to elaborate the electrodynamics
from fundamental principles taking into account possible
magnetic effects.

Prof. V. G. Veselago

1.1 Appearance and Development of Metamaterials

It is now commonly accepted that the era of metamaterials (MM) was ushered in
with the publication of the widely known paper by Prof. Veselago [1] who first
suggested that the basic principles of electrodynamics do not forbid the possibility
of materials with negative values of the real parts of both the permittivity and
permeability. One consequence of this suggestion is the existence of the so called
left-handed materials (i.e. the materials with simultaneously negative real parts of
their permittivity and permeability), where the phase and group velocities are (in the
simplest cases) opposite to each other. In fact, the idea of opposite directions of the
phase and group velocities was first mentioned much earlier—credit has to be given
to [2, 3] back to 1904 year. In 1944, left-handed optical materials were mentioned
in a series of lectures by Prof. Mandelshtam in Moscow State University [4], which
unfortunately have not been published (as has happened many times before, for
instance with Leibnitz and Newton, where the discoverer did not publish the
respective results in time). It took another quarter of century before Prof. Veselago
formulated the fundamentals of electrodynamics with negative permittivity and
permeability. It is interesting to mention, that in the middle of 80th year of the last
century (about 20 years after the fundamental paper [1] had been published) Prof.
Veselago did not mention this idea at his lectures, at least at the Moscow Physical
Technical Institute, where one of the authors of this book attended courses given by
Prof. Veselago.
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At that time, a microscopic mechanism of achieving negative values for the
permittivity and permeability was not even discussed, but one seminal work, pre-
dicting the crucial role of resonances in small particles and its influence on the
anomalous values of the effective constants had already been published [5]. The
modern era of MM began with the experimental verification of a negative refractive
index, first in microwave [6] and latterly [7, 8] in the optical domains. From this
time onwards, an explosive amount of publications appeared and continues to
appear in scientific and popular publications regarding the fundamentals and
applications of the MMs. However, it should be remembered that the physics of the
MMs (as a branch of science) is still far from mature and there is much left to
uncover. An optical MM is based on the nanophotonics (in order to provide
metaatoms (MA) in optical domain the MA have to have nanosizes) and evolves in
conjunction with the respective technological, experimental, and theoretical
achievements. Nevertheless, the development of this branch of modern science has
already passed its embryonic stage and now seems to have crossed the invariable
dip “nanochasm” in interest after the initial excessive expectation associated with
all new ideas. Renormalization of expectation has resulted in a steady, but realistic
increase in interest and development in MMs, as presented in the Fig. 1.1.

MMs are artificial media which tailor the macroscopic properties of light
propagation by a careful choice of a microscopic unit cell (called the metaatom—
MA) from which they are constructed. By controlling the geometrical shape and
material dispersion of the MA, novel effects such as negative refraction [9–11],
optical cloaking [12–17], as well as a series of optical analogues to well-known
physical phenomena from various disciplines within physics can be observed

Fig. 1.1 Crossing “nanochasm”—after peak of “unjustified expectations” the development
trajectory has to cross the “nanochasm” before it again reaches the trajectory of stable development
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[18–22]. In addition to a bi-axial anisotropic (linear dichroism) material response
[9–11, 23–25], research was recently extended towards the exploration of MAs that
affect the off-diagonal elements of the material tensors (elliptical dichroism),
leading to, e.g., optical activity [26–30], bidirectional and asymmetric transmission
[31, 32], or chirality induced negative refraction [33–35]. However, despite the
possibility of using rigorous computation for describing light propagation on the
microscopic level of the MAs, an enduring problem in metamaterial research is the
question of what the effective material tensor looks like for a certain MM.

MM design in the optical domain is mainly carried out using rigorous Maxwell’s
equation solvers like finite difference time-domain simulations [36], finite-element
methods [37], and Fourier modal methods FMMs [38]. Instead of these differential
methods, integral ones, such as, e.g., the boundary-element method [39] offers an
alternative choice of techniques. The discrete-dipole approximation [40] and the
multipole method [41] are more physical approaches, where the structure is rep-
resented by localized electric multipoles. Nevertheless, presently differential
descriptions dominate in MM design.

In contrast to such numerical techniques, the analytical description of MMs is
much less developed. Podolskiy et al. introduced the coupled-dipole equations, in
order to approximate single and coupled metal wires [42, 43]. The direct excitation
of LC resonances with the magnetic field of the incident plane wave in a system of
two coupled rods was proposed in [44] in order to explain the observed phenomena
in terms of effective parameters. Following the “effective medium” theory, an
investigation of dielectric and magnetic conducting inclusions was performed for
spheroids [45]. In spite of the fact that the approach is limited to the realm of
quasistatics, the model was extended to describe dynamical problems. In order to
simulate the current distribution in a coupled-wire structure and to calculate the
permeability, the Green’s function technique is applied [46]. The application of
RLC circuit theory has been recently used to obtain the resonance frequencies and
the quality factors of coupled split-ring resonators [47].

Lately, several reviews regarding the state of the art in the physics of MM have
been published [48–52]. The tendency of the MM physics development was pre-
sented, for example, in [49], where the most justified and supported by main
achievements prognoses are given. Among other developments, it was predicted
that future activity will be largely concentrated in the following areas [49]:

1. Noble metals are replaced by structured alloys, CNT & graphene, oxides, superconductors.
2. Hybridization with functional materials (nanocarbon, organics, nanosemiconductors, phase

change media).
3. NEMS structures (moving components on the scale of a few tens of nanometers).
4. Close-to-molecular level top-down fabrication, self-organization, DNA & protein, scaf-

folding, stereo lithography, casting around organic frameworks.

The current trend is to think of MM as devices, where the structuring of metal and the
hybridization with functional agents brings new functionality and response becomes tun-
able, switchable or nonlinear. In the near future, we will be able to enter the field of
quantum metamaterials [49].

1.1 Appearance and Development of Metamaterials 3



It is clearly seen that a new MA paradigm—hybridized with functional agent (like
quantum dots, dye molecules, or bio molecules)—becomes one of the main point of
the future development in this area. Taking into account that the functional agents
are also supposed to be quantum systems, one can easily conclude the importance
of bringing quantum concepts to bear on the physics of MM, giving raise the
appearance of the new area of the quantum MM. The name quantum MM, means
that the internal dynamics of the MAs is described using quantum theory tools at
least in part (for example in case of spaser [53]) or in full (in case MM with
superconducting MAs [54]).

Another hot topic in the physics of MM is so called structures with toroidal/
anapole like MAs. The toroidal moment itself and the respective effects (including
toroidal metamaterials [55]) have been deeply investigated theoretically [56, 57].
Several experimental verifications in microwave [58] and optical [59] domains for
toroidal moments confirm theoretical conclusions. Anapole has been introduced in
physics of elementary particles [60]. The electrodynamic analog of a stationary
anapole is well known toroid with a constant poloidal surface current, which is also
associated with a toroidal dipole moment. It generates no field outside, but possible
nonzero potential, which might lead to a violation of the reciprocity theorem and
Aharonov-Bohm like phenomena [56, 61]. Anapole mode in optical domain using a
simple silicon structure has been experimentally demonstrated in [62]. In context of
homogenization procedure, we have found a new form of material equations (part of
macroscopic Maxwell equations) which corresponds to the material consisting of
toroidal/anapole structures. It is interesting, that this new form (we named it
“Toroidal” form in contrast with the previously known “Casimir” and
“Landau&Lifshitz” forms) appears as an extension of so called phenomenological
approach in homogenization of Maxwell equations naturally, irrespective to multi-
pole expansion, where the toroidal moments actually appear. Presence of the ele-
mentary structures with toroidal moments (and MAs with toroidal moments) fixes a
fundamental ambiguity in basics of electromagnetic theory and seems to have much
deeper physical meaning than just one of the terms in the multipole expansion.

1.2 Motivation and Goals

The theoretical description of the MM was started from a priori introduced dis-
persive permittivity and permeability. The spectral dependence of both permittivity
and permeability is supposed to follow analytical functions with resonant denom-
inator, which assumed harmonic oscillator type model for both effective parameters
[1]. This model basically assumes local media response from small MAs, pos-
sessing not only the dielectric (like any dipole-like atom) but the magnetic response
as well. The assumed smallness of the hypothetical MAs allows the commonly
assumed homogenization theory to be invoked. The situation changed shortly after
the first experimental realization of the MM, where the typical sizes of the MAs
turned out to be not much smaller than the respective wavelengths and hence usual
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homogenization model fails. In order to develop a homogenization procedure for
MMs in general, more sophisticated models are required. Basically, the homoge-
nization models for MM appeared to be an extension of several approaches. One of
them was developed in the optics of crystals [63] with the extension to an allowed
magnetic response [64, 65]; this extension follows a basic approach demonstrated
by “A Course of Theoretical Physics” [Landau&Lifshits]. An extension of the
exciton theory to MM [Cho K] has to be assigned to the same category. This second
approach uses formalisms developed for photonic crystals with an appropriate
extension over Bloch waves and the determination of the respective dispersion
diagram in the form of Brillouin zones (see recent paper [66] and references therein)
for a particular structure. The third approach appears to be a continuation of
methods developed in the theory of compound materials [67–69] and extended to
the case of a magnetic response.

In contrast a forth approach, based on the approximation of the MAs as
point-like multipoles has not received much attention, but had been mentioned as a
one possible way of describing the behavior of MMs in [65]. This approach has
been chosen as a basis for the development of the homogenization model of the
MM in this book.

A detailed comparison between the different approaches, mentioned above, is
out of the scope of the material presented in this book. Nevertheless, the necessity
of the taking into consideration spatial dispersion is valid for all approaches. The
problem appears to be in a gap between developed approaches and the basics of the
homogenization, which have to be satisfied anyway. Ignoring of the basics of the
homogenization can lead in some cases to the violation of the self-evident basic
assumptions like causality and passivity (the review of these found in publications
violations is given in [67]). In some cases the different approaches like phe-
nomenological [Landau&Lifshitz] and multipole [70] appeared to be mixed [64]
and different representations of the macroscopic Maxwell equations (the
Landau&Lifshitz “L&L” representation [64] and Casimir “C” representation [69])
sometimes appeared to be not clearly distinguished (actually, discussion about the
different representations of the macroscopic Maxwell equations can rarely be found
in publications at all). The connections between the different representations, the
appearance of the spatial dispersion in different representations, and the mutual
transformations between the different representations have not received enough
attention in the literature.

The multipole approach developed originally in [70] assumes an expansion of
the charge dynamics in atom/molecules, which in the case of the MM has to be
replaced by the charge dynamics in the MAs (note, that in some publications under
multipole expansion, an expansion of the fields over wave vector is assumed, which
is obviously a different math tool entirely). The original approach [70], where
averaged parameters are elaborated based on the charge dynamics, gives us a
unique avenue for the creation of a unified approach to all possible types of MMs:
charge dynamics in the MAs can be described in the frame of classic or quantum
models, but the algorithm for the effective parameter calculation remains the same.
It motivates us, in turn to try to create a unified approach, which would unify
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classic, quantum, or semi-classic MM. This approach can be easily extended to
other forms of expansion and consider not only multipole expansion, including, for
example, toroidal/anapole expansions as well [60, 71].

The last, but not least, comment is about the evident inclination in favor of
numerical methods in order to describe the optical properties of MMs at the expense
of physical intuition. There is no doubt that modern numerical algorithms and
available computer facilities provide the main way to investigate more or less
complicated problems. Nevertheless, the qualitative approximate type models can
provide a deeper understanding of the basic physical processes, stimulate discussion
of new effects, and even provide new paradigm for optimization of a particular
design. The qualitative models are complimentary to the numerical ones, taking
advantages of careful comparison with the results of rigorous numerical calcula-
tions, but at the same time remaining analytically treatable. In order to create this
type of model, accurate approximations have to be made in order to simplify the
respective consideration, at the same time keeping the main physical effects and
interplay between them in the model. In turn, it requires specific mathematical
apparatus and specific methods, which give especially useful results if wide range
of the problems is considered in the frame of the same, unified, and self-consistent
approach. The qualitative models allow us to show mutual self-consistency of the
physical theory (in this particular case in application to the MM), which otherwise
could be seen as a huge leap from independent experimental to theoretical facts.

Elaboration of the qualitative models in the frame of the same paradigm appears
to be useful not only at the consideration of the specific problems, but at the
teaching of the respective courses as well. It must be clearly stated, that all con-
siderations in the presented book are performed for the bulk MM, i.e. the problems
connected with the boundaries are out of the scopes.

1.3 General Concept of the Modern Education

It is worth considering the educational aspects of homogenization in connection
with the creation of the model mentioned above. In a modern courses of electro-
dynamics the homogenization (averaging) procedure does not receive enough
attention, which can partially be explained by the fact that the commonly accepted
approach (local frequency dispersive permittivity and permeability) gives in most
cases pretty good correspondence with the experimental data (not for MM) and the
necessity of the more sophisticated approaches is pretty low. Electromagnetic
theory was developed a rather long time ago, but some basics of this theory
(especially elaboration of macroscopic Maxwell equations—basics of the homog-
enization procedure) have not been revisited since the 1970s. Due to the appearance
of the MM, the averaging procedure must now be considered more fully and has to
become a part of the standard courses of electrodynamics in order to teach students
in a self-consistence and unified manner.
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Theoretical predictions and technological achievements have made possible, the
realization of a wide class of artificial materials exhibiting a hitherto unseen
magnetic response at high, in particular optical, frequencies. This, in turn, forced
scientists to refresh an idea about materials with both negative dielectric and
magnetic constants (left-handed materials) put forward by Prof. V. G. Veselago
about 45 Years ago. These attempts resulted in successful experimental demon-
stration of such material in RF and optical domains, which manifested start of the
era of MMs. The new achievements require development of new concepts, which
has been precisely formulated in [72]:

Today we encounter a situation which reminds that of the beginning of the XX century. It
was time of the crisis of classical mechanics, which became redundant with the creation of
relativistic theory and quantum mechanics. Now, we go through the crisis of classical
electrodynamics of condensed matter, developed by Maxwell, Heaviside and Lorentz.
Already in the XX century we observed an increasing amount of experimental results which
can be hardly treated with existing theories.

Like in quantum mechanics we have to abandon an attempt to simultaneously measure the
coordinates and velocity of a particle, now we have to abandon an attempt to connect local
current with local field.

The use of the apparatus of the spatial dispersion supposes deep understanding
of the basics of the homogenization theory; otherwise, inappropriate application of
the respective math expressions leaded to the obviously wrong conclusions vio-
lating causality or passivity principles. The results published in [73] and presented
here prove this statement:

In terms of the coordination project “Electromagnetic Characterization of Nanostructured
Materials” (ECONAM; http://econam.metamorphose-vi.org), which is financed by the
Eurocomission, the author of this study, in cooperation with the group of Prof. Bilotti at the
Roma Tre University (Italy), took part in surveying all of the papers devoted to metama-
terials published over 8 years in one of the leading physical journals in the world, Physical
Review Letters. The results proved to be as follows. The authors of 53% of papers in which
the dispersion curves for the material parameters of metamaterials were presented (most
frequently as results of measurements) paid no attention to the fact that their results con-
tradict the causality principle and the principle of the passivity of the medium. That is to
say, the material parameters of metamaterials that would not violate the known conditions
under which the medium of particles may be replaced by a continuous medium were
obtained in less than half of all publications. Nevertheless, in all these papers, the meta-
materials were treated precisely as continuous media. In other words, it turned out that the
authors of the papers on metamaterials published in Physical Review Letters attempted to
combine the results of the dynamic analysis with the purely static notion of effective
material parameters. Those 47% of papers on metamaterials published in 2000–2007 in
Physical Review Letters, where the effective material parameters of homogenized meta-
materials did not violate the conditions of locality, corresponded to those lucky cases in
which the ordinary (static) model of homogenization turned for some reason to be appli-
cable to metamaterials”.

The problem appears to be rather significant: obvious violation of the basics cannot
be tolerated. It has to be emphasised, that the problem here is not in elaboration of
some “new” approaches, which would meet the forecasted resistance of the old
“conservative” theories, but rather inappropriate attention of both authors from one
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side and reviewers from the other side to the basic principles, which could be
probably partially referred to the lack of the basic education. In order to apply
properly the homogenization methods which have been developed in area (in
particular) of compound materials, knowledge of the basics of the homogenization
procedure is the absolute and evident prerequisite. Several attempts have been
performed in order to bring the discussion on a higher, more adequate, and
undoubtedly more scientifically justified level: several reviews have been published
[67, 73], special sessions at the conferences have been organized, but the tendency
up to now seems not to be broken.

The problems facing now the education cannot be of course considered separately
from the challenges facing the society at the beginning of the 21st century. The
problems of the world economical model, caused by an excessive credit pumping in
previous decades, will definitively affect the educational system as well, requiring
new approaches in order to maximize effectiveness of the education. Analysis of
these problems, of course, is far out of the scopes of the presented book; here authors
would like to mention just one (may be even not mostly important, but nevertheless
extremely sad) consequence of the modern scientific system, namely: disappearance
of the phenomena of “scientific schools” of the first half of the 20th century, which
was typical for, for example, scientific life and spirit in Germany and USSR.
Science, which now has become a part of business, does not allow outstanding
people working together for rather long time, which was a prerequisite for the
growing of the scientific schools. Without discussion of advantages and drawback of
the scientific systems, the influence of the scientific schools on the education has to
be undoubtedly mentioned. The scientific schools have left the most famous courses,
which are used even up to now for the education: it is enough to mention R.
Feynman’s course of physics or course of theoretical physics written by L.
D. Landau and E. M. Lifshitz. One of the main advantages of these courses was a
conceptual approach to very wide range of problems; for example, the principle of
minimum action was the basis of whole course of L. D. Landau and E. M. Lifshitz.
A conceptual approach, in contrast with just the teaching of huge amount of weakly
correlated facts, creates solid background and, which is very important, significantly
minimizes an amount of information, which has to be memorised in the frame of a
course. A conceptual approach in turn was a consequence of multiple discussions
about content of the course (material selection, consequence of presentation, logic
links, analogies with other disciplines etc.). Unfortunately, at present the discussions
about content of the courses and their mutual correlations are not a common practice,
which does not allow optimizing further the structure of the educational courses.

The modern concept of high education in natural science and technology towards
mainly preparation of staff for high tech industry and includes three stages: Bachelor
of Science (B.S.), Master of Science (M.S.), and Philosophical Degree (Ph.D.).

Very roughly speaking, it is supposed, that after already the first stage (B.S.) the
students will be capable to perform some duty in industrial sector, which do not
require full understanding of the technological principles; for example, operate the
technological chains with only partial understanding of the physical processes which
the operation is based on. After the second stage (M.S.) the students are expected to
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be able to understand the industrial procedures in full and be able to suggest
technological/technical modifications if necessary. At the next stage (Ph.D.) the
students have to be able not only operate, understand, and modernize the techno-
logical procedures, but also develop new ones and put into the existent industrial
chains; it is also supposed, that the students have basic knowledge in business and
could preliminary evaluate how profitable their developments could be.

Schematically the first two stages could be summarized as it is shown in Fig. 1.2.
The B.S. study (blue lines in Fig. 1.2) consists of education in areas of standard
disciplines like physics, math, chemistry, biology etc. This education could be
named as “traditional” and takes 3–4 years depends on the particular country.

On the next stage, M.S. (green lines in Fig. 1.2) could be designed several
different ways, namely: it could repeat again B.S. structure on higher level, or it
could be structured according to the other principles. The “other principles” are
supposed to be dictated by the requests from the society and reflect the modern
challenges which are facing the modern society. The particular set of these chal-
lenges are country (society) specific and have been identified according to an own
development concept. As an example, here the two “conceptual structuring” of the
requests of the societies are presented: the first one is the structure of the BMBF and
the second one is the structure of the new University established in Moscow under
guidance of the Massachusetts Institute of Technology—see Figs. 1.3 and 1.4.

Basically, the suggested education has to be organized according to these
“clusters” (green lines in Fig. 1.2) rather than according to the separated disciplines
(blue lines in Fig. 1.3). To the first approximation, any students can collect
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Fig. 1.2 Structure of the B.S. (blue vertical lines) and advanced modern M.S. (green horizontal
lines) educational programs and position of the nanooptics in the structure of the B.S./M.S.
education. Absence of an “eigen optical green line” makes the nanooptics a multidisciplinary
program in terms of the both (B.S. and M.S.) presented here scheme
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Fig. 1.3 BMBF structure of the requests from the modern society (http://www.hightech-strategie.
de/de/82.php)

Fig. 1.4 Science & Technology clusters at the Skolkovo Institute of Technology as an example of
the conceptual structure of the modern education system (http://skolkovotech.ru/)
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University courses which match the chosen “cluster” under supervision of a more
experienced mentor and from this prospective the educational system is universal
and (provided nomenclature of the courses is reach enough) can be easily adjusted
to any new “clusters”. The actual problem is in choice of the necessary amount of
information: in most cases the course contains not only necessary information, but
also a lot of the information, which the student does not need at the moment.

The students nevertheless have to learn “or all or nothing” in the frame of the
particular course which leads to the overloading and consequently to extra prob-
lems. In the following paragraph, I would like to present some suggestions, which
could, from my point of view, potentially improve the education process.

1.4 What Could Be Revisited: An Example
of a Developed Course

The course “Introduction to nanophotonics” has been created as a part of the Master
Program of Photonics. The course received deep revision every year in response to
the student feedback and according to the acquired new experience.

The main idea here is to reduce necessary amount of information to be mem-
orized in favour of more structured, conceptual information presentation. The
course has to present a concept and its position in the “cluster” with the basic
information (which is mandatory for exams), and give to the student information
about sources where the more details could be found.

In response to the problem of explosive amount of knowledge, the information
for course has been strongly restricted just by basic one, which would nevertheless
allow student in future to consider most of the particular problems in area of
nanophotonics. The information selection has been done in synergy with the
structure of the course, presented in Fig. 1.5. The “construction bricks” of the
course present main physical phenomena which have to be studied in a logic and
self-consistent chain, and include also “retrospective” part “Phenomenological
Electrodynamics of media with Negative Refractive Index”, which shows the first
stage of the development of the knowledge in area of optical MMs and nanooptics.
The basis of the course is the two “bricks”—“Maxwell equations for continuous
media—averaging procedure” and “Different models for charge dynamics”.

The necessity of the first one (averaging procedure) is stipulated by the fact, that
even elementary basic notation of plasmonics assumes the use of permittivity, and it
makes full sense first to introduce this notation (and theory of the effective
parameters in general) using modern and state of the art concepts. In order to
consider the averaging procedure it is in turn necessary to introduce Maxwell
equations itself, which also could be done different ways—see Fig. 1.6a.

The logic of a “standard” course of electrodynamics is following: after pre-
sentation of three basic laws (Faraday law, Coloumb law, and Bio-Savar law) the
Maxwell equations (macroscopic Maxwell equations) are formulated as a conse-
quence of the three laws.
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After that the formulation of the Maxwell equations in free space (microscopic
Maxwell equations) is given with the statement, that the macroscopic Maxwell
equations (which have been introduced based on the three laws) are direct conse-
quences of the microscopic ones after the averaging procedure. In other words,
from the postulated macroscopic Maxwell equations the microscopic Maxwell
equations are elaborated, which is obviously counterintuitive. Moreover, for the
Maxwell equations the relativistic invariance is proven without any explanation
why Maxwell equations appeared to be relativistic invariant. In spite of the internal
logic contradictions, the structure of the courses of electrodynamics is well estab-
lished and well accepted by the students who study electrodynamics for the first
time. There is another way to present the electrodynamics, which can be found in
course of theoretical physics of L. Landau and E. Lifshitz in volumes 2 “Field
theory” and volume 8 “Electrodynamics of continuous media”—see Fig. 1.6b. The
logic here follows the general logic of the whole course, namely all basic equations
are derived based on minimum action principle, which starts from the relativistic
invariant action integral. In this case microscopic Maxwell equations are derived
first, and the charge dynamic equation appears to be as one of Maxwell equations.
Initially required relativistic invariance results obviously in relativistic invariant
microscopic Maxwell equations, and the averaging procedure (transition from the
obtained microscopic Maxwell equation to the macroscopic ones) is developed in
volume 8 following the phenomenological approach. This way of teaching, in spite

Fig. 1.5 Logic of the elaborated course of “Introduction to nano optics”
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of the much better logic and self-consistency, is pretty complicated in terms of the
understanding and math involved. Nevertheless, the second way is perfectly suited
for the M.S. programs, where the students are assumed to have studied Maxwell
equation using the first way.

The homogenization procedure follows the approach accepted in course of
theoretical physics of L. Landau and E. Lifshitz. The Serdyukov-Fedorov trans-
formations, which plays a crucial role in understanding of the basics of homoge-
nization of Maxwell equations and gives a clear structured view of the different
forms of representing Maxwell equations and the mutual relation between them, is
given as a part of the general homogenization theory—this information is not only
excluded from the standard courses, but very rarely appears in publications.

I would like briefly compare the averaging procedure presented in “standard”
courses (for example, following [74]) and in course of L. Landau and M. Lifshitz. In
“standard” courses the transition between micro and macroscopic Maxwell equa-
tions is given in form of postulates, without elaboration and explanation of how it
could be rigorously justified. There is also usually no comparison between phe-
nomenological and multipole approaches; the expressions (including expressions for
the case of spatial dispersion) are often given without explanation how they have
been elaborated. The lack of attention to the homogenization procedure could be
partially explained by the fact, that up to now there is no established and commonly
accepted way to perform the homogenization: there are different models for different

Fig. 1.6 Two ways of introducing of Maxwell equations: a in standard University courses, b in
course of theoretical physics of L. Landau and E. Lifshitz
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situations, and a systematic presentation of the homogenization procedure is the
rather complicated task. Nevertheless, there are several models for static case
(models of Clausius-Mossotti-Lorenz-Lorenz, Maxwell-Garnet, Bruggemann etc.—
see [69]) which are pretty much established and which are given in some courses.
The static Clausius-Mossottii-Lorenz-Lorenz model can be extended on the dynamic
case as well [75]. Anyway, even though that up to now there is no well-established
and commonly accepted way of teaching of the homogenization procedure, it should
not be a reason to avoid the respective discussions in the frame of a course and would
help to avoid multiple mistakes connected with this topic.

The homogenization procedure requires (one or another way) the description of
the charge dynamics under the action of the electro-magnetic field—the second
basic “brick” (different models for charge dynamics) in Fig. 1.5. This can be done
evidently either in the frame of classic or quantum mechanical approaches. Both
classic and quantum mechanics are well established and self-consistent courses,
which are usually given without special attention of the application of their methods
to the problem of light-matter interaction. In case of classic mechanics it does not
cause any problems, while in the case of the quantum mechanics a significant
adaptation of the respective methods is required. One of the parts of quantum
mechanics which has to be given in view of this adaptation is the density matrix
formalism, which is widely used in theory of optical amplifiers and lasers. The main
difference with the more traditional approach based on Schrödinger equation is in
the including of the relaxation processes in the consideration; in other words, the
microsystem (quantum object) is considered as a part of a big macrosystem with
huge numbers of the degrees of freedom. This macrosystem is called thermostat (or
thermo bath) and the respective interaction leads to the relaxation processes, which
in vast majority of the experimental realizations have to be taken into account. This
approach is unavoidable for the description of gain in MMs, dynamics of spasers,
saturation caused nonlinearity, transition processes etc. Moreover, the same for-
malism is applicable to the superconductive MAs, which form the so called
superconducting or quantum MMs [54]. It has to be emphasized that the required
education in area of density matrix formalism has almost nothing to do with
quantum optics, which deals with the situation with small number of photons per
available state and which is required, for example, for adequate consideration of
Purcell effect [76].

The next logic step is the elaboration of the models for plasmons/polaritons and
the respective physical phenomena like extraordinary transmission etc. The next
step is in integration of the elementary plasmonic nanoresonators in coupled sys-
tems, including coupling not only between classic objects (two and more plasmonic
resonators, for example double wires system), but also with the quantum ingredi-
ents like Quantum Dots, which gives rise consideration of spasers, nonlinear
response enhancement (including well known Stimulated Enhanced Raman
Scattering—SERS), and modification of the luminescence rates (Purcell effect). The
coupled systems considered here could be further used as MAs for the MMs. This
basically completes all possible variants of the charge dynamics in the MAs.
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Now all necessary information for the consideration of the effective properties of
the MMs is prepared and can be used for the elaboration of the effective parameters.
Nevertheless, before coming to the modern state of the art concepts, it makes sense
to show student how the theory of the optical MMs has been first introduced by
assumption of the negative permittivity and permeability without detailed expla-
nation of the sources for their negative values. The “brick” “Phenomenological
electrodynamics…” shows that this assumption about possible negative values of
the effective permittivity and permeability does not contradict to the basic principles
of electrodynamics and figures out necessary corrections to the known expressions
(for example, transmission/reflection formulas, expression for Brewster angle,
Ferma principle, causality principle, expressions for the field energy, conditions for
the negative refraction etc.) which have to be done in case of both negative per-
mittivity and permeability. Among the others, this consideration emphasizes again
that there are several requirements (causality and passivity), which have to be met
irrespective to any micro models for the charge dynamics.

Finally, electrodynamics of the MMs is combined from the prepared before the
multipole approach (which gives constructive expressions for the effective
parameters through the charge dynamics) and the charge dynamics. From this
consideration the students clearly see how the multipole expansion leads to the
appearance of the magnetic response in the media, correspondence between dif-
ferent types of eigenmodes of the charge oscillations in MA and the presence/
absence of the magnetization (and, respectively, negative refractive index).
Prepared before models for MAs consisting of plasmonic nanoresonators and
quantum ingredients allows us to consider loss compensation (and respective
influence of the loss compensation on the effective MM properties) in the frame of
the same unified approach. It is worth noting the last sentence again—all physical
phenomena in the course are considered in the frame of the same unified approach
which gives clear and solid scheme and recipes for qualitative consideration of the
most physical phenomena in area of nanooptics and optical MMs.

Review of the respective experimental and technological methods completes the
course.

The course intentionally uses mostly an analytical treatment of the respective
problems. The numerical methods are evidently necessary for any more or less
complicated systems, where analytical methods can be applied only for qualitative
estimations. It appears to be necessary to complement the powerful numerical
methods by relatively simple analytical models, which nevertheless keep main
physical processes inside. As an example, the multipole approach complements the
direct numerical methods (like FMM or FTDT), uses the data of the respective
numerical simulation to find numerical values for the parameters to be fitted, and in
turn gives a tool for the fast estimation of new effects like anisotropy, nonlinearity,
optical activity etc. Moreover, after the first fitting the multipole model allows us to
estimate variation of the effective parameters for the random MMs, where
numerical approach is rather time consuming. Using the same parameters, one can
expand the model on the case of the MMs with gain or nonlinear ingredients
coupled to the MAs—all of that have been demonstrated in the presented work.
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From the other side, the development and understanding of the analytical models
requires change of the education programs and add to the courses more qualitative
math methods.

The peculiarity of the course is in the proposed grading system as well. At the
exam the students are allowed to use any sources of information, but the proposed
set of the problems is extremely wide and covers a lot of different aspects. Actually,
the student has to demonstrate that he/she is able find the necessary information fast
and can give a qualitative explanation for a wide range of the problems rather than
demonstrate rigorous solutions for only a limited number of problems.

The course has to be matched with the other ones, which requires a lot of
systematic work. For example, both black “bricks” in Fig. 1.5 have to correlate with
the courses of electrodynamics and solid state physics. The parts about experi-
mental and technological methods have to be matched with the respective
Practicum and Internship opportunities. The careful matching of the courses and
elaboration of the specifically oriented programs could be an adequate respond to
the challenges facing the modern education at the moment.

One more problem in the modern education structure is in not very clear differ-
ence between the courses of electrodynamics for engineering and physical depart-
ments in area of nanophotonics and optical MMs. The problem of education which
would combine good basic and applied knowledge is rather old one and roots back to
the 30–50th years of the last century, when the necessity of this education has been
stipulated by a technological revolution. It has also been realized that the classical
University education does not respond to the specific engineering requirements from
one side; at the same time, purely engineering education does not allow to its carrier
to adopt knowledge to the new and fast appearing technological challenges. The
required combination of the good basic education and enough initial practical
experience has been achieved in new type of the Universities established in the USA
(Massachusetts Institute of Technology), France (Ecole Polytechnique), and former
USSR (Moscow Physical-Technical Institute). All these Universities have devel-
oped rather similar programs, which consisted of the basic education packed in three
first years (now B.S.), while the rest two or three years have been reserved for the
more special and applied practice (M.S.). Moreover, even during the first three years
for different departments a different amount and combination of basic courses have
been carefully selected. This system has functioned pretty well for the more than
50 years, but now it evidently requires again revisit and deep reformation.
Comprehensive discussion of this problem is not a goal of the presented work, but
the statement of the necessity of adaptation of explosive amount of new information
and development of carefully structured courses in response to the modern
requirement of science and technology is appropriate here in connection with the
attempt to develop a course, responding to this challenge.

The identified weaknesses and the respective responses are summarised in the
Table 1.1.

The course has been given to the groups of the first year master students in
2008–2011 years, has been evaluated and corrected according to the produced
feedback. The course is seen as a first step in creating a more general course of
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nanophotonics, and it was very important to see how well the students understood
and memorized the information. The conclusions are:

1. In spite of higher level of complexity, the information is rather well received due
to pedagogical consistency of the course.

2. The teaching has to be accompanied by seminars with examples explaining
using the new ideas; otherwise the relatively complex constructions like mul-
tipoles will not be fully understood.

3. The knowledge of the students, in the area of quantum mechanics is not satis-
factory. The basics of quantum mechanics formalism based on density matrix
approach have to be included in the course and also accompanied by appropriate
and detailed examples.

1.5 Structure of the Book

To conclude, the goals of this book are formulated as follows:

1. Develop solid basis for homogenization procedure, which fills the gap between
microscopic Maxwell equations and various forms of averaging procedures,
suggested for MMs.

Table 1.1 Identified weakness of the education programs in area of nanophotonics (left) and
proposed respective responds (right) in the developed course “Introduction to nanooptics”

Lack of qualitative models with appropriate
math tools

The course is based on the qualitative models;
moreover, all used models are developed in
the frame of the same approach

Absence of well-established and commonly
accepted way of teaching of the
homogenization procedure

The homogenization procedure is given at the
beginning in form of the phenomenological
(L. Landau and E. Lifshitz) and multipole
models

Lack of education in area of light-matter
interaction based on quantum mechanical
approach

Basics of the light-matter interaction based on
the density matrix formalism are given

Necessity of adaptation of explosive amount
of new information and development of
carefully structured courses in response to the
modern requirement of science and
technology

The course is self-consistent and is strongly
restricted by fundamental phenomena. Any
particular applications are supposed to be
elaborated on demand. The course does not
require memorize all information, but rather
helps to navigate students to the appropriate
theoretical constructions. At the exam the
students are allowed to use any sources of
information

Lack of clear difference between engineer and
academically oriented education programs

The course is clearly identified as an
academic one with appropriate set of
problems for seminars

1.4 What Could Be Revisited: An Example of a Developed Course 17



2. Develop homogenization model for MMs using multipole expansion approach
and find relations between this approach and the elaborated basics of the
homogenization.

3. Apply the aforementioned model to the optical MM regime and consider linear
and nonlinear effects in MMs in the frame of the developed unified approach.

4. Using the fact that the created model uses the charge dynamics in MAs as a
theoretical basics, extend the developed approach to the case of quantum MMs.

5. Apply the developed model for quantum MM’s in the particular cases of non-
linear MM, dynamics of spaser, and MMs with gain.

The book consists of 14 chapters including “Introduction” (this chapter) and
Chap. 14 “Conclusion”. In order to better visualize the logic and structure of the
book, Fig. 1.7 has been drawn.

Chapters 2 and 3 respond to the first goal, listed above and summarize the basics
for any possible homogenization procedures. Details of the multipole model applied

Model applications: 

“Classic” metamaterials 

(chapter 5, 6, 7, 8)

Basics of homogenization of Maxwell equations (chapter 2, 3)

Multipole approach: “Classic” metamaterials (chapter 4)

Multipole approach: 

“Quantum” metamaterials 

(chapter 9)

Model applications: “Quantum” metamaterials (chapter 10-14)

Introduction & educational aspects (chapter 1)

Fig. 1.7 Structure and logic of the presented work “Analytical modeling of optical MM: scientific
and educational aspects”
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to the optical MM are given in Chap. 4 (response to the second goal of the work),
which is followed by the demonstration of several applications for description of
the linear (Chaps. 5, 6 and 7) and nonlinear (Chap. 8) properties of the MM (re-
sponse to the third goal). Extension of the model on the quantum MM is presented
in Chap. 9 (the fourth goal), and the nonlinear properties of the quantum MM are
demonstrated in Chap. 10 (the fifth goal). Chapter 11 presents the results of the
dynamics of the single MAs consisting of coupled plasmonic nanoresonators and
quantum system (the fifth goal), which serves as a prerequisite for the consideration
of the propagation of the plane wave in the MM with gain in Chap. 12 (the fifth
goal). Chapter 13 summarizes the obtained results from the point of view of the
problem facing modern educational courses in area of the optical MM. Results of
the work are summarized in Chap. 14 “Conclusions”.
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Chapter 2
Homogenization of Maxwell
Equations—Macroscopic
and Microscopic Approaches

2.1 Microscopic Maxwell Equations and Averaging
Procedure

We consider as a starting point a system of microscopic MEs in the following form:

rot~e ¼ ix
c
~h

div~h ¼ 0

div~e ¼ 4pq

rot~h ¼ � ix
c
~eþ 4p

c
~j

8>>>>>>><
>>>>>>>:

q ¼
X
i

qid ~r �~rið Þ

~j ¼
X
i

~viqid ~r �~rið Þ

d~pi
dt

¼ qi~eþ qi
c

~vi �~h
h i

8>>>>>><
>>>>>>:

ð2:1Þ

Here~e and~h are the microscopic electric and magnetic fields, respectively, q is the
charge density, ~qi, ~pi, ~ri and ~vi are the charges, pulses, coordinates and velocities of
charges,~j is the microscopic current density, x and c are the frequency and the
velocity of light in vacuum. It is assumed that system (2.1) is strictly valid without
any approximations. Actually, system (2.1) can be elaborated in the framework of
the minimum action approach [1]; nevertheless, one should remember that the
minimum action principle does not give an unambiguous form of the MEs (2.1), but
instead gives a set of different forms which satisfy the requirement of relativistic
invariance. The “right” form can be chosen based on the evident requirement of
correspondence of the results of the final system of equations to the observed
physical effects. One should also mention that in the framework of the minimum
action approach the final equations are written for “potentials + particles”, not for
“fields + particles”; the respective equations are:
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d~pi
dt

¼ � qi
c
@~A
@t

� qiruþ qi
c

~vi � rot~A
h i

@Fik

@xk
¼ � 4p

c
ji; Fik ¼ @Ak

@xi
� @Ai

@xk

8>><
>>: ð2:2Þ

Here ~A and u are the components of the 4-vector potential, and the relations
between the microscopic fields and the potentials are given by:

~e ¼ � 1
c
@~A
@t

�ru

~h ¼ rot~A

8><
>: ð2:3Þ

Form (2.2) will not be used in the following discussions and is presented here just
for methodological reasons.

It has to be mentioned that the basic formulation of electrodynamics is still under
discussion [2]. Here it is assumed that system (2.1) fully describes the electro-
magnetic phenomena and further discussion about validity of (2.1) is left out.

One more remark has to be given. Maxwell equations (2.1) assume that the
charge dynamics is described in the frame of relativistic, but classical mechanics.
Rigorously speaking, in case of quantum mechanics Maxwell equations (2.1) is no
more valid and have to be elaborated differently. Further discussion of this fun-
damental question is out of the scope of this book.

We consider propagation of an electromagnetic plane wave interacting with the
medium in case when the classical dynamics is supposed to be valid and the bulk
material fills the whole space; the system (2.1) in this case can be formally averaged
over a physically small volume (or through statistic averaging), which results in:

ð2:4Þ
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The averaging is usually performed in case of a large number of atoms/molecules in
the volume of averaging; from the other side the volume is supposed to be small in
comparison with the wavelength of the electromagnetic wave, propagating in the
medium.

The main problem here is to find the averaged current and charge distribution as
functions of the averaged electric and magnetic fields:

~j
� � ¼ ~j

� �
~E; ~B
� �

qh i ¼ qh i ~E; ~B
� � ð2:5Þ

Averaged (or macroscopic) fields result from the averaging of the actual, micro-
scopic fields which are produced by some external sources and charged particles.
The averaging procedure itself is rarely considered in phenomenological models of
macroscopic Maxwell equations. In order to set the applicability limitations for the
averaging procedure, it is necessary to determine the procedure itself. For example,
in the frame of the Lorenz-Lorentz concept, the relation between the wavelength
and averaging volume is chosen so that the particle size and the distances between
them are 2–3 orders of magnitude smaller, than the wavelength (in Fig. 2.1 this
means Linter; Lintra � 10�2 to�3k). This requirement fails in case of composites even
for ultrahigh frequencies, but nevertheless the Lorenz-Lorentz approach still gives

LinterLintra

Observation point 

Volume of averaging

Fig. 2.1 Schematic representation of the media which is subject of the averaging with typical
lengths, involved in consideration
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very good results. It turns out that the requirement Linter; Lintra � 10�2 to�3k can be
significantly relaxed, and the main question in this case becomes: up to which
relations between particle size and the wavelength the averaging procedure will still
make sense.

First, the averaging volume (typical size of this volume) has to be in any case
less than the wavelength, otherwise the field (which is supposed to be harmonic in
space) disappears. Roughly speaking, the typical size of the averaging volume has
to be in any case 5–10 times smaller than the wavelength. Taking into account that
the particle size and the distance between particles have to be only order of mag-
nitude less, than the wavelength, it results in no more than one particle per averaged
volume. Hence, the averaging concept for this case is required to be qualitatively
different in compare with the classical (for example, Lorenz-Lorentz) one.

The key notion for the introduced averaging procedure is the volume of aver-
aging—the unit cell of the procedure (see Fig. 2.1). All volume is subdivided into
cells (the “volume of averaging” in Fig. 2.1), and each of them contains at least one
particle. Moreover, it is supposed that the composite is homogeneous, i.e. there are
no empty cells and there are no cells containing more than one particle. It means
that the considered media is regular, but the particle in the cell is not necessary
positioned at the center of the cell; each cell contributes to the fields at the point of
consideration, from which all averaged characteristics are supposed to be depended
on. The average volume is taken equal to the volume of the elementary cell (has
been first proposed in [3]).

There are two main approaches to the averaging, namely statistical one [4–6],
where averaging is taking over the ensemble of realization; and spatial, where the
main questions are volume of the averaging and the averaging function, which set
the minimal macroscopic scale at which change of the macroscopic (averaged)
functions is still significant [7].

A significant advantage of the statistical approach is the absence of characteristic
scales, like the volume of the unit cell, because the averaging is performed over all
possible realisations rather than over physical volume. A drawback of the statistical
approach is in relatively complex math required for the elaboration of the model.
The concept of the statistical averaging, being well developed for the electrostatics
and magnetostatics, appears not to be completed for the microwave frequencies and
optical spectra [8].

One more approach, called scaling algorithm has to be mentioned [9]. This is a
generalized method of spatial averaging, where at the first step the averaging is
performed over small-scale cells, then over bigger cells, which include many small
cells. The procedure is repeated before the averaged functions converge to their
asymptotical values. The method is based on specially introduced multipoles
(different from the usually defined ones), which are assigned to the cells at each step
of the averaging. The method (similarly to [5]) is a universal one for diluted and
dense composites, because it does not require introduction of the local field, but is
relatively complicated and not constructive, e.g. the method itself does not suggest
constructive averaging procedure.
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More comprehensive general review of different approaches to the problem of
averaging can be found in [10].

2.2 System Under Consideration

In spite of the fact, that in this work general properties of ME (irrespective to a
particular medium) are of interest, it seems to be methodologically appropriate to
determine from the beginning the type of MMs which will be considered and keep
this type in mind throughout the text.

In this work a medium consisting of artificial MAs embedded in a dielectric
matrix will be considered—see Fig. 2.2, where only one layer of the considered
material is presented.

The MAs are assumed to be complex plasmonic structures, possessing so called
symmetric and anti-symmetric eigenmodes—see Fig. 2.3, where one possible
structure (coupled nanowires, in general of different sizes) is shown. The structure
consists of two nanowires with typical lengths (for optical domain) of tens to
hundreds nanometers, placed one under another with the distance of several tens of
nanometers, ensuring strong near field interaction between both nanowires [11].
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Fig. 2.2 Artificial MAs (plasmonic nanoresonators) embedded in a dielectric matrix form a MM
(only one layer is presented). Polarization of the electric and magnetic fields, and direction of the
wave vector are shown

(a) (b)
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Fig. 2.3 One of the possible shape of MAs, possessing a symmetric and b anti symmetric modes.
Electric field ~Ey of the incoming wave, propagating along y axis excites eigenmodes of the
plasmonic MA
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Considering both nanoresonators as two coupled harmonic oscillators, it
becomes clear that the structure possess two fundamental eigenmodes, namely
symmetric (Fig. 2.3a) which produces effective dielectric response, and
anti-symmetric (Fig. 2.3b) which is responsible for the magnetic response of the
media.

Here the incoming electromagnetic wave interacts with the electrons of the
plasmonic structure and effectively excites symmetric and asymmetric oscillations,
provided that the frequency of the incoming wave is close to the respective
eigenfrequency of the eigenmodes. In case of symmetric mode electrons in both
nanoresonators oscillate in phase, while in case of anti-symmetric mode—out of
phase (Fig. 2.3a, b, respectively).

It is also intuitively clear, that in case of symmetric oscillation (Fig. 2.3a) the
MA formed by two wires of equal length does not produce any magnetic effects, but
rather exhibits extra dipole moments leading finally to the change of the permit-
tivity of the MM. The main interest to the MM is stipulated by the possibility to
excite the antisymmetric modes (Fig. 2.3b). In this case the structure presents to the
first approximation a circle current, which provides (as it is well known from the
school course of physics) a magnetic response. The fantastic peculiarity of the MMs
is in the fact, that the MMs provide magnetic response at optical frequencies, where
no natural media has similar properties. This fundamentally distinguishes MMs
from any natural materials, and makes such MMs (among others) extremely
interesting objects for both fundamental research and various applications [12].

In most parts of this work, a MM consisting of coupled nanowires will be
considered. In spite of the wide range of different shapes of the nanoresonators
considered in the publications (including extremely exotic ones [13]), the coupled
nanowire was the first structure whom a negative refractive index has been
demonstrated with [14, 15]. Moreover, properties of this structure allow clear
physical interpretation and relatively simple analytical treatment, which makes
coupled nanowires a very good object for discussion of different physical models.
One of the simple and at the same time rather good examples is in consideration of
necessary conditions for the existence of anti-symmetric modes. Remembering the
mentioned above interpretation of the dynamics of the coupled nanowires in terms
of coupled harmonic oscillators, it is clear that the anti-symmetric mode can be
excited due to the following reasons:

• First, asymmetric excitation (for example, retardation at the wave propagation
between lower and upper nanowires), and,

• Second, due to asymmetric shape of the structure (not equal sizes of the upper
and lower nanowires).

Both cases lead to rather different optical properties of the MM consisting of such
MAs.

It has to be also emphasized that the presented book is concentrated mainly on
homogenization of bulk material—multilayer (in Fig. 2.2 only one layer is pre-
sented) MM.
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Comparing Fig. 2.1 with Fig. 2.2 and identifying the MAs as artificial atoms one
can immediately conclude, that the basic requirements for the homogenization
procedure are satisfied rather poorly. For example, typical sizes of the MAs, having
the resonance wavelength of about 1 µm, are of the order of several hundreds of
nanometers; the distances between the MAs are of the same order. It is clear, that
classical approach for homogenization which results in known expressions like
ones for small concentrations and small permittivity variation [1, 16, 17],
Lorenz-Lorentz and Clausius-Mossotti equation [18–21], and Bruggeman equation
[22] are no more valid. All these mentioned above theories have been elaborated in
the framework of the static approximation, where electric and magnetic effects are
separated. In the case of MM the main effect is in appearance of a magnetic
response under the interaction of the MAs with the electric field, which is not
included in the static approximation. An attempt to include dynamic corrections
into the Lorenz-Lorentz expression, obtained in [10, 23] loses, as it was admitted by
author, its physical meaning for the MM frequencies ranges [17].

2.3 Frequency Range of Homogenization

It is methodologically important to distinguish between MM and other forms of
compound structures like, for example, photonic crystals. In addition to the typical
sizes (see Fig. 2.1) it is useful to introduce two characteristic wavelengths, namely:

1. Wavelength of the plane wave in the effective medium keff ¼ 2p=ReðkÞ.
2. The resonance wavelength kres of the internal resonances of the inclusions.

We are by definition interested in the wavelength region where the internal reso-
nances of the inclusions exist kres � keff . The relation between the effective wave-
length and the typical distance between inclusions keff [ Linter=2 guaranties that the
effective wavelength is safely longer than the wavelength of the Bragg resonances,
otherwise the effect of mutual interference of the scattered waves dominates and the
media is no more optically dense. Nevertheless, it is possible to create media where
one of the typical sizes of the inclusions exceeds the effective wavelength signifi-
cantly but the media can be homogenized anyway. For example, the media con-
sisting of long and short wires can be homogenized and thus far can be considered
as MM [24–27].

The question about possible frequencies where the homogenization is possible
has been considered in details in [17, 28] (see also references therein). First, the
effect of anisotropy which leads to different wave vectors for different propagation
directions and which is typical for crystals, has to be taken into account. It was
shown that the effect of anisotropy leads to two possible families of isofrequency
contours, namely ellipsoids and hyperboloids, depending on the sign of the ratios
exx=ezz and eyy=ezz (here the consideration is carried out in the main axis of the
intrinsic coordinate system of the crystal) [29–31]. From the other side, the effective
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parameters themselves do not depend on the wave vector (spatial dispersion is
negligible). In media with spatial dispersion the effective parameters depend on the
wave vector considerably, therefore making the shape of the isofrequency contours
arbitrary. Comparison of isofrequencies of MM obtained numerically with ellip-
soids and hyperboloids makes it possible to identify frequency intervals, where the
effective parameters do not depend on the wave vector. The conclusion in these
papers is that the homogenization is possible only for the frequencies possessing
isofrequency curves of ellipsoid or hyperboloid types in isofrequency contours—
see, for example, Fig. 2.1 in [17]. In other words, it was concluded that homoge-
nization is possible only in case of absence of spatial dispersion. This conclusion is
questionable. Keeping in mind, that the goal of the bulk homogenization is in
finding a dispersion relation it has to be admitted, that this goal is fully achieved by
all (not only by ellipsoid/hyperboloid) curves in the isofrequency contour. In other
words, the fact that the dispersion relation (and the respective refractive index)
depends on the direction does not contradict to the possibility of homogenization.

In case of periodic media there is a frequency range that corresponds to the
regime of a single propagating mode (understood as the absence of higher-order
propagating Bloch modes). According to [7, 17, 32–35], this is the requirement of
possibility of homogenization. This assumption appeared to be questionable as
well: in general, the presence of several propagating modes at the same frequency
does not mean that the media could not be substituted by a homogeneous one with
the same dispersion characteristics. The presence of several possible modes just
mean that the propagating field will be presented as a sum of these modes with
appropriate weighting coefficients; the question about relation between these
coefficients is related to the problem of excitation of these modes, which in turn
concerns the boundary condition problem, which is out of the scope of this paper.

Nevertheless, for the sake of simplicity and in order to fix the notations, it is
assumed here that all characteristic sizes of the media (the sizes of the MAs and the
distances between them) are smaller than one half of the effective wavelength in the
media, which separates the problem of homogenization of MMs from the same
problem for photonic crystal structures.

2.4 Different Representations of Material Equation

The last equation in (2.4) is not averaged and describes the microscopic dynamics
which is supposed to be substituted in h~ji; hqi and averaged in order to get (2.5).
Relations (2.5) in turn use information about microscopic dynamics as a function of
microscopic fields which get averaged after substitution into equations for h~ji; hqi.
In fact, there is only one model (a multipole model [4]) where the averaging
procedure for the h~ji; hqi as functions of microscopic dynamics is performed rig-
orously, all other models do not even try to make this step; the last equation in (2.4)
is usually left out completely, and the necessary equivalent information about
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charge dynamics is brought to the model phenomenologically. It has to be realized
that this gap in the theory [inability to average rigorously the dynamic equation for
particles in (2.4)] causes all the problems in further consideration and leads to all
appearing contradictions and ambiguities.

In this paper we do not suggest any new ways of inclusion of this dynamic
equation [the mentioned last equation in (2.4)] into consideration; instead, after this
fact (ignorance of the dynamic equation from the averaging procedure) has been
recognized, we try to create an approach to homogenization rigorously in terms of a
logical chain with clearly recognized steps, assumptions, and approximations.

The system of (2.4) and (2.5) is rather useless in practice until we find analytical
expressions for (2.5). Nevertheless, even without finding of an analytical form for
(2.5), the averaged MEs can be analysed and important conclusions can be made.

It is worth noticing that if we assume some analytical form for (2.5) (see, for
example, [36] and references herein) then the averaging problem is basically fixed
(or, better to say, bypassed). System (2.4) becomes self-consistent and can be
solved for the electric and magnetic fields ~E; ~B. Any further considerations (in-
cluding introduction of ~D; ~H in different representations, as well as the permittivity
and permeability) in this case are no more required. Thus, in what follows we
assume that there are no explicit forms of (2.5) and it is necessary to elaborate (2.5)
further in order to find some reasonable analytical expressions for the averaged
charge and current densities. It has to be emphasized as well that both these
characteristics—the averaged charge and current densities—are measurable quan-
tities and they do not change in math transformations; we will see below, that these
characteristics keep their form in different ME representations.

First, following [1] we consider a volume with charges and fields (see again
Fig. 2.1). The averaged charge in (2.5) can be represented through another function
taking into account that the total charge of the considered volume is zero:

Z
qh i dV ¼ 0 ð2:6Þ

It means that the averaged density of charges can be presented as a divergence of
another unknown function ~Pfull (see more details in [1, 16]):

qh i ¼ �div~Pfull ð2:7Þ

The function ~Pfull is supposed to be zero outside the volume of integration in (2.6)
[1]. In addition, this function is introduced with the accuracy of “rot” from any
other arbitrary differentiable function ~F1:

qh i ¼ �div~Pfull ¼ �div ~Pþ rot~F1
� �

~Pfull ¼ ~Pþ rot~F1

(
ð2:8Þ
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The averaged current is connected with the averaged charge density through the
continuity relation [37], which remains valid for the macroscopic representation:

ix qh i ¼ div ~j
� �

qh i ¼ �div~Pfull

(
ð2:9Þ

which gives:

div ~j
� �þ ix~Pfull
� � ¼ 0 ð2:10Þ

This means, that the averaged current can be introduced with the accuracy of “rot”
of one more arbitrary function ~F2:

~j
� � ¼ �ix~Pfull ¼ �ix~Pfull þ rot~F2 ð2:11Þ

or, taking into account (2.8):

~j
� � ¼ �ix~Pfull þ rot~F2 ¼ �ix~Pþ rot �ix~F1 þ~F2

� � ð2:12Þ

It turns out that the material equations (2.3) can be written through one new
function ~P with the accuracy of two more arbitrary functions ~F1 and ~F2:

qh i ¼ �div ~Pþ rot~F1
� �

~j
� � ¼ �ix~Pþ rot �ix~F1 þ~F2

� �
(

ð2:13Þ

This approach assumes that the introduced function~Pfull is zero outside the volume of
integration in (2.6), and, moreover, the function~Pfull does not depend on the chosen
integration volume. Another approach has been proposed in [9] and is called the
scaling algorithm. The developed approach is based on a lemma proving that any field
can be represented as a sum of three terms which are called “electric dipole”,
“magnetic dipole”, and “electric quadrupole”moments (in the frequency domain) [9]:

Ji ¼ �ix pi þ ceijk
@mk

@xj
þ ix c

@

@xk
qik ¼ JðpÞi þ JðmÞi þ JðqÞi

mi xj; Jk
� � ¼ 1

2c
eijkxjJk

� ix qij xj; Jk
� � ¼ 1

2c
xjJi þ xiJj
� �

� ix pi xi; Jkð Þ ¼ � xj
@Jk
@xk

� �

8>>>>>>><
>>>>>>>:

ð2:14Þ

This lemma leads to the possibility to represent, for example, the averaged current
in the following form [9]:
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~j
� � ¼ �ix ~P� divQ

� �þ c rot ~M ð2:15Þ

which basically repeats the second equation in (2.13). The equation for the averaged
current hqi then becomes:

qh i ¼ �div ~P� divQ
� � ð2:16Þ

which is similar to the first equation in (2.13) if we assume that~P ! ~P� divQ. It is
also rather straightforward to extend the approach (2.14) and include an analogy
with the arbitrary functions ~F1 and ~F2. First, the function ~M in (2.15) appears to be
the same as the function ~F2 (basically, ~F2 ¼ c~M), and the function ~F1 can be
included in (2.14) as extra terms for the magnetic [first equation in (2.14)] and
dipole [last equation in (2.14)] terms:

Ji ¼ �ix pi þ ceijk
@mk

@xj
þ ix c

@

@xk
qik ¼ JðpÞi þ JðmÞi þ JðqÞi

mi xj; Jk
� � ¼ 1

2c
eijkxjJk þ ix

c
F1; i

� ix qij xj; Jk
� � ¼ 1

2c
xjJi þ xiJj
� �

� ix pi xi; Jkð Þ ¼ � xj
@Jk
@xk

� �
� eijk

@F1; k

@xj

8>>>>>>><
>>>>>>>:

ð2:17Þ

It is worth noting that (2.14)–(2.17) have been obtained without any additional
assumptions about integration which have been used at the elaboration (2.7) from
(2.6). The question about the physical meaning of the functions in (2.14)–(2.17) and
(2.13) remains opened.

Now we come back to the consideration of (2.13). Both functions ~F1 and ~F2 are
arbitrary and independent. This means that it is possible to consider different
possibilities and to impose any additional requirements on them. There are different
but countable number of choices for the possible representations of (2.13). The
most general case is when both ~F1 and ~F2 are non-zero functions, namely:

~Pfull ¼ ~PC ¼ ~Pþ rot~F1

~F2 ¼ c � ~MC

(
ð2:18Þ

which leads to the so called Casimir (subscript “C” stands for Casimir) form of
material equations:

qh i ¼ �div~PC

~j
� � ¼ �ix~PC þ c rot ~MC

(
~D ¼ ~Eþ 4p~PC

~H ¼ ~B� 4p~MC

(
ð2:19Þ

In this case MEs include four functions ~E; ~B; ~D; ~H:
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rot~E ¼ ix
c
~B

div~B ¼ 0

div~D ¼ 0

rot~H ¼ � ix
c
~D

8>>>>>>><
>>>>>>>:

ð2:20Þ

Note, that the case ~F1 ¼ 0 and ~F2 ¼ c � ~MC leads to the same form (2.19), where
the curl part of the full polarizability ~Pfull [see (2.8)] is excluded (the physical
meaning of this part ~F1—presence of anapoles [38]—will be considered below).
Alternatively to (2.18), we can set:

~Pfull ¼ ~PLL ¼ ~Pþ rot~F1

~F2 ¼ 0

(
ð2:21Þ

which leads according to (2.13) to the so called Landau&Lifshitz (subscript “L&L”
stands for Landau&Lifshitz) [39] form of material equations:

qh i ¼ �div~PLL

~j
� � ¼ �ix~PLL

(
~D ¼ ~Eþ 4p~PLL

~B ¼ ~B

(
ð2:22Þ

In this case MEs contain three functions ~E; ~B; ~D:

rot~E ¼ ix
c
~B

div~B ¼ 0

div~D ¼ 0

rot~B ¼ � ix
c
~D

8>>>>>>><
>>>>>>>:

ð2:23Þ

Note that the form (2.22) does not assume that the averaged current h~ji does not
contain any curl part—this part is included in h~ji through ~F1 [see (2.21)]. The main
difference between “C” and “L&L” representation is in the absence in the latter any
stationary (not proportional to x) part of the curl part of h~ji, described by ~MC. In
case of the absence of the stationary magnetization both representations have to be
equivalent.

Finally, we assume that the full polarizability ~Pfull contains only the curl part,
namely:

~Pfull ¼ rot~F1

~F2 ¼ c � ~MC

(
ð2:24Þ
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which leads, according to (2.13), to the case which we call here Toroidal (subscript
“T” stands for Toroid) form of material equations:

qh i ¼ 0

~j
� � ¼ �ix rot~F1 þ c rot ~MC ¼ c rot ~MT

(
~D ¼ ~Eþ 4p rot~F1

~H ¼ ~B� 4p~MA

(
ð2:25Þ

In this case the system of MEs contains three functions ~E; ~B; ~H and reads:

rot~E ¼ ix
c
~B

div~B ¼ 0

div~E ¼ 0

rot~H ¼ � ix
c
~E

8>>>>>>><
>>>>>>>:

ð2:26Þ

We stress that this set of equations can be used only in very special cases where the
averaged charge density [not only total charge—compare with (2.6)] is zero. Thus,
in general the “T” form cannot be used instead of the “C” or “L&L” forms.

The physical object corresponding to such representation is a toroid [16, 38],
which is now of great interest in connection with potential possibility of design of
such structures at nanoscales for optical wavelength region application [40]. It is
seen, that the presence of toroid is responsible for the function ~F1, and fixes the
functions hqi; h~ji in general representation (2.13).

Physical interpretation of the three mentioned above representations can be done
based on the types of atoms/molecules (or MAs/metamolecules) which the con-
sidered media consist of. In the most general case “C” form is preferable. In the
case of absence of stationary magnetisation (but presence of all others) the “C” and

Table 2.1 Possible forms of representation of material equations and the respective forms of the
macroscopic MEs

Casimir form (“C” form)
~E; ~B; ~D; ~H

Landau & Lifshitz form (“LL”

form)

Toroidal form (“T” form)

hqi ¼ �div~PC

h~ji ¼ �ix~PC þ c rot ~MC

(

~D ¼ ~Eþ 4p~PC

~H ¼ ~B� 4p~MC

(

rot~E ¼ ix
c
~B

div~B ¼ 0

div~D ¼ 0

rot~H ¼ � ix
c
~D

8>>>>>>><
>>>>>>>:

hqi ¼ �div~PLL

h~ji ¼ �ix~PLL

(

~D ¼ ~Eþ 4p~PLL

~H ¼ ~B

(

rot~E ¼ ix
c
~B

div~B ¼ 0

div~D ¼ 0

rot~B ¼ � ix
c
~D

8>>>>>>><
>>>>>>>:

hqi ¼ 0

h~ji ¼ c rot ~MT

(

~D ¼ ~E

~H ¼ ~B� 4p~MT

(

rot~E ¼ ix
c
~B

div~B ¼ 0

div~E ¼ 0

rot~H ¼ � ix
c
~E

8>>>>>>><
>>>>>>>:

2.4 Different Representations of Material Equation 35



“L&L” representations have to be equivalent. In case of absence of the non curl part
of magnetization (presence of only toroids and maybe stationary magnetization) the
“T” form is appropriate.

It is important to realize that there are no other choices for the material equations.
Any homogenization model has to start from the statement in which representation
it will be developed; arbitrary mixing between several representations is not
acceptable, as it will be seen below.

The possible representations are summarized in Table 2.1.

2.5 Serdyukov-Fedorov Transformations

The Serdyukov-Fedorov transformations (SFT) are relations between two sets of four
vectors~E; ~B; ~D; ~H and ~E0; ~B0; ~D0; ~H0, where both sets satisfy Maxwell’s equations.
The SFT are usually written in the following form (for “C” representation):

rot~E ¼ ix
c
~B

div~B ¼ 0

div~D ¼ 0

rot~H ¼ � ix
c
~D

8>>>>>>><
>>>>>>>:

~B ¼ ~B0 þ rot ~T1

~E ¼ ~E0 þ ix
c

~T1

~D ¼ ~D0 þ rot ~T2

~H ¼ ~H0 � ix
c

~T2

8>>>>>>><
>>>>>>>:

ð2:27Þ

The SFT are composed from two parts—“field” transformations for ~E; ~B and
“material” transformations for ~D; ~H). Below SFT are used to find relations between
the three forms of material relations.

First of all, let us consider the system of averaged MEs in the following form:

rot~E ¼ ix
c
~B

div~B ¼ 0

div~E ¼ 4p qh i
rot~B ¼ � ix

c
~Eþ 4p

c
~j
� �

8>>>>>>><
>>>>>>>:

ð2:28Þ

It is easy to see that the first two equations are invariant under the following
transformation:

~B ¼ ~B0 þ rot ~T1

~E ¼ ~E0 þ ix
c

~T1

8<
: ð2:29Þ

The new primed fields satisfy the same form of the first two MEs (2.28). It cor-
responds exactly to the SFT in parts of the field transformations in (2.27).
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Substituting (2.29) into the last two equations of (2.28), it is easy to find relations
between new and old averaged charge density and current:

qh i ¼ qh i0 þ ix
4p c

div~T1

~j
� � ¼ ~j

� �0 þ c
4p

rot rot~T1 � x2

4p c
~T1

8>><
>>: ð2:30Þ

Transformations (2.29) and (2.30) give relations between fields and charge and
current densities so that the functional form of the MEs remains the same. It should
be emphasized that at this stage absolutely no assumptions about possible distri-
butions of the charge and current densities have been made.

Physical interpretation of the found transformations is pretty obvious: they just
link two possible solutions of MEs. For example, from a known (non-primed)
solution of MEs one can find new (primed) one if we know the connection between
the non-primed and primed averaged charge and current densities (2.30). A more
important consequence of (2.30) is that in case of the field transformation (2.29) it is
necessary to transform charge and current densities (2.30), if we require that the
new primed values satisfy the MEs.

Previously it has been found that the material equations (2.5) can be written
through two new functions~P and ~M, which for the most general “C” representation
takes the form [see (2.19)]:

qh i ¼ �div~P

~j
� � ¼ �ix~Pþ c rot ~M

(
ð2:31Þ

From (2.31) one can immediately obtain that in case of transformation (2.30)
functions ~P and ~M have to be transformed as well:

~P ¼ ~P0 � ix
4p c

~T1

~M ¼ ~M0 þ 1
4p

rot~T1

8><
>: ð2:32Þ

Substituting (2.31) into MEs we obtain:

rot~E ¼ ix
c
~B

div~B ¼ 0

div ~Eþ 4p~P
� � ¼ 0

rot ~B� 4p~M
� � ¼ � ix

c
~Eþ 4p~P
� �

8>>>>>>><
>>>>>>>:

ð2:33Þ

It is clear that the last two equations allow similar transformation with the use of
one more arbitrary function ~T2, as in the second set of (2.27). Namely:
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~P ¼ ~P0 � ix
4p c

~T1 þ rot~T2

~M ¼ ~M0 þ 1
4p

rot~T1 þ ix
c
~T2

8><
>: ð2:34Þ

which also does not change the form of the MEs.
It should be emphasized that function ~T2 does not appear in the expressions for

transformation of averaged charge and current densities; in other words, measurable
values are not changed under transformation (2.34).

As discussed above, the physicalmeaning of the transformations (2.29), (2.30) is in
just an algebraic link between two possible solutions of MEs: if the averaged charge
and current densities are transformed according to (2.30), then the new fields can be
obtained without the necessity to solve MEs, but with the use of (2.29). The physical
interpretation of (2.34) with~T1 ¼ 0 is different. This transformation changes neither
fields nor averaged densities of charges and currents, but rather redistributes the
representations of them between ~P and ~M. In other words, this transformation
describes the same physical situation by different representations, e.g. by different
pairs of ~P; ~M. It is clear (and it will be used below) that this corresponds to trans-
formations between different representations of MEs (“C”, “L&L”, and “T” forms).

Alternatively, in (2.32) one can introduce transformation not for ~P; ~M, but for
combinations ~Eþ 4p~P; ~B� 4p~M, namely:

~Eþ 4p~P ¼ ~E0 þ 4p~P0 þ rot~T2

~B� 4p~M ¼ ~B0 � 4p~M0 � ix
c
~T2

8<
: ð2:35Þ

which is equivalent to the last two equations in (2.27):

~D ¼ ~D0 þ rot~T2

~H ¼ ~H0 � ix
c
~T2

8<
: ð2:36Þ

Combining all elaborated expressions, one can finally obtain, that the trans-
formations

rot~E ¼ ix
c
~B

div~B ¼ 0

div ~Eþ 4p~P
� � ¼ 0

rot ~B� 4p~M
� � ¼ � ix

c
~Eþ 4p~P
� �

qh i ¼ �div~P

~j
� � ¼ �ix~Pþ c rot ~M

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

~B ¼ ~B0 þ rot ~T1

~E ¼ ~E0 þ ix
c

~T1

~P ¼ ~P0 � ix
4p c

~T1 þ rot~T2

~M ¼ ~M0 þ 1
4p

rot~T1 þ ix
c
~T2

qh i ¼ qh i0 þ ix
4p c

div~T1

~j
� � ¼ ~j

� �0 þ c
4p

rot rot~T1 � x2

4p c
~T1

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð2:37Þ
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are equivalent to the SFT (2.27). The difference between SFT in form (2.27) and
(2.37) is in that in the developed here approach functions ~P; ~M are used instead of
~D; ~H. The latter variant appears to be convenient due to the fact that in this case
transformation for the fields ~E; ~B is independent from the transformation for ~D; ~H.
Nevertheless, it is important to remind that in order to come to the representation
using vectors ~D; ~H, it is necessary first to introduce ~P; ~M, after that regroup the
respective terms in MEs, and then introduce vectors ~D; ~H. It is also possible to
postulate the macroscopic MEs directly in form (2.27), but in this case the logical
transition between microscopic and macroscopic MEs is lost.

