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Preface

The domain of metamaterials now covers many areas of physics:

electromagnetics, acoustics, mechanics, thermics, and even seis-

mology. Huge literature is now available on the subject but the

results are scattered. Although many ideas and possible applications

have been proposed, which of these will emerge as a viable

technology will only unfold with time. This book is concerned with

electromagnetic waves only and deals essentially with the hard

science, mathematical and numerical, behind the often spectacular,

but somewhat oversold, possible applications of metamaterials.

In a rapidly evolving field, with lots of would-be revolutions,

spending too much pages on the zoology of metamaterials would

certainly condemn this book to a rapid obsolescence. By contrast,

the theoretical and numerical methods presented here are the basis

upon which future trends will be built.

The first chapter is a survey of Maxwell’s equations and their

main properties. After a short historical introduction, potentials and

conservation laws are addressed. Then comes a brief presentation

of the formulation of Maxwell equations using differential forms.

Finally, causality and its consequences are addressed.

Chapter 2 provides the elements of the physics of materials

required to bridge semiconductor and metal sciences with electro-

magnetism, and Chapter 3 is a general reflection upon the notion of

averaging and the definition of effective properties.

Chapter 4 is a crash course on basic principles of transformation

optics. Simple examples in cylindrical geometry are given using

radial transformations that show the unifying power of the

concept: mapping an open domain on a bounded domain, perfectly

matched layers, invisibility cloaks, and superlenses. Some numerical
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simulations are presented as an illustration including cloaks of

arbitrary shapes and mimetism.

Chapter 5 is concerned with wave propagation in periodic media.

The theory of Bloch waves is described in detail. The situation where

the medium does not cover the entire space is addressed, because

in that situation the boundary of the periodic medium is decorated

with evanescent modes. Evanescent waves are then investigated.

They are shown to be a complexification (in the mathematical

meaning) of the Bloch spectrum.

Chapter 6 tackles the problem of diffraction of electromagnetic

waves by a bidimensional grating. A new formulation based on

finite element method is proposed. A lot of academic cases and

more challenging cases are given for highlighting both the versatility

and the powerfulness of the method described in this chapter.

The second part of the chapter is devoted to the method of

multiple scattering, which is presented for a collection of parallel

cylinders.

Chapter 7 is the first chapter devoted to effective properties of

metamaterials. Periodic structures are considered and the period

of the materials are small with regard to the wavelength of

the incoming wave. Besides, the materials are supposed to be

of low contrast: this is the framework of soft problems. Closed

formulae are given in some academic cases such as small spherical

and small circular cylindrical inclusions. A special attention is

drawn on spherical inclusions and the mixing formulae (Rayleigh,

Maxwell Garnett, Bruggeman) are compared to the two-scale

theory.

Chapter 8 addresses the homogenization of highly contrasted

objects. The first situation investigated is that of a periodic collection

of thin metallic wires. It is shown that the effective medium obtained

is dispersive and has a plasmonic resonance. In the second part,

the theory is extended to deal with finite-length rods. It is proven

that the effective medium becomes spatially dispersive. The chapter

closes with numerical investigations of the properties of the effective

medium.

The final chapter is also devoted to homogenization theory.

It deals with the possibility of homogenizing metamaterials for
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frequency above the first band and taking into account the Mie

resonances. Bidimensional resonant dielectric metamaterials are

addressed and the onset of an effective magnetic activity is

proven.

Didier Felbacq
Guy Bouchitté

Spring 2017
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Chapter 1

General Introduction

Didier Felbacq,a André Nicolet,b and Frédéric Zollab

aLaboratory Charles Coulomb UMR CNRS-UM 5221, University of Montpellier,
Place Bataillon, 34095 Montpellier Cedex 05, France
bInstitut FRESNEL, University of Aix-Marseille, Avenue Escadrille Normandie Niemen,
13013 Marseille, France
didier.felbacq@umontpellier.fr

1.1 Maxwell Equations

An amazing characteristic of Maxwell equations is their robustness:

Discovered several decades before the rise of Einsteinian relativity

and quantum mechanics, they nevertheless remain true in almost

all contexts.

They were initially designed by J. C. Maxwell in around 1865

(Maxwell, 1873) to describe the behavior of electromagnetic

fields in free space in the classical context, the only known at

that time. Maxwell added the current displacement term in the

Ampère equation to restore the mathematical coherence of the

electromagnetic theory. This term was the ultimate key of a treasure

chest: The new system thus appeared as a wave equation, and the

predicted celerity of these waves was the speed of light. Therefore,

Maxwell unified not only electricity and magnetism the right way but

Metamaterials Modeling and Design
Edited by Didier Felbacq and Guy Bouchitté
Copyright c© 2017 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4316-12-5 (Hardcover), 978-1-315-36500-8 (eBook)
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also optics in one stroke. The experimental proof of electromagnetic

waves was performed by H. Hertz in 1886. Unfortunately, Maxwell

died several years before, in 1879, the very year in which D. E.

Hughes was experimenting radio transmission with sparks but in

such a way that it was not considered a conclusive proof for Maxwell

equations.

Nevertheless, there was an apparent flaw in the beautiful

building: The equations were not compatible with the Galilean

relativity principle, prescribing the invariance of physical laws

in inertial reference frames, a fundamental pillar of Newtonian

physics. But it turned out that the crack was in the pillar! Physicists

had started to design new space–time transformations that leave

Maxwell equations invariant: the Lorentz transformations, named

by Poincaré, who noticed they form a mathematical group (Poincaré,

1905).

In the same year, 1905, Einstein published his theory of special

relativity (Einstein, 1905) stating that the physical theories have

to be invariant under the set of transformations corresponding

to the Poincaré group: space translations + time translations +
space rotations + Lorentz transformations that are in fact “space–

time” rotations involving both space and time coordinates while

preserving the speed of light. They are all compatible with the

fundamental postulate that the velocity of light is the same for all

observers, and this is the natural framework not only for Maxwell

equations but also for entire physics.

Einstein’s efforts to find a gravitation theory led him to “general

relativity” where the physical theories have to be invariant under the

group of diffeomorphisms (roughly speaking arbitrary differentiable

coordinate transformations) and where gravitation is associated to

space–time intrinsic curvature. Amazingly, in some sense Maxwell

equations are still resilient in this curved space.

Even if relativity has been a deep scientific revolution, the most

overwhelming change in physics has been the quantum theory.

These upheavals occurred at the end of the twentieth century,

and Maxwell equations were also a protagonist of the rise of the

quantum world, notably via the photoelectric effect (yet again

Einstein!). In this case, light seems to have a particle behavior since

the energy may be exchanged only by “packets” of value E = hν
where ν is the frequency of the light and h is the Planck constant.
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Is this a farewell to Maxwell equations? Not really since they are

still good equations to describe the behavior of the electromagnetic

field at the quantum level! The celebrated Schrödinger equation

is, in fact, the quantum non-relativistic description of a massive

spinless particle. The accurate description of an electron is that

it is a massive spin 1
2

relativistic particle, and the corresponding

quantum equation is the Dirac equation. In 1939, Wigner proposed

a systematic description of the relativistic quantum equations of

all possible particles (massive or massless and with a given spin)

based on the representations of the Poincaré group (Wigner, 1939).

In this picture, the “light particle”, i.e., a photon, is a massless spin

1 particle and the corresponding relativistic quantum equations

are Maxwell equations! Even if it means that the electromagnetic

field can be considered in some sense as the “wave function”

of photons (Bialynicki-Birula, 1996), this must be considered

extremely carefully since it cannot be interpreted in terms of the

probability of presence of a photon in a region of space, as it is

the case with all other quantum relativistic equations. If fact, a

full quantum theory of electromagnetic waves requires a “second

quantization” where fields are “operator valued distributions”a over

space–time, but still satisfying Maxwell equations in a generalized

meaning. Coupling all these ingredients led Tomonaga, Schwinger,

and Feynman to quantum electrodynamics (jointly awarded the

Nobel Prize in physics in 1965 for this theory).

Another step could have undermined the range of validity

of Maxwell equations: the transition from the microscopic to

the macroscopic level. For instance, the movement of individual

molecules in a gas can be described satisfactorily using Newton’s

laws of mechanics, but their collective behavior at the macro-

scopic level is more efficiently expressed in terms of the laws

of thermodynamics. Maxwell equations work well in a void for

an electromagnetic field possibly interacting with given charges

(the charges create electromagnetic fields, and the electromagnetic

fields act on the charges via the Lorentz force). Consider now

the interaction of an incident electromagnetic field with matter

from a macroscopic point of view: Even if the considered piece

of matter is globally neutral, it is made of a huge number of

aIn the sense of L. Schwartz.
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charged electrons and protons interacting with the electromagnetic

field at the microscopic level. How can we describe the resulting

electromagnetic field since it will suffer hectic fluctuations in space

and time due, for instance, to the influence of microscopic charges

shaken by thermal agitation? Fortunately, macroscopic equations

can be found for an averaged (in space and time) electromagnetic

field that takes into account only the large-scale behavior of the

field. This smoothed electromagnetic field is named macroscopic

electromagnetic field and it is described by Maxwell equations!

The reason is that the averaging process is a low-pass filtering

performed by convoluting the field with a smooth bounded support

function, the mollifier, and this operation commutes with the partial

derivations with respect to space coordinates and time. Therefore,

the equations for the macroscopic electromagnetic field retain their

initial form. Of course, something has to change to take into account

the interaction with matter: The free space constitutive relations

involving the permittivity ε0 and the permeability μ0 are replaced

by ad hoc constitutive relations involving for instance homogeneous

linear isotropic permittivity, permeability, and conductivity or

possibly much more unwieldy models. The generic term for this

process is homogenization.

Consider now a piece of matter made of two media (or more) in

such a way that it is a regular repetition of the same cell (e.g., a cube

of the first medium with a spherical inclusion of the second medium)

looking locally just like a periodic structure. Can we find another

homogenization process at this level to smooth out the fluctuation at

the cell level and preserve again the form of the Maxwell equations?

The positive answer is just the topic of the present book! Before

entering this topic, let us recall a few important facts about Maxwell

equations in vacuum.

Given the densities of charges �(x, t) and current J (x, t),

Maxwell equations read as:

curl E = −∂tB (1.1)

div B = 0 (1.2)

div E = �

ε0

(1.3)

curl B = μ0J + 1

c2
∂tE (1.4)
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Together with the Lorentz force

F = q(E + v ×B),

they give a complete theory of classical electrodynamics.

The sources of the field � and J cannot be defined by Maxwell

equations alone, although they imply the continuity relation:

div J + ∂t� = 0. (1.5)

Charges are complicated quantum objects and a model has to be

made: A theory of charged particles is needed to know what the

densities of charges and current are. Classically, a charged particle

(with charge q) is described as a punctual object associated with

a density of charge � = qδ(x − x(t)) and a density of current

J = qvδ(x − x(t)). These definitions are compatible with the

continuity equation, understood in the distribution meaning. For

a continuous repartition of charges, the density of charges can be

described by a measure (in the mathematical meaning) of the form:

ρ = f (x, t)μ(dV ), where μ(dV ) is a measure that can be supported

by a curve (linear density), a surface (surface density), or a volume

(volume density). Because the density of charges only gives the

infinitesimal quantity of charges at a point r and a time t, a full

description requires that the velocity field of the charges be given, in

the form: V = v(x, t)μ(dV ), in such a way that the density of current

is given by: j = f (x, t)v(x, t)μ(dV ).

For an incompressible electron fluid, i.e., div V = 0, the continuity

equation, which states the conservation of charges, then reads as:

Dρ
dt
= 0,

where
D
dt
= ∂

∂t
+ V · ∇

1.1.1 Potential and Gauge Invariance

Both the magnetic and electric fields can be written in terms of a

vector field, the “vector potential” A , and a scalar field, the “scalar

potential” φ. This is due to the fact that B is divergence free (or “a

closed form” in the language of differential forms explained below).

This implies the existence of a vector field A such that:

B(r, t) = curl A (r, t), E = −∂A
∂t
− gradφ .
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These fields are not uniquely defined. Adding the gradient of a scalar

field to A does not change its curl, and adding a constant to φ does

not change its grad. This results in the following so-called gauge

invariance relations: the electromagnetic fields E and B remain

unchanged, when (A , φ) are replaced with (A ′, φ′) defined by:

A ′ = A + grad f, φ′ = φ − ∂ f
∂t

.

Using the potentials, Maxwell equations now read as:

−	A + grad div A = μ0J + 1

c2

(−∂2
t2A − grad ∂tφ

)
,

−∂t div A −	φ = ρ/ε0.

The non-uniqueness of the potential fields can be used to simplify

the equations that they satisfy. This is done by imposing a relation

between A and φ, which is called “fixing the gauge.” The two most

commonly used gauges are the Coulomb gauge and the Lorentz

gauge.

• The Coulomb gauge

One imposes that div A = 0. It is possible because if A

does not satisfy this relation, then, for a smooth f , another

vector potential A ′ satisfies: div A ′ = div A + 	 f . Then,

choosing f in such a way that: 	 f = −div A b ensures the

condition div A ′ = 0. With that gauge choice, one has:

−	A = μ0J + 1

c2

(−∂2
t2A − grad ∂tφ

)
,

and the scalar potential satisfies the electrostatic Poisson

equation:

−	φ = ρ/ε0.

• The Lorentz gauge

One imposes that div A + 1

c2
∂tφ = 0.

In that case, both potential fields satisfy the wave equation,

with their respective sources:

−	A + 1

c2
∂2

t2A = μ0J ,

−	φ + 1

c2
∂2

t2φ = ρ/ε0.

bThis is possible for any reasonable A .
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1.2 Maxwell Equations in the Fourier Domain

As far as sources are given, Maxwell equations are best discussed

by performing a Fourier transform on them. The definition of the

Fourier transform is given by:

f̂ (k) =
∫

f (x)eik·x dx N , f (x) = (2π)−N
∫

f̂ (k)e−ik·xdkN .

After Fourier transforming the space variables, Maxwell equations

read as:

k× E = −∂tB, (1.6)

k · E = R/e0, (1.7)

k ·B = 0, (1.8)

k×B = μ0J − ∂tE . (1.9)

The third equation implies that B is perpendicular to k. This

suggests to decompose the fields along k and along a plane

perpendicular to k. The decomposition of the fields in components

parallel and orthogonal to the vector k is a Fourier space version

of Helmholtz (Hodge) decomposition theorem of vector fields in

a sum of a gradient (i.e., a curl-free vector field) and a curl (i.e.,

a divergence-free vector field). The projection operators over the

parallel and orthogonal directions are particularly simple in Fourier

space. Let us denote κ = k/|k| the unit vector in the direction

of k. Given a vector field in Fourier space, F(k), we can define the

transverse and orthogonal parts of the field F by:

F|| = (κ · F) k, F⊥ = F− F||.

For the electromagnetic fields, we immediately have B = B⊥ and

we obtain the following equations:

k× E⊥ = −∂tB⊥, (1.10)

k×B⊥ = μ0J⊥ − ∂tE⊥, (1.11)

k · E|| = R/e0, (1.12)

∂tE|| = μ0J||. (1.13)
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1.3 Field Created by Sources

In this section, we investigate the field created by charged particles,

described by a current density j and a density of charges ρ. In the

Lorentz gauge, the vector potential satisfies the equation:

	A − 1

c2
∂2

t A = −μ0J ,

which is solved uniquely by using the fundamental solution G (i.e., a

Green’s function) for the d’Alembertian operator. It satisfies:

1

c2

∂2G
∂t2
−	G = δ(x, t),

and initial conditions. It is equal to:

G(x, t) = 1

4πct
H (t)δ

(
t − |x|

c

)
,

where H (t) is the Heaviside function. The expressions for the

potential fields are then obtained straightforwardly:

A (x, t) = 1

4πε0

∫
d3x′

J (x′, t − |x−x′|
c )

|x− x′| .

1.4 Conservation Laws

In this section, we introduce the fundamental quantities that are

invariants of the field and matter system. Consider a field created

by a set of particles with charges and current given by:

ρ(x, t) =
∑

n

qnδ(x− xn(t)),

J =
∑

n

qnvnδ(x− xn(t)).

From Maxwell equations, the Poynting’s identity can be derived

as:

div(E ×H )+ E ·J + ∂tw = 0,

where w = 1
2
ε2

0E 2 + 1
2
μ0H 2 is the density of electromagnetic

energy. In order to interpret this relation in terms of physical

quantities, let us comment on each term:
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• E ·J represents the coupling of field to matter.

• P = E × H is a current. Indeed, by integrating

the Poynting’s identity over the volume V containing the

charges, we obtain:∫∫
P +

∫
E ·J = −∂t

∫
w.

The meaning of the identity is thus that the rate of change of

the electromagnetic energy in a region is equal to the energy flux

through the boundary of the region plus the work done by the field

forces.

The expression for the work done, i.e., the transfer of energy to

matter, E ·J , can be written by means of the mechanical energy

and the associated flux:

∂um

∂t
+ div Sm = E ·J ,

where:

um =
∑

n

mn

2
ẋ2

nδ(x− xn(t)), Sm =
∑

n

mn

2
ẋn ẋ2

nδ(x− xn(t)).

From Poynting’s identity, we obtain the energy conservation law:

∂(um + w)

∂t
+ div(Sm +P) = 0.

The Hamiltonian of the system of field and particles is given by:

H =
∑

n

1

2
mv2

n +
1

2

∫
d3x[ε0E

2 + μ0H
2]. (1.14)

The Poynting vector is the momentum of the field; its angular

momentum is given by:

G =
∫

x× (E ×H )d3x =
∫

x×P d3x .

The total angular momentum of the system of field and particles is:

P = G+
∑

mnx× vn. (1.15)

Both the Hamiltonian (1.14) and the total angular momentum

(1.15) are constant of the motion:

d H
dt
= 0,

dP
dt
= 0. (1.16)
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This is proved by a direct calculation:

d H
dt
=
∑

n

mnvn · dvn

dt
+
∫

d3x
[

e0E · ∂E
∂t
+ μ0H · ∂H

∂t

]
.

Let A be the vector potential, with the radiation gauge div(A ) =
0. Then ones has:

G =
∫

x×P d3x =
∫ ∑

k

Ek (x×∇Ak)+
∫

E ∧A d3x .

This shows that the total angular momentum of the electromagnetic

field is the sum of two terms: the first one involves the spatial

variable, but the second one only involves E and A . This term

corresponds to the purely intrinsic part of the angular momentum:

It is the (classical) spin of the electromagnetic field.

1.5 A Framework with Differential Forms

The description of fields in terms of functions of space–time

coordinates with vector values is probably not the best description,

from the point of view of neither mathematics nor physics. Indeed,

it is not clear to understand why the magnetic field should depend

on the orientation of space, why the circulation of the electric fields

is an energy, and so on. Besides, the invariance of the equations with

respect to a change in space coordinates is far from obvious without

speaking of the Lorentz invariance. For all these reasons (and many

others), a much better framework is that of differential forms. The

reader being not acquainted with differential forms should consult

(do Carmo, 1994) for a very clear and not technical introduction; a

very good reference as well is (Bossavit, 1993). As it was said earlier,

the circulation of the electric field along a curve produces a scalar,

or infinitesimally: dW = qE · dx. This shows that the electric field

acts on vectors to produce a scalar: This is the definition of 1-form.

We shall write: E = ∑k Ekdxk. Next, we differentiate E with the

exterior derivative dE = −∂t B, which shows that B is 2-form:

B = ∑n′m Bnmdxn ∧ dxm. Consider now the density of charge, ρ;

for a volume repartition, the integral of ρ over a volume is the total

charge, a scalar: Q = ∫ ρ. This shows that ρ is necessarily a volume

form, or 3-form: ρ = σ (x)dx1 ∧ dx2 ∧ dx3. Considering now the
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density of current, electromagnetism indicates that the flux of J is

the relevant quantity, as it gives the variation of charge through a

surface. In order to provide a scalar when integrated over a surface,

J should be 2-form: J =∑n≤m jnmdxn ∧ dxm. Now the density of

charge results from the exterior derivative of a 2-form, showing that

D =∑n‘m Dnmdxn∧dxm and that H is a 1-form: H =∑k Hkdxk. At

that point, it appears that the connection between E and D , H and

B transforms 1-form to 2-form. This is the so-called Hodge operator,

denoted by a star: ε0 ∗ E = D , μ0 ∗H = B. This operator allows to

transform a 2-form, i.e., a completely antisymmetric tensor of rank

2, to a 1-form, to which a vector that depends on the orientation of

space can be associated. The properties of the physical space enter

through a metric, i.e., a way of measuring distances. In coordinates,

we have (εlnm is the Levi–Civita symbol):

(∗F)nm =
√
|detg|εlnmglk Fk,

where F is a 1-form. This relation will prove to be a key in

transformation optics. The appendix gives more details about forms

and the Hodge star operator. We can now write Maxwell equations

using forms:

dE = −∂tB, dD = ρ , dB = 0, dH =J + ∂t D. (1.17)

Let us remark that the equations are written in a way independent

of any particular choice of coordinates.

1.6 Dispersion Relations

1.6.1 Introduction

In physics, dispersion most often refers to materials that bring

about frequency-dependent effects in wave propagation. To a large

extent, all materials are dispersive, except in vacuum. This frequency

dependence gives rise to numerous physical phenomena such as

light refraction through a prism, rainbows or the spreading of

wave packets in optical fibers. As regards to dispersion relations,

they specify the link between the angular frequency and some

characteristics of materials trough the so-called constitutive re-

lations. In classical electromagnetism, these constitutive relations
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are encoded in the so-called permittivity ε and permeability μ,

and link the mesoscopic fields between them (see Chapter 3).

For not too large energies, these relations are linear and may

be expressed as a convolution operator. The use of a Fourier

transform in time converts this rather intricate operation into a

simple operation of multiplication by a function of ω. It turns out

that this function is complex valued and that its imaginary part is

related to the phenomenon of leakage: Dispersion and leakage are

thus the two sides of the same coin. Once the relative permittivity

and permeability are obtained, the norm k of the vector k, which is

the associated variable to the position vector x, may be expressed

as a function of ω: k = k(ω). Finally, from this last relation, the

different notions of velocities such as phase, group, and wave-packet

velocities may be derived.

It remains to give explicitly the functions ε(ω) and μ(ω) for a

given material, which is far from being a simple task. For doing so,

a quantum treatment is necessary (see Chapter 2), which is beyond

the scope of this paragraph. As a consequence, the electromagnetic

quantities have to be derived in a phenomenological way. By

this, we mean that the mesoscopic electromagnetic quantities (see

Chapter 3) are not derived from—possibly statistical—quantum

physics but are derived from ad hoc quantities obtained from the

experiments and other general concepts such as causality and

some reasonable assumptions. To be more precise, the relationships

given in this paragraph rely on a theorem, Titchmarsh’s theorem

(Titchmarsh, 1948, 1958), the principle of causality, and the fact that

any material is transparent at very high frequency.

We now have to give some relations between, on the one hand,

the mesoscopic quantities derived from H and D defined in the

Chapter 3, and the mean values of the microscopic fields < E >

and < B >, on the other hand. We first begin with the simplest

model: the model of perfect media. In that case, we assume that the

polarization field is given by:

P = ε0χe < E > , (1.18)

where χe is a real number (usually positive in the optical wavelength

range) called electric susceptibility. We thus have:

D = ε0(1+ χe) < E >:= ε0εr < E > . (1.19)
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Analogously, we assume that:

M = χm

1+ χm
< B > , (1.20)

where χm is a real number (positive or negative) called magnetic

susceptibility. We thus have:

B = μ0(1+ χm) < B >:= μ0μr < B > , (1.21)

where μr and εr are functions that can depend on the space

variable r, respectively called relative permeability and relative

permittivity (note that they have no physical dimensions). From now

on, in order to lighten the notation, we will denote the mesoscopic

electromagnetic field (< E >, < H >) by (E , H ).

1.6.2 Causality and Kramers–Kronig Relations

It is clear that the constitutive relations have been obtained roughly:

They cannot convey physical properties as important as dispersion

and absorption as mentioned before. We make less restrictive

assumptions concerning P . We state the existence of an operator

L such that:

P(r, t) = L
(
E (r, t)

)
. (1.22)

where L is a linear and local operator. In that case, it can be proved

that L is an operator of convolution. In other words, we can find a

distribution S such that:

P = S � E . (1.23)

Moreover, we assume that S is a regular distribution associated with

a sufficiently smooth function χ such that:

P = ε0χ � E . (1.24)

For a homogeneous medium,c we have:

P̂(r, ω) = ε0χ̂(ω)Ê (r, ω) . (1.25)

Consequently, we can find the electric constitutive relation:

D̂(r, ω) = ε0εr (ω)Ê (r, ω), (1.26)

cFor inhomogeneous media, it is enough to replace χ̂(ω) by χ̂(r, ω).



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

16 General Introduction

with εr (ω) = 1 + χ̂e(ω). This last relation has important conse-

quences. Causality implies that the function χ has a positive support.

Indeed, the polarization vector can be written as per:

P(x, t) = ε0

(∫ 0

−∞
χ(t − t′)E (x, t′) dt′ +

∫ +∞
0

χ(t − t′)E (x, t′) dt′
)

.

(1.27)

The former integral involves the electric field at times posterior to t
(t− t′, with t′ < 0), which violates the principle of causality unless χ

vanishes for negative t. Besides, we assume that χ is of finite energy

(i.e. χ is in L2(R)). It turns out that Titchmarsh’s theorem connects

causality and finiteness of energy to the analytical properties of its

Fourier transform and to a powerful property involving the Hilbert

transform. Here, Titchmarsh’s theorem is recalled (Titchmarsh,

1948), th. 95:

Theorem 1.1 (Titchmarsh). Let f be a function in L2(R). The
following three statements are equivalent:

(1) The function f is causal (i.e., f (t) = 0 if t ≤ 0).
(2) The Fourier transform of f , f̂ (ω) = F ( f ) = ∫

R
f (t)eiωt dt, is

the limit as y → 0+ of a holomorphic function in the upper half
complex planed C+.

f̂ (ω′) = lim
ω′′→0+

f̂ (ω′ + iω′′) a.e. ,

such that
∫
R

∣∣ f̂ (ω′ + iω′′)
∣∣2 dω′ < K, for ω′′ > 0.

(3) f = iH ( f ), where H denotes the Hilbert transform:

H ( f ) (ω) = 1

π
−
∫
R

f (ω′)
ω′ − ω

dω′ . (1.28)

This last relation gives an unexpected link between the real and the

imaginary parts of the Fourier transform of a finite energy causal

function denoted by χ̂ ′ and χ̂ ′′ in the sequel. By making use of the

linearity and reality of the Hilbert transform, we have:

χ̂ ′ + i χ̂ ′′ = i
(
H
(
χ̂ ′
)+ iH

(
χ̂ ′′
))

, (1.29)

dThis condition means that the possible poles are in the lower half complex plane,C− .

It is worth noting that this dissymmetry between the upper and the lower complex

plane is due to the arbitrariness of the definition of the Fourier transform. In certain

domains of physics, the choice of the direct Fourier transform is f̂ (ω) = F ( f ) =∫
R

f (t)e−iωt dt. In that case, the condition on holomorphy would be inverted.
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which leads to:

χ̂ ′ = −H (χ̂ ′′) and χ̂ ′′ = H
(
χ̂ ′
)

. (1.30)

Moreover, if the function is real valued, which is, of course, the

case when dealing with the function χ , its Fourier transform for

the negative and positive frequencies are related by Hermitian

symmetry:

χ̂(−ω) = χ∗(ω) , (1.31)

i.e.,

χ̂ ′(−ω)+ i χ̂ ′′(−ω) = χ̂ ′(ω)− i χ̂ ′′(ω) . (1.32)

By equating the real and the imaginary parts throughout this

equality, it appears that the real part, χ̂ ′(ω), is an even function,

whereas the imaginary part χ̂ ′′(ω) is odd. The aforementioned

integrals may be thus expressed over positive frequencies in the

following manner:

χ̂ ′′(ω) = − 1

π
−
∫
R

χ̂ ′(ω′)(ω + ω′)
ω′2 − ω2

dω′ (1.33)

= −ω
π
−
∫
R

χ̂ ′(ω′)
ω′2 − ω2

dω′ + 1

π
−
∫
R

ω′χ̂ ′(ω′)
ω′2 − ω2

dω′ . (1.34)

Using the parity of the two integrands, we obtain:

χ̂ ′′(ω) = −2ω

π
−
∫
R+

χ̂ ′(ω′)
ω′2 − ω2

dω′, (1.35)

and similarly

χ̂ ′(ω) = 2

π
−
∫
R+

ω′χ̂ ′′(ω′)
ω′2 − ω2

dω′ . (1.36)

The formulae 1.35–1.36 are the so-called Kramers–Kronig relations

(de L. Kronig, 1926; Hu, 1989; Kramers, 1927; van Kampen, 1961).

As a consequence, giving the real part of the permittivity ε′r in the

whole frequency range allows to derive the imaginary part ε′′r and

vice versa :

ε′′r (ω) = −2ω

π
−
∫
R+

(ε′r (ω′)− 1)

ω′2 − ω2
dω′, (1.37)

and similarly

ε′r (ω)− 1 = 2

π
−
∫
R+

ω′ε′′r (ω′)
ω′2 − ω2

dω′. (1.38)
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Now we would like to apply these relations in a simple situation,

namely, the Lorentz model. In this framework, it is said that an

electron submitted to an exterior electric field E bound to a nucleus

has a motion described by the position vector x given by the

equation:

mẍ + s ẋ + kx = eE . (1.39)

Besides, the polarization vector P is given by:

P = Nex . (1.40)

Seeking the polarization vector P amounts to deriving xi from Ei

thanks to the equation:

ẍi + 2

τ
ẋi + ω2

0 xi = e
m

Ei , (1.41)

where τ and ω0 are, respectively, characteristic time and frequency.

The uniqueness of the solution needs an extra condition, namely,

causality. In other words: “If Ei = 0 for t < t0, so shall xi ”. To

guarantee this hypothesis, it is enough to consider the Green’s

function g associated with the equation 1.41, solution of:

g̈ + 2

τ
ġ + ω2

0g = δ , (1.42)

where g is a positive support function. This equation is equivalent to

the following conditions:⎧⎪⎪⎨⎪⎪⎩
g(t) = 0 if t < 0

g̈ + 2
τ

ġ + ω2
0g = 0 if t > 0

g(0) = 0

ġ(0) = 1

(1.43)

For subcritical motions (ω0 > 1
τ

), the general solution is the sum of

two exponentials:

g(t) = a−e−t/τei�0t + a+e−t/τe−i�0t , (1.44)

with �0 :=
√
ω2

0 − 1
τ 2 , or equivalently:

g(t) = a+e−iω+c t + a−e−iω−c t , (1.45)

where ω+c and ω−c are complex characteristic frequencies in the

complex ω−plane: ω+c := �0− i 1
τ

and ω−c := −�0− i 1
τ

, both located

in C−. The conditions g(0) = 0 and ġ(0) = 1 lead to:

a+ = −a− = 1

−2i�0

. (1.46)
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The Green’s function is, therefore,

g(t) = H (t)

−2i�0

(
e−iω+c t − e−iω−c t

)
(1.47)

= H (t)

�0

sin(�0t)e−t/τ , (1.48)

which is compatible with condition (1) of Titchmarsh’s theorem. We

are now in the position to give the expression of the polarization

vector in time domain:

P = Ne2

m
g � E . (1.49)

In frequency domain, the expression is simpler as already noted:

P̂ = Ne2

m
ĝ(ω)Ê . (1.50)

For obtaining the permittivity in that case, we use the following

property of the Fourier transform: ̂̇x = −iωx̂ . Applying this property

to the equation 1.41 yields:

x̂ = e
m

1

−ω2 − 2iω/τ + ω2
0

Ê , (1.51)

whereupon,

χ̂e = −Ne2

mε0

1

ω2 − 2iω/τ + ω2
0

Ê . (1.52)

This last expression may be remastered by emphasizing the two

poles at stake, ω+c and ω−c :

χ̂e(ω) = −ω2
p

(ω − ω+c )(ω − ω−c )
, (1.53)

where ωp is a characteristic frequency: ωp :=
√

N
mε0

e. Note that the

function χ̂e verifies condition (2) of Titchmarsh’s theorem. We then

derive the expression of the relative permittivity:

εr (ω) = 1+ ω2
p

(ω2
0 − ω2)− 2iω/τ

. (1.54)

The real and the imaginary parts are, therefore:

ε′r (ω) = 1+ ω2
p(ω2

0 − ω2)

(ω2
0 − ω2)2 + 4ω2/τ 2

, (1.55)
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Figure 1.1 Graphs of the functions ε′r (x) = 1 + a2(1− x2)

(1− x2)2 + 4αx2
and

ε′′r (x) = 2a2αx
(1− x2)2 + 4αx2

versus a normalized frequency x . The functions

are derived from the Lorentz model. The graphs for different values of α are

represented and a = 0.5.

and

ε′′r (ω) = 2ω2
p ω/τ

(ω2
0 − ω2)2 + 4ω2/τ 2

. (1.56)

Now, in contrast to the real part, it can be checked that the imaginary

part is positive whatever the parameters ωp, ω0, and τ and whatever

the frequency ω: This property corresponds to a passive materiale.

eOnce again, the sign of the imaginary part depends on the very definition of the direct

Fourier transform. If the other Fourier transform were chosen, ε′′r would be negative.
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Figure 1.2 Graphs of the functions ε′r (x) = 1 + a2(1− x2)

(1− x2)2 + 4αx2
and

ε′′r (x) = 2a2αx
(1− x2)2 + 4αx2

versus a normalized frequency x . The functions

are derived from the Lorentz model. The graphs for different values of α are

represented and a = 5.

1.6.3 Super-Convergence and Sum Rules

We have just seen that, as a consequence of causality applied

to the electric polarization vector, the complex permittivity must

satisfy the Kamers–Kronig relations. What happens for the derived

quantities such as the refractive index? The expression (1.54) shows

that εr (ω′+iω′′)−1 is in L1(R) forω′′ > 0. Therefore, n(ω)−1 fulfills

the second criterion of Titchmarsh’s theorem. As a consequence, the
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function n(ω) − 1 is the Fourier transform of a function of finite

energy in time domain and with a positive support. Second, the

function n − 1 is such that n − 1 = iH(n − 1), which leads to the

relations:

n′′(ω) = −2ω

π
−
∫
R+

n′(ω′)− 1

ω′2 − ω2
dω′ (1.57)

and

n′(ω)− 1 = 2

π
−
∫
R+

ω′n′′(ω′)
ω′2 − ω2

dω′ . (1.58)

We have just seen that from causality and some rather weak

hypotheses on the behavior at large frequencies on the permittivity,

we have deduced the Kramers–Kronig relations for both the

permittivity and the optical index. But there are further exciting

discoveries to come. It is indeed possible to derive the zero-degree

moment of the real part of the permittivity and the first moment of

the imaginary part. These results can be obtained by taking benefit

of the super-convergence theorem (Altarelli et al., 1972).

Theorem 1.2 (Super-convergence). Let f be a continuously differ-
entiable function with the following asymptotic behavior at infinity:
f = O

[
(ω lnω)−1

]
and a function g defined as follows:

g(ω) = −
∫
R+

f (ω′)
ω2 − ω′2

dω′ , (1.59)

then ∫
R+

f (ω) dω = lim
ω′→+∞

(
ω′2 g(ω′)

)
. (1.60)

From 1.38, we have, indeed:

π

2ω
ε′′r (ω) = −

∫
R+

(ε′r (ω′)− 1)

ω2 − ω′2
dω′. (1.61)

Besides, if we assume that εr = O
[
(ω lnω)−1

]
, the super-

convergence theorem states:∫
R+

ε′r (ω′)− 1 dω′ = lim
ω′→+∞

( π

2ω′
ω′2ε′′r (ω′)

)
= 0 . (1.62)

And analogously, from 1.37:

π

2

(
1− ε′r (ω)

) = −∫
R+

ω′ ε′′r (ω′)
ω2 − ω′2

dω′, (1.63)
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leads to∫
R+

ω′ε′′r (ω′) dω′ = lim
ω′→+∞

(π
2
ω′2(1− ε′r (ω′))

)
. (1.64)

Now if we consider that the permittivity behaves as the function

1− ω2
p

ω2 for large frequencies, which is the case for the Lorentz model,

the limit of the latter limit is simply ω2
p, which relates the first

moment of the real part of the relative permittivity to a characteristic

of the permittivity for large frequencies, ωp:∫
R+

ω′ε′′r (ω′) dω′ = ω2
p . (1.65)

The two last formulae involving the moments of the real and the

imaginary parts of the relative permittivity are the so-called f−sum

rules. What we have done for the permittivity can be redone for the

optical index mutatis mutandis since the starting point of the f−sum

rules is nothing but the Kramers–Kronig relations. We have thus:∫
R+

n′(ω′)− 1 dω′ = 0 , (1.66)

and ∫
R+

ω′n′′(ω′) dω′ = ω′2p . (1.67)

But

n(ω)− 1 =
√

1+ χ(ω)− 1 
 χ(ω)

2
(1.68)

gives ω′2p = ω2
p

2
, so that∫

R+
ω′n′′(ω′) dω′ = ω2

p

2
. (1.69)

1.6.4 Dispersion Relations Versus Mixing Laws

The homogenization techniques and mixing laws being the purpose

of this book, we have to verify that these laws are consistent with

causality and consequently exhibit relations of the Kramers–Kronig

type. This task is even more useful in that we will see later on

that seeking mixing laws is not always easy. Indeed, except in very

peculiar cases, mixing laws cannot be given as closed formulae

but must be numerically derived: The resulting numerical methods
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(often called annex problems) will be the subject of the Chapter 7.

The dispersion relations may then be used to verify the mixing laws

in the frequency domain. However, the reader should be aware of

some subtleties arising from the two-step approach widely used

in the following chapters. First, the media obtained after two-step

homogenization may be dispersive, while the media making up of

them are not. Second, when dealing with high-contrast media (see,

for instance, the bed-of-nails structure studied in Chapter 8), the

media at stake after homogenization are no longer local in space.

In that case, the relations of the Kramers–Kronig type have to be

modified.

1.6.5 Group Velocity

Consider a dispersive medium characterized by a permittivity tensor

ε(r, k). The constitutive relation between the displacement field and

the electric field is given by:

D(x) =
∫

ε(ω, k)E (k)eik·xd3k.

Maxwell equations admit solutions in the form of monochro-

matic plane waves in the form:

E0 ei(k·x−ωt), H0 ei(k·x−ωt).

The averaged Poynting vector is denoted by P = 1
2
�(E0 ×H 0).

The following result holds:

w∇kω = P − 1

4
ω|E0|2∇kε, (1.70)

where: w = 1
4

(
μ0|H0|2 + ∂(ωε)

∂ω
|E0|2

)
.

The rest of this section is devoted to a proof of this relation.

Putting the expression for the plane waves into Maxwell

equations, we get:

k× E0 = ωμ0H0, k×H0 = −ωε(ω, k)E0.

We now make an infinitesimal variation on the wave vector dk,

inducing a small perturbation on the field E +dE , H +dH and on

the frequency dω and permittivity dε:

(k+ dk)× (E0 + dE0) = (ω + dω)μ0(H0 + dH0),

(k+ dk)× (H0 + dH0) = −(ω + dω)(ε + dε)(E0 + dE0).



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

References 25

Expanding to first order, we obtain:

dk× E0 + k× dE0 = ωμ0dH0 + dωμ0H0,

dk×H0 + k× dH0 = −ωdεE0 − dωεE0 − ωεdE0.

The next step is to make the Poynting vector P appear. We denote

Pc = E0 ×H 0.

H 0 · (dk× E0)+H 0 · (k× dE0) = ωμ0H 0 · dH0 + dωμ0|H0|2,

E 0 · (dk×H )+ E 0 · (k× dH0) = −ωdε|E0|2 − dωε|E0|2
−ωεE 0 · dE0.

dk · (E0 ×H 0)+ dE0 · (H 0 × k) = ωμ0H 0 · dH0 + dωμ0|H0|2,

dk · (H0 × E 0)+ dH0 · (E 0 × k) = −ωdε|E0|2 − dωε|E0|2
−ωεE 0 · dE0.

On inserting the Maxwell system, we obtain:

2dk · Pc + ωεdE0 · E 0 = ωμ0H 0 · dH0 + dωμ0|H0|2,

−2dk · Pc − ωμ0dH0 ·H 0 = −ωdε|E0|2 − dωε|E0|2 − ωεE 0 · dE0.

Finally, we subtract the relations to obtain:

4dk · P = dωμ0|H0|2 + (ωdε + dωε)|E0|2,

4dk · P = dωμ0|H0|2 +
(
ω∇kε · dk+ ω

∂ε

∂ω
+ dωε

)
|E0|2,

dk · (4P − ω|E0|2∇kε) = dω
(
μ0|H0|2 +

(
ω
∂ε

∂ω
+ ε

)
|E0|2

)
,

and in fine the claimed result.
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2.1 Introduction

Most of the chapters following the present one, if not all, are

dedicated to the resolution of Maxwell equations in specific

circumstances. Beyond the scope of the description of the challenges

that are faced, in each of the cases treated hereafter in this

book, and beyond the pedagogical and technical descriptions of

the mathematical approach required to solve them intelligibly in

each case, we felt concerned with the extension of this science to

situations when quantum mechanics rules the spectral behaviors of

both the dielectric and magnetic susceptibilities.

The point of this chapter is, thus, to provide the elements

required to bridge semiconductor and metal sciences with electro-

magnetism.

Metamaterials Modeling and Design
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For semiconductors as well as metals, susceptibilities are

complex quantities, exhibit a spectral dependence, and exhibit

resonances centered at energies specific to the chemical element(s)

assembled to form the crystal. Such energies are associated, as

we will see later, to specific transitions at a given k-vector in the

Brillouin zone of the crystal. The great density of electrons free

to propagate in metals (1029m−3) gives rise to a bulk collective

elementary excitation named plasmon, which oscillates at an energy

close to 10 eV (Kittel, 1996), which is in principle larger than

the resonance energies that will interest us here. Researchers in

electromagnetic science are used to express dispersion relations

in terms of frequency (Hz) or wavelength (nm), while solid state

physicists prefer electron-volts even though this quantity does not

belong to the International System of Units. As we will use this

measurement unit, we provide its relationship with nanometers in

Fig. 2.1. In semiconductors, while increasing the density of electrons

free to propagate by the appropriate incorporation of controlled

amounts of foreign atoms into pure crystals (including a group V

element, for instance As, into silicon), a contamination procedure

called doping, it is possible to tune the bulk plasma oscillation

energy from nought to several electron-volts. We will discuss bulk

plasmons in metals and semiconductors.

To give an overview of the origins of these phenomena, we will

describe some band structures of various materials, detail how the

spectral dependence of the dielectric constant of a material can

be interpreted in terms of inter-band transitions between critical

points of the band structure, introduce the concept of excitons,

and conclude by giving some words regarding heavy doping of
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Figure 2.1 Correspondence between electron-volts and nanometers.
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semiconductors and plasmons. Our philosophy has been to locate

in between the strict theoretical description of the phenomena and

an oversimplified one.

2.2 Metals and Non-Metals

In terms of conductivity, gold and diamond are highly different. Gold

is a metal, while diamond is an insulator (or a semiconductor).

Diamond is transparent, while gold is not. Diamond is a good

conductor of heat, like gold. Gold is soft and can be easily molded;

diamond is hard and fragile. The understanding of the puzzling

physical properties of such materials, which had been known

since the dawn of humanity, was achieved in the 1930s, with the

simultaneous booming of quantum mechanics, atomic physics, and

solid state theory (Fowler, 1993). Answers to most of the important

differences between the conductivities of metals and insulators

(a metal conducts at low temperature, whereas an insulator does

not) were found with the development of the quantum theory

of solids. To do so, a new concept of band structure, discovered

by Bloch (1928) in the case of periodic and perfect crystals,

was introduced with a fairly great success. This concept led to

the discovery of an energy-dependent, even, and multi-dependent

function of a wave number k. The birth of the concept of Brillouin

zones (Brillouin, 1930a,b,c) was of paramount importance to project

quantities derived from band structure effects in a sub-volume of

the reciprocal space defined from group theory arguments and

capable of gathering all relevant information about a periodic

crystal. The concepts of Fermi wavevector kF, Fermi energy EF,

and Fermi surfaces have revolutionized the civilization for at least

a century (Ziman, 1960). The Fermi energy (resp. wave vector)

at zero K is the maximum total energy (resp. wave vector) an

electron can have. The spectral distribution of electron states is

described by the Fermi distribution, which at zero K is the Heaviside

function: The probability of occupancy of a given state is identity

for energies below EF and nought otherwise. The Fermi surface

is the surface of constant energy EF in the Brillouin zones of the

crystal. It separates the occupied orbitals from non-occupied ones
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at zero K and is invariant under the symmetry operations of the

point group of the crystal (Seitz, 1960). It is, in addition, invariant

under inversion respective to the center of the Brillouin zone. It

can be fully located inside the first Brillouin zone, or may spread

outside it. The symmetry of the Fermi surface is broken under

the application of an external electric field. Finite conductivity is

then made possible at zero K when the Fermi surface falls into

a partly occupied band so that the conduction electrons of the

Fermi distribution, having a given wave vector, are energetically

adjacent to states with different wave vectors and are available

to move into. The conductivity is then ruled by the difference of

populations of the energy bands in the neighborhood of the Fermi

surface and by its distortion upon the application of a finite bias.

When temperature increases, the Heaviside distribution is replaced

by the temperature-dependent Fermi distribution. This leads to

complementary distortions of the Fermi surface and modification of

the conductivity with temperature. In contrast, insulating behaviors

are observed when the Fermi surface coincides with the topmost of

an electron band, and when no adjacent energy states are available

for the conduction electrons.

The unusual conduction properties of semiconductors can also

be explained by assuming that their outer band is filled, as with

insulators. Therefore, they do not exhibit conductivity at zero K in

the absence of any perturbation complementary to the external bias.

However, their band structure is such that one or more unfilled

electronic levels are close enough to the next allowed band and

that electron excitation by heat from the filled band to the unfilled

band can be promoted relatively easily so that conductivity appears

when temperature increases. This is the qualitative interpretation

of the conductivity of ideal materials during the first part of

1930s (Hoddeson et al., 1987). At that time, more quantitative

interpretation faced severe difficulties in the accurate calculation of

the band structure of metals, semiconductors, and insulators, and in

the departure of real crystals from perfection, leading to mysterious

and parasitic phenomena.

It is worthwhile to note here that, since that time, the number

of solids having specific behaviors increased with the discovery of

semi-metals, superconductors, topological insulators, and with the



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Examples of Band Structures for Monovalent Elemental Metals 31

realization of complex ensembles of these differently conducting

materials. We have to remind that metals have been, for a long time,

very naively and wrongly distinguished from insulators in terms or

their opacity to visible light. This is not true as we shall see later: It

depends on the frequency of the light used to probe the material’s

transparency. This is the very complex issue of establishing the

theory of dielectric constant through the whole energy range.

2.3 Examples of Band Structures for Monovalent
Elemental Metals

Metals can furnish a large variety of band structures in line with the

Bravais lattice they form and depending of the electronic structure

of the element. To illustrate this, we select the simple case of

monovalent atoms in the case of body-centered and face-centered

cubic lattices.

Figure 2.2 represents the plot, in the first Brillouin zone, of the

band structure of a monovalent crystal sodium that crystallizes

in the body-centered cubic lattice (Ching and Callaway, 1975). In

this textbook, the single-valence electron is in a 3s state. The

Figure 2.2 The band structure of sodium, calculated by the LCAO method.
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fundamental band starts at an energy of about −0.37 Rydberg at

the zone center. Then it parabolically increases when k increases in

the K-N or K-P or K-H directions (� = (0, 0, 0), H = 2π/a(0, 0, 1),

N = π/a(1, 1, 0), P = π/a(1/2, 1/2, 1/2)), as it is expected for an

energy-isolated s state in the absence of interactions with second

atomic neighbors. The exact dispersion relation is expressed as

follows versus the lattice parameter a and components kis of the

wave number cos (kx a/2) cos (kya/2) cos (kza/2).

This low-energy band (�1, 	1, and �1 lines) is highly dispersive

in the reciprocal space in the neighborhood of its minimum at the

zone center (�1 level). In other words, the effective mass:

meff = �
2

[
∂2 E (k)

∂k2

]−1

is very light. Higher in energy, this energy band interacts with

contributions of the higher energy states, for instance at the zone

center and the even (as well as empty) 3d states of sodium (�12 and

�′25), which gives the complicated dispersion relations at positive

energies. These states being empty, the Fermi energy is computed

at 3.23 eV in the first valence band and is plotted in the figure to

indicate the metallic behavior of this material. For a monovalent

metal, in the case of the body-centered cubic lattice, the Fermi wave

number kF = 1.24π/a, where a is the cube of the lattice constant,

which indicates that the Fermi surface is totally included in the

first Brillouin zone.a We have reproduced in Fig. 2.3 the Brillouin

zone of the body-centered cubic lattice (Solyom, 2010), and the

Fermi surface is plotted in blue. The semi-classical theory of the

dielectric constant can explain how the lack of energy gap in the

band structure of metals indicates that these materials are, at first

order, opaque to visible light (thanks to the high density of mobile

electrons, the real part of the dielectric constant is negative at these

energies) but transparent in the ultraviolet.

Figure 2.4 plots the band structure of copper, a noble monovalent

metal. The Brillouin zone states at zone center and zone boundaries

aValues of the Fermi energies are 4.72 eV for lithium (a = 0.349 nm); 3.23 eV for

sodium (a= 0.423 nm); 2.12 eV for potassium (a= 0.523 nm), 1.85 eV for rubidium

(a= 0.559 nm); 1.58 eV for Cesium (a= 0.605 nm) (Kittel, 1996).
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Figure 2.3 Fermi surface for the conduction electrons of sodium.

Figure 2.4 The band structure of copper along some special lines of the

Brillouin zone, calculated using the APW.
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Figure 2.5 Fermi surface for the conduction electrons of copper.

are � = (0, 0, 0), X = 2π/a(0, 0, 1), W = π/a(1, 1, 0), and

L = π/a(1/2, 1/2, 1/2). In that case, the Bravais lattice is the face-

centered cubic lattice, but as another difference with respect to

sodium, the 3d states of copper are occupied and hybridize with

the 4s states to contribute to the chemical bonding. Then the Fermi

energy (EF = 7 eV) is clearly located in the fifth energy band

(Burdick, 1963). Figure 2.5 plots the Fermi surface, which again is

fully contained within the Brillouin zone (kF = 1.56π/a ) where a
is the cube of the lattice constant. The Fermi surface (Solyom, 2010)

is very different from the Fermi surface for monovalent metals in

body-centered cubic lattice, which indicates how impacting 3d sates

are to interpret the differences between the conductivity of copper

and sodium.

2.4 Band Structures of Cubic Semiconductors

We now jump to semiconductors. There are two great families of

Bravais lattices for technologically impacting semiconductors: the

face-centered cubic lattice and the hexagonal one (Morkoç, 1999).
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Other Bravais lattices are found for layered compounds such as

GaSe, InSe, graphite, h-BN, and other exotic semiconductors, for

instance lead-chalcogenides found in rock-salt (Madelung, 1992)

or chalcopyrites growing as tetragonal D2d crystals (Burdick and

Ellis, 1917). We will not discuss them here. The semiconductors we

will discuss here are tetrahedrically coordinated compounds. Silicon

and germanium are the most popular of the semiconductors that

crystallize in the face-centered cubic lattice. This is the case also

for carbon when found as diamond. Therefore, their crystallographic

structure is called diamond-like structure.

Figure 2.6 plots the band structure of undoped silicon, which

is a terahedricaly bonded semiconductor that crystallizes in the

diamond structure (Cardona and Pollak, 1966). The band structure

of this semiconductor is particularly different from the band

structure of metals: first of all, there is an energy gap in the visible

portion of the electromagnetic spectrum. Second, the maximum of

the valence band occurs at the � point (�25), while the minimum

of the conduction band occurs at the zone boundary (X 1). This

band structure situation is typical of intrinsic indirect band gap

Figure 2.6 Energy bands of silicon calculated by the k method in (111) and

(100) directions.
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Figure 2.7 The energy bands of GaAs.

semiconductors. The theory of the electronic structure of solids

indicates that the Fermi energy is located in the band gap of the

undoped, perfect semiconductor. The valence band is fully occupied

by electrons. The spin–orbit interaction (a moderate correction for

silicon) is not included in the calculation plotted in Fig. 2.6.

Figure 2.7 plots the band structure of GaAs, a well-known

semiconductor that grows in the cubic zinc blende fourfold

coordinated crystalline phase (Chelikowsky and Cohen, 1976). The

difference between the zinc blende and diamond structures is the

loss of inversion symmetry when a III-V pair replaces two IV

identical atoms. The concept of macroscopic parity is lost. The

position of the deep valence band is not given in the figure. In the

GaAs case, a clear band gap occurs between the p-type (�8) valence

band and the s-type (�6) conduction band. Both extrema occur at

the zone center. This is an intrinsic direct band gap semiconductor. In

addition, the value of the conduction to valence splitting is minimum

in that case, which we call the fundamental band gap. A higher

energy band gap can also be found at the L or X boundaries of

the Brillouin zone, which will be extremely important in terms of
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their contribution to the dielectric constant. Spin–orbit interaction

(a moderate correction for GaAs) is included in this calculation.

Gallium arsenide is most commonly grown as a zinc blende

crystal, such as InP or GaSb, two other interesting binary compounds

obtained by assembling group III and group V elements. These so-

called III-V compounds are extensively used in optoelectronics for

designing optoelectronic devices operating at different wavelengths

thanks to the different values of their band gaps. Close cousins of the

III-Vs, the IIB -VIs have similar band structure properties when the

group II element is zinc or cadmium, while the group VI element

is sulfur or selenium or tellurium. Group II A elements combined

with group VI are not interesting; they are fragile, hygroscopic,

and of low crystalline quality. They do not interest researchers

in semiconductors. Mercury salts are very interesting but are for

military application or for their behavior as topological insulators.

This is something else. Oxides of group IIB elements crystallize in

the hexagonal symmetry. The most popular of them is ZnO.

Nitrides of group III elements, such as GaN, AlN, and InN,

generally grow as wurtzitic materials. This crystalline phase is

energetically more favorable than the zinc blende one. However,

it is also possible to force phosphides, arsenides, and antimonides

to grow under the wurtzitic form. The band structure of wurtzitic

semiconductors is strongly different from the band structure of

zinc blende materials. In particular, the reduction in symmetry

produces a complementary splitting of the topmost valence band at

the zone center (Dingle et al., 1971; Gil, 2001; Thomas and Hopfield,

1962). The optical response, if performing an experiment in linear

polarization along the six-fold symmetry axis, gives an information

different from the one obtained in crossed polarization conditions:

The material is birefringent (Klingshirn, 2005).

Reducing their lattice symmetry can artificially generate the

anisotropy of the optical response of semiconductors. This is clearly

illustrated in Figs. 2.8 and 2.9 in the specific case of gallium nitride,

a wide band gap semiconductor word widely used for growing blue

and white light-emitting diodes and blue solid state lasers. Here

the GaN epilayer has been deposited on the anisotropic A (10-10)

plane of sapphire, as shown in Fig. 2.8. The epitaxial relations are

indirectly given by the orientations of the two crystals. Thanks to
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Figure 2.8 Relative orientations of the crystallographic axes of GaN in the

case of heteroepitaxy on A-plane sapphire. Note that the (0001) plane of

sapphire is parallel to the (11-20) plane of the GaN epilayer.

the anisotropic dilatation coefficients of the thick sapphire substrate

in its A plane, the GaN epilayer experiences a strong anisotropic

in-plane deformation that reduces the hexagonal symmetry to an

orthorhombic one and the in-plane six-fold symmetry of GaN is

lost (Alemu et al., 1998). Figure 2.9 represents the result of a

reflectivity experiment, which here probes the dielectric constant

of the semiconductor, and which, in this specific situation, reveals

an anisotropy. As can be seen in the figure, the optical response

has been made anisotropic just by choosing the growth conditions,

which may sometimes be of technological value.

It is now time to correlate the dielectric constants of semicon-

ductors and metals to the specificities of their band structure. As

briefly indicated in the examples earlier, there are a lot of possible

situations. Before doing so, we have to emphasize the fact that

there is a large range of possibilities for assembling several group

III elements with one or more group V elements and vice versa,

giving ternary, quaternary, and even quinary alloys. The advantage

of this possibility is often taken by device designers for tuning the

band gap or the lattice parameter or for tuning the relative positions

of fundamental valence and conduction bands (Bastard, 1988; Gil,
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Figure 2.9 Evolution of the intensity of the reflectance structures with in-

plane orientation of the electric field: (a)[10-10] orientation, (b) [-12-10]

orientation. Note the increase in A1s accompanied by a decrease in B1s ,

making it easier to detect A2s . Arrows indicate the average positions of

transverse excitonic polaritons. The experimental data and the line-shape

fitting are plotted using full and dotted lines, respectively.

2002; Weisbuch and Vinter, 1991). We also want to emphasize

that the band gap of technologically relevant semiconductors varies

from almost zero (for InSb, it equals about 230 meV or about

5.4 micrometers) to 6.2 eV or 200 nm for wurtzite AlN grown by

epitaxy on sapphire. Finally, we would like to inform the readers

that band structures shown here are not necessarily the most recent

and sophisticated calculations that include spin–orbit interactions,

exchange correlations, etc. Many technical improvements, although

being of paramount importance for people of the skill, have not been

discussed here.
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2.5 Semi-Classical Theory of the Dielectric
Function in Crystals

2.5.1 Intuitive Description

In the preceding section, we gave examples of band structures

for two different semiconductors: silicon and gallium arsenide. In

the case of silicon, the topmost valence band maximum does not

coincide with the conduction band minimum in the first Brillouin

zone, while they do in the case of GaAs. If the transition between

the conduction and valence quantum states �6c and �8v does not

violate a spectroscopic selection rule (it can be established from

group theory arguments that the matrix element of the transition

is not vanishing when �ω ≥ E�6c − E�8v = E g0). A photon with

the specific energy �ω ≥ E g0 can excite an electron from the

top of the filled valence band to one of the states at the bottom

of the lowest conduction band, in a transition that is vertical in

the reciprocal space (the lattice parameter equals 0.56 nm, while

the photon wavelength is 0.8 micrometers, thus the wave number

of the photon can be neglected) and called an allowed transition.

Further assuming the matrix element to slightly vary with the

transition energy, the absorption coefficient α(E g0) in the three-

dimensional semiconductor can be naturally and intuitively written

as proportional to the three-dimensional joint density of states

D
√
�ω − E g0, that is to say α(E g0) = A

√
�ω − E g0 (Blakemore,

1985; Pankove, 1971).

The free electron state missing in the valence (analogous to

a positive charge, named a valence band hole by Wilson in 1930

(Fowler, 1993) who established the symmetry properties between

the valence missing electron and the concept of valence hole), and

the excess free electrons in the conduction band share the excess

energy �ω − (E�6c − E�8v ) in such a manner that electron and

hole have the same value of k. Let us assume for the sake of the

lightness of equations that the degeneracy of the valence band does

not exist. We take me and mh as the effective masses of electron

and hole. They are in the neighborhood of �, the curvatures of the

bottom conduction band of the top valence respectively. Then the
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joint density of state effective mass becomes:

mr = memh

me +mh
.

It is important to outline that the joint density of state

D
√
�ω − E g0 is proportional to m3/2

r according to the model of

the free particle in a three-dimensional box. Thus, the absorption

coefficient, for any direct transition in the reciprocal space, reads:

αi (�ω) = Ai m
3/2
ri

√
�ω − E gi .

The index i indicates that for each transition E gi , we attribute a given

matrix element Ai , and a given joint density of states:

m3/2
ri

√
�ω − E gi .

The next important point to outline here is the expression of the joint

density of state effective mass:

mri = mei mhi

mei +mhi
,

which rules the amplitude of the absorption. In particular, these

mri s vary with band index i and wave number. Thus, one can

again intuitively imagine that these conditions may lead to specific

situations featuring the absorption coefficient, which we write:∑
i

αi (�ω)

or ∑
k

∑
i=nc−nv

αi (�ω),

where the summation is extended for all vectors k of the Brillouin

zone and for all couple of valence (nv ) and conduction bands (nc).

In silicon, which has an indirect energy gap, electron hole pairs

of the minimum creation energy cannot be directly created: The

momentum conservation rule is not fulfilled in the case of transition

between a � hole and an X electron, although it can be produced

if the photon has an energy high enough to boost the electron in

the non-fundamental conduction state. An indirect (non-vertical)

transition can occur via a virtual state where photon absorption

is accompanied by either absorption or creation of a phonon. This

model requires either a photon of energy Egindirect + �ωphonon for
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creating a phonon with energy �ω and momentum kc − kv or a

photon of energy Egindirect − �ωphonon for absorbing a phonon with

energy �ω and momentum kc − kv . Thus, absorption can occur

at energies sitting at both sides of energy Egindirect. Phonons of

several branches of the lattice vibration spectrum may contribute.

The absorption coefficient is, roughly speaking, one hundred times

smaller than that for direct transitions and was difficult to analyze.

It is worthwhile to notice that Bose–Einstein statistics prescripts

the density of existing phonons to very small at low temperature,

thus making the probability to annihilate one is extremely small

compared to the probability to create one (Pankove, 1971). The

absorption spectra are not symmetrical with respect to the creation–

annihilation process and their shapes may be tuned when changing

temperature. In silicon, these indirect absorption processes are

found at 1.1 eV, while the strong direct absorption at the zone center

occurs at 3.4 eV as shown later.

2.5.2 Microscopic Theory of the Dielectric Constant

When a solid is shined by an electromagnetic radiation, part of this

radiation is reflected, part of it is transmitted, part of it is absorbed,

and part of it is scattered inelastically or elastically. The solid may

also emit some fluorescence. In this section, we will consider the

three first processes that are directly connected with the semi-

classical theory of the dielectric constant.

It is well established that a vector potential A (x, t) and a

scalar potential φ have to be added to the classical one-electron

hamiltonian to account for the influence of the radiation field on

the electronic structure of the solid (Haug and Koch, 1990; Messiah,

1961). After some quantum mechanics textbook manipulation, the

electron-radiation interaction Hamiltonian appears:

Her = e
mc

A · p,

which is written versus impulsion operator p, when second-order

nonlinear effects proportional to A 2 are neglected. Applying time-

dependent perturbation theory, the transition probability per unit

volume R for an electron in an initial state |i〉 with energy Ei and

wave number ki toward a final state | f 〉 with energy E f and wave
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number k f requires calculating the matrix element:

|〈i | Her | f 〉|2 = e2

m2c2
|〈i |A · p | f 〉|2 = A2e2

m2c2
|〈i |u · p | f 〉|2 .

We have defined u as the unit vector in the direction of A . The

Bloch states of the crystal are written as

|β〉 = uβ, kβ (x)exp(ikβ · x)

for both initial and final states. Further introducing the amplitude

of the electric field E (q, ω), A can be written as the sum of two

complex conjugate quantities:

A = E
2q

[
ei(q·x−ωt) + e−i(q·x−ωt)

]
.

