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Preface by Main Editor

It is our pleasure to present you this Handbook of Metamaterials
and Plasmonics, charting the tremendous progress that has occurred
in this exciting area of research over the last years. What contin-
ues to fascinate me about the field above all is its interdisciplinary
broadness — we have arrived at a stage where metamaterials make
an impact on many arrays of science where control over waves is a
prominent ingredient — be they electromagnetic, acoustic, elastic,
or even seismic! In these four volumes, we hence attempt to set out
the richness of the field, taking metamaterials in the widest sense as
artificial media with sub-wavelength structure for control over wave
propagation.

Volume 1 focuses on the fundamentals of electromagnetic meta-
materials in all their richness, including metasurfaces and hyper-
bolic metamaterials. Volume 2 widens the picture to include elastic,
acoustic, and seismic systems, whereas Volume 3 presents nonlin-
ear and active photonic metamaterials. Finally, Volume 4 includes
recent progress in the field of nanoplasmonics, used extensively for
the tailoring of the unit cell response of photonic metamaterials.

In its totality, we hope that this handbook will be useful for
a wide spectrum of readers, from students to active researchers in
industry, as well as teachers of advanced courses on wave prop-
agation. I want to thank the volume editors Ekaterina Shamon-
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ina, Richard Craster, Sébastien Guenneau, Ortwin Hess and Javier
Aizpurua, and all the authors for their excellent and sustained work
to put these four volumes together.

Stefan A. Maier
Imperial College London, UK

May 2017
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Preface by Volume Editor

It is not a coincidence that this volume on electromagnetic metama-
terials is the first among the four volumes in the Handbook of Meta-
materials and Plasmonics. Historically, the concept of metamaterials
was first introduced and verified on electromagnetic metamaterials,
rapidly covering a wide frequency range from radio frequencies to the
visible. It was electromagnetic metamaterials that were first shown
to exhibit intriguing phenomena at odds with our everyday experi-
ence and physical intuition. It was electromagnetic metamaterials for
which the perfect lens, the concept of negative refraction, transfor-
mation optics and invisibility cloaks were first proposed creating an
unprecedented stir among physicists and engineers. In the early days
of the subject, at the very beginning of the 21st century, the terms
“metamaterials” and “electromagnetic metamaterials”, were used as
synonyms. After a few years of extensive research at a breathtak-
ing pace, a variety of unusual electromagnetic responses were looked
at, examined and understood, and applications in a wide frequency
range of electromagnetic waves were proposed. It turned out to be
possible to design and fabricate structures that could produce electro-
magnetic responses practically at will, responses not available from
natural materials.

This volume offers the readers 12 chapters from pioneers of
the research in electromagnetic metamaterials, summarising the

vii
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progress, including historical surveys of fundamental discoveries,
treatises on theory, design and fabrication, an overview of phenom-
ena and applications and also an outlook and vision on the future.
The versatility of the research field is reflected in the diversity of
the topics and types of structures and phenomena presented by the
distinguished authors of this volume. A wide frequency range is cov-
ered, from low RF to optical metamaterials. A large range of con-
stituent materials are presented, from the classical metal-dielectric
variety, to all-dielectric structures, semiconductor superlattices, and
of course the newly fashionable graphene. A variety of geometries
are described, from bulk 3D structures to 2D metasurfaces, one-
dimensional waveguides and zero-dimensional devices made of a small
number of individual elements. This volume will serve as a reference
book and as a source of inspiration for experts and newcomers alike.
The structure of the volume is as follows.

In Chapter 1, Ari Sihvola elaborates on the idea that is at the very
heart of the concept of metamaterials, how a macroscopic structure
comprising small subwavelength unit cells may acquire qualitatively
new properties not present in its constituent components and exhibit
dispersion behaviour that is not directly predictable from the dis-
persion of the constituent materials. The chapter demonstrates the
power of mixing rules in explaining a rich variety of unusual macro-
scopic phenomena from microwaves to optics.

In Chapter 2, Mário Silveirinha presents an overview of recent
developments in the characterisation of electromagnetic and quan-
tum metamaterials using effective medium methods. It is high-
lighted that both electromagnetic and electronic systems can be
homogenised in a unified manner based on the introduction of an
effective Hamiltonian operator to describe the time evolution of the
macroscopic initial states as well as the stationary states of the
relevant system and to determine quadratic forms related to energy
density and energy transport. Examples of homogenisation of electro-
magnetic metamaterials, of semiconductors and of graphene super-
lattices are considered.
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In Chapter 3, Igor Smolyaninov provides a review of a class of
metamaterials exhibiting hyperbolic behaviour. The chapter demon-
strates that the study of this important class of metamaterials, origi-
nally introduced to overcome the diffraction limit in optical imaging,
has extended far beyond its original goal, coming up with a large
number of novel phenomena resulting from the broadband singular
behaviour of the density of photonic states. Examples given include
enhanced quantum-electrodynamic effects, new stealth technology,
thermal hyperconductivity, high Tc superconductivity, gravitation
theory analogues, and photonic hypercrystals.

Chapter 4 by Francisco Medina, Francisco Mesa, Raúl Rodŕıguez-
Berral and Carlos Molero is dedicated to the topic of extraordinary
transmission in metamaterials. The authors provide a state-of-the-art
review of recent advances in analytical and circuit modelling simula-
tion techniques. A variety of transmission based structures are dis-
cussed from 1D arrays of slits and 2D arrays of holes in metal plates to
hollow metal waveguides, metal gratings with finite-thickness dielec-
tric slabs and fishnets and stacked structures.

Chapter 5 by Karim Achouri and Christophe Caloz is deal-
ing with synthesis and realisations of electromagnetic metasur-
faces, 2D arrays of subwavelength unit cells, engineered to provide
desired reflection and transmission to incident electromagnetic waves.
Advantages over bulk 3D metamaterials include ease of fabrication
and smaller loss due to reduced size, while still providing great flexi-
bility and functionality. The authors provide a comprehensive review
of design rules enabling practical implementation of scattering par-
ticles required to provide the desired electromagnetic response. A
metasurface synthesis method based on transverse susceptibility ten-
sors is applied both to reciprocal and non-reciprocal electromag-
netic transformations, generalised refraction, polarisation rotation
and orbital angular momentum multiplexing.

Chapter 6 by Sergei Tretyakov, Viktar Asadchy and Ana D́ıaz-
Rubio offers a general survey of linear bianisotropic metasurfaces
reviewing homogenisation models and methods to synthesise com-
pact, easy to manufacture, and low-cost metasurfaces with required
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functionalities. Providing numerous examples including thin lenses,
frequency-selective surfaces, mantle cloaks or polarisation converters,
the authors employ the generalised Huygens’ principle and discuss
how to identify suitable unit cell topologies that would enable the
desired electromagnetic response of a metasurface.

Chapter 7 by Francesco Monticone and Andrea Alù provides
a comprehensive study of fundamentals of scattering covering gen-
eral concepts of scattering effects, power conservation and causality.
A review of different techniques enabling control of the scattering
processes “at the extreme”, from drastic suppression to enhance-
ment of the scattering cross-section, is provided and illustrated by
a variety of examples including cloaking and invisibility, superscat-
tering, light trapping, energy harvesting, directional scattering, bio-
chemical sensing, and enhanced light-matter interaction at the micro-
and nanoscale. Fundamental limits of scatterers employing active,
nonlocal, nonreciprocal, and nonlinear materials are discussed.

Chapter 8 by Alexander Krasnok, Roman Savelev, Denis Baranov
and Pavel Belov is introducing all-dielectric nanophotonics, a rapidly
developing branch of metamaterials studying light interaction with
high-refractive-index dielectric nanoparticles with optically-induced
electric and magnetic Mie resonances. The chapter describes optical
properties of high-index dielectric nanoparticles, methods of their
fabrication and recent advances in practical applications, including
metasurfaces, nanoantennas for quantum source emission engineer-
ing, Fano resonances in all-dielectric nanoclusters, surface-enhanced
spectroscopy and sensing.

Chapter 9 by Ilya Shadrivov and Dragomir Neshev reviews tun-
able metamaterials, i.e. metamaterials with properties that are vari-
able under external influence such as control voltage, temperature
or magnetic field. The tuning mechanisms are classified into three
groups, tuning by changing the structural geometry via mechanical
deformation of either constituent elements or their mutual arrange-
ments, tuning by changing the properties of the constituent materials
e.g. their conductivity and tuning by changing the surrounding envi-
ronment. Different approaches to fabrication are presented which are
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shown to differ at microwaves, at terahertz and at optical frequencies,
and potential applications and future developments are discussed.

Chapter 10 by Allan Boardman, Alessandro Alberucci, Gaetano
Assanto, Yuriy Rapoport, Vladimir Grimalsky, Vasyl Ivchenko and
Eugen Tkachenko provides an overview of metamaterials capable of
carrying spatial solitons, beams of electromagnetic energy that rely
upon balancing diffraction and nonlinearity in order to retain their
shape. Theoretical models for spatial solitons are developed both for
double-negative and hyperbolic metamaterials. Examples are con-
sidered illustrating nonlinear plasmonic effects including a nonlin-
ear field concentrator (‘electromagnetic black hole’) and nonlinear
plasma waves.

In Chapter 11, Richard Syms, Ian Young and Laszlo Soly-
mar report on their advances in developing an application of RF
metamaterials–metamaterial catheter receivers for high-resolution
internal magnetic resonance imaging for early detection of bile
duct cancer, which outperform ‘traditional’ detection techniques by
employing magnetoinductive waves propagating by virtue of coupling
between metamaterial elements, enabling low-loss guiding of RF sig-
nals resulting in an improved resolution achievable in MRI. The
chapter provides an overview of magnetoinductive waves, describes
the advances in the design of thin-film magnetoinductive cables and
reports on experiments demonstrating high-resolution imaging com-
bined with an MRI safe design and endoscopic compatibility.

In Chapter 12, Jordi Naqui, Ali Karami Horestani, Christophe
Fumeaux and Ferran Mart́ın report on their work on metamaterial-
inspired microwave sensors, designed on the basis of symmetry-
related electromagnetic properties of transmission lines loaded with
resonant metamaterial elements. A novel sensing principle based
on the disruption of symmetry is described and prototype devices
demonstrating the working principles of sensors using resonance-
based and frequency-splitting sensors are presented, aiming at
potential applications including contactless linear and angular dis-
placement and velocity sensors, alignment sensors and permittivity
sensors.
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I would like to thank all the authors of this volume for sharing
with the readers their knowledge, wisdom and passion in the dynamic
and exciting field of electromagnetic metamaterials. I am certain that
our readers will find this volume to be an excellent reference book, a
source for inspiration, and an enjoyable read.

Ekaterina Shamonina
Oxford

May 2017
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CHAPTER 1

Electromagnetic Metamaterials:

Homogenization and Effective

Properties of Mixtures
ARI SIHVOLA

Aalto University, Finland
ari.sihvola@aalto.fi

This chapter presents homogenization principles for metamaterials and
dielectric mixtures. The focus is on the principles with which homoge-
nization brings forth emergence: such qualitatively new properties in the
effective characterization that are not present in the constituent compo-
nents that make the medium. The classical Maxwell Garnett mixing
result is paralleled with the deterministic scattering problem of a com-
posite sphere, and the resulting equivalence is exploited in translating
known mixing results to scattering and absorption properties of simple
scatterers and vice versa. Emphasis is given to the way mixing can lead to
situations where the composite obeys an unexpected dispersion behavior
that is not directly predictable from the knowledge of the dispersion of
the component materials. The characteristics of the localized resonances
and their dependence on geometrical and structural parameters in plas-
monic nanoparticles are analyzed. Theoretical bounds for the effective
permittivity of mixtures are discussed as well as situations in which
these bounds can allow enhanced polarization and percolation effects.

1
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Finally, anisotropic and in particular hyperbolic media are modelled
with a special application to radially anisotropic (RA) particles which
may display surprising macroscopic effects like, for example, anomalous
absorption.

1.1. Introduction: Electromagnetic metamaterials

The age of the present wave of metamaterials research is equal to
that of the ongoing century. Its evolution is dynamic, new ideas
and concepts are presented, the pace of development is so fast that
terminology and language have not yet reached stability. Even the
very definition of the metamaterial concept is fluid: the varying
emphases can for instance be followed in the changing page edits
of Wikipedia during the past 15 years.1–3 Essential in metamaterials
is their character of displaying emergent properties that result from
the complex interaction of their “ordinary-material” building blocks.
The present-day definition4 stresses especially the ordered structure
in which the base materials are assembled to make a metamaterial
whole.

The idea of metamaterials has diffused into a wide range of dis-
ciplines in applied physics and beyond. Being coined by Rodger
M. Walser in 2000,5,6 this term has since secured a solid place
in various fields. Metamaterials literature contains contributions
from people in electrical and microwave engineering, optics and
photonics, microelectronics, materials science and nanotechnology.
Interest extends to acoustic, mechanical, elastic and thermal meta-
materials. Materials should have properties on demand, they should
be reconfigurable and even programmable. Also, the meta-idea has
expanded from plain materials into more general meaning: terms
like metasystems, metastructures and metafunctions are commonly
in use. Metatronics7 emphasizes the possibilities of combining the
modularity and simplicity of circuit electronics thinking into opti-
cal nanostructures through the use of complex material response.
Another characteristic feature of modern metamaterial engineering is
the multifunctionality of structures, and the design often takes inspi-
ration from biology or can be even biomimetic. These methodologies
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lead to new constructions like, for example, mimumes–microfibrous
multifunctional metamaterials.8

It is, however, in electromagnetics where this paradigm had its
beginnings.2 And in fact there exists a very long history of research
on complex electromagnetic material effects, artificial materials, peri-
odic structures and bianisotropics, etc. with associated rich collection
of documented results.9 This also means that much of the results
from “classical” electromagnetics literature can be reused in analyz-
ing properties of modern metamaterials. In particular, this is the
case for studies of macroscopically homogeneous and effective media,
hybrid materials, mixtures10 and composites.11

In the present chapter, the power of mixing rules and homog-
enization principles in the analysis of the macrosocpic properties
of metamaterials will be shown. Classical mixing rules may seem
straightforward “recipes” to produce a composite, and here the
metaphor hits the point: like in cooking, the end result is nonlinear
and emergent. The taste of the final dish cannot be reduced to those
of its ingredients.

1.2. Homogenization and mixing laws

In the following, let us look at dielectric homogenization with the
aim of computing the effective permittivity εeff of a heterogeneous
structurea as a function of the structural and material parameters of
the components. The analysis is quasi-static, which means that the
effective description is valid when the size of the heterogeneities is
sufficiently small compared to the wavelength of the electromagnetic
excitation. For microwave applications, snow is a good example of
homogenizable medium, but for waves within the optical range, the
size of the inclusions has to be below several tens of nanometers.

One of the problems in homogenization is that heterogenous
media are very seldom well-defined ordered lattices. Sometimes the
structure is fully random, but also in many engineering composites

aIn this chapter, the permittivities denoted by ε are dimensionless and relative:
ε = εabs/ε0 with ε0 the free-space permittivity.
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where regularity is the objective, it is not perfect. Hence, the struc-
tural description of the system has to be given with a set of much
fewer number of parameters than there are degrees of freedom in
the system. Consequently, many of the resulting mixing formulas are
approximative.

1.2.1. Maxwell Garnett formula and effective

polarizability

The problem of a single scatterer, exposed to an exciting field, is
deterministic. A homogeneous and isotropic dielectric sphere with
permittivity ε in uniform static field creates a dipolar perturbation
in its surroundings. The important parameter measuring the strength
of this dipole field is the polarizability. For a sphere, the normalized
polarizability readsb

α = 3
ε− 1
ε+ 2

. (1.1)

Let us increase scatterer complexity from a homogeneous sphere
and continue with another well-defined deterministic problem. Con-
sider an isotropic core–shell structure: the spherical core has radius a
and relative permittivity ε2, and it is surrounded by a spherical coat-
ing with radius b and permittivity ε1. The main response of a small
scatterer is its dipole moment, which is the product of the exciting
field and the polarizability of the particle. For the composite sphere,
the normalized polarizability is [10, Section 4.3]

αk = 3
(ε1 − 1)(ε2 + 2ε1) + g(2ε1 + 1)(ε2 − ε1)
(ε1 + 2)(ε2 + 2ε1) + 2g(ε1 − 1)(ε2 − ε1) , (1.2)

where g = (a/b)3 is equal to the volume fraction of the core in the
scatterer.

The formula (1.2) projects the three internal parameters of the
particle into a single number, the polarizability. This quantity, αk,
is uniquely determined by the internal structure, but not vice versa.

bThe normalization is the following: αabs = ε0V α with V the volume of the
scatterer.
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z

ε = 1ε = 1

ε1
ε2

εeff

a
b

b

Fig. 1.1. Core–shell sphere and its external equivalent: homogeneous effective
dielectric sphere.

There exist an infinite number of possible composite spheres with
the same polarizability.

This brings forth the question what is the simplest one of all
the possibilities. An obvious answer is the homogeneous sphere. The
equivalence is displayed in Fig. 1.1. Let us forget the internal struc-
ture of the composite sphere and look for a homogeneous sphere that
externally looks exactly like the original layered sphere in a locally
uniform static field.c The effective permittivity of the homogenized
sphere is (cf. equation (1.1))

εeff = 1 +
αk

1− αk/3
, (1.3)

where αk comes from (1.2).
The effective permittivity εeff can be solved as a function of ε1,

ε2, and g from equations (1.2) and (1.3), leading to

εeff = ε1 + 3ε1g
ε2 − ε1

ε2 + 2ε1 − g(ε2 − ε1) . (1.4)

A fascinating observation13 is that this formula (1.2) is exactly the
same as the classical Maxwell Garnett (MG) mixing rule14 which
appeared in the literature in the year 1904. The MG formula predicts
the effective permittivity of a mixture where inclusions of permittiv-
ity εi occupy a volume fraction p in environment permittivity εe (see

cThis principle of homogenization can also be called internal homogenization.12



September 8, 2017 17:20 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch01 page 6

6 Handbook of Metamaterials and Plasmonics — Volume 1

εi

εi

εi

εi

εe

εe

Fig. 1.2. A two-phase mixture where randomly positioned spherical inclusions
of permittivity εi occupy a volume fraction p in environment with permittivity εe.

Fig. 1.2), and

ε1 = εe, ε2 = εi, g = p. (1.5)

This means that the permittivity that results from the effective-
polarizability condition of a composite sphere is exactly the same as
the MG prediction when the core is treated as the inclusion and the
surrounding shell as the host medium.

This observation has far-reaching consequences. Since there is
an exact correspondence between the homogenization of the layered
sphere on one hand and MG mixing rule on the other, we can transfer
all results for MG mixing known in the vast literature over the past
hundred years into the domain of dielectric behavior of core–shell
structures and vice versa. In later sections, let us make use of this
possibility.

1.2.2. Bruggeman mixing formula

On the other hand, it is also worth noting that since there is no
exact solution for the effective permittivity of a random sample of
dielectric mixture, several different homogenization formulas coexist
in the literature along with MG. Another widely used one is the
so-called Bruggeman formalism which predicts the effective permit-
tivity according to the formula15

(1− p) εe − εeff
εe + 2εeff

+ p
εi − εeff
εi + 2εeff

= 0. (1.6)
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Here, εeff is not explicitly given, but the form Eq. (1.6) emphasizes
the symmetry between the two phases of the mixture, εi and εe. The
form also stresses the self-complementary character of Bruggeman
mixing formula, in other words an interchange of the host and guest
(εi ↔ εe, p → 1 − p in Eq. (1.6)) does not change the value of εeff .
In this respect, calling the components “host” and “guest” does not
appreciate the full equality between the two phases.

One attempt to cover the variety of homogenization rules involv-
ing mixtures with spherical inclusions is the following16

εeff − εe
εeff + 2εe + ν(εeff − εe) = p

εi − εe
εi + 2εe + ν(εeff − εe) . (1.7)

A dimensionless parameter ν chooses the “character” of the mixing
rule: ν = 0 returns the MG rule, ν = 2 gives the Bruggeman for-
mula, and ν = 3 gives another choice, the so-called coherent potential
approximation.17

These families of mixing rules have been also generalized to cover
microgeometries other than spherical. Since a homogeneous ellipsoid
in a static field can be solved exactly, mixtures with ellipsoidal inclu-
sions possess concise effective permittivity formulas. They, however,
need to be treated with additional care due to the fact that their
geometrical non-symmetry makes their orientation distribution affect
the result. Furthermore, the effective properties of multiphase mix-
tures can also be analyzed using mixing rules in which the polariza-
tion contributions of all phases are included.10

1.3. Homogenization is not dispersion-neutral

Temporal dispersion—in other words the variation of the permittiv-
ity with frequency (or wavelength) of the excitation field—is often
very strongly and subtly affected by mixing. Even if common dis-
persion models are comparatively simple functions of frequency on
one hand, and on the other, basic mixing rules (like the MG formula
Eq. (1.4)) have a straightforward appearance, the behavior of the
effective permittivity may display a rather complicated behavior as
function of frequency.
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1.3.1. Redshifting plasmonic peaks

Dispersive effects are prominent in plasmonic metamaterial
applications. The field of plasmonics deals with special effects that
take place in particles with negative permittivity, often in the
nanoscale level. In particular, localized plasmons in nanoparticles
can be very effectively studied with the concept of polarizabilities
and mixing rules.

1.3.1.1. Multipole resonances

The polarizability formula Eq. (1.1) shows a singularity for permit-
tivity value ε = −2, meaning that even particles that are small com-
pared to the wavelength can experience a “resonance” at a frequency
where the permittivity attains this value, and dielectric losses are
sufficiently small.

The plasmons, despite being confined into a deeply subwave-
length particle, can be very efficient radiators. A common measure for
scattering is the so-called scattering efficiency Qsca, which is the scat-
tering cross-section divided by the geometrical cross-section of the
particle.18 With the same normalization are defined the absorption
(Qabs) and extinction (Qext) efficiencies, extinction being the sum of
absorption and scattering. For an isotropic and homogeneous sphere,
the cross-sections can be computed from the so-called Lorenz–Mie
coefficients involving spherical Bessel and Hankel functions.19,20

For a loss-less scatterer, absorption cross-section should vanish,
and scattering equals extinction. Figure 1.3 shows a contour plot
of the scattering efficiency of a small loss-less negative-permittivity
sphere, as function of relative permittivity between −3 and −1 and
the size parameter. Conspicuous in this map are bright and narrow
lines; they are strong resonances of the electric multipoles. For very
small spheres, these happen at

ε = −1− 1
n
, n = 1, 2, 3, . . . , (1.8)

where n = 1 corresponds to the electric dipole, n = 2 to the elec-
tric quadrupole and so on. However, for spheres of finite size, this
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Fig. 1.3. Contour plot of the scattering efficiency of a dielectric, non-magnetic
sphere in the plasmonic regime, as function of permittivity ε and size parameter
x = 2πa/λ. Loss-less case: scattering and extinction efficiencies are the same. The
resolution of the computations cannot distinguish the evermore narrower multi-
polar peaks that curve to the horizontal axis and accumulate finally at ε = −1.

relation is not exact. Numerically, it can be seen that for the electric
dipole resonance of a non-magnetic sphere, the dependence on size
parameter x is approximately

εdipole = −2− 12
5
· x2, (1.9)

where the size parameter is x = 2πa/λ, as a function of the radius
a of the sphere and the wavelength λ. The error in this prediction
Eq. (1.9) is less than 1% up to size parameter 0.4. In Fig. 1.3, this
size dependence displays itself as the curving of the scattering peaks
to the left, in other words to more negative permittivity values. And
since the permittivity dispersion of plasmonic materials, and materi-
als in general, shows increase with frequency, this phenomenon means
that the plasmonic resonances are redshifted (moving to longer wave-
lengths) when the size increases.

Likewise, the asymptotic dependence of the electric quadrupole
resonance can be written as:

εquadrupole = −3
2
− 5

14
· x2 (1.10)

Figure 1.3 reveals another interesting phenomenon in the fre-
quency dependence of scattering by small spheres. At exactly ε = −2,
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there is a vertical isocontour line reaching up to values of x ≈ 0.5.
This means independence of scattering efficiency on the size for small
scatterers for this special plasmonic permittivity value. An insensitiv-
ity of the scattering on scatterer size represents an anomalous behav-
ior of small scatterers which deviates strongly from the ordinary
Rayleigh scatteringd with the size dependence of fourth power (∝ x4).

1.3.1.2. Accuracy of quasistatic prediction

Even if the results in Fig. 1.3 are calculated using the full-wave
Lorenz–Mie machinery, it is worth noting that the polarizability for-
mula Eq. (1.1) captures the scattering, absorption and extinction
behavior for spheres of size much smaller than wavelength. Let us
examine the accuracy of the quasistatic predictions by invoking real-
istic plasmonic materials nanoparticles.

A common material used in plasmonics is silver, which has nega-
tive permittivity over the optical range. Its complex permittivity can
be fitted22 to experimental data23 into Drude dispersion formula

εSilver(λ) = ε′Silver − j ε′′Silver = ε∞ − (λ/λp)2

1− jλ/λd
, (1.11)

where ε∞ = 5.5, λp = 130nm, and λd = 30µm. This is a fairly
good model for the permittivity of silver in the range 320 nm < λ <

700 nm.e

Figures 1.4 and 1.5 illustrate the accuracy of the static analysis.
The scattering and absorption cross-sections are compared with the
full-wave solution. The asymptotic expansions of the scattering and

dThe blue color of sky is a result of Rayleigh scattering, due to the fact that the
elastic scattering by atmospheric gases is caused by particles very small compared
with the wavelength. Hence, the blue part of the light spectrum is scattered much
more strongly. As a side note, the term “Rayleigh scattering” is anachronistic:
John William Strutt published his analysis on skylight properties in 1871.21 How-
ever, at that time he was not yet Lord Rayleigh. He rose into peerage and became
3rd Baron Rayleigh later, in 1873, at the death of his father.
eHere the time-harmonic convention exp(jωt) is used.
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(a) Quasi-static prediction (b) Full Mie analysis

Fig. 1.4. Comparison of the scattering efficiency of a silver nanosphere (with
diameter 10 nm (solid blue line), 20 nm (dashed orange line)), calculated from the
polarizability approximation (quasistatic) and full-wave solution.

(a) Quasi-static prediction (b) Full Mie analysis

Fig. 1.5. The same as in Fig. 1.4, for the absorption efficiency Qabs.

absorption efficiencies give the following connection to the polariz-
ability:

Qsca ≈ 8
27
|α|2x4, Qabs ≈ 4

3
α′′x, (1.12)

where α′′ is the (negative of)f the imaginary part of the polarizability.
The static approach explains very well qualitatively the scattering
absorption behavior for 10 nm and 20 nm diameter silver spheres.
The only feature that the static computation ignores is the slight
redshift that can be seen in the Mie solution in Figs. 1.4 and 1.5

fFor the time-harmonic notation exp(jωt), the imaginary part of the polarizability
is negative for lossy (dissipative) media.
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for the 20 nm sphere. Note also the dominance of absorption over
scattering in this small-scatterer limit.

1.3.1.3. Non-spherical particles

Although the polarizability-based static treatment does not predict
the redshifting due to the size dependence, it can astonishingly well
explain the effects of shape and structure on plasmonic peaks.

A natural direction to examine the effect of morphology on plas-
monic resonances is to allow the shape of the nanoparticle to be
ellipsoidal. The advantage is the availability of a rather simple closed-
form solution for the ellipsoid in a static field. The geometry of an
ellipsoid is defined by its three semi-axes ax, ay and az. From these,
the so-called depolarization factors can be calculated: the factor Nx

(in the ax-direction) is

Nx =
axayaz

2

∫ ∞

0

ds

(s+ a2
x)
√

(s+ a2
x)(s+ a2

y)(s + a2
z)
. (1.13)

The other depolarization factor Ny (Nz), results by interchange of
ay and ax (az and ax) in the above integral.

The three depolarization factors for any ellipsoid satisfy

Nx +Ny +Nz = 1. (1.14)

A sphere has three equal depolarization factors of 1/3. The other two
special cases are a disc (depolarization factors 1, 0, 0) and a needle
(0, 1/2, 1/2).

The three components of the polarizability dyadic of an isotropic
ellipsoid with permittivity ε are then (i = x, y, z)

αi =
ε− 1

1 +Ni(ε− 1)
. (1.15)

This relation, a generalization of Eq. (1.4), reveals that the local-
ized plasmon resonance is very strongly affected by the shape of the
nanoparticle: the singularity (zero of the denominator in Eq. (1.15))
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(a) Prolate spheroid. (b) Oblate spheroid.

Fig. 1.6. The magnitude of the polarizability components of prolate and oblate
spheroids (ellipsoids of revolution, with axis ratios 2:1:1 and 1:2:2). Solid blue
line: polarizability along the axis of revolution, dashed orange line: along the two
transversal axes. Silver model according to equation (1.11) is used.

takes place at

εlp = 1− 1
Ni

(1.16)

and since Ni can vary between 0 and 1, a nanoparticle with any
negative permittivity value can resonate, given a suitable shape. In
particular, when Ni decreases from the sphere value 1/3, the value
εpl decreases (more negative values than −2), meaning a redshift of
the plasmonic peak. This happens for an elongated structure (the
depolarization factor is zero for a needle when the electric field is
oriented along the axis). Indeed, this effect of redshifting is known
for nanorods.24

In Fig. 1.6, the polarizability components of two silver nanoparti-
cles of ellipsoidal shape are displayed. Two special cases of spheroids
(ellipsoids of revolution) are given: a prolate (the axis of revolution
is longer than the two transversal axes) and an oblate spheroid (axis
of revolution is shorter than the two others). For the prolate (needle-
like) particle, there is a strong redshift for the plasmon resonance for
axial excitation, and a blueshift for the transversal ones; in the case
of oblate spheroid the situation is the opposite.

1.3.1.4. Core–shell structures

Another much studied and interesting nanoparticle geometry a core–
shell structure. There a spherical core is surrounded by a concentric
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(a) Plasmonic core, dielectric shell (b) Dielectric core, plasmonic shell.

Fig. 1.7. The magnitude of the polarizability components of complementary
core–shell composite spheres. The plasmonic material is silver (dispersion model
according to Eq. (1.11)), and the dielectric is silica (dispersionless permittivity
in the optical region 2.25). The fractional volume of silver is g. Solid blue line:
g = 0.9, dashed orange line: g = 0.5, dotted green line: g = 0.3.

spherical shell of different material than the core. The polarizability
of such a two-layer particle obeys Eq. (1.2), with ε1 and ε2 being the
permittivities of the shell and the core, respectively, and 0 < g < 1
is the fractional volume that the core takes from the whole scatterer.

It is fascinating that plasmonic core–shell particles behave qual-
itatively very differently depending on whether the core or shell is of
negative permittivity. This effect is shown in Fig. 1.7. When a plas-
monic core is surrounded by a dielectric shell (here taken as silica
with permittivity 2.25), the effect is again a redshift. The strength of
the shift is dependent on the permittivity of the dielectric shell, and
its relative thickness; the shift increases with both. This fact allows
tunability of the localized plasmon resonance properties. Experimen-
tal research has shown25 that, by controlling the annealing conditions
in the growth process of a bulk nanoplasmonic, Bi2O3–Ag eutectic-
based metamaterial, the spectral position, width and intensity of the
resonance can be modified.

However, for the complementary case (dielectric core surrounded
by a plasmonic shell), two resonances appear, due to the fact that
there are now two separate surfaces of the metallic phase.g The mag-
nitude of these effects, visible in Fig. 1.7, can be very drastic: again

gSometimes this phenomenon of excitation of two resonances in the core–shell
structure is called mode hybridization.26
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very strong redshifts are to be expected if the plasmonic layer is very
thin. This has also been observed experimentally for hollow gold
nanospheres.27

Note that these morphological redshifting effects are much
stronger than the shift in Fig. 1.4 which was due to the increasing
size of the scatterer. In order to have further degrees of freedom in
engineering the spectrum of nanoparticles, these effects can also be
combined. Hence, an ellipsoidal core–shell inclusion displays an even
stronger redshift than a solid ellipsoid or spherical core–shell particle,
when the electric field is along the long axis. Also the size of these more
complex inclusions affects the position, linewidth and strength of the
plasmonic peaks. Furthermore, other types of shaping the inclusion
geometry can have a strong effect on the resonances: for example, a
transformation of the sphere towards a cube with rounded corners,
computational models predict redshifting of the dipole resonance.

1.3.2. Translation of dispersion results into mixtures

Homogenization affects dispersion. For example, a mixture where
Drude-type particles are embedded in neutral dielectric matrix dis-
plays a resonating response. Assuming an ordered lattice of inclu-
sions (and hence no percolation), isolated conducting inclusions do
not make the continuum conducting, and the effective permittivity
becomes asymptotically real valued for low frequencies. However, a
strong response appears at a frequency determined by the parameters
of the components, and especially the shape of the inclusions.

In more detail, for a mixture with spherical inclusions, it follows
that if the inclusions follow the Drude dispersion

ε(ω) = ε∞ −
ω2

p

ω2 − jωγ
(1.17)

and the host dielectric has permittivity of εd, the mixture is
Lorentzian

εeff(ω) = ε∞,eff +
ω2

p,eff

ω2
0,eff − ω2 + jωγeff

, (1.18)
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with the effective high-frequency permittivity, plasma frequency, the
resonance frequency and damping amplitude as

ε∞,eff = εd + 3pεd
ε∞ − εd

ε∞ + 2εd − p(ε∞ − εd) , (1.19)

ωp,eff =
√
p

3εd
(1− p)ε∞ + (2 + p)εd

ωp, (1.20)

ω0,eff =

√
1− p

(1− p)ε∞ + (2 + p)εd
ωp, (1.21)

γeff = γ. (1.22)

However, an intuitive understanding of the effects appearing in
mixing can be gathered from the equivalence between the effective
permittivity of a core–shell particle and the homogenization of a
mixture à la MG (cf. Section 1.2). This opens up an interesting
possibility to transfer the composite nanoparticle results into the
domain of plasmonic mixtures.

For example, the qualitative difference between the spectra of the
complementary core–shell particles in Fig. 1.7 means that also the
mixture of silver spheres in dielectric behaves very differently from
the Swiss cheese type of mixture where spherical holes occupy a given
volume fraction in silver matrix. This is illustrated in Fig. 1.8 where
a 50–50 mixture of silver and air is homogenized in two settings.

(a) Silver spheres in air. (b) Air holes in silver matrix.

Fig. 1.8. The effective permittivity (solid blue line: real part, dashed orange line:
imaginary part) of a mixture of silver and air. The volume fraction of silver is
0.5. The model Eq. (1.11) is used. Note the drastic difference of the curves (raisin
pudding in (a) and Swiss cheese in (b)) when plotted in the same scale.
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The case of silver inclusions in air displays a very strong Lorentzian
resonance, according to equations Eq. (1.19)–(1.22), whereas the
complementary holey structure obeys a much smoother dispersion.
For example, to achieve an ε = −1 composite with low losses and
broader bandwidth, the Swiss-cheese structure is hence much more
desirable than the complementary “raisin-pudding” design. In Ref.,22

this phenomenon is exploited in the conceptual design of a broadband
subwavelength lens.

Another example of the effect of mixing on the frequency depen-
dence of permittivity is homogenization of materials with relaxation-
type dispersion. Materials with permanent dipole moments, like
water, display this kind of dispersion, often termed as Debye dis-
persion

ε(ω) = ε+
εs − ε∞
1 + jωτ

(1.23)

with εs and as ε∞ the low- and high-frequency permittivities, respec-
tively, and τ the relaxation frequency. For Debye medium, there is a
strong decrease of the real part of the permittivity around the relax-
ation frequency ωrel = 1/τ where losses are also strong; however the
peak in the imaginary part is not as sharp as for Lorentz-dispersion
around the resonance.

For a mixture where Debye-medium particles are embedded into
dispersionless host medium, also the homogenized continuum fol-
lows exactly the Debye dispersion law, but the model parameters
change. In particular, the relaxation frequency takes place at a dif-
ferent region:

ωrel,eff = ωrel
(1− p)εs + (2 + p)εe
(1− p)ε∞ + (2 + p)εe

(1.24)

with εe as the host medium permittivity and p the volume fraction
of the Debye phase. The frequency shift be very considerable: for
example, water at room temperature has values εs ≈ 80.1, ε∞ ≈ 4.9,
and τ ≈ 10.1 ps, and this means that the absorption peak of a cloud
or rain is shifted from 16 GHz to 200 GHz! Figure 1.9 illustrates this
effect.
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(a) Bulk Debye medium. (b) Debye spheres in air.

Fig. 1.9. Debye dispersion for water and water-in-air mixture: real (solid blue)
and imaginary (dashed orange) part of the effective permittivity. Water parame-
ters: εs = 80.1, ε∞ = 4.9. In (b), the volume fraction of water is 0.1.

If the inclusions are ellipsoidal, an even more drastic relaxation
shift can happen. For a mixture with ellipsoids (permittivity εi and
volume fraction p) with depolarization factor N in the direction of
the electric field, the effective permittivity component readsh

εeff = εe + pεe
εi − εe

εe + (1− p)N(εi − εe) . (1.25)

Then the relaxation frequency becomes

ωrel,eff = ωrel
(1− p)N(εs − εe) + εe
(1− p)N(ε∞ − εe) + εe

(1.26)

and if N → 1, the shift increases from the sphere case N = 1/3.
This corresponds to flat discs with the field excitation normal to the
face of the disc, like in the case of falling flattened raindrops in a
vertically polarized radio beam.

However, if the ellipsoids in the mixture are not aligned equally
but are oriented with a certain distribution, the effective permittivity
dyadic has to be computed by weighing the polarizabilities with the
orientation distribution. If all ellipsoids are randomly oriented, there
is no special direction and the mixture is isotropic. Then the effective

hNote that the mixture is anisotropic in this case.
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permittivity follows the formula

εeff = εe + εe

p

3

∑
j=x,y,z

εi−εe

εe+Nj(εi−εe)

1− p

3

∑
j=x,y,z

Nj(εi−εe)

εe+Nj(εi−εe)

. (1.27)

Finally, the correspondence between the internal and external
homogenization principles allows transferring these relaxation-shift
results into the analysis of dielectric behavior of composite particles
where a Debye-dispersive core is surrounded by a dielectric layer.

1.4. Homogenization is not simple arithmetic

The previous section emphasized the marriage of dispersion and
mixing and presented examples where offsprings were created that
display a new type of dispersive behavior. Aside from the transforma-
tion of frequency dependence in homogenization, other unexpected
behavior can also result from the mixing process produces in the
effective permittivity as function of the structural parameters.

To compute the macroscopic mass density of a mixture is very
easy: it is the volume averages of the component densities. The
macroscopic permittivity, on the contrary, is no simple arithmetic
average of the component permittivities. Rather, it can be and often
is a very nonlineari function of the fractional volume of the inclu-
sions. It is even possible to construct a composite whose effective
permittivity is higher than any of the component permittivities.28

This phenomenon has been known for a long time in other fields of
engineering and materials science: eutectics29 may allow an alloy to
have superior properties over its ingredients. For example, a mixture
of lead and tin has lower melting temperature than pure lead or

iNonlinearity refers here to the functional dependence of the effective permittivity
on the primary parameters (volume fractions, component permittivities), not to
a nonlinearity in the sense that the permittivity depends on the amplitude of the
exciting electric field.
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pure tin. The “whole being greater than the sum of its parts” is in
harmony with the metamaterials ethos.

1.4.1. Polarization limits

Mixtures exist whose macroscopic properties are fairly predictable
and non-surprising. This is the case especially for composites that
consist of isotropic and loss-less phases with permittivities (real-
valued scalars) close to each other. Even the morphology of the
microstructure does not play a large role in this case. However, when
the contrast increases, predictions start to differ.

A random dielectric mixture does not have a unique effective
permittivity. Taking samples with a fixed amount of inclusion parti-
cles, each sample is different even if the fractional composition is the
same. Hence, the effective permittivities are also different. Bounds,
however, exist between which all values have to lie. By Monte Carlo
simulations, one can create virtual random samples with distribution
of inclusions in host space. In the improbable case that all inclusions
would cluster as parallel plates through the continuum, the medium
would be extremely anisotropic, with two distinct values for the two
perpendicular field excitations

εeff,max =
εiεe

pεe + (1− p)εi , εeff,min = pεi + (1− p)εe. (1.28)

These so-called Wiener bounds,30,31 come naturally from the ellip-
soidal mixing rule Eq. (1.25) with depolarization factor choices 1 and
0, respectively.

Wiener bounds do not restrict much, and sharper bounds were
presented by Hashin and Shtrikman (HS).32 In fact, the lower HS
limit is exactly the MG rule Eq. (1.4), and the upper limit is the
complementary MG formula where the roles of the inclusion and the
host are reversed:j

εHS,max = εeff,MG(εi, εe, p), εHS,min = εeff,MG(εe, εi, 1− p). (1.29)

jThis is valid if the inclusion permittivity is larger than that of the environment
(εi > εe). For the “Swiss cheese” case (εi < εe), the limits are interchanged.
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(a) Measurements within Wiener
bounds.

(b) Measurements within
HS bounds.

Fig. 1.10. Bounds for a dielectric mixture of air and ice, modelling dry snow.
Permittivity as function of snow density ρ. The volume fraction of ice is p = ρ/ρice

where the ice density is ρice = 0.917 g/cm3. The permittivity if ice is 3.19. Also
shown measurement data by Mätzler36 (red points).

HS bounds are not the strictest ones. Milton,33 Felderhof34 and
Helsing35 have published even sharper limits.

As an example of the applicability of the bounds, let us focus on
snow. Dry snow is a mixture of ice grains (permittivity around 3.19 at
microwave frequencies) in air matrix. Wiener and HS limits for snow
permittivity as function of snow density are shown in Fig. 1.10 with
the field measurements data by Christian Mätzler.36 These data are
gathered using a resonator instrument operating near 1 GHz. How-
ever, due to the fact that ice is fairly dispersionless in UHF and
microwave wavelengths, these dry snow permittivity values apply
within a broad frequency range, from 1 MHz up to 10 GHz.

The curves in Fig. 1.10 seem to be fairly loose limits for the exper-
imental data, which is quite astonishing considering the fact that
snow is rather coarse-grained and the length scale of the microstruc-
ture is not very much smaller than the dimension of the volume over
which the measuring instrument averages (maximum dimension tens
of centimeters).36 These nature-generated snow samples represent
most probable states of the snow distribution, and therefore there
should be no need to care for very improbable system states, like, for
example, that all snow grains would suddenly be clustered in a very
ordered structure.

To take an analogy to thermodynamics, the distributions of
molecules in a sample of gas (their positions and velocities) are
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always very sharply peaked. Average values of the sample param-
eters are practically indistinguishable from the most probable value.
For example, to describe the state of a glass of water, around 1024–
1025 coordinates are required.37 In the macroscopic specification of
thermodynamic systems, the scales to be considered are temporal:
one needs to compare the macroscopic measurement slowness to the
rapidity of atomic movements. Compared to the case of dielectric
mixtures, these scales are extremely distant from each other. For
the example of the snow permittivity, the scales of sample and the
“microscopic” level are much closer to each other, allowing for larger
deviations from the expected values.

The snow permittivity behaves in a quite “dull” manner in
Fig. 1.10, monotonically and predictably increasing towards the per-
mittivity of ice. However, if the dielectric response becomes more
complicated, the behavior becomes more metamaterial-like, and
bounds and limits can be overcome. This happens when strong losses
are present or any cross-coupling effects are allowed, like magneto-
electric response.

Figure 1.11 illustrates the way losses in the component materi-
als may cause a special enhancement in the real part of the effective
permittivity of a mixture. The curves show a substantial polarization

(a) Real part of effective permittivity
for increasing losses.

(b) HS limits for the
case εi = 2 − j 10 and εe = 1.

Fig. 1.11. (a) MG prediction for the real part of the effective permittivity when
the losses of the inclusion phase increase εi = 2 − j 0 (solid blue), εi = 2 − j 5
(dashed orange), and εi = 2− j 10 (dotted green). The environment is air εe = 1.
(b) The HS limits in the complex εeff plane.
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enhancement effect, in other words the real part of the effective per-
mittivity ε′eff of a mixture can be much larger than the real part of
the permittivity of either of the components, when sufficient losses
are introduced into the inclusion phase. If other mixing formulas are
applied, the prediction for the enhancement magnitude changes, but
it is still there.28 Figure 1.11 also shows that the HS bounds (MG
and its complement), in the complex εeff plane allow quite a wide
range of permissible values, and all the other mixing rules predict
εeff values that are located in this restricted domain.

It is important to note that the enhancement effect high-
lighted in Fig. 1.11 is by no means any modelling artefact. It is
observed in many real-world constellations, like in colloidal and bio-
logical cell-suspensions.38 In connection with insulating membranes
that separate electrolyte solutions, the phenomenon is also called
Maxwell–Wagner effect,39 and in the language of bioelectromagnet-
ics, it is known as alpha dispersion, taking place at low frequencies
(10 Hz to a few kHz).

1.4.2. Percolation behavior

For mixtures where strongly contrasting permittivity phases are
interacting with each other, percolation40 is also often present. Per-
colation is a phenomenon where a minute variation in the struc-
ture or geometrical parameters of a mixture causes a notable and
abrupt change in macroscopic properties. In the context of dielectric
mixtures, this means a very non-linear functional dependence of the
effective permittivity on the volume fractions of the phases.

Percolation is conspicuous for mixtures with high losses.
Figure 1.12 shows the prediction of the Bruggeman mixing formula
of a composite where lossy spherical inclusions are embedded in
free space. Indeed, the macroscopic permittivity curve is no longer
smooth, rather it has a nearly discontinuous character when the
inclusion losses increase. The imaginary part ε′′eff is practically zero
until the so-called percolation threshold, here happening at p = 1/3.
There it linearly starts to increase towards the the value ε′′i . The real
part ε′eff , on the other hand experiences a very strong enhancement
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(a) εeff (b) εeff ..

Fig. 1.12. Bruggeman prediction for the real part of the effective permittivity
when the losses of the inclusion phase increase εi = 10 − j 1 (solid blue), εi =
10− j 100 (dashed orange), and εi = 10− j 2000 (dotted green). The environment
is air εe = 1.

around the threshold, decreasing again when the inclusion volume
fraction increases.

It is worth noting that predictions of various mixing rules for
the details in percolation behavior vary, although the phenomenon
itself is there. The unified mixing rule Eq. (1.7) shows this clearly:
assuming a very high inclusion-to-background permittivity ratio, this
formula distills down to

εeff = εe
1 + p(2− ν)
1− p(1 + ν)

, (1.30)

which breaks down when p = 1/(1 + ν). This fraction can be inter-
preted as percolation threshold, and for the Bruggeman case (ν = 2),
the threshold is 1/3 of which agrees with the example in Fig. 1.12.
Bruggeman mixing rule by its symmetric character is widely used
and applicable to random mixtures, as opposed to ordered lattices
which are more close to the domain of MG principle. The percolation
threshold for MG (ν = 0) is pushed up to p = 1.

1.4.3. Magnetoelectric coupling

Among interesting complex electromagnetic material responses
is magnetoelectric coupling. Electric excitation creates magnetic
response and vice versa. If such a medium is isotropic (the response
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is independent on the vector direction of the excitation field), we
talk about bi-isotropic materials.41 The constitutive relations of bi-
isotropic media are compactly written by a matrix that transmits
the relation between the electric and magnetic fields (E,H) and flux
densities (D,B):(

D/
√
ε0

B/
√
µ0

)
=

(
ε χ− jκ

χ+ jκ µ

)(√
ε0 E
√
µ0 H

)
=M

(√
ε0 E
√
µ0 H

)
, (1.31)

where the fields and displacements have been normalized with the
free-space permittivity and permeability (ε0, µ0) to carry the same

units (square root of energy density
√

Ws/m3). Hence, the material
matrixM becomes dimensionless. Cross-coupling is quantified by the
chirality parameter κ and the non-reciprocity parameter χ. Chirality
parameter appears in handed media, and κ is often termed Pasteur
parameter.41 The non-reciprocity parameter χ goes often under the
name Tellegen parameter.42

For mixtures involving bi-isotropic media, the mixing principles
can be taken from the simple non-magnetoelectric domain by replac-
ing permittivities with the material matrices that include the four
parameters.43 For example, the bi-isotropic MG mixing formula reads

Meff =Me + 3pMe · [Mi + 2Me − p(Mi −Me)]
−1 · (Mi −Me),

(1.32)
with the bi-isotropic components of the environment included inMe,
those of the inclusion in Mi, and again p being the volume fraction
of the inclusion phase. All parameters will be coupled through the
matrix inversion operation in the formula, but the effective parame-
ters can be written as explicit functions of the primary parameters.

As an example, consider a mixture of two chiral phases which are
otherwise identical but are structurally mirror images of each other.
This means that their permittivities and permeabilities are the same
(εi = εe, µi = µe), and the chirality parameters are opposite numbers
κi = −κe.

Figure 1.13 shows the effective permittivity and chirality param-
eters for the case εi = εe = µi = µe = 2, κi = −κe = 1. Even
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(a) Effective permittivity. (b) Effective chirality.

Fig. 1.13. Effective parameters of chiral-in-chiral mixture where otherwise iden-
tical but mirror-image phases are mixed. MG prediction, the parameters are
εi = εe = 2, µi = µe = 2, κi = −κe = 1.

if both phases have the same permittivity, the effective permittiv-
ity is lower than that of the components (the same is valid for the
effective permeability). Furthermore, the chirality parameter changes
monotonously from the environment value to that of the inclusion,
although it is not symmetric: for the p = 0.5 mixture, the chirality,
although quite weak, does not completely vanish.

1.4.4. Hyperbolic media and anomalous losses

Anisotropy is one of the interesting directions of complex response in
materials and mixtures. In particular, when anisotropy is connected
with plasmonics, the resulting material effects can be particularly
fascinating in the dielectric response.

1.4.4.1. Cartesian and spherical uniaxial anisotropy

Structural alignment leads to anisotropy in the macroscopic dielectric
response, and the permittivity has to be quantified by more parame-
ters than a single scalar. In the simplest form, anisotropy is uniaxial.
For uniaxial media, the permittivity dyadic has two components:
axial (εr) and transversal (εt) permittivity. Two composite structures
that behave macroscopically in this manner are shown in Fig. 1.14
where the axial direction is normal to the plates in the stacked-plates
structure and along cylinder axes in the aligned-needles structure.
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εi

εe

Fig. 1.14. Uniaxial two-phase composite structures: alternating stacked plates
and aligned circular cylinders.

RA
εr, εt

Fig. 1.15. Bulbic (onion-like) and porcupic (radially spiked) composite spheres
are effectively RA.

Instead of the Cartesian setting of Fig. 1.14, the uniaxial
anisotropy can also be radial and spherically symmetric. This is the
case shown in Fig. 1.15 which displays inclusions that are called RA
spheres. The two types of RA sphere constructions are a bulbic sphere
(onion-like layers) and a porcupic sphere (porcupine spikes).44,k

Homogenization of bulbic and porcupic uniaxial structures is
straightforward once the inhomogeneities are truly subwavelength:
all four components are special cases of the aligned ellipsoid mixing
formula Eq. (1.25). For the stacked-plates/bulbic structure, the axial
permittivity corresponds to depolarization factor N = 1 and the
transversal one to N = 0. On the other hand, the aligned needles/
porcupic design leads to N = 0 for axial component and N = 1/2 in
the transversal direction.

The cases N = 1 and N = 0 give the Wiener lower and upper
bounds Eq. (1.28), which consequently means that for the bulbic

kAn even more general spherical anisotropy results by allowing the tangential
anisotropy to have different permittivity components in the two perpendicular
angular directions. Such a sphere is called systropic.45
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(a) Layered structure (bulbic). (b) Needle-type structure (porcupic).

Fig. 1.16. Silver–silica composite with uniaxially anisotropic structure. Volume
fractions of both phases are equal. Solid blue line: axial; dashed orange line:
transversal component of the real part of the permittivity. The model equa-
tion (1.11) is used for silver, and the permittivity of silica is assumed 2.25.

structure, the axial permittivity is smaller than the transversal one
(εr < εt, negative uniaxiality), and vice versa for the porpupic case
(εr > εt, positive uniaxiality).

However, when one of the phases in bulbic or porcupic com-
posites is plasmonic, the axial and transversal effective permittiv-
ity components may also change sign. In the particular case that
these two eigenvalues of the permittivity dyadic have different signs,
the medium can be called indefinite or hyperbolic.46 This effect is
illustrated in Fig. 1.16 where the components of the (real part of
the) permittivity dyadic are shown as a function of wavelength for a
silver–silica composite (both phases occupy 50% of the volume). It
can be seen that in both designs, a broadband hyperbolic behavior
appears. The difference in the parameters is that in the bulbic case
the transversal permittivity is negative, while in the porcupic con-
stellation, it is the axial permittivity component which is negative.

1.4.4.2. Radially anisotropic sphere

RA spheres have been shown to display particularly interesting prop-
erties47,48 due their cloaking potential, and anomalous absorption
cross-section. Again, these properties can be studied based on purely
quasi-static analysis.

The RA sphere is complicated from inside: it is inhomogeneous
(the eigenaxes of the permittivity are not constant) and anisotropic,
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but looking from outside, it is completely spherically symmetric and
effectively isotropic. Hence, its polarizability is a scalar.l

A quasi-static analysis gives the polarizability of an RA sphere
as follows:

αRA = 3
εr
√

1 + 8εt/εr − εr − 2
εr
√

1 + 8εt/εr − εr + 4
. (1.33)

This degenerates into Eq. (1.1) in the isotropic case εr = εt. For
εr �= εt, several interesting observations can be drawn.

First of all, αRA vanishes when

εt =
εr + 1
2εr

, εr > 0 or εr < −2 (1.34)

meaning that a material sphere can be invisible for a static electric
field. In the positive-permittivity side, this makes sense intuitively: a
combination of εr and εt values, one larger, one smaller than +1, can
compensate each others’ effect and make the sphere disappear. The
internal homogenized sphere has εeff = 1. What is not obvious is that
the polarizability can also vanish in the region where εr is negative
but εt positive (region of indefinite anisotropy). In that case, there is
a very strong field concentration in the center of the scatterer, even
if the sphere does not cause any perturbation to the external field.

On the other hand, the singularity of αRA gives us the plasmonic
dipole resonances. It is interesting that there are two types of singu-
larities. The condition for singularity is

εt =
2− εr
εr

, εr < 0 or εr > +4. (1.35)

The first type of resonance is a generalization of the correspond-
ing electrostatic ε = −2 resonance in the isotropic case and corre-
sponds to εr < 0 in Eq. (1.35), in other words, in the fully plasmonic
(“double-negative”) region. The other branch of singularity appears

lRadial anisotropy has been generalized to ellipsoidal inclusions.44 There the
“radial” direction has to be understood in the sense of the corresponding dimen-
sion in the ellipsoidal coordinate system.
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Fig. 1.17. Polarizability characteristics of an RA sphere in the εr − εt plane.
Solid blue lines are invisibility contours, dashed orange lines mark the singularity
conditions. Light-green shaded area is the anomalous absorption region.

in the indefinite quadrant εr > 0, εt < 0. The field distribution is
different for these two cases: for the first one, it is the ordinary local-
ized surface plasmon, whereas for the indefinite-region singularity,
the field energy is concentrated into the (center) of the RA sphere.

Of particular interest is the domain where εt/εr < −1/8. Then
the square root in Eq. (1.33) becomes complex. In other words, the
RA sphere contains an imaginary part even if its permittivity compo-
nents are real. This phenomenon has been termed anomalous absorp-
tion and has been studied in detail in Ref. 48. The analysis requires
a regularization of the field behavior in the center of the sphere and
concludes that the focusing effect of the RA sphere makes it possi-
ble to enhance by an arbitrary amount the effect of intrinsic losses.
Figure 1.17 charts the various RA regions in the complex εr − εt
plane.

The phenomenon of anomalous absorption by RA spheres can
also be studied for the dynamic excitation. In Fig. 1.18, the absorp-
tion efficiency of an RA sphere with size parameter x = 0.5 is
illustrated. The prediction of quasi-static analysis (coming from the
imaginary part of Eq. (1.33), with Eq. (1.12)) is compared against
the full-wave Mie scattering computation. Even if the sphere is not
deeply subwavelength, it can be seen that the scattering cross-section
is very well explained by the static analysis, and also the anomalous
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(a) Quasistatic prediction. (b) Full Mie analysis.

Fig. 1.18. The absorption (solid blue) and scattering (dashed orange) efficiencies
of an RA sphere of size parameter x = 0.5. The tangential permittivity component
is εt = 1 and the radial component εr varies. Comparison of the quasi-static
prediction and the full anisotropic Mie analysis.

absorption in the region −8 < εr/εt < 0. However, the dynamic anal-
ysis also reveals additional anomalous absorption, although small in
magnitude. This happens for hyperbolic anisotropies with more neg-
ative values of εr than in the light-green region of Fig. 1.17.

1.5. Conclusions: Metamaterials as Vessels
of Emergence

Analysis of metamaterials means transformation of small-scale struc-
ture into a picture on a higher level. New qualities appear on the
macroscopic description, but at the cost of sacrificing all structural
details and information about the microstructure. Yet, the price may
be worth paying since there may be no other way into these new
desired properties. Metamaterials are vessels of emergence.