Concluding this part, we can state that the SFT provide transformations between
two different realizable physical situations ð~T1 6¼ 0; ~T2 ¼ 0Þ or between two rep-
resentations of the same physical situation ð~T1 ¼ 0; ~T2 6¼ 0Þ.

2.6 Transformations Between Different Representations

Let us consider the relation between different representations of MEs, and start from
the “C” form (2.19). It is known that the “C” form is invariant with respect to the SFT
(2.27), (2.37). Here the SFTwill be applied (following [16]) and possible conclusions
which can be made based on the application of the SFT will be considered.

“C” to “L&L” Transformation
Let us start from “C” to “L&L” transformation. For the material equations in “C”
(not primed) and “L&L” (primed) forms one can respectively write:

~BC ¼ ~B0
LL þ rot ~T1

~EC ¼ ~E0
LL þ ix

c
~T1

8<
:

~PC ¼ ~P0
LL � ix

4p c
~T1 þ rot~T2

~MC ¼ ~M0
LL þ ix

c
~T2 þ rot~T1

4p

qh iC ¼ qh i0LL þ
ix
4p c

div~T1

~j
� �

C¼ ~j
� �0

LL þ
c
4p

rot rot~T1 � x2

4p c
~T1

8>>>>>>>>>><
>>>>>>>>>>:

ð2:38Þ

In order to get the MEs for the new fields in “L&L” form in the primed system we
have to require that:

~M0
LL ¼ 0 ð2:39Þ

which leads to:

~T2 ¼ ic
x

rot~T1 � ~MC
� � ð2:40Þ
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Substituting the last equation into (2.38), we finally have:

~BC ¼ ~B0
LL þ rot ~T1

~EC ¼ ~E0
LL þ ix

c
~T1

8<
:

~P0
LL ¼ ~PC þ ix

4p c
~T1 þ ic

x
rot rot~T1 � ~MC

� �
~M0

LL ¼ 0

qh i0LL¼ qh iC�
ix
4p c

div~T1

~j
� �0

LL¼ ~j
� �

C�
c
4 p

rot rot~T1 þ x2

4p c
~T1

8>>>>>>>>><
>>>>>>>>>:

ð2:41Þ

which gives us the MEs in form of “L&L”. If, in addition, we require that the
electric and magnetic fields remain the same for both representations (which is
reasonable, because both fields are assumed to be physically measurable), we obtain
by setting ~T1 to zero:

~BC ¼ ~B0
LL

~EC ¼ ~E0
LL

( ~P0
LL ¼ ~PC � ic

x
rot ~MC

~M0
LL ¼ 0

qh iC¼ qh i0LL
~j
� �

C¼ ~j
� �0

LL

8>>>>>><
>>>>>>:

ð2:42Þ

We see that starting from “C” representation, we can unambiguously reduce the
MEs to the “L&L” form. It is important to emphasize, that in general (~T1 6¼ 0) both
electric and magnetic fields are transformed and lose their initial physical meanings.
The requirement of keeping the electric and magnetic fields the same in both
representations is an additional one with respect to the SFT.

“L&L” to “C” Transformation
Let us consider the inverse transformation (“L&L” to “C” representation), namely
we start from system (2.22) and write the SFT in this case:

~BLL ¼ ~B0
C þ rot ~T1

~ELL ¼ ~E0
C þ ix

c
~T1

8<
:

~PLL ¼ ~P0
C � ix

4p c
~T1 þ rot~T2

0 ¼ ~M0
C þ ix

c
~T2 þ rot~T1

4p

qh iLL¼ qh i0C þ
ix
4p c

div~T1

~j
� �

LL¼ ~j
� �0

C þ
c
4p

rot rot~T1 � x2

4p c
~T1

8>>>>>>>>>><
>>>>>>>>>>:

ð2:43Þ

It is seen, that in general the functions ~T1; ~T2 cannot be unambiguously found.
As like as for direct (“C” to “L&L”) transformation, we require that the field in

both representations remain the same ~T1 ¼ 0:
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~BLL ¼ ~B0
C

~ELL ¼ ~E0
C

( ~P0
C ¼ ~PLL � rot~T2

~M0
C ¼ � ix

c
~T2

qh i0C¼ qh iLL
~j
� �0

C¼ ~j
� �

LL

8>>>>>><
>>>>>>:

ð2:44Þ

It is seen that the function ~T2 cannot be unambiguously determined, and the reverse
“C” to “L&L” transformation is in general undetermined as well. This is because
splitting of the total polarization current into two parts cannot be made uniquely and
some additional physical requirements are needed to define, as is usually done, the
parts corresponding to electric polarization density and magnetization current.

Let us emphasize again, that starting from the “C” form it is possible to arrive to
the “L&L” form, but starting from the “L&L” form it is impossible to reduce MEs
to the “C” form using the SFT unambiguously. There are unlimited number of “C”
forms which correspond to the same “L&L” form.

“C” to “T” Transformation
Let us now consider the “C” to “T” transformation. In order to get the MEs for the
new fields in “T” form (2.25) in the primed system we have to require that:

qh iT¼ 0 ð2:45Þ

Writing the SFT for this case, we have:

~BC ¼ ~B0
T þ rot ~T1

~EC ¼ ~E0
T þ ix

c
~T1

8<
:

~PC ¼ ~P0
T � ix

4p c
~T1 þ rot~T2

~MC ¼ ~M0
T þ ix

c
~T2 þ rot~T1

4p

qh iC¼
ix
4p c

div~T1

~j
� �

C¼ ~j
� �0

T þ
c
4p

rot rot~T1 � x2

4p c
~T1

8>>>>>>>>>><
>>>>>>>>>>:

ð2:46Þ

In addition, if we require the same values for the electric and magnetic fields in both
representations (~T1 ¼ 0), then:

~BC ¼ ~B0
T

~EC ¼ ~E0
T

( ~P0
T ¼ ~PC � rot~T2

~M0
T ¼ ~MC � ix

c
~T2

qh i0T¼ qh iC¼ 0

~j
� �0

T¼ ~j
� �

C

8>>>>>><
>>>>>>:

ð2:47Þ
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One can conclude that the “C” to “T” transformation in general cannot be per-
formed. Let us stress that this reflects the fact that the toroidal form can be used
only if the average charge density is zero, which is of course generally not the case.
If hqiC ¼ 0 is initially satisfied, then (2.46) gives “redistribution” between dielectric
and magnetic responses in full analogy with “L&L” to “C” transformation (2.44).

“T” to “C” Transformation
In this case the SFT has the following form:

~BT ¼ ~B0
C þ rot ~T1

~ET ¼ ~E0
C þ

ix
c

~T1

8><
>:

~P0
C ¼ ~PT þ ix

4p c
~T1 � rot~T2

~M0
C ¼ ~MT � ix

c
~T2 � rot~T1

4p

qh i0C ¼ � ix
4p c

div~T1

~j
� �

T ¼ ~j
� �0

C þ
c
4p

rot rot~T1 � x2

4p c
~T1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2:48Þ

In case of the same fields ~T1 ¼ 0 and consequently:

~BT ¼ ~B0
C

~ET ¼ ~E0
C

8<
:

~P0
C ¼ ~PT � rot~T2

~M0
C ¼ ~MT � ix

c
~T2

qh i0C ¼ 0

~j
� �0

C ¼ ~j
� �

T

8>>>>>>>><
>>>>>>>>:

ð2:49Þ

which is again no more than the “redistribution” between dielectric and magnetic
responses in the frame of “C” representation.

“L&L” to “T” Transformation
In this case the SFT reads:

~BLL ¼ ~B0
T þ rot ~T1

~ELL ¼ ~E0
T þ

ix
c

~T1

8<
:

~P0
T ¼ ~PLL þ ix

4p c
~T1 � rot~T2

~M0
T ¼ � ix

c
~T2 � rot~T1

4p

qh iLL¼
ix
4p c

div~T1

~j
� �0

T¼ ~j
� �

LL�
c
4p

rot rot~T1 þ x2

4p c
~T1

8>>>>>>>>>><
>>>>>>>>>>:

ð2:50Þ
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and for the case of the same fields ~T1 ¼ 0:

~BLL ¼ ~B0
T

~ELL ¼ ~E0
T

8<
:

~P0
T ¼ ~PLL � rot~T2

~M0
T ¼ � ix

c
~T2

qh iLL ¼ 0

~j
� �0

T ¼ ~j
� �

LL

8>>>>>>>><
>>>>>>>>:

ð2:51Þ

The transformation, similarly to the case “C” to “T”, in general is not determined
due to the fact that in general hqiLL 6¼ 0.

“T” to “L&L” Transformation
The reverse transformation follows the equations:

~BT ¼ ~B0
LL þ rot ~T1

~ET ¼ ~E0
LL þ

ix
c

~T1

8><
>:

~P0
LL ¼ ~PT þ ix

4p c
~T1 � rot~T2

~MT ¼ ix
c
~T2 þ 1

4p
rot~T1

qh i0LL ¼ � ix
4p c

div~T1

~j
� �0

LL ¼ ~j
� �

T�
c
4p

rot rot~T1 þ x2

4p c
~T1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2:52Þ

and for the same fields ~T1 ¼ 0:

~BT ¼ ~B0
LL

~ET ¼ ~E0
LL

8<
:

~P0
LL ¼ ~PT � c

ix
rot ~MT

c
ix

~MT ¼ ~T2

qh i0LL ¼ 0

~j
� �0

LL ¼ ~j
� �

T

8>>>>>>>><
>>>>>>>>:

ð2:53Þ

In this case the transformation is determined unambiguously.
The mutual transformations between different representations are presented in

Fig. 2.4.
From Fig. 2.4 one can see that the “L&L” form occupies a special place in the

elaborated hierarchy—the other two forms can be reduced to the “L&L” form,
while the “L&L” form itself cannot be transformed to the other unambiguously.
Another specific position is occupied by the “T” representation: this representation
is valid only if the averaged charge density is identically zero and it cannot be
achieved in general from two other ones.
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2.7 Conclusion

All the considerations above did not answer the question “How to get the unknown
functions for the polarizability (“L&L” form) or polarization and magnetization
(“C” form) starting from the microscopic picture?”

The main problem is to develop a model, which would give us a recipe for
finding analytical expressions for ~P and ~M as functions of the averaged fields—it
has to be also pointed out, that the expressions have to be presented as functions of
the averaged (macroscopic), and not the microscopic fields; only in this case we can
formulate the MEs as a self-consistent system. Nevertheless, it is important to
realize, that whatever model is developed, it can be presented only in “C”, “L&L”,
or “T” form with the respective consequences, described above.

The conclusions for the presented above chapter are:

1. In this chapter the main goal of this work has been formulated in form of
defining the functional dependence (2.5) or, equivalently, (2.19), (2.22), (2.25).
The goal has been formulated based on the microscopic Maxwell equations in
form of fields (2.4) as a starting point for all considerations.

2. The frequency range where the homogenization procedure can be performed has
been determined.

3. The macroscopic approach to the homogenization has been outlined resulting in
three possible representations of ME—“C”, “L&L”, and “T” forms.

4. The Serdyukov-Fedorov transformations (SFT) have been reformulated and
used to establish relationships between the three ME representations.

“Casimir”

“Toroidal”“Landau&Lifshitz”

Fig. 2.4 Possibility of mutual transformations between different representations. Crossed dashed
lines between “Casimir” and “Toroidal” and “Landau&Lifshitz” and “Toroidal” show impossible
transformations, dashed lines between “L&L” and “C” and “Toroidal” and “Casimir” show not
unique transformations
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Chapter 3
Phenomenological Versus Multipole
Models

In order to further develop the homogenization procedure, we should find an
analytical form for the functions~P and ~M in case of “C” representation,~P in case of
“L&L” representation, or ~M in case of “T” representation. There are two principal
ways to do it: introduce a functional form following the phenomenological
approach, or try to create a microscopic model which would result finally in the
required forms for ~P and ~M. Below, both ways will be considered.

The most results of this chapter have been originally obtained in [1, 2] with new,
partially previously unpublished interpretations.

3.1 Phenomenological Model (“L&L” and “C”
Representations)

3.1.1 “L&L” Representation

Case of Strong Spatial Dispersion
There is a commonly accepted integral form of~PLL, which can be written according
to the causality principle (which imposes limitations on the frequency dispersion
form) and assuming that the physical processes at some point depend on the fields
at other points (which gives rise to spatial dispersion) (e.g., [3]):

~j
� �

~r; xð Þ ¼ �ix
Z
V

RLL ~r; ~r0; xð Þ~E ~r0; xð Þdr0 ð3:1Þ

This equation in case of translational invariance can be written as:

~j
� �

~r; xð Þ ¼ �ix
Z
V

RLL ~r � ~r0; xð Þ~E ~r0; xð Þdr0 ð3:2Þ
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It has to be realized that (3.2) assumes translational symmetry of the considered
object, which in turn means that (3.2) and any consequences cannot be directly
applied to the consideration of the boundary condition problems. Transforming
(3.2) to the spatial Fourier domain, we get (summation over repeated indexes is
assumed as usual):

jh ia ~k; x
� �

¼ �ixRLL; ab ~k; x
� �

Eb
~k; x
� �

ð3:3Þ

Form (3.3) is an expansion of the averaged current and fields over plane waves. In
principle, the dependence of the averaged current on the magnetic field can be
explicitly included in (3.3) as well. Nevertheless taking into account that in a plane
wave the magnetic field can always be expressed through the electric field Ba ¼
c
x eab lkbEl (eab l is the Levi-Chivita tensor), one can leave out the dependence on the
magnetic field without loss of generality.

From (2.22) we obtain:

PLL; a ~k; x
� �

¼ RLL; ab ~k; x
� �

Eb
~k; x
� �

DLL; a ~k; x
� �

¼ Ea
~k; x
� �

þ 4pPLL; a ~k; x
� �

¼ dab þ 4pRLL; ab ~k; x
� �� �

Eb
~k; x
� �

¼ eLL; ab ~k; x
� �

Eb
~k; x
� �

8>>>><
>>>>:

ð3:4Þ

Here the effective permittivity has been introduced:

eLL; ab ~k; x
� �

¼ dab þ 4pRLL; ab ~k;x
� �

ð3:5Þ

The respective dispersion relation for the plane waves is:

det eab lkbel bckb þ x2

c2
eLL; abð~k; xÞ

� �
¼ 0 ð3:6Þ

The introduced above function eLL; abð~k;xÞ—effective permittivity—is a tensor
with components depending on both the frequency and the wave vector. It is worth
noticing that the effective permittivity introduced this way depends not only on the
MA properties but on the excitation conditions as well, und thus far it cannot be
called “material parameter”—i.e., a parameter which depends on the material
properties only (this issue will be discussed in details later).

Nevertheless, it should be stated that the knowledge of the effective permittivity
fully solves the problem of propagation of plane waves in bulk media.
Equation (3.6) can have several solutions for the same propagation direction and
the same polarization state [4].

When we use this representation, it has to be clearly realized that:
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1. We are working with the “L&L” representation where there is no magnetization
[the magnetic response is included through spatial dispersion of the electric
polarization (3.4)].

2. Form (3.2) assumes translational invariance of the media, which means that the
form is acceptable for homogeneous material far from the boundaries (bulk
materials).

3. In the framework of (3.1) it is impossible to introduce any permeability, because
of in “L&L” representation there is no magnetization. All magnetic effects are
included in the effective permittivity. In order to introduce permeability it is
necessary to transit the “L&L” to the “C” form, which cannot be done unam-
biguously (see Sect. 2.6).

Case of Weak Spatial Dispersion
The phenomenological model (3.1) is widely used in different branches of physics
like plasma physics or physics of crystals. In the vast majority of the considered
problems, the function Rð~k; xÞ ðor equivalently eLLð~k;xÞÞ is expanded into the
Taylor series up to the second order, namely:

RLL; ab ~k;x
� �

� RLL; ab ~k0;x
� �

þ
@RLL; ab ~k;x

� �
@kc

������
~k¼~k0

kc � k0; c
	 


þ 1
2

@2RLL; ab ~k; x
� �

@kc@kd

������
~k¼~k0

kc � k0; c
	 


kd � k0; d
	 
 ð3:7Þ

The functions RLL; abð~k0;xÞ; @RLL; abð~k;xÞ
@kc

���
~k¼~k0

; 1
2
@2RLL; abð~k;xÞ

@kc@kd

���
~k¼~k0

are supposed to be

found from experiments or rigorous microscopic calculations.
It should be pointed out that the Taylor expansion itself can be performed around

any ~k0, not necessarily ~k0 ¼ 0, provided that expansion over angles and wave-
lengths is properly done; in other words, the expansion formally can be written for
small spatial dispersion and for strong spatial dispersion, but in the last case only
for waves with the wave numbers close to~k0. The math in this case does not impose
any limitations.

After having all this said, the final form of the RLL; ab in the “L&L” represen-
tation in case of weak spatial dispersion can be written as:

RLL; ab ~k; x
� �

� RLL; ab 0;xð Þþ
@RLL; ab ~k;x

� �
@kc

������
~k¼0

kc þ 1
2

@2RLL; ab ~k; x
� �

@kc@kd

������
~k¼0

kckd

ð3:8Þ

and the respective relations are:
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PLL; a ~k; x
� �

¼ RLL; ab 0;xð Þþ
@RLL; ab ~k;x

� �
@kc

������
~k¼0

kc

0
@

þ 1
2

@2RLL; ab ~k;x
� �

@kc@kd

������
~k¼0

kckd

1
AEb

~k;x
� �

DLL; a ~k;x
� �

¼ Ea
~k;x
� �

þ 4pPLL; a ~k;x
� �

¼ eð0ÞLL; ab xð Þþ eð1ÞLL; abc xð Þkc þ eð2ÞLL; abcd xð Þkckd
� �

Eb
~k;x
� �

eð0ÞLL; ab xð Þ ¼ dab þ 4pRLL; ab 0;xð Þ	 


eð1ÞLL; abc xð Þ ¼ 4p
@RLL; ab ~k;x

� �
@kc

������
~k¼0

eð2ÞLL; abcd xð Þ ¼ 2p
@2RLL; ab ~k;x

� �
@kc@kd

������
~k¼0

jh ia ~k;x
� �

¼ � ix
4p

eð0ÞLL; ab xð Þ � dab þ eð1ÞLL; abc xð Þkc
�
þ eð2ÞLL; abcd xð Þkckd

�
Eb

~k; x
� �

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:9Þ

We see that the expansion of function RLL; abð~k;xÞ up to the second order corre-

sponds to the expansion of the averaged current hjiað~k;xÞ up to the second order as
well; the expression for the averaged current hjiað~k; xÞ is useful, because the
averaged current is invariant in all representations (see (2.37) in case of untrans-
formed fields, e.g. ~T1 ¼ 0) and can be used to compare the weak dispersion
expansions in all representations.

Now it is worth considering relation of expansion (3.6) to the other represen-
tations for the spatial dispersion, used in various publications.

Expansion (3.9) is rather well known [5], tensors eð0ÞLL; abðxÞ, eð1ÞLL; abcðxÞ, and
eð2ÞLL; abcdðxÞ depend on the symmetry properties of the considered system and satisfy
symmetry principles of Onsager coefficients.

It should be noted that in the framework of the “L&L” representation for the case

of weak dispersion (up to the second order) three tensor functions—eð0ÞLL; abðxÞ,
eð1ÞLL; abcðxÞ, and eð2ÞLL; abcdðxÞ—have been obtained, but the functions are not inde-

pendent because they are originated from the same function RLL; abð~k;xÞ.
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3.1.2 “C” Representation

Case of Strong Spatial Dispersion
Expressions (3.1), (3.4) and (3.5) in the L&L formalism are valid for the case of
arbitrary strong spatial dispersion, as the only assumption is the linearity and
causality of the medium. In the “C” representation, we introduce two functions for
polarizability PC; a and magnetization MC; a:

PC; a ~k; x
� �

¼ RC; ab ~k; x
� �

Eb
~k; x
� �

þR0
C; ab

~k;x
� �

Bb
~k;x
� �

MC; a ~k;x
� �

¼ F0
C; ab

~k;x
� �

Eb
~k;x
� �

þFC; ab ~k;x
� �

Bb
~k;x
� �

8><
>: ð3:10Þ

which gives the most general form of expressions for DC; a:

DC; a ~k;x
� �

¼ dab þ 4pRC; ab ~k;x
� �� �

Eb
~k; x
� �

þ 4pR0
C; ab

~k; x
� �

Bb
~k; x
� � ð3:11Þ

The fact that in this representation there are more “material parameters” than in
the L&L formalism does not mean that this form is somehow more general and is
able to capture more physical effects. As it was shown above, the forms are
equivalent. Basically, in this formalism different parts of the induced polarization
are modeled by separate polarizability coefficients. Care should be taken in using
this form, so that the same physical effect is not included in the model twice. For
example, chirality of the medium microstructure can be modeled either by a
second-order anti-symmetric part of the permittivity in the L&L formalism or by
including a contribution to electric polarization induced by magnetic induction in
the “C” representation. Including in (3.10) both second-order curl terms into RC; ab

and a k-independent term in R0
C; ab appears to be redundant. As for the magnetic

material relations, the commonly assumed step would be an introduction of
Ha ¼ Ba � 4pMC; a:

HC; a ~k; x
� �

¼ � 4pF0
C; ab

~k; x
� �

Eb
~k; x
� �

þ dab þ 4pFC; ab ~k; x
� �� �

Bb
~k; x
� � ð3:12Þ

At this point it is worth noting that formally, using the respective transformations
between the electric and magnetic fields Ba ¼ c

x eab lkbEl, the expressions for DC; a

and HC; a can be written as:

3.1 Phenomenological Model (“L&L” and “C” Representations) 51



DC; a ~k; x
� �

¼ eC; ab ~k; x
� �

Eb
~k; x
� �

PC; a ~k; x
� �

¼ RC; ab ~k; x
� �

þ c
x
R0
C; a l

~k; x
� �

elcbkc
� �

Eb
~k; x
� �

eC; ab ~k; x
� �

¼ dab þ 4pRC; ab ~k; x
� �

þ 4p c
x

R0
C; a l

~k; x
� �

el cbkc

MC; a ~k; x
� �

¼ F0
C; ab

~k; x
� �

þ c
x
FC; a l ~k; x

� �
ea l bkl

� �
Eb

Ha
~k;x
� �

¼ nab ~k;x
� �

Eb
~k;x
� �

nab ~k;x
� �

¼ � 4pF0
C; ab

~k;x
� �

þ c
x

da l þ 4pFC; a l ~k;x
� �� �

el cbkc
	 
� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð3:13aÞ

Using the representation (3.13a) it is rather straightforward to write down a
“propagation equation”—analogy of the well-established Helmholz equation for the
plane electromagnetic wave propagation [6]. The last equation in (2.23) after
substitution DC; að~k;xÞ and HC; að~k;xÞ from (3.13a) becomes a “propagation
equation”:

eabckbHc ¼ Da ) eabckbnc pEp ¼ eabEb ) det ea p ckpncb � ea b
�� �� ¼ 0 ð3:13bÞ

Propagation equation and respective dispersion relation (3.13b) appear to be much
more simple and natural in compare with the usually used Helmholz equation;
moreover form (3.13a) does not allow us to introduce a kind of permeability l
straightforwardly. In order to introduce l, instead of substitution the magnetic field
~B in terms of the electric field ~E, we should perform the opposite operation and
express ~E through ~B. In order to do it, we have to solve the equation:

~k �~E
h i

¼ �x
c
~B ð3:14Þ

assuming that the wave vector~k and the magnetic field~B are known and considering
the electric field~E as a variable. From the vector analysis solution of this problem is
known, namely if there are three vectors ~x, ~a, and ~b so that ½~x�~a� ~b� 6¼ 0 and
½~x�~a� ¼~b then the solution for~x is:

~x ¼~a
c

aj j2 þ ~a�~b
h i 1

aj j2
c ¼ ~x�~að Þ

8><
>: ð3:15Þ

or, in other words, this requires the knowledge of one more constant c.
In our case the last requirement is given by the Maxwell equation ð~k �~EÞ ¼

�4pð~k �~PÞ and the final solution of (3.14) is:
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~E ¼ �~k
4p ~k �~P
� �
kj j2 þ x

c
~k �~B
h i 1

kj j2 ð3:16Þ

or, in terms of vector components:

Ea ¼ �4p ka
kiPC; i

kjk�j

 !
þ x

c
eabckbBc

1
kmk�m

� �
ð3:17Þ

Substituting (3.17) into (3.12) we have:

HC; a ~k;x
� �

¼ � 4pð Þ2F0
C; ab

~k;x
� �

kb
kiPC; i

kjkj

� �

þ dab þ 4pFC; ab ~k;x
� �� �

þ 4px
c

F0
C; a 1

~k;x
� �

e1cbkc
1

kmk�m

� �� �
Bb

~k;x
� �
ð3:18Þ

It is clear that in this case any attempt to introduce proportionality between HC; a and

Ba in form Ba ¼ labð~k; xÞHC; a fails if polarization PC; a and the wave vector ka are
not perpendicular to each other kaPC; a 6¼ 0. In general, the polarizability PC; a is not
perpendicular to ka and permeability cannot be introduced at all. It is worth noting
that the problem arises from the fact that the magnetic response is stipulated by an
interaction with the electric field, not with the magnetic one. Obviously, introduction
of magnetic constant in form of a proportionality coefficient between HC; a and Ba is

neither logical nor necessary—the form (3.13a) Hað~k;xÞ ¼ nabð~k;xÞEbð~k;xÞ is

much more physically justified than the form Ba ¼ labð~k; xÞHC; a, which is
unconditionally suitable only for the case of interaction of a system with the mag-
netic field. Nevertheless, in case kaPC; a ¼ 0 the electric field can be unambiguously
and straightforwardly presented as a function of the magnetic field Ea ¼
x
c eabckbBcð 1

kmk�m
Þ and (3.18) can be rewritten as:

HC; a ~k;x
� �

¼ lab ~k;x
� �h i�1

Bb
~k;x
� �

lab ~k;x
� �h i�1

¼ dab þ 4pFC; ab ~k;x
� �� �

þ 4px
c

F0
C; a1

~k;x
� �

e1cbkc
1

kmk�m

� �
8>><
>>:

ð3:19Þ

It has to be noted, that even in this case (when the proportionality between HC; a and

Ba can be established), introduction of ½labð~k;xÞ�j�1 ðnot labð~k;xÞ!Þ appears to be
the logical step in the elaboration of the homogenization model. Here it is seen also,
that if magnetization is caused by the electric field ðF0

C; a1ð~k;xÞ 6¼ 0Þ, then the

introduced this way labð~k;xÞ is spatially dispersive even in case of non-spatially
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dispersive response F0
C; abð~k;xÞ ¼ F0

C; abðxÞ. In fact, as it will be clear later from the

consideration of the multipole model F0
Cð~k;xÞ� k, which results in absence of

spatial dispersion for labð~k;xÞ ¼ labðxÞ under weak (up to the second order)
spatial dispersion approximation.

Considering a plane wave propagating into z direction in a media with tensor
character of polarizability, one can easily see that in order to satisfy the condition
kaPC; a ¼ 0 (which guarantees a possibility to introduce the permeability) we have

to have tensor eC; abð~k;xÞ in the following form:

eC; xx ~k;x
� �

eC; xy ~k;x
� �

0

eC; yx ~k;x
� �

eC; yy ~k;x
� �

0
0 0 0

0
BB@

1
CCA ð3:20Þ

It is interesting to demonstrate a design which, according to (3.20) does not
allow introducing of the permeability due to the appearance of the polarization
PC; a, parallel to the wave vector ka, so that kaPC; a 6¼ 0. This could be a SRR
structure placed with its top part parallel to the wave vector ka, as it is shown in
Fig. 3.1.

Now it is methodologically interesting to find relations between “C” and “L&L”
representation in the frame of the strong spatial dispersion. It can be easily per-
formed by equating the relations for the averaged current in both representations (let
us remind, that according to SFT the averaged current is not changed provided
fields remain unchanged as well), which gives after some algebra:

RLL; ab ~k;x
� �

¼ RC; ab ~k;x
� �

þ c
x

R0
C; ab

~k;x
� �

el cb þF0
C; l b

~k;x
� �

eac l
� �

kc

þ c
x

� �2
FC; c l ~k;x

� �
eam celp bkmkb

ð3:21Þ

zk

xE

yB

Fig. 3.1 Design and positioning of a MA which does not allow introducing of permeability.
Appearance of polarization parallel to the wave vector is caused by the short cut between parts of
the MA
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It is easy to see that even in the case of dispersion-free response in “C” represen-
tation ðRC; abð~k;xÞ ¼ RC; abðxÞ, R0

C; abð~k;xÞ ¼ R0
C; abðxÞ, F0

C; l bð~k;xÞ ¼ F0
C; l bðxÞ,

FC; c lð~k;xÞ ¼ FC; c lðxÞÞ, spatial dispersion unavoidably appears in “L&L” repre-

sentation. Moreover, if “non-eigen” responses are not zero ðR0
C; abð~k;xÞ 6¼ 0;

F0
C; l bð~k;xÞ 6¼ 0Þ, then RLL; abð~k;xÞ is proportional at least to the first order of

the wave vector (linear spatial dispersion); if the magnetization is caused by an
interaction with the magnetic field ðFC; l bð~k;xÞ 6¼ 0Þ then RLL; abð~k;xÞ is propor-
tional at least to the second order of the wave vector (quadratic spatial dispersion).
Thus, one can conclude that the nature of interaction (dependence of the polariz-
ability and magnetization on the electric and/or magnetic fields) is the basic question,
which determines the whole theoretical construction of the homogenization of the
Maxwell equations. The nature of interaction of the electromagnetic wave with
the charges in metallic nanoresonator (in case of MMs based on plasmonic struc-
tures, for example in the optical domain) is the interaction of electrons with the
electric field only, because typical velocities of electrons are far from the velocity of
light:

d~pi
dt

¼ qi~eþ qi
c

~vi �~h
h i

� qi~e ð3:22Þ

Here ~e and ~h are the microscopic electric and magnetic fields, respectively, ~qi, ~pi
and ~vi are the charges, pulses, and velocities of charges, c is the speed of light.
Hence there is no reason to assume that the magnetic field should appear in the
phenomenological expression for the polarizability and magnetization, i.e.
R0
C; abð~k;xÞ ¼ 0; FC; c lð~k;xÞ ¼ 0. In this case the elaborated above expressions can

be summarized one more time:

PC; a ~k;x
� �

¼ RC; ab ~k;x
� �

Eb
~k;x
� �

MC; a ~k;x
� �

¼ F0
C; ab

~k;x
� �

Eb
~k;x
� �

8><
>: ð3:23Þ

DC; a ~k;x
� �

¼ eC; ab ~k;x
� �

Eb
~k;x
� �

eC; ab ~k;x
� �

¼ dab þ 4pRC; ab ~k;x
� �

Ha
~k;x
� �

¼ nab ~k;x
� �

Eb
~k;x
� �

nab ~k;x
� �

¼ � 4pF0
C; ab

~k;x
� �

þ c
x

eacbkc
� �

8>>>>>>>>>><
>>>>>>>>>>:

ð3:24Þ
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DC; a ~k;x
� �

¼ eC; ab ~k;x
� �

Eb
~k;x
� �

eC; ab ~k;x
� �

¼ dab þ 4pRC; ab ~k;x
� �

HC; a ~k;x
� �

¼¼ lab ~k;x
� �h i�1

Bb
~k;x
� �

lab ~k;x
� �h i�1

¼ dab þ 4px
c

F0
C; a1

~k;x
� �

e1cbkc
1

kmk�m

� �� �

8>>>>>>>>><
>>>>>>>>>:

ð3:25Þ

In the scientific literature there is a widely known and used representation of
permittivity in the following form [7, 8]:

eC; abð~k; xÞ ¼ etrCð~k; xÞ dab � kakb
k2

� �
þ elCð~k; xÞ

kakb
k2

ð3:26Þ

which is basically a special case of (3.24) or (3.25).
There is a hypothesis [9] that the permeability obeys the same type of

expression:

lC; abð~k; xÞ ¼ ltrCð~k; xÞ dab � kakb
k2

� �
þ llCð~k; xÞ

kakb
k2

ð3:27Þ

Exhausting consideration of relations between the coefficients etrCðxÞ, elCðxÞ, ltrCðxÞ,
llCðxÞ from one side and etrLLðxÞ, and etrLLðxÞ from another side can be found in [8].

It is necessary to mention, that some authors try to subdivide function PC; að~k;xÞ
on a dipole and a quadrupole parts within the frame of the phenomenological
approach. This option is supported by a proven in [10] possibility to express the
averaged current in the “C” representation through the dipole, quadrupole, and
magnetic dipole parts, namely:

jh ia¼ �ix PC; a � kbQab

	 
þ iceab lkbMC; l ð3:28Þ

Here PC; a, Qab, and MC; l are the dipole, qudrupole, and magnetic dipole contri-
butions [see (2.14), (2.15)]. After that the three mentioned parts have to be refor-
mulated in analogy with (3.10) through electric and (possibly) magnetic fields,
which leads us finally to the same kind of expressions for DC; a and Ha as in (3.24)
and (3.25). It is seen, that in the framework of the phenomenological approach it
does not make sense to subdivide function PC; að~k;xÞ into dipole and quadrupole
parts. In order to benefit from the representation (3.28) it is necessary to have a
functional form for all three parts PC; a, Qab, and MC; l [11–13], which is not
possible within the frameworks of the phenomenological model; an attempt to get
these functions will be performed in Sect. 3.2.
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Case of Weak Spatial Dispersion
In the case of weak spatial dispersion functions RC; ab, R0

C; ab, FC; ab, F0
C; ab can be

expanded into the Taylor series (we limit our consideration by the second order of
expansion):

PC; a ~k;x
� �

¼ RC; ab ~k;x
� �

Eb
~k;x
� �

þR0
C; ab

~k;x
� �

Bb
~k;x
� �

MC; a ~k;x
� �

¼ F0
C; ab

~k;x
� �

Eb
~k;x
� �

þFC; ab ~k;x
� �

Bb
~k;x
� �

RC; ab ~k;x
� �

� RC; ab 0;xð Þþ
@RC; ab ~k;x

� �
@kc

������
~k¼0

kc þ 1
2

@2RC; ab ~k;x
� �

@kc@kd

������
~k¼0

kckd

R0
C; ab

~k;x
� �

� R0
C; ab 0;xð Þþ

@R0
C; ab

~k;x
� �

@kc

������
~k¼0

kc þ 1
2

@2R0
C; ab

~k;x
� �

@kc@kd

������
~k¼0

kckd

FC; ab ~k;x
� �

� FC; ab 0;xð Þþ
@FC; ab ~k;x

� �
@kc

������
~k¼0

kc þ 1
2

@2FC; ab ~k;x
� �

@kc@kd

������
~k¼0

kckd

F0
C; ab

~k;x
� �

� F0
C; ab 0;xð Þþ

@F0
C; ab

~k;x
� �

@kc

������
~k¼0

kc þ 1
2

@2F0
C; ab

~k;x
� �

@kc@kd

������
~k¼0

kckd

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:29Þ

which results for the respective expressions for DC; a and Ha. It is also appropriate at
this point to mention that it is enough to restrict the consideration by the first order
in the expansion for FC; ab and F0

C; ab, because after substitution to MEs the first
order of spatial dispersion corresponds to the second order of the other part due to
the fact, that the expansion is placed under curl operator, that in turn brings one
more order of spatial dispersion:

DC; a ~k;x
� �

¼ eð0ÞC; ab xð Þþ eð1ÞC; abc xð Þkc þ eð2ÞC; abcd xð Þkckd
� �

Eb
~k;x
� �

þ wð0Þ
C; ab xð Þþwð1Þ

C; abc xð Þkc þwð2Þ
C; abcd xð Þkckd

� �
Bb

~k;x
� �

eð0ÞC; ab xð Þ ¼ dab þ 4pRC; ab 0;xð Þ; wð0Þ
C; ab xð Þ ¼ dab þ 4pR0

C; ab 0;xð Þ

eð1ÞC; abc xð Þ ¼ 4p
@RC; ab ~k;xð Þ

@kc

����
~k¼0

; wð1Þ
C; abc xð Þ ¼ 4p

@R0
C; ab

~k;xð Þ
@kc

����
~k¼0

eð2ÞC; abcd xð Þ ¼ 2p
@2RC; ab ~k;xð Þ

@kc@kd

����
~k¼0

; wð2Þ
C; abcd xð Þ ¼ 2p

@2RC; ab ~k;xð Þ
@kc@kd

����
~k¼0

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð3:30Þ
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Ha
~k;x
� �

¼ /ð0Þ
C; ab xð Þþ/ð1Þ

C; abc xð Þkc d
� �

Eb
~k;x
� �

þ lð0ÞC; ab xð Þþlð1ÞC; abc xð Þkc
� �

Bb
~k;x
� �

/ð0Þ
C; ab xð Þ ¼ �4pF0

C; ab 0;xð Þ; lð0ÞC; ab xð Þ ¼ dab þ 4pFC; ab 0;xð Þ

/ð1Þ
C; abc xð Þ ¼ �4p

@F0
C; ab

~k;xð Þ
@kc

����
~k¼0

; lð1ÞC; abc xð Þ ¼ 4p
@FC; ab

~k;xð Þ
@kc

����
~k¼0

8>>>>>><
>>>>>>:

ð3:31Þ

Depending on a particular situation one or more terms in this expansion can be set
to zero, and relations between some terms can be established based on the sym-
metry conditions. Thus far, in order to complete the homogenization model in case
of weak spatial dispersion it is necessary to fill in the following 3 � 4 matrix:

RC; ab 0;xð Þ @RC; ab ~k;xð Þ
@kc

����
~k¼0

@2RC; ab ~k;xð Þ
@kc@kd

����
~k¼0

R0
C; ab 0;xð Þ @R0

C; ab
~k;xð Þ

@kc

����
~k¼0

@2R0
C; ab

~k;xð Þ
@kc@kd

����
~k¼0

FC; ab 0;xð Þ @FC; ab ~k;xð Þ
@kc

����
~k¼0

0

F0
C; ab 0;xð Þ @F0

C; ab
~k;xð Þ

@kc

����
~k¼0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð3:32Þ

or, in terms of other notations:

eð0ÞC; ab xð Þ eð1ÞC; abc xð Þ eð2ÞC; abcd xð Þ
wð0Þ
C; ab xð Þ wð1Þ

C; abc xð Þ wð2Þ
C; abcd xð Þ

lð0ÞC; ab xð Þ lð1ÞC; abc xð Þ 0

/ð0Þ
C; ab xð Þ /ð1Þ

C; abc xð Þ 0

0
BBBB@

1
CCCCA ð3:33Þ

For example, in [14] the authors arrive to the following representation based on
qualitative consideration of physical processes appearing at the interaction of the
electromagnetic field with MAs:

eð0ÞC; ab xð Þ 0 0

wð0Þ
C; ab xð Þ 0 0

lð0ÞC; ab xð Þ 0 0

/ð0Þ
C; ab xð Þ /ð1Þ

C; abc xð Þ 0

0
BBBB@

1
CCCCA ð3:34aÞ

The coupling effect, described by tensors wð0Þ
ab ¼ �/ð0Þ

ab is known in electromag-
netism and is called bi-anisotropy [3]; the tensor is called magnetoelectric coupling
parameter [15]. Two special cases of bianisotropic media are known: chirial media
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when tensor wð0Þ
ab is symmetric and omega media when tensor wð0Þ

ab is
anti-symmetric. More details about classification of different media based on
introduced above model can be found in [16]. The form of material equations
accepted in [14] is similar to the one presented in [17], where matrix (3.33) is
written in the following form:

eð0ÞC; ab xð Þ 0 0

wð0Þ
C; ab xð Þ 0 0

lð0ÞC; ab xð Þ 0 0

/ð0Þ
C; ab xð Þ 0 0

0
BBBB@

1
CCCCA ð3:34bÞ

and differs from (3.34a) by the absence of linear spatial dispersion in the equation
for magnetization, which is equivalent to neglecting of anisotropy.

In both papers [14, 17] and many others the functional forms of the expressions
for Pa and Ma are introduced based not on the developed here phenomenological
approach, but using the multipole approach, considered in the next chapter. The
usual way is to calculate the dipole and magnetic dipole moments using expressions
known from electrostatics. It is believed, that in applications in the optical domain
this approach has at least three drawbacks, namely:

1. It is clear from the physical point of view, that magnetic field does not affect
charge dynamics and should not to be included in the basic considerations; it has
been shown above, that the introduction of response to magnetic field through
the electric one using one of the Maxwell equations is not straightforward.

2. Authors often do not distinguish the local and averaged fields when the charge
dynamics in MAs is considered, that hides in some cases the role of spatial
dispersion.

3. Practically all authors, taking into account magnetic moment, do not include
into consideration quadrupole moment, which is in most cases mandatory due to
the fact that magnetic moment and quadrupole moment are of the same order of
the multipole expansion. Negligence of the quadrupole moment leads in turn to
incorrect material equation representations, for example artificial exclusion of
the first-order spatial dispersion term. This in turn excludes from the consid-
eration some effects of anisotropy. The quadrupole moment effects can be
neglected as compared with the magnetic moment influence only for specific
geometries of inclusions. For example, the fundamental mode of double split
ring resonators widely used in microwave MMs is characterized by a strong
magnetic moment but negligible electric quadrupole moment, because the total
current along two rings is nearly uniform around the whole ring structure.

Below a more consistent way of introduction of material equations in the frame
of the phenomenological approach will be presented. As it was mentioned above,
magnetization for the considered MM is evidently proportional only to the electric
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field and its spatial derivatives—see (3.23), (3.24), and (3.25). In this case of weak
spatial dispersion the summarized expressions are:

DC; a ~k;x
� �

¼ eð0ÞC; ab xð Þþ eð1ÞC; abc xð Þkc þ eð2ÞC; abcd xð Þkckd
� �

Eb
~k;x
� �

eð0ÞC; ab xð Þ ¼ dab þ 4pRC; ab 0;xð Þ;

eð1ÞC; abc xð Þ ¼ 4p
@RC; ab ~k;x

� �
@kc

������
~k¼0

;

eð2ÞC; abcd xð Þ ¼ 2p
@2RC; ab ~k;x

� �
@kc@kd

������
~k¼0

;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð3:35Þ

Ha
~k;x
� �

¼ /ð0Þ
C; ab xð Þþ/ð1Þ

C; abc xð Þkc
� �

Eb
~k;x
� �

/ð0Þ
C; ab xð Þ ¼ dab þ 4pF0

C; ab 0;xð Þ

/ð1Þ
C; abc xð Þ ¼ 4p

@F0
C; ab

~k;x
� �

@kc

������
~k¼0

8>>>>>>><
>>>>>>>:

ð3:36Þ

Hence, in order to complete the homogenization model it is necessary to fill in the
following 3 � 2 matrix:

RC; ab 0;xð Þ @RC; ab ~k;xð Þ
@kc

����
~k¼0

@2RC; ab ~k;xð Þ
@kc@kd

����
~k¼0

F0
C; ab 0;xð Þ @F0

C; ab
~k;xð Þ

@kc

����
~k¼0

0

0
BB@

1
CCA ð3:37Þ

or, in terms of other notations:

eð0ÞC; ab xð Þ eð1ÞC; abc xð Þ eð2ÞC; abcd xð Þ
/ð0Þ
C; ab xð Þ /ð1Þ

C; abc xð Þ 0

 !
ð3:38Þ

Referring again to the paper [14] one can conclude that the suggested there rep-
resentation is equivalent to:

eð0ÞC; ab xð Þ 0 eð2ÞC; abcd xð Þ
/ð0Þ
C; ab xð Þ /ð1Þ

C; abc xð Þ 0

 !
ð3:39Þ

and the representation accepted in [17] is equivalent to:
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eð0ÞC; ab xð Þ 0 eð2ÞC; abcd xð Þ
/ð0Þ
C; ab xð Þ 0 0

 !
ð3:40Þ

3.1.3 Transformation Between “C” and “L&L”
Representations in Case of Strong Spatial Dispersion

The relation between “L&L” and “C” representations can be obtained from (3.21)
taking into account the fact that the direct interaction with the magnetic field is
absent:

RLL; ab ~k;x
� �

¼ RC; ab ~k;x
� �

þ c
x
F0
C; l b

~k;x
� �

eac lkc ð3:41Þ

From the other side, it would be interesting to find connections between the
commonly used permittivity and permeability in both representations. From (3.5)
we have:

RLL; ab ~k;x
� �

¼
eLL; ab ~k;x

� �
� dab

4p
ð3:42Þ

From the other side, “C” representation possesses two forms, namely (3.24) and
(3.25). Starting from the more widely used form (3.25), we get:

RC; ab ~k;x
� �

¼
eC; ab ~k;x

� �
� dab

4p

lab ~k;x
� �h i�1

¼ dab þ 4px
c

F0
C; a1

~k;x
� �

e1cbkc
1

kmk�m

� �� �
8>>>><
>>>>:

ð3:43Þ

From the second equation of (3.43) one can express F0
C; abð~k;xÞ:

F0
C; ab

~k;x
� �

¼ ceb l ckl
4px

lac ~k;x
� �h i�1

�dac

� �
ð3:44Þ

and finally get for the permittivity:

eLL; ab ~k;x
� �

¼ eC; ab ~k;x
� �

þ c
x

� �2
eac leb pmkckp llm ~k;x

� �h i�1
�dlm

� �
ð3:45Þ

Following the same arguments, for the representation (3.24) we have:
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eLL; ab ~k;x
� �

¼ eC; ab ~k;x
� �

þ c
x
eac lkc

c
x
elpbkp � nl b ~k;x

� �� �
ð3:46Þ

The permittivity in the “L&L” representation is proportional at least to the second
order of the wave vector (quadratic spatial dispersion); nl bð~k;xÞ � k in order to
model magnetic response.

It has to be noted again, that in “L&L” representation there is only one function
(actually, one family of functions) which fully determines the averaged optical
response of media. From the other side, in “C” representation there are two func-
tions [in both cases (3.24) and (3.25)]. It is clear that from the known functions in
“C” representation it is possible to construct one function in “L&L” representation,
while the opposite transformation could not be done unambiguously.

The form (3.24) remains valid for any structures, while (3.25) can be used only
in case when the permeability can be introduced—see (3.18), (3.19). Actually, the
representation (3.24) is not only more general, but also is more convenient, because
it fully reflects the physical nature of the processes, namely interaction of the MAs
with the electric (not magnetic!) field.

It is believed, that the form (3.24) generally should be used in case when the
basic processes causing magnetization are stipulated by the electric field; in other
words, the form (3.24) has to be used in cases when there are no natural magnetic
moments (like magnetic moments of natural atoms or molecules in ferromagnetic,
for example), which can directly interact with magnetic fields at low frequencies.

After consideration of the phenomenological models of homogenization one can
conclude that:

1. In both “L&L” and “C” representations it is possible to develop a phe-
nomenological approach and reduce the homogenization procedure to several
effective parameters with, in general, unknown functions/coefficients.

2. The effective parameters in general depend not only on the properties of media,
but on the wave vector as well.

3. Due to the phenomenological nature of the presented here approach, it is in
general impossible to separate in the effective parameters the parts which depend
on the properties of media only from the parts, which contain dependence on the
wave vector. Nevertheless, in case of a weak spatial dispersion (expansion of the
respective functions up to the second order over the wave vector) it becomes
possible to introduce effective material parameters in both cases of “L&L” and
“C” representations.

3.1.4 Reduction to Material Equations for Bianisotropic
Media in Case of Weak Spatial Dispersion

The presented here phenomenological approach in the case of weak spatial dis-
persion results in a system of material equations in form (3.35), (3.36), namely:
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DC; a ~k;x
� �

¼ eð0ÞC; ab xð Þþ eð1ÞC; abc xð Þkc þ eð2ÞC; abcd xð Þkckd
� �

Eb
~k;x
� �

Ha
~k;x
� �

¼ /ð0Þ
C; ab xð Þþ/ð1Þ

C; abc xð Þkc
� �

Eb
~k;x
� �

8><
>: ð3:47Þ

One can show that system (3.47) can be reduced to the form similar to the
well-known and widely used in the literature material equations for bianisotropic
media [18]. In order to perform the necessary transformation, we use the known
from the tensor algebra theorem which proves that any third-rank tensor can be
presented as a sum of its symmetric and anti-symmetric parts. The latter in turn can
be presented as a tensor of the second rank multiplied by the Levi-Chivita tensor.
Using this theorem, we can write:

eð1ÞC; abc xð Þ ¼ eð1; symÞ
C; abc xð Þþ eð1; asymÞ

C; abc xð Þ ¼ eð1; symÞ
C; abc xð ÞþGðeÞ

C; a p xð Þep bc
/ð1Þ
C; abc xð Þ ¼ /ð1; symÞ

C; abc xð Þþ/ð1; asymÞ
C; abc xð Þ ¼ /ð1; symÞ

C; abc xð ÞþGð/Þ
C; a p xð Þep bc

8<
: ð3:48Þ

Substituting (3.48) into (3.47) and taking into account that eab lkbEl ¼ x
c Ba, system

(3.47) becomes:

DC; a ~k;x
� �

¼ eð0ÞC; ab xð Þþ eð1; symÞ
C; abc xð Þkcþ eð2ÞC; abcd xð Þkckd

� �
Eb

~k;x
� �

þ GðeÞ
C; ab xð ÞBb

~k;x
� �

Ha
~k;x
� �

¼ Gð/Þ
C; ab xð ÞBb

~k;x
� �

þ /ð0Þ
C; ab xð Þþ/ð1; symÞ

C; abc xð Þkc
� �

Eb
~k;x
� �

8>>>><
>>>>:

ð3:49Þ

The last form is rather close to the usually used Post [18] form in case when the

consideration is restricted to the first-order spatial dispersion eð2ÞC; abcdðxÞ ¼ 0;

/ð1; symÞ
C; abc ðxÞ ¼ 0:

DC; a ~k;x
� �

¼ eð0ÞC; ab xð Þþ eð1; symÞ
C; abc xð Þkc

� �
Eb

~k;x
� �

þGðeÞ
C; ab xð ÞBb

~k;x
� �

Ha
~k;x
� �

¼ Gð/Þ
C; ab xð ÞBb

~k;x
� �

þ/ð0Þ
C; ab xð ÞEb

~k;x
� �

8>>>><
>>>>:

ð3:50Þ

It is important to emphasise that the final form (3.50) contains term eð1; symÞ
C; abc ðxÞ

which manifests the fact that the first-order spatial dispersion has to be in general
included in consideration as a separate term even in case of the Post material

equations. In case of eð1; symÞ
C; abc ðxÞ ¼ 0 system (3.50) takes the form basically

equivalent to the Post equations for bianisotropic media:
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DC; a ~k;x
� �

¼ eð0ÞC; ab xð ÞEb
~k;x
� �

þGðeÞ
C; ab xð ÞBb

~k;x
� �

Ha
~k;x
� �

¼ Gð/Þ
C; ab xð ÞBb

~k;x
� �

þ/ð0Þ
C; ab xð ÞEb

~k;x
� �

8><
>: ð3:51Þ

The parameters in (3.51) can be further investigated for reciprocal and
non-reciprocal media, for example, applying the reciprocity theorem [18], intro-
ducing the Tellegen parameter [19], etc.; these considerations are not done here.
Note, that similar conclusion about necessity of introduction of additional terms in
“traditional” material equations for bianisotropic media has been done in [14]—see

(3.29), (3.30) there. It is worth noticing again, that the extra term eð1; symÞ
C; abc ðxÞ in

(3.50) appears in the first-order spatial dispersion, while the extra terms in [14]
correspond to the second order, and hence are responsible for different effects. It
has to be also emphasised that the second-order spatial dispersion has to be in
general taken into account in order to consider magnetic response (see [20]); in the

frame of the phenomenological approach it corresponds to eð2ÞC; abcdðxÞ 6¼ 0;

/ð1; symÞ
C; abc ðxÞ 6¼ 0.
The first-order spatial dispersion term in (3.47), (3.48) could be compensated by

the SFT—see (2.37). Nevertheless, it is easy to see, that SFT is able to compensate

only the anti-symmetric part eð1; asymÞ
C; abc ðxÞ, but not the symmetric part eð1; symÞ

C; abc ðxÞ,
which has to be in general retained in the material equations (3.50).

3.2 Multipole Expansion (“C” Representation)

3.2.1 Multipole Approach

The multipole model was put forward in [21], and later developed in a similar form
in [22]. The model is based on an averaging procedure using the Probability
Distribution Function (PDF) for the positions and velocities of all charges, included
in the consideration—statistical averaging, which is supposed to be equivalent to
the originally assumed averaging over volume. Leaving alone the mathematical
details of the model (which can be found in [21]), here it is worth to recall the main
ideas of the elaboration of the model.

The essence of the developed in [21] averaging procedure is in summation of
contributions from all atoms/molecules at the “Observation point” (see Fig. 2.1)
using statistical math tools. In the framework of this approach each atom/molecule
is considered as a cloud of positive and negative charges with some (a priori
unknown) PDF over their coordinates and velocities. The condition Lintra � Linter
allows us to use an expansion in the Taylor series of the potential, produced by each
atom/molecule at the “Observation point”. As a result, the total contribution can be
expressed in terms of averaged moments, namely the total charge of the system
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(zero-order moment), the electric dipole (first-order moment), the quadrupole and
magnetic dipole (second-order moments), etc.

It is worth noticing that the quadrupole and the magnetic dipole moments appear
on the same level of Taylor expansion (second order) and therefore in general have
the same order of magnitudes. In case of necessity to take into account a magnetic
response of the atoms/molecules (as it takes place in case of MMs) it is usually
necessary to use both moments together rather than voluntarily pick up just mag-
netic dipole moments and do not include into consideration the quardupole one.
This requirement is stipulated by the fundamental principles of the multipole model
and only in specific cases one can exclude the quadrupole moments of atoms/
molecules from consideration.

The model results in constructive expressions for ~PC and ~MC presented through
the averaged dynamics of the charges in “C” form [23]:

~P ð~R; xÞ ¼ g
Xall charges

s

qs~rs

* +
�r 	 Qð~R; xÞ

Qij ð~R; xÞ ¼ g
2

Xall charges

s

qsri;srj;s

* +

~M ð~R; tÞ ¼ g
2c

Xall charges

s

qs ~rs;
@~rs
@t

� �* +

8>>>>>>>>>><
>>>>>>>>>>:

ð3:52Þ

The definitions clearly distinguish between microscopic (r) and macroscopic
(R) coordinates, qk represents the charge, and g their density. The microscopic
coordinates~r designate the position vectors of the charges in a microscopic coor-
dinate system, and ~v designate their velocities. The center of the microscopic
coordinate system is chosen to be the center of symmetry of the charge distribution
(consideration of the dependence on the origin of the coordinate system will
be given later). The reason for the different coordinate systems derives from the
averaging procedure for the averaged Maxwell equations [24]. The microscopic
coordinates are functions of the electric field and do not appear explicitly in the final
expressions. Only one coordinate system, namely the macroscopic system of
coordinates ~R (i.e., the space coordinate) remains.

The functions ~D ð~R; xÞ and ~H ð~R; xÞ (2.19), (2.20) contain electric dipole,
electric quadrupole, and magnetic dipole contributions:

~D ð~R; xÞ ¼ ~Eð~R; xÞþ 4p~Pð~R; xÞ
~H ð~R; xÞ ¼ ~Bð~R; xÞ � 4p~Mð~R; xÞ

(
ð3:53Þ

~P ð~R; xÞ, Qijð~R; xÞ, and ~Mð~R; xÞ represent the electric polarization, the electric
quadrupole tensor, and the magnetization, respectively. Capital letters ~R are used
for macroscopic coordinates in the averaged Maxwell equations. The term:
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r 	 Qð~R; xÞ ¼ @Qijð~R; xÞ
@Rj

ð3:54Þ

is the divergence of the quadrupole tensor. It is necessary to take into account both
the electric quadrupole and themagnetic dipole terms, because they are of the same
order in the multipole expansion series [6, 23].

It is important to realize that the formulas for the macroscopic polarization and
magnetization are expressed in terms of the internal dynamics of the charges of the
atoms/molecules, which are a priori functions of microscopic (not macroscopic!)
fields. Even if we are able to write analytical forms for the dynamics, we will have
to perform the averaging [see (3.52)] and express the functions~P and ~M through the
macroscopic fields. This finally closes the problem and makes from MEs a
self-consistent system of equations, which can be (potentially) solved.

It should be emphasized that the multipole approach remains the only one, which
allows us to create a logical connection from the microscopic to macroscopic forms
of the MEs without any methodological gaps. The fact that finally this approach
results in “C” form (one of the possible forms of MEs, obtained through the
independent phenomenological consideration) serves as one more positive argu-
ment for the use of this model and its application to the problem of homogenization
of MMs.

It has to be accepted that the basic conditions, under which system (3.52) has
been elaborated are met for typical MMs in the optical domain rather poorly.
Referring again to Fig. 2.1 and remembering typical experimental situations (for
example, [25]), one can see that the distance between the MAs and the sizes of the
MAs are of the same order, and the truncated Taylor expansion used in elaboration
of (3.52) is not fully justified. Note that in contrast to the MM, in the case of natural
materials system (3.52) works pretty well; the widely used dipole model for the
permittivity is just the zero-order approximation of (3.52). Hence, the basic ques-
tion about applicability of the multipole model to MMs remains open.

In spite of the fundamental doubts about its applicability, one can easily bring
several arguments in favour of the multipole model:

1. The model offers a natural way to describe magnetization by introducing
magnetic and quadrupole moments.

2. The model is physically clear and should be considered at least for the
methodological reasons.

3. The model allows us to elaborate the functional forms for the introduced in
phenomenological approach effective constants and fix the expressions for~P and
~M as functions of the wave vector (in other words, find a functional form for
spatial dispersion).

4. The model allows us to investigate the influence of the MA design on the optical
properties of MMs.

5. The model allows us to investigate the influence of interactions between MAs
on the optical properties of MMs.
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6. The model allows us to investigate the influence of disorder (both spatial dis-
order in MA placements and disorder in eigen characteristics of the MAs) on the
optical properties of MMs.

7. The model allows a natural extension beyond the purely plasmonic based MAs,
for example to the case of combinations of plasmonic MAs and active quantum
elements, or MAs consisting of purely quantum elements.

Themultipolemodel created forMMs [26] contains parameterswhich can be tuned
in order to compensate for the fundamentally stipulated discrepancies and finally fit
the results of the model to the experimental and/or numerical data. It is believed, that
the combination of the multipole approach with final tuning of these coefficients
makes this model an extremely simple and versatile tool for investigation of optical
properties of MMs [27]. In [20] analytical expressions for the effective permittivity
and permeability have been elaborated forMMs based on double-wire structures. The
charge dynamics has been treated using two coupled harmonic oscillator equations,
possessing symmetric and anti-symmetric oscillation modes, excited by the electric
field. Using the expressions for the symmetric and anti-symmetric modes, the dipole,
quadrupole, andmagnetic dipole terms (3.52) have been calculated as functions of the
MAs and field parameters. Note, that in [20] only symmetric structures have been
considered, extension to the case of asymmetric structures was performed in [28].

Below we will consider only 2D geometries (see Fig. 2.2), i.e., non-zero com-
ponents of multipoles depend on the charge dynamics in the ðx; yÞ plane and can be
written as:

~j
� �

x ðy; tÞ ¼ �ixPx þ c
@Mz

@y

Pxðy; tÞ ¼ g
Xall charges

s

esxs

* +
� @Qxy

@y

Qxyðy; tÞ ¼ g
2

Xall charges

s

qsxsys

* +

Mzðy; tÞ ¼ g
2c

Xall charges

s

qs xs
@ys
@t

� ys
@xs
@t

� �* +

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð3:55Þ

Transition to the Fourier domain is not straightforward—both quadrupole and
magnetic dipole moments depend nonlinearly on the coordinates. Nevertheless, it is
assumed that to the first approximation any charge exhibits dynamics along just one
direction: for example, in double wires it is the x direction, in case of split rings in
two arms the charges move along the x direction and in the third arm—along the y
direction, etc. In case of simultaneous ðx; yÞ dynamics nonlinear response appears
as a consequence of non-harmonic multipole dynamics [29].

A particular geometry of double wires, shown in Fig. 3.2, allows a purely linear
description; the electric field is polarized along the x axis, magnetic field is
polarized along the z axis, and the wave propagates along the y axis.
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The wires are oriented along the x direction and are affected by the electric field
which excites plasmonic modes in each wire; the coupled wires are considered as
MAs, and multipole moments (3.52) are prescribed to these MAs. In this case (3.55)
can be further simplified (no dynamics along the y axis) and straightforwardly
transformed into the frequency domain:

~j
� �

x ðy; xÞ ¼ �ixPx þ c
@Mz

@y

Pxðy; xÞ ¼ g
Xall charges

s

esxs

* +
� @Qxy

@y

Qxyðy; xÞ ¼ g
2

Xall charges

s

qsxsys;0

* +

Mzðy; xÞ ¼ i gx
2c

Xall charges

s

qsxsys;0

* +

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð3:56Þ

Note that Mzðy; xÞ ¼ ix
c Qxyðy; xÞ and the magnetic dipole and the quadrupole

moments have the same sign and are arranged together in the first equation in
(3.56).

3.2.2 Dispersion Relation Elaboration

The derivation starts with the averaged (macroscopic) ME in “C” form in the
frequency domain (2.19), (2.20). Here we consider MM consisting of double wire
structures—one layer of such structure is presented in Fig. 2.2 on the top of a

yk

xEzB

y

xz
1y
2y−

Fig. 3.2 Double wire (in general case asymmetric) structure possessing dipole, quadrupole, and
magnetic moments with respective direction of plane wave propagation and field polarizations.
The system of microscopic coordinates is chosen so that its origin is placed in general at different
distances y1 and y2 from both wires
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transparent substrate. The MM is formed by stacking of such layers in the y di-
rection, and propagation of a plane wave along the y direction with the electric field
polarized along the x direction is considered. This particular case illustrated in
Fig. 2.2 is chosen in order to demonstrate main principles of the suggested model
and avoid excessive math complications. The model is straightforwardly extendable
to other MAs geometries, wave propagation directions, and field polarizations.

For a plane wave propagating along the positive y axis and with the electric field
polarized along the x direction, the ME can be simplified and finally reduced to:

Pxðy; xÞ ¼ g
Xall charges

s

esxs

* +
� @Qxy

@y

Qxyðy; xÞ ¼ g
2

Xall charges

s

qsxsys;0

* +

Mzðy; xÞ ¼ i gx
2c

Xall charges

s

qsxsys;0

* +

8>>>>>>>>>><
>>>>>>>>>>:

@Ex

@y
¼ � ix

c
Bz

@Hz

@y
¼ � ix

c
Dx

Dx ¼ Exðy;xÞþ 4pPC;xðy;xÞ
Hz ¼ Bz � 4pMC;z

8>>>>>>><
>>>>>>>:

ð3:57Þ

which provides a self-consistent equation for the x component of the electric field
Exðy;xÞ:

@2Exðy;xÞ
@y2

þ x2

c2
Exðy;xÞþ 4pPxðy;xÞð Þþ i4px

c
@Mzðy;xÞ

@y
¼ 0 ð3:58Þ

It is interesting to note that the magnetic dipole and electric quadrupole contribu-
tions are identical. This is another proof that the electric quadrupole and magnetic
dipole contributions have the same order of magnitude and both (not only the
magnetic dipole term) have to be taken into account simultaneously [21].

Equation (3.58) after Fourier transformation over the spatial coordinate
y becomes:

k2yExðky;xÞ ¼ x2

c2
Exðky;xÞþ 4pPxðky;xÞ
	 
� 4p kyx

c
Mzðky;xÞ ð3:59Þ

Assuming linear dependence of the multipole terms on the electric field (depen-
dence on the magnetic field is negligible), one can write:

Pxðky;xÞ ¼ pxðky;xÞ � ikyuxyðky;xÞ
	 


Exðky;xÞ
Qxyðky;xÞ ¼ uxyðky;xÞExðky;xÞ
Mzðky;xÞ ¼ mxðky;xÞExðky;xÞ

8><
>: ð3:60Þ

Substitution (3.60) into (3.59) results in the dispersion relation in the general form:
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k2y ¼
x2

c2
1þ 4p pxðky;xÞ � 4p ikyuxyðky;xÞ
	 
� 4p kyx

c
mzðky;xÞ ð3:61aÞ

It is also useful to write down the material equations, corresponding to the form
(3.61):

Dxðky;xÞ ¼ 1þ 4p pxðky;xÞ � i4p kyuxyðky;xÞ
	 


Exðky;xÞ

Hzðky;xÞ ¼ � kyc
x

� 4pmzðky;xÞ
� �

Exðky;xÞ

8><
>: ð3:61bÞ

exðky;xÞ ¼ 1þ 4p pxðky;xÞ � i4p kyuxyðky;xÞ

lzðky;xÞ ¼ 1þ 4px
kyc

mzðky;xÞ
� ��1

nzx ðky;xÞ ¼ � kyc
x

þ 4pmzðky;xÞ
� �

8>>>>>><
>>>>>>:

ð3:61cÞ

Dispersion relation (3.61) is the main result of this part and basically solves the
problem of propagation of plane waves in media with higher multipoles. It is worth
noticing that (3.61) is pretty universal—the charge dynamics and multipoles in
(3.61) can be expressed based on classical, quantum, or semi-classical approaches
and hence can be applied to extremely wide range of various problems. Moreover,
this unified approach is highly desirable for education courses in the area of
nanophotonics and electrodynamics of MMs, because it provides logical, internally
consistent, allowing in most cases analytical treatment approach giving deep
understanding of physics of various problems using a single platform.

3.2.3 Physical Interpretation of Phenomenological
Coefficients

From the performed above consideration a clear and unambiguous connection
between different types of excited modes in MAs (symmetric or acourses in the area
ofnti-symmetric) and the phenomenologically introduced in (3.35), (3.36) param-
eters can be revealed. It turned out [20], that the symmetric mode contributes to the
dipole moment only, while the anti-symmetric mode is responsible for appearance
of the quadrupole and magnetic dipole terms, and, consequently, for the magnetic
response of media. The anti-symmetric mode can be excited in case of:

(a) asymmetric structure of MAs (for example, in case of double wires it means
different lengths of the wires—see [28] for details),

(b) symmetric structure but inhomogeneous electric field (in [20] the retardation
effect has been taken into account). In case of anti-symmetric structure and
symmetric external electric field the resulted quadrupole and magnetic moments
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do not contain wave vectors (are not spatially dispersive), while for the case of
symmetric structure and inhomogeneous external electric field (for example,
retarded field) the quadrupole and magnetic moments both depend on the wave
vector, i.e. turn out to be spatially dispersive.

Comparison of the phenomenological (3.35), (3.36) and multipole (3.61)
approaches allows us to prescribe clear physical interpretation of the coefficients in
(3.35), (3.36); it requires more detailed MA structure consideration. For example,
for symmetric double wires [20] and retarded at the scale of a MA field:

pxðky;xÞ ¼ pxðxÞþ p 2ð Þ
x ðxÞk2y

uxyðky;xÞ ¼ u 1ð Þ
xy ðxÞky

mzðky;xÞ ¼ m 1ð Þ
z ðxÞky

8>><
>>: ð3:62Þ

which gives for the coefficients of the phenomenological model (3.35), (3.36):

eð0ÞC; ab xð Þ ¼ 1þ 4p pxðxÞ
eð1ÞC; abc xð Þ ¼ 0

eð2ÞC; abcd xð Þ ¼ p 2ð Þ
x ðxÞ � i4p u 1ð Þ

xy ðxÞ
/ð0Þ
C; ab xð Þ ¼ 0

/ð1Þ
C; abc xð Þ ¼ � c

x
� 4pm 1ð Þ

z ðxÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð3:63Þ

At the same time, for asymmetric structure and not retarded at the scale of the MA
field:

pxðky;xÞ ¼ pxðxÞ
uxyðky;xÞ ¼ u 1ð Þ

xy ðxÞ
mzðky;xÞ ¼ m 1ð Þ

z ðxÞ

8>><
>>: ð3:64Þ

eð0ÞC; ab xð Þ ¼ 1þ 4ppxðxÞ
eð1ÞC; abc xð Þ ¼ �i4pu 1ð Þ

xy ðxÞ
eð2ÞC; abcd xð Þ ¼ 0

/ð0Þ
C; ab xð Þ ¼ �4pm 1ð Þ

z ðxÞ
/ð1Þ
C; abc xð Þ ¼ � c

x

8>>>>>>>>>><
>>>>>>>>>>:

ð3:65Þ

Based on the given above consideration, it is rather straightforward to prescribe
clear physical mean to the coefficients introduced in (3.35), (3.36), namely:
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eð0ÞC; abðxÞ is the standard dielectric permittivity due to induced dipoles;

eð1ÞC; abcðxÞ is the term corresponding to the appearance of the quadrupole moment
(anti-symmetric modes), where the quadrupole moment itself is not spatially dis-
persive. Physical situation is the MA with an anti-symmetric mode, which could be
excited by a homogeneous field (in this case the MA itself has to be asymmetric);
retardation on the size of MA is not necessary in order to excite an anti-symmetric
mode of the MA. This term is responsible for bianisotropy [14, 17] (in notations,
accepted in these and similar papers).

eð2ÞC; abcdðxÞ is the term corresponding to the appearance of the quadrupole
moment (anti-symmetric modes), where the quadrupole moment itself linearly
depends on the wave vector (first-order spatial dispersion for the quadrupole
moment) and dipole moment is proportional to the second order of the wave vector
(second-order spatial dispersion for the dipole moment). Physically it corresponds
to the situation when anti-symmetric modes are excited by an inhomogeneous (for
example, retarded) electric field; in this case the MA itself can be symmetric.

/ð0Þ
C; abðxÞ is the term that basically is also responsible for the bianisotropy (in

notations of [14, 17]), and physically appears in case when the anti-symmetric
mode of the MAs can be excited by a homogeneous field (in this case the MA itself

has to be asymmetric), and thus corresponds to eð1ÞC; abcðxÞ.
/ð1Þ
C; abcðxÞ is the term where extra contribution (the term � kyc

x Exðky;xÞ is just the
magnetic field) appearing in the case when the anti-symmetric modes are excited by
an inhomogeneous (for example, retarded) electric field.