Time integration of 〈i |A · p | f 〉 gives two terms δ(Ei (ki ) −
E f (k f ) − �ω) and δ(Ei (ki ) − E f (k f ) + �ω) for the two previous

quantities, which respectively correspond to the absorption of the

photon and the excitation of the electron from state to state |i〉
with energy Ei toward a final state | f 〉 with energy E f , and to

stimulated emission of a photon from energy relaxation from state

| f 〉 to |i〉. The second term is ignored hereafter since we disregard

emission processes. Assuming wave vector conservation q = ki −
k f and finally noting the matrix element |〈i |u · p | f 〉|2 as

∣∣Pi f
∣∣2,

some mathematical manipulations lead us to obtain the transition

probability for photon absorption per unit of time:

R = 2π

�
�ki , k f |〈i | Her | f 〉|2 δ(Ei (ki )− E f (k f )− �ω)

as:

R = 2π

�

e2

m2c2
| E (ω)

2
|2�k

∣∣Pi f
∣∣2 δ(Ei (ki )− E f (k f )− �ω).

where the k summation is restricted to the ks allowed per unit

volume of the crystal.

The power lost per unit volume is by the incident beam I of

the field due to absorption per unit volume is − di
dt or R�ω. Further

introducing the refractive index n, the imaginary part ε′′ of the

dielectric constant and the absorption coefficient α, one writes:

R = −d I
dt
= ε′′

n2
cω

n2

8π
|E (ω)|2,
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which straightforwardly provides the expression of the imaginary

part of the dielectric constant:

ε′′ = |2πe
mω
|2
∑

k

|Pi f |2δ(Ei (ki )− E f (k f )− �ω).

A straightforward application of the Kramers–Krönig analysis

furnishes the expression of the real part:

ε′ = 1+4π2e2

m

∑
k

(
2

m[Ei (k)− E f (k)]

) |Pi f |2
[Ei (k)− E f (k)]2 − �2ω2

.

In the above equation
(

2
m[Ei (k)−E f (k)]

)
is the number of oscillators

with energy Ei (k)−E f (k) and is called oscillator strength and noted

fi f .

Most of the dispersion in ε′′ comes from the summation over

the delta function. This summation can be replaced by an integral

over the energy by defining a joint density of state that reads as

follows for the doubly degenerated (spin is included) conduction

and valence band:

Dj (Ei f ) = 1

4π3

∫
dSk∣∣∇kEi f (k)

∣∣ ,
where Ei f (k) = Ei (k) − E f (k), and Sk is the energy surface

Ei f (k) = cte. Then
∑

k is replaced by
∫

Di (Ei f )d Ei f .

It has been shown that the density of state displays singularities

when ∇k Ei f (k) vanishes in general at high symmetry points

of the Brillouin zone. These singularities are the so-called van

Hove singularities (van Hove, 1953). The imaginary part of the

dielectric constant exhibits a series of resonances peaking at

these specific energies. From the above equations, which give the

real and imaginary parts of the dielectric function, one can now

calculate the absorption and reflectivity using well-known formulae.

The equations intuitively established in the preceding section are

recovered.

2.5.3 Experimental Values of the Spectral Dependence of
the Dielectric Constants of Semiconductors and
Metals

Figures 2.10 and 2.11 report the real and imaginary parts of the di-

electric constant of silicon measured by Lautenschlager et al. (1987)
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Figure 2.10 Real part of the dielectric function of Si measured at several

temperatures.

Figure 2.11 Imaginary part of the dielectric function of Si measured at

several temperatures.
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for different lattice temperatures. The imaginary part is positive, and

it exhibits a series of peaks centered at the energies of the direct

transitions between the valence and conduction bands of the band

structure of silicon (see Fig. 2.6). These peaks overlap. When the

temperature increases, they all red-shift. This is a general trend for

semiconductors. The real part of the dielectric constant is measured

to be positive and negative with an asymptotic trend to zero at

high energies. Semiconductors, more or less, exhibit similar shapes,

with differences correlated to different values of their direct band

gap transitions at the zone center or at other critical points of the

Brillouin Zone (Aspnes and Studna, 1983).

Figures 2.12 and 2.13 give the real and imaginary parts of the

dielectric function and the loss function I m(ε−1) for copper and

silver, respectively (Ehrenreich and Philipp, 1962). We note that the

real part of the dielectric function is negative at low energy before

it gets positive values. This behavior is opposite to what is found

for silicon, GaAs, and is typical of metals. We also remark that the

imaginary part of the dielectric constant is very large at low energy.

This (and the negative value of the real part of the dielectric constant

at these energies too) is due to the absorption by the free electron

gas. It decreases monotonously before to peak again (near 3.9 eV for

silver, 2.1 eV for copper) due to the onset of contributions of inter-

band transitions from the Fermi surface to the next higher empty

band or from a lower lying band to the Fermi surface. The inter-band

contributions are correlated to the shape of the band structure of

these metals and to the joint density of states.

The spectral dependence of the absorption coefficients of silver

and copper is given in Fig. 2.14 and correlates the observed features

with the band structure. The broad structures at energies above

10 eV are attributed to either the excitation of the core shell d

electrons to the Fermi surface or from the excitation of electrons at

the Fermi surface to the next empty conduction band (Kubo et al.,

1976). Peaks of losses are found at 3.8 eV, 7.5 eV, and 18 eV for

silver, and 4.1 eV, 7.5 eV, and 20 eV for copper. The 7.5 eV features

are attributed to bulk plasma oscillations.

Bulk plasma oscillations are observed at energy �ωplasma when:

ε(�ωplasma) = 0.
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Figure 2.12 Dielectric function (real, imaginary parts) and loss function of

Cu from top to bottom, respectively.

The solution to this equation leads to a complex frequency, the real

part of which corresponds to the plasma frequency 2π
�ωplasma

and the

imaginary part to the damping of the plasma oscillation. In the limit

of small dampings (to get a simple snapshot of the situation), this

is simplified to ε′(�ωplasma) = 0. A simple calculation gives plasma
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Figure 2.13 Dielectric function (real, imaginary parts) and loss function of

Ag from top to bottom, respectively.

oscillation energies at 9.2 eV and 9.3 eV in Ag and Cu, respectively,

which correspond to the 7.5 eV features of the loss function. This

energy discrepancy is attributed to the influence of d electrons and

of the rest of the band structure.
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Figure 2.14 Spectral dependence of the absorption coefficients of Ag and

Cu.

2.6 Excitonic Effects

The equations above account neither for the experimental behavior

in terms of the exact shape for the measured dielectric constant,

nor for the absorption coefficient or the reflectance properties.

In the case of direct band gap III-V and II-VI semiconductors or

group IV element (silicon, germanium, diamond) semiconductors,

the more intense lowest energy peaks reported for the imaginary

part of the dielectric constant arise from the fundamental (E0)

band gap at the zone center or from the excited one (E ′0). In
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the language of the van Hove singularities, these transitions arise

at M0 singularities of the band structure. Then the absorption

coefficient is zero at energies below the band gap, and it increases

with the square root of the energy measured relatively to the

band gap. The experimental situation is very different from what

measured in the 1940s in the case of ZnO by Mollwo (1943). He

observed a rapid onset of the absorption, which saturated, then

decreased, and increased again forming some kind of plateau at

about 200,000 cm−1. Excitonic effects invented by Frenkel (1931)

and Peierls (1932), also described more quantitatively by Wannier

(1937) and Mott (1938), are responsible for this behavior (Bassani

and Parravicini, 1975). In the simplest picture, they can be viewed

as the quantum of electrostatic interaction between the photo-

created conduction electron (a negative charge) and the valence-

missing electron (a positive charge named hole by Wilson). The long-

range Coulomb interaction between these two particles makes them

behave like a hydrogen-like quantum system with bound and un-

bound states, electron–hole short-range spin exchange interaction

(analogous to the contact interaction in the hydrogen atom). The

absorption coefficient consists in a discrete hydrogen series of

absorption line energy split according to the hydrogen series and to

contribution of the continuous unbound states, which superimpose

to the band-to-band process. The absorption onset starts at an

energy lower than the energy gap Eg by an amount ER, which is the

exciton binding energy. ER is expressed as a function of the hydrogen

atom Rydberg Ry as:

ER = μ

ε2
Ry.

In these equation, the excitonic reduced mass μ is defined as:

1

μ
= 1

me
+ 1

mv
,

and the dielectric constant is averaged through the low-frequency

ε(0) and high-frequency ε(∞) dielectric constants as follows

(Mahan and Berland, 2011):

1

ε
≈ 11

16ε(0)
+ 5

16ε(∞)
.

In the strictest sense, the amplitudes of the absorption of the excited

excitonic states vary like ν−3, where ν is the principal quantum



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Excitonic Effects 51

Figure 2.15 Plot of the excitonic Rydberg versus energy gaps for fourfold

coordinated semiconductors.

number relative to the absorption at the energy of ground state exci-

ton. Excitonic levels have a finite lifetime. The excitonic lines have

a finite line-width, and one generally does not observe the whole

excitonic series except in high-quality zinc blende semiconductors

(Sturge, 1962), or in wide band gap semiconductors (see Fig. 2.9)

or in chalcopyrite semiconductors. The reason for this is the large

value of the exciton binding energy in the latter case (see Fig. 2.15)

(Gil et al., 2012). This is illustrated in Fig. 2.9, which displays

excitonic energy splitting larger than the natural broadening of the

exciton line. When the lattice temperature is increased, thermal

broadening leads to the overlap between excitonic levels and the

sharp absorption peaks are sometimes no longer resolved. The

spectral dependence of the absorption coefficient according to the

band-to-band model is never observed, as shown in Fig. 2.16,

including at high temperatures. From the mathematical point of

view, the absorption coefficient including excitonic effect has been

published by Elliot (1957); it contains excitonic contributions:

the contributions of bound excitonic hydrogen-like states and the
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Figure 2.16 Optical density within the context of excitonic model or

electron-hole one.

contribution of unbound states. The contribution of bound states

consists in a series Lorentzian shaped peaks centered at the energies

of the hydrogen series, of amplitudes that vary accordingly. For large

values of the principal quantum number, the density of excitonic

state increases and they merge and amalgamate to form a pseudo

continuum of density Dν(E ) = ν3

2ER
at energies below the energy of

the band-to-band gap. The excitonic contribution to the absorption

for high values of the principal quantum number is the product

of the oscillator strength (∼ν−3) timed by the density of state of

the pseudo-continuum (∼ν3). They compensate each other. The

absorption coefficient has a finite value. Now regarding unbound

states, the joint density of states is:

D3D = 1√
2h3

(�ω − Eg)μ3/2
√

�ω − Eg,

which is rewritten as a function of the excitonic Rydberg, of its Bohr

radius aB , and as a function of a dimensionless quantity γ =
√

ER
�ω−Eg
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as follows:

D3D = 1

4π2a3
B Ryγ

,

and:

α3D(�ω) = 1

4π2a3
B Ry

eπγ

sinhπγ
.

Beyond the scope of shifting the energy onset of absorption,

Coulomb interaction and excitons introduce an enhancement of

the absorption regarding band-to-band process. This enhancement

factor:

S(�ω − Eg) = Kcontinuum(�ω − Eg)

Kinterbands(�ω − Eg)
= πγ

eπγ

sinhπγ

is called the Sommerfeld factor. This ratio between the absorption,

including excitons, and the band-to-band result is always larger than

1, as shown in Fig. 2.16.

We have chosen here to discuss absorption coefficient, but

similar contributions of excitonic effect are expected at the scale

of real and imaginary parts of the dielectric constant, which can be

found in Yu and Cardona (1996).

The impact of the excitonic corrections is important far away

from the fundamental band gap energy but is impacting the

whole shape of the dielectric function. Figure 2.17 illustrates this

quantitatively: the imaginary part of the dielectric function of

wurtzitic InN for Coulomb-correlated electron–hole pairs (solid

lines) and independent quasiparticles (dashed lines). The ordinary

and extraordinary functions are given in the upper (a) and lower

(b) panel, respectively (Furthmuller et al., 2005). In the low-energy

region (E < 4 eV), they report a moderate influence of the excitonic

effects. A substantial red shift of about 0.5 eV is found in the 4–9 eV

energy. In addition, a redistribution of spectral strength from higher

to lower photon energies happens. This effect is obvious for the

extraordinary dielectric function. Similar effects have been observed

for the E1 and E2 peaks of diamond and zinc blende semiconductors.
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Figure 2.17 Imaginary part of the dielectric function of w-InN for Coulomb-

correlated electron–hole pairs (black lines) and independent quasiparticles

(red lines). The ordinary and extraordinary functions are given in the upper

(a) and lower (b) panel, respectively.

2.7 Influence of Doping and Alloying

Semiconductor alloying is realized by sometimes substituting one

atom of the lattice by another one belonging to the same column

of Mendeleev’s table. An example of this is replacing some gallium

atoms of GaAs by indium or aluminum to form a ternary compound.

This substitution leads to a random distribution of both elements;

if the proportion of substitution equals some specific proportion

like 0.25 or 0.5, then one can obtain either the ordered or the
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disordered phase, depending on the growth conditions. Both anions

and cations can be simultaneously alloyed to form a quaternary alloy

like Ga1−x Inx As1−yPy. By doing that, device designers try to achieve

band gap engineering (to tune the color of the emitted light); they

engineer built-in strain field in strained layer heterostructures, or

they tune band offset, or they try to realize waveguides (Burstein

and Weisbuch, 1995). The random distribution of atoms washes

out the clear value of the bang gap, which loses its meaning at

the strictest sense simultaneously with the vanishing of translation

symmetry. Tails of states occur below the average energy of the

conduction and above the average energy of the valence band. One

rather speaks of spectral dependence of densities of states rather

than of bands. These local fluctuations of compositions may trap

carriers or photons, depending on their extensions in real space and

they are either deleterious or profitable for device designers.

Doping is achieved by the appropriate incorporation of con-

trolled amounts of foreign atoms into a pure crystal (for instance,

including a group V element, As, in silicon increases the density of

free electrons). As is called a donor, while B is called an acceptor.

The first effect of this is to modify the Fermi energy as soon as

the semiconductor is doped. Residual impurities will be impacting

the transport properties and sometimes the optical ones. There is a

great zoology of dopants, and we do not intend to review them, but

we consider one important consequence (we believe it) of doping.

Consider an n-type dopant in a semiconductor giving a residual

electron density n. According to the classical Drude model for the

dielectric constant, this electron gas in excess behaves collectively

and oscillates with a plasma energy:

�ωplasma = �

(
ne2

mε0

)1/2

.

We note that a better approximation gives the longitudinal

oscillations of the plasmon to occur at pulsation

ωplasma(k) ≈ ωplasma

(
1+ 3v2

F

10ω2
plasma

k2 + o(k4)

)
,

where vF is the electron Fermi velocity (Pines, 1963). Volume

plasmons are collective eigen-modes of the free-electron gas
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inside a metal. Because of their longitudinal character and the

transversal nature of light, the photoexcitation of volume plasmons

is forbidden in classical electrodynamics. However, they can couple

with longitudinal phonons and thus contribute to the dielectric

constant in the infrared portion of the electromagnetic spectrum

(Perlin et al., 1995). We also would like to emphasize the fact that the

whole dielectric constant is changed by doping (Viña and Cardona,

1984). It is worthwhile to notice that doped silicon has been

proposed (Soref et al., 2008) to tune surface plasmon oscillation

frequencies (Pitarke et al., 2007) and that surface plasmons are also

used to enhance the spontaneous emission rate in modern devices,

among which are nitride-based blue light emitters (Gontijo et al.,

1999; Lin et al., 2010; Mohammadi et al., 2008; Okamoto et al., 2005,

2007; Singh et al., 2010a,b).

2.8 Conclusion

In this review, I tried to give the readers an overview of the

optical properties of metals and semiconductors, by highlighting

their similarities and differences in an identical manner. This is a

great field. Hundreds of thousands of pages have been written on

these compounds. In this chapter, I tried to give a rapid overview. I

am sure that I failed to address important issues, but if you got the

flavor to tune the browser of your computer to the topics you would

like to know more about, my failure will be, I hope, almost forgiven.
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The awareness that matter is not smooth and homogeneous but

grainy and discrete has come to us gradually, over a period of

time spanning centuries. Perhaps the first indication of the discrete

nature of matter came from the study of chemical reactions. Certain

discrete ratios between the masses of reactants involved in certain

reactions were observed. This remained at a fairly vague level until

the end of the 19th century, when experimental methods advanced

to the point where the notion of atom emerged as the indivisible unit

making up commonly known substances.

The reason why science took so long to realize that matter is

grainy, and why only sufficiently advanced experimental techniques

were able to determine that it is so, is that previously humans

only observed matter on a large scale compared to the graininess.

In the vast majority of situations, scale imposes an impenetrable

barrier to observation, which is why it took us so long to realize
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that there is any structure “at the bottom” at all. Even today,

phenomena spanning different scales are among the most difficult

to model, understand, and predict: chaos, complexity, theoretical

biology, neuroscience, and econophysics. In Nobel laureate P. W.

Anderson’s words, “More is different” (Anderson, 1972).

The notion of scale is the essential concept in the study

of the physics of materials in general, and of electromagnetic

metamaterials in particular. In the context of electromagnetic

metamaterials, we are relatively fortunate due to the fact that

the same kind of physics (classical electrodynamics) governs the

behavior on the smaller scale and also on the larger scale. It is

only the material description that changes from a detailed, complex

description to a general, simple description, respectively.

We have two reasons for our interest in homogenization. First,

it allows us to simplify a model, keeping only the essential features.

Second, it makes it possible to design materials that are not naturally

available. The actual computation techniques that may be used to

model and design various structures will be discussed in subsequent

chapters. Here, we only discuss and explain the general concepts

that emerge when dealing with phenomena spanning different

scales.

In Section 3.1, we highlight the central importance of the

relationship between scales in determining how we model a given

structure. The three scales (wavelength, period, and charge mobility

scales) determine the qualitative behavior of the medium. A fourth

scale (which has become increasingly important recently, partic-

ularly in nanophotonics), the size of the objects a, is also briefly

mentioned in Section 3.6. In Section 3.2, we discuss the averaging

method, which makes it possible to define the macroscopic effective

fields (electric E and magnetic B) and the macroscopic polarization

fields (only the electric polarization P is treated in detail). Sections

3.3 and 3.4 introduce the susceptibility (including the Clausius–

Mossotti relation), the permittivity, permeability, and refractive

index, including a discussion on the negative index of refraction.

Sections 3.5 and 3.6 will discuss the two physical origins of the

phenomenon of spatial dispersion: the periodicity in Section 3.5,

and free charges in Section 3.6. In the last section of the chapter,

we will bring together the various concepts in order to highlight
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the flexibility that effective medium theory offers us: the tradeoff

between the homogeneity and the nonlocality of the material

description.

3.1 Metamaterials and Scales

In an electromagnetic material, three scales determine its behavior:

the wavelength λ of the harmonic field, the scale d on which

the medium is structured (e.g., the period in the case of periodic

structures), and the distance l over which the charges are free to

move within the structure. Thus, we impose no restriction on the

medium as to whether it contains “free charges” or not, because

charges are always free to some extent: It is just the scale l that

changes. The relationship between these scales will govern the kind

of model we will obtain.

The most familiar case is the homogeneous dielectric: l ≈ d � λ.

We may be talking about a naturally occurring dielectric, where

l and d are on the atomic scale, i.e., several angstroms, while λ

is in the optical domain, hundreds of nanometers. Or we may

be talking about cermets or composites (Aspnes, 1986; Bergman,

1980; Milton, 1980), where l and d are on the scale of tens of

nanometers, while the wavelength is also optical, in the hundreds

of nanometers. Or, also, we may be talking about microwave delay

lenses (Kock, 1948), made of metallic scatterers, where the size of

the scatterers (l) is similar to the distances separating them (d),

while the wavelength (λ) is at least an order of magnitude larger.

The two latter situations are examples of metamaterials: They are

artificial structures engineered so as to exhibit certain properties

not available in naturally occurring materials.

Due to the very large wavelength, in this situation we lose sight

of the graininess on the d scale, obtaining a homogeneous dielectric

with an effective permittivity and permeability. The microscopic

inhomogeneity on the a scale is averaged to give a homogeneous
description of the medium as represented by the permittivity ε and

permeability μ. Thus, at this scale, all traces of the medium’s true

underlying discreteness are lost, and it looks smooth, continuous,

and homogeneous.
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Different behaviors emerge as the wavelength is reduced, and

it starts to approach either l or d or both. When this happens, the

medium starts to exhibit spatial dispersion, also known as nonlocal

behavior. Light propagation is more complicated, and the waves are

no longer plane waves. This regime has been studied, for instance,

in the context of photonic crystals, which exhibit photonic band

gaps, guiding, localization, autocollimation, and superprism effects.

Light propagation in photonic crystals is strongly dependent on

their inhomogeneous nature, and it is through careful design that a

wealth of phenomena and applications has been uncovered. Spatial

dispersion can also occur when the medium contains free charges,

and we have d � l .

It is important to distinguish between the nonlocal behavior due

to the proximity between λ and d, which may be called “structural”

dispersion (discussed in Section 3.5), and the proximity between λ

and l , which may be called “free-charge” dispersion (discussed in

Section 3.6). The first appears when the wavelength approaches the

period of a crystal (for instance) and it will occupy the main part of

our attention, while the second appears when charges are mobile

on distances comparable to the wavelength, i.e., in conducting

structures. The two involve quite different physical mechanisms.

The objective of any homogenization procedure is twofold. First,

given a certain structure, we would like to know what the effective

optical parameters are: the index and impedance, or the permittivity

and permeability. Second, given the optical parameters, we would

like to know what structure may be constructed to realize them.

In order to realize this objective, we must first define a general

homogenization procedure.

In the following sections, we will treat effective media in such a

way as to include naturally occurring materials made of atoms. Thus,

the arguments will also discuss issues related to the random thermal

motion and the quantum mechanics that makes it possible for atoms

to exist in the first place. When considering atoms, l will correspond

to the size of the atom. When considering metamaterials made by

stacking arrays of conducting scatterers, l will correspond to the size

of the scatterers. Note that nothing prevents scatterers from being

larger than the distances separating them. For instance, star-shaped

or thin and long objects may be arranged in this way. In these cases,
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we have l > d and the properties of each object may be strongly

modified by the presence of nearby objects. The case of large or

strongly asymmetric charge mobility regions is a relative newcomer

to effective medium theory, and we only briefly mention it in Section

3.6. In this case, a scatterer may not be considered independently,

but only as a part of its “electromagnetic neighborhood”.

3.2 Averaging—Time and Space

The most important notion discussed in this chapter is the notion of

the observation horizon, or barrier, which is implicit when observing

a system on a certain scale. With each scale is associated a given

barrier, below which one can no longer distinguish features and

events. Things that are too small and things that happen too fast
fall below the barrier and thereby become uncertain. The way we

deal with uncertainty is to take averages, because an average can be

described also as a “best fit” to noisy data.

The key word in the previous paragraph is “uncertainty.” This is

the first thing that must be dealt with, and a probability distribution

function is required for this. By this means, it is possible to perform

a statistical average to eliminate the low-level thermal and quantum

agitation, leaving a stable, time-invariant system.

The time-invariant feature is absolutely fundamental for our

purposes, since it is the only way in which one may meaningfully

speak of a set of material parameters that characterize a certain

structure. When, in addition, the medium is linear, we are able to

marshall the full power of the theory of linear time-invariant systems,

in order to extract and understand the transfer functions we are

interested in: permittivity and permeability. Importantly, therefore,

the statistical average may be seen as a low-pass filter. Out of the

complex and frantic dynamics on a microscopic scale, it extracts

the time-invariant component, or “DC” component. In a single word,

what the statistical average brings us is reproducibility.

The details of the statistical average are technically involved and

rarely discussed in the literature mainly because the debate about

the correct way to go about it is mostly academic. We know what

we are supposed to obtain: a time-invariant system. Thus, we do not
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really have much freedom, which makes it a mostly philosophical

issue. A particular approach is superior to another not according

to whether it works (it must work), but according to how well the

author is able to explain why it works. This is somewhat analogous to

remark, which has been attributed (Laughlin, 2005) to Lev Landau:

we could calculate the properties of water, but in practice, it makes

so much more sense to just measure them. The main reason this is

true is because we cannot design water. It works just fine already.

Exactly the contrary is true of the spatial average. There are many

ways to do it; we do not know ahead of time what we will obtain, and

there are non-trivial advantages and disadvantages in the different

ways to go about it, some of which lead to novel and even exotic

new applications and designs. Some of these will be discussed in the

following chapters.

For the time being, we will simply state the features we require

of the statistical average and we direct the interested reader toward

the relevant literature (de Groot, 1969; Mazur, 1958; Robinson,

1973; van Vleck, 1932) in order to focus on the spatial average.

All we require for the present purpose is that statistical averaging

has the following key features:

(1) Makes it possible to treat the structure as a linear time-invariant

system, in particular allowing us to define inputs, outputs, and

transfer functions. Transfer functions are particularly useful

since they contain the macroscopic time-invariant information

we seek about the behavior (as opposed to simply the state) of

the system.

(2) Incorporates the symmetry properties of the medium into the

statistical distribution function by eliminating random spatial

fluctuations so as to bring the periodic structures within the

reach of Bloch theorem. In other words, the statistical averaged

charge distribution of a periodic medium must be periodic.

(3) Includes the effect of the interactions between the particles and

the microscopic fields as well as the interactions (classical and

quantum) among the particles themselves on the sub-atomic

scale. Both interactions within the same atom and with particles

in neighboring atoms must be accounted for. These effects

would be reflected in the statistical distribution function.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Averaging—Time and Space 67

The first point was discussed earlier. Periodic media will be

discussed in Section 3.5, and treated in detail in Chapter 5. The

third point is essential when considering naturally occurring media

where the basic unit is the atom. This is because in classical

electromagnetics, atoms do not exist. As a matter of fact, this failure

of Maxwell’s theory was one of the major motivations for the later

development of quantum theory. We, therefore, have two options.

Either we stick to purely classical considerations, or we attempt

to include, even if only phenomenologically, quantum effects. If we

want to remain strictly within the classical domain, then, since atoms

are outside its scope, no study of lossless dielectric media is possible,

and we are limited to the study of collision-less plasmas, since they

can be treated completely using only Maxwell’s equations (Dendy,

1990). Otherwise, we must include quantum effects, even if only

phenomenologically, through an ad hoc relation introduced at the

appropriate moment. That moment will come toward the end of the

following section, on the spatial average.

3.2.1 The Spatial Average as Truncation

This section presents the first step leading from the microscopic

description of matter, involving point charges moving in empty

space, to macroscopic materials described by indexes of refraction.

It is a way of averaging the microscopic fields e and b and the

distribution of charge and current η(x, t) and j(x, t) to obtain the

macroscopic fields E, B, P, and M, and the macroscopic charge

and current densities ρ(x, t) and J(x, t). If one assumes that the

statistical average has been applied and the medium behaves as

a linear time-invariant system, one can define permittivity and

permeability tensors through the relations

ε̄E = ε0E+ P

μ̄B = μ0(B+ μ̄M).

The formal asymmetry between these definitions has the benefit

of leading to a highly symmetrical formulation of the macroscopic
Maxwell’s equations. It also results in a simple relationship between

permittivity and permeability on one hand, and the phenomenolog-

ical parameters of refractive index n and the impedance Z on the
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other hand, which in an isotropic medium are defined as

n = √με

Z =
√

μ

ε
.

P and M are called the macroscopic polarization and magnetization,

respectively, and they represent the overall macroscopic effect of the

microscopically complicated distribution of charges and currents.

We start, therefore, with the microscopic Maxwell’s equations:

div b = 0 curl e+ ∂b
∂t = 0

div e = η/ε0
1
μ0

curl b− ε0
∂e
∂t = j

(3.1)

and with an averaging procedure. Various approaches to the

averaging have been put forward: spatial, temporal, or statistical

averaging. Russakoff (1970) argued that only spatial averaging was

truly necessary in order to consistently define the macroscopic

fields. However, as argued in the previous section, in order to

define macroscopic parameters such as the relative permittivity, an

additional statistical average is required. The usual macroscopic

quantities we are familiar with are, therefore, both spatial and

statistical averages.

Spatial averaging can be seen from two points of view: as a

spatial “sliding average” or as a low-pass filter in reciprocal space

or k-space. We explain by considering a generic space- and time-

dependent quantity ξ(x, t) though in what follows the time is fixed

and we will omit it to avoid cluttering the equations.

In the moving average view, the macroscopic quantity [ξ(x)] is

defined at each point by taking the average of the original ξ(x) over

a small region centered at x. We write

[ξ(x)] =
∫

d3x ′ f (x′)ξ(x− x′) (3.2)

where the function f (x) is real, its support is larger than l , it contains

the origin where it is nonzero, is normalized to 1:
∮

f (x)dV = 1, and

is radially symmetric in order to preserve the symmetry properties

of ξ : f = f (r).a This corresponds to a generalized version of our

aWe treat here only the case where l < d. For a discussion on large l , asymmetric

charge mobility, and finite size objects, where some of these conditions have to be

removed, see Section 3.6.
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intuitive notion of a sliding average. The form of the integral above

is also known as a convolution, and we can rewrite the equation as

[ξ(x)] = f (x) � ξ(x) (3.3)

where the small circle denotes convolution.

In the low-pass filter view, the average is seen as a truncation

of the spatial Fourier transform of the quantity ξ(x) whereby all

components with |k| > k0 are excluded. We apply the convolution

theorem to Eq. (3.2):

[ξ(x)] = f (x) � ξ(x)

= F−1(F( f (x))F(ξ(x)))

= F−1( f̃ (k)ξ̃(k)) (3.4)

where the Fourier transform of ξ is denoted as F(ξ(x)) = ξ̃(k) and

has the specific form

F(ξ(x)) =
∫

ξ(x)e−ik·xd3x F−1(ξ̃(k)) = 1

(2π)3

∫
ξ̃(k)eik·xd3k.

(3.5)

It is clear that f̃ (k) plays the role of a filter on the frequency

components of ξ(x). In our case, we want to remove the microscopic

features of ξ , which is equivalent to removing its high-frequency

components. f̃ (k) must then be a low-pass filter, a point of view

emphasized by Robinson (1973). Moreover, from the well-known

general properties of the Fourier transform, we know that if f
is well behaved, normalized to 1, and symmetrical, then f̃ ≈
1 and gradk f̃ ≈ 0 in some neighborhood of k = 0 and

the approximations can be made arbitrarily good in the right

neighborhood. The importance of these facts will become clear in

the following paragraphs.

Since the convolution commutes with space and time differentia-

tion, when we apply the brackets to Maxwell’s equations, we obtain

directly

div[b] = 0 curl[e]+ ∂[b]

∂t = 0

div[e] = [η]/ε0
1
μ0

curl[b]− ε0
∂[e]

∂t = [j]
. (3.6)

The macroscopic fields E and B are then defined as E = [e] and B =
[b], and in order to obtain the macroscopic equations, we need to
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write the average charge and current densities, [η] and [j]. We will

write only the charge density in detail.

We now make two simplifying assumptions.

The first and relatively innocuous one is that the medium

as a whole is neutral. This assumption is due to the fact that

electromagnetic interactions are so strong compared to the masses

of the objects involved that electrical charges will quickly pair up,

such that even over microscopic distances (say, several unit cells)

most media of interest are all but almost perfectly neutral.

The second assumption, which we call the atomic assumption
(the medium is composed of stable atoms), was discussed above on

page 67, and is a direct consequence of the third feature of statistical

averaging.

Thus, the whole charge distribution of the medium can be

considered a sum over the charge distributions of individual atoms

η = ∑n ηn(x − xn). In other words, there are no surplus charges.

Note that the individual atoms need not be neutral, only collectively.

We now apply Eq. (3.4) to [η(x)]:

[η(x)] = F−1( f̃ (k)η̃(k))

= F−1( f̃ (k)
∑

n

η̃n(k))

=
∑

n

F−1( f̃ (k)η̃n(k)). (3.7)

Since we have seen that the multiplication by f̃ (k) has the role of a

filter that passes only frequency components with k close to 0, it is

reasonable to attempt to represent η̃n(k) as a Taylor series around

k = 0 and hope that we may only need to keep a few terms. We have

η̃n(k) = η̃n(k)| k=0 + k · gradk η̃n(k)
∣∣ k=0 + k · R̃n(k)

= η̃n(k)| k=0 + k ·
(

gradk η̃n(k)
∣∣ k=0 + R̃n(k)

)
(3.8)

where the first term is easily seen as the total net charge qn,

the second term is the dipolar term, while the k-dependent term

Rn collects all the rest of the higher order multipolar terms,

which we hope are small; the above equation is, therefore, not

an approximation but a true equality. Before going any further, let

us try to get a feel for the physical meaning of the quantity in

parentheses. Let us assume that the R̃n term is negligible, and write
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the gradient term. The interpretation is facilitated if we take the

Fourier transform around xn. From Eq. (3.5), we have

gradk η̃n(k)
∣∣ k=0 =

∫
ηn(x)e−ik·(x−xn)(−i(x− xn))d3x

∣∣∣∣
k=0

= −i
∫

(x− xn)ηn(x)d3x

= −ipn

where we have introduced pn, the equivalent point dipole moment
of the atom, in the limit of k → 0. We now define the generalized
electric moment

p̃n(k) = i gradk η̃n(k)
∣∣ k=0 + i R̃n(k) = pn + i R̃n(k) (3.9)

Note that the charge distribution of a given atom at any given time

t need not be symmetrical, even when there is no external field

applied. The dipolar term gradk η̃n(k)
∣∣ k=0, therefore, need not be

zero. Summarizing:

η̃n(k) = qn − ik · p̃n(k). (3.10)

We now write the Taylor expansion of f̃ (k):

f̃ (k) = 1+ k · gradk f̃n(k)
∣∣ k=0 + k · R̃f(k)

= 1+ k · R̃f(k) (3.11)

where we have used the symmetry of f as mentioned above. The

remainder terms R̃n and R̃f are by definition null at the origin:

R̃n(k)

∣∣∣ k=0 = R̃f(k)

∣∣∣
k=0
= 0 and continuous there. Moreover, it is

important to note that the k-dependent rest terms R̃n(k) and R̃f(k)

are not on the same footing, from a physical point of view. While the

R̃n term is related to the microscopic configuration of the medium at

the given time, the R̃f term is related to the properties of the function

f , which is a mathematical construct that we can choose as suits

our needs. We can, therefore, constrain f to be such that R̃f(k) be

arbitrarily small compared to the other terms in Eq. (3.7). We shall

see what this constraint entails in the following sections.

The generic term of Eq. (3.7) takes the form:

F−1( f̃ (k)η̃n(k)) = F−1
(

qn f̃ (k)− ik · p̃n(k) f̃ (k)
)

(3.12)

= qnδ(x−xn)� f (x)−δ′(x− xn) � F−1
(

f̃ (k)p̃n(k)
)

= qn f (x− xn)− div ( f (x) � pn(x− xn))
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What is the physical meaning of this result? For the interpreta-

tion of the first term, it is sufficient to look at the definition of the

smoothing process, Eq. (3.3). We have

qn f (x− xn) = qnδ(x− xn) � f (x) = [qnδ(x− xn)]

So from a macroscopic point of view, the net charge of the atom is

seen as if the atom consisted of a single point charge qn localized at

the center of the atom, xn. Even though the actual charge distribution

within the atom may be complicated, with many individual point

charges spread over a finite volume, the smoothing process wipes

out all the detailed information leaving only two aspects: the net

charge qn and the mean position xn.

The interpretation of the second term is not quite as straightfor-

ward. We write the position-dependent polarization vector:

pn(x− xn) = F−1(p̃n(k))

= F−1(pn + i R̃n(k))

= pnδ(x− xn)+ iRn(x− xn). (3.13)

Note that since R̃n(k) is null at the origin by definition, this means

that Rn(x − xn) integrates to zero over all space. The electric

polarization of the atom, therefore, has two components. One of

them is singular, the ideal dipole localized at the center of the

atom, while the other is regular and decreases to zero quickly

with distance. When the k dependence of p̃n(k) is negligible, the

homogenization process reduces the atom to a smoothed version of

a point dipole pn localized at xn. In the more general case, however,

we must write div[pn(x−xn)] where the electric moment of the atom

cannot be idealized as a point dipole but is smeared out, in a sense,

over a finite region of space. We now sum over all the atoms to obtain

the total smoothed charge density

[η(x)] = −div P(x) (3.14)

where the macroscopic polarization P(x) is defined

P(x) =
[∑

n

pn(x− xn)

]
(3.15)

which in the limit of k→ � (the origin in reciprocal space) becomes

P�(x) =
[∑

n

pnδ(x− xn)

]
.
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Note that among the consequences of the spatial averaging is the

fact that a discrete microscopic quantity (the atomic polarization

p) has been transformed into a continuous macroscopic one (the

polarization field P). It has been argued that this is a general

feature of the universe: Macroscopic continuity hides microscopic

discreteness. Many examples of this phenomenon can be found in

solid state physics in particular (Laughlin, 2005).

It is important to point out that until now in this section, we have

made no mention of time. The statistical average discussed in the

previous section has not been used at any point. In fact, everything in

this section remains valid even if we are dealing with a “snapshot” of

a structure with point charges suspended in space at some random

positions. However, in this case no connection can be established

between any external fields and the state of the system because, in

a sense, the system has not had time to “react.” We have come to the

point where we must introduce such a connection, and the only thing

that makes this possible is the fact that we assume the statistical

average has already been performed. The relation in question is the

one connecting the microscopic electric field and the microscopic

polarization, i.e., the definition of polarizability:

pn(x− xn) = ε0γ
e

n (x− xn)e(x) (3.16)

This equation would be meaningless if the statistical average had

not been taken, because we want γ e
n to be a time-invariant property

of the internal structure of atom n, not just the (randomly fluctuating

in time) factor of proportionality between the polarization and the

electric field at some particular instant in time t. Thus, each atom

will be treated as a black box, and the interactions between the

particles inside will be inaccessible to us. Some of these interactions

may be electrical in nature, but some will clearly not be.b Thus,

the internal dynamics of the atom, as well as the modification in

its internal dynamics due to the presence of neighboring atoms’

electron clouds, are encapsulated within the parameter γ e
n such that

the total polarization can be written as a sum over the atoms, and

bAs Robinson (1973) observes, “[. . . ] for all we are concerned atoms could equally

well be held together with glue and rubber bands”.
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Eq. (3.15) may be written:

P(x) =
[∑

n

pn(x− xn)

]
= [p(x)] = [ε0γ

e(x)e(x)] (3.17)

where

p(x) =
∑

n

pn(x− xn) and γ e(x) =
∑

n

γ e
n (x− xn).

We see that the effect of taking a statistical average in an atomic

medium is to replace the two fundamental interacting quantities e
and η with the quantities e and p. The charges are displaced by an

electric field according to Eq. (3.16), while the polarization charge

density η(x) = −div p(x) produces an electric field according to

Coulomb’s law,

epol(x) = 1

4πε0

gradx

∫
divx′ p(x′)
|x− x′| d3x ′. (3.18)

The net result of statistical averaging is, therefore, that it is

now possible to define a time-independent polarizability, such that

the time dependence of the polarization p (and, therefore, the

charge distribution η) is tied directly to the time dependence of

the electric field. The two equations dive(x, t) = η(x, t)/ε0 and

F j (t) = q j e(x j , t) have been replaced by Eqs. (3.18) and (3.16),

respectively. There are no more forces and no more point charges,

only two position- and time-dependent continuous fields e and p,

whose time dependence is synchronous if the atomic polarizability

is real. The total electric field then satisfies the equation

e(x) = Eext(x)+ epol(x)

= Eext(x)+ 1

4πε0

gradx

∫
divx′ γ

e(x′)e(x′)
|x− x′| d3x ′.

Before moving on, we must point out a very important and deep

aspect. Equation (3.16) introduces a new quantity, the polarizability,

which is designed to encapsulate (i.e., hide from view) all the

complex quantum interactions taking place within a unit cell. Since

this is only possible once the statistical average has been performed,

this immediately implies that Maxwell’s equations are not invariant
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with respect to statistical averaging.c A priori, the microscopic

Maxwell’s equations (3.1) and the macroscopic Maxwell’s equations

(3.32–3.35) are completely different objects: The former do not

allow atoms to exist, while the latter depend crucially on their

existence! Obtaining the macroscopic equations requires including

quantum phenomena, so there is no obvious reason why they should
have the same form as the microscopic equations. The fact that they

do is extremely surprising and mysterious.

3.3 Polarizability and Susceptibility

Dielectric media are linear systems when the field intensity is

not too large. As with any linear system, there are a number

of degrees of freedom, some of which are of interest and some

of which are either not of interest or in any case inaccessible

or unobservable (Antsaklis and Michel, 2006). In the case of

dielectric media, which are composed of extremely large numbers

of extremely small particles, the unobservable parameters are those

related to the microscopic degrees of freedom of the particles.

The external description (Antsaklis and Michel, 2006) of dielectric

media, also known as the macroscopic description, therefore, must

be obtained by averaging over a large number of inaccessible

microscopic degrees of freedom. Distances on this microscopic

scale are, therefore, meaningless from the point of view of the

macroscopic description. This leads to a spatial smearing, which

implies that the observable properties of the material at a given

position x are in fact the result of a large number of individual

microscopic interactions over a whole region surrounding the point

x . What happens at x , therefore, depends to some extent on the

conditions prevailing in a certain volume v surrounding x . This

cThis is a fact with very deep implications. It implies that the inhomogeneous

Maxwell’s equations in matter are physically hybrid because they would not exist

without quantum mechanics. Moreover, since they have the exact same form in
matter as in vacuum, this has led some to speculate about space itself as a

fundamentally inhomogeneous “material,” and the familiar continuous Maxwell’s

equations emerging in the limit of large wavelengths from some yet unknown

underlying physics (Laughlin, 2005; Rovelli, 2004).
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is what we refer to as the “electromagnetic neighborhood” of x
(also mentioned at the end of Section 3.1. If we apply, therefore,

some position-dependent stimulus to the material, the macroscopic

response of the medium at x will depend on the value of the stimulus

over the whole volume v . When the stimulus is approximately

constant over that volume, we will say the medium looks local

because the very existence of an “electromagnetic neighborhood”

(not to mention its size and properties) is hidden from view. When

the stimulus varies non-negligibly over that volume, the medium

will look nonlocal, because the behavior starts to be affected by the

size and properties of the volume v . It is important to emphasize,

therefore, that locality or nonlocality refers not, strictly speaking, to

a property of the medium but mostly to how it is probed. The same

medium may be local at a given frequency and nonlocal at another.

In other words, nonlocality is not a feature of an object, but of an

interaction.

3.3.1 The Master Equations: Electric and Magnetic

If the stimulus is the macroscopic electric field noted E and the

response is the polarization P, then we can define the transfer

function of the medium through the relation

P(x) = ε0χ
e(x) � E(x) = ε0χ

e(x) � [e(x)]. (3.19)

The microscopic field inside the structure is, in turn, composed

of two contributions, one external and one internal, due to the

polarization charge density in the medium, given by epol of Eq.

(3.18):

e(x) = Eext(x)+ epol(x).

The nonlocal nature of the transfer function might seem

peculiar given that the interaction between charged particles and

electromagnetic fields is local, according to the electrostatic Lorentz

force equation Fn = qnE(xn), where Fn is the force on particle n
located at xn. The force on a particle at xn depends only on the

electromagnetic fields at xn.

This, however, is a purely classical view, a view that, as we

have seen in the section on statistical averaging, is incompatible
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with any consideration of a medium composed of stable atoms.

The statistical averaging is the procedure that accounts for these

quantum effects, resulting in a continuous charge distribution and

rendering the classical notion of position of any given charge

henceforth meaningless. The spatial averaging required to eliminate

the oscillations of the electric field due to the periodicity of the

lattice contributes even further to this blurring. Since both averages

involve a loss of information about the positions and velocities of

particles, they implicitly render the description nonlocal.

From a historical point of view, the definition of the response

function of a dielectric medium as nonlocal in direct space

(and therefore local in reciprocal space) can be understood by

considering the fact that from a classical perspective, where light is

seen as a wave, it does not make much sense to insist on the notion

of position of the wave, and rather more on the frequency (temporal

or spatial). It was far easier to fix the wavelength of a light wave

in an experiment than its exact position; indeed, the very notion of

the position of a wave seemed meaningless. Transfer functions local

in direct space are typical of particle-like behavior, while transfer

functions local in reciprocal space are typical of wave-like behavior.

Since the dual wave/particle nature of light became known rather

late, after the work on the photoelectric effect in the early years of

the 20th century, the nonlocal wave-like description was (and for

most purposes remains) the most natural.

We now compare Eq. (3.19) with Eq. (3.17) obtaining the master

equation of the dielectric medium

ε0 f (x) � (γ e(x)e(x)) = ε0χ
e(x) � [e(x)] (3.20)

where we have assumed zero intrinsic polarization at zero field

(no ferro-electricity). The susceptibility χe is, therefore, a macro-

scopic quantity defined as a relationship between two macroscopic
quantities rather than as an average of some microscopic quantity.

As such it is a macroscopic property whose relationship to the

microscopic description is indirect and intuitively slippery. While

χe is obviously fundamentally dependent on γ e, it is far from clear

in what way (if any) this dependence may be made more explicit

or straightforward in the general case. The difficulty resides in the

fact that in this equation, we see an intricate interplay of the micro-
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and macro-, worlds that are intuitively and physically apart and no

straightforward or smooth transition is possible.

For the magnetic case, one starts from the magnetic analog of

Eq. (3.14), which has a somewhat more complex form:

[j(x)] = ∂[p(x)]

∂t
+ curl[m(x)] where m(x) =

∑
n

mn(x− xn)

(3.21)

and mn is the atomic magnetic moment. By noting the macroscopic

magnetization M(x) = [m(x)] and defining the magnetic field H(x)

H(x) = B(x)

μ0

−M(x) (3.22)

it is straightforward (Section 1.5 of Ref. (Cabuz, 2007)) to obtain the

magnetic analog of Eq. (3.20)

f (x) � (γm(x)b(x)) = χm(x) � H(x). (3.23)

Equations (3.20) and (3.23) provide the starting point for calcu-

lating the susceptibilities of a given medium in the semi-classical

approximation. More rigorously, however, in order to obtain the

polarizability of atoms, their internal dynamics must be considered

and one cannot avoid a detailed quantum mechanical analysis. A

detailed understanding is, therefore, a very ambitious enterprise

(Delerue and Lannoo, 2004; Haug and Koch, 2004; Mahan, 2000).

Fortunately, this will not be the case for artificial materials since

both the unit cell and the macroscopic description are governed

by the same equations, macroscopic Maxwell’s equations. An exact

description is, therefore, more easily accessible.

The simplest illustration of Eq. (3.20) is for the case of isolated

independent atoms, with no near-field coupling or electron cloud

overlap. The field seen by any given atom is no longer the total
field due to all the other atoms but is dominated by the dipolar

radiated field due to all the other atoms. The distinction between

the total field and the radiated field of a distribution of charges (an

atom, or any other scatterer) is important because the radiated field

excludes the fields over the region occupied by the said distribution.

A multipole expansion, for instance, is only given with respect to

some closed surface that must completely enclose the charge and
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is valid only outside of it. If we consider the field of a point dipole

placed at the origin, we have

edipole(x) = 1

4πε0

div

(
p grad

1

‖x‖
)

= 1

4πε0

(3x̂(x̂ · p)− p)

‖x‖3
− p

3ε0

δ(x) (3.24)

whereas the radiated field (in the static limit) of the same dipole is

e∗dipole(x) = 1

4πε0

(3x̂(x̂ · p)− p)

‖x‖3
(3.25)

since the singular term encapsulates the localized fields that are not

seen by neighboring scatterers. x̂ is the unit vector in the direction of

x. In what follows, we will distinguish radiated fields from total fields

with a star in the superscript. The field e∗(x) seen by any particular

dipole can, therefore, be written in terms of the total field as

e∗(x) = e(x)+
∑

n

pnδ(x− xn)

3ε0

. (3.26)

Therefore, for this case, Eq. (3.20) must be written as

f (x) � (γ e(x)e∗(x)) = χe(x) � [e(x)]. (3.27)

We begin by writing the total polarizability γ e(x) as a sum over

the atomic polarizabilities γ e
n (x)

f (x) � (γ e(x)e∗(x)) = f (x) �

(∑
n

γ e
n (x)e∗(x)

)
. (3.28)

Since we have assumed that γ e
n (x) is very localized, its Fourier

transform is well represented by the zeroth term of its Taylor

expansion, such that γ̃ e
n (k) � γ̃ e

n (0) ≡ γ e
s (all atoms are identical)

and we have γ e
n (x) � γ e

s δ(x − xn) where the s subscript stands for

the singular or DC component of the polarizability. The left side of

Eq. (3.20) becomes

f (x) � (γ e(x)e∗(x)) = f (x) �

(
e∗(x)

∑
n

γ e
s δ(x− xn)

)
.

We take the Fourier transform of the above equation to obtain

f̃ (k)

(
ẽ∗(k) �

γ e
s

Vuc

∑
n

δ(k− Gn)

)
(3.29)
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where the Fourier transform of a Dirac comb is also a Dirac comb

in reciprocal space, Gn are the reciprocal lattice vectors, and Vuc is

the volume of the unit cell in real space (see Eq. 2.12 of Ref. (Kittel,

1996)). We note N = 1/Vuc, the atomic number density. The electric

field is quasiperiodic as per Bloch theorem, such that its Fourier

transform can be written as

ẽ∗(k) =
∑

m

E∗mδ(k− kB − Gm)

and we can rewrite expression (3.29) as

Nγ e
s f̃ (k)

(∑
n, m

E∗mδ(k− kB − Gn − Gm)

)
.

We must now recall that the function f̃ (k) has been designed in

order to filter out all spatial frequencies that are not in the first

Brillouin zone. Consequently, in the above sum, only those terms will

survive where Gn + Gm = 0 such that the delta function is at kB and,

therefore, within the first Brillouin zone. This relation is satisfied

when m = −n; therefore, for any m nonzero, there will be exactly

one n such that the term survives. The E0 term is not filtered out

because it is already by default in the first Brillouin zone. We can,

therefore, rewrite the above expression as

Nγ e
s f̃ (k)

⎛⎝E∗0δ(k− kB)+
∑
n �=0

E∗nδ(k− kB)

⎞⎠ .

Now, the En coefficients are the Fourier coefficients of a Bloch

wave, and as such they have some dependence on the Bloch

vector kB. When this vector is large (approaching the edges of

the Brillouin zone), this dependence is strong; the quantity in

parentheses becomes a function of kB, leading to a spatially

dispersive medium. However, when this vector approaches 0, the

dependence diminishes and the Fourier coefficients become, to

a good approximation, independent of kB. Moreover, when the

medium is highly symmetrical (cubic symmetry), one can show

(Jackson, 1999) that the sum over E∗n reduces to zero and we obtain

f (x) � (γ e(x)e∗(x)) = F−1
(

Nγ e
s f̃ (k)

(
E∗0δ(k− kB)

))
= Nγ e

s [e∗(x)]
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This only holds for cubic crystals. The averaged radiation field can

be written in terms of the averaged total field by using Eqs. (3.24)

and (3.25) and the fact that the unit cell contains only one atom:

Nγ e
s [e∗(x)] = Nγ e

s

[
e(x)+

∑
n

pnδ(x− xn)

3ε0

]

= Nγ e
s

(
[e(x)]+ 1

3ε0

[p(x)]

)
= Nγ e

s

(
[e(x)]+ 1

3
χe(x) � [e(x)]

)
.

Putting this back into the definition of the susceptibility, we have

Nγ e
s

(
[e(x)]+ 1

3
χe(x) � [e(x)]

)
= χe(x) � [e(x)] (3.30)

and by grouping the terms containing χ , we obtain

χe(x) � [e(x)] = Nγ e
s

1− Nγ e
s /3

[e(x)].

The susceptibility is, therefore, singular:

χe(x) = Nγ e
s

1− Nγ e
s /3

δ(x) (3.31)

and we recognize the Mossotti–Clausius relation. A similar relation

holds in the magnetic case, where the “e” superscripts are replaced

by “m” (see Section 1.5.1 of Ref. (Cabuz, 2007)).

It is important to note that this relation is only valid for isolated

atoms and in the cubic symmetry case. Its widespread use and

generality, however, come from the ability to use an effective

polarizability, which includes some of these other effects. When this

is done, however, it becomes a reverse-engineered relation, in the

sense that the quantities are defined in such a way that it holds, and

it is no longer useful for purposes of design but only as a descriptive

tool.

3.4 Permittivity and Permeability: Index and
Impedance

Now that we have obtained macroscopic parameters that charac-

terize the behavior of the material, we would like to write the full
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macroscopic Maxwell’s equations in order to obtain the plane wave

solutions. The spatial and statistical averaged divergence equation

div[e(x)] = [η(x)]/ε0

becomes (using Eq. (3.14))

ε0 div E(x) = −div P(x).

We now introduce the electric displacement vector

D(x) = ε0E(x)+ P(x) = ε0(δ(x)+ χe(x)) � E(x) = ε0ε(x) � E(x)

where the relative permittivity (also often referred to abusively as

the dielectric “constant”) is defined in general by ε(x) = δ(x)+χe(x)

which reduces to ε(x) = 1 + χe(x) for local media. The electric

divergence equation in a medium with no free charges now takes

the simple form

div D(x) = 0.

If we use the newly introduced electric displacement field, the

macroscopic Maxwell–Amèpre equation is then written as

curl H(x)− ∂D(x)

∂t
= 0.

By rewriting Eq. (3.22), we have

B(x) = μ0H(x)+ μ0χ
m(x) � H(x) = μ0μ(x) � H(x)

where the relative permeability is defined in general by μ(x) =
δ(x)+χm(x) which reduces toμ(x) = (1+χm(x))δ(x) in local media.

We can now write the complete source-free macroscopic

Maxwell’s equations:

curl H(x)+ iωD(x) = 0 (3.32)

div B(x) = 0 (3.33)

curl E(x)− iωB(x) = 0 (3.34)

div D(x) = 0 (3.35)

and the corresponding constitutive relations

B(x) = μ0μ(x) � H(x)

D(x) = ε0ε(x) � E(x)

We see immediately one of the benefits of the homogenization

procedure. Whereas on a microscopic scale the electric and magnetic

phenomena are inevitably asymmetric, from a macroscopic point of

view, electric and magnetic phenomena in source-free regions are, at
least formally, perfectly symmetric, as seen by inspecting the above

equations.
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3.4.1 The Negative Index of Refraction

An important set of solutions to these equations is the plane waves

E(x) =
⎛⎝ 0

E y

E z

⎞⎠ eikx−iωt . (3.36)

This represents a plane wave of frequency ω propagating in the

positive x direction. k is the wavevector, and by the Helmholtz

equation, it is related to ω through the relation k2 = μ0ε0μεω
2

where if we denote the speed of light in a vacuum c = 1/
√
μ0ε0

and we introduce the index n2 = με, then we can rewrite it as

k2 = n2ω2/c2. It is interesting to consider the lossy case. If the

electric field and the polarization of the medium are not exactly in

phase, then the permittivity and/or the permeability must have a

nonzero imaginary part. It is easily seen that this imaginary part is

positive for lossy media and negative for gain media when the time

dependence is of the form e−iωt , because if k has a positive imaginary

part, the wave is attenuated as it propagates along the x axis. We

write k = β + iα with α, β real and α > 0. We have

μ = μ′ + iμ′′

ε = ε′ + iε′′

n2 = μ′ε′ − μ′′ε′′ + i(μ′ε′′ + ε′μ′′)

with μ′′, ε′′ > 0. Once the permittivity and the permeability have

been determined for a given material, then the wave propagates with

a wavevector that can be determined from the equations

β2 − α2 = μ′ε′ − μ′′ε′′ (3.37)

2αβ = μ′ε′′ + ε′μ′′ (3.38)

Keep in mind that β = real(n)c2/ω2 and α = real(n)c2/ω2. In

particular, if the imaginary parts are much smaller than the real

parts of the permeability and permittivity, but the real parts of

both are negative, then β must be negative also, as seen from the

second equation. Consequently, a material with negative real parts
of permittivity and permeability will exhibit a negative real part of
the index. It is important to note, however, that this condition is

sufficient but not necessary, at least not in lossy media. In other
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words, the real part of the index can be negative even when one of

the real parts of either the permittivity or permeability is positive.

This can be seen from Eq. (3.38) if one keeps in mind that α, ε′′,
and μ′′ must all be positive in a passive medium with the sign

conventions chosen in this work.

To understand what it means to have a negative index of

refraction, let us consider the propagation of a linearly polarized

wave in the region of space 0 < z < Z . We assume this region

contains no sources, so that the field satisfies the homogeneous

Helmholtz equation. We write the total field (either the electric or

magnetic, indifferently, we will denote it V ):

V (x , y, z, t) = U (x , y, z)e−iωt

and the spatial part U (x , y, z) satisfies(�+ k2
)

U (x , y, z) = 0

where we have written k2 = μ0ε0μεω
2 = μεω

2

c2 = μεk2
0 . The field in

a plane z = constant can be represented as a Fourier integral

U (x , y, z) =
∫ ∫ ∞

−∞
Ũ (u, v; z)ei(ux+vy)dudv . (3.39)

Replacing this in the Helmholtz equation, we obtain∫ ∫ ∞
−∞

(�+ k2
) (

Ũ (u, v; z)ei(ux+vy)
)

dudv = 0

or∫ ∫ ∞
−∞

((
k2 − u2 − v2

)
Ũ (u, v; z)+ ∂2Ũ (u, v; z)

∂z2

)
ei(ux+vy)dudv = 0

This is the Fourier development of the null function, so each

coefficient must be null independently. We have

∂2Ũ (u, v; z)

∂z2
+ (k2 − u2 − v2

)
Ũ (u, v; z) = 0.

If we introduce w2 = k2 − u2 − v2, then the general solution to this

equation takes the form

Ũ (u, v; z) = A(u, v)eiwz + B(u, v)e−iwz.

If we assume that the sources of the fields are all in the z < 0 half-

space, then all waves must propagate in the positive z direction and

B(u, v) = 0. We obtain

Ũ (u, v; z) = A(u, v)eiwz (3.40)



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Permittivity and Permeability 85

It is, therefore, clear that in the plane z= 0, the Fourier components

of the field distribution are given by A(u, v). As the field propagates

in the z direction, the Fourier composition in the plane z = Z
is Ũ (u, v; Z ) = A(u, v)eiw Z . The propagation in an isotropic

homogeneous medium, therefore, has the effect of transforming the

Fourier components of the field distribution according to the factor

eiwz. In the following, we shall refer to it as the evolution operator,

by analogy to the quantum mechanical time evolution operator.

The parameter w, therefore, seems to be of paramount importance.

Recall that it is defined as

w2 = μεk2
0 − u2 − v2.

In this relation, all quantities are real except possibly μ, ε, and w. As

in Section 3.4, we introduce the index n2 = (β + iα)2 = με where

β and α are real, α is positive, and they are given by Eqs. (3.37) and

(3.38). As before, the imaginary part α is only introduced in order to

determine the signs of the real parts, and it is then made to tend to

zero. We also write w = b+ ia. Since no active media are present, all

imaginary parts must be positive. We write the real and imaginary

parts of the above relation:

b2 − a2 = (β2 − α2)k2
0 − u2 − v2

ab = αβk2
0

By letting α tend to zero in the second equation, it results that either

a or b must also go to zero. It is the first equation that will determine

which. For vanishing α, we have b2 − a2 = β2k2
0 − u2 − v2. When

u2 + v2 < β2k2
0 , the quantity is positive and a must be the one that

vanishes along with α. On the other hand, if u2 + v2 > β2k2
0 , then

b must vanish. The sign of the remaining quantity is determined by

the sign of β from the second relation above. We have already seen

in Section 3.4 that when the medium is double positive, β is positive,

but that when it is double negative, β is negative. The different

possibilities are summarized in Table 3.1.

From the table it is clear that features corresponding to large

spatial frequencies u, v correspond to evanescent waves, while low-

frequency features correspond to propagating waves. In the course

of propagating between the planes z = 0 and z = Z , the low-

frequency components have undergone a unitary transformation,
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Table 3.1 Table of the possible behaviors of w

u2 + v2 < β2k2
0 u2 + v2 > β2k2

0

β > 0 w real positive w imaginary positive

w =
√
β2k2

0 − u2 − v2 w = +i
√

u2 + v2 − β2k2
0

β < 0 w real negative w imaginary negative

w = −
√
β2k2

0 − u2 − v2 w = −i
√

u2 + v2 − β2k2
0

or a change of phase. In the case of the high spatial frequencies,

however, the phase does not evolve, but the amplitude does. When β

is positive, this amplitude is attenuated, while when β is negative,

this amplitude is amplified. If we note wp for a double positive

medium and wn for the corresponding double negative medium,

then from the above table we have

wp = −wn.

The evolution of the field in the z direction in the material with

β = −1 is exactly the reverse from the evolution of the field

when β = 1 if losses are ignored. In fact, it is as if the time runs

backwards. This is not an accident. If we consider the Maxwell

curl equations (3.32) and (3.34), then changing the signs of the

constitutive parameters μ and ε is formally equivalent to taking the

inverse of the time-dependent term e−iωt .

It is tempting now to consider a system of two such com-

plementary slabs by simply multiplying the exponential evolution

operators. However, this is in general not correct. The reason is that

we have assumed that the sources of all fields were to the left of

the region of interest and that consequently all fields propagate in

the same direction, the positive z direction. But this can only be the

case if the medium is homogeneous and infinite in the z direction.

If an interface or a scattering element of any kind is present, then

this is no longer true. In such cases, we must consider both left-

and right-going waves and the way they couple at interfaces. This

is done by calculating the transmission and reflection of each wave

at each interface, by employing the notion of impedance. Without

going into the details, we will only point out that these reflections are
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absent when the materials are matched. If the two media have the

same impedance, then our assumption is justified and it is possible

to simply multiply the evolution operators.

It is then possible to consider a region of free space of width z
as a filter with a transfer function given by the evolution operator

eiwz, while a similar region filled with μ = ε = −1 placed

next to the first provides the inverse filter, e−iwz. After propagation

through the two layers, the field is reproduced exactly. It is, however,

well known in the theory of linear systems that inverse filtering is

sensitive to noise. If the initial filter has reduced the amplitude of

some frequency components to values close to the noise amplitude

at those frequencies, then when the inverse filter re-amplifies

them, it amplifies the noise as well, resulting in a very noisy

reconstructed signal. A way to avoid this problem is to avoid small-

signal amplitudes. Since extinction and amplification are given by

a term exponential in the distance z, then it may be advantageous

to use many thin alternating regions of double positive and double

negative media, rather than two thick ones. As long as they both

occupy equal volumes, the signal will be reproduced exactly. The

noise limitation also places an upper bound on the distance between

an object and the surface of the lens, for any given required

resolution. The higher the resolution we seek, the higher the k
components that must be resolved. Higher k components, in turn,

attenuate faster with distance, which means that the object must

be placed closer to the lens surface in order for the signal level at

the large k to be larger than the noise. The alternative is cooling

the lens to very low temperatures. Note also that noise can be not

only of a physical origin but also numerical, due, for instance, to

the discretization employed in a computer simulation (Rao and Ong,

2003).