The focus in this chapter has been the use of classical mixing prin-
ciples in understanding the emergence in metamaterials. The discus-
sion centered on the diversity of the possibilities how homogenization
may create new effective dielectric responses in mixtures and com-
posites. The mixtures consist of elements that are made of ordinary
material and whose dielectric responses follow known dielectric func-
tions, like Drude or Debye models. Mixing laws, even though fairly
simple equations of combining the permittivities of the components
and very few structural parameters, lead to effective behavior that
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is qualitatively different from those of the component phases. Here,
there is a certain analogy to the world of cellular automata49 where
a simple rule can generate very complex behavior which cannot be
directly seen from the initial conditions. There is no shortcut: the
only way to know the end state is to computationally go through the
evolution, step by step.

What is the domain of metamaterials? Sometimes metamaterials
are defined very inclusively: the definition may embrace, for example,
assemblies that could be called metamaterial-inspired structures, like
antennas in the shape resembling a split-ring. Leaving such single-
element designs aside, mainstream metamaterials are such macro-
scopic continua in which microstructure details produce a collective
effect. Then also, homogenization is truly in the core of analysis and
understanding of metamaterials. The inclusions and structure that
cause the interesting and desired effective behavior is deeply sub-
wavelength in spatial scale.m This is the domain of mixing principles
which are based on quasi-static analyses and solutions of generalized
Laplace equation. The power of mixing rules in explaining many
macroscopic phenomena contained in the effective permittivity func-
tions was demonstrated by many examples from microwaves to optics
in the present chapter. The examples (Sections 1.3.1 and 1.4.4) also
shed light on the essential question of how much smaller must the
scatterer size (or characteristic length of the microstructure) be com-
pared to the wavelength of the electromagnetic excitation.

Electromagnetic homogenization has a long history. As Chris-
tian Brosseau50,51 has noted, it can be seen as a play in five
scenes. The beginnings up to J.C. Maxwell Garnett in the first
decade of 20th century lead to the Bruggeman effective-medium
homogenization from 1930s. The bounding principles by Hashin,
Shtrikman and others in 1960s guided towards comprehension of
percolation. Finally, the arrival of powerful computers revolutioned
computational electromagnetics and gave unprecedented possibilities

mThis applies of course to electromagnetic and acoustic metamaterials; in con-
nection with thermal metamaterials one cannot talk about wavelength.
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to simulate random mixtures and test predictions of effective-medium
theories.

And the show is going on. After these five scenes, we are presently
living through and acting in the sixth one: homogenization of meta-
materials. Effective-medium theories and mixing principles reveal
the richness and variety of unpredicted properties that are possible
through arranging building blocks and tailoring their interaction to
design novel metamaterial structures.
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Effective Medium

Theory of Electromagnetic

and Quantum Metamaterials
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Here, we present an overview of recent developments in the
characterization of electromagnetic and quantum metamaterials using
effective medium methods. It is highlighted that both electromagnetic
and electronic systems can be homogenized in a unified manner based on
the introduction of an effective Hamiltonian operator that describes the
time evolution of the macroscopic initial states as well as the stationary
states of the relevant system. Furthermore, it is shown that in some
circumstances quadratic forms of the fields, such as the energy, can be
exactly determined using the effective medium theory.

2.1. Introduction

The wave propagation in periodic or in random systems can be rather
challenging to study as an exact treatment of problem is generally

37
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unfeasible and a numerical analysis with no approximations requires
large-scale time-consuming computations. In addition, brute force
numerical calculations provide very limited insights of the physical
mechanisms that determine the wave propagation. Fortunately, it is
often possible to describe “low-energy” wave phenomena by resort-
ing to an effective medium description that regards the structure of
interest as a continuum.

For example, natural materials are formed by a collection of
atoms or molecules arranged — in case of crystalline structures —
in a periodic lattice. Even within a classical framework, wherein the
atoms are regarded as electric or magnetic dipoles, the propagation
of light in a natural material can be immensely complex: each atom
or molecule scatters and absorbs light, and the propagation prob-
lem must be solved self-consistently. Auspiciously, provided the light
wavelength is much larger than the lattice constant, i.e. larger than
the characteristic spacing between the atoms, the complex light–
matter interactions can be homogenized and the material can be
regarded as a continuum described by a certain effective permittivity
and permeability.1−4 Indeed, natural materials may often be regarded
as continuous media without any granularity for light wavelengths as
short as some tens of nanometers.

As a second example, consider the propagation of electron waves
under the influence of an ionic lattice in the context of one-body
Schrödinger equation, e.g. the propagation of electrons in a semi-
conductor material. The electron wave function is scattered by the
electric potential created by the ionic lattice, and hence the time
evolution of a given initial electronic state is challenging to charac-
terize. Fortunately, for low-energy phenomena the ionic lattice can
be effectively homogenized in such a manner that its effect on the
wave propagation can be described by an effective mass.5 In other
words, the medium may be regarded as a continuum provided the
electron mass is suitably redefined to take into account the influence
of the scattering centers.

The objective of this chapter is to present a unified overview
of the recent developments in the research of wave propagation in
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complex media using effective medium methods, for both light and
electron waves. The contents of this chapter are largely based on the
ideas originally introduced in Refs. 6 and 7, and which were further
developed in subsequent works.

2.2. Microscopic Theory

We consider a generic physical system whose dynamics are charac-
terized by a one-body Schrödinger-type equation of the form:

Ĥψ = i�
∂

∂t
ψ. (2.1)

Here, � is the reduced Planck constant, Ĥ is the Hamiltonian oper-
ator that determines the time evolution of the system and ψ is the
wave function that describes the state of the system. In general, ψ is a
multicomponent vector (a spinor). Evidently, this type of formulation
is suitable to characterize the propagation of electron waves in a bulk
semiconductor or in a semiconductor superlattice. Interestingly, the
propagation of light can also be described using a similar formulation.
Indeed, Maxwell’s equations can be written in a compact form as7(

0 i∇× 13×3

−i∇× 13×3 0

)
· f = i

∂g
∂t
, (2.2)

where f = (e h)T is a six-element vector with components deter-
mined by the microscopic electric and magnetic fields and g =
(d b)T is a six-element vector with components determined by the
electric displacement and the magnetic induction fields. In electro-
magnetic metamaterials, the g and f fields are related by a space-
dependent material matrix M = M(r) through the constitutive
relation g = M · f . In conventional isotropic media, the material
matrix is simply:

M =

(
ε13×3 0

0 µ13×3

)
. (2.3)
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Hence, by introducing the operator Ĥ given by

Ĥ = �

(
0 i∇× 13×3

−i∇× 13×3 0

)
·M−1 (2.4)

and identifying the state vector with the g field, ψ = g, Maxwell’s
equations can be expressed as in Eq. (2.1). It should be noted that in
the electromagnetic case, Ĥ is unrelated to the energy of the system
and should be simply regarded as an operator that describes the
time evolution of the classical electromagnetic field. Moreover, in
the previous discussion it is implicit that the relevant materials are
non-dispersive, i.e. the permittivity ε and the permeability µ are
frequency independent. Yet, the previous ideas can be generalized to
dispersive media. Indeed, for dispersive materials the multiplication
operator M−1 should be replaced by a suitable time convolution
operator. In that case, the action of Ĥ on ψ at a generic time instant
t depends not only on ψ at the same time instant, but also on the
values of the state vector in the past t′ < t. Thus, for dispersive
media Eq. (2.1) should be understood as a generalized Schrödinger-
type equation.

In the following subsections, we further elaborate on some phys-
ical systems to which the theory applies.

2.2.1. Electromagnetic metamaterials

The first case of interest corresponds to that of electromagnetic meta-
materials, i.e. mesoscopic structures formed by dielectric or metal-
lic inclusions arranged in a periodic lattice.8 The electromagnetic
response of metamaterials is mainly determined by the geometry
of its constituents, rather than directly by the chemical compo-
sition. The light propagation in these structures is described by
Maxwell’s equations, which, as previously discussed, can be recast
in the Schrödinger form with the time evolution operator given in
Eq. (2.4). An illustrative metamaterial unit cell is represented in
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(a) (b)

(c) (d)

Fig. 2.1. Sketch of the geometries of several metamaterial and semiconductor
superlattices. (a) Unit cell of an electromagnetic metamaterial formed by a cubic
array of spherical dielectric inclusions embedded in a host medium. (b) Graphene
superlattice created by a periodic electrostatic potential. (c) Nanopatterned 2D-
electron gas. (d) Unit cell of a semiconductor superlattice formed by two different
materials.

Fig. 2.1(a) and corresponds to a spherical dielectric inclusion embed-
ded in a metallic region (the host material). The 3D metamaterial
is formed by the periodic repetition of the unit cell. The problem of
homogenization of metamaterials, the extraction of effective medium
parameters, and the limitations inherent to an effective medium
description have been extensively discussed in the literature.9−26



September 8, 2017 17:20 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch02 page 42

42 Handbook of Metamaterials and Plasmonics — Volume 1

2.2.2. Semiconductor superlattices

In a groundbreaking study, Esaki and Tsu suggested in 1969 that new
quantum effects can be observed at an intermediate physical scale if
a mono-crystalline semiconductor is either periodically doped or if
the composition of a semiconductor alloy is periodically varied.27

Such structures are known as semiconductor superlattices and can
be regarded as the precursors and the semiconductor counterparts
of modern electromagnetic metamaterials. The original proposal of
Esaki and Tsu has set the stage for the engineering of the electron
transport,27−29 and led to the development of novel electronic mate-
rials with ultrahigh mobilities, wherein the electrons can experience
a near zero effective mass, and other breakthroughs.30−32

The time evolution of the electron wave function in a semicon-
ductor superlattice may be characterized by a Hamiltonian of the
form:

Ĥ = −�
2

2
∇ ·
(

1
m
∇
)

+ V, (2.5)

where V is a static electric potential and m is the electron (effective)
mass in the pertinent semiconductor. Usually, V and m are periodic
functions of the spatial coordinates. For example, the above Hamilto-
nian may describe the physics of a 2D electron gas (e.g. a semiconduc-
tor quantum well) modulated by an electrostatic potential created by
nanopatterned scattering centers (Fig. 2.1(c)).33 A different possibil-
ity is to periodically change the material composition (Fig. 2.1(d)).
In this case, the superlattice has the hexagonal symmetry and is
formed by two different semiconductors.

2.2.3. Graphene superlattices

Graphene is a one-atom thick material discovered at the turn of
the 21st century.34,35 Remarkably, graphene has a relativistic-type
electronic spectrum such that the relation between energy and
momentum is linear.36 This unusual property enables mimicking
quantum relativistic effects in a condensed-matter platform and cre-
ates many exciting opportunities in nanoelectronics.36−38 Interest-
ingly, it is possible to tailor the electronic transport in graphene
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using the superlattice concept.39−45 This can be done with patterned
gates that impress a space-dependent electric potential on a graphene
sheet (Fig. 2.1(b)). Other solutions take advantage of the electric
potential induced by crystalline substrates such as boron nitride, or
create a desired electric potential through the controlled deposition
of adatoms. The low-energy electronics in graphene near the K point
is described by a 2D massless Dirac Hamiltonian35

Ĥ = −i�vF (σ · ∇) + V, (2.6)

where vF ∼ 106m/s is the Fermi velocity, σ = (σx,σy), σx,σy are
the Pauli matrices and V is the periodic electrostatic potential. The
wave function ψ in graphene is a pseudo-spinor, and hence has two
components.35 From a physical point of view, each component of
the pseudo-spinor is associated with a specific trigonal sublattice of
graphene.

2.3. Effective Medium Theory

The goal of an effective medium theory is to provide an approximate
and simplified description of the wave propagation in some complex
system. Due to the spatially inhomogeneous nature of the structure,
the wave function (in case of electronic systems) or the electromag-
netic fields (in case of light waves) can vary wildly in the character-
istic length scale determined by the “granularities”. In this Chapter,
we restrict our attention to periodic structures, and hence the char-
acteristic length scale is defined by the lattice period. Usually, one
is interested in “low-energy” phenomena for which the wave packet
envelope varies slowly in space. An effective medium theory aims to
describe the dynamics of the wave packet envelope. These ideas will
be made more precise in the following subsections.

2.3.1. Spatial averaging and the envelope function

The envelope function is intuitively the slowly varying in space of
part of the state vector ψ. It is defined here as:

Ψ(r, t) ≡ {ψ(r, t)}av, (2.7)
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where { }av is a linear operator that performs a spatial averaging.
The averaging operator is completely determined by the response to
plane waves, determined by the function F (k) such that

{eik·r}av = F (k)eik·r. (2.8)

Thus, the action of the averaging operator on a generic plane wave
with wavevector k yields another plane wave with the same wavevec-
tor, but with a different amplitude determined by F (k). Because of
the linearity of the operator { }av, its action on a generic function is
determined by Fourier theory and is given by a spatial convolution.
For example, it is possible to write the envelope function as

Ψ(r, t) =
∫
dNr′ f(r′)ψ(r− r′, t), (2.9)

where N is the space dimension (e.g. N =3 for a 3D metamaterial,
andN = 2 for graphene). The weight function f is the inverse Fourier
transform of F so that

f(r) =
1

(2π)N

∫
dNkF (k)eik·r. (2.10)

Related ideas have been developed by Russakov in the context of
macroscopic electromagnetism.46 In this Chapter, it is assumed that
the averaging operator corresponds to an ideal low-pass spatial filter
such that

F (k) =
{

1, k ∈ B.Z.
0, otherwise.

(2.11)

In the vast majority of the cases of interest, the set B.Z. stands
for the first Brillouin zone of the periodic lattice, but sometimes
other choices can be relevant. Unless something different is explicitly
stated, it will always be assumed that B.Z. is the first Brillouin zone.

With these definitions, the envelope function Ψ(r, t) has no rele-
vant spatial fluctuations on the scale of a unit cell, i.e. the microscopic
fluctuations are filtered out by the averaging operator. Hence, we will
also refer to Ψ(r, t) as the macroscopic state vector. In general, we
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say that a given state vector ψ is macroscopic when it stays invariant
under the operation of spatial averaging:

ψ(r) = {ψ(r)}av (macroscopic state vector). (2.12)

Importantly, a macroscopic state cannot be more localized in space
than the characteristic period of the material.

2.3.2. The effective Hamiltonian

The effective Hamiltonian is the operator that describes the time
evolution of the envelope function. Specifically, suppose that the ini-
tial state vector is macroscopic, so that ψt=0 = Ψt=0. In general,
the time evolution of an initial macroscopic state does not yield a
macroscopic state at a later time instant, i.e. ψ(r, t) �= Ψ(r, t) for
t > 0. We define the effective Hamiltonian Ĥef in such a manner that
Ψ(r, t) calculated using Ĥef is coincident with the spatially averaged
microscopic state vector {ψ(r, t)}av, ψ(r, t) being determined by the
microscopic Hamiltonian Ĥ.7,47 These ideas are illustrated in the
diagram of Fig. 2.2.

The time evolution of the macroscopic state vector is determined
by a generalized Schrödinger equation:

(ĤefΨ)(r, t) = i�
∂

∂t
Ψ(r, t). (2.13)

Fig. 2.2. Schematic relation between the time evolutions determined by the
macroscopic and microscopic Hamiltonians: for an initial macroscopic state the
effective medium formulation ensures that Ψ = {ψ}av for t > 0. Reprinted with
permission from Ref. 47.
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From the definition of the effective Hamiltonian, it is clear that it
must ensure that

{Ĥψ}av = ĤefΨ. (2.14)

It was shown in Ref. 7 that the action of the effective Hamiltonian
on the wave function can be written as a convolution in space and
in time:

(ĤefΨ)(r, t) =
∫
dNr′

∫ t

0
dt′ hef

(
r− r′, t− t′) ·Ψ(r′, t′). (2.15)

In general, the kernel hef(r, t) is represented by a square matrix [hσ,σ′ ]
because Ψ is typically a multicomponent vector. In the electronic
case, the dimension of h is determined by the number S of spin or
pseudospin degrees of freedom (σ = 1, . . . , S), whereas in the light
case the dimension of hef is S = 6. Equation (2.15) implies that the
effective Hamiltonian depends on the past history (0 < t′ < t) of
the macroscopic state vector, rather than just on the instantaneous
value of Ψ.

It is convenient to introduce the Fourier transform of hef(r, t)
defined as

Hef(k, ω) =
∫
dNr

∫ +∞

0
dthef(r, t)eiωte−ik·r. (2.16)

The Fourier transform is bilateral in space and unilateral in time.
The unilateral Fourier transform in time can also be regarded as a
Laplace transform. In the Fourier domain, the action of the effective
Hamiltonian reduces to a simple multiplication:

(ĤefΨ)(k, ω) = Hef(k, ω) ·Ψ(k, ω). (2.17)

In the above, Ψ(k, ω) is the Fourier transform of the macroscopic
state vector,

Ψ(k, ω) =
∫
dNr

∫ +∞

0
dtΨ(r, t)eiωte−ik·r, (2.18)

and (ĤefΨ)(k, ω) is defined similarly. The convergence of the Fourier
transforms is ensured for Im{ω} > 0. The function Hef(k, ω)
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completely determines the effective Hamiltonian. Because of the
properties of the spatial averaging operator, it is possible to enforce
that

Hef(k, ω) = 0, when k /∈ B.Z. (2.19)

This property ensures that the effective Hamiltonian is a smoothened
version of the microscopic Hamiltonian. In the next subsections, it is
explained how Hef(k, ω) can be calculated for k ∈ B.Z.

2.3.3. Calculation of Hef (k, ω) with a time

domain approach

Let us consider an initial macroscopic state of the form ψt=0 ∼ eik·rul

with k ∈ B.Z. Here, (ul) represents a basis of unit vectors that gen-
erates the S-dimensional vector space wherein ψ is defined. Because
of the periodicity of the system, the microscopic time evolution of
this initial state yields a state vector ψ(r, t) with the Bloch property.
Specifically, ψ(r, t)e−ik·r is a periodic function in space for any fixed t.
For the same reason, Ĥψ has also the Bloch property. Importantly,
the operation of spatial averaging only retains spatial harmonics with
wavevector inside the B.Z., and hence it follows that the dependence
of {ψ}av and {Ĥψ}av on the spatial coordinates is of the form eik·r

for any time instant. In other words, within the effective medium
approach the time evolution of a plane wave-type initial state yields
another plane wave-type state. Moreover, it is possible to write

{ψ}av(r, t) = ψav(t)eik·r, (2.20a)

{Ĥψ}av(r, t) = (Ĥψ)av(t)eik·r, (2.20b)

with

ψav(t) =
1
Vcell

∫
Ω
dNr ψ(r, t)e−ik·r, (2.21a)

(Ĥψ)av(t) =
1
Vcell

∫
Ω
dNr Ĥψ(r, t)e−ik·r, (2.21b)

where Ω represents the unit cell and Vcell is the respective volume.
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Taking now into account that Ψ = {ψ}av and ĤefΨ = {Ĥψ}av,
and substituting Eq. (2.20) into Eq. (2.15), it is seen that

(Ĥψ)av(ω) = Hef(k, ω) · ψav(ω). (2.22)

In the above, ψav(ω) and (Ĥψ)av(ω) stand for the unilateral Fourier
(Laplace) transforms of the functions in Eq. (2.21). Hence, if we
denote ψ(l), l = 1, . . . , S as the microscopic state vector determined
by the time evolution of the initial state ψ

(l)
t=0 = i/� eik·rul (the

proportionality constant was fixed as i/� for convenience), it follows
from the previous analysis that the effective Hamiltonian is given by

Hef(k, ω) = [(Ĥψ(1))av · · · (Ĥψ(S))av] · [ψ(1)
av · · · ψ

(S)
av ]−1.

(2.23)
Thus, Hef(k, ω) can be written as the product of two matrices, whose
columns are determined by the vectors ψ(l)

av (ω) and (Ĥψ(l))av(ω).
In summary, for a given k ∈ B.Z. the effective Hamiltonian can

be found by solving S microscopic time evolution problems associ-
ated with initial states of the form ψ

(l)
t=0 = i/� eik·rul. The effective

Hamiltonian is written in terms of the Fourier transforms in time of
the functions (2.21).

2.3.4. Calculation of Hef (k, ω) with a frequency

domain approach

The effective Hamiltonian may also be determined based on fre-
quency domain calculations. To prove this, we note that ψav(ω) and
(Ĥψ)av(ω) can be written explicitly as

ψav(ω) =
1
Vcell

∫
Ω
dNr ψ(r, ω)e−ik·r, (2.24a)

(Ĥψ)av(ω) =
1
Vcell

∫
Ω
dNr Ĥψ(r, ω)e−ik·r, (2.24b)

where ψ(r, ω) is the unilateral Fourier transform of ψ(r, t). Apply-
ing the unilateral Fourier (Laplace) transform to both members of
the microscopic Schrödinger equation (2.1) and using the property
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∂tψ(r, t)↔ −iωψ(r, ω)− ψt=0(r), it follows that

[Ĥ − �ω] · ψ(r, ω) = −i�ψt=0(r). (2.25)

Hence, ψ(l)(r, ω) can be directly found by solving the above equation
for −i�ψ(l)

t=0 = eik·rul, with l = 1, . . . , S. Once ψ(l)(r, ω) is known,
one can determine ψ(l)

av and (Ĥψ(l))av using Eq. (2.24) and finally
obtain the effective Hamiltonian from Eq. (2.23).

It is interesting to note that for −i�ψ(l)
t=0 = eik·rul, Eq. (2.25)

implies that (Ĥψ(l))av − �ωψ
(l)
av = ul. Substituting this result into

Eq. (2.23), one may also write the effective Hamiltonian as

Hef(k, ω) = �ω + [ψ(1)
av · · · ψ

(S)
av ]−1. (2.26)

2.3.5. The electromagnetic case

In the case of light waves, using the time evolution operator (2.4)
and ψ = g = (d b)T , it is possible to rewrite Eq. (2.25) as
(

0 i∇× 13×3

−i∇× 13×3 0

)
· f(r)− ωg(r) = −igt=0(r), (2.27)

with f = (e h)T . If we decompose the six-vector gt=0 as gt=0 =
(je jm)T , the above system can be spelled out as

∇× e = +iωb− jm

∇× h = −iωd + je
. (2.28)

These correspond to the standard microscopic Maxwell’s equations in
the frequency domain with fictitious electric-type and magnetic-type
sources, je and jm, respectively. Clearly, in the homogenization prob-
lem the sources have a plane-wave spatial dependence eik·r. Thus,
the effective response of a composite medium can be calculated by
exciting the medium with fictitious macroscopic sources. This idea
is the essence of the “source-driven” homogenization method origi-
nally introduced in Ref. 6. Next, we prove that the effective response
obtained using the approach of section 3.4 is coincident with what is
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obtained using the theory of Refs. 6, 17–21. Related effective medium
formalisms have also been presented in Refs. 22–26.

To this end, define Gav = (Dav Bav)T and Fav = (Eav Hav)T

such that (compare with Eq. 2.24a):

Gav =
1
Vcell

∫
Ω
dNr g(r)e−ik·r, (2.29a)

Fav =
1
Vcell

∫
Ω
dNr f(r)e−ik·r. (2.29b)

Furthermore, let us introduce the effective material matrix Mef(k, ω)
such that for arbitrary macroscopic sources je and jm one has

Gav = Mef(k, ω) ·Fav. (2.30)

Then, it can be shown from Eqs. (2.4) and (2.22) that

Hef(k, ω) = �

(
0 −k× 13×3

k× 13×3 0

)
·M−1

ef (k, ω). (2.31)

This proves that the effective Hamiltonian can be written in
terms of the effective material matrix Mef(k, ω) calculated with
the source-driven homogenization.6 In particular, the time evolu-
tion of the macroscopic electromagnetic fields can be determined
from Eq. (2.13), which is equivalent to the macroscopic Maxwell’s
equations:(

0 i∇× 13×3

−i∇× 13×3 0

)
· F(r, t) = i

∂

∂t
G(r, t), (2.32)

where G = {g}av and F = {f}av are the macroscopic electromagnetic
fields. Consistent with the conventional theory of spatially dispersive
materials,48 the fields G and F are related by a space–time convolu-
tion whose kernel is determined by the inverse Fourier transform of
Mef(k, ω). It can be shown that for reciprocal structures the effective
material matrix satisfies:

Mef(k, ω) = U ·MT
ef(−k, ω) ·U, with U =

(
13×3 0

0 −13×3

)
.

(2.33)
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In most electromagnetic metamaterials, the inclusions are either
dielectric or metallic particles, and thus do not have an intrinsic mag-
netic response (µ = µ0). In this case, it is evident that independent
of the excitation one has Bav = µ0Hav. This result together with the
reciprocity constraint (2.33) implies that for metamaterials formed
by non-magnetic particles, the material matrix is of the form

Mef (k, ω) =

(
εef(k, ω) 0

0 µ013×3

)
. (2.34)

Thus, the effective response of metal-dielectric metamaterials is com-
pletely characterized by a non-local dielectric function εef(k, ω), con-
sistent with Ref. 6.

In summary, it was proven that the time evolution of macro-
scopic electromagnetic field states characterized by a certain gt=0 is
rigorously described by the operator Hef(k, ω) given by Eq. (2.31).
The effective Hamiltonian is written in terms of an effective mate-
rial matrix Mef(k, ω), which is exactly coincident with that orig-
inally introduced in Ref. 6, based on the idea of source-driven
homogenization.

2.3.6. Stationary states

A key property of the effective Hamiltonian is that its energy spec-
trum coincides with that of the microscopic Hamiltonian.7 The
energy spectrum of the macroscopic Hamiltonian is determined by
the non-trivial solutions of the stationary Schrödinger equation

[Hef(k, ω)|ω=E/�
−E] ·Ψ = 0, (2.35)

where E stands for the energy of a certain stationary state. Like-
wise, in the electromagnetic case the photonic band structure cal-
culated with the effective Hamiltonian is coincident with the exact
band structure obtained using a microscopic theory.6

The enunciated result can be understood noting that in a time
evolution problem (with no source excitation) the state vector can
be written as a superposition of eigenmodes. The eigenmodes have
a time variation of the form e−iωnt, ωn = En/� being the relevant
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eigenfrequencies. Importantly, since the macroscopic and microscopic
state vectors are related by the spatial-averaging operation (Ψ =
{ψ}av), both Ψ and ψ have the same-type of time oscillations. In
other words, the averaging affects only the space coordinates, while
the time coordinate is not averaged in any manner. As a consequence,
the spectrum of the microscopic and macroscopic Hamiltonians must
be the same (Eq. (2.35)).

Strictly speaking, it is possible that some special microscopic
states are not predicted by the effective medium Hamiltonian. We
refer to such states as “dark states”.7 A dark state corresponds to
a microscopic stationary state ψ that has a zero projection into the
subspace of macroscopic states, i.e. a state such that Ψ = {ψ}av = 0.
Dark states appear only in degenerate singular cases, and for very
specific forms of the microscopic Hamiltonian. Thus, typically the
band structures of the microscopic and effective Hamiltonians are
indeed the same.

2.4. Applications

Next, we present several examples that illustrate the application of
the ideas developed in Section 2.3 to both electromagnetic metama-
terials and quantum structures.

2.4.1. Homogenization of electromagnetic

metamaterials

The interest in modern electromagnetic metamaterials was sparked
by a seminal study by J. Pendry, who showed that a composite mate-
rial with a simultaneously negative permittivity and permeability
can make a perfect lens.49 Among many other proposals, it was sug-
gested that such a doubly negative metamaterial can be realized
based on dielectric spherical particles embedded in a metallic host
material20,50,51 (Fig. 2.1(a)). The following discussion is focused on
the metamaterial homogenization.

As mentioned in Section 2.3.5, a metamaterial formed by
dielectrics and metals is completely characterized by a non-local
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dielectric function of the form εef(k, ω). Such a description is rather
powerful but still quite complex. Indeed, both the frequency and
the wavevector are independent parameters, and thus the non-local
dielectric function depends on four independent variables. It is desir-
able to further simplify the theory. This can be done based on the
hypothesis that the material response is local. Specifically, if one
assumes that the homogenized medium can be characterized by a
local permittivity, εL(ω), and by a local permeability, µL(ω), then it
can be shown that the local parameters are linked to the non-local
dielectric function as6,21

1
ε0
εef(k, ω) = εL(ω) +

ck
ω
× (µ−1

L (ω)− 1)× ck
ω
. (2.36)

Note that the local parameters are independent of the wavevector.
The above relation implies that the local permittivity satisfies

εL(ω) =
1
ε0
εef(k = 0, ω). (2.37)

On the other hand, the local permeability can be written in terms of
the second-order derivatives of the non-local dielectric function with
respect to the wavevector. For example, assuming that µL(ω) is a
diagonal tensor it is easy to check that

µL,zz(ω) =
1

1− (ω
c

)2 1
2ε0

∂2εef,yy

∂k2
x

∣∣∣
k=0

. (2.38)

The formulas for the other components of the permeability can be
obtained by considering permutations of the indices x, y, and z. In
practice, εef(k, ω) is calculated using computational methods. Several
solutions have been reported in the literature: an integral equation
based approach,6 a finite-difference frequency domain method,19 and
a time domain scheme.20 The derivatives with respect to the wavevec-
tor are calculated using finite differences.6,19,20

Figure 2.3 depicts the extracted local effective parameters for
a metamaterial with unit cell as in Fig. 2.1(a).20 For long wave-
lengths, the metamaterial has an isotropic response, and hence both
the permittivity and permeability are scalars. The radius of the
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Fig. 2.3. Local effective permittivity ε and local effective permeability µ as a
function of frequency for a simple cubic array of dielectric spheres with εd = 73.1
and R = 0.4a embedded in a metallic host. Solid lines: Effective medium theory;
Dashed lines: Lewin’s formulas.52 Adapted from Ref. 20.

dielectric spheres is R = 0.4a, a being the lattice constant. The
spheres have permittivity εd = 73.1 and are embedded in a metallic
material with a permittivity modelled by a Drude-type dispersion,
εh = ε∞(1− ω2

p/ω(ω + iΓ)). In the simulations, it was assumed that
the normalized plasma frequency is ωpa/c = 1.0, that ε∞ = 3.6, and
for simplicity the metallic loss was neglected Γ = 0. The parameters
of the metamaterial were tuned to ensure that εL ≈ µL (matched
index material) over a broad range of frequencies close to ω = ωp.

Figure 2.3 also shows the local effective parameters predicted by
a mixing formula proposed by Lewin.52 As seen, there is an overall
excellent agreement between the full wave homogenization results
and Lewin’s formula, especially near ω = ωp. Interestingly, in this
design the conditions ε = µ = −1 are observed simultaneously,
and thus this metamaterial can mimic to some extent a Veselago–
Pendry’s lens, as further discussed in Ref. 51. Many other examples
of the application of the effective medium theory can be found in
Refs. 6, 19, 20.
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2.4.2. Zincblende semiconductors

The electronic structure of semiconductors is typically studied using
perturbation schemes, usually known as k · p methods.53−62 The k · p
theory is rooted on the knowledge of the electronic band structure
at highly symmetric points of the Brillouin zone determined by some
eigenstates un0. These eigenstates are used as a basis to construct
the wave function for a generic wavevector. Hence, the electron wave
function is usually described by a multicomponent vector, whose ele-
ments are the coefficients of the expansion of the wave function in
the basis un0. The k · p theory can be applied to bulk materials as
well as to semiconductor heterostructures.

In contrast, G. Bastard developed the concept of the envelope-
function approximation in the analysis of semiconductor heterostruc-
tures during the 1980s.55,61,62 The idea of an envelope-function is
closely related to the pseudopotential method used in condensed mat-
ter physics.5 Interestingly, there is a profound connection between the
effective medium methods developed in Section 2.3 and Bastard’s
theory.47,63 Specifically, it was rigorously shown from “first princi-
ples” that when the effective medium approach is applied to bulk
semiconductors with a zincblende structure — using as a starting
point Kane’s eight-band k · p theory56 — the corresponding effec-
tive Hamiltonian is characterized by an energy-dependent effective
mass and an effective potential.47 Moreover, the obtained effective
Hamiltonian is equivalent in the long-wavelength limit to that used in
Bastard’s theory.55 Thus, the formalism of Section 2.3 recovers Bas-
tard’s theory and shows that the corresponding effective Hamiltonian
describes rigorously the time evolution of the macroscopic electronic
states in bulk semiconductors. Moreover, it puts into perspective that
the envelope function approximation used in semiconductor physics
is intrinsically related to the effective medium methods used in the
context of macroscopic electrodynamics.47,59

The zincblende lattice corresponds to a face-centered cubic lattice
with two atoms per unit cell, and is characteristic of binary III–V
compounds such as GaAs, GaSb, InSb, and II–VI compounds such
as HgTe and CdTe.53,55 The electronic structure of these materials
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is formed by a conduction band, a light-hole band, a heavy-hole
band, and a split-off band.53,57 The wave function associated with
the conduction band has the same symmetry as a monopole (S-type
symmetry), while the wave functions associated with the remain-
ing (valence) bands have the same symmetry as a dipole (P -type
symmetry). The split-off band usually lies well below the remain-
ing bands, and often its effects on the wave propagation can be
neglected. The zincblende compounds can be characterized by the
effective Hamiltonian47:

Hef(k, E) = Ec +
�

2

2m0
k2

[
1 +

εP
3

(−2
Ẽv

+
−1

Ẽv −∆

)]
. (2.39)

Here, E = �ω is the electron energy, Ẽv = Ev − E + �
2k2/(2m0),

m0 is the free electron rest mass, ∆ is the spin-orbit split-off energy,
εP = 2P 2m0/�

2 is Kane’s energy, and Ec and Ev determine the
energy levels at the edges of the conduction and light-hole bands,
respectively. The split-off energy ∆ determines the energy offset
between the split-off band and the other two valence bands.

For long wavelengths, the term �
2k2/(2m0) in the definition of

Ẽv can be neglected. Within this approximation, the effective Hamil-
tonian can be written as

Ĥef(E) = −�
2

2
∇ ·
(

1
mef
∇
)

+ Vef , (2.40)

with the effective potential given by

Vef(E) = Ec, (2.41)

and the dispersive effective mass mef = mef(E) defined as

1
mef

=
1
m0

+ v2
P

(
2

E − Ev
+

1
E − Ev + ∆

)
, (2.42)

where vP =
√
εP /(3m0) is Kane’s velocity. Thus, the electron wave

propagation in the bulk semiconductor compound is completely char-
acterized by an energy-dependent effective mass and by an effective
potential. The effective mass formula (2.42) is well known in the
context of Bastard’s envelope function approximation55 (p. 88). It
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is important to highlight that the effective parameter “dispersive
mass” is distinct from the usual effective mass m∗ = �

2[∂2E/∂k2]−1

obtained from the curvature of the energy diagram.
In case of narrow-gap semiconductors, ∆ is typically a few times

larger than the band gap energy |Eg| = |Ec − Ev|. In these condi-
tions, for energies in the band gap or in vicinity of the band gap only
the first term in brackets in Eq. (2.42) is important. This yields the
linear dispersive mass approximation:

mef ≈ E − Ev

2v2
P

. (2.43)

There is an interesting analogy between the propagation of elec-
tron waves in a zincblende semiconductor compound and the propa-
gation of light waves in an isotropic material. Indeed, by comparing
the stationary Schrödinger equation associated with the Hamiltonian
(2.40) with the Helmholtz equation, ∇ · [µ−1∇Ez] + (ω2/c2)εEz = 0
that describes the propagation of transverse electric (TE) electro-
magnetic waves (with E = Ez ẑ and ∂/∂z = 0) in a material char-
acterized by the parameters ε and µ, it is possible to establish the
following correspondence47,63,64:

E − Vef ↔ ε

mef ↔ µ.
(2.44)

Thus, E − Vef may be regarded as the semiconductor dual of the
electric permittivity, whereas mef may be regarded as the semicon-
ductor dual of the magnetic permeability. This analogy can be use-
ful to establish parallelisms between phenomena in electromagnetic
metamaterials and in semiconductor superlattices. For example, in
Ref. 63, it was shown how such a correspondence can be used to
design novel semiconductor materials with extreme anisotropy, such
that the effective mass is zero along some preferred direction of
motion and infinite for perpendicular directions. Furthermore, based
on these ideas it was theoretically suggested that the perfect lens
concept and a light tunneling phenomenon in metamaterials have
semiconductor analogues.64,65
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Fig. 2.4. (a) and (b) Sketch of the electronic band diagrams of CdTe and HgTe.
(c) and (d) Effective parameters mef and E −Vef as a function of the normalized
energy for CdTe with a regular band structure and for HgTe with an inverted
band structure. The energy of the valence band edge of HgTe is arbitrarily taken
equal to zero and the valence band offset is Λ = 0.35 eV . Blue lines: mef/m0;
Green lines: E − Ec in [eV ]. The dashed vertical gridlines indicate the edges of
the light-hole valence and conduction bands, and delimit the relevant bandgaps.
Adapted from Refs. 47 and 63.

It is interesting to further discuss the properties of the effective
parameters of mercury–cadmium–telluride (HgCdTe) compounds.
The electronic band structures of cadmium–telluride (CdTe) and
of mercury–telluride (HgTe) (a group II–VI degenerate semiconduc-
tor) are sketched in Figs. 2.4(a) and 2.4(b), respectively. Following
the usual convention, the conduction band with S-type symmetry is
denoted by Γ6, whereas the light-hole and heavy-hole valence bands
with P -type symmetry are denoted by Γ8. The heavy-hole band is
the nearly flat valence band. As seen in Fig. 2.4(a), the binary com-
pound CdTe has a regular band structure with the conduction band
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lying above the valence bands. Interestingly, even though unusual,
it is possible that the order of the conduction band (with S-type
symmetry) and of the valence bands (with P -type symmetry) is
interchanged. An example of a material with this remarkable prop-
erty is HgTe, which, as illustrated in Fig. 2.4(b), has an “inverted”
band structure. Therefore, HgTe has a negative band gap energy
(Eg = Ec − Ev < 0).47,63,64

Figures 2.4(c) and 2.4(d) show the effective parameters mef and
E − Vef as a function of the electron energy for CdTe and HgTe,
respectively. The stationary energy states occur at the energy inter-
vals for which mef and E − Vef have the same sign, and the band
gaps occur in the range wherein mef and E−Vef have different signs.
The band gap that separates the conduction band from the light-hole
valence band is delimited by the vertical dashed gridlines in Fig. 2.4.

The plots in Fig. 2.4 show that in the band gap a semiconductor
with a regular band structure (Eg > 0, e.g. CdTe) behaves, from the
point of view of the wave propagation, as a material with ε < 0 and
µ > 0 (epsilon negative –ENG– material), whereas a semiconductor
with an inverted band structure (Eg < 0, e.g. HgTe) behaves as a
material with ε > 0 and µ < 0 (mu negative –MNG– material).
Due to these remarkable properties, the electron wave propagation
in HgTe–CdTe superlattices exhibits remarkable analogies with the
propagation of light in ENG–MNG metamaterials.63−65 In general,
it is estimated that the ternary semiconductor alloy Hg1−xCdxTe
exhibits a regular band structure for x > 0.17 and an inverted band
structure for x < 0.17, 0 ≤ x ≤ 1 being the mole fraction of cadmium.

2.4.3. Homogenization of semiconductor superlattices

The effective Hamiltonian (2.40) enables a macroscopic description of
the electron wave propagation in a bulk semiconductor, in the same
manner as the permittivity and the permeability characterize the
light propagation in a natural material. Similar to electromagnetic
metamaterials, it is possible to tailor the transport properties of elec-
trons by mixing different semiconductors in a periodic structure. To
illustrate this, we consider the superlattice formed by two material
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phases arranged in a hexagonal lattice (Fig. 2.1(d)). It is assumed
that the circular scattering centers (the inclusions) have dispersive
mass and effective potential mi, Vi, whereas the background material
is characterized by the parameters mh, Vh. Furthermore, it is sup-
posed that the electrons can move only in the xoy plane so that the
structure is intrinsically 2D. For example, the structure may cor-
respond to a quantum well. In what follows, we assume that the
host region is the ternary alloy Hg0.75Cd0.25Te and that the scatter-
ing centers are made of HgTe. Moreover, for simplicity, the effective
parametersm,V are taken to be the same as in a bulk semiconductor.

The effective Hamiltonian of the superlattice can be found using
the general approach outlined in Section 2.3.4. In particular, to
obtain Hef(k, E) one needs to solve Eq. (2.25) with respect to ψ

with Ĥ given by Eq. (2.5) where m = m(r, E) and V = V (r) are
periodic functions of the spatial coordinates. Because Ĥ is a scalar
operator (S = 1), one needs to solve a single microscopic problem
with ψt=0 ∼ eik·r. The effective Hamiltonian is given by Hef(k, E) =
(Ĥψ)av/ψav with (Ĥψ)av and ψav defined as in Eq. (2.24). A finite
difference frequency domain discretization of Eq. (2.25) is reported
in Ref. 66.

It is desirable to further simplify the effective medium descrip-
tion. For low-energy phenomena, this can be done relying on a
Taylor expansion of the effective Hamiltonian with respect to the
wavevector47:

Hef(k, E) ≈ Vef(E) +
�

2

2
k · M̄−1

ef · k, (2.45)

where Vef(E) = Hef(k = 0, E) is the energy-dependent effective
potential of the superlattice and M̄ef is the energy-dependent effec-
tive mass tensor of the superlattice, with its inverse determined by

M̄−1
ef =

1
�2

[
∂2Hef

∂ki∂kj

∣∣∣∣
k=0

]
. (2.46)

Note that similar to the effective permeability in electromagnetic
metamaterials (Eq. (2.38)), the superlattice effective mass is written
in terms of the second-order derivatives of the effective Hamiltonian
with respect to the wavevector.
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For the particular superlattice under study, it is clear that by
symmetry the effective mass tensor is a scalar. Hence, within the
validity of Eq. (2.45) the effective Hamiltonian in the space domain
is such that

Ĥef(r, E) = −�
2

2
∇ ·
[

1
Mef(E)

∇
]

+ Vef(E). (2.47)

Therefore, the electron wave propagation in the superlattice is com-
pletely characterized by the effective parameters Vef(E) and Mef(E).
The order of the operators in the term ∇ · [M−1

ef ∇] is consistent
with the generalized Ben Daniel-Duke boundary conditions.53,55,57

Indeed, Eq. (2.47) implies that Ψ and M−1
ef (∂/∂n)Ψ are continuous

at an abrupt interface between two materials, which ensures the con-
tinuity of the normal component of the probability current at the
interface.

Interestingly, it is possible to write approximate analytical formu-
las for Vef(E) and Mef(E). Indeed, by exploiting the correspondences
E − V ↔ ε and m ↔ µ, and the analogies between electromagnetic
metamaterials and semiconductor superlattices one finds that67

Vef = Vh(1− fV ) + VifV , (2.48)

Mef = mh
(1− fV )mh + (1 + fV )mi

(1 + fV )mh + (1− fV )mi
, (2.49)

where fV is the volume fraction of the HgTe inclusions. The mixing
formula for the effective mass is nothing more than the semiconductor
counterpart of the classical Clausius–Mossotti formula well known in
electromagnetism.67

To illustrate the application of these ideas, next we discuss the
design of a zero-gap semiconductor superlattice with linearly dispers-
ing bands. This design is motivated by the fact that heuristically one
may expect that by combining a material with a positive band gap
(e.g. Hg0.75Cd0.25Te) with a material with a negative band gap (e.g.
HgTe) it may be possible to design a material with a zero gap, such
that the electrons experience a zero effective mass and an ultrahigh
mobility.
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It can be theoretically shown that the condition to have a zero gap
is Mef(E = Vef) = 0.67 Using the analytical formulas (2.48)–(2.49),
and assuming that the dispersive mass of the relevant materials is
described by the linear mass approximation (2.43), it can be shown
that the zero-gap regime occurs when the volume fraction of the
HgTe circular scattering centers satisfies67

fV 0 =
Ev,h + Ev,i − 2Vh

Ev,h − Ev,i − 2(Vh − Vi)
. (2.50)

For the particular design considered here, the critical volume frac-
tion is fV 0 = 0.247. Figure 2.5(a) shows the electronic band struc-
tures of three different semiconductor superlattices characterized by
certain fV /fV 0 indicated in the insets. The superlattice period is
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Fig. 2.5. (a) Electronic band structures of Hg0.75Cd0.25Te–HgTe superlattices for
different values of the normalized volume fraction fV /fV 0 of the HgTe inclusions
shown in the insets. Solid lines: effective medium theory; Discrete points: “exact”
band structure obtained with the microscopic Hamiltonian. The HgTe scattering
centers have circular shape and are arranged in a triangular lattice with period
a = 12as. The dashed horizontal grid line represents the edge of the hybridized
conduction (S-type) band. (b) Effective parameters of the superlattice with fV =
fV 0 as a function of the electron energy. Adapted from Refs. 66 and 67.
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a = 12as, as = 0.65 nm being the atomic lattice constant. The solid
lines were obtained using the analytical effective parameters (2.48)–
(2.49), whereas the discrete points were found by calculating the
energy spectrum of the periodic microscopic Hamiltonian (Eq. (2.5))
with the plane wave method. The effective medium formulas predict
almost exactly the electronic stationary states for ka < 1.0, and
only fail near the edges of the Brillouin zone (not shown). Moreover,
consistent with the previous discussion, when fV /fV 0 = 1, the band
gap that separates the conduction and valence bands closes and the
energy dispersion is linear. The edge of the conduction band (with
S-type symmetry) corresponds to the energy level wherein E = Vef

and is marked with a dashed horizontal line in the figures. Thus, for
structures with fV /fV 0 < 1 (e.g. fV /fV 0 = 0.9) the superlattice is
characterized by a regular band structure, whereas for fV /fV 0 > 1
(e.g. fV /fV 0 = 1.1) it is characterized by an inverted band structure.
The topological transition wherein the conduction and valence bands
interchange positions takes place at fV /fV 0 = 1.

Figure 2.5(b) compares the analytic effective parameters
(Eqs. (2.48)–(2.49)) with the effective parameters determined based
on the rigorous numerical calculation of the Taylor expansion of Hef

(Eq. (2.45)). Apart from some spurious resonances in the dispersive
mass, the numerically calculated Vef(E) and Mef(E) agree extremely
well with the analytical formulas. The spurious resonances are related
to the excitation of heavy-hole type states, which are not predicted
by the effective medium theory because they are dark states.66

The zero-gap regime can have important consequences in the
electron transport. In particular, due to the zero-mass property the
superlattice may have a giant non-linear response when excited by
an external electromagnetic field.67 The non-linear effects are par-
ticularly strong up to terahertz frequencies and when the chemical
potential is near the tip of the Dirac-type point.67

2.4.4. Homogenization of graphene superlattices

The electron transport in graphene is determined by the energy dis-
persion near the Dirac points K and K ′ and is intrinsically isotropic:
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the electron velocity is vF ≈ 106m/s independent of the direc-
tion of propagation. Importantly, it has been theoretically predicted
that a superlattice created by a 1D-electrostatic periodic potential
(Fig. 2.1(b)) can be used to collimate an electron beam with virtually
no spatial spreading or diffraction,39−41 such that the electrons can
only propagate along a preferred direction of space. This remarkable
phenomenon can be conveniently modelled using an effective medium
approach.7

The effective Hamiltonian that describes the propagation of Dirac
fermions associated with the K point can be found by applying the
general ideas described in Section 2.3.4 to the 2D massless Dirac
Hamiltonian (2.6), being the microscopic electric potential V = V (x)
a periodic function of x. Note that the Dirac Hamiltonian (2.6)
already provides an effective medium description of the electron
propagation in graphene, but here we consider a second level of
homogenization such that the superlattice itself can be regarded as
a continuum. Because the Dirac fermions are described by a pseudo-
spinor, the effective Hamiltonian Hef(k, E) is a 2 × 2 matrix. The
computation of Hef(k, E) involves solving Eq. (2.25) for two inde-
pendent initial macroscopic states (S = 2). In general, this requires
the discretization of the relevant partial differential equation using
finite differences.7

Similar to Sections 2.4.1 and 2.4.3, to obtain some local effective
parameters it is useful to expand the effective Hamiltonian in a Taylor
series:

Hef(k, E) ≈Hef(0, E) + kx
∂Hef

∂kx
(0, E) + ky

∂Hef

∂ky
(0, E). (2.51)

It was found in Ref. 7 that for 1D graphene superlattices the Taylor
expansion can be rewritten as Hef(k, E) ≈ �vFσef(E) · k + Vef(E),
where Vef(E) is an energy-dependent effective potential (a scalar)
and σef is the tensor7:

σef ≈ vxxσxx̂ + vyyσyŷ. (2.52)
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Here, vii are some scalars weakly dependent on E and σi are the
Pauli matrices. Moreover, a detailed analysis shows that

Vef(E) ≈ Vav − αE, with α = vxx − 1, (2.53)

where Vav is the mean value of the microscopic potential V = V (x).7

From these results, it follows that the time evolution of the
macroscopic wave function in the spatial domain is determined by
a modified Dirac equation68:[
−i�vFσx

∂

∂x
− i�vFχσy

∂

∂y
+ Vav

]
·Ψ = i�

∂

∂t
Ψ, t > 0, (2.54)

where χ = vyy/vxx is by definition the anisotropy ratio of the
superlattice. Thus, the superlattice can be regarded as a contin-
uum described by the effective parameters χ and Vav. Comparing
Eq. (2.54) with the original Dirac equation (2.6), it is seen that the
main effect of the fluctuating electrostatic potential is to tailor the
electron velocity in the direction perpendicular to the stratification,
so that it becomes vF |χ|. Thus, the anisotropy ratio controls the
velocity of the electrons along the y-direction. The velocity of the
electrons along the x-direction is unaffected by the fluctuating poten-
tial due to the Klein tunneling effect.7

Figure 2.6 depicts the anisotropy ratio χ as a function of the
amplitude of the oscillating part of the microscopic potential, Vosc =
V1 (see Fig. 2.1(b)). Two cases are considered: (i) a Krönig–Penney
type potential formed by square barriers and (ii) a sinusoidal electro-
static potential. In both cases, for certain values of Vosc the anisotropy
ratio can vanish, and in these conditions the superlattice is charac-
terized by an extreme anisotropy such that the propagation along
the y-direction is forbidden.

The effective medium formulation (2.54) predicts that the energy
stationary states have the dispersion7,68:

|E − Vav| = �vF

√
k2

x + χ2k2
y. (2.55)
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Fig. 2.6. Anisotropy ratio as a function of the amplitude of the oscillating part of
the microscopic potential for (i) (solid line) a graphene superlattice with electric
potential that alternates between the values V2 = −V1 in regions with thickness
d1 = d2 = a/2. (ii) (dashed line) a sinusoidal-type electric potential with V =
V1 sin(2πx/a). The period of the superlattice is denoted by a. Adapted from
Ref. 7.
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Fig. 2.7. (a) Exact energy dispersion of a graphene superlattice formed by square
barriers with d1 = d2 = a/2, V2 = −V1 and V1a/�vF = 6.0 (b) Dispersion of
the energy eigenstates for k = k(cos θ, sin θ) calculated with (i) (solid curves)
the “exact” microscopic theory. (ii) (dashed curves) the effective medium model
based on the parameters Vav and χ. Reprinted with permission from Ref. 7.

Figure 2.7(a) depicts the exact energy dispersion of a graphene
superlattice with a Krönig–Penney type microscopic potential with
V1a/�vF = 6.0. As seen, consistent with the fact that for V1a/�vF =
6.0 the anisotropy ratio is near zero, the graphene superlattice is
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strongly anisotropic and the usual Dirac cone of pristine graphene
is stretched along the y-direction. The exact energy dispersion is
compared with the effective medium result (2.55) in Fig. 2.7(b),
revealing an excellent agreement between the two formalisms.

As discussed in Section 2.3, the effective Hamiltonian describes
the time evolution of macroscopic electronic states. To illustrate
this property, the time evolution of an initial state was numeri-
cally determined using a finite-difference time-domain method using
both the microscopic Hamiltonian (2.6) and the effective medium
approach (Eq. (2.54)). The superlattice has a sinusoidal-type pro-
file with period a = 10 nm. The mean electric potential is set
equal to zero (Vav = 0). The initial electronic state (the bright
spot in Fig. 2.8(a)) is taken as a Gaussian wave packet with radial
width RG = 2.82a. The quasi-momentum of the wave packet is set
so that it propagates along the x−direction with the quasi-energy
E0a/�vF ≈ 1.9.69

Figures 2.8(b), 2.8(c) and 2.8(d) show the calculated trans-
verse profiles of the probability density function sampled at different
instants of time, for pristine graphene (χ = 1) and for superlattices
with anisotropy ratio χ = 0.7 and χ = 0, respectively. As expected,
for pristine graphene (Fig. 2.8(b)), the time evolution of the initial
electronic state causes the wave packet to diffract and increase its
characteristic size. In pristine graphene, the group velocity is inde-
pendent of the direction of propagation, and hence there is no pre-
ferred direction of motion.

Quite differently, in a graphene superlattice with χ = 0
(Fig. 2.8(d)) the electronic state is unaffected by diffraction and the
shape of the wave front does not change with time. Crucially, the time
evolution predicted by the exact microscopic Hamiltonian (dashed
lines) is practically coincident with that predicted by the effective
medium formulation (solid lines). Indeed, as further demonstrated
in the example of Fig. 2.9(a), the effective medium Hamiltonian can
determine very accurately the time evolution of an initial electronic
state that is less localized than the period a. When the characteris-
tic size of the initial state is comparable or less than a, the effective



September 8, 2017 17:20 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch02 page 68

68 Handbook of Metamaterials and Plasmonics — Volume 1
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Fig. 2.8. (a) Sketch of the initial macroscopic electronic state (the bright spot).
(b)–(d) Transverse profile of the probability density function (normalized to arbi-
trary units) at x = 0 and sampled at the time instant t = 0, at x1 = 12.35a and
t = t1 = 2000∆t, and at x3 = 24.73a and t = t2 = 4000∆t, being ∆t = 0.62 as.
Panel (b) is for pristine graphene (χ = 1,V = 0), panel (c) is for a superlattice
with χ = 0.7 (in the microscopic model Vosca/�vF ≈ 3.58), and panel (d) is
for a superlattice with χ = 0 (in the microscopic model Vosca/�vF ≈ 7.55). In
all the plots, the dashed lines represent the microscopic theory results, and the
solid thick lines represent the effective medium results. The microscopic potential
has a sinusoidal profile with period a = 10 nm. Reprinted with permission from
Ref. 69.

medium theory and the microscopic theory give diverging results
(Figs. 2.9(b) and 2.9(c)).

Importantly, the effective medium formulation can be extended
to graphene heterostructures formed by non-uniform (with
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Fig. 2.9. Profiles of the probability density function after the initial state (ini-
tially centered at the origin) propagates during 1000∆t seconds. Left: effective
medium result. Right: microscopic theory result; The superlattice is characterized
by an extreme anisotropy χ = 0 (in the microscopic model Vosca/�vF ≈ 7.55)
and has the same parameters as in Fig. 2.8. The initial state has the radial width
(a) RG = 4a (b) RG = a and (c) RG = 0.25a. Adapted from Ref. 69.

parameters varying in space) superlattices, as well as to characterize
the scattering of electron waves by graphene nanostructures. Detailed
examples are reported in Refs. 68 and 69.

2.5. Homogenization Near the Corners
of the Brillouin Zone

In Section 2.4, the “low energy” electronic states are always associ-
ated with a wavevector near the origin (Γ point, k = 0). This prop-
erty also applies to the graphene superlattice example. Indeed, within
the validity of the microscopic Hamiltonian (2.6), the wavevector k
is measured with respect to the K point of the Brillouin zone, and
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hence it is near zero in the vicinity of the Dirac point. Importantly, at
a more fundamental level one should take into account that graphene
is itself a 2D periodic material described by the Schrödinger equa-
tion, with an electric potential V that has the honeycomb symmetry
with two carbon atoms per unit cell.35 Within this more fundamental
description, the physics of graphene is determined by the K and K ′

points at the edges of the Brillouin zone, which are the points where
the conduction and valence bands of graphene meet.35

The objective of this section is to discuss how to homogenize sys-
tems wherein the relevant wave phenomena are determined by points
of the k-space different from the origin. To better illustrate the ideas,
the discussion is focused on the problem of homogenization of “arti-
ficial graphene”: a 2D electron gas (2DEG) nanopatterned with scat-
tering centers organized in a lattice with the honeycomb symmetry
(Fig. 2.1(c)).33 Such a superlattice has an electronic band structure
analogous to graphene and exhibits linearly dispersing bands near
the K and K ′ points at some Dirac energy, ED.33 The electron wave
propagation in artificial graphene may be described by the Hamil-
tonian (2.5), m being the effective electron mass in the electron gas
(which is assumed independent of the position) and V is a periodic
function taken to be V0 inside the circular scattering centers, and
zero outside.33,66 The circular scattering centers have radius R, and
the nearest neighbor distance is a.

The effective Hamiltonian Hef(k, E) of the modulated 2DEG can
be determined in a straightforward manner following the ideas of Sec-
tion 2.3.3. The calculation of Hef(k, E) requires the use of numerical
methods.66 It should be noted that Hef(k, E) is a scalar function
because the wave function in Eq. (2.5) is a scalar. Moreover, since
the relevant physics is determined by the corners of the first Brillouin
zone, the set B.Z. in Eq. (2.11) should be taken equal to a translated
version of the first Brillouin such that both the K and K ′ points are
interior to the set.