It is worth noticing that the consideration of the problem here has been done
based on the basic physical processes, appearing in the MAs, namely excitation of
symmetric and anti-symmetric modes. It is useful to summarize the coefficients with
respect to these properties—see Table 3.1.

It is interesting to note, that the developed approach establishes a way to
determine the types of the modes exited in MM, provided the coefficients in

Table 3.1 Symmetry properties of MAs and exciting fields, and the respective coefficients
responsible for particular modes

Symmetric properties of the MAs and
fields

Type of excited modes Respective
coefficients

Symmetric MAs, homogeneous electric
field

Symmetric eð0ÞC; abðxÞ

Asymmetric MAs, homogeneous electric
field

Symmetric,
anti-symmetric

eð1ÞC; abcðxÞ, /ð0Þ
C; abðxÞ

Symmetric MAs, inhomogeneous
electric field

Symmetric,
anti-symmetric

eð2ÞC; abcdðxÞ,
/ð1Þ
C; abcðxÞþ c

x
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Table 3.1 could be experimentally determined with the help of a retrieval proce-

dure. In case of eð1ÞC; abcðxÞ� 0; /ð0Þ
C; abðxÞ� 0 one can conclude that the structure

itself appears to be symmetric, and the magnetic response (in case

/ð1Þ
C; abcðxÞþ c

x 6¼ 0) is caused by a gradient of the electric field. In opposite case

eð2ÞC; abcdðxÞ� 0; /ð1Þ
C; abcðxÞþ c

x � 0 and respectively /ð0Þ
C; abðxÞ 6¼ 0 (non-zero mag-

netic response) the plasmonic oscillation mode is excited due to the asymmetry of
the structure itself. The possibility to make a conclusion about microscopic pro-
cesses (type of the excited oscillation mode) based on the macroscopic measure-
ments (assuming that the mentioned above retrieval procedure can be designed)
looks rather attractive and undoubtedly deserves further investigations.

3.2.4 Origin Dependence of the Multipole Moments

It is known from the theory of multipoles (e.g., [23]) that the multipole moments, as
they have been introduced in (3.56), depend on the origin of the microscopic system
of coordinates (see the system of coordinates in Fig. 3.2). It has to be noted, that in
case of zero of previous terms in multipole expansion, the next one does not depend
on the origin. For example, in case of zero total charge, the dipole moment does not
depend on the origin; in case of zero of total charge and dipole moment, the
quadrupole/magnetic moments do not depend on the origin etc. We nevertheless
assume here general case i.e. all terms (excepting total charge) are nonzero. In fact,
if the origin is shifted by a vector ~g ðgx; gy; gzÞ , the coordinates of all charges are

shifted as well ~rs ¼ ~r0s þ~g, and multipoles (3.56) become:

Pið~R; tÞ ¼ P0
ið~R; tÞ �

1
2
@ digj þ djgi
	 
ð~R; tÞ

@Rj

Qij ð~R; tÞ ¼ Q0
ij ð~R; tÞþ digj þ djgi

	 
ð~R; tÞ
Mið~R; tÞ ¼ M0

ið~R; tÞþ eijkgj ~j
� �

kð~R; tÞ

dið~R; tÞ ¼ g
Xall charges

s

qs~rs;i

* +

~j
� �

ið~R; tÞ ¼
g
2c

Xall charges

s

qs~vs;i

* +

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð3:66Þ

Here di are the components of the averaged dipole moment of the MA, h~jii are the
components of the averaged current of the MA; it is also assumed that the MA is
electrically neutral ðPall charges

s qs ¼ 0Þ. For the sake of simplicity an only one
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particular MA geometry, presented in Fig. 3.2, is considered here. For this geom-
etry (3.66) is simplified and becomes in the ðky; xÞ domain:

Pxðky; xÞ ¼ P0
xðky; xÞ �

iky
2
gydxðky; xÞ

Qxy ðky; xÞ ¼ Q0
xy ðky; xÞþ

1
2
gydxðky; xÞ

Mzðky; xÞ ¼ M0
zðky; xÞþ

ix
2c

gydxðky; xÞ

8>>>>>><
>>>>>>:

ð3:67Þ

Substituting (3.67) into (3.58) we arrive to the conclusion that the dispersion
relation depends on the origin in calculations of the multipoles:

k2yExðky;xÞ ¼ x2

c2
Exðky;xÞþ 4pPxðky;xÞ
	 
� 4p kyx

c
Mzðky;xÞ

¼ x2

c2
Exðky;xÞþ 4pP0

xðky;xÞ
	 
� 4p kyx

c
M0

zðky;xÞ �
ikyx2

c2
gydx

ð3:68Þ

The result of the origin dependence of the wave vector looks unacceptable, because of
the wave vector obviously should not depend on the voluntary choice of the origin of
themultipole calculations. It has to be emphasized, that anyway the origin dependence
is a natural consequence of the elaborated in [21] multipole model. Equations (3.66)
and in our particular case of the double wires (3.67) are direct consequences of the
recipe presented in [21]. The origin-dependence of “microscopic”moments does not
automatically disappear in the process of averaging, leading to macroscopic models.
Additional physical requirements need to be introduced, so that the resulting
macroscopic model contains only origin-independent terms. Usually these require-
ments are the reciprocity of the medium and symmetry considerations applied to
averaging formulas.

Let us take a look closer to this problem. The first row of (3.68) is rigorous in
terms of phenomenological approach: if we know exactly Pxðky;xÞ and Mzðky;xÞ,
then the wave vector can be found unambiguously (nevertheless, several solutions
for the wave vector can exist). The question about origin dependence does not
appear, because of both functions are assumed to be known without any approxi-
mations and irrespective to the multipole expansion. The question about origin
dependence appears only when we start to apply the multipole expansion in order to
elaborate an analytical form of the Pxðky;xÞ and Mzðky;xÞ. The multipole
expansion, nevertheless, is an approximation (especially if we restrict our consid-
eration by quadrupole/magnetic dipole only) and gives the result with some limited
accuracy: calculation of the multipole moments gives different results for the dif-
ferent origins, which is obvious. Hence, when we consider the problem of origin
dependence, we always have to refer to the accuracy of the approximation we are
working with.
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The problem of the origin dependence roots to the problem of the field calcu-
lation from the known charge densities/dynamics at large enough distance—see
[30]. The initial expression for the potential calculation is obviously origin
invariant:

u ~R; t
	 
 ¼XNmax

k¼1

qk
~R�~rk
�� �� ð3:69Þ

Here qk; ~rk; ~R are the charge, the radius vector of the charge, and the radius vector
of the observation point respectively, summation is going over the charge cloud up
to the last charge with number Nmax.

Assuming that ~R 
~rk we arrive to the standard multipole expansion, which is
already not origin invariant:

u ~R; t
	 
 ¼ 1

~R
�� ��X

Nmax

k¼1

qk þ
XNmax

k¼1

qk~rk;a
@

@~ra

1
~R
�� ��

 !
þ
XNmax

k¼1

qk~rk;a~rk;b
@2

@~ra~rb

1
~R
�� ��

 !
ð3:70Þ

Here, as usual, the first term is proportional to the total charge, and the second and
third are the dipole and quadrupole approximation respectively. It is clear, that the
origin invariance is lost due to the truncation of the expansion by the quadrupole
approximation; in case of further expansion the origin invariance has to be recov-
ered. The truncation at the quadrupole term is stipulated by a reasonability of this
approximation: the quadrupole (and respectively magnetic dipole) term is the
minimum required order of expansion which describes the magnetic effect due to
current distribution. From the other side, this approximation is analytically treat-
able, and taking into account the next orders (octupoles etc.) makes the problem
solvable only numerically; in this case introduction of the multipole approximation
does not make too much sense. One can show that approximation (3.70) gives the
result with the accuracy described by two scales. The first one is the relation
between typical system size a (size of the charge cloud) and the wavelength
du
u �ðakÞ2; the second estimation is connected with the freedom of origin choice and

can be estimated as du
u � a

jRj; for the case of the MM, considered here, a is the

typical size of the MA and jRj is of the order of distance between the MAs. It has to
be admitted, that the substitution of exact expression (3.69) by approximation
(3.70) leads to the loss of the origin invariance, which in turn leads to the limited
accuracy of (3.70). In the frame of the developed here model there is no rigorously
justified methodology which could keep the origin invariance for the multipole (up
to quadrupole/magnetic dipole order) approximation.

Moreover, it is easy to see, that the voluntarily choice of the origin leads to
evidently non-physical results. Consider three systems of charges depicted in
Fig. 3.3. For the symmetric charge distribution the origin has to be chosen in the
middle due to evident symmetry considerations. From the other side, if the origin is
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kept in the same point and the top dipole becomes shorter, then in the extreme case
of negligible top dipole the quadrupole moment has to be zero, which takes place
only if the origin appears between the charges (dashed x axe in Fig. 3.3 right
picture).

It becomes intuitively clear that in the middle case the origin has to be chosen
lower towards to the bigger dipole (dashed x axe), which allows us to suggest new
approach to the problem of origin for the multipole expansion—instead of require
rather questionable condition of the origin independence (which does not appear as
a natural consequence of the developed model) we apply an extra condition, which
fixes the origin for any system based on its charge distribution.

The origin can be fixed by rather physically evident requirement of zero
quadrupole and magnetic dipole moments in the case when only the symmetric
oscillation mode is excited (or, better to say, the anti-symmetric mode is not
excited). In fact, in case of symmetric oscillations there are no circular currents
und hence there is no reason for the appearance of the magnetic response; from
the other side, non-zero quadrupole and magnetic dipole moments would mean
that this magnetic response takes place. It is enough to consider the quadrupole
moment only (the magnetic moment can be considered in the same way). Let us
assume (see Fig. 3.2) that the quadrupole moment is calculated in some coor-
dinate system:

Qxy ðky; xÞ ¼ 1
2
g q1y1x1 ky; x

	 
� q2y2x2 ky; x
	 

 � ð3:71Þ

here q1;2; y1;2; x1;2 are the charges, the positions over y, and the deviation from an
equilibrium position of the charges in the upper and lower wires, respectively. In
another system of coordinates the new quadrupole moment is given by:

q(-a1,b) -q(a1,b)

q(a,-b2)-q(-a2,-b)

y

q(-a1,b) -q(a1,b)

q(a2,-b)-q(-a2,-b)

y

x

q(a2,-b)-q(-a2,-b)

y

xx

Fig. 3.3 Schematic representation of three charge distribution with the same position of the origin
(solid axes) and variable x axe (dashed x axe). For the symmetric charge distribution (left picture)
the origin has to appear in the middle due to the symmetry consideration; the same origin position
(solid x axe) for a single dipole (right picture) leads to unphysical appearance of magnetic
response, while the origin for the dipole has to lay between the charges (dashed x axe). This
consideration gives a hint to the choice for the origin position for the intermediate charge system
(middle picture)
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Q0
xyðky; xÞ ¼ Qxyðky; xÞþ

1
2
gydx ¼ 1

2
g q1y1x1 ky; x

	 
� q2y2x2 ky; x
	 

 �

þ 1
2
gyg q1x1 ky; x

	 
þ q2x2 ky; x
	 

 � ð3:72Þ

In case of the symmetric mode x1ðky; xsymÞ ¼ x2ðky; xsymÞ and expression for the
quadrupole moment becomes:

Q0
xyðky; xÞ ¼

1
2
g q1y1 � q2y2½ � þ gy q1 þ q2½ �	 


x2 ky; xsym
	 
 ¼ 0 ð3:73Þ

which leads to the fixed position for the origin of the coordinates, at which the
quadrupole moment (and, consequently, the magnetic response) is zero:

gy ¼ q2y2 � q1y1
q1 þ q2

ð3:74Þ

Hence, at least for the considered here particular case, the origin of the system of
coordinates can be unambiguously fixed. Note that for the case of identical wires
q1 ¼ q2 and the origin has to be placed in the middle point y1 ¼ y2; for the absence
of one of the wires (right picture in Fig. 3.3) transformation (3.74) shifts the origin
to another one and places the origin such way that the quadrupole/magnetic dipole
moments disappear.

In the presented here model the averaged current (3.56) and final expression for
the wave vector (3.68) contain the same combination of Pxðky;xÞ and Mzðky;xÞ,
namely x

c Pxðky;xÞ � kyMzðky;xÞ. It means, that the origin independence of the
wave vector is equivalent to the origin independence for the averaged current,
which cannot be logically justified in case of multipole expansion; the only
requirement which could be utilized is that the accuracy of the accepted approxi-
mation should not degrade at the choice of different origins.

The extra terms for the quadrupole and magnetic dipoles, appearing due to the
origin shift [see (3.67)] cannot cancel each other due to the relation between them
Qxðky;xÞ ¼ ix

c Mzðky;xÞ and the fact that both Qxðky;xÞ and Mzðky;xÞ appear in
both averaged current and wave vector expression, as it was already mentioned, in

the same combination � ikyx
c Qxðky;xÞ � kyMzðky;xÞ ¼ �2 ikyx

c Qxðky;xÞ.
One more question to be considered here is the relation of the origin dependence

and the SFT. According to the general rules, the SFT (2.37) for the considered here
double wires can be written as [compare with (3.67)]:

Pxðky; xÞ ¼ P0
xðky; xÞ �

ix
4p c

T1;x þ ikyT2;z

Mzðky; xÞ ¼ M0
zðky; xÞþ

iky
4p

T1;z þ ix
c
T2;z

8><
>: ð3:75Þ
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In order to compensate for the shift, both transformations have to be equivalent,
namely:

� iky
2
gydxðky; xÞ ¼ � ix

4p c
T1;x þ ikyT2;z

þ ix
2c

gydxðky; xÞ ¼ iky
4p

T1;z þ ix
c
T2;z

8><
>: ð3:76Þ

The last requirement (3.76) can be satisfied by unlimited number of variants for T1;x
and T1;z. From the other side, (3.76) cannot be satisfied if both T1;x and T1;z are zeros
(which is required if we consider the same physical realization), in this case:

Pxðky; xÞ ¼ P0
xðky; xÞþ ikyT2;z

Mzðky; xÞ ¼ M0
zðky; xÞþ

ix
c
T2;z

8<
: ð3:77Þ

� iky
2
gydxðky; xÞ ¼ ikyT2;z

þ ix
2c

gydxðky; xÞ ¼ ix
c
T2;z

8><
>: ð3:78Þ

and there is no nontrivial solution for T2;z. Transformations (3.78) do not change
dispersion relation (3.59), and cannot compensate for the origin shift (3.67). Using
transformation (3.76) it is possible either compensate for the origin shift in quad-
rupole or in magnetic dipole contribution, but not for both of them simultaneously.

An ability to compensate for the origin shift, given by nonzero solutions T1;x and
T1;z of (3.77) means that final field solution has to be transformed as well according
to (2.37). Basically, it does not bring any news for the origin dependence problem
because of it does not fix the origin based on some extra conditions. As it was
shown above (see Sect. 2.5), the nonzero ~T1 means solution for some other charge/
current distributions; in the case of origin shift the charge/current are formally
changed (due to the limited accuracy of the multipole approximation), and the
Serdyukov-Fedorov transformation compensates for this change.

One can finally conclude, that:

1. In the frame of the developed here approach the origin dependence appears as a
consequence of the limited accuracy of the multipole approximation, which is
estimated to be � a

jRj, here a is the typical size of the MA and jRj is of the order
of distance between the MAs.

2. The origin independence cannot be automatically ensured in the frame of the
developed here model.

3. In order to fix the problem, we have introduced another requirement, that fixes
the origin for each MA and which clearly leads to reasonable limiting cases.

4. Consideration of this problem in the frame of the presented approach requires
further investigation.
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The conclusions of this part evidently contradict to the accepted in the literature
ones that the multipole model can be constructed such way, that the requirement of
the origin independency can be satisfied [23]. Note that in the developed in [23]
approach initial expressions for the multipoles differ from ones, elaborated in [21]
and which our consideration is based on. The main difference between our con-
sideration and the theory in [23] is in following. In [23] the multipole expansion
(i.e. expansion of the charge dynamics) is mixed with the expansion of the local
field; in our model the field expansion and consequent consideration of the local/
averaged fields and the consideration of their mutual relations is not necessary for
the presented above conclusions. Nevertheless, the relation of the developed here
model and one in [23] requires further investigation.

3.2.5 Toroidal/Anapole Metamaterials

In order to analyze an appearance of the magnetic response of the MAs, it is enough
to extend the multipole expansion above the dipole level and take into account
magnetic and quadrupole moments. It is commonly assumed, that the next, third
level of expansion containing magnetic quadrupole, octupole, and toroidal moments
can be neglected if the previous second one moments (magnetic dipole and
quadrupole) has non zero contribution. It turns out, that this statement can be
violated, and third order multipole contribution can interfere destructively with the
first one—the toroidal moment (third level of multipole expansion) can compensate
the dipole one (first level of multipole expansion), which results in non-radiative
structure, provided other moments are zeros. In order to understand this phenom-
ena, one must refer to the general multipole expansion expressions. For the sake of
generality, assume a nontrivial current distribution ~jð~r; tÞ producing an electro-
magnetic field Eð~rÞ [31]:

~jð~r; tÞ ¼
X
l¼0

ð�1Þl
l!

BðlÞ
i...k@i. . .@kdð~rÞ

BðlÞ
i...k ¼

Z
~jð~r; tÞ~ri. . .~rkd3~r

ð3:79Þ

Here BðlÞ
i...k is a tensor of lth rank. From these tensors various Cartesian multipoles in

form of sums of the unreducible tensors can be obtained. For example, Bð1Þ
i � dð1Þi

determines the electric dipole moment dð1Þi , Bð2Þ
ij �Qð2Þ

ij þ lð1Þi consists of electric

quadrupole Qð2Þ
ij (symmetric) and magnetic dipole lð1Þi (anti-symmetric) moments,

and Bð3Þ
ijk �Oð3Þ

ijk þ lð2Þij þ T ð1Þ
i gives rise to electric octupole Qð3Þ

ijk , magnetic quadru-

pole lð2Þij , and toroidal dipole moments T ð1Þ
i . On the other hand, the radiation

properties can by described by using the total scattering cross-section in Canonical
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basis and can be written as a sum of intensities of spherical electric aEðl;mÞ and
magnetic aEðl;mÞ scattering amplitudes [32]:

Csca ¼ p
k2
X1
l¼1

Xl
m¼�l

ð2lþ 1Þ aEðl;mÞj j2 þ aMðl;mÞj j2
h i

ð3:80Þ

coefficients aEðl;mÞ and aMðl;mÞ which can be unambiguously determined by

multipole coefficients BðlÞ
i...k . We are focusing on the situation when a spherical

electric dipole mode is the dominant one. In this case the total scattering
cross-section is determined solely by the electric dipole scattering coefficient
Csca / jaEð1;�1Þj2. In this case, for the first order expansion [32] the relation
between Cartesian and spherical multipoles can be written as:

aEð1;�1Þ ¼ C1 �Bð1Þ
x þ iBð1Þ

y

h i
þ 7C3 �Bð3Þ

xxx þ 2Bð3Þ
xyy þ 2Bð3Þ

xzz � Bð3Þ
yyx � Bð3Þ

zzx

h i
� i Bð3Þ

yyy þ 2Bð3Þ
yxx þ 2Bð3Þ

yzz � Bð3Þ
xxy � Bð3Þ

zzy

h i
ð3:81Þ

Thus, the total scattering can vanish if the spherical electric dipole scattering
coefficient becomes zero, aEð1;�1Þ � 0, provided all higher order scattering
amplitudes are also close to zero. In order to zero spherical electric dipole,

aEð1;�1Þ ¼ 0, the first order (electric dipole) coefficients Bð1Þ
i has to be compen-

sated by the third order coefficients Bð3Þ
ijk , which contains the toroidal dipole

moments Tð1Þ
i . This simple consideration creates basis for understanding of physics

of the anapole mode, namely mutual compensation of Bð1Þ
i and Bð3Þ

ijk . The other two

moments of the third order—octupole Oð3Þ
ijk and magnetic quadrupole lð2Þij —are

assumed to be negligible, which in fact takes place for the toroidal structure.
Typically, the toroidal moment is ignored as it appears in the third order of

expansion, which is expected to be negligible. The results in Fig. 3.4 indicate that it
is necessary to introduce toroidal moments for optically large particles to accurately
describe the total scattered field, in particular for a dielectric nanodisk with high
refractive index such as the one of silicon. The total scattering cancellation is
possible due to the fact that the radiation patterns of the electric and toroidal dipoles
are equivalent.

Anapole has been introduced in physics of elementary particles [33]. The
electrodynamic analog of a stationary anapole is well known toroid with a constant
poloidal surface current, which is also associated with a toroidal dipole moment. It
generates no field outside, but possible nonzero potential, which might lead to a
violation of the reciprocity theorem and Aharonov-Bohm like phenomena [34, 35].

In the dynamic case, the oscillating toroidal dipole moment produces nonzero
electromagnetic radiation with pattern fully repeating one from that of the electric
dipole moment, but scaled by a factor of x2. For oscillating surface current, the
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Fig. 3.4 Miroshnichenko [2, Fig. 2]: Decomposition of the contribution to the far-field scattering
with electric dipole symmetry in terms of spherical and Cartesian multipoles. We consider
scattering by a dielectric spherical particle inside as a function of diameter for refractive index
n = 4 and wavelength 550 nm: a Scattering jaEð1; 1Þj and internal jdEð1; 1Þj Mie coefficients;
b partial scattering cross-section and energy density of the electric dipole; c calculated spherical
electric dipole jPsphj (black), Cartesian electric jPCarj (red) and toroidal jTCarj (green) dipole
moments contributions to the partial scattering. These figures demonstrate that for small particles
both contributions of the spherical and Cartesian electric dipoles are identical and the toroidal
moment is negligible. For larger sizes, the contribution of the toroidal dipole moments to the total
scattered field has to be taken into account. The anapole excitation is associated with the vanishing
of the spherical electric dipole Psph ¼ 0, when the Cartesian electric and toroidal dipoles cancel
each other
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radiationless properties can be kept by adding another dipole oscillating in
anti-phase with the toroid, resulting in complete destructive interference of their
radiation due to similar far-field scattering patterns [36]. This radiationless electric
and toroid dipoles nontrivial current configuration has also been named “anapole”
[36], which is Greek for ‘without poles’. Nevertheless, this compensation is not
complete: the compensated toroidal dipole moment is a part of the third order
expansion, and all higher order expansions remain radiative.

The anapole concept has attracted considerable attention in metamaterial com-
munity as a possible realization of these radiationless objects [37]. The toroidal
moment itself and the respective effects (including toroidal metamaterials [38])
have been deeply investigated theoretically [35, 39]. Several experimental verifi-
cations in microwave [40] and optical [41] domains for toroidal moments confirm
theoretical conclusions. Anapole mode in optical domain using a simple silicon
structure has been experimentally demonstrated for the first time in [1].

Anapole being a rediationless structure (in the frame of all mentioned above
limitations) is also obviously (with the same approximations) is not sensitive to the
external radiation. An anapole-like qubit design that is naturally insensitive to
low-frequency noise and is well protected from other ambient noise sources, and
therefore could be a good candidate for a superconducting qubit, has been proposed
and theoretically investigated in [42].

It is worth to remind again about special form of material equations, introduced
in Chap. 2, namely Toroidal (“T”).

It is interesting to compare the microscopically introduced toroidal moment with
the phenomenologically elaborated equations for “T” form—see Chap. 2, (2.24)–
(2.26). Phenomenologically elaborated h~ji ¼ �ix~P� ix rot½~F1� þ rot½~F2� (see (2.12)
in Chap. 2) allows two different allocation of term ix rot½~F1�, namely it can be
packed in polarizability h~ji ¼ �ixð~Pþ rot½~F1�Þ þ rot½~F2� or in magnetization h~ji ¼
�ix~Pþ rot½�ix~F1 þ~F2�. Final solution of MEs of course does not depend on this
relocation. This possibility of the different allocations corresponds to SFTbetween the
different representations [see (2.48) and (2.51)].

Let us consider the case of material consisting of toroidal structures only (it means,
that the MAs have only toroidal moments and no other ones). The current in the
frames of the developed phenomenological scheme is given by (taking into account
that ~F2 is responsible for a non-toroidal magnetization and can be set to zero):

~j
� � ¼ rot �ix~F1


 � ð3:82Þ

From the other side, referring to [31], the current is written through the toroidal
moment (see (2.12) in [31]):

~j
� � ¼ c rot rot ~Td rð Þ
 �
 � ð3:83Þ
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Alternatively, it has been shown [43], that the averaged current can be expressed in
form (see (2.15) in [43] without non toroidal contributions):

~j
� �

total¼ rot �ix~Te þ c rot½ ~Tm�
 � ð3:84Þ

here ~Te and ~Tm are the contributions appearing due to the presence of structures
with the toroidal moments in the frame of alternative formulation of MEs with
magnetic charges [44]. From the comparison of (3.82) with (3.83) and (3.84) it is
seen that the introduced phenomenologically function ~F1 is fixed by the presence of
the toroidal moments. From the other side, the exact functional form depends on the
ME initial formulation. In the case of traditional MEs it becomes:

~F1 ¼ ic
x

rot ~Td rð Þ
 � ð3:85Þ

while in the frame of alternative representation of [44] it reads:

~F1 ¼ ~Te ð3:86Þ

The toroidal moment determines function ~F1 introduced phenomenologically.

3.3 Introducing of Effective Parameters

3.3.1 Elaboration of Effective Parameters

The introduced above scheme allows us to determine unambiguously the terms
“effective parameter” and some other notations, which appeared in the literature in
the contents of the homogenization procedure. Most generally, the effective
parameters are functions which connect introduced at the first step of the homog-
enization procedure hqi and h~ji with the averaged electric and magnetic fields~E and
~B. Usually the relations between hqi and h~ji and ~E and ~B are not used; instead the
relations between ~P and ~M (in any representations) and ~E and ~B are under
consideration. It has been shown above, that in the case of the “L&L” represen-
tation it is possible to introduce the effective parameter (effective permittivity)
eLL;abð~k;xÞ ¼ dab þ 4pRLL;abð~k;xÞ (3.5), which connects ~D and ~E. The effective
permittivity is a function of material properties and is spatially dispersive (depends
on wave vector); in other words, is nonlocal.

The non-locality (spatial dispersion) caused a discussion in literature whether it
makes sense to call eLL;abð~k;xÞ an effective material parameter. Following [45], the

effective permittivity eLL;abð~k;xÞ is an effective parameter, but is not an effective
material parameter because it includes information not only about material, but also
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depends on the wave vector, in other words contains information about external
electromagnetic fields. Similar considerations have been published in [46] where
also two different notations—Characteristic Material Parameters (CMP) and
Effective Material Parameters (EMP)—have been suggested.

Here the question about necessity of introducing of new paradigm for the
effective parameters is considered in view of the presented consideration based on
the types of modes excited in MAs.

In order to create a consistent terminological basis, it has to be mentioned, that
the introduced effective parameters in case of strong spatial dispersion (for example,
the permittivity in case of the “L&L” representation) solves the problem of
homogenization, and to this extend does not require any other comments or dis-
cussions. If the functional form of eLL; abð~k;xÞ is found, then this function contains
information about material properties (for example, eigenmodes of the electron
oscillations in the metal nanoresonators), and the excitation conditions (wave-vector
dependence). In general, both properties—eigenmodes and excitation conditions—
are not separable.

The physical meaning of the effective constants, introduced in the homoge-
nization procedure, should be properly appreciated. The effective constants appear
in the model (phenomenological or multipole) as the functions describing charge
dynamics. It is necessary to recall that the microscopic MEs consist of not only field
equations, but also include equations for the charge dynamics—see the last equa-
tion in (2.1). This equation (and all information about charge dynamics) is lost in
the homogenization procedure; in other words, this equation is not averaged in the
homogenization. It is clear, that the information contained in this equation is also
lost and has to be somehow compensated, which is the basic reason for the multiple
forms of various homogenization models (it has to be noted, that this equation has
been basically kept in [20], which is the reason for pretty straightforward elabo-
ration of the model). Instead of the systematic consideration of the charge
dynamics, the phenomenological approach just gives some frames for the
homogenization model, resulting in some expressions connecting averaged charge
density and current and averaged fields. The coefficients between them (effective
parameters) should contain information about charge dynamics caused by the
averaged fields.

At this stage it has to be clearly realized, that these coefficients contain infor-
mation about charge dynamics in a particular excitation situation, and not only
about the material properties. The difference becomes clear if we again recall the
symmetric and anti-symmetric modes in, for example, double wires. The existence
of the modes itself is the characteristics of the system and does not depend on the
external fields. But the type of the excited mode can depend (but not necessarily!)
on the external field structure—see Table 3.1 where it is summarized that the
anti-symmetric mode can be excited due to both asymmetry of the structure and
inhomogeneity of the field (asymmetry of the field distribution). In general, the
modes which are excited and which determine the material response are functions
of both material properties and properties of the external fields. It is possible to
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create MAs with modes determined by the properties of the MAs only—asym-
metric structures (for example, double wires with different lengths closely placed to
each other—see [47]) with the sizes much smaller than the wavelength. In this case

the coefficients eð0ÞC; abðxÞ, eð1ÞC; abcðxÞ and /ð0Þ
C; abðxÞ form material equations, which

nevertheless describe spatial dispersion of the first order. This clearly shows that the
presence/absence of spatial dispersion in material response is not an indicator of the
physical properties of the media, but rather a manifestation of interactions of
charges with the fields and the charge dynamics. If all five coefficients in Table 3.1
are not zero (the anti-symmetric mode is excited due to both the structure and field
asymmetries), the situation is basically the same, but the material equations contain
spatial dispersion of the second order as well.

The presented above consideration shows that the spatial dispersion itself can
hardly be considered as a criterion for introduction of some new notations. It would
be more physically justified to consider the effective parameters based on the types
of the modes in particular structures under particular excitation conditions. For
example, following the results summarized in Table 3.1, one can subdivide the
magnetic response in MAs (and the respective MM) into two categories: the first
one where the anti-symmetric modes appear as a result of the asymmetry of the
structure itself, and the second one, where the anti-symmetric modes appear as a
result of the asymmetric excitation. For both types the coefficients in Table 3.1 can
be considered as material effective parameters, because they all depend on the
material properties and do not depend on the wave vector.

The MM of the first and second types can be rather easily distinguished
experimentally.

If the retrieval procedure based on (3.48) will be applied, it will be clear which

type of structure has been tested: for the first type the coefficients eð2ÞC; abcdðxÞ,
/ð1Þ
C; abcðxÞ are expected to be close to zero, and for the second type the coefficients

eð1ÞC; abcðxÞ, /ð0Þ
C; abðxÞ should be about zero. The information about relative contri-

bution of the coefficients would reveal information about basic physical processes
in the MAs and undoubtedly enhance our insight about electrodynamics of the MM.
Moreover, this method allows us to extract microscopic information based on
macroscopic measurements of the effective response of the MM, which makes this
approach an extremely useful tool in the lab.

3.3.2 Impossibility of Unambiguous Effective Parameters
Determination for Bulk Materials

It has to be realized that the problem of determination of Effective Parameters for
bulk materials does not make much practical sense. From the theoretical point of
view, the only problem which can be stated and (potentially) solved for the bulk
materials is finding the dispersion relation, which does not assume even
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introduction of the effective parameters. The effective parameters can be introduced
as some coefficients between polarizability and magnetization and the electric and
magnetic fields, but it can NOT be done unambiguously—see again SFT (2.37),
which give birth of unlimited number of different effective parameters, each set of
them nevertheless satisfy MEs.

In fact, most authors do not look for the step by step elaboration of the model,
describing the averaged characteristics, but just postulate the relations between
polarizability, magnetization and the electric and magnetic fields and then find, for
example, dispersion relation—see Fig. 3.4, which illustrates different ways of
possible elaboration of the homogenization models. It is clear, that the chain
“Microscopic Maxwell equations” to “Bulk material—introduction of e, µ”, shown
by the red vertical arrow, is not a natural way of the elaboration of the homoge-
nization model, but rather an attempt to avoid the detailed and consequent
consideration.

A functional form of the material equations has to be elaborated based on the
phenomenological and/or multipole approaches, which has been done for the bulk
materials in this work. It is argued, that the presented here consideration covers all
possible forms of the material equations in the frame of the commonly used
paradigm of spatial dispersion.

3.3.3 Effective Retrieved Parameters and Their Relation
to the Effective Parameters

The problem of the effective parameters retrieval is to some extend out of the scope
of the presented consideration. The reason is that in the optical domain due to the
high level of losses the vast majority of tests have been performed not with bulk
MMs (which is the main object of the presented consideration) but rather with
meta-surfaces [48, 49], where only several layers of MAs are stacked together. In
this case the presented above consideration is not directly applicable. For example,
expressions (3.2), (3.3), and (3.10) could not form the basis for further consider-
ation (nevertheless, all the conclusions made in Sect. 2.4 about different repre-
sentations and their mutual transformations remain valid). This problem of
fundamental inapplicability of the “bulk expressions” to meta-surfaces are fre-
quently mentioned, but very rarely properly analyzed; anyway, all the presently
accepted approaches for the effective parameter retrieval are reduced to the “bulk
expressions” in one or another form—see, for example, [50]. The theoretical
background for the retrieval procedures is based on some hypothesis about relations
between polarizability and magnetization on the averaged field. In its original form
the retrieval procedure assumed very simple forms of the relations for polarizability
and magnetization [51–54] which did not include bianisotropy and corresponded in
terms of (3.38) to:
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eð0ÞC; ab xð Þ 0 0

0 /ð1Þ
C; abcd xð Þ 0

0
@

1
A ð3:87Þ

Bianisotropy has been included into consideration in [55] and in the retrieval
algorithm of [56], which corresponds in terms of the developed in here approach to
the form:

eð0ÞC; ab xð Þ eð1ÞC; abcd xð Þ 0

/ð0Þ
C; ab xð Þ /ð1Þ

C; abcd xð Þ 0

0
@

1
A ð3:88Þ

It is worth noticing again, that the developed in this publication approach gives a
different representation for the retrieval procedure (3.47) which includes not only
bianisotropy, but also excludes the influence of the magnetic field on the effective
parameters.

The retrieved from the reflection and transmission measurements parameters
(whatever representation it is based on) are the so called “effective refractive index”
and the “effective surface impedance”. The main goal of the theoretical models is to
establish a reasonable correspondence between the retrieved from the measured
data effective refractive index and impedance and parameters of the developed
model. Often it is assumed that the effective parameters of the meta-surfaces can be
described by the same type of relations as for bulk MMs—for example, coefficients
in (3.47) or (3.49), or the respective coefficients in some other representation.

3.4 Conclusion

The developed in this chapter scheme is summarized in Fig. 3.4. Developing of the
averaging procedure results in roughly three levels of MEs: the first level is the
microscopic MEs (the starting level), the second level are the different represen-
tations for macroscopic MEs, where polarizability and magnetization ~P and ~M can
be introduced, and the third level where the homogenization problem results in the
dispersion relation for bulk materials and in a surface impedance and an effective
refractive index for layered materials (Fig. 3.5).

Possible transitions between the first and second levels are represented by the
phenomenological route and the multipole model; it is worth reminding that the
multipole model arrives to the same “C” form of MEs representation.

The effective parameters in general turn out to be functions of the wave vector
and hence cannot be called the effective material parameters. In order to separate the
effect of spatial dispersion, the effective parameters can be expanded into series
over the wave vector, and the appearing coefficients can be accepted as effective
material parameters.
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A new form of material equations has been suggested in the frame of the
phenomenological approach in the case of weak (up to the second order) dispersion.
Comparison between the phenomenological and multipole approaches based on the
symmetry consideration allowed us to prescribe a clear physical meaning to all
introduced material parameters. The use of the retrieval algorithm based on the
suggested form of the material equations would allow us to determine the types of
the internal charge mode dynamics, on which the response of MMs is based.
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Chapter 4
Multipole Approach for Homogenization
of Metamaterials: “Classical”
Metamaterials

4.1 Charge Dynamics in Isolated Plasmonic Metaatoms:
Antisymmetric Modes as a Source for Magnetization

Now the multipole expansion developed in Chap. 3 is applied to describe the
widely used double-wire geometry [1]. In what follows we assume again the
geometry shown in Fig. 3.2 with the electric field ~Ex polarized along the long axis
of the wires and propagation along the y axis ð0; ~ky; 0Þ. Our goal is to elaborate a
dispersion relation as a function of the particular parameters of the MAs using the
general expressions obtained in chapter (3.61). In order to find the relations for the
dipole, quadrupole, and magnetic dipole moments (3.57) it is necessary to express
charge dynamics in the MAs as the functions of the averaged fields. As it was
mentioned above, the microscopic interaction between charges and the electro-
magnetic wave is determined by the interaction with the electric field. The inter-
action with the magnetic field becomes significant only for relativistic velocities or
extremely large magnetic fields [2] which are irrelevant in the present study.
A rigorous description of the charge dynamics in terms of eigenmodes can be rather
straightforwardly done for the nanospheres [3] and can be easily adopted for the
elliptical particles of various eccentricities [4], but the physical picture qualitatively
remains unchanged—the dynamics is described to the first approximation by the
harmonic oscillation equation(s) with the eigenfrequencies, damping rates, and
mutual coupling coefficients. The coefficients depend on particular geometry of the
MAs and can be found analytically or semi-analytically with some accuracy, which
in most cases does not allow direct comparison with the experiments and a fitting
with the experimental data is required in one or another form anyway. For the
developed in the frame of our approach model we have adopted another way. We
assume that the MA consist of several “harmonic oscillators” coupled to each other
—for example, for the double wires in Fig. 3.2 the system dynamics is supposed to
be modeled by two coupled harmonic oscillators. The oscillator parameters (the
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eigenmodes, damping constants, and coupling coefficients) are introduced phe-
nomenological and are supposed to be found from the fitting with the experimental
data or with the data from rigorous numerical simulation. This approach allows us
to keep basic physics and at the same time do not overload the model with
unreasonably complicated math. It is worth noticing that the same approach is
adopted for the natural materials, for example for the analytical description of the
frequency dependence of the dielectric constant and does not seem to be a sig-
nificant drawback of the model. Under these restrictions the damped and driven
harmonic oscillator equation, describing the dynamics of the charge qk, takes the
following form [5]:

@2~rkðtÞ
@t2

þ ck
@~rkðtÞ
@t

þx2
k~rkðtÞþ rki~riðtÞ

¼ qk
mk

~Ek;loc ~R; t
� �þ @~rkðtÞ

@t
�~Bk;loc ~R; t

� �� �� �
� qk

mk

~Ek;loc ~R; t
� � ð4:1Þ

In (4.1) ck represents the damping constant, rki the coupling between oscillators,
and xk the eigenfrequency of the charge in the microscopic coordinates~rðtÞk. The
oscillators are driven by local fields ~Ek;locð~R; tÞ at the point of the oscillator loca-
tions; the relation between the local and averaged fields will be discussed later. This
set of equations of motion can be analytically solved and the system parameters x2

k ,
ck, and rki can be evaluated in phenomenological way by comparison with
experimental or numerical data. To apply this model to the double-wire geometry
we propose the charge arrangement as shown in Fig. 4.1:

Fig. 4.1 Double-wire MM geometry and corresponding suitable charge distributions that support
electric dipole, electric quadrupole, and magnetic dipole moments. The dynamics including
interactions between the top and the bottom wires is described by a coupled harmonic oscillator
model which is indicated by the red (gray) arrows [6]
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~r1ðtÞ ¼
x1
y1
0

0
B@

1
CA; ~r2ðtÞ ¼

�x1
y1
0

0
B@

1
CA;

~r3ðtÞ ¼
�x2
�y1
0

0
B@

1
CA; ~r4ðtÞ ¼

x2
�y1
0

0
B@

1
CA

ð4:2Þ

q1 ¼ q4 ¼ q; q2 ¼ q3 ¼ �q

Thus the double-wire geometry is modeled by four charges where the two upper
and the two lower ones represent electric dipoles. One important detail of the charge
arrangement has to be mentioned explicitly, namely, the introduced asymmetry of
the charge dynamics in the top and bottom wires (Fig. 4.1). The asymmetry has its
origin in the finite size of the charge distribution and the spatial retardation of the
exciting electric field, i.e., the field is different at both dipole sites, which will be
considered in the coupled-oscillator approach. This difference occurs due to the
phase and amplitude variation of the electric field propagating along the y direction
between the wires. The interplay of the external field with the induced local field
excited in the wires results in the excitation of symmetric and anti-symmetric dipole
moments in the upper and lower wires. It is worth noting that the required asym-
metry to excite second-order multipoles can also be modeled by different oscillator
properties (e.g., the damping constant) which will be discussed in detail in the next
paragraph. By substituting (4.2) into (3.56), the electric dipole, the electric quad-
rupole, and the magnetic dipole moment can be calculated straightforwardly (in
frequency domain):

~Pð~R;xÞ ¼ 2gq
x1 þ x2

0
0

0
@

1
A�r � Qð~R;xÞ

Qijð~R;xÞ ¼ gqy1
0 x1 � x2 0

x1 � x2 0 0
0 0 0

0
@

1
A

~M ð~R;xÞ ¼ ixgqy1
c

0
0

x1 � x2

0
@

1
A

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4:3Þ

From (4.3) one can recognize that all second-order expansion moments (the
electric quadrupole and the magnetic dipole moment) vanish for a symmetric charge
configuration x1 = x2, while the polarization (electric dipole) is still nonzero. The
symmetric system x1 = x2 would consist of two classical dipoles with no influence
of higher-order multipoles, and hence with no magnetization.

It has to be realized that the anti-symmetric modes (and in turn magnetization)
appear due to two factors only, namely:
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(a) asymmetric nature of the system of coupled oscillators (for example, not equal
parameters of the oscillators), or

(b) asymmetric driving fields ~Ek;locð~R; tÞ (e.g. in (4.1) ~E1;loc ~R; t
� � 6¼ ~E2;loc ~R; t

� �
).

Both options and consequent effective parameters will be considered below.

4.2 Dispersion Relations and Effective Parameters
for Metamaterials: Asymmetric Structures

First, we consider the case when the anti-symmetric modes appear due to asym-
metry of the structure of the MA itself, which can be achieved by not equal
damping constants ck and/or not equal eigenfrequencies xk of the oscillators (4.1).
At the same time, it is assumed that the local field is equal for both oscillators and
equal to the averaged field ~E1;locð~R; tÞ ¼ ~E2;locð~R; tÞ ¼ ~Eð~R; tÞ. Physically, this
corresponds to a very small in compare with the wavelength MAs, which normally
does not take place in optical region for MMs based on plasmonic structures like
shown in Fig. 4.1. The system of equations in this case becomes:

@2x1ðtÞ
@t2

þ c1
@x1ðtÞ
@t

þx2
1x1ðtÞ � rx2ðtÞ ¼ q

m
Ex

@2x2ðtÞ
@t2

þ c2
@x2ðtÞ
@t

þx2
2x2ðtÞ � rx1ðtÞ ¼ q

m
Ex

8>><
>>: ð4:4Þ

System (4.4) can be solved in Fourier domain:

x1ðxÞ ¼ a1ðxÞEx

x2ðxÞ ¼ a2ðxÞEx

a1ðxÞ ¼ q
2m

ic2xþx2 � x2
2 þ r

� �
r2 � x2

1x
2
2 � x4 � ix3 c1 þ c2ð Þþx2 x2

1 þx2
2 þ c1c2

� �þ ix x2
1c1 þx2

2c2
� �� �

a2ðxÞ ¼ q
2m

ic1xþx2 � x2
1 þ r

� �
r2 � x2

1x
2
2 � x4 � ix3 c1 þ c2ð Þþx2 x2

1 þx2
2 þ c1c2

� �þ ix x2
1c1 þx2

2c2
� �� �

8>>>>>>>>><
>>>>>>>>>:

ð4:5Þ

According to the arguments presented in Sect. 3.24, the origin for the asym-
metric structure has to be shifted by an amount given by (3.72) which after sub-
stitution (4.5) becomes:

gy ¼
a2 xsym
� �

N2 � a1 xsym
� �

N1

a1 xsym
� �

N1 þ a2 xsym
� �

N2

" #
y
2

ð4:6Þ

here y ¼ y1;init þ y2;init, and N1; N2 are the numbers proportional to the number of
electrons in the top and bottom wires, see Fig. 3.2. We have chosen middle point
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y1;init ¼ y2;init as an initial origin; it is easy to see, that the final origin position given
by (3.27) does not depend on the initial choice y1;init; y2;init for the origin. The eigen
frequency for the symmetric mode is obtained under requirement of equal phases
for the oscillation of the both wires, namely:

arg x1ðxsymÞ
� 	 ¼ arg x2ðxsymÞ

� 	 ð4:7Þ

As a result, the final position of the origin is:

y1;final ¼ y
2
þ g

y2;final ¼ y
2
� g

8><
>: ð4:8Þ

The multipole moments are:

Pxðky;xÞ ¼ pxðky;xÞ � ikyuxyðky;xÞ
� �

Exðky;xÞ
Qxyðky;xÞ ¼ uxyðky;xÞExðky;xÞ
Mzðky;xÞ ¼ mzðky;xÞExðky;xÞ
pxðky;xÞ ¼ 2gq a1ðxÞN1 þ a2ðxÞN2ð Þ
uxyðky;xÞ ¼ gq

4
a1ðxÞN1y1 � a2ðxÞN2y2ð Þ

mzðky;xÞ ¼ ixgq
4c

a1ðxÞN1y1 � a2ðxÞN2y2ð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4:9Þ

which finally gives according to general expression (3.61a) the dispersion relation:

k2y ¼
x2

c2
1þ 8pgq a1ðxÞN1 þ a2ðxÞN2ð Þ � i2pgqky a1ðxÞN1y1 � a2ðxÞN2y2ð Þ� �

ð4:10Þ

Material equations (3.61a) and (3.61b) become:

Dxðky;xÞ ¼ 1þ 8pgq a1ðxÞN1 þ a2ðxÞN2ð Þ � ipgqky a1ðxÞN1y1 � a2ðxÞN2y2ð Þ� �
Exðky;xÞ

Hzðky;xÞ ¼ � kyc
x

� i
pxgq
c

a1ðxÞN1y1 � a2ðxÞN2y2ð Þ
� �

Exðky;xÞ

8><
>:

ð4:11aÞ

exðky;xÞ ¼ 1þ 8pgq a1ðxÞN1 þ a2ðxÞN2ð Þ � ipgqky a1ðxÞN1y1 � a2ðxÞN2y2ð Þ
lzðky;xÞ ¼ 1þ ipx2gq

kyc2
a1ðxÞN1y1 � a2ðxÞN2y2ð Þ


 ��1

nzxðky;xÞ ¼ � kyc
x þ ipxgq

c a1ðxÞN1y1 � a2ðxÞN2y2ð Þ

 �

8>><
>>:

ð4:11bÞ
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Reminding phenomenological form of the material equations (3.47), we write
down straightforwardly the expressions for the material parameters introduced in
(3.64), (3.65):

eð0Þx xð Þ ¼ 1þ 8pgq a1ðxÞN1 þ a2ðxÞN2ð Þ
eð1Þx xð Þ ¼ �ipgq a1ðxÞN1y1 � a2ðxÞN2y2ð Þ
eð2Þx xð Þ ¼ 0

/ð0Þ
x xð Þ ¼ �i

pxgq
c

a1ðxÞN1y1 � a2ðxÞN2y2ð Þ

/ð1Þ
x xð Þ ¼ � c

x

8>>>>>>>>><
>>>>>>>>>:

ð4:12Þ

The analysis above demonstrates that the coefficient in (3.47) have clear physical
mean and indicate the reason of the asymmetric modes appearing in the MAs.

Dispersion relation (4.7) can be solved for ky:

ky ¼
�i x

2

c2 4pgqy1 a1ðxÞN1y1 � a2ðxÞN2y2ð Þ
2

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� x2

c2 4pgqy1 a1ðxÞN1y1 � a2ðxÞN2y2ð Þ� �2 þ 4x2

c2 1þ 8pgq a1ðxÞN1 þ a2ðxÞN2ð Þð Þ
q

2
ð4:13Þ

The coefficients a1; a2 are complex and imaginary part of ky is always positive,
which corresponds to the energy dissipation from the propagating wave. The two
solutions of (4.10) manifest, as usual, propagation in opposite directions. In fact, if we
consider solution of (4.10) for the ky for two “inverted” structures (a1ðxÞN1�
a2ðxÞN2 ¼ DðxÞ and a1ðxÞN1 � a2ðxÞN2 ¼ �DðxÞ) we see, that (4.10) remains the
same in case of simultaneous transformations ky ! �ky and DðxÞ ! �DðxÞ.

The detailed consideration of the asymmetric media can be found in [7].

4.3 Dispersion Relations and Effective Parameters
for Metamaterials: Symmetric Structures (Retarded
Field)

For a polarization along the wire axis (x direction) the complete equations
describing the charge dynamics in the two wires is given by (4.1) and in case of
equal oscillators (symmetric structure) and not equal local fields are reduced to:

@2x1ðtÞ
@t2

þ c
@x1ðtÞ
@t

þx2
0x1ðtÞþ r x2ðtÞ ¼ q

m
Ex1;loc

@2x2ðtÞ
@t2

þ c
@x2ðtÞ
@t

þx2
0x2ðtÞþ r x1ðtÞ ¼ q

m
Ex2;loc

8>><
>>: ð4:14Þ
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The inhomogeneous solution of the system (4.14) can be obtained in the Fourier
domain:

x1ðxÞ ¼ q
m
Ex1;loc icxþx2�x2

0ð Þ�rEx2;loc

r2� icxþx2�x2
0ð Þ2

� �
x2ðxÞ ¼ q

m
Ex2;loc icxþx2�x2

0ð Þ�rEx1;loc

r2� icxþx2�x2
0ð Þ2

� �
8>><
>>: ð4:15Þ

For the symmetric and asymmetric oscillations, entering the formalism:

x1ðxÞþ x2ðxÞ ¼ Ex1;loc þEx2;loc
� �

vþ xð Þ
x1ðxÞ � x2ðxÞ ¼ Ex1;loc � Ex2;loc

� �
v� xð Þ

v� xð Þ ¼ q
m

1
x2

0�x2�icx�rð Þ

8>><
>>: ð4:16Þ

The relations between local amplitudes on the electric field in the upper and
bottom wires Ex1;loc ðy; xÞ; Ex2;loc ðy; xÞ are assumed to be caused by the retar-
dation and are taken into account by following expressions:

Ex1;loc y;xð Þ ¼ Ex xð Þ exp ikyy1
� �

Ex2;loc y;xð Þ ¼ Ex xð Þ exp �ikyy1
� �


ð4:17Þ

Here Ex ðy; xÞ ¼ Ex ðxÞ expðikyyÞ is the macroscopic (averaged) field in
Maxwell equations. At this point we explicitly mention that in our model the
excitation via plane waves is described in an approximate manner. The electric field
propagating from the first to the second wire is determined by ky, the complex wave
number. In addition to this external electric field evolution, the excitation process is
also governed by the near-field coupling of the two wires. This mechanism is taken
into account by the empirical coupling constant r between the two wires and not by
the additional electric fields on the right side of (4.14). This approximation provides
an analytical solution for the equations of motion and prevents us from regarding
the complex near-field interactions between the wires by introducing that coupling
constant. Therefore ky represents the propagation vector of the corresponding
effective medium, not the free-space wave vector. Upon substitution into (4.16), the
oscillation amplitudes depend only on the electric field at a single site required for
performing the multipole expansion:

x1ðxÞþ x2ðxÞ ¼ 2Ex xð Þ cos kyy1
� �

vþ xð Þ
x1ðxÞ � x2ðxÞ ¼ 2iEx xð Þ sin kyy1

� �
v� xð Þ



ð4:18Þ

The quantities v�ðxÞ introduced above represent the polarizabilities related to
the eigenmodes of the coupled system, where the (+) and (−) the signs indicate the
symmetric and the antisymmetric modes, respectively. It turns out that the
antisymmetric mode induces both the magnetic dipole and the electric quadrupole
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moments, whereas the symmetric mode is related to the electric dipole moment.
Now the calculated multipole moments (4.3) can be rewritten:

Pxðky;xÞ ¼ pxðky;xÞExðky;xÞ
Qxyðky;xÞ ¼ uxyðky;xÞExðky;xÞ
Mzðky;xÞ ¼ mzðky;xÞExðky;xÞ
pxðky;xÞ ¼ 4gqvþ xð Þ cos kyy1

� �
uxyðky;xÞ ¼ 2igqy1v� xð Þ sin kyy1

� �
mzðky;xÞ ¼ � 2xgqy1

c v� xð Þ sin kyy1
� �

8>>>>>>>><
>>>>>>>>:

ð4:19Þ

The dispersion relation for the plane wave can be found straightforwardly by
plugging (4.19) into (3.61a):

k2y ¼
x2

c2
1þ 16pgqvþ xð Þ cos kyy1

� �þ 8pgqkyy1v� xð Þ sin kyy1
� �� � ð4:20Þ

The implicit dispersion relation obtained can be solved only numerically. To
keep the model analytical, we can approximate the trigonometric functions
cosðkyy1Þ and sinðkyy1Þ for small arguments kyy1 � 1:

cos kyy1
� � � 1� kyy1ð Þ2

2
sin kyy1

� � � kyy1

(
ð4:21Þ

and:

k2y ¼
x2

c2
1þ 16pgqvþ xð Þ

1þ x2

c2 16pgqy
2
1

1
2 v

þ xð Þ � v� xð Þ� � ð4:22Þ

Now with (4.22) the dispersion relation is explicit in ky and mirror symmetric
with respect to ky = 0, as in (4.20). The above approximation is justified because
y1 � k holds in the considered cut-wire geometry.

Material equations (3.61a, b) are:

Dxðky;xÞ ¼ 1þ 16pgqvþ xð Þþ 8pgq v� xð Þ � vþ xð Þð Þ kyy1
� �2
 �

Exðky;xÞ
Hzðky;xÞ ¼ � c

x þ 4p xgqy21
c v� xð Þ


 �
ky


 �
Ex ky;x
� �

8<
:

ð4:23aÞ

exðky;xÞ ¼ 1þ 16pgqvþ xð Þþ 8pgq v� xð Þ � vþ xð Þð Þ kyy1
� �2

lzðky;xÞ ¼ 1� 8px2gqy21
c2 v� xð Þ


 ��1

nzxðky;xÞ ¼ � c
x � 8pxgqy21

c v� xð Þ

 �

ky

8>>><
>>>:

ð4:23bÞ
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Reminding phenomenological form of the material equations (3.47), we write
down the expressions for the material parameters introduced in (3.64), (3.65):

eð0Þx xð Þ ¼ 1þ 1þ 16pgqvþ xð Þ
eð1Þx xð Þ ¼ 0
eð2Þx xð Þ ¼ 8pgqy21 v� xð Þ � vþ xð Þð Þ
/ð0Þ
x xð Þ ¼ 0

/ð1Þ
x xð Þ ¼ � c

x þ 8p xgqy21
c v� xð Þ

8>>>>>><
>>>>>>:

ð4:24Þ

In this section the model will be validated by the comparison with the results of
the rigorous numerical calculations.

The multipole expansion leads to a coupling between dielectric and magnetic
responses that would be completely decoupled in a purely dipole interaction regime.
This coupling can be interpreted as follows. In our model the interaction of the
incoming plane wave with matter is determined only by the electric field (interaction
with the magnetic field is negligible). This interaction with the electric field can be
expressed in terms of electric and magnetic multipole responses that consequently
determine the dependence of all quantities on the electric field. The excitation of
coupled-charge oscillations leads to a magnetic response that can be described by an
effective magnetic permeability, which is again a consequence of the interaction with
the electric (not the magnetic) field. It should be emphasized again that the physical
picture of the magnetic response differs basically from that taking place in solid state
physics. The magnetic response in the latter case is caused by a magnetic field which
induces or aligns existing magnetic moments of atoms or molecules (the
free-electron magnetism effect again is caused by interaction with the magnetic
components of the field). In the case of MMs the electric field excites localized or
surface (like in case of fish-net structure) plasmon-polaritons which contribute to
both electric and magnetic responses, while the microscopic magnetic component
does not participate in the light-matter interaction.

The introduction of effective parameters might look artificial because the electric
as well as the magnetic response are caused by an interaction of carriers confined in
the nanostructure with the electric field [8, 9], and are mutually related to each
other. However, the decoupling of these two responses, e.g., by introducing per-
mittivity and permeability, might be necessary, for example, for comparing them
with numerically determined electric and magnetic properties in terms of e and l.

4.4 Validation of the Model

In this section, a quantitative comparison of results obtained by the outlined ana-
lytical approach and rigorous numerical calculations is performed. First it is nec-
essary to summarize that the wave vector (4.22) depends on frequency x, on the

4.3 Dispersion Relations and Effective Parameters for Metamaterials… 99



product of the carrier density g with the charge q, on the geometrical parameter y1,
on the two quantities vþ ðxÞ and v�ðxÞ (which are in turn functions of the
eigenfrequency x0 on the damping constant c, and on the coupling constant r of the
carrier oscillations. In order to determine rigorously the dispersion relation of the
geometry shown in Fig. 4.2 the Fourier modal method [10] has been used. To
describe the propagation of electromagnetic waves in 3D bulk media (see Fig. 4.2b)
the calculation has been examined with periodic boundary conditions in all three
space dimensions. The periods used in the x, y, and z directions are Kx ¼ 600 nm,
Ky ¼ 500 nm, and Kz ¼ 150 nm, respectively. The double wires are formed from
gold with the sizes shown in Fig. 4.2), and are separated by a thin glass layer with
n = 1.44. The corresponding effective material parameters of the same geometry
have been obtained by FMM calculations for one layer (see Fig. 4.2c).

The effective permeability and permittivity are calculated from the complex
reflected and transmitted amplitudes which are used in inverted expressions for the
reflection and transmission of light at a homogeneous slab [11]. First the dispersion
relation of the 3D infinite MM was calculated numerically and the analytical ver-
sion was fitted to it (Fig. 4.3).

The comparison shows very good agreement in the small-frequency domain,
while for larger frequencies the analytical dispersion relation differs from the
numerical one. This can be explained by the violation of the sub-wavelength cri-
terion for larger frequencies. Since no numerical data for the corresponding
effective parameters are available due to the absence of boundaries, a finite
geometry has been simulated. Therefore Fig. 4.4 shows the effective refractive
index that corresponds to the dispersion relation of the slab arrangement as well as
the retrieved effective parameters (see Fig. 4.4d, g). The second column contains
the fitted effective refractive index (Fig. 4.4b) and the following effective param-
eters (see Fig. 4.4e, h). Since only the dispersion relation in terms of the refractive
index has been fitted, the coincidence of the effective parameters is significant.
Another remarkable property of the analytically determined effective parameters is
the vanishing of the anti-resonances. This feature appears in Fig. 4.4g in the

Fig. 4.2 a Geometry of the simulated double wire meta-atom is shown. b Three-dimensional (3D)
bulk MM alignment to calculate the dispersion relation of a bulk MM and c the slab arrangement
which allows additionally the calculation of effective parameters [6]
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effective permeability exactly at the resonance position of the effective permittivity.
The same anti-resonance appears in the effective permittivity at the resonance
position of the effective permeability but it is much weaker and cannot be observed
in Fig. 4.4d. This discrepancy reflects the described in Chap. 2 unambiguity in “C”
representation, where the electric and magnetic responses can be redistributed; the
math behind this is given by SFT. The last column in Fig. 4.4 shows the effective
parameters that are a direct result of the fit of the dispersion relation of the bulk
MM, presented in Fig. 4.3. It can be seen that the resonance positions as well as
their absolute values differ from the slab parameters [12]. This can be explained by
the coupling of neighboring MM layers, which leads to slightly different effective
material parameters from those for a decoupled MM, e.g., a MM slab. In the
following we describe the fitting procedure in detail. First, the locations of both
resonances and their bandwidths were fitted. The resonance positions in the ana-
lytical model have been tuned by selecting the eigenfrequency x0 in between the
two resonance frequencies of the numerical dispersion relation. We notice that the
eigenfrequency x0 corresponds to the localized plasmon-polariton frequency of an
isolated wire.

The eigen frequency of such a wire can be estimated with an ellipsoidal particle
in the quasi-static regime and beyond [13] with the same dimensions shown in
Fig. 4.2a. The calculated value coincides approximately with the eigen frequency
used for the fit (see the value in parentheses in Table 4.1). To realize the presence of
two resonances, the coupling constant r was increased until the two resonance
positions coincide with the numerical ones. The resonance width, which represents
the damping, has been retrieved from the full width at half maximum value of the
imaginary part of the peak in the dispersion relation for the 3D geometry and the

refractive index for the 2D arrangement. The unknown term 16pgq2

m this term appears
in the expressions for kðxÞ, eðxÞ, and lðxÞ represents the only remaining free
fitting parameter. The values found for both scenarios are listed in Table 4.1.
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Fig. 4.3 a Dispersion relation obtained from the numerical calculations in an infinite 3D MM as
shown in Fig. 4.2b and the corresponding fitted analytical version (b) [6]
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Fig. 4.4 Retrieved effective index (a), effective permittivity (d), and effective permeability
(g) from FMM simulations of a 2D single-layer MM. Based on the coefficients from fitting the
dispersion relation that is equivalent to the refractive index in the 2D case, the resulting effective
index (b), the effective permittivity (e), and the effective permeability (h) resulting from the
analytical model are shown. c, f, and i correspond to the analytically determined effective
parameters for the 3D infinite bulk MM. Therefore the dispersion relation (Fig. 4.3) has been fitted
by the analytical one [6]

Table 4.1 The fitting parameters that have been applied to match the dispersion relation for the
slab as well as for the bulk arrangement

Fitting parameter Slab MM Bulk MM

x0 ðrad=sÞ 1.62 � 1015 (1.85 � 1015) 1.39 � 1015 (1.85 � 1015)

c ðrad=sÞ 9.42 � 1030 9.42 � 1030

r ðrad=sÞ2 1.60 � 1030 0.60 � 1030

16pgq2

m ðAsV=m2KgÞ 5.00 � 1030 2.20 � 1030

Together with (4.23b) the effective parameters can be calculated as shown in Fig. 4.4.
Additionally, the eigen frequencies of the single wire calculated separately in the quasistatic
regime are listed in parentheses
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4.5 Conclusion

The multipole approach to the homogenization of the MM has been formulated in
case of classical charge dynamics of the MAs, and the dispersion relation has been
elaborated. While the dispersion relation can be fitted, the permittivity and the
permeability are not direct outcomes of the fitting procedure. Having the dispersion
relation (and respective constants) fitted, the assigned effective parameters can be
calculated from (4.23b) without any further adaptation. The comparison of these
functions (refractive index, permittivity, and permeability) validates the procedure
introduced for the modeling of effective parameters as well as the application of the
multipole expansion (see Fig. 4.4). Nevertheless, one can conclude that for such a
rather primitive model the analytical results are in quite good agreement with the
rigorous simulations, especially for small frequencies (long wavelengths) where the
approach based on the averaged Maxwell’s equations is supposedly more
appropriate.
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Chapter 5
Applications of the “Classical”
Metamaterial Model—Optical Activity
and Electromagnetically Induced
Transparency

5.1 Review of Optical Activity with Metamaterials

In the initial stage of research on MMs emphasis was put on exploring materials
that potentially lead to a biaxial anisotropic (linear dichroism) effective material
response [1–6]. Recently research was also extended toward the exploration of
meta-atoms that affect off-diagonal elements of the effective material tensors
(elliptical dichroism). It expands the number of observable optical phenomena,
leading to, e.g., optical activity [7–11] bidirectional and asymmetric transmission
[12–14] or chirality-induced negative refraction [15–17]. In general, investigating
the geometry of the MM (the meta-atoms geometry and their arrangement) allows
us to determine the form of the effective material tensors in the quasistatic limit as
extensively discussed in [8]. From such considerations it is possible to conclude on
the symmetry of the plasmonic eigenmodes sustained by the MAs and on the
polarization of the eigenmodes allowed to propagate in the effective medium [12].
But in order to determine the actual frequency dependence of the tensor elements,
more extended models are needed which start in their description of the MA
properties from scratch [14]. Such models are required to be universal, simple and
assumption free to the largest possible extent. Here, an approach which meets these
requirements is outlined. It is based on developed in previous chapters conceptually
decomposing the complex MAs into a set of coupled plasmonic entities that sustain
the excitation of dipolar resonances [18]. The knowledge of the plasmonic prop-
erties of these dipoles and their coupling suffices to derive the material response and
the symmetry of the eigenmodes. This, in turn, permits to predict the observable
quantities in the far-field, such as the polarization and frequency-dependent
reflected and transmitted complex amplitudes. Since the major focus is devoted to
investigate structural modifications on planar MAs the here considerations will be
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restricted to normal incidence. In principle, the introduced formalism can be sim-
ilarly extended to investigate different illumination scenarios. The most appealing
aspect of the model is that once the plasmonic entities and their coupling strengths
are characterized, far-field properties remain predictable by the model even if
substantial modifications of the MA geometry have been made. Even a modification
that leads to a different symmetry of the material tensor does not prevent a quan-
titative description of the dispersive behavior of the tensor elements. To become
specific, the investigations start with an optical inactive, biaxial anisotropic MM,
namely, the split-ring resonator (SRR). From the observable far-field quantities the
properties of the dipolar oscillators will be derived. The properties govern the
plasmonic response of the three wires forming the SRR, namely, the individual
eigenfrequencies, oscillator strengths and damping constants as well as their mutual
coupling strengths. By relying on these quantities, the effective properties of MMs
consisting of modified MAs with respect to the initial SRR for normal incidence
will be determined. An attention will be focused on two modifications that evoke
elliptical dichroism enabling asymmetric transmission for circular polarized light, as
reported in structures with comparable symmetry [14]. With this model the effective
properties of these MMs are predicted. The optical coefficients will be then com-
puted for a slab made of these MMs and compare it to rigorous simulations.
Excellent agreement between the introduced model and rigorous calculations for the
optical coefficients is observed throughout the work. Therefore, the proposed
method can be used for the parameter retrieval without resorting to rigorous sim-
ulations. And since it is based on simple analytical calculations the approach
potentially allows a large variety of meta-atom modifications and to systematically
tailor its effective properties. Hence, the approach provides a powerful and versatile
tool for a systematic analysis of achievable material properties by varying only a
few constituents that may couple in some well-defined ways. Furthermore, it will
also be shown that such a parametrical treatment provides further insight into MM
properties. Specifically, it is shown that it is possible to directly infer that the
model’s predictions are valid in terms of the Casimir-Onsager relations [19, 20] the
requirement for time reversal and reciprocity in linear media [21]. Thus, the main
aspects of the chapter can be summarized as follows. At first, the localized carrier
dynamics occurring in MAs may be properly described by a set of coupled oscil-
lators, representing the decomposition of the MA in nanowire pieces. Second, the
dynamics of these oscillators, determined by the shape of the nanowires and their
coupling, result in electric dipole polarizabilities that permit the calculation of the
effective permittivity tensor. The main advantage of this simple approach is that
modifications of a MA, for which the oscillator dynamics and parameters have been
found, leave the effective permittivity tensors predictable. Hence, the far-field
reflectance and transmittance can be calculated. It will be shown that this holds also
for modifications changing the character of the eigenstates from linear to non-linear
polarized. Moreover, the approach can be useful to determine the effective per-
mittivity tensor for MMs whose eigenstates are no longer linear, but elliptically
polarized, by intensity measurements of linearly polarized light only.
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5.2 Example of Calculation Procedure for SRR
Metaatoms

To reveal the versatile character of this approach the consideration will be directly
started by conceptually replacing the planar SRR geometry, shown in Fig. 5.1b, by
a set of coupled oscillators. Each of the oscillators introduced here represents a
MAs piece, i.e., a straight nanowire that is coupled to its electrically conductive
neighbors. The oscillators accounting for the isolated nanowire are associated with
the excitation of carriers representing the free-electron gas of the metal. Hereby, the
carrier dynamics is solely influenced by the external electromagnetic field,
including contributions from adjacent nanowires.