The signal-reproducing device described earlier is known as a

superlens because it is capable of reproducing an image, including

the high spatial frequencies, which in normal optical systems are

inevitably lost. The loss of high-frequency components of an image is

known as the “diffraction limit,” and it is often said in the literature

that the superlens can overcome the diffraction limit. The fact that

high-frequency components of a signal are carried by waves that are

attenuated in space, or evanescent waves, has also led some workers
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to say that the superlens can “focus” the evanescent waves, in

addition to focusing the propagating waves. This is, however, subject

to the noise limitation mentioned earlier, even when absorption is

ignored.

We must also mention that the possibility of having media

with negative constitutive parameters was investigated for the first

time in a speculative article by Victor Veselago in 1967, translated

in English in 1968 (Veselago, 1968). Veselago showed that such

media would have many exotic and unexpected properties such as

a reversed Doppler shift, reversed Cerenkov radiation, and negative

refraction. He did not, however, point out that evanescent waves

would also be transmitted by such a medium. This was done over 30

years later by John Pendry in the now famous Physical Review Letters
article (Pendry, 2000), which can be said to have truly launched

the field of negative index metamaterials. In order to picture these

ideas, it is convenient to illustrate them by plotting the transmission

coefficient of a homogeneous slab as a function of the tangential

component of the incident wavevector. It is especially interesting

to observe the behavior for tangential components that are larger

than the wavevector. The plots below show the magnitude of the

transmission coefficient through various slab media as a function of

the parameter α =
√

u2+v2

k0
=

√
k2−w2

k0
for H‖ polarization. Though

it may sound paradoxical, α is the tangential component of the

incident wavevector in units of the magnitude of the said wavevector.

When α > 1, the “incident” wave in question is an evanescent

wave (also known as inhomogeneous because equiphase planes and

equiamplitude planes do not coincide). A largeα corresponds to high

spatial harmonics of the object in front of the lens. When α > 1,

the wave is evanescent in free space, though it may propagate in

media with a high enough index. In other words, w is not necessarily

imaginary when α > 1 but only when α > |k| / |k0|.
We begin by comparing the transmission of a regular dielectric

slab, with bothμ and ε positive with the transmission of a superlens,

i.e., a slab with μ = ε = −1. On the left side of Fig. 3.1, we have

plotted the transmission through a slab of thickness d = 1au with

μ = 1, ε = 12 for λ = 5au, while on the right side we have plotted

the transmission of free space in blue and of the superlens with μ =
ε = −1 in green.
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Figure 3.1 Transmission of dielectric slab with thickness d = 1 au, μ = 1,

ε = 12, and wavelength λ = 5 au as a function of the tangential component

of the wavevector (top). In the lower figure, we compare the transmission of

the free space slab (blue) and the superlens (green).

There are several important differences between the three

situations. Propagating waves, i.e., for which α < 1, are perfectly

transmitted by the two media in the right plot, though not quite

in the left plot. The transmission is exponentially decreasing with

increasing α for the case of the dielectric slab as well as for free

space, though the decay is faster in the dielectric slab. In addition,

the transmission of the slab exhibits poles or values of α for which

the transmission diverges. This happens close to α = 1 and α = 2.5

for our choice of parameters. No such divergences appear in the

right plot. These poles correspond to guided modes in the dielectric

slab. The absence of poles in the right plot indicates that neither free

space nor the superlens support guided modes. The reason for this

difference is that in the right plot, neither of the two media exhibits

total internal reflection at the interface with free space. Light cannot

be guided using these media.

It would be tempting to explain the absence of guided modes

by the fact that these media are impedance matched to free space.
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However, this is not correct. It is possible to have guided modes

in structures that are perfectly impedance matched to free space.

In order to see this, we plot the transmission for three slabs with

μ = ε = {−1.1, −1.01, −1.001}, traced in blue, green, and red,

respectively. The superlens transmission is plotted in black. All three

slabs support a single guided mode, though the mode is shifted to

higher α the closer we get to the superlens condition. In fact the

superlens can be seen as having a guided mode at infinity on the α

axis. Total internal reflection and partial reflection at transmission

through an interface are two physically distinct and unrelated

phenomena. Partial reflection is related to the impedance mismatch,

while total internal reflection is an effect related to the translation

symmetry of the interface and the conservation of the tangential

component of the wavevector, which the symmetry requires. Partial
reflection is an impedance phenomenon, while total internal reflection
is a symmetry and index phenomenon.

One interesting aspect that can also be seen in Fig. 3.2 is that in

principle one does not need a perfect superlens in order to observe

the amplification of evanescent waves across a slab. If one can obtain

a medium with μ = ε = −1.01, corresponding to the green curve,

then spatial harmonics up to about α = 4 will be transmitted

accurately across the slab. Higher spatial harmonics will still be lost,

but speaking very loosely one may say that the traditional diffraction

limit has been beaten very roughly by a factor of 4. Of course, this is
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Figure 3.2 As the permittivity and permeability of the slab approach −1,

the guided mode is shifted to infinity and the transmission approaches that

of the superlens, the black curve, and also the green curve in Fig. 3.1.
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nothing revolutionary, since resolutions far better than this can be

achieved using widespread near-field optical microscopy techniques

(Girard, 2005; Hecht et al., 2000; Kulzer and Orrit, 2004; Novotny

and Stranick, 2006). What is novel in this case is the means used: a

double negative medium.

Before discussing periodic media, let us emphasize once more

that the remarkable properties of the superlens reside essentially in
its response to an incident evanescent field, i.e., for α > 1 and that
negative refraction is a phenomenon that pertains to fields with α < 1.
Consequently, while the superlens may exhibit negative refraction,

negative refraction does not imply a superlens.

3.5 Periodic Media: Structural Nonlocality

In this section, we consider one of the two causes of spatial

dispersion: the proximity between the λ scale and the structure scale

d in the special case of periodic media. In this section, we assume

that l � d (for the case λ ≈ l , see the next section).

We begin by pointing out that the spatial filtering (truncation)

viewpoint discussed in the preceding sections must be applied to

the divergence equation div e = η/ε0, in which is present the

charge distribution (on the right side) and the wavelength of the

electric field (on the left side). Thus, whenever we truncate one of

them (to eliminate small scale, i.e., high frequency, details), we must

automatically truncate the other. As we will see below, this has major

consequences.

The Bloch theorem tells us that a wave at a single temporal

frequency ω propagating in a periodic lattice has a space-dependent

part of the form

e(x) = U(x)eikBx (3.41)

where U(x) is a function with the periodicity of the lattice. If we

consider a one-dimensional lattice of period a, then the function

U(x) contains spatial frequencies of the form 2πn/a with n ∈ Z.

Thus, aside from the “DC” component corresponding to n = 0, the

lowest frequency is K = 2π/a. Thus, the microscopic field e, which

results when a wave at a single temporal frequency ω propagates
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in a periodic lattice, contains more than one spatial frequency;

specifically, it contains the frequencies: kB + nK, n ∈ Z. However,

in a homogeneous material, only one spatial frequency would be

present, the one corresponding to the wavevector kB. The smoothing

procedure must, therefore, remove the harmonics that are due to the

periodic structure, namely the harmonics corresponding to n �= 0,

leaving only the Bloch phase harmonic kB.

Since this filter is applied to both sides of the electric divergence

equation simultaneously, this means that the frequencies filtered out
of ẽ(k) must also be filtered out of η̃(k). In what follows, we will refer

to K/2 or the “edge of the Brillouin zone” interchangeably, with the

first being the one-dimensional version of the second, and useful for

purposes of illustration. We begin by considering the various options

for the choice of filter function f̃ (k).

It is simplest to consider the homogenization of a one-

dimensional system. A reasonable first try for f̃ (k) is the Gaussian

function, whose Fourier transform is also a Gaussian. This choice

works fine if the wavelength is very large, so that kB ≈ 0 (see

Fig. 3.3, with K = 2[au]). When the wavelength is very large, the kB

term in Eq. (3.41) can be virtually ignored and the Bloch harmonics
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Figure 3.3 One-dimensional smooth.
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coincide with the reciprocal lattice vectors of the periodic medium.

The homogenization process can then be seen to consist of filtering

out all but the lowest harmonic corresponding to n = 0.

However, as the wavelength becomes smaller, kB increases, and

the Bloch harmonics no longer coincide with the reciprocal lattice

vectors of the medium. This is illustrated on the right side of Fig. 3.4.

The n = 0 component is partially filtered by the blue Gaussian curve,

and we, therefore, require an improved, flatter filter function such as

real( f̃ (k)) = exp

(
− 1

2ν

(
2k

K

)2ν
)

. (3.42)

The green curve of Fig. 3.4 corresponds to ν = 5 in Eq. (3.42). This

shape change has a very important consequence in real space: The

averaging volume becomes significantly larger as can be seen in the

left plot.

Thus, we are witnessing a process whereby as the wavelength

decreases, kB increases, and the size of the f (x) in direct space

(the left plot of Fig. 3.4) becomes larger. Eventually, the size of

f (x) will become comparable to the wavelength, at which point the

macroscopic electric field will become dependent on the phase and
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direction of propagation, which corresponds to the onset of spatial

dispersion or nonlocality.

This is not an intuitive phenomenon. One way of approaching

it is to think of temporal rather than spatial frequencies. The job

of the function f̃ is to tell apart two spatial frequencies kB and K.

Imagine the two as “sounds” starting in phase. If the two frequencies

are quite different, it takes a small fraction of a wavelength for the

two signals to go out of phase. Consequently, it takes only a short

time to tell them apart, or in the case of spatial frequencies, a short

distance. When the two frequencies are closer, however, they will

stay in phase for longer, perhaps several wavelengths. Consequently,

it takes a longer time to tell them apart, or in the case of spatial

frequencies, a longer distance. This is why a sharper filter f̃ in

k-space requires a more sprawled out smoothing function f in real

space.

The size of the smoothing volume, in turn, is important because

it is responsible for the macroscopically nonlocal behavior of

the medium. In fact, the spatial averaging implicitly results in

nonlocal macroscopic quantities in the sense that the macroscopic

polarization at any given point does not depend only on the

electric field at that point but over a whole region surrounding it:

the smoothing volume f . In most cases of interest, however, the

wavelength within the medium is much larger than this volume, the

electric field being roughly constant over it. This, in effect, hides

the nonlocality of the macroscopic description, making the medium

response seem local.

The above argument can be extended in a straightforward way

to the two-dimensional case. This is illustrated in Fig. 3.5. From left

to right, we have a homogeneous model, a one-dimensional model,

and the identity model ( f (x) = δ(x) the Dirac delta). The smoothing

function f (x) can be tuned to obtain different types of models. In the

frequency region where nonlocal effects appear, this idea can be used
to trade off nonlocality against in-homogeneity (Cabuz et al., 2008).

This duality is the direct consequence of the appearance in

the same equation (the electric divergence equation) of the field

E and the charge distribution. When the smoothing is applied,

this equation imposes a constraint in that one must keep the

macroscopic oscillations of the field, but filter out the microscopic
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Figure 3.5 (a) Three possible models corresponding to three f (k)

functions are illustrated. The first is a homogeneous model; only the lowest

harmonic is kept, and the rest are averaged over. The model on the right

side is the one where all harmonics are kept, corresponding in real space

to f (x) = δ(x) the Dirac delta. The case in the middle is an intermediate

model, where two of the y harmonics are kept. All three models are

effective medium models, but only the one on the left is homogeneous.

But is it also local? (b) Schematic illustrating the result of the intermediate

homogenization step in the case of a composite material made of wires

(parallel to the x axis) and magnetic resonators (dipole moments parallel

to the z axis). For a more detailed discussion, see Ref. (Cabuz et al., 2008).

oscillations of the charge density. As these two spatial frequencies

become closer, the smoothing volume f , which is required to

separate them, becomes wider.
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What we are observing here is a very general feature of physical

systems: one which is generally associated to quantum mechanics,

but which we observe here in a completely classical setting. The

model of the medium depends both on its intrinsic features (charge

distribution) and on choices made by the observer (the wavelength

of the electric field, and the volume f which we have total control

over as it is a purely theoretical construct). When λ is large, the

model we build is mostly dependent on the intrinsic features of the

medium (the choice of f is irrelevant), which gives the impression

of an independent, intrinsic reality underlying its behavior. However,

when λ becomes smaller, the model becomes increasingly complex,

and the choice of f becomes increasingly critical. Our model of the

medium, i.e., our perception of what it is, starts to depend not only

on features intrinsic to it (i.e., on its charge distribution) but also on

us (i.e., on our choice of f )!

3.6 Conductors: Free Charge Nonlocality

Most of the discussion until now has focused on media where

charges are free to move only within the atoms or scatterers and,

in any case, not far beyond the confines of the unit cell (in the case

of periodic media). This excludes any possibility of dealing with

conductors, or with metamaterials containing conducting objects,

and allowing charges to travel much farther than the unit cell.

Strictly speaking, in fact, we refer not only to classical currents

but also to displacement currents, which may span large distances

within the material. An example is, for instance, the metamaterial

pictured in Fig. 3.6. While the charges are strictly confined to the

unit cell, displacement currents can easily influence far away regions

via the large capacitances at the interfaces between the scatterers.

Similar situations involving inductance (rather than capacitance)

can be constructed.

Thus, whether we are talking about an electrical current or

a displacement current, the region of mobility of the charges

corresponds to the “electromagnetic neighborhood” mentioned on

page 3.3 and to the l scale of Section 3.1. Until now, the l scale has

been assumed to be smaller than the period, or at best similar to the
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Figure 3.6 Example of metamaterial where charges are not physically free,

but they strongly influence each other over large distances via displacement

currents.

period. However, in a conducting material (gold) or metamaterial

(Fig. 3.6), the l scale can be much larger than the period. In gold,

for instance, l will generally correspond to the electron mean free

path, which is on the order of tens of nanometers. This is orders

of magnitude larger than the atomic scale, which is on the order of

Angstroms.

The correspondence between conducting metamaterials (i.e.,

l > a) and metals is important because the latter have been studied

for decades, and the results, at least the general concepts, may be

transferred directly in the context of metamaterials, especially the

classical or quasi-classical approaches. This situation is not very
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different from the way concepts associated with the physics of

semiconductors were transferred to the emerging field of photonic

crystals in the late 1980s (Yablonovitch, 1987). In the present case,

we will be considering the hydrodynamic model of conducting media

(Forstmann and Gerhardts, 1986).

3.6.1 The Hydrodynamic Model

According to the hydrodynamic model, one assumes that the

medium under study supports two types of waves: the standard

divergence-free transverse electromagnetic waves, plus the longitu-

dinal plasma waves for which the divergence is nonzero, because

they consist of waves of compression and dilation of the electron

gas. Surprisingly, this seemingly minor increase in complexity can

qualitatively and often even quantitatively account for a broad range

of metal optics phenomena, so it is largely worth the effort to

understand the basic idea.

If we consider Maxwell’s equations in a medium that fills all

space, we can Fourier transform the solutions, with an eikr−iωt

dependence. Then the Helmholtz equation takes the form

−k(k · E)+ k2E = ω2με(k, ω)E.

For transverse waves, we obtain the dispersion relation k2/ω2 =
μεT (k, ω), while for longitudinal waves where k ‖ E, the left side

is identically zero, so non-trivial solutions require εL(k, ω) = 0.

Initially, starting in the 1940s, these longitudinal waves, also

referred to as plasma waves or plasmons, were probed and studied

by sending energetic electrons through thin metallic films and

measuring the absorption spectrum (Marton and Leder, 1954).

These workers were concerned with the study of so-called “bulk

plasmons” because the Fourier transform above assumes the

medium fills all space. Much work was done starting in the 1950s on

the properties of the electron gas, leading to a series of increasingly

complex and general models (see Chapter 5 of Ref. (Mahan, 2000)).

However, since we are interested not in electron beams but

in electromagnetic waves interacting with these materials, we are

working in the small k-region, in which all of these various models
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take the same simple form (in materials with inversion symmetry):

εL(k, ω) = 1− ω2
p

ω(ω + iγ )− βk2
· (3.43)

It turns out that this form can also be obtained in a rather more

intuitive way directly from an equation of motion whereby, in

addition to the electric field and a damping term, one adds an

electron pressure term directly proportional to the gradient of the

electron density (Forstmann and Gerhardts, 1986). This is the origin

of the name “hydrodynamic approximation”: The electron gas is seen

as a fluid that supports longitudinal waves analogous to sound.

There is an additional complication, however, when considering

electromagnetic waves interacting with the material (as opposed to

an electron beam): The idea of a bulk plasmon is useless because

we cannot ignore the effect of the interface. The waves cannot

“teleport” into the bulk. They have to cross the interface first, and

unfortunately there is no automatic way to match the fields in

free space with the fields in the bulk. The surface introduces new
physics, which is reflected in the coupling efficiency between the

incident field, on one hand, and the transmitted fields in the two
available modes, the transverse (standard) and the longitudinal

(plasmonic) modes, on the other hand. The continuity conditions

usually associated with interfaces in the electromagnetics of local

media are no longer sufficient, and we need to introduce additional
boundary conditions (ABCs) on the fields at the surface. These ABCs

basically encapsulate the additional physics of the surface, required

for a complete description of the system.

The problem of the ABCs is a vexing one, and the debate

surrounding the appropriate conditions is ongoing even in the older

and better established study of metals. This is because there is no

systematic, ab initio way to prove one ABC superior to another.

Strictly speaking, what would be required would be a quantum

computation of the surface region, which, besides requiring vast
amounts of computing power, may not, however, be reducible in any

straightforward way to a simple boundary condition to be satisfied

by the macroscopic fields. Moreover, in the metamaterial context,

there are several additional complications; for instance, we have

the issue of anisotropy. In this case, we have to consider a nonlocal
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Figure 3.7 The parallel wire metamaterial. The length in the z direction is

generally much larger than the period.

permittivity matrix ε̃L(k, ω) and note that this depends on the vector

k and not simply on its magnitude as in Eq. (3.43), which applies to

metals. Clearly, in the metamaterial arena, the debate is only in its

starting stages.

The best example is given by one of the seemingly simplest

metamaterials yet designed: the wire medium first studied by

Pendry et al. (1996). This is the structure composed of thin,

parallel wires disposed in a periodic lattice, generally square

(see Fig. 3.7).

The debate surrounds the best ABCs to specify on the top and

bottom interfaces, i.e., the ends of the wires. Arguments have been

put forward supporting at least two different conditions: continuity

of tangential and normal components of electric and magnetic fields

(Silveirinha, 2006) and Neumann condition on the polarization

current (Bouchitté and Felbacq, 2006). This problem is discussed in

more detail in Section 8.2.

The effect of the interfaces can, in some cases, generate even

further complexity, for example when the size of an object is on the

same scale as l , the electromagnetic neighborhood. In fact, the scale

of the object size s may be added as a fourth scale to the discussion

of Section 3.1. When s ≈ l , then, in a sense, the whole object is

“close to the interface” and its dielectric properties become shape
dependent. This is a common occurrence when studying micro- and
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nanoparticles and other fine structures, a venerable field tracing its

roots back to the pioneering work of Mie and Maxwell Garnett at the

beginning of the last century. As the size decreases and the behavior

becomes increasingly complex, there is a progression of modeling

approaches starting with the hydrodynamic approach, passing

through random phase approximation and jellium approaches and

finally time-dependent density functional approaches and Monte

Carlo methods. Each particular problem must be matched with the

most appropriate solution.

However, when shape dependence appears, one may question

whether one may meaningfully speak of one and the same substance

composing different objects, since for all practical purposes, each

object is composed of a different, shape-dependent substance. We

see, therefore, that the notion of substance itself is scale dependent;

it is an intrinsically macroscopic notion, and once one is dealing

with structures and features on the l scale or similar, that notion

gradually starts to lose its meaning. Consequently, when dealing

with metamaterial structures, it is important to identify the l scale

right away, in order to determine to what extent the concept of

“material” itself has meaning in the given context.

3.7 Summary

In this section, we take a step back and take a broader look at

the theory developed in the previous sections. We have outlined a

procedure whereby one starts with a set of microscopic quantities

(e(x), p(x), γ (x)) and proceeds to obtain a set of macroscopic

quantities (E(x), P(x), χ(x)) via a series of steps involving, in

particular, spatial averaging. The spatial averaging takes the form of

a convolution by a smoothing function f (x), and the macroscopic

parameter of electric susceptibility is defined by the following

relation between the macroscopic field and polarization

P(k) = χ(k)E(k).

By writing out the above equation in detail, such that only

microscopic quantities appear, we obtain the master equation of the
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Figure 3.8 Schematic representation of the homogenization procedure.

effective medium model:

f (x) � (γ e(x)e(x)) = χe(x) � ( f (x) � e(x)) . (3.44)

This equation is quite complex and non-intuitive due to the

fact the the averaging function f (x) has the role of erasing

microscopic information. Consequently, the susceptibility defined

by this equation is not unique. Any amount of microscopic spatial

jitter can be added, and the equation will remain correct. A detailed

discussion of this equation is beyond the scope of this review, but I

must emphasize several aspects related to the role of the function

f (x), in particular in the context of periodic media.

In typical formulations of the derivation of the macroscopic

Maxwell’s equations (Jackson, 1999; Robinson, 1973; Russakoff,

1970), this function appears as a purely academic construct, and

the sole concern of the authors is to state the required properties

and to show that all of them can, in principle, be satisfied. These

arguments were focused above all on the coherence and consistency

of the theoretical construction, rather than on the notion of model-

building.

The point of view I would like to emphasize here is different.

In this approach, we do not know in advance the model that we

must obtain. Instead, we make full use of the fact that f (x) is a

mathematical Construct, which we can choose as suits us. We treat

the smoothing function f (x) as a dial that we can tune to obtain

different types of custom-made effective medium models.

The reason this is interesting and important is because it

highlights that it is misleading to say that a medium has a “nonlocal
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response.” What is local or nonlocal is not the medium, but the model
we have made of it, which depends on our choice of f (x). By tuning

f (x), we can choose to deal with a homogeneous model (though in

some cases it may be nonlocal), or we can deal with a local model

(though in some cases, it may be inhomogeneous). This can be a

useful degree of freedom when trying to understand and design

metamaterials.

In addition, one may argue that any nonlocal model is an

incomplete description of the medium, in a sense, since it requires

additional knowledge of the field (its phase and direction of

propagation) in order to predict the response of the medium.

One may explain this via the truncation argument: When the

higher spatial harmonics are non-negligible, their removal via the

truncation filter deprives the physicist of important information

regarding the behavior of the structure. This lack of direct space
information must then be compensated by a more complex,

k-dependent, reciprocal space description. From this point of view,

the f (x) adjustment is seen as a way to transition between a direct

space and a reciprocal space description. Small averaging volumes

favor a spatial picture, while large averaging volumes favor a k space

picture.
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Chapter 4

Transformation Optics in a Nutshell

André Nicolet
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4.1 Transformation Optics

In recent years, transformation optics has become an active new

field. It has been popularized through the idea of J. B. Pendry

that an invisibility cloak can be designed by transforming space

and considering the corresponding equivalent material properties

(Pendry et al., 2006; Zolla et al., 2007). Indeed, a deep property

of Maxwell’s equations is that they are purely topological (when

written in the proper formalism (Nicolet et al., 1994)) and that

all the metric aspects can be encapsulated in the electromagnetic

material properties. A direct consequence is that any continuous

transformation of space can be encoded in an equivalent permit-

tivitty and permeability. Extending this principle beyond continuous

transformations allows to design exotic optical devices such as the

invisibility cloak. Another example of transformation optics devices

is a superlens (Pendry, 2000): Even if these devices were proposed

a few years before the rise of transformation optics, they are nicely
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interpreted as corresponding to a folding of the space on itself.

It has been suggested that such devices allow a kind of “remote

action” of the scatterers making possible things such as immaterial

waveguides called “invisible tunnels” (Zhang et al., 2007).

4.1.1 Geometrical Background

This section introduces some elementary notions of differential

geometry, but the reader is advised to consult the relevant

references (Burke, 1985; Deschamps, 1981).

Given an n-dimensional space with a (global) coordinate system

u1, · · · , un (not necessarily orthogonal), the exterior derivative d of

a function f (u1, · · · un) is its differential d f = ∑i
∂ f
∂ui

dui . This is a

1-form. A general 1-form can be written as
∑

i gi (u j )dui , where

gi (u j ) are functions of the coordinates u j . If a 1-form can be

expressed as the differential of a function, it is an exact 1-form.

A curve γ is an application from an interval I = [t0, t1] of R on

the n-dimensional space: r(t) = (u1(t), · · · , un(t)), where t is the

parameter. The integral
∫
γ
α of a 1-form α = ∑i gi (u j )dui on the

curve γ is defined by
∫
γ
α = ∫ t1

t0
(
∑

i gi (u j (t)) ∂ui (t)

∂t )dt. The value of

the integral depends on γ but does not depend on the choice of the

parameter.

The exterior product ∧ is the skew-symmetric tensor product

such that dui ∧ du j = −du j ∧ dui = (dui ⊗ du j − du j ⊗ dui ). A

general 2-form is a linear combination
∑

i, j gi j dui∧du j . The exterior

derivative of the 1-form is
∑

i gi dui is d
∑

i gi dui =
∑

i, j
∂gj

∂ui
dui ∧

du j .

A surface � is an application from a two-dimensional open

domain � ⊂ R2 on the n-dimensional space: r(s, t) = (u1(s, t),

· · · , un(s, t)), where s, t are the parameters. The integral
∫
�
β of a

2-form β =∑i, j gi j dui ∧ du j on the surface � is defined by∫
�

β =
∫ ∫

�

∑
i, j

(
gi j

∂(ui , u j )

∂(s, t)

)
dsdt

where
∂(ui , u j )

∂(s, t)
are the Jacobians. The value of the surface (flux)

integral depends on � but does not depend on the way the

parameters are chosen.
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The Stokes theorem states that
∫
�

dα = ∫
∂�

α, where ∂� is the

boundary (curve) of the surface �.

More generally, p-forms (with 0 ≤ p ≤ n) are defined as totally

skew-symmetric tensors and can be manipulated using the exterior

derivative and the exterior product. Take n = 3.

Given a 1-form

α = α1du1 + α2du2 + α3du3

and a 2-form

β = β23du2 ∧ du3 + β31du3 ∧ du1 + β12du1 ∧ du2,

one has for instance:

dα =
(
∂α2

∂u1

− ∂α2

∂u1

)
du1 ∧ du2 +

(
∂α3

∂u2

− ∂α3

∂u2

)
du2 ∧ du3

+
(
∂α1

∂u3

− ∂α1

∂u3

)
du3 ∧ du1,

dβ =
(
∂β23

∂u1

+ ∂β31

∂u2

+ ∂β12

∂u3

)
du1 ∧ du2 ∧ du3,

and

α ∧ β = (α1β23 + α2β31 + α3β12)du1 ∧ du2 ∧ du3.

All the concepts here rely only on the topological and differential

structure of the space.

The metric is a supplementary structure determined by a rank 2

covariant symmetric tensor g whose n2 coefficients form a positive

definite matrix. Given a metric, it is possible to introduce the

concepts of scalar product, norm, distance, and angle. The metric

allows the definition of a Hodge star operator ∗, which is a linear

operator on differential forms mapping p-forms on (n– p)-forms.

Particular cases of spaces with a metric are the Euclidean

spaces En where Cartesian coordinates can be chosen so that the

coefficients of the metric form a unit matrix. For E3, Cartesian

coordinates are denoted by {u1 = x , u2 = y, u3 = z} and the metric

has the form: g = dx ⊗ dx + dy ⊗ dy + dz⊗ dz. In these Cartesian

coordinates, the Hodge operator has the following action:

∗dx = dy ∧ dz, ∗dy = dz∧ dx , ∗dz = dx ∧ dy

∗(dx ∧ dy) = dz, ∗(dz ∧ dx) = dy, ∗(dy ∧ dz) = dx

∗1 = dx ∧ dy ∧ dz, ∗(dx ∧ dy ∧ dz) = 1.
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Exterior calculus is the most natural formalism to write

Maxwell’s equation (Burke, 1985; Deschamps, 1981) so that they

have the following form (in the harmonic case with a pulsation ω

and complex-valued fields):⎧⎪⎪⎨⎪⎪⎩
dH = J− iωD
dE = +iωB
dD = ρ

dB = 0

(4.1)

where d is the exterior derivative (d plays the role of curl in the

first two equations and of div in the last two, see Appendix); the

1-forms E, H are the electric and magnetic fields, respectively; the 2-

forms D, B, and J are the electric flux density or displacement, the

magnetic flux density or induction, and the electrical current density,

respectively; and the 3-form ρ is the electric charge density. The

only operator involved is the exterior derivative that is completely

independent of the metric.

The metric is involved in the Hodge star operator ∗ (see

Appendix), which is necessary to introduce the constitutive laws of

materials (including a void, where D = ε0 ∗E and B = μ0 ∗H). It can

also be argued that it is, in fact, these electromagnetic properties of

space that determine the metric (Guillemin and Sternberg, 1990).

This formalism has proved to be very useful in the context of

the numerical solution to Maxwell’s equations (Henrotte et al.,

1999; Nicolet et al., 1994). In this case, it has been shown that

the topological structure of the equation can be preserved at the

discrete level (for instance in Yee’s FDTD algorithm or using Whitney

discrete forms as finite elements), while the whole process of

approximation is concentrated in the design of the discrete Hodge

operator (Bossavit, 2001).

4.1.2 Change of Coordinates in Maxwell’s Equations

In the exterior calculus formalism, the only task associated to

changing a coordinate system is to determine an explicit expression

for the Hodge star operator (Nicolet et al., 1994, 2010; Zolla et al.,

2005). A very useful point of view is to consider weak formulations

where integrals of volume forms (3-forms) are built with scalar
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products of forms, i.e., exterior products together with the Hodge

operator acting on one of the factors.

For instance, the wave equation for the electric field (in

homogeneous media):

d(μ−1 ∗ dE)− ω2ε ∗ E = 0, (4.2)

has the following weak formulation: find E ∈ H (rot, �) such that{∫
�
μ−1 ∗ dE ∧ dE

′
dx− ω2

∫
�
ε ∗ E ∧ E

′
dx = 0 ,

∀E′ ∈ H0(rot, �)
(4.3)

where ∧ is the exterior product (see Appendix).

We can use the fact that we know how to write these expression

components in the Cartesian coordinate system and that we also

know how to transform the derivative and the multiple integrals

to determine the action of the Hodge operator in other coordinate

systems.

Considering a map from the coordinate system {u, v , w} to

the coordinate system {x , y, z} given by the functions x(u, v , w),

y(u, v , w), and z(u, v , w), the transformation of the differentials is

given by: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx = ∂x
∂u

du + ∂x
∂v

dv + ∂x
∂w

dw

dy = ∂y
∂u

du + ∂y
∂v

dv + ∂y
∂w

dw

dz = ∂z
∂u

du + ∂z
∂v

dv + ∂z
∂w

dw.

(4.4)

Given a p-form expressed in the {x , y, z} coordinate system, it

suffices to replace the dx , dy, dz by the corresponding 1-forms

involving du, dv , dw in the basis exterior monomials to obtain the

expression of the form in the new coordinate system. Note that the

form travels naturally counter to the current with respect to the map,

and this is why this transportation of the forms from x , y, z to u, v , w
is called a pull-back.

This operation can be defined between not only two coordinate

systems but also two different manifolds even if they do not have the

same dimensions.

Consider two manifolds (or more simply, two open domains of

Rm andRn, respectively) N and M and a (regular) map ϕ from N to M
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such that (for simplicity) ϕ(N) = M. The example above shows that

it is very easy to express the differentials of the coordinates on M in

terms of the differentials of the coordinates on N and, therefore, to

find the image on N of a 1-form on M given by the dual map ϕ∗, from

M to N , also called, as indicated earlier, the pull-back. In fact, any

covariant object such as a p-form or a metric can be pulled back by

translating the differentials on M into the differentials on N . Defined

in this way, the operation commutes, of course, with the exterior and

tensor products but also with the exterior derivative and the Hodge

star (defined with the pulled-back metric) (Nicolet et al., 1994).

As for contravariant objects such as vector fields, they travel

forward just like the geometrical domains. Given a vector v at a point

p on N , it suffices to choose a curve γ going through the point and

such that the vector is the tangent vector to the curve at this point,

to take the image of the curve ϕ(γ ) on M and the vector tangent to

this curve at the point ϕ(p) as the image of v. Defined in this way, the

map for vectors from N to M, denoted by ϕ∗(v) or dϕ(v), is called the

differential of ϕ or the push-forward, and it can be extended to any

contravariant object.

Another fundamental property of the pull-back is its commu-

tativity with integration in the sense that for any form α that is

integrable on a subset ϕ(�) of M, which is the image of a subset � of

N , one has: ∫
ϕ(�)

α =
∫
�

ϕ∗(α). (4.5)

All the information for the pull-back is, therefore, contained in

the Jacobian matrix J (or maybe we should say matrix field since

it depends on the point in space considered) in terms of which Eq.

(4.4) can be written: ⎛⎝dx
dy
dz

⎞⎠ = J

⎛⎝ du
dv
dw

⎞⎠ (4.6)

with

J(u, v , w) = ∂(x , y, z)

∂(u, v , w)
=

⎛⎜⎜⎜⎜⎜⎜⎝

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Using matrix notation, the detailed computation of the relation

between the coefficients of a 1-form α in {x , y, z} and {u, v , w}
coordinates is performed as follows:

α = αx dx + αydy + αzdz = (αx αy αz)

⎛⎝dx
dy
dz

⎞⎠
= (αx αy αz) J

⎛⎝ du
dv
dw

⎞⎠
= αudu + αv dv + αwdw = (αu αv αw)

⎛⎝ du
dv
dw

⎞⎠
and the following relation is obtained:

(αx αy αz) J = (αu αv αw). (4.7)

Now the contributions to weak form integrals like Eq. (4.3) have the

following generic form: ∫
�

α ∧ ∗α′,
where α and α′ are 1-forms The question is: How to deal with the

Hodge operator? A direct attack would be to pull back the metric

and use the explicit expression of the operator, but it is faster here to

take advantage of the simple form of the scalar product in Cartesian

coordinates that reduces to the dot product. Again using matrix

notation (where J−T is the inverse of JT ):

α ∧ ∗α′ = (αx αy αz)(α′x α
′
y α
′
z)T dx ∧ dy ∧ dz

= (αu αv αw)J−1[(α′u α
′
v α
′
w)J−1]T dx ∧ dy ∧ dz

= (αu αv αw)J−1J−T (α′u α
′
v α
′
w)T det(J)du ∧ dv ∧ dw.

(4.8)

The first line is the definition of the scalar product of 1-forms

equated to the scalar product in Cartesian coordinates.

The fact used here is that the transformation of 3-forms dx ∧
dy ∧ dz = det(J)du ∧ dv ∧ dw only involves the Jacobian, i.e., the

determinant of the Jacobian matrix. Hence, the only difference from

the case of Cartesian coordinates is that one of the (column) vectors

has to be multiplied on the left by a symmetric matrix T−1 before

performing the dot product, where T is given by:

T = JT J
det(J)

. (4.9)
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It is now interesting to look at how a particular 2-form basis

monomial transforms, for instance,

dx ∧ dy =
[
∂x
∂u

du + ∂x
∂v

dv + ∂x
∂w

dw
]
∧
[
∂y
∂u

du + ∂y
∂v

dv + ∂y
∂w

dw
]

=
(
∂x
∂u

∂y
∂v
− ∂x

∂v
∂y
∂u

)
du ∧ dv +

(
∂x
∂v

∂y
∂w
− ∂x

∂w
∂y
∂v

)
dv ∧ dw

+
(
∂x
∂w

∂y
∂u
− ∂x

∂u
∂y
∂w

)
dw ∧ du.

The cofactors of J are now involved in the transformation. (These are

the elements of J−T det(J).)

Given a 2-form:

β = βx dy ∧ dz+ βydz ∧ dx + βzdx ∧ dy
= βudv ∧ dw + βv dw ∧ du + βwdu ∧ dv

(4.10)

the following relation is obtained:

(βx βy βz) J−T det(J) = (βu βv βw) (4.11)

and considering the scalar product β ∧ ∗β ′ of two such 2-forms,

it is straightforward to show that the matrix involved in the

transformation of this scalar product is here T (instead of its inverse

in the case of the scalar product of two 1-forms):

β ∧ ∗β ′ = (βx βy βz)(β ′x β
′
y β
′
z)T dx ∧ dy ∧ dz

= (βu βv βw)
JT

det(J)

[
(β ′u β

′
v β
′
w)

JT

det(J)

]T

det(J)du ∧ dv ∧ dw

= (βu βv βw)JT J
1

det(J)
(β ′u β

′
v β
′
w)T du ∧ dv ∧ dw. (4.12)

Everything can now be summarized in the following recipe that

takes into account implicitly the Hodge star: Consider a 3-form γ to

be integrated on a domain � in order to get
∫
�
γ to contribute to a

weak form, then:

• If the integrand involves only scalars (0-forms or 3-forms,

and it does not matter if the 3-forms are expressed as the

divergence of a vector field) or if it is the exterior product

of a 1-form and a 2-form (and it does not matter if they are,

respectively, a gradient and a curl) looking superficially like a

scalar product of vectors, only det(J) has to be introduced as

a factor.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Transformation Optics 115

• If the integrand is the scalar product of two 1-forms (and

it does not matter if one or both 1-forms are expressed as

the gradient of a scalar field), multiply on the left one of the

column vectors of coefficients by the matrix T−1.

• If the integrand is the scalar product of two 2-forms (and it

does not matter if one or both 2-forms are expressed as the

curl of a vector field), multiply on the left one of the column

vectors of coefficients by the matrix T.

The expression obtained for ϕ∗(γ ) depending on variables u,

v , and w (the coordinates x , y, and z have been replaced by

the functions x(u, v , w), y(u, v , w), and z(u, v , w), respectively) is

integrated on � to get the desired contribution to the volume

integral of the weak formulation.

It can also be interesting to consider a compound transformation,

i.e., the transformation of a transformation. Consider three systems

of coordinates ui , X i , and xi (possibly on different manifolds) and the

maps ϕX u : ui → X i given by functions X i (u j ) and ϕx X : X i → xi

given by functions xi (X j ). The composition map ϕx X ◦ ϕX u = ϕxu :

ui → xi is given by the functions: xi (X j (uk)). If Jx X and JX u are the

Jacobian matrices of the maps ϕx X and ϕX u , respectively, the Jacobian

matrix Jxu of the composition map ϕxu is simply the product of the

Jacobian matrices:

Jxu = Jx X JX u .

This rule naturally applies for an arbitrary number of maps.

It is also worth noting that the matrix JT J is nothing but

the metric tensor whose coefficients are expressed in the local

coordinates.

4.1.3 Geometric Transformation: Equivalent Material
Principle

A very interesting interpretation of the preceding formulae is that

matrix T and its inverse can be viewed as tensorial characteristics of

equivalent materials.

By inspection of Eq. (4.3), it appears that μ−1 is present as a

factor in the term involving the exterior derivatives, i.e., a scalar

product of two 2-forms and that the T factor can be introduced by
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multiplyingμ by T−1 (and, therefore, turning it to a tensor quantity).

It appears also that ε is present as a factor in the term involving

directly the electric field, i.e., a scalar product of two 1-forms and

that the T−1 factor can be introduced by multiplying ε by T−1 (and,

therefore, turning it also to a tensor quantity).

Therefore, the only thing to do to compute the integrals of the

weak form in the transformed coordinates is to replace the materials

(often homogeneous and isotropic) by equivalent ones that are

inhomogeneous (their characteristics are no longer piecewise

constant but merely depend on u, v , w coordinates) and anisotropic

ones (tensorial nature) whose properties are given by

ε′ = εT−1 , and μ′ = μT−1 . (4.13)

We note that there is no change in the impedance of the

media since the permittivity and permeability undergo the same

transformation. As for the vector analysis operator and product,

everything works as if we were in Cartesian coordinates.

In electromagnetism, changing a material can thus be viewed as

changing metric properties, and conversely a change of coordinates

can be taken into account by introducing a fictitious equivalent

material. For a general transformation, the equivalent material is

inhomogeneous and anisotropic. It may be interesting in some cases

to introduce non-orthogonal coordinate systems to facilitate the

solution to particular problems, e.g., helicoidal geometries (Nicolet

et al., 2004, 2007).

It is straightforward to generalize the present rules to initially

anisotropic material properties. Also it has to be noted that they

need not be initially homogeneous. Therefore, the basic principle

of transformation optics can be stated in a very general setting: For

all our practical purposes, M and N will be here the whole or parts

of R3. Given a map ϕ from a space N to a space M determining a

geometric transformation (i.e., given a Cartesian coordinate system

x on M and an arbitrary coordinate system x′ on N , ϕ : N → M is

described by x(x′), i.e., x given as a function of x′), when one has an

electromagnetic system described by the tensor fields ε(x) for the

dielectric permittivity and μ(x) for the magnetic permeability in the

space M, if one replaces the initial material properties by equivalent

material properties given by the following rule (Milton et al., 2006;
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Nicolet et al., 2004, 2007; Zolla et al., 2005):

ε′(x′) = J−1(x′)ε(x(x′))J−T (x′) det(J(x′)),

μ′(x′) = J−1(x′)μ(x(x′))J−T (x′) det(J(x′)), (4.14)

one gets an equivalent problem on N . Here, an equivalent problem

means that the solution to the new problem on N , i.e., electromag-

netic quantities described as differential forms, is the pulled back

of the solution (Nicolet et al., 1994) to the original problem on

M and that the same Maxwell’s equations (i.e., as if we were in

Cartesian coordinates or, more accurately, having the same form as

(4.1) written with the exterior derivative) are still satisfied.

The transformation rules between M and N for components of

the fields that are 1-forms, such as E and H, are given by Eq. (4.7) and

those for the components of the fields that are 2-forms, such as B, D,

and J, are given by Eq. (4.11). It clearly appears that the invariant

quantities, according to Eq. (4.5), are the global quantities built as

integral of p-forms on p-dimensional geometrical objects: the line

Figure 4.1 Electrostatic potential: circular cylinder V = 1, V (r →∞) = 0

⇒ circular equipotential lines.
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integrals of the electric field and of the magnetic field along a curve,

the fluxes across a surface of the electric displacement, the magnetic

flux density, the current density, the Poynting vector, and so on.

4.1.4 Cylindrical Devices

A simple setting for transformation optics is to consider cylindrical

devices where the transformation concerns only the radial distance.

In order to obtain the components of the equivalent permeability

and permittivity tensors in the Cartesian coordinates, it is necessary

to perform first an initial transformation from Cartesian to cylin-

drical coordinates, then the radial transformation concerned, and

finally the back transformation from cylindrical to Cartesian coor-

dinates. This transformation from Cartesian coordinates {x , y, z} to

polar coordinates {r, θ , z} is introduced via the map from r, θ to x , y:{
x(r, θ) = r cos θ

y(r, θ) = r sin θ .
(4.15)

The associated Jacobian is

Jxr (r, θ) = ∂(x , y, z)

∂(r, θ , z)
=
⎛⎝ cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

⎞⎠ = R(θ) diag(1, r, 1),

(4.16)

with

R(θ) =
⎛⎝ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞⎠ and diag(1, r, 1) =
⎛⎝1 0 0

0 r 0

0 0 1

⎞⎠ .

R(θ) has the well known properties: R(θ)−1 = R(θ)T = R(−θ).

Furthermore, the inverse transformation is given by the map:⎧⎨⎩ r(x , y) =
√

x2 + y2

θ(x , y) = 2 arctan

(
y

x+
√

x2+y2

)
,

(4.17)

and is associated with the Jacobian:

Jrx (x , y) = J−1
xr (r(x , y), θ(x , y)) = diag

(
1,

1

r(x , y)
, 1

)
R(−θ(x , y)).

(4.18)
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Figure 4.2 Complex-valued change of coordinates associated to the PML.

If a radial transformation is described by the function r = f (r ′)
expressing the original radial distance (in physical space) in terms of

the transformed radial distance (transformed space), leaving θ = θ ′

and z = z′, the Jacobian matrix is Jrr ′ = diag( d f (r ′)
dr ′ , 1, 1) and

the Jacobian of the complete transformation (i.e., from Cartesian to

transformed Cartesian coordinates) is

Jxx ′ = Jxr Jrr ′Jr ′x ′ = R(θ)diag
(

d f (r ′)
dr ′

,
f (r ′)

r ′
, 1

)
R(−θ)

the transformation matrix of Eq. 4.13 is given by:

T−1 = J−1
xx ′ J
−T
xx ′ det(Jxx ′)

= R(θ)diag

(
f (r ′)

d f (r ′)
dr ′ r ′

,

d f (r ′)
dr ′ r ′

f (r ′)
,

d f (r ′)
dr ′ f (r ′)

r ′

)
R(θ)T .

This general formula has at least four very interesting special

cases:

(1) Open domain: In potential theory, e.g., in electrostatics, when

an unbounded problem is considered with the condition that the

potential is decreasing to zero at infinity, the use of numerical

methods such as the finite element method requires some

special treatment in order to deal with a meshing limited to a

finite domain. The radial transformation

r = f (r ′) = (R1 − R2)r ′/(r ′ − R2)

with R2 > R1 is such that

r ′ = R1 ⇒ r = R1 and r ′ = R2 ⇒ r →∞.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

120 Transformation Optics in a Nutshell

Surrounding the electrostatic problem with an annulus made

of the equivalent permittivity allows a simple and rigorous

solution to the problem (see Fig. 4.1). This technique is a

precursor of transformation optics (Nicolet et al., 1994).

(2) PML: In this case, the PML corresponds to a complex stretch

of the radial coordinate ρ; the region of interest is a disk

defined by ρ < R∗, and the PML region is a circular annulus

around the region of interest defined by R∗ < ρ < Rtrunc,

where R∗ and Rtrunc are real constants. As the expressions

of the material tensors in Cartesian coordinates are needed,

the whole setting requires a transformation between Cartesian

and cylindrical coordinates. The recipe involves a sequence of

coordinate systems. We start here with the physical coordinates,

and we finish with the modeling coordinates. The mapping will,

therefore, be from the last system of the list to the first one,

while the pull-back maps will be from the first system to the last

one.

• (x , y, z) are real-valued classical Cartesian coordinates.

• (x̃ , ỹ, z̃) are a complex stretch of the previous Cartesian

coordinates. They are complex valued and, it is fun-

damental to understand that this change is an active

transformation rather than a mere change of coordinates

in the sense that the ambient space is changed. (x , y, z)

are a parametrization of R3, and the complex stretch

corresponds to an extension of the problem to C3 and

more precisely to a three-dimensional subspace � of C3

(in terms of real dimensions, C3 is six dimensional and R3

and� are three dimensional) (Lassas et al., 2001). The map

from � to R3 is chosen in such way that the restriction of

this map to the region of interest is the identity map. The

solution to the original problem on R3 can be extended

analytically to C3 and then restricted to �. If the complex

stretch is correctly chosen, this “complexified” solution

on � is evanescent where the physical solution involves

outgoing or even exponentially diverging waves.

• (ρ̃, θ̃ , z̃) is a cylindrical representation of (x̃ , ỹ, z̃).

• (ρc , θc , zc) are real-valued cylindrical coordinates on �.

They are related to (ρ̃, θ̃ , z̃) via θ̃ = θc , z̃ = zc , and a radial
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complex stretch

ρ̃ =
∫ ρc

0

sρ(ρ ′) dρ ′ (4.19)

where sρ is a complex-valued function of a real variable, i.e.,

sρ = 1 in the central region of interest defined by ρc < R∗

(the complex stretch corresponds to an identity map in this

region) and sρ has a complex value in the PML defined by

R∗ < ρ < Rtrunc.

• (xc , yc , zc) are the Cartesian representation of (ρc , θc , zc)

and are also real-valued coordinates that will be called

modeling coordinates. This is the modeling space where

the numerical approximations are written, where the finite

element mesh is defined, and where all the outgoing waves

are turned to evanescent ones so that the computation

domain can be truncated.

In the end, only the real-valued coordinates x , y, z and xc , yc , zc

are involved, but the complex map corresponds to a complex-

valued Jacobian. In the case of cylindrical coordinates, ρ̃ and

ρc are just introduced to compute the radial stretch. Note also

that θc = θ̃ and, therefore, will be simply denoted by θ . The

transformation from Cartesian to cylindrical coordinates is just

used to obtain the Cartesian expression of the corresponding

metric tensor. The Jacobians associated to these changes

of coordinates are: Jx̃ ρ̃ = Jxρ(ρ̃, θ), Jρ̃ρc = diag( ∂ρ̃

∂ρc
, 1, 1) =

diag(sρ(ρc), 1, 1), Jρc xc = Jρx (ρc(xc , yc), θ(xc , yc)). The global

Jacobian Js is the product of the individual Jacobians:

Js = Jx̃ ρ̃Jρ̃ρc Jρc xc = R(θ)diag
(

sρ ,
ρ̃

ρc
, 1

)
R(−θ) , (4.20)

where R(θ) denotes the following matrix of rotation

R(θ) =
⎛⎝ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞⎠ .

Note that, in fact, we solve numerically the extended problem
obtained by the complex stretch (4.19) and defined on �

that have the very remarkable property to coincide with our
original problem in the region of interest. In order to comply

with traditional notation in the PML context and to avoid
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cumbersome notations, we drop the c subscript associated to

the modeling coordinates that will subsequently be denoted as

ρ and (x , y, z) without any ambiguity. For isotropic uniform

media outside the region of interest, the cylindrical PML

characteristics are obtained by multiplying ε and μ by the

following complex matrix:

T−1
s = J−1

s J−T
s det(Js ) = R(θ)diag

(
ρ̃

sρρ
,

sρρ
ρ̃

,
sρρ̃
ρ

)
R(−θ)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρsρ sin(θ)2

ρ̃
+ ρ̃ cos(θ)2

ρsρ
sin(θ) cos(θ)

(
ρ̃

ρsρ
− ρsρ

ρ̃

)
0

sin(θ) cos(θ)

(
ρ̃

ρsρ
− ρsρ

ρ̃

)
ρsρ cos(θ)2

ρ̃
+ ρ̃ sin(θ)2

ρsρ
0

0 0
ρ̃sρ
ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

This latest expression is the metric tensor in Cartesian coordi-

nates (x , y, z) for the cylindrical PML and θ , ρ , ρ̃ , and sρ(ρ) are

explicit functions of the variables x and y. Another remarkable

property of the PML is that they provide the correct extension to

non-Hermitian operators (since Ts is complex and symmetric)

that allow the computation of the leaky modes, and this may be

obtained via a correct choice of the PML parameters, namely, R∗,
Rtrunc, and sρ(ρ).

(3) Invisibility cloak
Pendry’s map for the invisibility cloak: Consider a geometric

transformation that maps the field within the disk r ≤ R2 onto

the annulus R1 ≤ r ≤ R2:

r = f (r ′) = (r ′ − R1)R2/(R2 − R1) for R1 ≤ r ′ ≤ R2

and for r ≥ R2, it is the identity transformation. The material

properties of the invisibility cloak are given by:

T−1 = R(θ ′)diag
(

r ′ − R1

r ′
,

r ′

r ′ − R1

,

(R2/(R2 − R1))2 r ′ − R1

r ′

)
R(θ ′)T (4.21)
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Figure 4.3 Invisibility cloaking.

Table 4.1 The cylindrical transformations

Type r = f (r ′) Domain

Open domain r = (R1 − R2)r ′/(r ′ − R2) R1 < r ′ < R2

PML r = ∫ r ′

0
sr (ρ) dρ

Invisibility cloak r = (r ′ − R1)R2/(R2 − R1) R1 ≤ r ′ ≤ R2

Superlens r = r ′(R2 − αR1)+ (α − 1) R1 R2

R2−R1
R1 ≤ r ′ ≤ R2

r = r ′αR1 r ′ ≤ R1

(4) Superlens

r = f (r ′) = r ′(R2 − αR1)+ (α − 1)
R1 R2

R2 − R1

r = f (r ′) = r ′αR1

α = R2

R1

magnifying factor.

4.2 Superlens Illusion

A dramatic example of transformation optics devices is the

superlens (Pendry, 2000): Even if these devices were proposed a

few years before the rise of transformation optics, they are nicely
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Figure 4.4 A superlens can be designed by folding the space on itself, here

by transforming the radial distance (Yan et al., 2008). In this case, there is a

part of the physical space that has a threefold image in the equivalent space.

interpreted as corresponding to a folding of the space on itself.

It has been suggested that such devices allow a kind of “remote

action” of the scatterers making possible things such as immaterial

waveguides called “invisible tunnels” (Zhang et al., 2007). They can

also be used to set up a new kind of invisibility devices (Lai et al.,

2009a) and also illusion devices (Lai et al., 2009b), similar to the one

obtained by generalized cloaking (Nicolet et al., 2010), but based on

negative refraction index materials.

As an illustration of superlensing, consider the multiple-valued

transformation of Fig. 4.4. The part with negative slope corresponds

to a negative refraction index material (ε′ and μ′ have negative

eigenvalues, see Fig. 4.5) and acts as a superlens (Leonhardt and

Philbin, 2006; Yan et al., 2008). As a transformation of empty space,

it is supposed not to perturbate the cylindrical waves emitted by a

wire antenna (in Fig. 4.6, the inner disk is the image of a four times

larger disk with the same center), but the anomalous resonances

(Milton and Nicorovici, 2006; Nicorovici et al., 2007) have a dazzling

effect (see Fig. 4.6) that can be attenuated by introducing losses

in the superlens material. For instance, in Fig. 4.7, permittivity of

the ideal perfect lens ε′ has been multiplied by 1 − 0.001i and

the attenuation is partial. Finally, one percent of losses have been

introduced in the value of the permittivity of the ideal perfect lens

(ε′ has been multiplied by 1 − 0.01i) to get a suitable attenuation
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Figure 4.5 In the complex plane, the definition of the square root requires a

cut. This explains why both negative permittivity and negative permeability

lead to a negative refractive index that is the square root of their product

(despite the fact that this product is positive).

Figure 4.6 A superlens designed by folding the empty space on itself is

supposed not to perturbate the cylindrical waves emitted by a wire antenna,

but the anomalous resonances (Milton and Nicorovici, 2006; Nicorovici

et al., 2007) have a dazzling effect.

(Figs. 4.8 and 4.9). The antenna on the right of the lens has two

images, one inside the annular superlens and one inside the central

part of the device so that we have three copies of the antenna. In

Fig. 4.10, a small perfectly conducting deflector inside the region
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Figure 4.7 A superlens designed by folding the empty space on itself

together with 1/1000 of losses to damp the anomalous resonances (Milton

and Nicorovici, 2006; Nicorovici et al., 2007).

Figure 4.8 A superlens together with 1/100 of losses (in order to avoid the

anomalous resonances) does not perturbate the cylindrical waves emitted

by a wire antenna but for the attenuation due to the dissipation introduced

in the superlens permittivity. The antenna has an image inside the superlens

and inside the central part of the device.

surrounded by the perfect lens acts on the image of the antenna

and forces the waves to propagate only to the right. This can also

be interpreted as if the deflector had a four times larger image

acting on the original antenna giving the illusion of a much larger
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Figure 4.9 A superlens together with 1/100 of losses. Finite element

numerical computation using GetDP (left) compared with analytical

computation using Mathematica R© (right).

Figure 4.10 A small perfectly conducting deflector acts on the image of the

antenna in the central part of the device and forces the waves to propagate

only to the right. This can also be interpreted as if the deflector has a four

times larger image acting on the original antenna.

object (this phenomenon is sometimes called superscattering). Now,

if the image of the deflector is “perfect,” one can wonder whether

a deflector whose image is on the right of the source would have

the effect of deflecting the waves to the left. Figure 4.12 shows that

it is not the case: The small deflector inside the structure prevents

the formation of the image of the source, and the global effect of
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Figure 4.11 A small perfectly conducting deflector acts on the image of the

antenna in the central part of the device and forces the waves to propagate

only to the right. This can also be interpreted as if the deflector has a height

time larger image acting on the original antenna (the structure is smaller

and the magnification factor is 8, i.e., larger by a factor 2 with respect to

Fig. 4.10.

the device is the one of a large object on the left of the original

source. It should be remembered that the superlens comes from the

folding of the space, but that the other elements, the source and the

Figure 4.12 The scatterer is a perturbation of the folded geometry, and its

presence prevents the correct formation of the image source. It does not

have the effect of deflecting the waves to the left as a perfect image, i.e., the

same deflector magnified by a factor 4 would do.
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Figure 4.13 Cloak with a general shape given by Fourier series: R1(θ) is

with a0 = 1, b1 = 0.1, a2 = −0.15, b3 = 0.2, a4 = 0.1; R2(θ) is with a0 =
2, a2 = −0.1, a3 = −0.15, b3 = 0.3, a4 = 0.2; all the other coefficients

are equal to zero. The real part of the electric field E z scattered by the

cloak is represented here. Some residual interferences are due to numerical

deviation mainly caused by the singular behavior of the equivalent material

properties on the inner boundary of the cloak.

scatterer, are added afterward and are only a perturbation of the

folded geometry. Therefore, the system may behave as if there were

copies of these elements in the three regions but obviously not in all

cases.

All the numerical computations were performed using GetDP

(Dular et al., 1998).

4.3 Cylindrical Cloaks of Arbitrary Cross Section

The geometrical transformations can also be used in the reverse

sense to design new materials. In this case, a geometrical trans-

formation is applied to free space to guess interesting material

properties given by the equivalence rule. A new device can be

built if the new material properties may be approximated, e.g.,

using electromagnetic metamaterials (Ramakrishna, 2005). For

instance, as proposed by Pendry (Pendry et al., 2006; Zolla et al.,

2007), a convex domain is mapped on a holey domain with the

same exterior boundary. The structure made of the transformed
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Figure 4.14 Analytical computation (with Mathematica R©) of the field (and

of associated rays) by directly applying the coordinate transformation to the

source field: E ′z(ρ ′, θ ′) = E z(ρ(ρ ′, θ ′), θ = θ ′)) with ρ(ρ ′, θ ′) obtained by

inversion of the map defined by Eq. (4.22).

equivalent material is an invisibility cloak and any object can be

perfectly hidden in the central hole.

A more general situation is now considered here, where the

shape of the cloak is no more circular and even possibly non-

convex but described by two arbitrary functions R1(θ) and R2(θ),

giving an angle-dependent distance from the origin Corresponding,

respectively, to the interior and exterior boundaries of the cloak

(Nicolet et al., 2008c).

The geometric transformation that maps the field within the full

domain ρ ≤ R2(θ) onto the hollow domain R1(θ) ≤ ρ ≤ R2(θ) can

be expressed as:

ρ ′(ρ , θ) = R1(θ)+ρ(R2(θ)−R1(θ))/R2(θ) , 0 ≤ ρ ≤ R2(θ) (4.22)

with also θ ′ = θ , 0 < θ ≤ 2π and z′ = z, z ∈ R. Note that the

transformation maps the field for ρ ≥ R2(θ) onto itself through the

identity transformation. This leads to

Jρρ ′(ρ ′, θ ′) = ∂(ρ(ρ ′, θ ′), θ , z)

∂(ρ ′, θ ′, z′)
=
⎛⎝ c11(θ ′) c12(ρ ′, θ ′) 0

0 1 0

0 0 1

⎞⎠ ,

(4.23)

where

c11(θ ′) = R2(θ ′)/(R2(θ ′)− R1(θ ′)) (4.24)

for 0 ≤ ρ ′ ≤ R2(θ ′)
and c11 = 1 for ρ ′ > R2(θ ′)
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and

c12(ρ ′, θ ′) = (ρ ′−R2(θ ′))R2(θ ′)
d R1(θ ′)

dθ ′
− (ρ ′ − R1(θ ′))R1(θ ′) d R2(θ ′)

dθ ′

(R2(θ ′)− R1(θ ′))2

(4.25)

for 0 ≤ r ′ ≤ R2(θ ′),

and c12 = 0 for ρ ′ > R2(θ ′).

Finally, the properties of the cloak are given by:

T−1 = R(θ ′)

⎛⎜⎜⎜⎜⎜⎜⎝
c2

12 + f 2
ρ

c11 fρρ ′
−c12

fρ
0

−c12

fρ

c11ρ
′

fρ
0

0 0
c11 fρ
ρ ′

⎞⎟⎟⎟⎟⎟⎟⎠ R(θ ′)T , (4.26)

with

fρ = (ρ ′ − R1)R2

(R2 − R1)
.

The parametric representation of the ellipse

ρ(θ) = ab√
a2 cos(θ)2 + b2 sin(θ)2

corresponds to cloaks of elliptical cross section, and it has been

checked that it provides exactly the same result as in Ref. (Nicolet

et al., 2008b) where similar results have been obtained by a space

dilatation.

To obtain general shapes, Fourier series

ρ(θ) = a0 +
n∑

k=1

(ak cos(kθ)+ bk sin(kθ))

may be used. An example of such a general cloak is shown in

Fig. 4.13: a source made of a wire of circular cross section (radius

= 0.25) centered at point rs = (2.5, 2) with a constant E z imposed

on its boundary, radiating in a vacuum with wavelength λ = 1 (Note

that all lengths are given in arbitrary units, for instance μm for near

infrared). The electric field E z is, therefore, a cylindrical wave (Note

that the electric field is given in arbitrary units, for instance V /m
and E z = J 0(2π0.25) − iY0(2π0.25) = 0.472001 − i0.410004

on the boundary of the source wire) and is not perturbed at all
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Figure 4.15 Elliptical cloak.

by a F-shaped scattering (lossy) obstacle of relative permittivity

1 + 4i placed near the origin (0, 0) and surrounded by the cloak.

Note also that the unbounded space is simulated via a circular PML.

Figure 4.14 shows the corresponding analytical model.

4.4 Generalized Cloaking

In this section, we present a generalization of cloaking able to

arbitrarily transform the electromagnetic appearance of an object.

The basic principle is to obtain the constitutive relations of the cloak

by the application of a space transformation to a non-empty region.

Invisibility can be considered a particular case that corresponds to

choosing the empty space as the object to be faked.

In the case of the cylindrical Pendry’s map (Nicolet et al.,

2008a; Pendry et al., 2006; Zolla et al., 2007), described by the

transformation of the two-dimensional cross section, the plane R2

minus a disk D1 of radius R1 is mapped on the whole plane R2 in

such a way that a disk D2 of radius R2 > R1, concentric with D1,

is the image of the annulus D2\D1 by a radial transformation (see
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Initial (Cartesian coordinates) New

r'
r = f(r')

Figure 4.16 Pendry’s map of an annulus to a disk used to determine the

material properties of an invisibility cloak via the equivalence principles.

Fig. 4.16). In cylindrical coordinates, this transformation is given by:{
r = (r ′ − R1)R2/(R2 − R1) for R1 ≤ r ′ ≤ R2,

θ = θ ′, z = z′.
(4.27)

As for the outside of the disk D2, the map between the two copies

of R2\D2 is the identity map.

The material properties given by rule (4.14) corresponding

to this transformation provide an ideal invisibility cloak: Outside

D2, everything behaves as if we were in free space, including

the propagation of electromagnetic waves across the cloak and is

completely independent of the content of D1.