In order to describe the wave dynamics of the low-energy states
near the K point, it is tempting to mimic the ideas of Section 2.4 and
expand Hef(k, E) in a Taylor series around k = K. Unfortunately,
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Fig. 2.10. Effective Hamiltonian near theK point as a function of the normalized
wave vector q = q(cos θ, sin θ) for different directions of propagation and E =
−0.33 meV, V0 = −0.8 meV, and R/a = 0.35. The vertical dashed lines indicate
the zeros of Hef − E. Reprinted with permission from Ref. 66.

such an approach does not work. Indeed, it turns out that the
effective Hamiltonian Hef(k, E) has a direction-dependent resonant
behavior near the K point and therefore the Taylor series is useless.
This property is illustrated in Fig. 2.10, which depicts Hef(k, E)−E
as a function of q, q = k −K being the wavevector measured with
respect to the K point. Thus, it follows that the system is strongly
spatially dispersive at the corners of the Brillouin zone.

Remarkably, it is possible to avoid the strong spatial dispersion
effects by considering a pseudo-spinor description of the wave prop-
agation, such that the macroscopic wave function becomes a two-
component vector.66 This can be done with a generalization of the
theory of Section 2.3, as described next.

The strong spatial dispersion of Hef(k, E) can be attributed to
the fact that the wave function can have significant fluctuations
within each unit cell because there are two inequivalent scattering
sites per cell. This property suggests that the definition of macro-
scopic state may be too restrictive for the system under study. Indeed,
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Fig. 2.11. Partition of space determined by the characteristic functions χ1 and
χ2. The circular dots represent the scattering centers of the honeycomb lattice.
Reprinted with permission from Ref. 66.

a macroscopic electronic state cannot be more localized than the
lattice period, and hence the two sub-lattices of the modulated 2DEG
are not distinguished in the effective medium theory. Inspired by the
pseudo-spinor formalism of graphene,35 next we introduce general-
ized macroscopic states that allow for the discrimination of the two
sub-lattices.

As illustrated in Fig. 2.11, the idea is to consider a partition of
the unit cell into two regions (i = 1, 2). Each region is described
by a characteristic periodic function, χi(r), such that χ1 + χ2 = 1.
The function χi assumes the value 1 in the ith region and is zero
otherwise. By definition, a generalized macroscopic state is of the
form ψ = ψ1χ1 + ψ2χ2 with ψi = {ψi}av (i = 1, 2). Evidently, this
definition extends that of Section 2.3 and allows the macroscopic
states to be as localized as each individual scattering center.
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To obtain an effective medium description of the generalized
macroscopic states, the Schrödinger equation (2.1) is rewritten as66(

χ1Ĥχ1 χ1Ĥχ2

χ2Ĥχ1 χ2Ĥχ2

)
︸ ︷︷ ︸

Ĥg

·ψg = i�
∂

∂t
ψg, ψg =

(
χ1ψ

χ2ψ

)
, (2.56)

where Ĥg is a generalized two-component microscopic Hamiltonian.
The two-component wave function ψg may be regarded as a micro-
scopic pseudo-spinor. Each of the components of ψg is associated
with a specific sub-lattice of the modulated 2DEG.

Similar to Section 2.3, the goal is to introduce a generalized
effective Hamiltonian Ĥg,ef that describes the time evolution of
generalized macroscopic initial states ψt=0 = ψ1,t=0χ1 + ψ2,t=0χ2.
The effective Hamiltonian must ensure that (Ĥg,ef ·Ψg)(r, t) =
{(Ĥg · ψg)(r, t)}avfor any initial macroscopic state (Fig. 2.2). Here,
Ψg = {ψg}av is the macroscopic pseudo-spinor.

To determine the effective Hamiltonian in the Fourier domain,
Hg,ef(k, E), it is supposed that −i�ψi,t=0 = fie

ik·r where the weight-
ing factors, fi, can be chosen arbitrarily. Then, calculating the uni-
lateral Fourier (Laplace) transform in time of Eq. (2.56) it is found
that

(Ĥg − E) · ψg =

(
χ1f1

χ2f2

)
eik·r. (2.57)

Because the effective Hamiltonian must guarantee that (Ĥg · ψg)av =
Hg,ef(k, E) · ψg,av, the above equation implies that66

[Hg,ef(k, E)− E] · ψg,av =
1
2

(
f1

f2

)
, (2.58)

where ψg,av and (Ĥg · ψg)av are given by formulas analogous to
Eq. (2.24). Thus, by solving the microscopic problem (2.57) for
two independent sets of weighting factors fi and by finding the
corresponding ψg,av using Eq. (2.24), it is possible to compute the
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Fig. 2.12. Dirac energy (left) and Fermi velocity (right) as a function of the
potential V0 calculated using the effective medium theory for the Dirac cone near
the K point. The radius of the scattering centers is R/a = 0.35. Adapted from
Ref. 66.

two-component effective Hamiltonian with Eq. (2.58). These ideas
are developed in detail in Ref. 66.

Importantly, in contrast with the single-component Hamiltonian
(Fig. 2.10), the two-component Hamiltonian Hg,ef(k, E) is a smooth
function of the wave vector near the Dirac points K and K ′, and
thus it can be approximated by a first-order Taylor series around the
Dirac points. It was demonstrated in Ref. 66 that such an expansion
leads — after a suitable renormalization of the pseudo-spinor — to the
same massless 2D Dirac equation (2.6) that describes the physics of
graphene. Hence, the generalized effective medium theory described
here gives a “first principles” demonstration that the low-energy elec-
tron wave propagation in “artificial graphene” is described by the
Dirac massless equation. Moreover, from the coefficients of the Taylor
expansion of Hg,ef(k, E) it is possible to compute the dependence of
the equivalent Fermi velocity vF and of the Dirac energy ED as a
function of the height of the potential wells −V0 associated with the
scattering centers.66 An illustrative example is reported in Fig. 2.12.

2.6. Quadratic Forms

In the following, we discuss how to determine some quadratic forms
of the electromagnetic fields (in case of light waves) or of the
wave function (in case of quantum systems) relying on the effective
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medium framework. Examples of such quadratic forms are the elec-
tromagnetic energy density or the probability density function.

2.6.1. Hermitian symmetry

A key property of the Hamiltonian operator Ĥ in quantum physics
is that it is Hermitian. The Hermitian symmetry guarantees that
the wave function ψ(t) differs from the initial state ψ(0) by a uni-
tary transformation, and hence the norm 〈ψ|ψ〉 is independent of
time. In particular, |ψ(r, t)|2 is the probability density function for
the particle position, and its integral over the space coordinates is
independent of time.

The effective Hamiltonian Ĥef defined in Section 2.3 describes
the time dynamics of the envelope-function Ψ(r, t). As previously
mentioned, in contrast with the microscopic Hamiltonian, the action
of the effective Hamiltonian on the macroscopic state vector is not
“local” in time and depends on the past history of the state vec-
tor. Thus, the operator Ĥef has a completely different nature than
the microscopic Hamiltonian, and the notion of Hermitian symme-
try does not directly apply. Yet, in the Fourier domain the Hermi-
tian symmetry is recovered, and specifically for quantum systems,
Hef(k, E) is Hermitian symmetric.

To prove such a property, we rewrite Eq. (2.25) as

(Ĥ − E) ·ψ = 1S×S e
ik·r, (2.59)

where 1S×S is the identity matrix of rank S and ψ = [ψ(1) · · · ψ(S)]
should be understood as a S × S matrix whose columns are the
solutions ψ(l) of Eq. (2.25) for −i�ψ(l)

t=0 = eik·rul. Multiplying both
sides of Eq. (2.59) by ψ† and integrating the resulting expression
over the unit cell Ω, it is found that

ψ†
av = [〈ψ(i)|Ĥ − E|ψ(j)〉]i,j. (2.60)

The right-hand side represents a S×S matrix with generic i,j element
given by 〈ψ(i)|Ĥ − E|ψ(j)〉, where

〈f |g〉 =
1
Vcell

∫
Ω
dNr f∗(r)g(r) (2.61)
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is the canonical inner product in the unit cell. The matrix ψav is given
by ψav = [ψ(1)

av · · · ψ
(S)
av ] where the column vectors are defined as

in Section 2.3.4.
For quantum systems, the operator Ĥ is Hermitian with respect

to the canonical inner product, and hence the matrix on the right-
hand side of Eq. (2.60) is Hermitian. This property shows that ψav

is also a Hermitian matrix, and from Eq. (2.26) it finally follows
that Hef(k, E) is Hermitian symmetric, as we wanted to prove. It
is important to highlight that the Hermitian symmetry does not
apply to the electromagnetic case, because the operator Ĥ for light
waves (Eq. (2.4)) is not Hermitian with respect to the canonical inner
product.

2.6.2. The probability density function and the

probability current for quantum systems

A crucial observation is that the operation of spatial averaging does
not commute with the multiplication operation. Thus, in general
the averaged probability density function calculated with the micro-
scopic theory cannot be identified with the squared amplitude of the
envelope-function Ψ(r, t) = {ψ(r, t)}av:

Ψ∗ ·Ψ(r, t) �= {ψ∗ · ψ(r, t)}av. (2.62)

In other words, typically |Ψ(r, t)|2 cannot be regarded as the proba-
bility density function for the particle position, and thus its integral
over the spatial coordinates may be time dependent.7

This result may seem at first surprising, but actually is a con-
sequence of the fact that Ψ(r, t) only describes the envelope of the
microscopic wave function. Even though when the initial state is
macroscopic one has ψ = Ψ at the time origin t = 0, as time passes
ψ(r, t) may depart significantly from a pure macroscopic state and
hence it can have strong fluctuations on the scale of the unit cell. In
contrast, Ψ(r, t) always varies slowly on the scale of the unit cell and
this explains the property (2.62).

Ultimately, Eq. (2.62) is a consequence of the dispersive nature
of the effective Hamiltonian, which is usually energy dependent. If
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Hef(k, E) is weakly dependent on E, then from the analysis of Sec-
tion 2.6.1 one may conclude that Ĥef is also Hermitian, and in that
case |Ψ(r, t)|2 can be identified with the probability density function.

Importantly, for the energy stationary states the averaged proba-
bility density function is precisely determined by the effective Hamil-
tonian. Specifically, it can be proven that for Bloch stationary states
(ψ) of the microscopic Hamiltonian, one has the following exact result
(see Ref. 66 and the supplementary materials of Ref. 68):

{ψ∗ · ψ}av = Ψ∗ ·
(

1− ∂Hef

∂E

)
·Ψ. (2.63)

Thus, for Bloch states the averaged probability density function can
be written in terms of the macroscopic wave function and the energy
derivative of the effective Hamiltonian. In the absence of energy dis-
persion, one obtains {ψ∗ · ψ}av = Ψ∗ ·Ψ, consistent with the previous
discussion.

Moreover, supposing that the microscopic Hamiltonian is of the
form Ĥ = Ĥ(−i∇, r) it is possible to demonstrate that for Bloch
stationary states the spatially averaged probability current j = ψ∗ ·
�
−1∂Ĥ/∂k · ψ with k = −i∇ exactly satisfies:{

ψ∗ · 1
�

∂Ĥ

∂k
(−i∇, r) · ψ

}
av

= Ψ∗ · 1
�

∂Hef

∂k
·Ψ. (2.64)

Hence, in the macroscopic framework, the spatially averaged proba-
bility current can be identified with the right-hand side of Eq. (2.64).
Applications of Eqs. (2.63)–(2.64) are discussed in Refs. 66, 68, 70.

In summary, for Bloch stationary states both the probability den-
sity function and the probability current are rigorously determined
by the effective medium theory. Note that for Bloch waves one has

{ψ∗ · ψ}av =
1
Vcell

∫
Ω
ψ∗ · ψ dNr. (2.65)

A similar expression can be written for
{
ψ∗ · 1

�

∂Ĥ
∂k (−i∇, r) · ψ

}
av

.
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2.6.3. The energy density and the Poynting vector

for electromagnetic systems

The light counterparts of the probability density function and of the
probability current are the electromagnetic energy density and the
Poynting vector. Interestingly, similar to the case of electron waves,
such quadratic forms of the fields can be rigorously determined in
a time-harmonic stationary regime. Specifically, let us consider a
generic periodic electromagnetic metamaterial that is described at
the microscopic level by a lossless permittivity function ε = ε(r, ω)
and by the permeability µ = µ0. As discussed in Section 2.3.5, in the
effective medium approach such systems are fully characterized by a
non-local dielectric function εef(k, ω). Let us consider a generic Bloch
electromagnetic mode of the metamaterial with a time-harmonic
variation e−iωt and associated with the complex microscopic elec-
tromagnetic fields e and b. The spatially averaged electromagnetic
energy density and Poynting vector are defined as follows:

Wav =
1

4Vcell

∫
Ω

|b|2
µ0

d3r+
1

4Vcell

∫
Ω

∂

∂ω
(ωε)|e|2d3r, (2.66)

Sav =
1
Vcell

∫
Ω

1
2
Re
{
e× b∗

µ0

}
d3r. (2.67)

Then, in analogy with Section 2.6.2, it is possible to prove that Wav

and Sav can be written in terms of the macroscopic fields and of the
effective dielectric function as follows71−73:

Wav =
1
4
|B|2
µ0

+
1
4
E∗ · ∂

∂ω
(ωεef) ·E, (2.68)

Sav · l̂ =
1
2
Re
{
E× B∗

µ0

}
· l̂ − 1

4
ωE∗ · ∂εef

∂kl
(k, ω) · E, l = x, y, z.

(2.69)

In the above, E = {e}av and B = {b}av represent the macroscopic
fields associated with the Bloch mode with wavevector k. It is empha-
sized that Eqs. (2.68)–(2.69) are exact for lossless electromagnetic
systems.71,73
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Moreover, if the metamaterial response can be assumed to a good
approximation local so that Eq. (2.36) holds, then Eqs. (2.68)–(2.69)
reduce to

Wav =
1
4
∂

∂ω
(ωµ0µL)|HL|2 +

1
4
∂

∂ω
(ωε0εL)|E|2, (2.70)

Sav =
1
2
Re{E×H∗

L}, (2.71)

where HL ≡ µ−1
0 µ−1

L B is by definition the macroscopic local mag-
netic field. It is relevant to highlight that the formulas (2.68)–(2.69)
for the stored energy density and for the Poynting vector are coinci-
dent with well-known formulas for an electromagnetic spatially dis-
persive continuum.48 Similarly, Eqs. (2.70)–(2.71) are coincident with
the classical textbook formulas for the energy density and for the
Poynting vector in dispersive isotropic dielectrics.48 Thus, the the-
ory of Refs. 71–73 proves that these classical textbook formulas for
a continuum describe precisely the spatially averaged microscopic
energy density and Poynting vector within the effective medium the-
ory discussed here.

To illustrate the described ideas, next we consider a 2D meta-
material formed by a square array of high-index dielectric cylin-
drical inclusions with radius R/a = 0.435, permittivity εd = 50.47
and permeability µ = 1 embedded in a host material characterized
by a lossless Drude dispersion model with εh = 1 − ω2

p/ω
2. The

lattice period is a and the normalized plasma frequency is taken
equal to ωpa/c = 1.0. The geometry of the unit cell is depicted
in the inset of Fig. 2.13(d). The magnetic field is polarized along
the z-direction (parallel to the cylinders axes) and the electric field
is in the xoy plane. Similar to the example of Section 2.4.1, to a
good approximation this metamaterial has a local response and is
characterized by local effective parameters that satisfy εL ≈ µL

in a broad frequency range (see Fig. 2.13(a)). In particular, below
the plasma frequency ω < ωp the material behaves as a double-
negative material with simultaneously negative permittivity and
permeability.73
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(a) (b)

(c) (d)

Fig. 2.13. (a) Local permittivity εL and local permeability µL versus the nor-
malized frequency ωa/c. The discrete symbols are calculated with the effective
medium theory and the solid lines are calculated using the Clausius–Mossotti
formulas. The inset shows the wavevector kx as a function of frequency. (b)
x-component of the Poynting vector calculated using: (i) Averaged microscopic
Poynting vector (solid line) [Eq. (2.67)]; (ii) Non-local homogenization (circles)
[Eq. (2.69)]; (iii) Local effective parameters (diamonds) [Eq. (2.71)]; (iv) Result
obtained with the erroneous definition of the Poynting vector of Ref. 74 (dashed
line). (c) Electromagnetic energy density calculated using: (i) Averaged micro-
scopic energy density (solid line) [Eq. (2.66)]; (ii) Non-local homogenization
(circles) [Eq. (2.68)]; (iii) Local effective parameters (diamonds) [Eq. (2.70)].
(d) Heating rate calculated using: (i) Averaged microscopic heating rate (solid
line) [Eq. (2.72)]; (ii) Non-local homogenization (circles) [Eq. (2.73)]; (iii) Local
effective parameters (diamonds) [Eq. (2.74)]. The unit cell geometry is shown in
the inset. Reprinted with permission from Ref. 73.

Figures 2.13(b) and 2.13(c) show a comparison between the
numerically calculated spatially averaged Poynting vector and
energy density (Eqs. (2.66)–(2.67)) and the same quantities deter-
mined using the non-local electromagnetic continuum formulas
(Eqs. (2.68)–(2.69)). The non-local dielectric function is obtained as
explained in Section 2.3.5 and the macroscopic fields are found by
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spatially averaging the microscopic Bloch modes. As seen, the numer-
ical results confirm that Eqs. (2.66)–(2.67) and Eqs. (2.68)–(2.69)
give coincident results. Figures 2.13(b) and 2.13(c) also reveal that
the results predicted by the local approximation (Eqs. (2.70)–(2.71))
are quite accurate, especially below the plasma frequency. In con-
trast, the Poynting vector computed with the erroneous formula
Sav = 1/2Re{E × B∗} proposed in Ref. 74 to describe the energy
density flux in metamaterials gives a completely disparate result.
Indeed, such a formula neglects the artificial magnetism induced by
the high-permittivity cylinders, and incorrectly implies that neg-
ative refraction and backward propagation are impossible in the
metamaterial.71,72,74

It is emphasized that the equivalence between Eqs. (2.66)–(2.67)
and Eqs. (2.68)–(2.69) is only observed for lossless materials. In case
of material loss, the equivalence is only approximate.73 Interestingly,
in the lossy case the effective medium theory can predict exactly
the heating rate due to the material absorption in time-harmonic
regime. Specifically, defining the spatially averaged microscopic heat-
ing rate as

qav =
1
Vcell

∫
Ω

ω

2
ε′′(r)|e(r)|2d3r, (2.72)

it can be shown that it is exactly coincident with the result predicted
by the corresponding continuum formula71−73:

qav =
1
2
Re{−iωE∗ · εef(k, ω) ·E}. (2.73)

When the material response is approximately local, the continuum
formula becomes simply

qav =
1
2
ωε0ε

′′
L(ω)|E|2 +

1
2
ωµ0µ

′′
L(ω)|HL|2. (2.74)

Figure 2.13(d) shows the comparison among these three defini-
tions (2.72)–(2.74) for a host medium with normalized damping fre-
quency Γ/ωp = 0.1 and a cylinder permittivity εd = 50.47 + 0.1i.
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The numerical results confirm that Eqs. (2.72)–(2.73) give coincident
results. Figure 2.13(d) also reveals that Eq. (2.74) is nearly exact for
this example.

2.7. Summary

We described a completely general self-consistent approach to char-
acterize the wave propagation in periodic systems from an effective
medium perspective. The theory relies on the introduction of an
effective Hamiltonian operator that regards the system as a contin-
uum. The effective Hamiltonian describes exactly the time evolution
of the wave packet envelope when the initial state is less localized
than the lattice period. In addition, the effective Hamiltonian deter-
mines completely the band diagram of the time-stationary states of
the periodic system. The described theory can be applied to a wide
range of physical systems. Here, we illustrated its application to the
homogenization of electromagnetic metamaterials and to the homog-
enization of semiconductor and graphene superlattices. In particular,
it was highlighted that the effective medium description can often
be simplified based on the extraction of local effective parameters
from the effective Hamiltonian, even for systems wherein the rele-
vant physics is determined by points at the corners of the Brillouin
zone. Finally, it was shown that the effective Hamiltonian determines
exactly some quadratic forms related to the energy density and the
energy transport.
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Hyperbolic metamaterials were originally introduced to overcome the
diffraction limit of optical imaging. Soon thereafter, it was realized
that hyperbolic metamaterials demonstrate a number of novel phenom-
ena resulting from the broadband singular behavior of their density of
photonic states. These novel phenomena and applications include super-
resolution imaging, new stealth technologies, enhanced quantum elec-
trodynamic effects, thermal hyperconductivity, superconductivity and
interesting gravitation theory analogs. Here, we briefly review typical
material systems which exhibit hyperbolic behavior and outline impor-
tant applications of hyperbolic metamaterials.

3.1. Hyperbolic Metamaterial Geometries
and Basic Properties

Hyperbolic metamaterials are extremely anisotropic uniaxial mate-
rials which behave like a metal in one direction and like a
dielectric in the orthogonal direction. Originally introduced to
overcome the diffraction limit of optical imaging,1,2 hyperbolic
metamaterials demonstrate a number of novel phenomena result-
ing from the broadband singular behavior of their density of
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photonic states,3 which range from super-resolution imaging2,4,5

to enhanced quantum electrodynamic effects,6−8 new stealth
technology,9 thermal hyperconductivity,10 high critical tempera-
ture (Tc) superconductivity,11,12 and interesting gravitation theory
analogs.3,13−17 In the early days of metamaterial research, it was
believed that only artificially structured materials may exhibit hyper-
bolic properties. However, later on it was realized that quite a few
natural materials may exhibit hyperbolic properties in some fre-
quency ranges.11,18 Moreover, even the physical vacuum may exhibit
hyperbolic metamaterial properties if subjected to a very strong mag-
netic field.19

Basic electromagnetic properties of hyperbolic metamateri-
als may be understood by considering a non-magnetic uniaxial
anisotropic material with dielectric permittivities εx = εy = ε1 and
εz = ε2. Any electromagnetic field propagating in this material may
be expressed as a sum of ordinary and extraordinary contributions,
each of these being a sum of an arbitrary number of plane waves
polarized in the ordinary (Ez = 0) and extraordinary (Ez �= 0) direc-
tions. Let us define a “scalar” extraordinary wave function as ϕ = Ez

so that the ordinary portion of the electromagnetic field does not
contribute to ϕ. Maxwell equations in the frequency domain result
in the following wave equation for ϕω if ε1 and ε2 are kept constant
inside the metamaterial3:

ω2

c2
ϕω = − ∂

2ϕω

ε1∂z2 −
1
ε2

(
∂2ϕω

∂x2 +
∂2ϕω

∂y2

)
. (3.1)

While in ordinary elliptic anisotropic media, both ε1 and ε2 are pos-
itive, in hyperbolic metamaterials ε1 and ε2 have opposite signs.
These metamaterials are typically composed of multilayer metal–
dielectric or metal wire array structures, as shown in Fig. 3.1. The
opposite signs of ε1 and ε2 lead to two important consequences. For
extraordinary waves in a usual uniaxial dielectric metamaterial, the
dispersion law

k2
xy

ε2
+
k2

z

ε1
=
ω2

c2
, (3.2)
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Fig. 3.1. Typical geometries of hyperbolic metamaterials: (a) multilayer metal–
dielectric structure, and (b) metal wire array structure.

describes an ellipsoid in the wave momentum (k-) space (which
reduces to a sphere if ε1 = ε2, as shown in Fig. 3.2(a)). The abso-
lute value of the k-vector in such a material is finite, which leads
to the usual diffraction limit on resolution of regular optics. The
phase space volume enclosed between two such equi-frequency sur-
faces is also finite, corresponding to a finite density of photonic states.
However, when one of the components of the dielectric permittivity
tensor is negative, Eq. (3.2) describes a hyperboloid in the phase
space (Fig. 3.2(b)). As a result, the absolute value of the k-vector
is not limited, thus enabling super-resolution imaging with hyper-
bolic metamaterials. Moreover, the phase space volume between two
such hyperboloids (corresponding to different values of frequency)
is infinite (see Fig. 3.2(c)). The latter divergence leads to an infi-
nite density of photonic states. While there are many mechanisms
leading to a singularity in the density of photonic states, this one
is unique as it leads to the infinite value of the density of states for
every frequency where different components of the dielectric permit-
tivity have opposite signs. It is this behavior that lies at the heart of
the robust performance of hyperbolic metamaterials: while disorder
can change the magnitude of the dielectric permittivity components,
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Fig. 3.2. The constant frequency surfaces for (a) isotropic dielectric
(ε1 = ε2 > 0) and (b) uniaxial hyperbolic (εx = εy = ε1 > 0, εz = ε2 < 0) meta-
material. (c) The phase space volume between two constant frequency surfaces
for the hyperbolic metamaterial.

leading to a deformation of the corresponding hyperboloid in the
phase (momentum) space, it will remain a hyperboloid and will there-
fore still support an infinite density of states. Such effective medium
description will eventually fail at the point when the wavelength of
the propagating mode becomes comparable to the size of the hyper-
bolic metamaterial unit cell a, introducing a natural wave number
cut-off:

kmax = 1/a. (3.3)

Depending on the metamaterial design and the fabrication method
used, the unit cell size in optical metamaterials runs from a ∼ 10 nm
(in semiconductor20 and metal–dielectric layered structures6) to
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Fig. 3.3. Dispersion law of surface plasmon polaritons in the lossless
approximation.

a ∼ 100 nm (in nanowire composites21,22). Since the “hyperbolic”
enhancement factor in the density of states3 scales as

ρ(ω) = ρ0(ω)
(
kmax

ω/c

)3

, (3.4)

where ρ0 ∼ ω2 is the free-space result, even with the cut-off taken
into account, the hyperbolic singularity leads to the optical den-
sity of states enhancement by a factor of 103–105. Physically, the
enhanced photonic density of states in the hyperbolic metamate-
rials originates from the waves with high wave numbers that are
supported by the system. Such propagating modes that can achieve
X-ray wavelengths at optical frequencies do not have an equivalent in
“regular” dielectrics where k ≤ √εω/c. Since each of these waves can
be thermally excited, a hyperbolic metamaterial shows a dramatic
enhancement in the radiative transfer rates.

As has been mentioned above, artificial hyperbolic metamaterials
are typically composed of multilayer metal–dielectric or metal wire
array structures, as shown in Fig. 3.1. For the multilayer geometry,
the diagonal components of the metamaterial permittivity can be
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calculated based on the Maxwell–Garnett approximation as follows:

ε1 = εxy = nεm + (1− n) εd, ε2 = εz =
εmεd

(1− n) εm + nεd
,

(3.5)

where n is the volume fraction of the metallic phase and εm < 0
and εd > 0 are the dielectric permittivities of the metal and dielec-
tric, respectively.23 The validity of Maxwell–Garnett approximation
has been clearly demonstrated in Ref. 23. Analytical calculations
based on the Maxwell–Garnett approximation performed for peri-
odic array of metal nanolayers were confronted with exact numer-
ical solutions of Maxwell equations. Excellent agreement between
numerical simulations and analytical results was demonstrated. The
Maxwell–Garnett approximation may also be used for a wire array
metamaterial structure.23 In this case, the diagonal components of
the permittivity tensor may be obtained as

ε1 = εx,y =
2nεmεd + (1− n)εd(εd + εm)

(1− n) (εd + εm) + 2nεd
,

ε2 = εz = nεm + (1− n)εd. (3.6)

Since both εm and εd depend on frequency, the frequency regions
where ε1 and ε2 have opposite signs may be typically found for both
multilayer and wire array geometries. Depending on the actual signs
of ε1 and ε2, the phase space shape of the hyperbolic dispersion law
may be either a one-sheet (ε2 > 0 and ε1 > 0, see Fig. 3.2(b)) or
two-sheet (ε2 < 0 and ε1 > 0, see Fig. 3.2(d)) hyperboloid. However,
in both cases the k-vector is not limited, and the photonic density of
states exhibits broadband divergent behavior.

We should also note that it is relatively easy to emulate various
3D hyperbolic metamaterial geometries by planar plasmonic meta-
material arrangements. While rigorous description of such metama-
terials in terms of Diakonov surface plasmons (SPs) may be found
in Ref. 24, qualitative analogy between 3D and 2D metamaterials
may be explained as follows. An SP propagating over a flat metal–
dielectric interface may be described by its well-known dispersion
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relation shown in Fig. 3.3.

kp =
ω

c

(
εdεm
εd + εm

)1/2

, (3.7)

where metal layer is considered to be thick, and εm(ω) and εd(ω)
are the frequency-dependent dielectric constants of the metal and
dielectric, respectively.25 Thus, similar to the 3D case, we may intro-
duce an effective 2D dielectric constant ε2D, which characterizes the
way in which SPs perceive the dielectric material deposited onto the
metal surface. By requiring that kp = ε

1/2
2D ω/c, we obtain

ε2D =
(

εdεm
εd + εm

)
. (3.8)

Equation (3.8) makes it obvious that depending on the plasmon
frequency, SPs perceive the dielectric material bounding the metal
surface (for example a PMMA layer) in drastically different ways.
At low frequencies ε2D ≈ εd, so that plasmons perceive a PMMA
layer as a dielectric. On the other hand, at high enough frequencies
at which εd(ω) > −εm(ω) (this happens around λ0 ∼ 500 nm for a
PMMA layer), ε2D changes sign and becomes negative. Thus, around
λ0 ∼ 500 nm, plasmons perceive a PMMA layer on gold as an “effec-
tive metal”. As a result, at around λ0 ∼ 500 nm plasmons perceive
a PMMA stripe pattern on gold substrate as a layered hyperbolic
metamaterial shown in Fig. 3.1(a). Fabrication of such plasmonic
hyperbolic metamaterials in two dimensions requires only very sim-
ple and common lithographic techniques.4

3.2. Super-Resolution Imaging Using Hyperbolic
Metamaterials: The Hyperlens

Optical microscopy is one of the oldest research tools. Its develop-
ment began in about 1590 with the observation by the Dutch spec-
tacle maker Zaccharias Janssen and his son Hans that a combination
of lenses in a tube made small objects appear larger. In 1609, Galileo
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Galilei improved on their ideas and developed an occhiolino or com-
pound microscope with a convex and a concave lens The acknowl-
edged “father” of microscopy is, however, Anton van Leeuwenhoek
(1632–1723) who developed improved grinding and polishing tech-
niques for making short focal length lenses, and he was the first
person to consequently see bacteria, protozoa and blood cells.

Although various electron and scanning probe microscopes have
long surpassed the compound optical microscope in resolving power,
optical microscopy remains invaluable in many fields of science. The
practical limit to the resolution of a conventional optical microscope
is determined by diffraction: a wave cannot be localized to a region
much smaller than half of its vacuum wavelength λ0/2. Immersion
microscopes introduced by Abbe in the 19th century have slightly
improved resolution, on the order of λ0/2n because of the shorter
wavelength of light λ0/n in a medium with refractive index n. How-
ever, immersion microscopes are limited by the small range of refrac-
tive indices n of available transparent materials. For a while, it was
believed that the only way to achieve nanometer-scale spatial res-
olution in an optical microscope was to detect evanescent optical
waves in very close proximity to a studied sample using a near-field
scanning optical microscope (NSOM).26 Although many fascinating
results are being obtained with NSOM, such microscopes are not
as versatile and convenient to use as regular far-field optical micro-
scopes. For example, an image from a near-field optical microscope
is obtained by point-by-point scanning, which is an indirect and a
rather slow process, and can be affected by artifacts of the sample.

An important early step to overcome this limitation was made in
SP-assisted microscopy experiments,27 in which 2D image magnifica-
tion was achieved. In this microscope design, the dispersion behavior
of SPPs propagating in the boundary between a thin metal film and
a dielectric (3.7) was exploited to use the 2D optics of SPPs with a
short wavelength to produce a magnified local image of an object on
the surface. If the dispersion curve of SPPs on gold is examined, an
excitation wavelength that provides a small group velocity gives rise
to a 2D SPP diffraction limit that is on the order of λSPP = λ/ng.
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If a 2D “mirror” structure is fabricated in the surface, in the case
of Ref. 27 using parabolic droplets on the surface (see Fig. 3.4(b)),
then SPPs propagating in the surface reflect or scatter at the bound-
aries of an object placed on the surface. These reflected or scattered
SPPs are then imaged by the surface structure to produce a magni-
fied 2D image. This magnified image can be examined by a far-field
microscope by using light scattered from surface roughness or from
lithographically generated surface structures that scatter propagat-
ing SPPs in to far-field radiation. The increased spatial resolution
of microscopy experiments performed with SPPs27 is based on the
“hyperbolic” dispersion law of such waves, which may be written in
the form

k2
xy − |kz |2 =

εdω
2

c2
, (3.9)

where εd is the dielectric constant of the medium bounding the metal
surface, which for air is =1, kxy = kp is the wave vector component
in the plane of propagation and kz is the wave vector component
perpendicular to the plane. This form of the dispersion relation orig-
inates from the exponential decay of the surface wave field away from
the propagation plane.

The “optical hyperlens” design described by Jacob et al.2 extends
this idea by using a hyperbolic metamaterial made of a concentric
arrangement of metal and dielectric cylinders, which may be char-
acterized by a strongly anisotropic dielectric permittivity tensor in
which the tangential εθ and the radial εr components have opposite
signs. The resulting hyperbolic dispersion relation

k2
r

εθ
− k2

θ

|εr| =
ω2

c2
, (3.11)

does not exhibit any lower limit on the wavelength of propagating
light at a given frequency. Therefore, in a manner similar to the 2D
optics of SPPs, there is no usual diffraction limit in this metamate-
rial medium. Abbe’s resolution limit simply does not exist. Optical
energy propagates through such a metamaterial in the form of radial



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch03 page 96

96 Handbook of Metamaterials and Plasmonics — Volume 1

Fig. 3.4. Two modes of operation of a 2D plasmonic microscope. (a) Plasmon
microscope operating in the “hyperlens mode”: the plasmons generated by the
sample located in the center of the hyperlens propagate in the radial direction.
The lateral distance between plasmonic rays grows with distance along the radius.
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Fig. 3.4. (Continued) The images are viewed by a regular microscope. (b) Plas-
mon microscope operating in the “geometrical optics” mode: nanohole array illu-
minated by external laser light acts as a source of surface plasmons, which are
emitted in all directions. Upon interaction with the sample positioned near the
focal point of the parabolically shaped dielectric droplet, and reflection off the
droplet edge, the plasmons form a magnified planar image of the sample. The
image is viewed by a regular microscope. The droplet edge acts as an efficient
plasmon mirror because of total internal reflection.

rays. Moreover, as demonstrated in Section 1, a pattern of poly-
methyl methacrylate (PMMA) stripes formed on a metal surface (as
shown in Fig. 3.4(a)) behaves as a 2D plasmonic equivalent of the
3D hyperbolic metamaterial. Thus, two modes of operation of a 2D
plasmonic microscope may be implemented, as shown in Figs. 3.4(a)
and 3.4(b). A plasmon microscope may be operated in the “hyperlens
mode” (Fig. 3.4(a)) in which the plasmons generated by the sample
located in the center of the plasmonic hyperlens propagate in the
radial direction. The lateral distance between plasmonic rays grows
with distance along the radius. The images are viewed by a regular
microscope. Alternatively, a 2D plasmon microscope may be operated
in the “geometrical optics” mode as shown in Fig. 3.4(b). A nanohole
array illuminated by external laser light may act as a source of SPs,
which are emitted in all directions. Upon interaction with the sample
positioned near the focal point of the parabolically shaped dielectric
droplet, and reflection off the droplet edge, the plasmons form a mag-
nified planar image of the sample. The image is viewed by a regular
microscope. The droplet edge acts as an efficient plasmon mirror
because of total internal reflection. It appears that both modes of
operation exhibit strong evidence of optical super-resolution.

The internal structure of the magnifying hyperlens (Fig. 3.5(a))
consists of concentric rings of PMMA deposited on a gold film sur-
face. The required concentric structures were defined using a Raith
E-line electron beam lithography (EBL) system with ∼70 nm spatial
resolution. The written structures were subsequently developed using
a 3:1 IPA/MIBK solution (Microchem) as developer and imaged
using AFM (see Fig. 3.4(a)). According to theoretical proposals in
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(a) (b)

Fig. 3.5. (a) Superposition image composed of an AFM image of the PMMA
on gold plasmonic metamaterial structure superimposed onto the corresponding
optical image obtained using a conventional optical microscope illustrating the
imaging mechanism of the magnifying hyperlens. Near the edge of the hyperlens,
the separation of three rays (marked by arrows) is large enough to be resolved
using a conventional optical microscope. (b) Theoretical simulation of ray prop-
agation in the magnifying hyperlens microscope.

Refs. 1 and 2, optical energy propagates through a hyperbolic meta-
material in the form of radial rays. This behavior is clearly demon-
strated in Fig. 3.5(b). If point sources are located near the inner rim
of the concentric metamaterial structure, the lateral separation of the
rays radiated from these sources increases upon propagation towards
the outer rim. Therefore, resolution of an “immersion” microscope
(a hyperlens) based on such a metamaterial structure is defined by
the ratio of inner to outer radii. Resolution appears limited only by
losses, which can be compensated by optical gain.

The magnifying superlenses (or hyperlenses) have been indepen-
dently realized for the first time in two experiments.4,5 In partic-
ular, experimental data obtained using a 2D plasmonic hyperlens
(shown in Fig. 3.5(a)) do indeed demonstrate ray-like propagation
of subwavelength plasmonic beams emanated by test samples. Far-
field optical resolution of at least 70 nm (see Fig. 3.6(f)) has been
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Fig. 3.6. AFM (a–c) and conventional optical microscope (d,e) images of the
resolution test samples composed of three (a,b) and two (c) rows of PMMA dots
positioned near the center of the magnifying hyperlens. The conventional micro-
scope images presented in (d) and (e) correspond to the samples shown in (b)
and (c), respectively. The rows of PMMA dots give rise to either three or two
divergent plasmon “rays”, which are visible in the conventional optical micro-
scope images. (f) The cross-section of the optical image along the line shown in
(d) indicates resolution of at least 70 nm or ∼λ/7.
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demonstrated using such a magnifying hyperlens based on a 2D plas-
monic metamaterial design. Rows of either two or three PMMA dots
have been produced near the inner ring of the hyperlens (Fig. 3.6(b)
and 3.6(c)). These rows of PMMA dots had 0.5 µm periodicity in the
radial direction so that phase matching between the incident laser
light and SPs can be achieved. Upon illumination with an external
laser, the three rows of PMMA dots in Fig. 3.6(b) gave rise to three
divergent plasmon “rays”, which are clearly visible in the plasmon
image in Fig. 3.6(d) obtained using a conventional optical micro-
scope. The cross-section analysis of this image across the plasmon
“rays” (Fig. 3.6(f)) indicates resolution of at least 70 nm or ∼λ/7.
The lateral separation between these rays increased by a factor of
10 as the rays reached the outer rim of the hyperlens. This increase
allowed visualization of the triplet using a conventional microscope.
In a similar fashion, the two rows of PMMA dots shown in Fig. 3.6(c)
gave rise to two plasmon rays, which are visualized in Fig. 3.6(e).

The magnifying action and the imaging mechanism of the hyper-
lens have been further verified by control experiments presented in
Fig. 3.7. The image shown in Fig. 3.7(a) presents results of two actual
imaging experiments (top portion of Fig. 3.7(a)) performed simulta-
neously with four control experiments seen at the bottom of the
same image. In these experiments, two rows of PMMA dots have
been produced near the inner ring of the hyperlens structures seen
at the top and at the bottom of Fig. 3.7(a) (the AFM image of the
dots is seen in the inset). These rows of PMMA dots had 0.5 µm
periodicity in the radial direction so that phase matching between
the incident 515-nm laser light and SPs can be achieved. On the
other hand, no such PMMA dot structure was fabricated near the
control hyperlenses seen in the center of Fig. 3.7(a). Upon illumina-
tion with an external laser, the two rows of PMMA dots gave rise
to the two divergent “plasmon rays,” which are clearly visible in the
top portion of the image in Fig. 3.7(a) obtained using a conventional
optical microscope. No such rays were observed in the four “con-
trol” hyperlenses visible in the bottom portion of the same image.
There was no sample to image for the two hyperlenses located in the
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center of Fig. 3.7(a). On the other hand, the PMMA dot structure
was designed for phase-matched plasmon generation in the “upward”
direction as seen in the image. That is why no plasmon rays are visi-
ble when the hyperlens structures are inverted, as seen in the bottom
of Fig. 3.7(a). When the gold film was replaced with an ITO film in
another control experiment performed using the same experimental
geometry, no hyperlens imaging occurred since no surface plasmons
are generated on ITO surface (see Fig. 3.7(b)). These experiments
clearly verify the imaging mechanism and increased spatial resolution
of the plasmonic hyperlens.

3.3. Consequences of Singular Photonic Density of
States: Radiative Decay Engineering, Thermal
Hyperconductivity, and New Stealth Technologies

As we discussed in Section 1, the broadband divergence of photonic
density of states in a hyperbolic metamaterial is unique since it
leads to the infinite value of the density of states for every frequency
where different components of the dielectric permittivity have oppo-
site signs. This very large number of electromagnetic states can cou-
ple to quantum emitters leading to such unusual phenomena as the
broadband Purcell effect6 and thermal hyperconductivity.10 On the
other hand, free space photons illuminating a roughened surface of a
hyperbolic metamaterial preferentially scatter inside the metamate-
rial, leading to the surface being “darker than black” at the hyper-
bolic frequencies.9 The latter property may find natural applications
in stealth technologies.

As a first example of these unusual quantum behaviors, let us
consider the broadband Purcell effect, which may become extremely
useful for such applications as single-photon sources, fluorescence
imaging, biosensing and single molecule detection. In the spirit
of Fermi’s golden rule, an increased number of radiative decay
channels due to the high-k states in hyperbolic media (available
for an excited atom) must ensure enhanced spontaneous emission.
This enhancement can increase the quantum yield by overcoming
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(a)

(b)

Fig. 3.7.
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Fig. 3.7. (figure on facing page) (a) This image obtained using a conventional
optical microscope presents the results of two imaging experiments (top portion
of the image) performed simultaneously with four control experiments seen at
the bottom of the same image. The rows of PMMA dots shown in the inset AFM
image were fabricated near the two top and two bottom hyperlenses. No such
pattern was made near the two hyperlenses visible in the center of the image.
Upon illumination with an external laser, the two rows of PMMA dots separated
by 130 nm gap gave rise to two divergent plasmon rays shown by the arrows, which
are clearly visible in the top portion of the image. The four control hyperlenses
visible at the bottom do not produce such rays because there is no sample to
image for the two hyperlenses in the center, and the two bottom hyperlenses are
inverted. (b) Same pattern produced on ITO instead of gold film demonstrates
a pattern of ordinary light scattering by the structure without any hyperlens
imaging effects.

emission into competing non-radiative decay routes such as phonons.
A decrease in lifetime, high quantum yield and good collection effi-
ciency can lead to extraction of single photons reliably at a high
repetition rate from isolated emitters.28 The available radiative chan-
nels for the spontaneous photon emission consist of the propagating
waves in vacuum, the plasmon on the metamaterial substrate and the
continuum of high wave vector waves which are evanescent in vac-
uum but propagating within the metamaterial. The corresponding
decay rate into the metamaterial modes when the emitter is located
at a distance a < d � λ (where a is the metamaterial patterning
scale) is6

Γmeta ≈ µ2

2�d3
2
√
εx|εz|

(1 + εx|εz|) . (3.12)

In the close vicinity of the hyperbolic metamaterial, the power from
the dipole is completely concentrated in the large spatial wave vector
channels (Fig. 3.8(a) inset). The same evanescent wave spectrum
when incident on a lossy metal or dielectric would be completely
absorbed, causing a non-radiative decrease in the lifetime of an
emitter (quenching). On the contrary, the metamaterial converts the
evanescent waves to propagating, and the absorption thus affects
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Fig. 3.8. (a) Spontaneous emission lifetime of a perpendicular dipole above a
hyperbolic metamaterial substrate (see inset). Note the lifetime goes to zero in
the close vicinity of the metamaterial as the photons are emitted nearly instantly.
Most of the power emitted by the dipole is concentrated in the large spatial
modes (evanescent in vacuum) which are converted to propagating waves within
the metamaterial. (inset) (b) False color plot of the field of the point dipole in
a plane perpendicular to the metamaterial-vacuum interface (see inset of (a))
depicting the highly directional nature of the spontaneous emission (resonance
cone).

the outcoupling efficiency of the emitted photons due to a finite
propagation length in the metamaterial.

Along with the reduction in lifetime and high efficiency of emis-
sion into the metamaterial, another key feature of the hyperbolic
media is the directional nature of light propagation.6 Figure 3.8(b)
shows the field along a plane perpendicular to the metamaterial–
vacuum interface exhibiting the beamlike radiation from a point
dipole. This is advantageous from the point of view of collection
efficiency of light since the spontaneous emitted photons lie within a
cone. The group velocity vectors in the medium which point in the
direction of the Poynting vector are simply normals to the dispersion
curve. For vacuum, these normals point in all directions, and hence
the spontaneous emission is isotropic in nature. In contrast to this
behavior, the hyperbolic dispersion medium allows wave vectors only
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within a narrow region defined by the asymptotes of the hyperbola.
Hence, the group velocity vectors lie within the resonance cone, giv-
ing rise to a directional spontaneously emitted photon propagating
within the metamaterial.

Since its theoretical prediction in Ref. 6, the broadband Purcell
effect has indeed been observed in multiple experiments, such as
Refs. 7 and 8. Virtually the same physics as in Fig. 3.8(b) is also
responsible for the “darker than black” behavior of roughened hyper-
bolic metamaterials.9 Free space photons illuminating a rough sur-
face of the hyperbolic metamaterial preferentially scatter inside the
metamaterial into the bulk high k-vector modes. As a result, the
photon probability to scatter back into free space is almost zero and
the roughened surface looks black in the hyperbolic frequency bands.

Let us now consider radiative heat transfer inside hyperbolic
metamaterials. It appears that the broadband divergence of the pho-
tonic density of states described above also leads to giant increase
in radiative heat transfer compared to the Stefan–Boltzmann law in
vacuum and in usual anisotropic dielectric materials. According to
numerical calculations,10 this radiative thermal “hyperconductivity”
may approach or even exceed heat conductivity via electrons and
phonons in regular solids, with the additional advantage of radiative
heat transfer being much faster. Therefore, this radiative thermal
hyperconductivity may potentially be very useful in fast microelec-
tronics heat management applications.29 In such applications, heat
generated by micro- and nanoelectronic circuit components needs
to be quickly dissipated at a heat sink, which cannot be located
in the immediate vicinity of the electronic component. A hyper-
bolic metamaterial heat management layer may solve this important
technological problem.

Let us start by tracing how the photonic density of states enters
the usual Stefan–Boltzmann law. For the sake of simplicity, we will
consider vacuum as a typical example of “normal” or “elliptical”
material. As usual, we can start by calculating energy density of
the blackbody radiation. A well-known textbook derivation can be



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch03 page 106

106 Handbook of Metamaterials and Plasmonics — Volume 1

summarized as follows:

uell =
U

V
=
∫ ∞

0

ε

exp
( ε

kT

)
− 1

g(ε)dε =
4σT 4

c
, (3.13)

where g(ε) is the photonic density of states. Eq. (3.13) clearly demon-
strates that the drastic change in the density of states schematically
shown in Fig. 3.9 must lead to the drastic change in the final result.
The singular behavior of the photonic density of states in hyperbolic
metamaterial takes these media beyond the realm of the Stefan–
Boltzmann law, with no ultimate limit on the radiative heat transfer.
For the energy flux along the symmetry axis of a uniaxial hyperbolic
metamaterial, it was found10 that
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det ‖ε‖

∣∣∣∣∣∣∣ (3.14)

where the frequency integration is taken over the frequency band-
width corresponding to the hyperbolic dispersion. Note that the heat
flux in Eqn. (3.14) is very sensitive to the dispersion in the hyper-
bolic metamaterial, dε/dω. Indeed, the derivative of the dielectric
permittivity determines the difference in the asymptotic behavior
of the k-vector between the two hyperbolic surfaces that determine
the phase space volume between the frequencies ω and ω + dω (see
Fig. 3.9), and thus defines the actual value of the density of states.
While there are many metamaterial designs leading to the hyperbolic
dispersion, the most practical and widely used systems rely on either
the metal–dielectric layer approach, or incorporate aligned metal
nanowire composites (as shown in Fig. 3.1). For the planar layers
design, the hyperbolic behavior is observed for the wavelengths above
∼10 µm if the system is fabricated using semiconductors,20 or for the
wavelengths above ∼1 µm if the metamaterial is composed of metal–
dielectric layers.7 For the nanowire-based approach, the hyperbolic
dispersion is present at λ > 1µm.21 As a result, with either of these
conventional metamaterial designs, the desired hyperbolic behavior
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Fig. 3.9. The phase space volume between two constant frequency surfaces for
(a) dielectric (elliptical) and (b) hyperbolic material with ε2 > 0 and ε1 < 0 (cut-
out view). Panels (c) and (d) schematically illustrate different thermal conduc-
tivity mechanisms in (c) regular media (metals and dielectric) and (d) hyperbolic
media. Giant radiative contribution to thermal conductivity in hyperbolic media
can dominate the thermal transport.

covers the full range of wavelength relevant for the radiative heat
transfer. As a result, the following estimates on the thermal energy
flux in hyperbolic metamaterials have been obtained10:

ST ≈ εd
4(1 − n)

S
(0)
T

(
kmax

kp

)4

(3.15)
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for the layered material design, and

ST ≈ 5
16π2S

(0)
T

(
k2

max
kTkp

)2

(3.16)

for the wire array design, where S(0)
T is the blackbody thermal energy

flux for emission into the free space, kp is the plasma momentum and
kT is the thermal momentum. In both cases, the numerical values
of ST exceed S

(0)
T by 4–5 orders of magnitude, thus firmly placing

hyperbolic metamaterials in the realm of practical applications for
radiative heat transfer and thermal management. A similar enhance-
ment may be also expected in thermal conductivity.

3.4. Photonic Hypercrystals

Explosive development of research on hyperbolic metamaterials also
resulted in the recent demonstration of a novel artificial optical mate-
rial, the “photonic hypercrystal”,30 which combines the most inter-
esting features of hyperbolic metamaterials and photonic crystals.
Similar to hyperbolic metamaterials, photonic hypercrystals exhibit
broadband divergence in their photonic density of states due to the
lack of usual diffraction limit on the photon wave vector. On the
other hand, similar to photonic crystals, hyperbolic dispersion law
of extraordinary photons is modulated by forbidden gaps near the
boundaries of photonic Brillouin zones. 3D self-assembly of photonic
hypercrystals has been achieved by application of external magnetic
field to a cobalt nanoparticle-based ferrofluid. Unique spectral prop-
erties of photonic hypercrystals lead to extreme sensitivity of the
material to monolayer coatings of cobalt nanoparticles, which should
find numerous applications in biological and chemical sensing.

Over the last few decades, considerable progress has been made
in developing artificial optical materials with novel and often coun-
terintuitive properties. Revolutionary research by Yablonovitch and
John on photonic crystals31,32 was followed by the development of the
electromagnetic metamaterial paradigm by Pendry.33 Even though
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considerable difficulties still exist in fabrication of 3D photonic crys-
tals and metamaterials, both fields exhibit considerable experimental
progress.34,35 On the other hand, on the theoretical side, these fields
are believed to be complementary but mutually exclusive. Photonic
crystal effects typically occur in artificial optical media which are
periodically structured on the scale of free space light wavelength λ,
while electromagnetic metamaterials are required to be structured
(not necessarily in a periodic fashion) on the scale, which is much
smaller than the free space wavelength of light. For example, in
metal nanowire-based hyperbolic metamaterials schematically shown
in Fig. 3.1(b) the interwire distance must be much smaller than λ.
Experimental realization of 3D “photonic hypercrystals”30 bridges
this divide by combining the most interesting properties of hyper-
bolic metamaterials and photonic crystals.

The concept of the photonic hypercrystal is based on the fact
that dispersion law of extraordinary photons in hyperbolic metama-
terials (3.2) does not exhibit the usual diffraction limit. Existence
of large k-vector modes in a broad range of frequencies means that
periodic modulation of hyperbolic metamaterial properties on a scale
L � λ (see inset in Fig. 3.10(a)) would lead to Bragg scattering of
extraordinary photons and formation of photonic band structure no
matter how small L is.30 Thus, so-formed “photonic hypercrystals”
would combine the most interesting properties of hyperbolic meta-
materials and photonic crystals. For example, similar to classic pho-
tonic crystal effect predicted by John,32 strong localization of photons
may occur in photonic hypercrystals. However, unlike usual photonic
crystals where light localization occurs on a scale ∼ λ, photonic
hypercrystals may exhibit light localization on deep subwavelength
scale. Similar to surface plasmon resonance (SPR)25 and (surface-
enhanced Raman (SERS))36-based sensing, engineered localization
of light on deep subwavelength scale in photonic hypercrystals
should find numerous applications in biological and chemical
sensing.

Band structure and field distribution inside a photonic hyper-
crystal may be obtained in a straightforward manner. While both
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.10.
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 3.10. (figure on facing page) (a) Experimental geometry of the ferrofluid-
based hyperbolic metamaterial. The array of self-assembled cobalt nanocolumns
has typical separation a ∼ 20 nm between the nanocolumns. The inset shows a
photonic hypercrystal structure formed by periodic arrangement of cobalt-rich
and cobalt-sparse regions with typical periodicity L ∼ 2µm, so that periodic
modulation of hyperbolic metamaterial properties on a scale L � λ is achieved
in the LWIR spectral range where λ ∼ 10µm. Since photon wave vector in hyper-
bolic metamaterials is not diffraction-limited, periodic modulation of hyperbolic
metamaterial properties on a scale L � λ would lead to Bragg scattering and
formation of band structure. (b–f) Microscopic images of cobalt nanoparticle-
based ferrofluid reveal subwavelength modulation of its spatial properties: frames
(b) and (d) show microscopic images of the diluted cobalt nanoparticle-based
ferrofluid before and after application of external magnetic field. The pattern of
self-assembled stripes visible in image (d) is due to phase separation of the fer-
rofluid into cobalt-rich and cobalt-poor phases. The stripes are oriented along the
direction of magnetic field. The inset shows Fourier transform image of frame (d).
Its cross-section presented in panel (e) shows a histogram of different periods
present in the image. A microscopic image of the sample taken along the axes
of the nanowires is shown in frame (c). Panel (f) demonstrates that the original
undiluted ferrofluid exhibits similar phase separation in external magnetic field,
although on amuch smaller scale.

εxy and εz may exhibit periodic spatial dependencies, let us con-
sider the relatively simple case of coordinate-independent εxy > 0
and periodic εz(z) < 0 with a period L � λ. Aside from the rel-
ative mathematical simplicity of this model, it also corresponds to
the most readily available low-loss realizations of hyperbolic meta-
materials such as the composites formed by metallic nanowires in a
dielectric membrane21 (where εxy > 0 and εz(z) < 0), and planar
layered metal–dielectric and semiconductor metamaterials.7,20 Tak-
ing into account the translational symmetry of the system in x and
y directions, we can introduce the in-plane wave vector (kx, ky) so
that the propagating waves can be expressed as

Eω(	r) = E(z) exp(ikxx+ ikyy), (3.17)

Dω(	r) = D(z) exp(ikxx+ ikyy),

Bω(	r) = B(z) exp(ikxx+ ikyy).
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The uniaxial symmetry of this medium reduces the ordinary and
extraordinary waves to, respectively, the TE ( 	E⊥ẑ) and TM ( 	B⊥ẑ)-
polarized modes. Introducing the wavefunction ψ(	r) as the z-
component of the electric displacement field of the TM wave

ψ(	r) = Dz(	r) = εz(z)Ez(	r) = − c
ω
kxB (3.18)

for the wave equation we obtain

−∂
2ψ

∂z2 +
εxy

εz(z)
ψ = εxy

ω2

c2
ψ. (3.19)

In this wave equation, the periodic εxy/εz ratio acts as a periodic
effective potential. As usual, solutions of Eq. (3.4) may be found as
Bloch waves

ψ(z) =
∞∑

m=0

ψm exp
(
i

(
kz +

2π
L
m

)
z

)
, (3.20)

where kz is defined within the first Brillouin zone −π/L < kz < π/L.
Strong Bragg scattering is observed near the Brillouin zone bound-
aries at kz ∼ π/L 
 π/λ, leading to the formation of photonic
band gaps in both the wavenumber and the frequency domains. This
behavior is illustrated in Fig. 3.11, where we compare the dispersion
diagram for an example of such a nanowire-based photonic hyper-
crystal to its effective medium counterpart. The material parameters
of photonic hypercrystals are based on the parameters of stratified
ferrofluid described below. Similar to the usual photonic crystals,32

adiabatic chirping of L leads to strong field enhancement which,
unlike that in the conventional photonic crystals, occurs on a deep
subwavelength scale. We should also mention that the most interest-
ing case appears to be the epsilon-near-zero (ENZ) situation where
εz approaches zero near a periodic set of planes. As has been demon-
strated in Ref. 16, electric field of the extraordinary wave diverges
in these regions. These periodic field divergences appear to be most
beneficial for sensing applications.
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Validation of the photonic hypercrystal concept has been achieved
using an experimental technique based on 3D self-assembly of cobalt
nanoparticles in the presence of external magnetic field.30 Magnetic
nanoparticles in a ferrofluid are known to form nanocolumns aligned
along the magnetic field.37 Moreover, depending on the magnitude
of magnetic field, nanoparticle concentration and solvent used, phase
separation into nanoparticle-rich and nanoparticle-poor phases may
occur in many ferrofluids.38 This phase separation occurs on a 0.1–
1 µm scale. Therefore, it can be used to fabricate a self-assembled
photonic hypercrystal.