The dynamics becomes resonant for the eigenfrequency of the localized plasmon
polariton resonance of the individual nanowire. This localized resonance described
by the individual oscillator corresponds to the fundamental electric dipole mode
since the dimensions of the nanowires forming the MA investigated here are small
compared with the wavelength. It will be shown later that the carrier oscillations of
MAs assembled from several coupled wires still correspond to electric dipole
polarizabilities. This holds as long as the wires are assembled in-plane. For
out-of-plane structures higher order multipoles come generally into play [18, 22].
Here, the spatial coordinate represents the elongation of a negatively charged carrier
density driven by an external electromagnetic field, which is the usual assumption
in plasmonics [23]. It will be shown below that this assumption is sufficient to
entirely predict the optical response. The equations for the coupled oscillators are:
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Fig. 5.1 a The original SRR structure (left), the first modification, namely, the L (center) and the
second modification, the S structure (right); b the SRR together with the carrier oscillators, marked
by black dots, which are used to phenomenologically replace the SRR [50]
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where it was assumed nearest-neighbor coupling between adjacent, i.e., conduc-
tively coupled dipolar oscillators. In passing it was mentioned that in general also
capacitive, inductive or in general free-space coupling appears, e.g., between the
facing SRR wires. This coupling compared with the conductive coupling is much
smaller for the present configuration. In general this free-space coupling could be
easily taken into account by introducing yet another coupling constant between the
coupled oscillators. The oscillators are driven by the electric field component of an
external illuminating field propagating in y direction (normal incidence is assumed
throughout the entire consideration). Excitation of the oscillators by magnetic field
components can be safely neglected [11, 18, 21]. In (5.1) ci is the damping
accounting for radiative and non radiative losses, x0i the eigenfrequency, rij the
coupling constant and qi is the charge for the three oscillators ði; jÞ 2 ð1; 2; 3Þ,
respectively, similarly to those introduced in [18]. The coordinates ðx1; z2; x3Þ
themselves are understood as the displacement of the negatively charged carriers
representing oscillating currents. Here, the multipole approach is applied to map the
displacement onto electric dipole moments, since this is consistent with the pre-
vious works [18, 22]. Accounting for the contributions of the electric dipole and
quadrupole as well as the magnetic dipole moment the wave equation is:

@2Ex;zðy;xÞ
@y2

þ x2

c2
Ex;zðy;xÞþ 4pPx;zðy;xÞ
� �þ i4px

c
@Mz;xðy;xÞ

@y
¼ 0 ð5:2Þ

Emphasis is putted on the fact that the higher order multipole moments, leading to
Q, M, appear in general [18], but do not provide any contribution to the far-field in the
present configuration, as mentioned above. Thus, there is no effective magnetic
response (effective permeability tensor components equal to 1) since the incoming
magnetic field and the magnetic dipole moment of the SRR are perpendicular.
A magnetic response as well as bi-anisotropic effects would emerge on the base of
measurable quantities in the far-field if the SRRs would be oriented uprightly or the
angle of incidence would be different [24, 25]. Thus it is sufficient to consider the
dispersion in the electric susceptibility, resulting in a linear effective permittivity tensor
which has dispersive entries only in the x–z components. Please note once again, that
the observation of bi-anisotropic effects and dispersion in the permeability is possible
using such split rings; but it is not possible to probe for the respective entries in the
constitutive relations at normal incidence relative to the SRR plane as done here.
Therefore in the constitutive tensors these coefficients are deliberately set to zero [26].
This will hold for all planar configurationswith an illuminating field invariant in the x–
z plane, hence no spatial dispersion occurs which would result in an artificial magnetic
response. Substituting the displacements (5.1) into the definition of the dielectric
polarization [27] one can introduce the effective susceptibility tensor vðxÞ:

Pi ~r; tð Þ ¼ g
XN
l¼1

qlrl; i ¼ vij xð ÞEj xð Þ ð5:3Þ
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where g accounts for the carrier density. This effective susceptibility can be easily
calculated. As usual the effective permittivity tensor is defined as:

eij ¼ 1þ 4p vij xð Þ ð5:4Þ

that governs the wave propagation of an incident plane wave in an effective medium
composed of SRR meta-atoms. Next the possible eigenmodes of (5.1) are consid-
ered for the two polarization directions (x or z). It suffices to investigate these two
polarizations as long as the system under consideration is linear. In order to describe
a SRR with two identical side arms one can set x01 ¼ x02 ¼ x0x, c1 ¼ c3 � cx,
r21 ¼ r23 � r, and q1 ¼ q3 ¼ �q. For the oscillator associated with the SRR
base having a different geometry it is assumed x02 ¼ x0z, c2 � cz, q2 ¼ �q. It has
to be noted that the latter distinction could have been dropped if the geometry of all
constituents of the SRR would have been the same. For the reasons obvious from
the consideration below it is refrained from doing so. For a polarization of the
incoming plane wave parallel to the x-axis one can solve (5.1) and obtain the
following displacements in Fourier domain:

x1 xð Þ ¼ x3 xð Þ ¼ � qx
m

1
Ax xð ÞEx y; xð Þ

z2 xð Þ ¼ 0
ð5:5Þ

where AxðxÞ ¼ x2
0x � x2 � ixcx has been introduced. For the polarization in z di-

rection one can obtain:

x1 xð Þ ¼ �x3 xð Þ ¼ � qx
m

r
Ax xð ÞAz xð Þ � 2r2

Ez y; xð Þ

z2 xð Þ ¼ � qz
m

Ax xð Þ
Ax xð ÞAz xð Þ � 2r2

Ez y; xð Þ
ð5:6Þ

Considering the eigen modes for x polarization, it is observed that two parallel
dipoles (x1 = x3) are induced, while due to symmetry constraints no dipole is
induced in y direction (z2 = 0), see Fig. 5.2c. By contrast, besides a dipole in
z direction the z-polarized illumination induces oscillating dipoles in x direction
in both arms. But due to the anti-symmetric oscillation x3 = −x1 (5.6), the dipoles
in the SRR arms (Fig. 5.1b) do not radiate into the far-field because they oscillate
out-of-phase and interfere destructively. Hence, no cross-polarization is observed
and the far-field polarization equals that of the illumination. Later it will be
proven that any radiation emerging from cross-polarized dipole moments will
result in elliptical dichroism, as expected. By substituting (5.5) and (5.6) in (5.3)
one gets the susceptibility tensor for the pertinent SRR configuration:
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Fig. 5.2 The rigorously calculated (FMM) far-field transmission/reflection spectra compared with
those obtained by the coupled dipole model (DM) for the two indicated polarization directions
[a x polarization and b z polarization]. The stationary carrier elongation (normalized imaginary
part of x1,3 and z2) for the two corresponding polarizations [(c) and (d)], e and f are the exactly
retrieved parameters compared to calculations performed with the model [22]
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with the polarization Pið~r; tÞ ¼ �gðqxðx1 þ x2Þ; 0; qzz2 Þ, according to (5.4).
As expected, the susceptibility tensor is diagonal. Hence, the eigenmodes of

the effectively homogenous medium are linearly polarized and orthogonal. Due to
the polarization dependent carrier dynamics the SRR shows a linear dichroitic
behavior. Hence, our model correctly predicts the linear polarization eigenstates
as required by the mirror symmetry with respect to the x–y plane. The only
unknown parameters are those describing the oscillators and their coupling
strengths. They can be determined by matching the optical coefficients of an
effective medium whose permittivity is described by (5.7) to the spectra obtained
by rigorous simulations or far-field measurements of the structure. In order to find
the oscillator parameters, numerical Fourier modal method (FMM) calculations
[28] of aperiodic array of gold SRR’s1 have been performed similar to those
reported in [2]. These numerical far-field observables (reflected and transmitted
intensities) were fitted by using the effective permittivity tensor (5.4) for both
polarization directions in a conventional transfer matrix formalism that computes
reflection and transmission from a slab of equal thickness [30]. Results are shown
in Fig. 5.2a, b. Once the unknown parameters have been found the frequency
dependent stationary elongations of the oscillators can be determined as shown in
Fig. 5.2c, d. They can be used to identify the carrier oscillations of the different
plasmonic eigenmodes. These carrier oscillations are shown on top of Fig. 5.2
and their horizontal position relates to the respective resonance frequency. The
observed eigenmodes are documented in literature [26]. Figure 5.2e, f show the
rigorously retrieved effective material properties together with the ones of the
model.

Excellent agreement is observed. The rigorous results were obtained by applying
a common parameter retrieval based on an inversion of the matrix formalism to
calculate the effective parameters on the basis of complex reflected and transmitted
amplitudes for a certain slab thickness. It has to be underlined that the unknown
oscillator parameters can be obtained by comparing the far-field intensity only.

1The period in x and y direction is 0.4 µm, the SRR arm length 0.2 µm, the base width 0.08 µm,
the arm width 0.04 µm, and the metal film thickness 0.025 µm. Gold material parameters were
taken from literature [29]. As a substrate index we used nsub = 1.5 and for the ambient material
namb = 1.
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The derived effective material parameters are in excellent agreement with the rig-
orous results, but they were derived without the necessity of knowing the
complex-valued fields. This will be advantageous for MAs with nonlinear polarized
eigenstates in the following sections where the experimental determination of these
parameters is in general complicated (e.g., phase resolved measurements).

5.3 Results for L-Type of Metaatoms

As outlined in the introduction low-symmetry MAs are investigated in order to
reveal new optical phenomena such as asymmetric transmission. It will be
therefore extended the previous considerations toward MAs exhibiting elliptical
dichroism by rearranging the SRR constituents. In the following the consideration
will be relied on the oscillator parameters obtained by the fitting procedure above.
Using these parameters in conjunction with the analytical expressions for the
rearranged constituents as derived below, the optical response of the modified
meta-atoms can be predicted. The first investigated structure is the L-MA [31,
32]. In this geometry one of the SRR arms is omitted in order to prevent the
cancellation of the far-field that originated from the antiparallel dipole moments.
Hence, it is expected to obtain polarization rotation. To get specific in (5.1) one
horizontal oscillating dipole, e.g., dipole “3,” has to be dropped. Hence, one
obtains for x polarization:
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and for z polarization:
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Ez y; xð Þ

zz2 xð Þ ¼ � qz
m

Ax xð Þ
Ax xð ÞAz xð Þ � r2

Ez y; xð Þ
ð5:9Þ

From the resulting polarization (5.3):

Pj y; tð Þ ¼ �g
qxx

j
1

0
qzz

j
2

0
@

1
A; j 2 x; z½ � ð5:10Þ

the susceptibility reads as:
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vij xð Þ ¼
vxx xð Þ 0 vxz xð Þ

0 0 0

vzx xð Þ 0 vzz xð Þ

0
B@

1
CA

vxx xð Þ ¼ q2xg
m

Az xð Þ
Ax xð ÞAz xð Þ � r2

vzz xð Þ ¼ q2zg
m

Ax xð Þ
Ax xð ÞAz xð Þ � r2

vxz xð Þ ¼ vzx xð Þ ¼ qxqzg
m

r
Ax xð ÞAz xð Þ � r2

ð5:11Þ

The most significant change compared to the SRR is the appearance of
off-diagonal elements in the susceptibility tensor vijðxÞ which is, however, sym-
metric leading also to eijðxÞ ¼ ejiðxÞ.

This symmetry relation is important because it is required for time reversal, known
as the Onsager-Casimir principle [19, 20]. As expected the tensor of the effective
permittivity has the same form as that for planar optical active media [7, 14] resulting
in asymmetric transmission due to elliptical dichroism. Furthermore one can mention
that for all considerations performed here lossy meta-atoms, i.e., effective permit-
tivity tensor entries that are complex valued, are considered. Note that the optical
response would change dramatically if both arms would be identical. In this case the
diagonal elements viiðxÞ are identical too and the tensor can be diagonalized by a
rotation of p=4. So the polarization eigenstates would be linear and the effective
mediumwould be linearly dichroitic. This is clear since the meta-atomwould have an
additional mirror symmetry with respect to the plane defined by the surface normal
and the line x = z, see [33]. Another difference while comparing the L to the SRR
meta-atom is that the splitting r between both resonances is reduced (by a factor offfiffiffi
2

p
), which follows from dropping one of the SRR arms. In order to check whether

this simple description is valid and to reveal the relation between the SRR and the
L-structure eigen modes, numerical FMM simulations has been performed for the
L-meta-atom and compared the results to the model in Fig. 5.3. Since we deal now
with more complex effective media where the full tensorial nature of the permittivity
tensor has to be taken into account the standard transfer matrix algorithm cannot be
applied. Hence, it is challenging to determine the scattering coefficients analytically
[34] or even to invert them to retrieve effective parameters directly.

Therefore an adapted Fourier modal method was used to determine the transmitted
and reflected intensities [35]. In a first approximation the parameters determined for
the SRR were used. Based on these parameters vijðxÞwas calculated and the far-field
intensities as shown in Fig. 5.3a, b for the L-structure. The associated eigenmodes for
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the carriers are shown in Fig. 5.3c, d. The curves for both the co-polarized Fig. 5.3a,
b and the cross-polarized intensities Fig. 5.3e, f are in good qualitative agreement for
the rigorous FMM results (dotted line) and the model (dashed line) based on the
previously derived SRR oscillator parameters. Although there are deviations between

Fig. 5.3 The far-field response of the L structure for a x and b z polarization. In addition to the
numerical (FMM, spheres) and the fitted data (DM, solid lines) the predicted spectra incorporating
the SRR parameters (dashed-dotted lines) are plotted. c and d In contrast to the SRR both
eigenmodes can be excited for each polarization direction. The respective numerical cross
polarization contributions (FMM, circles) compared with the model predicted (dashed-dotted
lines) and the fitted (solid lines) values are shown in (e) and (f). Note that figures (e) and (f) are
identical as required for such kind of effective media and are only shown for completeness [22]
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the actual resonance strength, the agreement, e.g., for the resonance positions, is
obvious. Note that the intensities, in particular for the cross-polarized fields, can be
solely predicted by the coefficients obtained from the SRR. There, an almost perfect
agreement is observed. In a second step the oscillator parameters have been adapted
in order to fit the exact calculations (solid lines in Fig. 5.3a, b, e, f providing an
almost perfect coincidence with the numerical values. Note that the fitting is done
only for the co-polarized intensities fromwhich the cross polarized intensities follow.
A last step yields the effective permittivity tensor that is inherently accessible and
already applied in order to fit the spectra in Fig. 5.4. It can be seen that for the two
polarization directions two eigenmodes appear as Lorentz-shaped resonances for the
effective permittivity. They differ in strength, due to the different geometrical
parameters of the L-arms, Fig. 5.4a, b. The off-diagonal elements exzðxÞ are identical
as discussed before, (Fig. 5.3c). Considering especially the second resonance for the
off-diagonal tensor elements near m ¼ 11000 cm�1, we observe a Lorentzian
anti-resonance that might suggest gain within the system due to the negative imag-
inary part. However, the nature of this resonance can be explained by the introduced
formalism as well. Since the permittivity is proportional to the susceptibility (5.4) and
hence also to the carrier displacements (5.11), a negative sign corresponds to a phase
difference of p between both oscillating carrier densities (antiparallel oscillations),
while for the positive Lorentz resonance at around m ¼ 7000 cm�1, both are oscil-
lating in-phase (sketched by the arrows in Fig. 5.3a). Thus, the negative sign in the
imaginary part of the permittivity can by fully explained by means of the mutual
interplay of the coupled oscillators.

5.4 Results for S-Type of Metaatoms

In order to verify the model another modification of the SRR has been investigated;
namely, the S structure [36, 37] Fig. 5.1a. To observe elliptical dichroism with the
same number of coupled entities as for the SRR its mirror symmetry has to be
broken. Therefore one of the SRR arms (e.g., x3) is turned with respect to the SRR

Fig. 5.4 The diagonal effective permittivity tensor elements of the L meta-atom: a exxðxÞ and
b ezzðxÞ. The arrows indicate the current flow, given by direction of the carrier oscillation for the
particular eigen mode. c The off-diagonal elements exzðxÞ comprising a Lorentz resonance around
m ¼ 7000 cm�1 and an anti-Lorentz resonance at m ¼ 11000 cm�1 [22]
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base. This opening of the SRR structure is expected to enable the observation of
two modes for x polarization, since the oscillator in the base z2 can now oscillate
in-phase or out of-phase with the two remaining x-oriented oscillators of the S
structure that are excited by the x-polarized electric field. For z polarization the
situation is similar, but now the two oscillators in the horizontal arms (x1, x3) are
allowed to oscillated in-phase or out-of-phase to the excited oscillator in the base
(z2). Mathematically this modification can be considered by setting r23 ¼ �r12 � r
(5.1), while all other parameters appear similar to the ones applied for the SRR.
With these initial assumptions, which reflect all modifications to the geometry, the
calculations can be repeated in analogy to those for the SRR and the L structure.
Thus, one obtains the elongations for x-polarized excitation:

xx1 xð Þ ¼ xx3 xð Þ ¼ � qx
m

Az xð Þ
Ax xð ÞAz xð Þ � 2r2

Ex y; xð Þ

zz2 xð Þ ¼ � qz
m

2r
Ax xð ÞAz xð Þ � 2r2

Ex y; xð Þ
ð5:12Þ

and for z-polarized excitation:

xz1 xð Þ ¼ xz3 xð Þ ¼ � qx
m

r
Ax xð ÞAz xð Þ � 2r2

Ez y; xð Þ

zz2 xð Þ ¼ � qz
m

Ax xð Þ
Ax xð ÞAz xð Þ � 2r2

Ez y; xð Þ
ð5:13Þ

as well as the respective effective susceptibility tensor:

vij xð Þ ¼
vxx xð Þ 0 vxz xð Þ

0 0 0

vzx xð Þ 0 vzz xð Þ

0
B@

1
CA

vxx xð Þ ¼ q2xg
m

2Az xð Þ
Ax xð ÞAz xð Þ � 2r2

vzz xð Þ ¼ q2zg
m

Ax xð Þ
Ax xð ÞAz xð Þ � 2r2

vxz xð Þ ¼ vzx xð Þ ¼ qxqzg
m

2r
Ax xð ÞAz xð Þ � 2r2

ð5:14Þ

In (5.14) the polarization (5.4) is used, which is found to coincide with that of
the SRR structure, whereas the elongations are different.

With respect to the splitting of the resonances, it is expected the same resonance
positions as for the SRR for z polarization, since 2r appears in the denominator of
the SRR oscillation amplitudes (5.8) for z polarization as well as in all elongations in
(5.12), (5.13). Performing the respective numerical and analytical calculations as
before for the L structure, one can predict, based on the plasmonic eigenmodes, the
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spectral response as well as the effective material properties. The results are shown in
Fig. 5.5. Considering these eigenmodes in Fig. 5.5d, e, one may distinguish two
situations. At first the eigenmode, represented by three dipoles, being in-phase along
the entire structure. The second eigenmode is characterized by two dipoles being
in-phase in the arms and out-of-phase in the base. Both eigenmodes are excited for
x and z polarization, respectively, and will lead to spectral resonances appear in gas
dips and peaks in transmission or reflection, respectively (Fig. 5.5a, b).

The spectral positions of the resonances are in agreement with the expectations
from the SRR structure resonances. As expected, for both the S and the L meta-
atom the in phase eigenmodes appear at smaller wave numbers (larger

Fig. 5.5 The far-field spectra of the S-structure a x polarization and b z polarization obtained by
numerical simulations (circles), predictions based on the SRR structure parameters (dashed-dotted
lines), and adapting the parameters to fit the numerical values (solid lines). The carrier eigenmodes,
i.e., an in line current over the entire structure and antiparallel currents (normalized imaginary part
of x1ðxÞ; z2ðxÞ; x3ðxÞ with respect to the center part of the S-structure are observed for the two
polarization directions d x and e z. The comparison between the cross-polarization contributions
ðTij; RijÞ for the numerical simulations (circles), the predicted lines from the SRR parameters
(dashed-dotted lines) and the fitted parameter spectra (solid lines) for the found parameters
deduced for fitting the co-polarized response ðTij; RijÞ. The effective permittivity tensor (c),
f diagonal and i the off-diagonal components [22]
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wavelengths) compared to the out-of-phase ones. This is completely in agreement
with arguments from plasmon hybridization theory [38]. Again the use of the
oscillator parameters as optimized for the SRR structure (dash-dotted lines in
Fig. 5.5a, b, g, h) reveals the relationship between both structures, since the
numerically (circles) calculated spectra agree with respect to the overall shape and
the resonance positions Fig. 5.5d, e very well with the parametrical predictions
(solid and dashed lines). A subsequent fitting again improves the results toward
almost excellent agreement, which can also be observed for the cross-polarization
observables Fig. 5.5g, h. Considering the tensor components of the effective
permittivity Fig. 5.5c, f, i, one observes a difference between the diagonal entries
due to the geometrical differences in the S-structure center and arms, while the
anti-resonance for the out-of-phase eigenmode is observed in the off-diagonal
elements with the same origin as discussed for the L structure. In passing, it was
mentioned that due to the presence of the substrate the planar meta-atoms forming
the S and L MM are chiral as well. However, chiral effects induced by the
substrate can be neglected as compared to the effects of the anisotropy of our
planar meta-atoms itself [12, 13]. All parameters required for the calculations
presented here for the SRR as well as the two presented modifications are provided
in [22].

5.5 Metamaterial Analogy of Electromagnetically Induced
Transparency

Electromagnetic Induced Transparency is a quantum effect, which appears for example
in 3-level system under appropriate conditions and special requirements for coherence
of the fields involved—see Fig. 5.6, where two transitions 1–3 and 2–3 are supposed to
be dipole allowed, and transition 1–2 is forbidden in dipole approximation.Without the
control external field at the frequency xc the measured transmission spectrum around
the transition resonance 13 is shown in Fig. 5.7 by dotted line.

In case of presence of the second field at frequency x23 the spectrum exhibits an
extra transmission peak at frequency x13. This effect can be explained by

2
ω13

1

3
ω 23

Fig. 5.6 Schematic representation of a three-level scheme. x13 and x23 are the resonant
frequencies of the respective transitions; transitions 1–3 and 2–3 are allowed in dipole
approximation, transition 1–3 is forbidden in dipole approximation
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interference between different transition pathways in a three-level system under
simultaneous action of two fields at frequencies x23 and x13 [39–41]. There are
several classic systems exhibiting similar properties (transmission spectrum
behavior shown in Fig. 5.7), namely coupled microresonators [42], resonators
coupled with waveguides [43, 44], metallic structures [45], and in particular plas-
monic induced transparency effect in MMs, which has been theoretically described
[46] and investigated experimentally [47, 48]. Another one similarity (with Fano
resonances) has been both theoretically predicted and experimentally observed [49].

It has to be mentioned that originally quantum effect of the EIT has not so much
to do physically with its classical analog in MMs. In quantum system the inter-
ference appears in purely quantum description of the polarizability dynamics, and
the respective interference between two fields exhibits itself in two respective terms
in full Hamiltonian, which could really cancel each other under appropriate con-
ditions. In case of the plasmonic structures (for example, in case of the Split Ring
Resonators—see Fig. 5.8) the respective effect can be considered as a just one of
particular representation of the modes of this structure and has, of course, nothing to
do with the quantum mechanical interference effect; in fact, in case of plasmonic
EIT the second field (analog of the field at frequency x23) is not required.
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ω13 ω

Fig. 5.7 Transmission spectrum of a three-level scheme: dotted line—transmission spectrum
without control field at frequency x23 and solid magenta line—transmission spectrum with the
control field at frequency x23

x1

x3

z2 σx

σy

σy

Fig. 5.8 Partially coupled SRR structure which exhibits quasi EIT optical properties
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The set of dynamical equations, describing the optical properties of the structure
in Fig. 5.8 in the case of z-polarization of the external electric field is:

@2x1ðtÞ
@t2

þ cx
@x1ðtÞ
@t

þx2
xx1ðtÞþrzz2ðtÞ ¼ 0

@2z2ðtÞ
@t2

þ cz
@z2ðtÞ
@t

þx2
z z2ðtÞþ rz x1ðtÞ � x3ðtÞð Þ ¼ � q

m
Ez

@2x3ðtÞ
@t2

þ cx
@x3ðtÞ
@t

þx2
xx3ðtÞ � rzz2ðtÞ ¼ 0

8>>>>>><
>>>>>>:

ð5:15Þ

In the frequency domain (5.15) is:

x1ðxÞ x2
x � x2 � ixcx

� �þrxx3ðxÞþ rzz2ðxÞ ¼ 0

z2ðxÞ x2
y � x2 � ixcy

� �
þ rx x1ðxÞ � x3ðxÞð Þ ¼ � q

m
Ez

x2ðxÞ x2
x � x2 � ixcx

� �þrxx1ðxÞ � rzz2ðxÞ ¼ 0

8>><
>>:

ð5:16Þ

The corresponding solution for y dynamics, polarization, and respective per-
mittivity for the MMs consisting of the structures shown in Fig. 5.8 are:

x1ðxÞ ¼ �x3ðxÞ z2ðxÞ ¼ � q
m

Ez xð Þ
Az xð Þþ 2r2z

rx�Ax xð Þ

Pz xð Þ ¼ Ez xð Þþ 4pqz2ðxÞ e xð Þ ¼ 1þ 4p
q2

m
1

Az xð Þþ 2r2z
rx�Ax xð Þ

Az xð Þ ¼ x2
z � x2 � ixcz Ax xð Þ ¼ x2

x � x2 � ixcx

8>>>>>>>>>><
>>>>>>>>>>:

ð5:17Þ

Using expression for the dielectric permittivity, one can calculate transmission
and reflection spectra for the respective homogenized MM; the results are pre-
sented in Fig. 5.9. The results, obtained here based on the developed model have
been compared with ones obtained in [46] from more rigorous calculations of the
same structure—see Fig. 5.9c, d. It is clearly seen, that the developed simple
model, based on the coupled harmonic oscillator dynamics, gives very good
results and can be undoubtedly used for estimations of the optical properties of
MMs.

5.6 Conclusion

In summary, it has been demonstrated that the developed model permits the cal-
culation of effective material parameters for planar MMs consisting of variable
meta-atoms formed by a few straight wire sections of potentially different shape.
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The model takes advantage of resonant electric dipole oscillations in the wires and
their mutual coupling. The pertinent form of the meta-atom determines the actual
coupling features. Although the model is parametric since it requires at least one
rigorous simulation to fix all parameters, the determination of modified MAs can be
easily performed analytically. Here the SRR has been used as a particular reference
meta-atom, whereas two modified meta-atoms, the L and the S meta-atom have
been modeled on the basis of the initial SRR parameters. Thus, this model repre-
sents a kind of building block approach for quite different meta-atoms. Since in
particular the effect of asymmetric transmission for circular polarized light attracted
a lot of research interest recently, an attention here is focused on planar meta-atoms
that are optically active in the same manner due to elliptical dichroism. Within our
model all properties of the effective permittivity tensors for such kind of media are
correctly predicted and the corresponding scattering characteristics are in very good
agreement with the rigorous numerical results. Moreover, some effects which are of
interest now in terms of mimicking quantum mechanical ones can be successfully
described using the developed approach.

Fig. 5.9 Transmission/reflection spectra and respective permittivity of the MM with the MAs
shown in Fig. 5.8. a, b—Calculated data, c, d—data from [46], Fig. 3, presented here for
comparison
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Chapter 6
Applications of the “Classical”
Metamaterial Model—Metamaterials
with Interaction Between Meta-Atoms

6.1 Introduction

The interaction between the small particles (meta-atoms), either dielectric or
metallic, and the propagation of an optical excitation in a regular chain of such
particles has been extensively investigated [1–6]. Interest in the behavior of chains
of metallic nanoparticles was driven mainly by the pursuit of subwavelength
guiding structures for a new generation of the optoelectronic components in the area
of communication and information processing. Nevertheless, theoretical tools for
the modeling of these chains (irrespective to the nature and sizes) remain invariant:
the electromagnetic excitation in the particles is supposed to be described by taking
into account all possible eigenmodes [1, 3] and interactions between all particles in
a chain. There are several approximations which are typically accepted in these
kinds of problems. Firstly, depending on the size of the particles, the model can be
restricted by consideration of dipole moment only (for metallic nanoparticles) [2,
6]; the higher moments can be taken into consideration and similarly in the case of
investigation of magnetic response [5, 7]. Usually, for the problem of only elec-
tromagnetic excitation propagation the chain the dipole approximation is enough
[8], provided distance between particles is not less than about three times their
dimensions. Secondly, the interaction between the particles in a chain can be
considered in the frame of the quasi-static approximation, where no retardation
between particles is retained; otherwise interaction between dipoles contains terms
proportional to the 1=r and 1=r2 in addition to the quasistatic term of 1=r3 (r is the
distance between dipoles). The problem possesses an exact solution for the infinite
chain in the quasistatic limit, while taking into consideration the retardation leads to
known mathematical difficulties and requires continuation into the lower half fre-
quency plane [2]. Consideration of the finite chain is free from these excessive
mathematical problems, but can be treated only numerically; the respective solu-
tions for both longitudinal and transverse modes are presented in [2, 9].
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In this chapter the multipole approach for the homogenization of the MM [10,
11] will be extended in the case of regularly placed interacting MAs in the form of a
double-wire structure. As in the previous chapters, the MM consisting of the
identical layers with the regularly spaced MAs in each is considered; one layer of
the MM (the layers repeat themselves in y direction), is presented in Fig. 6.1.

The interaction between the MAs is assumed to be negligible in the longitudinal
direction (wave propagation direction, perpendicular to the layer surfaces), in other
words, the layers are assumed to be well separated from each other. The effect of
interaction in lateral direction (parallel to the layer surface) and its influence on the
dispersion relation of the plane waves propagating in the MM is the subject of this
chapter.

When there is a coupling between the MAs, the response of the medium is no
longer truly local. As a result, depending upon the configuration of the MA, the
medium responds differently to electromagnetic waves propagating in different
directions. This phenomenon is called spatial dispersion (akin to the phenomenon
of temporal dispersion—where the response of a medium at a given time depends
on the history of its excitation). The direction dependence of the medium response
is not just unique for the spatial dispersion—in the case of anisotropic media this
effect appears as well. The qualitative markers for differentiation of these two
effects have been considered in details in [12, 13] (see also references therein), and
have already been discussed in Sect. 2.3. One of the ways to describe spatial
dispersion is to use a model of a chain of coupled harmonic oscillators. Such a
model is adequate as a first approximation for the interactions between plasmonic
nanoresonators. Eigenmodes of the response are obtained as wave solutions, giving
the oscillations of the plasmonic charges in each nanoresonator (see Fig. 6.2).

A similar approach has been used to study the effect of interaction of the MAs on
the bulk properties of the MM in [14–17] the microwave frequency region. To
better understand the problem, the case of a one dimensional chain of coupled
harmonic oscillators (coupled dipoles) is studied, after which the problem is
extended to the case of coupled MA in the form of double-wires (coupled quad-
rupoles). The results of the analysis for both ensembles are presented side by side to
enable a comparative study of the dispersion characteristics.

yk

xE

zB

Fig. 6.1 Artificial MAs (plasmonic nanoresonators) embedded in a dielectric matrix form the MM
(only one layer is presented). Polarization of the electric and magnetic fields, and direction of the
wave vector are shown. The interaction between MAs takes place in z direction; the possible
interaction in y direction between the MAs (wave propagation direction) is not taken into account
(the interaction between the nanowires in a single MA in y direction is taken into account)
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Knowledge of the dispersion relation is very important; actually, it is the only
relationship that is required to analyze the wave propagation in a media (boundary
condition problems are not included in the discussion here). For example, it is
known that in order to provide a better resolution (in an optical imaging system) the
media has to allow propagation of the lateral components of the wave vector~k with
as high values as possible (as higher as possible kz components in Fig. 6.3 for the
same wavelength). This can be achieved, for example, in a hyperbolic dispersion
media [18]. The analysis performed below provides a tool to analyze whether the
coupling between MAs can enhance the available spatial spectrum of the propa-
gating waves and hence increase resolution of the optical systems, which use the
respective MM.

6.2 Dispersion Relations for Material Eigenwaves

6.2.1 Periodic Chain of Coupled Dipoles

A chain of the periodically positioned dipoles (oriented with the long axis along the
x direction) is considered (see Fig. 6.3). For clarity, only one row is shown in the
figure; it is assumed that rows of dipoles are placed along the y direction. The
treatment of the problem remains the same, and coupling between neighboring rows
are neglected. The arrangement of the dipoles is along the z direction and the period
of spacing is taken to be z0. The effect of coupling with adjacent oscillators is
introduced via a coupling constant r, which is a function of the distance between
the oscillators. Well known solution in form of the transverse spatial modes which
can be sustained in such a medium under the above mentioned conditions can be
straightforwardly obtained.

The dynamic equation for the nth oscillator is:

@2xn
@t2

þ c
@xn
@t

þx2
0xn þ r xnþ 1 þ xn�1ð Þ ¼ q

m
Ex ð6:1Þ

Fig. 6.2 Spatial dispersion viewed as a consequence of a coupling effect in a chain of dipoles.
The problem is equivalent to the study of transverse oscillation dynamics in a chain of the coupled
harmonic oscillators
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The eigenmodes (Ex ¼ 0) can then be obtained by transferring the problem to the
Fourier domain using the ansatz:

xn ¼ A0 exp ikznz0 � ixtð Þ ð6:2Þ

The amplitude of the nth oscillator in terms of the wave vector kz is thus given
by:

xn ¼ A0 exp ikznz0ð Þ ð6:3Þ

Essentially then, the ansatz describes a system of oscillators vibrating at the same
frequency, with k giving the periodicity of the spatial mode. Substitution of this
ansatz into (6.1) gives the dispersion relation:

x2
0 � x2 � ixcþ 2r cos kzz0ð Þ ¼ 0 ð6:4Þ

The solution of this equation is presented in Figs. 6.8 and 6.9 and the respective
discussion is given in Sect. 6.4.

6.2.2 Periodic Chain of Coupled Quadrupoles

The above arguments are now extended to the case of the chain of the coupled
quadrupoles. The two double-wires forming the quadrupoles are assumed to be
oriented with their long axes along the x direction as before, while being separated
by a small distance 2y1 in the y direction. It is further assumed, that the quadrupoles

Fig. 6.3 Geometry of propagation: a the electric field is polarized along the long axis of the
cut-wires, angular incidence gives rise to spatial modes in the ensemble; b the dipoles in an
arbitrary triplet are labeled as n, n + 1 and n − 1. The positional coordinates of the charge clouds
xn within these dipoles are also indexed with these labels
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themselves are periodically spaced along the z direction, with the spatial period z0.
The interaction of a single cut-wire with five of (suggests that there are alternative
choices) its nearest neighbors must be considered (see Fig. 6.4) for both cut-wires
(that is, both xn and x

0
n), as they experience different excitation conditions due to the

retardation of the wave propagating into y direction.
As before, we are looking for the transverse spatial modes which can be sus-

tained in such a medium. The dynamic equations for the respective eigenmodes can
be written as:

@2xn
@t2

þ c
@xn
@t

þx2
0xn þ r xnþ 1 þ xn�1ð Þþ r

0
x
0
nþ 1 þ x

0
n�1

� �
þ r0x

0
n ¼ 0

@2x
0
n

@t2
þ c

@x
0
n

@t
þx2

0x
0
n þ r x

0
nþ 1 þ x

0
n�1

� �
þ r

0
xnþ 1 þ xn�1ð Þþ r0xn ¼ 0

8>>><
>>>:

ð6:5Þ

where xn and x
0
n are the instantaneous coordinates of the plasmonic charge clouds

on the cut-wires; r0, r, and r
0
are the coupling coefficients given by:

r ¼ r0
2y1ð Þ3
z30

; r
0 ¼ r0

2y1ð Þ3

z20 þ 2y1ð Þ2
� �3=2

ð6:6Þ

where 2y1 is the spatial period of the quadrupoles in the direction of the wave
propagation y. The following ansatz is assumed [compare with (6.2)]:

xn ¼ A0 exp ikznz0 � ixtð Þ; x
0
n ¼ A

0
0 exp ikznz0 � ixtð Þ ð6:7Þ

Substituting the ansatz in the dynamic equations, we arrive at:

Fig. 6.4 Nearest neighbor interactions—top view of the one dimensional chain of the
quadrupoles (two double-wires forming one from the three shown quadrupoles are surrounded
by dashed frame). The dashed lines indicate the interactions that have to be taken into account.
Point P indicates the center of the nth quadrupole
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A0 Rþ 2r cos kzz0ð Þð ÞþA
0
0 2r

0
cos kzz0ð Þþ r0

� �
¼ 0

A0 2r
0
cos kzz0ð Þþ r0

� �
þA

0
0 Rþ 2r cos kzz0ð Þð Þ ¼ 0

8><
>: ð6:8Þ

with R ¼ x2
0 � x� icx. For the above system of equations to be consistent, the

determinant must vanish:

Rþ 2r cos kzz0ð Þ 2r
0
cos kzz0ð Þþ r0

2r
0
cos kzz0ð Þþ r0 Rþ 2r cos kzz0ð Þ

����
���� ¼ 0 ð6:9Þ

This gives the dispersion relation equation:

Rþ r0 þ 2 rþ r
0

� �
cos kzz0ð Þ

� �
R� r0 þ 2 r� r

0
� �

cos kzz0ð Þ
� �

¼ 0 ð6:10Þ

which results in two equations, each one giving the bands of frequencies capable of
producing the spatial modes. The equations are:

x2
0 � x2 � ixcþ r0 þ 2 rþ r

0
� �

cos kzz0ð Þ ¼ 0

x2
0 � x2 � ixc� r0 þ 2 r� r

0
� �

cos kzz0ð Þ ¼ 0

8><
>: ð6:11Þ

The solutions of the above equations are presented in Figs. 6.8 and 6.9 and the
respective discussion is given in Sect. 6.4.

6.3 Dispersion Relations for Electromagnetic Waves

6.3.1 Periodic Chain of Coupled Dipoles

To obtain the dispersion relation for the electromagnetic wave propagating in a
media with periodic chains of coupled dipoles, the Helmholtz equation has to be
employed. The electric field solution of the Helmholtz equation is of the form:

Ex ¼ Ex; 0 exp ikyyþ ikznz0 � ixt
� � ð6:12Þ

which is a plane wave polarized along the x axis, with its wave vector in the yz
plane. The propagation vector components along y and z directions are denoted by
ky and kz. In turn, ky and kx can be expressed in their polar forms:

ky ¼ k cos hð Þ
kz ¼ k sin hð Þ ð6:13Þ
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where k is the magnitude of the propagation vector k, and h is the angle of incidence
measured from the normal to the xz plane (i.e. the plane containing the dipoles)—
see Fig. 6.3. The dynamics of the system can then be modeled via (6.1).
Substituting the ansatz for xn and Ex, namely:

Ex ¼ Ex; 0 exp ikyyþ ikznz0 � ixt
� �

xn ¼ A0 exp ikyyþ ikznz0 � ixt
� �

(
ð6:14Þ

and dynamical (6.1) becomes:

x2
0 � x2 � ixcþ 2r cos kz0 sin hð Þð Þ� �

A0 exp ikznz0ð Þ ¼ q
m
Ex; 0 exp ikzzð Þ ð6:15Þ

Considering the field (6.12) at the discrete points:

z ¼ nz0 ð6:16Þ

(6.15) becomes an equation in terms of amplitude A0:

x2
0 � x2 � ixcþ 2r cos kz0 sin hð Þð Þ� �

A0 ¼ q
m
Ex; 0 ð6:17Þ

or:

A0 ¼ q
m

Ex; 0

x2
0 � x2 � ixcþ 2r cos kz0 sin hð Þð Þ� � ð6:18Þ

The polarization of the medium can thus be given by:

Px; 0 ¼ gqA0 ¼ gq2

m
Ex; 0

x2
0 � x2 � ixcþ 2r cos kz0 sin hð Þð Þ� � ð6:19Þ

where g is the concentration of the dipoles.
An effective susceptibility of the medium is defined via the equation:

Px; 0 x; kð Þ ¼ gqv x; kð ÞEx; 0 ð6:20Þ

such that:

v x; kð Þ ¼ q
m

1
x2

0 � x2 � ixcþ 2r cos kz0 sin hð Þð Þ� � ð6:21Þ

The Helmholtz equation for the wave propagation can now be used. For the
present case of dipoles Q ¼ 0, M ¼ 0, and using the plane wave ansatz, the
Helmholtz equation is written as:
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� k2y þ k2z
� �

Ex; 0 þ x2

c2
Ex; 0 þ 4pPx; 0 x; kð Þ� � ¼ 0 ð6:22Þ

Substituting the polar form for the wave vector components (6.13), the disper-
sion relation takes the final form:

k2 ¼ x2

c2
1þ 4p

q2g
m

1
x2

0 � x2 � ixcþ 2r cos kz0 sin hð Þð Þ� �
" #

ð6:23Þ

This transcendental equation for k must be solved numerically. The results of the
numerical solution of (6.23) are presented in Fig. 6.8.

6.3.2 Periodic Chain of Coupled Quadrupoles

The following analysis is carried out using the definitions made in Sect. 6.2 (see
also Fig. 6.4). To derive the dispersion relation for electromagnetic waves propa-
gating in a medium with chains of the coupled quadrupoles, the dynamics of system
(6.5) has to be investigated under the influence of an electromagnetic plane wave.
The dynamic equations can now be written as:

@2xn
@t2

þ c
@xn
@t

þx2
0xn þ r xnþ 1 þ xn�1ð Þþ r

0
x
0
nþ 1 þ x

0
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� �
þ r0x

0
n ¼

qEx

m
exp ikyy1

� �
@2x

0
n

@t2
þ c

@x
0
n
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þx2

0x
0
n þ r x
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nþ 1 þ x

0
n�1

� �
þ r

0
xnþ 1 þ xn�1ð Þþ r0xn ¼

qEx

m
exp �ikyy1

� �
8>><
>>:

ð6:24Þ

where the phase retardations are measured with respect to the center point P (see
Fig. 6.4). Using the same ansatz:

x
0
n ¼ A

0
0 exp ikyyþ ikznz0 � ixt

� �
xn ¼ A0 exp ikyyþ ikznz0 � ixt

� �
(

ð6:25Þ

and taking z ¼ nz0 as before, the dynamic equations are rewritten as:

A0 Rþ 2r cos kzz0ð Þð ÞþA
0
0 2r

0
cos kzz0ð Þþ r0

� �
¼ qEx

m
exp ikyy1

� �
A0 2r

0
cos kzz0ð Þþ r0

� �
þA

0
0 Rþ 2r cos kzz0ð Þð Þ ¼ qEx

m
exp �ikyy1

� �
8><
>: ð6:26Þ

here R ¼ x2
0 � x� icx. Eventually, position coordinates (6.25) are substituted into

the relations for the polarization P, volume averaged quadrupole moment Q, and the
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magnetization M. Equation (6.26) are then solved for A0 and A
0
0. This can be done

by using the Cramer’s method, which gives:

A0 ¼

qEx
m exp ikyy1

� �
2r

0
cos kzz0ð Þþ r0

qEx
m exp �ikyy1

� �
Rþ 2r cos kzz0ð Þ

����
����

Rþ 2r cos kzz0ð Þ 2r
0
cos kzz0ð Þþ r0

2r
0
cos kzz0ð Þþ r0 Rþ 2r cos kzz0ð Þ

����
����

ð6:27Þ

A0 ¼ qEx

mD
Rþ 2r cos kzz0ð Þð Þ exp ikyy1

� �� 2r
0
cos kzz0ð Þþ r0

� �
exp �ikyy1

� �h i
D ¼ Rþ r0 þ 2 rþ r

0
� �

cos kzz0ð Þ
� �

R� r0 þ 2 r� r
0

� �
cos kzz0ð Þ

� �
ð6:28Þ

Similarly:

A
0
0 ¼

qEx
m exp ikyy1

� �
2r

0
cos kzz0ð Þþ r0

qEx
m exp �ikyy1
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Rþ 2r cos kzz0ð Þ

����
����
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0
cos kzz0ð Þþ r0
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cos kzz0ð Þþ r0 Rþ 2r cos kzz0ð Þ

����
����

ð6:29Þ

or:

A
0
0 ¼

qEx

mD
Rþ 2r cos kzz0ð Þð Þ exp �ikyy1

� �� 2r
0
cos kzz0ð Þþ r0

� �
exp ikyy1

� �h i
D ¼ Rþ r0 þ 2 rþ r

0
� �

cos kzz0ð Þ
� �

R� r0 þ 2 r� r
0

� �
cos kzz0ð Þ

� �
ð6:30Þ

For the symmetric mode:

A0 þA
0
0 ¼

qEx; 0

m

2 cos kyy1
� �

Rþ r0 þ 2 rþ r0ð Þ cos kzz0ð Þð Þ ð6:31Þ

and for the anti-symmetric mode:

A0 � A
0
0 ¼

qEx; 0

m

2i sin kyy1
� �

R� r0 þ 2 r� r0ð Þ cos kzz0ð Þð Þ ð6:32Þ

If the effective susceptibility is defined as:

v� x; kzð Þ ¼ q
m

1
R� r0 þ 2 r� r0ð Þ cos kzz0ð Þð Þ ð6:33Þ
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then following the multipole approach [10], the averaged multipole moments are:

Px; 0 ¼ 4qgvþ x; kzð Þ cos kyy1
� �

Ex; 0

Qx; 0 ¼ 2iqgy1v� x; kzð Þ sin kyy1
� �

Ex; 0

Mz; 0 ¼ �ixð Þ 2iqgy1v� x; kzð Þ sin kyy1
� �

Ex; 0

8>>><
>>>:

ð6:34Þ

It can be shown that substituting the moments into the Helmholtz equation leads to
the following dispersion relation:

k2y þ k2z ¼
x2

c2
1þ vþ x; kzð Þ cos kyy1

� �þ v� x; kzð Þkyy1 sin kyy1
� �� � ð6:35Þ

Furthermore, inserting the polar form for the wave vector components (6.13), the
dispersion relation takes the final form:

k2 ¼ x2

c2
1þ vþ x; k sin hð Þ cos ky1 cos hð Þþ v� x; k sin hð Þky1 cos h sin ky1 cos hð Þ½ �

ð6:36Þ

with:

v� x; k sin hð Þ ¼ q
m

1
R� r0 þ 2 r� r0ð Þ cos kz0 sin hð Þð Þ ð6:37Þ

Equation (6.37) reveals the directional dependence of the material susceptibility.
The dispersion relation (6.36) represents the basic equation used to study the dis-
persion characteristics of the spatially dispersive MM with lateral interaction
between the constituent MAs. To adhere to the methodology of the previous
analysis [10] (i.e. in the study of isolated MAs without any form of interaction), the
following approximation can be made:

cos kyy1
� � � 1� kyy1

� �2
; sin kyy1

� � � kyy1 ð6:38Þ

and the propagation vector may be rewritten under this approximation as:

k2 ¼ x2

c2
1þAvþ x; k sin hð Þ

1þ x2

c2 Ay
2
1

vþ x; k sin hð Þ
2 � v� x; k sin hð Þ

� �
2
4

3
5 ð6:39Þ

This transcendental equation for k has to be solved numerically. The results of the
numerical solution of (6.39) are presented in Fig. 6.8.
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6.4 Numerical Solution of the Dispersion Relations

In what follows, various methods of analysis of the general dispersion character-
istics are jointly developed for both the dipole and quadrupole systems. The dis-
persion characteristics are presented side by side to facilitate a comparative study of
both systems, where (6.23) and (6.39) form the primary working equations for the
above presented analysis. A modified version of the Regula Falsi method applicable
to complex variables and the commercial software MATLAB was used [19] to
implement the numerical routine in order to solve (6.23) and (6.39).

6.4.1 Verification of the Computer Code

The normalized forms of (6.23) and (6.39) were used. Specifically, (6.23) was
reformulated as:

k2y21 ¼ x2
n

x2
0y

2
1

c2

	 

1þ 4p

q2g
mx2

0

1
1� x2

n � ixn=Qþ 2C cos kz0 sin hð Þð Þ� �
" #

ð6:40Þ

where xn ¼ x=x0; Q ¼ x0=c; C ¼ r=x2
0; zn ¼ z0=ð2y1Þ; 2y1, the cut wire

spacing, was taken as 65 nm. The factor in the numerator q2g=ðmx2
0Þ was taken as

2:20� 1030=4 SI units. The other parameters are: the resonant frequency of a single

Fig. 6.5 Verification of the results obtained with our code and comparison with the ones from
[11]: a the propagation vector, b the effective permittivity, c the effective permeability, d the
refractive index. The results from [11] are graphed with dotted lines. The results of the numerical
code perfectly match the results and are indistinguishable from them
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independent resonator is x0 ¼ 1:39� 1015 rad=s, the damping coefficient is
c ¼ 9:42� 1013 rad=s. The values taken here are the same as in [11], where these
parameters were obtained using the fitting with the rigorous computer simulations.
To ensure a proper functioning of the computer code, the results of (6.40) at
sin hð Þ ¼ 0 were compared with ones presented in [11]. Figure 6.5 shows the wave
vector and the effective material parameters obtained with r ¼ 0:6� 1030 rad=s,
c ¼ 9:42� 1013 rad=s, and zn ¼ 4:65 corresponding to the values used in [11]. The
large distance (zn ¼ 4:65) ensures that we are in the weak coupling regime and the
values obtained match perfectly, confirming the correct functioning of the code.

6.4.2 Results and Discussions

With the correctness of the numerical procedure ensured, the focus is now shifted to
the actual dispersion characteristics. First of all, for the dipole chain the eigenvalue
(6.4) in its normalized form is:

1� x2
n � ixn=Qþ 2C cos kzz0ð Þ ¼ 0 ð6:41Þ

while the quadrupole chain (6.11) after normalization becomes:

1� x2
n � ixn=QþCþ 2C bþ cð Þ cos kzz0ð Þ ¼ 0

1� x2
n � ixn=Q� Cþ 2C b� cð Þ cos kzz0ð Þ ¼ 0

(
ð6:42Þ

The propagation vector kz is treated as the independent variable, and (6.41), (6.42)
are solved for the normalized frequency xn ¼ x

x0
treating the normalized spatial

period u ¼ kzz0 as a free parameter.
The solutions of (6.41), (6.42) are obtained for different lateral coupling

strengths characterized by the normalized lateral distance zn ¼ z0=ð2y1Þ for two
values of the damping constant, c ¼ 0 (see Fig. 6.6) and c ¼ 9:42� 1013 rad=s (see
Fig. 6.7).

The real part gives the eigenfrequencies, while the imaginary part gives the time
decay constant for the particular mode. The values of u are limited to the range 0 to
2p, as the solutions are periodic. A widening of the band of eigenfrequencies is
observed as the spatial period decreases. Further, beyond a certain value for the
periodicity, the medium starts to exhibit a band gap. The imaginary part of the
solution remains independent of the propagation vector until the distance between
the dipoles reaches the critical value and becomes k-dependent around the band stop.

For the quadrupoles, the solutions of the above equations are obtained for the
symmetric xn; symm and anti-symmetric xn; asymm modes: the symmetric modes are
in the higher band of eigenfrequencies, while the anti-symmetric modes are for
frequencies in the lower band. For both types of the modes, there is a band stop
accompanied by a non-zero value for the imaginary part of the solution.
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The dispersion relations for the electromagnetic wave propagating in a media
with the coupled dipoles and quadrupoles (6.23) and (6.39) in their normalized
forms are:

u2 ¼ k2y21 ¼ x2
n

x2y21
c2

	 

1þ 4p

q2g
mx2

0

1
1� x2

n � ixn=Qþ 2C cos kz0 sin hð Þð Þ� �
" #

ð6:43Þ

Fig. 6.6 Solution of the material eigenwave dispersion relation in media with chain of coupled
dipoles and quadrupoles in the absence of material damping (c ¼ 0). The normalized propagation
vector u ¼ kz0 is treated as an independent variable, and the solutions are obtained in terms of the
normalized eigenfrequency xn. The spatial period zn ¼ z0=ð2y1Þ characterizes the coupling
strength. The top row gives the real parts of the solutions, while the bottom row gives the
imaginary part. a, b—Solution for dipole chain medium; c, d—solution for symmetric mode in
quadrupole chain medium; e, f—solution for the anti-symmetric mode in quadrupole chain
medium. The curves clearly indicate the onset of a stop band beyond a certain value of the
coupling strength (lateral periodic spacing)
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u2 ¼ k2y21 ¼
x2y21
c2

1þAvþ x; k sin hð Þ
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5 ð6:44Þ

where:

v� x; k sin hð Þ ¼ q
mx2

0

1
1� x2

n � ixn=Qþ � Cþ 2C b� cð Þ cos kz0 sin hð Þð Þ� �
ð6:45Þ

with: zn ¼ z0=ð2y1Þ; xn ¼ x=x0; b ¼ 1=z3n; c ¼ 1=ð1þ z2nÞ3=2; Q ¼ x0=c. Solution
of dispersion relations (6.43), (6.44) were found numerically for two different

Fig. 6.7 Solution of the material eigenwave dispersion relation in media with chain of coupled
dipoles and quadrupoles, in the presence of material damping (c 6¼ 0). The normalized propagation
vector u ¼ kz0 is treated as an independent variable, and the solutions are obtained in terms of the
normalized eigenfrequency xn. The spatial period zn ¼ z0=ð2y1Þ characterizes the coupling
strength. The top row gives the real parts of the solutions, while the bottom row gives the
imaginary part. a, b—Solution for dipole chain medium; c, d—solution for symmetric mode in
quadrupole chain medium; e, f—solution for the anti-symmetric mode in quadrupole chain
medium. There are no significant changes in the real part of the solutions, but the imaginary parts
are now slightly shifted downwards owing to the presence of the material damping

138 6 Applications of the “Classical” Metamaterial Model …



periodicities zn ¼ 1:8 and zn ¼ 1:2. The reference spacing was taken to be
2y1 ¼ 65 nm. For each of these two periodicities, the dispersion characteristics were
calculated for two values of the damping coefficient c ¼ 9:42� 1013 rad=s and
c ¼ 5� 1013 rad=s. This resulted in overall four sets of data. The results for both
dipoles and quadrupoles are given together in Fig. 6.8, which shows a set of
dispersion curves obtained for different angles of incidence. The difference between
the dispersion curves for dipoles and quadrupoles is in the presence of another set
of spatial modes corresponding to quadrupoles, at a frequency lower than the dipole
resonance frequency (see for e.g., Fig. 6.8c, d). However, the response from the
quadrupoles is much smaller. Also, the response at these lower frequencies com-
pletely disappears for incidence at h ¼ p=2—i.e. when light is propagating along
the z direction. No quadrupolar moments are excited at this angle as both the cut
wires are excited by the same field. The width of the band gap is different in the two
systems, which is caused by the fact that in the case of the quadrupoles each
meta-atom comprises of two double-wires, giving rise to the enhanced absorption
width. It is further observed that the angle of incidence has a clear and pronounced
effect on the position of the symmetric response. Specifically, the resonance peak
shifts towards the blue part of the spectrum as the angle of incidence increases from
0 to p=2, while it is red shifted for the imaginary part (see for e.g., Fig. 6.8g, h).

The curves in Figs. 6.9, 6.10 and 6.11 show the variation of the effective
material parameters (permittivity, permeability and the refractive index) with the
incident angle. The trends as observed for the propagation vector are replicated here
as well. The permeability goes to zero at all wavelengths for an incident angle of
p=2 (Fig. 6.10). Figure 6.11 shows the variation of the effective material parame-
ters with the spatial periodicity. In the curves, the frequency of maximum response,
and the corresponding value are plotted as a function of the normalized spatial

Fig. 6.8 Electromagnetic dispersion curves for the system consisting of the one-dimensional chain
of the coupled dipoles and quadrupoles for two spatial periods. a, b, e and f depict the dispersion
relations for the dipole system, while c, d, g, and h depict the dispersion relations for the quadrupole
system. The first row depicts the real part of the normalized propagation vector kyy1, while the
bottom row depicts the imaginary part. The values were obtained with the incident angle as
parameter (blue—0, green—p=8, cyan—p=4, red—p=2). Note the disappearance of the resonance
associated with the quadrupole and magnetic dipole moments at the incident angle of p=2
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Fig. 6.9 Effective permittivity for the MM with quadrupoles for different angles of incidence—
the curves are obtained for the two periodicities: zn ¼ 1:2 and zn ¼ 1:8. The first row depicts
curves for the real value of the effective permittivity, while the second row gives the imaginary
parts of the effective permittivity. a and c were obtained for zn ¼ 1:2, while b and d were obtained
for zn ¼ 1:8

Fig. 6.10 Effective permeability for the MM with quadrupoles for different angles of incidence.
The curves are obtained for the two periodicities: zn ¼ 1:2 and zn ¼ 1:8. The first row depicts
curves for the real value of the effective permeability, while the second row gives the imaginary
parts of the effective permeability; a and c were obtained for zn ¼ 1:2, while b and d were
obtained for zn ¼ 1:8
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period zn. The angle of incidence is treated as a parameter. Again, the results of this
analysis at a periodicity of zn ¼ 4:6, for h ¼ 0 match perfectly with the results
obtained in [11].

In the first row (Fig. 6.12a–c), the resonant frequencies of the effective param-
eters are plotted as a function of the normalized spatial period zn. The resonant
frequencies for the respective effective parameters asymptotically approach the
values obtained in [11]. This asymptotic tendency indicates that as the spatial period
becomes larger, the near field interactions between the MA become weaker, and
hence the quadrupoles become decoupled as assumed in [11]. It is interesting to
note that the position of the anti-symmetric resonance depends on the spatial period.
In the second row (Fig. 6.12d–f) the values of the imaginary parts of the respective
parameters at resonance are plotted as a function of the spatial period. At zn ¼ 5, the
peak values match those as obtained in [11]. Again these correspondences indicate
the validity of algorithm and assumptions used in this discussion.

The available spatial frequency spectrum, given by a dispersion relation for
particular media, determines the maximum resolution, which can be achieved with
this media. Explanation of this statement can be found in any university textbook;
qualitatively that the richer the available spatial spectrum the higher resolution
could be provided. Hence, roughly speaking, the higher values of the available
k vectors are obtained from (6.23) and (6.39), so that media possessing these
dispersion relations can in principle achieve a higher resolution than is ordinarily

Fig. 6.11 Effective refractive index for the MM with quadrupoles for different angles of incidence
—the curves are obtained for the two periodicities: zn ¼ 1:2 and zn ¼ 1:8. The first row depicts
curves for the real value of the effective index, while the second row gives the imaginary parts of
the effective index; a and c were obtained for zn ¼ 1:2, while b and d were obtained for zn ¼ 1:8
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allowed. The solutions of these equations are given in Fig. 6.8 for both dipoles and
quadrupoles cases. Comparing Fig. 6.8a, b for different coupling strengths reveals
that for the higher coupling (Fig. 6.8a) has the higher maximum available value of
the real part of the k vector in comparison with the case of lower coupling
(Fig. 6.8b). The same relation—higher available k vectors values for the higher
coupling—takes place for the quadrupoles as well, see Fig. 6.8c, d. Nevertheless,
this enhancement of the real parts of the wave vectors does not allow us to conclude
that this effect could lead to the respective resolution enhancement. The problem is
that the increase of the maximum available real parts of the wave vectors is
accompanied by approximately the same percentage of increase of the losses, i.e.
increase of the imaginary parts of the wave vectors, which leads to a suppression of
the higher resolution [20].

6.5 Conclusion

The analytical treatment presented here is focused on the extension of the multipole
model of MM to the case of MM with the significant coupling between neighboring
MA in the lateral direction. The coupling gives rise to a non-local response—that is,
the response is mediated by not only the response of a single MA, but also coupling

Fig. 6.12 Material parameter curves as a function of period of spacing zn —the top row contains
plots of the resonant frequency as a function of the spatial periodicity, while the bottom row
presents plots of the values of the imaginary part of the effective material parameters at the
resonant frequencies as a function of zn : a, d were obtained for the imaginary part of the effective
permittivity, b, e for the imaginary part of the effective permeability, and c, f for the imaginary part
of the refractive index
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of each MA with its immediate neighborhood. In such a case, spatial modes can be
sustained in the MM; excitation the medium at exactly these eigenmodes promises
enhanced interaction with the MM. The above analysis confirms the existence of
such spatial modes, and throws light onto their general characteristics. Two reso-
nances occur—corresponding to the anti-symmetric and symmetric modes of
oscillation of the charges in the MA. The positions of the resonances can be
controlled by changing the spatial periodicity of placement of the MA. In the limit
of large interspacing periods, the values of resonant frequencies obtained here
correspond to the original analysis [11] for non-interacting MA, verifying the
validity of the analysis. The changes in the dispersion relation caused by the lateral
interaction between MAs are not expected to be used for its resolution enhancement
properties due to the fact, that the real part wave vector enhancement is negated by
the increase of losses which suppress the effect. Further investigation of the
interaction between the MAs in the longitudinal direction must be performed in
order to obtain full analysis of the influence of the interaction between the MAs on
the dispersion properties of the MMs.
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Chapter 7
Applications of the “Classical”
Metamaterial Model—Disordered
Metamaterials

7.1 Introduction

In this chapter, the influence of the short-range lateral disorder in the MAs posi-
tioning on the effective parameters of the MMs is investigated using the multipole
approach. Random variation of the near field quasi-static interaction between MAs
in form of double-wires is shown to be the reason for the effective permittivity and
permeability changes. The obtained analytical results are compared with known
experimental data.

The model for transition from the microscopic to macroscopic system of
Maxwell equations, presented here, takes into account all peculiarities of carrier
dynamics through the introduction of multipole moments which are represented as
the functions of the macroscopic electric and magnetic fields [1]. One of the great
advantages of this model is the ability to straightforwardly evaluate the influence of
the charge dynamics of the MAs on the effective properties of the MMs. In fact, the
multipole moments are calculated through the averaged charge dynamics in the
MAs. Any factors influencing the charge dynamics (for example, interaction
between the MAs, extra coupling of the MAs with the other objects etc.) causes a
change in the multipole expressions, which in turn changes the effective parameters.
The interaction between the MAs and hence its influence on the effective permit-
tivity and permeability can be, without difficulty, taken into account in the
framework of the model presented here [2].

A review of the optical signal transport in the chain of interacting particles is
given in Chap. 6. A natural development of the models of the electromagnetic
excitation transport in a chain of particles, but with randomly varying parameters
revealed several interesting peculiarities. The problem of wave propagation through
disordered systems attracts great attention in both quantum and classical physics
[3]. In disordered chains of different dimensions, destructive interference between
scattered waves gives rise to an existence of the localized modes, exponentially
decaying in space—this effect has been originally found in solid state physics and is
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known as Anderson localization [4]. The existence of delocalized modes that can
extend over the sample via multiple resonances and have a transmission close to 1
was found in [5, 6] and experimentally confirmed in [7, 8]. Disorder-induced
change of the guiding properties in a chain of plasmonic nano particles under small
random uncontrollable disorder was considered in [9] and analogy of the Anderson
localization in a chain of such particles was theoretically investigated in [10]. In the
analysis presented here the effect of Anderson localization is not considered;
nevertheless, it is believed, that the developed here analytical tool turns out to be
suitable for the treatment of the similar effect in MMs with different types of
disorder.

The influence of various types of disorder on the effective properties of the MMs
has been thoroughly investigated as well. Light propagation and Anderson local-
ization in superlattices was theoretically considered in [11, 12] using the model of
multilayered system with phenomenological permittivity and permeability (positive
and negative) in each of the layers. The effect of the statistical distribution of the
sizes of the MAs on the increase of losses in the operation frequency band was
considered in [13] using generalized Clausius–Mossotti relation. A significant
influence of a small (10%) deviation of the parameters of the microscopic reso-
nances on the propagation wave in a wide frequency range was found in [14] using
quasistatic expressions for the effective parameters. Averaging of the Lorenz-type
expressions for the effective permittivity and permeability using a phenomeno-
logical probability distribution function showed that passband and negative
refraction are still present under small positional disorder [15]. Furthermore, the
results have been proven experimentally. Interaction in a chain of magnetic parti-
cles and its influence on the effective permeability was investigated in [16]. Using
the introduced concept of “coherent” and “incoherent” MMs, authors of [17]
showed that the influence of disorder on long-range correlated MMs is significantly
more pronounced in comparison with the same effect in short-range ordered MMs.
Random variation of the interaction between MAs was shown to be the main reason
for the disappearance of the long-range correlation and consequently of the “co-
herent” state [17].

In this chapter, attention is primarily devoted to the extension of the multipole
approach to describe in-plane disorder in MMs, which means the randomness in the
position of the MAs within the plane of the substrate—see Fig. 7.1. In [9] it was
shown that the difference in the electromagnetic properties of the inclusions itself is
less important than the disorder in their positions. MMs formed by a
self-organization display exactly this kind of disorder [18–21]. Results of experi-
ments with the 2D MMs exhibiting such in-plane disorder [22] are used as a test of
the model. The most notable discovery is the fact that although disorder has a
deterrent effect on the permittivity, the permeability seems to remain practically
unaffected. A theoretical model for such a class of random MMs should reproduce
these observations.

The qualitative explanation of the influence of the spatial disorder on the
effective parameters follows presently. The positional disorder creates different
conditions for the charged dynamics in the MAs due to the interaction between
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them [23, 24]. This in turn leads to the changes of the averaged dipole, quadrupole,
and magnetic dipole moments of the media and results in changes of the effective
parameters, which are expressed through these averaged multipole moments
[25, 26].

This qualitative hypothesis requires further development of the existing theo-
retical multipole model, in particular the interaction between the MAs [2] has to be
incorporated and adapted to the random character of this interaction. Let us assume
that the charge dynamics in the microscopic multipole moments of the MAs
depends on the distance dk between them (see Fig. 7.2). Following the approach of
[25], it is necessary to average the resulting charge dynamics in the multipole
moments over all possible representations. In other words, the microscopic multi-
pole moments have to be additionally averaged over all possible distances between
the MAs, which mathematically is expressed as an integral over the Probability
Distribution Function PDFðdkÞ, namely:

vmacroðxÞ ¼
Z

vmicro dk;xð ÞPDF dkð Þddk ð7:1Þ

Here vmicroðdk;xÞ is the microscopic multipole moment of the MAs, and
PDFðdkÞ governs the distribution over all possible separation distances dk in a
randomly arranged ensemble of the MAs. In case of regular spatial distribution each
MA is affected by the same fields, the PDFðdkÞ is reduced to a delta function, and
averaging (7.1) returns the microscopic multipole moments.

The quest to obtain such PDFðqkÞ and the effort to incorporate the effect of
disorder into the existing multipole model is discussed in detail now. First, the
probability model used to incorporate positional disorder into the multipole theory
is described. As a proof of principle and in order to create a systematic model, the
approach is then applied to the simple case of randomly arranged dipoles. The
treatment is then extended to the case of the randomly arranged quadrupoles. The
probabilistic approach is applied to the specific case of randomly positioned MAs,
and the obtained results are compared with the experimental observations [22]; the
mathematical procedures used to account for the other forms of disorder are
highlighted.

Fig. 7.1 a Regular and b laterally (along z direction) random positioning of the MAs in a MM.
Plane wave propagation is in y direction, electric field polarization coincides with the x axis and
with the elongation of the nano-wires. Note that only one layer, which the MM consists of, is
shown in the figure [27]
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The main discerning principle of the approach presented here is in the use of the
multipole model: the charge dynamics in MAs is primarily considered and cal-
culated taking into account the interaction between MAs, which is expressed as a
function of distance between them. Finally, averaging over all possible realization
of the MA separation distances gives the expression for the effective parameters.
This chapter is primarily devoted to the elaboration of the model and to the
effective parameters calculation; further applications of the presented approach
(disorder in propagation direction, transition “coherent”-“incoherent” states,
influence of the Anderson localization on the effective parameters etc.) will be
discussed elsewhere. Interaction between MAs is taken into account most simply
by using dipole–dipole near field interaction in the quasi-static limit; extrapolation
of the model on the dynamic case is left for the future work. The interaction
between quadrupoles is treated the same way, which makes the approach suitable
for consideration of the magnetic properties of the MMs. In spite of the excessive
simplification of the model with regard to the interaction, our approach treats the
effective parameters (especially magnetic response) in a much more correct way
then was done before with just the introduction of permeability and/or magnetic
susceptibility. Furthermore, it is believed to provide a suitable platform for ana-
lytical or semi analytical treatment of the problems, appearing in the case of
disordered MMs.

Fig. 7.2 Geometry of the MAs and their respective probability distributions; the spheres show
MAs. The first (top) row shows a regular arrangement of the MAs, where each MA occupies the
center of a slot with the length equal to the mean period. The second row depicts an arrangement of
the MAs exhibiting random uncorrelated positional disorder (denoted by qk), the extent of the
disorder being governed by PDFðqkÞ as shown in the last (down) row. The inter separation dk
between the two subsequent MAs is a function of the random variables qk and qk�1, and the
analytic form of PDFðdkÞ can be obtained by the use of the statistical methods if the analytic form
of PDFðqkÞ is given [27]

148 7 Applications of the “Classical” Metamaterial Model …



7.2 Modeling of Positional Disorder

The problem of the positional disorder modeling can be tackled in several ways.
The most general formulation of the problem requires a Markovian treatment. As an
illustration, the one dimensional equivalent of the problem is considered. Supposing
that the MAs are introduced one by one on a line of a given length, the probability
that a particle will take up a certain position along the line, and hence the proba-
bility of a particular inter separation distance, depends not only on the last particle,
but also on the history and existing configuration. This is the essence of the
Markovian approach. Standard techniques exist for tackling such problems, for-
mulating a rigorous treatment. Nevertheless, due to its complex nature, an alter-
native simpler mathematical treatment is used and discussed in this chapter.

The math treatment put forward in this work is a consequence of the way in which
the MMs were actually produced. In the control experiments masks for random
MMs are manufactured by e-beam lithography methods. The writing algorithms can
be modified so that instead of a periodic grid, a randomized one is generated by the
scanner. The extent of the randomness can be specified and controlled, so that
statistically relevant parameters such as the mean period and the variance can be
assigned to each mask. Translating the above technological approach to mathe-
matics, one assumes that the MAs are initially placed in well-defined positions of
equal separation (see Fig. 7.2) and are subsequently perturbed from their mean
positions. The perturbation is described by PDFðqkÞ. This PDF describes the extent
of the perturbation, and also ensures that the displacement is not beyond a certain
space slot so that two whole MAs cannot exist in a single unit cell. However,
PDFðqkÞ is the positional disorder distribution function, not a PDF for the MA
inter-separation PDFðdkÞ; the latter has to be found based on the assumed PDFðqkÞ.
Thus, it is required to find the inter-separation PDFðdkÞ from a given form of the
positional disorder PDFðqkÞ; PDFðdkÞ can then be used in an averaging procedure
(7.1) to obtain the required material parameters. In this work, inter-separation
PDFðdkÞ is obtained by employing a characteristic function approach. The charac-
teristic function QqðxÞ is by definition a Fourier transform of a given PDFðqkÞ:

Qq;k xð Þ ¼
Z1
�1

PDF qkð Þeixqkdqk ð7:2Þ

where PDFðqkÞ satisfies the normalization condition:

Z1
�1

PDFðqkÞdqk ¼ 1 ð7:3Þ

Alternatively, the characteristic function can be considered as an expectation
value of the function eixt:
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Qq;kðxÞ ¼ eixqk
� ���

PDF qkð Þ ð7:4Þ

The one dimensional equivalent of the problem is formulated as follows.
A periodic arrangement of NMAs on a given length L (see Fig. 7.2) with a periodic
spacing for the slots as given by z0 ¼ L=N and the location of the kth MA is
zk ¼ z0

2 ð2kþ 1Þ. Now, the perturbation of the kth MA from its mean position can be
given using a random function qk, such that:

zk ¼ z0
2

2kþ 1ð Þþ qk; � zk
2
\qk\

zk
2

ð7:5Þ

So, the spacing between the MAs is given by:

Dk ¼ zkþ 1 � zk ¼ z0 þ qkþ 1 � qk
� � ¼ z0 þ dk ð7:6Þ

Random functions qk and qkþ 1 are completely independent from each other. For
the present problem, the random function of interest is:

dk ¼ qkþ 1 � qk ð7:7Þ

The mathematical form of PDFðdkÞ has to be found. The form of the above
probability function can be obtained by using characteristic functions. The char-
acteristic function formed by a sum or difference of two or more PDFs, is nothing
but the product of the characteristic functions of the constituent PDFs. That is, if
one is interested in a probability distribution function of a variable z, given by:

z ¼ y1 þ y2 þ � � � þ yn ð7:8Þ

The characteristic function of z will be given by:

QZðxÞ ¼ Q1ðxÞQ2ðxÞ. . .QNðxÞ ð7:9Þ

where QiðxÞ are their mutually independent characteristic functions QiðxÞ ¼R1
�1 PDFðyiÞeixyidyi. So the form of z can be simply obtained by performing an
inverse Fourier transformation on the product of the characteristic functions.