Now rule (4.14) may be applied to D2 containing objects with

arbitrary electromagnetic properties so that a region cloaked by

this device is still completely hidden but has the appearance of

the objects originally in D2. We may call this optical effect masking

(Teixeira, 2007) or “polyjuice” effect.

4.5 Numerical Modeling

Figures 4.19 and 4.20 show the effect of masking on a scattering

structure. In Fig. 8.2, a cylindrical TM wave emitted by a circular

cylindrical antenna is scattered by a conducting triangular cylinder

(the longest side of the cross section is 1.62λ and εr = 1 + 40i).

The field map represents the longitudinal electric field E z(x , y), and

the outer boundary of the cloak is shown to ease the comparison
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Initial (Cartesian coordinates) New

r
r' = f-1(r)

Figure 4.17 When the material properties are piecewise defined, a push

forward of the geometry involving the inverse transformation is useful.

Figure 4.18 This figure shows a part of the triangular mesh used for the

finite element modeling of the scattering problem of Fig. 4.20. The singular

behavior of the permittivity and of the permeability requires a very fine

mesh along the inner boundary of the cloak in order to achieve a satisfactory

accuracy with the numerical model.

with the masked case. In Fig. 4.20, the same cylindrical TM wave is

scattered by a masked triangular cylinder (but the scattering object

inside the cloak may be arbitrarily shaped, as far as it is small enough

to fit inside the cloak). This triangular cylinder is symmetric to the

previous one with respect to the horizontal plane containing the

central fiber of the cylindrical antenna. This bare scatterer would,

therefore, give an inverted image to that shown in Fig. 4.19, but

here this object is surrounded by a cloak in order to give the same

scattering as before. Indeed, on both sides, the electric fields outside

the cloak limit are alike.
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Figure 4.19 A conducting triangular cylinder is scattering cylindrical

waves.

Figure 4.20 A triangular cylinder different from the one in Fig. 4.19 is

surrounded by a cloak designed to reproduce the scattering pattern of the

triangular cylinder in Fig. 4.19 in spite of the change of scattering object. Of

course, the scattering object inside the cloak may be arbitrary as far as it is

small enough to fit inside the cloak.

Figure 4.21 highlights the different scattering patterns by

displaying the value of �e(E z) on a circle of radius 4λ located

around the antenna-scatterer system in the three following cases:

(1) the case of Fig. 4.19 (original) with the triangle alone, (2) the

case of Fig. 4.20 (coated), and (3) the triangle of Fig. 4.20 without

the coating (reversed). It is obvious that the coating restores the

field distribution independently of the object present in the central

hole.

The numerical computation is performed using the finite element

method (via the free GetDP (Dular et al., 1998) and Gmsh (Geuzaine

and Remacle, 2009) software tools). The mesh is made of 148,000
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0.2

0.1

–0.1

–0.2

1 2 3 64

Re(Ez) (V/m)  vs. q(rad)

coated

original

reversed

Figure 4.21 The value of the electric field (the real part of E z) on a

circle of radius 4λ concentric with the cloak is represented as a function

of the position angle θ (increasing counterclockwise and with θ = 0

corresponding to the point the most on the right). The three configurations

considered here are the ones of Fig. 4.20 (coated), Fig. 4.19 (original), and

the triangle of Fig. 4.20 without the coating (reversed).

second-order triangles, including the perfectly matched layers used

to truncate the computation domain. The singularity of ε and μ

requires a very fine mesh in the vicinity of the inner boundary

of the cloak (see Fig. 4.18) and is also responsible for the small

discrepancies between the numerical model and a perfect cloak

(see Fig. 4.20), including the nonzero field in the hole of the

cloak.

Note that a small technical problem arises in practice when rule

(4.14) is applied: The material properties are defined piecewise

on various domains, and it is very useful to know explicitly the

boundaries of these domains, e.g., to build the finite element mesh

(see Fig. 4.18). These boundaries are curves in the cross section

and are thus contravariant objects. Therefore, their transformation

requires the inverse map (see Fig. 4.17) ϕ−1 from M to N .

Fortunately, map (4.27) is very simple to invert. More explicitly, for

a given curve x(t) of parameter t in the initial Cartesian coordinates,

its push forward by Pendry’s map is:

x′(t) = ϕ−1(x(t)) =
(

R2 − R1

R2

+ R1

‖x(t)‖
)

x(t), (4.28)

with the same variation of the parameter t and ‖x‖ = r . Note that the

most common curves used in the design of devices, i.e., line segments
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and arc of circles, are transformed to less usual curves except for

radial segments (with respect to the center of the cloak) and arc of

circles concentric with the cloak.

In Fig. 4.20, the image by ϕ−1 of the triangle of Fig. 4.19 is

the curvilinear triangle inside the coating region of the cloak. In

practice, this anamorphosis of the triangle is described by three

splines interpolating each 40 points that are images of points of the

segments by ϕ−1.
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Chapter 5

Propagation in Periodic Media: Bloch
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5.1 Bloch Wave Theory

In this section, we study the fields that can exist in an infinite

metamaterial. Considering the infinite structure allows us to obtain

a very precise and elegant way of characterizing the (photonic) band

structure and the dispersion curves of the medium.

5.1.1 The Periodic Structure

The structure is defined by repeating periodically an elementary

cell Y along its basis vectors ai , where according to the dimension

i belongs to {1}, {1, 2}, or {1, 2, 3}. The underlying structure is thus

an integer lattice with basis ai . In one dimension, the metamaterial
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is simply characterized by its period [0, d[. In higher dimensions,

the period is made of all the points M such that: OM = xi ai , xi ∈
[0, 1[ (where a sum is implied over each pair of repeated index).

Generically, a vector belonging to the lattice is denoted by T = ni ai

with integer coefficients ni . We also define the so-called reciprocal

lattice, which is a lattice whose basis vectors ai are defined by:

ai · a j = 2πδi
j . where δ

j
i is the Kronecker symbol. The Brillouin

zone Y ∗ is defined as the set of points P such that OP = yi ai , yi ∈
[−1/2, 1/2[. Generically, a vector belonging to the reciprocal lattice

is denoted by G = ni ai for some integers ni .

5.1.2 Waves in a Homogeneous Space

We want to be able to characterize the waves that can exist in

an infinite periodic medium. Let us first consider the case of a

homogeneous medium and the scalar wave equation for harmonic

waves: 	u + k2u = 0. We want to find all the bounded functions

u satisfying this equation, for all values of k. Let us pretend for

the moment that we do not know that a basis of solutions is the

plane waves of the form exp(ik · y). If we rewrite the problem in

the following form: Find a function u and a positive number E such

that: −	u = E u, it appears as a spectral one: The point is now to

determine the eigenvalues and eigenvectors of some linear operator

(here the Laplacian). In order to do so, let us Fourier transform the

function u(y):

u(y) = (2π)−N/2

∫
RN

û(k)eik·ydk. (5.1)

This leads to the relation: (‖k2‖ − E )û(k) = 0. This shows that

û(k) is not a function but a Schwartz distribution, in fact: û =
A(k)δ(‖k2‖ − E ), that is, it is proportional to the Dirac distribution

whose support is a spherical shell of radius E .a We then obtain

u(y) = (2π)−N/2
∫
S

N−1
E

A(k)eik·ydkb. A solution to the spectral

aIts action on a regular test function φ is 〈δ(‖k‖2 − E ), ψ〉 = ∫
S

N−1
E

φ(s)ds , where

S
N−1
E is the sphere of radius

√
E in RN

bFor N = 2, it reads as:

u(y1, y2) = (2π)−1

∫ √
E

−√E
eik1 y1

(
A+(k1)ei

√
E−k2

1
y2 + A−(k1)e−i

√
E−k2

1
y2

)
dk1.

In this formula, y1 and y2 can be exchanged.
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problem (5.1) is, thus, a continuous sum of plane waves with

some amplitude factor: The spectral problem is parametrized by

plane waves. The very reason why this decomposition works is

the fact that all translations of space Tu, u ∈ RN ,c commute with

the Laplacian; therefore, the translations and the Laplacian have a

common basis of eigenvectors. This basis is formed with plane waves

(Tu(eik·y) = e−ik·ueik·y).

If the wavenumber k = ‖k‖ is given, the set of parameters is

a spherical shell of dimension N − 1 (a shell of dimension 0 is

just a pair of points symmetric with respect to the origin). The

decomposition can also be taken in reverse order: We can begin by

fixing the wavevector k. Then for the plane wave with wavevector k,

the eigenvalue is k2 and the associated frequency is ω = ck. From

this point of view, one frequency is associated with only one energy.

Still, we can remark that it is possible to decompose any k ∈ RN , in

the following form:

k = kb + 2πp,

where p is a vector with integer components (i.e., p ∈ ZN) and k
belongs tod Y ∗ = [−π, π[N . If we use only Y ∗ and not the entire space

RN to parametrize the spectral problem, then with a wavevector

kb ∈ Y ∗ is now associated an infinite set of frequencies ωp =
c|kb + 2πp| and an infinite set of eigenvectors, the so-called Bloch

waves:

ψp(kb, y) = exp(ikb · y)φp(kb, y), (5.2)

where φp(y) = exp(2iπp · y) (it is a Y -periodic function). Using this

formulation, the Fourier integral of u(y) can be written:

u(y) =
∫

Y ∗

∑
p

up(y)eikb·yφp(y)dy, (5.3)

where up(y)= (2π)−N/2û(k−2πp). This expression can be extended

so as to deal with non-homogeneous media.

cA translation acts on a function f of the variable y ∈ RN in the following way:

Tu( f )(y) = f (y− u).
dThe notation is not innocent. What we do amounts to decomposing the space RN

into cubic boxes of side 1, which endows it with a lattice structure of basic cell

Y = [0, 1[N , whose corresponding Brillouin zone is Y ∗ .
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5.1.3 Bloch Modes

Let us now consider a metamaterial with basic cell Y and a partial

differential operator with periodic coefficient L that describes

wave propagation in the medium. For instance, L can be the

Helmholtz-like operator: −ε(y)−1	 or −div(ε(y)−1 grad(·)), or else

the full Maxwell system: curl(ε(y)−1 curl(·)). In such a situation, the

Fourier transform cannot lead easily to the solution because of the

inhomogeneity of space. The idea behind Bloch waves is to find a

way to generalize the Fourier transform to operators with periodic

coefficients. The first point at issue is that the space is now really

periodic and not homogeneous. It is no longer invariant under an

arbitrary translation but only by those of the form ni ai , ni ∈ Z.

The consequence is that plane waves are no longer solutions to

the propagation equation. However, the form of Bloch waves given

in Eq. 5.2, where now φp(k, y) is an unknown Y -periodic function,

shows that they transform in the following way under a translation

of the direct lattice:

ψp(kb, y+ T) = exp(ikb · T)ψp(kb, y) (5.4)

The function is then said to be pseudo-periodic. This suggests that

we look for a decomposition such as that in Eq. 5.2, where the plane

waves of the homogeneous space are now replaced by Bloch waves

(i.e., the product of a plane wave by a Y -periodic function).

For such a decomposition to hold, we have to show that we

can reduce the spectral problem by imposing the quasi-periodicity

condition (5.4) and obtain an equivalent problem. In other words,

we do not want to skip any solution by requesting that they be

pseudo-periodic.

The first step consists in associating with any square integrable

function u on RN a family of pseudo-periodic functions indexed by k.

This is done by means of the Wannier transform:

W(u)(k, y) =
∑

T

u(y− T)eik·T , (5.5)

where the sum runs over all vectors of the direct lattice, and

k belongs to the Brillouin zone Y ∗. It is easy to check that the
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transformed function is quasi-periodic with respect to y:

W(k, y+ T′) =
∑

T

u(y+ T′ − T)eik·T (5.6)

= eik·T′∑
T′′

u(y− T′′)eik·T′′ (5.7)

= eik·T′W(k, y+ T′). (5.8)

We can get back the original function by applying the inverse

transform:

W∗(ψ)(y) = 1

|Y ∗|
∫

Y ∗
ψ(k, y)dk . (5.9)

Let us apply the inverse Wannier transform to W(u):

W∗ (W(u)(k, y)) = 1

|Y ∗|
∫

Y ∗
W(u)(k, y)dk (5.10)

= 1

|Y ∗|
∫

Y ∗

∑
T

u(y− T)eik·Tdk (5.11)

=
∑

T

u(y− T)
1

|Y ∗|
∫

Y ∗
eik·Tdk. (5.12)

The conclusion follows by the identity: 1
|Y ∗|
∫

Y ∗ eik·Tdk = δT
0 .

Conversely, starting with a pseudo-periodic function ψ(k, y), we

have:

W (W∗(ψ)) (k′, y) = 1

|Y ∗|
∑

T

∫
Y ∗
ψ(k, y− T)eik′ ·Tdk

Using the pseudo-periodicity of ψ , we get

W (W∗(ψ)) (k′, y) = 1

|Y ∗|
∫

Y ∗
ψ(k, y)

∑
T

ei(k′−k)·Tdk

where the conclusion follows from the identity:

1

|Y ∗|
∑

T

ei(k′−k)·T =
∑

G

δ(k− k′ − G) .

In order to be clearer, we state explicitly the spaces involved: The

Wannier transform is defined on the space H = L2(RN) and is into

V , which is the set of functions defined on RN × Y ∗ such that

‖ψ‖2 =
∫

Y ∗×Y
|ψ(y, k)|2dkdy < +∞ ,
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V is a Hilbert space for the scalar product:

(ψ1, ψ2) =
∫

Y ∗×Y
ψ1(k, y)ψ2(k, y) dkdy.

We have WW∗ = IV and W∗W = IH. We can obtain all functionse

of V by fixing first the wavevector k and then by considering the

functions uk such that:

uk(y+ T) = eik·Tuk(y).

This set of functions is denoted by Hk:

Hk =
{

u, u(y+ T) = eik·Tu(y), ‖u‖2 = 1

|Y |
∫

Y
|u(y)|2dy < +∞

}
.

(5.13)

We now have a mathematical set-up that shows that any square

integrable function can be considered a sum of quasi-periodic

functions, by using the Wannier transform. The eigenvalues and

eigenvectors of L can thus be obtained by solving the equation

in Hk, then by varying k in Y ∗. For each k ∈ Y ∗, we therefore

look for functions u ∈ Hk such that L(u) = E (k)u. Once the

eigenvalues E (k) are obtained, the corresponding frequencies are

ω/c = √E (k). In the Hilbert space Hk, the operator L has a set

of quasi-periodic eigenfunctions that form a Hilbert-basis, the so-

called Bloch waves. They are numbered by an integerf p and are of

the form:

ψp(k, y) = eik·yφp(k, y), (5.14)

where φp is a Y -periodic function. They are associated with a set of

eigenvalues E p(k) that are ordered in ascending order: E1 < E2 <

. . . < E p < . . . By varying k in Y ∗, we obtain all the eigenvalues as a

set of surfaces indexed by p.

We have, in fact, obtained a new way of decomposing a square

integrable functiong u. Indeed, for a given k, W(u)(·, k) belongs to

eMathematically speaking, the space V can be identified with a direct Hilbertian

integral: V = ∫ ⊕
Y ∗ Hkdk, which corresponds to the notion of a “continuous” sum

of Hilbert spaces.
fThis is the band index, and it labels the various allowed frequencies for a given

wavevector k.
gThe reader can remark that, in fact, the decomposition is valid in RN for an arbitrary

N , not necessarily for N = 1, 2, 3.
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Hk; therefore, it can be expanded on the basis {ψp}p:

W(u)(k, y) =
∑

p

Wp(k)ψp(k, y)

where Wp(k)= ∫Y W(u)(k, y)φp(k, y)e−ik·ydy, which can be written

as:

Wp(k) =
∫

Y

∑
T

u(y− T)eik·Tφp(k, y)e−ik·ydy (5.15)

=
∑

T

∫
Y+T

u(y)φp(k, y)e−ik·ydy (5.16)

=
∫
RN

u(y)φp(k, y)e−ik·ydy (5.17)

By using the inverse transform W∗, we get:

u(y) = 1

|Y ∗|
∫

Y ∗

∑
p

Wp(k)φp(k, y)eik·ydk .

Finally, we can state the Bloch decomposition theorem, which is a

generalization of the Fourier transform:

Theorem 5.1. Let u be a function of L2(RN), where its pth Bloch
coefficient is defined by:

û p(k) =
∫
RN

u(y)φp(k, y)e−ik·ydy .

We then have the Bloch decomposition formula:

u(y) = 1

|Y ∗|
∫

Y ∗

∑
p

û p(k)φp(k, y)eik·ydk

and the Parseval identity:∫
RN
|u(y)|2dy = 1

|Y ∗|
∫

Y ∗

∑
p

|û p(k)|2dk.

5.2 Computation of Band Structures

5.2.1 Two-Dimensional Metamaterials

The previous section has shown that the bounded fields that can

exist in an infinite crystal could be parametrized by the set Y ∗. In
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Figure 5.1 A few cells of a dielectric metamaterial with square lattice.

order to describe in a concise way these fields, only a reduced part

of the Brillouin zone is used. Indeed, the crystal is invariant under

some group of symmetries, and hence it is not necessary to use

the entire Brillouin zone in order to compute the spectrum. For

instance, let us consider a two-dimensional photonic crystal with

a square lattice of side a. The crystal is made of rods of radius

R and relative permittivity ε2 embedded in a matrix of relative

permittivity ε1 (see Fig. 5.1). The Brillouin zone is a square of side

2π/a (see Fig. 5.2). It suffices to describe only 1/8th of this square

(namely, the triangle in bold lines in Fig. 5.2) in order to characterize

the spectrum entirely. The description can be further reduced by

restricting k to the lines connecting the points of higher symmetries:

�, X , M (a more detailed treatment of the symmetries can be found

in Ref. (Sakoda, 2005)).

Let us characterize the z-independent fields that can exist in such

a structure. The Maxwell system can be reduced to two fundamental

cases of polarization:

(1) The E || case in which the electric field is parallel to the z axis,

and its z component E z satisfies

−ε−1(y)	E z =
(ω

c

)2

E z (5.18)

(2) The H|| case in which the magnetic field is parallel to the z axis,

and its z component Hz satisfies:

−div(ε−1(y)gradHz) =
(ω

c

)2

Hz. (5.19)
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π/a

π/a

−π/a

−π/a Γ
X

M

Figure 5.2 The Brillouin zone Y ∗.

In both cases, we have to compute the Fourier series of ε−1(y). We

write:

ε−1(y) =
∑

G

ε̂−1(G)eiG·y.

For a circular fiber, we have explicitly:

ε̂−1(G) =

⎧⎪⎪⎨⎪⎪⎩
1

ε1

f + 1

ε2

(1− f ), G = 0[
1

ε1

− 1

ε2

]
f

2 J 1(‖G‖R)

‖G‖R
, G �= 0

(5.20)

where f = π R2

a2 is the filling fraction and J 1 is the Bessel function of

order 1.

We now choose a vector k ∈ Y ∗ and look for Bloch waves solving

these equations. First, we expand any Bloch wave associated with E z

and Hz in Fourier series:{
E z(k, y) =∑G Ê (k, G)ei(G+k)·y

Hz(k, y) =∑G Ĥ (k, G)ei(G+k)·y .
(5.21)

It suffices now to insert the expansions into Eqs. 5.18 and 5.19 to

obtain two eigenvalues problems:{∑
G′(k+ G) · (k+ G′)ε̂−1(G− G′)Ĥ (k, G′) = (ωc )2 Ĥ (k, G)∑
G′(k+ G′)2ε̂−1(G− G′)Ê (k, G′) = (ωc )2 Ê (k, G)

(5.22)
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Figure 5.3 The band structure for the structure depicted in Fig. 5.1. The

relative permittivity of the rods is 12, and the radius-to-period ratio is 1/4.

Solving these linear systems for a given value of k and keeping only

the positive eigenvalues, we obtain the allowed frequencies
ωp

c . By

varying k along the lines connecting the points of high symmetry,

we obtain the curves in Figs. 5.3 and 5.4 (a complete example of a

triangular lattice is given in Ref. (Plihal and Maradudin, 1991)).

5.3 Periodic Waveguides

5.3.1 Bloch Modes

Although real structures are finite, and one is often interested in

the study of defects, the determination of modes in ideal periodic

structures is of foremost importance. The Floquet–Bloch theory

reduces the problem to the study of a single cell (Langlet et al.,

1995) as recalled in Section 5.1. The purpose of this section is to

show how to combine this feature with finite element modeling

in order to obtain numerical solutions to propagating modes in

periodic structures. We consider a structure still invariant along the
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Figure 5.4 A system with a continuous translational invariance along the

z axis together with a two-dimensional periodicity in the xy-plane and the

general form of propagating modes Uk(x , y, z, t).

z axis but now also periodic in the xy-plane. Given two linearly

independent vectors a and b in the xy-plane, the set of points

na + mb is called the lattice. The primitive cell Y is a subset of R2

such that for any point r′ of R2, there exist unique r = xεx + yεy ∈ Y
and n, m ∈ Z such that r′ = r + na + mb. A function U (r) is Y -
periodic if U (r+ na+mb) = U (r) for any n, m ∈ Z. The waveguide

is Y -periodic if εr (x , y) and μr (x , y) are Y -periodic functions.

Possible PECs and PMWs have boundaries that form a Y -periodic

pattern.

The problem reduces to looking for Bloch wave solutions Uk that

have the form (Bloch theorem, see Section 5.1):

Uk(r) = eik·rU(r) = ei(kx x+ky y)U(x , y) , ∀ (x , y) in R2 (5.23)

where U(x , y) is a Y -periodic function and k = kxε
x + kyε

y ∈ Y ∗ ⊂
R2 is a parameter (the Bloch vector or quasi-momentum in solid

state physics). Y ∗ ⊂ R2 is the dual cell (first Brillouin zone), i.e., the

primitive cell of the reciprocal lattice determined by the two vectors

a∗ and b∗ such that a∗ · a = 2π , a∗ · b = 0, b∗ · a = 0, b∗ · b = 2π

(it is worth noting that this dot product is, in fact, a duality product:

k · r =< k, r >). Such solutions Uk are said to be (k, Y )-periodic in

the sequel (though they are not periodic but quasi-periodic).
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To specify the class of solutions to our spectral problem, one

introduces the Hilbert space

[L2
� (k, Y )]

3 =
{

Uk|Y ∈ [L2(Y )]3 , Uk is (k, Y )-periodic
}

(5.24)

of (k, Y )-periodic square integrable functions with values in C3.

The pair (Ek, Hk) associated with the Bloch vector k is called

an electromagnetic propagating Bloch mode if Ek and Hk are (k, Y )-

periodic fields satisfying the spectral problem:{
curlβ Hk = −iωε0εr (x , y)Ek

curlβ Ek = iωμ0μr (x , y)Hk
(5.25)

with ⎧⎪⎪⎨⎪⎪⎩
(β, ω, k) ∈ R+ × R+ × Y ∗

(Ek, Hk) �= (0, 0)

Ek, Hk ∈ [L2
� (k, Y )]

3
.

(5.26)

Looking for solutions that are Bloch functions in [L2
� (k, Y )]

3
ensures

the well-posedness of this spectral problem, as a replacement for

the Sommerfeld radiation condition (or other decaying conditions

for the far field), which is usually enforced in the presence of

compact obstacles in the medium. The finite element formulation

is completely identical to the non-periodic one. The only difference

is that the study is now reduced to the primitive cell Y , which

is meshed and in which the integrations are performed. Some

technique must be found to ensure that the solution is a (k, Y )-

periodic Bloch mode. This can be enforced by using special

boundary conditions as explained in the next section.

5.3.2 The Bloch Conditions

In order to find Bloch modes with the finite element method, some

changes have to be made with respect to classical boundary value

problems, which will be named Bloch conditions (Langlet et al., 1995;

Nicolet et al., 2004). For the sake of simplicity, one considers first

a square cell Y =]0, 1[×]0, 1[ as an example. To avoid tedious

notations, the case of a scalar field U k(x , y) (time and z dependence

are irrelevant here and it is no particular problem to extend this



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Periodic Waveguides 155

Uk (x, y )

Uk (x + 1, y) =

Uk (x, y)e+ikx

Uk (x, y − 1) =

Uk (x, y)e−iky

Uk (x, y + 1) =

Uk (x, y)e+iky

Uk (x − 1, y) =

Uk (x, y)e−ikx

Figure 5.5 Bloch theorem and virtual periodic mesh.

method to vector quantities and edge elements) is considered on the

square cell Y with Bloch conditions relating the left-hand and the

right-hand sides (Fig. 5.5) since here, for simplification and clarity

of the discussion, we take into account only the periodicity along

the x coordinate. We consider the weak formulation for the scalar

problem div(ξ grad U k) + k2
0χ U k = 0 (where ξ and χ are periodic

functions representing the material properties) along the classical

approach. It is based on the construction of a weighted residual

that is very classical but for the weight function U ′k(r) that is quasi-

periodic (Demésy et al., 2007; 2009):

−
∫

Y

(
ξ grad U k

)
· grad U ′k + k2

0χ U k U ′k d�

+
∫
∂Y

U ′k
(
ξ grad U k

)
· ndS = 0. (5.27)

The integrations are naturally performed on the basic cell Y and the

only difference with respect to bounded problem in the treatment of

the boundary conditions.

Denote by �l and �r the lines parallel to the y axis delimiting a

cell of the lattice, respectively, from its left and right neighbor cells.
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Considering explicitly that U k(r) = eikx xU #(x , y) is quasi-periodic

along x by introducing the x-periodic function U #(x , y) and similarly

that U ′k(r) = eikx xU ′#(x , y), the boundary term for �l ∪ �r is∫
�l∪�r

U ′k
(
ξ grad U k

)
·ndS=

∫
�l∪�r

U ′#e−ikx x
(
ξ grad(U #e+ikx x )

)
·ndS

=
∫
�l∪�r

U ′#
(
ξ (grad U # + ikxU #ex )

)
· ndS = 0

because the integrand U ′#
(
ξ (grad U # + ikxU #ex )

)
· n is periodic

along x and the normal n has opposite directions on�l and�r so that

the contributions of these two boundaries have the same absolute

value with opposite signs. The contribution of the boundary terms
vanishes, therefore, naturally in the case of quasi-periodicity.

We consider now the problem of practically imposing the quasi-

periodic Bloch conditions in the computing code. The set of nodes

is separated into three subsets: the nodes on the left side, i.e., with

x = 0, corresponding to the column array of unknowns ul; the

nodes on the right side, i.e., with x = 1, corresponding to the

column array of unknowns ur; and the internal nodes, i.e., with

x ∈]0, 1[, corresponding to the column array of unknowns u. One

has the following structure for the matrix problem (corresponding,

in fact, to natural boundary conditions, i.e., Neumann homogeneous

boundary conditions, as the degrees of freedom on the boundaries

have to be kept as unknowns in the problem):

A

⎛⎝ u
ul

ur

⎞⎠ = b (5.28)

where A is the (square Hermitian) matrix of the system and b is the

right-hand side. The solution to be approximated by the numerical

method is a Bloch function U k(x , y) = U (x , y)ei(kx x+ky y) with U
being Y -periodic and in particular U (x+1, y) = U (x , y). Therefore,

the relation between the left-hand and the right-hand sides is:

U k(1, y) = U (1, y)ei(kx+ky y) = U k(0, y)eikx ⇒ ur = uleikx . (5.29)

The set of unknowns can thus be expressed as a function of the

reduced set u and ul via:⎛⎝ u
ul

ur

⎞⎠ = P
(

u
ul

)
with P =

⎛⎝1 0
0 1
0 1eikx

⎞⎠ (5.30)
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where 1 and 0 are identity and null matrices, respectively, with

suitable dimensions. The finite element equations related to the

eliminated nodes have now to be taken into account. Due to the

periodicity of the structure, the elements on the left of the right side

correspond to the elements on the left of the left side (Fig. 5.5).

Therefore, their contributions (i.e., the equations corresponding

to ur) must be added to the equations corresponding to ul with

the right phase factor, i.e., e−ikx , which amounts to multiplying the

system matrix by P∗ (the Hermitian of P). Finally, the linear system

to be solved is:

P∗AP
(

u
ul

)
= P∗b (5.31)

where it is worth noting that the system matrix is still Hermitian,

which is important for numerical computation. Now a generalized

eigenvalue problem (with natural boundary conditions) Au = λBu
is transformed to a Bloch mode problem according to P∗APu′ =
λP∗BPu′, which is still a large sparse Hermitian generalized

eigenvalue problem.

5.3.3 A Numerical Example

As an illustration, the Bloch finite element method will be used to

reproduce the results presented in (Maradudin and McGurn, 1994),

where they were obtained using a plane wave method.

The basic cell is a rhombus made of two equilateral triangles: The

lattice vectors are a = �εx and b = �
2
εx + �

√
3

2
εy , where � is the

nearest neighbor distance, i.e., the length of the sides of the cells.

This cell contains a circular air inclusion (radius R = 0.48�, so that

the filling fraction f = 0.8358 and εr = 1.0) surrounded by solid

dielectric material (εr = 13.0). The vectors of the reciprocal lattice

are a∗ = 2π
�
εx − 2π

√
3

3�
εy and b∗ = 4π

√
3

3�
εy and the first Brillouin

zone is hexagonal. The irreducible part can be represented by the

triangle with vertices � = (0, 0), M = (0, 2π√
3�

), and K = ( 2π
3�

, 2π√
3�

).

The basic cell is meshed with 4628 triangles. All these data are

summarized in Fig. 5.6. Note that the circular inclusion is too large

to fit as a single piece inside the basic cell, hence the splitting into

four parts in the corners.
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Figure 5.6 Two-dimensional periodic structure (the basic cell is rhombic

with a side length �) with a circular air inclusion (radius R = 0.48�,

εr = 1.0) surrounded by solid dielectric material (εr = 13.0): meshing

of a basic rhombic cell with 4628 triangles (left), representation of some

lattice cells with the lattice vectors a = �εx and b = �

2
εx + �

√
3

2
εy (centre),

representation of some cells of the reciprocal lattice with the lattice vectors

a∗ = 2π
�
εx − 2π

√
3

3�
εy and b∗ = 4π

√
3

3�
εy and the irreducible part of the

first Brillouin zone represented by the triangle with vertices � = (0, 0),

M = (0, 2π√
3�

), and K = ( 2π
3�

, 2π√
3�

) (right).

The Bloch boundary conditions connect the degrees of freedom

on opposite sides of the rhombus: The degrees of freedom on

the lower left-hand side are equal to the corresponding ones on

the upper right-hand side multiplied by a phase factor equal to

ei(−kx
�
2
−ky

√
3�
2

), and the degrees of freedom on the lower right-hand

side are equal to the corresponding ones on the upper left-hand side

multiplied by a phase factor equal to ei(+kx
�
2
−ky

√
3�
2

).

The dispersion curves shown in Figs. 5.7 and 5.8 correspond

to pulsations ω (only the ω such that ω < 2πc
�

are represented

here) of the propagation modes associated with a given value of the

propagation constant β (β� = 0.0, 2.0, 4.0, 2π).

The value 1.0 is given to � for the numerical computations. The

boundary of the irreducible Brillouin zone is sampled with 120
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Figure 5.7 Dispersion curves corresponding to Bloch waves in conical

mounting in the lattice of Fig. 5.6 for β� = 0.0 (left) and β� = 2.0 (right).
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Figure 5.8 Dispersion curves corresponding to Bloch waves in conical

mounting in the lattice of Fig. 5.6 for β� = 4.0 (left) and β� = 2π (right).

points (40 on each side of the triangle). The computation of the

eigenvalues associated with a particular Bloch vector takes a few

minutes on a typical 2.6 GHz desktop microcomputer. The results are

in good agreement with those of (Maradudin and McGurn, 1994).
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5.3.4 Direct Determination of the Periodic Part

Another possible approach is to solve an equation with periodic

boundary conditions, which gives directly the periodic vector field

U(r) involved in the Bloch mode U(r)eik·r.

The equation curlβ(μ−1
r curlβ Ek) = k2

0εr Ek with Ek(r) =
E(r)eik·r gives for E:

curlβ, k(μ−1
r curlβ, k E) = k2

0εr E

where curlβ, k U = curlβ(U(r)eik·r)e−ik·r. The following transverse

operators are defined for a scalar function ϕ(x , y) and a transverse

field v = vx (x , y)ex + vy(x , y)ey:

gradt, k ϕ = gradt ϕ + ikϕ
rott, kv = rottv+ ik× v
divt, k v = divt v+ ik · v

and one has:

curlβ, k (v+ ϕez) = rott, kv+ (gradt, k ϕ − i βv)× ez

= rottv+ ik× v+ (gradt ϕ + ikϕ − i βv)× ez .

The weak formulation is now:

R(β; E, E′) =
∫
�

μ−1
r curlβ, k E · curlβ, k E′ dxdy

−k2
0

∫
�

E · E′ εr dxdy = 0 , ∀ E′ ∈ H (curlβ, k, �)

with periodic boundary conditions on E (Boffi et al., 2002) (which

can be seen as a particular case of the Bloch boundary conditions

with kx = ky = 0 ).

5.4 Evanescent Waves

5.4.1 Introduction

The preceding section was devoted to the study of the bounded

solutions to the Maxwell system in a periodic medium. This

restriction to waves that do not grow at infinity has led to the

onset of forbidden bands. In fact, solutions to the Maxwell system

do exist in the forbidden bands: they are exponentially growing.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Evanescent Waves 161

For a perfect infinite periodic structure, these solutions are not

relevant from a physical point of view. They become, however,

of prime importance whenever the translational invariance of the

medium is broken, for instance by the insertion of defects, sources,

interfaces, and so on. Let us give a very simple example in case of

a vacuum. By using the Fourier transform, any field can be written

as an integral of plane waves: U (x) = ∫ u(k)eik·xd3k, which are the

Bloch waves of a homogeneous medium. If now there is a localized

source, say a source for a cylindrical wave H0(k0 P M) at some point

P , then the radiated field contains dissociated plane waves (i.e.,

propagative in direction x and evanescent in direction y) as it is

shown by considering the plane wave expansion of the source:

H0(
√

x2 + y2) = 1
π

∫ ei(αx+β|y|)
β

dα. All the plane waves with α > (ω/c)

are obviously evanescent in the y direction, away from the source.

In any physical situation, the structures used are always finite

and, therefore, present one or more interfaces with the open space,

from which evanescent waves are radiated. Bloch waves are no

longer sufficient to describe the electromagnetic field and should be

complemented by evanescent waves.

A theoretical approach only involving equivalent medium the-

ories, group velocity, and more generally quantities only derived

from the band structure is certainly incomplete. The goal of this

section is to analyze the relative importance of the evanescent waves

(the near-field) with respect to Bloch modes for describing the

propagation of the electromagnetic field inside a metamaterial.

5.4.2 Propagating and Non-Propagating Modes

We consider a structure that is periodic in the x direction with

period d, finite in the y direction with height h, and invariant in

the z direction. It can be a structured membrane or a grating or a

metasurface.

With these hypotheses, the Maxwell system can be reduced to

two scalar equations corresponding to the two usual polarized

cases: s-polarized (electric field linearly polarized along z) or p-

polarized (magnetic field linearly polarized along z). According

to the polarization, u(x , y) will represent the z component of
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the electric field (s-polarization) or of the magnetic field ( p-

polarization).

Our aim is to characterize the field by taking specifically into

account the existence of an interface.

We denote

U =
{ (

u, ∂yu
)

: s-polarization(
u, ε−1∂yu

)
: p-polarization

where ε is the relative permittivity. We start by rewriting the

Helmholtz equation in the form of an evolution equation with

respect to the variable y:

∂yU = M(x , y)U . (5.32)

where the matrix M is defined by:

M =
(

0 Id

B 0

)
(5.33)

and

B =
{ −∂2

x − k2ε (x , y) : s-polarization

−∂x
(
ε−1 (x , y) ∂x

)− k2 : p-polarization
(5.34)

For an infinite medium, the spectral analysis of these operators

may be performed by means of Bloch waves theory exposed in

the preceding chapter. However, the medium that is considered

here is finite in the y direction; therefore, a bi-dimensional Bloch

analysis is not sufficient. Because, for simplicity reasons, it was

assumed that the medium is infinite in the x direction, only a

Bloch analysis in the x direction is performed: The field can be

decomposed as the sum of pseudo-periodic fields in the x direction:

u (x + dx , y) = exp (iαdx ) u (x , y), where α belongs to the interval

Y = [−π/d, π/d[.h

We obtain a family of operators Bα which are defined by (5.34)

and with domain Dα = {u ∈ L2 ([0, d]) , Bu ∈ L2 ([0, d]) , u(x +
dx , y) = eiαdx u(x , y)}. Bα can be put in diagonal form (see the

appendix at the end of this chapter). Let us denote by
{
λ j,α
}

j

its eigenvalues and
{∣∣U j,α

〉}
the corresponding eigenvectors. This

hIn a diffraction problem, where the structure is illuminated by a plane wave under

the incidence θ , it holds α ≡ k sin θ mod (π/d).
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diagonal form allows to consider the square root
√

Bα of Bα . It is

the operator whose matrix elements in the basis
{∣∣U j,α

〉}
are simply〈

Ui,α
∣∣√Bα

∣∣U j,α
〉 =√λ j,α .

Proposition 1: Bα is self-adjoint with compact resolvent and is
bounded below.

Proof: That B is self-adjoint is a standard result (Reed and Simon,

1978). Let us prove that B is bounded below:

(Bu, u) =
∫
|∂x u|2 dx − k2

∫
ε (x , y) |u|2 dx ,

denoting by εm the essential sup of ε (x), we have:

(Bu, u)+k2εm (u, u) =
∫
|∂x u|2 dx+k2

∫
(εm − ε (x , y)) |u|2 dx > 0

showing that B + k2εm is positive and hence B is bounded below.

Finally, let us consider the equation Bun + αun = fn, with ( fn) a

bounded sequence of functions of L2 ([0, d]) and γ such that B+γ is

strictly positive. Then we have: ‖ fn‖L2 > C ‖u‖H 1 , for some constant

C . Hence, by Rellich–Kondrachov theorem, (B + α)−1 is compact,

and therefore B has compact resolvent. �
We denote by

{
λ j,α
}

j the spectrum of Bα . As a corollary to

proposition 1, we may define the square root of Bα (with a cut along

iR− and with
√

1 = 1).

We can now define a propagator R(y, y0), which is an operator

depending on two variables (y, y0) satisfying:

U (y) = R(y, y0)U (y0) (5.35)

The propagator allows to compute the solution at y when it is

known at y0, hence the word “propagator,” because it propagates

the solution from one point to another. Let us denote T the so-

called transfer matrix that relates U (0) to U (h). Evidently, we have

T = Rs (0, h).

Proposition: The spectrum of T is invariant under the transforma-
tion τ → 1/τ .

Proof: Let us denote: U =
(
� 0

0 −�
)

Then T −1 = UT U implying

that T and T −1 are isospectral. In the case of a product of such

operators, it holds:

�nTn = �nUT −1
n U = U�nT −1

n U
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Now it remains to show that T1T2 and T2T1 are isospectral. Consider

a spectral couple (X , μ) of T1T2:

T1T2 X = μX

keeping in mind that T is invertible, it comes:

T2T1(T −1
1 X ) = μ(T −1

1 X )

and the result. �
The propagative modes correspond to the eigenvalues of T of

modulus 1 and thus to the negative eigenvalues of Bα . They are

finitely many.

Theorem: T can be put in diagonal form.
This is a very important result, because it shows that propagating

modes should be supplemented by evanescent ones.

The transfer matrix T of the basic layer links
(

u(x , h), ∂yu (x , h)
)

to
(

u (x , 0) , ∂yu (x , 0)
)

, but as such it is not very easy to handle. A

simpler representation can be obtained by considering the Rayleigh

expansions of the field at the boundaries of the structure.

Above or under the structure, the field can be expanded on a

Rayleigh basis:

u(x , 0) =
∑

n

(
A+n eiβn y + A−n e−iβn y) eiαn x , u(x , h)

=
∑

n

(
B+n eiβn(y−h) + B−n e−iβn(y−h)

)
eiαn x .

where αn = α + nK , K = 2π
d and β2

n = k2 − α2
n . By considering the

field directly on the boundary, we have the following expansions for

the field and its normal derivative:

u(x , 0) =
∑

n

(
An + A−n

)
eiαn x , u(x , h) =

∑
n

(
B+n + B−n

)
eiαn x

(5.36)

∂yu(x , 0) =
∑

n

iβn
(

A+n − A−n
)

eiαn x , ∂yu(x , h)

=
∑

n

iβn
(

B+n − B−n
)

eiαn x . (5.37)

The knowledge of Â± = {A±n
}

n (resp. B̂± = {B±n
}

) gives the value

of the derivatives. Therefore, rather than computing the monodromy
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matrix as defined above, we compute the matrix T (α, λ) such that

T (α, λ)

(
Â+

Â−

)
=
(

B̂+

B̂−

)
(5.38)

Let us denote eiky h , ky ∈
[−π

h , π
h

]
, an eigenvalue of T (α, λ)

of modulus one, and � =
(
ψ̂+, ψ̂−

)
an associated eigenvector,

T
(
ψ̂+, ψ̂−

)
= eiky h

(
ψ̂+, ψ̂−

)
and therefore, � (x , y + h) =

eiky hψ (x , y). Consequently, (x , y) → eiαxψ (x , y) is a Bloch wave

associated to the Bloch vector (α, β). The non-propagating modes

inside the crystal correspond to eigenvectors associated with

eigenvalues that are not of modulus one. We have thus obtained a

decomposition of the modes by means of a family of monodromy

operators parametrized by α ∈ Y .

5.4.3 Analysis of the Spectrum

At a given wavelength, Bloch waves are not sufficient to compute

the scattering properties of the metamaterial; the evanescent waves

should be added. In order to quantify the relative importance of the

evanescent waves, a decomposition of the field is needed.

5.4.3.1 Decomposition of the field

Suppose that the electromagnetic field is known on the upper face

of the structure (by means of the coefficients Â±); it is then possible

to expand it on the various modes that exist in the structure. More

precisely, the matrix T (α, λ) can be put in the diagonal form:

T (α, λ) = Tp ⊕ Te ⊕ Ta

where Tp is a finite rank operator corresponding to propagative

waves and Te, Ta correspond to the evanescent and anti-evanescent

modes.

With this decomposition, the vector� =
(
ψ̂+, ψ̂−

)
can be put in

the form � = (�p, �e, �a
)

. Whence we define the branching ratios

πp (resp. πe, πa) of the field on the propagating (resp. evanescent,

anti-evanescent) modes by:
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Figure 5.9 Basic cell of the lamellar grating.

πp =
∥∥�p

∥∥2

N (�)
, πe = ‖�e‖2

N (�)
, πa = ‖�a‖2

N (�)
(5.39)

where N (�) = ∥∥�p
∥∥2 + ‖�e‖2 + ‖�a‖2.

The point of the above decomposition is to quantify the relative

importance of the various modes in the total field existing in the

crystal, in order to understand to what extend the field is not solely

described by Bloch waves.

5.4.3.2 Cut wavelengths and classification of the conduction
bands

Let us now turn to some numerical examples. The structure is a

lamellar grating made of square rods of permittivity 12 embedded in

vacuum (see Fig. 5.9). In Fig. 5.10, we give the absolute values of the

eigenvalues of T (θ , λ) versus the wavelength. The conduction bands

are the regions with a horizontal straight line (|μ| = 1). For each

wavelength λ, there is a finite, possibly empty, set of eigenvalues of

modulus one
{

eiβn(λ)
}

n and an infinite set of eigenvalues that do not

belong to U ={z ∈ C, |z| = 1}.
Within a given conduction band, hence locally, it is possible to

define continuous sections λ → μn (λ) ∈ sp
(

T(θ ,λ)

)
representing

the evolution of the eigenvalues of the monodromy operator with

respect to the wavelength. At some values of the wavelength,
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l/d
Figure 5.10 (a) Absolute value of the eigenvalues of Tθ (λ).

however, these sections may encounter a bifurcation, or cut-off:

The eigenvalue leaves U and the associated modes give rise to an

evanescent mode and an anti-evanescent mode. At such a branch

point, the section λ → μn (λ) is not differentiable and may cross

other sections. As a consequence, a global description of the sections

is not possible in that case.

A very simple example of branch point is the extinction of

a diffracted order of a diffraction grating. The diffracted order

becomes then evanescent. Another elementary situation is that of a

stratified medium (a Bragg mirror, for instance) in which case there

are only two propagative modes in the conduction bands and one

evanescent and one anti-evanescent mode inside the gaps.

For a given incidence, a gap is then an interval of wavelengths

over which all the propagative eigenvalues have encountered a

bifurcation. In Fig. 5.10, we have this situation, for instance, within

the intervals (2.56, 2.95) and (4.8, 6.12).
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When the wavelength tends to infinity, it is known that the device

finally behaves as a homogeneous slab (Felbacq and Bouchitté,

1997; Felbacq et al., 1998; Jikov et al., 1994), and then there are

only two propagative modes (up and down), which means that all

“sections” finally bifurcate definitely, except the one corresponding

to the homogenization regime. In that case, there are still evanescent

(and anti-evanescent) waves, but with a very huge damping

exponent so that πe and πa are small.

However, before that regime, eigenvalues may experience a local

bifurcation: that is, they leave U over a finite interval but finally

come back on it (in Fig. 5.10, this situation happens over the

interval (2.48, 2.95)). What is important to note is that such a

local bifurcation may affect only one eigenvalue, so that within a

conduction band, there may be evanescent field coming from such

a bifurcation, hence with a small damping exponent.

We give in Fig. 5.11 the absolute values of the eigenvalues of

matrix T(0,λ) (normal incidence) as well as the projection ratio πp, e, a .

l/d

Figure 5.11 Branching ratios for εext = 2.26, ε2 = 4, ε1 = 1, h/d = 1, d1/d
= 0.5, s-polarized waves.
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The region (1.75, 2.5) corresponds to a local conduction band, i.e.,

in which there is a local bifurcation of an eigenvalue. We see that

the part of the field on the non-propagating modes is not at all

negligible so that the field cannot be described solely by Bloch

modes. It is, therefore, important to distinguish between various

kinds of conduction bands: An important part of the field inside the

structure can be made of non-propagative modes. Especially near a

band edge, one should be very careful before deriving the behavior

of the field solely by looking at the dispersion diagram: It does not

take into account the evanescent waves.
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Chapter 6

Scattering Problems: Numerical
Methods (FEM, Multiple Scattering)
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6.1 Finite Element Method

6.1.1 Introduction

The problem of diffraction of electromagnetic waves by a monodi-

mensional grating is abundantly treated in scalar and conical

cases. Much less numerical methods allow the calculation of the

vector field diffracted by a bidimensional grating (also called

bigrating or crossed-grating). We can refer to the work of Moharam

et al. (Moharam et al., 1995) for a description of the so-called

rigorous coupled wave method (RCWA), also known as Fourier modal
method (see, for instance, Li, 1997 or Noponen and Turunen, 1994).

The recent work of Schuster et al. (2007) combines the approaches
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of Moharam et al. (2015) and Popov and Nevière (2001) to improve

the convergence of the differential method (DM) introduced in

1978 (Maystre and Nevière, 1978; Vincent, 1978). These two close

methods are generally considered to be low memory consuming and

consequently mainly employed for the electromagnetic modeling

of crossed-gratings. We can also cite the method of transformation
of coordinates (or C method (Derrick et al., 1979; Granet, 1998;

McPhedran et al., 1982), whose most recent developments were

made by Harris et al. (1996)), the Rayleigh method (RM) (Greffet

et al., 1992), and the method of variation of boundaries (Bruno

and Reitich, 1993, 1998). Finally, the finite-difference time-domain
(FDTD) method (Yee, 1966; Yee and Chen, 1997) allows the

computation of electromagnetic vector fields. Its principle relies on

the numerical propagation of a pulse along a temporal grid together

with a spatial one. Therefore, this method is not well adapted to the

harmonic domain that we are addressing here.

The finite element method (FEM), a very general method

dedicated to solving partial differential equations, is massively

used in mechanics, fluid mechanics for instance, but not much in

electromagnetism at visible frequencies. Volakis et al. (1994) wrote

a formulation adapted to tridimensional diffusion problems. Wei

et al. (2007) described another formulation adapted to diffusion

problems as well and suggested it could be applied to periodic

problems without giving any numerical illustrations.

In this chapter, we propose a new formulation of the FEM

dedicated to the modeling of vector diffraction by crossed-gratings

and entirely based on the use of second-order edge elements.

The main advantage of this method is its complete independence

toward the shape of the diffractive element, whereas methods listed

above require time- or memory-consuming adjustments depending

on whether the geometry of the groove region presents oblique

edges (e.g., RCWA, (Popov et al., 2002)), high permittivity contrasts

or inappropriate height-to-period ratios (e.g., RM, (Greffet and

Maassarani, 1990)). Its principle relies on a rigorous treatment of

the plane wave sources through an equivalence of the diffraction

problem with a radiation one, whose sources are localized inside

the diffractive element itself, as proposed in the scalar case for

monodimensional gratings (Demésy et al., 2007, 2009).
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This approach combined with the use of second-order edge

elements allowed us to retrieve with a good accuracy the few

numerical academic examples found in the literature. Furthermore,

we provide a new reference case combining major difficulties such

as a nontrivial toric geometry together with strong losses and a

high permittivity contrast. Finally, we discuss computation time and

convergence as a function of the mesh refinement as well as the

choice of the direct solver.

6.1.2 Theoretical Developments

6.1.2.1 Set up of the problem and notations

We denote by x, y, and z the unit vectors of the axes of an orthogonal

coordinate system Oxyz. We only deal with time-harmonic fields;

consequently, electric and magnetic fields are represented by

the complex vector fields E and H , with a time dependance in

exp(−i ω t).

Besides, in this chapter, for the sake of simplicity, the materials

are assumed to be isotropic and, therefore, are optically charac-

terized by their relative permittivity ε and relative permeability μ

(note that the inverse of relative permeabilities in this chapter are

denoted by ν). It is important to note that lossy materials can be

studied, the relative permittivity and relative permeability being

represented by complex-valued functions. The crossed-gratings that

we are addressing in this chapter can be split into the following

regions as suggested in Fig. 6.1:

• The superstrate (z > z0) is supposed to be homogeneous,

isotropic, and lossless and, therefore, characterized by its

relative permittivity ε+ and its relative permeability μ+(=
1/ν+) and we denote k+ := k0

√
ε+μ+, where k0 := ω/c.

• The multilayered stack (zN < z < z0) is made of N layers,

which are supposed to be homogeneous and isotropic and,

therefore, characterized by their relative permittivity εn,

their relative permeability μn(= 1/νn), and their thickness

en. We denote kn := k0

√
εn μn for n integer between 1 and N .

• The groove region (zg < z < zg−1), which is embedded in the

layer indexed g (εg, μg) of the previously described domain,
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Figure 6.1 Scheme and notations of the studied bi-gratings.

is heterogeneous. Moreover, the method used in this chapter

works irrespective of whether the diffractive elements are

homogeneous: The permittivity and permeability can vary

continuously (gradient index gratings) or discontinuously

(step index gratings). This region is, thus, characterized by

the scalar fields εg′(x , y, z) and μg′(x , y, z)(= 1/νg′(x , y, z)).
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The groove periodicities along the x axis and y axis are

denoted by dx and dy , respectively, in the sequel.

• The substrate (z < zN) is supposed to be homogeneous

and isotropic and, therefore, characterized by its relative

permittivity ε− and its relative permeability μ−(= 1/ν−) and

we denote k− := k0

√
ε−μ−.

Let us emphasize the fact that the method principles remain

unchanged in the case of several diffractive patterns made of distinct

geometry and/or material.

The incident field on this structure is denoted by:

E inc = Ae
0 exp(i k+ · r) (6.1)

with

k+ =
⎡⎣α0

β0

γ0

⎤⎦ = k+

⎡⎣− sin θ0 cosϕ0

− sin θ0 sinϕ0

− cos θ0

⎤⎦ (6.2)

and

Ae
0 =

⎡⎣ E 0
x

E 0
y

E 0
z

⎤⎦ = Ae

⎡⎣ cosψ0 cos θ0 cosϕ0 − sinψ0 sinϕ0

cosψ0 cos θ0 sinϕ0 + sinψ0 cosϕ0

− cosψ0 sin θ0

⎤⎦ , (6.3)

where ϕ0 ∈ [0, 2π], θ0 ∈ [0, π/2] and ψ0 ∈ [0, π] (polarization

angle).

The problem of diffraction that we address in this chapter is,

therefore, to find the solution to Maxwell’s equations in harmonic

regime, i.e., the unique solution (E , H ) of:{
curl E = i ωμ0 μ H (6.4a)

curl H = −i ω ε0 ε E (6.4b)

such that the diffracted field satisfies the so-called outgoing waves
condition (OWC (Zolla and Petit, 1996)) and where E and H are

quasi-biperiodic functions with respect to the x and y coordinates.

One can choose arbitrarily to calculate E , since H can be deduced

from Eq. (6.4a). The diffraction problem amounts to looking for the

unique solution E to the so-called vectorial Helmholtz propagation

equation, deduced from Eqs. (6.4a,b):

Mε,ν := −rot (ν rotE )+ k2
0 ε E = 0 (6.5)

such that the diffracted field satisfies an OWC and where E is a quasi-

biperiodic function with respect to the x and y coordinates.
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6.1.2.2 From a diffraction problem to a radiative one with
localized sources

According to Fig. 6.1, the scalar relative permittivity ε and inverse

permeability ν fields associated to the studied diffractive structure

can be written using complex-valued functions defined by part and

taking into account the notations adopted in Section 6.1.2.1:

υ(x , y, z) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
υ+ for z > z0

υn for zn−1 > z > zn with 1 ≤ n < g
υg′(x , y, z) for zg−1 > z > zg

υn for zn−1 > z > zn with g < n ≤ N
υ− for z < zN

(6.6)

with υ = {ε, ν}, z0 = 0 and zn = −
∑n

l=1 el for 1 ≤ n ≤ N .

It is now convenient to introduce two functions ε1 and ν1

corresponding to the associated multilayered case (i.e., the same

stack without any diffractive element) constant over Ox and Oy:

υ1(x , y, z) :=
⎧⎨⎩
υ+ for z > 0

υn for zn−1 > z > zn with 1 ≤ n ≤ N
υ− for z < zN

(6.7)

with υ = {ε, ν}.
We denote by E0 the restriction of E inc to the superstrate region:

E0 :=
{

E inc for z > z0

0 for z ≤ z0

(6.8)

We are now in a position to define more explicitly the vectorial

diffraction problem that we are dealing with in this chapter. It

amounts to looking for the unique vector field E solution to:

Mε,ν(E ) = 0 such that E d := E − E0 satisfies an OWC. (6.9)

In order to reduce this diffraction problem to a radiation one, an

intermediary vector field denoted by E1 is necessary and is defined

as the unique solution to:

Mε1,ν1
(E1) = 0 such that E d

1 := E1 − E0 satisfies an OWC.

(6.10)

The vector field E1 corresponds to an ancillary problem associated

to the general vectorial case of a multilayered stack, which can be
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calculated independently. This general calculation is seldom treated

in the literature; we present a development in Appendix. Thus, from

now on, E1 is considered a known vector field. It is now relevant

to introduce the unknown vector field E d
2 , simply defined as the

difference between E and E1, which can finally be calculated thanks

to the FEM and:

E d
2 := E − E1 = E d − E d

1 . (6.11)

It is important to note that the presence of the superscript d
is not fortuitous: As a difference between two diffracted fields

Eq. (6.11), E d
2 satisfies an OWC, which is of prime importance in our

formulation. By taking into account these new definitions, Eq. (6.9)

can be written as:

Mε,ν(E d
2 ) = −Mε,ν(E1) , (6.12)

where the right-hand member is a vector field, which can be

interpreted as a known vectorial source term −S1(x , y, z) whose
support is localized inside the diffractive element itself. To prove it, let

us introduce the null term defined in Eq. (6.10) and use the linearity

of M , which leads to:

S1 :=Mε,ν(E1) =Mε,ν(E1)−Mε1,ν1
(E1)︸ ︷︷ ︸

=0

=Mε−ε1,ν−ν1
(E1) .

(6.13)

6.1.2.3 Quasi-periodicity and weak formulation

The weak form is obtained by multiplying scalarly Eq. (6.9) by

weighted vectors E ′ chosen among the ensemble of quasi-biperiodic

vector fields of L2(rot) (denoted by L2
(

rot, (dx , dy), k
)

) in �:

Rε,ν(E , E ′) =
∫
�

−rot (ν rotE ) · E ′ + k2
0 ε E · E ′ d� (6.14)

Integrating Eq. (6.14) by part and using the Green–Ostrogradsky

theorem lead to:

Rε,ν(E , E ′) =
∫
�

−ν rotE · rotE ′ + k2
0 ε E · E ′ d�

−
∫
∂�

(n× (ν rotE )) · E ′ dS (6.15)
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where n refers to the exterior unit vector normal to the surface ∂�

enclosing �.

The first term of this sum concerns the volume behavior of the

unknown vector field, whereas the right-hand term can be used to

set boundary conditions (Dirichlet, Neumann, or so-called quasi-

periodic Bloch–Floquet conditions).

The solution E d
2 to the weak form associated to the diffraction

problem, expressed in its previously defined equivalent radiative
form in Eq. (6.12), is the element of L2

(
rot, (dx , dy), k

)
such that:

∀E ′ ∈ L2(curl, dx , dy , k),

⎧⎨⎩
∀(x , y, z) ∈ �s ,

Rεg ,νg (E d
2 , E ′) = −Rεg ,νg (S1, E ′)

∀(x , y, z) ∈ �\�s , Rε,ν(E d
2 , E ′) = 0

.

(6.16)

In order to rigorously truncate the computation, a set of Bloch

boundary conditions are imposed on the pair of planes defined by

(y = −dy/2, y = dy/2) and (x = −dx/2, x = dx/2). One can

refer to (Nicolet et al., 2004) for a detailed implementation of Bloch

conditions adapted to the FEM. A set of perfectly matched layers is

used to truncate the substrate and the superstrate along the z axis

(see (Agha et al., 2008) for practical implementation of PML adapted

to the FEM). Since the proposed unknown E d
2 is quasi-biperiodic

and satisfies an OWC, this set of boundary conditions is perfectly

reasonable: E d
2 is radiated from the diffractive element toward the

infinite regions of the problem and decays exponentially inside the

PMLs along the z axis. The total field associated to the diffraction

problem E is deduced at once from Eq. (6.11).

6.1.2.4 Edge or Whitney 1-form second-order elements

In the vectorial case, edge elements (or Whitney forms) make a

more relevant choice (Dular et al., 1995) than nodal elements. Note

that a lot of work (see for instance (Ingelstrom, 2006)) has been

done on higher-order edge elements since their introduction by

Bossavit and Mayergoyz (1989). These elements are suitable to the

representation of vector fields such as E d
2 , by letting their normal

component to be discontinuous and imposing the continuity of their

tangential components. Instead of linking the degrees of freedom

(DOF) of the final algebraic system to the nodes of the mesh, the
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Figure 6.2 Degrees of freedom of a second-order tetrahedral element.

DOFs associated to edge (face) elements are the circulations (flux)

of the unknown vector field along (across) its edges (faces).

Let us consider the computation cell � together with its

exterior boundary ∂�. This volume is sampled in a finite number

of tetrahedron according to the following rules: Two distinct

tetrahedrons have to either share a node, an edge, or a face or have

no contact. Let us denote by T the set of tetrahedrons, F the set

of faces, E the set of edges, and N the set of nodes. In the sequel,

one will refer to the node n = {i}, the edge e = {i, j}, the face

f = {i, j, k}, and the tetrahedron t = {i, j, k, l}.
Twelve DOFs (two for each of the six edges of a tetrahedron) are

classically derived from line integral of weighted projection of the

field E d
2 on each oriented edge e = {i, j}:⎧⎪⎪⎨⎪⎪⎩

ϑi j =
∫ j

i
E d

2 · ti j λi dl

ϑ j i =
∫ i

j
E d

2 · t j i λ j dl
, (6.17)

where ti j is the unit vector and λi , the barycentric coordinate of node

i , is the chosen weight function.

According to Yioultsis and Tsiboukis (1996b), a judicious choice

for the remaining DOFs is to make use of a tangential projection of
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the 1-form E d
2 on the face f = {i, j, k}.⎧⎪⎪⎨⎪⎪⎩

ϑi jk =
∫∫

f

(
E d

2 × n+i jk

) · grad λ j ds

ϑikj =
∫∫

f

(
E d

2 × n−i jk

) · grad λk ds
. (6.18)

The expressions for the shape functions, or basis vectors, of the

second-order 1-form Whitney element are given by:{
wi j = (8 λ2

i − 4 λi ) grad λ j + (−8 λi λ j + 2 λ j ) grad λi

wi jk = 16 λi λ j grad λk − 8 λ j λk grad λi − 8 λk λi grad λ j
.

(6.19)

This choice of shape function ensures (Yioultsis and Tsiboukis,

1996a) the following fundamental properties: every degree of

freedom associated with a shape function should be zero for any

other shape function. Finally, an approximation of the unknown

E d
2 projected on the shape functions of the mesh m (E d, m

2 ) can be

derived by:

E d, m
2 =

∑
e∈E

ϑe we +
∑
f ∈F

ϑ f w f . (6.20)

Weight functions E ′ (c.f. Eq. (6.16) are chosen in the same space

as the unknown E d
2 , L2(rot, (dx , dy), k). According to the Galerkin

formulation, this choice is made so that their restriction to one

biperiod belongs to the set of shape functions mentioned above.

Inserting the decomposition of E d
2 of Eq. (6.20) in Eq. (6.16) leads to

the final algebraic system, which is solved in the following numerical

examples, thanks to direct solvers.

6.1.3 Energetic Considerations: Diffraction Efficiencies
and Losses

Contrary to modal methods based on the determination of Rayleigh

coefficients, the rough results of the FEM are three complex

components of the vector field E d interpolated over the mesh of the

computation cell. Diffraction efficiencies are deduced from this field

maps as follows.

As a difference between two quasi-periodic vector fields (see

Eq. (6.9)), E d is quasi-biperiodic and its components can be
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expanded as a double Rayleigh sum:

E d
x (x , y, z) =

∑
(n, m)∈Z2

ud, x
n, m(z) ei (αn x+βm y), (6.21)

with αn = α0 + 2π
dx

n, βm = β0 + 2π
dy

m and

ud, x
n, m(z) = 1

dx dy

∫ dx/2

−dx/2

∫ dy/2

−dy/2

E d
x (x , y, z) e−i (αn x+βm y) dx dy . (6.22)

By inserting the decomposition of Eq. (6.21), which is satisfied by E d
x

everywhere but in the groove region, into the Helmholtz propagation

equation, one can express Rayleigh coefficients in the substrate and

the superstrate as follows:

ud, x
n, m(z) = ex , p

n, m e−i γ+n, m z + ex , c
n, m e i γ+n, m z (6.23)

with γ±
2

n, m = k±
2 − α2

n − β2
m, where γn, m (or −i γn, m) is positive.