These experiments used cobalt magnetic fluid 27-0001 from
Strem Chemicals composed of 10-nm cobalt nanoparticles in kerosene
coated with sodium dioctylsulfosuccinate and a monolayer of LP4
fatty acid condensation polymer. The average volume fraction of
cobalt nanoparticles in this ferrofluid is p = 8.2%. Cobalt behaves as
an excellent metal in the long-wavelength infrared (LWIR) range, as
evident by Fig. 3.12(a): the real part of its refractive index, n, is
much smaller than its imaginary part, k.39 Thus, real part of ε,
Reε = n2 − k2, is negative, and its absolute value is much larger
than its imaginary part, Imε = 2nk. Therefore, it is highly suitable
for fabrication of hyperbolic metamaterials. The structural parame-
ter of such a metamaterial falls in the range of a few nanometers: the
cobalt nanoparticle size is 10 nm, while average interparticle distance
at 8.2% volume fraction is about 19 nm. Therefore, the metamate-
rial properties may be described by effective medium parameters on
spatial scales ∼100 nm. On the other hand, as demonstrated below,
ferrofluid begins to exhibit hyperbolic behavior in the range of free
space wavelengths ∼10,000 nm and above — in the so-called LWIR
frequency range. Thus, in between 100 nm and 10,000 nm there exists
an ample range of spatial scales which enable photonic hypercrys-
tal behavior described above. For example, if the effective medium
parameters of ferrofluid are modulated on the scale of ∼2000 nm (as
evident from Fig. 3.10(d)), the large k-vector modes which exist in
the metamaterial in the LWIR range will experience Bragg scattering
due to this modulation.
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Fig. 3.11. Comparison of the effective medium dispersion of a nanowire-based
hyperbolic metamaterial (a) with the exact solution for photonic crystal (b). The
hyper-crystal unit cell in (b) is assumed to be 1000 nm, with one half of the cell
filled with the same ferrofluid while another half is pure kerosene. The ferrofluid
aligned by external magnetic field applied in the z-direction, is characterized by
the material parameters described in Fig. 3.12. The stratified ferrofluid is assumed
to form layers with the normal along the x-direction. The effective medium dis-
persion in panel (a) uses the dielectric permittivity tensor obtained
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Fig. 3.11. (Continued) by the homogenization of the electromagnetic response
of the hypercrystal unit cell. This is an artificial result that would be expected
if we could experimentally isolate magnetic field-induced hyperbolic behavior of
the ferrofluid from its photonic hypercrystal behavior. In both panels, the wave
vector components are given in units of the free-space wavenumber k0.

Electromagnetic properties of these metamaterials may be under-
stood based on the Maxwell–Garnett approximation via the dielec-
tric permittivities εm and εd of cobalt and kerosene, respectively,
as illustrated in Fig. 3.12. Volume fraction of cobalt nanoparticles
aligned into nanocolumns by external magnetic field, α(B), depends
on the field magnitude. At very large magnetic fields, all nanopar-
ticles are aligned into nanocolumns, so that α(∞) = p = 8.2%. At
smaller fields, the difference α(∞)− α(B) describes cobalt nanopar-
ticles, which are not aligned and distributed homogeneously inside
the ferrofluid. Using this model, the diagonal components of the fer-
rofluid permittivity may be calculated and measured as a function
of magnetic field. The value of αH as a function of wavelength is
plotted in Fig. 3.12(b). This plot indicates that the original fer-
rofluid diluted with kerosene at a 1:10 ratio remains a hyperbolic
medium above λ = 5µm. More interestingly, such a diluted ferrofluid
develops very pronounced phase separation into periodically aligned
cobalt-rich and cobalt-poor phases (with periodicity L ∼ 2µm) if
subjected to external magnetic field. Optical microscope images of
the diluted ferrofluid before and after application of external mag-
netic field are shown in Figs. 3.10(b) and 3.10(d). The periodic pat-
tern of self-assembled stripes visible in image 3.10(d) appears due
to phase separation. The stripes are oriented along the direction of
magnetic field. The stripe periodicity L ∼ 2µm appears to be much
smaller than the free space wavelength in the hyperbolic frequency
range. Therefore, created self-assembled optical medium appears to
be a photonic hypercrystal. We should also note that the original
undiluted ferrofluid exhibits similar phase separation in external
magnetic field, although on a much smaller ∼0.3 µm spatial scale
(see Fig. 3.10(f)).
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Fig. 3.12. (a) Optical properties of cobalt as tabulated in Ref. 22: real (n) and
imaginary (k) parts of the cobalt refractive index are plotted in the LWIR range.
(b) Critical volume fraction of cobalt nanoparticles corresponding to ferrofluid
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Fig. 3.12. (Continued) transition to hyperbolic metamaterial phase shown as a
function of free space light wavelength. (c,d) Wavelength dependencies of εz and
εxy at α(∞) = 8.2%. While εxy stays positive and almost constant, εz changes
sign around λ = 3µm. (e) Polarization-dependent transmission spectra of 200µm-
thick ferrofluid sample measured using FTIR spectrometer are consistent with
hyperbolic character of ε tensor.

Polarization dependencies of ferrofluid transmission as a function
of magnetic field and nanoparticle concentration measured in a broad
0.5–16 µm wavelength range conclusively prove hyperbolic crystal
character of ferrofluid anisotropy in the LWIR range at large enough
magnetic field. Fig. 3.13(e) shows polarization-dependent transmis-
sion spectra of 200 µm thick undiluted ferrofluid sample obtained
using (FTIR) spectrometer. These data are consistent with hyper-
bolic character of ε tensor of the ferrofluid in B = 1000 G. Ferrofluid
transmission is large for polarization direction perpendicular to mag-
netic field (perpendicular to cobalt nanoparticle chains), suggesting
dielectric character of ε in this direction. On the other hand, fer-
rofluid transmission falls to near zero for polarization direction along
the chains, suggesting metallic character of ε in this direction. How-
ever, these measurements are clearly affected by numerous ferrofluid
absorption lines.

Fabricated photonic hypercrystals exhibit all the typical features
associated with the hyperbolic metamaterials. For example, absorp-
tion spectra measured using FTIR spectrometer with and without
external magnetic field are consistent with the decrease of the radi-
ation lifetime of kerosene molecules in the hyperbolic state. In addi-
tion, Fig. 3.13 clearly illustrates the photonic hypercrystal potential
in chemical and biological sensing, which is made possible by spatially
selective field enhancement effects described above. This potential is
revealed by detailed measurements of magnetic field-induced trans-
mission of photonic hypercrystals in the broad IR spectral range
presented in Figs. 3.13(a) and 3.13(b). FTIR spectral measurements
are broadly accepted as a powerful “chemical fingerprinting” tool
in chemical and biosensing. Therefore, broadly available magnetic
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Fig. 3.13. (a) FTIR transmission spectrum of diluted (α(∞) = 0.8%) ferrofluid
exhibits a clear set of kerosene absorption lines. (b) Transmission spectra of the
α(∞) = 8.2% ferrofluid measured with and without application of external mag-
netic field. Magnetic field-induced transmission spectrum contains a very pro-
nounced absorption line at λ ∼ 12µm (∼840 cm−1), which can be attributed
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Fig. 3.13. (Continued) to lactic acid. Kerosene absorption lines are marked with
yellow boxes, while the fatty acid line at 840 cm−1 is marked with a green box. (c)
The 10–14 µm portion of lactic acid FTIR absorption spectrum. (d) Schematic
view of cobalt nanoparticle coated with a monolayer of fatty acids, such as lactic
and oleic acid. (e) Extinction coefficient (the ratio T(0)/T(90) of ferrofluid trans-
missions at 0◦ and 90◦) of ferrofluid subjected to external magnetic field exhibits
pronounced resonances around the fatty acid absorption line at λ ∼ 12µm and the
kerosene absorption line at λ ∼ 14µm. These resonances provide clear evidence
of field enhancement by cobalt nanoparticle chains.

field-tunable photonic hypercrystals operating in the IR range open
up new, valuable opportunities in chemical analysis. The experi-
mental data presented in Fig. 3.13 clearly illustrate this point. The
FTIR transmission spectrum of the diluted (p = 0.8%) ferrofluid in
Fig. 3.13(a) exhibits a clear set of kerosene absorption lines, which
is consistent with other published data (see for example Ref. 40).
On the other hand, magnetic field-induced transmission spectrum of
the p = 8.2% ferrofluid shown in Fig. 3.13(b) contains a very pro-
nounced absorption line at λ ∼ 12µm (∼840 cm−1), which cannot be
attributed to kerosene. Quite naturally, this absorption line may be
attributed to fatty acids, since cobalt nanoparticles are coated with
a monolayer of surfactant composed of various fatty acids, such as
lactiacid, oleicacid, etc. as shown in Fig. 3.13(d). A detailed com-
parison of Fig. 3.13(b) with the 10–14 µm portion of lactic acid
FTIR absorption spectrum shown in Fig. 3.13(c) indeed indicates
a close match. The fatty acid line appears to be about as strong as
λ ∼ 14µm (∼695 cm−1) line of kerosene, even though the oscilla-
tor strength of these molecular lines is about the same, while the
amount of kerosene in the sample is ∼ 2 orders of magnitude larger
(a monolayer coating of fatty acids on a 10-nm cobalt nanoparticle
occupies no more than 1% of ferrofluid volume). This paradoxical
situation clearly indicates local field enhancement effects. Another
strong evidence of field enhancement is provided by measurements
of extinction coefficient of the ferrofluid presented in Fig. 3.6(e). Fer-
rofluid subjected to magnetic field exhibits pronounced resonances
around the fatty acid absorption line at λ ∼ 12 µm and the kerosene
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absorption line at λ ∼ 14 µm. These resonances provide clear evi-
dence of field enhancement by cobalt nanoparticle chains. We expect
that further optimization of photonic hypercrystals geometry will
lead to much stronger sensitivity of their optical properties to chem-
ical and biological inclusions, indicating a very strong potential of
photonic hypercrystals in biological and chemical sensing.

3.5. Superconducting Hyperbolic Metamaterials

Superconducting properties of a material, such as electron–electron
interactions and the critical temperature of superconducting tran-
sition, can be expressed via the effective dielectric response func-
tion εeff(q, ω) of the material. Such a description is valid on the
spatial scales below the superconducting coherence length (the
size of the Cooper pair), which equals ∼100 nm in a typical BCS
superconductor. Searching for natural materials exhibiting larger
electron–electron interactions constitutes a traditional approach to
high-temperature superconductivity research. However, not long ago
it was pointed out that the recently developed field of electromag-
netic metamaterials deals with the somewhat related task of dielectric
response engineering on sub-100 nm scale, and that the metamate-
rial approach to dielectric response engineering may considerably
increase the critical temperature of a composite superconductor–
dielectric metamaterial.41 Moreover, it appears that many high Tc

superconductors exhibit hyperbolic metamaterial properties in sub-
stantial portions of the electromagnetic spectrum of relevance to
electron–electron interaction,42 so that their hyperbolicity may be
partially responsible for their high Tc behavior.

Electromagnetic properties are known to play a very impor-
tant role in the pairing mechanism and charge dynamics of high
Tc superconductors.43 Moreover, shortly after the original work by
Bardeen, Cooper and Schrieffer (BCS),44 Kirzhnits et al. formu-
lated a complementary description of superconductivity in terms of
the dielectric response function of the superconductor.45 The latter
work was motivated by a simple argument that phonon-mitigated
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electron–electron interaction in superconductors may be expressed
in the form of effective Coulomb potential

V (	q, ω) =
4πe2

q2εeff (	q, ω)
, (3.21)

where V = 4πe2/q2 is the usual Fourier-transformed Coulomb poten-
tial in vacuum and εeff(q, ω) is the linear dielectric response func-
tion of the superconductor treated as an effective medium. Based
on this approach, Kirzhnits et al. derived simple expressions for the
superconducting gap ∆, critical temperature Tc and other important
parameters of the superconductor. While thermodynamic stability
condition implies46 that εeff (q, 0) > 0, the dielectric response func-
tion at higher frequencies and spatial momenta is large and negative,
which accounts for the weak net attraction and pairing of electrons
in the superconducting condensate. In their paper, Kirzhnits et al.
noted that this effective medium consideration assumes “homoge-
neous system” so that “the influence of the lattice periodicity is
taken into account only to the extent that it may be included into
εeff (q, ω)”.

In the 40 years which have passed since this very important
remark, we have learned that the “homogeneous system” approx-
imation may remain valid even if the basic structural elements of
the material are not simple atoms or molecules. Now we know that
artificial “metamaterials” may be created from much bigger build-
ing blocks, and the electromagnetic properties of these fundamental
building blocks (“meta-atoms”) may be engineered at will.47 Since
the superconducting coherence length (the size of the Cooper pair)
is ξ ∼ 100 nm in a typical BCS superconductor, we have an oppor-
tunity to engineer the fundamental metamaterial building blocks in
such a way that the effective electron–electron interaction (3.21) will
be maximized, while homogeneous treatment of εeff(q, ω) will remain
valid. In order to do this, the metamaterial unit size must fall within
a rather large window between ∼0.3 nm (given by the atomic scale)
and ξ > 100 nm scale of a typical Cooper pair. However, this task is
much more challenging than typical applications of superconducting
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metamaterials suggested so far,48 which only deal with metamaterial
engineering on scales which are much smaller than the microwave
or radiofrequency wavelength. Nevertheless, these experimental dif-
ficulties have been overcome in two recent successful demonstrations
of metamaterial superconductors.49,50 In the case of aluminum, its
superconducting temperature was more than tripled by the metama-
terial engineering.50

Let us demonstrate that hyperbolic metamaterial geometry offers
a natural way to increase attractive electron–electron interaction in
a layered dielectric–superconductor metamaterial. Since hyperbolic
metamaterials exhibit considerable dispersion, let us work in the
frequency domain and write macroscopic Maxwell equations in the
presence of “external” electron density ρω and current Jω as

ω2

c2
	Dω = 	∇× 	∇× 	Eω − 4πiω

c2
	Jω,

	∇ · 	Dω = ρω, and 	Dω =
↔
ε ω

	Eω, (3.22)

where the frequency ω is assumed to fall within the hyperbolic fre-
quency band of the metamaterial. Let us solve Eq. (10.22) for the
z-component of electric field. After straightforward transformations,
we obtain

ω2

c2
Ez =

4π
ε1ε2

∂ρ

∂z
− 4πiω
c2ε2

Jz − ∂2Ez

ε1∂z2 −
1
ε2

(
∂2Ez

∂x2 +
∂2Ez

∂y2

)
.

(3.23)

Since Ez = ∂φ/∂z, and the second term on the right side of Eq. (3.23)
may be neglected compared to the first one (since v/c� 1), we obtain

ω2

c2
φ+

∂2φ

ε1∂z2 +
1
ε2

(
∂2φ

∂x2 +
∂2φ

∂y2

)
=

4π
ε1ε2

ρ. (3.24)

Taking into account that V = −eφ, and neglecting the first term
in Eq. (3.24) in the low frequency limit, we find that the effective
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Coulomb potential from Eq. (3.21) assumes the form

V (	q, ω) =
4πe2

q2zε2(	q, ω) + (q2x + q2y)ε1(	q, ω)
(3.25)

in a hyperbolic metamaterial. Since εxx = εyy = ε1 and εzz = ε2 have
opposite signs, the effective Coulomb interaction of two electrons may
become attractive and very strong in the hyperbolic frequency bands.
The obvious condition for such a strong interaction to occur is

q2zε2(	q, ω) + (q2x + q2y)ε1(	q, ω) ≈ 0 (3.26)

which indicates that the superconducting order parameter must be
strongly anisotropic. This indeed appears to be the case in such
hyperbolic high Tc superconductors as BSCCO.42,43 In order to be
valid, the metamaterial “effective medium” description requires that
the structural parameter of the metamaterial (in this particular case,
the interlayer distance) must be much smaller than the supercon-
ducting coherence length. If the structural parameter approaches
1 nm scale, Josephson tunneling across the dielectric layers will
become very prominent in such an anisotropic layered superconduct-
ing hyperbolic metamaterial.

The diagonal dielectric permittivity components of the lay-
ered superconductor–dielectric metamaterial may be calculated using
Maxwell–Garnett approximation using Eq. (10.5). In order to obtain
hyperbolic properties, εd of the dielectric needs to be very large, since
εm of the superconducting component given by the Drude model is
negative and very large in the far infrared and THz ranges

εm = εm∞ −
ω2

p

ω2 ≈ −
ω2

p

ω2 . (3.27)

This is consistent with the measured dielectric behavior of the par-
ent BSCCO perovskite compound.43 Moreover, if the high frequency
behavior of εd may be assumed to follow the Debye model51:

Reεd =
εd(0)

1 + ω2τ2 ≈
εd(0)
ω2τ2 , (3.28)
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broadband hyperbolic behavior arise due to similar ∼ ω−2 functional
behavior of εd and εm in the THz range.

As follows from Eq. (10.5), if the volume fraction of metallic phase
n is kept constant, the hyperbolic behavior may occur only within
the following range of plasma frequency ω2

p of the metallic phase:

ω2
pτ

2

εd(0)
∈
[

n

1− n ;
1− n
n

]
. (3.29)

Otherwise, either ε1 and ε2 will be both positive if ω2
p is too

small, or both negative if ω2
p is too large. Interestingly enough,

the boundaries of superconducting and hyperbolic states in high
Tc cuprates seem to overlap. Moreover, the crystallographic lat-
tice of BSCCO shown in Fig. 3.14 looks very similar to the geom-
etry of a multilayer hyperbolic metamaterial. Indeed, in BSCCO
the anisotropy of DC conductivity may reach 104 for the ratio of

Fig. 3.14. Comparison of the crystallographic unit cell of a BSCCO high Tc

superconductor (a) and geometry of a layered hyperbolic metamaterial (b).
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in-plane to out-of-plane conductivity in high-quality single crystal
samples. Polarization-dependent AC reflectance spectra measured in
the THz and far-infrared frequency ranges43 also indicate extreme
anisotropy. In the normal state of high Tc superconductors, the
in-plane AC conductivity exhibits Drude-like behavior with a plasma
edge close to 10,000 cm−1, while AC conductivity perpendicular to
the copper oxide planes is nearly insulating. Extreme anisotropy is
also observed in the superconducting state. The typical values of
measured in-plane and out of plane condensate plasma frequencies
in high Tc superconductors are ωp,ab = 4000 − 10,000 cm−1, and
ωp,c = 1− 1000 cm−1, respectively.43 The measured anisotropy is the
strongest in the BSCCO superconductors. These experimental mea-
surements strongly support the qualitative picture of BSCCO struc-
ture as a layered hyperbolic metamaterial (Fig. 3.14(b)) in which the
copper oxide layers may be represented as metallic layers, while the
SrO and BiO layers may be represented as the layers of dielectric.
Based on these measured material parameters, the diagonal compo-
nents of BSCCO dielectric tensor may be calculated41,42 as shown
in Fig. 3.15. The appearance of hyperbolic bands is quite generic in

Fig. 3.15. Diagonal components of the permittivity tensor of a high Tc BSCCO
superconductor calculated as a function of frequency. The hyperbolic bands
appear at 200 cm−1 < ω < 1200 cm−1 and 2400 cm−1 < ω < 4800 cm−1.
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high Tc superconductors. While examples of such natural hyperbolic
high Tc superconductors appear to fit well into the metamaterial
scheme described above, it would be interesting to try and follow the
metamaterial recipe in making novel “designer” superconductors.

3.6. Gravitation Theory Analogs Based
on Hyperbolic Metamaterials

Modern developments in gravitation research strongly indicate that
classic general relativity is an effective macroscopic field theory,
which needs to be replaced with a more fundamental theory based
on yet unknown microscopic degrees of freedom. On the other hand,
our ability to obtain experimental insights into the future funda-
mental theory is strongly limited by low energy scales available
to terrestrial particle physics and astronomical observations. The
emergent analog space-time program offers a promising way around
this difficulty. Looking at such systems as superfluid helium and cold
atomic Bose–Einstein condensates, physicists learn from nature and
discover how macroscopic field theories arise from known well-studied
atomic degrees of freedom. Another exciting development along this
direction is recent introduction of metamaterials and transformation
optics. The latter field is not limited by the properties of atoms
and molecules given to us by nature. “Artificial atoms” used as
building blocks in metamaterial design offer much more freedom in
constructing analogs of various exotic space-time metrics, such as
black holes,52−56 wormholes,57,58 spinning cosmic strings,59 and even
the metric of Big Bang itself.15 Explosive development of this field
promises new insights into the fabric of space-time, which cannot be
gleaned from any other terrestrial experiments.

On the other hand, compared to standard general relativity,
metamaterial optics gives more freedom to design an effective
space-time with very unusual properties. Light propagation in all
static general relativity situations can be mimicked with positive
εik = µik,60 while the allowed parameter space of the metamaterial
optics is broader. Thus, flat Minkowski space-time with the usual
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(−,+,+,+) signature does not need to be a starting point. Other
effective signatures, such as the “two times” (2T) physics (−,−,+,+)
signature may be realized.3 Theoretical investigation of the 2T
higher-dimensional space-time models had been pioneered by Paul
Dirac.61 More recent examples can be found in Refs. 62 and 63
Metric signature change events (in which a phase transition occurs
between say (−,+,+,+) and (−,−,+,+) space-time signature) are
being studied in Bose–Einstein condensates and in some modified
gravitation theories (see Ref. 64, and the references therein). It
is predicted that a quantum field theory residing on a space-time
undergoing a signature change reacts violently to the imposition of
the signature change. Both the total number and the total energy
of the particles generated in a signature change event are formally
infinite.64 While optics of bulk hyperbolic metamaterials provides us
with ample opportunities to observe metric signature transitions,3

even more interesting physics arise at the metamaterial interfaces.
Very recently, it was demonstrated that mapping of monochromatic
extraordinary light distribution in a hyperbolic metamaterial along
some spatial direction may model the “flow of time” in a 3D (2 + 1)
effective Minkowski space-time.15 If an interface between two meta-
materials is engineered so that the effective metric changes signature
across the interface, two possibilities may arise. If the interface is
perpendicular to the time-like direction z, this coordinate does not
behave as a “time-like” variable any more, and the continuous “flow
of time” is interrupted. This situation (which cannot be realized in
classic general relativity) may be called the “end of time”. It appears
that optics of metamaterials near the “end of time” event is quite
interesting and deserves a detailed study. For example, in the loss-
less approximation all the possible “end of time” scenarios lead to
field divergences, which indicate quite interesting linear and nonlin-
ear optics behavior near the “end of time”. On the other hand, if the
metamaterial interface is perpendicular to the space-like direction of
the effective (2+1) Minkowski space-time, a Rindler horizon may be
observed (Rindler metric approximates space-time behavior near the
black hole event horizon60).
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Let us briefly summarize Refs. 3 and 15, which demonstrated
that a spatial coordinate may become “time-like” in a hyperbolic
metamaterial. To better understand this effect, let us start with a
non-magnetic uniaxial anisotropic material with dielectric permit-
tivities εx = εy = ε1 and εz = ε2, and assume that this behavior
holds in some frequency range around ω = ω0. Let us consider the
case of constant ε1 > 0 and ε2 < 0, and assume that the metama-
terial is illuminated by coherent CW laser field at frequency ω0. We
will study spatial distribution of the extraordinary field ϕω at this
frequency. Under these assumptions, Eq. (3.1) may be rewritten in
the form of 3D Klein–Gordon equation describing a massive scalar
ϕω field:

− ∂
2ϕω

ε1∂z2 +
1
|ε2|

(
∂2ϕω

∂x2 +
∂2ϕω

∂y2

)
=
ω2

0
c2
ϕω =

m∗2c2

�2 ϕω (3.30)

in which the spatial coordinate z = τ behaves as a “time-like” vari-
able. Therefore, Eq. (3.30) describes world lines of massive parti-
cles which propagate in a flat (2 + 1) Minkowski space-time. When
a metamaterial is built and illuminated with a coherent extraordi-
nary CW laser beam, the stationary pattern of light propagation
inside the metamaterial represents a complete “history” of a toy
(2 + 1)-dimensional space-time populated with particles of mass m∗.
This “history” is written as a collection of particle world lines along
the “time-like” z coordinate. Note that in the opposite situation in
which ε1 < 0 and ε2 > 0, Eq. (3.30) would describe world lines of
tachyons65 having “imaginary” mass m∗ = iµ. Eq. (3.30) exhibits
effective Lorentz invariance under the coordinate transformation

z′ =
1√

1− εxy

(−εz)β
(z − βx), (3.31)

x′ =
1√

1− εxy

(−εz)β

(
x− β εxy

(−εz)z
)
,
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where β is the effective boost. Similar to our own Minkowski space-
time, the effective Lorentz transformations in the xz and yz planes
form the Poincare group together with translations along x, y and
z axis, and rotations in the xy plane.

The world lines of particles described by Eq. (3.30) are straight
lines, which is easy to observe in the experiment.15 If adiabatic vari-
ations of ε1 and ε2 are allowed inside the metamaterial, world lines
of massive particles in some well-known curvilinear space-times can
be emulated, including the world line behavior near the “beginning
of time” at the moment of the Big Bang, as illustrated in Fig. 3.16.15

Thus, mapping of monochromatic extraordinary light distribution in
a hyperbolic metamaterial along some spatial direction may model
the “flow of time” in an effective 3D (2 + 1) space-time. Since the
parameter space of metamaterial optics is broader than the parame-
ter space of general relativity, we can also engineer the “end of time”
event if an interface between two metamaterials is prepared so that
the effective metric changes signature at the interface. In such a case,
the spatial coordinate does not behave as a “time-like” variable any
more, and the continuous “flow of time” is suddenly interrupted,
as shown in Fig. 3.17(a). This situation (which cannot be realized in
classic general relativity) may be called the “end of time”. It appears
that optics of metamaterials near the “end of time” event is quite
interesting and deserves a detailed study.16 It appears that the optical
images of field distribution over the sample surface indicate consid-
erable field enhancement near the presumed plasmonic “end of time”
events, as indicated by an arrow in Fig. 3.18(f). On the other hand,
a hyperbolic metamaterial interface, which is oriented perpendicular
to the “space-like” direction (Fig. 3.17(b)) behaves as a Rindler event
horizon.

It is also interesting to note that nonlinear light propagation
through a hyperbolic metamaterial may be formulated in a similar
fashion as general relativity.13 Sub-wavelength confinement of light
in nonlinear hyperbolic metamaterials due to formation of spatial
solitons has attracted much recent attention because of its seemingly
counter-intuitive behavior.66,67 In order to achieve self-focusing in a
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Fig. 3.16. Experimental demonstration of world line behavior in an “expanding
universe” using a plasmonic hyperbolic metamaterial: Optical (a) and AFM (b)
images of the plasmonic hyperbolic metamaterial based on PMMA stripes on
gold. The defect used as a plasmon source is shown by an arrow. (c) Plasmonic
rays or “world lines” increase their spatial separation as a function of “time-like”
radial coordinate. The point (or moment) r = τ = 0 corresponds to a toy “big
bang”. For the sake of clarity, light scattering by the edges of the PMMA pattern
is partially blocked by semi-transparent triangles. (d) Schematic view of world
lines behavior near the Big Bang.

hyperbolic wire medium, a nonlinear self-defocusing Kerr medium
must be used as a dielectric host. Reference 13 demonstrated that
this behavior finds natural explanation in terms of analog gravity.
Since the wave equation describing propagation of extraordinary light
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Fig. 3.17. (a) Schematic representation of the “end of time” model in metama-
terials: the spatial coordinate z does not behave as a “time-like” variable any
more, and the continuous “flow of time” is suddenly interrupted at the interface
of two metamaterials. (b) Metric signature change across a “space-like” direction
leads to appearance of a Rindler horizon.

Fig. 3.18. Experimental observation of the “end of time event” in a plasmonic
hyperbolic metamaterial illuminated with 488 nm light.
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inside hyperbolic metamaterials exhibits 2 + 1-dimensional Lorentz
symmetry, we may assume that nonlinear optical Kerr effect “bends”
this space-time resulting in effective gravitational force between
extraordinary photons. In order for the effective gravitational con-
stant to be positive, negative self-defocusing Kerr medium must be
used as a host. If gravitational self-interaction is strong enough,
spatial soliton may collapse into a black hole analog.

When the nonlinear optical effects become important, they are
described in terms of various order nonlinear susceptibilities χ(n) of
the metamaterial:

Di = χ
(1)
ij Ej + χ

(2)
ijlEjEl + χ

(3)
ijlmEjElEm + · · · . (3.32)

Taking into account these nonlinear terms, the dielectric tensor of the
metamaterial (which defines its effective metric) may be written as

εij = χ
(1)
ij + χ

(2)
ijlEl + χ

(3)
ijlmElEm + · · · . (3.33)

It is clear that Eq. (3.33) provides coupling between the mat-
ter content (photons) and the effective metric of the metamaterial
“space-time”. However, in order to emulate gravity, the nonlinear
susceptibilities χ(n) of the metamaterial need to be engineered in
some particular way. In the weak gravitational field limit, the Ein-
stein equation

Rk
i =

8πγ
c4

(
T k

i −
1
2
δk
i T

)
(3.34)

is reduced to

R00 =
1
c2

∆φ =
1
2
∆g00 =

8πγ
c4

T00, (3.35)

where φ is the gravitational potential.60 Since in our effective
Minkowski space-time g00 is identified with −ε1, comparison of
Eqs. (3.33) and (3.34) indicates that all the second-order nonlin-
ear susceptibilities χ(2)

ijl of the metamaterial must be equal to zero,
while the third-order terms may provide correct coupling between
the effective metric and the energy–momentum tensor. These terms
are associated with the optical Kerr effect. All the higher order χ(n)
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Fig. 3.19. Magnified images of the ferrofluid taken as a function of external
magnetic field reveal fine details of the effective Minkowski space-time melting.
Top row shows these images in the usual greyscale format, while the quasi-3D
representation of the same images in the bottom row provides better visualization
of the actual nanoparticle filaments.

terms must be zero at n > 3. Indeed, detailed analysis indicates13

that Kerr effect in a hyperbolic metamaterial leads to effective gravity
if the dielectric medium used as a metamaterial host exhibits self-
defocusing nonlinearity, so that the magnetic ferrofluids described
above appear to be ideal candidates to exhibit such phenomena.

Unlike other typical metamaterial systems, such ferrofluid-based
macroscopic self-assembled 3D metamaterials may also exhibit
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reach physics associated with topological defects14,68 and phase
transitions. Therefore, as was pointed out recently by Miel-
czarek and Bojowald,62,63 the properties of self-assembled magnetic
nanoparticle-based hyperbolic metamaterials exhibit strong simi-
larities with the properties of some microscopic quantum gravity
models, such as loop quantum cosmology. As described in Sec-
tion 4, in the presence of an external magnetic field the ferrofluid
forms a self-assembled hyperbolic metamaterial, which may be
described as an effective “3D Minkowski space-time” for extraor-
dinary photons. If the magnetic field is not strong enough, this
effective Minkowski space-time gradually melts under the influence
of thermal fluctuations, as illustrated in Fig. 3.19. Thus, unlike
other systems exhibiting analog gravity behaviour, the unique fea-
ture of the ferrofluid consists in our ability to directly visualize
the effective Minkowski space-time formation at the microscopic
level.

3.7. Summary

The diverse physical properties and applications of hyperbolic meta-
materials outlined above clearly demonstrate that this subfield of
electromagnetic metamaterials already extended far beyond its orig-
inal goal to enable subdiffraction super-resolution imaging. Hyper-
bolic metamaterials demonstrate a large number of novel phenomena
resulting from the broadband singular behavior of their density of
photonic states, which encompass enhanced quantum electrodynamic
effects, new stealth technology, thermal hyperconductivity, high Tc

superconductivity, and very interesting gravitation theory analogs.
Moreover, hyperbolic metamaterial behavior appears to be compat-
ible with photonic crystal effects, such as deep sub-wavelength light
localization and giant field enhancement, resulting in a fascinating
new class of artificial optical media — the photonic hypercrystals.
Since all this progress has been demonstrated within a few years
from their inception, the future of hyperbolic metamaterials and their
applications looks really bright.
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Extraordinary transmission of electromagnetic waves through periodic
arrays of electrically small apertures has attracted the attention of
many researchers since the discovery of such phenomenon at the end of
the 1990s. The explanation of the existence of such frequency-selective
enhanced transmission behavior has been linked to the interaction of
the impinging uniform plane wave with the so-called (spoof) surface
plasmon-polaritons supported by the periodically structured surface.
However, an alternative model has also been proposed in the litera-
ture which is based on the consideration of the unit cell of the peri-
odic system as a waveguide discontinuity problem. This problem is very
common in the classical microwave-engineering literature and is usu-
ally treated under the standpoint of equivalent-circuit modelling. Circuit
models have a number of obvious advantages related to their analytical
or quasi-analytical nature. Thus, the computational effort is negligible
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when compared with standard numerical approaches. But, more impor-
tantly, these models provide a simplified conceptual frame that makes
the understanding of the underlying physical phenomena easier. This
chapter provides a review of circuit–like models available in the liter-
ature to deal with the transmission of electromagnetic waves through
periodically structured screens.

4.1. Introduction

Extraordinary optical transmission (EOT) through a (2D) periodic
distribution of subwavelength cylindrical holes made in an opti-
cally thick metal slab was first reported by T. W. Ebbesen and
co-workers in 1998.1 Unexpected significant transmission peaks at
wavelengths close to the period of the structure were observed, in
spite of the electrically small size of the apertures. The amount
of transmitted power at those specific frequencies was much larger
(at least two orders of magnitude larger) than the one expected
from Bethe’s small apertures theory.2 In the first stage, the plasma–
like behavior of metals in the optical range was considered to
be of primordial importance to the physics of the phenomenon.
Although nothing similar had been reported for similar structures in
the microwave/millimeter wave regimes (the so-called bandpass fre-
quency selective surfaces3), some important experiments4,5 revealed
that a similar extraordinary-transmission behavior was reproduced in
the microwave and millimeter-wave frequency ranges when working
with thick perforated aluminum slabs. This fact made it apparent
that the existence of the EOT peaks is mostly related to the peri-
odic nature of the structure. The plasma–like behavior of metals at
optical frequencies introduces some differences with respect to the
behavior of metals at lower frequencies, but it is not essential to the
explanation of the phenomenon. Actually, metals behave as quasi-
perfect conductors at microwave and millimeter-wave frequencies,
in such a way that smooth metal surfaces cannot support surface
plasmon-polaritons (SPPs), in contrast with the physical situation
arising at metal–dielectric interfaces excited by electromagnetic fields
in the optical frequency range. Thus, it is more appropriate to use
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the acronym ET (Extraordinary Transmission), avoiding the specific
term “optical”, in what follows.

The ET through perforated or slotted metal screens has been
studied in depth by many researchers during the last 17 years, and
a well-established theory based on the interaction of the imping-
ing uniform plane wave with the so-called “spoof” (or “designer”)
surface SPPs6,7 supported by periodically structured metal surfaces
is nowadays the most widely accepted paradigm. The “spoof” (or
“designer”) plasmons are surface leaky waves supported by a period-
ically structured metallic surface exhibiting a dispersion curve sim-
ilar to the one characterizing genuine SPPs propagating along flat
or smoothly curved metal–dielectric interfaces in the optical range.
The equivalent plasma frequency in the case of periodic structures
is controlled by the period rather than by the electrical parame-
ters of the metal (volume density of electrons). Due to this reason,
ET can be induced at almost any frequency region of the electro-
magnetic spectrum as long as the metal can be described as a con-
tinuous medium. A number of comprehensive reviews providing a
detailed description of this theory can be found in the scientific lit-
erature,8–11 and the role of this kind of SPPs in ET through period-
ically structured opaque surfaces is nowadays well established. How-
ever, it is important to clarify that obtaining accurate dispersion
curves for the SPPs is not a trivial task since the computational
effort required to generate those dispersion curves is greater than
the one involved in the straightforward computation of the trans-
mission and reflection coefficients. Moreover, the SPP model itself
does not provide quantitative values of the scattering coefficients at
arbitrary frequency points, but only the location of the critical high-
transmission frequency points. Fortunately, an alternative point of
view can be adopted to interpret the results of the ET experiments.
The main concept behind that alternative approach is to consider
that the unit cell of a periodic structure illuminated by a uniform
plane wave can be seen as a virtual waveguide system with metallic
diaphragms inside. Indeed, it is a problem of this kind that is usually
posed and solved when a numerical approach is employed to obtain
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the scattering parameters of the periodic structure.12–14 Interestingly,
since early times,15 very efficient methods have been employed by
microwave engineers for the characterization of such kind of physical
systems (waveguide discontinuity problems). The application of such
methods typically leads to equivalent circuits whose electrical param-
eters can be analytically, numerically or experimentally determined.
Once such parameters are known, the original electromagnetic 3D
and vectorial problem is reduced to a much simpler electric circuit
involving lumped and distributed (transmission lines) elements. The
application of this kind of electrical models to the analysis of periodic
structures, far from being a new topic, is a rather classical topic in
the microwaves and antennas literature,16–18 and it is also a standard
technique in the modelling of frequency-selective surfaces (FSSs) and
related structures.3,19–25 The approximate calculation of the circuit
parameters is a lot quicker than the numerical characterization of
the structure over a desired frequency band. This calculation can
be done without sacrificing accuracy if the topology of the circuit
model is conveniently derived. Apart from the obvious computational
advantages, the circuit-model approach sheds light on the physics of
the problem and makes it easy to understand the periodic struc-
ture behavior. However, although circuit models were well-known
tools for the description of the behavior of periodic structures, they
were not used to deal with ET phenomena until several years after
its discovery. Following traditional circuit-modelling guidelines, after
introducing some appropriate modifications to account for dynamic
effects necessary to include ET in the formulation, three circuit mod-
els for 2D rectangular arrays of small holes were reported in Ref. 26
for the first time (the circuit models correspond to thin, moderately
thick and arbitrarily thick metal slabs, respectively). In Ref. 26, ET is
conceived as an impedance matching problem, without explicit men-
tioning of SPPs. The derivation of that circuit model is described in
detail in this chapter, and the implications of the model are discussed.

It should be mentioned that ET has not only been
observed/studied in 2D arrays of holes but also, for instance, in
simpler structures based on one-dimensional (1D) arrays of slits in
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metal slabs (bar gratings). Thus, one of the first detailed analyti-
cal descriptions of the ET phenomenon was based on the in-depth
study of the transmissivity of electromagnetic waves through 1D
arrays of infinitely long slits made in a thick metal slab, which was
laid on an infinitely thick supporting dielectric substrate.27 To give
proper credit to pioneer works on this topic, it is worth mention-
ing that Ukrainian researchers published some papers at the end of
the 1960s about the scattering properties of bar gratings28,29 and,
in those papers, ET peaks can clearly be visualized. In the context
of this chapter, it can again be said that a simple explanation of
the origin of this ET peak in 1D metal gratings is given in Ref. 30,
where an extremely simple circuit model is proposed. The model
also accounts for more conventional Fabry–Pérot (FP) resonances
and explains why free-standing zero-thickness metal strips cannot
support ET peaks.27 An interesting situation arises when the unit
cell of the grating consists of several slits per period (the so-called
compound gratings). These structures were studied in depth about 10
years ago,31 although relevant results on the behavior of such kinds
of gratings can be found in early former Soviet Union scientific litera-
ture.32 The compound grating structures exhibit interesting complex
transmission and reflection spectra due to the interactions between
the closely spaced slits forming a group. Following Ref. 31, phase
resonances accompanied by narrowband transmission dips located in
the middle of wider bandwidth (FP) resonances can be observed.
The previously cited paper30 includes a quasi-static circuit model for
that kind of compound gratings. This model will be discussed in this
chapter, and its extension to account for dynamical effects will be
sketched following the guidelines reported in Ref. 33. The inclusion
of metal losses and its influence will also be explained in the frame
of the circuit model, as it was done in a previous paper by some of
the authors of this chapter.34

The theory describing ET phenomena in this chapter actually
deals with a relatively exotic behavior of diaphragm–like discon-
tinuities in closed virtual waveguides. The virtual waveguides are
defined by the periodicity of the problem under study. However,
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there is no reason for not obtaining a similar ET behavior through
electrically small diaphragms located inside real closed waveguides.
This situation will also be discussed in this chapter, and some rele-
vant conclusions will be extracted from this study.

Note that the structures mentioned in the previous paragraphs
only involve metallic structures and a single dielectric medium
around the metal regions. The presence of dielectric layers, however,
is expected to give rise to interesting additional phenomena, since the
dielectric slabs provide new paths to the excitation of surface waves,
which seem to be closely related to the appearance of ET peaks.
The inclusion of these dielectric slabs in the frame of the equivalent–
circuit modelling methodology will also be discussed at the end of
this chapter.

4.2. Modelling of 2D Arrays of Holes in Metal Plates

The most paradigmatic structure exhibiting ET is, possibly, the 2D
array of electrically small apertures made in an opaque metal film
or slab shown in Fig. 4.1(a). The geometry of the holes has been
considered to be rectangular in order to facilitate the calculation of
the transmission and reflection coefficients using a standard imple-
mentation of the mode-matching approach. The structure is excited
by an impinging uniform transverse electromagnetic (TEM) wave
that propagates along the z direction (normal incidence is consid-
ered to simplify the discussion). The solution of the periodic problem
reduces to the analysis of a single unit cell, as shown in Fig. 4.1(b)
(front and side views). Note that the unit cell problem can be
seen as a discontinuity problem caused by the presence of a thick
diaphragm placed inside an ideal parallel-plate waveguide (PPW, a
closed waveguide whose boundaries are two horizontal electric walls
and two vertical magnetic walls; the fundamental mode is of TEM
type35). The role of the impinging TEM plane wave in the origi-
nal periodic problem is now played by the incident TEM mode in
the PPW. The presence of the diaphragm gives place to the exci-
tation of an infinite number of high-order transverse electric (TE)
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(a) (b)

Fig. 4.1. (a) Metal slab (considered as a perfect electric conductor, PEC, in this
chapter) of thickness t with a periodic distribution (period ax and ay along the
x and y directions) of rectangular holes (width wx and height wy). (b) Unit cell
problem for normal incidence of TEM waves (the top panel is a front view and
the bottom panel is a longitudinal view).

and transverse magnetic (TM) modes, which are necessary to sat-
isfy the boundary conditions for the electric and magnetic fields at
the discontinuity boundaries (plane surfaces separating the PPW
region and the rectangular hole region). If the operation frequency is
below the first Rayleigh–Wood (RW) frequency (fRW = c/ay), which
defines the onset of the grating lobes (i.e. the onset of the diffraction
regime), all the higher-order modes will operate below cutoff. As
is well known,35,36 the evanescent TE modes store magnetic energy
whereas the evanescent TM modes store electrical energy. If one is
interested in the calculation of the reflection (S11) and transmission
(S21) coefficients for the fundamental TEM mode, the effect of all
the high-order modes can be combined in properly defined lumped
circuit elements:15 inductances for TE modes and capacitances for
TM modes. Two different situations, depending on the thickness
of the metal plate where the holes have been perforated, will be
studied next.
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(a) (b)

Fig. 4.2. (a) Equivalent circuit for the zero-thickness (t = 0mm) screen (PEC).
(b) Equivalent circuit including the inductive effects of the TE field inside the hole
(electrically thin PEC screens). Figures reprinted from Ref. 26 with permission
of IEEE.

4.2.1. 2D arrays of holes in zero-thickness screens

First, the most basic situation exhibiting ET will be analyzed: a 2D
array of electrically small apertures made in a zero-thickness PEC
screen (t = 0 in Fig. 4.1). In this case, we have the standard prob-
lem of a rectangular diaphragm of negligible thickness located inside
a PPW. This is a classical problem in waveguide theory,15,35,36 for
which a simple equivalent circuit is available and easily understand-
able, as shown in Fig. 4.2(a). The uniform (along z) PPW regions
are modelled with transmission lines whose characteristic admit-
tances are given by Y0 = (ax/ay)/η0 (η0 ≈ 120π Ω is the free-space
impedance). The diaphragm can be represented by a LC-tank circuit
connected with the transmission lines (see Fig. 4.2(a)). As previously
mentioned, L accounts for the effect of all the scattered evanes-
cent TE modes, whereas C catches the effect of the evanescent TM
modes.

This simple circuit will be shown to qualitatively and quantita-
tively account for the most relevant features of the electrical response
of the discontinuity. Thus, at resonance, the LC-tank is an open
circuit, in such a way that total transmission is expected from the
circuit model at such frequency. More precisely, the circuit predicts
a passband behavior around that resonance frequency. For electri-
cally large enough apertures (wx > ax/2), the system behaves as
a standard passband FSS and nothing new is actually contributed
with respect to the well-established circuit modelling of this class
of systems.15 In that case, the values of L and C are independent
(or almost independent) of the operation frequency in the range of
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frequencies of interest, which used to be significantly below the onset
of the diffraction regime. If this rationale is now applied to electri-
cally small apertures (wx < ax/2), keeping the values of L and C

frequency independent (these values could have been obtained either
from analytical expression or extracted from full-wave simulations
carried out at relatively low frequencies), the expected resonance
frequency would be above fRW. Thus, for small enough apertures,
no resonant transmission should appear in the non-diffraction regime.
However, it is known that an array of this kind exhibits a total
transmission peak at some frequency slightly below fRW, followed
by a transmission zero at exactly fRW

9 (this is called a Fano-like
resonance). This reported behavior can easily be understood using
the equivalent circuit in Fig. 4.2(a) provided the frequency depen-
dence of C associated with the excitation of the first TM mode of the
structure is explicitly taken into account (TM02 in this case, since
odd-order modes are not compatible with the chosen excitation and
symmetries). Considering the dependence with the frequency of the
modal admittances of the TM modes35 and assuming that the relative
level of excitation of the scattered modes is frequency-independent
(this assumption is equivalent to consider that the field profile in
the aperture is mostly frequency-independent, which is found to be
a quite good approximation), the capacitance in Fig. 4.2(a) can be
written as follows26:

C(ω) =
ATM02

η0

√
ω2

TM02
− ω2

+ Cho, (4.1)

where ωTM02 is the cutoff angular frequency of the TM02 mode and
Cho is the capacitance associated with the remaining higher-order
(ho) TM modes. The capacitance Cho is considered to be frequency-
independent because the operation frequency in the range of interest
(non-diffraction regime) is much smaller than the cutoff frequencies of
the involved TM modes. The dimensionless constant ATM02 depends
on the relative level of excitation of the TM02 mode which, in turn,
depends on the profile of the electric field in the aperture (i.e. depends
on its shape and size).
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The interesting feature of (4.1) lies on the singular behavior of
the TM02 contribution to the capacitance at ωTM02 , which is usually
ignored in the standard circuit modelling of FSSs. Since this capac-
itance reaches very high values in the close proximity of ωTM02 , the
LC-tank circuit in Fig. 4.2(a) always behaves as an open circuit at
some frequency slightly below ωTM02 , independently of how small
the inductance L is (i.e. independently of how small the aperture is).
Moreover, at exactly ωTM02 , C(ω) is singular and the LC-tank cir-
cuit now behaves as a short-circuit, thus reflecting all the impinging
power and easily explaining the transmission zero observed at fRW.
In brief, the model predicts the Fano-like resonance reported by many
authors9,10 for this kind of structures in an extremely simple way.

Although the values of ATM02 and Cho can be approximately
computed by assuming a physically acceptable field profile in the
aperture (the field profile of the TE10 mode of the rectangular waveg-
uide having the dimensions of the aperture would be a good choice,
as it has recently been discussed37), those values were extracted in
Ref. 26 from a mode-matching full-wave simulation of the structure
at a few frequency points. In Fig. 4.3(a) a few examples of the circuit
model and mode-matching predictions for several rectangular aper-
tures having different sizes are shown. Circuit model and full-wave
data are almost indistinguishable. When the considered apertures
are electrically large (wx = 3.0mm or wx = 2.5mm), a typical FSS
relatively broadband transmission peak is observed. The location of
the transmission peak is mainly controlled by the size of the aperture
along the x direction. If the width of the slot is reduced to what can
be denominated “subwavelength” size, the transmission peak is not
moved to frequencies above the RW anomaly point. A relatively nar-
row band transmission peak is always obtained below fRW and close
to this frequency. The bandwidth of this transmission peak is drasti-
cally reduced as the slot width is decreased and, in theory (if losses
are totally neglected), there is always a total transmission peak below
fRW no matter how small the aperture is. This is the ET peak, which
appears even if the size of the aperture is small enough to preclude
the existence of the regular FSS resonance within the non-diffraction
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Fig. 4.3. (a) Magnitude of the transmission coefficient (|S21|) through a zero-
thickness PEC screen with a periodic 2D distribution of rectangular apertures
of different widths (wx = 3.0, 2.5, 2.0, 1.5 mm, wy = 0.5mm). A square lattice of
period ax = ay = 5.0mm is considered (this corresponds to fRW = 59.9585 GHz).
The cases wx = 3.0 and 2.5 mm correspond to regular FSS operation. The
cases wx = 2.0 and 1.5 mm can be considered examples of extraordinary trans-
mission. (b) Transmissivity (|S12|2) through a perforated PEC finite-thickness
plate for several widths of the rectangular holes (wx = 0.70, 0.80, 0.90, 0.95 ay,
wy = 0.2 ay). FDTD data38 (black circles) have been included for comparison
purposes. Dimensions: ax = ay and t = 0.2 ay. Figures reproduced from Ref. 26
with IEEE permission.

frequency span. The behavior in the proximity of the transmission
zero associated with the RW anomaly is correctly predicted thanks
to the singular behavior of the TM capacitance used in the proposed
modelling technique. Another interesting feature of these Fano-like
resonances (reported by many authors9,10) is the existence of a strong
enhancement of the electromagnetic field at resonance. This obser-
vation is consistent with the fact of the existence of high current
levels flowing through the LC-tank circuit in Fig. 4.2(a) when L is
relatively small (due to the small size of the represented aperture).
Field enhancement is then also qualitatively accounted for by the
proposed model.

4.2.2. The effect of metal thickness in 2D arrays

of holes

Most of the structures considered in the available literature about ET
makes use of relatively thick metal layers, with this thickness having
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relevant consequences on the transmission spectrum.4,9,38–40 One of
the most relevant facts derived from the non-zero metal thickness
case is the existence of two ET peaks (instead of only one). Material
losses might mask the existence of one of those two peaks in an
experimental verification, but the numerical analysis of the problem
clearly demonstrates the existence of a pair of peaks when losses
are neglected or are very low. This situation cannot be accounted
for by the circuit in Fig. 4.2(a). The reason is that the existence
of a second transmission peak is closely related to the presence of
magnetic energy stored inside the hole when the metal slab thick-
ness is relevant. Note that the interior of the hole can be seen as
a section of length t of a rectangular waveguide. This waveguide
section would operate below cutoff if ET conditions are assumed
(small apertures), and it would work above cutoff over a certain
region of the range of frequencies below the diffraction regime if the
aperture is large enough. In the case of ET problems, due to the
small electrical size of the aperture, a single evanescent mode can
be considered enough to account for the total field inside the hole
(the TE10 mode in our case, since the aperture has a rectangular
shape). From the circuit theory point of view, as long as the value
of t is small enough, a Π-circuit made of inductors can be used to
account for the effect of the non-vanishing thickness of the metal
slab.26 The equivalent circuit shown in Fig. 4.2(b) is then proposed
to include this effect.26 The values of the parallel (Lp) and series
(Ls) inductances forming the Π inductive circuit can be extracted
from the analysis of the circuit under even and odd excitation con-
ditions, as it is explained in Ref. 26. The values of L and C cor-
responding to the external problem (scattered modes in the input
and output virtual PPWs) are very similar to the ones computed for
the zero thickness case. The analysis of the response of the circuit
in Fig. 4.2(b) predicts the existence of two total transmission (ET)
frequencies at

ωe =
1√

C(ωe)Le
eq

; ωo =
1√

C(ωo)Lo
eq

, (4.2)
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where

Le
eq =

LLp

L+ Lp
; Lo

eq =
2LLpLs

4LLp + Ls(L+ Lp)
. (4.3)

The superscripts “e” and “o” in the previous expressions stand for
even and odd excitations; i.e. Le

eq and Lo
eq are the equivalent induc-

tances connected in parallel with the capacitors, C, in the even-
and odd- circuits derived from the circuit in Fig. 4.2(b) under even
and odd excitation conditions. The values of those inductances can
easily be extracted from the phase of the reflection coefficients under
even and odd excitations and can be considered to be frequency-
independent. Note that Eqs. (4.2) are a set of implicit equations pro-
viding the ET peaks from the values of the capacitance in (4.1) and
the inductances in (4.3).

It should be noted that the previous analysis has to be slightly
modified if the TE10 mode in the hole is working above its cutoff
frequency (i.e. under regular FSS operation instead of ET opera-
tion). In that case, the contribution of a short section of waveguide
of length t/2 to the odd excitation parameters is still of inductive
nature. However, the contribution of the propagating TE10 mode to
the even excitation equivalent circuit becomes of capacitive nature.
Fortunately, this circumstance can easily be incorporated to the pro-
posed model. For the even excitation case, the inductive contribu-
tion to the circuit model comes only from the external TE modes
(the TE evanescent modes excited in the input and output PPWs).
Actually, the resonance associated with the even excitation is the one
commonly found in conventional FSS operation. Differently, the res-
onance associated with the odd excitation only appears provided the
thickness of the screen is not negligible, since the involved inductance
is the one corresponding to a short section of waveguide terminated
with a short circuit (this is the virtual short circuit, at the level of
the vertical symmetry plane of the unit cell, induced by the anti-
symmetrical nature of the excitation). This inductance is typically
much smaller than the external inductance, L, and shunt-connected
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to it, thus prevailing in the determination of the resonance properties.
In spite of the relatively low value of that inductance, a resonance
peak can always be observed slightly below fRW because of the sin-
gular behavior of C(ω) in (4.1).

An example of the influence of the metal plate thickness on
the transmission spectrum is shown in Fig. 4.3(b). The transmis-
sion spectra corresponding to several widths of a rectangular slot are
obtained using an in-house mode-matching code and, for one of the
cases, the FDTD results reported in the literature38 are included for
comparison purposes. In this figure, the frequency is normalized to
fRW. The circuit model results do not explicitly appear since they
overlap the mode matching data. It can be observed that the con-
sidered rectangular slots, which are electrically large, exhibit a first
resonance of relatively large bandwidth whose location is mainly con-
trolled by the length of the slot (i.e. the value of wx). An estima-
tion of that resonance frequency based on the length of the slots is
included in the figure in the form of vertical arrows. This resonance
also appears if the thickness of the metal slab is considered to be
vanishing, and it is the well-known conventional FSS resonance.3 In
Ref. 38 and elsewhere, this transmission peak is considered to be a
“localized resonance”. Interestingly, a second narrow resonance peak
occurring at a frequency slightly below fRW appears for all the con-
sidered aperture sizes. The existence of this resonance (which does
not appear in Fig. 4.3(a), for instance) is associated with the non-
vanishing thickness of the screen. This resonance is not included in
conventional circuit models for FSS structures available in the lit-
erature (probably because, in the microwave range, the thickness of
the metalizations used in printed circuit technology is negligible).
This resonance peak is a true ET phenomenon, and it has been pre-
dicted by studying the electrical response of the circuit in Fig. 4.2(a),
whose electrical parameters can easily be extracted from a few val-
ues of the scattering parameters obtained with any numerical sim-
ulator or from an approximation of the electric field over the hole
aperture.
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4.2.3. Distributed circuit model for arbitrary

thickness screens

In spite of the good results provided by the circuit model in
Fig. 4.2(b) when used to account for the effects of the metal screen
thickness, the model has some flaws that deserve attention. First, the
model cannot easily account for the physical fact that thick enough
screens should completely block transmission if the waveguide formed
by the hole is operating below cutoff. Moreover, the model cannot
explain the dependence of Lp and Ls with the thickness t of the
screen (these inductances are obtained in Ref. 26 for several values
of t for a given aperture shape and size, and their dependence on t is
discussed). These drawbacks come from the use of a lumped-element
equivalent circuit to model the effects of the fields inside the hole. The
problems can be solved if a distributed circuit model is considered
instead.26 A distributed model of this type is shown in Fig. 4.4(a).
This model takes into account that the thickness of the screen can be
of the same order of magnitude as the characteristic distances associ-
ated with the variation of the fields along the longitudinal direction
(z) inside the hole. For small rectangular holes operating below cutoff
(this is the case of interest for ET phenomena), the characteristic dis-
tance is governed by the attenuation factor of the fundamental TE10

mode inside the hole (αTE10). This evanescent mode is also char-
acterized by a purely imaginary characteristic impedance (jZTE10).
The transform ratio n of the transformers in the model accounts for
the coupling between the external TEM and the internal TE modes.
This transform ratio can be extracted from full-wave simulations (as
done in Ref. 26) or computed from an estimated field profile over the
aperture (the one corresponding to the TE10 mode in the hole would
be a reasonable choice 37). The values of C and L are, in practice, the
same ones that were derived for the zero-thickness screens since, once
the field in the aperture is fixed, the internal problem is decoupled
from the external one. The circuit in Fig. 4.4(a) can be conveniently
solved in terms of the even- and odd- excitation circuits in Fig. 4.4(b)
by using the superposition principle. Note that the dependence on
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(a)

(b)

(c)

Fig. 4.4. (a) Equivalent circuit for arbitrarily thick screens with subwavelength
holes. The circuit accounts for distributed effects inside the hole. (b) Even- and
odd-excitation equivalent circuits derived from (a). (c) Influence of the progressive
increasing of screen thickness on the evolution of the two-peaks transmission
coefficient (|S21|). Solid lines: mode-matching numerical results. Circles: circuit
model predictions. Dimensions: ax = ay = 5.0 mm; wx = 1.5 mm, wy = 0.5 mm.
Figures reproduced from Ref. 26 with permission of IEEE.

t of the even and odd inductances of the circuits in Fig. 4.4(b) is
known in closed form:26

Le =
ZTE10

2πnfRW
coth

(
αTE10

t

2

)
; Lo =

ZTE10

2πnfRW
tanh

(
αTE10

t

2

)
,

(4.4)

in such a way that the analysis is not to be repeated when the thick-
ness is changed. The formulas (4.4) are consistent with the values
of Lp and Ls obtained for different values of the parameter t using
a full-wave formulation and the circuit model in Fig. 4.2(b), as it is
demonstrated in Ref. 26.
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An important advantage of the distributed circuit model
(Fig. 4.4(a)) is that such a model can explain what happens when
the two peaks of ET collapse due to increasing metal slab thick-
ness. This process cannot be incorporated to the lumped-element
circuit model in Fig. 4.2(b). This feature of the distributed model
is clearly illustrated by the results reported in Fig. 4.4(c). In that
figure, the thickness t of the screen is progressively increased until
the two ET peaks collapse into a single peak. The data have been
obtained in the absence of losses, in such a way that the double peaks
reach a transmission coefficient whose magnitude is the unity. How-
ever, the transmission for the single peak is partial; i.e. part of the
power is reflected (since no losses have been included in the model)
and decreases to zero as expected when the thickness of the screen
becomes significantly larger than 1/αTE10 . It is worth emphasizing
that the circuit model data perfectly match the numerical results
obtained with the mode-matching approach. Moreover, the values of
the circuit parameters have been determined only once for all the
values of the metal plate thickness.