Defining the characteristic functions for qk and qkþ 1 as:

Qqk ðxÞ ¼
Z1
�1

PDF qkð Þ exp iqkxð Þdqk ð7:10Þ

Q�q;k þ 1ðxÞ ¼ Q�
q;k þ 1ðxÞ ¼

Z1
�1

PDF qkþ 1

� �
exp �iq;kþ 1 xð Þdqkþ 1 ð7:11Þ
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Making use of the above method, the characteristic function QdðxÞ of required
PDFðdkÞ is:

Qd;kðxÞ ¼ Qq;k þ 1ðxÞQ�
q;kðxÞ ð7:12Þ

and required PDFðdkÞ can be obtained by simply using the convolution theorem:

PDFðdkÞ ¼ FT�1 Qqk þ 1ðxÞQ�
qk
ðxÞ

h i

¼
Z1
�1

PDF qkð ÞPDF� dk � qkð Þdqk

¼
Z1
�1

PDF qkð ÞPDF dk � qkð Þdqk

ð7:13Þ

Therefore, the required PDFðdkÞ is the autocorrelation function of the positional
disorder PDFðqkÞ. The integral is taken over the displacement of the MA from its
mean position and limited by the finite values of the slot length. The strength of the
method is the fact that no explicit assumption is made regarding the form of
PDFðqkÞ describing the positional disorder.

The mathematical procedure has to ensure that the perturbation does not become
so large that the MAs overlap each other. In the analysis, the particles are assumed
to be placed on average in the center of the slots of a length equal to the mean
spacing period. The particles can randomly move within their own slot, and the
extent of the displacement from the center of the slot is given by PDFðqkÞ.
A consequence of such a restraint is that PDFðqkÞ is restricted and normalized to a
particular slot. Figure 7.5 shows how the autocorrelation function approaches a
triangular function from its initial Gaussian form, as the position of the particle
within the slot becomes completely random (i.e., PDFðqkÞ takes a rectangular
form). A simple algebraic form of the probability distribution function cannot be
obtained due to this truncation. So the following approach was adopted: the nor-
malized versions of PDFðdkÞ for the inter separation were obtained using numerical
code, and they were subsequently used for numerical integration [as according to
(7.1)] to obtain the relevant effective material parameters.

7.3 Case of Randomly Positioned Dipoles

In this section, using the aforementioned principles, the effect of disorder in a
chain of periodically placed dipoles is investigated. The geometry is given in
Fig. 7.3. The bold arrow shows the direction of propagation of the electromagnetic
wave.
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The system can be mathematically modeled as follows. Considering the coupling
dynamics between two equal adjacent oscillators, one can write the equation
describing their dynamics as:

@2x1
@t2

þ c
@x1
@t

þx2
0x1 þ rx2 ¼ q

m
Ex

@2x2
@t2

þ c
@x2
@t

þx2
0x2 þ rx1 ¼ q

m
Ex

ð7:14Þ

The term on the right side is the same for both oscillators, as the same field
impinges on both of them. By substituting the temporal ansatz xiðtÞ ¼ xiðxÞ
expð�ixtÞ, the system can be easily solved for x1ðxÞ and x2ðxÞ:

R r
r R

� �
x1ðxÞ
x2ðxÞ
� �

¼ q
m

ExðxÞ
ExðxÞ

" #

R ¼ x2
0 � x� icx

8><
>: ð7:15Þ

Thus:

x1ðxÞ ¼ x2ðxÞ ¼ q=m
x2

0�x�icxþ rExðxÞ
r ¼ r zð Þ ¼ r0

z30
z3

8<
: ð7:16Þ

Here r0 and z0 are the coupling constant and the distance between the oscillators,
at which the coupling constant is r0. It is assumed that the interaction between the

Normally incident 
field, with E-field 
polarized along x 
axis

Randomly 
arranged dipole 
ensemble 

Ex

zB

yk

z0 

Fig. 7.3 Geometry of propagation for randomly arranged dipole ensemble [27]
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oscillators is the near field dipole interaction that stipulates the inverse cubic dis-
tance dependence in the second equation in (7.16).

The response of the system can thus be obtained by monitoring the susceptibility
of the medium. The polarization of the system can be written as:

Px z;xð Þ ¼ 2q2g
m

1
x2

0 � x� icxþ r zð ÞExðxÞ ð7:17Þ

so that the effective susceptibility:

vx z;xð Þ ¼ 2q2g
m

1
x2

0 � x� icxþ rðzÞ ð7:18Þ

To incorporate the effect of disorder, following (7.1), the averaged form of the
above susceptibility can be obtained as:

v z0;xð Þh iz¼
Z1
�1

PDF d;Dð Þv z0; d;xð Þdd ð7:19Þ

or:

v z0;xð Þh iz¼
2q2g
m

Z1
�1

PDF d;Dð Þ z0 þ dð Þ3
x2

0 � x� icx
� �

z0 þ dð Þ3 þ r0z30
dd ð7:20Þ

where PDFðd;DÞ is the inter separation PDF and D here quantizes the amount of
disorder presented in the system.

7.4 Case of Randomly Positioned Quadrupoles

The extension of the above model to MMs (i.e. taking into account the magnetic
response) requires that the interaction between the adjacent MAs is taken
into consideration. The system is taken to be similar as the one shown in Fig. 7.3,
but the dipoles are now replaced by quadrupoles—Fig. 7.4. The long axis of the
cut wires is oriented along x axis. The double-wires forming the quadrupoles are
separated along the y direction. The MAs are arranged randomly (in terms of above
described random positioning in the respective slots) along z direction. Assuming
that a plane electromagnetic wave now propagates through the ensemble
along y direction, while its electric vector is polarized along the x direction, the
coupled dynamics of two MAs can be modeled via four coupled oscillator
equations:
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@2x1
@t2 þ c @x1

@t þx2
0x1 þ ax2 þ bx3 þ cx4 ¼ q

m Ex;1 exp iky1ð Þ
@2x2
@t2 þ c @x2

@t þx2
0x2 þ ax1 þ bx3 þ cx4 ¼ q

m Ex;2 exp �iky1ð Þ
@2x3
@t2 þ c @x3

@t þx2
0x3 þ ax4 þ bx1 þ cx2 ¼ q

m Ex;3 exp iky1ð Þ
@2x4
@t2 þ c @x4

@t þx2
0x4 þ ax3 þ bx2 þ cx1 ¼ q

m Ex;4 exp �iky1ð Þ

8>>>><
>>>>:

ð7:21Þ

where:

a ¼ r0; b ¼ r0
2y1
� �3
z3

; c ¼ r0
2y1
� �3

2y1
� �2 þ z2
	 
3=2 ð7:22Þ

r0 is the value of the coupling constant measured for the inter-separation 2y1
(this normalization with 2y1 instead of z0 is chosen in order to use the data from
[26] where numerical values of r0 have been obtained).

The magnitude of the coupling constant varies inversely as the cube of the
distance, and so its value can be obtained for other inter-separations—here z and the

diagonal distance ðð2y1Þ2 þ z2Þ1=2. The exponential phase factors in the right side in
(7.21) take into account the retardation effect. It is clear that a change in the
excitation conditions will affect the form of the right hand side of the above
equations, while a change in the configuration of the MAs can be accounted for by a
change in the form of the coupling coefficients. The procedure of determining the
response of the medium then, remains the same—one seeks to determine effective
susceptibilities (corresponding to the symmetric and anti-symmetric modes of
oscillation), average them over all possible coupling configurations, and then use
the values to ascertain the effective material parameters.

The first step is to find the solution of the above set of equations. They can be
transferred to the Fourier domain by using ansatz xiðtÞ ¼ xiðxÞ expð�ixtÞ, (i = 1,
2, 3, 4), so that the system can be rewritten in a matrix form:

Randomly arranged
quadrupole ensemble

yk

zB

yk

Normally incident 
field, with E-field 
polarized along x 
axis

2y1

z0

Fig. 7.4 Geometry of propagation for randomly arranged quadrupole ensemble [27]
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2
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ExðxÞ exp iky1ð Þ
ExðxÞ exp �iky1ð Þ
ExðxÞ exp iky1ð Þ
ExðxÞ exp �iky1ð Þ

2
66664

3
77775

R ¼ x2
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>>>>>>>:

ð7:23Þ

The modes of oscillation of interest are given by x1ðtÞ � x2ðxÞ. The system can
be solved to obtain the values of x1ðtÞ and x2ðxÞ, and the modes of the system can
be written as:

x1 tð Þþ x2ðxÞ ¼ qEx

m
2 cos ky1ð Þ

x2
0 � x� icxþðaþ bþ cÞ

x1 tð Þ � x2ðxÞ ¼ qEx

m
2 cos ky1ð Þ

x2
0 � x� icx� ða� bþ cÞ

ð7:24Þ

and hence one can define the effective susceptibility:

v� z0; d;xð Þ ¼ qEx

m
2 cos ky1ð Þ

x2
0 � x� icx� ða� bþ cÞ ð7:25Þ

where the z0 and d dependences are due to a, b and c. Due to this form of definition,
the functional forms of the polarization, quadrupolar moment and magnetization
remain the same:

P ¼ 2qgy1

2vþ ðxÞ cos ky1ð Þ
0

0

0
B@

1
CAEx y;xð Þ

Q ¼ qgy1

0 2iv� xð Þ sin ky1ð Þ 0

2iv�ðxÞ sin ky1ð Þ 0 0

0 0 0

0
B@

1
CAEx y;xð Þ

M ¼ qgy1

0

0

2iv�ðxÞ sin ky1ð Þ

0
B@

1
CAEx y;xð Þ
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>>>>>>>>>>>>>>>>:

ð7:26Þ

The effect of disorder can then be taken into account by carrying out the extra
averaging integration (7.1):

v� z0;x;Dð Þ� � ¼ Z1
�1

PDF d;Dð Þv� z0; d;xð Þdd ð7:27Þ
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or, more explicitly:

v� z0;x;Dð Þ� �
¼
Z1
�1

PDF d;Dð Þ 1

x2
0 � x� icx

� �� r0 1� 2y1ð Þ3
z0 þ dð Þ3 þ

2y1ð Þ3
2y1ð Þ2 þ z0 þ dð Þ2

� �3=2
 ! dd

ð7:28Þ

where z0 is the mean period. The limits of the integration indicate that the auto-
correlation procedure for PDFðd;DÞ has been already carried out. This integral can
be solved numerically for a given value of frequency.

With the effective susceptibility as defined above, one may now consider a
planar MM, which is formed by the identical rows of the randomly positioned MAs.
The effect of randomness is taken into account by the averaging procedure, and the
dispersion relation and the effective material parameters can be written in analogy
to [26]. Adhering to the same conditions of geometry and excitation, the following
expressions can be utilized:

k2y ðxÞ ¼
x2

c2
1þA vþ z0;x;Dð Þh i

1þ x2

c2 Ay
2
1

1
2 vþ z0;x;Dð Þh i � v� z0;x;Dð Þh i� �

eeff ¼ 1þA vþ z0;x;Dð Þh i � A
k2y y

2
1

2
1
2

vþ z0;x;Dð Þh i � v� z0;x;Dð Þh i
� �

leff ¼
1

1� x2

c2 Ay
2
1 v� z0;x;Dð Þh i

ð7:29Þ

The above expressions can be easily carried over to a numerical code to obtain
the material parameters of interest. The following section presents the results, and
compares them with the experimental observations.

7.5 Method of Numerical Implementation

For convenience, the integrations and other expressions have been converted to their
normalized versions. The frequencies are normalized with respect to the resonant
frequency x0 of the independent double-wire, while the distances are normalized
with respect to the double-wire spacing 2y1. Specifically, the susceptibilities for the
case of dipoles and quadrupoles are:
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where:

dn ¼ d
2y1

; z0ð Þn¼
z0
2y1

; Dn ¼ D
2y1

; xn ¼ x=x0 ð7:32Þ

PDFðqk;DÞ is assumed to be Gaussian:The results of the analysis for dipoles are

PDF qk;Dð Þ ¼ 1ffiffiffiffiffi
2D

p exp �q2k= 2D2ð Þ� �
; �z0=2\qk\z0=2

PDF qk;Dð Þ ¼ 0; �z0=2\qk; qk [ z0=2

�
ð7:33Þ

The deviation of the dipoles from their mean positions has to be limited within
the interval ½�a0=2; a0=2�; recalculation PDFðqk;DÞ into PDFðdk;DÞ is given by
(7.13).

The integrals cannot be performed analytically and is done using the mathe-
matical software MATLAB. Truncation of the positional PDF was achieved by
coding. To obtain the autocorrelation of the PDF, a standard subroutine was used.
The results of the operations are shown in Fig. 7.5. All the constants used in the

Fig. 7.5 Relationship between the positional disorder function (a) and the inter-separation
probability distribution function (b). As the positional PDF (b) deviates from the Gaussian form
for higher values of disorder (due to restrained excursion), the inter separation PDF approaches a
triangular form [27]
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analysis were taken from [26]. The spacing between the double-wires, 2y1 and the
resonant frequency of an isolated cut-wire were taken to be 65 nm and x0 ¼
1:39� 1015 rad s�1 respectively. The damping coefficient was taken to be
c ¼ 9:42� 1013 rad s�1. The mean periodic spacing ðz0Þn ¼ 1:8 (the mean spacing
between the MAs was taken to be 1.8 times the double-wire spacing 2y1). To verify
the correct functioning of the code, the results for a very small disorder were
compared with the results for a perfectly ordered system (with neighboring MAs
interacting with each other)—see Fig. 7.6.

7.6 Results and Discussion

The results of the analysis for dipoles are presented in Fig. 7.7 and the results of the
analysis for quadrupoles are presented in Figs. 7.8 and 7.9.

The analysis was carried out for two values of the spacing period zn, viz. zn ¼
1:2 (Fig. 7.8) and zn ¼ 1:8 (Fig. 7.9). The positional PDF was taken for the four
different values of the standard deviation D, and consequently the inter separation
PDFðdn;DÞ was obtained using numerical coding in MATLAB. The effective
susceptibilities were calculated by numerical implementation of the integration
(7.30), (7.31) and then the effective material parameters (7.29) were calculated. The
following features are clearly noted:

• For the disordered dipole ensemble, the fall in the permittivity with increasing
disorder is clearly visible (Fig. 7.7e–h). The ImðeÞ curve is symmetric for very
small values of the variance (here, D = 0.01). However, as the disorder
increases the peak shifts towards lower frequencies and the curves broaden and

Fig. 7.6 Verification of the code—typical values from [26] were used in the computer code
written for the calculation of the effective material parameters for MMs with positional disorder
having a very small amount of disorder D = 0.01. The results obtained match with those in [26]—
this is expected as the nature of coupling considered in the present theory should have negligible
influence upon the material parameters for very large spatial periods zn > 3 [27]
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become asymmetric. The reason for these observed effects can be explained as
follows. A disordered system can be thought of to consist of several different
periodic systems. The resonant frequency for each such periodic ensemble
depends inversely on its spatial period. If the response of the disordered system
is approximated by the sum of the responses of its constituent periodic systems,
it becomes evident that the final curve will develop a tail approaching the blue
end of the spectrum. The asymmetry can thus be attributed to an inverse power
relationship between resonance frequency and inter-separation. The broadening
effect is a consequence of particle conservation. On the other hand, the lowest
frequency/largest wavelength of the response is not a function of the periodicity,
but is actually limited by the eigenfrequency of the independent oscillator. In
fact, the resonance frequency approaches the eigenfrequency for a periodic

Fig. 7.7 Effective material parameter curves for dipole ensembles exhibiting positional disorder.
The effective permittivity and permeability curves for disordered dipole ensembles are presented
for different values of disorder. The first column pertains to values obtained for a mean period of
zn = 1.2, while the second column relates to those obtained for a mean period of zn = 1.8. For the
respective periodicities: a, b the positional disorder function; c, d the respective inter-separation
PDFs; e, f scaled real part of the permittivity; g, h scaled imaginary parts of the permittivity.
Clearly, increase in disorder brings about a fall in the maximums of the response of the system [27]
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assembly of dipoles when the spatial period becomes large. Hence, as the dis-
order in the system increases, the curves are broadened, asymmetric and the
peak response shifts towards the eigenfrequency of the independent oscillator.

• In the case of the quadrupole ensemble, a decrease in the value of the electric
permittivity is observed as D is increased. This is in agreement with the
experimental results. However, there is also a decrease in the value of the
magnetic permeability. This decrease is more pronounced for zn ¼ 1:2 in
comparison to zn ¼ 1:8. This is an unexpected result, as the magnetic response
should remain almost constant. The reason for this discrepancy could lie in the
simple form of the probabilistic model chosen to describe the randomness.

• Generally speaking, the final expressions for the permittivity and the perme-
ability were derived under several approximations, associated with (7.1). The
observed discrepancy could also be attributed to these approximations. Above
all, the fundamental limitations of the multipole theory itself could affect the
final results as well. These possibilities should be investigated further.

Fig. 7.8 Dispersion and effective material parameter curves for quadrupole ensemble with
zn = 1.2—a positional disorder function PDF; b inter-separation PDF; c, d real and imaginary part
of k-vector (in normalized units of double-wire separation distance 2y1); e, f real and imaginary
parts of effective permittivity; g, h real and imaginary parts of effective permeability [27]
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In light of the above arguments, it is concluded that as the observed positions of the
resonances and the relative magnitudes of the parameters are within the limits of
approximation, the analysis is valid, and can be used to roughly predict the prop-
erties of MMs with incorporated randomness.

7.7 Other Forms of Disorder

In the preceding analysis, the effect of positional disorder (arising due to aperiod-
icity) on the averaged material parameters was considered. In a random MM other
forms of disorder can also exist. A particular case of interest is positional disorder
along the cut-wire axis—see Fig. 7.10. If this form of positional disorder is taken
into consideration along with the aperiodicity, the model would then be a step
closer to emulate a true self-organized random MM [28]. In the multipole model,
the individual cut-wires are replaced by dipoles. In case the quadrupoles are dis-
arrayed, the coupling between them will also be a function of their relative angular
positioning.

Fig. 7.9 Dispersion and effective material parameter curves for quadrupole ensemble with
zn = 1.8—a positional disorder function; b inter-separation PDF; c, d real and imaginary part of
k-vector (normalized with the double-wire separation distance 2y1), e, f real and imaginary parts of
effective permittivity; g, h real and imaginary parts of effective permeability [27]
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This angular dependence can be introduced into the coupling terms of the
dynamic equations. More specifically, the coupling constants b and c in the dif-
ferential equations will include the angular dependence. All other mathematics
remains the same, the averaging procedure can now be carried out between angles
ð�p=2; p=2Þ. The curves in Figs. 7.11 and 7.12 summarize the results obtained via
the multipole approach.

Normally incident em-
field, with E-field 
polarized along y axis

Quadrupole ensemble 
exhibiting disorder in 
vertical direction

Mean vertical 
position PDF

Fig. 7.10 Disorder along the cut-wire axis direction—the figure shows a one dimensional
disorder arrangement of MAs. The extent of disorder can be quantified in terms of the angle, the
total range of variation being limited to ð�p=2; p=2Þ [27]

Fig. 7.11 a Rectangular and b Gaussian forms of distribution function used for governing the
positional disorder of the MMs along the lateral direction. The positional disorder is expressed in
terms of the relative angle between two neighboring MAs. The effective material parameters of the
ensemble are derived and presented in Fig. 7.12 for three different values of disorder [27]
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Two forms of the distribution function were used in the analysis (Fig. 7.11). The
extent of disorder is correlated to the relative angular position of the dipoles. The
first form of the angular PDF distribution function used was a rectangular function
(see Fig. 7.11a). The second form used was a Gaussian distribution (Fig. 7.12b),
the random variable being the relative angular position. The function is centered
about 0 degrees and the extent of disorder being quantified by the standard devi-
ation D; b and c are multiplied by the term cosðhÞ to incorporate the angular
dependence. Clearly then, when h ¼ p=2, there is no interaction between the
cut-wires.

The Reimannian integration is limited between the values ð�p=2; p=2Þ. The
constants were again taken from the original reference [24], and the mean peri-
odicity was set to zn ¼ 1:8. The results (Figs. 7.11 and 7.13) show that both the
effective permittivity and permeability are clearly affected by the angular disorder.
In a similar fashion, in-plane and out-of-plane skew disorders of MAs can also be
accounted for by the model with appropriate changes to the coupling terms.

Fig. 7.12 Effective material parameters for MMs exhibiting positional disorder along the lateral
direction (y-direction) governed by the rectangular distribution function. The first column gives the
material parameters for a MM ensemble having a mean period zn = 1.2, while the second column
is for MMs having a mean period zn = 1.8 [27]
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7.8 Conclusion

In extending the multipole approach [1] to the case of random MMs, the effect of
spatial distribution of the MAs was taken into account by considering the near field
coupling between neighboring MAs. The effective susceptibility was expressed as a
function of the inter-separation between MAs—the ensemble averaged suscepti-
bility was then obtained as an expectation value, weighted by the probability dis-
tribution function of all possible inter-separations. In the present work, the disorder
was considered only along one direction (in-plane, perpendicular to cut-wire long

Fig. 7.13 Effective material parameters for MMs exhibiting positional disorder along the lateral
direction (y-direction) governed by the Gaussian distribution function (Fig. 7.11). The first column
gives the material parameters for a MM ensemble having a mean period zn = 1.2, while the second
column is for MMs having a mean period zn = 1.8 [27]
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axis), assuming that adjacent rows of MAs do not interact with each other. Results
obtained by the numerical implementation of the equations confirm the experi-
mental findings that increasing disorder has a more pronounced effect on the
effective electrical permittivity than on the effective magnetic permeability. For
smaller periodicities, however, the electrical permittivity and magnetic permeability
are affected equally. This conflicting result may be caused by a coupling of the
quadrupole moments of neighboring MAs. This has not been explicitly considered
in the present version of the model. Also, other factors such as the effect of incident
polarization, or the coupling between adjacent rows have not been considered in the
present theory. The understanding gained from the study of this simple case can
now be used to account for the above specific and more involved cases.
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Chapter 8
Applications of the “Classical”
Metamaterial Model—Nonlinear
Metamaterials: Multipole (Second
Order) and Third Order Nonlinearities

8.1 Introduction

In this chapter, the nonlinear optical response of MMs evoked by second-order
multipoles is analyzed for the split-ring resonator, although the introduced for-
malism can be applied to arbitrary structures. The equations that describe nonlinear
light propagation are derived where special emphasis is put on second-harmonic
generation. This contribution basically aims at stretching versatile and existing
concepts to describe light propagation in nonlinear media toward the realm of
MMs.

The third harmonic generated by a double-layer fishnet MM was investigated
experimentally and theoretically as well. An analytical model based on the non-
linear dynamics of the electrons inside the gold shows excellent agreement with
experimental and numerical results.

The simultaneous consideration of the magnetic dipole and the electric quad-
rupole is required by nature since both occur in the same order of the multipole
expansion. Though this has been extensively discussed in the literature [1–6], the
quadrupole moment is frequently dropped. Besides the linear properties that can be
covered by this expansion the extension of the multipole description lads to the
quadratic nonlinear optical regime. Since the multipole expansion is truncated
beyond second-order terms, the study is focused on quadratic nonlinear effects
associated with these second-order multipoles. We mention that this procedure of
introducing nonlinearity is known from the early works in nonlinear optics [7],
Pershan (1963) and is supported by several papers that observed multipole induced
nonlinear optical effects in various plasmonic nanostructures [8–16].

The formalism developed here is general and can be straightforwardly applied to
any geometry. The SRR was chosen because first experiments on the
second-harmonic (SH) generation (SHG) were already reported in this structure;
although in a configuration amenable for nanofabrication where the induced
magnetic dipole is non-radiating [17, 18].
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In order to predict the second-harmonic generation by purely analytical means,
the undepleted pump approximation (UDPA) was applied and the associated
equations were derived within the multipole model. An excellent agreement with
the numerically derived solutions was observed which justifies the application of
this approximation for further predictions.

8.2 Nonlinear Wave Equations

Our investigation starts with the wave equation incorporating multipoles up to
second order [5]:

@2Exðy;xÞ
@y2

þ x2

c2
Exðy;xÞþ 4pPxðy;xÞð Þþ i4px

c
@Mzðy;xÞ

@y
¼ 0 ð8:1Þ

Now in terms of the plasmonic eigenmodes of interest the respective meta-atom
has to be mapped onto the point multipoles: electric dipoles and quadrupole
Pxðy;xÞ and magnetic dipoles Mzðy;xÞ. In order to observe both, an electric and a
magnetic response, the SRR is uprightly oriented [19] (see Fig. 8.1). To cover the
fundamental electric and magnetic modes [20], sketched by the black solid and
dashed lines in Fig. 8.1, respectively, four auxiliary positive and negative charges
with predefined spatial degrees of freedom are required as indicated in Fig. 8.1. In
passing we note that the carrier configuration shown in Fig. 8.1b represents a
suitable solution that allows us to reproduce the fundamental modes as sketched in
Fig. 8.1a but might not provide the only possible arrangement accounting for these
dynamics. Similar to the numerical discrete dipole [21] or multiple multipole model
[22] the number of applied supplementary carriers increases the resolution in terms
of the consideration of higher order modes.

We selected the configuration shown in Fig. 8.1b since it constitutes a man-
ageable carrier number, describing the fundamental plasmonic properties properly.
With the knowledge about these directional constraints for the carrier dynamics the
microscopic definitions of the multipole moments is given by (3.52):

Fig. 8.1 a SRR meta-atom and the intrinsic currents for the fundamental electric (black solid line)
and magnetic (black dashed line) mode. b The associated auxiliary charge distribution (red points)
with predefined degrees of freedom (black arrows) [23]
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The equations of motion ri;s tð Þ for each charge qs contain all information about
the plasmonic eigenmodes. Even at this early stage it can be seen that if
ri;s tð Þ�E r; tð Þ second-order multipoles will immediately evoke nonlinear contri-
butions since they involve terms r2i;s tð Þ. For the carrier configuration proposed here
the associated terms ri;s tð Þ are:

rþ1 tð Þ ¼ �x0; y0; 0ð Þ; r�1 tð Þ ¼ �x0 � x1; y0 � x1; 0ð Þ
rþ2 tð Þ ¼ x0; y0; 0ð Þ; r�2 tð Þ ¼ x0 � x1; y0; 0ð Þ
rþ3 tð Þ ¼ �x0;�y0; 0ð Þ; r�3 tð Þ ¼ �x0 � x2;�y0 þ x2; 0ð Þ
rþ4 tð Þ ¼ x0;�y0; 0ð Þ; r�4 tð Þ ¼ x0 � x2;�y0; 0ð Þ

ð8:3Þ

In (8.3) the superscripts ± denote whether the position vector is associated with
a positive or a negative charge. All positive carriers are fixed at the positions
�x0; �y0, while negative carriers are allowed to oscillate around these sites
described by x1;2 tð Þ. The distinction between the carrier oscillations in both SRR
wires is vital for realizing the two plasmonic eigenmodes (Fig. 8.1a). These carrier
oscillations evoked by an external electromagnetic field and intrinsic Coulomb
interaction may be described by a set of coupled oscillator equations as (see (4.14)):

@2x1ðtÞ
@t2 þ c @x1ðtÞ

@t þx2
0x1ðtÞþ r x2ðtÞ ¼ q

m Ex1;loc
@2x2ðtÞ
@t2 þ c @x2ðtÞ

@t þx2
0x2ðtÞþ r x1ðtÞ ¼ q

m Ex2;loc

(
ð8:4Þ

In (8.4) c represents the damping, x0 is the eigenfrequency while a describes the
coupling strength between the carriers in the SRR arms. The physical origin of this
coupling is the Coulomb interaction of carriers in the horizontal SRR arms excited
by an electric field parallel to the arms and the carriers in the vertical arm that are
excited by the local fields of the horizontally oscillating charges, producing a
current inside the entire SRR. Moreover this coupling between two identical
oscillators results in a splitting into symmetric and antisymmetric oscillation modes.
Substituting (8.3) into (8.2) the remaining multipole moments are obtained as:

Pxðy; tÞ ¼ 2 g q x1 þ x2ð Þ � @Qxy

@y

Qxyðy; tÞ ¼ g q
2 x1 � x2ð Þ 2y0 � x0ð Þ � x1 þ x2ð Þ½ �

Mzðy; tÞ ¼ � g q
2c 2y0 þ x0ð Þ @

@t x1 � x2ð Þ

8><
>: ð8:5Þ
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From (8.5) it can be deduced that all multipoles depend either on the sum or the
difference of x1 tð Þ and x2 tð Þ. Especially for the symmetric carrier oscillation in the
SRR arms x1 tð Þ ¼ x2 tð Þ all second-order moments vanish and only two identical
electric dipoles parallel to the SRR arms remain (symmetric mode). In turn, an
antisymmetric oscillation x1 tð Þ ¼ �x2 tð Þ excites both second order multipoles and a
longitudinal electric dipole only since the electric dipoles in the top and bottom
SRR arms are canceling each other (antisymmetric mode). Thus, the charge
alignment chosen meets all requirements to describe the desired plasmonic eigen-
modes and their dynamics are determined. Decomposing the electric field into plane
waves at the fundamental (FF) and the SH frequency:

Exðy; tÞ ¼ Ex exp i k xð Þy� x t½ � þE2x exp i k 2xð Þy� 2x t½ � þ c:c: ð8:6Þ

the solutions to the oscillator equations (8.4) read as:

x1 tð Þ � x2 tð Þ ¼ x�x Ex exp i k xð Þy� x t½ � þ x�2x E2x exp i k 2xð Þy� 2x t½ � þ c:c:

ð8:7Þ

where the amplitudes are given by:

xþx ¼ 2vþ
x cos k xð Þy0½ �Ex

x�x ¼ 2iv�x sin k xð Þy0½ �Ex
ð8:8Þ

with the introduced quasi susceptibility:

v�x ¼ q
m

1
x2

0 � x2 � icx� r
ð8:9Þ

The respective equations for the SH field follow by substituting x by 2x in
(8.8). In contrast to ordinary electric dipole interaction we observe a frequency
splitting in the quasi susceptibility v� evoked by the two frequency degenerated
eigenmodes. Now, (8.5)–(8.9) can be inserted into (8.1) yielding a set of nonlinear
eigenvalue equations with second-order nonlinear source terms:
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ð8:10Þ
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where the following abbreviations have been used for the linear:

px ¼ 2g qxþx
2

mx ¼ ix
g q
2

2y0 þ x0ð Þx�x
ux ¼ g q

2
2y0 � x0ð Þx�x

ð8:11Þ

and the nonlinear multipole source terms:

ux;2x;�x ¼ g q x�xx
þ�
2x � x�2xx

þ�
x


 �
2

ux;2x;x ¼ g qx�xx
þ
x

2

ð8:12Þ

The exact solution to this eigenvalue equation would result in a nonlinear dis-
persion relation with k 2x; Ex;2x


 �
, k x; Ex;2x


 �
and a fixed ratio Ex E2x= E2x.

The left hand side of (8.10) contains a part well known from dipole interaction px
but in addition contributions which stem from the second-order multipole response
ux; mx. Additionally the quadrupole moment causes a nonlinear term on the
right-hand side. Interestingly, in this model the nonlinear response of the magnetic
dipole produces no nonlinear contributions, which is supported by rigorous simu-
lations for a corresponding SRR configuration [24]. There the magnetic nonlinear
contributions have been shown to be much smaller in comparison to a convective
electric current [25] which is equivalent to the quadrupole contribution in our
approach. Furthermore, it is mentioned that in contrast to usual second order
nonlinear optics [26] here the nonlinear source term incorporates the first spatial
derivative induced by the quadrupole moment.

8.3 Linear Optical Properties: Effective Material
Parameters

In order to validate the predictions of the model we start with the investigation of
the linear properties. To this end the nonlinear source terms (8.12) have been
dropped which yields two decoupled linear eigenvalue equations for the FF and the
SH wave. The obtained linear wave equations describe the field propagation in an
effective medium determined by its multipolar contributions. Thus the correlated
wave vector k xð Þ , i.e., the dispersion relation, represents a self-consistent solution
and contains all physical information to describe light propagation in the respective
MM. This can be understood in complete analogy to the exact parameter retrieval
which assumes also a homogeneous wave propagation inside a MM slab.
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By neglecting the nonlinear source terms ux;2x;�x and ux;2x;x in (8.10) we get
the linear wave equation:

@2

@y2
þ x2

c2
1þ 4p px � uxð Þð Þþ i4pxmx

c
@

@y

� �
exp i k xð Þy½ � ¼ 0 ð8:13Þ

Details of the dispersion relation and effective parameters calculation can be
found in Petschulat et al. [23], here only final results are presented in Fig. 8.2.

Fig. 8.2 a Comparison of the dispersion relation—numerical model (dashed), analytical model
(solid) b single MM layer (gold SRR) used for the numerical simulation (dimensions in nm);
spectral dependence of c effective permittivity and d effective permeability from the multipole
model; spectral dependence of e effective permittivity and f effective permeability from the
numerical simulations [23]
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8.4 Nonlinear Optical Properties: Second Harmonic
Generation

To study the nonlinear behavior induced by the fundamental modes of the present
meta-atom, we resort to the linear dispersion relation and treat the nonlinearity as
perturbation rather than solving (8.10) exactly. As usual we rely on the slowly
varying envelope approximation (SVEA) [26]. Within this approximation the fast
spatial oscillation exp i k xð Þy½ � is separated from a slowly varying amplitude A yð Þ,
which contains all information about the generation and depletion of the fundamental
Ex ¼ Ax yð Þ exp i k xð Þy½ � and the second harmonic E2x ¼ A2x yð Þ exp i k 2xð Þy½ �.

8.4.1 Exact Numerical Solution

At first the solution to the wave equations incorporating the SVEA ansatz has been
performed numerically. Therefore we simplify this system by introducing the fol-
lowing substitutions:

dx � x2

c2
1þ 4p pxð Þ

bx � 4p
c2

x2ux � ixmx

 �

wx;2x;�x � 4px2

c2
ux;2x;�x

w2x;x;x � 4px2

c2
u2x;x;x

ð8:14Þ

Now the eigenvalue equations take the following form:

@2

@y2
þ dx � bx

@

@y

� �
Ex exp i k xð Þy½ �

¼ �wx;2x;�x
@

@y
E�
xE2x exp i k 2xð Þ � k� xð Þ½ �yð Þ� 	

@2

@y2
þ d2x � b2x

@

@y

� �
E2x exp i k 2xð Þy½ �

¼ �wx;2x;x
@

@y
E2
x exp i 2k xð Þy½ �� 	

ð8:15Þ

The solution to these equations are two coupled nonlinear dispersion relations,
one for the fundamental and one for the second-harmonic wave, which depend on
both fields. In order to avoid the solution of this involved system we treat the
nonlinearity as a perturbation and resort to the linear dispersion relation. To study
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the effect of the nonlinear source terms we apply the slowly varying envelope
approximation where the linear fields are weighted by a slowly varying amplitude
functions A yð Þ. Replacing the constant amplitudes Ex;2x by Ax;2x yð Þ we obtain
upon substitution and upon neglecting of the second-order derivatives (SVEA):

@
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	 exp i½2kðxÞ � kð2xÞ�y

ð8:16Þ

This final system has been solved numerically (Fig. 8.3).
The FF wave evolution Ex is determined by the two eigenmode resonances

(both indicated by the resonances in the red lined dispersion relation), where a

Fig. 8.3 Evolution of normalized electric field intensity for a The FF and b the SH as a function
of the wave number of the fundamental. The red lines indicate the real (dashed) and the imaginary
part (solid) of the linear dispersion relation; c and d the corresponding results for the undepleted
pump approximation (UDPA) [23]
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strong damping is observed. For frequencies out of the spectral domain of these
resonances the FF wave propagates without excessive losses, as expected. For the
SH wave a strong contribution at the fundamental magnetic and electric resonance
can be observed. In these calculations the SHG signal originating from the electric
resonance around 6400 cm−1 seems to be much stronger than in the spectral
vicinity of the magnetic resonance 4000 cm−1. This originates from the strong
damping of the SHG wave for the magnetic resonance (which propagates at
8000 cm−1) because in this spectral domain an enhanced damping occurs due to the
presence of the electric resonance. This changes dramatically for the SH wave
induced by the electric mode, since at the SH frequency the imaginary part of k 2xð Þ
is close to zero. Thus the second harmonic originating from the electric resonance
propagates almost without damping.

8.4.2 Undepleted Pump Approximation

In order to double-check the results and to take the weak conversion efficiency into
account the UDPA has been applied [26]. Within this approximation the funda-
mental wave (the pump) remains unaffected by the generated second harmonic
wave. This can be expressed by setting wx;2x;�x in the first equation as well as the
first derivative of Ax yð Þ in the second equation to zero. This results in:
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2ik 2xð Þ � b2x
2ik xð ÞA2
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	 1� exp i 2k xð Þ � k 2xð Þ½ �yf g

ð8:17Þ

Comparing the numerically determined electric field for the fundamental and the
second harmonic wave to those of the undepleted pump approximation (see
Fig. 8.3) one can clearly deduce that the UDPA describes the propagation for both
waves almost exactly. Furthermore (8.24) permits to calculate analytically the
conversion efficiency from fundamental to second harmonic intensity, e.g., for a
slab consisting of a single layer of SRRs. Our calculations for a single slab of
upright oriented SRRs predict intensity conversion efficiency in the order of 10−8–
10−9. Compared with the values reported in Feth et al. [24] our estimated con-
version efficiency is two orders of magnitude larger. This can be explained first by
the different orientation since we investigated uprightly oriented SRRs for which
second-order multipoles are radiating. These multipoles were considered as the
nonlinear sources in this work and consequently an enhanced nonlinear interaction
is expected. Second, any measured SHG intensity is supposed to be smaller due to
structural imperfections of the individual meta-atoms that can even be observed
within the comparison of numerically determined linear properties and its
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experimental counterparts. Thus it is different to predict the exact conversion effi-
ciency for fabricated MMs by theory. The calculations presented here provide a
physical motivation, an estimated order of magnitude as well as an expected dis-
persive dependence for second-order nonlinear effects occurring for such special
types of nanostructures. It is important to note that for predicting the nonlinear
response only parameters are required that are fixed by comparison with the linear
effective material interaction. In passing we comment that such a procedure; the
determination of the nonlinear material properties based on the linear material
parameters is known as Miller’s delta as well established rule in nonlinear optics
[27, 28].

8.5 Third Harmonic Generation from Fishnet Structure

8.5.1 Measurement of Third Harmonic Generation

For the nonlinear measurements a setup based on an optical parametric amplifier
(OPA) was used operating at wavelengths of 1.49, 1.54, 1.56 and 1.60 lm and
having an average output power of 3 mW focused to a 300 lm-spot from the air
side of the sample.

The OPA was pumped by a Nd:YAG laser with pulse duration of 5 ps and a
repetition rate of 5 kHz. The resulting fluence took values up to 700 lJ/cm2 in the
plane of the sample. The sample was placed on a 6-axis positioning stage such that
during the angular spectroscopy the beam is always focused into the same spot. The
forward propagating THG signal pulses were detected by a photomultiplier tube
and gate-integrated by an oscilloscope. We used the p-p polarization configuration
—illuminating with p-polarized light and selecting only the p-polarized part of
forward propagating light before the detector. For all measurements spectral fil-
tering (Schott RG610 and BG40) before the detector was used for picking up the
desired wavelength. The extinction curves of the used filters provided that the third
harmonic response was orders of magnitude larger than signals at other wavelength,
i.e. at the pump wavelength. The averaged THG signal from the pure SiO2 substrate
measured outside the MM area was approximately one order of magnitude lower
than that from the MM area. Contributions from the substrate were therefore safely
neglected. The principle setup is shown in Fig. 8.4. For numerical simulation an
extension of the FMM which includes the nonlinear interaction was used [30]. The
method relies on the undepleted pump approximation that ignores the feedback of
the nonlinearity induced field to the pump field [31]. The approach allows solving
the problem completely rigorously and permits a reliable prediction of the diffracted
amplitudes of the third harmonic fields. The third harmonic intensity was measured
and simulated in the forward zeroth diffraction order with the fundamental wave-
length exciting the magnetic resonance. The angular spectra of THG are provided in
Fig. 8.5a–d for the fundamental wavelengths of 1.49, 1.54, 1.56 and 1.60 lm,
respectively.
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The magnetic resonance position for normal incidence is 1.54 lm. The maxi-
mum of the THG signal is seen at angles of incidence around 20°. The appearance
of this maximum is detailed in the discussion section and is believed to be caused
by the interference of THG from the individual layers forming the fishnet MM. The
simulation shows an agreement with the experimental values. The THG signal is
expressed in a pump power-independent fashion as derived from the numerical
calculations; the absolute values of the THG signal are valid only for the simulation
results while for the experimental data they are of the same order of magnitude. The
estimation of the experimental value of the effective nonlinear susceptibility is

vð3Þ1111 ¼ 10�18 m2 V2, which is the same order of magnitude as the reference value
of bulk gold [32].

8.5.2 Discussion and Modeling of Third Harmonic
Generation

Plasmon-enhanced THG at the magnetic resonance of fishnet MMs was reported
previously [12]. It was shown that the THG spectra obey the principles of the
local-field enhanced nonlinear response. It was proposed that the wavelength dis-
persion of the THG efficiency is defined by the spectral line of the magnetic
resonance cubed. The maximum of THG at the angles of about 20° can neither be
explained by means of dispersion of the local field factor at the fundamental fre-
quency, see Fig. 8.5e–h, nor with the linear transmission characteristics at the third

Fig. 8.4 The setup for
angular spectroscopy of the
third harmonic generation
(THG) intensity. The pump
polarization is set to p and p-
polarized third harmonic
radiation is detected with a
photomultiplier tube (PMT).
The diffraction in the
x direction is not shown [29]
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harmonic wavelength, see Fig. 8.5i–l. Finally, the position of the maximum does
not coincide with the angular position of the propagating diffraction order
appearance as illustrated with the vertical dashed lines in Fig. 8.5i–l.

Fig. 8.5 Subplots (a–d) show the third harmonic signal as a function of the angle of incidence for
different wavelengths in the spectral vicinity to the magnetic resonance. For comparison (e–
h) show the linear absorption Ak at the same fundamental wavelengths and (i–l) shows the linear
transmission T at the corresponding third harmonic wavelengths. The vertical dashed lines indicate
the angular positions of the appearance and the disappearance of diffraction orders. The black dots
represent the experimental data and the dotted lines represent the simulation results. The solid lines
are curves calculated with (8.39). This equation represents an analytical model which describes the
nonlinear response of coupled oscillators [29]
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In this section we show that, firstly, this feature is caused by retardation effects,
and secondly, it is specific to the anti-symmetric electric current structure of the
magnetic resonance. The observed third harmonic radiation is considered to be
caused by the nonlinear polarization of gold due to anharmonic electron movement.
Nonlinearities of other substances of the MM are neglected since their vð3Þ -tensor
components are several orders of magnitude smaller than that of bulk gold:

vð3Þ1111 SiO2ð Þ ¼ 4:6	 10�23 m2/V2, vð3Þ1111 MgOð Þ ¼ 1	 10�22 m2/V2, and vð3Þ1111

SiO2ð Þ ¼ 7:5	 10�19 m2=V2 [32–34]. Without further discussion of the specific
source of that third-order nonlinearity, we describe the motion of electrons of gold
at the third harmonic wavelength within the conducting layers of the MM using a
model of weakly coupled oscillators. Within the chosen model the phase difference
between the oscillators in the two layers dictates whether the resonance is
anti-symmetric—currents in the two layers are antiparallel to each other, Fig. 8.6a
—or symmetric—currents are parallel, Fig. 8.6b.

Here we discuss the phase difference between the sources of third harmonic
radiation. The sources of the radiation are oscillations in the gold layers at the third
harmonic frequency. We use a model of coupled oscillators with a nonlinear
extension. Uncompensated charges are induced at the edges of the thick wires of the
MM by the external electromagnetic field with a polarization along the thin wires as
shown in Fig. 8.6 [35]. Charge conservation implies q1(t) = − q3(t) and q2(t) = −
q4(t). Harmonic oscillations of the charge densities in two coupled layers can be
described as a superposition of two eigen modes of the system—the first one
corresponds to co-directional currents in the layers and the second one corresponds
to counter-directional ones [5]. Consider x1(t) = q1(t) − q3(t) = 2q1(t) for the
uncompensated charge at the upper fishnet layer and x2(t) = q2(t) − q4(t) =
2q2(t) for the lower fishnet layer. The linear dynamics of these values is described
by the model of coupled harmonic oscillators:

Fig. 8.6 Parameters of the model and uncompensated charge density distribution in the unit cell
of the fishnet MM for a Anti-symmetric and b symmetric resonances and corresponding far-field
radiation patterns. The blue area between the gold layers is shown for better understanding of the
layout, no influence of the dielectric is assumed in the model [29]
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Here c is the damping constant, x0 is the central frequency of the resonance for
an isolated layer, a is the coupling constant, f is the oscillator strength and u0 is the
difference of phases of the exciting fields caused by the retardation. The dynamics
of the antisymmetric mode X(t) = x1(t) − x2(t) is described by:

@2XðtÞ
@t2

þ c
@XðtÞ
@t

þx2
0XðtÞþ rXðtÞ ¼ f 1� exp iu0ð Þð Þ exp ix tð Þ ð8:19Þ

The solution of the equation in the frequency domain is expressed as:

XðxÞ ¼ f 1� exp iu0ð Þð Þ
x2

0 � x2 þ 2icx� r
ð8:20Þ

In the case when Q-factor of the modes is high enough for the condition
ffiffiffi
r

p 
 c
to be held the asymmetric mode implies x1ðxÞþ x2ðxÞ � 0 and arg x1ðxÞð Þ �
arg x2ðxÞð Þ � p as a consequence. Now we consider a nonlinear addition to the
electron movements:

@2x1ðtÞ
@t2 þ c @x1ðtÞ

@t þx2
0x1ðtÞþ r x2ðtÞþ a x31ðtÞ ¼ f exp ix tð Þ

@2x2ðtÞ
@t2 þ c @x2ðtÞ

@t þx2
0x2ðtÞþ r x1ðtÞþ a x32ðtÞ ¼ f exp ix tþu0ð Þ

(
ð8:21Þ

where a � c2x4
0

�
f 2. This restriction corresponds to the experimentally observed

low conversion (*10−11) from the fundamental field to the third harmonic field and
allows one to use the perturbation theory approach. At the magnetic resonance
apply x1(t) = −x2(t) and only one equation have to be considered:

@2x1ðtÞ
@t2

þ c
@x1ðtÞ
@t

þx2
0x1ðtÞþ r x2ðtÞþ a x31ðtÞ ¼ f exp ix tð Þ ð8:22Þ

The approximate solution is reduced to two terms:

x1ðtÞ ¼ x01 xð Þ exp ix tð Þþ x01 xð Þ exp i3x tð Þ ð8:23Þ

After substituting the solution into (8.18) and calculating the multipliers of
exp ix tð Þ and exp i3x tð Þ, one gets:

x01ðxÞ ¼
f

x2
0 � x2 þ 2icx� r

ð8:24Þ
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and:

x
0
1ðxÞ ¼

a

x2
0 � 3xð Þ2 þ 6icx� r

x01ðxÞ

 �3 ð8:25Þ

Analogously one gets:

x02ðxÞ ¼
f

x2
0 � x2 þ 2icx� r

ð8:26Þ

and:

x
0
2ðxÞ ¼

a

x2
0 � 3xð Þ2 þ 6icx� r

x02ðxÞ

 �3 ð8:27Þ

Since the first multipliers in (8.22) and (8.24) are not resonant and have the
same phase, the phase difference arg x01ðxÞ


 �� arg x02ðxÞ

 �

is defined by the second

multipliers. These multipliers are equal to x01ðxÞ

 �3

and x02ðxÞ

 �3

for the upper
and lower layers, respectively. As a consequence arg x01ðxÞ


 �� arg x02ðxÞ

 � ¼

3 arg x1ðxÞð Þ � arg x2ðxÞð Þð Þ ¼ 3p, which means that at the THG frequency the
electrons move inside two gold layers out of phase.

With this knowledge we write down the dynamical equations for the charge
density at the third harmonic frequency:

qas r; tð Þ ¼ q0 cos 3x tð Þ � d y� wy

2

� �
� d yþ wy

2

� �h i
� d z� dþ s

2

� �
� d zþ dþ s

2

� �� �
ð8:28Þ

and for the current density:

jasy r; tð Þ ¼ 3x q0 sin 3x tð Þ � H y� wy

2

� �
�H yþ wy

2

� �h i
� d z� dþ s

2

� �
� d zþ dþ s

2

� �� �
ð8:29Þ

for the antisymmetric resonance and the dynamical equations for the charge density:

qs r; tð Þ ¼ q0 cos 3x tð Þ � d y� wy

2

� �
� d yþ wy

2

� �h i
� d z� dþ s

2

� �
þ d zþ dþ s

2

� �� �
ð8:30Þ

and for the current density:
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jsy r; tð Þ ¼ 3x q0 sin 3x tð Þ � H y� wy

2

� �
�H yþ wy

2

� �h i
� d z� dþ s

2

� �
þ d zþ dþ s

2

� �� �
ð8:31Þ

for the symmetric resonance. Here d yð Þ is the Dirac delta function, H yð Þ is the
Heaviside step function and q0 is the amplitude of the uncompensated charge
oscillations at third harmonic frequency. The latter depends on the magnitude of the
nonlinear polarization and is proportional to the vð3Þ components and the local field
factors at the third harmonic frequency L3x hð Þ and fundamental frequency Lx hð Þ
cubed. The solution of the potential equation:

D� 1
c2

@2

@t2

� �
~Aðr; tÞ ¼ � 4p

c2
~j r; tð Þ ð8:32Þ

is sought. The problem is considered two-dimensional, i.e. x-independent. Firstly,
we consider the antisymmetric resonance. The solution of (8.32) could be expressed
with the retarded potential:

~Aðr; tÞ ¼ 1
c2

Z ~j r0; t � r0 � rj j=cð Þ
r0 � rj j dV ð8:33Þ

Since H = curlA, the magnetic field distribution in the far field (r 
 r′) is
expressed in the cylindrical coordinates by substitution of (8.29) into (8.33) as
follows:

Hx r; tð Þ ¼ 3x q0 sin b
p r cos b

� sin kwy cos b
2

� �
� sin k dþ sð Þ sin b

2

� �
� sin 3x t � krð Þ

Hy ¼ Hz ¼ 0 ð8:34Þ

where k ¼ 3x
c and b ¼ hþ p=2. The angular radiation pattern R hð Þ is defined by

the averaged electromagnetic intensity which the unit cell of the MM emits per unit
solid angle as a function of radiation angle. It is expressed as follows:

R bð Þ ¼ dP
db

¼ r r E 	 H½ �½ � ð8:35Þ

For a plane wave applies r r E 	 H½ �½ � ¼ rH2. By substitution of (8.34) into (8.35)
and time averaging we get the angular radiation pattern for the anti-symmetric
resonance:

Ras bð Þ / q0 tan b � sin kwy cos b
2

� �
� sin k dþ sð Þ sin b

2

� �� �2
ð8:36Þ
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The radiation pattern can be evaluated for the symmetric resonance in the same
way by use of (8.31) and (8.33):

Rs bð Þ / q0 tan b � sin kwy cos b
2

� �
� cos k dþ sð Þ sin b

2

� �� �2
ð8:37Þ

The polar plots in Fig. 8.6 show the normalized angular dependences of THG
calculated using (8.36) and (8.37) for the antisymmetric and symmetric resonances,
respectively, for the same parameters. The dependence of q0 � Lx hð Þj j3 can be
expressed for the magnetic resonance with a Lorentz line in the angular domain
which arises from the angular dispersion of the resonance position:

Lx hð Þ / x0
0 þ

@x0

@h
h

� �2

�x2 þ 2icx

" #�1

ð8:38Þ

The central frequency of the resonance x0 hð Þ is substituted by the truncated
Taylor expansion in the form of x0 hð Þ ¼ x0

0 þ @x0
@h h


 �
. The angular radiation

pattern of the third harmonics is straightforwardly connected to the angular
dependence of THG. The third harmonic radiation is emitted from each unit cell of
the MM with the relative phase which depends on the angle of incidence of the
pump. Radiation from each cell interferes to compose the diffraction pattern. The
intensity of each diffraction lobe depends on the angle of diffraction via the radi-
ation pattern dependence. If only the zeroth diffraction order is detected then the
diffraction angle equals the angle of incidence and thus the radiation pattern is
probed by measuring the angular dependence of THG. Now we use (8.36) and
(8.38) to calculate the data on angular-dependent THG from the fishnet MM. The
function used is expressed as follows:

I hð Þ ¼ B L hð Þj j3cot hð Þ sin kwy sin h
2

� �
sin

k dþ sð Þ cos h
2

� �� �2
ð8:39Þ

The parameters in (8.39) are determined from the linear measurements. The
angular dispersion of the resonance central frequency is @x0

@h � 3	 1012 rad=
deg	 sð Þ and c ¼ 0:15 � 0:01 ps�1 (corresponds to DkFWHM ¼ 220 nm). The
parameter B stands for a calibration coefficient that was not measured precisely. For
wy the SEM-measured value was taken and (d + s) was set to 250 nm. The angular
dependent third harmonic intensity function (8.39) is plotted in Fig. 8.5a–d with
solid lines. A good quantitative correspondence is observed between the experi-
mental data, the numerically calculated data and the modeled dependence. From all
the parameters only (d + s) differs from the experimentally measured one. The main
reason is general oversimplification of the model, i.e. not taking the real phase
velocity of the third harmonic radiation inside the MM into account, considering
pure symmetric/antisymmetric modes, assuming infinitely dense charge and current
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distributions, etc. Nevertheless, the model gives an explicit way how one can dis-
tinguish between symmetric and anti-symmetric resonances of the MM by means of
its nonlinear optical response. For the symmetric resonance no local extremum is
observed at oblique incidence whereas the maximum is present in the case of the
anti-symmetric resonance. In terms of effective vð3Þ tensor components of the MM

this means that the vð3Þyyyy component of the medium at the magnetic resonance is less
pronounced than that at the electric resonance. In correspondence with the general
concept of MMs it makes possible to tailor the relation between different tensor
components by the proper choice of the MM resonance and its parameters.

8.6 Sources of Nonlinearity in Maxwell Equations:
General Consideration

The question about the origin of the nonlinear response of media on microscopic
level is of fundamental interest. Maxwell equations (ME) are essentially linear in
term of mutual relations between the fields. From the other side, ME consist of not
only four known equations for the field, but also contains fifth one for the charge
dynamics:

rot~e ¼ ix
c
~h

div~h ¼ 0
div~e ¼ 4pq ¼ 4p

P
k
qkd ~r �~rkð Þ

rot~h ¼ � ix
c ~eþ 4p

c
~j ¼ � ix

c ~eþ 4p
c

P
k
qk ~vkd ~r �~rkð Þh i

d~vk
dt ¼

qk
mk
~eþ qk

mkc
~vk �~h
h i

8>>>>>>>><
>>>>>>>>:

ð8:40Þ

Here~e and~h are the microscopic electric and magnetic fields, respectively, q ¼P
i qid ~r �~rið Þ is the charge density, ~qi, ~pi ¼ mi~vi, mi, ~ri and ~vi are the charges,

momenta, masses, coordinates and velocities of charges,~j ¼ P
i~viqid ~r �~rið Þ is the

microscopic current density, x and c are the frequency and the velocity of light in
vacuum. It is assumed that system (8.40) is strictly valid without any approximations.

First, the fifth equation is nonlinear i.e. the momentum depends on the field
nonlinearly: the velocities are proportional (to the first approximation) to the fields,
and the momentum consequently is proportional to the field in square. This non-
linearity appears due to the interaction with the magnetic field. The last, as it is
known, is the relativistic effect; e.g. one can see that the magnetic field is pro-
portional to the velocities divided by the velocity of light and disappears as the
velocity of light tends to infinity. Hence, this source of nonlinearity (which could be
named “relativistic nonlinearity”) becomes significant only in the case of very high
velocities of the charges and usually can be safely neglected and (8.40) becomes:
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rot~e ¼ ix
c
~h

div~h ¼ 0
div~e ¼ 4pq
rot~h ¼ � ix

c ~eþ 4p
c
~j

d~mk
dt ¼

qk
mk
~eext þ qk

mk
~e

8>>>>><
>>>>>:

ð8:41Þ

Here the electric field is subdivided by an external one and the field generated by
the considered charges. System (8.41) is obviously linear, e.g. it is not expected that
the charge dynamics (and consequently scattered fields produced by this dynamics)
excited by an external field (irrespective to its intensity) would depend on this

external field nonlinearly. The fifth equation d~mk
dt ¼

qk
mk
~eext þ qk

mk
~e is the only form

fully compatible with ME in a sense of ME elaborated in Landau and Lifshitz [36].
It has to be emphasized, that ME are compatible with classical relativistic
mechanics, but, rigorously speaking, are NOT compatible with quantum mechanics.
It means in turn, that ME can describe a system of free charges (interacting with
each other or not), but can NOT describe a system of bounded (in a sense of stable
system as atom or molecule i.e. in a sense of quantum mechanics) charges. Hence
the mentioned above “relativistic nonlinearity” is the only one which can be suc-
cessfully considered in the frame of ME.

In order to describe a bound states (charges in atoms/molecules), usually instead
of fifth equation in (8.40) a harmonic oscillator equation is used:

@2~rk
@t2

þ ck
@~rk
@t

þx2
k~rk ¼

qk
mk

~e ð8:42Þ

Eigen frequency xk describes the internal atomic (quantum) structure; the
presence of the stable states described by (8.42) can NOT be introduced in the
frame of classical approach. This equation is in turn linear and should not cause any
nonlinear response. System (8.41) in this case becomes:

rot~e ¼ ix
c
~h

div~h ¼ 0
div~e ¼ 4pq
rot~h ¼ � ix

c ~eþ 4p
c
~j

@2~rk
@t2 þ ck

@~rk
@t þx2

k~rk ¼ qk
mk
~eext þ qk

mk
~e

8>>>>><
>>>>>:

ð8:43Þ

i.e. remains linear. Note, that the presence of the limited dynamics (8.42) contra-
dicts to the postulate of stability of the atom/molecule—the oscillating electron
emits light, loses energy and consequently tends to collapse. This known contra-
diction actually caused originally the necessity of the quantum mechanical
approach. Here this contradiction will not be further considered and (8.43) is
expected to be valid.
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In order to introduce a nonlinearity, usually a nonlinear term is added to the
dynamic equations, namely:

@2~rk
@t2

þ ck
@~rk
@t

þx2
k~rk þ

X
p

bk;p~r
p
k ¼

qk
mk

~eext ð8:44Þ

Order of nonlinearity p determines the order of the final nonlinear response of
matter.

The presented above consideration can be found in any textbook. The conclusion
about the linear response of (8.41) is commonly accepted, and the way of intro-
ducing of nonlinearity (8.44) is supposed to be undoubtedly right.

From the other side, this seems to be wrong. System of ME (8.41) appears to be
more sophisticated. The first two equations in (8.41) obviously linear, but the third
and fourth ones div~e ¼ 4pq and rot~h ¼ � ix

c ~eþ 4p
c
~j are linear only in a sense of the

linearity between fields and q and~j. If the dynamics depends linearly on an external
field, it DOES NOT mean that the solution for the scattered field is also linear. The
usually observed linearity of the response is stipulated by the fact that the scattered
field is caused in most cases by a dipole emission, which is internally linear. Higher
multipoles cause a natural nonlinearity, but the higher than dipole moments are
extremely rare in optical domain.

In the nearfield, potential is governed by a simple equation, which is in turn a
general solution of Maxwell equations (see Fig. 8.7):

ru ¼ �
X
k

qkd rkð Þ ð8:45Þ

Solution of (8.46) is known:

u R0ð Þ ¼
X
k

qk
R0 � rkj j ð8:46Þ

This is the equation which gives rise of the multipole expansion after
the expansion of function qk

R0�rkj j. In (8.46) rk are proportional to an external electric

field and in CW case (harmonic oscillation around equilibrium point) can be
written as:

R0

rk 

qk

Fig. 8.7 Solution at the point
of observation R0 from the
charge dynamics in shadowed
space region
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rk ¼ rk0 þDrk0 ¼ rk0 þ qkE0 exp ix tð Þ
m x2

0 � x2

 �þ 2icx

 �

Drk0 ¼ qkE0 exp ix tð Þ
m x2

0 � x2

 �þ 2icx

 � ð8:47Þ

Here qk is the charge, E0 is the amplitude of the harmonic electric field acting on
the charge, m is the mass of the charge, and the respective is for harmonic oscillator
model (8.42). In turn (8.46) becomes:

u R0ð Þ ¼
X
k

qk

R0 � rk0ð Þ � qkE0 exp ix tð Þ
m x2

0�x2ð Þþ 2icxð Þ
����

����
ð8:48Þ

Till R0 6¼ rk0 expression (8.48) provides higher harmonics. If we start to make a
standard multipole expansion, the first two terms (zero order—total charge, is
assumed to be zero and first order dipole) do not produce the higher harmonics, all
business starts from the quadrupole & magnetic dipole, and even magnetic dipole
does not contribute into the nonlinearity—only quadrupole one. The same for
higher orders. The next order, octupole, can be expressed as a sum of the non
reducable tensors of all orders, namely first (toroidal, no nonlinearity), then second
(magnetic quadrupole), and actually octupole moments.

This question about “multipole nonlinearity” requires further investigation.

8.7 Conclusion

In summary, a self-consistent physical model that permits to describe the linear
response of MA geometries by their intrinsic plasmonic eigenmodes has been
presented. The occurring specific carrier dynamics have been mimicked by an
auxiliary carrier alignment interacting with the incident radiation. The knowledge of
these charge oscillations allows the application of the multipole expansion which
provides the eigenvalue equation for electromagnetic waves propagating in such a
composite MM. Moreover we have shown that the specific convective carrier
oscillations together with the quadrupole moment inherently introduce nonlinear
material interactions. Considering the SHG process, our calculations show the
expected enhanced signal both for the electric and the magnetic resonance and
provide a microscopic and physical understanding of them. For further investiga-
tions it is important that the nonlinear response can be determined only from
knowing the linear response, which is accessible by comparing the dispersion
relation or any other effective material property to the introduced multipole model.

A magnetic resonance contribution to third-order optical nonlinearities of the
fishnet MM was shown. It was achieved by means of measurements of the third
harmonic signal in forward direction from a fishnet sample and numerical
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simulations with a nonlinear FMM. Interference of radiation from separated third
harmonic sources is shown to emerge as a local maximum in the angular spectra of
the third harmonic signal found at oblique incidence. Antisymmetric oscillations of
currents, which are the intrinsic property of magnetic resonances, are found to be
responsible for the particular radiation pattern. Based on this an analytical model
was build. The angular characteristic of the third harmonic response from the
experiment, the FMM and the analytical model were compared. A quantitative
correspondence between these data sets is observed. The results contribute to a
better understanding of the possibilities of the nonlinear properties of optical MMs
with plasmonic resonances of different symmetries.

It was shown that the “multipole nonlinearity” is a natural consequence of the
standard solution of ME for the expansion orders higher than the dipole one.
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Chapter 9
Multipole Approach for Homogenization
of Metamaterials: “Quantum”
Metamaterials

9.1 Introduction: Quantum Dynamics
Versus Classical One

Before discussing the problems of coupled dynamics of the classical and quantum
objects, it is worth to make several remarks about compatibility of quantum
mechanics and ME. Surprisingly, they are not compatible. Reminding [1], ME have
been elaborated in the frame of the classical dynamics for the charges interacting
with the fields. In system (2.4) the dynamical equation is written based on the
classical mechanics and, rigorously speaking, remains valid only for free (but may
be interacting) charges. The dynamics of charges in atoms/molecules have to be
described by the quantum mechanical tools. Nevertheless, classical harmonic
oscillator equation is widely used to model charges in atoms/molecules, in this case
system (2.4) becomes:

rot~e ¼ ix
c
~h

div~h ¼ 0
div~e ¼ 4pq
rot~h ¼ � ix

c ~eþ 4p
c
~j

@2~rk
@t2 þ ck

@~rk
@t þx2

k~rk ¼ qk
mk
~eext þ qk

mk
~e

8>>>>><
>>>>>:

ð2:4aÞ

here~eexteext is the external electric field (actually, it could be any other forces other
than interaction with the field ~e). It is easy to see, that in this case the atom’s
stability requirement is not satisfied due to the fact, that in the frame of (2.4a) the
electrons will lose energy and finally stops (annihilates with protons) as soon as an
external forces are zero (i.e. ~eext ¼ 0). It is worth noting that the electron loses
energy even with no internal damping described by coefficient ck, but also due to
the emission of light due to acceleration.

The accepted here approach is in the substitution of the classical dynamics by
quantum one. Instead of the last equation in (2.4) the density matrix formalism is
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used. In this case the stability of atoms is naturally guarantied. From the other side it
is necessary to emphasize that the quantum mechanical equations are not elaborated
together with ME, as it takes place in the case of classic mechanics in (2.4). It should
not cause some fundamental problems excepting the case of radiation losses—in
quantum mechanics it is described by two phenomenological constants, which
already include the radiation losses. Detailed discussion will be done in Chap. 14.

9.2 Coupled Dynamics of Plasmonic Resonator
and Quantum Elements: General Approach

9.2.1 Model Formulation

In this chapter, an analytical model for describing complex dynamics of a hybrid
system consisting of resonantly coupled classical resonator and quantum structures
is presented. Classical resonators in this model correspond to plasmonic nanores-
onators of various geometries, as well as other types of nano- and microstructures,
optical response of which can be described classically. Quantum structures are
represented by atoms or molecules, or their aggregates (for example, quantum dots,
carbon nanotubes, dye molecules, polymer or bio molecules etc.), which can be
accurately modeled only with the use of the quantum-mechanical approach. Our
model is based on the set of equations that combines well-established density matrix
formalism appropriate for quantum systems, coupled with harmonic-oscillator
equations ideal for modeling sub-wavelength plasmonic resonators. As a particular
example of application of our model, it is shown that the saturation nonlinearity of
carbon nanotubes increases multifold in the resonantly enhanced near field of a MM
and compare the results with the experimental data (Chap. 10). Using the developed
approach, regular and stochastic dynamics of the nanolaser (spaser) is considered,
and generalization of Schawlow-Towns expression is elaborated (Chap. 11). The
dynamics of the plane wave propagating in the MMs (where the MAs are the
coupled plasmonic and quantum systems) is considered (Chap. 12).

Accurate description of the dynamics of interacting classical systems is a fun-
damental problem. The current approach is to use a set of coupled equations for two
(or more) harmonic oscillators, which can normally be solved under appropriate
approximations. It combines mathematical simplicity with adequate physical insight
and has been adopted in various branches of science ranging from optics to nuclear
physics. If the interacting systems are quantum their dynamics can be satisfactory
described in the framework of quantum mechanics based on the Schrödinger
equation or density matrix approach, for instance. However, for describing classical
and quantum systems coupled together a special approach is required. It was
originally developed to model the dynamics of lasers where the classical system is
normally represented by an optical (mirror) resonator, while the quantum system—
by amplifying medium [2]. The basic idea was that the quantum formalism allowed
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accurate calculation of the medium’s polarizability, while the latter could be used in
the classical Maxwell equations describing electromagnetic fields in the optical
resonator.

With the rapid development of nanotechnology it has become possible to
engineer and study hybrid quantum-classical systems at the nanometer scale such as
metallic nanoresonators and their arrays (i.e. MMs) combined with quantum dots,
carbon nanotubes or dye molecules [3–6]. While optical response of a metallic
nanoresonator is affected by plasmonic excitations and shape effects, its rather
complicated dynamics can still be satisfactory modeled by the harmonic oscillator
equations with appropriately chosen parameters [7]. As it will be shown below, this
allows us to extend the quantum-classical treatment to modeling analytically a wide
range of optical and plasmonic effects in the hybrid quantum MMs, such as loss
compensation, enhancement of nonlinear response and luminescence, etc.
Furthermore, the model can be used to describe the dynamics of superconducting
Josephson-junction-based MMs, as well as SQUIDs coupled to an RF strip res-
onator [4].

Although a wide range of numerical approaches describing rigorously the internal
quantum dynamics of molecules have been developed, including time dependent
density function theory, multi-configurational self-consistent field method, polariz-
able quantum mechanical/molecular mechanical method, capacitance-polarizability
interaction model and discrete interaction model/quantum mechanics (see [8–12]
and references therein), our model takes advantage of the phenomenological
approach, which allows relatively simple analytical treatment and provides deeper
insight into the physical behavior of coupled quantum-classical systems. The
parameters of such a model can always be found from fitting experimental data and/
or using rigorous numerical approaches mentioned above.

Another advantage of the proposed model is that it takes into account addi-
tional important nonradiative relaxation channels due to stochastic interaction
with the environment, which is naturally included in the adopted density matrix
approach through two phenomenological relaxation times for polarization and
population.