The quantity ud, x
n, m is the sum of a propagative plane wave (which

propagates toward decreasing values of z, superscript p) and a

counterpropagative wave (superscript c). The OWC verified by E d

imposes:

∀(n, m) ∈ Z
2

{
ex , p

n, m = 0 for z > z0

ex , c
n, m = 0 for z < zN

(6.24)

Equation (6.22) allows to evaluate numerically ex , c
n, m (ex , p

n, m) by double

trapezoidal integration of a slice of the complex component E d
x at an

altitude zc fixed in the superstrate (substrate). It is well known that

the mere trapezoidal integration method is very efficient for smooth

and periodic functions (integration on one period). The same holds

for E d
y and E d

z components as well as their coefficients ey, {c, p}
n, m and

ez, {c, p}
n, m .

The dimensionless expression of the efficiency of each reflected

and transmitted (n, m) order (Noponen and Turunen, 1994) is

deduced from Eqs. (6.23) and (6.24):⎧⎨⎩ Rn, m = 1
A2

e

γ+n, m

γ0
ec

n, m(zc) · ec
n, m(zc) for zc > z0

Tn, m = 1
A2

e

γ−n, m

γ0
ep

n, m(zc) · ep
n, m(zc) for zc < zN

, (6.25)

with e{c, p}
n, m = ex , {c, p}

n, m x+ ey, {c, p}
n, m y+ ez, {c, p}

n, m z.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

182 Scattering Problems

Furthermore, normalized losses Q can be obtained through the

computation of the following ratio:

Q =

∫
V

1

2
ω ε0 �m(εg′) E · E dV∫

S

1

2
�e{E0 × H0} · n dS

. (6.26)

The numerator in Eq. (6.26) clarifies losses in watts by biperiod of

the considered crossed-grating and is computed by integrating the

Joule effect losses density over the volume V of the lossy element.

The denominator normalizes these losses to the incident power, i.e.,

the time-averaged incident Poynting vector flux across one biperiod

(a rectangular surface S of area dx dy in the superstrate parallel to

Oxy, whose normal oriented along decreasing values of z is denoted

by n). Since E0 is nothing but the plane wave defined at Eqs. (6.2)

and (6.3), this last term is equal to (A2
e
√
ε0/μ0 dx dy)/(2 cos(θ0)).

Volumes and normal to surfaces being explicitly defined, normalized

losses (Q) are quickly computed once E is determined and

interpolated between mesh nodes.

Finally, the accuracy and self-consistency of the whole calculation

can be evaluated by summing the real parts of transmitted and

reflected efficiencies (n, m) to normalized losses:

Q+
∑

(n, m)∈Z2

�e{Rn, m} +
∑

(n, m)∈Z2

�e{Tn, m} ,

quantity to be compared to 1. The sole diffraction orders taken into

account in this conservation criterium correspond to propagative

orders whose efficiencies have a non-null real part. Indeed,

diffraction efficiencies of evanescent orders, corresponding to pure

imaginary values of γ±n, m for higher values of (n, m) (see Eq. (6.23))

are also pure imaginary values as it appears clearly in Eq. (6.25).

Numerical illustrations of such global energy balances are presented

in the next section.

6.1.4 Accuracy and Convergence

6.1.4.1 Classical crossed gratings

There are only a few references in the literature containing

numerical examples. For each of them, the problem only consists of
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Figure 6.3 Configuration of the studied cases.

three regions (superstrate, grooves, and substrate) as summed up

in Fig. 6.3. For the four selected cases (among the six found in the

literature) published, results are compared to the ones given by our

formulation of the FEM. Moreover, in each case, a satisfying global

energy balance is detailed. Finally, a new validation case combining

all the difficulties encountered when modeling crossed-gratings is

proposed: a nontrivial geometry for the diffractive pattern (a torus),

made of an arbitrary lossy material leading to a large step of

index and illuminated by a plane wave with an oblique incidence.

Convergence of the FEM calculation as well as computation time will

be discussed in Section 6.1.4.2.

Checkerboard grating: In this example worked out by Li (1997),

the diffractive element is a rectangular parallelepiped as shown in

Fig. 6.4 and the grating parameters highlighted in Fig. 6.3 are as

follows: ϕ0 = θ0 = 0 ◦, ψ0 = 45 ◦, dx = dy = 5 λ0

√
2/4, h = λ0,

ε+ = εg′ = 2.25, and ε− = εg = 1.

Our formulation of the FEM shows good agreement with the

Fourier modal method developed by Li (1997), since the maximal

relative difference between the array of values presented in Table 6.1

remains lower than 10−3. Moreover, the sum of the efficiencies of

propagative orders given by the FEM is very close to 1 in spite of the

addition of all errors of determination upon the efficiencies.
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Figure 6.4 Diffractive element with vertical edges (a).�e{E x } in V/m (b).

Table 6.1 Energy balance

FMM (Li, 1997) FEM

T−1,−1 0.04308 0.04333

T−1, 0 0.12860 0.12845

T−1,+1 0.06196 0.06176

T0,−1 0.12860 0.12838

T0, 0 0.17486 0.17577

T0,+1 0.12860 0.12839

T+1,−1 0.06196 0.06177

T+1, 0 0.12860 0.12843

T+1,+1 0.04308 0.04332

∑
(n, m)∈Z

�e{Rn, m} - 0.10040

TOTAL - 1.00000

Source: Ref. (Li, 1997).

Pyramidal crossed grating: In this example first worked out by

Derrick et al. (1979), the diffractive element is a pyramid with

rectangular basis as shown Fig. 6.5, and the grating parameters

highlighted in Fig. 6.3 are the following: λ0 = 1.533, ϕ0 = 45 ◦,
θ0 = 30 ◦, ψ0 = 0 ◦, dx = 1.5, dy = 1, h = 0.25, ε+ = εg = 1,

and ε− = εg′ = 2.25.

Results given by the FEM show good agreement with the ones

of the C–method (Derrick et al., 1979; Granet, 1998), the Rayleigh

method (Greffet et al., 1992), and the RCWA (Bräuer and Bryngdahl,
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Figure 6.5 Diffractive element with oblique edges (a).�e{E y} in V/m (b).

Table 6.2 Comparison of results from various studies

Derrick et al. Greffet et al. Bräuer and Bryngdahl Granet

1979 1992 1993 1998 FEM

R−1, 0 0.00254 0.00207 0.00246 0.00249 0.00251

R0, 0 0.01984 0.01928 0.01951 0.01963 0.01938

T−1,−1 0.00092 0.00081 0.00086 0.00086 0.00087

T0,−1 0.00704 0.00767 0.00679 0.00677 0.00692

T−1, 0 0.00303 0.00370 0.00294 0.00294 0.00299

T0, 0 0.96219 0.96316 0.96472 0.96448 0.96447

T1, 0 0.00299 0.00332 0.00280 0.00282 0.00290

TOTAL 0.99855 1.00001 1.00008 0.99999 1.00004

1993). Note that, in this case, some edges of the diffractive element

are oblique.

Bi-sinusoidal grating: In this example worked out by Bruno and

Reitich (1993), the surface of the grating is bi-sinusoidal (see

Fig. 6.6) and described by the function f defined by:

f (x , y) = h
4

[
cos

(
2π x

d

)
+ cos

(
2π y

d

)]
(6.27)

The grating parameters highlighted in Fig. 6.3 are the following:

λ0 = 0.83, ϕ0 = θ0 = ψ0 = 0 ◦, dx = dy = 1, h = 0.2, ε+ = εg = 1,

and ε− = εg′ = 4.

Note that to define this surface, the bi-sinusoid was first sampled

(15 × 15 points) and then converted to a 3D file format. This
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Figure 6.6 Diffractive element with oblique edges (a).�e{E z} in V/m (b).

Table 6.3 Energy balance

(Bruno and Reitich, 1993) FEM

R−1, 0 0.01044 0.01164

R0,−1 0.01183 0.01165

T−1,−1 0.06175 0.06299

∑
(n, m)∈Z

�e{Rn, m} – 0.10685

∑
(n, m)∈Z

�e{Tn, m} – 0.89121

TOTAL – 0.99806

Source: Ref. (Bruno and Reitich, 1993).

sampling can account for the slight differences with the results

obtained using the method of variation of boundaries developed by

Bruno and Reitich (1993).

Circular apertures in a lossy layer: In this example worked out by

Schuster et al. (2007), the diffractive element is a circular aperture

in a lossy layer, as shown in Fig. 6.7, and the grating parameters

highlighted in Fig. 6.3 are the following: λ0 = 500 nm, ϕ0 = θ0 = 0 ◦,
ψ0 = 45 ◦, dx = dy = 1 μm, h = 500 nm, ε+ = εg = 1,

εg′ = 0.8125+ 5.2500 i , and ε− = 2.25.

In this lossy case, results obtained with the FEM show good

agreement with the ones obtained with the FMM (Li, 1997), the

differential method (Arnaud, 2008; Schuster et al., 2007), and the

RCWA (Moharam et al., 1995). Joule losses inside the diffractive

element can be easily calculated, which allows to provide a global
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Figure 6.7 Lossy diffractive element with vertical edges (a).�e{E y} in V/m

(b).

Table 6.4 Comparison of various studies with energy balance

(Moharam et al. (Li (Schuster et al.

1995) 1997) 2007) FEM

R0, 0 0.24657 0.24339 0.24420 0.24415∑
(n, m)∈Z

�e{Tn, m} − − − 0.29110

∑
(n, m)∈Z

�e{Rn, m} − − − 0.26761

Q − − − 0.44148

TOTAL − − − 1.00019

energy balance for this configuration. Finally, the convergence of the

value R0, 0 as a function of the mesh refinement will be examined.

Lossy torus grating: We finally propose a new test case for crossed-

grating numerical methods. The major difficulty of this case lies both

in the nontrivial geometry (see Fig. 6.8) of the diffractive object and

in the fact that it is made of a material chosen so that losses are

optimal inside it. The grating parameters highlighted in Fig. 6.3 and

Fig. 6.8 are the following: λ0 = 1, ϕ0 = ψ0 = 0 ◦, dx = dy = 0.3 ,

a = 0.1, b = 0.05, R = 0.15, h = 500 nm, ε+ = εg = 1,

εg′ = −21+ 20 i , and ε− = 2.25.

Table 6.5 illustrates the independence of our method toward the

geometry of the diffractive element. εg′ is chosen so that the skin

depth has the same order of magnitude as b, which maximizes losses.

Note that energy balances remain very accurate at normal and
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Figure 6.8 Torus parameters (a); coarse mesh of the computational domain

(b).

Table 6.5 Energy balances at

normal and oblique incidence

FEM 3D θ = 0◦ θ = 40◦

R0, 0 0.36376 0.27331

T0, 0 0.32992 0.38191

Q 0.30639 0.34476

TOTAL 1.00007 0.99998

oblique incidence, in spite of both the nontriviality of the geometry

and the strong losses.

6.1.4.2 Convergence and computation time

Convergence as a function of mesh refinement: When using modal

methods such as the RCWA or the differential method, based on

the calculation of Rayleigh coefficients, a number proportional to

NR has to be determined a priori. The unknown diffracted field

is then expanded as a Fourier series, injected under this form in

Maxwell’s equations, which annihilates the x- and y-dependencies.

This leads to a system of coupled partial differential equations

whose coefficients can be structured in a matrix formalism. The

resulting matrix is sometimes directly invertible (RCWA) depending
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on whether the geometry allows to suppress the z-dependence,

which makes this method adapted to diffractive elements with

vertically (or decomposed in staircase functions) shaped edge. In

some other cases, one has to use integral methods to solve the

system, as in the pyramidal case for instance, which leads to the so-

called differential method. The diffracted field map can be deduced

from these coefficients. If the grating configuration only calls for a

few propagative orders and if the field inside the groove region is

not the main information sought for, these two close methods allow

to determine the repartition of the incident energy quickly. However,

if the field inside the groove region is the main piece of information,

it is advisable to calculate many Rayleigh coefficients corresponding

to evanescent waves, which increases the computation time as (NR )3

or even (NR )4.

FEM relies on the direct calculation of the vectorial components

of the complex field. Rayleigh coefficients are determined a
posteriori. The parameter limiting the computation time is the

number of tetrahedral elements along which the computational

domain is split up. We suppose that it is necessary to calculate at

least two or three points (or mesh nodes) per period of the field

(λ0/
√�e{ε}). Figure 6.9 shows the convergence of the efficiency

R0, 0 (circular apertures case, see Fig. 6.7) as a function of the mesh

refinement characterized by the parameter NM: The maximum size

of each element is set to λ0/(NM
√�e{ε}).

It is interesting to note that even if NM < 3, the FEM still gives

pertinent diffraction efficiencies: R0, 0 = 0.2334 for NM = 1 and

R0, 0 = 0.2331 for NM = 2. The Galerkin method (see Eq. (6.15))

corresponds to a minimization of the error (between the exact

solution and the approximation) with respect to a norm that can

be physically interpreted in terms of energy-related quantities.

Therefore, the finite element methods usually provide energy-

related quantities that are more accurate than the local values of the

fields themselves.

Computation time: All the calculations were performed on a server

equipped with 8 dual core Itanium1 processors and 256Go of

RAM. Tetrahedral quadratic edge elements were used together with

the direct solver PARDISO. Among different direct solvers adapted
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Figure 6.9 Convergence of R0, 0 in function of Nm (circular apertures

crossed grating).

Table 6.6 Computation time variations from various solvers

Computation time Computation time

Solver for 41720 DOF for 205198 DOF

SPOOLES 15 min 32 s 14 h 44 min

UMFPACK 2 min 07 s 1 h 12 min

PARDISO 57 s 16 min

to sparse matrix algebra (UMFPACK, SPOOLES, and PARDISO),

PARDISO turned out to be the less time-consuming one as shown

in Table 6.6.

Figure 6.10 shows the computation time required to perform the

whole FEM computational process for a system made of a number

of DOF indicated on the right-hand ordinate. It is important to note

that for values of NM lower than 3, the problem can be solved in less

than a minute on a standard laptop (4Go RAM, 2×2 GHz) with three

significant digits on the diffraction efficiencies. This accuracy is

more than sufficient in numerous experimental cases. Furthermore,

as far as integrated values are at stake, relatively coarse meshes
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Figure 6.10 Computation time and number of DOF as a function of NM .

(NM ≈ 1) can be used trustfully, authorizing fast geometric, spectral,

or polarization studies.

6.1.5 Conclusion

We have established a new vectorial formulation of the FEM,

allowing to calculate the diffraction efficiencies from the electric

field maps of an arbitrarily shaped grating embedded in multilay-

ered stack lightened by a plane wave of arbitrary incidence and

polarization angle. It relies on a rigorous treatment of the plane wave

sources problem through an equivalent radiation problem with

localized sources. Bloch conditions and PML have been implemented

to rigorously truncate the computational domain. Nowadays, the

efficiency of the numerical algorithms for sparse matrix algebra,

together with the available power of computers and the fact that

the problem reduces to a basic cell with a size of a small number of

wavelengths, makes the 3D problem very tractable as proved here.

The main advantage of this formulation is its complete generality

with respect to the studied geometries and the material properties,

as illustrated with the lossy tori grating nontrivial case. Its principle

remains independent of both the number of diffractive elements
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by period and the number of stack layers. Finally, choosing fully

anisotropic materials for the groove region or stack layers (see

Appendix for the principle of calculation of the ancillary problem

in this case) is possible. The weak form associated to the problem

would involve more terms, but it would not add any degree of

freedom to the final algebraic system. Its flexibility allowed us to

retrieve with accuracy the few numerical academic examples found

in the literature and established with independent methods.

Its remarkable accuracy observed in the case of coarse meshes

makes it a fast tool for the design and optimization of diffrac-

tive optical components (e.g., reflection and transmission filters,

polarizers, beam shapers, pulse compression gratings). Finally, its

complete independence toward both the geometry and the isotropic

constituent materials of the diffractive elements makes it a useful

tool for the study of metamaterials, finite-size photonic crystals,

periodic plasmonic structures.

6.1.6 Electric Vector Field in Multilayered Stack
Illuminated by a Plane Wave of Arbitrary Incidence
and Polarization

This appendix is dedicated to the determination of the vectorial

electric field in a dielectric stack illuminated by a plane wave

of arbitrary polarization and incidence angle. This calculation,

abundantly treated in the 2D scalar case, is generally not presented

in the literature since, as far as isotropic cases are concerned, it is

possible to project the general vectorial case on the two reference TE

and TM cases. However, the presented formulation can be extended

to a fully anisotropic case for which this TE/TM decoupling is no

longer valid and the three components of the field have to be

calculated as follows.

Let us consider the ancillary problem mentioned in Section

6.1.2.2, i.e., a dielectric stack made of N homogeneous, isotropic,

lossy layers characterized by their relative permittivity denoted by

ε j and their thickness e j . This stack is deposited on a homogeneous,

isotropic, possibly lossy substrate characterized by its relative

permittivity denoted by εN+1 = ε−. The superstrate is air, and its

relative permittivity is denoted by ε+ = 1. Finally, we denote by
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z j the altitude of the interface between the j th and j + 1th layers.

The restriction of the incident field E inc to the superstrate region

is denoted by E0. The problem amounts to looking for (E1,H1)

satisfying Maxwell’s equations in harmonic regime (see Eqs. (6.4a)

and (6.4b)).

Across the interface z = zj

By projection on the main axis of the vectorial Helmholtz propaga-

tion equation (Eq. (6.5)), the total electric field inside the j th layer

can be written as the sum of a propagative and a counterpropagative

plane waves:

E1(x , y, z) =

⎡⎢⎣ E x , j,+
1

E y, j,+
1

E z, j,+
1

⎤⎥⎦ exp
(

j (α0 x + β0 y + γ j z)
)

+

⎡⎢⎣ E x , j,−
1

E y, j,−
1

E z, j,−
1

⎤⎥⎦ exp
(

j (α0 x + β0 y − γ j z)
)

(6.28)

where

γ 2
j = k2

j − α2
0 − β2

0 (6.29)

What follows consists in writing the continuity of the tangential

components of (E1, H1) across the interface z = z j , i.e., the

continuity of the vector field � defined by:

� =

⎡⎢⎢⎢⎢⎣
E x

1

E y
1

i H x
1

i H y
1

⎤⎥⎥⎥⎥⎦ . (6.30)

The continuity of � along Oz together with its analytical expression

inside the j th and j + 1th layers allows to establish a recurrence

relation for the interface z = zj .

Then, by projection of Eqs. (6.4a) and (6.4b) on Ox , Oy, and Oz:⎡⎢⎢⎣
i β0 H z

1 − ∂H y
1

dz
∂H x

1

dz − i α0 H z
1

i α0 H y
1 − i β0 H x

1

⎤⎥⎥⎦ = −i ω ε

⎡⎢⎣ E x
1

E y
1

E z
1

⎤⎥⎦ (6.31)
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and ⎡⎢⎢⎣
i β0 E z

1 − ∂E y
1

∂z
∂E x

1

∂z − i α0 E z
1

i α0 E y
1 − i β0 E x

1

⎤⎥⎥⎦ = i ωμ

⎡⎢⎣ H x
1

H y
1

H z
1

⎤⎥⎦ . (6.32)

Consequently, the tangential components of H1 can be expressed in

function of tangential components of E1:⎡⎢⎣ωμ 0 β0

0 ωμ −α0

−β0 α0 −ω ε

⎤⎥⎦
︸ ︷︷ ︸

B

⎡⎢⎣i H x
1

i H y
1

i H z
1

⎤⎥⎦ =
⎡⎢⎣

∂E y
1

dz

− ∂E x
1

dz
0

⎤⎥⎦ . (6.33)

By noticing the invariance and linearity of the problem along Ox and

Oy, the following notations are adopted:{
U j,±

x = E x , j,±
1 exp(± i γ j z)

U j,±
y = E y, j,±

1 exp(± i γ j z)
(6.34)

and

" j =

⎡⎢⎢⎢⎢⎣
U +, j

x

U −, j
x

U +, j
y

U −, j
y

⎤⎥⎥⎥⎥⎦ . (6.35)

Thanks to Eqs. (6.28) and (6.32) and letting M = B−1, it comes for

the j th layer:

�(x , y, z) =

exp(i(α0 x + β0 y))

⎡⎢⎢⎢⎢⎣
1 1 0 0

0 0 1 1

γ j M j
12 −γ j M j

12 −γ j M j
11 γ j M j

11

γ j M j
22 −γ j M j

22 −γ j M j
21 γ j M j

21

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

� j

⎡⎢⎢⎣
U +, j

x

U −, j
x

U +, j
y

U −, j
y

⎤⎥⎥⎦ .

(6.36)

Finally, the continuity of � at the interface z = z j leads to:

" j+1(z j ) = �−1
j+1 � j " j (z j ). (6.37)

Normal components can be deduced using Eqs. (6.31) and (6.32).
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Traveling inside the j + 1th layer

Using Eq. (6.28), a simple phase shift allows to travel from z = z j to

z = zj+1 = z j − e j+1:

" j+1(z j+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp(−i γ j+1 0 0 0

e j+1)

0 exp(+i γ j+1 0 0

e j+1)

0 0 exp(−i γ j+1 0

e j+1)

0 0 0 exp(+i γ j+1

e j+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

T j+1

" j+1(z j )

(6.38)

Thanks to Eqs. (6.38) and (6.37), a recurrence relation can be

formulated for the analytical expression of E1 in each layer:

" j+1(z j+1) = T j+1 �
−1
j+1 � j " j (z j ) (6.39)

Reflection and transmission coefficients

The last step consists in the determination of the first term "0,

which is not entirely known, since the problem definition only

specifies U 0,+
x and U 0,+

y , imposed by the incident field E0. Let us use

the OWC hypothesis verified by E d
1 (see Eq. (6.10)). This hypothesis

directly translates the fact that none of the components of E d
1 can

be traveling either down in the superstrate or up in the substrate:

U N+1,−
y = U N+1,−

x = 0. Therefore, the four unknowns U 0,−
x , U 0,−

y ,

U N+1,+
y , and U N+1,+

x , i.e., transverse components of the vector fields

reflected and transmitted by the stack verify the following equation

system:

"N+1(zN) = (�N+1)−1 �N

N−1∏
j=0

TN− j (�N− j )−1 �N− j−1 "0(z0)

(6.40)

This allows to extend the definition of transmission and reflection

widely used in the scalar case. Finally, "N+1 is entirely defined.
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Using the recurrence relations of Eqs. (6.39) and (6.28) leads to an

analytical expression for E d
1 in each layer.

6.2 Multiple Scattering

6.2.1 Introduction

For definiteness, cartesian axes (O, x , y, z) are chosen. We consider

a finite set of N scatterers Dn (spheres, ellipsis, cylinders, or any

arbitrary shape) numbered n = 1, 2, . . . , N . We denote D the set

of scatterers Dn: D = ⋃
n Dn. Each scatterer is characterized by

a permittivity function εn and a permeability function μn. At an

arbitrary point P , the permittivity is defined to be εr = εn(P ) if P
falls inside scatterer n and εext otherwise. Similarly, the permeability

is μr (P ) = μn(P ) for P ∈ Sn and μext otherwise. The incident

field is supposed to be monochromatic (as everywhere in the book,

with a time dependance of exp(−iωt)). Let F i = (E i , Hi ) be that

field; it gives rise to a scattered field F s = (E s , Hs ). The incident

field satisfies Maxwell’s equations in vacuum, while the total field

F t = (E t , Ht) = (E i , Hi )+ (E s , Hs ) satisfies the Maxwell system:

∇ × E t = iωμ0μrHt (6.41)

∇ ×Ht = −iωε0εrE t (6.42)

6.2.2 Multiple Scattering for a Finite Collection of Objects

The multiple scattering approach is based on the following fact:

Consider a given scatterer Dn. In the vicinity of this scatterer, the

scattered electromagnetic field F s = F t − F i can be decomposed

into the sum of two fields: one that satisfies outgoing radiation

conditions F+n , which is called “field scattered by Dn”, and one that

is regular F−n , called “local incident field on Dn.” This is a direct

consequences of the time reversal invariance of Maxwell’s equations

in vacuum, which provides advanced and retarded propagators that

translate into outgoing/ingoing Green’s functions in the frequency

domain. Therefore, there exist projection operators P±n such that:

F±n = P±n (F s ). The fundamental property of operators P+n is that

they add up to the identity matrix of the space of outgoing fields:
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∑
n P+n = I and they satisfy the relation: P+n P+m = δnm, where δnm is

the Kronecker symbol.

From the linearity of Maxwell’s equations can be deduced the

existence of a linear operator Sn(ω), the scattering matrix, relating

F−n to F+n : F+n = Sn(ω)F−n . For each scatterer Dm, there is of

course another decomposition (F+m , F−m ) and another scattering

matrix Sm(ω). The basic idea of scattering theory is that the field

F+m scattered by Dm is seen as an incident field by scatterer Dn:

This comes from the relation
∑

m P+m (F s ) = F s . Indeed, from this

relation, it holds: F = F i + P+n (F s )+∑m�=n P+m (F s ) and therefore

the local incident field as seen by scatterer Dn is the sum of the

incident field F i and the field scattered by (Dm)m�=n.

P+n (F s ) = SnF i + Sn P−n
∑
m�=n

P+m (F s ), (6.43)

which is the fundamental relation of multiple scattering theory.

It is interesting to note that the scatterers Dn were not assumed

to be connected, i.e., “in one part.” This means that Dn can be a

cluster of smaller scatterers. Following this line, it is not difficult to

understand that multiple scattering is inherently recursive. This fact

can be exploited numerically (Lu et al., 1995).

6.2.3 Multiple Scattering for a Periodic Collection of
Objects

When the objects are disposed along a lattice L, the multiple

scattering approach can be used to derive the Bloch waves that

can propagate in the medium. The projection operators P+n can be

indexed with the vectors G of L instead of an integer n. Moreover,

because of the invariance of the medium under a translation TG

of vector G ∈ L, it holds: TG P+0 T−G = P+G . Therefore, there is

now only one projection operator to consider: that corresponding

to the Wigner–Seitz cell. As explained in Section 5.1, the periodicity

makes possible the decomposition of the operators with respect to

the Bloch vector parameter k ∈ B Z . Considering an eigenvector Fk

for TG , it holds: TG (Fk) = eik·G Fk. Consequently, for G = 0 the

relation 6.43 becomes:

P+0 (Fk) = SF i + S�(k)P+0 (Fk) (6.44)
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where the operator �(k) is: �(k) = P−0
∑

G ′ �=0 e−ik·G ′TG′ . The band

structure of the medium is obtained by solving the preceding

relation when F i = 0. The equation [I − Sn�(k)] P+0 (Fk) = 0 has

nontrivial solutions for couples (k, ω) such that: det [I − Sn�(k)] =
0, which is an implicit equation in the variables (k, ω).

6.2.4 Modal Representation for Cylinders

A possible realization of these relations is through a partial

wave expansion of the fields (Felbacq et al., 1994) or through

boundary integral operators (Maystre, 2006). For instance, when

the scatterers are cylinders (i.e., invariant along the z axis), then it

suffices to know the component Fz = (E z, Hz) along the direction

of invariance to know all the other components (see the following

section for a complete derivation). A partial wave expansion gives

(Felbacq et al., 1994):

Fz(r) =
∑

l

bn
l Hl (krn)eilθn +

∑
l

an
l J l (krn)eilθn

.

The superscript n indicates that the reference system is centered

on Dn: The coordinates (rn, θn) of the point r are given in the polar

coordinate system associated with rod n. The function H (1)
l is the

Hankel function of first type and order l , and J l is the Bessel function

of order l (Abramowitz and Stegun, 1965). Finally, bn
l = (bn, E

l , bn, Hl )

are the coefficients of the diffracted electric and magnetic fields and

an
l = (an, E

l , an, Hl ) are the coefficients of the incident field.

The projection operator P+n is defined as: P+n (F) =∑
l bn

l Hl (krn)eilθn
. The scattering matrix can be represented as the

linear operator relating the set of coefficients â = (al ) to the set of

coefficients b̂ = (bl ): b̂ = S(ω)â. Explicit expressions are derived

in the following section. In order to use the fundamental relation,

an explicit form of the operator P−n P+m is derived. By linearity, it

holds: P−n P+m (F s ) = ∑
l bm

l P−m (Hl (krm)eilθm
). The expression for

P−n (Hl (krm)eilθm
) is obtained by using Graf’s formula (Abramowitz

and Stegun, 1965), which allows to express any Bessel function Cl in

a new coordinate system (see Fig. 6.11):

Cl (krm)eilθm
) =
∑

p

Cp−l (krnm)e−i( p−l)θnm
J p(krn)ei pθn

.
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Figure 6.11 Notations for Graf’s formula.

The expression of P−n P+m (F s ) is then:

P−n P+m (F s ) =
∑

p

[∑
l

bm
l H (1)

p−l (krnm)e−i( p−l)θnm

]
J p(krn)ei pθn

.

Denoting by T nm the matrix whose entries are T nm
pl = H (1)

p−l

(krnm)e−i( p−l)θnm
, the fundamental relation of multiple scattering

theory reads as:

b̂n = Snân + Sn

∑
m�=n

T nmb̂m. (6.45)

6.2.5 Scattering by a Single Object

In this section, we present the theory of scattering by a single object

in the 2D case. The main point is the construction of the scattering

matrix. Explicit expressions are given for circular cylinders. The

scatterer is invariant along the direction Oz. By Fourier transforming

the Maxwell system along Oz, the following relations are obtained:

i

⎛⎜⎜⎝
γ 0 0 Z k
0 γ − kε

Z 0

0 −Z k γ 0
kε
Z 0 0 γ

⎞⎟⎟⎠
⎛⎜⎜⎝

Er

Hr

Eθ

Hθ

⎞⎟⎟⎠ =
⎛⎜⎜⎝

∂r 0

0 ∂r
1
r ∂θ 0

0 1
r ∂θ

⎞⎟⎟⎠( E z

Hz

)

where Z =
√

μ0

ε0
, χ2 = k2ε − γ 2. This shows that because of the

invariance along Oz, all the field components can be expressed in
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terms of E z and Hz. Upon left-inverting the above relation, one gets:(
Eθ

Hθ

)
= Tθ , z

(
E z

Hz

)
,

(
Er

Hr

)
= Tr, z

(
E z

Hz

)
(6.46)

where:

Tθ , z =
( iγ

χ2
1
r ∂θ

ikZ
χ2 ∂r

ikε
Zχ2 ∂r

iγ
χ2

1
r ∂θ

)
, Tr, z =

( iγ
χ2 ∂r − ikZ

χ2
1
r ∂θ

− ikε
Zχ2

1
r ∂θ

iγ
χ2 ∂r

)
(6.47)

The tangential components of both the electric and magnetic fields

are continuous at the boundary of the cylinder:

n ∧ (E t − E int) = 0 (6.48)

n ∧ (H t − H int) = 0 (6.49)

where n = (nx , ny , 0) = er is the outer normal on the boundary

of the cylinder. In coordinate, we get: Ft = Fzez + Fθeθ where F =
E , H . The transmission conditions at the boundary of the cylinder

thus lead to the continuity of Fz, Fθ . In the following, we denote with

an upperscript + the fields and quantities exterior to the cylinder

and an upperscript − the fields inside the cylinder. Because E z and

Hz satisfy the Helmholtz equation outside and inside the cylinder,

we have the following expansions:

E+z =
∑

m

(
bE ,+

n Hn (χ+r)+ aE ,+
n J n (χ+r)

)
eimθ (6.50)

E−z =
∑

m

aE ,−
n J n (χ−r) eimθ (6.51)

H+z =
∑

m

(
bH ,±

n Hn (χ±r)+ aH ,±
n J n (χ±r)

)
eimθ (6.52)

H−z =
∑

m

aH ,−
n J n (χ−r) eimθ (6.53)

Now the boundary conditions read as:(
E+z
H+z

)
=
(

E−z
H−z

)
,

(
E+θ
H+θ

)
=
(

E−θ
H−θ

)
and the components (Eθ , Hθ ) are related to (E z, Hz) by:(

E±θ
H±θ

)
= Tθ , z

(
E±z
H±z

)
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Upon expanding the fields in Fourier series:

E±θ (r, θ) =
∑

n

E±n,θ (r)einθ , H±θ (r, θ) =
∑

n

H±n,θ (r)einθ ,

we obtain the block-matrix elements of operator Tθ , z relating the

coefficients (E±n,θ , H±n,θ ) to the coefficients (an, bn) of the fields

(E z, Hz):(
E+n,θ

H+n,θ

)
=
(− nγ

χ2+r J n (χ+r) ikZ
χ+

J ′n (χ+r)

ikε
Zχ+

J ′n (χ+r) − nγ
χ2+r J n (χ+r)

)(
aE ,+

n

aH ,+
n

)

+
(− γn

χ2+r Hn (χ+r) ikZ
χ+

H ′n (χ+r)

ikε
Zχ+

H ′n (χ+r) − γn
χ2+r Hn (χ+r)

)(
bE ,+

n

bH ,+
n

)
and (

E−n,θ

H−n,θ

)
=
(− γn

χ2−r J n (χ−r) ikZ
χ−

J ′n (χ−r)

ikε
Zχ−

J ′n (χ−r) − γn
χ2−r J n (χ−r)

)(
aE ,−

n

aH ,−
n

)
Let us introduce some notations:

â±n =
(

aE ,±
n

aH ,±
n

)
, b̂±n =

(
bE ,±

n

bH ,±
n

)
The boundary conditions for the azimuthal components read as:

Y
−
J , nâ−n = Y

+
J , nâ+n + Y

+
H , nb̂+n (6.54)

where

Y
±
B , n =

(− γn
χ2±R Bn (χ±R) − ikZ

χ±
B ′n (χ±R)

ikε±
Zχ±

B ′n (χ±R) − γn
χ2±R Bn (χ±R)

)
and B denotes a Bessel function J or H . The boundary conditions

for the z components are:

J
−
n â−n = J

+
n â+n +H

+
n b̂+n (6.55)

where

J
±
n =

(
J n (χ±r) 0

0 J n (χ±r)

)
, H±n =

(
Hn (χ±r) 0

0 Hn (χ±r)

)
From the above relations, it is now straightforward to derive the

relations between the coefficients â±n and b̂+n :

b̂+n = S+n â+n (6.56)

â−n = S−n â+n (6.57)
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where the outer and inner nth blocks of the scattering matrices are

given by:

S+n =
[(
Y
−
J , n

)−1
Y
+
H , n −

(
J
−
n

)−1
H
+
n

]−1 [(
J
−
n

)−1
J
+
n −

(
Y
−
J , n

)−1
Y
+
J , n

]
(6.58)

S−n =
[(
Y
+
H , n

)−1
Y
−
J , n −

(
H
+
n

)−1
J
−
n

]−1 [(
Y
+
H , n

)−1
Y
+
J , n −

(
H
+
n

)−1
J
+
n

]
(6.59)

Simplified expressions can be obtained for z independent fields,

i.e., when γ = 0. In that situation, the electric and magnetic fields

are decoupled, which results in the following expression for the

impedance matrices:

Y
±
B , n =

(
0 i Z√

ε±
B ′n (kε±R)

i
√
ε±

Z B ′n (kε±R) 0

)
.

The scattering matrices blocks become diagonal ones:

S+n =
(

S E ,+
n 0

0 S H ,+
n

)
, S−n =

(
S E ,−

n 0

0 S H ,−
n

)
,

where

S E ,+
n = −

J ′n(k
√
ε−R) J n(k

√
ε+R)−

√
ε+
ε−

J ′n(k
√
ε+R) J n(k

√
ε−R)

J ′n(k
√
ε−R)Hn(k

√
ε+R)−

√
ε+
ε−

H ′n(k
√
ε+R) J n(k

√
ε−R)

,

(6.60)

S H ,+
n = −

J ′n(k
√
ε−R) J n(k

√
ε+R)−

√
ε−
ε+

J ′n(k
√
ε+R) J n(k

√
ε−R)

J ′n(k
√
ε−R)Hn(k

√
ε+R)−

√
ε−
ε+

H ′n(k
√
ε+R) J n(k

√
ε−R)

,

(6.61)

and

S E ,−
n = J ′n(k

√
ε+R)Hn(k

√
ε+R)− J n(k

√
ε+R)H ′n(k

√
ε+R)√

ε−
ε+

J ′n(k
√
ε−R)Hn(k

√
ε+R)− H ′n(k

√
ε+R) J n(k

√
ε−R)

,

(6.62)

S H ,+
n = J ′n(k

√
ε+R)Hn(k

√
ε+R)− H ′n(k

√
ε+R) J n(k

√
ε+R)√

ε+
ε−

J ′n(k
√
ε−R)Hn(k

√
ε+R)− H ′n(k

√
ε+R) J n(k

√
ε−R)

.

(6.63)
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6.2.6 Numerical Implementation

For the sake of simplicity, only fields that are invariant along z are

considered: This means that the coefficient γ is equal to zero and

the Fourier coefficients of the z components of the fields are given

by Eqs. (6.60, 6.63). Moreover, the field components E z and Hz are

not coupled and can be determined independently. The cylinders

considered have a circular cross section. Numerically, the fields are

represented by a finite number of Fourier coefficients with indexes

−N . . . N . The field scattered by one scatterer is thus described by a

(2N + 1) vector:

b̂n(N) =

⎛⎜⎝bn
−N
...

bn
N

⎞⎟⎠ , n = 1 . . . M (6.64)

The scattering matrix SN is then a (2N + 1)× (2N + 1) diagonal

matrix:

SN =

⎛⎜⎜⎜⎜⎝
S E , H ,±
−N 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . . . . 0 S E ,+
N

⎞⎟⎟⎟⎟⎠ ,

where the entries are given by (6.60 – 6.63). Assuming that there are

M scatterers, the entire field is described by an M× (2N + 1) vector

with entries:

b̂(N) =

⎛⎜⎝ b̂1(N)
...

bM(N)

⎞⎟⎠ (6.65)

The incident field is described by its Fourier coefficients obtained in

each local coordinate systems attached to each scatterer:

â(N) =

⎛⎜⎝ â1(N)
...

aM(N)

⎞⎟⎠ , ân(N) =

⎛⎜⎝an
−N
...

an
N

⎞⎟⎠ . (6.66)

The fundamental relation (6.45) becomes a relation between vectors

of length 2N + 1 and the operator T nm, n, m ∈ {1, 2, . . . , M}
becomes a (2N + 1)× (2N + 1) matrix with entries:

T nm
pl = H (1)

p−l (krnm)e−i( p−l)θnm
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Figure 6.12 A set of dielectric cylinders illuminated by a plane wave in

normal incidence. The arrow indicates the direction of the incident field and

the segment is the line over which the Poynting vector is integrated.

where p, l ∈ {−N . . . N}. The fundamental relation is then a linear

system S b̂(N) = S â(N) where S = I − SH and

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 T 1, 2 · · · T 1, M

T 2, 1
. . .

. . .
...

...
. . .

. . . T M−1, M

T M, 1 · · · T M, M−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6.67)

After inverting S numerically, the field is known everywhere

through the Fourier expansion:

F (r, θ) =
M∑

n=1

N∑
p=−N

[
an

p J p(krn)+ bn
p H (1)

p (krn)
]

ei pθn
(6.68)

For points outside a disc containing the scatterers, it is possible to

obtain an expansion of the diffracted field in the main coordinate
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Figure 6.13 Transmission spectrum for the photonic crystal depicted in

Fig. 6.12.

system, by means of Graf’s formula:

F d(r, θ) =
M∑

n=1

N∑
p=−N

bp H (1)
p (kr)ei pθ . (6.69)

When r is very large (as compared to the wavelength), an asymptotic

expansion can be obtained from the asymptotic behavior of

H (1)
p (kr) ∼

√
2
π

eikr√
kr

e−i pπ/2. By inserting this form in the expression

of the scattered field, one obtains:

F d(r, θ) ∼ eikr

√
kr

g(θ) (6.70)

where

g(θ) =
√

2

π

N∑
p=−N

bp(−i)pei pθ (6.71)

This function represents the angular behavior of the field far from

the scatterers.

As an example, let us consider the set of cylinders depicted in

Fig. (6.12). It is a set of dielectric cylinders with relative permittivity

εr = 9, disposed in vacuum along a square lattice. The period
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is denoted by d, and the radius of the cylinder is r/d = 1/4.

The structure is illuminated by a plane wave with the electric field

linearly polarized along the axis of the cylinder (E || polarization).

The transmission spectrum is calculated as the ratio between the

flux of the total Poynting vector through a segment situated below

the structure (see Fig. 6.12), normalized by that of the incident field.

It is depicted in Fig. 6.13. The presence of forbidden band where the

transmission is strongly damped can be clearly seen.
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Chapter 7

Soft Problems: Nonresonant Dielectric
Structures
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7.1 A Brief Foray into the Realm of Two-Scale
Homogenization

7.1.1 Two-Scale Homogenization with One Small
Parameter

In this section, it is assumed that the characteristic lengths of the

obstacles are such that the notions of permittivity, permeability,

optical index, and more generally all mesoscopic or macroscopic

quantities are relevant (see Chapter 3 for instance). In addition,

only periodic structures are addressed; we shall not then tackle

random or quasi-periodic structures. Finally, it is assumed that only

Metamaterials Modeling and Design
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(a)

(b)

(c) x3

Figure 7.1 In most cases, photonic crystals can be characterized by their

permittivity ε, which is represented by a two-valued piecewise function:

ε1 and ε2. (a) A monoperiodic crystal: Bragg mirror. (b) A two-dimensional

crystal: periodic collection of identical circular rods. (c) A three-dimensional

crystal: periodic collection of identical spheres.

harmonic regime is considered and, therefore, at least two lengths

are at our disposal, namely the wavelength in vacuum, λ0, of the

incident field and one period d1 (see Fig. 7.1(a)), two periods (d1,

d2) (see Fig. 7.1(b)), or three periods (d1, d2, d3) (see Fig. 7.1(c))
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depending on the very nature of the problem at stake. In this book,

the concept of homogenization will be used only if, at least, one

period is small compared to λ0. From a theoretical point of view,

it is probably pointless to obtain relevant results when the number

of scatterers is finite and this for at least one good reason; strictly

speaking, the very notion of periodicity requires that there be an

infinite number of scatterers.

Therefore, there are two ways of addressing this problem. The

first way, which is often used, consists in assuming that the size of

the scatterers is fixed, while the whole obstacle filled up by these

scatterers is increased until it covers the overall space R3. After

performing this Gedanken experiment, one lets the wavelength tend

to infinity (see Fig. 7.2).

It is a powerful and long-past method widely used in solid

state physics, where it allows to use Bloch waves decomposition.

However, this approach has some weaknesses. First, the boundary

of the whole crystal cannot be taken into account. Second, the small

parameter in this method is the frequency itself. After obtaining the

effective characteristics near the zero frequency, the study of the

effects of the time dispersion upon mixing laws is unnatural.

On the contrary, if one considers that the obstacle and the

wavelength both remain fixed, while the size of the scatterers goes

to zero and their number goes to infinity, the influence of the whole

crystal may be studied in a more natural way (see Fig. 7.3). Moreover,

the study of the time dispersion becomes more natural and can be

integrated into the limit process itself. We are now in a position to

describe more precisely the problem we are dealing with. Let us

consider a set � f , which represents a simple cubic crystal made of

small scatterers periodically arranged within the crystal. This crystal

system is solely characterized by the side d0 (see Fig. 7.4).

The question may then be posed in these terms: If the

dimensionless parameter η0 = d0

λ0
is small enough, is it possible to

reduce the complexity of the system by replacing the opto-geometric

characteristics of a crystal by effective properties? The answer is

positive, and in this rather simple case, it will be seen that the

effective properties are generally given in the form of an electric

anisotropic media. For obtaining the so-called effective properties,

one can imagine using the “traditional” method based on the Bloch
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x2

x1

λ0

x2

x1

λ0 → +∞

x 2

x 1

λ 0 → +∞

x 2

x 1

λ 0

Ωf

Figure 7.2 The Bloch method for obtaining the effective parameters can

be schematically divided into four parts. (a) The whole space (here R2 for

the sake of clarity) is covered by a perfect crystal of infinite extent along

all directions. (b) By using Bloch theory, the different modes propagating

within the crystal can be obtained and in particular the modes for large

wavelengths. (c) For sufficiently large wavelengths, the crystal can be

replaced by a homogeneous medium. (d) The last step consists in filling up

the set � f by the effective properties found in the previous step. Note that

in scattering problem, the wavelength associated with the incoming wave is

no longer arbitrarily large.
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x2

x1

λ0

Y

Ωf

x2

x1

λ0

ηY

Ωf

x2

x1

λ0

Ωf

Figure 7.3 In the two-scale homogenization process, the shape of the

whole crystal is preserved together with the wavelength λ0 (� f and λ0 are

unchanged in (a)–(c)). The dynamical variable η is the size of the basic cell

ηY , which shrinks as η tends to zero.

decomposition. The main advantage of this approach is that it gives

some information for any wavelength irrespective of whether it is

large compared to the period of the crystal. It remains, therefore, to

study the behavior of the crystal, in particular the dispersion curves,

near the zero frequency, that is, for a small parameter η0 (static

procedure). On the other hand, when using the second method, the

study of the effective properties is meaningless for a small given

parameter η0; the number of scatterers being finite, the structure

cannot be periodic. We, therefore, develop a dynamic procedure

(limit analysis) by letting the small parameter η tend toward zero.

Let us focus our attention on the permittivity and permeability
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Figure 7.4 In this figure, the obstacle is a spherical simple cubic crystal

made itself of a collection of small spherical homogeneous “particles.” This

crystal is solely determined by the period d0.

describing the crystal. These optical characteristics depend on η.

We denote these characteristics (εη , μη), and the scattering problem,

which depends on η, is denoted Pη and the diffracted field Fη . Now

the issue is to foresee what happens when η tends toward zero and,

among other things, to derive the effective optical, possibly tensorial,

characteristics denoted by (ε
hom

, μ
hom

) in the sequel. At first sight,

this result may appear as paradoxical: Searching out the effective

properties amounts to writing down (εη , μη)
E−→

η−→0
(ε

hom
, μ

hom
),

where
E−→

η−→0
is a convergence process that remains to be clarified.

A type of convergence can be found that transforms a series of
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infinitely oscillating scalar functions into two constant matrices at

the limit. For dispelling this mystery, we must return to physics

and recall that both permittivity and permeability are indirectly

determined by the diffracted field. It is said that (εη , μη)
E−→

η−→0

(ε
hom

, μ
hom

) if and only if Fη −→ Fhom.

We have seen that the two-scale homogenization theory allows,

in principle, to investigate all the usual cases encountered in practice

and for periodic materials even if they are lossy. This formulation

takes advantage of a limit analysis process, in which a dimensionless

parameter η tends to zero. But in practice, the number of scatterers

if of course finite, and the ratio of the size of the period of the crystal

by the wavelength are not null. In other words, from a practical point

of view, the small parameter η is determined by the experiment.

What we have to do is to estimate a parameter η0 in such a way

that for every η smaller than η0, it is legitimate to replace the

heterogeneous crystal by the effective properties. To do this, a more

accurate theoretical analysis must be considered (corrector theory),

but it seems, however, necessary to compare theory with experiment

albeit numerical.

7.1.2 Two-Scale Homogenization with Several Small
Parameters

In many situations, it may appear that there are several small

parameters. For instance, when dealing with highly lossy ohmic

materials in the homogenization regime, the ratio of the period to

the wavelength η0 = d
λ0

and the inverse of the conductivity 1
σ

are

both small parameters. This last expression and the parameter η0

having not the same dimension, a factor has to be found to make the

second parameter dimensionless, for instance: η1 = 1
Z 0σλ0

. Bearing

in mind that the two-scale homogenization requires a limit process,

the problem amounts to studying the diffracted field Fη0,η1
as (η0, η1)

tends to the origin (0, 0). This problem would be clearly posed if

the scattered field were continuous at the origin in regard to both

the small parameters. It appears, however, that the scattered field

strongly depends on the path travelled in the parameters’ space. It

then remains to find a critical function fc for which the scattered

field Fη0, fc (η0) tends toward a non-trivial solution. Choosing this
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10− 1

η1

0.2 0.3 0.4
η0

O

Critical function f c : f c(η0) = π
κ 0

e− 2/ (γ 0 η2
0 )

Under-critical function f uc :
f uc (η0 )

f c (η0 )
= o(1)

Sub-critical function f sc :
f c (η0 )

f sc (η0 )
= o(1)

Figure 7.5 In a two-scale homogenization with two parameters, for

instance when dealing with small and highly conducting rods, it is necessary

to find the so-called critical function fc , which determines the limit process.

This critical function is itself characterized by two parameters, here κ0 and

γ0 (see chapter 8).

critical function is certainly one of the salient difficulties of the two-

scale homogenization with two (or more) small parameters and

depends on the problem at stake. If this function is not suitably

chosen, the limit process leads to a flimsy result: The homogenized

material is either a vacuum (under-critical behavior) or a perfectly

conducting metal (over-critical behavior) (see Fig. 7.5).

7.2 Soft Problems: Theory

We consider a photonic nanostructure made of a collection of

parallel finite-size rods embedded in a matrix. This covers the case

of structures made out of a layer of bulk materials in which holes

are made periodically but also the case of structures made out of

nanopillars (Benisty et al., 2000; Poborchii et al., 2002). The rods

are not supposed to be invariant in the direction of their axes (for

instance, they can be cone shaped, see Fig. 7.6). Our point is to derive

the effective permittivity and permeability tensors of this structure

when the ratio between the period of the structure and the free

space wavelength of the incident field is very small.
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Figure 7.6 Schematic of the structure.

7.3 Two-Scale Approach to Homogenization

7.3.1 Description of the Structure and Methodology

We consider a structure such as that in Fig. 7.6. It is constructed from

a basic cell Ỹ pictured in Fig. 7.7 ( Ỹ = Y × (−L, L), where Y =
(−1/2, 1/2)2 ). A contraction ratio η is applied to obtain a contracted

cell in the horizontal directions ( Ỹη = η2Y × (−L, L) ). In the units

of the free space wavelength, the period of the lattice is, thus, η. The

cells are contained in a cylindrical domain � = O × (−L, L) (see

Fig. 7.6). Thus, the domain � is periodically filled with contracted

cells. The space coordinates are denoted by x = (x1, x2, x3), and

we also denote x⊥ = (x1, x2). The coordinates in Y are denoted by

y = (y1, y2). We consider time harmonic fields; the time dependence

is chosen to be exp (−iωt). For a given monochromatic incident field(
E i , H i

)
, we denote by (E η , H η) the total electromagnetic field.

As explained in the preceding section, our aim is to pass to

the limit η → 0 and determine the limit of the couple (E η , H η).

In our methodology, we get at the limit a true electromagnetic

scattering problem, for a given free space wavelength λ and

a bounded obstacle � characterized by some permittivity and

permeability tensors. This situation is quite different from other

homogenization techniques, making use of periodization conditions,

in which the frequency tends to zero, thus not leading to a diffraction

problem but rather to an electrostatic one. Such an approach

can sometimes give useful explicit formulas but generally leads
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Figure 7.7 Schematic of the basic cell.

to complicated formulations (Erikson et al., 1986; Halevi et al.,

1999, 2002; McPhedran et al., 1997, 2000). Moreover, it does not

handle the boundary effects, which in some cases may lead to

some miscomprehensions (Felbacq, 2000). The relative permittivity

tensor εη (x) and relative permeability tensor uη (x) are described

by:{
εη (x) = 1 , μη (x) = 1 for x ∈ R3\�
εη (x) = ε0

(
x⊥
η

, x3

)
, μη (x) = μ0

(
x⊥
η

, x3

)
for x⊥ ∈ �

(7.1)

where at fixed x3, the applications y→ ε0 (y, x3) = (ε0
i j (y, x3)

)
and

y→ μ0 (y, x3) = (μ0
i j (y, x3)

)
are Y -periodic 3×3 matrix functions.
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The total electromagnetic field (E η , H η) satisfies{
curl E η = iωμ0μ

ηH η

curl H η = −iωε0ε
ηE η

(7.2)

and (E s,η , H s,η) = (
E η − E i , H η − H i

)
satisfies Silver–Müller

radiation conditions:

lim
‖x‖→+∞

‖x‖
(

Z 0 H s,η × x
‖x‖ − E s,η

)
= 0 (7.3)

where Z 0 is the impedance of vacuum.

7.3.2 Derivation of the Microscopic Equations

7.3.2.1 A short account of the two-scale expansion

In order to describe this problem, we will rely on a two-scale

expansion of the fields. That way, the physical problem is described

by two variables: a macroscopic one x and a microscopic one y
representing the rapid variations of the material at the scale of

one basic cell, measured by η. By noticing that there are no rapid

variations in the vertical direction x3, the microscopic variable is set

to be: y = x⊥/η. Differential operators with respect to variable y
are denoted with a subscript y. The fields are periodic with respect

to that microscopic variable (this corresponds to the neighborhood

of the center of the first Brillouin zone). The limit problem obtained

by letting η tend to 0 will then depend on the macroscopic, physical

variable x but also on the microscopic, hidden variable y. The total

limit fields will read E 0(x, y) and H 0(x, y) and the observable,

physical fields will be given by the mean value over the hidden

variable y:

E (x) = |Y |−1

∫
Y

E 0(x, y)d y and H (x) = |Y |−1

∫
Y

H 0(x, y)d y,

where |Y | is the measure area of Y . In order to lighten the notations,

we denote by brackets the averaging over Y , hence

H (x) = 〈H 0
〉

and E (x) = 〈E 0
〉

.

The main mathematical tool that we use is a mathematically

rigorous version of the multiscale expansion, widely used in various
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areas of physics. More precisely, for a vector field F η in
(

L2 (�)
)3

,

we say, by definition, that F η two-scale converges toward F 0 if for

every sufficiently regular function φ (x, y), Y -periodic with respect

to y, we have:∫
�

E η (x) · φ (x, x⊥/ε) dx →
∫∫

�×Y
E 0(x, y) · φ(x, y)dxd y, (7.4)

as η tends to 0.

The limit field F 0 is square integrable with respect to both

variables x and y and is Y -periodic in the y variable (this is the

definition of the space L2

(
�;
(

L2
per (Y )

)3
)

). A complete analysis of

this new mathematical tool can be found in (Allaire, 1992).

We make the physically reasonable assumption that the elec-

tromagnetic energy remains bounded when η tends to 0, which

is equivalent to assume that (E η , H η) are both locally square

integrable. Then it is known (Allaire, 1992) that (E η , H η) two-

scale converges toward limit fields denoted
(

E 0, H 0
)

. This physical

assumption could be justified mathematically; however, it seems

quite obvious from the point of view of physics that the limit fields

exist. The point is then to give the system of equations that is

satisfied by these fields and to derive the effective permittivity and

permeability tensors.

7.3.2.2 The equations at the microscopic scale

First of all, we have to determine the set of equations that are

microscopically satisfied, that is, satisfied with respect to the hidden

variable y, because that will give the constitutive relations of the

homogenized medium. Multiplying the Maxwell–Faraday equation

by a regular test function φ
(

x, x⊥
η

)
, and integrating over �, we

obtain: ∫
�

E η (x) ·
[

curlx (φ)+ 1

η
curly (φ)

]
dx

= iωμ0

∫
�

μη (x) H η (x) φ (x, x⊥/η) dx. (7.5)

Multiplying by η and letting η tend to 0, we get using (7.4):∫∫
�×Y

E 0 (x, y) · curly (φ) dxd y = 0. (7.6)
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This is equivalent to:∫∫
�×Y

curly E 0 (x, y) · φ (x, y) dxd y = 0 (7.7)

which is nothing else but the variational form for: curly E 0 = 0. In a

very similar way, but now using the Maxwell–Ampere equation, we

get curly H 0 = 0. On the other hand, since εηE η is divergence free,

we have, for every test function

φ(x, y),

∫
�

εη (x) E η (x) ·
[
∇xφ + 1

η
∇yφ

]
dx = 0.

Multiplying by η and letting η tend to 0, we get:∫∫
�×Y

ε0 (y, x3) E 0 (x, y) · ∇yφ dxd y = 0, (7.8)

which can be written as (notice that the divy operator acts only on

the transverse components):

divy
(
ε0 E 0

) = 0. (7.9)

Similarly, since the magnetic field is divergence free, we derive:

divy

(
μ0 H 0

)
= 0. (7.10)

Summing up, we have the following microscopic equations holding

inside the basic cell Y :{
divy

(
μ0 H 0

)
= 0

curly H 0 = 0
,

{
divy

(
ε0 E 0

) = 0

curly E 0 = 0
(7.11)

7.3.3 Derivation of the Homogenized Parameters

The systems in (Eq. 7.11) are respectively of electrostatic and

magnetostatic types. This means that with respect to the hidden

variable y, the electric field and magnetic field satisfy the static

Maxwell system. This property is true only at that scale and not

at the macroscopic scale. However, it is these static equations that

determine the effective permittivity and permeability. Indeed let us

analyze this system starting with the electric field. From the curl

relation, we get ∇y E 0
3 = 0, and so E 0

3 (x, y) ≡ E3 (x). Besides, the

basic cell having the geometry of a flat torus, we get the existence of

a regular periodic function wE (y) such that:

E 0
⊥ = E⊥ + ∇ywE . (7.12)
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The function wE is the electrostatic potential associated with the

microscopic electrostatic problem. Inserting (7.9) in Eq. (7.12) and

projecting on both horizontal axes, we obtain:

divy

[
ε0

⊥
(

ei +∇ywE , i
)] = 0, i ∈ {1, 2} (7.13)

where ε0

⊥ denotes the 2 × 2 matrix extracted from ε0 by removing

the last line and last column. By linearity, denoting E⊥ = (E1, E2),

we derive that the potential wE is given by wE = E1wE , 1 + E2wE , 2,

where wE , i are the periodic solutions to (7.13). We stress that these

potentials depend not only on y but also on x3. In fact, we get a

family of homogenization problems parametrized by the vertical

coordinate. By (7.12), we obtain:

E 0 (x, y) = E (y, x3) E (x) (7.14)

where:

E (y, x3) =
⎛⎝1+ ∂y1

wE , 1 ∂y1
wE , 2 0

∂y2
wE , 1 1+ ∂y2

wE , 2 0

0 0 1

⎞⎠ (7.15)

The magnetic field H 0 can be handled in the same way since it

satisfies exactly the same kind of equations as H 0 (see (7.11)). In

particular, we may represent its tranversal component in the form:

H 0
⊥ = H⊥ + ∇⊥wH , where wH is a periodic magnetic potential (the

possibility of this representation is due to the curl-free condition,

which means that no microscopic current is present). Analogously

as in (7.14, 7.27), we find:

H 0 (x, y) =M (y, x3) H (x) (7.16)

where

M (y, x3) =
⎛⎝1+ ∂y1

wH , 1 ∂y1
wH , 2 0

∂y2
wH , 1 1+ ∂y2

wH , 2 0

0 0 1

⎞⎠ (7.17)

where:

divy

[
μ0

⊥
(

ei + ∇ywH , i
)] = 0, i ∈ {1, 2} (7.18)

and μ0

⊥
denotes the 2×2 matrix extracted from μ0 by removing the

last line and last column. Of course, the same remark as in the case of

electric potentials holds: The functions wH , i depend on the vertical

coordinate x3. The above results show that at the microscopic scale,
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the limit fields (E 0, H 0) are completely determined by the physical

fields (E , H ). Now that the microscopic behavior is precised, we are

able to determine the macroscopic system satisfied by (E , H ). To

that aim, let us choose a regular test function φ (x) independent of

the variable y. From Maxwell’s equations, we get:{∫
�

H η (x) .curl (φ) dx = −iωε0

∫
�
εη (x) E η (x) φ (x) dx∫

�
E η (x) · curl (φ) dx = iωμ0

∫
�
μη (x) H η (x) φ (x) dx

(7.19)

passing to the limit η→ 0, we get:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫∫
�×Y H 0 (x, y) · curl (φ) dxd y

= −iωε0

∫∫
�×Y ε

0 (y, x3) E 0 (x, y) φ (x) dxd y∫∫
�×Y E 0 (x, y) · curl (φ) dxd y

= iωμ0

∫∫
�×Y μ

0 (y, x3) H 0 (x, y) φ (x) dxd y

(7.20)

Recalling that 〈E 0〉 = E and that 〈H 0〉 = H , we get:{
curl E = iωμ0

〈
μ0 H 0

〉
curl H = −iωε0

〈
ε0 E 0

〉 (7.21)

which, taking into account (7.14, 7.16), brings to the limit system:{
curl E = iωμ0

〈
μ0M

〉
(x3) H

curl H = −iωε0

〈
ε0E
〉
(x3) E

(7.22)

7.3.3.1 The special case of a one-dimensional grating

Let us specialize the above results to the case of a one-dimensional

grating (Fig. 7.8), that is, the pillars are invariant in the x2 and x3

directions (the basic cell Y is depicted in Fig. 7.8). We assume also

that the pillars are made on a nonmagnetic material and that the

relative permittivity tensor is given by:

ε0(y1) =
⎛⎝ ε1(y1) 0 0

0 ε2(y1) 0

0 0 ε3(y1)

⎞⎠ (7.23)

The invariance of ε0 with respect to y2 and the periodicity

condition suggest that we look for solutions that are independent

of y2. Let us first consider wE , 2, which satisfies: ∂y1

(
ε1∂y1

wE , 2

) = 0.

This implies that wE , 2 = cste. Next, we turn to wE , 1. It satisfies
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Figure 7.8 Schematic of the one-dimensional photonic crystal. The inset

shows the basic cell Y .

∂y1

[
ε1

(
1+ ∂y1

wE , 1

)] = 0. Therefore, ε1

(
1+ ∂y1

wE , 1

) = cste = C .

Let us now average this relation to get: C
〈

1
ε1

〉
= 〈

1+ ∂y1
wE , 1

〉
.

Due to the periodicity of wE , 1, we have:
〈
∂y1

wE , 1

〉 = 0 and finally:

C =
〈

1
ε1

〉−1

. The homogenized relative permittivity tensor is given

by:

〈
ε0E
〉 =

⎛⎜⎝
〈

1
ε1

〉−1

0 0

0 〈ε2〉 0

0 0 〈ε3〉

⎞⎟⎠ (7.24)

We retrieve a well-established result concerning the homogeniza-

tion of one-dimensional photonic crystals (Jikov et al., 1994).

In our homogenization result, it is clear that the main numerical

problem is the solving of the annex problems (7.13, 7.18) for

they give the effective matrices E and M. In certain simple cases,

for instance that of circular isotropic nonmagnetic rods and a

permittivity constant in each connected region, it is possible to find

an explicit expression for the effective permittivity (it is, in fact, a

very old problem).