So far, it has been established that standard waveguide disconti-
nuity theory can be used to explain the phenomenon of ET in period-
ically perforated PEC screens (2D case). The employed methodology
automatically leads to an equivalent circuit model which is character-
ized by using very few parameters. The correct incorporation of the
frequency dependence of one of those parameters (the capacitance
associated with the first excited high-order TM mode) is essential
to account for the ET phenomenon using the circuit model. In par-
ticular, it has been shown that the main role in the phenomenon is
played by the first TM mode when the operation frequency is slightly
below and close to its cutoff. Note that this model puts emphasis,
when providing an explanation for the ET phenomenon, on the pos-
sibility of having a perfect matching condition rather than on the
excitation of spoof surface plasmons. In the authors’ opinion, this
point of view is advantageous because the whole transmission (or
reflection) spectrum is predicted, not only the location of the ET
and RW frequencies.
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4.3. Extraordinary Transmission in Hollow-Pipe
Metallic Waveguides

In the preceding section, the existence of ET peaks through 2D peri-
odic arrays of subwavelength apertures made in thin or thick metal
plates has been related to operation frequencies in close proximity
to the cutoff frequency of an evanescent TM mode; namely, the first
high-order TM mode supported by the virtual PPW defined by the
unit cell of the periodic problem (for normal incidence, it was the
TM02 mode). Note that, in the frame of the proposed approach,
the role of the periodic nature of the structure is to generate such
virtual waveguide, whose high-order TM modes would be responsi-
ble for extraordinary resonance peaks (even within the diffraction
regime, small peaks are observed in the immediate vicinity of the
onset of new TM modes26). Certainly, this point of view immediately
suggests that ET should also be expected through electrically small
diaphragms located inside a regular hollow-pipe metallic waveguide.
In such situation, it is obvious that periodicity could not be invoked
as the reason behind ET. Of course, SPPs are not defined for this
physical system so that its presence cannot be used to explain ET
peaks (as commonly done in the literature for the case of periodic
systems). In the frame of the waveguide problem with diaphragms
made of electrically small apertures, eigenmodes of the class dis-
cussed in some papers41–43 would play the role reserved to SPPs by
the standard ET theories (periodic case). Apart from those papers,
the possibility of observing the ET phenomenon through small aper-
tures located inside closed waveguides has also been reported in other
works,26,44 which show, through numerical simulations or analytical
developments, that a phenomenon equivalent to ET in periodic struc-
tures can be observed in metallic waveguide systems. In this section,
the ET phenomenon will be theoretically and experimentally studied
for the case of off-centered small diaphragms placed inside a circular
waveguide system.45,46

There are two advantages of using circular waveguides (instead of
rectangular waveguides44) and off-centered diaphragms: (i) the pos-
sibility of ruling out the periodicity as a necessary condition for ET,
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and (ii) the chance of creating an electromagnetic modal situation
which is analogous to the one found when dealing with 2D peri-
odic distributions of holes. It should be noticed that the first TM
mode that can be excited in a rectangular waveguide has its cut-
off frequency above the cutoff frequencies of two TE modes, which
would be launched before reaching the onset of the first TM mode.
This means that single-mode operation would not be possible when
trying to observe ET peaks, in contrast with what happens in the
periodic system problem, where a single TEM mode is propagating
inside the virtual PPW system at the ET frequency point. Multi-
mode operation does not only invalidate the analogy between the
closed waveguide and the previous periodic structure, but also would
be a problem from an experimental point of view. Fortunately, the
first TM mode supported by a circular waveguide (the TM01 mode)
is preceded by a single TE mode (the fundamental TE11 mode).
Thus, before the onset of the TM01 mode, single mode TE11 opera-
tion is possible. In that case, we can use exactly the same reasoning
line previously employed for the analysis of 2D periodic distribu-
tions of holes. Indeed, the same circuit models can also be employed
after minor modifications. It is only necessary to replace the non-
dispersive TEM mode supported by the virtual PPWs in Fig. 4.1(b)
with the frequency-dispersive fundamental TE11 mode supported by
the circular waveguide; the characteristic admittance, ZTE11(ω), and
propagation constant, βTE11(ω), should be used in the circuit mod-
els instead of Z0 = Y −1

0 and k0. Note that, due to the symmetry
properties of the TM01 mode, a diaphragm with a centered sym-
metrical slot would not excite this mode when illuminated with the
impinging TE11 mode. This problem is easily overcome by just off-
centering the location of the aperture. The geometry of the small
apertures (diaphragms) used in the experimental setups in Refs. 45
and 46) are depicted in Fig. 4.5(a). Two different geometries were
used in Ref. 46: rectangular and elliptical. In this chapter, only the
rectangular geometry will be considered.

The scattering parameters of the discontinuity represented in
Fig. 4.5(b) can be computed by using the mode matching method
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(a)

(b) (c)

Fig. 4.5. Schematic view of the subwavelength diaphragms used in the experi-
mental study of ET in circular waveguides reported in Refs. 45 and 46: (a) front
and lateral views of rectangular and elliptical diaphragms (the diaphragms are
off-centered). Rectangular diaphragm dimensions: a = 10.0 mm, b = 2.0 mm,
s = 7.0 mm diaphragm dimensions: ax = 13.0 mm, ay = 3.0 mm, s = 6.0 mm.
(the elliptical case will not be discussed here). The nominal waveguide radius is
r = 9.75 mm. (b) Schematics of the involved discontinuity problem. (c) Schematics
of the experimental setup, including coax-to-waveguide adapters (i), rectangular-
to-circular waveguide transitions (ii) and the diaphragm section (iii). A basic
equivalent circuit for zero-thickness diaphragms is also shown. Reprinted from
Refs. 45 and 46 with permission of AIP and IEEE.

following the guidelines reported in Refs. 47 and 48. To simplify
the discussion, it will be assumed that the thickness of the metal
plate supporting the electrically small aperture is negligible. The
equivalent circuit that models the effect of the diaphragm is then
the one sketched in Fig. 4.2(a) or at the bottom of Fig. 4.5(c); i.e.
higher-order mode contributions are accounted for by a frequency-
independent inductance, L, and a frequency-dependent capaci-
tance, C. The values of L and the two frequency-independent param-
eters defining C(ω) (see Eq. (4.1)) can be obtained once again from
a few values of the numerically determined scattering parameters.46

If the thickness of the metal plate where the diaphragm has been
realized is not negligible, the circuit model in Fig. 4.2(b) should be
used instead. The internal inductances, Ls and Lp, can be extracted
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from full-wave simulations carried out at few frequency points (a
detailed study of the consequences of using thick diaphragms can be
found in Ref. 46). Since the capacitance accounting for the TM01

contribution to the scattered field has a singular behavior at the cut-
off frequency of this mode (11.77 GHz for the nominal value of the
circular waveguide radius considered in this example, r = 9.75mm),
an extraordinary transmission peak at a frequency slightly below the
TM01 cutoff frequency is expected. In Fig. 4.6(a), the results mea-
sured for the rectangular diaphragm in Fig. 4.5(a) are plotted and the
full-wave mode-matching data are included for comparison purposes,
as well as data obtained with the proposed circuit model (the thick-
ness of the diaphragm is neglected). A typical Fano–like resonance is
observed, with a maximum transmission peak at about 11.42 GHz fol-
lowed by a transmission zero at the frequency of the onset of the first
TM mode of the circular waveguide (around 11.8 GHz). According
to these results, it is possible to conclude that the theory presented
in this chapter provides a unified conceptual frame to explain ET
occurring in periodic structures and in hollow-pipe metallic waveg-
uides. This is a direct consequence of using the impedance matching
point of view rather than relying on the excitation of SPPs.

An interesting experimental observation with relevant implica-
tions is shown in Fig. 4.6(b). In that figure, the same experiment is
carried out but using a smaller aperture size (a = 5.7mm instead
of 10.0mm). The experimental data show that a transmission peak
still appears in the transmission coefficient, which is associated with
a small dip in the reflection coefficient. The transmission peak (and
reflection dip) are very close to the TM01 cutoff frequency. However,
although the peak exists, most of the impinging power is reflected or
absorbed in the diaphragm plate and transmission enhancement is
residual. It seems that a high level of transmission at frequencies very
close to the onset of the TM mode (this is the situation when the
size of the aperture is really small) is not compatible with the pres-
ence of metal losses. This experimental fact can be explained in the
frame of the equivalent circuit model introduced in this section after
noting that the presence of metal losses can be phenomenologically
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(a) (c)

Fig. 4.6. (a) Extraordinary transmission for the rectangular diaphragm con-
sidered in Fig. 4.5(a). Analytical (circuit model), numerical (mode-matching)
and experimental results agree very well (results reproduced from Ref. 45). (b)
Measurements, full-wave simulations with HFSS (this is a finite-elements-based
commercial solver) and circuit model results for a very small aperture, a = 5.7 mm
(results reprinted from Ref. 46). Losses have been added to the circuit model by
means of a small resistor, R, connected in series with the inductance, L, of the
aperture. Reprinted from Refs. 45 and 46 with permission of AIP and IEEE.

included in the model by adding a resistor, R, connected in series
with the inductance, L, of the aperture. If this resistor is considered,
the impedance of the LC-tank circuit at resonance is not infinity,
but approximately Zres = L/(RC). A good transmission level at
resonance is only achieved if Zres � ZTE11 . For typical values of R
associated with metallic diaphragms and the values of L and C asso-
ciated with apertures not too small, the above-mentioned condition
is reasonably fulfilled. However, if the size of the aperture is reduced,
L is reduced and C at resonance increases, in such a way that Zres

might be even much smaller than ZTE11 . When this happens, even at
resonance, most of the impinging power is reflected and only a small
amount is transmitted and/or absorbed. After including the resistor
R in the equivalent circuit, the analytical results basically capture
the main details of the measured spectrum in Fig. 4.6(b). This experi-
mentally observed fact can be extrapolated to the case of 2D periodic
distributions of holes. Thus, although ideal materials (PEC) would
allow for the existence of a peak of ET at any distance of the RW
anomaly frequency, real material losses would destroy the ET peak
because of strong reflection at resonance. This phenomenon always
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happens for small enough apertures, which are associated with very
low L and high C, thus having small values of Zres. In the specific
example given in Fig. 4.6(b), 84.1 % of the power was reflected, 0.6 %
was transmitted and 15.3 % was dissipated. A more detailed study
on this topic can be found in Ref. 46.

4.4. Modelling of 1D Arrays of Slits: Simple and
Compound Gratings

4.4.1. Circuit models for simple metal slit gratings

In the introduction to this chapter, it was mentioned that ET has
been reported in periodic systems simpler than the ones treated in the
previous sections. In particular, 1D metallic gratings with very small
apertures27 and non-vanishing metal thickness under TM illumina-
tion exhibit a transmission peak at a wavelength close to the period
of the structure. ET peaks of this kind can also be observed in some
plots included in some works28,29 published by Ukrainian researchers
by the end of 1960s about thick metal gratings. The basic geometry
of a transmission grating of this type is sketched in Fig. 4.7(a), where
the cross-section of an infinite periodic array of metal slabs separated
by dielectric filled gaps is shown.

In contrast with the 2D case, high transmissivity peaks associated
with FP resonances of the cavities formed by the slits are possible no
matter how small the slit aperture (a) is. These resonances appear
when the thickness of the metal plate supporting the slits (h) is close
to an integer number of half wavelengths in the filling dielectric at
the operation frequency. These kind of resonances are possible for
TM illumination because the mode excited in the PPW formed by
the conducting boundaries of each slit region is of TEM nature (with
no cutoff frequency). In contrast, small 2D holes operating below
the cutoff frequency of the lowest-order TE mode supported by the
corresponding waveguide (typical situation found in ET operation)
cannot give place to FP resonances. It is worth mentioning that the
FP resonances are not associated with any special behavior of the
electromagnetic fields outside the slit regions. Thus, they should not
be confused with true ET. However, provided the thickness of the
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(a)

(b)

(c)

Fig. 4.7. (a) Lateral view of an infinite array of slits of width a made in a
metal slab of thickness h. The slits might be filled with a dielectric material.
The structure is uniform along the x direction. (b) Lateral and front views of the
equivalent discontinuity problem for normal TM illumination. The width W of
the equivalent PPW can be arbitrarily chosen. (c) Equivalent circuit for the unit
cell problem.

metal plate is not strictly zero, a transmission peak is always observed
at the frequency for which the wavelength (in air) is close to the
period of the grating (d), independently of the thickness of the metal
slab. This resonance is controlled by the periodicity of the structure
and is accompanied by a strong perturbation of the electromagnetic
field in the region external to the slits. This specific resonance has
the same nature as the ET peaks reported for 2D arrays of holes (or
for small diaphragms in closed waveguides). In recent years, several
authors have reported analytical circuit models for the analysis of
this class of structures, and the main results of these works will be
summarized in this section.

Let us start our analysis with the case shown in Fig. 4.7(a) of a
simple 1D transmission grating made of PEC under normal TM illu-
mination (the effect of metal losses will be added later). Obviously,
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the problem is periodic along the y direction, in such a way that the
unit cell drawn in Fig. 4.7(b) is the equivalent waveguide problem
whose scattering parameters are the same as those of the periodic
structure. The propagating mode in the slit region is of TEM nature
provided the width of the slit is small enough (for very wide slits,
the effect of higher-order modes should be considered). Outside the
slits, in the virtual PPWs induced by the periodicity of the problem, a
propagating incident, reflected and transmitted TEM mode is always
found. If the operation frequency is below the onset of the diffraction
regime (i.e. if λ > d), all the scattered high-order modes (which are
of TM nature in this case) are below cutoff. The input admittances
of those evanescent modes is of capacitive nature,35,36 in such a way
that a single capacitor, CTM(ω), has to be used to account for the
influence of the high-order modes in the equivalent circuit shown in
Fig. 4.7(c). The capacitance CTM has the same expression as the one
given in (4.1); i.e. there is a frequency-dependent contribution with a
singularity at the first RW frequency point (fRW = c/d in this case),
which is associated with the first excitable TM mode, in addition
to a frequency-independent contribution linked to all the remaining
infinite high-order TM modes. The FP-like resonances can easily be
explained from the analysis of the circuit in Fig. 4.7(c), even if the
dependence on frequency of CTM is ignored. Several transmission
peaks of this type could appear before the onset of the diffraction
regime if the thickness h of the metal slab is electrically large. A
detailed analysis of the location of the FP transmission peaks is
reported in Ref. 30. In that paper, it is shown that the effect of
the non-negligible value of CTM, provided the slit width (a) is small,
can be accounted for by means of an equivalent thickness of the metal
slab, heq, which is slightly larger than the real thickness. The differ-
ence between the equivalent and real thickness can be obtained from
the ratio between CTM and the per unit length (p.u.l.) capacitance
of the slit PPW (C = εrε0W/d). This extra thickness explains the
red-shift of the FP transmission peaks with respect to the standard
formula that implicitly ignores the effect of the diffracted field. The
excess thickness approach cannot be applied to relatively wide slits,
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although an analytical solution for the transmission spectrum is still
provided by the circuit model in Fig. 4.7(c).

Of special interest in the frame of this chapter devoted to ET is
the fact that CTM can reach very high values in the close proximity
of fRW = c/d. If the thickness of the metal plate is not strictly zero
(h �= 0), the inductance provided by the central transmission line
section under odd-excitation conditions (in such conditions the AA′

symmetry plane is a virtual short-circuit) will always resonate with
some large enough value of the capacitance. This value can always
be reached (lossless case) by sufficiently approaching the operation
frequency to c/d. However, if the metal grating thickness is strictly
zero (in practice, if the thickness is very small), no inductance is
available and no extraordinary transmission peak is possible. This
observation is consistent with the results reported in Refs. 27 and 28.

The values of CTM can be obtained30 by combining a single full-
wave computation at an arbitrary frequency point within the non-
diffraction regime with the static values of the edge capacitance of
the step discontinuity in Fig. 4.7(b). This latter static value can
be obtained from any commercial Laplace’s solver or applying the
conformal mapping method. Nevertheless, assuming an approximate
profile for the y component of the electric field at the slit aperture
(which can be as simple as a uniform field), analytical expressions
can be obtained for CTM, including the static frequency-independent
contribution and the frequency-dependent one associated with the
first high-order TM mode. These approximate analytical formulas
for CTM can be found, for instance, in a paper by Khavasi and
Mehrany:49

CTM = Cstat

[
1− α+

α√
1− (d/λ)2

]
, (4.5)

where λ is the wavelength in vacuum, Cstat is the static limit value
of a grid capacitance such as reported in Ref. 21, and α an empiri-
cally determined parameter accounting for the relative level of excita-
tion of the first high-order mode. The authors of the aforementioned
paper49 propose the empirical expression α =

√
1− F 4, with F being
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the “filling factor” of the grating, defined as F = 1 − a/d. Alterna-
tive analytical formulas for CTM(ω), which are based on a conformal
mapping approach to obtain the quasi-static limit of that capacitance
and an approximation for the contribution of the first TM mode, can
be found in another paper by some of the authors of this chapter.34

The results using any of these sets of expressions are almost identical.
Actually, using the strategy reported in any of the above-mentioned
references,30,34,49 very accurate results can be obtained. Thus, circuit
model and full-wave (mode-matching method) data are compared in
Fig. 4.8(a) for two gratings having the same period and thickness
but different values of the slit width (normal TM incidence is con-
sidered). Three transmission peaks can be observed in this plot. The

(a) (b)

Fig. 4.8. (a) Transmittance calculated for two different metal gratings (a =
2.0 mm and a = 0.5mm) using a numerical mode-matching approach (solid lines)
and the circuit model introduced in this chapter (dots). Dimensions: d = 5.0 mm,
h = 6.0 mm. Normal TM incidence is considered and air is the dielectric filling
all the regions outside metals. Reprinted from Ref. 30 with IEEE permission.
(b) Unit cell for the case of TE incidence (top panel) and the corresponding
equivalent circuit model.49 PBC: periodic boundary conditions (magnetic walls
in case of normal incidence).
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two peaks corresponding to larger wavelengths can be identified as
FP resonances of the cavities formed by the slits. The location of
those peaks is mainly controlled by the thickness of the metal slab,
although a correction due to the external diffracted fields (which
depends on the slit width) should be taken into account to gener-
ate highly accurate results.30 Hence, the transmission peaks do not
exactly coincide with those frequencies for which the width of the
slab is an integer number of λ/2. The observed red-shift can usually
be described in terms of an equivalent slab thickness, as is explained
in detail in Ref. 30. In the two analyzed cases, apart from the FP-
like peaks there appears a narrow-band transmission peak followed
by a transmission zero (Fano resonance) at λ/d ≈ 1.0. This is the
true ET peak, which is always present independently of the value of
h (except if h = 0). The proposed circuit model can reproduce this
peak thanks to the introduction of the frequency-dependent singular
contribution to CTM.

The authors of Ref. 49 incorporated some interesting additional
features to the circuit model for 1D simple metal gratings originally
reported in Ref. 30. One of these features was the possibility of deal-
ing with oblique incidence. In this case, the perfect electric walls
shown in Fig. 4.7(b) should be replaced by periodic boundary condi-
tions (PBC), in such a way that a generalized PPW50 has to be dealt
with. Fortunately, this virtual waveguide also supports non-dispersive
TM modes without cutoff frequency, in such a manner that the circuit
model in Fig. 4.7(c) is still valid. However, the characteristic admit-
tance Y0 =

√
ε0/µ0(W/d) now has to be divided by the factor cos(θ),

with θ being the incidence angle, and the propagation constant be
corrected including the cos(θ) factor. The expression (4.5) should be
modified substituting d by λC = (1 + sin θ)d (note that λC is the
wavelength at which the −1 diffracted order becomes propagative).
With these changes, the oblique incidence case is easily incorporated
into the circuit model. A more accurate approach can be developed
by carrying out an expansion of the aperture electric field as a series
of Floquet harmonics of the periodic structure. Using this approach, a
better value of CTM can actually be obtained. Note that, in the case of
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very narrow slits, the influence of CTM is marginal, in such a way that
only the transmission line sections of the circuit model are relevant.
Since the characteristic admittance of the slit region is much larger
than the characteristic admittance of the external region, relatively
narrow-band FP peaks are expected for normal incidence and low
angles of incidence. However, due to the 1/ cos(θ) factor weighting
the characteristic admittance of the input and output lines in the
case of oblique incidence, there always exists a specific value of the
incidence angle, θB, that yields perfect impedance matching at any
frequency below the onset of the first grating lobe. For that angle,
almost total transmission can be expected through the grating at any
frequency below the onset of the diffraction regime. This angle has
been called “plasmonic Brewster angle” in a paper by Alù and co-
workers51 due to the similarity of this phenomenon with the classical
total transmission at Brewster angle through a flat interface between
two different transparent media.

The case of TE illumination upon a 1D metal grating can also be
treated using an appropriate circuit model.49 In the TE case, the unit
cell involves a generalized PPW accounting for the region external to
the slits, which has a width equal to the period, d. The height of this
PPW can be arbitrarily chosen. The slit region is, under this polar-
ization, a rectangular waveguide (defined by two metal walls and two
virtual perfect electric walls, perpendicular to the impinging electric
field). It can be assumed that the slit region supports a dispersive
TE10 mode. A sketch of the unit cell is depicted in the top panel
of Fig. 4.8(b). The equivalent circuit for this case would involve a
dispersive section of transmission line accounting for the TE mode
in the slit region. This waveguide might operate below or above cut-
off, depending on the frequency range of interest and the slit width.
The discontinuity between the generalized PPW and the rectangular
waveguide involves inductances (L) and transformers (n), as shown
in the bottom panel of Fig. 4.8(b). As is shown in Figs. 5.8, 5.9 and
5.10 in Ref. 49, the resulting model yields reasonably accurate results
even for very wide slits. The authors of this chapter have developed
an alternative method to derive the parameters n and L of the circuit
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model in Fig. 4.8(b). This model provides more accurate results since
the approximations employed in Ref. 49 are avoided. The parameters
of the model are obtained by assuming an electric field distribution
at the slit aperture plane that corresponds to the TE10 mode of the
rectangular waveguide that accounts for the slit region.

As a final remark, it should be mentioned that the circuit model
for these kinds of gratings can easily be extended in order to deal with
the diffraction regime. When the structure is operated at frequencies
above the onset of the first grating lobe, one or more Floquet har-
monics (or waveguide modes, in the case of normal incidence) would
operate above cutoff in the input and output waveguides of the unit
cell. In such case, the input admittance of the corresponding Floquet
harmonic (oblique incidence) or waveguide mode (normal incidence)
becomes a real and dispersive quantity. This means that, apart from
the capacitors considered in the analysis reported so far, frequency-
dependent resistors that account for the modes (or harmonics) above
cutoff should be added to the model. These resistors should be con-
nected in parallel with the capacitors. The power dissipated in the
resistors is the power transferred to high-order propagating modes
(or grating lobes). The details of this improvement of the reported
circuit model are explained in two recent papers.52,53

4.4.2. Circuit model for compound metal slit gratings

A special class of 1D grating is the so-called compound grating.
A compound grating is a 1D metallic periodic structure (of the same
type considered in the previous subsection) involving several slits
per period instead of a single one. When these slits are densely
packed, additional interesting resonances appear in the transmis-
sion spectrum, as it has been reported in several theoretical31,32

and experimental54,55 papers. These resonances have been named
as “phase resonances.”31 In all the above papers, the slits were con-
sidered air filled. The most basic structure of this type that exhibits
phase resonances under normal TM illumination (with all the slits
filled with the same dielectric material) is shown in Fig. 4.9(a). In
the present analysis, for generality purposes, the slits are assumed
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Fig. 4.9. (a) Section of a compound transmission grating whose unit cell is com-
posed by three symmetrically disposed slits per period. (b) Unit cell to be solved
(for normal TM incidence). (c) Equivalent circuit for the unit cell. This circuit
takes into account the symmetry of the unit cell with respect to the horizontal
middle plane. Reprinted from Ref. 30 with IEEE permission.

to be filled with different dielectric media; this feature does not add
special difficulties to the analysis. The unit cell to be considered is
depicted in Fig. 4.9(b), and the proposed circuit model is the one
drawn in Fig. 4.9(c). This structure has been analyzed in Ref. 30
using a quasi-static approach for the treatment of the fields scattered
in the regions outside of the slits (input and output waveguides). Due
to the quasi-static nature of the employed approach, the capacitors
involved in the modelling of the scattered TM fields have frequency-
independent capacitance values. These values can be obtained by
solving an associated 2D Laplace’s problem, as is explained in the
cited reference.30 The presence of three symmetrical slits per period
is taken into account by means of the two different transmission lines
in Fig. 4.9(c). Obviously, this model incorporates the symmetry of
the unit cell with respect to the horizontal symmetry plane of the
considered unit cell. Note that the same circuit topology can be used
for a structure having four symmetrically disposed slits per period. If
each period is composed by five or six slits, an additional transmis-
sion line section should be added, as well as new external capacitors
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taking into account the coupling between the slits through high-order
scattered modes. As the capacitances have been determined using a
quasi-static approach, the behavior of the structure at frequencies
close to the onset of the first grating lobe are not expected to be
captured by this model. Nevertheless, for very thick slabs (relatively
large values of h, typically larger than the period d of the struc-
ture), interesting phenomena can be observed in the transmission
spectrum around each of the FP-like resonances; some of those res-
onances are far enough from the first RW anomaly, which allows
for the use of quasi-static models for the treatment of the scattered
high-order modes. In particular, as it is explained in depth in Ref. 30,
a strong narrow-band transmission dip (acting as a notch filter) is
created close to the central frequency of each FP resonance. The
model also predicts more transmission zeros as the number of slits
per period is increased (for instance, two transmission dips should
be observed if the number of slits per period is five or six). These
predictions are totally consistent with the theoretical and numerical
results reported by other authors31 using full-wave computationally
intensive numerical approaches.

The circuit model in Fig. 4.9(b) with quasi-static values of the
capacitances obtained using a commercial Laplace’s solver has been
used to generate the curves (solid lines) shown in Fig. 4.10(a). Those
curves correspond to the cases of three (J = 3) and four (J = 4) slits
per period, with the slits being identical and uniformly separated.
The curves are compared with the data numerically obtained using a
full-wave mode-matching approach.31 The circuit model reproduces
with good accuracy the transmission spectrum around λ/d ≈ 2.5.
However, although the qualitative response is still well captured, the
model is clearly less accurate when dealing with the resonances occur-
ring at about λ/d ≈ 1.2. This is due to the dispersive (frequency-
dependent) nature of the capacitances of the model, which is specially
significant when the operation frequency is approaching the point
λ/d = 1. It is worth mentioning that this drawback of the model
has recently been overcome by using frequency-dependent capaci-
tors whose values are analytically obtained from approximate field
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(a) (b)

Fig. 4.10. (a) Transmission spectra for two lossless compound gratings studied in
Fig. 4.2 of Ref. 31 (three, J = 3, and four, J = 4, slits per period). Dimensions:
d = 10mm, h = 11.4 mm, a = 0.8 mm, c = 0.8 mm. Solid lines: circuit model
predictions; dashed lines: numerical data.31 (b) Transmission spectrum for the
structure measured in Fig. 4.2 of Ref. 54 computed by means of the circuit model.
Very good agreement with the experimental data54 has been found. Reprinted
from Ref. 30 with IEEE permission.

distributions in the slits apertures.33 The new model33 is essentially
the dynamic version of the equivalent circuit reported in Ref. 30 for
transmission compound gratings. Apart from a much higher accu-
racy, specially at frequencies close to λ/d = 1, the dynamic model
for compound gratings can also deal with the diffraction regime
(λ < d) and accounts for other interesting high-frequency effects
that appear in compound reflection gratings (such as extraordinary
specular reflection56). Another interesting example of the applica-
tion of the proposed circuit model to compound gratings is given in
Fig. 4.10(b). In that figure, the transmission through a compound
grating that was experimentally studied in Ref. 54 is shown. In
these plots the absorption is included, since the losses inside the
slits have been incorporated into the model by means of a com-
plex characteristic impedance and a complex propagation constant.
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These complex quantities have been determined using the strong
skin effect approximation, as is explained in another paper by some
of the authors.34 Since the dimensions and the operation frequency
range considered in the experimental paper54 allow for the use of the
quasi-static model with confidence, the analytically obtained results
almost perfectly agree with the experimental data (some plots where
experimental data are superimposed to the analytical data can be
found in the previously mentioned paper33 about a dynamic model
for the compound grating problem).

In brief, analytical models based on relatively simple equivalent
circuits involving a small number of components (capacitors, induc-
tors and transmission line sections) have shown to be an accurate
alternative to numerical methods for studying the electrical response
of simple and compound metal gratings.

4.5. Metal Gratings with Finite Thickness Dielectric
Slabs

In previous sections, our equivalent-circuit analysis has been
restricted to the case of free-standing metallic structures. In the case
of 1D gratings, homogeneous dielectrics could be present inside the
slits, but this fact does not meaningfully modify the physics of the
problem and the kind of equivalent circuit to be handled. However,
in many practical cases, the metallic patterned screen is printed on
a dielectric slab, or even embedded in a stratified structure with sev-
eral dielectric layers. The dielectric substrates are usually employed
to provide mechanical support, but their electrical influence cannot
be neglected. Indeed, if the thickness of the dielectric slabs is of the
order of magnitude of the wavelength in the dielectric material, the
electrical response of the periodic metallic screen will be strongly
affected. The appropriate use of dielectric slabs can also be useful in
practical applications, since additional flexibility is provided to the
design process.

In microwaves and antenna technologies, structures whose geom-
etry can be described as a periodically patterned metal surface
printed on dielectric substrates have been used for long, and they
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are known as FSSs.3,57 In these applications, “ordinary” transmission
and reflection processes have been the focus of interest, and no atten-
tion has been paid to more “exotic” responses, such as those studied
in the previous sections of this chapter. The model that explains the
existence of transmission peaks and dips in the transmission spec-
trum on the basis of the excitation of surface waves would clearly
predict that the presence of a layered environment will make such
transmission spectrum a lot more involved than the one exhibited
by free-standing structures. This is due to the presence of additional
surface waves guided or trapped by the dielectric slabs. Due to this
reason, significant attention has also been paid to the modelling and
study of these kinds of structures in the context of extraordinary
transmission phenomena.58–63

The purpose of this section is to review some recent analytical
equivalent-circuit models useful to deal with a variety of periodic
metal structures embedded in stratified dielectric media. In the litera-
ture on the topic there are many circuit models dealing with this kind
of structures. Classical examples for 1D periodic metal gratings can
be found in several papers published in the 1950s.16–18 More sophis-
ticated circuit-like models for arrays of metal slits placed between
two semi-infinite media were later introduced.64,65 Two-dimensional
metallic diffraction grids used as filters in the infrared range of fre-
quencies have been treated with circuit-modelling techniques,66–68

and similar methods have been successfully applied in other fre-
quency bands. 19,21,24,25,69–72 However, many of the available circuit
models have significant restrictions concerning the electrical size of
the unit cell. Other methods lack of a systematic procedure to deter-
mine the topology of the equivalent circuit and the values of the
circuit elements. In particular, a circuit model explaining dynamic
effects, such as extraordinary transmission, should incorporate the
frequency dependence of the values of some of the components used
in the model. Next, a systematic procedure will be described to derive
the circuit topology and the values of the circuit components for a
class of periodic structures involving one or more dielectric layers.
This methodology is comprehensively explained in several papers
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(a)

(b)

(c)

(d)

Fig. 4.11. (a) 1D array of metal strips (dark grey) printed on a dielectric sub-
strate of thickness d. The period of the structure is a, the width of the slits is w,
and the relative dielectric constant is εr. (b) Unit cell of the structure (TM or
TE incidence can be considered). (c) Simplified auxiliary unit cell with infinitely
thick substrates. (d) Equivalent circuit for the problem in (c).

by some of the authors of this chapter, including both 1D73–75 and
2D76,77 periodic structures. The basic guidelines of the approach will
be presented for the simplest case (1D metal gratings printed on a
dielectric substrate). For more complex geometries, the reader will
be referred to the adequate published material.

The structure chosen in this section to exemplify the method
employed to derive the equivalent circuits is shown in Fig. 4.11(a).
In this structure, an array of metallic strips separated by electri-
cally narrow slots and printed on a dielectric substrate of thickness
d is shown. The structure is assumed to be illuminated by a TM
(magnetic field parallel to the slots) or TE (electric field parallel to
the slots) polarized uniform plane wave. Once again, the periodicity
of the structure and the excitation makes it possible to reduce the
problem to a waveguide discontinuity problem, which is schemati-
cally shown in Fig. 4.11(b). Figure 4.11(c) represents an auxiliary
unit cell where the thickness of the dielectric layer is assumed to
be infinite. Let us focus our attention on this latter problem, whose
equivalent circuit shown in Fig. 4.11(d) is given by means of the
known characteristic admittances Y (1)

0 and Y
(2)
0 of the input and
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output transmission lines and the unknown equivalent admittance
of the discontinuity, Yeq. A time harmonic dependence (exp(jωt)) is
assumed for the electromagnetic quantities. At the z = 0 disconti-
nuity plane, taking an impinging electric field of amplitude E = 1,
the electric field can be expressed as the following Floquet series of
spatial harmonics:

E(x) = (1 +R)e−jktx +
∞∑

n=−∞
n �=0

Ene−j(kt+kn)x, (4.6)

where R is the reflection coefficient of the zero-th harmonic (incident
wave), kt = k0 sin θ (tangential-to-the-grating wavevector component
of the impinging wave), k0 = ω

√
ε0µ0 ), and kn = 2πn/a. The same

expansion coefficients appear at both sides of the grating due to the
continuity of the tangential electric field, so that the transmission
coefficient is T = 1 +R. The TM field at both sides of the grating is
then given by

H(1)(x) = Y
(1)
0 (1−R)e−jktx −

∑
n �=0

Y (1)
n Ene−j(kt+kn)x, (4.7)

H(2)(x) = Y
(2)
0 (1 +R)e−jktx +

∑
n �=0

Y (2)
n Ene−j(kt+kn)x, (4.8)

where the following harmonic wave admittances have been intro-
duced:

Y (i)
n =

{
β

(i)
n /ωµ0 TE harmonics

ωεi/β
(i)
n TM harmonics,

(4.9)

with

β(i)
n =

√
ω2εiµ0 − (kt + kn)2, (4.10)

being the wavenumber along z of the n-th harmonic in medium (i).
Assuming now that the electric field in the slit is given by Es(x),

applying standard Fourier analysis and comparing to (4.6), it is found
that

1 +R =
1
a
Ẽs(kt); En =

1
a
Ẽs(kt + kn), (4.11)
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(the symbol ∼ denotes Fourier transform) or, equivalently,

En = (1 +R)
Ẽs(kt + kn)

Ẽs(kt)
. (4.12)

If the continuity of the power through the slit region is imposed,∫ w/2

−w/2
E∗

s (x)[H(2)(x)−H(1)(x)] dx = 0 (4.13)

and (4.7) and (4.8) are introduced into (4.13), is the following expres-
sion for the reflection coefficient finally found:

R =
Y

(1)
0 − Y (2)

0 − Yeq

Y
(1)
0 + Y

(2)
0 + Yeq

. (4.14)

This reflection coefficient relates the incident and reflected plane
waves of the equivalent circuit in Fig. 4.11(d), with the equivalent
admittance of the discontinuity being given by

Yeq =
∑
n �=0

∣∣∣∣∣ Ẽs(kt + kn)

Ẽs(kt)

∣∣∣∣∣
2

(Y (1)
n + Y (2)

n ). (4.15)

It can easily be observed in (4.15) that the discontinuity admittance
actually corresponds to the parallel connection of the wave admit-
tances of the higher-order spatial harmonics excited at both sides of
the metallic grating with a weighting factor related to the spatial
spectrum of the field profile at the slit. Note that it is the shape of
Es(x) rather than its absolute values of amplitude and phase that
actually affects Yeq. Although the field profile will depend on the
operation frequency, for electrically narrow slits (some discussion on
the limits of validity are provided in Ref. 33), it is a good assumption
to consider a frequency-independent spatial profile, as follows:

Es(x) = A(ω)f(x). (4.16)

The amplitude and phase of the actual electric field excited in the
slit [given by the complex factor A(ω)] is a function of the frequency,
but this a posteriori information is obtained from the solution of the
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circuit problem. This is possible given that A(ω) does not appear
in the final expression of the equivalent circuit admittance (4.15) as
this admittance only depends on the ratio of Ẽs(kt + kn) to Ẽs(kt).

If a good estimate of the electric field profile in the slit, f(x), is
available, the circuit model in Fig. 4.11(d) with the admittance in
(4.15) would provide very accurate values of R and T for the struc-
ture in Fig. 4.11(c). A good approximation of the electric field in a
narrow slit under TM illumination is given by the function f(x) =
1/
√

1− (2x/w)2, while for TE illumination f(x) =
√

1− (2x/w)2 is
an appropriate choice. Regardless of the specific field profile chosen to
compute Yeq, it is important to take into account that the contribu-
tions to (4.15) coming from relatively high-order (ho) harmonics have
a very simple dependence on the frequency.75 Thus, for high-order
TM harmonics (only excited under TM incidence), all the admit-
tances are proportional to ω and purely imaginary. It means that
the overall contribution of all those harmonics can be represented
by means of a regular frequency-independent capacitor, Cho. For TE
incidence, only TE modes are excited and, in such case, the contri-
bution to Yeq coming from high-order harmonics can be represented
by a regular frequency-independent inductor, Lho. The values of Cho
or Lho need to be computed only once for any frequency swapping
and angle of incidence. In the low-frequency limit (long-wavelength
limit), as the operation frequency is well below the cutoff frequencies
of all the harmonics (except the zeroth-order one), a simple capaci-
tor (TM case) or inductor (TE case) is required to account for the
effect of the slit discontinuity. This is the approach followed in many
works dealing with the circuit modelling of these kind of periodic
structures.21,66 However, when the operation frequency is close to or
above the cutoff of some high-order harmonics (either in the dielec-
tric slab or in air), the more complex frequency dependence of Yeq

cannot be ignored. Fortunately, the incorporation of the dynamic
effects only requires to treat separately very few modes of low order
(lo). One or two modes are enough for many practical applications,
although some specific situations may require to deal with several
low-order modes. For these low-order modes, the exact expression of
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(a)

(b)

(c)

Fig. 4.12. (a) Equivalent circuit for the unit cell in Fig. 4.11(c) under TM inci-
dence with explicit separation of high-order (quasi-static) contributions (Cho)
and dynamic low-order harmonics contributions (n = ±1). (b) The same type of
circuit for TE incidence. (c) Equivalent transmission-line circuits defining Y L

in,n

and Y R
in,n, which are the admittances substituting Y

(j)
n when a finite thickness (d)

dielectric is present. The extension to a multilayer structure only involved the use
of several transmission line sections.

their wave admittance is retained, leaving aside the approximations
that led to simple lumped capacitors/inductors. Two examples of
equivalent circuits that incorporate dynamic effects are sketched in
Figs. 4.12(a) and (b) for TM and TE incidence, respectively. Only
the harmonics n = 1 and n = −1 have been taken as low-order
modes, while the remaining infinite contributions give place to the
lumped frequency-independent Cho or Lho. If the operation frequency
is above the cutoff of any of the considered low-order harmonics, the
corresponding admittance would become real and still dispersive.
It might happen in the dielectric region, while in the air region the
harmonic is still below cutoff. Due to this, the contributions of the
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scattered harmonics at both sides of the slit discontinuity have been
separated in the drawings.

In the previous discussion, only the structure in Fig. 4.11(c) with
two semi-infinite dielectric regions has been considered. The inclu-
sion of a finite thickness (d) dielectric slab can easily be carried out
by substituting the wave admittances appearing in the previous for-
mulation (Y (j)

n , n = ±1,±2, . . .) with the input admittances of the
system formed by cascaded transmission line sections, each of them
representing a dielectric region.75 These input admittances are eas-
ily obtained using conventional transmission line theory,35 in such
a way that the method discussed in this section is actually valid
for a metal grating embedded in any layered environment with arbi-
trary dielectric constants and thicknesses.75 This idea is graphically
shown in Fig. 4.12(c). It should be highlighted that, in contrast with
other simplified circuit models, the reported models incorporate all
the dynamic features of the transmission/reflection spectrum as long
as the field profile in the slit does not appreciably change over the
considered frequency range. A simplified version of the models pre-
sented in this section has been used by Beruete et al.62,63 to explain
the phenomenon known as “anomalous extraordinary transmission,”
which appears when a TE polarized wave illuminates a strip grating
loaded with a finite thickness dielectric slab. The adjective “anoma-
lous” is here used because this kind of structure would not exhibit
ET peaks in the absence of the dielectric slab. The aforementioned
papers62,63 are interesting examples of how the circuit-model point of
view can shed light on a physical phenomenon whose understanding
using other methods would be troublesome.

The derivation of the equivalent circuits shown in Fig. 4.12
has been carried out using an aperture formulation. Therefore, the
a priori assumption of the shape of the spatial profile of the electric
field in the aperture (slit) has been our key premise. Due to the use
of this aperture formulation, the topology of the equivalent circuit
for the admittance accounting for the effect of the discontinuity is
the parallel connection of a number of admittances associated with
each of the scattered harmonics. However, if the width of the slit is
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large (i.e. w is close to the period, a), in such a way that the width of
the metal strips is relatively narrow, the structure is better described
as an array of narrow metal strips. In that case, it is easy to have
a good estimation of the electric surface current density supported
by the metal strips, which makes more convenient the use a formu-
lation where the unknown quantity is the current supported by the
strips. This approach is usually known as the “obstacle” formulation
of the scattering problem. This option has also been considered in
Ref. 75 in order to obtain an appropriate equivalent circuit. When
this approach is followed, the equivalent impedance of the disconti-
nuity can be expressed as the series connection of an infinite number
of pairs of admittances connected in parallel. In practice, the admit-
tances associated with high-order harmonics contributions collapse
into a single capacitor or inductor (depending on the polarization
of the impinging wave) and only a few elements of the equivalent
circuit (those associated with low-order harmonics) retain a more
complex structure, including dynamic and distributed effects. Thus,
a complete equivalent-circuit description is available for both slit–like
and strip–like structures.75

As it has already been mentioned, structures of this type have
been treated using circuit models with some degree of simplification
with respect to the kind of circuits described in this chapter.21,25

However, in many relevant practical cases, the use of quasi-static
approximate solutions or other simplifying assumptions yield poor
results, typically valid within a restricted range of low frequencies. An
interesting example to illustrate that ignoring dynamic effects might
yield very poor numerical data can be found in Ref. 75. In that work,
one of the selected examples shows the phase of the reflection coeffi-
cient of a periodic array of narrow metal slits printed on a conductor-
backed dielectric substrate. A sketch of the considered problem is
depicted in Fig. 4.13(a). For this kind of structure, extremely accu-
rate results (virtually exact) can be obtained by using the method
of moments (MoM) with a suitable set of basis functions incorpo-
rating the most relevant physical features of the expected solution.78

If losses are ignored, the magnitude of the reflection coefficient for
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(a) (b)

(c) (d)

Fig. 4.13. (a) Strip grating with period a made of narrow PEC strips (w = 0.1a)
printed on a dielectric slab of thickness d = 0.2a and relative permittivity
εr = 10.2. Normal TE incidence is considered. (b) Phase of the reflection coef-
ficient (S11) using a quasi-static approach to calculate the grating inductance.
(c) The same parameter when the exact contribution of the first scattered mode
is considered. (d) The same parameter when the exact contribution of the two
lowest order modes is incorporated. Reprinted from Ref. 75 with IEEE permission.

frequencies below the onset of the diffraction regime is just 1. Thus,
it is the variation of the phase of this coefficient with frequency that
has been computed using an exact MoM and the described circuit
model. Although it has not been explained before in this chapter,
the presence of the ground plane can easily be incorporated into the
model by properly short-circuiting the cascade of transmission line
sections (see Fig. 4.12(c)) used in the modelling of the structure.75

The curves shown in Figs. 4.13(b)–(d) correspond to the phase of
the reflection coefficient (S11) for the structure under analysis under
TE normal illumination in the non-diffractive regime (a/λ0 ≤ 1);
the dimensions and electrical parameters are given in the caption to
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Fig. 4.13. The analytical curves (circuit model) in Fig. 4.13(b) have
been generated using a quasi-static model for the slit discontinuity
(a simple capacitor is used to account for the effect of the slit). It
can be clearly observed that the phase is correctly computed only
in the low frequency limit (a/λ0 � 0.30). The analytical curves in
Fig. 4.13(c) take into consideration the exact dependence with fre-
quency of the first high-order TM mode and those in Fig. 4.13(d)
the exact contribution of the first two high-order TE modes. The
extraction of two low-order TE modes from the total quasi-static
inductance is found to be enough to obtain very accurate results
over the whole considered frequency band. The inaccuracy of the
quasi-static model is related to the fact of ignoring the interaction
of the first two high-order TE modes with the ground plane. If the
substrate was significantly thicker, the simplified model considering
that only the fundamental mode is reflected by the ground plane
would have been sufficient.

The case of a slit grating under TM illumination is considered in
Fig. 4.14. A periodic array of narrow slits (see caption for detailed
geometrical and electrical parameters) is sandwiched between two
different dielectric slabs. The frequency and the angle of incidence

Fig. 4.14. Magnitude of the transmision coefficient for a slit grating (slit width
w = 0.1a, period a) sandwiched between two dielectric layers of thicknesses d1 =

0.4a and d2 = 0.2a and relative permittivities ε
(1)
r = 2.2, ε

(2)
r = 10.2. The loss

tangent of both dielectric layers is tan δ = 0.001. (a) Circuit model results. (b)
MoM results. Normalized frequency: a/λ0. Reprinted from Ref. 75 with IEEE
permission.
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are swept along a wide range of values. Note that the differences
between the analytical (circuit model) and numerical (MoM) results
cannot be appreciated in this color map. Multiple resonances due to
the presence of the dielectric layers can be clearly observed, although
no grating lobes are allowed.

The analytical methodology presented in this section for a spe-
cific class of 1D metal gratings has also been adapted to the analysis
of more sophisticated 1D periodic structures, such as the T-shaped
and corrugated surfaces studied in Refs. 79 or 80. Thus, a very accu-
rate analytical circuit model for this class of geometries has been
developed by some of the authors81 without the limitations of the
analytical approximations given in the aforementioned papers.79,80

However, more interesting is the fact that the present approach to
extract equivalent circuits can equally be used in the case of 2D arrays
of holes in metal plates or arrays of metal patches. In the 2D case,
the analytical work is more involved, but the underlying rationale
behind the extraction of circuit models is the same proposed in this
section of the chapter. Once again, it is essential to have a reason-
able estimation of the profile of the electric field in the apertures or
the electric current on the metal patches. If those functions do not
appreciably change in the frequency range of interest, highly accurate
circuit models can be obtained. For highly symmetric scatterers or
apertures (for instance, rectangular metal patches or holes) under
TM or TE illumination with the wavevector of the impinging wave
oriented along one of the principal planes of the periodic structure,
the reflected and transmitted waves have the same polarization as
the incident one. In such case, the topology of the circuit for the
computation of the scattering parameters of the fundamental wave
(zero-order harmonic) is the same as that proposed in Fig. 4.12. But,
in the 2D case, both TE and TM modes (or harmonics) are scattered,
in such a way that the asymptotic (quasi-static) contribution asso-
ciated with the high-order modes involves both a capacitor and an
inductor. Indeed, a multimodal network64,65 can be inferred for 2D
arrays of rectangular apertures or patches embedded in or printed
on stratified dielectric structures, as it has recently been reported
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in Ref. 77. In the multimodal network representation, the input and
output modes (harmonics) can be arbitrarily chosen in such a way
that illumination using non-uniform plane waves can be treated. In
Ref. 77, the case or arbitrary oblique conical incidence is also consid-
ered by using a set of properly chosen auxiliary problems. A linear
combination of the reflection and transmission coefficients for those
auxiliary problems provides the solution for co-pol and cross-pol
scattering coefficients. This is an analytical solution to the problem
posed by Maci et al.,82 where an elegant semi-numerical approach was
reported.

As it has already been pointed out in this chapter, the key point
to obtain an appropriate equivalent circuit that incorporates the
dynamical features of the model (i.e. frequency-dependent capac-
itors, inductors or other relevant admittances/impedances) is the
availability of a reasonable estimation of the electric field (aperture
formulation) or the electric current (obstacle formulation) at the dis-
continuity plane. When the geometry of the apertures or scatterers
is simple, this is not a difficult task. However, for more involved
geometries (rings, crosses, Jerusalem crosses, etc.), an approximate
analytical description of the aforementioned quantities is not simple
any more. Fortunately, a reasonable approximation can be numer-
ically obtained by solving an auxiliary 2D problem consisting on
the determination of the modal patterns of the hollow-pipe waveg-
uide whose cross-section matches the geometry of the scatterer. The
solution of this translational-symmetry problem is clearly less com-
putationally intensive than the solution of the global scattering prob-
lem. Applying this idea, a couple of procedures have recently been
reported that are capable of dealing with scatterers having non-
trivial shapes.37,83 In one of those papers,37 the method reported in
this chapter is used in combination with the field pattern extracted
from a single run at a relatively low frequency of a numerical code.
The other paper83 makes use of a linear combination of two differ-
ent modal field patterns (or surface current patterns), thus giving
rise to an equivalent circuit that incorporates the first two intrinsic
self-resonances of the scatterer. This extended procedure yields an
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ultrawideband equivalent circuit for the fundamental modes (har-
monics), but cannot lead to a multimodal network such as the one
presented in Ref. 77.

4.6. Stacked Structures and Fishnets

A final and interesting situation that has attracted a lot of atten-
tion in the metamaterials literature will be analyzed in this section.
The structure corresponds to the stacking of two or more periodic
arrays of metal patches or apertures of the type studied in previous
sections. These so-called fishnet structures have been proposed as
a versatile and simple path to achieve negative-index behavior at
different wavelength regimes. A detailed description of this kind of
system can be found, for instance, in Refs. 84 and 14 and references
therein. A fishnet is basically a stack of several closely spaced ET
metal layers (i.e. layers or films of metals with 2D periodic arrays
of subwavelength apertures). These structures are known to support
backward waves along the stacking direction; namely, they present
left-handed behavior. Stacked structures for other purposes can also
be found in classical and recent literature. Thus, for instance, the
stacking of electrically dense metallic grids has been shown to open
wide transmission bands in spite of the extremely low transmissivity
of each of the individual stacked grids.72,85 2D stacked arrays of metal
patches are also of interest since they behave as artificial dielectric
materials whose effective anisotropic dielectric constant can be tai-
lored by properly adjusting the dimensions of the unit cell, the metal
patch, and the dielectric constant and thickness of the slabs separat-
ing the arrays of patches.86,87 Actually, the 1D version of these lat-
ter structures (stacked 1D periodic arrays of metal strips) attracted
the attention of researchers several decades ago,17,18,88 since those
structures could give place to very high values of the effective per-
mittivity or values lower than unity. In brief, it would be quite use-
ful to extend the equivalent-circuit methodology explained in previ-
ous sections of this chapter to the modelling of this class of device.
Actually, most of the aforementioned references propose some kind
of equivalent circuit, but they are not general enough to deal with
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all the situations that can be found in practical implementations.
A couple of interesting steps in the appropriate direction are given
in Refs. 89 and 90. However, these approaches have limited accuracy
if the dimensional parameters are not within a restricted range89 or
require the use of full-wave simulators to extract the circuit param-
eters.90 The purpose of this section is to describe the fundamental
guidelines to generate equivalent circuits (i.e. analytical solutions) in
a systematic manner leading to accurate and fully analytical models
for arbitrary values of the geometrical parameters.

For simplicity, the basis of the proposed methodology will be
exposed for stacked 1D periodic structures. The cross-section of a 1D
structure of this type is sketched in Fig. 4.15(a). In this structure,
N + 1 identical metal gratings with relatively narrow slits are sepa-
rated by N dielectric layers of arbitrary permittivity and thickness.
The structure can be illuminated along an incidence plane perpen-
dicular to the strips using TM- or TE-polarized plane waves. If the
period, p, of the structure is small in comparison with the wave-
length and the separation between consecutive metal gratings is large
enough, the circuit model for this structure is quite simple and well
known. Each metallic grating surface can be modelled by means of a
simple capacitor (TM incidence) or inductor (TE incidence), whose
values are not affected by the presence of the remaining gratings.
The interaction between consecutive gratings is exclusively provided
by the single propagating mode (or harmonic), the so-called zero-
order harmonic, which is represented in the circuit model by means
of a simple transmission line section. These kinds of models have
been used, for instance, in the treatment of 2D stacked grids72,91 or
2D stacked arrays of metal92 or graphene93 patches. However, these
models are not valid when the interaction between adjacent layers is
influenced by high-order modes.

In the first step, our attention will be focused on the simplest case
shown in Fig. 4.15(b), where only two periodic metal gratings are
interacting through an electrically thin substrate. A general circuit
that account for the interactions through modes (harmonics) of any
order can always be set in the form of a Π-circuit as the one depicted
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Fig. 4.15. (a) N + 1 stacked identical 1D metal gratings separated by N dielec-
tric layers of arbitrary thickness (dk, k = 1, . . . , N) and dielectric permittivities

(ε
(k)
r ). Air is assumed in the external region, but any dielectric material of infinite

thickness can be considered. TM/TE oblique incidence can also be accounted for.
(b) Elementary structure for the extraction of the basic building blocks to obtain
the equivalent circuit of the stacked configuration. (c) General equivalent circuit
for the structure with two strips gratings. The colored Π-circuit can be used to
build the equivalent circuit of the stacked configuration. (d) Equivalent circuit
with the zero-order mode (harmonic) explicitly extracted out.

in Fig. 4.15(c).94 All the admittances in that circuit can easily be
expressed in terms of the aperture (slit) electric field. Of course, this
Π-circuit would reduce to a simple transmission line section plus the
appropriate slit capacitance (TM incidence) or inductance (TE inci-
dence) associated with the iris discontinuity provided the separation
between gratings is large enough. Indeed, the transmission line sec-
tion corresponding to the zero-order mode (harmonic) contribution,
which is always responsible of interaction between gratings, could
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be explicitly extracted, as it has been done in Fig. 4.15(d) (other
alternative representations can be found in Ref. 94). Nevertheless,
the most relevant feature of the circuit in Fig. 4.15(c) concerning
the analysis of the stacked structure in Fig. 4.15(a) is the fact that
there is an explicit separation of the admittances corresponding to
the region between the gratings (colored series and parallel admit-
tances) and the ones corresponding to the region outside the grat-
ings (white parallel admittances). This separation is possible thanks
to the use of an “aperture” formulation of the problem, not being
straightforward if an “obstacle” formulation was employed. Once the
“internal” Π-circuit is known, the characterization of the stacked
structure in Fig. 4.15(a) can simply be achieved by stacking the
“internal” Π-circuits corresponding to each pair of adjacent gratings.
Note that, although all the metal grids have been considered identical
in the drawings, no special difficulty arises if the grids are different
(the Π-circuit would become asymmetrical). More details about the
physical interpretation of the series and parallel admittances of the
internal Π-circuit are given in Ref. 94. Roughly speaking, the trans-
mission line section used to represent the dielectric slab between grat-
ings in the simplified circuit models72,92 has to be supplemented with
a new series admittance, connected in parallel with the transmission
line section accounting for the zero-order mode (harmonic), which
takes into account high-order mode interactions (see Fig. 4.15(d)).
Usually these new admittances are frequency-independent capacitors
(TM incidence) or inductors (TE incidence), although more complex
circuit elements could be required. Thus, for instance, one or more of
the high-order modes could operate above cutoff within a frequency
range inside some of the dielectric slabs, even if the whole struc-
ture is operating in the non-diffraction regime. New transmission
line sections accounting for these propagating modes should appear
in parallel with the transmission line corresponding to the funda-
mental zero-order mode. In any case, all those admittances (corre-
sponding to evanescent or propagating contributions) are obtained
in analytical form and expressed as the sum of just a few modal
terms.
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It is worth mentioning that a similar formulation can be used
to deal with fishnet-like 2D structures made of stacked 2D peri-
odic distributions of small apertures in metal films. In that case,
the interactions through both TM and TE low-order modes have to
be simultaneously accounted for. This situation has also been treated
in some detail in the recent literature.95 In that work, it is clearly
shown that the introduction in the model of the first high-order TE
and TM modes is essential to explain the appearance of transmission
bands (including the backward or negative-index transmission band)
revealed by the full-wave analysis or by the experiment. The use of
standard simplified models that ignore high-order mode (harmonic)
interactions does not provide physically correct results.