Here a Quantum System (QS) placed in the near-field zone of a Classical
electromagnetic System (CS) is considered. The field produced by the CS, ECS,
affects QS that in turn acts on CS with its field In addition, there is an external field
Eext of the incident light, which interacts with both CS and QS; see Fig. 9.1.

The actual number of the harmonic-oscillator equations required to adequately
describe CS depends on its particular structure [7]. For the illustration purpose the
analysis will be first restricted to just one dipole like MA (Fig. 9.2a), which is
described by a single harmonic-oscillator equation), which should not limit the
generality of our approach. The dynamics of QS is modelled using the density
matrix formalism.

In general case the quantum dynamics of QS that is assumed to be in contact
with a thermostat environment, is described by the following set of ordinary dif-
ferential equations [13]:

9.2 Coupled Dynamics of Plasmonic Resonator … 193



dqnn
dt þ P

m
knmqnn � kmnqmmð Þ ¼ � i

�h

P
m

Hnmqmn � Hmnqnmð Þ
dqkl
dt þ ixklqkl þ qkl

skl
¼ � i

�h

P
m

Hkmqml � Hmlqkmð Þ

8<
: ð9:1Þ

Here knm and skl are energy and phase relaxation constants respectively, xkl is
frequency of the transition from k to l, qnn and qkl (qkl = qkl

* ) are diagonal and
non-diagonal elements of the density matrix, Hkl is a Hamiltonian matrix element
responsible for interaction of the quantum system with the external field.

In framework of this formalism the averaged polarization density is expressed
through non-diagonal density matrix elements:

Pkl ¼ Nlkl qkl þ qlkð Þ ð9:2Þ

lkl is the dipole moment of a quantum system, which is proportional to over-
lap integral between psi-functions of both levels, N is the quantum systems
concentration.

QS

ECS

EQS

EEXTEEXT

CS

Fig. 9.1 Schematic representation of the interaction between plasmonic nanoresonator (Classic
System—CS, yellow block) covered with a layer of quantum systems (Quantum System—QS, red
circles). ECS is the field produced by CS and acting on QS, EQS is the field produced by QS and
acting on CS, EEXT is the external filed field acting on both CS and QS

Quantum Systems - QS

Classic Systems - CS

(a) (b)

Fig. 9.2 Schematic of the modelled active hybrid MAs with quantum ingredients: a plasmonic
nanoresonator (Classic System—CS, yellow blocks) covered with a layer of quantum ingredients
(Quantum System—QS, red circles). a Dipole-like MA (one nanoresonator, b quadrupole-like MA
(two coupled nanoresonators, separated by dielectric layer)
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In the case of resonant interaction the internal QS dynamics can be modelled to a
first approximation by a two-level system subjected to a pump:

dq12
dt � ix21q12 þ q12

s2
¼ � iH12 q22�q11ð Þ

�h
dq22
dt þ q22

~s1
¼ � iH12 q12�q21ð Þ

�h þWq11
q22 þ q11 ¼ 1

8><
>: ð9:3Þ

Here q22, q11 and q12, q12
* are the diagonal and non-diagonal matrix density

elements, respectively; s2 and ~s1 are the constants describing phase and energy
relaxation processes due to the interaction with a thermostat; x21 = (E2 − E1)/ħ is
the transition frequency between levels 2 and 1; H12 is the Hamiltonian matrix
element responsible for interaction of QS with the external fields; W is the phe-
nomenological pump rate—this could model pumping QS. It is also convenient to

introduce new variables N ¼ q22 � q11 and N0 ¼ ðW~s1 � 1Þ
ðW~s1 þ 1Þ so that:

dq12
dt þ ix12q12 þ q12

s2
¼ � iH12N

�h

dN
dt þ N�N0

s1
¼ � 2iH12 q12�q�12ð Þ

�h

s1 ¼ ~s1
W~s1 þ 1

8>><
>>:

ð9:4Þ

In order to describe dynamics of the plasmonic nanoresonator the following
harmonic-oscillator equation is used:

d2x
dt2

þ 2c
dx
dt

þ x2
0x ¼ v Eext þ EQSð Þ ð9:5Þ

Here c and x0 are the loss coefficient and resonance eigenfrequency, Eext and
EQS are the external electric field and field generated by QS respectively, and v is
the effective kinetic inductance of the nanoresonator. The dimensionless variable
x corresponds here to one the dynamic characteristics of the oscillator, which will
be identified later.

From (9.4) and (9.5) one can obtain:

dq12
dt þ ix12q12 þ q12

s2
¼ � iH12N

�h

dN
dt þ N�N0

s1
¼ � 2iH12 q12�q�12ð Þ

�h
d2x
dt2 þ 2c dx

dt þx2
0x ¼ v Eext þEQSð Þ

8>><
>>:

ð9:6Þ

In order to make the next step it is necessary to determine the nature of the
interaction between CS and QS and write down expressions for H12 and We assume
that the fields in the near-field zone of both systems are predominantly electric and
produced by the effective electric dipole moments d. Electric field of an oscillating
dipole is proportional to the d:
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E � d ð9:7Þ

Correspondingly, electric field generated by the dipole moment of QS dQS at the
location of CS can be written as:

EQS � dQS � lQS q12 þ q21ð Þ ð9:8Þ

where lQS is the dipole moment of QS.
According to the same relation the local electric field of CS is:

ECS � dCS � lCSx ð9:9Þ

where lCS is the effective dipole moment of CS. From (9.9) it follows that the
dimensionless variable v has basically the same meaning as the non-diagonal ele-
ment of the density matrix, namely the dimensionless polarization. It is worth
noting that (9.8) and (9.9) assume both QS and CS as point-like dipoles. Despite the
evident importance of addressing the overlap between the spatially inhomogeneous
field of the plasmonic nanoresonator and localization of the quantum system, it is
believed that this corresponds to the next level of complication that is not essential
for adequate modeling of the response dynamics. The Hamiltonian of interaction
H12 is defined by the following expressions:

H12 ¼ �lQS Eext þECSð Þ ¼ � lQSEext þ axx
� �

ax � lQSlCS

�
ð9:10Þ

Substituting (9.8) and (9.10) into (9.6) one obtains:

dq12
dt � ix21q12 þ q12

s2
¼ i lQSEext þ axxð ÞN

�h

dN
dt þ N�N0

s1
¼ 2i lQSEext þ axxð Þ q12�q21ð Þ

�h
d2x
dt2 þ 2c dx

dt þx2
0x� aq q12 þ q21ð Þ � vEext ¼ 0

N0 ¼ W~s1�1ð Þ
W~s1 þ 1ð Þ ; s1 ¼ ~s1

W~s1 þ 1
aq � lQSv
ax � lQSlCS

8>>>>>>>>>><
>>>>>>>>>>:

ð9:11Þ

Here N0 is the population inversion due to pump (in the absence of pump
N0 = −1); N0 > 0 corresponds to the regime of amplification, N0 < 0—to losses.
Both eigenfrequencies x21 and x0 are the resonance frequencies of QS and CS
respectively and can vary independently. Rotating wave approximation for the
system (9.11) is introduced through the following notations:

q12 ¼ ~q12
2 expðixtÞ

x ¼ 1
2 ~xðtÞ exp �ixtð Þþ~xðtÞ� exp ixtð Þð Þ

Eext ¼ 1
2 AðtÞ exp �ixtð ÞþAðtÞ� exp ixtð Þð Þ

8<
: ð9:12Þ
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resulting in:

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�N

�h þ ilQSA
�N

�h

dN
dt þ N�N0ð Þ

s1
¼ iax ~x~q12�~x�~q�12ð Þþ ilQS A~q12�A�~q�12ð Þ

2�h

2 c� ixð Þ d~xdt þ x2
0 � x2 � 2ixc

� �
~x ¼ aq~q�12 þ vA

8>>><
>>>:

ð9:13Þ

(9.13) are the master set of equations describing regular dynamics of interacting
QS and CS. Taking into account stochastic noise sources, the set becomes:

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�N

�h þ ilQSA
�N

�h þ nq

dN
dt þ N�N0ð Þ

s1
¼ iax ~x~q12�~x�~q�12ð Þþ ilQS A~q12�A�~q�12ð Þ

2�h

2 c� ixð Þ d~xdt þ x2
0 � x2 � 2ixc

� �
~x ¼ aq~q�12 þ vAþ nx

8>>><
>>>:

ð9:14Þ

Here nq and nx are the stochastic Langevin terms, which take into account
spontaneous emission and thermal fluctuations respectively (the stochastic term
influence description can be found in [14]).

Set of equations (9.14) can describe the following experimental situations.

9.2.2 Nano-Laser (Spaser) [3, 8, 14, 15]

In this case N0 ¼ Ws1 � 1
Ws1 þ 1 [ 0 and A = 0, (9.14) gives transition and stationary

dynamics of a nanolaser (spaser):

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�N

�h þ nq

dN
dt þ N�N0ð Þ

s1
¼ iax ~x~q12�~x�~q�12ð Þ

2�h

2 c� ixð Þ d~xdt þ x2
0 � x2 � 2ixc

� �
~x ¼ aq~q�12 þ nx

8>><
>>:

ð9:15Þ

With the stochastic Langevin terms one can calculate laser bandwidth in analog
with well-known Schawlow-Towns approach [9].

9.2.3 Luminescence Enhancement [5, 10]

The problem of the luminescent enhancement can be described in the frame of the
presented here quantum approach. Note that in this approach ME have not been
used. Alternatively, the problem can be considered using the classical theory, where
system (2.4a) gives solution for the radiation losses. It is worth reminding again that
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for the problem of luminescent enhancement these two approaches cannot be mixed
i.e. ME cannot be combined with the density matrix formalism.

The both cases, classic and quantum ones, will be considered in details in
Chap. 13. Here the main differences between both approaches have to be mentioned.

First, the density matrix dynamics does not require ME—the radiative relaxation
is caused by an interaction with the virtual photons, which are not described by ME.
In this case, the luminescent enhancement are stipulated by increasing of the density
of states in the vicinity of the nanoobjects.

In the case of relaxation of a single quantum system, interaction with the electrons in
the nanoobject has to be considered as a transient interaction with free electron gas. In
fact, the interaction time (photon emission time) is much shorter than the eigen mode
formation time, and all electrons interacting with the emitted photon are incoherent.

In the case of CW operation (CW pump, steady state), the eigen modes are
formed and interaction with the electrons are no more stochastic—it is a regular
coupled dynamics of eigen modes causing stimulated emission. It affects the level
populations and consequently number of spontaneously emitted photons. Purcell
coefficients P (see below) describing relaxation time modification (due to the
increased density of states) remain the same for the both (transient and CW) cases.

Developed here approach actually work for turning off CW only. In fact, it is
assumed, that the quantum system is fully inverted Nðt ¼ 0Þ ¼ 1, but (in contrast
to the case of spaser) there is no pump N0 ¼ �1. From the other side, it is assumed
that the eigen modes in the nanobject are formed and the dynamics is described by
(9.16). Realistic situation, corresponding to (9.16) is the abrupt turning of the CW
operation mode (abrupt turning of the pump). It is worth noting again, that (9.16)
does not describe the situation of a short pumping pulse (e.g. one photon pump)
followed by the relaxation process.

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�N

�h

dN
dt þ N�N0ð Þ

s1
¼ iax ~x~q12�~x�~q�12ð Þ

2�h

2 c� ixð Þ d~xdt þ x2
0 � x2 � 2ixc

� �
~x ¼ aq~q�12

8>><
>>:

ð9:16Þ

It has to be emphasized that the Purcell effect affects both relaxation times s2 and s1,
which appear from the interaction with thermostat 1

s1
¼ 1

s1;nr
þ P

s1;r
; 1

s2
¼ 1

s1
þ

D ¼ 1
s1;nr

þ P
s1;r

þ D(s1;nr—is the nonradiative relaxation time, s1;r—is the radiative

relaxation time, P > 1—is the Purcell factor, and D—is the extra term, giving dif-
ference between s1 and s2).

9.2.4 Nonlinear Response Enhancement [6, 16]

The nonlinearity of QS appears due to the saturation effect and basically does not
require either positive N0 or nanoresonator. Enhancement of the saturation is caused
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by an addition channel: external field transfers energy to QS through the
nanoresonator in addition to the direct pumping. Taking into account the field
enhancement effect near the plasmonic nanoresonator, the model adequately
describes the increased strength of the nonlinear response experimentally observed
in [6]:

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�N

�h þ ilQSA
�N

�h

dN
dt þ N�N0ð Þ

s1
¼ iax ~x~q12�~x�~q�12ð Þþ ilQS A~q12�A�~q�12ð Þ

2�h

2 c� ixð Þ d~xdt þ x2
0 � x2 � 2ixc

� �
~x ¼ aq~q�12 þ vA

8>>>><
>>>>:

ð9:17Þ

9.2.5 Enhancement of Magnetic Dipolar Response [17]

Marginal modification of system (9.13) allows us to model the enhancement of
high-order multipole response in the hybrid MM. In particular, complex nanores-
onators (like double-wire or split-ring resonators) support anti-symmetric mode of
excitation, which is responsible for magnetic dipolar response [7]. It can be ade-
quately described by two (instead of one) coupled harmonic oscillator equations. In
the case of sufficiently strong pumping N0 ¼ W~s1 � 1

W~s1 þ 1 [ 0 the energy transferred
from the appropriately positioned QS will support excitation of the anti-symmetric
mode—see (9.19).

9.2.6 Quantum Magnetic Metamaterials [17]

Combining active QS (such as quantum dots) with the specially designed plasmonic
nanoresonators can lead to magnetization at optical frequencies (see also Sect. 9.2.5
above) produced not only by the plasmonic modes, but also modes of coherently
coupled QS. Such hybrid structures could serve as building blocks for the lossless
MMs with strong magnetic response at optical frequencies.

9.2.7 Linear and Nonlinear Response of SQUIDs [18, 19]

The behavior of SQUID coupled with an RF resonator [19] also falls in the range of
phenomena described by the model. In this particular case the dynamics of SQUID
is governed by the direct interaction with the resonator without influence from the
external field:
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d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�N

�h

dN
dt þ N�N0ð Þ

s1
¼ iax ~x~q12�~x�~q�12ð Þþ ilQS A~q12�A�~q�12ð Þ

2�h

2 c� ixð Þ d~xdt þ x2
0 � x2 � 2ixc

� �
~x ¼ aq~q�12 þ vA

8>>>><
>>>>:

ð9:18Þ

9.3 Extension on the Case of Double Wires Based
Metaatoms (Metaatoms with Magnetic Response)

Among possible applications of the nanolaser it was proposed to achieve generation
using non emitting (dark) modes of the plasmonic resonators. It was claimed that
the lasing with the dark modes should have lower threshold, and consequently has
to be achieved at lower pump levels [20]. Here a combination of cut wires (see
Fig. 9.3b) and interaction of this structure with the QS is considered. The system of
two coupled oscillators possesses symmetric (dipole like) and asymmetric
(quardupole-like) modes with different respective eigenfrequencies xsym and xasym.
The transition frequency of the QS x21 can be adjusted in order to match the
respective eigenfrequency and consequently provide maximum interaction effi-
ciency. In order to elaborate the respective system of equations in analog with
(9.14), it is necessary to substitute the single harmonic oscillator by two coupled
harmonic oscillators, as it has been done for the double wires MAs in [7]. It
is assumed also that only one nanoresonator is coupled with the QS, and the
dynamics of the second nanoresonator is driven by the coupling with the first one;
the slowly varying approximation remains the same (9.12), and the both coupled
nanoresonators are assumed to be equivalent, i.e. eigenfrequencies x0 and loss
coefficients c for the both nanoresonators are the same. The resulting system of
equations is:

(a) (b)

Fig. 9.3 Schematic of the modelled active hybrid MM with QS: a dipole-like MA (one
nanoresonator), b quadrupole-like MA (two coupled nano-resonators, separated by dielectric
layer). The electric field is polarized along the long side of the wires. QSs are shown by the red
circles on the top of the upper nanoresonators
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d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�1N

�h þ ilQSA
�N

�h þ nq

dN
dt þ N�N0ð Þ

s1
¼ iax ~x1~q12�~x�1~q�12ð Þþ ilQS A~q12�A�~q�12ð Þ

2�h

2 c� ixð Þ d~x1dt þ x2
0 � x2 � 2ixc

� �
~x1 þ rx2 ¼ aq~q�12 þ vA1 þ nx1

2 c� ixð Þ d~x2dt þ x2
0 � x2 � 2ixc

� �
~x2 þ rx1 ¼ vA2 þ nx2

8>>>>>>><
>>>>>>>:

ð9:19Þ

The phenomenological constant r describes coupling between the nanores-
onators through the near field, and A1; 2 are the fields acting on the upper and lower
nanoresonator. The symmetric and asymmetric oscillation modes (keeping in mind
symmetric and asymmetric eigenfrequencies xsym ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ r
p

and xasym ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � r
p

respectively) can be straightforwardly introduced according to:

ms ¼ ~x1 þ~x2
ma ¼ ~x1 � ~x2

�
ð9:20Þ

In these new variables system (9.19) becomes:

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax m�

s þm�
að ÞN

2�h þ ilQSA
�
1N

�h þ nq

dN
dt þ N�N0ð Þ

s1
¼ iax ms þmað Þ~q12� m�

s þm�
að Þ~q�12ð Þþ ilQS A1~q12�A�

1~q
�
12ð Þ

4�h

2 c� ixð Þ dms
dt þ x2

0 � x2 � 2ixcþ r
� �

ms ¼ aq~q�12 þ v A1 þA2ð Þþ nms

2 c� ixð Þ dma
dt þ x2

0 � x2 � 2ixc� r
� �

ma ¼ aq~q�12 þ v A1 � A2ð Þþ nma

8>>>>>>><
>>>>>>>:

ð9:21Þ

In case of the absence of the external field A, system (9.21) describes dynamics
of the “multipole spaser”, where one of the mode ms is coupled with the external
space (bright mode) while the other one ma is to the first approximation not coupled
with the far field zone (dark mode) and generates magnetic moment and magnetic
field between the nanoresonators:

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax m�

s þm�
að ÞN

2�h þ nq

dN
dt þ N�N0ð Þ

s1
¼ iax ms þmað Þ~q12� m�

s þm�
að Þ~q�12ð Þ

4�h

2 cs � ixð Þ dms
dt þ x2

0 � x2 � 2ixcs þ r
� �

ms ¼ aq~q�12 þ nms

2 ca � ixð Þ dma
dt þ x2

0 � x2 � 2ixca � r
� �

ma ¼ aq~q�12 þ nma

8>>>>>>><
>>>>>>>:

ð9:22Þ

The dark mode ma has less radiative losses ca\cs and thus has lower generation
threshold (see Chap. 12).
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9.4 Modeling of Metamaterials Made of Plasmonic
Metaatoms Coupled with Quantum Elements

In this part a propagation equation for the EM wave in a MMs with MAs, consisting
of coupled plasmonic resonators and QS will be elaborated. The approach is the
natural extension of the multipole one, developed in this work and allows us to
investigate bulk properties of the MMs with gain and saturation type of nonlinearity
and in the presence of a magnetic response. This approach creates a solid basis
which can be used for qualitative consideration of all most important problems
appearing in case of consideration of the plane wave propagation in MMs with gain
or, more generally, in case of MAs consisting of plasmonic nanoresonators, coupled
with QS. The MMs with MAs depicted in Fig. 9.2 are considered.

Elaboration of the propagation equation is the same as in case of the passive
MAs [7]. The charge dynamics of the MAs becomes in this case more complicated
and is described by system (9.14) for dipole-like MAs (Fig. 9.2a) or (9.22) for
quadrupole-like MAs (Fig. 9.3b). From the other side, the propagation equation for
the field and the calculation algorithm for the multipoles remain the same (see also
4.3), and the full system of equations for the case of quadrupole-like particles
(Fig. 9.3b) and CW operation is:

@2Ex
@y2 þ x2

c2 Ex þ 4pPxðy; q12;xÞð Þþ i4px
c

@Mzðy;q12;xÞ
@y ¼ 0

Pxðy; q12;xÞ ¼ gqms � @Qxy

@y

Qxyðy; q12;xÞ ¼ gqy1ma

Mzðy; q12;xÞ ¼ ixgqy1
c ma

d~q12
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1
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� �
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2�h þ ilQSE
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�h þ nq

dN
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2 c� ixð Þ dms
dt þ x2

0 � x2 � 2ixcþ r
� �
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dt þ x2
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� �

ma ¼ aq~q�12 þ v Ex;1 þEx;2
� �þ nma

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð9:23Þ

here A is the electric field in the propagating wave, A1 and A2 are the electric field
at upper and lower nanowires respectively, Px is the medium polarizability caused
by a dipole and quadrupole contributions, while Q and M describe impact of
higher order multipoles, giving rise the MMs effects. In this equation all multipole
terms are functions of the non-diagonal element q12, which comes to the mul-
tipole moments through the interaction term in the mode dynamics equations of
system (9.23). For the case of dipole-like MAs (Fig. 9.2a) system (9.23) is
reduced to:
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@2Ex
@y2 þ x2

c2 Ex þ 4pPxðy; q12;xÞð Þ ¼ 0

Pxðy; q12;xÞ ¼ gqms

2 c� ixð Þ dms
dt þ x2

0 � x2 � 2ixc
� �

ms ¼ aq~q�12 þ 2vEx þ nms

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iaxm�

sN
2�h þ nq

ilQSE
�
xN

�h

dN
dt þ N�N0ð Þ

s1
¼ iax ms~q12�m�

s ~q
�
12ð Þþ 2ilQS Ex~q12�E�

x ~q
�
12ð Þ

4�h

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9:24Þ

The results of solution of (9.23) will be given in Chap. 12.

9.5 Conclusion

The multipole approach, initially suggested and developed for the MM with the
classic MA (MA with charge dynamics successfully described in the frame of the
classical physics) has been extended on the case of the quantum MM, where
quantum physics appeared to be necessary for adequate modelling of the dynamics
of MAs. The MAs, consisting of coupled plasmonic nanoresonator and QS,
described by the density matrix formalism, is shown to be an appropriate object,
which serves as a basis for modelling various physically realizable systems.
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Chapter 10
Application of the Model of “Quantum”
Metamaterials: Metamaterial Caused
Enhancement of Nonlinear Response

10.1 Modeling of Metamaterials Caused Enhancement
of Nonlinear Response

10.1.1 Model Adaptation

In this chapter, the first demonstration of exceptional light-with-light optical
switching performance of the carbon nanotube MM—hybrid nanostructure of
plasmonic MM hybridized with semiconducting single-walled carbon nanotubes
(CNT) is provided. Modulation depth of 10% in the near-IR with sub-500 fs
response time is achieved with the pump fluency of just 10 lJ/cm2, which is order
of magnitude lower than in previously reported artificial nanostructures. Since
spectral position of the excitonic response and MM plasmonic resonance can be
adjusted by using CTNs of different diameter and scaling MM design, the giant
nonlinear response of the hybrid MM—in principle—can be engineered to cover
the entire second and third telecom windows, from O to U-band.

Application of our approach is illustrated for the modelling of enhanced non-
linear optical response demonstrated recently in a plasmonic MMs combined with
carbon nanotubes (CNT) [1], see Fig. 10.1. In such a hybrid quantum-classical
system the MM structure works as a light concentrator enhancing optical fields
locally, which are coherent with the incident field and also affect the response
dynamics of CNT. In the resonance case the intensity of the local fields can become
significantly higher than that of the incident wave and therefore substantially affect
the dynamics of CNT response. The nonlinearity of CNT appears due to the sat-
uration induced by the direct pumping of such a two-level-like quantum system and
basically requires neither positive N0 nor presence of a nanoresonator. The
enhancement of the nonlinearity is caused by the addition pumping channel, where
the external field transfers energy to CNT through the nanoresonator. This is
described by the term iaxx�N

�h in the first equation of system (9.17).
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In order to solve (9.17) analytically we assume that the plasmonic resonator is
driven mainly by the external electric field:

dq12
dt þ q12

1
s2
þ i x� x21ð Þ

� �
¼ iaxx�N

�h þ ilQSA
�N

�h

dN
dt þ N�N0ð Þ

s1
¼ iax xq12�x�q�12ð Þþ ilQS Aq12�A�q�12ð Þ

2�h

2 c� ixð Þ dxdt þ x2
0 � x2 � 2ixc

� �
x ¼ vA

8>><
>>: ð10:1Þ

Both eigenfrequencies x21 and x0 are the resonance frequencies of CNT and the
MM respectively and can vary independently; ax � lCNTlMM, aq � lCNTv, lCNT
is the CNT dipole moment for the band gap transition, lMM is the effective MM
dipole moment.

Below we consider the case of CW excitation as an approximation of the
pumping regime used in [1]:

q12
1
s2
þ i x� x21ð Þ

� �
¼ iaxx�N

�h þ ilQSA
�N

�h

N�N0ð Þ
s1

¼ iax xq12�x�q�12ð Þþ ilQS Aq12�A�q�12ð Þ
2�h

x2
0 � x2 � 2ixc

� �
x ¼ vA

8>><
>>: ð10:2Þ

Our goal is to express q�12 and find the effective dielectric constant of CNT layer

eCNT ¼ e1 þ ie1 ¼ 1þ 4p nCNT
lCNTq

�
12

A þ nMM
qx
A

� �
as a function of all parameters

ECS

EQS

µMM
µCNT

EEXT

Carbon
nanotubes 

(QS)

Plasmonic
nanoresonators (CS)

Fig. 10.1 Schematic of the modelled active hybrid MM with quantum ingredients: an array of
plasmonic nanoresonators (Classic System—CS) covered with a layer of carbon nanotubes
(Quantum System—QS). ECS is the local field acting on the carbon nanotubes, which is produced
by the dipole moments induced in the MM nanoresonators; EQS is the local field acting on the
nanoresonators, which is produced by the dipole moments induced in the carbon nanotubes [2]
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and intensity (the second term in brackets appears due to the MM itself); here nCNT
and nMM are the concentrations of CNT and MAs respectively. The imaginary part
of the dielectric constant is responsible for the losses and its intensity and frequency
dependence could be compared with the experiments.

In order to make expression for the dielectric constant more compact we com-
bine the resonant factors that will often appear in the text introducing the following
parameters:

Rx ¼ x2
0 � x2 � 2ixc; Rxj j2¼ x2

0 � x2
� �2 þ 4x2c2

Rq ¼ 1þ i x� x21ð Þs2; Rq

�� ��2¼ 1þ x� x21ð Þ2s22
F1 ¼ x2

0 � x2 � 2xc x� x21ð Þs2
F2 ¼ x2

0 � x2 þ 2xc x� x21ð Þs2
F3 ¼ x2

0 � x2

8>>>>>>>><
>>>>>>>>:

ð10:3Þ

We also introduce coupling constant rCNT ¼ axv
lCNT

. The expressions containing

the non-diagonal element of the density matrix are given by:

q12 ¼ �iNs2lRq

�h Rqj j2 1þ rCNT
R�
x

� �
A

Aq12 � A�q�12 ¼ 2iNs2l Aj j2
�h Rqj j2 1þ rCNTF1

Rxj j2
� �

xq12 � x�q�12 ¼ i2vNs2l Aj j2
�h Rxj j2 Rqj j2 rCNT þF2ð Þ

8>>>>>><
>>>>>>:

ð10:4Þ

We finally arrive at a compact expression for the population as a function of the
external field:

N ¼ N0

1 þ Aj j2
Asj j2

¼ N0

1 þ S
ð10:5Þ

where:

Asj j2¼ As;0j j2 Rqj j2
1þ rCNT rCNT þF3ð Þ

Rxj j2
; As;0

�� ��2¼ �h2

ls1s2

S ¼ Aj j2
Asj j2 ¼ S0

1þ rCNT rCNT þF3ð Þ
Rxj j2

Rqj j2
" #

; S0 ¼ Aj j2
As;0j j2

8>>>><
>>>>:

ð10:6Þ

Here S0 and S account for the saturation and enhanced saturation respectively.
Taking into account (10.4) we obtain the following final expression for the
dielectric constant for the entire hybrid system of the CNT layer modified in the
presence of the MM:

10.1 Modeling of Metamaterials Caused Enhancement … 207



eCNT þ ex ¼ e1 þ ie2

e1 ¼ e0;1 þ 4pnCNTs2l2CNTN0

�h Rxj j2 1þ Sð Þ x� x21ð Þs2 þ 2xcrCNT
Rxj j2

� �
þ 4pnMMqvF3

Rxj j2

e2 ¼ � 4pnCNTs2l2CNTN0

�h Rxj j2 1þ Sð Þ 1þ rCNTF1

Rxj j2
� �

þ 8pqnMMvxc
Rxj j2

8>>>>>><
>>>>>>:

ð10:7Þ

here eCNT; ex are the contribution of the CNT and plasmonic nanoresonators
respectively.

The prediction of our model can be compared with the experimental results [1]
in terms of optical losses induced in CNT layer, which are reflected by the imag-
inary part of its effective dielectric constant (10.7). The relative absorption of light,
LCNT, has to be calculated according to the following expression:

LCNT ¼ 1� exp 2i
x
c
Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ ie2

p
d

� 	� �
ð10:8Þ

which allows us to describe the effect of nonlinearity enhancement quantitatively.
Here d is the effective thickness of the CNT layer; positive values of e2 correspond
to losses, negative—to amplification (the developed model allows us to consider
both cases).

Assuming that the imaginary part of eCNT is smaller compared to the real one, we
expand (10.8) into series:

LCNT ¼ 1� exp 2i
x
c
Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ ie2

p
d

� 	� �
� 1� exp �x

c
e2ffiffiffiffi
e1

p d


 �
ð10:9Þ

In order to be close to the experimental procedure in [1], we considered relative
change of absorption due to saturation in terms of the model parameters:

DLCNT
LCNT

� xd
c

e2ffiffiffiffi
e1

p
����
jAj2

� e2ffiffiffiffi
e1

p
����
0

 !
ð10:10Þ

We also assume for simplicity that the real part of the dielectric constant remains
unchanged ðe1jjAj2¼ e1j0¼ e1;0Þ:

DLCNT
LCNT

¼ xd
c
ffiffiffiffiffiffiffi
e1;0

p e2 Aj j2
� �

� e2 0ð Þ
� �

\0 ð10:11Þ

First, the effect will be evaluated for the case when the resonance frequencies of
CNT and MM coincide, namely x ¼ x0 ¼ x21. The frequency dependent coeffi-
cients in this case become:
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Rxj j2¼ 4x2c2

Rq

�� ��2¼ 1

F1 ¼ 0

F2 ¼ 0

F3 ¼ 0

S ¼ S0 1þ r2CNT
4x2c2

h i

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10:12Þ

and the relative absorption change (10.12) becomes (no pumping of CNT,
N0 ¼ �1):

DLCNT
LCNT


 �
r 6¼0;Resonance

¼ � xd
c
ffiffiffiffi
e1

p 4ps2l2CNT
�h

1� 1
1þ S


 �
ð10:13Þ

In order to visualize the effect of the nonlinear response enhancement, it is
necessary to introduce a relative absorption change according to the following
expression:

DLCNT
LCNT

� �
rCNT 6¼0;Resonance

DLCNT
LCNT

� �
rCNT¼0;Resonance

¼
1þ S0 1þ r2CNT

4x2c2

� �
1þ S0ð Þ 1þ r2CNT

4x2c2

� � ð10:14Þ

which clearly demonstrates that the increase of the relative absorption change for
CNT in the presence of the MM (rCNT 6¼ 0) is bigger than for CNT alone
(rCNT ¼ 0). The respective dependence is presented in Fig. 10.2 (positive values in
Fig. 10.2 correspond to the decrease of absorption).

Fig. 10.2 Relative absorption (10.14) as a function of saturation parameter S0 ¼ Aj j2
As;0j j2 for

different values of coupling r2CNT
4x2c2 ¼ 0; 1; 2; 3 (“0”—blue line, “1”—red line, “2”—green line,

“3”—violet line). Note that positive values in Fig. 10.2 correspond to the decrease of absorption
[2]
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From (10.14) we can conclude the following:

1. The coupling of CNT to the plasmonic nanoresonator enhances the CNT non-
linearity (saturation intensity becomes effectively lower).

2. Losses in the nanoresonator reduce the enhancement effect (higher c lead to
higher saturation intensities).

3. The enhancement is more pronounced in the region of low saturation.

It is rather hard to estimate rCNT, but even under very conservative assumptions
its value can easily become large then xc� 1028 and, consequently the effect of
nonlinearity enhancement should be easily observed in the experiments.

It is important to discuss the contribution of the Purcell effect [3] to the nonlinear
response of the considered hybrid structure. The Purcell effect appears when the
quantum system interacts with the thermostat and is described in the frame of the
accepted here approach (see Sect. 9.1.2) by an extra coefficient P in the expressions
for the relaxation times 1

s1
¼ 1

s1;nr
þ P

s1;r
; 1
s2
¼ 1

s1
þD ¼ 1

s1;nr
þ P

s1;r
þD(s1;nr—is the

nonradiative relaxation time, s1;r—is the radiative relaxation time, P > 1—is the
Purcell factor, and D—is the extra term, giving difference between s1 and s2).

The both relaxation times become effectively shorter in the presence of the
nanoresonator and thus the Purcell effect causes the effective increase of the satu-
ration intensity—see (10.6). Here the effect of the relaxation time shortening due to
Purcell effect is not investigated in details; the mutual interplay between field
enhancement and Purcell caused relaxation time shortening requires further
investigation.

The following strategy has been adopted in order to assess the validity of the
proposed model. First the calculated and measured data for CNT layer alone will be
compared and CNT model parameters will be found from fitting the measured data.
Then the same procedure will be repeated for the MM without CNT to find the
model parameters for the nanoresonator. Finally, we consider coupling between
CNT and MM structure and analyse the outcome of the model for different values
of the coupling constant rCNT. Direct comparison between calculated and measured
data for the coupled system will be the subject of a separate work.

10.1.2 CNT Alone

It turns out, that experimentally measured absorption spectra of CNT layer exhibit
visible asymmetry [1], which can be explained by the fact that the absorption lines
of deposited CNTs have different central frequencies. The effect of such inhomo-
geneous broadening is not included into the density matrix formalism and has to be
taken into account by an additional averaging over respective probability distri-
bution function (PDF). We assume in our modelling that PDF of CNT consists of
two peaks, with both central frequency and bandwidth treated as the parameters that
can be found from fitting the experimental spectrum.
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The absorption spectrum in this case was calculated according to the following
expressions:

LCNT;HOMO x;x21ð Þ ¼ 1� exp 2i xc Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ ie2

p� 	
d

� �
eCNT þ ex ¼ e1 þ ie2

e1 ¼ e0;1 þ 4pnCNTs22l
2
CNTN0 x�x21ð Þ

�h Rqj j2 1þ Sð Þ

e2 ¼ � 4pnCNTs22l
2
CNTN0

�h Rqj j2 1þ Sð Þ

PDF x21ð Þ ¼ C1 exp � x�x21ð Þ2
2Dx2

1

� �
þC2 exp � x�x21ð Þ2

2Dx2
2

� �

LCNT; INHOMO xð Þ ¼ R1
0
LCNT;HOMO x; x21ð Þ � PDF x21ð Þdx21

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð10:15Þ

where the following values of the fitting parameters were used: x1 ¼ 9:9945�
1014 ðrad=sÞ;x2 ¼ 9:2174� 1014 ðrad=sÞ, Dx1 ¼ 1:65� 1010 ðrad=sÞ;Dx2 ¼ 5:2�
1010 ðrad=sÞ. The results of the related absorption spectra as a function of wave-
length and saturation level are presented in Fig. 10.3a; the respective PDF is given
in Fig. 10.3b.

10.1.3 Metamaterial Alone

For retrieving MM parameters we used expressions similar to (10.15) but without
invoking the PDF-based averaging procedure:

Fig. 10.3 a Calculated absorption spectrum of the CNT for different values of saturation

parameter S0 ¼ Aj j2
As;0j j2. The experimental data coincide one to one with the unsaturated line (blue

line) and is not shown separately; b the PDF used to calculate the absorption spectrum [2]

10.1 Modeling of Metamaterials Caused Enhancement … 211



LMM x;x21ð Þ ¼ 1� exp 2i xc Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ ie2

p� 	
d

� �
eCNT þ ex ¼ e1 þ ie2

e1 ¼ e0;1 þ 4pnMMqv x2
0�xð Þ

Rxj j2

e2 ¼ 8pnMMqvc
Rxj j2

8>>>>>>><
>>>>>>>:

ð10:16Þ

Note that the calculated absorption spectrum of the MM does not match the
experimental one reported in [1], which is stipulated by a very simple model for the
plasmonic MM, based on a single harmonic oscillator. As it can be seen from
(10.16), the spectrum dependence of the absorption is given by the function Rxj j2,
and in order to achieve a good match between the observed and calculated MM
spectral response it is necessary to either consider a set of several coupled oscil-
lators [4], or just choose an appropriate fitting function for Rxj j2. Here we limit
ourselves to demonstrating the adequateness of our very simple model.
Correspondingly, in what follows we exploit the calculated absorption spectrum of
the MM structure shown in Fig. 10.4. It is worth noting that in the presence of CNT
layer the central frequency of the MM absorption peak will be shifted, reflecting the
fact that the plasmon resonance frequency depends on the dielectric constant of the
environment. This effect is not included in our model itself, but it is taken into
account by the fact that the central frequency x0 is a fitting parameter.

10.1.4 CNTs Combined with Metamaterial

Here we present the results of modelling the enhancement of CNT nonlinearity
based on the values of the fitting parameters retrieved in two previous sections; the
only parameter that could not be determined using the experimental data is the
coupling constant rCNT which is the subject of a separate consideration.

We consider two possible realisations of CNT coating: (i) with purely homo-
geneous distribution of CNT parameters over the MM surface (PDF in Fig. 10.3b

Fig. 10.4 Calculated
absorption spectrum of the
MM [2]
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becomes delta function), and (ii) inhomogeneous, when each CNT has different
eigenfrequency and oscillates with eigenphase shifted relative to the incoming field
as well as local field of the MM nanoresonator. In homogeneous case we do not
take into account spatial distribution of the CNT eigenfrequency in the calculation
of absorption, which means that we can simply sum up effective dielectric constants
of CNT and MM layers when calculating their combined response. In inhomoge-
neous case the contribution to the absorption from the CNT molecules becomes not
fully coherent and has to be taken into account separately from that of the MM. This
can be done by summing up the refractive indexes of CNT and MM instead of their
dielectric constants.

As can be seen from Fig. 10.2, the effect of the nonlinearity enhancement is
mostly pronounced for small saturation values.

The homogeneous case is described by the following system of equations:

LCNT&MM;HOMO x;x21ð Þ ¼ 1� exp 2i xc Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ ie2

p� 	
d

� �
eCNT þ ex ¼ e1 þ ie2

e1 ¼ e0;1 þ 4pnCNTs2l2N0

�h Rxj j2 1þ Sð Þ x� x21ð Þs2 þ 2xcrCNT
Rxj j2

� �
þ 4pnMMqv x2

0�x2ð Þ
Rxj j2

e2 ¼ � 4pnCNTs2l2N0

�h Rxj j2 1þ Sð Þ 1þ rCNTF1

Rxj j2
� �

þ 8pqnMMvxc
Rxj j2

8>>>>>>><
>>>>>>>:

ð10:17Þ

while for incoherent case:

LCNT&MM;HOMO x; x21ð Þ ¼
1� exp 2i xc Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1;CNT A þ ie2;CNT A

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1;CNT x þ ie2;CNT x

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1;x þ ie2;x

p� 	
d

� �
e1;CNT A ¼ e0;1 þ 4pnCNTs2l2N0

�h Rxj j2 1þ Sð Þ x� x21ð Þs2
e2;CNT A ¼ � 4pnCNTs2l2N0

�h Rxj j2 1þ Sð Þ

e1;CNT x ¼ � 4pnCNTs2l2N0

�h Rxj j2 1þ Sð Þ
2xcrCNT

Rxj j2

e2;CNT x ¼ � 4pnCNTs2l2N0

�h Rxj j2 1þ Sð Þ
rCNTF1

Rxj j2

e1;x ¼ 4pnMMqv x2
0�x2ð Þ

Rxj j2

e2;x ¼ 8pqnMMvxc
Rxj j2

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð10:18Þ

Here e1;CNT A;e2;CNT A, corresponds to CNT driven by the external field,
e1;CNT x;e2;CNT x is the CNT contribution due to the local field of the nanores-
onators, and e1;x; e2;x are the effective dielectric constants of the MM alone.

Figure 10.4 presents the results of our calculations for the homogeneous and
inhomogeneous cases with the saturation parameter set to 3. For comparison we
also present here the absorption of the MM alone (red curve in Fig. 10.5).
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The absorption spectra of the CNT-coated MM are red shifted with respect to the
uncoated structure due to the fact that CNT effectively increase the density of the
dielectric environment for the nanoresonators. In order to demonstrate the effect of
the MM on the absorption change due to saturation, we plotted the normalised
absorption change DLCNT&MM

LCNT&MM
, shown in Fig. 10.6.

Figure 10.6 clearly demonstrates that in homogeneous case the effect appears to
be more pronounced, which leads to the general requirement of maximizing the
homogeneity of the deposited CNT layer.

10.2 Experimental Investigation of Enhancement
of Nonlinear Response in Carbon Nano Tubes (CNT)

10.2.1 Introduction

Nanoscale sized ultrafast optical modulators are key elements for development of
integrated all-optical signal processing circuits. Ultrafast modulation of the light

Fig. 10.5 Absorption spectrum of CNTs combined with MM for a homogeneous and

b inhomogeneous cases. Saturation parameter S0 ¼ Aj j2
As;0j j2 ¼ 3 [2]

Fig. 10.6 Normalised absorption change spectrum of CNTs combined with MM for a homoge-

neous and b inhomogeneous cases. Saturation parameter is S0 ¼ Aj j2
As;0j j2 ¼ 3 [2]
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with light on the nanoscale is a challenging task: optical nonlinearities in con-
ventional nonlinear materials are generally too weak to alter intensity of the light
significantly on the sub-wavelength scale [5], semiconductor based devices suffer
from slow response time [6] and propagating surface plasmon based structures
capable of efficient ultrafast light modulation have lm-scale dimensions [7].
Nanoscale sized devices with improved nonlinear optical properties can be engi-
neered with the use of MMs—artificial media offering wide and rapidly expanding
range of new photonic functionalities [8]. Few MM-based structures featuring
enhanced all-optical switching properties in THz [9] and near-IR [10, 11] spectral
regions have been demonstrated recently. In these studies enhanced switching
performance is achieved in MM structures hybridized with active nonlinear media.
In such hybrid structures small changes in the refractive index of active medium
induced by non-resonant photoexcitation tune MM plasmonic resonance which
results in significant modulation of MM transmission near the resonance. Another
powerful opportunity for enhancement of nonlinear optical response of MM-based
structures, not widely implemented so far, is in exploiting effects of resonant
concentration of local fields in the vicinity of MM [12, 13]. Recently we have
introduced carbon nanotube MM [1]—hybrid structure of plasmonic MM with
semiconducting single-walled carbon nanotubes (CNTs) which employs combina-
tion of both mentioned above approaches for enhancement of nonlinear optical
response. This is achieved by spectral matching of absorption resonance of non-
linear active medium (CNTs) with MM plasmonic resonance. Nonlinear optical
response of the CNT MM is defined by the effect of MM transmission modulation
as a result of changes in the refractive index of active medium; however nonlinear
response of active medium itself is significantly enhanced by concentration of local
fields in MM under the conditions of resonant excitation. We show that this result in
the substantial improvement of nonlinear optical performance of the CNT MM in
comparison with the other previously reported analogous structures.

Our choice of using semiconducting single-walled CNTs as an active medium
was dictated by nanotubes’ unique nonlinear optical properties: in addition to high
third-order susceptibility at the excitonic absorption resonances CNTs exhibit
sub-picosecond recovery time [14, 15] making them extremely promising material
for applications in ultrafast all-optical modulators.

10.2.2 Experiment

Plasmonic nanostructure used in the CNT MM is formed by array of asymmetri-
cally split ring resonators and belongs to the class of MMs where weak coupling of
the plasmonic excitation mode to the free-space radiation modes creates narrow
resonances with asymmetric, Fano-like dispersion [16, 17]. This type of MM res-
onances features high quality factor and is strongly sensitive to the local environ-
ment [17]. High value of quality factor is crucial for efficient concentration of local
fields while sensitivity of the MM resonance to the local environment facilitates
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significant changes of MM transmission in response to small nonlinear changes of
refractive index of the CNTs layer. MM structure shown in Fig. 10.1a was fabri-
cated by focused ion beam milling in a 50 nm thick gold film deposited on a
100 nm thick Si3N4 membrane. The nanostructure was then covered by *50 nm
thick layer of CNTs using spray-coating technique. We used purified single-walled
CNTs with the average diameter of 1.4 nm synthesized by the electric arc discharge
method. This method produces natural mixture of CNTs with the 2 to 1 ratio of
semiconducting to metallic CNTs. To enable comparison of nonlinear optical
response of the CNT MM with the response of CNTs we have fabricated square
window in the gold film next to the MM array so the layer of CNTs formed during
deposition process had the same thickness on the MM and on the Si3N4 membrane
window. More details on the CNT MM sample fabrication and characterization by
scanning helium ion microscope can be found elsewhere [1]. Spectral position of
the plasmonic resonance of uncovered MM kp depends on the period of MM
D while deposition of the layer of CNTs on the top of MM results in a redshift of
plasmonic absorption peak to kp, as can be seen from Fig. 10.7b. The structure with
the period D = 839 nm where plasmonic resonance in hybrid structure (after CNTs
deposition) is spectrally matched to the CNTs excitonic absorption resonance has

Fig. 10.7 Carbon nanotube MM. a Scanning helium ion microscope image of the plasmonic MM
covered by CNTs. Inset shows image of two unit cells of uncovered MM. b Left scale—plasmonic
absorption resonances of uncovered metamaterial (black) and MM covered by CNTs (blue). Right
scale—excitonic absorption spectra of the bare CNTs layer (wine). c Transmission spectra of
uncovered MM (black) and MM covered by CNTs (blue). Presented spectra were measured on
CRAIC microspectrometer and correspond to the linear (low intensity) regime [18]
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been selected. Nonlinear optical response of the CNT MM was investigated by
degenerate (single-colour) non-collinear pump-probe. Both pump and probe beams
from tunable 200 fs OPO system pumped by Ti:Sapphire laser operating at
80 MHz were focused to diameters of *30 lm. MM array has smaller size
(22 � 22 lm2) so it was illuminated uniformly by both pump and probe beams.
Intensity of the probe pulse was 10–20 times weaker than the intensity of the pump
pulse. Optical response of MM is polarization sensitive and the direction of linear
polarization of both pump and probe beams were chosen to excite dark mode
resonance in MM.

10.2.3 Results

The nonlinear changes of transmission DT=T of the CNT MM have been retrieved
at few delays after the pump pulse (shown in Fig. 10.8). Differential transmission
spectrum measured on the bare CNTs layer at the same pump fluency is shown in
Fig. 10.8 by open circles for comparison. From experimental data shown in
Fig. 10.8 one can see that the nonlinear optical response of the CNT MM has
complex sign-changing spectral dispersion, and modulation depth DT=T in the
CNT MM is much higher than in the bare CNTs layer.

Observed transient nonlinear dynamics of the CNT MM replicates the dynamics
of CNTs: biexponential decay of nonlinear optical response of CNTs was reported
in a number of studies where fast component was assigned to the intra-band, and the
slow component—to the inter-band carrier relaxation in CNTs [19–21]. For
potential applications in all-optical switching it is important that the fast component

Fig. 10.8 Differential
transmission spectra of the
CNT MM (solid symbols)
taken at 0 (black circles), 0.5
(red squares), 1 (blue
diamonds) and 2 ps (green
triangles) after the pump
pulse. Differential
transmission spectrum of the
bare CNTs layer measured at
0 ps is shown by open circles.
Arrows indicates spectral
regions (FWHM) of MM
(covered by CNTs) plasmonic
(kp) and CNTs excitonic (k11)
resonances [18]
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provides major contribution to the nonlinear dynamics of both bare CNTs layer and
CNT MM.

In contrast to previously reported MM-based optically switching devices [10,
11] in the CNT MM active medium is excited resonantly at the MM plasmonic
resonance thus providing opportunity of enhancement of nonlinear optical response
of the hybrid structure due to field concentration in plasmonic resonator. To
evaluate the effect of the local field enhancement we have compared power
dependencies of nonlinear changes of transmission of the CNT MM and the bare
CNTs layer. The prime nonlinear optical process in single-walled semiconducting
CNTs is saturable absorption which originates from filling of the exited resonant
excitonic states and associated with the third-order optical nonlinearities [22] and
can be described in a simple two-level saturable absorber model [23].

For the bare CNTs layer from fitting of experimental power dependence satu-
ration fluence was estimated to be 15 lJ/cm2 at 1960 nm which is in agreement
with previously reported saturation fluencies in thin CNTs films ranging from
9.5 lJ/cm2 [21] to 57 lJ/cm2 [24]. From the experimental data it can be seen that
power dependencies of nonlinear optical response of the CNT MM follows
essentially the same saturation law described by (10.6) with lower in compare with
bare CNT Isat. Fit of experimental data for the CNT MM at 1820 and 1960 nm
gives close saturation fluencies of 5.5 and 5.2 lJ/cm2, correspondingly, which is
*3 times lower than saturation fluence of the bare CNTs layer measured at
1960 nm. Observed significant decrease of the saturation intensity in the CNT MM
as compared to the bare CNTs layer provides experimental evidence for enhance-
ment of nonlinear optical response (see Fig. 10.2) of the layer of CNTs placed in
the vicinity of MM due to local field concentration in plasmonic resonator.

10.2.4 Discussion

Nonlinear optical response of the CNT MM can be explained by taking into account
interaction between MM plasmonic and CNTs excitonic resonances. Plasmonic
resonance of uncovered MM kp appears at *1800 nm as a sharp feature in
transmission and corresponding peak in the absorption spectrum (see Fig. 10.7b, c).
Deposition of the CNTs layer on MM results in redshift Dk ¼ k�p � kp and damping
of MM plasmonic resonance (compare spectra for uncovered MM and MM covered
by CNTs in Fig. 10.7b, c). Redshift is originated from the real part of refractive
index of highly polarizable CNTs while damping is subject to absorption of plas-
mon evanescent waves in the layer of CNTs and defined by the imaginary part of
CNTs’ refractive index. We have checked experimentally that the optical response
of uncovered MM is linear in the range of wavelengths and fluencies used in our
study. Accordingly, nonlinear optical response of the CNT MM is governed by
nonlinear processes in the layer of CNTs. Excitonic absorption resonance k11 of
CNTs is spectrally overlapped with the plasmonic resonance k�p of MM covered by
CNTs. In the nonlinear regime this leads to the two effects: (i) nonlinear optical
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response of CNTs is enhanced due to resonant concentration of local field in
plasmonic resonator, (ii) decrease of absorption (bleaching) in CNTs and associated
changes of the real part of refractive index of CNTs leads to recovery of MM
plasmonic resonance towards resonance of uncovered MM. This results in the
complex spectral dependence of nonlinear changes of transmission of the CNT MM
containing spectral regions with positive and negative values of DT=T . In the
presented in part 10.1 model this effect is not taken into account and does not
appear in resulting curves in Fig. 10.6. The experimentally observed spectral dis-
persion of nonlinear optical response of the CNT MM was reproduced in numerical
simulations in COMSOL. To do this we have first calculated linear optical response
of uncovered MM using parameters of real MM structure (thicknesses and dielectric
constants of gold and Si3N4 membrane and geometry of MM slits). Calculated
transmission and absorption spectra show good correspondence with the experi-
mental data (compare corresponding curves in Figs. 10.9 and 10.7). To calculate
optical response of the hybrid structure 50 nm thick layer of dielectric have been

Fig. 10.9 Modelling of nonlinear optical response of the CNT MM. a Absorption (left scale) and
real part of refractive index (right scale) of the layer of CNTs in the CNT MM at low (black solid
line) and high (red dotted line) excitation intensities. b Absorption of uncovered MM (black) and
the CNT MM (blue) at low intensities. c Transmission of uncovered MM (black) and MM covered
by CNTs at low (blue solid line) and high (red dotted line) excitation intensities. d Comparison of
calculated (solid line) and experimental (circles) spectral dispersion of DT/T of the CNT MM [18]
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added to simulations representing layer of CNTs on the top of MM. Nonlinear
optical response of layer of CNTs which defines nonlinear response of the whole
hybrid structure was taken into account in two different spectral dispersions of
refractive index of CNT layer corresponding to low (linear limit) and high (non-
linear regime) intensities of incident light. Dispersions of the imaginary part of
refractive index of CNTs were retrieved from experimental data and dispersions of
real part of refractive index were then calculated using Kramers-Kronig relation.
For the linear limit (low intensity) experimentally measured absorption spectra of
the bare CNTs layer shown on Fig. 10.7b has been used (see also Fig. 10.3).
Absorption spectra of the layer of CNTs on plasmonic resonator at high intensity
shown in Fig. 10.9a by red dotted line was estimated taking into account linear
absorption and differential transmission spectra of the bare CNTs layer (shown in
Fig. 10.8), and rescaling factor originating from field enhancement. Resulting
transmission spectra of the hybrid structure calculated for low and high incident
intensities are shown in Fig. 10.9c by blue solid and red dotted curves, corre-
spondingly. Ratio of these two spectra shown in Fig. 10.9d by solid black line
represents simulated nonlinear changes of transmission of the CNT MM. Calculated
dispersion of nonlinear optical response of the CNT MM contains spectral regions
with positive and negative signs of DT=T and is in excellent agreement with
experimental data. We note that two fitting parameters were used in our simulations
to achieve good quantitative correspondence with the experimental data. These
parameters are average value of the real part of refractive index of CNTs layer
across the absorption resonance and rescaling factor defining amplitude of
absorption of CNT layer on the plasmonic resonator at high intensity of incident
light (in the nonlinear regime). First parameter defines spectral shift and the second
one—amplitude of the calculated spectral dependence of DT=T while its shape does
not change much with used small variations of fitting parameters.

Discussed above considerations and results of numerical simulations refer to
steady state corresponding to the continuous pumping of theCNTMM.Tounderstand
experimentally observed nonlinear dynamics it is important to point out the fact that
the recombination of excited carriers in CNTs is essentially non-radiative.

From microscope image shown in Fig. 10.7a it is seen that most of the CNTs in
the hybrid structure are aggregated in bundles. It is well established that while in the
individual (suspended) CNTs efficient band gap photoluminescence (PL) can be
observed, in bundled CNTs PL appears to be strongly quenched [25]. The reason
for PL quenching in CNTs bundles is suggested to be inter-tube energy transfer
from the semiconducting to the metallic nanotubes within each bundle, followed by
rapid non-radiative carrier cooling in the metallic nanotubes [25]. It has been shown
recently that in a hybrid structure where MM plasmonic resonance is coupled to
optically active resonances in PbS quantum dots cavity quantum electrodynamics
Purcell effect leads to multifold enhancement of PL intensity [26] and, presumably,
to the acceleration of recombination rate in quantum dots. In contrast the rate of
non-radiative recombination in the CNTs layer in the CNT MM is not affected by
the presence of MM nano-resonator despite the strong resonant coupling between
CNTs excitonic and MM plasmonic resonances in the hybrid structure. In the
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coupled system of the CNT MM energy can be transferred from plasmonic res-
onator to CNTs. Manifestation of this energy transfer is the observed decrease of
saturation intensity of nonlinear optical response in the CNT MM as a result of
additional pumping of CNTs layer by local field concentrated in MM. Energy
transfer in opposite direction (from CNTs to plasmonic resonator) is negligible as
the excitation created in CNTs rapidly dissipates to the thermostat nonradiatively.
Non-radiative relaxation of excitation in the layer of CNTs on the timescale of few
hundreds of fs however is still much slower than the period of plasmonic oscilla-
tions in MM (few fs—corresponding to the light period of the laser pulse) and
decay of plasmonic oscillations (few tens of fs as can be estimated from quality
factor of plasmonic resonator: Q � 5.5 for MM covered by CNTs). It is thereby
assumed that the relaxation of excitation in CNTs layer adiabatically tunes plas-
monic resonance and, as a result, nonlinear dynamics of the CNT MM replicates the
dynamics in bare CNTs layer as it is observed in the experiment. We note that from
the point of view of applications for ultrafast light modulators bundling of CNTs
and quenching of PL can be considered as an advantage. Indeed, reported radiative
lifetimes in individual CNTs are typically lying in the range from 10 to 100 ps [19,
20, 27–29] while in bundled CNTs nonradiative relaxation occurs on
sub-picosecond scale [14, 15, 19, 21, 23]. Finally, we compare modulation char-
acteristics of the CNT MM with the characteristics of analogous nanoscale sized
ultrafast optical switching structures reported previously—Ag/a-Si/Ag fishnet
nanostructures [10, 11] and nanostructured gold medium [13]. First, we note that all
of the structures (including CNT MM) have comparable thicknesses (100–200 nm)
and transmission levels at the wavelength of modulated light (5–15%). As modu-
lation depth depends strongly on the pump fluence we compare pump fluencies
required to induce some fixed change of transmission. In Ag/a-Si/Ag nanostruc-
tures and the nanostructured gold medium close pump fluencies of 100 lJ/cm2 [10,
11] and 80 lJ/cm2 [13], correspondingly, required to induce modulation depth
DT=T ¼ 10%. In the CNT MM the same switching ratio is achieved with the order
of magnitude lower pump fluence of just 10 lJ/cm2. Such dramatic decrease of
switching fluence is achieved due to: (i) use of CNTs as nonlinear medium where
third-order nonlinear susceptibility is significantly enhanced due to quantum con-
finement of electron-hole motion on one-dimensional space [30] and (ii) concen-
tration of local fields in the plasmonic resonator resulting in additional pumping of
nonlinear medium. With increasing pump fluence modulation depth in Ag/a-Si/Ag
nanostructures and the nanostructured gold medium increases nearly linearly
reaching maximum reported value DT=T ¼ 70% at 900 lJ/cm2 [11]. In the
CNT MM we observed saturation of the modulation depth with the maximum value
estimated as DT=T ¼ 15%. Although saturation of the modulation depth limits
switching performance of CNT MM we believe it can be significantly improved by
optimizing thickness of CNTs layer and, especially, by using selected semicon-
ducting CNTs [31]. Indeed, value of DT=T in CNT MM is limited by non-saturable
absorption in CNTs. Metallic CNTs in the natural mixture of CNTs used in this
study do not contribute to the nonlinear optical response but induce additional
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losses. Accordingly, removing metallic CNTs from the mixture can significantly
improve switching characteristics of the CNT MM. Recovery time of the CNT MM
(<500 fs) defining switching speed is slightly shorter than recovery times of Ag/
a-Si/Ag nanostructures (750 fs [10] and 600 fs [11]) but significantly longer than
response time of the nanostructured gold medium (*40 fs [13]). When comparing
nonlinear characteristics of discussed above nanostructures it is important to note
that Ag/a-Si/Ag nanostructures can be switched only with the visible pump pulse,
necessary to photoexcite carriers above the a-Si band gap, while changes of
transmission are probed in the near-IR. This eliminates possibility of using Ag/a-Si/
Ag nanostructures as nonlinear optical devices working with the single laser beam.
On the contrary, nanostructured gold medium can be used as very efficient optical
limiter or saturable absorber, but it’s capabilities of light with light modulation are
limited by requirement for pump and probe beams to be coherent (this requirement
originates from the two-photon nonlinear absorption process employed in the
nanostructured gold medium [13]). In contrast, CNT MM can be both pumped and
probed with either coherent or frequency shifted beams in the near-IR and it can
also work as efficient nonlinear device with a single beam as it was shown in our
previous study [1]. From this comparison one can see that optical switching per-
formance of CNT MM has number of significant advantages in comparison with
previously reported devices with analogous functionalities.

10.3 Conclusion

An analytical model for describing complex dynamics of a hybrid system consisting
of interacting classical and quantum resonant structures has been developed. An
application of this model for enhancement of saturation nonlinearity in the system of
coupled CNT and MM has been demonstrated. The model adequately reproduces
absorption spectrum of the CNT layer alone taking into account inhomogeneous
distribution of the nanotubes’ absorption lines. The model clearly demonstrates the
effect of saturation nonlinearity enhancement due to the presence of the MM, and the
dependence of the effect on homogeneity of the CNT layer. It has to be pointed out
again that in the presented in part 10.1 analytical model the effect of MM resonance
position change power dependence x0 Sð Þ is not taken into account and does not
appear in the resulting curves in Fig. 10.6 (compare with Figs. 10.8 and 10.9d).

It has been experimentally demonstrated that the CNT MM possesses excep-
tional nonlinear optical properties in the near-infrared part of the spectrum—high
modulation depth on the nanoscale length at low switching power and ultrafast
relaxation time, exceeding characteristics of previously reported materials.
The CNT MM is spectrally flexible: while in the present study optical switching in
the spectral region around 1900 nm has been demonstrated, resonant nonlinear
properties of the CNT MM can be easily tuned in the spectral range of 1–2 lm with
CNTs of different diameter [32] and appropriately scaling the MM, thus covering
the entire second and third optical telecom spectral windows.
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Chapter 11
Application of the Model of “Quantum”
Metamaterials: Regular and Stochastic
Dynamics of Nanolaser (Spaser)

11.1 Introduction

One of the main drawbacks of plasmonic nanostructures, restricting their potential
application, is the intrinsic (ohmic) losses caused by the interaction of the free
electrons of the metal with thermostat (irreversible losses) and radiative losses. The
more localized light is to the metal surface, the more concentrated the plasmonic
field fraction is inside the metal resulting in the appearance of higher dissipative
losses [1]. Passive losses as a limiting factor was pointed out a rather long time ago
[2, 3] and only recently new materials have been suggested in order to mitigate the
losses [4–7]. Nevertheless, keeping in mind metal as a main candidate for the
plasmonic components, the only way to compensate the losses is to use optically
active materials in combination with the nanostructures [8–12].

The nanoresonator changes the radiative properties of the quantum system
coupled to the nanoresonator [13, 14] and can cause both enhancement [15, 16] or
inhibition [17] of spontaneous emission. Nevertheless, in the case of regular
dynamics of a nanolaser, spontaneous emission does not affect the dynamics when
operating well above threshold; influence of the Purcell effect on the stimulated
emission process is undistinguishable from the field enhancement effect and can be
taken into account by appropriate choice of the phenomenological coefficients in
the model.

The nanolaser dynamics is based on energy transfer from the excited quantum
emitter to the plasmons, and therefore depends strongly on the positioning of the
emitters near the nanoresonator [18]. For example, an appropriate positioning of the
emitters can enhance generation of bright and suppress generation of dark modes,
and vice versa [18, 19]. The emitters appear to be coupled with the plasmonic
modes from ones side and with the far field (radiative) modes from another one.
Moreover, the radiative losses can exceed dissipative ones by a factor of two [20,
21]. In the model developed here, the radiative losses are included in the damping
coefficient c for a plasmonic mode. An appropriate positioning of the emitters can
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redistribute energy transfer in favor of a plasmonic mode which is more effective
near sharp angles by a factor of ðkrÞ3, where k is the wave vector and r is the
curvature of the shape of the nanoresonator [22–24]. Nevertheless, positioning the
emitters too close to the metallic surface can cause quenching of inversion and so
must be additionally avoided [25].

The principles of nanolaser design is suggested and developed in [12, 26–28]
and was later experimentally realized in various different configurations [29–38].
First observed in gold nanoparticles (NPs) coated by dye-doped dielectric shells
[26], spasing action was reported in hybrid plasmonic waveguides [31], semicon-
ductor quantum dots on metal film [39, 40], plasmonic nanocavities and nanocavity
arrays [41–46], and metallic NPs and nanorods [47, 48] and recently was studied in
graphene-based structures [49]. Recent achievements in this area are summarized in
several review articles [8, 18, 50].

The small spaser size well below the diffraction limit gives rise to numerous
promising applications, e.g., in sensing [45] or medical diagnostics [48]. However,
most experimental realizations of spaser-based nanolasers were carried out in rel-
atively large systems, while only a handful of experiments reported spasing action
in small systems with overall size below 50 nm [30, 48].

Theoretical models of the nanolaser can be approximately divided by fully
numerical [51, 52] and semi-analytical [28, 53, 54], with the model developed here
belonging to the latter approach. In both versions, the quantum dynamics of the
emitters is described by the density matrix method [55] adopted for two, three, or
four level schemes. The main difference is in the description of the plasmonic
oscillations. In order to make the model treatable (at least to some extent) analyti-
cally, the plasmon dynamics has to be reduced to some version of the harmonic
oscillator equation, which finally results in the well-known point-like dynamic laser
model [56]. This model has been used many times for investigation of the laser
dynamics as a self-oscillating system, and as a modeling task for various problems of
nonlinear (including stochastic) dynamics, stability analysis, etc. [56–58]. To some
extent, this model describes especially well the nanolaser due to the monomode (or
two-mode) oscillation [59], while the usual “macro” laser tends to operate in mul-
timode regime. Nevertheless, there are several new tasks, which have not been
previously addressed, or have not been addressed fully or in a consistent manner.

The standard threshold condition for gain coupled to a resonance mode [56]
needs to be modified in realistic plasmonic systems [28, 60]. For example, it has
long been known that fluorescence of a molecule placed sufficiently close to a metal
surface is quenched due to the Ohmic losses in the metal [61, 62]. During the past
decade, numerous experiments (see [25–51] in [63]) reported fluorescence
enhancement by the resonant dipole surface plasmon mode in spherical metal NP
that was followed by quenching due to coupling to nonresonant modes as the
molecules moved closer to the NP surface [64–66]. Another important factor is the
direct dipole dipole interactions between gain molecules which causes random
Coulomb shifts of molecules’ excitation energies and therefore could lead to the
system dephasing [67–69].
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It should be emphasized, that the rigorous numerical calculations undoubtedly
provide results closer to the experimentally realized data, but at the same time hide
the physics of the problem. In order to understand necessity of an analytical
treatment, consider the problem of instability of the nanolaser operation under the
action of an external field. In case of the numerical approach there is no way to
subdivide fields [52], generated by the plasmons and incoming one, while analytical
modeling provides clear qualitative explanation of appearance of the unstable
regimes [54].

A semi-classical model for plasmonic nanolaser, developed earlier in Chap. 10
(10.15), (10.21) is now used to investigate the regular [without stochastic terms in
(10.15) and (10.21)] dynamics (Sect. 11.2), a rigorous multimode model is devel-
oped combining quantum dynamics with Green function technique (Sect. 11.3), and
the problem of bandwidth of the nanolaser is considered in Sect. 11.4.

There are several options for the nanolaser model. Basically, any laser model
consists of the resonator model and the model for active media. Each of them (the
resonator and active media models) has two options, namely: single/double or
multimode resonator model, and classical or quantum model for active media, see
Fig. 11.1. Single mode can be used to describe a wire-like resonator, double mode
can be used to describe a coupled double-wire system. These two options (single or
double) consists of one or two coupled equations for the resonator dynamics;
anyway, either single or double mode resonator models are mathematically the
same one. The double mode model is necessary to describe magnetic mode and
consequently take into account the magnetic response. The multimode model is
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Fig. 11.1 Four possible versions for the model of nanolaser: two options for the resonator
modeling (single or multimode resonator), and two options for the active media (classical or
quantum)
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based on Mie approach (for example, this approach is perfectly suited for the
symmetric systems e.g. nano spheres or nano cylinders.

Version I and IV are used very rear due to the fact that the optical amplification
(modelling of active media) cannot be described in the frame of classical approach.
Nevertheless, some authors still use a harmonic oscillator equation with the positive
losses to describe dynamics of an active media.

Version II is the mostly widely used, this approach is assumed in this chapter
excepting Sect. 11.3, where a multipole model (plus interaction between active
molecules) is presented.

11.2 Regular Spaser Dynamics

As it has been mentioned above, the elaborated set of (10.15) is well known in laser
dynamics and has been widely used to model different effects in nonlinear
dynamics. System (10.15) in stationary operation mode (after long enough time
after inversion is switched on):

~q12 ¼ iaxs2~x�N
�hRq

N � N0 ¼ iaxs1 ~x~q12�~x�~q�12ð Þ
2�h

~x ¼ aq~q�12
Rx

Rq ¼ 1þ i x� x21ð Þs2ð Þ
Rx ¼ x2

0 � x2 � 2ixc
� �

8>>>>>>>>><
>>>>>>>>>:

ð11:1Þ

possesses an analytical stable-state solution:

xG ¼ x21cs2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21cs2ð Þ2 þx2

0 1þ 2cs2ð Þ
p

1þ 2cs2ð Þ

NSTAT ¼ �h xG�x21ð Þ x2
0�x2

Gð Þs2 þ 2cxGð Þ
2axaqs2

~xj j2STAT ¼ N0�NSTATð Þ
NSTAT

xj j2S
xj j2S ¼

�h2 1þ xG�x21ð Þ2s22ð Þ
a2xs1s2

~q12j j2STAT ¼ s2
s1
NSTAT N0 � NSTATð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11:2Þ

Physically it means, that the spaser adjusts its own generation frequency xG

according to the parameters of the system (but NOT according to the pump), and
finally stabilizes itself by adjusting oscillation amplitude ~xj j2STAT. The pump
threshold is given by evident requirement ~xj j2STAT [ 0:
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N0;threshold [NSTAT ) N0 [
�h xG � x21ð Þ x2

0 � x2
G

� �
s2 þ 2cxG

� �
2axaqs2

ð11:3Þ

In the case of full resonance xG ¼ x0 ¼ x12 stationary parameters of generation
become:

xG ¼ x0 ¼ x21

NSTAT ¼ �hcx0
axaqs2

~xj j2STAT¼ axaqs2
�hcx0

N0 � �hcx0
axaqs2

� �
xj j2S

xj j2S¼ �h2

4a2xs1s2

~q12j j2STAT¼ �hcx0
axaqs1

N0 � �hcx0
axaqs2

� �

8>>>>>>><
>>>>>>>:

ð11:4Þ

To investigate transient processes of the dynamical transition to the stationary
regime, numerical methods must be used to solve the system (10.15). A solution of
this system (without stochastic terms) is presented in Fig. 11.2.