In this section, we considered a structure periodic in two

directions of space. It is not difficult to use the same procedure when

the structure is periodic in three directions of space. Let us, thus,

consider a periodic set in R3, contained in a bounded domain �. The

relative permittivity tensor εη (x) and relative permeability tensor
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μη (x) are described by:{
εη (x) = 1 , μη (x) = 1 for x ∈ R3\�
εη (x) = ε0 (x) , μη (x) = μ0 (x) for x ∈ � (7.25)

Then, as η tends to 0, the following homogenization result holds:

Theorem 7.1. The homogenized fields E and H satisfy the Maxwell
system: {

curl E = iωμ0

〈
μ0M

〉
H

curl H = −iωε0

〈
ε0E
〉
E

(7.26)

The matrices E and M are defined by:

E (y) =

⎛⎜⎝1+ ∂y1
wE , 1 ∂y1

wE , 2 ∂y1
wE , 3

∂y2
wE , 1 1+ ∂y2

wE , 2 ∂y2
wE , 3

∂y3
wE , 1 ∂y3

wE , 2 1+ ∂y3
wE , 3

⎞⎟⎠ (7.27)

and

M (y) =

⎛⎜⎝1+ ∂y1
wH , 1 ∂y1

wH , 2 ∂y1
wH , 3

∂y2
wH , 1 1+ ∂y2

wH , 2 ∂y2
wH , 3

∂y3
wH , 1 ∂y3

wH , 3 1+ ∂y3
wH , 3

⎞⎟⎠ (7.28)

In these expressions, the electric potentials wE satisfy the annex
problems:

divy
[
ε0
(

ei + ∇ywE , i
)] = 0, i ∈ {1, 2, 3} (7.29)

and the magnetic potentials wH satisfy:

divy

[
μ0
(

ei +∇ywH , i
)] = 0, i ∈ {1, 2, 3} (7.30)

7.4 Soft Problems: Numerical Examples

7.4.1 A Little Vademecum

The theoretical frame is now well established. But it remains various

questions on hold. First, contrary to the historical mixing laws

(Maxwell Garnett, Clausius–Mossotti, etc.), the theory described

above does not give rise to closed formulae. We are, therefore, led to

numerically solve the so-called annex problems and then to deduce

the effective constants. It should be remarked, however, that the
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mixing laws can be retrieved from the annex problems through

a perturbative approach. For this purpose, two different methods

are proposed and compared: the fictitious charges method (FCM)

and the finite element method (FEM). In the second step, a special

attention will be paid to the case where the permittivity and the

permeability are both represented by piecewise constant functions:

Such functions describe the inclusions in the scatterers we are

dealing with. In this latter case, the results obtained with the theory

will be compared in some academic cases with the traditional mixing

laws.

7.4.2 Some Prerequisites for Two-Phase Materials

In this section, we restrict our problem to obstacles described by

piecewise constant functions (see Fig. 7.9). Moreover, for the sake

of simplicity, we assume that the materials are nonmagnetic (μ =
μ0 everywhere) and only two-phase media will be considered In

such conditions, the problem is solely characterized by the two

permittivities ε1 and ε2 and the boundary shared by the materials

denoted by �:

ε =
{
ε1 in �1

ε2 in �2

(7.31)

with � = ∂�1 = ∂�2. We now state and prove two lemmas useful

for the sequel.

Lemma 7.1.
The solution to the annex problems 7.29 introduced in the

fundamental theorem 7.1 amounts to looking for functions Vi

solutions of the following system:⎧⎪⎪⎨⎪⎪⎩
	Vi = 0 , on Y \� (7.32a)[

Vi
]
�
= 0 (7.32b)[

ε
∂Vi

∂n

]
�
= −[ε]

�
ni (7.32c)

where [ f ]� denotes the jump of f across the boundary �, and ni , i ∈
{1, 2, 3} denotes the projection on the axis ei of a normal of �.

Proof. Let us denote by ei , i ∈ {1, 2, 3} the three vectors of the

orthonormal base of R3. As already seen, the problem verified by
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Figure 7.9 In most cases, the metamaterial can be characterized by its

permittivity ε which is represented by a two-valued piecewise function: ε1

and ε2. (a) A spheroidal scatterer. (b) A toroidal scatterer.

Vi can be written as:

divy

(
ε(y)

(
grady Vi + ei

)) = 0 , i ∈ {1, 2, 3} (7.33)

Applying the formula of derivatives in the sense of distributions,

we get:

div(ε grad Vi + εei ) = ε{	Vi } + div
{

[Vi ]�nδ�
}

+ [ε]�n · eiδ� + [ε grad Vi ]n︸ ︷︷ ︸
[ε

∂Vi
∂n

] δ�

Equaling, on the one hand the regular part and on the other hand

the singular part of the above distribution, we obtain the expected

result.

These results call for further comments detailed in the following

two remarks.

Remark 7.1. (About the physical sense of the annex problem)
Coming back for a while to the general case, the annex problem can

be rewritten as divy(ε(y) grady Vi ) = −divy(ε grady yi ) which can

be seen as an electrostatic problem with a volumic distribution of

charges ρi = divy(ε grady yi ).

In a similar way, in the case where ε is a two-valued piecewise

constant function (the case encountered in most manufactured
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optical devices), we can write:

divy(ε(y) grady Vi ) = −σiδ�

where σi is a surfacic distribution of charges defined by σi = [ε]niδ� .

Solving the annex problem for a two-valued piecewise constant

permittivity then reduces to looking for the potential induced by a

surfacic density of charges on the edge of the scatterer. This result

is not surprising, unlike the following remark, which is far from

obvious.

Remark 7.2. (About the numerical calculus of the permittivity)
In the fundamental theorem, we have seen that the relative

permittivity matrix of the homogenized problem is deduced from six

numbers φi j defined as follows:

ϕi j =
∫

Y
ε(y)

∂Vi

∂yj
dy , (7.34)

The permittivity ε being a two-valued piecewise function, we

then deduce that:

ϕi j = ε1

∫
�1

∂Vi

∂yj
dy+ ε2

∫
�2

∂Vi

∂yj
dy (7.35)

It then follows that:

ϕi j = ε1

∫
�1

div(Vi e j ) dy+ ε2

∫
�2

div(Vi e j ) dy (7.36)

Applying Green’s formula, we obtain:

ϕi j = ε1

∫
�

Vi n+j ds + ε2

∫
�

Vi n−j ds (7.37)

Choosing the convention n j = n+j , we have n−j = −n j , which leads

to the equality:

ϕi j = − [ε]�

∫
�

Vi n j ds . (7.38)

Let us remark that Vi is well defined on � because it does not

suffer a jump across the boundary of the scatterer. This last formula

is of prime importance for numerical implementations: It is not

necessary to compute the gradient of V (which gives rise to

numerical inaccuracy) to perform the calculus of the homogenized

permittivity.

Although the potential V is defined up to an additive constant,

the permittivity is well defined thanks to the nullity of
∫
�

ni ds .
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7.4.3 Fictitious Charges Method as Applied to the Annex
Problem

This method requires the same restrictions as those mentioned

in Section 7.4.2. The method of fictitious charges consists in

representing the potential by approximate potentials created by

two families of fictitious charges. The first ones are located in the

scatterer �1, and they radiate in its complement �2. Conversely,

the second ones are located in �2, and they radiate in �1. Each

of the approximate potentials satisfies a Laplace equation in Y
with periodic conditions. The amplitudes of the sources are chosen

in such a way that the approximate potentials are continuous

across the boundary of � (see Eq. (7.32b)) and they satisfy a

condition involving the normal derivative of the true potential (see

Eq. (7.32c)).

7.4.3.1 Introduction to the column space V
To begin with, it is convenient to recall an important property of

functions that are solution to the Laplace equation. Let us consider

a regular harmonic Y -periodic function u satisfying one of the two
following problems: {�u = 0 in �1

u|� = φ
(7.39){�u = 0 in �1

Dnu|� = ψ
(7.40)

where φ andψ are given functions belonging to L2(�) and where u|�
denote the trace of u on� and Dnu|� the normal trace of grad u on�.

Then, the Lax–Milgram lemma insures the existence and uniqueness

of the solution in the Sobolev space H 1
� of periodic functions (up to

an additive constant for the second problem).

Remark 7.3. Thanks to the Kirchhoff–Helmholtz relation, the

function u is fully defined in whole �1 and can also be easily

computed if we know the values φ and ψ on �.

In fact, it can be shown that there are two operators K and L such

that:

φ = K(ψ) (7.41)
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and conversely

ψ = L(φ) (7.42)

It is now convenient to introduce the following notations:

W1 =
( −V1|�
−ε1 DnV1|�

)
, W2 =

(
V2|�

ε2 DnV2|�

)
and W0 =

(
0

[ε] ni

)
.

(7.43)

With these notations, our problem is reduced to finding the columns

W1 or W2—the column W0 being known—such that:

W0 = W1 +W2 . (7.44)

7.4.3.2 The spaces V , V1, and V2

We consider the space V = L2(�)× L2(�) of pairs of functions " =(
φ

ψ

)
defined on �. The space V is a Hilbert space for the following

inner product:

("1, "2)V =
∫
�

φ1φ2 dl +
∫
�

ψ1ψ2 dl (7.45)

The associated norm is:

||"||V = (", ")
1/2
V (7.46)

We will now define two subspaces of V : the spaces V1 and V2. The

space V j is defined as the subspace of V of columns " =
(
φ

ψ

)
satisfying the following property:

The functions φ and ψ are such that there is a regu-

lar Y -periodic harmonic function f defined on � j (i.e.,

� f = 0) such that φ = f|� and ψ = ε j Dn f|� .

Consequently, V1 can be said to be associated with the field in �1,

whereas V2 is associated with the field in �2. Returning now to the

columns W0, W1, and W2, it is clear that W0 is inV , W1 is inV1, and W2

is in V2. Besides W0 being given in H 1
� , the uniqueness of W1 and W2

is guaranteed (the solution to system 7.44 is unique) and, therefore,

the decomposition

W0 = W1 +W2 (7.47)

is unique. In other words, V is the direct sum of V1 and V2:

V = V1 ⊕ V2 . (7.48)
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7.4.3.3 Solution to the annex problem

The problem is now to find the column W1 (or the column W2) such

as

W0 = W1 +W2 (7.49)

with a known column W0. To find this column W1, there is a general

procedure based on looking for total families in V1 and V2 and on

the use of least squares method (Petit and Zolla, 1994; Zolla and

Petit, 1996; Zolla et al., 1994). Let us assume that we know in each

vector space V j ( j ∈ {1, 2}) a total family {Wj, n}. This means that

each vector Wj in V j is the limit of a linear combination of the Wj, n.

Then, if the complex numbers {c j, n} are such that

lim
N−→+∞

||W0 − (W N
1 +W N

2 )||V = 0 , with W N
j =

N∑
n=1

c j, n(N)Wj, n

(7.50)

then

lim
N−→+∞

||W N
j −Wj )||V = 0 . (7.51)

For numerical calculations, we consider spaces VN
j of finite

dimension N instead of the spaces V j . The spaces VN
j are generated

by N columns W N
j . By and large, there are no column W N

j , which

belongs to VN
j such that the norm ||W0 − (W N

1 + W N
2 )||V = 0 is

null. The problem is therefore, for a fixed N , to find the coefficients

c j, n(N), which minimize the positive real 	N defined as follows:

	N = ||W0 − (W N
1 +W N

2 )||V . (7.52)

Having found the coefficients c̃ j, n(N), which minimize	N , we obtain

the approximation W̃ N
j of Wj with:

W̃ N
j =

N∑
n=1

c̃ j, n(N)Wj, n . (7.53)

The method just described converges in the following sense:

• limN−→+∞ 	̃N = 0 , with 	̃N = ||W0 − (W̃ N
1 + W̃ N

2 )||V
• limN−→+∞ 	̃

j
N = 0 , with 	̃

j
N = ||Wj − W̃ N

j ||V .
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In summary, we have shown that W̃ N
j is a good approximation of Wj .

This approximation will be even better as N increases and can be

checked using the value of 	̃N . In fact, we should be point out that

	̃N is a sequence which decreases with N . We now write:

	̌N = 	̃N

||W0||V , with ||W0||V = | [ε]� |
(∫

�

|ni |2 ds
)1/2

. (7.54)

This sequence is a decreasing sequence and is such that 1 ≤
	̌N ≤ 0. This number 	̌N represents a relative error on � and will

make it possible during calculation to check the quality of the result.

It will be sufficient, for instance, to take the integer N0 such that

	̌N0
≤ 10−3.

7.4.3.4 An example of total family in V1 and V2

We consider two smooth curves γ1 and γ2. The curve γ1 (γ2) must be

in�2 (�1) so that they lie on either side and “all along” the boundary

�.

Theorem 7.2. Let us consider a dense and countable set of points P j, k

of coordinates x j, k = (x j, k, yj, k) on γ j . Denoting by V �
j, k the unique

solution in H 1
� to the equation:

�V �
j, k(x) =

∑
m∈Z2

δ(x−x j, k−m)−1, with x = (x , y) and m = (m1, m2)

(7.55)

and denoting by Wj, k the column defined on � (Class C 2), as follows:

Wj, k =
(

V �
j, k|�

ε j DnV �
j, k|�

)
(7.56)

then the family {Wj, k}k∈N is a total family in V j .

Remark 7.4. If we write G� the unique function in H 1
� defined by:

�G�(x) =
∑

m∈Z2

δ(x−m)− 1 (7.57)

V �
j, k is nothing but G�(x−x j, k) and DnV �

j, k nothing but∇G�(x−x j, k)·n.
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7.4.3.5 Fine estimation of the uniform bound of the error

Let us recall the expression of the coefficients φi, j :

ϕi, j = [ε]�

∫
�

Vi n j ds . (7.58)

In practice, we only have access to the estimation φN
i, j of ϕi, j with:

φ̃N
i, j = [ε]�

∫
�

Ṽ N
i n j ds . (7.59)

which leads to

|φi, j − ϕ̃N
i, j | = | [ε]� |

∣∣∣∫
�

(Vi − Ṽ N
i )n j ds

∣∣∣ (7.60)

≤ | [ε]� |
∫
�

|(Vi − Ṽ N
i )| |n j | ds

By using the Cauchy–Schwartz inequality, we deduce the following

inequality:

|ϕi, j−ϕ̃N
i, j | ≤ | [ε]� |

(∫
�

|(Vi−Ṽ N
i )|2 ds

)1/2 (∫
�

|n j |2 ds
)1/2

(7.61)

Besides, it is straightforward that we have
(∫

�
|(Vi− Ṽ N

i )|2 ds
)1/2

<

	̃
j
N and remarking that | [ε]� |

(∫
�
|n j |2 ds

)1/2

is nothing but ||W0||V ,

we finally deduce the following estimation:

|ϕi, j − ϕ̃N
i, j | ≤ ||W0||V 	̃ j

N . (7.62)

This last inequality proves that the estimate ϕ̃N
i, j does converge to

the exact value φi, j and gives an excellent criterion to evaluate the

accuracy of the estimate.

7.4.4 Closed Formulae for Small Spherical and Cylindrical
Scatterers

For small scatterers, we assume that the potentials Vi are small

enough in the vicinity of ∂Y to replace them by approximate

potentials V 0
i , which are computed not in the unit cell Y but in

the whole space: More precisely, V 0
i are solutions to the following
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modified annex problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

	V 0
i = 0 , in R

3 (7.63a)[
ε
∂V 0

i

∂n

]
�R

= −[ε]
�R

ni (7.63b)[
V 0

i

]
�R
= 0 (7.63c)

lim
r−→+∞ V 0

i = 0 (7.63d)

where �R denotes the sphere of radius R .

First, let us remark that the function V 0
3 defined by:

V 0
3 =

{
ξ x3 , for r ≤ R
ξ R2 x3

r2 , for r ≥ R
(7.64)

satisfies the criteria (7.63a–7.63c) for any complex number ξ . Now

we have to determine this complex number in order to fulfill the

second jump condition (7.63d). Expressed in spherical coordinates,

the normal derivative DnV 0
3 yields:

∂V 0
3

∂r
=
{
ξ cos θ , for r < R
−ξ R2 cos θ

r2 , for r > R
(7.65)

On the other hand, n3 = n · x3 = r · x3 = cos θ . The jump condition

(7.63d) leads, therefore, to:

ε2

dV 0
3

dr |r=R+
− ε1

dV 0
3

dr |r=R−
= (ε1 − ε2) cos θ (7.66)

that is

ξ = ε1 − ε2

ε1 + ε2

. (7.67)

Remark 7.5. Note that the expression of V3 does work for every

component of the multiscalar V and in R3 (R2) provided that the

scatterers are spherical (cylindrical):

V 0
i =

{
ξ xi , for r ≤ R
ξ R2 xi

r2 , for r ≥ R
(7.68)

with ξ given above and with r =
√

x2
1 + x2

2 + x2
3 (resp. r =√

x2
1 + x2

2 ).

Remark 7.6. The reader should probably remember the expression

found in 7.64: It is the potential radiated by a dipole pointing in the

x3 direction.
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7.4.4.1 Computation of ϕ1,1 (cylindrical case)

What we have to do is use Eq. (7.38):

ϕ1, 1 = − [ε]

∫
�R

V 0
1 n1 dl (7.69)

= − [ε]

∫ 2π

0

ξ R cos θ cos θ R dθ (7.70)

= − [ε] ξ f (7.71)

where f denotes the filling ratio. We are now in a position to obtain

the expression of εhom:

εhom = 〈ε〉Y − ϕ1, 1 (7.72)

= ε1 f + ε2(1− f )+ (ε1 + ε2)2

ε1 + ε2

f (7.73)

= ε2 + 2ε2(ε1 − ε2)

ε1 + ε2

f . (7.74)

In order to illustrate our results and estimate the domain of validity,

four figures are represented, showing the rigorous effective permit-

tivity εhom, the approximate effective permittivity ε0
hom together with

the lower and the upper bounds, namely the harmonic (〈ε−1〉−1
Y ) and

the arithmetic mean values (〈ε〉Y ) versus the filling ratio f .

7.4.4.2 Computation of ϕ3,3 (spherical case)

ϕ3, 3 = − [ε]

∫
�R

V 0
3 n3 ds (7.75)

= − [ε]

∫ π

θ=0

∫ 2π

φ=0

ξ R cos θ cos θ sin θ R2 dθdφ (7.76)

= − [ε] ξ2π R3

∫ π

θ=0

cos2 θ sin θ dθ (7.77)

= − [ε] ξ f . (7.78)

By doing so, the expression (7.71) found in a two-dimensional

context still holds for the spherical scatterers!

7.4.5 Closed Formulae for Foliated and
Checkerboard-Like Media

In this paragraph, we seek to determine the coefficients of the tensor

effective permittivity ε
hom

in the case where the permittivity ε does
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Figure 7.10 Effective permittivities versus the filling ratio f . (a) The

circular empty holes ε1 = 1 are drilled within a bulk of high permittivity

ε2 = 12. (b) The circular scatterers are of high permittivity and ε1 = 12 are

supposed to be surrounded by a vacuum ε2 = 1.

not depend on a variable; we assume, therefore, that ∂ε
∂x3
= 0. The

problem we are dealing with is then substantially simplified, as the

coefficients ϕi, 3 and ϕ3, i vanishes. By doing so, the determination of

ε
hom

amounts to looking for the 2× 2 matrix e
hom

such that:

ε
hom
= 〈ε〉Y I d −

⎛⎝ e
hom

0

0

0 0 0

⎞⎠ , (7.79)

where the elements e
hom,i,j

(i, j ∈ {1, 2}2) are deduced from

potentials Vi (y1, y2), unique solutions in H 1
0,�(Y 2) to

divy

(
ε(y1, y2)

(
grady Vi + ei

)) = 0 , i ∈ {1, 2} (7.80)

Despite this simplification, in general, closed formulae cannot be

found for such structures. Nevertheless, there are two remarkable

exceptions: foliated structures (see Fig. 7.16(a)) and checkerboard

(see Fig. 7.16(b)). The first of the two configurations is obviously

the simplest. Indeed ε depends only on one variable, y1, for instance.

Equation (7.80) becomes a simple differential equation, namely:

d
dy1

(
ε(y1)

dV1

dy1

)
= − dε

dy1

(7.81)
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Figure 7.11 Effective permittivities versus the filling ratio f . (a) The

circular empty holes ε1 = 1 are drilled within a bulk of high permittivity

ε2 = 12. (b) The circular scatterers are of high permittivity ε1 = 12 and are

surrounded by a vacuum ε2 = 1.

which leads to:

ε(y1)
dV1

dy1

= −ε + C (7.82)

where C is a constant possibly complex that remains to be

determined with the aid of the periodicity of V1. On one hand, we

have: ∫ 1

0

dV1

dy1

dy1 = V1(1)− V1(0) = 0 (7.83)

and on the other:∫ 1

0

dV1

dy1

dy1 = −1+ C
∫ 1

0

ε−1 dy1 (7.84)

As a result, C is nothing but the harmonic mean value of ε:

C =
(∫ 1

0

ε−1 dy1

)−1

=: εh (7.85)

Coming back to Eq. (7.82) and integrating it, we are led to:

ϕ1, 1 =
∫ 1

0

ε
dV1

dy1

dy1 (7.86)

= −εa + εh (7.87)
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Figure 7.12 Effective permittivities versus the filling ratio f . The circular

scatterers are of high complex permittivity ε1 = 1+50 i and are surrounded

by a vacuum ε2 = 1. Note that the real part of εhom behaves anomalously

when the scatterers are in quasi-contact and possesses a maximum around

f = 0.775, whereas the imaginary part drops abruptly for filling ratio

greater than 0.7. (a) Real part of effective permittivities. (b) Imaginary part

of effective permittivities.

We then find a well-known result:

ε
hom
=
⎛⎝ εh 0 0

0 εa 0

0 0 εa

⎞⎠ . (7.88)

The results concerning the homogenization of the checkerboard-

like structures depicted in Fig. 7.16(b) are based essentially on an

intriguing theorem whose statement follows:

Theorem 7.3 (Theorem of duality). Let e
hom

(ε) be the 2 × 2

matrix introduced above. For a given permittivity ε, there exists a
relation between e

hom
(ε) and e

hom
(ε−1):

e
hom

(ε−1) = e
hom

(ε)

det e
hom

(ε)
. (7.89)

The second property that is used for establishing the mixing law is

the homogeneity (of first order) of the homogenization process. To
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Figure 7.13 Effective permittivities versus the filling ratio f . The circular

scatterers are of high complex permittivity ε1 = 1+ 50 i are supposed to be

surrounded by a vacuum ε2 = 1. Note that the real part of εhom behaves

anomalously when the scatterers are in quasi-contact and possesses a

maximum around f = 0.775, whereas the imaginary part drops abruptly

for filling ratio greater than 0.7. (a) Real part of effective permittivities. (b)

Imaginary part of effective permittivities.

be clear, for any complex number λ, we have:

e
hom

(λε) = λe
hom

(ε) . (7.90)

Now if we denote the matrix e
hom

for two-phase media by

e
hom

([ε1, ε2]) and by using the two aforementioned properties, we

must have:

e
hom

([λε−1
1 , λε−1

2 ]) = λ e
hom

([ε1, ε2])

det e
hom

([ε1, ε2])
(7.91)

If we chose λ = ε1 ε2, we find a relation between the effective

properties of a problem and its dual, that is to say, in inverting the

permeability of the host with that of the guest.

e
hom

([ε2, ε1]) = ε1 ε2

e
hom

([ε1, ε2])

det e
hom

([ε1, ε2])
(7.92)
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Figure 7.14 Effective permittivities versus the filling ratio f . The circular

empty holes ε1 = 1 are drilled within a bulk of high complex permittivity

ε2 = 1 + 50 i . (a) Real part of effective permittivities. (b) Imaginary part of

effective permittivities.
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Figure 7.15 Effective permittivities versus the filling ratio f . The circular

empty holes ε1 = 1 are drilled within a bulk of high complex permittivity

ε2 = 1 + 50 i . (a) Real part of effective permittivities. (b) Imaginary part of

effective permittivities.
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(a) (b)

Figure 7.16 The effective permittivities of these two two-dimensional

structures have simple expressions.

Moreover, if the crystal and its dual are indistinguishable, the

effective parameters for these two configurations are, therefore, the

same.

e
hom

([ε1, ε2]) = ε1 ε2

e
hom

([ε1, ε2])

det e
hom

([ε1, ε2])
(7.93)

For such crystals, if we denote by e1, 1 and e2, 2 the diagonal terms and

by ea the off-diagonal term of ε
hom

, these terms are linked by:

e1, 1 e2, 2 − e2
a = ε1 ε2 (7.94)

For instance, when dealing with two-phase foliated materials of

same thickness, they satisfy the above relation with:

e1, 1 = εa = (ε1+ε2)/2 e2, 2 = εh =
((

1

ε1

+ 1

ε2

)
/2

)−1

and ea = 0.

(7.95)

At least, if a crystal and the same crystal tilted by a rotation of

π/2 are indistinguishable, the crystal in question is isotropic and

e
hom
= e0 I d with e0 = √ε1 ε2 . (7.96)
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Table 7.1 Table of the main mixing laws for spherical

scatterers: In all cases, the effective permittivity εhom is given

versus ε1, ε2, f , where ε1 is the permittivity of the bulk, ε2 is

the permittivity the sphere, and f is the filling ratio

Name Effective permittivity

Rayleigh (1892) εR
hom = ε2 + 3 f ε2

ε1+2ε2
ε1−ε2

− f−1.305
ε1−ε2

ε1−4/3ε2
f 10/3

Maxwell Garnett (1904) εMG
hom = ε2 + 3ε2 f (ε1/ε2−1)

ε1/ε2+2− f (ε1/ε2−1)

Bruggeman (1935) (1− f )
ε2−εB

hom

ε2+2εB
hom

+ f ε1−εB
hom

ε1+2εB
hom

= 0

Two-scale homogenization εhom

Table 7.2 Comparison with the main mixing laws for

different filing ratios f . The structure is a simple cubic crys-

tal made of homogeneous spherical dielectric inclusions

embedded in a vacuum ε2 = 1. The permittivity associated

with the spheres is ε1 = 3

f εhom εR
hom εMG

hom εB
hom

0.1 1.1241 1.1250 1.1250 1.1288

0.2 1.2600 1.2612 1.2609 1.2758

0.3 1.4097 1.4111 1.4091 1.4410

0.4 1.5778 1.5793 1.5714 1.6238

0.5 1.7738 1.7731 1.7500 1.8229

7.4.6 Numerical Examples and Comparisons

7.4.6.1 Spherical inclusions: comparison with the main mixing
laws

We cannot, of course, redo the history of mixing laws and to

peruse all of them; a whole monography would not cover it. In this

paragraph, our purpose is more modest: The most famous formulae

are simply recalled together with the context. It is worth noting that

one could loosely distinguish two categories of laws: The first ones

come under the theory of random media, whereas the second ones

are a subject for the theory of periodic media.
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Table 7.3 Comparison with the main mix-

ing laws for different filing ratios f . The

structure is a simple cubic crystal made of

homogeneous spherical bubbles ε2 = 1

embedded in a dielectric material ε2 = 3

f εhom εR
hom εMG

hom εB
hom

0.1 2.7483 2.7500 2.7500 2.7462

0.2 2.5118 2.5113 2.5135 2.5000

0.3 2.2866 2.2877 2.2895 2.2629

0.4 2.0701 2.0711 2.0769 2.0365

0.5 1.8590 1.8602 1.8750 1.8229

Table 7.4 Comparison with the main mixing laws for different filing

ratios f . The structure is a simple cubic crystal made of homogeneous

spherical lossy inclusions embedded in a vacuum ε2 = 1. The

permittivity associated with the spheres is ε1 = 1+ 50 ∗ i

f εhom εR
hom εMG

hom εB
hom

0.1 1.331+i*0.022 1.332+i*0.022 1.332+i*0.022 1.4224+i*0.046

0.2 1.749+i*0.057 1.751+i*0.057 1.746+i*0.056 2.3453+i*0.369

0.3 2.316+i*0.119 2.320+i*0.119 2.276+i*0.109 3.6702+i*2.313

0.4 3.216+i*0.264 3.198+i*0.257 2.980+i*0.198 3.5036+i*6.534

0.5 5.530+i*1.103 4.921+i*0.698 3.957+i*0.355 2.3923+i*12.81

7.4.6.2 Non-spherical inclusions giving rise to isotropic
metamaterials

In this short paragraph, we give some examples of mixing laws of

non-spherical inclusions (Figs. 7.17–7.19) giving rise nonetheless to

isotropic metamaterials due to the cubic symmetry of the crystals at

stake.

7.5 Soft Problems: Toward Resonance
(Metal–Dielectric Mixing)

Up to now, we have disregarded the dispersive behavior of the

media in the computation of the effective characteristics. However,
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Table 7.5 Comparison with the main mixing laws for different filing

ratios f . The structure is a simple cubic crystal made of homogeneous

spherical bubbles ε2 = 1 embedded in a lossy material ε2 = 1+ 50 ∗ i

f εhom εR
hom εMG

hom εB
hom

0.1 1.061+i*42.84 1.061+i*42.86 1.061+i*42.86 1.0881+i*42.50

0.2 1.100+i*36.32 1.101+i*36.34 1.099+i*36.36 1.2137+i*35.02

0.3 1.129+i*30.28 1.129+i*30.29 1.119+i*30.44 1.4067+i*27.53

0.4 1.157+i*24.50 1.157+i*24.51 1.125+i*25.00 1.7378+i*20.08

0.5 1.214+i*18.69 1.199+i*18.79 1.120+i*20.00 2.3923+i*12.81

as mentioned before, the two-scale homogenization is well suited to

the homogenization of frequency-dependent materials: The reader

has to bear in mind that the small parameter in our limit process is

not the frequency but the period of the crystal. Hence, the frequency

becomes a simple parameter in the annex problems and the recipe

is simple: it suffices to resume our theory done with the relative

permittivity ε(r) in the annex problems by the permittivity ε(r, ω).

The awareness of the time dispersion is, therefore, very natural

contrary to the quasi-static approach. In this theory, the small

parameter is the frequency itself and the homogenization process

consists in studying the Maxwell equation when the frequency tends

to zero. After obtaining the effective characteristics by this method,

it is awkward to study the effects of the dispersion on mixing laws.

Besides, all the examples encountered in the previous sections were

performed either with lossless or lossy dielectrics or with ohmic

metals. For such materials, the real part of the permittivity remained

non-negative as required by the Lax–Millgram theorem, which is

crucial in the two-step homogenization techniques. Now it is well

known that the metals in optical range are no more ohmic and the

real part of the permittivity becomes negative with a possibly weak

leakage (see Fig. 7.20).

Nowadays, the achievements in nanotechnology are such that we

can consider mixing metal–dielectric at sub-wavelength dimension

at least in the infrared. With this mixing seemingly harmless, we

are leaving the quiet realm of the mixing addressed in previous

paragraphs because as we shall see, this mixing has the ability

to not only shift the resonant frequencies but also multiply them.
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(a) (b)

(c) (d)

Figure 7.17 Three cases giving rise to isotropic metamaterials. The three

scatterers are of the same filling ratio f = 1
8

. (a) Spherical scatterer, (b)

cubic scatterer, (c) a three-dimensional circular grid shape scatterer, and (d)

a three-dimensional squared grid.

In order to illustrate this remarkable property, let us consider

the following two-phase composite problem, which is illustrated

diagrammatically in Fig. 7.21. Circular rods made out of dispersive

media characterized by the permittivity εi (ω) are embedded in a

matrix, which is considered being dispersless and defined by its

relative permittivity εe. It is then clear that the tensor effective

permittivity does depend on ω:

ε
hom

(ω) = diag (εH (ω), εH (ω), εE (ω)) , (7.97)
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Figure 7.18 The effective permittivities of these two two-dimensional

structures have simple expression.

where εE (ω) is simply given by the mean value of ε in the cell Y :

εE (ω) = 〈ε(ω)〉Y = f (εi (ω)− εe)+ εe . (7.98)

Suppose now that εi (ω) is given by a Lorentz-like model. Under such

a hypothesis, εi is solely characterized by two real numbers εi,∞,ωi, p

and a complex number (complex pole) ω0:

εi (ω) = εi,∞ −
ω2

i, p

2�e {ω0}
(

1

ω − ω0

− 1

ω + ω∗0

)
(7.99)

The point now is to find ε
hom

against ω. Let us start by εE :

εE (ω) = εE ,∞ −
ω2

E , p

2�e {ω0}
(

1

ω − ω0

− 1

ω + ω∗0

)
(7.100)

with

εE ,∞ = εe + (ε∞ − εe) f and ωE , p =
√

f ωp . (7.101)

It then turns out that εE and εi are very similar and in particular the

position of the pole in the complex plane ω. Now what of εH? In that
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Figure 7.19 The effective permittivities of these two two-dimensional

structures have simple expression.
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Figure 7.20 The Cole–Cole plot of the complex permittivity of metal in

optical range. The data are given in nanometer. Note that the leakage

becomes negligible for silver at wavelengths λ
Ag
1 = 400 nm and λ

Ag
2 =

600 nm and for gold at wavelength λAu
1 = 680 nm. As for chromium and

aluminum, the corresponding wavelengths are found in UV range near 200

nm. Moreover, the real parts of the permittivities are negative in optical

range (visible and ultraviolet).
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Figure 7.21 The resonant structure is characterized by its permittivity

εi (ω) given in Eq. 7.99 and solely represented by three parameters εi,∞ = 1,

ωi, p = 5 and the complex pole ω0 = 1.9975− 0.1 i .

case, the answer cannot be given by a simple closed formula except

for small scatterers (see 7.74):

εH (ω) ≈ ε0
H (ω) = εe + 2εe(εi (ω)− εe)

εi (ω)+ εe
f (7.102)

This equation can be recast in the following manner:

ε0
H (ω) = εH ,∞ −

ω2
H , p

2�e {ω1}
(

1

ω − ω1

− 1

ω + ω∗1

)
(7.103)

where

εH ,∞ = εe + 2εe f − 4ε2
e

ε∞ + εe
f , ωH , p = 2 εe

εe + ε∞

√
f ωp ,

(7.104)

and

ω1 =
√
�e{ω0}2 +

ω2
p

εe + ε∞
+ i �m{ω0} . (7.105)

Once again, the latter formula looks similar to that found previously

except that the pole is shifted from ω0 toω1, which seems insensitive

to the filling ratio at least for small scatterers as shown in Figs. 7.22

and 7.23.

Now as f grows, the discrepancy between εhom and ε0
hom becomes

manifest and the resonance frequency is then shifted toward
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Figure 7.22 Comparison between εH and the approximation ε0
H . A periodic

collection of resonant rods made of a material characterized by a permit-

tivity εi (ω) described by the law (7.99) and diagrammatically illustrated

in Fig. 7.21 is embedded in an ideal dispersiveless bulk characterized by

its permittivity εe = 3. For this very sparse mixture (filling ratio 1%),

the permittivity εH derived from the two-step homogenization and the

approximated permittivity ε0
H given in Eq. 7.102 for small scatterers are in

perfect agreement.
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Figure 7.23 Comparison between εH and the approximation ε0
H . A periodic

collection of resonant rods made of a material characterized by a permit-

tivity εi (ω) described by the law (7.99) and diagrammatically illustrated

in Fig. 7.21 is embedded in an ideal dispersiveless bulk characterized by

its permittivity εe = 3. For this sparse mixture (filling ratio 5%), the

permittivities εH and ε0
H are in fair agreement. However, the resonance of

εH is slightly shifted toward the low frequencies.
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Figure 7.24 Comparison between εH and the approximation ε0
H . For this

structure (filling ratio 10%), the two resonances are clearly different.
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Figure 7.25 Comparison between εH and the approximation ε0
H . The

discrepancy is all the more evident as the filling ratio (here 20%) is high.

the resonance frequency of εi , namely ω0: The resonance frequency

�1 of the mixture is then filling ratio–dependent.

Surprisingly enough, it turns out that new poles come out

between ω0 and ω1 as seen in Figs. 7.26 and 7.27.
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Figure 7.26 Comparison between εH and the approximation ε0
H . For rods of

such a size (filling ratio 40%), one supernumerary pole is discernible near

ω1.
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Figure 7.27 Comparison between εH and the approximation ε0
H . For rods

of such a size (filling ratio 60%), two supernumerary poles are now visible

from both sides of ω1.

7.6 Tiny Enough to Be Homogeneous?

7.6.1 Introduction

It is commonly admitted that homogenization processes apply

when the characteristic lengths of periodically arranged obstacles
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are “much smaller” than the incident wavelength. The goal of

this section is resolutely pragmatical: How small compared to

the incident wavelength periodically arranged obstacles should be

to form a homogeneous metamaterial? We are now in position

to answer this practical question: On the one hand, a general

homogenization methodology was derived in this chapter. On the

other hand, several accurate numerical methods were introduced in

Section 7.4.

Let us consider the following problem: An incident plane wave

is illuminating a slab made of a slice of infinite crystal with cubic

symmetry, with lattice constants denoted by dx , dy , and dz. This

slab has a fixed thickness e equal to an integer (N) multiple of dz.

The FEM, through the rigorous computation of the diffracted field,

allows to deduce the transmitted, reflected, and absorbed energy

by such an object, as shown in Chapter 6. But as N increases for a

fixed thickness e of the slab, it is tempting to assume the complex

crystal homogeneous and calculate its homogeneous mesoscopic

characteristics, to finally compare the result of the real problem

obtained by the FEM to the one of the classical one-dimensional

homogeneous slab problem obtained analytically.

In this section, we propose to confront the two approaches for

various permittivities ε1 (inside the obstacle) and ε2 (background)

of the real problem: lossless dielectric, metals, non-symmetric

shapes. The study is restricted to ellipsoidal obstacle arranged in a

three-dimensional crystal with cubic symmetry (dx = dy = dz = a),

but could be easily extended to other types of geometries (grids,

cubes) and crystal symmetries (diamond, fcc).

7.6.2 Lossless Dielectric

7.6.2.1 Convergence

First, the obstacles are considered to be spherical (rx = ry = rz =
r0), filled with a lossless dielectric of permittivity ε1. Each obstacle

occupies a filling fraction 0.35 of the total volume of the unit cell,

that is, its radius is set to 0.437 a. A bulk slab of thickness 3 λ0

and permittivity ε2 is progressively filled with an integer number

N of previously described spheres arranged in a cubic symmetry of
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lattice constant a. Under these hypotheses, the mass per unit surface

of each material remains constant as N increases.

Figure 7.28 shows reflectivity (the specular diffraction efficiency

R0, 0, defined reff gratings, since the periodicity is sub-wavelength)

of the structure as N increases from 7 (consider λ0 = 660 nm,

the diameter of the spheres is 2 r0 = 247.3 nm) to 171 (diameter

10.2 nm), for different values of ε1:4, (red stars on Fig. 7.28),

9 (green stars) and 16 (blue stars), keeping ε2 set to 1. An

energy balance criterion was used for each FEM calculation to

ensure numerical validity (red circles, green and black crosses).

Respectively, the horizontal lines represent the reflectivity of a

slab of homogeneous permittivity 1.643 (red line), 2.054 (green

line), and 2.286 (blue line). As N increases, the reflectivity of the

structured device converges toward the value of the homogeneous

slab. Indeed, for values of N above 50 (resp. N > 40, resp. N > 20),

the reflectivity slightly fluctuates above and below the value given

by the homogeneous problem for ε1 = 16 (resp. ε1 = 9, resp.

ε1 = 4). These different convergences are not surprising and shed

light on an important parameter when tackling homogenization: the

wavelength inside a material (λ0/
√
ε). For dielectric materials, even

with a relatively high index of refraction (n = 4), one can safely

consider a material homogeneous (for ε2 = 16 and N = 50, the

diameter of the sphere is 34 nm, and the periodicity a = 6% λ0);

the fluctuations around the expected value mentioned above can

be attributed to the discretization of the computation volume into

tetrahedrons.

7.6.2.2 Angular response

The angular responses ( p-polarization case) confirm the previous

result. The angular behavior of the homogeneous slab and the one

of the realistic models with 171 spheres are in quite good agreement

for the three studied lossless cases ε1 = 4 (see Fig. 7.29), ε1 = 9 (see

Fig. 7.30), and ε1 = 16 (see Fig. 7.31).

In lossless cases, even the homogenization scheme presented is a

convenient tool to predict the optical response of lossless materials.

It should be noted that other homogenization techniques allow to

retrieve the homogeneous permittivity with a comparable accuracy
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Figure 7.28 Reflection of the 3λ thick slab, as a function of the number of

spheres depending on the permittivity ε1 inside the spheres. The structure

is illuminated by a plane wave at normal incidence: λ0 = 660 nm and θ0 =
φ0 = ψ0 = 0◦. The filling fraction is 0.35 (r0 =). ε1 ∈ {4, 9, 16}while ε2 = 1.

This leads to an isotropic εhom ≈ {1.643, 2.054, 2.286}.
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Figure 7.29 Angular response of the 3λ thick slab, consisting of 171

spheres (filling fraction 0.35, corresponding to diameters of 10.2 nm). The

incident plane wave is p-polarized, at oblique incidence: λ0 = 660 nm,

θ0 ∈ {0◦, 5◦, . . . , 85◦} and φ0 = ψ0 = 0◦. ε1 = 4 while ε2 = 1. Leads to

an isotropic εhom ≈ 1.643.

(see column “Rayleigh” in Table 7.6). As previously established,

the Rayleigh formula leads to homogeneous characteristics close to

those obtained with the proposed homogenization scheme. In the

next section, we will see that this is not always the case, even in the

case of simple spheres.
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Figure 7.30 Angular response of the 3λ thick slab, consisting of 171

spheres (filling fraction 0.35, corresponding to diameters of 10.2 nm). The

incident plane wave is p-polarized, at oblique incidence: λ0 = 660 nm,

θ0 ∈ {0◦, 5◦, . . . , 85◦} and φ0 = ψ0 = 0◦. ε1 = 16 while ε2 = 1. Leads to

an isotropic εhom ≈ 2.054.
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Figure 7.31 Angular response of the 3λ thick slab, consisting of 171

spheres (filling fraction 0.35 corresponding to diameters of 10.2 nm). The

incident plane wave is p-polarized, for various off-normal incidence angles:

λ0 = 660 nm, θ0 ∈ {0◦, 5◦, . . . , 85◦} and φ0 = ψ0 = 0◦. ε1 = 16 while ε2 = 1.

Leads to an isotropic εhom ≈ 2.286.

7.6.3 Metals

7.6.3.1 Convergence

In this section, we are now dealing with lossy materials. The

challenging case commonly encountered when tackling plasmonics
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Table 7.6 Table of the main mixing laws for spherical scatterers with

f = 0.35, ε2 = 1, and ε1 ∈ {4, 9, 16}

moy ari moy har eps0 Clauss–Moss Rayleigh HOM

2.050 1.356 1.420 1.288 1.645 1.643

3.800 1.452 1.560 1.121 2.056 2.054

6.250 1.488 1.618 1.067 2.287 2.286

−4.139+ 1.601+ 1.810+ 0.926− 3.622+ 3.636+
0.362 i 0.005 i 0.009 i 0.005 i 0.098 i 0.100 i
−6.396+ 1.581+ 1.773+ 0.949− 3.264+ 3.2713+
0.157 i 0.001 i 0.002 i 0.001 i 0.015 i 0.016 i

is deliberately selected: a high negative real part of the permittivity

with relatively low imaginary part. For instance, in the visible

range, let us focus on silver and gold at 660 nm (ε660 nm
gold =≈

−13.683 + 1.036 i and ε660 nm
silver = −20.132 + 0.448 i). The same

convergence study as in the previous section is conducted. The

results in reflection, transmission, and absorption obtained with the

FEM for gold (and silver) spheres are presented (∗) in Figs. 7.32 and

7.33, respectively. The realistic problem is, again, to be compared to

the bulk 3 λ-thick slab one-dimensional problem with permittivity

εhom = 3.636 + 0.100 i for gold (resp. 3.271 + 0.015 i. for silver).

For a large number of spheres N = 171 (i.e., spheres of diameter

10.2 nm), convergence is not reached in both metallic cases.

7.6.3.2 Angular response

Even if convergence has not been reached, the angular responses are

in reasonable agreement with homogeneous material.

In the next section, we reduce the size of the slab for taking into

account smaller lattice constants compared to the wavelength.

7.6.3.3 Comparison between the different homogenization
approaches

In this case, the spheres are reaching a diameter of 3.6 nm, which

is less than 20 times the diameter of gold and silver atoms,

probably reaching the classical limit. Table 7.6 shows clearly that the
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Figure 7.32 Reflection of the 3λ thick slab, as a function of the number of

spheres. Incident plane wave: λ0 = 660 nm and θ0 = φ0 = ψ0 = 0◦. Filling

fraction 0.35. ε1 = εgold(660 nm) ≈ −13.683 + 1.036 i while ε2 = 1. Leads

to an isotropic lossy (diagonal complex-valued permittivity tensor) εhom ≈
3.636+ 0.100 i.
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Figure 7.33 Reflection of the 3λ thick slab, as a function of the number of

spheres. Incident plane wave: λ0 = 660 nm and θ0 = φ0 = ψ0 = 0◦. Filling

fraction 0.35. ε1 = εsilver(660 nm) ≈ −20.132+ 0.448 i while ε2 = 1. Leads

to an isotropic lossy εhom ≈ 3.271+ 0.015 i.
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Figure 7.34 Reflection (in red), transmission (in blue), and absorption (in

green) of the 3λ thick slab, consisting of 171 spheres (filling fraction 0.35,

corresponding to a radius of 5.1 nm). Incident plane wave: λ0 = 660 nm,

θ0 ∈ {0◦, 5◦, . . . , 85◦}, and φ0 = ψ0 = 0◦. ε1 = εgold(660 nm) ≈ −13.68 +
1.036 i while ε2 = 1. Leads to an isotropic εhom ≈ 3.636+ 0.100 i.
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Figure 7.35 Reflection (in red), transmission (in blue), and absorption (in

green) of the 3λ thick slab, consisting of 171 spheres (filling fraction 0.35,

corresponding to a radius of 5.1 nm). Incident plane wave: λ0 = 660 nm,

θ0 ∈ {0◦, 5◦, . . . , 85◦}, and φ0 = ψ0 = 0◦. ε1 = εsilver(660 nm) ≈ −20.132+
0.448 i while ε2 = 1. Leads to an isotropic εhom ≈ 3.271+ 0.015 i.
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Figure 7.36 Real and imaginary parts of homogeneous permittivities εhom

and εR
hom as functions of the background permittivity ε2, for spherical

inclusions, with cubic symmetry, of filling fraction 0.35 and made of gold

or silver (ε660 nm
silver ≈ −20.132 + 0.448 i and ε660 nm

gold ≈ −13.68 + 1.036 i).

(a) Re{εR
hom} (red solid line) and Re{εhom} (blue solid line) as functions of

ε2 for gold spherical inclusions. (b) Im{εR
hom} (red solid line) and Im{εhom}

(blue solid line) as functions of ε2 for gold spherical inclusions. (c) Re{εR
hom}

(red solid line) and Re{εhom} (blue solid line) as functions of ε2 for silver

spherical inclusions. (d) Im{εR
hom} (red solid line) and Im{εhom} (blue solid

line) as functions of ε2 for silver spherical inclusions.

Rayleigh analytical formula for homogenization leads to results close

to those obtained using our proposed approach.

Figure 7.36 shows the real and imaginary parts of homogeneous

permittivities εhom and εR
hom as functions of the background

permittivity ε2, for spherical inclusions, with cubic symmetry, of

filling fraction 0.35 and made of gold or silver (ε660 nm
silver ≈ −20.132+

0.448 i and ε660 nm
gold ≈ −13.68 + 1.036 i). The two homogenization

techniques clearly come to a disagreement at higher values of the

background permittivity—for gold (resp. silver) inclusions, ε2 > 7

(resp. ε2 > 11). Again let us consider the following numerical

experiment: a one wavelength-thick slab, made of gold (resp. silver)
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Figure 7.37 Reflection and absorption of the λ thick slab, consisting of 157

gold spheres (filling fraction 0.35, corresponding to a diameter of spheres

of 3.7 nm). Incident plane wave: λ0 = 660 nm, θ0 ∈ {0◦, 5◦, . . . , 85◦} and

φ0 = ψ0 = 0◦. ε1 = ε660 nm
gold ≈ −13.683 + 1.036 i while ε2 = 9.72. Leads to

an isotropic εR
hom ≈ 2.585+ 4.389 i, while εhom ≈ −8.389+ 7.398 i.
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Figure 7.38 Reflection and absorption of the λ thick slab, consisting of 157

silver spheres (filling fraction 0.35, corresponding to a diameter of spheres

of 3.7 nm). Incident plane wave: λ0 = 660 nm, θ0 ∈ {0◦, 5◦, . . . , 85◦} and

φ0 = ψ0 = 0◦. ε1 = ε660 nm
silver ≈ −20.132+ 0.448 i while ε2 = 13.87. Leads to

an isotropic εR
hom ≈ 3.281+ 1.703 i, while εhom ≈ −22.420+ 7.413 i.

spherical inclusions (FF = 0.35) arranged in a cubic symmetry

and merged in a lattice of permittivity ε2. Let us set ε2 to a

challenging value, for instance 9.72 (resp. 13.87), as represented by

the vertical black dashed lines in Fig. 7.36. Both real structures seem

to follow what predicts the proposed homogenization rather than

the Rayleigh formula.
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Chapter 8

Stiff Problems: High Contrast Objects
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8.1 Introduction: Metallic Metamaterials and
Metasurfaces

Metamaterials or their two-dimensional analogues, metasurfaces,

are generally made of basic elements containing metallic parts.

The latter are generally very thin and conductive, which makes a

theoretical analysis rather subtle: One cannot just let the thickness

of the elements tend to zero, because the metamaterial would

simply disappear in the end. In this chapter, the problem of the

effective properties of a wire medium is investigated. This problem

was largely discussed in the physical literature (Belov et al., 2003,

2002; Simovski and Belov, 2004). Two different approaches are
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Figure 8.1 Grid composed of thin infinitely metallic circular rods.

proposed here. The first one deals with infinitely long wires and

uses explicit calculations: It relies on the use of Green’s functions,

and it can be used to deal with metasurfaces. The other approach

considers the case of wires of finite length and is based on a

variational approach. The main difficulty here is to identify correctly

the boundary conditions at the end of the wired medium. The

variational approach is very interesting because it does not require

additional boundary conditions (ABC) as sometimes suggested in

the electric engineering community (Maslovski et al., 2010).

8.2 Infinitely Long Wires

A bidimensional metamaterial made of a biperiodic arrangement

of infinitely long and very conducting wires is considered. It can

be seen as a stack of metasurfaces made of thin rods (radius

a) with period d (see Fig. 8.2). It is illuminated by an incident

monochromatic wave U i invariant along z. The incident field
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Figure 8.2 Sketch of the structure under study.

is linearly polarized along z. Both polarizations E || and H|| are

treated simultaneously. The wavelength in vacuum is λ, and the

wavenumber is k0 = 2π/λ. The total field is denoted by U t , and

the diffracted field is U d = U t − U i . In order to provide a modal

analysis, the incident field is further Fourier transformed along x ,

so that the incident field is a plane wave U i (x , y) = ei(α0 x±β0 y) =∑
n an J n(k0r)einθ , where α0 = k0 sinφ, φ is an angle of incidence and

k0 = ω
c . We denote β0(k0, α0) =

√
k2

0 − α2
0 , βn = β0(k0, αn) where

αn = α0 + nK and K = 2π
d . The following result will be used:

Lemma 8.1.∑
n

einα0d H (1)
0 (k0 |r− ndex |) = 2

d

∑
n

1

βn
ei(αn x+βn|y|) (8.1)

8.2.1 Expression of the Scattered Field

The metamaterial being decomposed as a stack of metasurfaces

(or, more simply, gratings), an asymptotic analysis is performed

on a single grating. The structure under study (see Fig. 8.2) is

made of an infinite number of wires periodically disposed at points

x = pd, y = 0, d is the period and p ∈ Z. Each scatterer at

position Mp is characterized in the frequency domain by a scattering

matrix S .
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For one wire alone, the incident field gives rise to a diffracted

field U d
p (M) = ∑n bp

nϕn(M − Mp), where ϕn(r, θ) = H (1)
n (k0|r|)einθ

and H (1)
n is the nth Hankel function of order 1. For the infinite set of

scatterers, this gives a diffracted field that reads as:

U d(M) =
∑
p, n

bp
nϕn(M − Mp). (8.2)

The diffracted field can then be written as a Rayleigh series:

U s (x , y) =
∑

n

U s
n ei(kn x+βn(k0,α0)|y|) , (8.3)

where U s
n = 2

d

∑
p bp

n φ̂n(k + 2πp
d ), ·̂ denotes the Fourier transform

along x and Poisson formula was used. Multiple scattering theory

(see Section 6.2) allows to write that for p = 0:

b̂0 = (1− S�)−1 Sâ (8.4)

where b̂0 = (. . . , b0
−n, . . . , b0

n , . . .)T and â = (. . . , a−n, . . . , an, . . .)T .

The matrix � is given by: �(k0, α0) = ∑
m�=0

eiα0mT0m, thanks to

the pseudo-periodicity of the incident field. In this expression,

(T0m)pq = ei( p−q)θm
0 H (1)

p−q(k0|m|d), i.e.,

T0m =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... . . .

. . . H0(k0|m|d) −εm H1(k0|m|d) H2(k0|m|d) . . .

. . . εm H1(k0|m|d) H0(k0|m|d) −εm H1(k0|m|d) . . .

. . . H2(k0|m|d) εm H1(k0|m|d) H0(k0|m|d) . . .

. . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where εm = sign(m) (note that eiθm

0 = −sign(m). The following

series indexed by p appear:

�p =
∑
m�=0

eimα0ε p
m H p(k0|m|d). (8.5)

and the entries of the matrix �(k0, α0) are: (�(k0, α0))pq = �p−q

8.2.2 Asymptotic Analysis of the Scattered Field

For infinitely circular, infinitely conducting rods, the scattering ma-

trix is diagonal, with entries: S(k0) = diag(S−1(k0), S0(k0), S1(k0)).

For circular wires of radius a, the following asymptotics for the
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scattering matrix hold, where the superscript E or H denotes the

corresponding polarization:

S E
0 (k0a) = −H (1)

0 (k0a)

J 0(k0a)
= 1

−1− 2i
π

(γ + ln(k0a/2))
+O((k0a)2)

(8.6)

S E
±1(k0a) = −H (1)

1 (k0a)

J 1(k0a)
= − iπ

4
(k0a)2 +O((k0a)4)

(8.7)

and

S H
0 (k0a) = −H (1)

1 (k0a)

J 1(k0a)
= − iπ

4
(k0a)2 +O((k0a)4) (8.8)

S H
±1(k0a) = −H

′(1)
1 (k0a)

J ′1(k0a)
= iπ

4
(k0a)2 +O((k0a)4) (8.9)

This shows that in the regime where k0a � 1, the cylinder can be

described by a 3×3 scattering matrix (this corresponds to an electric

dipole and a magnetic dipole) and the field by three coefficients

b−1, b0, b1. Therefore, only three series are involved: �0, �1, �2. It

holds:

�(k0, α0) =
⎛⎝�0 −�1 �2

�1 �0 −�1

�2 �1 �0

⎞⎠
In the extreme limit (a � d) where the scatterers are very small as

compared to the wavelength and the period, the scattering matrix

S(ω) reduces to a scalar matrix S0(ω): The scatterers are thus

dipoles with a dipole moment along ez and the only involved series

is �0. The multiple scattering relation (8.4) then becomes:

b0
0(k0, α0) = (1− S0�0)−1 S0 . (8.10)

In the limit k0d � 1, the following asymptotics hold:

Proposition 8.1.

�0(k0, α0) ∼ −1− 2i
π
γ + 2i

π
ln
(

2K
k0

)
+ K

πβ0

�1(k0, α0) ∼ α0

πk0

(
−2+ i K

β0

)
�2(k0, α0) ∼ K

πk2
0

β2
0−α2

0

β0
− i

πk2
0

(
K 2

3
− β2

0 + α2
0

) (8.11)
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Proof. We study in detail the series �0; the other series can be dealt

with in the same way. The point is to let r = (x , y) tend to 0 in Eq.

(8.1). First, setting y = 0, one obtains:∑
n �=0

einα0d H (1)
0 (k0 |x − nd|) = −H (1)

0 (k0|x|)+ 2

d

∑
n

1

βn
eiαn x (8.12)

The term H (1)
0 (k0|x|) and the series are both singular at x = 0.

However, both singularities compensate. This can be seen by

analyzing the asymptotic behavior of the terms of the series: as n
tends to infinity, it holds βn ∼ 2iπ |n|/d; the series is, therefore,

logarithmic:

2

d

∑
n

1

βn
eiαn x = 2

dβ0

eiα0 x + 2

d

∑
n �=0

(
1

βn
− d

2iπ |n|
)

eiαn x

+
∑
n �=0

1

iπ |n|e
iαn x

and the last series is equal to: 2
iπ eiα0 x ln[2 sin(πx/d)]. By using the

expansion of H (1)
0 (k0|x|) near x = 0, we get (γ is the Euler constant):

−H (1)
0 (k0|x|)+ eiα0 x 2

iπ
ln[2 sin(πx/d)] ∼ −1− 2i

π
γ + 2i

π
ln

(
2λ

d

)
(8.13)

which shows that:∑
n �=0

einα0d H (1)
0 (k0 |n| d) = −1− 2i

π
γ + 2i

π
ln

(
2λ

d

)

+ 2

dβ0

+ 2

d

∑
n>0

(
1

βn
+ 1

β−n
− d

iπ |n|
)

. (8.14)

Finally, when k0d is small, the last series is equivalent to
i[−3+2 cos2(θ)]

π3 ζ (3)(k0d)2 and consequently∑
n �=0

einα0d H (1)
0 (k0 |n| d) = −1−2i

π
γ+2i

π
ln

(
2π

k0d

)
+ 2

dβ0

+O((k0d)2)

(8.15)

The other expansion can be obtained in a similar fashion (Cabuz,

2007).
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The diffracted field (8.3) simplifies to the following form:

y > 0 : U (x , y) = ei(α0 x−β0 y) + r ei(α0 x+β0 y)

y < 0 : U (x , y) = t ei(α0 x−β0 y) (8.16)

where:

r = 2

d

(
b0

0

β0

+ i
α0

β0

(b0
1 + b0

−1)+ (b0
−1 − b0

1)

)
,

t = 1+ 2

d

(
b0

0

β0

+ i
α0

β0

(b0
1 + b0

−1)− (b0
−1 − b0

1)

)
. (8.17)

8.2.3 Asymptotic Form of the Transfer Operator

The scattering matrix of the metasurface is:

Sm =
(

r t
t r

)
The transfer matrix reads as:

Tm =
⎛⎝ t2−r2+1

2t
(r+1)2−t2

2ik

−ik t2−(r−1)2

2t
t2−r2+1

2t

⎞⎠ (8.18)

In the homogenization limit of large wavelength k0d � 1, the

reflection and transmission coefficients become:

r E = 2b0
0

dβ0

, tE = 1+ 2b0
0

dβ0

(8.19)

and

r H = O((k0a)2), tH = O((k0a)2). (8.20)

That is, the scattered magnetic field is null in the first order of k0a.

This means that the medium is basically transparent for H|| fields.

From these expressions and (8.15), where the terms that tend to

0 with k0d are removed, it is obtained from (8.10):

b0
0 ∼ −

β0d
2

1

1− iχ
E i (0) (8.21)

where

L= d
π

ln

(
d

2πa

)
, χ = β0 L (8.22)
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The reflection and transmission coefficients now read:

r E = −1

1− iχ
, tE = 1+ r = χ

χ + i
(8.23)

and the transfer operators reduce to:

T E =
(

1 0
2
L 1

)
, T H =

(
1 0

0 1

)
(8.24)

The expression (8.23) shows that the reflection coefficient tends

to −1 as k0d tends to 0. This is quite a striking result if one thinks

of the extremely low concentration of material in this scattering

experiment. The behavior of such a grid is equivalent to a perfect

mirror for λ  d. For instance, for a/d = 1/1000 and for

k0d = 1/100, in normal incidence we find a theoretical reflection

coefficient worthy of the best mirrors: R = |r|2 = 0.999739.

The expression of the reflection coefficient r gives us the critical

dimension of the radii of the wires. If a(k0) is related to k0 in such

a way that

k0d cos θ0

π
log
( d

2πa(k0)

) = � (8.25)

where � is some constant, i.e.,

a(k0) = d
2π

e−
π�

k0d cos θ0 (8.26)

then the grid, at the limit, behaves neither as vacuum nor as a perfect

mirror because the reflection coefficient is equal to r = −1
1+i� .

Let us remark that the evanescent part of the field can be

expressed as (Zolla et al., 2006):

U d, E
evan ∼

−4i
log
( d

2πa

) log
(

1− ei K(x+i |y|)) , (8.27)

8.2.4 Derivation of the Transfer Matrix and Effective
Parameters

In the preceding section, we have derived an explicit expression for

the field diffracted by the metasurface and its transfer matrix. In

order to model the wire mesh metamaterial, we derive the total

dressed T matrix by adding a slab of air below and above the
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metasurface. The Th matrix for a homogeneous slab of width h/2 of

dielectric material with permittivity 1 is given by:

Th =
(

cos(β0h/2) β−1
0 sin(β0h/2)

−β0 sin(β0h/2) cos(β0h/2)

)
(8.28)

so that the total T-matrix for the grating sandwiched between two

slabs of height h/2 is:

T =
(

cos(β0h)+ 1
β0 L sin(β0h) β−1

0 sin(β0h)+ 2

β2
0 L sin2(β0h/2)

−β0 sin(β0h)+ 2
L cos2(β0h/2) cos(β0h)+ 1

β0 L sin(β0h)

)
(8.29)

A basic layer of the metamaterial has now been characterized.

A general device is made of a stack of N such layers. Due to the

very weak evanescent fields, the transfer matrix of such a layered

device is very well approximated by T N . From this transfer matrix

formulation, explicit formulas for the effective permittivity can be

derived (Cabuz, 2007).

The main feature of the low-frequency behavior is the existence

of a photonic bandgap down to the null frequency. The rest of

this section is devoted to the derivation of an implicit equation for

the cut-wavelength λc characterizing the edge of the band gap. A

band gap is characterized by the fact that |tr(T )| ≥ 2. When the

wavelength is very large with respect to d, the transfer matrix is very

near the identity matrix; consequently, the equation for the edge λc

of the last gap reads as: tr(T (λ, θ)) = 2. This amounts to looking for

βc
0 = 2π

λc
cos θ , which is solution to:

cos(βc
0h)+ 1

βc
0 L

sin(βc
0h) = 1. (8.30)

Denoting X = tan(βc
0h/2), the following relation holds:

1− X 2

1+ X 2
+ 1

χ

2X
1+ X 2

= 1 (8.31)

whose solution is βc
0 L = X . Finally, the plasmon frequency is given

by the following implicit dispersion relation:

βc
0 Ltan

(
βc

0h/2
) = 1 . (8.32)

Now letting xc = hβc
0

2π
, this dimensionless number is the solution to:

2πxc L
h

tan (πxc) = 1 , (8.33)

depending on the parameter L
h .
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The following asymptotic results hold:

• L
h � 1 (i.e., h  d, for realistic size of rods, say a = 10−3d).

In that case, xc ∼ 1/2 and, as a result, the cut-wavelength λc
0 is

given by:

λc
0 =

2π cos θ

βc
0

∼ 2h cos θ . (8.34)

which is nothing but the Bragg condition. As a conclusion, λc
0  

d (except for grazing incidence), which is compatible with the

homogenization process.