In order to illustrate the accuracy of the modelling technique
reported in this section, a comparison between our analytical circuit
model data and numerical HFSS (finite elements method) results
is shown in Fig. 4.16(a) for a stacked 1D structure made of four 1D
periodic arrays of identical slits separated by three different dielectric
layers. The agreement between the computationally intensive calcu-
lations based on HFSS and the analytical results given by the equiv-
alent circuit model is excellent over the whole explored frequency
band. The unit cell of a 2D version of this structure is schematically
shown in Fig. 4.16(b), where four equally spaced extraordinary trans-
mission metal layers are considered. The magnitude of the transmis-
sion coefficient computed for normal incidence with the electric field
vertically polarized (along the y direction) is reported in Fig. 4.16(c)
for two different cases: the perforated metal films are separated by air
(top panel) or by a low dielectric constant material (εr = 1.4, bottom
panel). In these plots, full-wave results computed with HFSS are com-
pared with our circuit model. The curves labeled with EC(0,0) ignore
the interaction between consecutive metal layers involving high-order
modes. This situation corresponds to the most usual kind of circuit
model reported in the literature. It can be seen that, for this specific
choice of separation (d = 0.6P ), only the first transmission band is
roughly captured by the model. As discussed in Ref. 95, if the separa-
tion between metal layers was meaningfully smaller (say, d = 0.2P ),
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Fig. 4.16. (a) Transmission coefficient magnitude (|S12|) for four stacked slit
arrays (period p, slit width w = 0.1p) separated by three different dielectric
slabs and placed in vacuum. Dimensions and electrical parameters: d1 = 0.4p,
d2 = 0.3p, d3 = 0.2p, ε

(0)
r = 1, ε

(1)
r = 2.2, ε

(2)
r = 4.0, ε

(3)
r = 3.0. The frequency

is normalized (p/λ0) and normal TM incidence is considered. Reprinted from
Ref. 94 with APS permission. (b) Unit cell of a stacked 2D structure (fishnet)
with a square lattice of period P and apertures of size Wx = 0.4P , Wy = 0.2P .
The separation between perforated metal layers is d = 0.6P . (c) Magnitude of the
transmission coefficient for the structure in (b) with air (top panel) or dielectric
with εr = 1.4 (bottom panel) between metal layers. The curve labeled EC(0,0)
does not consider high-order modes interactions, EC(0,1) includes the effect of
the first high-order TM mode and EC(1,1) adds the first high-order TE mode.
Reprinted from Ref. 95 with IEEE permission.

no transmission band would be predicted by this simplified model.
However, when the first high-order TM mode is explicitly considered
in the interaction, the case labeled as EC(0,1) in Fig. 4.16(c) shows
that the results are qualitatively more consistent and one or two new
transmission bands are clearly predicted. Finally, the inclusion of
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the first high-order TE mode [EC(1,1) curves] provides a much bet-
ter quantitative agreement between numerical and analytical data.
Thus, the circuit model clearly shows the role of the first few high-
order modes in the appearance of additional transmission bands,
which are completely lost if the interaction through high-order modes
is ignored. The computer code written on the basis of the theory
reported in this chapter can add as many modes as necessary to
properly account high-order modal interactions. More modes would
be required when the distance between metal layers is reduced. In any
case, the computational effort is always orders of magnitude smaller
than that involved in purely numerical calculations.

4.7. Conclusions

The study of the electromagnetic response of periodic metalo-
dielectric planar structures has been a topic of research interest since
the first works on diffraction by gratings carried out more than two
centuries ago. More recently, the control of electromagnetic waves
from RF frequencies to optics using this kind of structure has moti-
vated an explosive regrowth of this research field. The study of ET
structures and metamaterials are good examples of the recent interest
on the topic. Although powerful commercial full-wave electromag-
netic solvers are nowadays available, the development of analytical
models to deal with the analysis of this class of devices has obvi-
ous advantages from the computational point of view. Moreover,
an analytical model will provide more physical insight than purely
numerical approaches. Among the analytical models, those based on
equivalent circuits have been very popular for decades due to their
simplicity and easy implementation, apart from the familiar method-
ological and conceptual frame that it provides to electrical engineers
and physicists. However, most of the equivalent circuit models pro-
posed in the literature have serious limitations, especially when the
dynamic frequency-dependent properties of the circuit elements can-
not be ignored. In this chapter, a review of recent improvements
of the circuit modelling simulation techniques that allow for the
accurate analysis (and design) of a variety of periodic structures
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that have attracted the interest of researchers working in the field of
antennas and microwave engineering and in the field of metamaterials
and ET-based structures has been provided.
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62. Beruete, M., Navarro-Ćıa, M., Kuznetsov, S. A. and Sorolla, M. (2011). Cir-
cuit approach to the minimal configuration of terahertz anomalous extraor-
dinary transmission, Appl. Phys. Lett. 98, p. 014106.
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5.1. Introduction

Metasurfaces1–4 are dimensional reductions of volume metamaterials
and functional extensions of frequency selective surfaces.5 They are
composed of 2D arrays of subwavelength scattering particles engi-
neered in such a manner that they transform incident waves into
desired reflected and transmitted waves. Compared to volume meta-
materials, metasurfaces offer the advantage of being lighter, easier
to fabricate and less lossy due to their reduced dimensionality, and
while compared to frequency selective surfaces, they provide greater
flexibility and functionalities.

In this chapter, we propose a framework that may be used as
a rigorous synthesis technique for metasurfaces and which can be
divided into two main steps. Firstly, a mathematical description of
the metasurface must be obtained by solving an inverse problem
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where all the fields around the metasurface (incident, reflected and
transmitted fields) are known and the electromagnetic properties, at
each point of the metasurface, must be found. The mathematical
synthesis technique must be as universal as possible meaning that
the specified fields can have arbitrary amplitude, phase, polarization
and direction of propagation.

Secondly, the metasurface electromagnetic transfer function
(obtained from the first step of the synthesis) is discretized into
unit cells corresponding to each lattice site. Each of these unit cells
must then be physically implemented in order to build the final
metasurface. Therefore, this second part of the synthesis technique
consists in finding appropriate and convenient design rules to imple-
ment the scattering particles. This second step is usually the most
complicated as no universal and systematic techniques exist so far
to relate the shape of scattering particles to their effective param-
eters (or transmission and reflection coefficients), and such analy-
sis is usually performed via parametric simulations of well-chosen
structures.6–14

To date, only a few metasurface synthesis techniques have been
reported in the literature. In this chapter, we will follow the synthesis
procedure developed in Ref. 4 which yields the metasurface suscep-
tibility tensors for specified electromagnetic transformations. Alter-
natively, the methods proposed by Grbic15–18 and Eleftheriades19–21

describe the metasurface in terms of impedance tensors, and it can
be shown that they represents only a particular case of the gen-
eral method proposed here. The method proposed by Tretyakov22,23

relates the waves reflected and transmitted from the metasurface to
the polarizabilities of a single scattering element in the case of a nor-
mally incident plane wave. In contrast, the method proposed here
deals with waves of arbitrary incident angles and arbitrary types.
Finally, the method proposed by Salem,24,25 is a technique called the
momentum transformation method, which is a spectral (k) method,
that is particularly suitable for paraxial wave problems. It can also
handle full vectorial problems, but this involves extra complexity
compared to the scalar case.
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5.2. Metasurface Mathematical Synthesis

5.2.1. Metasurface synthesis based

on susceptibility tensors

A metasurface is an electromagnetic 2D structure with subwave-
length thickness (δ � λ). The metasurface may be finite, with
dimensions Lx × Ly, or infinite. It is typically composed of a non-
uniform arrangement of planar scattering particles (full or slotted
patches, straight or curved strips, various types of crosses, dielec-
tric resonators, etc.) that transforms incident waves into specified
reflected and transmitted waves.

Figure 5.1 shows the synthesis problem to solve. How can one syn-
thesize a metasurface that transforms an arbitrary specified incident
wave, ψi(r), into an arbitrary specified reflected wave, ψr(r), and an
arbitrary specified transmitted wave,ψt(r), assuming monochromatic
waves? Here, the solution will be expressed in terms of the transverse
susceptibility tensor functions of ρ = xx̂+yŷ, χee(ρ), χmm(ρ), χem(ρ)

Fig. 5.1. Metasurface synthesis (inverse) problem to solve. A metasurface, gen-
erally defined as an electromagnetic 2D non-uniform structure of extent Lx ×Ly

with sub-wavelength thickness (δ � λ), is placed at z = 0. Determine the surface
susceptibility tensors χ(ρ) of the metasurface transforming an arbitrary speci-
fied incident wave ψi(r) into an arbitrary specified reflected wave ψr(r) and an
arbitrary specified transmitted wave ψt(r).
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and χme(ρ), which represent the electric/magnetic (e/m) transverse
polarization responses (first subscript) to transverse electric/magnetic
(e/m) field excitations (second subscript).

The synthesis procedure will always yield χee(ρ), χmm(ρ), χem(ρ)
and χme(ρ) results, but will not guarantee that these results can
be practically implemented using planar scattering particles. For
instance, if the susceptibilities exhibit multiple spatial variations per
wavelength, they may be difficult or impossible to realize. In such
cases, one has to determine whether some features may be neglected
or one may have to relax the design constraints (e.g. allow higher
reflection or increase the metasurface dimensions).

The complete synthesis of a metasurface typically consists of two
steps: (1) determination of the mathematical transfer function of
the metasurface producing the specified fields, which is generally a
continuous function of the transverse dimensions of the metasurface;
(2) discretization of the transfer function obtained in (1) according
to a 2D lattice and determination of the scattering particles realiz-
ing the corresponding transfer function at each lattice site. Step (2)
involves a full-wave parametric analysis of judiciously selected scat-
tering particles, from which magnitude and phase maps are estab-
lished to find the appropriate particle geometries for building the
metasurface using the periodic boundary condition approximation.26

5.2.2. Metasurface boundary conditions in terms

of surface susceptibility tensors

A metasurface may be considered as an electromagnetic discontinuity
in space. Conventional textbook boundary conditions do not apply
to such a discontinuity. As was pointed out by Schelkunoff,27 the
mathematical formulation of such conventional boundary conditions
is not rigorous in the case of field discontinuities caused by sources
such as surface charges and currents, although it yields satisfactory
results away from the discontinuities. Assuming an interface at z = 0,
the conventional boundary conditions relate the fields at z = 0±, but
fail to describe the field behavior at the discontinuity itself (z = 0).
This discrepancy is due to the fact that Stokes and Gauss theorems
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used to derive them assume field continuity in all the regions they
apply to, including the interface, whereas the fields may be discon-
tinuous due to the presence of sources. For instance, consider the
conventional boundary condition for the normal component of the
displacement vector D in the presence of surface charges ρs,

ẑ · D|0+

z=0− = ρs. (5.1)

This relation is derived by applying Gauss theorem,
�

V ∇ ·DdV =�
S D · n̂dS, to a volume V enclosed by the surface S including the

interface discontinuity with n̂ the normal unit vector to S. This the-
orem rigorously applies only if D is continuous inside the entire vol-
ume V , whereas in the case of a discontinuous D, as in (5.1), its
projection onto S is not defined at the interface and application of
this theorem is not rigorously correct. Thus, since a metasurface is
equivalent to an array of Huygens sources,15 the correct field behav-
ior on the metasurface cannot be determined using the conventional
boundary conditions, and rigorous boundary conditions, namely the
generalized sheet transition conditions (GSTCs), must be applied,
as will be done next. It should be noted that, from a physical per-
spective, a metasurface structure is not a single interface but rather
a thin inhomogeneous slab, and may be naturally treated as such.
However, it is much simpler to treat the metasurface as a single
interface using rigorous GSTCs, which is allowed by the fact that it
is electromagnetically thin.

Rigorous GSTCs, treating discontinuities in the sense of distri-
butions, were derived by Idemen.28 The corresponding relations per-
taining to this work, first applied by Kuester et al. to metasurfaces,1

are derived in section A for the sake of clarity and completeness.
They may be written asa

ẑ ×∆H = jωP‖ − ẑ ×∇‖Mz, (5.2a)

aThroughout this chapter, the medium surrounding the metasurface is assumed to
be vacuum, with permittivity and permeability ε0 and µ0, respectively. Therefore,
for notational compactness, and also to avoid confusion between the subscript ‘0’
meaning ‘vacuum’ or meaning ‘first-order discontinuity’ (section A), the subscript
‘0’ for ‘vacuum’ is suppressed everywhere.
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∆E × ẑ = jωµM‖ −∇‖

(
Pz

ε

)
× ẑ, (5.2b)

ẑ ·∆D = −∇ · P‖, (5.2c)

ẑ ·∆B = −µ∇ ·M‖. (5.2d)

In these relations, the terms in the left-hand sides represent the dif-
ferences between the fields on the two sides of the metasurface, whose
cartesian components are defined as

∆Ψu = û ·∆Ψ(ρ)
∣∣∣0+

z=0−
= Ψt

u − (Ψi
u + Ψr

u), u = x, y, z, (5.3)

where Ψ(ρ) represents any of the fields H, E, D or B, and where
the superscripts i, r, and t denote incident, reflected and transmitted
fields, and P and M are the electric and magnetic surface polar-
ization densities, respectively. They are expressed in terms of the
average fields on both sides of the metasurface and read

P = εχee ·Eav + χem
√
µε ·Hav, (5.4a)

M = χmm ·Hav + χme

√
ε

µ
·Eav, (5.4b)

where the average fields are defined as

Ψu,av = û ·Ψav(ρ) =
Ψt

u + (Ψi
u + Ψr

u)
2

, u = x, y, z, (5.5)

where Ψ(ρ) represents either H or E. Note that the utilization of
susceptibilities, which represent the actual macroscopic quantities of
interest, allows for an easier description of the metasurface than, for
instance, particle polarizabilities.

The surface may be infinite or finite with dimensions Lx × Ly.
The two problems are automatically solved by specifying the fields
Ψi

u, Ψr
u and Ψt

u in (5.3) and (5.5) to be of infinite or finite Lx × Ly

extent in the former and latter cases, respectively. In the finite case,
truncation practically corresponds to placing a sheet of absorbing
material around the metasurface. This operation neglects diffraction
at the edges of the metasurface, as is safely allowed by the fact that a
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metasurface is generally electrically very large, but properly accounts
for the finiteness of the aperture via the GSTCs (5.2a) and (5.2b).

5.2.3. Synthesis method

5.2.3.1. Assumptions

The proposed synthesis method solves the inverse problem depicted
in Fig. 5.1, where the electromagnetic fields are specified everywhere
(for all ρ) in the z = 0 plane on both sides of the metasurface and the
properties of the metasurface are the unknowns to be determined. We
specifically aim at finding the susceptibilities that transform specified
incident waves into specified transmitted and reflected waves. The
method essentially consists of solving Eqs. (5.2) for the components
of the susceptibility tensors in (5.4).

The last terms in (5.2a) and (5.2b) involve the transverse deriva-
tives of the normal components of the polarization densities, namely
∇‖Mz and∇‖Pz. Solving the inverse problem for non-zeroMz and/or
Pz would be quite involved since this would require solving the set
of coupled non-homogenous partial differential equations formed by
(5.2a) and (5.2b) with non-zero ∇‖Mz and ∇‖Pz. Although such a
problem could be generally addressed by means of numerical analysis,
we enforce here Pz = Mz = 0, which will lead to convenient closed-
form solutions for the susceptibilities.b As shall be seen next, this
restriction still allows the metasurface to realize a large number of
operations, given the large number of degrees of freedom provided by
combinations of its bianisotropic susceptibility tensor components.
Note that the problem of non-zero normal polarization densities has
been addressed in, Ref. 4 allowing the proposed method to also
handle the most general case including normal components, which
may be of practical interest (e.g. conducting rings in the metasurface
plane, producing Mz contributions).

bThis restriction may limit the physical realizability of the metasurface in some
cases, in the sense that the corresponding synthesized susceptibilities might be
excessively difficult to realize with practical scattering particles. In such cases,
the restriction might be removed without changing the main spirit of the method
but at the cost of losing the closed-form nature of the solution.
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The method needs considering only (5.2a) and (5.2b) as these
two equations involve all the transverse field components, which is
sufficient to completely describe the fields at each side of the meta-
surface according to the uniqueness theorem. These two equations,
with Pz = Mz = 0, represent a set a four linear equations relating
the transverse electric and magnetic fields to the effective surface
susceptibilities.

5.2.3.2. General solution for surface susceptibilities

As mentioned above, the four susceptibility tensors in (5.4) are
restricted to their four transverse components, and these components
will be determined for the specified fields using (5.2a) and (5.2b)
with Pz = Mz = 0 and using the notation in (5.3) and (5.5). The
metasurface continuity conditions read

ẑ ×∆H = jωεχee ·Eav + jkχem ·Hav, (5.6a)

∆E × ẑ = jωµχmm ·Hav + jkχme ·Eav. (5.6b)

This system can also be written in matrix form to simplify the syn-
thesis procedure. The matrix equivalent of (5.6) is given by




∆Hy

∆Hx

∆Ey

∆Ex


 =



χ̃xx

ee χ̃xy
ee χ̃xx

em χ̃xy
em

χ̃yx
ee χ̃yy

ee χ̃yx
em χ̃yy

em

χ̃xx
me χ̃xy

me χ̃xx
mm χ̃xy

mm

χ̃yx
me χ̃yy

me χ̃yx
mm χ̃yy

mm





Ex,av

Ey,av

Hx,av

Hy,av


 , (5.7)

where the tilde indicates that the susceptibilities in (5.6) have been
multiplied by some constant values. The relationship between the
susceptibilities in (5.6) and those in (5.7) is



χxx

ee χxy
ee χxx

em χxy
em

χyx
ee χyy

ee χyx
em χyy

em
χxx

me χxy
me χxx

mm χxy
mm

χyx
me χyy

me χyx
mm χyy

mm


=




j
ωε χ̃

xx
ee

j
ωε χ̃

xy
ee

j
k χ̃

xx
em

j
k χ̃

xy
em

− j
ωε χ̃

yx
ee − j

ωε χ̃
yy
ee − j

k χ̃
yx
em − j

k χ̃
yy
em

− j
k χ̃

xx
me − j

k χ̃
xy
me − j

ωµ χ̃
xx
mm − j

ωµ χ̃
xy
mm

j
k χ̃

yx
me

j
k χ̃

yy
me

j
ωµ χ̃

yx
mm

j
ωµ χ̃

yy
mm


.

(5.8)
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Assuming single incident, reflected and transmitted wave set (only
one wave of each of the three types), the system (5.7) contains 4
equations for 16 unknown susceptibility components. It is thus under-
determined as such, and it can be solved only by restricting the num-
ber of independent susceptibilities to 4. This single-transformation
underdetermination reveals two important facts: (i) Many differ-
ent combinations of susceptibilities produce the same fields; (ii) A
metasurface has the fundamental capability to simultaneously manip-
ulate several linearly independent incident, reflected and transmitted
waves. Specifically, a metasurface, as defined by (5.7), can in principle
manipulate up to 4 sets of incident, reflected and transmitted waves.
If T (T = 1, 2, 3, 4) waves are to be manipulated, corresponding to 4T
independent equations obtained by writing the 4 equations in (5.7)
for each of the field sets Ψn(ρ) (n = 1, . . . , T , Ψ representing either
E or H), 4T (4, 8, 12, 16) susceptibilities have to be specified.

Two approaches may be considered to reduce the number of inde-
pendent unknown susceptibilities when T < 4. A first approach could
consist in using more than 4T (4, 8, 12) susceptibilities but enforcing
relationships between some of them to ensure a maximum of 4T
independent unknowns. For example, the conditions of reciprocity
and losslessness would be a possible way to link some susceptibilities
together, if this is compatible with design specifications. According
to Kong29 and Lindell,30 the conditions for reciprocity are

χ
T
ee = χee, χ

T
mm = χmm, χ

T
me = −χem (5.9)

and the conditions for reciprocity, passivity and losslessness are

χ
T
ee = χ

∗
ee, χ

T
mm = χ

∗
mm, χ

T
me = χ

∗
em, (5.10)

where the superscripts T and ∗ denote the matrix transpose and com-
plex conjugate operations, respectively. Enforcing conditions between
susceptibilities also enforces conditions on the fields on both sides of
the metasurface. Therefore, this approach restricts the diversity of
electromagnetic transformations achievable with the metasurface.

A second approach, representing a more general synthesis method
for quasi-arbitrary electromagnetic transformations, is then generally
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preferred. This approach consists in selecting only T susceptibility
tensor components in each of the 4T equations included in (5.7). The
number of different combinations of susceptibilities able to perform
a given transformation can be very large. However, most combina-
tions may correspond to unphysical solutions or physical solutions
requiring unnecessary active or lossy elements or even non-reciprocal
features. For example, rotating by 90◦ the polarization of a normally
incident plane wave can be achieved using: chiral bianisotropy, com-
bination of active and lossy scattering particles, birefringence or even
non-reciprocal gyrotropy as in Faraday devices. All of these solutions
could be obtained from the synthesis technique by considering dif-
ferent combinations of susceptibilities. Consequently, the choice of
susceptibility combinations will depend on the required application.

Note that these considerations hold in the most general case of
transformations where the amplitude, phase and polarization of the
incident field are all modified by the metasurface. Under such condi-
tions, the system in (5.6) can indeed handle up to T = 4 independent
wave sets. In the particular case of single-set transformation, only
4 susceptibilities (2 electric and 2 magnetic) are generally required, as
will be shown shortly. However, as will be seen thereafter, depending
on the transformation and choice of susceptibilities, only 2 suscepti-
bilities (1 electric and 1 magnetic) may be sufficient.

Since many different transformations and susceptibility combina-
tions are possible, we will now, without loss of generality, restrict our
attention to the case of single transformation (section 5.2.3.3) and
briefly address the case of multiple transformations by considering
the case of double transformation with monoanisotropic metasur-
faces. The solutions for bianisotropic, triple-wave and quadruple-
wave metasurfaces can be obtained by following the same procedure.

5.2.3.3. Single transformation

We consider here the problem of single (T = 1) transformation [only
one specified wave set: (Ψi, Ψr, Ψt)] for the most simple case of a
monoanisotropic (χem ≡ χme = 0) and diagonal (χxy

ee ≡ χyx
ee ≡ χxy

mm ≡
χyx

mm = 0), and hence non-gyrotropic and reciprocal, metasurface.
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Under such simplifications, the system (5.7) reduces to




∆Hy

∆Hx

∆Ey

∆Ex


 =



χ̃xx

ee 0 0 0
0 χ̃yy

ee 0 0
0 0 χ̃xx

mm 0
0 0 0 χ̃yy

mm





Ex,av

Ey,av

Hx,av

Hy,av


 , (5.11)

which straightforwardly yields, using (5.8), the following simple rela-
tions for the 4 susceptibilities:

χxx
ee =

−∆Hy

jωεEx,av
, (5.12a)

χyy
ee =

∆Hx

jωεEy,av
, (5.12b)

χxx
mm =

∆Ey

jωµHx,av
, (5.12c)

χyy
mm =

−∆Ex

jωµHy,av
, (5.12d)

where, according to (5.3) and (5.5), ∆Hy = Ht
y− (H i

y +Hr
y), Ex,av =

(Et
x + Ei

x + Er
x)/2, and so on.

Upon synthesis, a metasurface with the susceptibilities given
by (5.12) will produce exactly the specified reflected and transmitted
transverse components of the fields when the metasurface is illumi-
nated by the specified incident field. Since the longitudinal fields are
completely determined from the transverse components, according
to the uniqueness theorem, the complete specified electromagnetic
fields are exactly generated by the metasurface. Note that, due to
the orthogonality between x- and y-polarized waves, the susceptibil-
ities in (5.12) can be separated into two subsets corresponding to
Eqs. (5.12a) and (5.12d), and Eqs. (5.12b) and (5.12c), respectively.
These two sets of susceptibilities are able to independently and simul-
taneously transform x- and y-polarized waves, which corresponds to
the simplest case of double transformation. This contrasts with the
more general case of double transformation, that will be discussed in



September 8, 2017 17:20 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch05 page 210

210 Handbook of Metamaterials and Plasmonics — Volume 1

section 5.2.3.4, which allows transformation of quasi-arbitrary waves
and not just orthogonal x- and y-polarized waves as is the case here.

What has been described so far in this section represents the first
step of the synthesis procedure. As mentioned in section 5.2.1, the
second step consists in determining the scattering particles realiz-
ing the transfer function corresponding to the synthesized suscepti-
bilities. In this second step, one computes the full-wave scattering
parameters for an isolated unit cell within 2D periodic boundary
conditions, where periodicity is an approximation of typically slowly
varying scattering elements in the plane of the metasurface.13,16,30,31

The periodic boundary conditions in full-wave analysis are gener-
ally restricted to rectilinearly propagating waves. Now, the prescribed
waves may change directions at the metasurface (e.g. case of general-
ized refraction). In such cases, “rectilinear” periodic boundary condi-
tions cannot directly describe the physics of the problem. However, the
results they provide correspond to a rigorous mapping with the phys-
ical problem, and they may thus be rigorously used in the synthesis.

In order to enable the second step of the synthesis, we now need
to establish the relationships existing between the susceptibilities and
the scattering parameters. The forthcoming methodology for single
transformation is analogous to that proposed in Refs. 16, 18, 32,
while the corresponding methodologies for multiple transformation,
to be presented in the next subsection, are more general.

In the plane wave approximation, which is naturally valid when
the source of the incident wave is far enough from the metasurface
and when the metasurface is made of an array of identical scat-
tering particles (uniform), the response of each scattering particle
may be expressed in terms of its reflection and transmission coeffi-
cients.13,15,31 The problem splits into an x-polarized incident plane
wave problem and a y-polarized incident plane wave problem, whose
fields at normal incidence are respectively given by

Ei = x̂, Er = Rxx̂, Et = Txx̂, (5.13a)

H i =
1
η
ŷ, Hr = −Rx

η
ŷ, Ht =

Tx

η
ŷ (5.13b)
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and

Ei = ŷ, Er = Ry ŷ, Et = Ty ŷ, (5.14a)

H i = −1
η
x̂, Hr =

Ry

η
x̂, Ht = −Ty

η
x̂, (5.14b)

where Ru and Tu (u = x, y) represent reflection and transmission
coefficients, respectively.c Inserting (5.13) and (5.14) into (5.6) with
the four non-zero susceptibilities given in (5.12) leads to the trans-
mission and reflection coefficients

Tx =
4 + χxx

ee χ
yy
mmk2

(2 + jkχxx
ee )(2 + jkχyy

mm)
, (5.15a)

Rx =
2jk (χyy

mm − χxx
ee )

(2 + jkχxx
ee ) (2 + jkχyy

mm)
(5.15b)

and

Ty =
4 + χyy

eeχxx
mmk

2

(2 + jkχyy
ee )(2 + jkχxx

mm)
, (5.16a)

Ry =
2jk (χxx

mm − χyy
ee )

(2 + jkχyy
ee ) (2 + jkχxx

mm)
, (5.16b)

where k = ω
√
µε = 2π

λ . These relations may be used in the second
step of the synthesis to determine the scattering parameters corre-
sponding to the synthesized susceptibilities. Solving (5.15) and (5.16)
for the susceptibilities yields

χxx
ee =

2j (Tx +Rx − 1)
k (Tx +Rx + 1)

, (5.17a)

χyy
ee =

2j (Ty +Ry − 1)
k (Ty +Ry + 1)

, (5.17b)

cThe waves in (5.13) and (5.14) are defined as rectilinear (i.e. they do not change
direction at the metasurface) for consistency with periodic boundary conditions to
be used in full-wave simulations for the second step of the synthesis (see comment
at the end of the last paragraph of the present section).



September 8, 2017 17:20 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch05 page 212

212 Handbook of Metamaterials and Plasmonics — Volume 1

χxx
mm =

2j (Ty −Ry − 1)
k (Ty −Ry + 1)

, (5.17c)

χyy
mm =

2j (Tx −Rx − 1)
k (Tx −Rx + 1)

. (5.17d)

In (5.16) and (5.17), the reflection and transmission coefficients
are associated with scattering parameters Sij with i, j = 1, . . . , 4
accounting for the two ports (incident and transmitted waves) and
two polarizations (x and y). Specifically, assigning ports 1, 2, 3 and
4 to x-polarized input, y-polarized input, x-polarized output and y-
polarized output, respectively, one has Rx = S11, Tx = S31, Ry = S22

and Ty = S42, while the other 12 scattering parameters are not
required since the chosen tensors are uniaxial so that the metasurface
is not gyrotropic (i.e. does not involve transformations between x-
polarized and y-polarized waves).

As will be shown in section 5.4, the synthesized susceptibilities
generally have both real and imaginary parts, which may represent
gain or loss. Consequently, the metasurface is, in many cases, lossy or
active or even a combination of both depending on which susceptibil-
ity components are considered. It is therefore generally necessary to
explicitly compute the bianisotropic Poynting theorem to determine
whether there is loss or gain. Assuming the convention ejωt, the time-
average bianisotropic Poynting theorem is given by29

∇ · 〈S〉 = −〈IJe
〉− 〈IJm

〉− 〈IP〉− 〈IM〉, (5.18)

where
〈 ·〉 denote the time-average, S is the Poynting vector and IJe,

IJm, IP and IM are loss (or gain) contributions emerging from the
electric currents, magnetic currents, electric polarization and mag-
netic polarization, respectively. The terms in (5.18) read〈

S
〉

=
1
2

Re(E ×H∗), (5.19a)

〈
IJe
〉

=
1
4

Re(jωεE∗ · (χee − χ∗
ee) ·E), (5.19b)

〈
IJm

〉
=

1
4

Re(jωµH∗ · (χmm − χ∗
mm) ·H), (5.19c)
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〈
IP
〉

=
1
4

Re[jωε(E∗ · (χee − χ†
ee) ·E + 2ηE∗ · χem ·H)],

(5.19d)

〈
IM
〉

=
1
4

Re[jωµ(H∗ · (χmm − χ†
mm) ·H − 2E∗ · χ†

me ·H/η)],

(5.19e)

where † is the conjugate transpose operator. From these relations, it
is straightforward to obtain the conditions for passivity and lossless-
ness that were given in (5.10). Note that the termsE andH in (5.19)
are the fields acting on the metasurface and can be replaced by the
corresponding average fields. While the relations (5.10) can be easily
used to determine if the metasurface is lossless and passive, it is
only by computing (5.18) that one can determine whether the meta-
surface is more active or more lossy and which of the contributions
in (5.19) are dominant: If the terms (5.19b) to (5.19e) are positive, the
metasurface is lossy, if they are negative, the metasurface is active.
Moreover, as will be seen in section 5.4, it is possible to have an
apparently passive and lossless metasurface while, in fact, having a
combination of electric gain and magnetic loss (or vice versa) that
would perfectly cancel each other.

In order to simplify the metasurface unit cell design procedure,
which is usually performed via full-wave simulation, one may consider
“ideal” unit cells, i.e. unit cells made of lossless dielectric substrates
and PEC metallic patterns. Applying relations (5.17) to compute
the susceptibilities corresponding to such “ideal” unit cells will nec-
essarily yield purely real susceptibilities. As a consequence, the exact
complex susceptibilities can not be realized, which will lead to results
diverging from the specified transformation. A solution to minimize
discrepancies between the specified response and the approximated
response considering only real susceptibilities is to set the imaginary
parts of the susceptibilities to zero while optimizing their real parts
so that the response of the metasurface follows the specified response
as closely as possible. In that case, the amplitude of the transmission
coefficients (5.15) and (5.16) (or reflection coefficients if the meta-
surface is used in reflection) is approximatively 1, while the phase of
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these coefficients remains unchanged. This means that, in the case
of refractive metasurfaces, the physical realization of these types of
metasurfaces often consists in implementing a full transmission struc-
ture inducing a given phase shift according to the specification.

5.2.3.4. Multiple transformations

In the previous section, we have seen how to synthesize a metasur-
face in the case of a single transformation. However, as mentioned
in 5.2.3.2, the general system of equations (5.7) has the capability to
perform more than a single transformation given its large number of
degrees of freedom, i.e. its 16 susceptibility components. Here, we will
see how the system (5.7) can be solved for several transformations
including incident waves coming from one side only or both sides of
the metasurface. To accommodate for the additional degrees of free-
dom, three additional wave transformations are added, so that (5.7)
transforms to


∆Hy1 ∆Hy2 ∆Hy3 ∆Hy4

∆Hx1 ∆Hx2 ∆Hx3 ∆Hx4

∆Ey1 ∆Ey2 ∆Ey3 ∆Ey4

∆Ex1 ∆Ex2 ∆Ex3 ∆Ex4




=



χ̃xx

ee χ̃xy
ee χ̃xx

em χ̃xy
em

χ̃yx
ee χ̃yy

ee χ̃yx
em χ̃yy

em

χ̃xx
me χ̃xy

me χ̃xx
mm χ̃xy

mm

χ̃yx
me χ̃yy

me χ̃yx
mm χ̃yy

mm




×



Ex1,av Ex2,av Ex3,av Ex4,av

Ey1,av Ey2,av Ey3,av Ey4,av

Hx1,av Hx2,av Hx3,av Hx4,av

Hy1,av Hy2,av Hy3,av Hy4,av


 , (5.20)

where the subscripts 1, 2, 3 and 4 indicate the electromag-
netic fields corresponding to four distinct and independent wave
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transformations. As previously done, the susceptibilities can be
obtained by matrix inversion conjointly with (5.8).

As an example, we now consider the problem of double (T = 2)
transformation [two specified wave sets: (Ψi

1, Ψr
1, Ψt

1) and (Ψi
2,

Ψr
2, Ψt

2)] for a monoanisotropic (χem ≡ χme = 0) but not uniaxial
and hence gyrotropic metasurface. In that case, the system (5.20)
reduces to


∆Hy1 ∆Hy2

∆Hx1 ∆Hx2

∆Ey1 ∆Ey2

∆Ex1 ∆Ex2


 =



χ̃xx

ee χ̃xy
ee 0 0

χ̃yx
ee χ̃yy

ee 0 0

0 0 χ̃xx
mm χ̃xy

mm

0 0 χ̃yx
mm χ̃yy

mm






Ex1,av Ex2,av

Ey1,av Ey2,av

Hx1,av Hx2,av

Hy1,av Hy2,av


,

(5.21)

which, after matrix inversion, yields the following eight
susceptibilities:

χxx
ee =

j

εω

(Ey1,av∆Hy2 − Ey2,av∆Hy1)
(Ex2,avEy1,av − Ex1,avEy2,av)

, (5.22a)

χxy
ee =

j

εω

(Ex2,av∆Hy1 − Ex1,av∆Hy2)
(Ex2,avEy1,av − Ex1,avEy2,av)

, (5.22b)

χyx
ee =

j

εω

(Ey2,av∆Hx1 − Ey1,av∆Hx2)
(Ex2,avEy1,av − Ex1,avEy2,av)

, (5.22c)

χyy
ee =

j

εω

(Ex1,av∆Hx2 − Ex2,av∆Hx1)
(Ex2,avEy1,av − Ex1,avEy2,av)

, (5.22d)

χxx
mm =

j

µω

(Hy2,av∆Ey1 −Hy1,av∆Ey2)
(Hx2,avHy1,av −Hx1,avHy2,av)

, (5.22e)

χxy
mm =

j

µω

(Hx1,av∆Ey2 −Hx2,av∆Ey1)
(Hx2,avHy1,av −Hx1,avHy2,av)

, (5.22f)

χyx
mm =

j

µω

(Hy1,av∆Ex2 −Hy2,av∆Ex1)
(Hx2,avHy1,av −Hx1,avHy2,av)

, (5.22g)

χyy
mm =

j

µω

(Hx2,av∆Ex1 −Hx1,av∆Ex2)
(Hx2,avHy1,av −Hx1,avHy2,av)

, (5.22h)
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where the subscripts 1 and 2 stand for the first and the second
wave set transformation, respectively. Applying the conditions (5.9)
and (5.10) to (5.22) indicates that in most cases the metasurface will
be not only active/lossy but also non-reciprocal. The same argument
applies to the more general case of the fully bianisotropic metasur-
face described by the susceptibilities in (5.20) which may, depending
on the choice of transformations, be non-reciprocal and active/lossy.
Note that the choice of using the susceptibility tensors χee and χmm
in (5.21) was arbitrary and other sets of susceptibilities, for instance
including bianisotropic components, may be more suited for some
specific transformations.

Now we are interested in establishing a relation between the scat-
tering parameters and the susceptibilities of a metasurface in the
most general case of a fully bianisotropic metasurface.18 By follow-
ing the procedure used to obtain relations (5.15), (5.16) and (5.17),
we assume that the metasurface is illuminated by four different plane
waves. The first two plane waves are x- and y-polarized, respectively,
and normally incident from the left-hand side of the metasurface.
The two remaining plane waves are x- and y-polarized, respectively,
and normally incident from the right-hand side of the metasurface.
For convenience, the system (5.20) is first written in the following
compact form

∆ = χ̃ · Av, (5.23)

where ∆ refers to the matrix of the field differences and Av refers to
the matrix of the field averages. Defining each wave transformation
in a similar fashion as done in (5.13) and (5.14) but this time using
the scattering matrices S11, S22, S12 and S21, the matrix ∆ reads

∆ =




−N2/η +N2S11/η −N2/η +N2S12/η

+N2S21/η +N2S22/η

−N1N2 −N1N2S11 N1N2 −N1N2S12

+N1N2S21 +N1N2S22




(5.24)
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and the matrix Av reads

Av =
1
2




I + S11 + S21 I + S12 + S22

N1/η −N1S11/η −N1/η −N1S12/η

+N1S21/η +N1S22/η


 , (5.25)

where the matrices Snm, I, N1 and N2 are defined by

Snm =

(
Sxx

nm Sxy
nm

Syx
nm Syy

nm

)
, I =

(
1 0
0 1

)
,

N1 =

(
0 −1

1 0

)
, N2 =

(
1 0
0 −1

)
. (5.26)

The scattering matrices of a given structure can be obtained by
full-wave simulations and, subsequently, the susceptibilities of the
structure can be retrieved by matrix inversion of (5.23) with (5.24)
and (5.25). Alternatively, it is possible to find the scattering param-
eters of a metasurface with known susceptibilities by solving (5.23)
for the scattering parameters.

5.3. Scattering Particle Synthesis and Implementation

As mentioned in the previous sections, the metasurface synthesis
technique is composed of two main steps. The first one is the math-
ematical description of the metasurface, from the specified fields,
either in terms of susceptibilities or directly as transmission and
reflection coefficients, using relations (5.15) and (5.16) for instance.
The second step is the physical implementation of each unit cell of the
metasurface. This latter step is, as of today, not a trivial operation.
Here, two possible approaches are briefly discussed, while many more
exist. In both approaches, the susceptibility functions, obtained by
the aforementioned synthesis procedure, are spatially discretized in
the x−y plane where each discrete point corresponds to a unit cell
to be implemented. The unit cells are simulated (assuming periodic
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boundary conditions), one by one or group by group when the
structure is fully or partly non-uniform, using commercial software
that compute their scattering parameters. The required physical
parameters for the scattering particles are obtained by mapping the
scattering parameters onto the susceptibility function. Finally, an
enhanced design is achieved by tuning the parameters of the scat-
tering particles via parametric analysis or standard optimization
techniques.

5.3.1. Metallic scatterers

Metasurfaces consisting of metallic scatterers, typically arranged on
dielectric substrates, have been the most commonly reported types
of metasurfaces. In all cases, using more than one layer is an effec-
tive way to increase the available number of degrees of freedom, and
hence achieving enhanced properties, including higher bandwidth
and larger phase coverage of the structure’s unit cell. It was recently
shown that three cascaded layers, where the two outer layers are
identical, represents the minimal configuration to achieve full trans-
mission and a 2π phase coverage.9,17 With three layers, the overall
thickness of the metasurface generally remains subwavelength (usu-
ally in the order of t ≈ λ/10) with negligible loss increase. Further
increasing the number of layers may naturally be an approach for
even broader bandwidth, at the expense of extra loss and weight.
Note that, if the three metallic layers are all different, a more diverse
electromagnetic response is achievable at the cost of a more compli-
cated design.

A typical shape for the scattering particles forming the metallic
layers is the Jerusalem cross, as shown in Fig. 5.2. The Jerusalem
cross has the advantage of featuring fairly well decoupled responses
for x and y polarizations, consequently simplifying the implementa-
tion. In the structure of Fig. 5.2, relatively strong capacitive cou-
pling in the transverse (x − y) plane offers the benefit of lowering
the resonance frequencies5,36 or, alternatively, of reducing the free-
space electrical size of the unit cell (d ≈ λ/5), while introducing more
complexity in terms of coupling.
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(a) (b)

Fig. 5.2. Generic unit cell (a) with three metallic (PEC) Jerusalem crosses sep-
arated by dielectric slabs, the outer layers are identical. (b) One metallic layer
has usually up to nine different dimensions that can be modified.

The realization of the unit cells is greatly simplified if the longi-
tudinal evanescent mode coupling between the three metallic layers
can be minimized. This occurs when the dielectric spacer relative
permittivity is decreased or/and its thickness is increased. In that
case, each layer can be designed separately and the overall response
of the multilayer unit cell can then be found using simple transmis-
sion matrix approaches.17

It can be easily verified that cascading three metallic layers (with
similar outer layers) is sufficient to realize a transmission coefficient of
0 ≤ |T | ≤ 1 with a 2π-phase coverage. For a given polarization, each
metallic layer can be described by an impedance layer.17 The entire
structure can then be analyzed using the ABCD matrix technique
by modelling each dielectric space by a transmission line section as(

A B

C D

)
=
(

1 0
Y1 1

)(
cos(βd) jηd sin(βd)
j sin(βd)

ηd
cos(βd)

)(
1 0
Y2 1

)

×
(

cos(βd) jηd sin(βd)
j sin(βd)

ηd
cos(βd)

)(
1 0
Y1 1

)
, (5.27)
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Fig. 5.3. Transmitted (a) power (|S21|2) and (b) phase for the three cascaded
metallic layers of Fig. 5.2. The black line indicates that full transmission can be
achieved and that the corresponding phase varies between 0 and 2π. The x and
y axes respectively correspond to the imaginary parts of the admittance of the
outer layers and the middle layer. The real parts of these admittances is zero
because these structures are assumed to be lossless.

where β is the propagation constant along z and d and ηd are the
thickness and the impedance of the dielectric substrates, respec-
tively. The terms Y1 and Y2 correspond to the admittances of the
outer layers and the middle layer, respectively. Finally, the ABCD
matrix (5.27) can be converted to the following scattering parameter
matrix(

S11 S12

S21 S22

)
=

1
2A+B/η0 + Cη0

(
B/η0 − Cη0 2

2 B/η0 − Cη0

)
.

(5.28)

Substituting (5.27) into (5.28) and plotting the magnitude and phase
of S21, as presented in Figs. 5.3(a) and 5.3(b), reveals that scanning
the transmitted phase from 0 to 2π while maintaining a constant
transmission of |S21| = 1 is indeed possible.

There exists no direct methods to map the dimensions of the
metallic layers onto the impedances Y1 and Y2. The general idea is to
simulate one structure with a given set of dimensions. From the sim-
ulated transmitted phase and magnitude, the equivalent impedances
can be found. Then, the impedance Y2 of the unit cell can be tuned by
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modifying the shape of layer 2, whereas changing layers 1 affect both
impedances Y1 and Y2 due to coupling between the layers. Therefore,
to obtain a specified transmitted magnitude and phase, the outer
layers 1 are first modified until the impedance Y1 matches the spec-
ifications. Then, the middle layer 2 is varied to reach the required
Y2 impedance. Usually, a few optimization iterations are required to
design each unit cell.

5.3.2. Dielectric scatterers

The second implementation is based on all-dielectric scattering par-
ticles. It has been known for a long time that dielectric resonators
exhibit both electric and magnetic resonances.34,35 More recently,
dielectric resonators have been used to realize all-dielectric metasur-
faces.36,37 Such metasurfaces are particularly attractive in the optical
regime, where plasma loss associated with metallic materials may
be important. A typical unit cell is shown in Fig. 5.4(a) where the
particles are dielectric cylinders of circular cross-section with permit-
tivity εr,1 placed on a substrate with permittivity εr,2. Other types
of particle shapes are naturally also possible. It is possible, by tuning
the physical dimensions of the resonator as well as the permittivities
ratio εr,1/εr,2, to tune the electric and magnetic resonances to the
same frequency. In this scenario, if the two resonances have the same

(a) (b)

Fig. 5.4. (a) Representation of an all-dielectric all-pass metasurface unit cell
consisting of a dielectric resonator (εr,1) embedded in a host layer of permittivity
εr,2. (b) Operation principle for full transmission (zero reflection).
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strength and are associated with orthogonal dipole moments in the
transverse plane of the metasurface, as shown in Fig. 5.4(b), reflection
may be totally suppressed. This is due to perfect destructive interfer-
ence of the waves scattered by the electric and magnetic scattering
particles in the incident side of the metasurface, and their construc-
tive interference at the transmission side of it.35 In this case, the
transmission is theoretically 100% and flat over a wide bandwidth.
Moreover, the transmission phase covers a full 2π range around the
resonance frequency ω. This powerful concept may therefore apply to
all-pass metasurfaces with controllable phase over a large bandwidth.
An example of a dielectric metasurface is shown in Fig. 5.5(a) where
dielectric cylinders are held together by thin dielectric connections. It
must be noted that, in general, the electric and magnetic resonances
have different dispersions,38 which leads to a transmission amplitude
that is not perfectly flat over the bandwidth of interest. However,
such small variations in transmission may in general be neglected
since the transmission coefficient S21 does not drop below −2 dB
(assuming no dielectric loss), as can be seen in Fig. 5.5(b).

Structurally, symmetric shapes like cylinders or squares present
the same behavior for x- and y-polarized waves. However, using

(a) (b)

Fig. 5.5. (a) Example of dielectric metasurface. (b) Rigorous coupled wave anal-
ysis (RCWA) of the metasurface in (a). The plots show the transmission and
reflection coefficients as well as the transmission phase and the transmission group
delay, respectively. The field is polarized in the x direction (perpendicular to the
dielectric interconnections).
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90◦-asymmetric shapes, such as ellipses and rectangles, allow
for a complete and independent control of the two orthogonal
polarizations, as recently demonstrated in Ref. 37. As an additional
advantage, dielectric unit cells have a greatly reduced number of
physical parameters to adjust compared to the three layer Jerusalem
crosses of Fig. 5.2, effectively simplifying the optimization procedure
to achieve the specified response.

5.4. Discussions

In this section, we address several points related to the synthesis tech-
nique presented previously and discuss the implementation and some
limitations of metasurfaces. The synthesis technique can be used to
realize many types of different metasurfaces, for instance, polariza-
tion rotators are easily synthesized because the metasurface is, in
that case, uniform (susceptibilities are not a function of ρ), which
is a consequence of not changing the direction of propagation of the
waves. Polarization rotators can thus be straightforwardly realized
with (5.23) in the case of normally incident waves. A more inter-
esting case to discuss is the topic of refractive metasurfaces which
induce changes in the direction of propagation of waves and thus
require non-uniform susceptibility functions. As we will see, this type
of electromagnetic transformation is a perfect candidate to illustrate
how the synthesis method works as well as to put into practice several
of the concepts developed above.

5.4.1. Refractive metasurfaces

Here, we present and discuss a particular case of reflection-less refrac-
tive metasurface. This choice of electromagnetic transformation is
chosen for the sake of simplicity, but the discussion developed therein
is applicable to other types of transformations.

The electromagnetic problem considered here consists in syn-
thesizing a metasurface transforming an obliquely incident plane
wave forming a π/9 angle with respect to z in the x − z plane
into a transmitted plane wave with a positive π/4 “refraction” angle
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(p-polarization). Due to the 2D nature of this transformation, the
metasurface is assumed to be infinite in the y direction and having
a length of 10λ in the x direction. The electric and magnetic fields
at the metasurface (z = 0) have the general following form:

Ea = Aa
(
x̂
ka

z

k
− ẑ k

a
x

k

)
e−jka

xx and Ha =
A

η

a
ŷe−jka

xx, (5.29)

where a = i, t, r denotes the incident, transmitted and reflected
waves, respectively, A is their amplitude and η =

√
µ/ε is the

intrinsic impedance of the surrounding medium associated with the
wavenumber k. In this example, the reflected wave is specified to be
zero (Ar = 0) and the incident and transmitted waves have unit-
amplitude (Ai = At = 1). The corresponding tangential difference
and average fields in (5.3) and (5.5) are, for the components in the
plane of the metasurface, given by

∆Ex =
√

2
2
e−jk

√
2

2
x − cos(π/9)e−jk sin(π/9)x, (5.30a)

∆Hy =
1
η
(e−jk

√
2

2
x − e−jk sin(π/9)x), (5.30b)

Eav,x =
1
2

(
1
2
e−jk

√
2

2
x + cos(π/9)e−jk sin(π/9)x

)
, (5.30c)

Hav,y =
1
2η

(e−jk
√

2
2

x + e−jk sin(π/9)x). (5.30d)

The metasurface susceptibilities are then obtained by substitut-
ing (5.30) into (5.12a) and (5.12d). They are naturally obtained in
closed-form given the closed-forms (5.30), but are not written explic-
itly here, for conciseness. Instead, the real and imaginary parts of the
susceptibilities χxx

ee and χyy
mm are plotted in Figs. 5.6(a) and 5.6(b),

respectively. Note that the susceptibilities for this problem only
depend on x, since no wave transformation is prescribed in the y
direction. Moreover, only two of the four susceptibilities (χxx

ee and
χyy

mm) are required (the other two being undefined) since no electric
fields exist along y and no magnetic fields exist along x. Also note
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Fig. 5.6. Real (blue line) and imaginary (dashed red line) parts of: (a) χxx
ee and

of (b) χyy
mm for a metasurface refracting a plane wave incident with an angle of

π/9 with respect to z in the x−z plane into a transmitted plane wave forming a
π/4 angle.

that the x-periodicity of the susceptibility is larger than λ, suggest-
ing that this metasurface should be easily implementable with simple
scattering particles.

In order to verify that the metasurface performs as expected, a
finite-difference frequency domain (FDFD) simulation,39 illustrating
the response of the metasurface when illuminated by the specified
Gaussian p-polarized beam, is shown in Fig. 5.7(a). As expected, the
metasurface refracts the incident beam at an angle of π/4 without
any reflection.

As can be seen in Fig. 5.6, both electric and magnetic suscep-
tibilities are not only complex functions but their respective imag-
inary parts are negative, indicating a lossy structure according to
the discussion at the end of section 5.2.3.3. It can be easily veri-
fied that the required transformation is lossy by considering rela-
tions (5.19). While relations (5.19d) and (5.19e) are zero due to the
monoanisotropic and diagonal nature of the metasurface, relations
(5.19b) and (5.19c) are not zero indicating the presence of power

dissipation. Figure 5.8(a) shows the electric and magnetic dissipated
(real and positive) power on the metasurface (blue line and dashed
red line, respectively) and the total dissipated power (black line).
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Fig. 5.7. Illustrations of the electromagnetic transformation. (a) FDFD simula-
tion of the metasurface with susceptibilities as in Fig. 5.6. (b) Representation of
the different beamwidths between the incident and transmitted waves.
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Fig. 5.8. Metasurface power budget including the electric (blue line) and mag-
netic (dashed red line) contributions (corresponding to Eqs. (5.19b) and (5.19c),
respectively) when (a) At = 1 and (b) At =

p
cos θi/ cos θt. In these graphs,

positive values correspond to loss and negative values to gain.

The presence of the observed loss might come as a surprise especially
when considering that the specified incident and transmitted fields
have the same amplitude (transmission coefficient At = 1). In this
transformation, the presence of loss can be explained40 by considering
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the simple geometrical description shown in Fig. 5.7(b). What might
be confusing when considering plane waves is obvious when consider-
ing Gaussian beams, the beamwidth of the incident beam (Li) is not
the same as the beamwidth of the transmitted beam (Lt), except in
the trivial case where θi = θt. This means that even if the Poynting
vectors of the incident (Si) and transmitted (St) waves are equal,
the incident power (defined as Pi = SiLi) is, in general, not the same
as the transmitted power (Pt). This translates into a transmission
efficiency (η) given by

η =
Pt

Pi
=
StLt

SiLi
= (At)2

cos θt
cos θi

. (5.31)

Note that here, the amplitude of the incident wave is assumed to
be Ai = 1. The power dissipated or produced by the metasurface
(Pm) is easily obtained as the difference of the incident power and
the transmitted power

Pm = Pi − Pt = cos θi − (At)2 cos θt, (5.32)

which can also be written as

Pm = Pi(1− η). (5.33)

It is clear, from Eq. (5.31), that the transmission coefficient At as
well as the angles θi and θt play major roles in determining the trans-
mission efficiency of the metasurface. If θt > θi (as in the example
considered here), the metasurface remains purely lossy (both elec-
trically and magnetically) as long as the transmission coefficient is
limited to the range 0 ≤ At ≤ 1. The metasurface is naturally more
and more lossy as At decreases to 0.

In our example, At = 1, which gives a power efficiency of
η = 75.25%, and the total dissipated power by the metasurface can
be obtained by integrating both electric and magnetic contributions
(corresponding to the black line in Fig. 5.8(a)) over the size of the
metasurface. Increasing the value of At beyond 1 will increase the
efficiency but at the cost of having a partially active metasurface. In
the particular case where At =

√
cos θi/ cos θt, the efficiency (5.31)
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is always equal to η = 1, and consequently Pm = 0. But even if
the total dissipated or produced power by the metasurface is 0, the
metasurface is actually a combination of alternating electric gain and
loss and magnetic loss and gain such that electric and magnetic con-
tributions perfectly cancel each other, as illustrated in Fig. 5.8(b). It
is therefore wrong to assume that because Pm = 0, the metasurface
is passive and lossless because, as illustrated here, the metasurface
would actually be simultaneously active and lossy. Note that, in the
case where θt < θi, it was shown Ref. 40 that the metasurface is
purely passive (but lossy) when At = cos θi/ cos θt.

The transmission and reflection coefficients, given by rela-
tions (5.15), which correspond to the transformation described above,
are shown in Fig. 5.9. As may be seen in Fig. 5.9(a), the absolute
value of the transmission coefficient oscillates around 87% (which,
converted in terms of transmitted power, is very close to the pre-
viously calculated power efficiency, η = 75.25%, while the abso-
lute value of the reflection coefficient oscillates around 13%. The
fact that the observed reflection coefficient is non-zero may a priori
appear contradictory given the prescription of zero reflection. How-
ever, remember that the scattering coefficients are computed based
on the assumption of rectilinear propagation, which obviously does
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Fig. 5.9. (a) Amplitude and (b) phase of the transmission (blue line) and reflec-
tion (dashed red line) coefficients calculated using (5.16) with the susceptibilities
in 5.6.
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not correspond to the present example. The actual reflection pro-
duced by the susceptibilities plotted in Fig. 5.6 is rigorously zero,
and the non-zero reflection parameter in Fig. 5.9(a) is an artifact of
the mapping between the rectilinear scattering parameters and the
physical problem.

However, as pointed out in the last paragraph of section 5.2.3.2,
these scattering parameters can be directly used for synthesis: full-
wave (using periodic boundary conditions) designing the scattering
particles so that they produce the same scattering parameters as
those obtained using (5.15) will automatically provide the desired
physical solution in real (non-rectilinear) conditions.