More complicated regular dynamics demonstrate multipole nanolaser (multipole
spaser) action. As expected, in this case both bright and dark oscillation modes can
be excited. Nevertheless, excitation of dark modes is significantly affected by the
placement of the emitters around the nanoresonators, for example around double
wires structure. It is intuitively clear, that in order to generate an anisymmetric
(dark) mode the symmetry of the structure has to be broken, and not all variants of
the emitter positioning will be appropriate for the dark mode generation. Three
different layouts of the emitters in the vicinity of the nanoresonators are shown in
Fig. 11.3, where gold strips represent nanowires and red circles represent emitters
with the resonant wavelengths corresponding to bright or dark modes respectively.
The layouts shown in Fig. 11.3a, b do not possess the dark (antisymmetric) modes,
provided there are no some external factors breaking the symmetry.

The statement above can be rather straightforwardly proven in the framework of
the model developed here. Following the same logic as in the elaboration of
(10.21), for the three layouts in Fig. 11.3 the respective system of equations are:

d~qð1Þ12
dt þ ~qð1Þ12

1
s2
þ i x� x21ð Þ

� �
¼ iax ms þmað Þ�Nð1Þ

4�h

dNð1Þ
dt þ Nð1Þ�N0ð Þ

s1
¼ iax ms þmað Þ~qð1Þ12 � ms þmað Þ�~qð1Þ�12ð Þ

2�h

d~qð2Þ12
dt þ ~q 2ð Þ

12
1
s2
þ i x� x21ð Þ

� �
¼ iax ms�mað Þ�N 2ð Þ

4�h

dNð2Þ
dt þ Nð2Þ�N0ð Þ

s1
¼ iax ms�mað Þ~qð2Þ12 � ms�mað Þ�~qð2Þ�12ð Þ

2�h

2 c� ixð Þ dms
dt ¼ 2aq qð1Þ12 þ qð2Þ12

� �
� x2

0 � x2 � 2icx� r
� �

ms

2 c� ixð Þ dma
dt ¼ 2aq qð1Þ12 � qð2Þ12

� �
� x2

0 � x2 � 2icx� r
� �

ma

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð11:5aÞ
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Fig. 11.2 Transient processes at the switching on the generation of the spaser for a, b resonant
case xG ¼ x0 ¼ x12 and c, d non resonant case x12\xG\xp. Parameters are chosen to provide
stable generation (N0 [N0;threshold); dark, red, and blue lines represent dynamics for increased
pump. Phase of the oscillation is calculated with respect to one of the non-diagonal elements of the
density matrix q12

Fig. 11.3 Three possible emitter positioning around the nanoresonators. Red circles represent
emitters with resonant wavelengths corresponding to dark (antisymmetric) or bright (symmetric)
resonances respectively. Only one layout b appears to be fully compatible with the dark mode
oscillation
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d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax m�

s þm�
að ÞN

2�h

dN
dt þ N�N0ð Þ

s1
¼ iax ms þmað Þ~q12� m�

s þm�
að Þ~q�12ð Þ

4�h

2 c� ixð Þ dms
dt þ x2

0 � x2 � 2ixcþ r
� �

ms ¼ aq~q
�
12

2 c� ixð Þ dma
dt þ x2

0 � x2 � 2ixc� r
� �

ma ¼ aq~q
�
12

8>>>>>>>><
>>>>>>>>:

ð11:5bÞ

dqð1Þ12
dt þ ~qð1Þ12

1
s2
þ i x� x21ð Þ

� �
¼ iaxm�

sN
ð1Þ

2�h

dN
dt þ

Nð1Þ�N0ð Þ
s1

¼ iax ms~q
ð1Þ
12 �m�

s ~q
ð1Þ�
12ð Þ

�h

2 c� ixð Þ dms
dt ¼ 4aqq

ð1Þ
12 � x2

0 � x2 � 2icx� r
� �

ms

2 c� ixð Þ dma
dt ¼ � x2

0 � x2 � 2icx� r
� �

ma

8>>>>>>>><
>>>>>>>>:

ð11:5cÞ

It can be seen for the case of (11.5c) that the antisymmetric mode is not excited
and in the case of (11.5a) the antisymmetric mode is strongly suppressed provided

q 1ð Þ
12 � q 2ð Þ

12 . Note that both cases (11.5a) and (11.5c) (and layouts in Fig. 11.2a, c
respectively) can most easily be realized by a hypothetical bulk MM, where the
layers of the emitters are placed between two sets of nanoresonators on either side.
This results in the suppression of dark mode generation and consequently an
inhibition of the magnetic response of the MMs [70]. In this case the only mech-
anism braking symmetry is the retardation of the propagating wave between the
nanowires [are not taken into consideration in (11.5a–11.5c)] [71]. It is worth
noting that to the best of our knowledge, the conclusion regarding the necessity of
asymmetric emitter’s placement has not been mentioned previously in the literature.
On the other hand, the layout in Fig. 11.3b is the typical format for samples with
the nanoresonators on the substrate, where the metallic surfaces are functionalized
with the emitters, or a polymer emitter solution, spin coated on the top of the
metallic nanoresonators. The stationary state of (11.5b) is:

~q12 ¼
iaxs2 m�

s þm�
að ÞN

2�hRq

N � N0 ¼ iaxs1 ms þmað Þ~q12� m�
s þm�

að Þ~q�12ð Þ
4�h

ms ¼ aq~q�12
Rx;s

ma ¼ aq~q�12
Rx;a

Rq ¼ 1þ i x� x21ð Þs2ð Þ
Rx;s ¼ x2

0 � x2 � 2ixcþ r
� �

Rx;a ¼ x2
0 � x2 � 2ixc� r

� �

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð11:6Þ
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NSTAT ¼ �i�h
axaqs2
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x;a
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x
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x¼xG

xj j2S¼
�h2 1þ xG�x21ð Þ2s22ð Þ

a2xs1s2

~q12j j2STAT¼ s2
s1
NSTAT N0 � NSTATð Þ

ma þmsj j2STAT¼ N0�NSTATð Þ
NSTAT

xj j2S

msj j2STAT¼
~q12j j2STATa2q

Rx;sj j2

maj j2STAT¼
~q12j j2STATa2q

Rx;aj j2

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð11:7Þ

It is interesting to note that the relation between bright and dark mode inten-

sities msj j2STAT
maj j2STAT

¼ Rx;aj j2
Rx;sj j2 does not depend on the pump since the phase of the oscil-

lations of the both modes are undetermined as in the case of the dipole-like
spaser. Dynamics of the multipole spaser, including the transient part, is shown in
Fig. 11.4.

Dynamics of the dipole-like spaser under the influence of an external field
requires deeper consideration. In this case, competition between its own dynamics
and the driving force, due to an external field, can result in unstable operation [54].
It has to be emphasized, that this case corresponds to hypothetically realizable
MMs. This MM consists of MAs, considered in this chapter, where an external
wave, propagating in the MMs plays a role of the external driving force.

This effect appears only when coupling between emitters and MAs is signif-
icant; otherwise the plane wave will be just amplified by the free emitters, which
are not coupled to the MAs and no instabilities will be observed [72]. A model
which does not distinguish between gains provided by free and coupled emitters
can lead to wrong conclusions about the inability of loss compensation without
crossing the threshold for the spaser generation [28]. In order to investigate the
effect of competition between the generated fields and externally driving forces, a
system (10.14) without stochastic terms is used for the dipole-like MA:

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�N

2�h þ ilQSA
�N

2�h

dN
dt þ N�N0ð Þ

s1
¼ iax ~x~q12�~x�~q�12ð Þþ ilQS A~q12�A�~q�12ð Þ

�h

2 c� ixð Þ d~xdt þ x2
0 � x2 � 2ixc

� �
~x ¼ 2aq~q�12 þ vA

8>>>>><
>>>>>:

ð11:8Þ
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Fig. 11.4 Transient processes at the switching on the generation of the multipole spaser (solid—
symmetric and dotted—asymmetric modes) at the center luminescent of the emitters coinciding
with a, b center frequency of a single oscillator x0 ¼ x12 ¼ xG, c, d symmetric mode
xp\xG\xs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ r
p ¼ x21, and e, f asymmetric mode xa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � r
p ¼ x21\xG\xp.

Parameters are chosen to provide stable generation (N0 [N0;threshold); black, red, and blue lines
represent dynamics for increased pump respectively N0ðblackÞ\N0ðredÞ\N0ðblueÞ. Phase of the
oscillation is calculated with respect to one for non-diagonal element of the density matrix q12
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For the stationary state operation it becomes:

~q12 ¼ iNs2
2�hRq

ax~x� þ lQSA
�� �

N � N0 ¼ is1
�h ax ~x~q12 � ~x�~q�12

� �þ lQS A~q12 � A�~q�12
� �� �

~x ¼ 2aq~q�12 þ vAð Þ
Rx

Rq ¼ 1þ i x� x21ð Þs2ð Þ

Rx ¼ x2
0 � x2 � 2ixc

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11:9Þ

In (11.9) the external field A is assumed to be given and serves as an external
driving force for the spaser, which reduces the problem to the well-known one of
laser synchronization by an external field [58].

A qualitative analysis of the dynamics follows shortly. It is clear from (11.4)
that the spaser itself does not set the phase of its own oscillations, and even a
small external resonant wave can potentially force the spaser to generate in phase
with the external field, provided the intensity of the external field does not affect
the dynamics. As the intensity of the external field increases, the dynamics of the
spaser itself starts to compete with the dynamics caused by the external driving
forces and instability occurs. Note that if the frequency of the external field does
not coincide with that of the generated field, then the spaser frequency shifts to
the frequency of the external field. If the external field intensity becomes high
enough to overcome the spaser dynamics, stable generation appears again, as
described in [54].

From the math’s point of view, system (11.9) possesses several solutions for the
same set of parameters resulting in instability and in contrast to (11.4), gives a
solution for the phase as well [(11.4) gives solutions for the respective amplitudes
only]. The stability diagram, for the case of resonant operation x0 ¼ x12 is pre-
sented in Fig. 11.4. Note, that it is supposed that the spaser oscillates at the fre-
quency of the external field, which is chosen to coincide with both resonant
frequencies x ¼ x0 ¼ x12. It can be seen, that stable operation is possible in two
regions of parameters (below the surface in Fig. 11.5a and above the surface in
Fig. 11.5b), while between the surfaces laser operation is unstable.

To the best of my knowledge, the similar stability analysis remains to be done
for the multipole spaser with the external field (11.10). Here the initial results of the
analysis are given, but the problem requires further investigation. Basically, in the
case of generation of a purely bright or purely dark mode, system (11.10) is
equivalent to (11.8) for dipole-like MA. When the both modes are excited at the
same time, the competition between them adds more complexity to the dynamics
and the stability analysis becomes non trivial. Full stability analysis of the multipole
spaser is not included in this work and will be presented elsewhere, in the future.
Preliminary result of the stability diagram is given in Fig. 11.6.
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d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax m�

s þm�
að ÞN

2�h þ ilQSA
�N

2�h

dN
dt þ N�N0ð Þ

s1
¼ iax ms þ mað Þ~q12� m�

s þm�
að Þ~q�12ð Þþ 2ilQS A~q12�A�~q�12ð Þ
4�h

2 c� ixð Þ dms
dt þ x2

0 � x2 � 2ixcþ r
� �

ms ¼ aq~q�12
2 c� ixð Þ dma

dt þ x2
0 � x2 � 2ixc� r

� �
ma ¼ aq~q�12

8>>>>>><
>>>>>>:

ð11:10Þ

Fig. 11.5 Stability diagram of the dipole-like spaser driven by an external resonant field
x ¼ x0 ¼ x12. The surfaces in a and b are separated due to the different range values. The
stability region in a is below the surface, while stability region in b is above the surface; the
instability region is between the surfaces (a) and (b)

Fig. 11.6 Stability diagram of the multipole spaser driven by an external field which is chosen to
be in resonance with eigen plasmonic frequency: xas\xexternal\x0 ¼ x21\xs
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Stable-state system for the multipole spaser is:

~q12 ¼ iN
2�hRq

ax m�
s þm�

a

� �þ lQSA
�� �

N � N0 ¼ is1
4�h ax ms þmað Þ~q12 � m�

s þm�
a

� �
~q�12

� �þ 2ilQS A~q12 � A�~q�12
� �� �

ms ¼ aq~q�12
Rx;s

ma ¼ aq~q�12
Rx;a

Rq ¼ 1þ i x� x21ð Þs2ð Þ
Rx;s ¼ x2

0 � x2 � 2ixcþ r
� �

Rx;a ¼ x2
0 � x2 � 2ixc� r

� �

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð11:11Þ

It turns out, that for the case of the multipole spaser the stability region is above
the surface, while under the surface all solutions are unstable. In contrast to the
dipole spaser, only one surface appears as a result of the stability analysis.

11.3 Spaser Dynamics in Case of Multimode Generation

In this chapter an approach allowing us to consider multimode resonator rigorously
is presented following [63]. This approach includes interaction not only between
the modes and active molecules, but also interaction between the active molecules.
A numerical study is performed in order to reveal the role of quenching and direct
interactions between gain molecules in reaching the lasing threshold for small
spherical Nano spheres (NPs) with a metal core and a doped dielectric shell. It is
shown that for the large number of gain molecules, the coupling to nonresonant
modes plays no significant role. In contrast, the direct dipole-dipole interactions, by
causing random shifts in gain molecules’ excitation energies, can hinder reaching
the lasing threshold in small NP-based spasers. A semiclassical approach that
combines Maxwell-Bloch equations with the Green’s function formalism is used to
derive the threshold condition in terms of exact system eigenstates, which were
found numerically.

A composite spherical NP with a metallic core of radius Rc and dielectric shell of
thickness h is considered. The shell is doped with M active molecules at random
positions rj (see inset in Fig. 11.7).

For small NPs one can use the quasistatic approximation for electromagnetic
fields. Within the semiclassical approach, the gain molecules are described by
pumped two-level systems, with resonant frequency x21, while electromagnetic
fields are treated classically. Each molecule is characterized by the polarization and
population inversion Nj is the density matrix for the jth molecule. In the rotating
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wave approximation, the steady-state molecule dynamics is described by optical
Bloch equations (see Chap. 9):

dq12
dt þ q12

1
s2
þ i x� x21ð Þ

� �
¼ ilA�N

�h

dN
dt þ N�N0ð Þ

s1
¼ il Aq12�A�q�12ð Þ

2�h

8<
: ð11:12Þ

Here A ~rj
� �

is the slow amplitude of the local field at the point of the jth
molecule. The local field A ~rj

� �
is created by all molecular dipoles in the presence of

a NP and satisfies the Maxwell equation

DA ~rj
� �þ x2

c2
e ~r;xð ÞA ~rj

� � ¼ 4px2l
c2

X
j

qjd ~r �~rj
� � ð11:13Þ

where e ~r;xð Þ is the local dielectric function given by metal, shell, and outside
dielectric functions in the corresponding regions and lqj is the molecule dipole
moment. The solution of (11.13) has the form:

A ~rð Þ ¼ A0 ~rð Þþ 4px2l
c2

X
j

G ~r;~rj
� �

qj ð11:14Þ

where A0ð~rÞ is a solution of the homogeneous part of (11.13) (i.e., in the absence of
molecules) and Gð~r;~rjÞ is the Green’s dyadic in the presence of a NP. After
expressing the polarization in terms of local fields using (11.12) and then elimi-
nating the local fields using (11.14), system (11.12) takes the form

Fig. 11.7 Normalized spectra for a spherical Ag NP with radius R = 5 nm and gain molecule
with maximum tuned to plasmon resonance. Inset: Schematics of a composite NP with Ag core
and dielectric shell doped with M active molecules [63]
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k¼1

1
s2

þ i x� x21ð Þ
� 	

djk � NjDjk


 �
qk ¼ lA0 ~rj

� �

Nj � N0 þ 4s1Im
XM
k¼1

q�j Djkqk
h i

¼ 4ls1
�h

Im qjA
�
0 ~rj
� �� 
 ð11:15Þ

where djk and DjkðxÞ are, respectively, the Kronecker symbol and frequency-
dependent coupling matrix in the configuration space given by

Djk ¼ 4px2l2

c2�h
G ~r;~rj
� � ð11:16Þ

Equations (11.15) and (11.16) constitute the model for active molecules near a
plasmonic NP. For a sufficiently high pump rate (sufficiently high N0), spasing
action is possible provided that losses are compensated [12, 26]. The collective
system eigenstates defined by the homogeneous part of system (11.15) is of interest,

XM
k¼1

1
s2

þ i x� x21ð Þ
� 	

djk � NjDjk


 �
qk ¼ 0

Nj � N0 þ 4s1Im
XM
k¼1

q�j Djkqk
h i

¼ 0

ð11:17Þ

Following the procedure employed previously for studying plasmon-mediated
cooperative emission (Pustovit 2009), [73] eigenstates Jj i of the coupling matrix D
are introduced as

D Jj i ¼ Kj Jj i; Kj ¼ K0
j þ iK00

j ð11:18Þ

where K0
j and K00

j are, respectively, real and imaginary parts of system eigenvalues

K0
j þ iK00

j which represent the frequency shift and decay rate of an eigenstate jJi. We
now introduce collective variables for polarization and population inversion as

qj ¼
XM
k¼1

J
�� j� �

qj;

NJJ 0 ¼
XM
k¼1

J
�� j� �

Nj j j J 0h i
ð11:19Þ

where, to ensure the orthonormality, we used the eigenstates jJi of complex-
conjugate matrix Djk corresponding to the advanced Green’s function of (11.13).
Multiplying the first equation of system (11.17) by hJ j: ji and then summing
both equations over j, system (11.17) in the basis of collective eigenstates takes the
form
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XM
J 0¼1

1
s2

þ i x� x21ð Þ
� 	

dJJ 0 � NJJ 0KJ 0


 �
qJ 0 ¼ 0

NP 0 � Nþ 4s1Im
XM
J¼1

K00
J qJj j2

h i
¼ 0

ð11:20Þ

where N ¼ PM
j¼1 Nj is the ensemble population inversion and NP 0 ¼ N0M. The

mixing of collective states J through NJJ 0 originates from the inhomogeneity of the
Nj distribution for individual molecules. In the following, we assume that, for a
sufficiently large ensemble, this inhomogeneity is weak and adopt NJJ 0 ¼ dJJ 0N,
where N ¼ N=M is the average population inversion per molecule. Note that, in
this approximation, the individual molecule polarizations qj are still random due to
the molecules’ spatial distribution. The first equation of system (11.19) then yields
the characteristic equation for each state

1
s2

þ i xg � x21
� �� 	

� NKJ xg
� � ¼ 0 ð11:21Þ

implying that each eigenstate acquires self-energy NKJ xg
� �

due to the interactions
of molecules with the NP and each other, xg is the laser frequency generation. The
resonance frequency of mode J is determined by the real part of (11.21)

xg ¼ x21 þNKJ xg
� � ð11:22Þ

while its imaginary part,

Ns2K
00
J xg
� � ¼ 1 ð11:23Þ

determines N and, in fact, represents the lasing threshold condition. Eliminating N
we obtain the equation for resonance frequency xg,

s2 xg � x21
� � ¼ K00

J xg
� �

=K00
J xg
� � ð11:24Þ

Equations (11.22)–(11.24) are valid for any plasmonic system with weak
inhomogeneity of gain population inversion. For the spherical core-shell NP that we
consider, the plasmon modes are characterized by angular momentum l and by well
separated frequencies xl. However, each system eigenstate jJi contains, in general,
contributions from all l since NP spherical symmetry is broken down by the random
distribution of molecules within the shell. In order to establish the relation of our
model to a conventional spaser description [12, 26, 27] let us assume for now a
largely homogeneous spatial distribution of molecules in the shell and disregard the
effects of direct dipole-dipole interactions. This could be considered one extreme of
real systems where dyes do not interact due to mutual orientation and distribution.
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In this case, the eigenstates jJi are dominated by molecules’ coupling with the lth
plasmon mode and can be labeled as KJ . Assume now that gain excitation energy is
close to some lth plasmon energy, xg � xl. In this case, for small overall system
size, there is a (2l + 1)-fold degenerate eigenstate of matrix (11.16) which scales
linearly with the number of molecules as

KJ �Mkl ð11:25Þ

where kl is the single-molecule self-energy (Pustovit 2009, 2015) [73]. For
example, the single-molecule self-energy kl due to the nearfield coupling to the
dipole (l = 1) plasmon mode is given by Pustovit (2009, 2015), [73] (also see
below)

kl ¼ 4l2

�h
a1 xð Þ
r6

ð11:26Þ

where r is the average distance to the NP center and a1ðxÞ is NP dipole polariz-
ability (for simplicity, we assumed normal dipole orientation relative to the NP
surface). Near the plasmon resonance x�xp, the NP polarizability can be
approximated as

a1 xð Þ ¼ R3xp

xp � x� i=sp
ð11:27Þ

where sp is the plasmon lifetime and R is the overall NP size. Then (11.24) yields
the standard expression for resonance frequency [12, 26, 27]

xg ¼ xpsp þx21s2
sp þ s2

ð11:28Þ

For exact molecule-plasmon resonance, xp ¼ x21, the solution of (11.24) is
xg ¼ xp ¼ x21 (i.e., there is no frequency shift), and we have a001 �R3Q, where
Q ¼ xpsp is the plasmon quality factor. Then, for r � R, (11.23) takes the form

l2s2
�hR3 NQ� 1 ð11:29Þ

For small NPs, the local fields penetrate the entire system volume, i.e., Vm �R3,

conditions (11.29) coincide with one from [27] l2s2
�hVm

NQ� 1. For general gain dis-
tribution in the shell, each of the exact system eigenstates contains a contribution
from nonresonant plasmon modes. For a single fluorescing molecule coupled to a
dipole plasmon mode, the high-l modes’ contribution leads to fluorescence
quenching if the molecule is sufficiently close to the metal surface (see [25–51] in
[63]). At the same time, the role of direct dipole-dipole interactions between gain
molecules confined in a small volume may be significant as well due to large
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Coulomb shifts of molecules’ excitation frequencies [67–69]. Both the mode-
mixing and direct-coupling effects can be incorporated on an equal footing within
our approach through the corresponding terms in the matrix (11.16). The detailed
description of the performed numerical calculations can be found in [63]. Here only
final results are presented.

In Fig. 11.8 normalized resonance frequency shift Dxs2 ¼ ðxg � x21Þs2 and
threshold population inversion per molecule ns ¼ Ns=M are shown as a function of
shell thickness h for M = 600 gain molecules randomly distributed in the shell on
top of an Rc = 5 nm Ag core. All curves are plotted for distances larger than 0.5 nm
in order to minimize the nonlocal effects [66]. The gain frequency x21 was chosen
to coincide with the dipole plasmon frequency xp � 3.0 eV for the parameters
chosen. In the single-mode case (l = 1) and in the absence of direct dipole-dipole
coupling, the calculated x is nearly vanishing, in agreement with (11.36), while ns
increases with h before reaching its maximum value ns = 1 at h � 2.35 nm. This
threshold behavior is consistent with condition (11.29) as the latter implies the
increase of N with mode volume until the full population inversion N = M is
reached, which, in the case of low gain molecule number M = 600, takes place for
a relatively small shell thickness. Very similar results are obtained for higher
number of modes l (up to l = 50) are incorporated in the coupling matrix. Neither
x nor ns shows significant deviations from the l = 1 curves except for an unre-
alistically small shell thickness below 0.5 nm (not shown here).

This behavior should be contrasted with the single-molecule case, where the
molecule decay into high-l modes leads to fluorescence quenching at several-
nanometer distances from the NP surface (see [25–51] in [63]). A similar quenching
effect was demonstrated in cooperative emission of a relatively small number
(M < 100) of dyes (Pustovit 2009), [73]. For larger ensembles, however, the
quenching effects apparently become insignificant due to the effective restoration of
spherical symmetry, which inhibits the mode mixing.

Turning the direct dipole-dipole interactions between gain molecules to a
maximum has a dramatic effect on both resonance frequency and threshold

Fig. 11.8 a Spasing
threshold ns, where the
hatched region represents the
gain condition and the spasing
region is shaded gray, and
b normalized frequency shift
Dxs2 ¼ ðxg � x21Þs2 for
M = 600 molecules with
xp ¼ x21 are plotted versus
shell thickness h with and
without direct coupling for the
dipole (l = 1) plasmon mode
and for up to l = 50 modes
included [63]
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population inversion. The resonance frequency exhibits negative shift relative to the
plasmon frequency, whose amplitude increases with h. The overall negative sign of
Dxs2 ¼ ðxg � x21Þs2 is due to the normal orientation of molecule dipoles relative
to the NP surface, while the increase of absolute value of Dxs2 ¼ ðxg � x21Þs2
with h is due to reduced plasmonic contribution. Note that real systems would lie
somewhere between the non-interacting case and this maximum dipole-dipole
interaction case where the choice of the molecules’ normal dipole orientation may
overestimate Dxs2 ¼ ðxg � x21Þs2 compared to more realistic random orienta-
tions. Even so, the new resonance frequency lies well within the plasmon spectral
band (i.e. Dxs2 � 1). At the same time, the maximal threshold value ns ¼
Ns=M ¼ 1 is reached at about h = 1 nm, indicating that, in the presence of direct
coupling between gain molecules, the dependence (11.37) is no longer valid. Note
that here the mode mixing has a somewhat larger effect than in the absence of direct
coupling, presumably due to the violation of spherical symmetry by much stronger
interactions between closely spaced molecules.

Figure 11.9, the calculations are repeated for a larger number of gain molecules,
M = 1000, which show two notable differences from theM = 600 case. In the absence
of direct coupling between gain molecules, the maximal threshold value ns = 1 is
reached at larger shell thickness values. However,when the direct coupling is turnedon,
themaximal threshold value is reached at a smaller value of h � 0.75 nm,whichmust
be attributed to stronger dipole-dipole interactions for higher gain densities.

At the same time, the effect of mode mixing in the ns dependence on h becomes
more pronounced, which is also related to stronger interactions between more
closely spaced molecules that can effectively break spherical symmetry in a larger
system. The major effect of direct dipole-dipole interactions is the random Coulomb
shift of gain molecules’ excitation frequencies, which may lead to the detuning
between individual gain molecules and surface plasmon resonance. Note that the
average negative shift that is due to normal orientation of molecular dipoles can be
compensated by changing the gain molecules’ excitation frequency.

Fig. 11.9 a Spasing
threshold ns, where the
hatched region represents the
gain condition and the spasing
region is shaded gray, and
b normalized frequency shift
Dxs2 ¼ ðxg � x21Þs2 for
M = 1000 molecules with
xp ¼ x21 are plotted versus
shell thickness h with and
without direct coupling for the
dipole (l = 1) plasmon mode
and for up to l = 50 modes
included [63]
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In Figs. 11.10 and 11.11 we show calculated x and ns for both redshifted
(x21 = 2.95 eV) and blue shifted (x21 = 3.05 eV) gain frequencies relative to the
SP resonance at 3.0 eV. As expected, for x0 = 2.95 eV, the average shift of x is
strongly reduced, while it increases for x0 = 3.05 eV [see Figs. 11.10b and
11.11b]. However, the maximal threshold value ns = 1 is now reached for even
smaller shell thickness h < 0.5 nm [see Figs. 11.10a and 11.11a], indicating that
the loss of coherence is caused by the fluctuations of gain excitation energies.

In summary, it was found that for sufficiently large (�1000) gain molecule
numbers, the quenching is negligibly small and a single-mode approximation
should work well for realistic systems. In contrast, the direct dipole dipole inter-
actions causes random Coulomb shifts of gain molecules’ excitation frequencies,
and may lead to system dephasing and hinder reaching the spasing threshold in
small systems. These two regimes serve as edges to an identified parameter window
in which spasing can likely be achieved.

Fig. 11.10 a Spasing
threshold ns, where the
hatched region represents the
gain condition and the spasing
region is shaded gray, and
b frequency shift Dxs2 ¼
ðxg � x21Þs2 for M = 600
molecules are plotted versus
shell thickness h for gain
spectral bands centered at
2.95 and 3.05 eV [63]

Fig. 11.11 a Spasing
threshold ns, where the
hatched region represents the
gain condition and the spasing
region is shaded gray, and
b frequency shift Dxs2 ¼
ðxg � x21Þs2 for M = 1000
molecules are plotted versus
shell thickness h for gain
spectral bands centered at
2.95 and 3.05 eV [63]

11.3 Spaser Dynamics in Case of Multimode Generation 243



11.4 Stochastic Properties of Spasers

As it was mentioned in the introduction of this chapter, one of the areas to be
developed for spasers is the theory of stochastic laser fluctuation, which should
describe the linewidth of the spaser oscillations. A short plasmon relaxation time in
combination with the same order of magnitude phase relaxation time of the
quantum dots (main candidate for the emitters for the spaser) prohibits use of the
well-established Schawlow-Townes expression [74].

A simple method for calculating the linewidth of sources of stimulated coherent
radiation originating from spontaneous noise and thermal fluctuations has been
proposed in the framework of the two-level model of the active medium. An
expression for the spectral width has been derived beyond the adiabatic approxi-
mation, under an arbitrary relation between relaxation times in a self-sustained
oscillating system and taking into account the finite spectral bandwidth of spon-
taneous radiation. The result is applicable for a wide class of coherent radiation
sources.

This new approach to calculating the natural line width of sources of induced
electromagnetic radiation is without any constraint on the relation between the
relaxation times of a self-sustained oscillation system. The spectral width of
quantum oscillators is an important characteristic for their application. For this
reason, it was actively investigated since putting the maser into operation [74, 75]
(see also [76, 77] and references therein). When optical range quantum oscillators
(lasers) appeared, the theory of their fluctuations was newly developed [78, 79]. In
contrast to masers, where thermal fluctuations dominate, the main source of noise in
lasers is spontaneous emission [56, 57, 80]. Furthermore, the relations between the
relaxation times of physical parameters in masers and lasers emitting in different
ranges of electromagnetic waves are different. A quantum oscillator is a system of
two coupled resonance circuits whose quality factors are usually very different. For
this reason, the theoretical analysis of their fluctuations was performed in the adi-
abatic approximation, where the variation of rapidly relaxed parameters is con-
sidered quasistatically. At the same time, losses in circuits can be comparable to
those in nanolasers, which are currently attracting particular attention (see, e.g., [12,
29, 30, 59]). For example, losses of metallic nanocavities, due primarily to ohmic
losses, lead to large damping coefficients c * 1013 s−1 [71] (see below).

In this work, the theory of fluctuations of radiation of quantum oscillators is
developed for an arbitrary relation between the relaxation times. A consistent
analysis of fluctuations in quantum oscillators should be based on a quantum
mechanical theory. At the same time, the semiclassical approach used in this work
gives correct results for the linewidth of laser radiation when describing an active
medium by negative losses with saturation [57, 80] and with the use of the quantum
calculation results for sources of fluctuations [81–83]. Let us consider a single mode
quantum oscillator with an active medium, having the homogeneously broadened
line of a resonance transition, described by (10.11) without an external field
Eext ¼ 0. In the semiclassical approach, the generation process is described by the
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following system of coupled equations (see, e.g., [82, 84, 85]; note, that another set
of variables in contrast with the ones in Chap. 10 is used here):

d2P
dt2 þ 2c2

dP
dt þx2

0P ¼ � 2 dj jx0EN
�h

dN
dt þ c2 N � N0ð Þ ¼ � 2E

�hx0

dP
dt

d2E
dt2 þ 2c dE

dt þx2
0E ¼ �4p qel

mel

d2P
dt2

8>>><
>>>:

ð11:30Þ

Here, P(t) is the polarization of the active medium; N(t) is the difference between
the populations of working levels; N0 is the equilibrium value in the absence of
radiation; E(t) is the electric field strength in a cavity; d is the matrix element of the
dipole moment of the working transition; c2 = 1/T2 and c1 = 1/T1, where T2 and T1
are the relaxation times for the polarization and populations of the levels, respec-
tively; and the coefficient c takes into account losses in the cavity. To simplify the
subsequent analysis, we accept that the resonance frequency of the two-level
transition x21 coincides with the cavity frequency xc, i.e., x21 = xc = x0. The
solution of (11.30) is sought in the form:

PðtÞ ¼ 1
2 pðtÞ expðix0tÞþ pðtÞ� expð�ix0tÞð Þ

E tð Þ ¼ 1
2 AðtÞ exp ix0tð ÞþAðtÞ� exp �ix0tð Þð Þ

(
ð11:31Þ

Note, that in contrast to the previous chapters, signs of the oscillating terms are
chosen to be negative for the complex conjugated parts. In the approximations of
“slowly varying complex amplitudes” and “rotating wave”, we obtain the system of
reduced equations:

dp
dt þ c2p� i dj jAN

�h ¼ nsp tð Þ
dN
dt þ c1 N � N0ð Þ ¼ i A�p�Ap�ð Þ

2�h
dA
dt þ cAþ 2px0p ¼ nT tð Þ

8>><
>>: ð11:32Þ

where a dot means time derivative. Equations (11.32) are supplemented by
Langevin fluctuation sources nsp(t) and nT(t), which are due to the spontaneous
emission of atoms (molecules) of the active medium and thermal noise of the cavity
and, as was mentioned above, can be consistently obtained from quantum analysis
(see, e.g., [56, 82, 83]). The fluctuation sources nsp(t) and nT(t) are statistically
independent. As usual, the random process nT(t) is considered as delta correlated:

hnspðtÞi ¼ 0; nspðtÞnspðtþ sÞ� � ¼ c2Dsp exp �c2jsj½ � ð11:33Þ

and the process nsp(t) is taken in the form of “color” noise with the correlation time
sc = 1/c2:
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hnTðtÞi ¼ 0; nTðtÞnTðtþ sÞh i ¼ 2DTdðsÞ ð11:34Þ

This expression makes it possible to take into account a finite band of the noise
due to spontaneous emission. In the limit c2 ! 1ðT2 ! 0Þ, the correlation
function behaves as 2Dspd(t2 − t1). The coefficients Dsp and DT will be discussed
below. To solve the formulated problem, we need the following additional equation
[easily obtained from (11.32)]:

d
dt
RðtÞþ ðcþ c2ÞRðtÞ ¼ gðtÞ ð11:35Þ

where

RðtÞ ¼ pðtÞA�ðtÞþ p�ðtÞAðtÞ ð11:36Þ

and

gðtÞ ¼ pðtÞn�T þA�ðtÞnspðtÞþ k:c: ð11:37Þ

is a random function. In this case, hgðtÞi ¼ 0, because fluctuations p(t) and A(t) only
depend directly on nsp(t) and nT(t), respectively. The correlation function of the
process η(t) is given by the expression:

hgðtÞgðtþ sÞi ¼ 4DT pðtÞj j2dðsÞþ 2c2Dsp AðtÞj j2exp �c2jsj½ � ð11:38Þ

Let us represent the complex amplitude of the field in the form of the amplitude
and phase, AðtÞ ¼ jAðtÞj expði/ðtÞÞ, and express the phase as:

/ðtÞ ¼ 1
i2
ln

AðtÞ
A�ðtÞ

� 	
ð11:39Þ

Correspondingly, in contrast to traditional approaches, we describe the temporal
dynamics of the phase by the equation:

d/
dt

¼
_AA� � A _A�

i2jAj2 ð11:40Þ

The above threshold generation regime, characterized by small fluctuations of
the amplitude, is of special interest for applications. In this case, amplitude fluc-
tuations in the denominator of (11.40) can be neglected; i.e., jAj2 ¼ jAstj2 (Ast is the
steady state amplitude of oscillations) can be assumed.

The substitution of expression (11.32) into (11.40) yields:

d
dt
/ðtÞ ¼ � 1

2 Astj j2 2pRðtÞþ ifTðtÞ½ � ð11:41Þ
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In this equation, fT(t) can be represented in the form:

rTðtÞ ¼ A� ðtÞnTðtÞ � AðtÞn�
T
ðtÞ ¼ A�

ncðtÞnTðtÞ � AncðtÞn�TðtÞ ð11:42Þ

where A(t)nc is the random part of A(t) that does not correlate with nT(t) and,
therefore, h1TðtÞi ¼ 0. The change of A(t) to A(t)nc, made in (11.32), does not affect
the statistical characteristics of the process fT(t). Indeed, since the process nT(t) is
delta correlated (correlation time snE ! 0), only the increment dA(t) obtained by the
function A(t) at times immediately preceding the time t can correlate with this
process. Hence, in the time interval Dt satisfying the conditions snE � Dt � c�1,
the function A(t) can be represented in the form A(t) = A(t − Dt)nc + dA(t), where
the correlated part is given by the expression:

dAðtÞ ¼
Z t

t�Dt

nðt0Þdt0 ð11:43Þ

and A(t − Dt)nc can be changed to A(t)nc. Taking into account that the change in A
(t)nc throughout the interval Dt is small. This approach is justified in, e.g., [86].
Bearing in mind (11.32), we obtain:

dAðtÞn�TðtÞ
� � ¼ dA�ðtÞnTðtÞh i ¼

Z t

t�Dt

n�TðtÞnTðt0Þ
� �

dt0 ¼ DT ð11:44Þ

Therefore, the correlated part of the amplitude A(t) does not affect the statistics of
the process fT(t) with the correlation function:

h1TðtÞ1Tðt1Þi ¼ �4 Astj j2DTdðt1 � tÞ ð11:45Þ

According to (11.41) and (11.35), h _uðtÞi ¼ 0 and the phase increment DuðsÞ
and its hDu2ðsÞi dispersion in the time interval s are determined by the expressions:

DuðsÞ ¼
Z t

t�s

_uðt0Þdt0 ð11:46Þ

hðDuðsÞÞ2i ¼
Z Z t

t�s

R _uðt00 � t0Þdt00dt0;R _uðt00 � t0Þ ¼ uðt00Þuðt0Þh i ð11:47Þ

To find the correlation function R _uðt00 � t0Þ, we use the Wiener–Khinchin
theorem:
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R _uðsÞ ¼
Zþ1

�1
S _uðXÞ expðiXsÞds ð11:48Þ

where S _uðXÞ is the spectral density of fluctuations of the frequency deviation
dx(t) = (t). The Fourier spectrum _uðXÞ is obtained bymeans of the Fourier transform
of (11.35) and (11.41). Taking into account the statistical stationarity of the random
processes nsp(t) and nT(t), we can obtain the expression h _uðX1Þ _uðXÞi ¼
S _uðXÞdðX1 � XÞ. The substitution of the expression for S _uðXÞ into (11.48) and
(11.48) into (11.47) gives the following expression for the dispersion of the phase
increment:

ðDuðsÞÞ2
D E

¼ DT

jAj2 jsj þ
c2 � 2cC

C3jAj2 DTFðCjsjÞ

þ ð2px0c2Þ2
jAj2 C2 � c22

� �Dsp c�3
2 Fðc2jsjÞ � C�3FðCjsjÞ� � ð11:49Þ

Here, C = c + c2 and:

FðxÞ ¼ e�x þ x� 1 ð11:50Þ

In (11.49) and below, the subscript “st” in the parameters A, p, and N is omitted
in order to simplify expressions. Recall that the steady state values of these
parameters are determined in (11.32), disregarding fluctuations. Moreover, p in
(11.49) is expressed in terms of A from time independent (11.32). The spectral
density of the field is determined by the expression:

SEðxÞ ¼ jAj2
4p

Z
exp �0; 5\ðDuðsÞÞ2 [ � iðx� x0Þs

h i
ds ð11:51Þ

and can be generally calculated only numerically; analytical results can be obtained
only in particular cases. The correlation time is related to the width of the field

spectrum Dxosc as s
ðEÞ
c � ðDxoscÞ�1.

Letting c2s
ðEÞ
cor � 1,; i.e., c2� (Dxosc)

−1, then hðDuðsÞÞ2i ¼ Dujsj. In this case, the
radiation spectrum has a Lorentzian shape and the FWHM is given by the expression:

Dxosc ¼ Du ¼ c2
2

ðcþ c2Þ2jAj2
DT þð2px0=c2Þ2Dsp

� �
ð11:52Þ

Expression (11.52) was derived without any assumptions regarding the relations
between the relaxation times associated with the coefficients c, c1, and c2.
Consequently, (11.52) for the natural linewidth of the radiation spectrum of
quantum oscillators is general and applicable to a wide class of quantum oscillators
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whose dynamics can be described by the two level model of the active medium.
However, it should be noted that the source of noise nsp(t), under the accepted
condition, is considered as delta correlated: This assumption may be incorrect for
fluctuations of the polarization, if the radiation spectral width Dxosc is comparable
with 1/c2. If this is the case then, (11.49) should be used. The corresponding effect
can be demonstrated with the following example. Let C sj j � 1, but c2 sj j\1. Then:

ðDuðsÞÞ2
D E

¼ c2
2

ðcþ c2Þ2jAj2
DT þð2px0=c2Þ2Dsp

� �
jsj

� ð1� 0:5c2jsjÞð2px0Þ2
ðC2 � c22ÞjAj2

Dspjsj
ð11:53Þ

It can easily be seen that the last term in (11.53), in comparison to (11.52), leads
both to a decrease in the width of the spectrum and modification of its shape. The
coefficient DT associated with thermal noise can be determined using the fluctua-
tion–dissipation theorem or the principle of equidistribution of energy with respect
to degrees of freedom [57, 80]. The average thermal energy of the mode in the
cavity near the frequency x0 is:

hwðx0Þi ¼ �hx0�n ð11:54Þ

�n ¼ 1= expð�hx0=kBTÞ � 1½ � ð11:55Þ

where �n is the average number of thermal photons in the mode, kB is the Boltzmann
constant and T is the absolute temperature. Note that the energy of zero oscillations
is disregarded in (11.55); i.e., �n is used instead of �nþ 0:5. According to (11.32), the
spectral density of fluctuations of the amplitude A(t) for a passive cavity, i.e., when
p(t) = 0, is given by the expression:

SA Xð Þ ¼ DT

p c2 þX2� � ð11:56Þ

According to this expression, the thermal energy of the mode is:

w x0ð Þh i ¼ DT

2p

Z1
�1

dX

c2 þX2� � ¼ DT

2c
ð11:57Þ

Comparing (11.57) and (11.46), we obtain:

DT ¼ 2c�hx0�n ð11:58Þ

The problem of determining the coefficient Dsp, which depends on the charac-
teristics of the two level medium (consisting of atoms or molecules) and takes into
account spontaneous emission, is more complicated. The corresponding quantum
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calculations of this coefficient can be found, e.g., in [56, 82, 83]. At the same time,
the form of (11.42) means we avoid this problem. Under the condition c2 � c (solid
state lasers), (11.42) is reduced to the expression known as the Schawlow–Townes
formula. In terms of measurable parameters, this expression has the form [57, 80]:

DxST
osc ¼

2c2�hx0

P0
hniþ N2

N2 � ðg2=g1ÞN1


 �
ð11:59Þ

Here, P0 ¼ 0:5c Aj j2 is the power of radiation of the oscillator, including the
power at the output of the cavity and the power spent on the compensation of losses;
c = 0.5Dxres (Dxres is the pass band of the passive cavity); N = N2 − (g2/g1)N1 is
the difference between the populations between the upper N2 and lower N1 levels
near the generation threshold; and g2 and g1 are the degeneracy orders of the
respective levels. Note that the first term in (11.59) is related to coefficient (11.58).
Thus, (11.42) can be rewritten in the form:

Dxosc ¼ 2
cc2

cþ c2

� 	2�hx0

P0
hniþ N2

N2 � ðg2=g1ÞN1


 �
ð11:60Þ

Formula (11.60) generalizes (11.59) for the case of an arbitrary relation between
the relaxation parameters c and c2. Similar expressions have been found for the case
of so called bad-cavity laser [87–89]. In terms of the quality factor of the cavity
Qres = 2x0/c and the “quality factor of the levels of the transition” Qlev = 2x0/c2,
(11.50) can be written as:

Dxosc ¼ 2�hx3
0

Qres þQlevð ÞP0
hniþ N2

N2 � ðg2=g1ÞN1


 �
ð11:61Þ

According to this expression, the width of the radiation line depends on the sum
of the quality factors of the cavity and the particular two level transition.

Let us illustrate the application of these results. For a molecular oscillator (maser)
based on ammonia molecules [84], the excitation frequency m0 = x0/2p = 2.4 	
1010 Hz ((�hx0 ¼ 1:5	 10�16 erg), c2 = 6.6	 103 s−1, and c = 6	 106 s−1 (c2 � c).
Even at the temperature T = 300 K, the energy is kBT = 4 	 10−14 erg � �hx0.
Therefore, �hx0�n ¼ kBT and the last term in (11.61) can be neglected. As a result, the
following known result is obtained for the molecular oscillator [75, 76]:

Dxosc ¼ 2c22kBT
P0

ð11:62Þ

In this example, the spectral linewidth depends on thermal fluctuations and the
parameter c2, which is determined by how long the molecules remain in the cavity
[75, 76]. The situation in lasers is opposite; c2 � c and �hx0 � kBT , where the
cavity parameter c and spontaneous radiation [the last term in (11.59)] play the
main roles. The approach developed in this work for calculating phase fluctuations
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of radiation provides a unified analysis of the spectral linewidth of quantum
oscillators with various dependencies between the relaxation times. Expressions
(11.43) and (11.50) are also applicable for the calculation of the spectral linewidth
when the coefficients c and c2 are comparable, for example, for Dxosc a model of a
nanolaser using the adiabatic approximation cannot be used. At this current time,
there is no experimental data that can verify or disprove our results. Although the
authors of [30] observed the narrowing of the excitation band spectrum of the
nanolaser to 2–5 nm, this effect cannot with certainty be attributed to laser emis-
sion. To conclude, we note that the method developed in this work can also be used
to calculate the radiation spectrum of optical parametric oscillators.

Depending on the relation between the pumping parameter N0 and the
steady-state value of the population inversion Nth one can consider three operation
regimes of the nanolaser: (1) the below threshold regime N0\Nth, (2) the
near-threshold regime N0 �Nth and (3) the case of the above-threshold regime
N0 [Nth. The generalized Schawlow-Townes-like formula works only for the
above-threshold regime (see [90]), so that the numerical analysis in the other two
cases, which can be realised in the experiments, is of primary interest.

The numerical study of the radiation linewidth of a stochastic system (1) was
conducted by the second order Runge–Kutta stochastic method [91]. For this
purpose the phase shift D/ðsÞ ¼ /ðtÞ � /ðt � sÞ was considered, where /ðtÞ is the
phase of the slowly-varying component of the amplitude, appearing due to the
stochastic forces.

The above-threshold regime of the laser is the most convenient one, since the
linewidth is predominantly determined by the phase fluctuations, while the amplitude
ones are well-supressed. The power spectrum of the radiation is obtained through the
Fourier transform of the autocorrelation function: BðsÞ ¼ hA�ðtÞAðt � sÞi�
expð� 1

2 hðD/ðsÞÞ2iÞ. In Fig. 11.12 the numerical and analytical calculations of the

Fig. 11.12 Analytical (red and blue curves) and numerical results (black curves) of the variance

ðD/ðsÞÞ2
D E

as a function of time delay. The curves are plotted for the following parameters:

k ¼ 0:532 lm; jdj ¼ 2:5	 10�17 esu, c1 ¼ 109 s�1, c2 ¼ 1013 s�1, N0 ¼ 1017 cm�3,
DSP ¼ 2	 10�7. The resonator field attenuation rates are: a c ¼ 107 s�1 which corresponds to
ordinary laser with high quality resonator, and b c ¼ 1013 s�1 which corresponds to nanoresonator
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variance of the phase shift D/ðsÞ is presented. Figure 11.12a corresponds to the
ordinary laser with c � c1 � c2, while Fig. 11.12b—for the nanolaser with
c� c2 � c1. As can be seen from Fig. 11.12, the analytical and numerical results are
in good agreement; the standard ST expression for the nanolaser overestimates sig-
nificantly the more correct results.

Expression (11.49) has been elaborated under approximation of no amplitude
fluctuations, which corresponds to the laser generation well above threshold. On the
other hand, it would be interesting to compare the results of our model with the
rigorous calculations and Schawlow-Towns expression. The comparison is presented
in Fig. 11.13.

11.5 Conclusion

The coupled dynamics model of the plasmonic nanoresonator and quantum emitter
has been applied to describe regular and stochastic properties of the nanolaser
(spaser). The dynamics has been considered in the case of an applied resonant
external field and without, for both the dipole-like and quadrupole-like MAs. The
case of multimode spaser generation has been considered. The regions for stable
and unstable dynamics have been found and in the framework of the same model,
the problem of the bandwidth of the spaser generation has been considered. It has
been found, that the standard Schawlow-Towns expression significantly overesti-
mates the bandwidth and cannot be used; a modified expression has been suggested.
The analytical expression is shown to approximate closely the rigorous solution of
the stochastic dynamics even for the operation mode just above the threshold,

Fig. 11.13 Analytical (red and blue curves) and numerical results (black curves) of the variance

ðD/ðsÞÞ2
D E

as a function of time delay for the case of the nanolaser c ¼ 1013 s�1. The curves are

plotted for the following parameters: k ¼ 0:532 lm; jdj ¼ 2:5	 10�17 esu, c1 ¼ 109 s�1,
c2 ¼ 1013 s�1, DSP ¼ 2	 10�7. The pumping parameter corresponds to: a below threshold regime
and b above but near threshold regime (in this case analytical approximation is no more valid). The
y scales are different in both figures [90]
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where the amplitude fluctuations are not a priori supposed to be negligible. This
proves again, that the phase fluctuations play a decisive role for the spaser gener-
ation bandwidth.
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Chapter 12
Plane Wave Propagation
in Metamaterials with Gain

12.1 Introduction and General Approach

An overview of the interaction of the plasmonic nanostructures and quantum sys-
tems has been presented in the introductions to Chap. 10 and this chapter. In this
chapter peculiarities appearing in the description of the plane wave propagation in
MMs will be underlined, and then developed using the model discussed in Chap. 10.

As mentioned previously, the mitigation of the optical losses in MMs could be
potentially achieved by a combination of lower loss materials [1, 2] and by pro-
viding gain by doping of the MMs with optically active emitters—see recent
reviews [3, 4]. It has been shown experimentally that this form of loss compen-
sation does not prohibit the negative index property of the MM [5]. In addition, the
coupling with optically active emitters can compensate losses of the plasmonic
components making them feasible for telecom applications [6–9]. Along with the
plasmonic waveguides, other active components like modulators and switchers
form a full-scale nomenclature for application in the next generation signal pro-
cessing devices [10].

Several types of theoretical models have been suggested in order to describe gain
processes in MMs and plasmonic waveguides. Analytical or semi-analytical models
[11, 12] used the density matrix approach for the quantum dynamics description
from the very beginning, but to the best of my knowledge have not been combined
with the multipole approach [13] and consequently do not provide an adequate
enough platform to investigate the properties of MMs fully. Instead, the vast
majority of the publications have utilized the computational approach [4, 14] which
gives results close to the experimentally realizable data. Unfortunately, in some
cases the numerical approach cannot subdivide different physical effects and as a
result hides or limits any physical insight. For example, for the case of competition
between spaser eigen generation and dynamics driven by an external field the
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numerical approaches mix all fields (generated by MAs and the external one) in one
and thus far cannot demonstrate instability effect in the form given by analytical
analysis [15].

In this chapter the multipole approach, in combination with the density matric
formalism is used for establishing of the model for MMs with gain. This approach
allows us to investigate analytically or semi-analytically the interplay between gain
and magnetic properties of the MMs, the influence of internally unstable operation
mode for spasers (MAs coupled with emitters, which the MMs consist of) on the
propagation characteristics, and finally to optimize MM design. Moreover, the
presented model is in line with the previously presented approach (actually is its
natural extension on the problem of plane wave propagation) and from the other
side pretty clear and observable, which makes the model a perfect platform for
various university courses (see also Chap. 14).

In view of the results achieved in previous chapters it becomes clear that the
process of the loss compensation depends significantly on the degree of cou-
pling of the emitters and MAs. It is clear, that in a real experimental realization
the MM will contain both types of emitters, coupled and uncoupled, which has
to be incorporated into the model. Here, we assume that total averaged con-
centration of the emitters (number of the emitters in an elementary volume,
containing one MA) is kept constant for all cases considered below. In contrast,
the particular emitters coupled to the MAs d can vary from zero (d ¼ 0, no
coupled emitters) to one (d ¼ 1, all emitters are coupled); both of them contribute
to the polarizability:

@2Ex
@y2 þ x2

c2 Ex þ 4pPxðy; q12;xÞð Þþ i4px
c
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>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12:1Þ

Here ~q12;un and Nun describe dynamics of the uncoupled emitters, and ~q12;un and
Nun are responsible for the coupled emitter dynamics respectively. For the case of
simplest dipole-like MA system (12.1) becomes:
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8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð12:2Þ

When all emitters are placed between MAs and are free of coupling (d ¼ 0), the
problem is reduced to the propagation of a plane wave with loss and gain, where
gain dynamics and loss (plasmonic) dynamics are separated from each other:
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8>>>>>>>>>>>>>>>>>>>>><
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ð12:3Þ

and no new physical phenomena are expected.

12.2 Propagation of a Plane Wave in a Metamaterial
with Dipole-Like Metaatoms

12.2.1 Master System of Equations

First, the case of dipole-like MAs (12.2) is considered in the case of CW operation
without noise terms, namely:
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8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð12:4Þ

The Helmholz propagation equation for the electric field can be transformed
using Slowly Varying Approximation (SVA):

Ex yð Þ ¼ Ax yð Þ exp ikyð Þþ x2

c2
Exðy;xÞþ 4pPxðy;xÞð Þ ¼ 0

) @2Exðy;xÞ
@y2

¼ @2Axðy;xÞ
@y2

þ 2ik
@Axðy;xÞ

@y
� k2Ax � 2ik

@Axðy;xÞ
@y

� k2Ax

ð12:5Þ

Note, that all equations for ~q12;un, ~q
�
12;c, Nun, Nc, and ms remain invariant under

transformation:

Ex ! Ax exp ikyð Þ
~q12;un ! ~q12;un exp �ikyð Þ
~q12;c ! ~q12;c exp �ikyð Þ
ms ! ms exp ikyð Þ

8>><
>>:

ð12:6Þ

Combination of (12.5) and (12.6) finally results in:
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ð12:7Þ
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where the following substitution has been made k2 ¼ x2

c2 ð1þ 4p q g v
Rs
Þ. System

(12.7) is the master system of equations to describe propagation of the plane wave
in a MM with MAs, consisting of plasmonic nanoresonators coupled with QS and
free QS embedded in the matrix of the MM itself. In the case of Quantum Dots, for
example, as QS, (12.7) describes loss compensation and respective optical prop-
erties of the MM.

Solutions of (12.7), especially transition region, can only be found numeri-
cally. Nevertheless, even before the solutions are demonstrated, one can quali-
tatively predict different operation modes using the results obtained in Chap. 11,
where stable and unstable operation modes of the spaser have been found and
analyzed.

12.2.2 Loss Compensation by Completely
Uncoupled QS ðd ¼ 0Þ

In this case (12.7) becomes:
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0 � x2 � 2ixcþ r
� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð12:8Þ

Solution of (12.7) describes rather trivial loss compensation in a media with
dipoles and will not be considered here; more information about this kind of
problems can be found in any textbook about optical amplifiers, see for example
[16]. Under appropriate choice of parameters (QS concentration and pump) plane
wave stabilizes own intensity by saturation and propagates stably.

The results of the solution of the propagation (12.8) are presented in Fig. 12.1,
where amplitude Ax of the propagating wave is presented in color grade as a
function of frequency and propagation length.

The parameters of the MM (nanoresonator concentration, QS concentration,
pump etc.) have been chosen in order to reach full compensation, so that amount of
gain provided to the plane wave is enough to compensate the losses. The stable
propagation can be achieved around the central gain frequency of the QS, which is
chosen the same as the resonant frequency of the nanoresonators.
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12.2.3 Loss Compensation by Completely
Coupled QS ðd ¼ 1Þ

In this case (12.7) is reduced to the system, which describes the situation consid-
ered, for example, in [12]:
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x
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s ~q
�
12;c

� �
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x~q
�
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8>>>>>>>>><
>>>>>>>>>:

ð12:9Þ

In this case full loss compensation coincides with the threshold of the spaser
generation—which means, that the spaser’s own dynamics will be affected by the
external wave, resulting in potentially unstable operation [15], see also Chap. 11.
To this extent, the results about instability of operation of the MM under full loss
compensation correspond to the conclusion of [12]. Nevertheless, stable operation
is still possible (see Chap. 11) for not completely coupled case. On the other hand, it
is hard to believe that under real experimental situations all emitters appear to be
coupled with the plasmonic nanoresonators. Therefore, an experimental realization
of the case d ¼ 1 and respective instability prognoses remain rather exotic ones.

The solutions of propagation (12.9) are presented in Fig. 12.2. In this case peak
luminescence coincided (as before) with the nanoresonator frequency x21 ¼ x0 and
the complex structure of the spectrum is caused by strong coupling between the QS
and the nanoresonators. It should be emphasized that for the same parameters, but
without coupling the amplitude of the propagating wave cannot be stabilized for any

(a) (b) (c)Frequency (1015 Hz) Frequency (1015 Hz)Frequency (1015 Hz)

Z
(μ

m
)

Z
(μ

m
)

Z
(μ

m
)

Fig. 12.1 a Propagation of the plane wave in the case of MM with dipole-like MAs without QS,
blue color corresponds to lower amplitudes. Peak of the losses corresponds to the resonance
frequency for a single nanoresonator x0 ¼ 3:14� 1015 Hz. b Propagation of the plane wave in
media filled by pumped QS with the resonant frequency x21 ¼ 3:14� 1015 Hz. c Propagation of
the plane wave in the case of completely uncoupled QS d ¼ 0 in MM with dipole-like MAs,
x0 ¼ x21 ¼ 3:14� 1015 Hz. Parameters (QS concentration and pump) are chosen in order to
provide full loss compensation, which is achieved around QS peak gain frequency
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frequency. It proves in turn that the coupling between the QS and the nanoresonator
reduces significantly an amount of QS necessary for the full loss compensation and
is crucial for the experimentally achievable full loss compensation in MMs.

12.2.4 Loss Compensation by Partially
Coupled QS ð0\d\1Þ

It has been shown that the coupling of plasmonic nanoresonators to QSs increases
amplification and offers a preferable realization of loss compensation [17]. As just
discussed, a fully coupled realization tends to result in unstable operation [15]. In
the intermediate case (12.7) the number of coupled emitters is almost sufficient to
cross the generation threshold. The rest of losses will be compensated by free
emitters. This seems to be perfect solution and sets a clear strategy for the design of
the MMs with fully compensated losses. The solution, qualitatively looks similar to
the one presented in Fig. 12.2 and is not shown here. The main difference is in the
wider region of parameters for stable propagation (the parameters correspond to the
stability region in terms of Chap. 11). The full analysis of stability of the plane
wave propagation in MMs with gain has not been published and is a subject for
further investigation.

12.3 Propagation of Plane Wave in Metamaterial
with Quadrupole-Like Metaatoms

12.3.1 Master System of Equations

In summary, consideration of dipole-like MAs and the respective MMs reveal
mainly two new physical phenomena, namely:

Frequency (THz) Frequency (THz) Frequency (THz) 
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( μ
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Z
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Z
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m
)

(a) (b) (c)

Fig. 12.2 Propagation of the plane wave in the case of totally coupled QDs in MM with
dipole-like MAs. The amount of QD is fixed, x12 ¼ x0 ¼ 314 THz, N0 (the pump rate) is varied
0.93 0.97 0.98 for (a), (b), and (c) respectively. One can see that there are certain frequencies
where losses are totally compensated and stable propagation is possible. Amount of such
frequencies increases as the pump rate increases
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• Enhancement of the amplification processes due to the appropriate positioning
of the emitter in the vicinity of the plasmonic nanoresonators and coupling
between the emitters and nanoresonators;

• Possibly unstable plane wave propagation in MMs where all emitters are cou-
pled with the plasmonic nanoresonators, which requires non zero free (uncou-
pled) emitters which contribute to the loss compensation.

The most intriguing property of MMs, namely magnetic response in the optical
frequency domain, cannot be considered in the framework of the dipole-like MAs
and requires a full consideration of multipoles, namely magnetic dipole and
quadrupole terms. In such a case, the system (12.1) will be reduced to the system of
equation for SVA in analogy with the consideration of the dipole-like MAs. Firstly,
system (12.1) for CW operation and without stochastic terms becomes:
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12:10Þ

In contrast to the previous case, with just dipole-like MAs, one is required to
take into account both quadrupole and magnetic dipole moments in the propagation
equation, which are included in the equation through the first derivatives.
Moreover, Ex;1 and Ex;2 are the fields driving upper and lower nanowires respec-
tively. Following [13] it is assumed that:

Ex;1 ¼ Ex ð12:11Þ

and:

Ex;2 ¼ Ex exp iky1ð Þ ð12:12Þ

k is the wave vector, and y1 is the distance between nanowires, see Fig. 4.1. As
in [13], the wave vector must be found by consideration of the propagation
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equation. Substituting (12.11) and (12.12) into (12.10), and taking into account that
ky1 � 1, system (12.10) becomes:
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ð12:13Þ

Reduction of (12.13) to the SVA can be done following the same steps as (12.5),
(12.6) with the additional assumption that @

@y Qxyðy;q12;xÞ ! ikgqy1ma and
@
@y Qxyðy; q12;xÞ ! ikgqy1ma; wave vector is also set to @

@y Qxyðy;q12;xÞ !
ikgqy1ma. Finally (12.13) becomes:
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ð12:14Þ

It should be noted that the first (propagation) equation in (12.14) is reduced to
(12.7), i.e. to the equation for propagation in a MM with dipole-like MAs.
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However, dynamics of ~q12;c in case (12.14) will be affected by the antisymmetric
mode and, therefore even in case of very closely spaced nanowires (when retar-
dation can be neglected, which mathematically is expressed by k ! 0), the prop-
agation equation will have its own peculiarities.

12.3.2 Loss Compensation by Completely
Uncoupled QS ðd ¼ 0Þ

In this chapter, only preliminary data of the solution of (12.14) are presented and a
more comprehensive consideration which will be done elsewhere. Figure 12.3
shows propagation of the plane wave in (a) MMs with quadrupoles-like MAs only
and (b) quadrupoles-like MAs and uncoupled QS. In the case of the quadrupole-like
MAs there are three characteristic frequencies, namely the eigen frequency of a
single nanoresonator (which remains the same as previously) x0 ¼ 314 THz,
symmetric and antisymmetric eigen frequencies of the quadrupole-like MAs
(coupled nanoresonators) xs ¼ 324 THz; xa ¼ 304 THz respectively.

Stable propagation is achievable for both symmetric and antisymmetric eigen-
frequencies, provided parameters for the full compensation (position of the gain
maximum, concentration of the QS and pump level) are appropriately chosen. In
Fig. 12.3 the stable propagation at the symmetric eigen frequency is shown; the
stable propagation at the antisymmetric frequency looks the same and is not pre-
sented here. It has to be emphasized that all optical properties of the MM (like
dielectric and magnetic response and consequently possibility of the negative
refraction) are affected differently: an imaginary part of the effective dielectric
constant in the stationary state is zero, while effective magnetic constant remains
unaffected. It means in turn, that the loss compensation with the uncoupled QS
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Fig. 12.3 a Propagation of the plane wave through the MM (no loss compensation) consisting of
quadrupole-like MAs. Two deeps correspond for antisymmetric 3.04 THz and symmetric
3.24 THz modes. Losses near symmetric mode are stronger than near antisymmetric. b Loss
compensation regime with uncoupled QSs near the symmetric mode 3.24 THz. Positions of the
symmetric, antisymmetric, and QS gain peak frequencies are shown by arrows

266 12 Plane Wave Propagation in Metamaterials with Gain



enhances the effect of negative refraction; from the other side, number of the QSs
necessary for the full compensation in the case of uncoupled QSs is pretty high and
requires special technological methods.

12.3.3 Loss Compensation by Completely
Coupled QS ðd ¼ 1Þ

For the case of fully coupled QS the physical picture becomes (in compare with
12.2.3, see also Fig. 12.2) even more reach and complicated. Due to the saturation
caused nonlinearity the modes become coupled and energy transfer between the
modes takes place. Moreover, there are three potential variants of the central gain
positioning: one can place the QS gain center coinciding with the eigen nanores-
onator frequency 3.14 THz as it was assumed for dipole-like MAs (see Figs. 12.1
and 12.2), and one can match the QS peak gain frequency with the symmetric or
antisymmetric eigen frequencies. All three options have been investigated and the
results are presented in Fig. 12.4. It has been found, that the resulted frequency
pattern (Fig. 12.4) becomes extremely complicated and does not guarantee the
stable propagation at the initially found eigen frequencies for symmetric,
antisymmetric, and single nanoresonator oscillations. From the other side, stable
propagation is possible and the frequency position of the stable propagation
depends on the coupling efficiency.

In real experimental realization the coupling efficiency is expected to be spatially
inhomogeneous, and the resulted pattern is supposed to be even more complicated.
In spite of the fact, that the positions of the stably propagating frequencies seem to
be hardly predictable, the coupling (as it was mentioned for the dipole-like MAs)
leads to significant reduction of the number of QS necessary for the full loss
compensation, and from this point of view remains preferable way of the QS
positioning in MM.
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Fig. 12.4 Propagation of the plane wave in the case of totally coupled QS in MM with
quadrupole-like MAs. The amount of QS is fixed, xQS is varied a 3.04 � 1015 Hz, b 3.14 � 1015

Hz, and c 3.24 � 1015 Hz respectively, N0 ¼ 0:97. There are certain frequencies (pattern depends
on positioning of the QS peak gain) where losses are totally compensated and stabile propagation
is possible. Positions of the symmetric, antisymmetric, and QS gain peak frequencies are shown by
arrows
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12.3.4 Dynamics of Symmetric and Antisymmetric Modes
in MAs at the Propagation in Case of Completely
Coupled QS ðd ¼ 1Þ

The magnetic response of the MM differs MM from any natural material, and it
would be extremely interesting to keep this property at the loss compensation
scenario as well.

In the frame of the developed in this work approach, the magnetic response
depends on the magnitude of the antisymmetric oscillation mode—both magnetic
and quadrupole moments are proportional to the magnitude of the antisymmetric
mode. Here the magnitudes of the both antisymmetric ma and symmetric ms modes
and their relation ma=ms have been extracted and plotted in Fig. 12.5. It is seen,
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Fig. 12.5 Dynamics of the amplitude of the a–c antisymmetric ma , d–f symmetric ms modes, and
(g–i) their relation ma=ms as a function of frequency for the same parameters as shown in
Fig. 12.4: propagation of the plane wave in the case of totally coupled QS in MM with
quadrupole-like MAs. The amount of QD is fixed, xQS is varied a, d, g 3.04 � 1015 Hz (eigen
frequency of the symmetric mode of the quadrupole-like MAs), b, e, h 3.14 � 1015 Hz (eigen
frequency of the eigen mode of the single dipole-like MAs), and c, f, i 3.24 � 1015 Hz (eigen
frequency of the antisymmetric mode of the MAs), N0 ¼ 0:97. Positions of the symmetric,
antisymmetric, and QS gain peak frequencies are shown by arrows
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that clear domination of the antisymmetric mode (and consequently maximum
magnetic response) could be obtained for the QS with the peak gain frequency
around eigen frequency of a single nanoresonator. The results presented in
Fig. 12.5 indicate that the energy of the inverted QS is transferred to the MAs and is
redistributed between the symmetric and antisymmetric modes. Basically, the
results reveal complex dynamics of the two nonlinearly coupled modes, where one
of the modes is supported by a propagating plane wave. It has to be emphasized,
that in this case possible nonlinear interaction between several plane waves was not
considered: according to the accepted here SVA approximation (12.5), (12.6)
propagation of the external monochromatic wave was assumed. Experimentally it
corresponds to the short propagation distances, where generation of new harmonics
due to the nonlinear interaction is not significant; this operation mode is expected in
the case of single or even multilayer MMs, which can be produced using the state of
the art technologies. Nevertheless, in the case of simultaneous propagation of
several waves with different carrier frequencies this effect has to be taken into
account.

It is expected, that this kind of parametric interaction could be used for loss
compensation as well; from the purely theoretical point of view, this parametric
nonlinear interaction between modes is also interesting for the investigation of
possible generation of the multifrequency stable states (colored stable states) which
could probably exist in MMs. Otherwise, according to the results presented in
Fig. 12.5 the propagation of a monochromatic plane wave is obviously unstable:
the energy of the initial monochromatic mode will be redistributed over many
frequencies as the plane wave propagates in the MM.

12.4 Conclusion

In conclusion, the problem of monochromatic plane wave propagation in the MM
consisting of quantum MAs has been considered. The system of equations
describing the plane wave propagation in the MM with the quantum MAs has been
elaborated. Using the results of the previous chapters about the existence of stable
and unstable generation modes of the MA, the stable propagation mode has been
observed for the case of the fully uncoupled and fully coupled QSs. It has been
found, that for the same set of parameters the uncoupled QSs cannot compensate for
the optical losses in the MM, which proves that the coupling between the plasmonic
nanoresonators and QSs significantly increases the loss compensation efficiency.
The case of the plane wave propagation in the MM with the quadrupole-like MAs
has been considered only for the monochromatic plane wave propagation and so
requires further investigation. The full analysis of stability of the plane wave
propagation in MMs with quadrupoles and gain has not been published and is a
subject for further investigation.
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Chapter 13
Relaxation of Inverted Quantum System
Coupled with Metallic Nanoobjects

13.1 Introduction

The problem of the relaxation dynamics of a two-level quantum system (QS) is
considered in the frame of the developed in [1] approach and compared with the
known and widely used math tools. The commonly accepted in publications
approach appears to be questionable from the point of view of basic principles.