• L
h  1. In that case, we can make Eq. (8.33) explicit by using the

expansion tan(πxc) ∼ πxc . We find:

xc = 1√
2π

√
h
L

(8.35)

and we deduce an approximation λc, 1
0 of λc

0:

λc, 1
0 = π

√
2Lh cos θ (8.36)

8.3 Finitely Long Wires: The Bed of Nails

8.3.1 Setup of the Problem

In this section, the case of wires of finite length is considered. The

structure is called “bed of nails” (Fig. 8.3). An effective medium

model based on a two-scale renormalization approach is derived.

A detailed discussion of the model’s domain of applicability is

included.

The structure is a square bi-periodic array of thin wires of

length L, radius r , and conductivity σ . The period is d, and the

wavelength is λ. The renormalization (depicted in Fig. 8.3) involves

a limiting process whereby the three quantities r , d, and 1/σ

tend simultaneously to zero. The period, which is the parameter

governing the limiting process, is noted η = d.

The asymptotics of the other two parameters, σ and r , with

respect to η are described by fixed parameters κ and γ according
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dη1

dη1

dη2

dη2

L

2r

σ

2r

ση

η η

η1

1

2

2

L
Z

Renormalization

Ω

XY

Figure 8.3 The bed-of-nails structure and the renormalization process. The

conducting fibers occupy a region � � R2, are oriented in the z direction,

and the structure is periodic in the xy plane. Two renormalized structures

are shown, corresponding to η1 and η2, respectively, with η1 > η2, dη1
>

dη2
, ση1

< ση2
and rη1

/dη1
> rη2

/dη2
. The physical structure corresponds by

definition to η = 1: dη=1 = d. The length L and the wavelength λ remain

fixed.

to the following relations:

κ = πr2
η ση

ε0ωη2
(8.37)

1

γ
= η2 log

(
rη
η

)
(8.38)

where ω is the angular frequency of the electromagnetic field. In

other words, the conductivity is renormalized inversely to the fill

factor θη = πr2
η

η2 , while the radius is renormalized such that the

expression η2 log(
rη
η

) remains constant.

These expressions have simple intuitive interpretations. The

first requires the current density to remain constant during the

renormalization. The parameter κ is the volume average of the

imaginary part of the permittivity. Also recall that the static
admittance per unit length of a circular wire is given by

Ywire = πr2σ (8.39)

and that the number of wires per unit area is given by 1/η2.

The second expression requires the average internal capacitance of
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the wires to remain constant during renormalization. This feature

is known to be essential for their asymptotic behavior (see, for

instance Refs. (Pendry et al., 1996, 1998)). The essential quantities

in the rescaling process are the geometric quantities rη , η, the

material quantity ση , and the field quantities Eη and Hη . To these,

we add a quantity characterizing the all-important electric field in

the wires. This is noted as Fη; it is nonzero only inside the wires and

is given by

Fη = κ

θη
Eη = ση

ε0ω
Eη .

Fη has the units of electric field, and in the microscopic, inhomo-

geneous picture, it is proportional to the current density. In the

macroscopic, homogeneous picture, however, it will correspond to

the polarization density P. More precisely, it holds limη→0 Fη =
P/ iε0.

In the limit η → 0, the fields converge (in a precise sense

described in Ref. (Bouchitté and Felbacq, 2006)) to the unique

solution to the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
curl E = iωμ0H

curl H = −iωε0(E + P
ε0

ẑ)

∂2Pz
∂z2 +

(
k2

0 + 2iπγ
κ

)
Pz = −2πγ ε0Ez, z ∈ [−L/2, L/2]

∂Pz
∂z = 0, z ∈ {−L/2, L/2}

(8.40)

All field quantities above are effective, homogeneous quantities,

which have meaning when the wires have been replaced with a

homogeneous effective medium with an electric polarization density

equal to P. The equation that gives P is an inhomogeneous Helmholtz

equation where the source term is given by the z component of

the electric field Ez. The polarization satisfies Neumann conditions

at the upper and lower interfaces of the slab. It is not, in

general, continuous there because Maxwell’s equations impose the

continuity of the normal component of the displacement field

D ≡ ε0E + P; consequently, any jump in E must be canceled by

an equivalent jump in P/ε0. The dependence of P on E , i.e., the

constitutive relation, takes the form of an integral. The polarization

field has the form

P(x , z0) = −2πγ ε0

∫ L/2

−L/2

g(z, z0)Ez(x , z)dz (8.41)
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where g(z, z0) is the Green’s function of the Helmholtz operator on

the bounded domain z ∈ (− L
2

, L
2

)
. It takes the form (see Appendix

A)

g(z, z0) = 1

K sin(K L)
cos

[
K
(

z< + L
2

)]
cos

[
K
(

z> − L
2

)]
where K 2 = k2

0 + 2iπγ
κ

, z< = min(z, z0), and z> = max(z, z0).

Relation 8.41 is a non-local constitutive relation because the value

of the polarization field at a position z0 depends on values of the

electric field at positions different from z0.

When the imaginary part of K is large, the integral above drops

off quickly. In the limit of small conductivity (and hence small κ),

the polarization becomes local for sufficiently large wavelengths. In

the opposite limit, for infinite conductivity and infinitely long wires,

the integral covers all space (in the z direction) and the material is

non-local, even in the long-wavelength regime. In fact, this can be

seen immediately by performing a Fourier transform on the third

equation of system (8.40) (with κ →∞):

P̂z = −2πγ ε0

k2
z − k2

0

Êz

which gives

ε = 1+ 2πγ

k2
0 − k2

z

This is consistent with the findings of Belov et al. (Belov et al., 2003,

2002; Simovski and Belov, 2004).

Until now, the discussion has been independent of the actual

shape of the domain � (Fig. 8.3). From this point on, however, for

purposes of illustration, we specialize to the case � = R2, which

is an infinite two-dimensional bed of nails, of thickness L, period d,

wire radius r , and conductivity σ . The effective medium is, therefore,

a homogeneous slab parallel to the xy plane and of thickness L.

8.3.2 Numerical Results

The homogeneous model is tested by comparing it with three-

dimensional full vector simulations of the structure. The reflection,

transmission, and absorption coefficients and the current distri-

bution of the homogeneous problem are compared with those



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

278 Stiff Problems

Angle of incidence θ [deg]
0 20 40 60 80

0

0.2

0.4

0.6

0.8

1
E

ne
rg

y 
ef

fic
ie

nc
ie

s

Figure 8.4 Transmission (solid), reflection (dot-dashed), and absorption

(dashed) efficiency curves comparing the finite element solution (dot

markers) and the effective medium solution (no markers) as a function

of angle of incidence. The structure has a conductivity σ = 8 (�m)−1,

period d = 0.01 m, and dimensionless parameters L/d = 120, λ/d = 20,

r/d = 0.1, and δ/d = 4.6. Computational constraints forced us to use

a very coarse mesh, which explains the approximate nature of the energy

conservation (×markers) of the finite element model.

of the original bed-of-nails metamaterial. The solution to the

homogeneous problem is obtained by integrating system 8.40 as

described in Appendix B.

The three-dimensional full vector simulations of the bed-of-

nails metamaterial were done using the COMSOL Multiphysics R©

finite element method (Dular et al., 1995) software package.

The periodicity was implemented using Floquet–Bloch conditions

(Nicolet et al., 2004) in the two periodic directions (x and y),

and absorbing perfectly matched layers (Agha et al., 2008) in the

positive and negative z directions. The linearity of the materials

in the structure was used to treat the incident field as a localized
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Figure 8.5 Square of the current density for the effective medium solution

to Eqs. B.1 (dashed) and the finite element solution (solid) as a function of

position within the bed-of-nails structure (which is positioned in z ∈ (0, L)).

The structure is the same as in Fig. 8.4, illuminated at an angle of incidence

θ = 40◦ from the top.

source within the obstacle, as detailed in Ref. (Demésy et al., 2007;

2009).

Figures 8.4 and 8.5 show good agreement between the effective

medium model and the finite element simulation. Note that the

current density behavior near the boundaries differs between the

effective medium model and the finite element model. This is due to

the fact that in the macroscopic, homogeneous scenario, one speaks

of a polarization field obeying Neumann boundary conditions, as

discussed earlier. In the microscopic scenario, however, there is

a free conductor carrying current induced by an external electric

field. Since in the geometry at the given wavelength, the capacitance

of the wire endpoints is very small, the accumulation of charge

will be correspondingly small, leading to an almost continuous
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normal component of the electric field (and, therefore, also current).

Numerically, it seems as if the current goes to zero at the wire

endpoints, even though this is not strictly exact. Nevertheless, since

in the homogeneous limit the boundary condition of the current is

of Neumann type, the convergence of the renormalization process is

clearly non-uniform near the boundaries.

In the numerical simulations, advantage was taken of the fact

that the structures under consideration have r � d and δ  r .

Such thin conducting structures can be simulated very efficiently as

lines of zero thickness (i.e., edges, in the finite element formulation)

carying current and exhibiting an equivalent linear impedance. This

approach gives excellent results with a fraction of the computing

power required for a finite element meshing of thin long circular

wires.

For instance, Figs. 8.6 and 8.7 show the results of calculations

for a structure of Toray T300 R© carbon fibers with a conductivity

of σ = 5.89 · 104 (�m)−1 and a radius of 3.5 microns. The wires

have an aspect ratio L/r = 2.28 × 105, which is far beyond what

would have been accessible by meshing the interior of the wires. The

finite element model of Fig. 8.4 (curves with markers), in which the

interior of the wires is meshed, is a problem with approximately 2.8

million degrees of freedom, which requires at least 42 GB of available

RAM to solve. By comparison, the model of Fig. 8.6 (curves with

markers), in which the wires are modeled as current-carrying edges,

is a problem of approximately 62,000 degrees of freedom, which

requires less than 1 GB of available RAM.

Figures 8.4–8.7 illustrate the behavior typical of the model. The

agreement remains good up to high incidence angles, and over a

large wavelength domain (Fig. 8.9). The structure is transparent

in normal incidence. For increasingly oblique angles of incidence,

the absorption increases more or less gradually, depending on the

thickness L. The reflection is generally low, though it increases

when approaching grazing incidence. The low reflection may be

explained by the small radii of the wires: Their extremities have

low capacitance, hence they exhibit very little charge accumulation,

leading to an almost continuous normal component of the electric

field. Certain configurations exhibit very low reflection for almost

all angles of incidence (see Figs. 8.8 and 8.9 around λ = 1.2 m).
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Figure 8.6 Transmission (solid), reflection (dot-dashed), and absorption

(dashed) efficiency curves comparing the finite element solution (dot

markers) and the effective medium (no markers) as a function of angle of

incidence. The wire conductivity is that of Toray T300 R© carbon fibers σ =
5.89 · 104 (�m)−1. The structure has period d = 0.01 m, and dimensionless

parameters L/d = 80, λ/d = 20, r/d = 3.5 · 10−4, and δ/r = 15. Energy

conservation of the finite element model (×markers) is respected to within

better than 1% for most angles of incidence. The departure around 80◦ is

explained by the poor performance of the PML absorbing layers when close

to grazing incidence.

The current density decreases roughly exponentially within the

structure due to absorption.

8.3.3 Domain of Validity

The boundaries of the domain of validity of the model are given by

four dimensionless parameters: the ratio δ/r of the skin depth to the

radius in the wires, the ratio L/d of the wire length to the period,

the ratio λ/d of the wavelength to the period, and the ratio r/d of

the wire radius to the period.
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Figure 8.7 Square of the current density for the effective medium model

(dashed) and the finite element solution (solid) as a function of position

within the slab (which is positioned in z ∈ (0, L)). The structure is the same

as in Fig. 8.6, illuminated at an angle of incidence θ = 40◦ from the top. Note

that the surface areas under the two curves (in this figure as well as Fig. 8.5)

are the same because they are proportional to the Joule dissipation rates,

which are seen to be equal from Fig. 8.6 (and Fig. 8.4) at the given angle of

incidence.

The skin depth must be larger than the radius, due to the fact that

the impedance used in defining κ (Eq. 8.39) is the static impedance,

which differs from the quasi-static value by an imaginary inductive

term iωμ/8π (see, for instance, Ref. (Ramo et al., 1994)). Requiring

this term to be negligible is equivalent to requiring that δ2/r2  
1. Moreover, in the rescaling process, the skin depth/radius ratio is

given by

δη

rη
= λ

η

√
1

2πκ
.

Since η approaches zero in the rescaling process, it is natural to

expect the homogeneous model to be valid when the skin depth is

large compared to the radius.
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Figure 8.8 Transmission (solid), reflection (dot-dashed), and absorption

(dashed) efficiency curves comparing the finite element solution (dot

markers) and the effective medium (no markers) as a function of angle of

incidence. The structure has a conductivity σ = 1000 (�m)−1, period d =
0.01 m, and dimensionless parameters L/d = 50, λ/d = 8, r/d = 0.002,

and δ/d = 13. The reflection remains low for angles of incidence of up to

80◦ even as the Joule absorption reaches almost 100% for θ > 60◦. Energy

conservation is indicated by the×markers.

In addition, recall that the definition of γ in Eq. 8.38 fixes

the capacitance of the wires to the value for thin, long wires.

Consequently, the model is expected to hold for large L/d and for

small r/d. To these, one should add the general requirement for all

effective medium models: The wavelength must be large compared

to the period.

Our study has made it possible to broadly determine the

boundaries of the domain of applicability of the effective medium

model. Roughly, one must have λ/d � 7−12, δ/r � 4−8, L/d � 20−
30, and r/d � 10. The numerical exploration of the parameter space

suggests that the skin depth/radius ratio is often the main limiting

factor, particularly when considering highly conducting wires.
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Figure 8.9 Transmission (solid), reflection (dot-dashed), and absorption

(dashed) efficiency curves comparing the finite element solution (dot

markers) and the effective medium (no markers) as a function of

wavelength. Energy conservation for the finite element model is labeled

with×markers. The structure has a conductivity σ = 3000 (�m)−1 (in the

semiconductor domain), period d = 0.01 m, and dimensionless parameters

L/d = 60, r/d = 0.003, and the angle of incidence is θ = 70◦. δ/r runs

approximately from 4 to 25 from left to right over the domain of the plot.

The model fails around λ � 0.1 m= 10d.

The bed-of-nails structure is a medium exhibiting high absorp-

tion with low reflection. It requires a very low filling fraction of

conducting material but exhibits near-perfect absorption over a

wide range of angles of incidence, for sufficiently large thicknesses.

The low filling fraction is useful because it allows the engineer to

fill the space between the wires with materials satisfying other

design constraints, such as mass density, or mechanical, chemical,

or thermal robustness. The geometries studied here are transparent

at normal incidence, but this aspect can easily be rectified by

slanting the wires by about 20◦ with respect to the upper and lower

boundaries. This design may, therefore, be used to obtain a near-

perfect electromagnetic absorber for all angles of incidence in a very
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straightforward way, and with considerable freedom in the resulting

mechanical, thermal, or chemical properties of the structure.

Appendix A

The Green’s function for the following problem is derived.

p′′ + α2 p = βE z

p′(−L/2) = p′(L/2) = 0. (A.1)

The Green’s function satisfies the equation

g′′ + α2g = δz0
, z0 ∈

(
− L

2
,

L
2

)
(A.2)

and may be written as

g(z, z0) = C u1(z<)u2(z>) (A.3)

z< = min(z, z0), z> = max(z, z0)

Replacing form Eq. A.3 into Eq. A.2, one obtains finally:

g(z, z0) = 1

α sin(αL)
cos(α(z< + L/2)) cos(α(z> − L/2))

Appendix B

We now proceed to solve the homogeneous limit system Eq. 8.40.

For convenience, we position it in z ∈ (0, L). Since we are dealing

with a system with translational invariance, a slab, we can split the

problem into two independent polarization cases: TE, where the

electric field is in the xy plane, and TM, where the magnetic field is

in the xy plane. However, since we are considering thin wires (small

volume fraction), the structure will be transparent to TE waves. We,

therefore, only have to consider TM waves. We choose a coordinate

system so that the plane of incidence is the xz plane, with angle of

incidence θ , in which case our unknowns will be Hy and Pz. The

translation invariance allows us to seek solutions to the form:

Hy = u(z)eiαx , Pz = p(z)eiαx
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with α = k0 sin θ . Inserting these into system 8.40, we obtain a

system of equations for u and p:⎧⎨⎩u′′(z)+ (k2
0 − α2

)
u(z) = αωp(z)

p′′(z)+
(

k2
0 + 2iπγ

κ
− 2πγ

)
p(z) = 2παγ

ω
u(z), z ∈ [0, L]

(B.1)

with the boundary conditions p′ = 0 at z = 0 and z = L, and u and

u′ continuous everywhere.

The transfer matrix T relates the field u and its derivative u′ at

the bottom and the top of the slab:(
u(L)

u′(L)

)
= T

(
u(0)

u′(0)

)
. (B.2)

Once T is known, the reflection and transmission coefficients r and

t can be obtained immediately from

r = e−2iβL A + B
A − B

and t = 2e−iβL

A − B
(B.3)

A ≡ T11 − iβT12 and B ≡ T21 − iβT22

iβ

where β = k0 cos θ =
√

k2
0 − α2.

We begin by integrating system B.1. Noting δ2 = k2
0 + 2iπγ

κ
−2πγ

for readability, we rewrite the system as

W ′′(z) = −MW(z) (B.4)

where

W(z) =
(

u(z)

p(z)

)
, M =

(
β2 −αω
− 2παγ

ω
δ2

)
.

The matrix M can be diagonalized M = QDQ−1 with D =
diag(K 2

u , K 2
p), so the system B.4 can be rewritten as Q−1W ′′(z) =

−DQ−1W(z). Since Q is constant and known, this can be integrated

directly, and the general solution is then obtained as a sum of plane

waves:

Q−1W(z) =
(

A+u exp(i Kuz)+ A−u exp(−i Kuz)

A+p exp(i K pz)+ A−p exp(−i K pz)

)
(B.5)

The functions u and p are now expressed in terms of the elements of

the matrix Q and the coefficients A+u , A−u , A+p , and A−p . By using the

boundary conditions, we obtain p′ as

p′ = i Ku Q21(A+u ei Ku z − A−u e−i Ku z)

+i K p Q22(A+p ei K pz − A−p e−i K pz).
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Setting this to zero at z = 0, L, we can obtain A p in terms of Au .

Noting vectors

Au =
(

A+u
A−u

)
, A p =

(
A+p
A−p

)
,

we introduce the matrix

C = − Ku Q21

K p Q22

1

2i sin(K p L)

×
(

ei Ku L− e−i K p L e−i K p L− e−i Ku L

ei Ku L− ei K p L ei K p L− e−i Ku L

)
so that

A p = C Au .

Equation B.5 can be rewritten as

W(z) = QE (z)Au (B.6)

where E (z) is defined as

E (z) =
(

ei Ku z e−i Ku z

C11ei K pz + C21e−i K pz C12ei K pz + C22e−i K pz

)
.

With the help of Eq. B.6, we are in a position to construct the matrix

G(z) such that (
u(z)

u′(z)

)
= G(z)Au .

By writing this equation at z = 0 and z = L, we obtain(
u(z)

u′(z)

)
= G(L)G(0)−1

(
u(0)

u′(0)

)
.

Comparing with Eq. B.2, we obtain the result we seek,

T = G(L)G(0)−1,

leading to the reflection and transmission coefficients via Eqs. B.3.
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Chapter 9

Resonant Problems
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9.1 Introduction

In this chapter, the structures under study are made of a basic

cell whose elements show a resonant behavior. The paradigmatic

example is a dielectric rod with a sufficiently high index to have

present a Mie resonance at a wavelength that is large with respect

to the period. In order to understand the physical meaning of a

Mie resonance, let us consider an electromagnetic cavity, that is, a

medium surrounded by perfectly conducting wall. This cavity can

support discrete electromagnetic modes at frequencies ω1, ω2, . . . .

When the wall is no longer perfectly conducting, the modes have

a finite lifetime and the frequencies become complex with an

imaginary part representing the exponential damping of the mode

in time domain. This is what happens in a cylinder with a high

permittivity: There are discrete modes, or resonances, characterized
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Figure 9.1 The basic cell of the dielectric metamaterial.

by complex frequencies that are poles of the scattering matrix. The

existence of these resonances results in very interesting effective

properties leading notably to an effective magnetic activity that can

be used to design dielectric cloaks (Gaillot et al., 2008), Dirac cones

(Huang et al., 2011), or zero-index metamaterials (Moitra et al.,

2013).

A two-dimensional metamaterial made of a periodic collection

of dielectric rods is considered (the basic cell Y ) in Fig. 9.1. The

dielectric rod has relative permittivity εi and cross-section D. It is

embedded in a dielectric matrix εe.

9.2 H||: A Two-Scale Approach

Our point is to show that near the resonances, the device behaves

as if it had homogeneous electromagnetic parameters εh and μh .

Of course, for this situation to be physically sound, the resonant

wavelengths should be much larger than the period; otherwise, the

medium could not be described by homogeneous parameters. That

is why we request, as described by Pendry et al. (1999), that εi be

much higher then εe. There is, therefore, a natural small parameter

d/λ in the formulation of the scattering problem. The method that

we employ consists of letting the small parameter tend to zero while

rescaling the properties of the medium in order to keep the relevant

physical phenomena, i.e., the resonances, unchanged. To do so, we
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choose a small number η < 1, and we proceed to the following

operations:

• We multiply the radius of the rods and the period by η, while

keeping constant the domain � where the rods are contained

(the number N of rods is increased as N ∼ |�|/η2).

• We divide the permittivity ε of the rods by η2 (the optical

diameter remains constant).

The wave is p-polarized, so the induction field reads B(x) = u(x)ez,

but the vectorial form will prove useful for the analysis. In order to

pass to the limit η→ 0, we use a two-scale expansion of (E, B):

Bη(x) = B0(x, x/η)+ ηB1(x, x/η)+ . . .

Eη(x) = E0(x, x/η)+ ηE1(x, x/η)+ . . .
(B.1)

where the fields E0, B0 depend on both the real space variable x (the

global variable) and on the Wigner–Seitz cell variable y (the local

variable). The fields are periodic with respect to y. Our point is to

find the limit fields E0, B0. The local variable is, in fact, a hidden

one: It is an internal degree of freedom. The true (observable)

macroscopic fields (Eh , Bh) are the averages of the microscopic fields

(E0, B0) over Y :

Bh(x) =
∫

Y
B0(x, y)dy, Eh(x) =

∫
Y

E0(x, y)dy. (B.2)

First, the behavior of the fields with respect to the local variables

is investigated. This is the description of the microscopic behavior

of the fields with respect to their internal degrees of freedom. Using

the expansion (B.1) of the field, the ∇ × · operator is transformed

into:

∇ × · −→ ∇x × · + η−1∇y × ·
Plugging these expressions into Maxwell system and identifying

the terms that correspond to the same power of η, we obtain the

following system for the microscopic electric field:

curly ×E0 = 0 on Y , curly ·E0 = 0 on Y \ D (B.3)

Besides: E0 = 0 on D and E1 = 0 on Y \ D. This system is of

electrostatic type: E0 does not depend on the microscopic induction

field, nor does it depend on the wavelength. As a matter of fact, on
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Y \ D, E0 does not depend on the variable y, as it can be deduced

from system (B.3). Let us now turn to the magnetic field. The system

satisfied by B0 is of an entirely different nature:

curly B0 = −iωεi E1 on Y
curly E1 = iωB0 on D

(B.4)

It is a microscopic Maxwell system that describes the microscopic

behavior of the fields. The field E1 gives a first-order expansion of

the field inside D: It replaces E0, which is null there. Using the fact

that the fields are polarized, it comes: B0(x) = u0(x)ez. Plugging

this expression into system (B.4) shows that the magnetic field is

independent of y on Y \ D. Next, by combining the equation with

system (B.4), one obtains:

	yu0 + k2εi u0 = 0 on D , u0 = C (x) on Y \ D (B.5)

By dividing u0 by C (x), we are led to considering the function m(y)

satisfying:

	ym+ k2εi m = 0 on D , m = 1 on Y \ D (B.6)

It holds u0(x, y) = C (x)m(y), and by averaging over Y , one deduces

that the microscopic induction field is linked to the macroscopic one

by: u0(x, y) = (m(y)/μh) uh(x) where μh , which shall be interpreted

below as a relative permeability, is the mean value of m on Y : μh =∫
Y m(y)dy. Having clarified the microscopic behavior of the fields, it

remains to derive the equations that are satisfied by the macroscopic

fields. The propagation equations read, for y ∈ Y \ D:

curlx B0 +∇y × B1 = −iωε0εeE0

curlx E0 + ∇y × E1 = iωB0

(B.7)

The first equality is the Maxwell–Ampère equation with the extra-

term ∇y × B1, which is homogeneous to an electric displacement

field. It represents the polarization due to the presence of the

scatterers. More precisely, as u0 does not depend on y on Y \ D, we

obtain the following system satisfied by u1:

	yu1 = 0 on Y \ D ,
∂u1

∂n
= −n · ∇x u0 on D, (B.8)

where n = (n1, n2) is the normal to D. Let us introduce the auxiliary

functions w1, w2, that satisfy ( j = 1, 2):

	w j = 0 on Y \ D ,
∂w j

∂n
= −n j on ∂D (B.9)
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It then holds: u1 = w1
∂u0

∂y1
+ w1

∂u0

∂y2
. Therefore, there is a linear

relation: ∇yu1 = P(y)∇yu0 where

P(y) =
(

1+ ∂w1

∂y1

∂w2

∂y1

∂w1

∂y2
1+ ∂w2

∂y2

)
(B.10)

The average value of P over Y \ D is denoted by Ah =
∫

Y \D P(y)dy.

It is the inverse of the effective permittivity tensor εh(= A−1
h ). The

effective macroscopic equation can now be obtained by averaging

system (B.7) on Y \ D:

∇ · (ε−1
h ∇(μ−1

h uh))+ k2uh = 0 (B.11)

The macroscopic behavior of the system is characterized by

an effective permittivity tensor εh and an effective permeability

μh that depends on ω. This shows that the system exhibits

an artificial magnetic activity. There are two huge differences

between the effective permittivity and the effective permeability:

The permittivity can be a matrix, so the medium can be anisotropic.

However, the effective permeability is always a scalar; therefore, no

anisotropic permeability can be obtained. Second, the permittivity

is not frequency dependent; it is a static permittivity. However, the

permeability depends on the frequency. Let us give a closer look at

the system of equations that defines the effective permeability μh .

The system (B.6) has a unique solution only if there is no function

ψ such that ψ is null on Y \ D and ψ satisfies the same Helmholtz

equation on D. Otherwise, m + ψ would still be a solution to (B.6).

Following spectral theory (Kato, 1995), we denote H = −ε−1
i 	 and

we look for functions " satisfying the eigenvalue problem:

" = 0 on Y \ D , H" = k2" on D. (B.12)

We get a set of eigenvalues k2
n and a set of eigenfunctions |"n〉.

The physical meaning of these eigenvalues can be understood by

going back to the un-renormalized initial fiber, with permittivity εi .

This fiber alone possesses resonant frequencies. They correspond

to modes that are strongly localized inside the fiber. However, when

there is a large number of fibers, these resonances are slightly

shifted due to the coupling between the fibers, and these resonances

are furthermore modified by the renormalization process. The
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eigenvalues of problem (B.12) are thus the renormalized Mie

frequencies of the fiber.

For a given frequency k, we look for a solution m by expanding it

on the basis |"n〉, by noting that m − 1 is null on Y \ D: m(y) =
1 + ∑n mn |"n〉 . The coefficients are obtained by inserting this

expansion in (B.6). We get, after averaging, the effective permeability

μh = 〈1|m〉 under the form:

μh(k) = 1+ k2
∑

n

|〈"n|1〉|2
k2

n − k2
(B.13)

We have obtained a completely general expression for the effective

permeability. It relies on the cavity modes of the fiber only. In the

vicinity of a resonance k2
n , we have: μh ∼ 1−k2

n |〈"n|1〉|2 (k2−k2
n )−1

which shows, in complete generality, that the permeability exhibits

anomalous dispersion near the resonances and becomes negative

there. It should also be noted that only the eigenfunctions with

nonzero mean value contribute. This is due to the fact that we have

only kept the first-order terms in the expansions (B.1).

9.3 Numerical Results

9.3.1 Periodic Resonators

Let us give an explicit computation in the case of a square fiber.

The eigenfunctions are "nm(y) = 2 sin(nπy1) sin(mπy2) and the

corresponding eigenvalues are k2
nm = π2(n2 + m2). The expansion

of m on this basis leads to the following effective permeability:

μh(k) = 1+ 64a2

π4

∑
(n, m)odd

k2

n2m2(k̃2
nm − k2)

(B.14)

where k̃2
nm = k2

nm/a2εi . Let us now turn to some numerical

applications. First, we note that our analysis is supposed to work

when there are Mie resonances at wavelengths large with respect to

the period of the crystal. We choose ε = 600+12i for our numerical

computations, the point being to test the validity of the theory.

This can be achieved by using ceramic rods in the gigahertz regime

(Peng et al., 2007). Using a rigorous diffraction code for gratings
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Figure 9.2 Modulus of the transmission for the metamaterial (solid line)

and the homogenized material (dashed line).

(Nevière and Popov, 2003), we plot the transmission spectrum

(dashed line in Fig. 9.2) for a stack of five diffraction gratings made

of square rods. There is a band gap for λ/d between 8 and 12,

due to a Mie resonance. In order to test our results, we plot the

transmission spectrum of a homogeneous slab (solid line Fig. 9.2)

with parameters εh = 1.7 (this value is obtained numerically from

the solution to problem (B.9)) and μh given in (B.14). We see in

Fig. 9.2 that both curves fit very well, indicating that although the

wavelength is not that large, the dielectric metamaterial behaves

as a homogeneous magnetic material. The discrepancy that is seen

around λ/d = 6.5 is due to the presence of a Mie resonance of

null mean value that is not taken into account in our theory. Only by

expanding the fields to the second order could we incorporate this

resonance in our global result.
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9.4 E || Case: Green’s Function Approach

In this section, the case of an electric field parallel to the rods is

addressed. The standard periodic double-scale approach does not

work properly here, because of the strong spatial dispersion, as

explained in the introduction. A more down-to-earth method is used.

It relies on characterizing the rods by electric and magnetic dipoles

whose explicit expressions are derived in terms of the scattering

matrix and then using a multiple scattering approach.

The electric field Es scattered by an infinitely long dielectric rod

of circular cross section, radius R , and permittivity ε in the far zone

is given by (de Hulst, 1981):

Es (r) =
√

2

π

eikr

√
kr

e−i π
4

(
b0 + 2

+∞∑
n=1

bn cos(nθ)

)
uz (B.15)

where θ is the angle with respect to the direction of incidence, bn is

the nth-order Mie scattering coefficient of the circular rod, k (|k| =
k = 2π/λ) is the free space wavevector, and uz is the unit vector

defining the Oz-axis.

The scattered electric field can also be written at any point

outside the rod in an integral form as (Felbacq et al., 1994):

Es (r) = ik2

4

∫
C

H (1)
0 (k|r− r′|) (ε − 1)E(r′)d2r ′ (B.16)

with H (1)
0 the zeroth-order of the Hankel function of the first kind

and C is the cross section of the rod. The different scattering orders

of (B.15) can be found by developing the far-field expression of

(B.16) into a series of multipoles. In the far zone (k|r − r′|  1),

H (1)
0 can be described by its asymptotic form (Abramowitz and

Stegun, 1965). The multipole expansion is introduced by writing

|r−r′| 
 r−ur ·r′, where r = rur. This yields
√

k|r− r′| = √kr and

eik|r−r′ | = eikr · e−ikur·r′ . The exponential e−ikur·r′ is then expanded

in series as e−ikur·r′ = ∑∞n=0
(−ikur·r′)n

n!
. Inserting these expressions

in (B.16), we finally obtain the polarized multipole expansion of the

electric field scattered by a circular rod in the far zone as:

Es (r) =
√

2

π

eikr

√
kr

e−i π
4

∞∑
n=0

fn(r) with
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fn(r) = ik2

4

(−ik)n

n!

∫
C

(ur · r′)n (ε − 1)E(r′)d2r ′ (B.17)

The successive terms of this expression can be identified with the

classical dipole radiation fields at large distances. In particular,

the zeroth (n = 0) and first (n = 1) components of (B.15) and

(B.17) correspond to the electric and magnetic dipole radiations,

respectively. By definition, the electric dipole moment per unit

length is given by p = ∫
C P(r′)d2r ′ with P = ε0(ε − 1) E, the

polarization per unit volume and ε0 the free space permittivity. The

magnetic dipole moment per unit length is given by m = 1
2

∫
C r′ ×

J(r′)d2r ′, with J = ∂P/∂t the current density. For an incident plane

wave propagating along the x direction, the electric and magnetic

dipole moments per unit length can be written as a function of the

scattering coefficients b0 and b1, respectively, as:⎧⎪⎨⎪⎩
p/ε0 = 4b0

ik2
uz

mZ 0 = 4b1

ik2
uy

(B.18)

where Z 0 =
√
μ0/ε0. These expressions can be used to represent

the rods by point dipoles with moments p and m, whenever the
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Figure 9.3 Complex magnitude of the b0, b1, and b2 Mie scattering

coefficients of a circular rod of radius R and permittivity ε = 600, in

logarithmic scale versus the normalized frequency R/λ.
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wavelength of light is much larger than the radius of the rods.

Figure 9.3 sketches the complex amplitudes of the b0, b1, and b2

coefficients of rods of permittivity ε = 600 as a function of the

normalized frequency R/λ. We find that the b0 and b1 coefficients

have much larger values than the b2 coefficient (and consequently

all coefficients with a higher order) over the whole frequency range

of study. Therefore, these two coefficients play the main role in the

optical properties of such rod-type structures.

Let us now consider an array of resonant dielectric rods. In

the long-wavelength limit (λ  a, R), the corresponding array of

dipoles can be described as an effective material with permittivity

and permeability tensors ¯̄ε and ¯̄μ, respectively. In the case of planar

propagation along the x-direction with the electric field along the

z-axis, only εzz and μyy are required to define the effective index of

the material neff = √εzzμyy . Considering that the incident electric

field amplitude has been normalized to unity and using the relations

|Hi | = |Ei |/Z 0 and (B.18), the electric and magnetic polarizabilities

per unit length of the dielectric rods are given by αe
zz = pz/ε0 E i

z =
4b0/ik2 and αm

yy = my/H i
y = 4b1/ik2, respectively. The permittivity

εzz and permeability μyy can then be found from these expressions

using an approach based on the quasi-periodic Green’s function. The

expression is then (Silveirinha, 2006):

¯̄εzz = 1+ αe
zz

1− Cαe
zz

, ¯̄μzz = 1+ αm
zz

1− Cαm
zz

(B.19)

where the interaction constant C is given by:

C = k2

(
i/4+ 1

2π
log

(
ka
4π

)
+ γ

2π
+ 1

12
+
∑
n≥1

1

π |n|
1

eπ |n| − 1

)
.

To validate this approach, we compare the dispersion properties

of a square array of high-permittivity rods calculated with the

plane wave expansion method with those of the corresponding

effective material using the dispersion relation qx = nef f ω/c. The

model is restricted to wave-vectors close to the �-point. The rods

have a radius R = 0.68a/3, with a the lattice periodicity, and

permittivity ε = 600, corresponding to the structure studied by

Peng et al. (2007). Results are shown in Fig. 9.5. The dispersion

curves (Fig. 9.5b) are in excellent agreement at wave-vectors close to
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Figure 9.4 (a) Real parts of the effective permittivity εzz (blue solid line)

and permeabilityμyy (red solid line) of a square array of rods (R = 0.68a/3,

ε = 600) versus the reduced frequency a/λ.

the �-point. Although the multiple bands that appear for symmetry

reasons at the resonant frequencies cannot be reproduced by the

homogenization procedure, reliable conclusions on the origin of

these bands can be given. In particular, the bands at a reduced

frequency close to a/λ = 0.07 originate from the magnetic dipole

resonance of the rods, taking place in the photonic band gap

opened by the electric dipole resonance (see Fig. 9.5a). In this

frequency range, both the permittivity and the permeability are

negative, indicating a left-handed behavior in accordance with the

interpretation of Peng et al. (2007). The right-handed bands are also

well described by our model, which therefore makes it a reliable tool

for understanding the correlation between the scattering properties

of single rods and the dispersion properties of periodic rod-type

structures.

Let us study the scalability of the metamaterial. The electric

and magnetic dipole of dielectric rods are intrinsically related to

their scattering coefficients. The scaling properties of rod-type

metamaterials can thus be understood from the dependence of
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Figure 9.5 Dispersion curves of the PhC along the �X direction of the

square array of rods (dashed lines) and that of the effective material (solid

lines).

these coefficients with the permittivity ε of the rods and the free

space wavelength λ. Figure 9.6 shows the evolution of the maxima

of the modulus of the electric (b0) and magnetic (b1) coefficients

of the rods with respect to their refractive index n = √
ε and

to the wavelength-to-radius ratio λ/R . In the range of study, the

wavelengths of resonance linearly depend on their refractive index.

In particular, the magnetic dipole resonance observed in rods of

permittivity ε = 600 (n 
 24.5) at reduced frequencies a/λ 
 0.07

(λ/R 
 63) is shifted to a/λ
 0.5 (λ/R 
 8.8) in rods of permittivity

ε = 12 (n 
 3.5). By calculating the complex amplitudes of the

scattering coefficients of the rods, we can show that this permittivity

is sufficiently high to insure the preponderance of the b0 and b1

coefficients over the higher-order ones in the frequency range of

interest. The left-handed behavior is then expected to hold with a

permittivity ε = 12.
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Figure 9.6 First maxima of the complex magnitude of the b0 (blue solid

lines) and b1 (red solid lines) Mie scattering coefficients of dielectric rods

with radius R as a function of their refractive index n = √
ε and the

wavelength-to-radius ratio λ/R .

This is verified by comparing the photonic band structures and

second-band isofrequency curves of the two metamaterials. Results

are shown in Fig. 9.9(a)–(d). The dispersion properties of both

structures exhibit very similar features. The bands located in the

left-handed frequency range at reduced frequencies a/λ 
 0.07 are

pushed up to a/λ 
 0.5, as expected.

This confirms the above demonstration that this left-handed

behavior results from an overlap of the electric and magnetic dipole

resonances. Second, the isofrequency curves of both structures

exhibit a strong spatial dispersion. This shows that having a large

wavelength-to-period ratio does not necessarily insure an isotropic

response (Belov et al., 2003; Cabuz et al., 2008). The magnetic dipole

term is, in fact, responsible for the first-order spatial dispersion

(Landau et al., 1984). Since non-local effects are very sensitive to the
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Figure 9.9 Steady-state amplitude of the electric field of a E ||-polarized

plane wave at a reduced frequency a/λ = 0.45 incident at an angle of 20◦

on the low-permittivity metamaterial.

symmetry of the structure, the coupling between the rods plays an

important role in both the spectral and spatial responses.

To prove the concept of a left-handed behavior, a full-wave

calculation of an s-polarized plane wave at the reduced frequency

a/λ = 0.45 incident at an angle of 20◦ on the lower-permittivity

metamaterial is performed using a multiple scattering approach.

The steady-state amplitude of the electric field is shown in

Fig. 9.9(e). The phase of the propagating field in the metamaterial

is opposite to that of the field in free space. This effect, characteristic

of a left-handed behavior, can be tuned to the telecommunications

wavelengths (λ 
 1.55 μm) by using silicon rods (ε 
 12) of radius
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R 
 160 nm and a lattice of periodicity a 
 700 nm. Silicon

material could, therefore, open the route toward the realization

of all-dielectric metamaterials operating at optical frequencies. It

is worth noting that very similar structures have been fabricated

and characterized some years ago (Xu et al., 2001). The underlying

origin of their dispersion properties actually relies on the collective

response of the resonant rods, which defined them as true

metamaterials on the same level as metallic metamaterials, with the

advantages that dielectric structures are scale-invariant and exhibit

no intrinsic loss.
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Appendix A
Mathematical Annex

• Numbers used in the book are natural integers 0, 1, 2, · · · ∈ N

or signed integers · · · , −1, 0, 1, · · · ∈ Z mainly as indices.

Physical quantities take their values in (sets of) real numbers

R or complex numbers C. Real and complex numbers are

called scalars. A complex number z can be viewed as a

pair (a, b) of real numbers denoted by z = a + ib where

i 2 = −1. The real number a = �e(z) is called the real

part, whereas the real number b = �m(z) is called the

imaginary part. The complex conjugate of z is z = a − ib
and its modulus or absolute value is |z| = √zz = √a2 + b2.

The exponential representation z = |z|eiθ(z) involves the

modulus and the argument θ(z). The function θ(z) is usually

chosen as being a continuous function on an open set of

C, called a continuous determination of the argument. Two

continuous determinations on the same set differ by an

integer multiple of 2π and the principal determination is

defined by θ(z) : C\{�e(z) ≤ 0} →] − π, +π[ and given

by θ = 2 arctan

(
b

a +√a2 + b2

)
.

• Vector space: Given scalars R or C, a vector space V is a set

of elements, called vectors, with two operations: the addition

of two vectors and the product of a vector by a scalar, both

defined axiomatically in a way quite obvious for the common

intuition and giving a new vector as the result. Given a set

of vectors vi of a vector space V and a set of scalars ai , the

combination of products by a scalar and vector additions is

a new vector called a linear combination and denoted ai vi .
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This expression uses the Einstein summation convention on

repeated indices: ai vi denotes
∑

i ai vi . If things are written

with care, it always involves an upper and a lower index.

The null scalar 0 and the null vector 0 are defined so that

0v = 0 and 0 + v = v for any vector. Given vectors are

said to be linearly independent if the only linear combination

that gives 0 is
∑

i 0vi , else they are said to be linearly

dependent. The maximum number of vectors that you can

find in a set of linearly independent vectors of V is called

the dimension dim(V ) of the vector space. A maximum set of

linearly independent vectors is called a basis and any vector

can be expressed as a linear combination of the basis vectors.

The canonical examples of vector spaces are the sets

of n-tuples of scalars: (b1, · · · , bn) or (c1, · · · , cn) with

b1, · · · , bn, c1, · · · , cn ∈ C. Explicitly, the addition is given

by (b1, · · · , bn) + (c1, · · · , cn) = (b1 + c1, · · · , bn + cn)

and the product by a scalar is given by a(b1, · · · , bn) =
(ab1, · · · , abn) with a ∈ C.

Given a set of vectors v1, · · · , vp, they span a vector space

V = span(v1, · · · , vp), which is the set of all the linear

combinations of those vectors.

• Multi-linear forms: a p-multi-linear form is a map f :

{v1, v2, · · · , vp} ∈ V → f (v1, v2, · · · , vp) ∈ C from p
vectors to a scalar (complex numbers C are taken as the

default set of scalars) such that f (v1, · · · , ai vi , · · · , vp) =
ai f (v1, · · · , vi , · · · , vp), i.e., the map is linear in all entries.

Particular cases are the linear forms that map linearly a single

vector to a scalar and bilinear forms that map two vectors to

a scalar.

Note that the set of p-multilinear forms for a given p is

obviously a vector space itself since a linear combination of m
p-forms f1, · · · , fm is defined as a new m-multilinear form by

(ai fi )(v1, · · · , vp) = ai fi (v1, · · · , vp). In particular, the set of

linear forms on a vector space V is called the algebraic dual
vector space and is denoted by V ∗. In the finite dimension

case, the dual space V ∗ is isomorphic to V , i.e., there is a one-

to-one correspondence between the spaces preserving the

various operations. For instance, if a vector v of V is a set of n
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numbers (b1, · · · , bn), a general linear form f is also given by

a set of n numbers (c1, · · · , cn) so that the action of the linear

form on the vector is f (v) = b1c1 + · · · + bncn = bi ci .

Note the lower indices for the coefficients of forms.

To stress on the duality, the action of f can be written as a

duality product f (v) =< f, v >.

In the case of the canonical example, a basis is given by

vectors ei = (0, · · · , 1, · · · , 0) where 1 in the i th position is

the only nonzero component.

Given a basis ei of a vector space V , the set of vectors ei of

V ∗ such that < ei , e j >= δ
j

i , where δi
j is the Kronecker delta

symbol equal to 1 when i = j and else equal to 0, is a basis of

V ∗, called the dual basis and < bi ei , c j e j >= bi ci .

• Functional analysis and function spaces: Some sets of func-

tions are vector spaces of particular interest, called function

spaces or functional vector spaces. The main characteristic of

such spaces is that they are usually infinite dimensional and

not isomorphic to their dual spaces. For instance, the set of

square integrable functions on the [0, 2π] interval is a func-

tional vector space. A basis is the infinite set of trigonometric

functions {1, cos(x), sin(x), sin(2x), cos(2x), · · · }.
• Important examples of function spaces: Let � be a bounded

open set in Rn or Rn itself. We denote by C m(�) the set of

functions that are continuous in� together with all their first

m derivatives.

In a multi-variable context, the following notation is intro-

duced: α = (α1 · · ·αn) ∈ Nn is a multi-index with

|α| =
∑

i

αi and Dα = (−i)|α|
∂ |α|

∂α1 x1 · · · ∂αn xn
·

The first m derivatives of a function f are the Dα f with

|α| ≤ m.

The subset consisting of the functions that have a compact

support (i.e., which vanish outside a compact subset of �)

is denoted by C m
0 (�). The corresponding space of infinitely

differentiable functions (also called smooth functions) is

denoted by C∞(�) and C∞0 (�).
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• Tensor product: The tensor product is a fundamental opera-

tion of linear algebra, which transforms multilinear forms to

linear ones. Given two vector spaces V and W , there exists

a unique vector space (up to an isomorphism) denoted by

V ⊗ W and such that for any vector space U , the space of

linear maps from V ⊗ W to U is isomorphic to the space of

bilinear maps from V ×W to U where V ×W is the Cartesian

product, i.e., the set of pairs (v ∈ V , w ∈ W). The vector space

V ⊗W is called the tensor product.

For example, in the case of functional spaces, the tensor

product of two functions f (x) and g(x) of a single variable

is the two-variable function given by f ⊗ g(x , y) = f (x)g(y).

As another example, consider a vector space V of finite

dimension n and its dual space V ∗. The tensor product V ∗ ⊗
V ∗ associates to a pair of linear forms on V , i.e., an element of

V ∗ × V ∗ given by the coefficients ai and bi (a single index), a

bilinear form on V given by the coefficients (a ⊗ b)i, j = ai bj

(two indices) such that the action on two vectors given by the

coefficients vi and wi is the scalar (a⊗ b)i, j vi w j = ai bj vi w j .

Tensor product is an important tool to manipulate multilin-

ear maps as vectors spaces. For instance, if V is a vector space

and V ∗ its dual, p-multilinear maps form the ⊗pV ∗ vector

space. A basis of this space may be built by taking the tensor

products of p basis vectors of V ∗ and the dimension of this

space is dim(⊗pV ∗) = dim(V )p.

• Direct sum: A subspace U of V is a subset of V such that

any linear combination of elements of U is in U , which is,

therefore, itself a vector space. Suppose that a vector space V
has two subspaces U and W such that any vector v ∈ V can

be written in a unique way as the sum u = v+w where u ∈ U
and w ∈ W . The subspace V is, in this case, the direct sum of

the vector spaces U and W , which is denoted by V = U ⊕W .

One has dim(V ) = dim(U )+ dim(W).

• Scalar product and norm: New operations have often to be

added to the bare structure of a vector space.

The scalar product is a form (v, w) → C with the following

properties:
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– Linear in the first variable, i.e.,

(au+ bv, w) = a(u, w)+ b(v, w).

– (v, w) = (w, v)

– positive, i.e., (v, v) ≥ 0 and the equality arises only when

v = 0.

In the case of a real vector space, this form is simply bilinear,

but in the complex case, it is sesqui-linear, i.e., semi-linear in

the second argument:(v, aw) = ā(v, w). A vector space with

a scalar product is called a pre-Hilbert space.

The norm ‖v‖ is the (positive) square root of the scalar

product of a vector v with itself: ‖v‖2 = (v, v).

In the case of the canonical example, the canonical scalar

product is given by

((b1, · · · , bn), (c1, · · · , cn)) = b1c1 + · · · + bncn.

Two norms ‖.‖1 and ‖.‖2 are equivalent if there exist two real

strictly positive constants c and C such that c‖v‖1 ≤ ‖v‖2 ≤
C‖v‖1.

A vector that has a norm equal to 1 is called a unit vector or a

normalized vector. Two vectors are orthogonal if their scalar

product is equal to 0.

If V is a vector space with a norm ‖.‖V , this defines a norm

on the dual space V ∗ by ‖ f ‖V ∗ = supv∈V f (v)

‖v‖V
= sup‖v‖

V
=1 f (v)

for any linear form f ∈ V ∗.
We use the name of the concerned vector space as a subscript

to indicate the vector product or the norm when this is

necessary, but it will be omitted if there is no ambiguity.

• The norm determines a topology, i.e., a system of subsets

called open sets, on the vector space (which is, therefore,

called a topological vector space), which is necessary to

introduce the concepts of convergence and limit. Two

equivalent norms determine the same topology.

The distance between two vectors is defined by ρ(u, v) =
‖u − v‖ and the (open) ball of center u and radius ε ∈ R

is the set of vectors v ∈ B(u, ε) so that ρ(u, v) < ε. A set � is

called open if for any u ∈ �, there exists an ε such that the ball

B(u, ε) is contained in �. A set E is a closed if its complement

(i.e., elements that are not in E ) is open. The closure � of a
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set is the smallest closed set that contains it and the interior
I nt(�) is the largest open set contained in it.a The boundary
∂� is the set of elements that are in the closure and not in the

interior.

A vector space with a norm that is complete (i.e., every

Cauchy sequence of the space {un}, i.e., such that ρ(un, um)→
0 as n, m→+∞, has its limit in the space) is called a Banach
space.

• Quotient: If W is a vector subspace of the vector space V ,

equivalence classes in V can be defined in the following

way: Two elements of V are equivalent if they only differ

by a vector of W . The set of equivalence classes is itself

a vector space called the quotient space V /W and one has

V = W ⊕ (V /W). If a norm ‖.‖V is defined on the vector

space V , a norm on the quotient space may be defined by

‖u‖V /W = infv∈u ‖v‖V for any equivalence class u of V /W .

• It is usual to build integration upon Lebesgue measure theory,

which is quite technical and mathematically demanding. We

just recall here that a fundamental concept is the one of null
measure set. For all practical purpose, null measure sets on R

are finite and denumerable sets of points (although there are

non-denumerable null measure sets), e.g., the set of rational

numbers, and null measure sets on Rn are denumerable sets

of subsets of Rp with p < n. Two functions are equal almost
everywhere (a.e.) if they only differ on a null measure set.

For instance, Lp(�) is the set of functions f such that∫
�
| f (x)|pdx < ∞ where dx denotes the Lebesgue measure

on �. The sets of functions that are equal a.e. are equivalent

classes. The set N (�) of functions equal to zero a.e. is a

subspace of Lp(�) and one defines Lp(�) = Lp(�)/N (�).

Lp spaces are Banach spaces with the norm

‖ f ‖Lp = (

∫
�

| f (x)|pdx)1/p.

L∞(�) is the Banach space of functions bounded a.e. on �,

which has been given the norm ‖ f ‖L∞ = ess sup� | f (x)|

aNote that if � is an open set, we have Int(�) = �.
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where “ess” stands for “essentially,” i.e., the norm is the

smallest value M for which | f (x)| ≤ M a.e.

If � is the whole Rn, the integral may be defined only locally,

i.e., on any compact subset. Lp
loc(Rn) is the space of functions

f such that f ϕ ∈ Lp(Rn) for any ϕ ∈ C∞0 (Rn).

One of the main results of the integration theory is

the Lebesgue dominated convergence theorem: If { fn} is a

sequence of functions in L1(�) and if there exists a function

g ∈ L1(�) so that | fn(x)| ≤ g(x) a.e. Then, if this sequence is

convergent a.e. to a function f , this function is also integrable

and
∫
�

fn(x)dx→ ∫
�

f (x)dx. This result is sometimes called

the Lebesgue bounded convergence theorem if one considers a

constant M > 0 instead of the function g.

As an easy corollary, series and integral can be swapped with

confidence provided the following holds: Let us consider that

for every integer N , the previous sequence fn ∈ L1(�) is

such that |∑N
n=1 fn(x)| ≤ g(x) a.e. Then, if

∑∞
n=1 fn(x) is

convergent a.e. to a sum function f (x), this function is also

integrable, the series
∑∞

n=1

∫
�

fn(x)dx is convergent, and∫
�

f (x)dx = ∫
�

∑∞
n=1 fn(x)dx =∑∞n=1

∫
�

fn(x)dx.

• Hilbert spaces: Important examples of infinite dimensional

vector spaces are the Hilbert spaces. A Hilbert space is a

complete space with a scalar product (i.e., a pre-Hilbert

Banach space). For instance, given a domain � of Rn, the

space of square integrable functions L2(�) (introduced in the

previous section) with the scalar product

( f, g) =
∫
�

f (x)g(x)dx is a Hilbert space.

One of the important properties of the Hilbert spaces is the

Riesz representation theorem: Given any linear form f on

a Hilbert space H , there exists one and only one vector u
such that for all vectors v ∈ H , one has f (v) = (u, v).

Hilbert spaces are, therefore, reflexive spaces, i.e., they are

isomorphic to their dual spaces. A common abuse of notation

is to identify a Hilbert space with its dual and to write (u, v)

= < u, v >, where v denotes both the element of the Hilbert
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space in the scalar product and its corresponding linear form

by the Riez theorem in the duality product.

Via the scalar product, the notion of orthogonality is available

in Hilbert spaces. Given a Hilbert space H and V a Hilbert

subspace, i.e. a subspace which is also a Hilbert space, the

set V ⊥ of elements of H orthogonal to all the elements of V
is also a Hilbert subspace of H and one has H = V ⊕ V ⊥.

• Operators and functionals: Various operations may be

defined on vector spaces. Mappings from a vector space onto

a vector space are usually called operators, while mappings

from a vector space onto scalars are called functionals. Given

two Banach spaces V and W , L(V , W) is the set of linear
operators from V to W , i.e., operators that preserve linear

combinations. If L ∈ L(V , W), for all v1, v2 ∈ V and a, b ∈ C,

we have L(av1 + bv2) = aL(v1) + bL(v2). The set L(V , V )

is written L(V ). The space V is called the domain dom(L) of

the operator L, and the vector space spanned by the elements

of W , which can be obtained by the action of the operator

on an element of V , is called the range, image, or codomain
cod(L) of L. The kernel or nullspace ker(L) is the subspace

ker(L) = {v ∈ V = dom(L), L(v) = 0 ∈ W}.
A linear operator L is a bounded if there is a constant C such

that ‖L(v)‖W ≤ C‖v‖V for all v ∈ V . A linear operator is

continuous (i.e., if vn → v, then L(vn)→ L(v)) if and only if it

is bounded.

The subset B(V , W) of bounded linear operators is a normed

linear space with the norm ‖L‖B = sup‖v‖
V
=1 ‖L(v)‖W .

A bounded operator is compact if the image of every bounded

sequence contains a convergent sub-sequence. In particular,

the identity map I such that I (v) = v is not compact on an

infinite dimensional space.

If the image of a linear operator has a finite dimension, the

operator is a finite rank operator. All the finite rank operators

are compact.

Linear operators in L(V , W) can be combined linearly by just

taking the linear combination of their action on the resulting

vectors, which gives a structure of vector space to L(V , W)
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itself. The composite of two operators L, M in L(V ) is given

by their successive applications: L ◦ M : v → L(M(v)). This

can be viewed as a product that makes L(V ) an algebra.

In functional spaces, important linear operators are obtained

by combinations of multiplications by functions and partial

derivatives. Parenthesis are often omitted when expressing

the action of an operator and one writes, for instance, Lv
instead of L(v).

• A matrix is a linear operator A between finite dimensional

vector spaces, which can be represented by a rectangular

array of scalars [ai j ] (called the elements of the matrix) so

that (Av)i =
∑

j ai j v j . Note that in the context of matrix

algebra, one is often not very careful about upper and lower

indices. The multiplication by a scalar and the addition of

matrices are obvious from the vector space structure of linear

operators. The composite of two matrices is given by their

successive applications: C v = A Bv and the corresponding

array for C is given by [ci j ] = [
∑

k aikbkj ] called the matrix
product, which is not commutative. If the domain and image

vector spaces have the same dimension, the matrix is a square
matrix. A square matrix I such that A I = I A = A for all the

square matrices A of the same dimensions is a unit matrix.

The trace T r(A) of a square matrix A = [ai j ] is the sum

of its diagonal elements: T r(A) = ∑
i aii . If the columns

of elements of a square matrix A are considered a set of n
vectors of dimension n (they are, in fact, the Aεi vectors), a

scalar can be built from the matrix via a n-linear form. One

considers the totally skew-symmetric n-linear form,b which

gives 1. when it is fed with the columns of the unit matrix, i.e.,

the εi . The scalar resulting from the action of this form on the

columns of the matrix A is called the determinant det(A). If

the determinant of a matrix A is not equal to zero, the matrix

is regular and there exists a matrix A−1 called the inverse
matrix of A such that A−1 A = A A−1 = I and else the matrix

is singular.

bSee the section below on n-covectors for further details.
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A vector v can be considered a single column matrix and the

action of a matrix on such a vector is merely a matrix product.

• Fourier transformation: The Fourier transformation F is an

extremely important linear operator, which can be defined on

L2(Rn).

Given a function f ∈ L2(Rn) : x ∈ Rn → R and if the duality

product on Rn is denoted by

< k, x >= ki xi ,

the Fourier transform F[ f ]= f̂ is given by

f̂ (k) = 1

(2π)n/2

∫
Rn

e−i<k, x> f (x)dx.

It is not obvious that the previous integrals exist for all

functions in L2(Rn). Technically, one has to start with a space

where the existence is obvious, L1(Rn) or C∞0 (Rn), and then

one extends the operator to L2(Rn).

The inverse transform is given by

f (x) = 1

(2π)n/2

∫
Rn

ei<k, x> f̂ (k)dk.

One of the fundamental properties of the Fourier transforma-

tion is that it makes differentiation algebraic:

D̂αu(k) = kαû(k) and x̂αu(k) = Dαû(k)

where xα = (x1)α1 · · · (xn)αn and kα = kα1

1 · · · kαn
n .

A fundamental property is the Parseval–Plancherel theorem:

The Fourier transform is an isometry in the L2 norm, i.e., it

conserves the scalar product and the norm:

( f, g)L2 = (F[ f ], F[g])L2 .

• Convolution: Another useful operation is the convolution.

Given two functions f, g ∈ L2(Rn), the convolution product

is defined by

f � g(x) =
∫
Rn

f (y)g(x− y)dy =< f (y), g(x− y) >y

where the subscript y indicates that the integration involved

in the duality product is performed along this variable.

Surprisingly, this operation is commutative and associative:

f � g = g � f and ( f � g) � h = f � (g � h) = f � g � h.
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The fundamental result relating the Fourier transform and

the convolution is the Faltung theorem: If f and g are

two functions having Fourier transform and such that the

convolution exists and is integrable: F[ f � g] = F[ f ]F[g].

• Distribution: The duality in infinite dimensional function

space leads to a fundamental tool of mathematical physics:

distributions or generalized functions. The space of test

functions D is defined as the set of functions infinitely dif-

ferentiable on Rn and with a bounded support, i.e., C∞0 (Rn).

Those functions are gentle enough to be integrated on their

whole domain and differentiated everywhere as many times

you like. The dual topological space D′ of continuous (this

requirement makes the difference with the algebraic dual),

linear forms onD is the space of distributions. A fundamental

example is the Dirac delta distribution (often improperly

called Dirac delta function in physics) δ, which associates to a

test function φ ∈ D its value at 0: δ(φ) =< δ, φ >= φ(0).

The space of distributions is larger than the space of test

functions and in a sense, contains it. On one hand, with any

test function φ is associated a distribution Dφ such that the

action of this distribution on another test function χ is given

by< Dφ , χ >= ∫
Rn φ(x)χ(x) dx, and on the other hand, there

is no test function associated with the Dirac distribution.

Another important distribution is vp{1/‖x‖} (where vp

stands for the Cauchy principal value) defined by

< vp{1/‖x‖}, ϕ >= lim
ε→0

∫
Rn−{‖x‖<ε}

ϕ(x)/‖x‖ dx.

Nevertheless, there is a common and useful abuse of notation

in physics, which writes the action of the Dirac delta

distribution and other singular distributions (those which do

not correspond to a test function) using the integral symbol

< δ, φ >= ∫
Rn δ(x)φ(x)dx = φ(0). In the same spirit, one

writes < δy, φ >= ∫
Rn δ(x− y)φ(x)dx = φ(y).

We will often use the duality product notation to write the

integral of the product of two functions f, g on their common

domain of definition �: < f, g >= ∫
�

f g dx in the real case

and < f, g >= ∫
�

f g dx in the complex case.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

322 Appendix

Note that this corresponds also to the scalar product on L2:

( f, g)L2 =< f, g >.c

• Operations such as derivation, Fourier transformation, and

convolution can be applied to distributions. As far as the

Fourier transformation is concerned, not all the distributions

have a transformation and one has to reduce the space of

distributions by increasing the space of test functions (see

here how the duality plays). The set of rapidly decreasing

functions, S , is introduced, i.e., functions that decrease more

rapidly to zero than any power of ‖x‖ when ‖x‖ → ±∞.

The set of tempered distribution, S ′, is the topological dual

space of S , i.e., the set of continuous linear functionals on

S and any tempered distribution admit a Fourier transform.

Operators on distributions are described by giving the

resulting distribution, but this one is itself described through

its action on test functions ϕ. Therefore, one has the following

definitions,d given only in the case of test functions and

distributions on R for the sake of simplicity:

– Derivative of a distribution: < d D
dx , ϕ >= − < D, dϕ

dx >.

One often introduces the notation {d D(x)/dx} to mean that

the derivation is taken in the sense of the functions and not

of the distributions. For instance, if a function f : R →
R is C∞ except in a single point x = a where there is a

discontinuity

lim
ε→0+

f (a + ε)− lim
ε→0−

f (a + ε) = disc f (a)

(also denoted [ f ]a), one has d f
dx = { d f

dx }+disc f (a) δ(x−a).

– Multiplication of a distribution by a function:

< f D, ϕ >=< D, f ϕ > .

Yes, this seemingly trivial operation needs a definition!

You can always multiply a distribution by a test function,

but you cannot, for instance, multiply a function with a

discontinuity at the origin with the Dirac distribution. An

cSee the remark above on the abuse of notation due to the reflexive nature of the

Hilbert spaces.
dWhich are chosen to match the definitions for functions when the distribution can

be associated with a function.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Appendix 323

important negative property of distributions is that the

product of two distributions does not always exist.

– Fourier transform of a tempered distribution:

< F[D], ϕ >=< D, F[ϕ] > .

For instance, we have F[δ(x)] = χR(k) (where χ� is the

characteristic function of the set �: χ�(x) = 1 if x ∈ �

and χ�(x) = 0 if x /∈ �) and F[sgn(x)] = i
π

pv
(

1
k

)
where

sgn(x) = x
|x| .

– Convolution of two distributions:

< D(x) � E (x), ϕ(x) >=< D⊗ E (x , y), ϕ(x + y) >,

where the right-hand duality product takes place in R2

with x and y variables.