At this point, it must be noted that the synthesized metasurface
can be rigorously described by its susceptibilities, as given in Fig. 5.6,
but it can also be alternatively described as an equivalent combina-
tion of an amplitude and a phase grating, as given in Fig. 5.9. So
far, only the synthesis of the metasurface has been discussed, but
considering the metasurface has an amplitude/phase grating can be
used as an analysis tool to simply and efficiently predict how the
metasurface would scatter a given impinging wave. For instance,
using Fourier optics, the reflected and transmitted waves can be
respectively approximated by ψr = ψiR and ψt = ψiT , where ψi

corresponds to the projected phase of the incident wave on the meta-
surface. Then, the k-vectors of the reflected and transmitted waves
can be respectively found by taking the Fourier transform of ψr and
ψt which gives crucial information on the direction of propagation of
these waves. In the particular case where ψi corresponds to the speci-
fied incident wave, ψt corresponds to a transmitted wave propagating
at a π/4 angle while ψr corresponds to an induced surface wave. The
fact that the reflected wave corresponds to a surface wave can be
understood by noting that the period of the phase of R in Fig. 5.9
is twice that of the phase of T . Consequently, the vector component
kr

x is not only larger than kt
x but also larger than the wavenumber

k, which results in an imaginary kr
z component effectively classifying

the reflected wave as a surface wave. This also helps understanding
why the metasurface appears to have reflection while the specified
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reflected wave was initially set to zero. In the susceptibility approach,
there is no reflected wave and part of the energy of the incident
wave is absorbed by the metasurface. In the grating approach, what
appears to be a reflected wave is in fact a surface wave and the only
wave scattered by the metasurface is the specified transmitted wave.

An important deduction is that a monoanisotropic metasurface
(i.e. only described by the susceptibility tensors χee and χmm), used
for refraction or reflection (or both), can never be passive and/or
lossless. A question that might arise then is what would happen if
only the real values of the susceptibilities were realized instead of
the complex ones shown in Fig. 5.6? In that case, the magnitude
of the new transmission coefficient (which is not shown here) would
be very close to full and quasi-uniform transmission (T ≈ 100% and
can be approximated as such) while the phase profile of the transmis-
sion coefficient would remain unaltered compared to that computed
from the exact susceptibilities presented in Fig. 5.9(b). Since the
transmission phase has not been changed from the exact one, the
approximate metasurface performs a transformation that essentially
follows the specification, with the exception of undesired diffraction
orders due to the nullification of the imaginary parts of the suscep-
tibilities. It results that, whether a lossy structure is implemented
or an altered version of it where only the real values of the suscep-
tibilities are implemented, the total power being transmitted into
the desired direction remains the same because, in the former case,
part of the power is absorbed by the metasurface while, in the latter
case, part of the power is diffracted into other directions. In practice,
it is often the latter case that is preferred as it corresponds to an
easier structure to realize because the metasurface is essentially only
affecting the phase of the incident wave while keeping its amplitude
constant.

There exists, however, an alternative approach to realize pas-
sive, lossless and fully efficient refractive metasurfaces. As shown in
Ref. 41, the monoanisotropic metasurface discussed above is inher-
ently a symmetric structure and thus, provides the same impedance
matching from both sides of the metasurface, which is the reason
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why it fails to efficiently refract an incident wave. The alternative
approach would be to consider a bianisotropic metasurface which,
from its non-zero magnetoelectric coupling coefficients, would be
asymmetric. Because rotation of polarization is not required in refrac-
tive metasurfaces, the non-zero susceptibilities considered for the
synthesis are the diagonal components of χee and χmm and the
non-diagonal components of χem and χme. The introduction of non-
zero magnetoelectric coupling coefficients doubles the number of
unknowns, which means that the multiple wave transformation tech-
nique described in section 5.2.3.4 is used here to obtain the following
fully determined system of equations


∆Hy1 ∆Hy2

∆Hx1 ∆Hx2

∆Ey1 ∆Ey2

∆Ex1 ∆Ex2


=



χ̃xx

ee 0 0 χ̃xy
em

0 χ̃yy
ee χ̃yx

em 0
0 χ̃xy

me χ̃xx
mm 0

χ̃yx
me 0 0 χ̃yy

mm





Ex1,av Ex2,av

Ey1,av Ey2,av

Hx1,av Hx2,av

Hy1,av Hy2,av


,

(5.34)

where the second transformation is the reciprocal of the first one.
In other words, if Fig. 5.7(b) represents the first transformation,
the second transformation would consist in reversing the direction
of propagation of all the waves while maintaining their respective
amplitude. For p-polarization, the system (5.34) reduces to(

∆Hy1 ∆Hy2

∆Ex1 ∆Ex2

)
=
(
χ̃xx

ee χ̃xy
em

χ̃yx
me χ̃yy

mm

)(
Ex1,av Ex2,av

Hy1,av Hy2,av

)
, (5.35)

which can be solved easily to yield the following susceptibility func-
tions

χxx
ee =

4 sin(αx)

β cos(αx) +
√
β2 − γ2

, (5.36a)

χyy
mm =

β2 − γ2

4k2
4 sin(αx)

β cos(αx) +
√
β2 − γ2

, (5.36b)

χxy
em = −χyx

me =
2j
k

γ cos(αx)

β cos(αx) +
√
β2 − γ2

, (5.36c)
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where β = ki
z + kt

z, γ = ki
z − kt

z and α = kt
x − ki

x and where
relations (5.29) have been used with parameters Ai = 1 and At =√

cos θi/ cos θt. Note that this last relation is equivalent to equalizing
the longitudinal power flow (Poynting vector) for the waves on both
sides of the metasurface and also corresponds to the case discussed
above where the monoanisotropic metasurface has an efficiency η = 1
with a combination of active and lossy elements as was shown in
Fig. 5.8(b). Now, in the case of the bianisotropic metasurface, it can
be verified that relations (5.36) correspond to not only a reciprocal
(see (5.9)) but also a passive/lossless (see (5.10)) metasurface.

In this section, we have seen how a refractive metasurface could
be synthesized. We have seen that a symmetric (or monoanisotropic)
refractive metasurface is always either lossy or active (or both) and in
the case of purely lossy susceptibilities, the transformation is inher-
ently inefficient. It is possible to ignore the imaginary parts of the
susceptibilities (which are responsible for the loss) at the expense of
additional undesired diffraction orders. We have also addressed the
case of asymmetric (or bianisotropic) refractive metasurfaces which,
compared to their symmetric counterparts, have perfect transmission
efficiency while being reciprocal, lossless and passive. However, the
better performances of bianisotropic metasurfaces come at the price
of more complex realization requirements due to their non-zero mag-
netoelectric coupling coefficients. Finally, we have also discussed a
simple analysis tool based on Fourier optics to predict the behavior
of the metasurface under different illumination angles.

5.4.2. Fundamental limitations of metasurfaces

Metasurfaces, and metamaterials in general, are composed of metal-
lic or dielectric subwavelength resonant particles. This fact results
in several drawbacks and limitations. Metallic structures usually
present high losses especially at optical frequencies. Resonant par-
ticles often have limited bandwidth which prevents the implemen-
tation of broadband devices. Moreover, it is difficult to design res-
onant particles that are much smaller than the wavelength because



September 8, 2017 17:20 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch05 page 233

Electromagnetic Metasurfaces: Synthesis, Realizations and Discussions 233

the smaller the particles are, the less they interact with the inci-
dent field and, consequently, the less they can control it. For this
reason, metasurfaces having susceptibilities with very fast spatial
variations over subwavelength distances (e.g. refractive metasurface
with very large angle of refraction) might not be implementable since
the discretized metasurface unit cell size would be so small that the
scattering particles would not resonate. For instance, the scattering
particles, discussed in section 5.3, have a dimension of λ/5 in the
plane of the metasurface. Reaching smaller unit cell size while main-
taining a strong control in terms of phase and transmission of the
incident field is challenging.

Metasurfaces have been presented as 2D reductions of volume
metamaterials and are consequently less bulky, less lossy and easier
to fabricate. The synthesis technique presented in this chapter shows
that a metasurface has the capability to mathematically transform
an arbitrary incident fields into arbitrary reflected and transmitted
fields. But, does the reduction of 3D metamaterials to 2D meta-
surfaces imply reduced processing power or functionalities? Is there
anything that a metasurface cannot do, due to its reduced dimen-
sionality, that a 3D metamaterial can achieve? One example could
be the electromagnetic cloaks (used in transmission) that require the
object to be hidden to be surrounded by a metamaterial structure,
and thus metasurfaces would not be appropriate in such situation.

Beam expanders (or telescopes), usually used in optics42 to
increase the width of an incident Gaussian beam, would also be
difficult to realize with a metasurface. Beam expanders are easily
implemented with the combination of two different lenses separated
by the sum of their focal lengths. Such optical component could not
be realized with a single zero-thickness passive metasurface because
the extent of the transmitted beam in the plane of the metasurface
is larger than that of the incident beam and, consequently, the meta-
surface would have to amplify the incident beam in the region far
from the center. In this case, using a 2D metasurface goes at the cost
of having an active structure compared to beam expanders that are
purely passive.
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Another example is the realization of optical analog processing
systems43 based on Fourier optics principles. Often referred to as
4f-systems, they are composed of two lenses, which successively per-
form the spatial Fourier transforms of the input field. In between
them, at the Fourier plane, a mask can be placed to block certain
spatial components. Therefore, these systems can be used as spa-
tial filters where the transmitted beam corresponds to the incident
beam convolved with the Fourier transform of a given mask function.
It is easy to show that such a system can be implemented with a
zero-thickness metasurface but with important limitations. Assume
that the metasurface is synthesized with the susceptibilities in (5.12).
Here, for simplicity, only the component χxx

ee is presented. The spatial
filtering metasurface is given by

χxx
ee =

−∆Hy

jωεEx,av
=

2j
ωε

Ht
y −H i

y

Et
x + Ei

x

=
2j
ωε

F{M} ∗H i
y −H i

y

F{M} ∗ Ei
x + Ei

x

,

(5.37)

where M is a mask function. The presence of convolution products
in (5.37) shows that the susceptibilities are inherently proportional
to the specified incident field. As a consequence, the metasurface acts
as a spatial filtering device but only for the specified incident field, so
that different incident fields result in different transformations in con-
trast to what happens in an optical 4f-system that performs the same
filtering operation independently of the incident beam. Here again,
the reduced dimensionality of metasurfaces is disadvantageous.

These limitations might seem to be detrimental to the future
of metasurfaces. However, solutions exist to overcome some of these
difficulties. For example, the problems arising due to the reduced
dimensionality of metasurfaces can be mitigated by cascading sev-
eral metasurfaces instead of using just one. In that case, an optical
system that has a length of several focal lengths, like the 4f-system for
example, corresponding to several thousand of wavelengths could be
implemented with a length of only a few tens of wavelengths using
metamaterials.44 The issues caused by the high losses of metallic
scattering particles and limited bandwidth of resonant structures
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could be addressed by using dielectric resonators and highly coupled
particles as done, for instance, in Ref. 45.

5.4.3. Limitations of the synthesis technique

The mathematical synthesis technique presented in this document
is certainly powerful, but its main drawback is that it describes a
zero-thickness metasurface, a fictitious interface that obviously does
not exist in reality. In general, we have assumed that if the physical
metasurface is very thin compared to the free space wavelength, then
it is accurately modeled by the GSTCs. In this section, we will see
an example which illustrates the divergence between the ideal model
and reality.

When using the synthesis technique to model a subwavelength
thick metasurface, the GSTCs provide relatively accurate results
only to some extent. The GSTCs are, by definition, intended to
deal with discontinuities. Consequently, a material slab (even deeply
subwavelength) can not be accurately modelled by such continuity
conditions and must rather be analyzed as a two-interface problem
using the usual boundary conditions. Usually when ideal suscepti-
bilities, obtained using the synthesis technique, are associated to a
subwavelength metasurface, discrepancies appear between the simu-
lated metasurface response and the expected response.

In order to evaluate the discrepancies introduced by the meta-
surface thickness, a simple numerical experiment is conducted next.
A metasurface is synthesized to absorb a normally incident plane
wave. The incident plane wave has an electric field defined by Ei =
x̂e−jkz, and the transmitted plane wave has an electric field defined
by Et = x̂Te−jkz, where the transmission coefficient T can vary
between 0 and 1. Inserting these fields into (5.12a) and (5.12d) yields

χ = χxx
ee = χyy

mm =
2j
k0

(T − 1)
(T + 1)

. (5.38)

The susceptibilities in (5.38) can be easily converted into the
electric permittivity, εr = 1 +χxx

ee /d, and the magnetic permeability,
µr = 1+χyy

mm/d, where d is the thickness of the metasurface. Dividing
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Fig. 5.10. The red curve corresponds to the specified transmission coefficient.
The blue curve corresponds to the simulated transmission coefficients for a meta-
surface of thickness d = λ/100.

by d dilutes the effect of the susceptibilities over the thickness of the
metasurface. It is a valid approximation, as shown in Ref. 28, as long
as d remains subwavelength.

Electromagnetic simulations are performed using COMSOL for
different values of T and the results are reported in Fig. 5.10. As can
be seen, for T > 0.5 the simulated transmission is in good agree-
ment with the specification. But for T < 0.5, a discrepancy appears,
increasing as T is reduced to 0.

In order to understand the results presented in Fig. 5.10, the
problem is analyzed as a two-interface problem where the surround-
ing medium 1 is vacuum with parameters

n1 = 1, Z1 =
√
µ0

ε0
, (5.39)

and where medium 2, corresponding to the metasurface, can be
defined easily by noting that the electric and magnetic susceptibilities
are equal to each other as shown in (5.38), and consequently we have

n2 =
√

(1 + χ/d)2 = 1 +
χ

d
, Z2 =

√
µ0

ε0

√
1 + χ/d

1 + χ/d
= Z1. (5.40)
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The transmission coefficient, T21, from medium 1 to medium 2 and
the reflection coefficient, R, inside the metasurface are given by

T21 =
2Z2

Z1 + Z2
= 1, R =

Z1 − Z2

Z1 + Z2
= 0. (5.41)

Here, we see that the metasurface is reflectionless as initially spec-
ified. Since there is no reflection within the metasurface, the trans-
mitted amplitude simply reads

|Ttrs| = |e−jk0n2d| = |e−jk0d||e−jk0χ| = exp
[
2
(T − 1)
(T + 1)

]
. (5.42)

The expression (5.42) precisely agrees with the simulated results
(blue curve) of Fig. 5.10. It is clear that as T decreases to 0, the total
transmission from the subwavelength thick metasurface converges to
e−2. This simple example illustrates how the GSTCs fail to accu-
rately model the response of this metasurface. For this very specific
case, where only normal incidence and transmission are considered,
it is possible to modify the ideal susceptibilities of the zero-thickness
metasurface such that the response of the subwavelength thick meta-
surface exactly matches the response of the zero-thickness one. If the
ideal susceptibility, χ, is defined from (5.38), then the “corrected”
susceptibility is

χcorr = χ
f

d
, (5.43)

where f is a correcting factor. Following the same procedure as used
from (5.39) to (5.42) with (5.43) instead of (5.38), the factor f can
be found and Eq. (5.38) becomes

χcorr = χ
lnT
2d

T + 1
T − 1

=
j lnT
k0d

. (5.44)

The corrected susceptibility (5.44) gives the expected transmission
coefficient |Ttrs| = |T |. From (5.44), we see that the corrected sus-
ceptibility for the subwavelength thick metasurface is proportional
to the natural logarithm of T meaning that, as T decreases to 0, the
electric and magnetic susceptibilities both converge to −j∞ whereas
the ideal susceptibilities (5.38) converge to −2j/k0. The important
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difference between (5.38) and (5.44) illustrates how implementing the
ideal susceptibilities can become impracticable when the thickness of
the metasurface is taken into account and how much the corrected
susceptibilities diverge from the ideal ones.

The particular example presented here yields the simple corrected
expression (5.44), but in general no analytical forms would exist for
the corrected susceptibilities. One possibility that has been consid-
ered, to reduce the aforementioned discrepancies, is to derive bound-
ary conditions of higher orders than the GSTCs. As they stand, the
GSTCs only account for a zeroth order discontinuity, meaning that
only the discontinuities of the fields are taken into account but not the
discontinuities of the derivatives of the fields. Higher-order bound-
ary conditions that take into considerations the first derivative of the
fields may therefore yield more accurate results. The developments
of such boundary conditions are discussed in Ref. 46.

5.5. Conclusion

A metasurface synthesis method based on transverse susceptibility
tensors has been introduced. The technique provides closed-form
expressions for selected electric and magnetic susceptibility com-
ponents to theoretically perform electromagnetic transformations
where the incident, reflected and transmitted waves can be specified
arbitrarily. The metasurface can be reflection-less or transmission-
less and can have an infinite or a finite size. Moreover, it has
been shown that, by selecting more transverse susceptibility com-
ponents, it is possible to perform several (up to four) sets of inde-
pendent electromagnetic transformations with the same metasurface,
thus allowing multi-functionality. The proposed method can handle,
among others, reciprocal or non-reciprocal electromagnetic trans-
formations, generalized refraction, polarization rotation and orbital
angular momentum multiplexing. In other words, the method can
be used to perform any electromagnetic transformation, without
needing to resort to case-specific synthesis techniques.

The proposed synthesis method also includes the realization
of the physical scattering particles that would correspond to the
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synthesized ideal susceptibilities. Note that, in some cases, the imple-
mentation of the metasurface might be practically difficult or even
impossible to realize. However, even in relatively extreme cases, typ-
ically corresponding to fast susceptibility variations in comparison
with the wavelength, the proposed synthesis might be used as an
initial and insightful step of the complete synthesis. Moreover, if
required, one could practically relax some of the used assumptions,
including the zero thickness of the metasurface, introducing non-zero
longitudinal dipole moments (Pz and Mz), and allowing more non-
zero susceptibility tensor components.

Appendix

A. Distribution-based generalized sheet transition

conditions (GSTCs)1,28

A function f(z) that is discontinuous up to the Nth order at z = 0
may be expressed in the sense of distributions as

f(z) = {f(z)} +
N∑

k=0

fkδ
(k)(z). (A.1)

In this relation, {f(z)} and
∑N

k=0 fkδ
(k)(z) are the regular and sin-

gular parts of f(z), respectively. The regular part is defined for z 	= 0
in the sense of usual functions as

{f(z)} = f+(z)U(z) + f−(z)U(−z), (A.2)

where U(x) is the unit step function and f±(z) denote the parts of
f(z) in the regions z ≷ 0. The singular part, defined at z = 0, is a
Taylor-type series, where δ(k)(z) is the kth derivative of the Dirac
delta function, and fk is the corresponding weighting coefficient,
which is z-independent.

The function f(z) in (A.1) represents here any of the quantities in
Maxwell equations. Since these equations involve spatial derivatives,
the question arises as how to compute the z-derivative of f(z). Since
fk does not depend on z, taking the z-derivatives of the singular
part of (A.1) only increases the derivative order of the Dirac delta
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function, from k to k + 1. On the other hand, the derivative of the
regular part, given by (A.2), involves the derivative of U(·), which
may be expressed in the sense of distributions, in connection with a
test function φ, as

〈U ′, φ〉 = −〈U, φ′〉 = 〈δ, φ〉, (A.3)

where 〈·, ·〉 represents the functional inner product. In (A.3), the first
equality was obtained by integrating by part and taking into account
the fact that φ has a finite support, while the second equality follows
from setting the lower bound of the integral to zero for eliminating
U , using the fact that the primitive of φ′ is φ, by definition, and
again that φ has a finite support, and finally applying the sifting
property of the Dirac delta function according to which φ(0) = 〈δ, φ〉.
In other words, the derivative of the unit step function is the Dirac
delta function. Therefore, using (A.3), the z-derivative of (A.2) is
obtained as

d

dz
{f(z)} = {f ′+(z)U(z) + f ′−(z)U(−z)} + [f+(0)− f−(0)]δ(z)

= {f ′}+ [[f ]]δ(z),
(A.4)

where {f ′} (curl bracket term in the second equality) represents the
regular part of the derivative of f(z), defined at z 	= 0, and the
term [[f ]] (square bracket term in the second equality) represents
the singularity, at z = 0. Remember that the unit of δ(z) is (z)−1

since
∫ +∞
−∞ δ(z)dz = 1 is dimensionless.

Rigorous GSTCs can now be derived using (A.1) and (A.4). The
derivation is performed here only for Maxwell–Ampère equation, as
the derivations for the other Maxwell equations are essentially simi-
lar. Maxwell–Ampère equation in the monochromatic regime reads

∇×H = J + jωD. (A.5)

Expressing H in the form of (A.1) and using the transverse-
longitudinal decomposition ∇ = ∇‖ + ẑ ∂

∂z transforms the left-hand
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side of (A.5) into

∇×H = ∇‖ × {H} + ẑ × ∂

∂z
{H} +

N∑
k=0

∇‖ ×Hkδ
(k)(z)

+
N∑

k=0

ẑ × ∂

∂z
Hkδ

(k)(z). (A.6)

In the right-hand side of (A.6), the second term can be evaluated
using (A.4), while the derivative in the last term only affects the Dirac
delta function since Hk does not depend on z. Therefore, Eq. (A.6)
becomes

∇×H = ∇‖ × {H} + ẑ ×
{
∂

∂z
H

}
+ ẑ × [[H]]δ(z)

+
N∑

k=0

∇‖ ×Hkδ
(k)(z) +

N∑
k=0

ẑ ×Hkδ
(k+1)(z),

(A.7)

where the first two terms and the last two terms are the regular and
singular parts, respectively.

Substituting (A.7) along with the (A.1) expressions of D and J
into (A.5) finally transforms Maxwell–Ampère equation into

∇‖ × {H} + ẑ ×
{
∂

∂z
H

}
+ ẑ × [[H]]δ(z)

+
N∑

k=0

∇‖ ×Hkδ
(k)(z) +

N∑
k=0

ẑ ×Hkδ
(k+1)(z)

= {J(z)} +
N∑

k=0

Jkδ
(k)(z) + jω{D(z)} + jω

N∑
k=0

Dkδ
(k)(z),

(A.8)

where {J(z)} is a volume current, measured in (A/m2), while Jk

represents surface currents, measured in (A · mk−1) since the unit
of δ(k)(z) is (1/mk+1). One may now equate the terms of the same
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discontinuity orders, i.e. of same Dirac derivative orders, in this equa-
tion and in the other three corresponding Maxwell equations.d The
result is, for the terms of order δ(0)(z) = δ(z),

ẑ × [[H]] +∇‖ ×H0 = J0 + jωD0, (A.9a)

ẑ × [[E]] +∇‖ ×E0 = −K0 − jωB0, (A.9b)

ẑ · [[D]] +∇‖ ·D0 = ρ0, (A.9c)

ẑ · [[B]] +∇‖ ·B0 = m0 (A.9d)

and, for the terms of order δ(k)(z) with k ≥ 1,

ẑ ×Hk−1 +∇‖ ×Hk = Jk + jωDk, (A.10a)

ẑ ×Ek−1 +∇‖ ×Ek = −Kk − jωBk, (A.10b)

ẑ ·Dk−1 +∇‖ ·Dk = ρk, (A.10c)

ẑ ·Bk−1 +∇‖ ·Bk = mk. (A.10d)

Equation (A.9) are the universal boundary conditions for monochro-
matic waves at a planar surface at rest, while Eqs. (A.10) are com-
patibility relations that must to be recursively applied to determine
the unknown terms in (A.9).28 Note, letting z → 0 in the regular
parts of (A.9), the presence of additional terms compared to the
case of conventional boundary conditions (e.g. Eq. (A.9a), where
[[H]] = [H(z = 0+)−H(z = 0−)] and J0 is the sheet surface current,
includes the additional terms ∇‖ ×H0 and jωD0).

Let us now specialize to the case of interest: an infinitesimal sheet
discontinuity in free space. This means that the quantities Jk, Kk,
ρk and mk exclusively reside at z = 0, so that Jk ≡ Kk ≡ ρk ≡
mk ≡ 0 for k ≥ 1, meaning that only the term k = 0 survives
in the series (A.1) for these quantities. However, the situation is
different for the fields Ek, Ek, Dk and Bk, since these fields exist
also at z 	= 0. Strictly, N → ∞ for these fields. However, since the

dRigorously, the Dirac delta function disappears upon integrating over z terms of
equal discontinuity order.
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discontinuity is purely concentrated at z = 0, the Taylor-type series
in (A.1) includes only a small number of significant terms, and the
series can be safely truncated at some value of N . Choosing some
value for N (e.g. N = 2), equations (A.10) may be solved recursively
for k = N to k = 1, with Dk = εEk and Bk = µHk. This procedure
reduces the compatibility relations to

ẑ ×H0 = 0, (A.11a)

ẑ ×E0 = 0, (A.11b)

ẑ ·D0 = 0, (A.11c)

ẑ ·B0 = 0. (A.11d)

One may now introduce the electric and magnetic polarization
densities, P and M, respectively, to account for the action of the
scattering particles forming the metasurface. For this purpose, the
standard constitutive relations D = εE+P and B = µ(H+M) are
in a form that properly models the first-order surface discontinuity
in (A.9), namely

D0 = εE0 + P0, (A.12a)

H0 =
1
µ
B0 −M0, (A.12b)

where P0 and M0 represent the (first order) electric and magnetic
surface polarization densities, respectively. In the absence of sources
(J0 = K0 = ρ0 = m0 = 0), substitution of (A.12) and application of
(A.11) transforms (A.9) into

ẑ × [[H]] = jωD0 −∇‖ ×H0 = jωP0,‖ +∇‖ ×M0,n, (A.13a)

ẑ × [[E]] = −jωB0 −∇‖ ×E0 = −jωµM0,‖ +
1
ε
∇‖ × P0,n,

(A.13b)

ẑ · [[D]] = −∇‖ ·D0 = −∇‖ · P0,‖, (A.13c)

ẑ · [[B]] = −∇‖ ·B0 = −µ∇‖ ·M0,‖, (A.13d)
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where the subscripts ‖ and n denote transverse and normal compo-
nents, respectively.

Using the relation ∇‖ × (ẑψ) = −ẑ × ∇‖ψ and the difference
notation (5.3), Eqs. (A.13) finally take the form

ẑ ×∆H = jωP‖ − ẑ ×∇‖Mz, (A.14a)

∆E × ẑ = jωµM‖ −∇‖

(
Pz

ε

)
× ẑ, (A.14b)

ẑ ·∆D = −∇ · P‖, (A.14c)

ẑ ·∆B = −µ∇ ·M‖. (A.14d)
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CHAPTER 6

Metasurfaces for General

Control of Reflection

and Transmission
SERGEI TRETYAKOV∗, VIKTAR ASADCHY
and ANA DÍAZ-RUBIO

Aalto University, Finland

This chapter discusses most general linear bianisotropic metasurfaces
and reviews various homogenization models and methods to synthesize
metasurfaces with desired reflection and transmission properties. In the
last part, we give several examples of metasurface synthesis, illustrating
a general approach to realizing the desired and optimized response. The
focus is on understanding and selecting physical properties of unit cells
which are most suitable for realizing the desired response of metasur-
faces, and on finding appropriate topologies and dimensions of the unit
cells.

6.1. Introduction

Metasurface1–4 is an electrically thin composite material layer
designed and optimized to function as a tool to control and trans-
form electromagnetic waves. The layer thickness is small and can

∗Corresponding author: sergei.tretyakov@aalto.fi
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be considered as negligible with respect to the wavelength in the
surrounding space. The composite structure forming a metasurface
is assumed to behave as a material in the electromagnetic (optical)
sense, meaning that it can be homogenized on the wavelength scale,
and the metasurface can be adequately characterized by its effec-
tive, surface-averaged properties. Similar to volumetric materials,
where the notions of the permittivity and permeability result from
volumetric averaging of microscopic currents over volumes which are
small compared to the wavelength, the metasurface parameters result
from 2D, surface averaging of microscopic currents on the same wave-
length scale. This implies that the unit-cell sizes of composite meta-
surfaces are reasonably small as compared with the wavelength. In
terms of the optical response, this means that metasurfaces reflect
and transmit plane waves as sheets of homogeneous materials, in
contrast to diffraction gratings which produce multiple diffraction
lobes.

Due to the presence of small but strongly polarizable inclusions,
the fields inside the layer change significantly, so that the effects
of the layer on waves incident from surrounding space can be very
strong, despite the very small thickness. One of the main challenges
is to synthesize and realize metasurfaces which change the incident
fields in desired ways. This goal means that we would like to create
metasurface structures with fully adjustable and controllable reflec-
tion and transmission properties.

The chapter starts from a discussion of Huygens’ principle in
electromagnetics. Applying this principle, it is possible to replace
arbitrary volumetric sources of fields by equivalent surface currents
flowing on a theoretically infinitely thin surface surrounding the vol-
ume where the volumetric sources are located. We explain how this
principle and its generalizations can be used as a general design
paradigm for creating metasurfaces with the desired response.

Next, we explain different alternative homogenization models suit-
able for description and modelling of the electromagnetic properties
of metasurfaces. While the properties of volumetric (3D) materi-
als and metamaterials are described by such effective parameters as
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permittivity, permeability, chirality parameter, etc., in order to model
the properties of effectively homogeneous sheets (2D “materials”),
other parameters are needed. The conventional notions of permittivity
and permeability lose their meaning simply because there is no volume
over which the fields and induced polarizations could be averaged.
Surface-averaging approaches lead to introduction of such effective
parameters as sheet impedance, collective polarizability and surface
susceptibility, which we will explain in this chapter.

In the following section, we discuss methods to find what
properties of unit cells are required, if the goal is to create a metasur-
face with some desired reflection and transmission properties. Know-
ing the necessary physical properties, it becomes possible to find
what unit-cell topologies are suitable for realization of the required
response. In the last part, we give several examples of functional
single-layer metasurfaces synthesized and created using the theoret-
ical approaches described in this chapter.

6.2. Generalized Huygens’ Principle

Electromagnetic fields can be controlled and transformed using
engineered materials, often called metamaterials. The conven-
tional paradigm of using metamaterials for transformations of
electromagnetic fields implies that we engineer artificial materials
in such a way that the polarization and conduction currents induced
in the material, acting as secondary sources, create the desired fields
outside or inside of the metamaterial sample. Within the metasur-
face paradigm, electromagnetic fields are controlled by polarization
and conduction currents in a very thin layer, effectively a sheet of
negligible thickness. It appears that an effective approach to under-
standing and synthesizing metasurfaces can be built upon Huygens’
principle and its generalizations. Indeed, this principle tells us that
the fields outside of the sample volume can be found as those gen-
erated by equivalent surface currents flowing only on the volume
surface, as illustrated in Fig. 6.1. Thus, it appears that desired field
transformations can be achieved by engineering only surface currents
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Fig. 6.1. Equivalent surface currents JeS and JmS create the same fields outside
volume V as the volumetric current sources enclosed by S.

of the volume surface, and there appears to be no reason why the
volume enclosed by such an engineered surface could not be made
negligibly small.

The Huygens’ principle, also called the equivalence principle, has
a long history. It was introduced by Huygens in 1690 and put into a
mathematical form by Fresnel (1818), Helmholtz (1860) and Kirch-
hoff (1882) for scalar fields. The vector form is usually attributed
to Stratton and Chu (1939). Conventional derivations5 are based on
the use of Green’s function: Electromagnetic fields created by volu-
metric sources in volume V are written as an integral over V , which
is then transformed into a surface integral over surface S bound-
ing volume V . For our goals, we will use an alternative derivation,6

which shows that Huygens’ principle can be used for understanding
and synthesizing general metasurfaces. In this concept, equivalent
surface currents are introduced as a means to modulate sources and
fields in a certain volume according to a prescribed rule.

Let us consider a closed surface S which bounds region V

(Fig. 6.1). Following Lindell,6 we define a modulation function

P (r) = 1 if r ∈ V, P (r) = 0 otherwise (6.1)

With this function, we “modulate” the Maxwell equations

∇×E +
∂

∂t
B = −Jm, ∇×H− ∂

∂t
D = Je (6.2)
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Fig. 6.2. In the generalized Huygens’ principle the equivalent currents JeH and
JmH fill volume V0, which separates V1 and V2.

multiplying them by P (r). Obviously, for any differentiable vector
function F(r)

P (r)∇× F(r) = ∇× [P (r)F(r)] − [∇P (r)]× F(r) (6.3)

Denoting the modulated (in this example, truncated) functions as
FV = P (r)F(r), the result reads

∇×EV +
∂

∂t
BV = −JmV + [∇P (r)] ×E (6.4)

∇×HV − ∂

∂t
DV = JeV + [∇P (r)]×H (6.5)

For this choice of P (r), we have ∇P (r) = z0(r)δS(r), where δS is the
Dirac delta function: that is, the equivalent electric and magnetic
currents are bound to surface S. This result expresses the classi-
cal Huygens principle. It is important to note that the derivation
is extremely general and is independent from the properties of the
medium which fills the space on both sides of surface S.

This general concept of modulating fields and sources using
equivalent surface currents can be generalized in many ways, offering
important insight into operational principles of metasurfaces as well
as giving us effective design tools. For example, let us assume7 that
volume V1 is separated from the rest of the space (volume V2), not
by a surface, but by a volumetric region V0, as shown in Fig. 6.2.
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One can define two complementary “modulation functions”

P1(r) = 1 if r ∈ V1, P1(r) = 0 if r ∈ V2 (6.6)

P2(r) = 0 if r ∈ V1, P2(r) = 1 if r ∈ V2 (6.7)

satisfying P1(r) + P2(r) = 1. Equivalent currents

JmH = −[∇P1(r)]×E1 − [∇P2(r)]×E2 (6.8)

JeH = [∇P1(r)] ×H1 + [∇P2(r)]×H2 (6.9)

which flow in V0 “glue” the two sets of fields into one system. They
define generalized continuity conditions and the generalized Huygens
principle,7 where the layer carrying equivalent currents can be of
any thickness and shape. This derivation of the generalized Huygens
principle can be extended to find a way to “modulate” fields in a
certain volume of space by filling this volume with a metamaterial
with specific material parameters,8 because the modulating function
(6.1) can be any differentiable function.

This discussion brings us to the formulation of the general
approach to metasurface synthesis. Suppose that there is a wave
coming from volume V2 into V1 and we want to change the fields in
V1 by inserting a sheet or a material layer between the two volumes.
We start from adding additional volumetric sources in V2 which make
the desired effects in V1.a Next, we replace these additional sources
with equivalent Huygens’ currents, in a volume or on a surface. These
currents are proportional to the fields, so we can use metamaterials
or metasurfaces to create them. The design challenge is to find partic-
ular topologies of metasurface layers such that the induced surface
currents are related to the fields in the desired way. To this end,
we will need to understand homogenization models of metasufaces,
which is the subject of the next section.

aAt this stage, it is important to appreciate that our freedom to manipulate fields
in volume V2 using a metasurface between volumes V2 and V1 is limited by the
fact that we can freely add any source only in region V1. For example, we cannot
create an energy sink or source in V2 this way. Thus, one needs to be careful when
claiming a possibility for “general” or “full” control of fields using metasurfaces.
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6.3. Homogenization Models of Metasurfaces

Constructing a homogenization model means determining what
effective parameters can properly describe the metasurface response
to incident fields and finding these parameters from the known
properties of the unit cells or from experimental data or simulations
of the metasurface response (usually from plane-wave reflection and
transmission coefficients). This task is analogous to introduction of
the notions of permittivity and permeability of volumetric materials,
establishing mixing rules linking the single-molecule polarizabilities
to the effective materials parameters and finding methods for mate-
rial parameter measurements. Obviously, material homogenization is
a crucial pre-requisite for understanding and practical usage of elec-
tromagnetic materials and metasurfaces. Using effective parameters,
we dramatically reduce complexity of the problem, modelling the col-
lective response of extremely many individual molecules (in natural
media) or small engineered inclusions (in metamaterials and metasur-
faces) by only a few effective parameters, like the permittivity or con-
ductivity. Without homogenization models, understanding, design
and optimization of metasurfaces becomes an unrealistically huge
problem of brute-force numerical optimization.

It is clear that conventional effective parameters used to model
volumetric materials (permittivity, permeability, bianisotropy coeffi-
cients) are not applicable to metasurfaces, because the very defini-
tions of these parameters imply averaging over small volumes which
contain many molecules or inclusions. In the case of a metasurface,
this averaging volume is negligibly small, because metasurfaces have
negligible thickness. Thus, metasurface homogenization should imply
averaging over a small surface area, which is small compared to the
wavelength but contains many (at least, several) inclusions or unit
cells. For plane-wave illumination, averaging over the area of one
unit cell is sufficient. The effective models of metasurfaces are writ-
ten for macroscopic quantities defined as surface-averaged values of
electric and magnetic fields and surface-averaged polarizations and
currents. The concept of metasurface homogenization is illustrated in
Fig. 6.3.
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Fig. 6.3. In the homogenization model, an array of electrically small unit cells
is replaced by an equivalently responding set of electric and magnetic currrent
sheets. While at small distances (comparable to or smaller than the array period),
the fields of the two structures are very different, and at distances much larger
than the array period, the fields created by the metasurface and by the model
pair of two homogenized current sheets are not distinguishable.

In the literature, relations between surface-averaged quantities
are usually written in two different but equivalent forms. In the
first one,9,10 the induced surface-averaged electric and magnetic
polarization surface densities P and M are connected to the so-called
“averaged fields” on the metasurface plane Eav and Hav:

P = ε0χee · Eav +
√
ε0µ0 χem ·Hav (6.10)

M = χmm ·Hav +
√

ε0
µ0
χme · Eav (6.11)

Here, the fields Eav and Hav are defined as the arithmetic averages
of the (surface-averaged) fields measured at the two opposite sides of
the metasurface:

Eav =
1
2
(E+ + E−), Hav =

1
2
(H+ + H−) (6.12)

For example, if the metasurface is excited by a plane wave coming
from the side marked by “+”, E+ equals the sum of the electric fields



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch06 page 257

Metasurfaces for General Control of Reflection and Transmission 257

of the incident and reflected plane waves, while E− is the electric
field of the transmitted plane wave. All these fields are defined at
the metasurface plane. It is important not to confuse this averaging
of the fields on the two sides of the metasurface with averaging the
fields over the unit-cell area. All the fields which enter (6.12) are
already surface-averaged (macroscopic) fields.

Because the normal (to the metasurface) components of the
fields can be expressed in terms of the tangential components
using Maxwell’s equations in the space surrounding the metasurface,
Eqs. (6.10) and (6.11) can be also written with the tangential com-
ponents of the fields Eav

t and Hav
t instead of the total ones. If the

effective surface susceptibilities χij are known, one can solve reflec-
tion and transmission problems combining (6.10) and (6.11) with the
expressions for plane-wave fields created by the surface polarizations
P and M. These expressions can also be written in the form of aver-
aged transition conditions,9 which relate the jumps of the tangential
electric and magnetic fields across the metasurface and the polariza-
tion vectors:

Et+ −Et− = jωµ0z0 ×Mt −∇t
Pn

ε
(6.13)

z0 × (Ht+ −Ht−) = jωPt +∇t × z0Mn (6.14)

Here, z0 is the unit vector normal to the metasurface and pointing
to the direction of the side marked +. Pn and Mn are the normal
components of the corresponding vectors, and ∇t is the 2D differ-
entiation operator (∇t = ∇ − z0

∂
∂z , where the axis z is along z0).

Here we assume that the particles forming the metasurface are posi-
tioned inside a thin layer of a dielectric material with the permittivity
ε = ε0εr.51

In the alternative approach, surface-averaged polarization vectors
can be related to the incident (external) fields.11–14,26 Most com-
monly, these relations are written for dipole momentsb induced in

bIn this book, the magnetic dipole moment is defined as in most textbooks, having
the dimension [A ·m2]. Note that in many journal publications, e.g. Refs. 32, 33,
34, 40, 41, 49, the definition is different, including an additional multiplier µ0.
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each unit cell, p and m, as

p = α̂ee ·Einc + α̂em ·Hinc (6.15)

m = α̂mm ·Hinc + α̂me · Einc (6.16)

The polarization density vectors equal P = p/S, M = m/S, where
S is the unit-cell area. The coefficients in (6.15) and (6.16) are
called collective polarizability dyadics, because they model the unit-
cell response when the unit cells are arranged into a periodical lattice,
measuring the collective response to the incident fields. Similar to the
previous model, the normal (to the metasurface) components of the
incident fields can be expressed in terms of the tangential components
using Maxwell’s equations in the space surrounding the metasurface,
and Eqs. (6.15) and (6.16) can be written with the tangential com-
ponents of the incident fields Et inc and Ht inc instead of the complete
vectors.

For metasurfaces without bianisotropic effects, the homogeniza-
tion approach based on individual and collective polarizabilities
naturally leads to the model in terms of surface (sheet) impedance
and admittance, where the surface-averaged electric and magnetic
fields are related to the total fields at the metasurface.26,27,50

The homogenization models expressed via (6.10), (6.11) and
(6.15), (6.16) are algebraically equivalent because the parameters of
one set can be expressed in terms of the parameters of the other set.
To do that, one can start from Eqs. (6.15) and (6.16) and find the
amplitudes of plane waves generated by the arrays of dipole moments
p and m, created by some test incident plane wave Einc, Hinc. Let us
write these fields for the normal-incidence illumination. The induced
dipole moments (6.15) and (6.16) correspond to the surface-averaged
electric and magnetic current sheets with the surface current den-
sities Je = jωp

S and Jm = jωµ0m
S that radiate plane waves into the

surrounding medium (most commonly, free space). The reflected field
is the sum of the fields radiated by these surface currents:

Eref = − jω
2S

[η0p− z0 × µ0m] (6.17)
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Here, η0 is the wave impedance of the surrounding isotropic material
(most commonly, free space), and z0 is the unit vector normal to the
metasurface plane and pointing towards the source, as in Fig. 6.3.
Similarly, the transmitted field is the sum of the incident field and
the fields caused by the array:

Etr = Einc − jω

2S
[η0p + z0 × µ0m] (6.18)

Knowing the scattered fields and the incident fields, we in fact know
the total fields at both sides of the metasurface (E+ = Einc + Eref ,
E− = Etr, which maintains polarizations P = p/S, M = m/S. This
way, we can determine the parameters χij of the model equations
(6.10) and (6.11) in terms of the collective polarizabilities of the
model equations (6.15) and (6.16). The result reads

χee =
1
ε0

(∆∗
p)

−1

·
[
α̂ee +

jω

2η0
α̂em ·

(
S

µ0
It − α̂mm

jω

2η0

)−1

· α̂me

]
(6.19)

χem =
1√
ε0µ0

(∆∗
p)

−1

·
[
α̂em +

jω

2η0
α̂em ·

(
S

µ0
It − α̂mm

jω

2η0

)−1

· α̂mm

]
(6.20)

χme =
√
µ0

ε0
(∆∗

m)−1

·
[
α̂me +

jωη0

2
α̂me ·

(
SIt − α̂ee

jωη0

2

)−1

· α̂ee

]
(6.21)

χmm = (∆∗
m)−1

·
[
α̂mm +

jωη0

2
α̂me ·

(
SIt − α̂ee

jωη0

2

)−1

· α̂em

]
(6.22)
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where

∆∗
p = SIt − α̂ee

jωη0

2
+
ω2

4
α̂em

·
(
S

µ0
It − α̂mm

jω

2η0

)−1

· α̂me (6.23)

∆∗
m = SIt − α̂mm

jωµ0

2η0
+
µ0ω

2

4
α̂me

·
(
SIt − α̂ee

jωη0

2

)−1

· α̂em (6.24)

Here, It is the two-dimensional unit dyadic. We note that in the gen-
eral case, each of the susceptibility dyadics depend on all collective
polarizabilities. For example, the electric susceptibility χee depends
not only on the electric collective polarizability α̂ee but also on the
magnetic polarizability and the magnetoelectric coupling dyadics.
Only in some special simple cases is there one-to-one correspondence
between the two sets of effective parameters. For example, assuming
that α̂ee = αeeI t, α̂mm = αmmIt, and α̂em = α̂me = 0, we get simple
relations

χee =
α̂ee

ε0

(
S − α̂ee

jωη0

2

) , χmm =
α̂mm(

S − α̂mm
jωµ0

2η0

) (6.25)

In a similar way, we can find the collective polarizabilities if the
susceptibilities are known:

α̂ee = (∆p)−1

·
[
ε0χee − ε0

jωµ0

2η0
χem ·

(
It + χmm

jωµ0

2η0

)−1

· χme

]

(6.26)

α̂em = (∆p)−1

·
[
√
ε0µ0 χem − ε0µ0

jω

2η0
χem ·

(
It + χmm

jωµ0

2η0

)−1

· χmm

]

(6.27)



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch06 page 261

Metasurfaces for General Control of Reflection and Transmission 261

α̂me = (∆mµ0)−1

·
[√

ε0
µ0

χme − ε0
jω

2
χme ·

(
I t + ε0χee

jωη0

2

)−1

· χee

]

(6.28)

α̂mm = (∆m)−1

·
[
χmm − ε0

jωη0

2
χme ·

(
It + ε0χee

jωη0

2

)−1

· χem

]

(6.29)

where

∆p =
1
S
It + ε0χee

jωη0

2S
+
ε0µ0ω

2

4S
χem

·
(
It + χmm

jωµ0

2η0

)−1

· χme (6.30)

∆m =
1
S
It + χmm

jωµ0

2Sη0
+ ε0

µ0ω
2

4S
χme

·
(
It + ε0χee

jωη0

2

)−1

· χem (6.31)

In the same special case of an isotropic metasurface, assuming
χee = χeeIt, χmm = χmmIt, and χem = χme = 0, we get simply

α̂ee =
Sε0χee

1 + jωη0ε0
2 χee

, α̂mm =
Sχmm

1 + jωµ0

2η0
χmm

(6.32)

Both formalisms described above are based on the relations
between the induced polarization vectors and the electromagnetic
fields at the metasurface plane. There is another possible and very
useful description of general metasurfaces, where the electromagnetic
properties are modeled by relations between the tangential compo-
nents of the electromagnetic fields at the two sides of the metasurface.
In this approach, the polarization vectors P and M are not used.
Instead, the surface-averaged tangential electric fields on the two
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sides of the metasurface are expressed as functions of the tangential
components of the magnetic fields (the impedance-matrix model) or
the other way around (the admittance matrix model).15,26 Further-
more, scattering matrix or transmission matrix descriptions are pos-
sible. This formalism is basically the same as the common method of
modelling microwave components in the theory of microwave circuits.
As compared with the models of collective polarizabilities or suscep-
tibilities, the effective parameters of this model are directly measur-
able (if written in form of a scattering matrix). The transmission
matrix form allows very simple calculations for cascaded structures,
where a number of different metasurfaces are stacked together (the
transmission matrix of the stack is the product of matrices for indi-
vidual metasurfaces, provided that the separation distance is large
compared to the array periods). The impedance matrix model allows
interpretation in the form of an equivalent circuit, which helps to gain
insight into the physical processes behind the metasurface operation,
for example, for absorbing metasurfaces.41 The effective parameters
in the matrix models (dyadic impedances or the elements of the scat-
tering or transmission matrices) can be expressed in terms of the
collective polarizabilities of susceptibilities.

6.4. Synthesis of Metasurface Topologies

To synthesize a metasurface for a particular application, we can first
determine what collective polarizabilities are required to realize the
desired reflected and transmitted fields. Next, we will use the rela-
tions between the collective polarizabilities of periodically arranged
unit cells and the polarizabilities of the same unit cell but measured in
empty space (we call them individual polarizabilities). Knowing how a
small object should respond to plane-wave illuminations, appropriate
topologies can be finally found. The last stage is numerical optimiza-
tion and fine-tuning of the structure, which is needed because the
analytical formulas used in the synthesis process are based on some
approximations.
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For simplicity, here we will describe the synthesis process for
a special case of normally incident plane wave as the metasurface
excitation. Actually, in many cases this approach is appropriate even
for the synthesis of non-uniform metasurfaces for rather complex
field transformations, like wave focusing, thanks to a possibility to
use the physical optics approximation, considering the metasurface
as a locally periodical structure excited by plane waves. This concept
is illustrated in Fig. 6.4.

The starting point is Eqs. (6.17) and (6.18), which define the
reflected and transmitted fields in terms of the induced unit-cell
electric and magnetic moments. In view of the homogenization-model
relations (6.15) and (6.16), they determine the set of collective polar-
izabilities which we need to realize in order to get the desired reflected
and transmitted fields. Indeed, substitution of (6.15) and (6.16) into
(6.17) and (6.18) gives the relations between the reflected and trans-
mitted fields in terms of the incident field and the collective polar-
izabilities. Let us write these expressions explicitly for metasurfaces
which are isotropic in the surface plane. In this special case, dyadic
coefficients in (6.15) and (6.16) are invariant with respect to rotation

(a) (b)

Fig. 6.4. Within the physical optics approximation, the metasurface can be con-
sidered as a locally periodical structure. This way, we can synthesize metasurfaces
for various transformations of incident plane waves, such as deflection of incident
beams (a) or for focusing (b).
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around the unit vector z0, normal to the layer plane:

α̂ij = α̂co
ij It + α̂cr

ijJ t (6.33)

where It = I − z0z0 is the transverse unit dyadic and J t = z0× It is
the vector-product operator.

Assuming the normal incidence of the incident plane wave (in
which case the induced dipole moments are the same in all unit
cells), we can find the amplitudes of the reflected and transmitted
plane waves as32

Eref = − jω
2S

{[
η0α̂

co
ee ± α̂cr

em ± µ0α̂
cr
me −

µ0

η0
α̂co

mm

]
It

+
[
η0α̂

cr
ee ∓ α̂co

em ∓ µ0α̂
co
me −

µ0

η0
α̂cr

mm

]
J t

}
· Einc,

Etr =
{[

1− jω

2S

(
η0α̂

co
ee ± α̂cr

em ∓ µ0α̂
cr
me +

µ0

η0
α̂co

mm

)]
It

− jω
2S

[
η0α̂

cr
ee ∓ α̂co

em ± µ0α̂
co
me +

µ0

η0
α̂cr

mm

]
J t

}
·Einc

(6.34)

where η0 is the free-space wave impedance (for simplicity and without
loss of generality, we assume that the surrounding homogeneous and
isotropic medium is free space). Here and thereafter, to distinguish
between illuminations of the sheet from the two opposite sides, we
will use double signs (±) for these two cases, where the top and bot-
tom signs correspond to the incident plane wave propagating in the
−z0 and z0 directions, respectively. The components proportional
to the transverse unit dyadic It define the co-polarized reflected
and transmitted fields Eco

ref,tr, and those proportional to the rota-

tion operator J t give the values of the cross-polarized reflected and
transmitted fields Ecr

ref,tr, see an illustration in Fig. 6.5.
Equations (6.34) can also be used for finding the effective

parameters of the metasurface from calculated or measured response
to probe plane waves. It can be done by solving the above equations
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Fig. 6.5. Using uniaxial metasurfaces, we can engineer co- and cross-polarized
reflection and transmission coefficients.

for the collective polarizabilities if the reflected and transmitted field
created by the known incident field are known.

The next step in the synthesis procedure is to select a set of
polarizability values, which would give the desired values of the
reflected and transmitted fields. Note that in the general case the
metasurface can respond differently for illuminations of its two sides,
so in the general case we may need to make sure that reflection and
transmission responses for illuminations of both sides of the meta-
surface are as required for the thought application.

There may be multiple possible choices of polarizabilities which
ensure the desired operation. We have eight (complex scalar) polar-
izability parameters, but the number of reflection/transmission coef-
ficients which we want to tune can be smaller than eight. The choice
is usually determined by practical considerations. For example, using
non-reciprocal inclusions in metasurface design is usually not desir-
able. Thus, if no non-reciprocal effects are needed for the target
application, it makes sense to limit the choice of polarizabilities to
those of reciprocal unit cells. The collective polarizability dyadics of
reciprocal metasurfaces satisfy36,37

α̂ee = α̂
T

ee, α̂mm = α̂
T

mm, α̂em = −µ0α̂
T

me (6.35)
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Here, T denotes the transpose operation. For our example uniaxial
metasurface, these conditions mean that

α̂cr
ee = α̂cr

mm = 0, α̂co
em = −µ0α̂

co
me, α̂cr

em = µ0α̂
cr
me (6.36)

which reduces the number of free parameters.
The next step is to find out what are the polarizabilities of a single

unit cell in free space, which would correspond to collective polar-
izabilities determined in the previous step. The knowledge of the
individual cell response is usually desirable because single-particle
polarizabilities are easier to understand and synthesize, as there is
no need to model particle interactions in infinite lattices, and for some
simple topologies even analytical models are available for polarizabil-
ities of small scatterers in free space. The relations between the col-
lective and individual polarizabilities can be found using the notion
of the interaction factor for infinite grids. Namely, we note that each
unit cell is actually excited by the local field at the unit-cell position,
which is the sum of the incident field and the field created by the
currents in all the other unit cells at the position of this particular,
reference unit cell. We express this notion in terms of the interaction
constant26,38 β:

Eloc = Einc + βe · p (6.37)

Hloc = Hinc + βm · µ0m (6.38)

For the assumed normal-incidence plane-wave excitations, the dipole
moments p and m of all unit cells are the same. Approximate ana-
lytical expressions for the interaction constants of dipolar arrays are
available in the literature.26

For a single unit cell in free space, the induced moments are
proportional to the local fields (since the particle is now alone in
empty infinite space, there is no difference between the local fields
and the incident fields). We write these relations in terms of the
individual polarizabilities as

p = αee · Eloc + αem ·Hloc (6.39)

m = αmm ·Hloc + αme ·Eloc (6.40)
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Substituting the local fields from (6.37) and (6.38) into (6.15) and
(6.16) and solving for the dipole moments, the individual polarizabil-
ities can be expressed in terms of the earlier determined collective
polarizabilities.32

At this stage, we know how a single inclusion which will be used
to form the metasurface with the required response should respond
to external fields if tested in free space. Next, we use our knowl-
edge on electromagnetic properties of small scatteres to find suitable
realizations. Electric polarizability is easy to control. Basically, any
electrically small object made of any material is electrically polar-
izable, and it is enough to choose the material and dimensions so
that the polarizability αee takes the desired value. To access reso-
nant regime, for microwave frequencies metal particles of a proper
shape (meander, for instance) can be used. In the infared and visible
range, plasmonic nanoparticles offer possible realizations. To realize
magnetic response in reciprocal particles, various split-ring topolo-
gies can be used in the microwave range, or dielectric particles in
the magnetic resonant mode in the visible. Magnetoelectric coupling
effects (parameters αme and αem) in reciprocal particles are realized
by proper shaping of the inclusions. For example, to control αco

em,
various spiral (mirror-asymmetric) shapes are used. Parameter αcr

em

is determined by the symmetry or asymmetry in reversal of the unit
vector z0.

The final step is fine-tuning of the unit-cell parameters using
numerical solvers for periodical arrays. This step is usually required
because the analytical expressions for the interaction constants β and
the analytical models for particle polarizabilities, which are usually
used in determining the unit-cell dimensions, are approximate and
the result can be improved using accurate simulations. On the other
hand, brute-force numerical optimizations without first determining
the required topologies from the homogenization-model equations
usually does not bring satisfactory results.

It is possible to approach the problem of metasurface synthesis
using the homogenization model in terms of surface susceptibilities,
expressed in (6.10) and (6.11). In this scenario,52,53 the solution starts
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from finding such sets of susceptibilities which correspond to the
desired response in terms of the reflection and transmission coef-
ficients. Usually, there is no unique solution and some restrictions
on the susceptibilities are imposed based on considerations of reci-
procity and simplicity. Next, using extensive numerical simulations,
physical realizations of metasurfaces with the desired susceptibilities
are found. Most commonly, a set of simple basic shapes of metal
patches (usually, square or rectangular patches, strips, crosses and
Jerusalem crosses) is considered. For periodical arrays of simple-
shape elements, there is considerable knowledge on what properties
one can achieve using different topologies of the unit cell.29,30 This
knowledge helps in intelligent guidance of the optimization process.
Finally, S-parameters and transfer matrices of single- and multilay-
ered arrays of such patches are simulated, with variable geometry
parameters, in order to find suitable structures and fine-tune their
response. A disadvantage of this method as compared to the use
of the collective polarizabilities is that there is no reasonably sim-
ple possibility to analytically find the required parameters of single
unit cells and analytically explore all physically possible approaches
to realization. An advantage is that this design approach leads to
easily realizable planar structures (but the number of required layers
may be large, often five layers and more). On the other hand, the
semi-analytical method based on unit-cell polarizabilities assumes
that unit cells respond and interact as electric and magnetic dipoles,
which is not always an adequate model.

Yet another synthesis method, especially suitable for Huygens’
metasurfaces, is based on the idea that each unit cell should be a
combination of orthogonal electric and magnetic dipoles.55,56 Their
required amplitudes and phases are found from the solution for plane-
wave incidence on an infinite array. Next, a certain topology of a
unit cell is selected so that it would be electrically and magnetically
polarizable when excited by a plane wave (usually, a kind of sym-
metric split ring loaded by a capacitance or a set of electric dipoles
and loaded rings), and the dimensions are numerically optimized to
reach the desired response of the array.
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6.5. Examples

In this section, we give several examples of synthesizing single-layer
metasurfaces for various applications in order to demonstrate the
general approach to the synthesis and design of these structures.
Here, we use the method based on the effective polarizabilities model.