The relaxation time modification has been considered in different realizations
(including photonic crystals [2] and plasmonic waveguides [3]), but here to be
precise only the coupling between the localized nano modes (e.g. localized plas-
mons) and two-level QSs is considered. Since seminal paper of Purcell [4], and (in
more than 30 years) fundamental theoretical works [5, 6], several excellent reviews
[7–9] and books about Cavity Quantum Electrodynamics [10, 11] have been
published; a full and comprehensive publication reference list can be found there.
Among the recent achievements it should be mentioned the experimental realization
of the plasmonic patch antenna for control of the spontaneous emission [12] (which
has been theoretically considered in [13]) and observation of the ultrafast Rabi
oscillation [14], which manifestoes the strong coupling regime [15, 16]. The strong
coupling assumes positioning of the quantum system in close proximity to the
nanoresonator, which in turns requires inclusion of higher (than dipole) order
modes in nanoresonators and dipole-forbidden transitions in the QSs [17–19].
Coupling with realistic shapes of the nanoresonators has been considered in [20]
and [21]. The peculiarities of the disordered plasmonic on the radiative and non-
radiative relaxation rates have been considered in Cazé et al. [22], and influence of
the plasmonic cloak has been investigated in [23]. Accurate calculation of the Green
function for complex plasmonic structures allowed estimating the spatially resolved
Purcell effect for hyperbolic metamaterials [24] and wire metamaterials [25]. The
relaxation time modification due to the presence of a nanoresonator [26], has been
taken into account in the modelling of spaser dynamics [27, 28] using basically the
same approach as in Novotny and Hecht [29].
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It is worth noting again (see Chap. 9) that the relaxation processes can be
described either in the frame of classical or quantum approaches. In the frame of
classical approach (ME consisting of the field and charge dynamic equations) there
is no steady state solution for the atoms/molecules, because of the electrons in the
atoms/molecules lose energy due to the radiation losses at the rotation around the
nuclear. From the other side, ME are not compatible with the quantum mechanic
approach, i.e. ME, rigorously speaking, cannot be coupled with the density matrix
(DM) equations. In spite of that, ME are used with the DM equations to describe
optical gain, laser generation etc. (e.g. see Chaps. 9–12). It is stipulated rather by
fact that this approach leads to the conclusions supported by the respective
experimental confirmations, but not by a rigorous elaboration from basic principles.
Nevertheless, in order to describe relaxation processes in the frame of DM, ME will
not be used.

13.2 The Accepted Approach for Estimation
of Purcell Effect

Analysis of the “state of the art” of the activity in area of the nanoplasmonic
assisted relaxation time modification would worth to start from several definitions,
namely—what exactly do we mean under “Purcell effect”? From the experimental
point of view, the observed in the tests relaxation time modification (without any
details about an actual functional form of the relaxation curves and discussion about
relaxation channels) is called Purcell effect. In most cases (not only in experimental,
but also in vast majority of the theoretical publications) Purcell effect itself is not
distinguished from Purcell factor, which is the ratio between the relaxation rates in
vacuum and near the nanostructures. This assumes that the relaxation follows
exponential time dependence in both cases, namely in free space and in the case of
coupling with the nanoresonators. Unfortunately, there is neither theoretical nor
experimental evidence that the relaxation in general has an exponential shape;
moreover, both experimental [8, 12] and theoretical results [30] show the
non-exponential decay law. In addition, it has to be mentioned that the evaluation
expressions for the Purcell coefficient, based on the estimated values for the
effective mode volume and resonator quality factor, in contrast to the microcavities
does not give correct estimation for the plasmonic nanoantenna [31]. Hereafter, it is
not apriori assumed that the decay follows an exponential law. It will be shown that
the exponent is a good approximation only in the case of relaxation caused by
interaction with stochastic environment.

The relaxation dynamics of the QS interacting with a plasmonic nanoresonator
can be considered classically and quantum mechanically, we start from the latter
one. Due to methodological reasons it is worth to remind basics of the relaxation in
a free space. First, it has to be realized that in the frame of Schrödinger equation for
the QS in free space there is no relaxation until there is no external fields. The
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relaxation appears only as a result of consideration of the vacuum fluctuations of the
electromagnetic field (second quantization). The spontaneous emission cannot be
considered as just influence of the vacuum fluctuations on the QS in the frame of
the first perturbation order, but rather as a coupled dynamics of the system “field
plus QS”. This fundamental question has been perfectly explained in Ginzburg [32],
see also different points of view on this problem in Weisskopf [33], Weisskopf [34]
and Fermi [35].

A derivation of the spontaneous decay rate in the frame of the quantum
electro-dynamic approach can be found in textbooks, for example in Novotny and
Hecht [29]. Consideration of the coupled “electric field plus QS” transition rate c
according to the Fermi’s Golden Rule gives finally:

c ¼ 2x
3�he0

lj j2ql ~r0,x0ð Þ

ql ~r0,x0ð Þ = 3
X
k

~nl � ~uk~u
�
k

� � �~nl� �
d xk � x0ð Þ

ð13:1Þ

Here ~l is the dipole moment of the transition of the QS, ~l ¼ l~nl,~r0 is position
of the QS, ql ~r0; x0ð Þ is the partial local density of states (LDOS),~uk are the normal
modes,~nl is the unit vector in the direction of~l. The electric field is expanded over
spatially dependent positive and negative frequency parts:
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2e0
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ð13:2Þ

where:

ak tð Þ ¼ ak 0ð Þ exp �ixktð Þ; ayk tð Þ ¼ ayk 0ð Þ exp ixktð Þ ð13:3Þ

The relaxation dynamics of the probability of the QS to be found in the excited
state (population of the excited state) decays exponentially. Decay rate (13.1)
describes relaxation into the vacuum field modes~uk. It is important to underline at
this point two facts. First, this decay rate assumes the radiation rate, which means
that all the transitions give one photon per transition into the far or near field zones
depends on what kind of modes ~uk are: if the QS is situated in the near/far field
zone, then~uk are the near/far field zone modes. Second, the interaction with vacuum
field has a stochastic character: the vacuum fluctuations occur randomly with some
probability. Quantum character of these fluctuations is in the fact, that the virtual
photons can not be absorbed and pump a QS, but only stimulate emission of an
extra photon in a pumped QS. This important quantum property leads to the
appearance of the relaxation in the first order of perturbation expansion—in contrast
with a classical case (e.g. interaction with the fluctuations in a thermo bath), where
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the relaxation appears in the second order of perturbation. We see later, that this
differentiates the relaxation due to the vacuum fluctuations and due to the inter-
action with the environmental classical fluctuations.

The problem now is reduced to the finding of the functional form for the LDOS.
There is an elegant way using the methods of Green functions [29], which the vast
majority of the recently appeared papers are based on. The eigen functions ~uk
satisfy Helmholz equation, which is for generally inhomogeneous and dispersive
(and consequently due to the causality principle lossy) media is:

r�r�~uk ~r; xkð Þ � e ~r; xkð Þx
2
k

c2
~uk ~r; xkð Þ ¼ 0

r�r� G
$
~r0; ~r; xkð Þ � e ~r; xkð Þx

2
k

c2
G
$
~r0; ~r; xkð Þ ¼ I

$
d ~r0 �~rð Þ

ð13:4Þ

Here Green function G ~r0; ~r; xkð Þ is introduced and I
$
is the unit dyad. At the

elaboration of the expression for the LDOS through the Green function, it is necessary
to assume that the modes~uk are orthogonal, which is straightforward for any media
without losses, i.e. constant and real permittivity Re e ~r;xkð Þf g 6¼ 0; Im ef g ¼ 0. In
this case the~uk are orthogonal:Z

~uk ~r;xkð Þ~u�k0 ~r;xk0ð Þd3~r ¼ dkk0 ð13:5Þ

and expressions for the relaxation rate and LDOS are:

c ¼ 2x0

3�he0
lj j2ql ~r0; x0ð Þ

ql ~r0; x0ð Þ ¼ 6x0

3�he0
~nl � Im G

$
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n o
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h i ð13:6Þ

Finally, LDOS for the homogeneous isotropic media Re e ~r;xkð Þf g ¼
e xkð Þ; Im ef g ¼ 0 takes well-known form of the black-body radiation:

ql x0ð Þ ¼ e
x2

0

p2c3
ð13:7Þ

And the decay rate is:

c ¼ e3=2x3
0 lj j2

3pe0�hc3
ð13:8Þ

In the case of a dielectric inhomogeneous media (eð~r; xÞ; Imðeð~r; xÞÞ ¼ 0
which is a good approximation for dielectric in transmission windows) the proce-
dure remains the same excepting more complicated Green function and conse-
quently spatially dependent LDOS and decay rate.
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In the case of significant losses (as it takes place for the metallic nanoresonators)
orthogonality condition (13.5) fails due to the nonzero imaginary part of the per-
mittivity, which makes (13.4) non-Hermitian. More sophisticated math tools have
been suggested for this case [36, 37]; moreover, applicability of the electrodynamic
approach was shown to be valid for the case of the very small distances from the
metallic surface [38]. Nevertheless, wide application of the Green function in its
original formulation (13.6) seems to be stipulated at the moment rather by
its relative simplicity than by a full justification of this method for the metallic
(dispersive and lossy) nanoresonators [24, 25].

In the frame of the same electrodynamic approach it is rather straightforward to
calculate radiative and nonradiative decay rates. Both classical [5] and electrody-
namic approaches [6] have been proposed. Taking into account radiative losses in
addition to the Joule ones for the nanoresonators, the radiative decay rate can be
calculated by energy flux through the surface of the sphere surrounded both the QS
and nanoresonator, while the nonradiative decay rate is determined by the calcu-
lating of the power dissipated in the nanoresonator due to the Joule heating [30].

13.3 Concerns About the Commonly Accepted Approach

From the other side, the physical picture behind this approach appears to be to some
extend controversial.

First, this picture being applied for the near field (zero wave vectors) contradicts
to the relativistic principles, which is not surprising and most probably has to be
accepted.

Second, all math manipulations with the Green functions and eigen modes
assumes that the conditions for the eigen modes to be excited are fulfilled, and that
all free electrons in the nanoparticle participate in this mode move coherently. This
assumption does not seem to be realistic. In fact, the plasmonic mode relaxation
time is about 100 fs, which is comparable with the coherence time of the sponta-
neous photons, and under this condition the eigen mode just does not have enough
time to be formed. This ambiguity is connected with the logic jump between the
expansion of the filed over eigen functions (13.4) for the homogeneous and inho-
mogeneous spaces. In fact, for the homogeneous space microscopic Maxwell
equations are used, while introduction of permittivity assumes that we work with
macroscopic Maxwell equations. At this transition (homogenization procedure) the
electron dynamics is assumed to be coherent, which is questionable for the con-
sidered case of a single photon.

Another concern about the use of the eigen mode appearslevel system with pump
when we consider an elementary act of the absorption. In fact, one particular photon
gets absorbed just by one particular electron, which is a free one, because of the
dynamics of the electron does not depend on the nano sizes of the nanoresonator—
dynamics of the free electron is not quantized and influences dynamics of the other
electrons (model of free electron gas with interaction) after, roughly speaking, the
same relaxation time of about 100 fs.
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One more concern is connected with the discussed above peculiarities of the
vacuum fluctuations. The quantum nature does not possess the process of absorp-
tion of the vacuum fluctuation photons by a QS, which in turn leads to the
appearance of the relaxation effect in the first order of the perturbation series. The
self-influence, described by the Green function at its origin (see [29]), is already
the second order of the perturbation theory which evidently exceeds accuracy of the
model (remind that the radiative relaxation process is described in the frame of
the first perturbation order). It is worth noting here that in the frame of the density
matrix approach (will be considered later) the relaxation processes due to the
interaction with a thermo bath (classical fields) is described by the second order
perturbation terms. In the frame of the Green function approach, the first order
perturbation would correspond to the influence of the nanoresonator on the LDOS
by taking the Green function not at the origin of the QS, but rather between the

nanoresonator and the QS G
$ð~r0; ~r0; xkÞ ! G

$ð~rNR; ~r0; xkÞ, here~rNP is the center of
the nanoresonator. This qualitative discussion shows that the interpretation of the
relaxation rate modification in terms of the classical notations most probably
requires further corrections.

13.4 Can Quantum Dynamics Be Described by Harmonic
Oscillator Equation?

Now, let us briefly consider the classical approach. In the frame of this approach the
quantum dynamics is described by a harmonic oscillator equation. Let us first
investigate under which approximation this approach remains valid. We start from
the density matrix equation with relaxation in the basis of the eigen function of the
unperturbed Hamiltonian for two level system with pump [see Chap. 9 for details,
namely (9.4)]:

dq12
dt þ ix12q12 þ q12
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Introducing P ¼ q12 þ q�12, one can finally reduce (13.9) to the following form:
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The first equation in (13.10) could be taken as a trivial harmonic oscillator one in
case when these two equations are separable, i.e. N does not depend on P. It could
be a good approximation for the unpumped QS without saturation, i.e. under low
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intensity external Hamiltonian H12; in this case N � N0 ¼ �1. In contrast, in case
of the relaxation dynamics it is assumed that N evolves from N = 1 to N = − 1,
which excludes any reasonable justification for the separation of the first equation
as a harmonic oscillator one.

In the case of harmonic oscillator equation the damping parameter is supposed to
be responsible for the both line bandwidth and the relaxation time. Let us consider a
typical quantum dot with the typical bandwidth of about 50 nm around central
wavelength of 1000 nm. Inverse bandwidth spectrum width gives us the approxi-
mated relaxation time:

s � 1
Dv

=
k2

cDk
� 100 fs ð13:11Þ

From the other side, the measured in the tests relaxation time is typically about
1–10 ns. In the frame of the density matrix approach there is no any contradictions,
because of there are two different times for the spectrum width (phase relaxation
time) and for the energy relaxation time, namely s2 and s1. The relaxation time,
which can be calculated using (13.1) is the energy relaxation time s1, because of
this time assumes energy transition with photon emission; the s2 describes change
in the phase of the eigen state without energy transition. Clear, that the harmonic
oscillator equation neither can be elaborated within some reasonable approxima-
tions, nor can give even qualitative explanation for the different relaxation times
and spectrum bandwidth of the QS. It has to be pointed out, that this is again
consequence of the quantum character of the QS. For example, in the case of the
relaxation of the plasmonic oscillations the relaxation time (again about 100 fs)
matches pretty good with the observed bandwidth of the plasmonic resonances
which is again comparable with one for the QDs and is typically about 30–50 nm. It
means, that the plasmonic dynamics can be safely considered in the frame of
classical approach (i.e. harmonic oscillator equation).

13.5 Relaxation in the Frame of Density Matrix
Formalism

It is necessary to remind about physical picture behind the elaboration of the density
matrix (DM). First, the DM approach and the Schrödinger equation are equivalent
and could be transformed one from another [39, 40]. A QS interacting with the
external fields is considered. The full Hamiltonian is subdivided by three main
parts: the eigen Hamiltonian H0 which describes the internal energy structure of the
QS without any external fields; the Hamiltonian of the interaction between the QS
and the stochastic parts of the external fields Vst, and the Hamiltonian of the
interaction between the QS and the regular part of the external fields Vr. After
expansion over the eigen functions of the eigen Hamiltonian H0 (particles plus
field), the interaction with the stochastic and regular Hamiltonians leads to the
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qualitatively different terms in the final equations. All interactions with the
stochastic fields are considered in the frame of the perturbation theory. The inter-
action with the vacuum fluctuation (“quantum” part of the stochastic interaction)
appears in the first order of the perturbations and leads to the relaxation with the
time s1;r which stands for the radiative relaxation time; this is exactly the relaxation
time found in (13.1). Interaction with the classical part of the stochastic field
appeared in the second order of the perturbation, because of in the first order the
fluctuation with zero mean value (all stochastic parts are assumed to have zero
mean value) does not cause any changes—the probability to excite the QS is
exactly the same as the probability for the stimulated transition back to its ground
state. This is an important difference between the vacuum (quantum) field fluctu-
ations and the classical ones, which has been already mentioned above. The second
order gives a nonzero effect, which appears as an extra nonradiative relaxation time
s1;nr. The total energy relaxation time is given by:

1
s1

¼ 1
s1;r

þ 1
s1;nr

ð13:12Þ

It is important to understand, that the second order of perturbation means
self-action, i.e. the QS acts on itself through the in-phase excitation of the external
modes. For example, in the case of a thermo bath the QS excites some modes which
in turn act back on the QS; due to the phase synchronization the action is not zeroed
under the averaging.

The approach with the interaction with the thermo bath also allows us to
overcome the fundamental problem of losses. In order to get an orthonormal set of
the eigen functions (which is widely used), the Hamiltonian has to be Hermitian.
From the other side, the losses have to be somehow incorporated into the consid-
eration. The model with infinite number of eigen modes, weakly coupled with the
considered QS allows us to keep the Hamiltonian Hermitian, and at the same time
introduce the relaxation processes for the QS. In fact, to this extend the density
matrix approach is free from the discussed above problem with the imaginary part
of permittivity, which makes eigen functions of (13.5) nonorthogonal and all
consequent conclusions (13.6) not fully justified.

The second relaxation time s2 appears at the consideration of the phase (not
amplitude!) changes of the eigen states. In fact, the probability of the phase changes
without the amplitude changes, i.e. without the transitions between the energy
levels, is much higher than the transition between the energy levels. Due to this fact,
the phase relaxation time s2 appears to be shorter (or equal in the limit) than the
energy relaxation time s1:

1
s2

¼ 1
s1

þD ð13:13Þ

It is possible to write down an expression for the extra term D using the
respective matrix elements of the stochastic Hamiltonian of interaction [41]:
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o
ð13:14Þ

Here Vst;ijkl are the matrix elements of the stochastic Hamiltonian of interaction,

qð0Þij are the unperturbed density matrix elements, w and dC are the probability of
interaction and elementary volume over all parameters of the interaction, which
w depends on.

The last Hamiltonian of interaction with the regular fields Vr does not require the
perturbation approach and is included in (13.9) rigorously as H12. The so called
strong coupling regime is one of the phenomena described by this Hamiltonian.
From the other side, this interaction can also be treated in the frame of the per-
turbation approach, but by no means this can be (in general) reduced to the extra
relaxation term and packed into the two relaxation times s1 and s2.

13.6 Physical Picture of Interaction Between QS
and Nanoresonator

After having all this said, let us consider the physical picture of interaction between
the QS and a nanoresonator in the frame of the density matrix approach. The
presence of the nanoresonator modifies the LDOS, which leads to the modification
of the radiative relaxation time. The energy of the excitation of the QS can also be
transferred to the stochastic and regular modes of the nanoresonators, coupled to the
QS. The stochastic modes are just thermal stochastic electron dynamics, while the
regular modes are the collective electron dynamics, i.e. the plasmon modes. In order
to subdivide these dynamics (i.e. probability of the contribution into stochastic or
regular dynamics), the standard approach of the probability distribution function
(PDF) of the electrons in the nanoresonator fel tð Þ can be used. The kinetic equation
is:

@fel
@t

þ ~v � ~rrfel
� �

þ q
m

~E � ~rvfel
� �

þ S ¼ 0 ð13:15Þ

Here rr ¼ i @
@x þ j @

@y þ k @
@z, rv ¼ i @

@vx
þ j @

@vy
þ k @

@vz
, S is the impact integral,

and ~E is the electric field produced by the QS and is proportional in the near field
approximation to the dipole moment of the QS ~E ¼~nlanr q12 þ q21ð Þ, q and m are
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the charge and mass of electron respectively. Without an external electric field the

PDF is just known Maxwell distribution function fel;0 ¼ m
2pT

� �3=2 exp � mv2
2T

� �
, T is

the temperature. In the case of an external field the PDF gets modified with typical
response time of sel � S�1, which for typical experimental realizations is about
100 fs, i.e. comparable with s2. Remind that the introduction of the permittivity and
consequently all the concept of the eigen plasmonic functions of the nanoresonator
assumes that the PDF is already stabilized, i.e. for the times much longer than the
100 fs. Taking into account, that the duration of the elementary relaxation process
is anyway less or comparable with the 100 fs, we come to the conclusion, that the
concept of the eigen functions is rigorously speaking not applicable for the
description of the relaxation processes. Instead, we might consider a coupled sys-
tem of equations which includes density matrix and PDF equations, namely (13.9)
and (13.15) and calculate modification of the PDF for the respective excited current
in the nanoresonator. This excited current influences back the QS, which actually
means second perturbation order or, in other words, self-influence of the QS due to
the presence of the nanoresonator. It is also important to include radiative losses
into the electron dynamics, i.e. in (13.15), which can be done by an extra term for
the impact integral S. This allows us to evaluate the respective contributions to the
observed in the tests luminescence enhancement. This approach to the description
of the spontaneous relaxation modification has not yet been elaborated, but
definitively deserves further consideration and discussion.

13.7 On the Luminescent Measurement

Now it is worth to comment shortly the term of “luminescence enhancement” and
discuss the relation between the theoretical picture and observed experiments val-
ues. From the point of view of the energy conservation law, any absorbed
(pumping) photon can be or reemitted, or relaxed into the nonradiative modes,
which corresponds to the final relaxed value of N = − 1 without pump W = 0. The
radiated intensity dynamics (which is really measured in the tests) in the case of
absence of the nanoresonator follows the exponential relaxation law:

Irad tð Þ�
ð1þNð0ÞÞ exp � t

s1

� �
� 1

s1;r
ð13:16Þ

It is important to point out, that the relaxation dynamics follows the total energy
relaxation time s1 (not only radiative relaxation time s1;r!), while an amplitude of
the radiated intensity is inversely proportional to the radiative relaxation time s1;r
only. In case of CW operation mode at W~s1 [ 1, the inversion is N ¼ N0 and the
radiated intensity Irad is:
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Irad � N0ðWÞ
s1;r

¼ W~s1 � 1
~s1;r

� W ; ~s1;r � ~s1;nr, W~s1;r 	 1
W ~s1;nr

~s1;r
; ~s1;r 	 ~s1;nr, W~s1;nr 	 1

(
ð13:17Þ

It is hard to separate experimentally an influence of the pump efficiency and the
effects caused by relaxation time changes even in the case of a free standing
molecule.

13.8 Time Dynamics of Relaxation in Presence
of Nanoresonator

Let us now consider changes associated with the coupling of the QS and
nanoresonator. The system of equations describing the coupled dynamics has been
proposed in [see e.g. 1] and for the case of the relaxation dynamics is written as:

d~q12
dt þ ~q12

1
s2
þ i x� x21ð Þ

� �
¼ iax~x�N

�h þ nq

dN
dt þ N�N0ð Þ

s1
¼ iax ~x~q12�~x�~q�12ð Þ

2�h

2 c� ixð Þ d~xdt þ x2
0 � x2 � 2ixc

� �
~x ¼ aq~q

�
12 þ nx

8>><
>>: ð13:18Þ

Here both relaxation times s1 and s2 are assumed to be modified due to the
presence of the extra stochastic interaction with the non-coherent electrons in the
nanoresonator:

1
s1
¼ Pr

s1;r
þ Pnr

s1;nr
1
s2
¼ 1

s1
þDðPÞ

(
ð13:19Þ

According to (13.14), the extra part differentiating energy and phase relaxation
time D Pð Þ is also modified, which is underlined here by the presence on Pr and Pnr

in (13.19). Method of the calculations or estimations for the both Purcell factors Pr

and Pnr is not discussed here, as well as the estimation of D Pð Þ. An exact solution
for the relaxation dynamics of (13.18) cannot be found analytically, and is supposed
in general to be calculated numerically. The results of the typical dynamics (13.18)
are presented in Fig. 13.1.

The dynamics is clearly subdivided by two stages: the first one for the time less
than the phase relaxation time s2 exhibits Rabi oscillations, typical for the strong
coupling, and the rest is just trivial exponential relaxation dynamics. This behaviour
has been experimentally measured in Vasa et al. [14]. Note that the density matrix
approach allows us to consider strong and weak coupling in the frame of the same
model, namely in the frame of (13.18): these two regimes correspond to high and
low values of the coupling constants aq and ax; of course, each set of the coupling
coefficients corresponds to the respective set of Purcell factors Pr and Pnr. Both the
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coupling coefficients and Purcell factor values depend on the distance and mutual
positions of the QS and nanoresonator; the method of estimations for these coef-
ficients (for example, used in Stockman [28]) is out of the scopes of this consid-
eration and will be discussed elsewhere.

The dynamics of (13.18) is calculated for the initial conditions N t ¼ 0ð Þ[ 0
(inversion) and N0 ¼ �1 (absence of pump). For the case of the CW operation
mode it is assumed that N0 [ 0 (permanent pump). N and other two variables q12
and x are assumed to be found for the stationary case (i.e. d

dt ¼ 0). As it has been
discussed in previous chapters, this system of equations describes the stationary and
stochastic (with extra Langevin terms) dynamics of the nanolaser/spaser [26, 28],
[Bergman 06]. It has to be realized, that system (13.18) possesses two types
of solutions—regular and stochastic. The regular nontrivial solution exists only for
the pump rates above the threshold one W [Wth; otherwise the regular solution is
zero. In contrast, random fluctuations, described by correlators x xð Þx� x0ð Þh i;
q12 xð Þq�12 x0ð Þ	 


and x xð Þq�12 x0ð Þ	 

; x� xð Þq12 x0ð Þh i are nonzero and give extra

factors to the estimation for the luminescent enhancement. These calculations are
also left for the future works; here it is worth noting that the problem of

Fig. 13.1 Relaxation dynamics of the system of coupled QS and plasmonic nanoresonator at full
resonance x ¼ x0 ¼ x12. The full dynamics (a) consists of the fast oscillation at the times less
than the phase relaxation time (b) and the exponential relaxation for the rest time (c). Please, keep
in mind the different time scales in (a–c)
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spontaneous emission enhancement in the frame of the developed approach is
methodologically (but not physically!) equivalent to the estimation of the sponta-
neous emission from any laser below generation threshold, and to this extend is not
new (excepting the necessity of the relaxation times modification).

Qualitatively, the luminescent intensity modification can be caused by several
factors. First, at the resonance between nanoresonator eigen mode and the pump
wavelengths any nanoresonator works as an optical antenna [42], which enhances
pump rate efficiency W and therefore increases N0 Wð Þ in (13.17); the coupling
between the QS and nanoresonator out of resonance is small and could be neglected
to the first approximation. But even in the case of resonance with the emission
wavelength (and thus nonresonant for pumping wavelength), the effective pump
rate is also enhanced by the presence of the metallic nanoresonator. According to
(13.17), both nominator and denominator turn out to be modified and it is extremely
hard to separate experimentally these two effects. The enhancement from the
coupling with the regular parts of the electron dynamics is proportional to the
correlations x xð Þq�12 x0ð Þ	 


; x� xð Þq12 x0ð Þh i [see second equation in (13.18)] and
could be roughly estimated by the relation of the phase and the total relaxation
times s2=s1 which is about 10−3. It means that the part of the energy, emitted due to
the resonant interaction between the QS and nanoresonator is very small in compare
with the total emitted energy and could be safely neglected. The only case when this
interaction could place a significant role is the nanoresonator enhanced Dike effect,
when all energy due to synchronization between the QS will be emitted in a one
short pulse with the duration comparable with the phase relaxation time. Probability
of the Dike effect in the considered coupled system is very low at the typical
experimental conditions and the pumping rate below the generation threshold. From
the other side, above threshold the QS are synchronized due to the nanoresonator
(as it takes place in typical “macro” laser), and this state corresponds to the sta-
tionary solution of (13.18) (see also [43] about Dike effect for the arrays of the
coupled nanolasers/spasers). Neglecting the coherent contribution to the lumines-
cent intensity modification, the only factor (excepting already mentioned pump
efficiency modification) is the two Purcell factors Pr and Pnr, causing radiative and
nonradiative relaxation time modification (13.19) which are supposed to be sub-
stituted in (13.17) in order to estimate the effect.

13.9 Conclusion

In conclusion of this chapter:

1. Commonly accepted methods of estimation of the spontaneous relaxation
dynamics have been summarized. While the methods are undoubtedly justified
for the spontaneous relaxation in a free space, application of the same procedure
for the case of the nanoresonators optically coupled to the QS is questionable.
The concerns are:
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(a) Different orders for the perturbation expansion in the model, which describe
principally different physical phenomena, namely coupling with the vacuum
fluctuations and self-action at the coupled dynamics with the free electrons
in the nanoresonator.

(b) An application of the eigen mode formalism causes a question about nec-
essary time required for the mode formation; otherwise the interaction with
stochastic modes of the free electrons appears to be more qualitatively
appropriate.

(c) An application of the eigen mode formalism fails for the highly loss
materials, i.e. for the metallic nanoresonators due to the non-Hermitian
nature of the Helmholtz equation and consequently nonorthogonal eigen
functions.

(d) In the frame of the accepted in textbook [29] approach, there is no subdi-
vision between interaction with stochastic and regular fields, which defini-
tively leads to the different relaxation dynamics.

2. The density matrix approach has been analyzed in compare with the commonly
accepted ones. It has been shown, that this approach is qualitatively more
adequate and free from the mentioned above concerns. It has been suggested to
include in consideration one more dynamical equation for the electron distri-
bution function. It is expected, that this approach allows us to estimate the
introduced here Purcell factors Pr and Pnr for both radiative and nonradiative
relaxation times. Further investigations are required.

3. The proposed system of equations allows us to calculate regular and stochastic
dynamics above and below the lasing threshold of the nanolaser, and consider
both strong and weak coupling regimes in the frame of the same approach.
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Chapter 14
On the Question of Radiative Losses
in the Frame of Classic and Quantum
Formalism

14.1 Introduction

The classical consideration of the radiative losses for a free dipole (with dynamics
described by in the frame of harmonic oscillator (HO) equation) leads to a
well-known extra term in the dynamic equation proportional to the third time
derivative. Nevertheless, this simple dynamic equation modification is justified for
the case of free space only. In the case of the coupled dynamics (e.g. spaser/
nanolaser) the radiative losses do not possess this straightforward modelling.

The classic HO model has been widely used in the vast majority of publications
devoted to the coupled dynamics of an emitter and plasmonic nanoresonator [1].
This approximation (classic HO instead of quantum DM formalism) actually
cannot be used in case of significant inversion variations (see Sect. 13.4). In spite
of this trivial textbook fact, the HO model for the quantum emitter dynamics is
still surprisingly widely accepted in articles, see recent publications [2–4], and
review [5].

Use of DM formalism instead of HO one (e.g. to describe spaser dynamics [6])
lead to a paradox considered in this chapter. The essence of this paradox is rooted in
the fact, that the relaxation processes are in fact considered in this case doubly: first
by phenomenological energy and phase relaxation times, and second at the con-
sideration of the radiative losses. Appearance of this paradox shows that the
problem of dynamics of a quantum emitter coupled with a plasmonic nanoresonator
requires fundamentally more accurate treatment.

Particular system, shown in Fig. 14.1 will be kept in mind hereafter. The system
consists of nanoresonator (nanoparticle NP), coupled with quantum emitters
(Quantum System—QS) as it is shown in Fig. 14.1.
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14.2 Dynamics of Classical and Quantum Dipole

14.2.1 Dynamics of Classical Dipole

The dynamics of a QS interacting with the external field A in the frame of HO
equation is:

d2p
dt2

þ 2c
dp
dt

þx2
0p ¼ vA exp �ix tð ÞþF exp �ix tð Þ ð14:1Þ

where v is some constant. Here function F in classic version (14.1) is the external
force (can be an external electric field as well), p—is the dipole moments of the
active molecules. External force F brings energy into the system, and is to some
extend equivalent to the pump in the case of DM, described by a density matrix.

Energy relaxation is described by c. This relaxation takes into account the
non-radiative relaxation of energy from the HO into a thermo bath. In spite of the fact
that (14.1) is probably mostly used equation in physics, the nature of c and rigorous
elaboration of this term is not widely discussed. It is worth to recall it in order to
avoid misinterpretation in future discussion. The model described by (14.1) consists
of a single oscillator weakly coupled to a lot of similar oscillators, which are in turn
weakly coupled with each other. This system of huge number of weakly coupled
HOs is called thermo bath or thermostat and appears to be a widely used model in
statistical physics. The qualitative picture behind this model is: excitation in HO gets
transferred to the other coupled oscillators, which in turn give energy further to the
other ones and the initially localized energy (oscillation of a single dipole) gets
diffused, or, in other words, thermalized among the other oscillators. Inverse energy
transfer is prohibited by the first law of thermodynamics: the dissipated (diffused)
energy cannot come back to an origin (i.e. to the single oscillator under considera-
tion). It is also important to realize, that all the oscillators (or, more generally, eigen
modes) at the nonzero temperature exhibit stochastic oscillations with arbitrary
phase. Hamiltonian of a single HO interacting with thermostat consists of “eigen”
part H0 giving eigen states, regular interaction VR, and stochastic interaction Vstoch:

Fig. 14.1 Scheme of the
considered object
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H ¼ H0 þVR þVstoch;

VRh i ¼ VR;

Vstochh i ¼ 0

ð14:2Þ

“Eigen” part H0 leads to dynamic part d2p
dt2 þx2

0p, regular interaction VR is
responsible for the right side of (14.1) vA exp �ix tð ÞþF exp �ix tð Þ, while
stochastic part Vstoch results (using iterative approach) in relaxation term 2c dp

dt in the
second order of approximation of the stochastic interaction: the first order gives
evidently zero results. The radiative losses in this case is the consequence of regular
interaction, namely vA exp �ix tð Þ in (14.1) and cannot be included in c.

In Fourie space (14.1) becomes:

x2
0 � x2 � 2icx

� �
p ¼ vAþF

p ¼ vAþF
Lx

¼ vAþF
x2

0�x2�2icx ¼ bc xð Þ vAþFð Þ
bc xð Þ ¼ 1

x2
0�x2�2icx

Re bc xð Þ½ � ¼ x2
0�x2

x2
0�x2ð Þ2 þ 4c2x2

Im bc xð Þ½ � ¼ 2cx

x2
0�x2ð Þ2 þ 4c2x2

bc xð Þj j2¼ 1
x2

0�x2ð Þ2 þ 4c2x2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð14:3Þ

which describes stationary amplitudes p and A. Here A in the first equation (14.3) is
the “self-action” field generated by a dipole at its origin.

14.2.2 Dynamics of Quantum Dipole

Quantum dynamics of the radiating point dipole is considered now in the frame of
the DM approach. The dynamics is given by well-known system of equations with
artificial pump in SVA (Slowly Varying Approximation) representation (see
Chaps. 9 and 13):

dp
dt þ p 1

s2
þ i x� x21ð Þ

� �
¼ il2A�N

�h

dN
dt þ N�N0ð Þ

s1
¼ i Ap�A�p�ð Þ

2�h
p ¼ lq12

8><
>: ð14:4Þ

First of all at the elaboration of the DM approach [and consequently (14.4)] the
same subdivision by regular and stochastic interaction (14.2) and all respective
math for the elaboration of (2.4) has been accepted [7–9]. Equations (14.4) are
written for already averaged values and do not contain stochastic parts—all
stochastic processes (interaction with thermo bath and zero field fluctuations) are
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packed in the two relaxation times s1 and s2, exactly as the stochastic interaction
with the thermo bath has been packed into c in (14.1). The regular part of the
Hamiltonian of interaction, again in full analogy with (14.1) results in right side of

(14.4), namely il2A�N
�h and i Ap�A�p�ð Þ

2�h .

14.3 Math Formalism for Coupled Dynamics
with Radiative Losses

14.3.1 Model Formulation

The problem of the dynamics of an emitter in free space or near some nanoobject is
one of the fundamental and has been considered in textbooks [1]. Mathematically,
the problem is formulated by a system of coupled equations between dynamics of
dipole (in quantum or classical approximations) and Helmholtz equation for the
electromagnetic field. We assume here for classical and quantum dipole dynamics
HO (14.1) and DM (14.4) equations respectively:

d2pi
dt2 þ 2c pi

dt þx2
0pi ¼ vA ri; tð Þ exp �ix tð ÞþF ri; tð Þ exp �ix tð Þ

DE r; tð Þ � 1
c2

@2D r;tð Þ
@t2 ¼ � 4p

c2
@2

@t2
P

i pi ri; tð Þd r � rið Þ
E ¼ A exp �ix tð Þ

8>><
>>: ð14:5Þ

dpi
dt þ pi 1

s2;i
þ i x� x21ð Þ

� �
¼ il2A ri;tð Þ�N

�h

dNi
dt þ Ni�N0ð Þ

s1;i
¼ i A ri;tð Þpi�A ri;tð Þ�p�ið Þ

2�h

DE r; tð Þ � 1
c2

@2D r;tð Þ
@t2 ¼ � 4p

c2
@2

@t2
P

i pi ri; tð Þd r � rið Þ
E ¼ A exp �ix tð Þ

8>>>>>><
>>>>>>:

ð14:6Þ

Here D—is the dielectric displacement function, taking into account a possible
presence of the nanoobjects. Particular physical picture behind (14.5) and (14.6) is:
the coupled equations for the field E and polarizability of the emitters pi. It is
assumed that pi are the dipole moments (in the case of zero dipole moment, pi is the
quadrupole and etc. higher moments, which is rear). In this paper dipole moment is
assumed to be nonzero and dominates as a source of radiation for pi. At the same
time, a nanoresonator in the vicinity of the emitter can be taken into account by
D with all possible eigen modes [10].

It is important to note that the field E in Helmholtz equation includes all possible
fields: incoming (if any), scattered, and emitted by pi. The radiative losses are part
of this field and are taken into account in (14.5), but NOT included in c.

As for the radiative losses in (14.6), the consideration in this case is much less
trivial. Remind that in the case of HO equation (14.1) the radiative losses are not
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included due to the fact that the radiative losses are caused not by stochastic part of
the interaction Hamiltonian, but rather by the regular one, i.e. by the oscillation
driven by an external force F. In the case of quantum consideration, there is a purely
quantum contribution to the stochastic part of the interaction, namely interaction
with vacuum field fluctuations. They are packed, in addition to the non-radiative
relaxation to thermo bath, into the relaxation times s1 and s2, e.g. for the energy
relaxation time s1:

1
s1

¼ 1
s1;r

þ 1
s1;nr

ð14:7Þ

Here s1;r and s1;nr are the radiative and non-radiative relaxation times respec-
tively. In fact, the radiative relaxation time is given by the well-known expression
[1]:

1
s1;r

¼ 2x
3�he0

lj j2ql ~r0;x0ð Þ

ql ~r0;x0ð Þ ¼ 3
X
k

~nl � ~uk~u
�
k

� � �~nl� �
d xk � x0ð Þ

ð14:8Þ

Here ql ~r0;x0ð Þ is the local density of states (LDOS), which depends on the
presence/absence of any objects in the vicinity of the quantum emitter, e.g. LDOS
will be modified in the case of coupling between NP and pi, see Fig. 14.1.

Now the question is: do we need to consider radiative losses the same way like
for HO in (14.5), or there are some differences? In order to answer this question, the
solutions for the HO (14.5) and DM (14.6) models are elaborated in parallel.

We are interested in two operation modes, namely stationary states and relax-
ation dynamics.

14.3.2 Stationary State

The stationary state assumes that the system parameters stationary oscillate at some
frequency x. The slowly varying approximation is:

pi ri; tð Þ ¼ pi ri;xð Þ exp �ix tð Þ
E r; tð Þ ¼ A r;xð Þ exp �ix tð Þ
D r; tð Þ ¼ D r;xð Þ exp �ix tð Þ
DA r;xð Þþ x2

c2 D r;xð Þ ¼ 4px2

c2
P

i pi ri;xð Þd r � rið Þ

8>>><
>>>:

ð14:9Þ

It has to be pointed out that in principle one can assume Laplace transformation
instead of Fourie, but in this case the next step, expression D through the dielectric
constant and E, needs to be carefully considered. The dielectric function e xð Þ is the
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Fourie image of the time dependent dielectric function with all properties implied
by causality/passivity principles; Laplace image of the dielectric function is not
usually considered.

Assuming:

D r;xð Þ ¼ e r;xð ÞA r;xð Þ ð14:10Þ

we get:

pi ¼ vA ri;xð ÞþF ri;xð Þ
Lx

¼ vA ri;xð ÞþF ri;xð Þ
x2

0�x2�2icx ¼ bc xð Þ vA ri;xð ÞþF ri;xð Þð Þ
bc xð Þ ¼ 1

x2
0�x2�2icx

DA r;xð Þþ x2

c2 e r;xð ÞA r;xð Þ ¼ 4px2

c2
P

i pi ri;xð Þd r � rið Þ

8>><
>>: ð14:11Þ

Only single QS is assumed in order to demonstrate the paradox, extension on
multiple QS is straightforward. The Helmholtz equation allows us to consider any
shapes and layouts of NPs, consideration of a single NP and single molecule is
stipulated by the fact, that the problem in this case possesses an analytical treatment
and at the same time pronouncedly shows the physics behind.

The main step in the transformation of the Helmholtz equation is in the design of
the appropriate Green function, taking into account the presence of the NP. It means
effectively, that we replace our space with the NP with another space without this
NP, but with a more sophisticated Green function. After that, the last equation can
be trivially rewritten as:

DA r;xð Þþ x2

c2
e r;xð ÞA r;xð Þ ¼ 4px2

c2
p rp;x
� �

d r � rp
� �

+

A r;xð Þ ¼ 4px2

c2
G r; rp;x
� �

p rp;x
� � ð14:12Þ

Finally, the problem for stationary states is formulated by the master system of
equations for classical case:

p ¼ bc xð Þ vANF rp;x
� �þF rp;x

� �� �
ANF r;xð Þ ¼ 4px2

c2 GNF r; rp;x
� �

p rp;x
� ��

ð14:13Þ

and for the quantum case:

p 1
s2
þ iðx� x21Þ

� �
¼ il2A�

NFðrp;xÞN
�h

N�N0ð Þ
s1

¼ iðANFðrp;xÞp�A�
NFðrp;xÞÞ

2�h

Aðr;xÞ ¼ 4px2

c2 Gðr; rp;xÞpðrp;xÞ

8>><
>>: ð14:14Þ
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It is worth noting again, that (14.13) and (14.14) describe the possible stationary
states and does not give any information about transient system dynamics.

In addition to the losses in QS itself described by c (again, radiative losses are
not included in c), there are irreversible losses described by an imaginary part of the
dielectric constant. The physical picture of these losses (ohmic losses) is in the
interaction of free electron with the solid state lattice resulted in transfer of the
kinetic energy of electron into the elementary collective lattice excitations e.g.
phonons. Radiative losses are NOT included in the imaginary part of the dielectric
constant.

14.3.3 Relaxation Dynamics

Investigation of the relaxation dynamics assumes that we are looking for the
solution of (14.5) and (14.6) in time domain. Typical relaxation process assumes
that we do not have during the process an extra energy delivery into the system:
the system starts at zero time from some nonzero values and relaxes to zero levels
of the respective variables. In the case of the linear system, it would be rea-
sonable to assume that the relaxation follows some exponential function. It means
that we can use the same substitution (14.9) but the frequency x in this case
becomes a complex value. The imaginary part of this value gives the relaxation
time, while real one describes frequency shift; both are supposed to be found
from master systems of (14.13) and (14.14) with an extra assumption of complex
nature of x.

14.4 Radiative Losses for Classic and Quantum Dipole
in Free Space

14.4.1 Stationary State in Free Space

Results for the p and ANF from (14.13) are:

p ¼ bc xð ÞF
1�4px2v

c2
bc xð ÞGNF

� � ¼ bc;eff xð ÞF
ANF ¼ 4px2

c2
bc xð ÞGNFF

1�4px2v
c2

bc xð ÞGNF

� � ¼ 4px2

c2 bc;eff xð ÞGNFF

bc;eff xð Þ ¼ bc xð Þ
1�4px2v

c2
bc xð ÞGNF

� �

8>>>><
>>>>:

ð14:15Þ

Amplitude, intensity, and total radiative power in the far field zone can be
straightforwardly calculated using the known Green function for far field:
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AFF ¼ 4px2

c2
bc xð ÞGFFF

1�4px2v
c2

bc xð ÞGNF

� � ¼ 4px2

c2 bc;eff xð ÞGFFF

IFF ¼ c
8p

4px2

c2

� �2
GFFpj j2¼ 2px4

c3
bc xð ÞGFFj j2

1� 4px2v
c2

� �
bc xð ÞGNF

		 		2 Fj j2¼ 2px4

c3 bc;eff xð ÞGFF
		 		2 Fj j2

PFF ¼ c
8p

4px2

c2

� �2H
GFFpj j2dS ¼ 8p2x4

c3 bc;eff xð Þ		 		2 Fj j2¼ 8p2x4

c3
bc xð Þj j2 Fj j2

1�4px2v
c2

bc xð ÞGNF

		 		2

8>>>>>>><
>>>>>>>:

ð14:16Þ

Systems (14.15), (14.16) are universal. It means that the systems describe sta-
tionary state for any possible Green functions, i.e. for any possible nanoobject
which can be described by e r; xð Þ. Let us consider first the problem of the radiative
losses in free space. In order to complete (14.16) we have to know Green function
for free space in the near field and far field zones, which are [10]:

GNF ¼ c2
4px2

2
3 ik

3

GFF ¼ 1
r exp ikrð Þ

�
ð14:17Þ

here GNF and GFF are the Green function of the free space in the near field and far
field zones respectively. The oscillating dipole is driven by the force F from one
side (energy income) and loses energy into thermo bath and radiation. If the energy
losses are compensated by the external force F, the system reaches the stationary
state. It is important to understand that here Green function for the near field has to
be taken, hence ANF ¼ 4px2

c2 GNFp. In this chapter we are interested in free space (no
nanoobjects in near field zone). Let us substitute (14.17) into (14.16). The total
emitted power becomes:

p ¼ bc xð ÞF
1�2iv

3 bc xð Þ x
cð Þ3

� �
PFF;C xð Þ ¼ 8p2x4

c3
1

x2
0�x2ð Þ2 þ 4c2x2

� � Fj j2

1þ 2
3

x
cð Þ3 vcx

x2
0
�x2ð Þ2 þ 4c2x2


 �2

þ 2
3

x
cð Þ3 v x2

0
�x2ð Þ2

x2
0
�x2ð Þ2 þ 4c2x2


 �2

PFF;C x0ð Þ ¼ 2p2x2
0

c2c3
Fj j2

1þ vx2
0

6c3c

� �2

8>>>>>>>>><
>>>>>>>>>:

ð14:18Þ

which clearly indicates that the emitted power becomes lower if the radiative losses
(near field Green function) are taken into account. Effective dipole has been
introduced in (14.1), which is characterized by its own spectral response function
bc;effðxÞ. The respective dynamic equation for the dipole with the radiative losses is
governed by:
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b�1
c;eff xð Þ ¼ b�1

c xð Þ 1� 2i
3
v bc xð Þk3

� 

¼ b�1

c xð Þ � 2
3
v k3 ¼ b�1

c xð Þ � 2i
3
v

x
c

� �3

ð14:19Þ

which corresponds to the extra term proportional to a third derivative in dynamic
equation (14.1):

d2p
dt2

þ 2c
dp
dt

þx2
0pþ

2
3
v
c3

d3p
dt3

¼ F exp �ix tð Þ ð14:20Þ

The radiative losses can be equivalently taken into account by an extra term in
the dipole dynamic equation. In this case, the dipole oscillation amplitude p has to
be taken from (14.20), not from (14.1).

In text books, the final expressions for the output power (14.16) are usually
integrated over the whole spectrum, which is not done here—the final expressions
for the integrated power are not observable and are not suited for the analytical
consideration. It nevertheless can be done pretty easily using any available
numerical package.

Following the same logic as for classic dipole (14.13), consider now a stationary
state of quantum oscillator (14.14):

p 1
s1 þ iðx� x21Þ
� � ¼ il2A�

NFn
�h

ðn�n0Þ
s1 ¼ i ANFp�A�

NFp
�ð Þ

2�h

ANF ¼ 4px2

c2 GNFp�

8>>><
>>>:

ð14:21Þ

Substituting ANF from the last equation to the other two, we have:

p 1þ is2 x� x21ð Þ � il2s2n
�h

4px2

c2 G�
NF

� �
¼ 0

n ¼ n0 � s1
�h
4px2

c2 Im GNF½ � pj j2

(
ð14:22Þ

Along with the trivial solution p = 0, (14.22) possesses a nontrivial one given
by:

1þ is2 x� x21ð Þ ¼ il2s2n
�h

4px2

c2 G�
NF

n ¼ n0 � s1
�h
4px2

c2 Im GNF½ � pj j2
(

ð14:23Þ

which in turn is reduced to:

�h 1þ is2 x�x21ð Þð Þ
il2s24px

2

c2
G�

NF

¼ n

n ¼ n0 � s1
�h
4px2

c2 Im GNF½ � pj j2

8<
: ð14:24Þ
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The first equation gives stationary frequency xeigen from the condition
Im [n] = 0, and then consequently n(xeigen). From the second equation we get then
stationary value of modulus p square:

Im �h 1þ is2 x�x21ð Þð Þ
il2s24px

2

c2
G�

NF

� 

¼ 0 ) xeigen

Re �h 1þ is2 x�x21ð Þð Þ
il2s24px

2

c2
G�

NF

� 

¼ n

pj j2¼ �h
s14px

2

c2
Im GNF½ � n0 � Re �h 1þ is2 x�x21ð Þð Þ

il2s24px
2

c2
G�

NF

� 

 �

8>>>>>>><
>>>>>>>:

ð14:25Þ

which is supposed to be an analog of (14.15) for classical dipole. Remember, that
the eigen values did not appear at all at the consideration of the classical HO. It
reflects the principal difference: a HO model does not assume pumping, but rather
driving by an external force. It brings us to the conclusion, that the quantum case is
basically closer to a nonlinear oscillator: in both cases the dipole dynamics is
nonlinear and possesses an eigen stationary state (will be considered elsewhere).

Stationary state for free space is given by a substitution of the respective near
field Green function (14.17) into (14.25):

Im �h 1þ is2 x�x21ð Þð Þ
l2s223

x
cð Þ3

� 

¼ 0 ) xeigen ¼ x21

Re �h 1þ is2 x�x21ð Þð Þ
l2s223

x
cð Þ3

� 

¼ n ) n ¼ 3�hc3

2l2s2x3

pj j2¼ 2�hc3
3s1x3 n0 � 3�hc3

2l2s2x3

� �

8>>>>>><
>>>>>>:

ð14:26Þ

With the following numerical values:

�h ¼ 10�27 erg � sð Þ
x0 � 1015 ðs�1Þ
c ¼ 3 � 1010 ðcm/sÞ
s2 ¼ 100 fs ¼ 10�10 ðsÞ
lQD ¼ 2:5� 10�17 ðcgseÞ

8>>>><
>>>>:

ð14:27Þ

rough estimation gives n� 6:5� 102, which is impossible because of −1 < n < 1.
Nevertheless, for order of magnitude higher frequencies the numerical values of
n becomes three orders of magnitude lower and requirement n < 1 could be sat-
isfied. If it is so, then expression (14.27) assumes that even for a single molecule
under some strong enough pump one can get a coherent radiation i.e. set of reg-
ularly spaced in time photons. The physical picture behind this expression is fol-
lowing: a generated photon through the self-action produces a stimulated emission
causing laser-like auto-oscillation operation mode. This picture is evidently wrong.
A spontaneous emission cannot cause at the same time a self-stimulated emission;
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in other words, a spontaneously emitted photon cannot cause a stimulated emission
of the next photon from the same quantum system. Moreover, the spontaneous
emission is already included into consideration by two relaxation times in (14.4).
Note, that for the case of linear HO model this problem does not appear—the
emitted photon does not produce nonlinear “self-action” but rather produce linear
reaction, which results in extra (radiative) losses in final expressions. The
demonstrated paradox can be resolved e.g. by removing the part of the Green
function, which is responsible for the spontaneous generation, namely GNF ¼
c2

4px2
2
3 ik

3. The reason for this modification is in the fact, that the spontaneous
emission is already included into the model by two relaxation times and should not
be included twice. Hence, as a conclusion: in the frame of the DM formalism the
free space part of the Green function has to be artificially excluded from the full
expression for the Green function.

It is worth noting, that this in fact fully corresponds to the case of classic
oscillator. In both cases, the stochastic interaction is packed into the relaxation time:
in the case of classic oscillator there is only one time s ¼ 1

c, and in case of quantum
—two relaxation times s1 and s2. Radiative losses in the case of classic oscillator
can be equivalently described by a coupling with Helmholtz equation or by another
term in the dynamic equation. In the case of quantum dipole the radiative losses is
already included in the relaxation times and consequently the respective field has to
be excluded from the right sides of both classics dynamic equation (14.20) and
quantum one (14.6). ANF in (14.21) is whatever but NOT the spontaneous photons,
which is mathematically manifested by the absence of term c2

4px2
2
3 ik

3 in the near
field Green function. Math prove behind this statement is given in Appendix 14.2.

14.4.2 Relaxation Dynamics in Free Space

The relaxation dynamics is described by the same system of (14.13) for the classic
HO but without any external energy sources and assuming that the frequency x is
now complex value:

p ¼ bc xð ÞvANF

ANF ¼ 4px2

c2 GNFp

�
ð14:28Þ

Substituting the second equation in (14.28) into the first one, we get:

p 1� 4px2v
c2

bc xð ÞGNF xð Þ

 �

¼ 0

+
4px2v
c2

bc xð ÞGNF xð Þ ¼ 1

ð14:29Þ
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In other words, we become an equation for the eigen values xeigen. The imag-
inary part of the eigen frequency describes the relaxation, namely:

srelax ¼ �1
Im xeigen

� � ð14:30Þ

The relaxation time, described by (14.30) includes all possible influences in the
frame of the elaborated model and is also universal i.e. remains valid in the case of
NP in the near field zone. The imaginary part of eigen frequency Im[xeigen] is always
negative and the relaxation time is always positive. The relaxation in free space is
obtained by substituting GNF from (14.17) and bc xð Þ from (14.19) into (14.29):

2
3
i
x
c

� �3
v

1
x2

0 � x2 � 2icx
¼ 1

) 2iv
3c3

x3 þx2 þ 2icx� x2
0 ¼ 0

ð14:31Þ

Without radiative losses v ¼ 0 it is reduced to the known quadratic equation for
a HO:

x2 þ 2icx� x2
0 ¼ 0 ð14:32Þ

with simple solution:

x ¼ �ic�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � c2
q

ð14:33Þ

According to (14.30) the relaxation time is:

srelax ¼ �1
Im xeigen

� � ¼ 1
c

ð14:34Þ

The relaxation processes in quantum emitters require more careful consideration.
According to the general rules, relaxation for the quantum oscillator is described by

the first equation in (14.23) with n = −1 and il2s2
�h

4px2

c2 G�
NF ¼ 0, namely:

is2 x� x21ð Þþ 1 ¼ 0 ) xeigen ¼ x21 þ i
s2

ð14:35Þ

and the relaxation time is [in quantum case the sign is opposite in compare with
(14.30)]:

srelax ¼ 1
Im xeigen

� � ¼ s2 ð14:36Þ
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Note, that this is so called the phase relaxation time i.e. averaged time between
phase jumps in the quantum emitter oscillations. It has to be realized, that this time
is NOT the average time between spontaneous photon emissions; the latter is given
by s1. The relaxation dynamics is described by (14.4) without fields in the right
side:

dp
dt þ p 1

s2
þ i x� x21ð Þ

� �
¼ 0

dn
dt þ n�n0ð Þ

s1
¼ 0

8<
: ð14:37Þ

Radiative losses are already included in the relaxation times. The spontaneous
emission rate is:

PFF;Q x12ð Þ ¼ �hx12
n0
s1;r

ð14:38Þ

Note, that the bandwidth of spontaneous emission is not determined in the same
mean as for a single photon.

Relaxation rates are usually calculated using both approaches, namely stationary
states and by the consideration of the relaxation dynamics. Let us compare these
two approaches and consider first stationary case for classic (14.18) and for
quantum (14.38) dipoles. Consider a stationary state of the pumped emitter, which
is placed near the NP in order to tune the emission rate through the Purcell effect.
The emitted power in (14.18) and (14.38) can be presented as photon energy
multiplied an effective rate. In both cases (14.18) and (14.38) the measured value is
P, which depends on the pump Fj j2 and n0 in (14.18) and (14.38) respectively. The
pump in turn depends on the experimental conditions, which means, that the
extractable parameter is not just emission rate, but rather emission rate determined
by the pump. In many papers the pump in the respective expressions are assumed to
be constant and independent on e.g. distance between the emitter and NP, which is
evidently wrong. One can conclude that in this kind of experiments the emission
rate cannot be in general independently extracted.

Let us now compare two expressions for the emitted power (14.18) and (14.38).
Let us also assume that according to the Appendix 14.1 we use a HO equation
(14.44) or (14.45), i.e. we substitute c ¼ 1

s2
in (14.18):

PFF;C x0ð Þ ¼ 2p2x2
0s

2
2

c3
Fj j2

1þ vx2
0s2

6c3

� �2 ð14:39Þ

which is evidently not similar to (14.38). It proves again, that these two approaches
(classic and quantum) do not give the same results. The reason is in the fact, that the
classic case (14.18) and respectively (14.39) represents a mix of stochastic relax-
ation process described by c and regular radiative losses, while the quantum case
(14.38) is caused only by the stochastic interactions.
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Finally, let us compare relaxation dynamic equations (14.31) and (14.26) with
the “gedanken experiment”, namely we assume that the pump is turned off abruptly,
and we measure the emitted power in the case of classic, or collect the statistics in
the quantum cases. The variation of the relaxation time is provided as before by
Purcell effect i.e. by an NP near the emitter. First, the solution of (14.16) is evi-
dently not the same as (14.25), which proves again, that these two tests have to be
considered as different ones. Second, (14.16) is free from pump values, and hence
can be used to measure the respective relaxation: fitting of the relaxation curves for
real and imaginary parts of x gives both c and v.

As for the quantum dynamics, the relaxation curve will be proportional to a full
(not just radiative or nonradiative) relaxation time, namely:

PFF;Q tð Þ ¼ �hx12
n0 t ¼ 0ð Þ

s1;r
exp � t

s1


 �
ð14:40Þ

and the extractable parameter is s1 ( 1s1 ¼ 1
s1;r

þ 1
s1;nr

), but not s1;r. The latter could

be also extracted by the fitting of amplitude of (14.38), namely �hx12
n0 t¼0ð Þ
s1;r

, but in

this case the initial pump values n0 t ¼ 0ð Þ will be also different and hardly
estimated.

The extracted information thus depends crucially on the model, namely classic
or quantum one. In the case of a classic model relaxation parameter c, pump value
Fj j2, and coupling parameter v can be extracted. This takes place due to the fact that
we basically have three independent measurements for three mentioned above
values, namely measurement of the central frequency shift (real part ofx), decay
rate (imaginary part of x), and amplitude of the emitted power PFF;C. In contrast, in
the quantum case there are only two measured values, namely n0

s1;r
and 1

s1
¼ 1

s1;r
þ 1

s1;nr
,

and three unknowns, namely n0, s1;r, and s1;nr. It means that in the quantum case it
is principally impossible to extract all of these three values. In publications, authors
often assume that n0(pump) remains the same and extract numerical values based
on this evidently wrong assumption.

14.5 Conclusions

It is shown that the widely accepted HO equation cannot be used to describe
dynamics of a quantum emitter. From the other side, a formal substitution of a HO
equation (classic dipole) by DM equations leads to unphysical results. This paradox
appears in the case of description of e.g. relaxation dynamics (including Purcell
effect) and is expected to appear in spaser dynamics in the case of multimode
operation. This paradox can be resolved by careful subdivision of the considered
fields by regular and stochastic ones, which is actually a prerequisite for the DM
equations. It is shown, that the results of relaxation rates obtained from the con-
sideration of the stationary states differ from the results of relaxation dynamics. It is
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shown, that the independent extraction of the radiative and non-radiative relaxation
times in the quantum model (DM) is hardly possible in the frame of commonly
accepted tests.

Appendix 1: DM Versus HO Equation

Dynamics of 2-level system is described by the following system of equations:

dq12
dt � ix21q12 þ q12

s1
¼ � iH12 q22�q11ð Þ

�h

dq22
dt þ q22

s2
¼ � iH12 q12�q�12ð Þ

�h þW
q11 þ q22 ¼ 1

8><
>: ð14:41Þ

Here q describes population (diagonal) and polarisation (non diagonal)
dynamics, W is a pump rate, and H is a hamiltonian of interaction (for example, for
the interaction with an external electric field it becomes H12 ¼ �l � E.

Sometimes it is more convenient to reduce the dynamics to other variables
(Bloch equations)

dQ
dt þ Q

s1
� ix21P ¼ 2iH12n

�h
dP
dt þ P

s1
¼ ix21Q

dn
dt þ 1þ n

s2
¼ � 2iH12Q

�h þ 2W

8><
>: ð14:42Þ

Here P ¼ q12 þ q�12; Q ¼ q12 � q�12; N ¼ q22 � q11
Taking Q from the first equation and substituting it into the second one, the

system in Bloch variables takes the following form

d2P
dt2 þ 2

s1
dP
dt þ 1

s21
þx2

21

� �
P ¼ 2x21H12n

�h

dn
dt þ 1þ n

s2
¼ � 2H12

�hx21

dP
dt þ P

s1

� �
þ 2W

8<
: ð14:43Þ

It is clear that the first equation in (14.43) is rather far from a trivial HO one.
Nevertheless, if it is assumed that N is not changing too much, then the equations
become identical:

d2P
dt2

þ 2
s1

dP
dt

þ 1
s21

þx2
21


 �
P ¼ 2x21H12n0

�h
ð14:44Þ

For example, in case of interaction with the electric field and low intensity (low
intensity means that n can be substituted by just −1 corresponding to the situation
with all molecules on the lower level q11)
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d2P
dt2

þ 2
s1

dP
dt

þ 1
s21

þx2
21


 �
P ¼ 2x21l

�h
E ð14:45Þ

The second possibility to reduce the system to a HO equation is to assume,
that due to the pump W the population difference n is kept constant. In order to
prove it mathematically, we have to realize that the first term in right side of the
second equation in (14.43) is a multiplication of two fast oscillating functions,
while n has much slower dynamics. The math procedure is in substitution both
P and H (or, in case of an electric field E) by an anzatz with fast oscillating parts,
namely:

EðtÞ ¼ 1
2

AðtÞ� expðix tÞþAðtÞ� expð�ix tÞð Þ

PðtÞ ¼ 1
2

pðtÞ� expðix tÞþ pðtÞ� expð�ix tÞð Þ
ð14:46Þ

and then reduce the system (14.43) into one equation for slowly varying component
p. In this case we have to accept basically Slowly Varying Approximation for the
slow amplitudes p and A, which gives us equation for p, but with the first derivative.
In this case the system (14.43) anyway cannot be reduced to a HO equation.

But let us just assume that due to some reasons the n is kept on some constant
level. In this case (14.44) becomes:

d2P
dt2

þ 2
s1

dP
dt

þ 1
s21

þx2
21


 �
P ¼ � 2x21ln0

�h
E ð14:47Þ

and positive N (inversion) should give us an amplification effect, in this case

d2P
dt2

þ 2
s1

dP
dt

þ 1
s21

þx2
21


 �
P ¼ � 2x21l n0j j

�h
E ð14:48Þ

This equation by no means can be equivalent to the equation of HO with
negative absorption. Absorption remains the same (first derivative with some
coefficient giving typical relaxation time), and effect of amplification is in a term in
right side of (14.48), which is equivalent to a kind of external force.

Conclusion:

1. An absorption coefficient in a HO equation can only have a sign, corresponding
to an energy losses.

2. Rigorous quantum description can be reduced to a HO equation only in case of
low, unsaturated losses in a passive (unpumped) quantum system.

3. Quantum dynamics, associated with the amplification process (14.43) can NOT
be described by a HO equation with an inverted sign of losses anyway.
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4. Equation (14.48), which is actually a HO equation with an external force, can be
taken to some extend as an equation for polarizability, but even this equation
can NOT be obtained through a rigorous math from the DM approach.

There are basically no reasons to use a HO equation for amplification, the system
(14.41) is not too complicated and can be analyzed analytically.

Appendix 2: Maxwell Equations and Density Matrix
Formalism

A starting point for the consideration is the Helmhoz equation:

DAþ k2A ¼ 4px2

c2
P

P ¼ l w2jlA w1jh iþ w2jlA w1jh i�ð Þ
Hw ¼ Ew

H ¼ H0 þ lA; H0wk ¼ Ekwk

A ¼ Aregular þAzero fluctuatins þAstochastic )
) H ¼ H0 þ l Aregular þAzero fluctuatins þAstochastic

� �
þVstochastic ¼ H0 þ lAregular þ l Azero fluctuatins þAstochasticð Þ

ð14:49Þ

Azero fluctuations are the zero (vacuum) fluctuations of the electric field.
The last scopes in the last equation for A are the combination of the interaction

with the vacuum fluctuations and thermo bath. Both are considered as stochastic
functions with zero averaged values. As for the Helmholz equation:

DAþ k2A ¼ 4px2

c2
P

A ¼ Aregular þAzero fluctuatins þAstochastic ) Dþ k2
� �

Aregular

þ Dþ k2
� �

Azero fluctuatins þAstochasticð Þ ¼ 4px2

c2
P )

Dþ k2
� �

Aregular ¼ 4px2

c2
P Aregular
� �

Dþ k2
� �

Azero fluctuatins þAstochasticð Þ ¼ 0

ð14:50Þ

Substituting A into the equation for polarization we see, that the stochastic part
gets canceled:
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P ¼ l w2jl w1jh i þ w2jlA w1jh i�ð Þ
A ¼ Aregular þAzero fluctuatins þAstochastic ) P ¼ l w2jAregular w1j� �þ w2jAregular w1j� ��� �

þ l w2j Azero fluctuatins þAstochasticð Þ w1jh iþ w2j Azero fluctuatins þAstochasticð Þ w1jh i�ð Þ

¼ l w2jAregular w1j� �þ w2jAregular w1j� ��� �
Dþ k2
� �

Aregular ¼ 4px2

c2
P Aregular
� �

ð14:51Þ

As for the Schrödinger equation, it gets transferred into the DM equations, where
both Azero fluctuatins and Astochastic (i.e. interaction with vacuum fluctuations and with
thermo bath) are packed into the two relaxation times s1 and s2.

Hw ¼ Ew

H0wk ¼ Ekwk

H ¼ H0 þ l Aregular þAzero fluctuatins þAstochastic
� �

¼ H0 þ lregular þ l Azero fluctuatins þAstochasticð Þ

dp
dt þ p 1

s2
þ i x� x21ð Þ

� �
¼ il2A�

regularn

�h

dn
dt þ n�n0ð Þ

s1
¼ i Aregularp�A�

regularp
�ð Þ

2�h
n ¼ q22 � q11
p ¼ lq12
n0 ¼ W~s1�1ð Þ

W~s1 þ 1ð Þ

8>>>>>>><
>>>>>>>:

ð14:52Þ

In DM equations the both relaxation times depend on the environment according
to the local density of state which in turn depends on imaginary part of the
respective Green function.
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Results and Conclusions

Main Achieved Results

In conclusion, a new and self-consistent approach for the qualitative consideration
of various properties of the optical MMs has been presented. The developed
approach has been incorporated in more general homogenization model for the
compound materials with magnetic response. The main results could be presented
in form of the “Multipole tree of knowledge” (in analogy with Metamaterials tree of
knowledge introduced by Prof. N. Zheludev in [50]), which emphasizes central role
of the multipole expansion in the elaborated approach.

The red apples in Fig. 1 show already developed applications, while the green
ones present the applications which are planned to be further investigated.

The summarized conclusions of the work are:

1. Basics of homogenization procedure for Maxwell equations has been developed
in maximum general form and is supposed to fill the gap between microscopic
Maxwell equations and various forms of averaging procedures, suggested for
MMs. The results have been published as a big review in form of “Feature
Article” for journal “Metamaterials” [4] and presented and discussed at the
international conferences.

2. The homogenization model for MMs has been developed based on multipole
expansion approach and relations between this model and the elaborated basics
of the homogenization have been found. The results have been published in [2,
5, 10] and presented at the international conferences.

3. The model has been applied to the optical MMs in order to consider linear and
nonlinear effects in the MMs in the frame of the developed unified approach.
The results have been published in [7, 9, 11, 12, 13, 14, 15] and presented at the
international conferences.

4. The developed approach has been extended on the case of quantum MMs, i.e.
MMs with MAs consisting of coupled plasmonic nano resonators and quantum
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A. Chipouline and F. Küppers, Optical Metamaterials: Qualitative Models, Springer
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ingredients. The results have been published in [3, 6] and presented at the
international conferences.

5. The developed model for quantum MMs has been applied to the cases of
nonlinear MMs, dynamics of spaser, and MMs with gain. The results have been
published in [8, 9], and presented at the international conferences.

Prepared Publications and Presentations

The list of the prepared publications with the related to the presented work results is
summarized below:

Book chapter:
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Fig. 1 “Multipole tree of knowledge”. Red apples show the fully developed applications, while
green ones present the problems which are planned to be solved
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Possible Future Developments and Applications
of the Presented Approach

The presented in this work model is planned to be further developed. The proposed
activity can be summarized in the shown in Fig. 2 scheme. Two possible ways of
expansions (multipole and anapole ones) in combination with the quantum ingre-
dient are supposed to become the “elementary bricks” for various applications in
area of bio oriented research, optical components for telecommunication and signal
processing, and superconducting-based MMs.

The main points of the plan are:

1. Systematic investigation of the elementary artificial building blocks (MA),
consisting of coupled plasmonic nanoresonators and quantum objects of dif-
ferent types.
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Fig. 2 Schematic representation of the future development of the multipole model and its possible
applications
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2. Investigation of electro-magnetic properties of MMs, constructed/engineered
from the aforementioned elementary building blocks.

3. Investigation of new optical components for application in areas of sensors and
telecommunication designed and built using the described above elementary
building blocks.
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