Another interesting example of tempered distribution is

the Dirac comb !!(x) = ∑n∈Z δ(x − n), which is its own

Fourier transform F[!!(x)] = !!(k) = ∑n∈Z δ(k − n).

Introducing this distribution in the Parseval–Plancherel

theorem (extended to the duality product between S and

S ′) together with a function ϕ ∈ S gives the Poisson
summation formula

∑
n∈Z ϕ(n)=∑n∈Z ϕ̂(n), a useful trick for

convergence acceleration.

• Sobolev spaces: These are the Banach spaces defined for

integers m, p by Wm, p(�) = {u : u ∈ Lp(�),

Dαu ∈ Lp(�) for |α| ≤ m}.
The spaces Wm, 2(�) = H m(�) are of particular interest be-

cause they are Hilbert spaces with the scalar product defined

by (u, v)H m = ∑
|α|≤m(Dαu, Dαv)L2 and the corresponding

norm ‖u‖2
H m = (u, u)H m .

It can be shown that u ∈ H m(Rn) if and only if

(1+ k2)m/2û(k) ∈ L2(Rn)

and that the norm

‖u‖′H m =
(∫

Rn
(1+ k2)m/2û(k) dk

)1/2

with k2 =∑i (ki )
2 is equivalent to the first defined norm.

The advantage of this definition is that it can be extended

to any real value s and, therefore, allows the definition of
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negative and/or fractional index spaces H s . Note that in the

case of negative indices, the elements of H s are not all in

L2 = H 0 and these spaces are rather distribution spaces than

genuine function spaces.

The Rellich–Kondrachov theorem states that we have the

embeddings H s (Rn) ⊂ H t(Rn) if s > t and that the

corresponding inclusion maps are compact .

The Sobolev lemma states that

H s (Rn) ⊂ C k(Rn) if s > k+ n/2.

H−s (Rn) is the topological dual space of H s (Rn) according

to the classical duality pairing corresponding to the L2 scalar

product.

Given �, the space H s
0 (�) is the closure of C∞0 (�) = D(�)

in H s (�) (i.e., every element in H s
0 (�) is the limit according

to the norm of H s (�) of a sequence of functions in C∞0 (�) ).

If ∂� is “regular enough,” H s
0 (�) is the subspace of elements

of H s (�) equal to zero on ∂�. In the case � = Rn, H s
0 (�) is

the same as H s (�), but it is a strict subset in the other cases.

H−s (�) is the topological dual of H s
0 (�).

One has the following situation: H s
0 (�) ⊂ L2(�) ⊂ H−s (�)

called a Gelfand triplet or a rigged Hilbert space. The space

L2 is called the pivot space and its scalar product provides

the duality pairing. H−s (�) can be, without contradiction,

“larger” than H s
0 (�) (it is a distribution space) and “equal”

since it is isomorphic according to the Riesz theorem.

Another fundamental example of rigged Hilbert space is

D(�) ⊂ L2(�) ⊂ D′(�) where the “rigging” spaces are not

Hilbert ones.

• Trace theorems answer the question of the regularity and

restriction of functions (and distributions) on the boundary

of a domain or another lower dimensional sub-domain.

Consider � an open domain of Rn and a piecewise smooth

hyper-surface � of co-dimension 1 (i.e., of dimension n − 1)

contained in � (and in particular which may coincide with

the boundary ∂�). The restriction operator γ is introduced

by γ : C∞(�) → C∞(�), γ (u) = u|� . This operator can be

extended to a continuous operator on some Sobolev spaces:
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If the hyper-surface � is either compact or a portion of a

hyper-plane, for s > 1/2 the operator γ can be extended to a

continuous operator γ : H s (�)→ H s−1/2(�).

Considering the case s = 1 as an example, an alternative

definition of the space H 1/2(�) can be defined as the

quotient space H 1(�)/H 1
0 (�) with the quotient norm

‖u‖H 1/2(�) = inf{v∈H 1(�),γ (v)=u} ‖v‖H 1(�). Accordingly, one has

H 1(�) = H 1
0 (�) ⊕ H 1/2(�) and the trace inequality

‖u|�‖H 1/2(�) ≤ C‖u‖H 1(�).

• Given a linear operator L ∈ L(V , V ), the adjoint operator is

L∗ ∈ L(V ∗, V ∗) such that

< Lu, v >=< u, L∗v >, ∀u ∈ V , ∀v ∈ V ∗.

In the functional case, given a differential operator L:

C∞(�)→ C∞(�) of order m defined by L=∑|α|≤m aα(x)Dα ,

the formal adjoint L∗ is such that

< Lϕ, χ >=< ϕ, L∗χ >, ∀ϕ, ∀χ ∈ C∞0 (�).

Integration by parts shows that L∗ϕ = ∑
|α|≤m (−1)|α|

Dα(aαϕ).

For real matrices, the adjoint of a matrix A = [ai j ] is called

the transposed matrix AT = [aji ] where lines are written

as columns. For complex matrices, the adjoint is the complex

conjugate transposed or Hermitian transposed A H = [aji ]. A

matrix A is symmetric if A = AT and it is (symmetric) definite
positive if (v, Av) > 0, ∀v �= 0. A matrix A is Hermitian if

A = A H . The transposed vT of a column vector v is a row

vector, i.e., a single row matrix. The matrix product vT w is the

canonical scalar product of real finite dimensional vectors.

The matrix product vwT = [vi w j ] resulting in a general

matrix is called the dyadic product of the two vectors.

An operator L is self-adjoint if L = L∗. In the case of

unbounded operators, physicists often confuse self-adjoint

operators with merely Hermitian (in the complex case) or

symmetric (in the real case) operators or even with formally

self-adjoint operators and so we do in this book. An extension
B of an operator A of domain dom(A) is an operator with

a domain dom(B) ⊃ dom(A) such that B|dom(A) = A
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and this situation is denoted by B ⊃ A. An operator is

self-adjoint if A∗ = A, but the most common situation is

A∗ ⊃ A, which corresponds to symmetric and Hermitian

operators. We will disregard this distinction except in the

following simple example. Consider A0 an operator acting

on H 1
0 ([a, b]) (i.e., the set of square integrable functions

ϕ defined on the interval [a, b], with a square integrable

derivative, and verifying the boundary conditions ϕ(a) =
ϕ(b) = 0), defined by A0ϕ = i dϕ

dx . This operator is Hermitian:

< A0ϕ, χ >=
∫ b

a
i

dϕ
dx

χdx =
∫ b

a
i

dχ
dx

dx + i[ϕχ]b
a =< ϕ, A∗0χ >

with A∗0χ = dχ
dx for any function χ ∈ H 1([a, b]), which is

obtained because of the boundary conditions on ϕ. There

are no boundary conditions needed on χ ∈ H 1([a, b]) ⊃
H 1

0 ([a, b]) and obviously A∗0 ⊃ A0. Given θ ∈ [0, 2π[, the

operator Aθϕ = i dϕ
dx with the domain dom(Aθ ) = H 1

θ ([a, b])

= {ϕ ∈ H 1([a, b]), ϕ(a) = eiθϕ(b)} is now considered, the

boundary term becomes

i(ϕ(b)χ(b)− ϕ(a)χ(a)) = iϕ(b)(χ(b)− e−iθχ(a)).

This term vanishes if and only if χ(a) = eiθχ(b), i.e., χ ∈
H 1
θ ([a, b]) and A∗θ = Aθ is a self-adjoint operator. This is,

in fact, a one-parameter family of self-adjoint operators with

A0 ⊃ Aθ ⊃ A∗0 but with Aθ �= Aθ ′ for θ �= θ ′.
Choosing χ ∈ C∞0 in the duality product avoids any question

about the boundary condition and leads to the careless

concept of formally self-adjoint operator A such that

< Aϕ, χ >=< ϕ, Aχ > for any χ ∈ C∞0 .

One says that Lf = g weakly for f, g ∈ L1
loc if

< g, ϕ >=< f, L∗ϕ > , ∀ϕ ∈ C∞0 (�).

• The Green’s function of an operator L with constant coef-

ficients is a distribution G(x − y) ∈ D′ ⊗ D′ such that

L∗xG(x − y) = δ(x − y) where the fact that the operator

acts on the x variables is emphasized. One also has to

request that G|∂� = 0 or to consider the free space Green’s
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function, but we stay on a rather formal level here and let

such considerations on side. The Green’s function is usually

used to (formally) invert the differential operator. Consider

once again Lf = g. By means of the fact that the Dirac

distribution is the neutral element of the convolution, one has

f (x) = f � δ =< f (y), δ(x − y) >y= < f (y), L∗G(x− y) >y

=< Lf (y), G(x− y) >y=< g(y), G(x− y) >y=g � G. The for-

mula f = g � G is only valid in free space, i.e., if the domain

is Rn. In the case of a bounded domain, boundary conditions

have to be taken into account as it will be explained later.

• Up to now, the geometrical domains were open sets of

Rn. A serious treatment of the geometrical framework of

physics requires the concept of manifold. A manifold M is

a set of points that is locally homeomorphic to Rn in the

sense that any neighborhood of a point can be continuously

mapped on an open set of Rn (n is the same for all the

points of M and is called the dimension of the manifold).

With such a mapping, the points in the neighborhood can

be distinguished by an ordered set of n real numbers called

the (local) coordinates. Nevertheless, we cannot hope to be

always able to find a set of coordinates that covers the

whole manifold at once. Therefore, it is allowed to cover the

manifold with several overlapping open sets each endowed

with a particular coordinate system. The regularity of the

manifold is given by the regularity of the so-called transition
functions: Considering two coordinate systems defined on

overlapping opens sets U and Ũ by the mappings ϕ : U →
Rn and ϕ̃ : Ũ → Rn, the invertibility of the continuous

coordinate mappings induces a transition mapping ϕ̃ϕ−1 :

ϕ(U ∩ Ũ ) ⊂ Rn → ϕ̃(U ∩ Ũ ) ⊂ Rn. The regularity

of the manifold is the one of the transition functions: A

differentiable C m manifold is such that all the transition

functions are C m.

The Rn are trivial examples of manifolds, and in fact the

only manifold used here is R3. In this case, why bother

about manifolds? Because Rn can also be considered a vector

space, for instance. On the one hand, in “vector space Rn,”

two elements can be added but not in “manifold Rn” and
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on the other hand, changing all the n-tuples {x1, · · · , xn} in

“manifold Rn” to n-tuples {y1 = (x1)3, · · · , yn = (xn)3}
is a valid global change of coordinates leaving the manifold

unchanged but makes no sense in “vector space Rn”!

• The position of a point in a manifold M of dimension n is

given by an ordered set of n numbers (x1, · · · , xn) called the

coordinates. Each coordinate can also be viewed as a function

on the manifold.

A curve γ is an application from an interval of R on

the manifold M: r(t) = (x1(t), · · · , xn(t)) where t is the

parameter. If f (x1, · · · , xn) is a scalar function on the space,

the composition of this function with the curve gives a

function from R to R: f (x1(t), · · · , xn(t)). The derivation

with respect to t of this function gives, applying the chain

rule: d
dt f (x1(t), · · · , xn(t)) = ∂ f

∂x1
dx1

dt + · · · + ∂ f
∂xn

dxn

dt . This

expression can be viewed as the duality product < d f, vγ >

of the covector d f = ∂ f
∂x1 dx1+· · ·+ ∂ f

∂xn dxn = ∂ f
∂xi dxi with the

vector vγ = dx1

dt
∂ .
∂x1+· · ·+ dxn

dt
∂ .
∂xn = dxi

dt
∂ .
∂xi . The vector vγ is the

tangent to the curve given in the form of a first-order linear

differential operator and the covector d f is the differential of

the function. One takes the general definitions:

– A vector (in the geometric sense) at a point of the manifold

is a first-order linear differential operator on the functions

on the manifold. In a coordinate system (x1, · · · , xn),

a vector v at a point of coordinates ( p1, · · · , pn) is

represented by a set of n numbers (v1, · · · , vn), the

components of the vector, so that the result of the action

of this vector on a function f (x1, · · · , xn) is the scalar:

v( f ) = v1 ∂ f
∂x1 + · · · + vn ∂ f

∂xn |(x1=p1, ··· , xn=pn).

– In a coordinate system, a basis for the vectors are the

partial derivatives with respect to the coordinates, so that

a vector can be written v = v1 ∂
∂x1 + · · · + vn ∂

∂xn .

– A covector at a point of the space is a linear form on the

vectors at this point.

– In a coordinate system, a basis for the covectors is the

differential of the coordinates so that a covector can be

written α = α1dx1 + · · · + αndxn. They form a basis dual
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to the partial derivatives: < dxi , ∂ .
∂x j >= δi

j and, therefore,

< v, α >= αi vi .

– A (co)vector field is a set of (co)vectors so that with

each point of the manifold is associated a (co)vector.

In a coordinate system, it is represented by a set of n
functions on the coordinates. The result of the action of a

covector field on a vector field is a scalar function on the

coordinates.

– A covector field is also called a 1-form.

– The differential of a scalar function is a 1-form.

– In older terminology, vectors were called contravariant
vectors and covectors were called covariant vectors.

– Vector fields and 1-forms have both n components, i.e.,

they can be represented (at least locally) by sets of n
functions of the coordinates. There is a strong temptation

to say that the sets of vector fields and 1-forms are n-

dimensional vector spaces, but this forgets the fact that the

components are functions that are themselves elements of

infinite dimensional functional spaces.

• Geometrical tensor spaces are generated by tensor products

of vector and covectors. For example, A = Ai
jkdxi⊗ ∂ .

∂x j ⊗ ∂ .
∂xk is

a rank 3 tensor, once contravariant and twice covariant and

the Ai
jk are its n3 components in the xi coordinate system. A

tensor field is a set of tensors so that with each point of the

manifold is associated a tensor. A rank k (k ∈ N) tensor field

has nk components.

• Skew-symmetric tensors play a fundamental role in differ-

ential geometry. A k-covector ω is a totally skew-symmetric

tensor of rank k (k ∈ N), i.e., it is a k-linear form on

vectors such that the swapping of two vectors changes

the sign of the resulting scalar: ω(· · · , vi , · · · , v j , · · · ) =
−ω(· · · , v j , · · · , vi , · · · ). Note that k-covectors are identi-

cally zero if k > n.

Given {1, · · · , n}, the set of integers from 1 to n, a permutation
is a bijection σ ∈ Pn : {1, · · · , n} → {1, · · · , n}. A

transposition is a permutation that swaps two elements and

leaves the others at the same place. Any permutation can
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be decomposed in a finite sequence of transpositions. The

signature ε(σ ) of a permutation is the number equal to 1 if the

number of transposition is even and to−1 if it is odd. It does

not depend, of course, on the particular set of transpositions

used to describe the permutation. The Levi–Civita symbol
εi1i2···in is equal to ε(σ ) if the indices are a permutation σ of

{1, · · · , n}: {i1 = σ (1), · · · , in = σ (n)} and equal to 0 if some

indices are repeated. The general properties of k-covectors is

ω(v1, · · · , vk) = ε(σ )ω(vσ (1), · · · , vσ (k)).

The dimension of the vector space formed by the k-covectors

on a vector space of dimension n is
(n

k

) = n!
k!(n−k)!

·
A k-form is a field of k-covectors so that it is a map from

the sets of k vector fields on M to the scalar functions on

M. Note that k-forms are usually called differential forms or

exterior forms. The vector space of k-forms on a manifold M
is denoted by

∧k
(M).

The exterior product of α ∈ ∧k
(M) and β ∈ ∧ j

(M) is α ∧ β ∈∧k+ j
(M) such that

α ∧ β(v1, · · · , vk+ j ) =
1

k! j !

∑
σ∈Pk+ j

ε(σ )α(vσ (1), · · · , vσ (k))β(vσ (k+1), · · · , vσ (k+ j)).

The main properties of the exterior product of forms are:

α ∧ β = (−1) jkβ ∧ α, ∀α ∈ ∧k
(M), β ∈ ∧ j

(M).

α ∧ (β + γ ) = α ∧ β + α ∧ γ , for all forms α, β, γ .

(α∧β)∧ γ = α∧ (β ∧ γ ) = α∧β ∧ γ , for all forms α, β, γ .

The exterior products of coordinate differentials form a basis

for the forms so that any k-form α can be written as:

α = α(x1, · · · , xn)i1···ik dxi1 ∧ · · · ∧ dxik .

• n-forms have a single component and can be written in the

form f (x1, · · · , xn)dx1∧· · ·∧dxn. If f is everywhere different

from zero on the manifold, the n-form is called a volume
form. Given an n-form ω, n vector fields vi and a matrix A
with constant elements acting on the vector fields as a linear

operator, we have ω(Av1, · · · , Avn) = det(A)ω(v1, · · · , vn),

which gives the geometrical meaning of the determinant.
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• Another fundamental operation is the exterior derivative of a

form defined by:

dα = dαi1···ik ∧dxi1 ∧ · · ·∧dxik = ∂αi1···ik

∂xi
dxi ∧dxi1 ∧ · · ·∧dxik .

In the right hand, member dαi1···ik denotes the differential of

the component αi1···ik (these coefficients are functions of the

coordinates) and the implicit summation on repeated indices

is used. From this definition, it is clear that

d :

k∧
(M)→

k+1∧
(M).

The exterior derivative of a function is its differential; the

exterior derivative of an n-form is zero. The main properties

of the exterior derivative of forms are:

d is linear.

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ, ∀α ∈ ∧k
(M)

(Leibnitz rule).

ddα = 0, for all forms α.

• Given an open set � of dimension p ≤ n in a manifold M
of dimension n, sufficiently regular, and, for the simplicity of

the presentation, which can be covered by a single local co-

ordinate system {x1, · · · , xn} so that � can be parameterized

by � : {x1(ξ1, · · · , ξ p), · · · , xn(ξ1, · · · , ξ p), ∀{ξ1, · · · , ξ p} ∈
� ⊂ Rp}. Depending on the context, � can be, in fact, a

submanifold (i.e., a manifold of dimension p together with

a regular map of this manifold into M), a hyper-surface or

a chain that corresponds to different objects from a formal

point of view.e The integral
∫
�
α of a p-form α on� is defined

by:∫
�

α =
∫
· · ·
∫
�

αi1···i p det

(
∂(xi1 , · · · , xi p )

∂(ξ1, · · · , ξ p)

)
dξ1 · · · dξ p,

where the indices i1, · · · , i p run between 1 and n (without

repetition), det
(
∂(xi1 , ··· , xi p )

∂(ξ1, ··· ,ξ p)

)
are the Jacobians (i.e., the

determinants of the matrices whose elements are the

partial derivatives of the xi with respect to the ξ j ) and

eThe case p = 1 corresponds to a curve.
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dξ1 · · · dξ p the Lebesgue measure on Rp. This definition is,

in fact, independent of the system of coordinates and of the

parametrization used in the definition. The extension to the

case where several local coordinate systems are necessary is

purely technical and is based on the use of a partition of the

unity.

The integration of a form is a linear operation. In order to

emphasize the duality between the p-dimensional � and the

p-forms, the abstract notation < �, α >= ∫
�
α can be used.

The main property is the Stokes theorem. Given a ( p−1)-form

α and an open set � of dimension p such that its boundary

∂� (of dimension p− 1) is regular enough, we have:∫
�

dα =
∫
∂�

α.

• The marriage of differential forms and distribution theory

leads to the concept of de Rham current. First, a test p-

form on a smooth manifold M (of dimension n) is a p-form

the coefficients of which are C∞0 (M) functions, i.e., infinitely

differentiable and with a compact support. A p-current C is

a continuous linear form on the test (n − p)-forms ϕ. The

associated duality product is denoted by < C , ϕ >. The set

of currents is, therefore, the topological dual of the space of

test forms.

With a p-form α is associated a p-current Cα , denoted as α by

abuse of notation, such that < Cα , ϕ >= ∫M α ∧ ϕ, for all test

(n− p)-forms ϕ.

The lower dimensional submanifolds or hyper-surfaces give

currents similar to the singular distributionsf with an

(n− p)-dimensional submanifold � is associated a p-current

C� , denoted as � by abuse of notation, such that

< C� , ϕ >=
∫
�

ϕ, for all test (n− p) -forms ϕ.

The product of a p-current C by a C∞ q-form α (not

necessarily with a bounded support) is a ( p + q)-current

fA first technical step is to consider formal linear combinations of those geometrical

objects in order to give them a vector space structure.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Appendix 333

defined by

< C ∧ α, ϕ >=< C , α ∧ ϕ >,

for all test (n − p − q)-form ϕ, and C ∧ α = (−1)pqα ∧ C .

For instance, with a pair (�, α), where � is an (n − p)-

dimensional submanifold and α is a C∞(�) q-form (which

needs only be defined on the support of �), is associated a

( p+ q)-current C�∧α , denoted as � ∧ α by abuse of notation,

such that< C�∧α , ϕ >= ∫
�
α ∧ ϕ, for all test (n−p−q)-forms

ϕ.

The exterior derivative of a p-current C is defined by

< dC , ϕ > = (−1)p−1 < C , dϕ >, for all test (n − p − 1)-

forms ϕ. If the current is associated with a form, the

definition coincides with the former definition of the exterior

derivative. In the case of a p-current associated with an

(n − p)-dimensional manifold �, the previous definition via

the Stokes theorem gives:

< d�, ϕ >= (−1)p−1 < �, dϕ >= (−1)p−1 < ∂�, ϕ >

hence d� = (−1)p−1∂�. For the p-current C and the C∞ q-

form α:

d(C ∧ α) = dC ∧ α + (−1)pC ∧ dα.

If� is an (n−1)-dimensional submanifold (and its associated

1-current) and if ω is a p-form discontinuous on �, i.e., the

components in any coordinate system are differentiable in

the complement of � in M except across � where they suffer

a jump [ω]� , theng dω = {dω} +� ∧ [ω]� .

• All those geometrical notions, the exterior product, the

exterior derivative, and the integration of a form, do not

rely on the definition of a scalar product or a norm and are,

therefore, purely topological and differential but not metric.

• Riemmanian spaces: A scalar product on the tangent

vectors of a manifold can be defined as a rank 2 totally

covariant symmetric tensor (field) g called the metric. In

a coordinate system, this tensor can be written as g =
gSee the derivation of a discontinuous function in the section on the distributions

above for the notation {dω}.
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gi j dxi ⊗ dx j where gi j = gji (the n2 coefficients form a

positive definite matrix with n(n− 1)/2 independent values)

and the scalar product of two vectors can be written as

(v, w) = gi j vi w j .

If the coefficients gi j are considered to form a matrix,

the coefficients of the inverse matrix are denoted by gi j

(with gikgkj = δi
j ) and define a rank 2 totally contravariant

symmetric tensor gi j ∂
∂xi ⊗ ∂

∂x j .

In the context of differential forms, the metric is mostly

involved in the Hodge star operator ∗ :
∧p

(M)→ ∧(n−p)
(M),

which maps p-forms on (n − p)-forms. The p- and (n − p)-

covectors have the same number of components and the map

is linear, one-one, and ∗∗ = (−1)p(n−p). For any p-form α

expressed in an arbitrary (covector) basis {εi1 , · · · , , εin} by

α j1··· jpε
i1∧· · ·∧εi p , the action of the Hodge operator ∗ is given

by

∗(α j1··· jpε
i1 ∧ · · · ∧ εi p ) =

1
(n−p)!

εi1···in | det[gi j ]|1/2α j1··· jp gi1 j1 · · · gi p jpεi p+1 ∧ · · · ∧ εin .

The Hodge operator allows the definition of a scalar product

on the vector spaces
∧p

(M) of p-forms, which makes them

Hilbert spacesh by setting

(α, β) =
∫

M
α ∧ ∗β.

The coderivative δ = (−1)n( p+1)+1 ∗ d∗ is the formal adjoint

of the exterior derivativei since one has (dα, β) = (α, δβ) for

forms with C∞0 (M) components. One has also δδ = 0.

The Laplace–Beltrami operator 	 (Laplacian for short) is

defined by 	 = (d + δ)(d + δ) = δd + dδ and is self-adjoint.

• Of course, many of the previous operations are simpler and

indeed even trivial in the three-dimensional Euclidean space
E3 that is R3. This is considered a manifold and is equipped

with a special metric such that there exist global coordinates

hThe situation is, in fact, more subtle since it depends on the regularity of the

components of the forms as functions of the coordinates, but we consider here that

they are all in L2(M).
iWhich could have then been denoted by d∗ .
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called Cartesian coordinates {x1 = x , x2 = y, x3 = z} where

the metric has the form g = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz.

In these coordinates, the Hodge operator has the following

action:

∗dx = dy ∧ dz, ∗dy = dz∧ dx , ∗dz = dx ∧ dy,

∗(dx ∧ dy) = dz, ∗(dz∧ dx) = dy, ∗(dy ∧ dz) = dx ,

∗1 = dx ∧ dy ∧ dz, ∗(dx ∧ dy ∧ dz) = 1.

• There are, in fact, several mathematical structures that can be

considered “natural” descriptions of our three-dimensional

perception of “space.” R3 as a bare manifold obviously lacks

structures, but defining Cartesian coordinates is too arbitrary

since it involves, for instance, the choice of a distinguished

point, the origin O of coordinates {0, 0, 0}. Another candidate

is the “vector space R3,” which we note V3 to make the

distinction with the manifold. The addition of two points is

now a valid but meaningless operation. A sounder choice is

to consider A3, the affine space associated with V3 (loosely

speaking obtained by forgetting the origin). The physical

points are elements of A3; they cannot be added, but their

differences are vectors of V3 and the elements of V3 operate

on points of A3 as displacements. The introduction of the

Euclidean distance gives the affine Euclidean space, which we

still call E3 and where displacements (and not points) have

a length. The distance between two points is then defined.

Of course, in practice, an origin point and three mutually

orthogonal unit vectors are chosen such that they define a

particular Cartesian coordinate system.

• The peculiarities of E3 allow a simpler setting called vector
analysis, which takes advantage of the Cartesian coordinates

but forget almost all the geometric relevance! We do not

want to advocate for giving up vector analysis, but we just

want it to be considered as a computational trick rather

than a genuine geometrical framework. In E3, 0-forms are

scalar functions v(x , y, z) and 3-forms are pseudo-scalars or

densities ρ(x , y, z)dx ∧ dy ∧ dz = ρ ∗1. Both fields have only

one single component so that they are merged into the single

concept of scalar field using the Hodge operator. Similarly, the
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1-forms αx dx + αydy + αzdz are the field intensities and the

2-forms βx dy∧dz+βydz∧dx+βzdx∧dy are the flux densities
and both have three components so that they are merged in

the concept of vector field. In this case, those vector fields are

considered proxies for 1-forms and 2-forms.

A vector field is written as v = vxε
x + vyε

y + vyε
y where

the unit vectors ε are as well unit 1-forms as unit 2-forms

associated with Cartesian coordinates. This is safe as long

as only Cartesian coordinates are used. The scalar product

of two vectors is called the dot product and is defined by

v · w = vx wx + vywy + vzwz and the associated norm is,

of course, |v|2 = v · v . Dot product can be traced back in

differential geometry as the scalar product of two 1-forms or

of two 2-forms but also to the metric free exterior product of

a 1-form and a 2-form. This is usually enough to cloud the

geometrical meaning of vector analysis computations! The

cross product of two vectors is defined by

v×w = (vywz− vzwy)εx + (vzwx − vx wz)εy + (vx wy − vywx )εz.

It comes mostly from the exterior product of two 1-forms.j

The exterior derivative gives rise to several operators.

The exterior derivative of a 0-form d f = ∂ f
∂x dx + ∂ f

∂y dy+ ∂ f
∂z dz

corresponds to the gradient of a scalar field:

grad f = ∂ f
∂x

εx + ∂ f
∂y

εy + ∂ f
∂z

εz.

For a 1-form v = vx dx + vydy + vzdz, the exterior derivative

dv = ( ∂vz
∂y − ∂vy

∂z )dy∧dz+( ∂vx
∂z − ∂vz

∂x )dz∧dx+(
∂vy

∂x − ∂vx
∂y )dx∧dy

corresponds to the curl of a vector field:

curl v =
(
∂vz

∂y
− ∂vy

∂z

)
εx+
(
∂vx

∂z
− ∂vz

∂x

)
εy+
(
∂vy

∂x
− ∂vx

∂y

)
εz.

For a 2-form w = wx dy ∧ dz + wydz ∧ dx + wzdx ∧ dy,

the exterior derivative dw = ( ∂wx
∂w + ∂wy

∂y + ∂wz
∂z )dx ∧ dy ∧ dz

corresponds to the divergence of a vector field:

div w = ∂wx

∂w
+ ∂wy

∂y
+ ∂wz

∂z
.

jThere are many other features in differential geometry not introduced here, such as

the Lie derivative and the inner product. In electromagnetism, the cross product of

the velocity together with the magnetic flux density in the Lorentz force is, in fact,

the inner product of a vector with a 2-form.



March 21, 2017 13:53 PSP Book - 9in x 6in Didier-Felbacq-MMD

Appendix 337

Alternative notations for these operations use the nabla

operator ∇: grad f = ∇ f , curl v = ∇ × v, and div v = ∇ · v.

The Leibnitz rule is expressed in the classical formulae:

grad( f g) = f grad g + g grad f.

curl( f v) = f curl v− v× grad f.

div( f v) = f div v+ v · grad f.

div(v×w) = w · curl v− v · curl w.

and of course dd = 0 is nothing else than curl grad = 0 and

div curl = 0.

The Laplacian of a scalar field is

	 f = div grad f = ∂2 f
∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
.

The Laplacian of a vector field is

	v = grad div v− curl curl v = (	vx )εx + (	vy)εy + (	vz)εz.

Note that Laplacians are self-adjoint operators.

In vector analysis, a (rank 2) tensor (field) is a linear

operator transforming a vector (field) into a vector (field).

In a particular system of coordinates, it is usually given in

the form of an array of 9 coefficients, hence the common

confusion with a square matrix. A “vector analysis” tensor is

denoted by α and its action on a vector v is simply denoted

by αv.

The Stokes theorem corresponds to various integral equali-

ties:

If � is a curve with initial point a and end point b, for any

scalar field whose gradient exists:∫
�

grad f · dl = f (b)− f (a)

where dl is the line element.

If � is a surface with boundary ∂� (with an orientation

inherited from �), for any vector field v whose curl exists:∫ ∫
�

curl v · n ds =
∫
∂�

v · dl

where ds is the surface element and n is the normal vector

on �.
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If V is a volume with boundary ∂V , for any vector field v
whose divergence exists:∫ ∫ ∫

V
div v dv =

∫ ∫
∂V

v · n ds

where dv is the volume element and n is the outer normal

vector on ∂V .

Often, multiple integrals are simply denoted by a single
∫

just

as in differential geometry.

The simplest way to give natural definitions of all the

integrals involved here above is to go back to the definition of

the integration of differential forms. Moreover, the traditional
notations of vector analysis rely on metric concepts such as the
normal vector (involving both orthogonality and unit length)
and the scalar product while the definition of these integrals
do not require any metric.
Given a unit vector ε, the directional derivative ∂·

∂ε
is defined

by ∂ f
∂ε
= grad f · ε. Another fundamental integral identity is

the Green’s formula:∫ ∫ ∫
V

( f 	g − g	 f )dv =
∫ ∫

∂V

(
f
∂g
∂n
− g

∂ f
∂n

)
ds .

• Using the Leibnitz rule to integrate by parts, it is easy to find

the formal adjoint to the vector analysis operators:

grad∗ = −div, curl∗ = curl, and div∗ = − grad .

• The identity dω = {dω} + � ∧ [ω]� for de Rham currents

leads to the following identities in vector analysis in the case

of a function f and a vector field v differentiable in the

complement of a surface � but undergoing the jumps [ f ]�

and [v]� across �, respectively (the direction chosen to cross

the surface is given by n, the normal vector to the surface �):

grad f = {grad f } + n[ f ]�δ� .

curl v = {curl v} + n× [v]�δ� .

div v = {div v} + n · [v]�δ� .

where it is necessary to denote explicitly the singular

distribution δ� associated with the surface � (by definition∫
R
δ�ϕ(x)dx = ϕ|�). Note that metric concepts creep again

in a place where they are not necessary.
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• L2(R3, C3) = [L2(R3)]3 = L2(R3) denotes the space of

square integrable functions on R3 with values in C3 where

the scalar product is defined by (v, w) = ∫
R3 v(x) ·w(x)dx.

• The Green’s function G of three-dimensional scalar Laplacian

(in free space) is such that 	pG(p − q) = δ(p − q) where

p, q ∈ E3 and 	p indicates that the derivatives in the

Laplacian are taken with respect to the coordinates of

p (but this is seldom explicitly indicated when there is

no ambiguity). The expression of this Green’s function is

G(p − q) = −1
4π |p−q| . The displacement vector p − q is

traditionally called r and its norm r and one can be written

G = −1
4πr .

In the two-dimensional scalar Laplacian case, G = 1
2π

ln(r).

For the scalar Helmholtz equation, one has (	 + k2)H = δ

and H = − eikr

4πr .

In the two-dimensional scalar Helmholtz equation case,

H = 1
4i H (1)

0 (kr) where H (1)
0 denotes a Hankel function.

The Green’s function is physically interpreted as the field

(or potential) generated by a (monopolar) point source.

The introduction of Green’s functions in Green’s formula

gives identities, which are the basis of the boundary element
method.

• The differential geometry on R2 provides a nice framework

to introduce complex analysis on C. Given two Cartesian

coordinates x and y and the Euclidean metric g = dx ⊗
dx + dy ⊗ dy, the associated Hodge star operator has the

following action on 1-forms: ∗dx = dy and ∗dy = −dx .

This action is a π/2 rotation counterclockwise equivalent

to the action of a multiplication by i in the complex plane.

The knowledge of this Hodge star on the plane does not

determine the Euclidean geometry but only the conformal

geometry, i.e., the metric up to a scalar factor so that only

angles but not lengths are relevant. In the complex plane,

the complex variable z = x + iy and its complex conjugate

z = x − iy play the role of independent variables. Their

differentials dz = dx + idy and dz = dx − idy are a basis for

the 1-forms. The dual basis for the vectors are the differential
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operators ∂
∂z = 1

2
( ∂
∂x − i ∂

∂y ) and ∂
∂z = 1

2
( ∂
∂x + i ∂

∂y ). Note that
∂
∂z

∂
∂z = ∂

∂z
∂
∂z = 1

4
	 and dz ∧ dz = −2i(dx ∧ dy).

A complex function of the complex variable f : C → C is

associated with a pair ( p, q) of real functions on R2 so that

f (z, z) = p(x , y) + iq(x , y). Those complex functions are

usually denoted by f (z), which is fully justified in the case

of holomorphic functions as explained below.

Given two complex functions f and g, the exterior derivative

of the 0-form f is

d f = ∂ f
∂z

dz+ ∂ f
∂z

dz =
(
∂p
∂x
+ i

∂q
∂x

)
dx +

(
∂p
∂y
+ i

∂q
∂y

)
dy

and the exterior derivative of the 1-form f dz+ g dz is

d( f dz+ g dz) =
(
∂g
∂z
− ∂ f

∂z

)
dz∧ dz.

Let γ be a closed curve in C (and, therefore, also in R2), i.e., a

map γ : t ∈ [a, b] ⊂ R → z(t) ∈ C such that γ (a) = γ (b),

and such that there are no other multiple points. The line

integral of the complex 1-form f dz associated with f (note

that it is not a general 1-form since there is no term in dz ) is∫
γ

f dz = ∫
γ

( p dx − q dy) + i
∫
γ

( p dy + q dx). The exterior

derivative is d( f dz) = − ∂ f
∂z dz∧ dz.

If D is a bounded domain of C (and, therefore, also of R2), the

domain integral of a complex 2-form f dz ∧ dz is∫
D

f dz∧ dz = −2

∫
D

p dx ∧ dy + 2i
∫

D
q dx ∧ dy.

In this case, the Stokes theorem becomes
∫

D d( f dz) =∫
∂D f dz. As for a 1-form f dz, one has∫

D
d( f dz) =

∫
∂D

f dz

where
∫
γ

f dz = ∫
γ

( p dx + q dy)+ i
∫
γ

(q dx − p dy).

A function f (z) is holomorphic or analytic on a topologically

simple domain (contractible to a point) D ⊂ C if one of the

following five equivalent conditions are satisfied:

(1) If at each point of D, f is C-differentiable, i.e., if the limit

f ′(z) = lim|h|→0
f (z+h)− f (z)

h exists and is independent of

the direction of h ∈ C (Fréchet derivative). In this case

f ′(z) = ∂ f (z)

∂z = 1
2

( ∂p
∂x + ∂q

∂y )− i
2

( ∂p
∂y − ∂q

∂x ).
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(2) If the 1-form f dz is closed, i.e., its exterior derivative

vanishes, on D: d( f dz) = − ∂ f
∂z dz = 0 at each point

of D, i.e., if the Cauchy–Riemann conditions ∂p
∂x − ∂q

∂y = 0

and ∂p
∂y + ∂q

∂x = 0 are verified. This condition means that

f (z) behaves as if it were independent of z. The operator
∂
∂z is called the Cauchy–Riemann operator, and since it is a

factor of the Laplacian, a holomorphic function f is also a

harmonic function, i.e., 	 f = 0.

(3) If d f = g dz, i.e., if the exterior derivative of f has no dz
component.

(4) If the line integrals
∫
γ

f dz = 0 for any closed curve γ

contained together with its interior in D. As any closed

curve can be defined as a boundary ∂� with � ⊂ D, by

the Stokes theorem
∫
∂�

f dz = ∫
�

d( f dz) = 0.

(5) If f can be represented by an infinite power series f (z) =∑∞
n=0 an(z− z0)n in a neighborhood of any point of z0 of D.

In the case of the function 1/z on a domain �, including the

origin z = 0, this function is holomorphic everywhere on �

except at the origin where there is a singularity called a pole
of order 1. Such a function, which is holomorphic except for

a discrete set of points, is called meromorphic. The fact that

the domain in which the function is holomorphic is no more

topologically simple has important consequences: Consider

for instance a disc D(r, 0) of radius r and center z = 0. Using

the polar representation z = reiθ , dz = ireiθdθ on ∂D(r, 0)

and one has, for any n ∈ Z,∫
∂D(r, 0)

zndz =
∫ 2π

0

einθrnireiθdθ = irn+1

∫ 2π

0

ei(n+1)θdθ = 2iπ

if n = −1 and 0 if n �= −1. As 1/z is holomorphic on any

domain not including the origin, its domain integral is null

and this fact can be used to easily prove that
∫
∂�

1
z dz = 2iπ

for any �, including the pole z = 0. A holomorphic function

f on �, including the origin z = 0, can be written as an

infinite power series f (z) = ∑∞
n=0 anzn where the zn are

all holomorphic functions and where a0 = f (0). Therefore,∫
∂�

f (z)

z dz = ∫
∂�

∑∞
n=0 anzn−1dz = 2iπ f (0). It is easy to shift

the pole at any ζ inside a domain � where f is holomorphic
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to obtain the Cauchy’s integral formula or Cauchy theorem:

f (ζ ) = 1

2iπ

∫
∂�

f (z)dz
z− ζ

.

If the function f is meromorphic, it can be represented by a

Laurent series f (z) = ∑∞n=−p an(z− z0)n (involving negative

powers of z) in a neighborhood D of a pole z0 of order p. The

coefficient a−1 denoted by R(z0; f ) is called the residue and

we have: R(z0; f ) = limz→z0
(z− z0) f (z) = 1

2iπ

∫
γ

f (z)dz for

a curve γ such that it is contained in D, and that z0 is the only

pole contained in its interior.

Given two complex functions f and g on D, a duality product

< f, g >= ∫D f g dz∧dz can be introduced so that− ∂
∂z is the

formal adjoint of ∂
∂z since

<
∂ f
∂z

, g >= − < f,
∂g
∂z

> +
∫
∂D

f g dz.

The Green’s function of ∂
∂z is given by ∂

∂z
1
πz = δ, where

δ is the Dirac distribution on R2, and it can be justified

by
∫
∂D f 1

2iπz dz = f (0) = ∫
D f δ dz∧dz

−2i = ∫
D f ∂g

∂z
dz∧dz
−2i =

1
2i

∫
D d( f g dz) = 1

2i

∫
∂D f g dz. The theory of hyperfunctions

is a distribution theory on C where test functions are

holomorphic.

• Landau notation: Given x0 and two functions f and g defined

in a neighborhood of x0 ∈ R (i.e., real numbers, including

the cases x0 → ±∞), f = O(g) if and only if f (x)

g(x)
= O(1),

which means that | f (x)

g(x)
| stays bounded in a neighborhood of

x0. Moreover, f = o(g) if and only if f (x)

g(x)
= o(1), which

means that limx→x0

f (x)

g(x)
= 0. It is legitimate to write, say,

2x = O(x) = o(x2) for x → ∞ with the understanding

that we are using the equality sign in an unsymmetrical (and

informal) way, in that we do not have, for example, o(x2) =
O(x).

Landau notation is a practical tool to give asymptotic

behaviors, e.g., for ν ∈ R,

J ν(x) =
√

2

πx
cos
(

x − (2ν + 1)
π

4

)
+ O

(
1

x
√

x

)
as x →+∞.
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Landau notation is also handy in computer science, e.g., in

describing the efficiency of an algorithm. It is common to say

that an algorithm requires O(n3) steps, e.g., without needing

to specify exactly what is a step; for if f = O(n3), then

f = O(An3) for any positive constant A.

• Perfect notations probably do not exist since absolutely

rigorous ones should be intractable! It is difficult to avoid

ambiguities and collisions. For instance, using � for the con-

volution, ∗ for the Hodge star operator, and the upper index
∗ for algebraic duals may not be appreciated by presbyopic

readers. Adopting nonambiguous but nonstandard notations

may be a solution to avoid collisions. The danger is to lose the

reader in a cumbersome formal deciphering game. Therefore,

we prefer to leave some ambiguities, which may be removed

by understanding.

Moreover, we leave on side with regret some important

issues that are not explicitly used here, such as the orienta-

tion of manifolds and twisted forms, the Hodge orthogonal

decomposition theorem for forms that generalizes the

Helmholtz decomposition theorem for vector fields.

There is, of course, a huge number of books on the

mathematical tools for physics, but almost everything in

this appendix can be found in a more detailed and rigorous

version in the formidable Ref. (Choquet-Bruhat et al., 1982).

The classical reference for functional analysis is Ref. (Yosida,

1980), but a more readable book for the physicist interested

in the functional analysis for partial differential equations

is Ref. (Folland, 1995) and a concise introduction to basic

analysis and functional analysis is Ref. (Friedman, 1982).

One of the best reference for distribution theory, including

de Rham currents, is still Ref. (Schwartz, 1966). There are

many good books on geometrical methods in physics, such

as the very pedagogical Ref. (Bamberg and Sternberg, 1991)

or the quite comprehensive Ref. (Nakahara, 1990) but a

very concise presentation aimed at electromagnetism is Ref.

(Bossavit, 1991).
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1-form 12, 13, 108–117, 178, 180,

329, 336, 339–341

ABC see additional boundary

condition

absorption 15, 40–44, 46, 49–53,

88, 98, 258, 260, 262, 277,

278, 280, 281, 283, 284

absorption coefficient 40–43,

49–53

additional boundary condition

(ABC) 99

adjoint operator 325, 326

algebraic dual vector 312

amplification 87, 90

amplitude 50, 52, 87, 231, 300,

302

angle of incidence 267, 278, 279,

281–285

approximation 55, 70, 78, 80, 99,

101, 110, 180, 189, 233, 234,

251–253, 274

hydrodynamic 99, 101

random phase 101

semi-classical 78

argument 94, 103, 311, 315

atom 28, 31, 36, 54, 55, 64, 66, 67,

70, 72, 73, 75, 77–79, 81, 96,

258

Banach space 316, 317

band 30, 35, 36, 38, 41, 46, 55, 73,

160, 166, 167, 169, 301, 303

band gap 35–39, 46, 49–53, 55,

273, 297, 301

band structure 28, 31, 33–35, 37,

39, 40, 149, 151, 303

Bessel function 151, 198, 201

bilinear form 312

Bloch analysis 162

Bloch conditions 154–156, 178,

191, 278

Bloch harmonics 92, 93

Bloch mode 146, 152, 154, 161,

169

Bloch theorem 66, 80, 91, 153,

155

Bloch vector 80, 153, 154, 159,

165, 197, 304

Bloch wave 145, 146, 148, 151,

159, 161, 162, 165, 166, 197,

213

boundary condition 99, 154–158,

160, 178, 200, 201, 266, 279,

286, 288, 326, 327

natural 156, 157

Neumann 156, 178, 279

periodic 154–156, 160, 178,

288

boundary element method 339

Brillouin zone 28, 30–34, 36, 40,

41, 44, 46, 80, 92, 144–146,

150, 151, 153, 157, 158, 221

bulk plasmon 28, 98
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capacitance 96, 275, 279, 280, 283

Cartesian coordinates 109, 113,

116–120, 122, 133, 134, 136,

335, 336, 339

Cauchy principal value 321

Cauchy–Riemann condition 341

Cauchy sequence 316

Cauchy theorem 342

causality 14–16, 18, 21–23

charge distribution 66, 70–72, 74,

77, 91, 94, 96

closed set 316

codomain 318

coefficient 80, 115, 180, 181, 188,

189, 198, 201, 203, 233, 237,

238, 271, 272, 286, 287,

299–303, 313, 314, 331, 332,

334

anisotropic dilatation 38

Bloch 80, 146

Fourier 80, 129, 146, 188, 201,

203

Mie scattering 299, 303

Cole–Cole plot 249

(co)vector field 329

complex analysis 339

complex conjugate 43, 311, 325,

339

composite 95, 247, 319

conduction band 38, 41, 46, 166,

167, 169

conductivity 6, 29, 30, 34, 217,

274, 275, 277, 278, 280, 281,

283, 284

conductor 96, 97, 99

constitutive relation 6, 13, 15, 82,

132, 222

contravariant vector 329

convergence 21, 22, 172, 173, 182,

183, 187–190, 216, 254, 257,

258, 280, 315, 317, 323

convolution 14, 15, 69, 101,

320–323, 327, 343

coordinate system 108, 110, 111,

116, 173, 198, 285, 327–329,

331, 333, 335

Cartesian 111, 116, 335

Coulomb interaction 50, 53

covariant vector 329

covector 328, 329, 334

cross product 336

crystal 28–31, 37, 43, 55, 64, 149,

150, 165, 166, 205, 212–217,

226, 243–246, 254, 288, 296

cubic 31, 213, 216, 244–246,

254

heterogeneous 217

infinite 149, 214, 254

monoperiodic 212

real 55, 254

three-dimensional 212, 254

two-dimensional 149, 150, 212,

243

zinc blende 37

curl 6–9, 68, 69, 78, 82, 86, 110,

114, 115, 146, 154, 175, 221,

223–225, 227, 276, 336–338

current density 10, 110, 118, 275,

276, 279, 281, 282, 299

curve 7, 12, 90, 93, 108, 109, 112,

118, 136, 234, 328, 331, 337,

340–342

deflector 125–128

density 7, 10, 12, 13, 28, 40–42,

44, 46, 52, 55, 70, 110, 118,

275, 276, 279, 281, 282

atomic number 80

electric charge 110

electric flux 110

electric polarization 276

magnetic flux 110, 118, 336

surfacic 230

de Rham current 332

determinant 113, 319, 330
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device 37, 56, 107, 108, 118, 123,

124, 136, 230

cylindrical 118

illusion 123, 124

optical 107, 230

optoelectronic 37

dielectric constant 28, 31, 32, 37,

38, 42–44, 46, 49, 50, 53, 55,

56

dielectric function 40, 41, 43–48,

53, 54

dielectric rod 292, 300, 301, 303

dielectric slab 88, 89

differential form 7, 12, 109, 117,

330, 332, 334, 338

diffracted field 175, 188, 189,

204, 216, 217, 254, 267, 268,

271

diffraction 87, 90, 162, 167, 171,

172, 175, 176, 178, 180, 182,

189–191, 219, 255, 288, 296,

297

diffraction problem 162, 172, 175,

176, 178, 219

diffractive element 172, 176–178,

183–187

diffractive pattern 175

dipole 269, 298–300

Dirac comb 80, 323

Dirac distribution 144, 321, 322,

327, 342

directional derivative 338

direct sum 232, 314

dispersion curve 143, 158, 159,

215, 300, 302

dispersion relation 13, 15, 17, 19,

21, 23, 24, 28, 32

distribution 15, 29, 30, 54, 55,

65–68, 70–72, 74, 77, 78,

85, 94, 96, 144, 229, 230,

321–324, 326, 327, 342,

343

divergence 7, 9, 82, 91, 92, 94, 98,

114, 223, 336, 338

domain 9, 19, 119, 123, 129, 130,

172, 173, 188, 189, 219, 277,

280, 281, 283, 284, 317–319,

321, 324–327, 340, 341

dot product 113, 153, 336

dual basis 313, 339

dual cell (first Brillouin zone) 153

duality product 153, 313, 318,

320, 321, 323, 326, 328, 332,

342

dual topological space 321

dyadic product 325

edge 80, 172, 179, 184–187, 280

oblique 172, 185, 186

effective medium model 102, 274,

279, 282, 283

effective parameter 214, 243, 272

effective permeability 295, 296

effective permittivity 238–243,

248, 249

effective property 213–217, 241,

265, 292

eigenfunction 148, 295, 296

eigenvector 144, 145, 148, 162,

165

Einstein summation convention

312

electric field 12, 16, 18, 73, 74, 76,

77, 93, 94, 131, 161, 162,

191–193, 223, 276, 277, 279,

280, 298, 300, 305

electromagnetic field 3, 5, 8, 9, 76

electromagnetic metamaterial 62,

129, 288

electromagnetic propagating Bloch

mode 154

electromagnetic wave 4, 5, 98, 99,

133, 171, 288

energy 14, 28, 29, 32, 42, 44, 46,

48, 50, 52, 53

oscillation 48

resonance 28
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energy balance 182, 187, 188

energy band 30, 35, 36

energy conservation 11, 278, 281,

283, 284

energy gap 32, 35, 41, 50

equivalent norm 315

errors 183

evanescent wave 85, 87, 88, 90,

160, 161, 163, 165, 167, 169,

189

extension 27, 120, 122, 325, 332

exterior derivative 12, 13,

108–110, 112, 117, 331, 333,

336, 340, 341

exterior product 108, 109, 111,

114, 330, 333, 336

Faltung theorem 321

FCM see fictitious charges method

FEM see finite element method

Fermi energy 29, 32, 34, 36, 55

Fermi surface 29, 30, 32–34, 46

fiber 13, 275, 280, 281, 295

fictitious charges method (FCM)

228

field intensity 336

filling fraction 151, 157, 254, 256,

257, 259–262, 284

filling ratio 237–242, 244, 247,

250–253

finite element method (FEM) 172,

228

finite rank operator 165, 318

formal adjoint 325, 334, 338, 342

Fourier transform 9, 14, 16, 17, 19,

20, 22, 69, 71, 79, 80, 92, 98,

144, 146, 149, 268, 320–323

free space 3, 6, 87–90, 99, 129,

133, 219, 298, 299, 302, 305,

326, 327, 339

free space wavelength 218, 219,

302

frequency 17, 18, 22, 23, 80,

85–87, 91, 92, 94, 95, 145,

148, 152, 246, 251, 291, 292,

295, 296, 301–303, 306

optical 22, 23, 87, 306

plasmon 56

resonant 246, 295, 301, 306

function 20, 21, 65, 66, 115,

146–148, 153–155, 175, 176,

180, 181, 228, 231, 232, 261,

313, 314, 316, 317, 319–322,

326–332, 339–342

auxiliary 294

bounded 144, 163, 313, 316,

317, 321, 342

complex-valued 173, 176

continuous 313, 321, 322, 327,

332

delta 313, 321

differentiable 313, 321, 327,

332

holomorphic 340–342

integrable 146, 148, 154, 313,

317, 321, 326, 339

null 295, 316

periodic 144, 146, 148,

153–155, 181, 220, 231,

232

pseudo-periodic 146

quasi-biperiodic 175

quasi-periodic 148, 155

statistical distribution 66

transition 327

two-variable 314

wave 14, 77, 144, 153

Galerkin formulation 180

Galerkin method 189

Galilean relativity principle 4

Gelfand triplet 324

gradient 8, 9, 71, 99, 114, 115,

174, 230, 336, 337
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Green’s function 10, 18, 19, 277,

285, 298–301, 303, 305, 326,

327, 339, 342

Helmholtz equation 83, 84, 98,

162, 200, 276, 295, 339

Hermitian 17, 122, 156, 157, 325,

326

Hilbert space 148, 317, 318, 322,

323

Hilbert subspace 318

Hodge star operator 13, 109, 110,

334, 339, 343

homogenization 6, 23, 24, 62, 64,

92, 93, 95, 211, 213, 215,

217–219, 223–227, 240, 246,

253–256, 261, 262

image 87, 112, 124, 126–128, 132,

134, 137, 318, 319

impedance 64, 67, 81, 86, 87, 89,

90, 116, 202, 221, 280, 282

incident field 99, 175, 193,

195–198, 203, 204, 206, 212,

218, 219, 266–268, 278

index 21–23, 41, 43, 62, 64, 81,

83–85, 88, 90, 124, 125, 174,

291, 292, 300, 302, 303,

312–314

optical 22, 23, 64, 211

refractive 21, 43, 62, 67, 125,

302, 303

insulator 29–31, 37

interaction 32, 39, 66, 70, 73–75

electromagnetic 70

quantum 66, 74

spin–orbit 39

interface 86, 96, 99, 100, 161, 276

inverse matrix 319, 334

isomorphic 312–314, 317, 324

Jacobian matrix 112, 113, 115,

119

k-covector 329

k-form 330

(k, Y)-periodic 153, 154

kernel 318

Kirchhoff–Helmholtz relation 231

Kramers–Kronig relation 15, 17,

22, 23

Kronecker delta symbol 313

Landau notation 342, 343

Laplace–Beltrami operator 334

Laplacian 144, 145, 334, 337, 339,

341

lattice 31, 32, 34, 35, 37, 38, 40,

42, 51, 54, 91–93, 95,

143–146, 150, 152, 153, 155,

157–159, 254, 255

body-centered cubic 31, 32, 34

face-centered cubic 31, 34, 35

reciprocal 32, 40, 80, 93, 95,

144, 153, 157, 158

triangular 152

Laurent series 342

Lax–Millgram theorem 246

Lebesgue bounded convergence

theorem 317

Lebesgue dominated convergence

theorem 317

Lebesgue measure theory 316

Leibnitz rule 331, 337, 338

Levi–Civita symbol 13, 330

linear combination 108, 233, 311,

312, 314, 318

linear form 312, 314, 321

linear operator 318, 319

linear system 75, 87, 152

Lorentz invariance 12

Lorentz model 18, 20, 21, 23

Lorentz transformation 4



March 21, 2017 16:57 PSP Book - 9in x 6in Didier-Felbacq-Index

350 Index

macroscopic Maxwell’s equation

67, 75, 78, 82, 102

macroscopic parameter 68, 81

macroscopic quantity 68, 77, 94,

101, 211

magnetic dipole 269, 299,

301–303

magnetic field 100, 110, 173, 198,

200, 202

magnetic susceptibility 27

matrix 40, 41, 43, 112–115, 119,

121, 122, 156, 157, 162–165,

196–199, 203, 267–269,

271–273, 286, 287, 319, 320,

325, 334

matrix product 319, 320, 325

Maxwell equation 3–10, 13, 24,

27

Maxwell system 25, 146, 150, 160,

161, 196, 199, 223, 227, 293,

294

metamaterial 61–64, 96, 97, 100,

103, 107, 143, 149, 245, 247,

265, 288, 291, 292, 301, 303,

304, 306

all-dielectric 306

conducting 64, 96, 97

dielectric rod 292, 304

infinite 149

metallic 63, 265, 306

negative index 88, 288

rod-type 301

zero-index 292

metasurface 265–267

microscopic Maxwell’s equation

68, 75

modulus 164–166, 297, 302, 311

Mossotti–Clausius relation 81

multi-linear form 312

multiple scattering approach 196,

197, 298, 305

multiple scattering theory 197,

199, 268

norm 14, 109, 189, 232, 233,

314–318, 320, 323–325, 333,

336, 339

null measure set 316

nullspace 318

open set 311, 313, 316, 327, 331,

332

operator 9, 86, 87, 122, 146, 160,

162, 163, 165, 196–198, 221,

231, 318, 319, 322, 325, 326,

336–338, 340

adjoint 325, 326, 337, 338

bounded 318

continuous 318, 322

finite rank 318

integral 198, 338

monodromy 165

non-Hermitian 122

transverse 9, 160

unbounded 325

vector analysis 336–338

orthogonal 9, 108, 116, 173, 315,

318, 335, 343

Parseval–Plancherel theorem 320,

323

Pendry’s map 122, 132, 133, 136

periodic medium 66, 93, 144, 160

periodic structure 63, 66, 152, 211

permeability 6, 14, 15, 62–65, 67,

81–85, 87, 89, 90, 116, 118,

173–176, 196, 217–220, 222,

223, 294–296, 300, 301

permittivity 21–24, 62–65, 81–85,

124–126, 172–176, 217–220,

225, 226, 228–230, 237–242,

244–247, 249–251, 254–256,

261, 262, 295, 298–302

approximated 251, 273

free space 6, 89, 90, 219, 298,

299, 302, 305

homogenized 226, 230
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linear isotropic 6

static 223, 246, 275, 295

permittivity tensor 118

permutation 329, 330

photonic crystal 64, 98, 192, 212,

226, 288

pivot space 324

plane wave 24, 64, 83, 144–146,

161, 193, 286

counterpropagative 193

monochromatic 24

propagative 161, 193

Poisson summation formula 323

polarization 14, 16, 18, 19, 21, 37,

62, 68, 72–74, 76, 77, 83, 100,

101, 161, 162, 191, 192, 276,

277, 279

arbitrary 191, 192

atomic 73, 74

electric 14, 16, 18, 21, 62,

72–74, 76, 94, 100, 101, 161,

162, 191, 192, 276, 277, 279,

294, 299

pole 248, 250, 253, 341, 342

Poynting vector 11, 24, 25, 118,

182, 204, 206

pre-Hilbert space 315

primitive cell 153, 154

proxies 336

quantum effect 67, 77

quotient space 316, 325

radiation 12, 42, 81, 88, 154, 172,

176, 191, 196, 221, 299

Rayleigh coefficient 180, 181, 188,

189

Rayleigh formula 256, 261, 262

Rayleigh method 172, 184

reciprocal lattice 80, 93, 95, 144,

153, 157, 158

reciprocal space 29, 32, 40, 41, 68,

72, 77, 80, 92, 93, 103

reflection 86, 89, 90, 192, 195,

256, 258–260, 262, 271, 272,

277, 278, 280, 281, 283, 284,

286–288

partial 90

total internal 89, 90

reflexive space 317

relation 6, 8, 13–15, 17–19, 21–25,

28, 32, 37, 67, 82, 132, 196,

198, 199, 201, 222

epitaxial 37

recurrence 196

relative permeability 15, 82, 173,

175, 220, 226, 294

relative permittivity 14, 15, 19,

23, 68, 82, 150, 152, 162, 173,

175, 176, 192, 220, 225, 226,

230, 246, 247

Rellich–Kondrachov theorem 163,

324

residue 342

resonance 28, 44, 124–126, 252,

291, 292, 295, 296, 303

anomalous 124–126, 296

magnetic dipole 303

restriction operator 324

Riesz representation theorem 317

rigged Hilbert space 324

scalar 114, 311, 312, 318, 319,

335

scalar field 7, 8, 115, 154,

335–337

scalar function 217, 330, 335

scalar product 109, 113–116, 148,

314, 315, 317, 318, 320,

322–325, 333, 334, 336, 338,

339

scatterer 63, 64, 79, 96, 196–198,

203–205, 213, 215, 217, 228,

235–241, 244, 247, 250, 251,

258, 268, 269

circular 238–241, 247

cubic 213, 247
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scattering matrix 197–199, 203,

267–269, 271, 292, 298

scattering theory 197, 199, 268

semiconductor 28–30, 34–40, 44,

46, 49, 51, 53, 56, 98

chalcopyrite 51

wurtzitic 37

Sobolev lemma 324

Sobolev space 323, 324

spectral dependence 28, 44, 46,

49, 51, 55

square matrix 319, 337

Stokes theorem 109, 332, 333,

337, 340, 341

superlens 87–91, 107, 123–128

annular 125

perfect 90, 124, 126

superlens permittivity 126

tensor 13, 24, 108, 109, 112, 115,

116, 121, 122, 220, 225, 226,

237, 247, 295, 314, 329, 333,

334, 337

antisymmetric 13

skew-symmetric 108, 329

symmetric 108, 109, 329, 333,

334

tensor product 108, 314

three-dimensional Euclidean

space 334

topology 315

total field 78, 79, 81, 84, 166, 178,

196, 267

trace 231, 319, 324, 325

transformation 13, 85, 107–124,

126, 128–130, 132–134, 136,

163, 172, 320, 322

Fourier 129, 320, 322

geometric 115, 116, 122, 130

inverse 114, 115, 118, 134, 136,

320

multiple-valued 124

radial 118–120, 124, 132

transition function 327

transmission 4, 86, 88–90, 192,

195, 200, 205, 206, 258, 260,

271, 272, 277, 278, 281, 283,

284, 286, 287, 297

radio 4

transmission coefficient 195, 271,

272, 286, 287

transmission spectrum 205, 206,

297

transposed matrix 325

transposition 329, 330

truncation 67, 69, 91, 103

two-scale homogenization 211,

213, 215, 217, 218, 244, 246

unit matrix 109, 319

vacuum 6, 13, 75, 83, 161, 166,

196, 205, 212, 218, 221,

238–241, 244, 245, 267, 272

valence band 32, 35–37, 40, 44, 55

vector analysis 116, 335–338

vector field 9, 112, 172, 173, 177,

178, 180, 195, 329, 330, 336,

343

curl-free 9

divergence-free 9

electromagnetic 172

quasi-biperiodic 177, 180

quasi-periodic 180

vectors 93, 112–115, 143, 144,

146, 153, 157, 158, 177, 180,

300, 311–315, 317–319, 325,

328, 329, 333–336, 339

column 113, 115, 325

contravariant 112, 329, 334

covariant 329, 333

finite dimensional 325

independent 153, 312, 334, 339

normal 228

normalized 315

null 312

position 313

tangent 112, 333
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vector space 233, 311–316, 318,

319, 327, 328, 330, 332, 335

algebraic dual 312

finite dimensional 319

functional 313, 314, 319

real 315

topological 315

volume form 12, 330

wave 3–5, 24, 28, 30, 32, 64,

83–90, 98, 99, 120, 121,

124–128, 144–146, 159–163,

165–169, 285, 286, 288

counterpropagative 193

cylindrical 120, 124–126, 129,

135, 161

harmonic 144, 175

longitudinal 56, 98, 99

polarized 168

propagating 85, 88, 89, 161,

165

s-polarized 168

wave vector 30

Y-periodic 145, 146, 153, 156, 220,

222, 231, 232
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