6.5.1. Twist-polarizing metasurfaces

This example is based on the results published in paper by Niemi
et al.32 For a number of applications, it is desirable to realize a
thin layer which would create no reflections and rotate the polar-
ization plane of the incident wave by 90◦. Such a device is called
twist-polarizer, see an illustration in Fig. 6.6. The response (absence
of reflection and required polarization rotation in transmission)
should be the same for any polarization of the incident field, which
means that the structure should be isotropic in its plane. Thus, the
formulas for uniaxial metasurfaces given above are suitable to syn-
thesize twist-polarizers.

We start from the general expressions for the reflected and
transmitted fields (6.34) for a uniaxial metasurface and find out what

Fig. 6.6. Required functionality of a twist-polarizing metasurface.
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should be the values of the collective polarizabilities, so that Eref = 0
and Etr = A z0 × Einc = AJ t · Einc. The coefficient A = ejφ can
be any complex number having unit absolute value, since we set
no restriction on the phase shift in transmission through the twist-
polarizing metasurface. Using the general formulas for the reflection
and transmission coefficients of single-layer metasurfaces (6.34), we
find that the collective polarizabilities of the unit cells must satisfy
the following relations:

η0α̂
co
ee ± α̂cr

em ± µ0α̂
cr
me −

µ0

η0
α̂co

mm = 0 (6.41)

(co-polarized reflection is absent)

η0α̂
cr
ee ∓ α̂co

em ∓ µ0α̂
co
me −

µ0

η0
α̂cr

mm = 0 (6.42)

(cross-polarized reflection is absent)

1− jω

2S

(
η0α̂

co
ee ± α̂cr

em ∓ µ0α̂
cr
me +

µ0

η0
α̂co

mm

)
= 0 (6.43)

(co-polarized transmission is absent)

− jω
2S

(
η0α̂

cr
ee ∓ α̂co

em ± µ0α̂
co
me +

µ0

η0
α̂cr

mm

)
= A (6.44)

(cross-polarized transmitted field has the desired amplitude and
phase).

The first two relations (6.41) and (6.42) express the
conditions for realizing a Huygens layer, which does not produce
reflections. Equations (6.43) and (6.44) ensure that the transmit-
ted field is twist-polarized. Solving (6.41) together with (6.43),
we find the requirements on co-polarized electric and magnetic
polarizabilities:

η0α̂
co
ee ± α̂cr

em =
S

jω
(6.45)

1
η0
α̂co

mm ∓ α̂cr
me =

S

jωµ0
(6.46)
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This result tells what physical properties of unit cells can be used
to realize non-reflecting layers. First, it is obvious that we need to
use such unit cells that both electric and magnetic dipole moments
can be induced (this result implies that the layer thickness cannot
be equal to zero: a planar distribution of surface electric current
produces no magnetic moment in the sheet plane). The simplest
realization scenario is to use unit cells without antisymmetric bian-
isotropic response (α̂cr

em = α̂cr
me = 0). In this case, we need a unit cell

with balanced (“equally strong”) electric and magnetic response, and
we need to make sure that the normalized collective polarizabilities
equal S/(jω). Note that the unit-cell area S is a free design parame-
ter; we only need to make sure that the array period is smaller than
the wavelength.

Alternatively, it is possible to utilize the magnetoelectric coupling
effect, which relaxes the strict requirement on the magnetic polar-
izability. Theoretically, the magnetic polarizability can even equal
zero, if α̂cr

me = −S/(jωµ0). Especially for optical applications, realiz-
ing magnetic response is a challenge, because the effect of inducing
magnetic moments by magnetic fields is a weak second-order spatial
dispersion effect37 (in terms of the electrical size of the unit cell).
Reciprocal magnetoelectric coupling, measured by α̂cr

me, is a stronger,
first-order effect, and using that effect it is easier to realize the
required balance of induced electric and magnetic moments.41 The
antisymmetric coupling effect can be realized either by making the
structure asymmetric with respect to its two transverse dimensions
(reciprocal omega coupling, where µ0α̂

cr
me = α̂cr

em), or by introducing
non-reciprocal elements but keeping the geometrical symmetry (in
that case µ0α̂

cr
me = −α̂cr

em), or combining these two possibilities (in
that case, there is no restrictive relation between α̂cr

me and α̂cr
em).

Twist-polarizers can be designed to rotate the polarization plane
of waves incident on one or both sides of the metasurface. The choice
of the ± and ∓ signs in (6.45) and (6.46) determines the side of the
metasurface which is matched with free space. If it is required that
the twist-polarizer should work the same way for waves incident on



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch06 page 272

272 Handbook of Metamaterials and Plasmonics — Volume 1

either of its sides, there should be no omega coupling in the unit
cells, because we have to demand that α̂cr

em = α̂cr
me = 0.

The remaining two equations (6.42) and (6.44) lead to the
conditions

η0α̂
cr
ee − α̂co

em = − S

jω
A (6.47)

η0α̂
cr
mm + α̂co

me = − S

jωµ0
A (6.48)

This result indicates that we have the choice of two physical
mechanisms (or their combinations) for realizing polarization con-
version: non-reciprocal electric and magnetic polarization effect
(α̂cr

ee �= 0, α̂cr
mm �= 0, in this case possibly also α̂cr

me = α̂cr
em �= 0) or

chirality effect (α̂co
me = −α̂co

em �= 0). The first possibility implies the
use of magnetized ferrite or/and magnetized plasma inside the unit
cells. Alternatively, we need to use some active devices42 (e.g. ampli-
fiers) or some external force to modulate the surface parameters in
time.43 The second possibility implies the use of particles with broken
mirror-reflection symmetry. In the last case, µ0α̂

co
me = −α̂co

em. Again
we see that there is considerable design freedom in providing the
desired polarization rotation because there are only four relations
connecting eight particle polarizabilities.

If we decide to use only reciprocal structures in the design
(which is very reasonable from the practical point of view, since the
desired response of the metasurface is reciprocal) and require that
the twist-polarizer works in the same way for plane waves illumi-
nating both sides of the layer (symmetrical response, α̂cr

em = 0), the
solution for the required collective polarizabilities is unique, and it
reads

η0α̂
co
ee =

µ0

η0
α̂co

mm =
S

jω
(6.49)

µ0α̂
co
me = −α̂co

em = −A S

jω
(6.50)
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We see that the unit cells should be chiral particles characterized
by these specific values of the polarizabilities. Requirement (6.49)
demands that the electric and magnetic responses are balanced,
which is known to be realizable for metal-wire spirals of properly
chosen dimensions.44–46 The parameter A is limited only by the
requirement of full power transmission, that is, |A| = 1. If we set
A = −j, the relations (6.49) and (6.50) become the same as those
for balanced spirals44–46 and for small Huygens antennas.47

Now we are ready to design the unit cells. First, we find the
required polarizabilities of a single unit cell in free space using the
interaction constant concept, as explained above. For the case of
reciprocal helices, the relations between collective and individual
polarizabilities can be found in Ref. 32. Next, we select one of the pos-
sible chiral shapes, for example, a canonical helix,32 which is formed
by a metal-wire loop connected to two short pieces of straight wires,
and make use of the antenna theory to find the relations between
the polarizabilities of this helix and its dimensions.48 Having analyt-
ical formulas which connect the helix dimensions and the collective
polarizabilities of regular 2D arrays of these helices, it is possible to
find dimensions of spirals for which the required values of the collec-
tive polarizabilities are realized. As usually, the final design step is a
numerical optimization of the unit-cell sizes, varying the dimensions
in the vicinity of the analytically found values. Example results, both
theoretical and experimental, can be found in Ref. 32.

6.5.2. Matched transmitarrays

The material in this section is based on the results of Asadchy
et al.40 The functionality of transmitarrays is to shape the transmit-
ted waves by locally controlling the phase of waves passing through
the metasurface. Losses due to reflections and absorption in the
metasurface should be minimized. Typical applications are extremely
thin and (usually) flat lenses. Conventional transmitarrays based on
frequency-selective surfaces15–19 or on metasurfaces20,21 are multi-
layer structures with typically three to five layers of patch arrays.
Conventional single-layer trasmitarrays22 produce considerable
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reflections. The metasurface concept allows synthesis and realization
of single-layer arrays with comparable or better functionalities.

We start from the general expressions for the reflected and trans-
mitted fields (6.34) and demand that the reflected wave is absent,

η0α̂
co
ee ± α̂cr

em ± µ0α̂
cr
me −

µ0

η0
α̂co

mm = 0 (6.51)

η0α̂
cr
ee ∓ α̂co

em ∓ µ0α̂
co
me −

µ0

η0
α̂cr

mm = 0 (6.52)

the transmitted wave has the same polarization as the incident wave

η0α̂
cr
ee ∓ α̂co

em ± µ0α̂
co
me +

µ0

η0
α̂cr

mm = 0 (6.53)

and that the transmitted wave has the same amplitude as the incident
wave and its phase is shifted by a desired angle φ:

1− jω

2S

(
η0α̂

co
ee ± α̂cr

em ∓ µ0α̂
cr
me +

µ0

η0
α̂co

mm

)
= ejφ (6.54)

The ± signs in the above relations refer to the incident waves illu-
minating the two sides of the metasurface (waves propagating along
∓z0). If we want to design a transmitarray which works the same
way when illuminated from any side, we should make sure that the
above relations are satisfied when we take either top or bottom signs.
Under this restriction, we should chose unit cells whose parameters
obey

α̂cr
em + µ0α̂

cr
me = 0, α̂cr

em − µ0α̂
cr
me = 0 (6.55)

α̂co
em + µ0α̂

co
me = 0, α̂co

em − µ0α̂
co
me = 0 (6.56)

which means that all these coupling coefficients must equal zero and
the unit cells should not exhibit any bianisotropic effects.
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Thus, for symmetric transmitarrays the above requirements
(6.51)–(6.54) simplify to

η0α̂
co
ee −

µ0

η0
α̂co

mm = 0 (6.57)

η0α̂
cr
ee −

µ0

η0
α̂cr

mm = 0, η0α̂
cr
ee +

µ0

η0
α̂cr

mm = 0 (6.58)

1− jω

2S

(
η0α̂

co
ee +

µ0

η0
α̂co

mm

)
= ejφ (6.59)

Equations (6.58) mean that α̂cr
ee = α̂cr

mm = 0, the electric and
magnetic polarizabilities are symmetric dyadics and, thus, the unit
cells must be reciprocal (see Eq. (6.36)). The remaining two simple
Eqs. (6.57) and (6.59) have a unique solution for the required electric
and magnetic collective polarizabilities:

η0α̂
co
ee =

µ0

η0
α̂co

mm =
S

jω
(1− ejφ) (6.60)

Next we use the relations32 between the collective polarizabilities
of the particles in infinite arrays α̂co

ee , α̂
co
mm and the polarizabilities of

the same particles considered as individual, single scatteres in free
space. For this simple case of reciprocal non-bianisotropic unit cells,
these relations read32,40

1
η0αee

=
1

η0α̂co
ee

+
βe

η0
,

1
µ0αmm/η0

=
1

µ0α̂co
mm/η0

+
βe

η0
(6.61)

From here, we find the required polarizabilities of individual unit
cells in free space:

1
η0αee

=
1

µ0αmm/η0
=

1
η0

Re(βe)− ω

2S
sinφ

1− cosφ
+ j

k3

6π
√
ε0µ0

(6.62)

This result corresponds to a lossless dipole scatterer, because the
imaginary part is only due to radiation damping. The real part of
the interaction constant can be estimated analytically for moder-
ate values of the unit-cell sizes and small dipolar particles.26 For
electrically small unit cells, the following quasi-static approximation
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is valid:

1
η0

Re(βe) ≈ 0.36√
ε0µ0 a3

(6.63)

where a is the array period (square unit cells).
To realize such a transmitarray, we need to design electrically

small particles with the polarizabilities given by (6.62). The particle
should be polarizable by both electric and magnetic fields, have no
bianisotropy and be made from a material with negligible losses.
A good candidate for realizing low-loss particles with balanced elec-
tric and magnetic polarizabilities at microwave frequencies is a metal
spiral, see the previous section. However, spirals are chiral objects,
but for this application chirality is not allowed (Eqs. (6.56)). A pos-
sible solution is to use unit cells containing racemic combinations
of two or more balanced spirals. Such arrays behave as non-chiral
metasurfaces, because the number of right- and left-handed spirals
in each unit cell is the same, and the chirality of individual spirals is
compensated.

Note that the same approach can be used to realize single-layer
absorbers, which are transparent outside of the absorption band,40

because for that application also one needs to ensure balanced electric
and magnetic response, while chirality is not allowed.

6.5.3. Metamirrors

The material in this section is based on the results of Ra’di et al. and
Asadchy et al.33,34 Let us consider synthesis of metasurfaces which
fully reflect incident waves allowing full control over the reflection
phase. Often, it is desirable to utilize both sides of the metasurface,
so we will seek for possibilities to independently control the reflec-
tion phase for illuminations of both sides of the surface. Let us also
demand that the polarization state does change upon reflection. Such
a metamirror can be used, for example, as a reflectarray antenna,
replacing large and heavy parabolic reflectors. Thought realizations
as single arrays of small scatterers offer additional application possi-
bilities since metamirrors (in contrast to conventional reflectarrays)
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Fig. 6.7. Single-layer metamirrors can independently control reflections from its
two sides, while the transmission through the metasurface is negligible.

have no ground plane and are transparent outside of the operational
frequency band. Possible functionalities of metamirrors33 are illus-
trated in Fig. 6.7.

Similar to the previous examples, we start from the general
expressions for the reflection and transmission coefficients (6.34)
in terms of the collective polarizabilities of unit cells. Because the
desired properties should hold for any polarization of the incident
fields, the use of uniaxial structures (with the only preferred direction
being the direction normal to the surface) is the only possibility. For
the thought application, we demand that

1− jω

2S

(
η0α̂

co
ee ± α̂cr

em ∓ µ0α̂
cr
me +

µ0

η0
α̂co

mm

)
= 0 (6.64)

(co-polarized transmission coefficient is zero)

η0α̂
cr
ee ∓ α̂co

em ± µ0α̂
co
me +

µ0

η0
α̂cr

mm = 0 (6.65)

(cross-polarized transmission coefficient is zero)

η0α̂
cr
ee ∓ α̂co

em ∓ µ0α̂
co
me −

µ0

η0
α̂cr

mm = 0 (6.66)
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(cross-polarized reflection coefficient is zero)

− jω
2S

(
η0α̂

co
ee + α̂cr

em + µ0α̂
cr
me −

µ0

η0
α̂co

mm

)
= ejφ (6.67)

(co-polarized reflected field has the same amplitude as the incident
field and the desired phase shift, φ, if the incident wave propagates
along −z0)

− jω
2S

(
η0α̂

co
ee − α̂cr

em − µ0α̂
cr
me −

µ0

η0
α̂co

mm

)
= ejθ (6.68)

(co-polarized reflected field has the same amplitude as the incident
field and the desired phase shift, θ, if the incident wave propagates
along +z0).

Similar to the previous example of twist-polarizing metasurfaces,
we see that there are several alternative possibilities to realize
metamirrors, using reciprocal or non-reciprocal unit cells. However,
in most practical situations the physical properties of inclusions
which we can use can be restricted by various considerations. For
example, let us consider condition (6.65), which ensures that there
is no cross-polarized (with respect to the polarization of the inci-
dent wave) transmitted field. Physically, this condition means that
the strengths of all physical effects which result in creation of cross-
polarized fields behind the metasurface must be balanced so that the
total cross-polarized transmission is zero. From (6.65), we see that
the cross-polarized transmission can appear if at least one of the
following is true:

(1) α̂cr
ee �= 0,

(2) α̂cr
mm �= 0,

(3) α̂co
em − µ0α̂

co
me �= 0.

In case (1), when α̂cr
ee �= 0, the electric response is non-reciprocal, for

example, we have some magnetized plasma filling our unit cells. In
case (2), when α̂cr

mm �= 0, the magnetic response is non-reciprocal,
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meaning that we have, for example, some magnetized ferrite mate-
rials in the unit cells (there are other possibilities to realize non-
reciprocal unit cells). In both cases, the polarization transformation
in transmission is due to the Faraday effect. In case (3), if the cells are
reciprocal, we have chiral (mirror-asymmetric) unit cells, and there
is cross-polarizated transmission due to the optical activity of the
metasurface.

We see from (6.65) that if we are going to use non-reciprocal unit
cells (for example, to have more flexibility in shaping reflections),
either both electric and magnetic response must be non-reciprocal
or, if only one of the parameters α̂cr

ee and α̂cr
mm is non-zero, we must

use chiral unit cells, and carefully balance the strength of both effects
so that (6.65) is satisfied.

In fact, it is clear that the required functionality (full control over
the reflection phase) does not require any non-reciprocal phenomena.
Thus, it is most reasonable to use reciprocal structures for realizing
metamirrors. Based on these considerations, we can discard possible
non-reciprocal realizations, which means that α̂cr

ee = α̂cr
mm = 0 (see

the reciprocity conditions (6.36)). In this case, to satisfy (6.65), we
must ensure that α̂co

em − µ0α̂
co
me = 0. But the reciprocity condition

tells that α̂co
em = −µ0α̂

co
me; thus, both these coupling coefficients must

vanish. Physically, this means that if a metamirror is reciprocal, it
must be non-chiral. Similar considerations can be applied to other
requirements (6.64)–(6.68). For reciprocal metamirrors, the solution
of (6.64)–(6.68) is unique and it reads33

η0α̂
co
ee =

S

jω

[
1− ejφ + ejθ

2

]
,

α̂cr
em = µ0α̂

cr
me =

−S
jω

[
ejφ − ejθ

2

]
, (6.69)

µ0

η0
α̂co

mm =
S

jω

[
1 +

ejφ + ejθ

2

]

The next step is to find what are the required individual polar-
izabilities of a single unit cell in free space (not interacting with the
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other particles in the array), see (6.39) and (6.40). This can be done
using the concept of the interaction constant β, as explained above.
The result reads33

η0α
co
ee =

1− ej(θ+φ) + jωη0

βeS

[−1
2

(
ejφ + ejθ

)
+ 1
]

−ej(θ+φ) +
(
1 + j ωη0

βeS

)2

η0

βe
,

αcr
em = µ0α

cr
me =

− jωη0

2βeS

(
ejφ − ejθ)

−ej(θ+φ) +
(
1 + j ωη0

βeS

)2

η0

βe
, (6.70)

µ0

η0
αco

mm =
1− ej(θ+φ) + jωη0

βeS

[
1
2

(
ejφ + ejθ

)
+ 1
]

−ej(θ+φ) +
(
1 + j ωη0

βeS

)2

η0

βe

Approximate analytical formulas for calculations of the electrical
interaction coefficient βe can be found in the literature,26,33 see also
Eq. (6.63).

The result shows that the unit cells should be lossless bian-
isotropic omega particles. The cells should be polarizable electrically
(αco

ee �= 0) and magnetically (αco
mm �= 0), and there should

be bianisotropic omega coupling (αcr
em = µ0α

cr
me �= 0). The

last condition means that electric field applied to the parti-
cle in the direction orthogonal to z0 should induce magnetic
moment in the direction orthogonal to the applied electric field
and also orthogonal to z0. The typical topology of such par-
ticles is an Ω-shaped piece of a metal wire (appropriate for
microwave-frequency realizations). Knowing the required values of
the polarizabilities, we can now use the known analytical mod-
els of polarizabilities of omega particles37,39 and find the parti-
cle dimensions for which the polarizabilities take the required val-
ues. At the final stage, the dimensions can be optimized using
full-wave simulations of the designed particles in the infinite
array.

Reports on numerical and experimental studies of metamirrors
realized as arrays of metal Ω-shaped particles can be found in the
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literature.33–35 Specially shaped dielectric particles can be used for
realization of metamirrors for optical applications.49

6.6. Perfect Control of Anomalous Transmission
and Reflection

The design methodology explained in the previous sections is based
on the assumption that each unit cell introduces a phase shift in
transmission or reflection without any modification in the wave
amplitude, following the same design principle that the conven-
tional phased arrays. Recently, it has been demonstrated that this
simplistic method does not allow us to achieve perfect performance
due to the energy that is inevitable scattered in undesirable direc-
tions.57–60 These studies show that for realizing perfect performance
metasurfaces, which redirect all the energy in the desired direction,
the amplitudes of the incident and transmitted/reflected waves have
to be different. In this section we present the last advances in the
design of perfect metasurfaces for shaping transmitted and reflected
waves. We will go into detail about the power considerations in both
transmission and reflection scenarios. Moreover, methods for calcu-
lating the required collective polarizabilities in both scenarios are
presented.

6.6.1. Perfect transmitarrays

Recently, it has been shown that for realizing perfect control of
transmission in metasurfaces, an important condition that ensures
complete suppression of the energy radiated in undesirable direc-
tions should be satisfied. Here we present this condition and an
approach for calculating the collective polarizabilities that ensure
this behaviour.

First, we define the electric and magnetic fields when a
TE-polarized wave, with the amplitude Ei, illuminates the metasur-
face from medium 1 at a certain angle θi (see Fig. 6.8(a)). We refer to
this case of incidence as forward illumination. Assuming ideally zero
reflection, the tangential components of the electric and magnetic
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(a) (b)

Fig. 6.8. Illustration of the performance desired in an ideal transmitarray.
(a) Coordinate system and field definitions. (b) Schematic representation of the
power conservation in the transmitarray.

fields on both sides of the metasurface can be written as

Et1 = Eie
−jk1 sin θiz, n×Ht1 =

cos θi
η1

Eie
−jk1 sin θiz (6.71)

Et2 = tTE Eie
−jk1 sin θiz, n×Ht2 = tTE

cos θt
η2

Eie
−jk1 sin θiz

(6.72)

where tTE is the complex transmission coefficient

tTE = |tTE|ejΦt , Φt = (k1 sin θi − k2 sin θt)z + φt (6.73)

Perfect transmission can be obtained by ensuring that all the
incident energy goes into the desirable direction, thus, the normal
component of the Poynting vector has to be the same at both sides
of the metasurface:

1
2
Re(Et1 ×H∗

t1) =
1
2
Re(Et2 ×H∗

t2) (6.74)
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This condition defines a relation between the incident and the
reflected fields, which reads

Et = Ei

√
cos θi
cos θt

√
η1

η2
= Ei|tTE| (6.75)

Equation (6.75) shows that the amplitudes of the incident and the
transmitted waves are different. Intuitively, this condition can be
easily understood by considering the example of a metasurface which
steers a beam of a finite width Wi. Figure 6.8(b) conceptually illus-
trates this idea, where the incident wave impinges normally into the
metasurface for simplicity. We can see that the transmitted beam
is tilted by θt and it has a smaller width Wt. Using simple trigono-
metrical analysis we can obtain the relation between both widths,
Wi = Wt/ cos θt, supporting the conclusion extracted from Eq. (6.75).

To find the required collective polarizabilities, we need to study
the reciprocal case when the metasurface is illuminated by the inci-
dent wave with the electric field Et from medium 2 at the angle θt.
We refer to this incidence scenario as backward illumination. In this
case the tangential components of the electric and magnetic fields
read

Et1 = Eie
jk1 sin θiz, n×Ht1 = −cos θi

η1
Eie

jk1 sin θiz

(6.76)

Et2 = t∗TE Eie
jk1 sin θiz, n×Ht2 = −t∗TE

cos θt
η2

Eie
jk1 sin θiz

(6.77)

where symbol “∗” denotes the complex conjugate operator.
Once we have defined the functionality of the metasurface

ensuring the reciprocal response, the next step in the design method-
ology is to obtain analytical formulas for the collective polarizabil-
ities of the ideal refractive metasurface. Using equations (6.15) and
(6.16) and the definition of the fields in the forward illumination
(f) scenario, we can find an expression for the surface polarization
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densities pf
t and mf

t:

pf
t =

(
α̂yy

ee + α̂yz
em

cos θi
η1

)
Eie

−jk1 sin θiz,

n×mf
t =

(
α̂zy

me + α̂zz
mm

cos θi
η1

)
Eie

−jk1 sin θiz

(6.78)

Following the same procedure for the case of backward illumination
(b), the same polarizabilities relate another set of surface polarization
densities pb

t and mb
t to the incident fields from medium 2 (that is,

to t∗TEEie
jk1 sin θiz):

pb
t =

(
α̂yy

ee − α̂yz
em

cos θt
η2

)
t∗TEEie

jk1 sin θiz,

n×mb
t =

(
α̂zy

me − α̂zz
mm

cos θt
η2

)
t∗TEEie

jk1 sin θiz

(6.79)

In the next step, we apply the boundary conditions that link the
tangential fields on the two sides of the metasurface to the electric
pt and magnetic mt surface polarization densities induced in the
metasurface. These classical boundary conditions simply express the
fact that the jumps of the tangential field components at the interface
equal to the corresponding surface current densities:

Et1 −Et2 =
jωµ0

S
n×mf,b

t ,

n×Ht1 − n×Ht2 =
jω

S
pf,b

t

(6.80)

We substitute (6.71)–(6.77) and (6.78)–(6.79) in (6.80) for the two
cases of illumination, into the boundary conditions one can obtain
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the following system of linear equations

cos θi
η1
− cos θt

η2
tTE =

jω

S

(
α̂yy

ee + α̂yz
em

cos θi
η1

)
,

1− tTE =
jωµ0

S

(
α̂zy

me + α̂zz
mm

cos θi
η1

)

−cos θi
η1

+
cos θt
η2

t∗TE =
jω

S

(
α̂yy

ee − α̂yz
em

cos θt
η2

)
t∗TE,

1− t∗TE =
jωµ0

S

(
α̂zy

me − α̂zz
mm

cos θt
η2

)
t∗TE

(6.81)

Solving this system, we find the required polarizabilities

α̂yy
ee =

S

jω

cos θi cos θt
η1 cos θt + η2 cos θi

×
[
2−

(√
η1 cos θt
η2 cos θi

+

√
η2 cos θi
η1 cos θt

)
ejΦt(z)

]
(6.82)

α̂zz
mm =

S

jωµ0

η1η2

η1 cos θt + η2 cos θi

×
[
2−

(√
η1 cos θt
η2 cos θi

+

√
η2 cos θi
η1 cos θt

)
ejΦt(z)

]
(6.83)

α̂yz
em = −µ0α̂

zy
me =

S

jω

η2 cos θi − η1 cos θt
η1 cos θt + η2 cos θi

(6.84)

Equations (6.82) and (6.83) show that the electric and mag-
netic polarizabilities depend on the coordinate z. In other words,
zero reflection at any point of the metasurface is required for obtain-
ing a perfect refractive metasurface, which demands the balance of
the induced electric and magnetic surface currents at any point (the
Huygens condition). On the other hand, the omega coupling coef-
ficient in (6.84) is constant with respect to z and depends only on
the impedances and angles. This result reflects the fact that bian-
isotropic coupling of the omega type is necessary to ensure that the
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waves incident on both sides of the metasurface see the same sur-
face impedance, so that reciprocal full transmission is realized. It is
important to notice that when the impedances of the incident and
transmitted waves are the same, that is, η1

cos θi
= η2

cos θt
, the required

coupling coefficient vanishes.

6.6.2. Perfect reflectarrays

Similar conclusions can be made for the perfect reflection control
when an incident plane wave with the amplitude Ei and the incident
angle θi is reflected into another plane wave with the amplitude Er

and the direction defined by the reflection angle θr (see Fig. 6.9(a)).
In our analysis, we study reflective metasurfaces assuming that the
tangential fields behind the metasurface are zero,

Et2 = 0, n×Ht2 = 0 (6.85)

Tangential components of the electric and magnetic fields in
medium 1 can be written as

Et1 = Eie
−jk1 sin θiz + Ere

−jk1 sin θrz+jφr,

n×Ht1 = Ei
1
η1

cos θie−jk1 sin θiz −Er
1
η1

cos θre−jk1 sin θrz+jφr

(6.86)

(a) (b)

Fig. 6.9. Illustration of the performance desired in a perfect reflectarray. (a)
Coordinate system and definitions of the fields. (b) Schematic representation of
the power conservation in the reflectarray.
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Using this definition of the fields, we define the complex reflection
coefficient for the TE incidence as

rTE =
|Er|e−jk1 sin θrz+jφr

|Ei|e−jk1 sin θiz
= |rTE|ejΦr , Φr = k1(sin θi− sin θr)z+φr

(6.87)
The condition for perfect reflection can be found, similarly to the

transmission case, analysing the normal component of the Poynting
vector. In this case, we have to ensure that all the energy illuminat-
ing the metasurface is reflected only into the desired direction. The
power carried by the incident plan wave is Pi = |Ei|2

2η1
cos θi, while

the power carried by the reflected wave is Pr = |Er|2
2η1

cos θr. Equating
these two expressions, we can find the relation between the incident
and reflected field amplitudes. This relation reads

Er = Ei

√
cos θi
cos θr

√
η1

η2
= Ei|rTE| (6.88)

Next, we use the same boundary conditions as in the case of
perfect refractive metasurfaces, i.e., boundary conditions (6.80), how-
ever, only for the forward illumination direction (since the metamir-
ror metasurface behaves as a boundary disconnecting medium 1 from
medium 2). Substituting the fields from (6.86) and (6.85) and the
surface polarizations (6.78) in the boundary conditions (6.80), one
can obtain the following system of equations:

1 + rTE =
jω

S

(
α̂yy

ee + α̂yz
em

cos θi
η1

)
,

cos θi
η1
− cos θr

η1
rTE =

jωµ0

S

(
α̂zy

me + α̂zz
mm

cos θi
η1

) (6.89)

Obviously, these equations have infinitely many solutions for
polarizabilities which realize the desired response. The metasurface
can be either bianisotropic (omega coupling) or it can be a non-
bianisotropic pair of electric and magnetic current sheets. For the
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non-bianisotropic realization we set

α̂yz
em = α̂zy

me = 0 (6.90)

and find the unique solution

α̂yy
ee =

S

jω

(
1 +

√
cos θi
cos θr

√
η1

η2
ejΦr

)
(6.91)

α̂zz
mm =

S

jωµ0

(
1−

√
cos θr
cos θi

√
η1

η2
ejΦr

)
(6.92)

These expressions show the collective polarizabilities required for
the desired performance when the bianisotropy is neglected and we
can immediately see what are the appropriate topologies of unit
cells for implementing them. Since we need both electric and mag-
netic polarizations, the physical thickness of the reflecting layer must
be different from zero, to allow formation of tangential magnetic
moments in unit cells. For example, it is not possible to realize the
desired performance by any patterning of a single, infinitesimally thin
sheet of a perfect conductor.

If we relax the requirement of non-bianisotropic particles, the
equations suggest the use of a single array of small particles
which are polarizable both electrically and magnetically, such as
small metal spirals as in Ref. 40. A typical realization based
on the bianisotropic route is a high-impedance surface with a
PEC ground plane (such as “mushroom layers”61). These imple-
mentations based on bianisotropic particles present the advan-
tage of stronger magnetic excitation via bianisotropic coupling.
Especially for optical applications, it is easier to realize strong
bianisotropy (which is a first-order dispersion effect) as compared
with the artificial magnetism (which is a weaker, second-order
effect).37 An experimental realization of a perfect reflectarray as
an inhomogeneous high-impedance surface has been reported in
Ref. 62.
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6.7. Conclusion

We hope that after reading this chapter the reader understands and
appreciates the power of the metasurface concept, which brings pos-
sibilities to realize extremely thin layers with rather general and
powerful functionalities. The Huygens principle tells that action of
volumetric currents can be replaced by equivalent action of surface-
bound currents, suggesting that volumetric, 3D metamaterial devices
often can be replaced by very thin, effectively 2D metasurfaces. For
example, instead of bulky lenses, just a thin sheet can be used. A typ-
ical example of practical advantages of metasurfaces is the mantle
cloak,24,25 which can provide the same or better functionalities than
a volumetric scattering-cancellation cloak,23 while being extremely
compact, easy to manufacture and low-cost. However, not all func-
tionalities which are available with volumetric metamaterials can be
realized with metasurfaces. It is obvious that if one wants full con-
trol over the distribution of electromagnetic fields in a given volume,
the volume must contain sources (or secondary sources in form of
meta-atoms). On the other hand, for vast majority of applications,
field-controlling devices should control fields in space which is out-
side of the device itself (lenses, frequency-selective surfaces, cloaks,
polarization converters, etc.), and in these applications metasurfaces
show their advantageous properties.

The general synthesis approach based on an appropriate homog-
enization model and collective polarizabilities of unit cells has been
explained, and we have seen how we can reveal all possible physical
mechanisms which can be used to realize the desired electromagnetic
response of metasurfaces. Starting from the desired reflection and
transmission coefficients, we find the required collective polarizilities,
and this result immediately tells what properties of the unit cells
are needed (non-reciprocal or reciprocal, chiral or non-chiral, etc.).
Based on this knowledge, we can finally determine suitable unit-cell
topologies and realize devices with required functionalities.

Alternative synthesis methods are known and are actively devel-
oped by several research groups, as reviewed in Section 6.3. The
choice of the most suitable model and design methods is not an
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easy one, and it is based on the required metasurface functionalities,
limitations in practical realizations, etc.
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The ability to engineer and control the electromagnetic scattering from
material bodies is of great importance in modern science and technology.
In this chapter, we review some of the most exciting recent advances in
this topic, enabled or inspired by metamaterials and plasmonics. We
discuss, from a fundamental perspective, how to drastically suppress or
enhance the scattering cross-section of a given object, as well as how to
increase the lifetime of scattering resonances and the directivity of the
scattering pattern. The possibility to control scattering processes “at the
extreme” with metamaterials may find application in many diverse prac-
tical scenarios, including cloaking and invisibility, light trapping, energy
harvesting, biochemical sensing and enhanced light–matter interaction
at the micro- and nanoscale.
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7.1. Introduction

Scattering processes underpin several phenomena we are familiar
with from our everyday experience, such as the distortion of sea waves
washing against rocks, the dynamics of billiard balls and the color of
the sky. Our very ability to see objects is largely determined by the
light scattered from them that reaches our eyes. We therefore have
a strong intuitive notion of what natural, or conventional, scattering
looks like. Wouldn’t it be surprising if an object became invisible
before our eyes, or if the setting sun appeared blue instead of red?

Interestingly, with the advent of metamaterials in the past
15 years,1 several anomalous scattering effects have indeed been
demonstrated, including invisibility, superscattering, unidirectional
scattering, light trapping, etc., which are not commonly observed in
nature and are not part of our everyday experience. Metamaterials
have therefore opened a wide range of new possibilities for manipulat-
ing and controlling the scattering of various types of waves (acoustic,
electromagnetic, matter waves, etc.) in different frequency regimes.
In this chapter, we will focus on classical scattering of electromag-
netic waves without change of frequency during the scattering pro-
cess. However, given the generality of elastic scattering processes in
wave physics, some of the results discussed here may also be extended
to other domains, e.g. acoustic and particle scattering.

The main goal of the chapter is to discuss to what extent we
can control and engineer the electromagnetic scattering of material
bodies, with particular emphasis on extreme scattering phenomena.
In the spirit of a “handbook” on metamaterials, we will provide the
reader with the fundamental physical insights into the different tech-
niques available today to suppress, enhance and generally manip-
ulate the scattering from a given object. In this context, particular
attention will be devoted to fundamental limitations of different scat-
tering processes, such as invisibility or scattering resonances. Such
theoretical limitations are clearly of large significance from both the
fundamental and practical standpoint, as they provide deep physical
insights into the considered scattering effects and allow for quantita-
tively assessing their potential for practical applications.
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In Section 1.2, we will briefly discuss some general properties
of the scattering problem with particular emphasis on fundamen-
tal passivity and causality considerations. Sections 1.3 and 1.4 will
be devoted, respectively, to the important topics of scattering sup-
pression (cloaking and invisibility) and enhancement (scattering res-
onances and superscattering). The intriguing possibility of ideally
trapping light in an open scatterer will be discussed in detail in
Section 1.5. Finally, we will consider in Section 1.6 how to increase
the directivity of the scattering pattern, and the related problem of
enhancing the magnetic response at optical frequencies, by exploiting
plasmonic and dielectric nanoparticles.

7.2. General Properties of Scattering Systems:
Scattering Coefficients, Power Conservation
and Causality

The typical benchmark example for scattering engineering is repre-
sented by spherically symmetric objects illuminated by a propagat-
ing plane wave. For this case, the scattering problem can be solved
exactly using Mie theory.2 The fields everywhere are expanded as
a weighted sum of vector spherical harmonics, each one associated
with a different angular momentum. Due to Noether’s theorem of
conservation laws,3 the spherical symmetry directly implies that the
angular momentum is conserved during the scattering process, which
allows treating each spherical harmonic independently. To solve the
scattering problem, we impose electromagnetic boundary conditions
on the different spherical interfaces and solve the resulting system of
equations, obtaining the weight coefficients of the scattered spheri-
cal waves for both transverse electric (TE) and transverse magnetic
(TM) polarization (transverse with respect to the radial direction).
These “scattering coefficients” can conveniently be written asa

cn = − Un

Un + iVn
, (7.1)

aThroughout this chapter, we assume a time-harmonic convention e−iωt.
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where the quantities Un and Vn, purely real in the lossless case, can be
written as matrix determinants associated to the boundary-condition
system of equations (see, e.g. Ref. 4).

A one-to-one correspondence exists between the TE and TM scat-
tering coefficients and the multipole moments in a multipole expan-
sion of the current distribution induced in a given scatterer.5,6 For
example, the first TM spherical harmonic corresponds to the field
radiated by the induced electric dipole moment p, which is of partic-
ular importance as it represents the dominant scattering contribution
for electrically small objects. If we compare the power carried by the
first TM spherical harmonic with the power radiated by an electric
dipole in free space, and we relate the electric dipole moment to the
local electric field Eloc (in the absence of the scatterer) through a
scalar polarizability αe, i.e. p = αeEloc, then we can easily find a rela-
tion between the scattering coefficient cTM

1 and the polarizability αe

cTM
1 =

ik3
bαe

6πεb
, (7.2)

where kb and εb are the wavenumber and permittivity of the sur-
rounding medium, respectively. Similar considerations apply to all
the scattering coefficients: for example, the first TE coefficient cor-
responds to the magnetic dipole moment and the second TM coeffi-
cient to the electric quadrupole moment. However, the definition of
higher-order polarizabilities becomes more difficult (and less useful),
since the higher-order moments are not proportional to the local
field Eloc but to the field gradients (e.g. magnetic dipole and electric
quadrupole are proportional, respectively, to the antisymmetric and
symmetric parts of the field gradient tensor).

By combining Eqs. (7.1) and (7.2), we can also write the electric
polarizability in a particularly convenient form

αe =
(
V TM

1

UTM
1

k3
b

6πεb
− i k

3
b

6πεb

)−1

, (7.3)

which expresses, in a compact way, all the available degrees of free-
dom to modify the induced dipole moment, and thereby the dipolar
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scattering. In particular, in the case of a lossless scatterer, for which
V TM

1 and UTM
1 are real, the imaginary part of α−1

e uniquely depends
on the properties of the surrounding medium. In fact, this term cor-
responds to the imaginary part of the free-space Green’s function at
the location of the particle or, in other words, to the local photonic
density of states (LDOS).7

In conventional, quasi-static approximations of the polarizabil-
ity, this imaginary term is often neglected, since it tends to be much
smaller than the real part. This approximation, however, needs to
be performed with care, since it implies neglecting the small energy
associated with scattering. A lossless scatterer would not be able to
radiate power without extracting it from the incident field, which
requires an imaginary term in the polarizability. In fact, from Poynt-
ing’s theorem, the time-averaged power extracted from the incident
field by a material body with induced current J is6 (see Ref. 6)

Pext =
1
2
Re
[∫

V
J∗ · EdV

]
, (7.4)

where the integral is taken over the volume V of the body. If the
scatterer can be approximated as a point electric dipole, then the
extracted power can be written as

Pext =
ω

2
Im[αe]|Eloc|2. (7.5)

Passivity requires that the power extracted by the scatterer is pos-
itive (namely, the scatterer is not an independent power source),
which directly implies that

Im[αe] ≥ 0. (7.6)

In addition, by requiring that the power extracted from the incident
field (7.5) is larger than the power re-radiated by the induced dipole,
a more stringent passivity condition can be established on the inverse
polarizability, known as the Sipe–Kranendonk condition8:

Im[α−1
e ] ≤ − k3

b

6πεb
, (7.7)
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in which the equality sign holds for lossless scatterers (i.e. no material
absorption).

Because of these considerations, only the first term in Eq. (7.3)
can be actually manipulated to engineer the dipolar scattering of an
object, whereas the second term can only be modified by changing
the surrounding environment. In particular, by modifying the ratio
V TM

1 /UTM
1 , which contains the geometrical and material properties

of the scatterer, it is possible to either suppress or enhance the scat-
tered energy. It should be stressed, however, that although the ratio
V TM

1 /UTM
1 can vary from zero to infinity, if the passivity condition

(7.7) is respected, the range of possible values that the polarizability
can assume is always finite, namely,

|αe| ∈
[
0,

6πεb
k3

b

]
, (7.8)

where the upper bound is reached in the case of a lossless dipolar
resonance (maximum power is extracted by the impinging wave), as
we will further discuss in Section 1.4. Analogous considerations also
apply to higher-order multipole moments, for which a passivity con-
dition similar to (7.7) can be derived (see, e.g. Ref. 9 for the electric
quadrupole moment). In general, passivity implies that the scattering
coefficients, defined as in (7.1), have amplitude bound between zero
and one, similar to the case of the reflection coefficient of a passive
structure.

Scattering and reflection coefficients indeed have several similari-
ties, as they both represent the coupling to “radiation channels” that
extract power from the incident wave. However, it is important to
recognize that the scattering coefficients defined above are not equal
to conventional reflection coefficients in a spherical transmission-line
model of the scatterer.10 In particular, for a given spherical wave
impinging over a lossless, spherically symmetric object, the spheri-
cal reflection coefficient sn always has unitary amplitude, since all
the energy of the spherical wave necessarily “bounces back” from
the origin of the spherical coordinate system. A scattering coef-
ficient cn can be related to the corresponding spherical reflection
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coefficient sn by

cn = (sne
−2ik0a − 1)/2, (7.9)

where a indicates the maximum radius of the spherical scatterer. The
scattering coefficient given by (7.9) indeed has magnitude between
zero and one, related to the amount of phase delay that the scatterer
introduces on the reflected spherical wave (cn is equal to zero if the
outgoing spherical wave has exactly the same phase as without scat-
terer). The two definitions of scattering coefficients, (7.1) and (1.9),
are perfectly equivalent.

It is also worth mentioning that the conventional definition of
scattering coefficients, although physically meaningful, inevitably
leads to important non-causality issues, as discussed in Refs. 11
and 12. In fact, in the presence of a scatterer, the interaction of
the incident wave with the object is expected to start when the wave
hits its surface, not its center. On the other hand, each spherical
harmonic is defined with respect to the center of the scatterer, and a
causal response for each scattering coefficient would require the scat-
tered wave to emerge only when the incident wave reaches the origin.
As a result, individual scattering coefficients and polarizabilities are
inherently non-causal functions characterized by a transient response
starting at a negative time instant, as it can easily be verified by
inverse-Fourier transforming them.11,b Only the sum of all scatter-
ing coefficients can be rigorously associated with a causal function,
namely, the total forward scattering.2 Although these considerations
do not affect our following discussion about scattering suppression
and enhancement, they become particularly important when trying
to derive Kramers–Kronig relations and sum rules on the dynamic
polarizabilities, or in the context of metamaterial homogenization,
as discussed in Ref. 11.

After having briefly summarized here some general properties of
scattering systems, in the next sections we will discuss a few specific

bNote also that it is not possible to enforce causality by simply introducing a
time delay, i.e. by phase shifting cn, as this would lead to a violation of the
Sipe–Kranendonk passivity condition (7.7).
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directions for scattering engineering, such as scattering suppression
and cloaking, resonant scattering, superscattering, light trapping,
directional scattering, etc.

7.3. Scattering Suppression, Cloaking and Invisibility

Invisibility devices, or cloaks, are arguably the quintessential example
of how metamaterials can control and engineer scattering in uncon-
ventional ways. Several techniques are today available to suppress the
scattering of given objects, each one of them with its own benefits
and limitations, and we refer the interested reader to Ref. 13 for a
broad literature review of different cloaking schemes. Here, instead,
we focus on cloaking from the point of view of scattering cancellation,
as in plasmonic or mantle cloaking, and, from this perspective, we
discuss a few general results of relevance for any cloaking device.

We consider here a quantitative definition of cloaking, as the
ability to restore the impinging field distribution, in amplitude and
phase, all around the object to be concealed. In other words, an
object is cloaked if the difference between the total field Etot and the
incident field Einc, namely, the scattered field, is minimized:∫

∞/object
|Einc −Etot|dV ≈ 0, (7.10)

where∞/object indicates the entire space except the cloaked object.
This corresponds to minimizing the total scattering cross-section of
the object under consideration. We therefore exclude from this defi-
nition of cloaking other invisibility techniques that aim at restoring
only the amplitude of the incident field, e.g. Refs. 14 and 15, or that
works only for specific directions of incidence and observation, e.g.
Refs. 16–18.

The total scattering cross-section is defined as a weighted sum of
the amplitude of the scattering coefficients, each one being propor-
tional to the power carried by the corresponding TE or TM spherical
harmonic2:

SCS =
λ2

0

2π

N∑
n=1

(2n + 1)(|cTM
n |2 + |cTE

n |2), (7.11)
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where N is the number of non-negligible scattering coefficients at the
free-space wavelength λ0 (this number is typically of the same order
as k0a). In addition, for a lossless scatterer, the total scattering cross-
section is equal to the total extinction cross-section, which represents
the total amount of power extracted from the incident wave, either
absorbed or re-radiated by the scatterer. Thanks to a fundamen-
tal theorem of scattering theory, known as the optical theorem,c the
scattering cross-section is therefore directly proportional to the total
forward scattering s(0) (i.e. the “shadow” casted by the object)6:

SCS =
4π
k2

0

Im[s(0)]. (7.12)

According to the above definition of cloaking, a lossless object
becomes invisible when all the non-negligible scattering coefficients
are suppressed. If, for example, the scatterer is small compared to
the incident wavelength, the dominant scattering mechanism is the
net separation of (bound or free) charges that determines an induced
electric dipole moment re-radiating energy into free space. In this
quasi-static scenario, therefore, only the coefficient cTM

1 needs to be
minimized, which can be done, for example, with the well-established
cloaking techniques based on scattering-cancellation.19−27 Such tech-
niques are essentially based on surrounding the object to be con-
cealed with a suitably designed shell, whose scattering compensates
the original scattering of the object. In other words, as sketched
in Fig. 7.1(a), both the shell and the object scatter when consid-
ered individually; however, since their induced dipole moments are
exactly opposite, when they are combined the total dipolar scattering
gets efficiently suppressed.d According to Eq. (7.1), the condition for
cloaking is given by UTM

1 = 0, which is a transcendental equation

cEquation (7.12) is a particular form of the optical theorem. According to how
the forward scattering is defined, the optical theorem may be written in slightly
different forms (for example, in Ref. 2, the real part of the forward scattering is
taken, instead of the imaginary part).
dThis heuristic explanation of the cloaking mechanism is consistent with the first-
order Born approximation for low-scattering systems.3,30
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Fig. 7.1. (a) Working principle of plasmonic cloaking: The induced dipole
moment in the cloak compensates the dipole moment in the object to be con-
cealed, hence minimizing the overall dipolar scattering of the cloaked object. (b)
Design chart for plasmonic cloaking of subwavelength objects: the map shows the
range of permittivities for which the cloaking condition UTM

n = 0 admits physical
solutions, and the corresponding aspect ratio a/a. c©2005 APS. Adapted with
permission from Ref. 19. (c) Example of plasmonic cloaking of a collection of
impenetrable objects. c©2007 OSA Publishing. Adapted with permission from
Ref. 20.

without closed-form solution in the general case. However, for an
isotropic core–shell spherical geometry in quasi-static regime, this
condition can be greatly simplified,19 obtaining(

a

ac

)3

=
(εc − ε0)(2εc + ε)
(εc − ε)(2εc + ε0)

, (7.13)
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Fig. 7.2. Mantle cloaking. (a) Scattering performance of a mantle cloak applied
to a dielectric sphere (in this case the cloak impedance is inductive). At the
design frequency, the total SCS is strongly suppressed. (b) Near-field distribution
of the amplitude of the electric field (top row) and phase of the magnetic field
(bottom), for a cloaked (left) and uncloaked (right) object. c©2009 APS. Adapted
with permission from Ref. 24. (c) Examples of fabricated cylindrical mantle cloak
for operation at microwaves. c©2013 IOP Science. Adapted with permission from
Refs. 34, and 35.

where a and ac are the radii of the core and shell, respectively, and ε
and εc are their permittivities. The design map in Fig. 7.1(b) shows
the range of permittivity values for which Eq. (7.13) admits phys-
ical solutions (i.e. with aspect ratio 0 < a/ac < 1). By inspect-
ing Fig. 7.2(b), we see that, if the core is dielectric (ε > ε0), the
cloaking condition (7.13) requires the permittivity of the shell to be
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smaller than that of free space, i.e. εc < ε0. This way, the polarization
density of the core is compensated by the opposite polarization den-
sity of the cloak, resulting in a reduced overall polarizability of the
cloaked object and, thereby, reduced dipolar scattering, consistent
with Fig. 7.1(a). Note that, different from other cloaking techniques,
here the original object is still polarized by the incident field and
the internal fields are non-zero. The induced fields in the cloaked
object can actually be very high, while the object is still invisible, an
ideal condition to design cloaked sensors and low-invasive near-field
probes.28,29 Plasmonic cloaking can also be used to reduce the scat-
tering of impenetrable objects and of large collections of scatterers,
as seen in Fig. 7.1(c).

A permittivity smaller than that of free-space is naturally avail-
able in plasmonic materials at optical frequencies, such as gold and
silver in the visible range, aluminum in the near UV and doped
semiconductors in the infrared.31 At lower frequencies, in the radio
frequency (RF) and microwave range, a plasmonic cloak can be effec-
tively emulated with engineered metamaterials.21−23 In many prac-
tical cases, however, plasmonic cloaking may be challenging because
the required material properties may be difficult to achieve at the
frequency of interest. Besides, the effect of losses is often significant
since this cloaking technique is based on the volumetric properties
of the shell. An interesting alternative is represented by the tech-
nique of mantle cloaking, which is based on the wave interaction
over a metasurface cloak with negligible thickness,24−27 as shown in
Fig. 7.2(a). The physical mechanism of mantle cloaking is also based
on the concept of scattering cancellation: the currents induced on
a patterned metallic shell re-radiate dipolar fields that compensate
the scattering of the original subwavelength object. In particular, the
cloaking effect is controlled by the surface impedance of the cloak,
Zs = Rs − iXs, which relates the induced current to the tangential
electric field, i.e. Etan = ZsJ.e As mentioned above, the condition for

eThis can readily be extended to the case of anisotropic surfaces with tensorial
surface impedance.
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cloaking, UTM
1 = 0, can be written in closed form in the quasi-static

limit, obtaining24

Zs = −i2[2 + ε− γ3(ε− 1)]
3γ3ωaε0(ε− 1)

, (7.14)

where γ = a/ac. For a small dielectric sphere, the required surface
impedance given by (7.14) is typically inductive (Xs > 0), whereas
for a metallic sphere the cloak needs to be capacitive (Xs < 0). Inter-
estingly, this can be interpreted in light of the optical nanocircuit
paradigm, put forward in Ref. 32: a small dielectric sphere corre-
sponds to an optical capacitance, which therefore can be compen-
sated by introducing an inductance. As shown in Fig. 7.2(b), despite
its ultrathin profile, a mantle cloak is indeed able to restore the
incident field distribution, in amplitude and phase, all around the
cloaked object (besides, notice that the field intensity inside the
cloaked object is actually enhanced with respect to the uncloaked
sphere).

The required surface impedance can be practically implemented
by patterning a thin metallic shell, realizing arrays of patches, strips,
crosses, etc., based on the well-established techniques of frequency-
selective surfaces at RF and microwaves,33 which make mantle cloak-
ing particularly appealing in this frequency range. An example of
fabricated cylindrical mantle cloak for operation at RF is shown in
Fig. 7.2(c).34,35 In addition, mantle cloaks made of graphene have
been proposed for operation in the THz range, realizing the thinnest
possible cloak,36 and superconducting media have been considered for
the possibility of realizing homogeneous mantle cloaks at microwaves,
in which the required inductive surface impedance is directly pro-
vided by the high kinetic inductance of the supercurrent, without
the need of patterning the surface.37

Interestingly, although scattering cancellation techniques are usu-
ally applied to subwavelength objects, moderate scattering suppres-
sion can also be achieved for larger objects (in the order of a
few free-space wavelengths) by suitably optimizing the plasmonic
shell.38 Besides, by considering multiple concentric shells it may
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be possible to realize multiband cloaks,39 or moderately broadband
cloaks in analogy with multisectors impedance-matching filters (e.g.
Chebyshev, or Butterworth filters40).

In principle, there is no fundamental limit on the number of scat-
tering coefficients that can be simultaneously suppressed at a given
frequency. In fact, an ideal transformation-optics cloak41,42 automat-
ically aligns, at the desired frequency, the conditions Un = 0 for any
non-negligible scattering order. This cloaking technique is based on
a completely different mechanism than scattering-cancellation cloak-
ing, as it requires the cloak to be designed with strongly anisotropic
and inhomogeneous permittivity and permeability, such that the inci-
dent wave is guided around a region of space, where the scatterer is
hidden, without interacting with it. For further details on this and
other cloaking techniques, we refer the reader to Ref. 13. The price
to be paid for having an ideal invisible state is the high complexity
of the cloaking design and its high sensitivity to losses and imper-
fections. In addition, there are other, more fundamental problems
that limit the possibility of suppressing the scattering of a material
body. In fact, relevant physical bounds on cloaking and invisibility
can be directly deduced from passivity and causality considerations
on the generic scattering system.44,127 For example, since the total
forward scattering s(0) is a causal function as mentioned above, we
can derive Kramers–Kronig relations on its real and imaginary parts
(actually on a slightly modified version of s(0), as discussed in Ref. 2).
By further invoking power conservation, represented by the optical
theorem (7.12), and after some manipulation, we obtain an impor-
tant sum rule that relates the SCS of an object, integrated over the
entire electromagnetic spectrum, to its electric and magnetic static
polarizability tensors, αe,s and αm,s. In the most general form, the
sum rule reads43∫ ∞

0
Cs(λ)dλ = π2(p̂∗e ·αe,s · p̂e + p̂∗m ·αm,s · p̂m), (7.15)

where p̂e denotes the polarization and p̂m the cross-polarization unit
vectors. By further noting that the static polarizabilities are always



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch07 page 309

Scattering at the Extreme with Metamaterials and Plasmonics 309

monotonically related to the static permittivity and permeability44

(if the static permittivity/permeability grows in a region of space,
also the electric/magnetic polarizability of the object is bound to
grow), we can conclude that whenever a linear and passive cloak
is wrapped around a given object, the static polarizability of the
cloaked object necessarily increases, which also determines, accord-
ing to (7.15), an increase of the integrated scattering. As a result,
scattering suppression and invisibility in a given frequency window
is always compensated by enhanced scattering in a different region
of the electromagnetic spectrum (an interesting exception to this
rule is represented by cloaks that include diamagnetic or supercon-
ducting media, as discussed in detail in Refs. 37, and 44). In this
sense, cloaks that introduce less additional matter, such as mantle
cloaks, are less prone to increase the integrated scattering. This is
confirmed by comparing the typical performance of plasmonic, man-
tle and transformation-optics cloaks, applied to the same object, as
shown in Fig. 7.3.

We also stress that due to causality considerations,45 ideal cloak-
ing (identically zero scattering) is only possible at discrete frequency
points, namely, over a zero-measure continuous cloaking bandwidth.
Instead, if larger scattering is tolerated (i.e. imperfect cloaking), the
cloaking bandwidth can indeed be widened,46,47,127 in strong analogy
with the problem of impedance matching and reflection suppression
in antenna and microwave-network theory.40

7.4. Scattering Resonances, Fano Resonances,
Superscattering

In the previous section, we have considered the case of scattering sup-
pression, namely, we investigated the condition Un = 0 in Eq. (7.1).
The opposite scenario is represented by resonant scattering, i.e. max-
imum scattering enhancement for a given spherical harmonic. This
case corresponds to the condition Vn = 0 in (7.1), which implies that
|cn| = 1 and maximum energy is coupled from the incident wave into
the n-th scattering channel.
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Fig. 7.3. Comparison between the typical performance (in terms of normalized
scattering cross-section) of mantle, plasmonic and transformation-optics cloaks
over a broad range of wavelengths. All the cloaks are designed to achieve invis-
ibility at the wavelength λc and are applied to the same dielectric sphere with
permittivity εr = 5 and diameter d = λc/3. c©2013 APS. Adapted with permis-
sion from Ref. 44.

In the case of electric dipolar scattering, the condition V TM
1 = 0

implies that Re[α−1
e ] = 0 in Eq. (7.3). As a result, the electric dipole

polarizability is purely imaginary at resonance, and its amplitude is
at maximum, which guarantees maximal power extracted from the
incident wave according to Eq. (7.5). As mentioned in Section 1.2,
the polarizability and the radiated power at resonance are finite due
to the Sipe–Kranendonk condition (7.7). Neglecting the radiation
correction term in Eq. (7.3) would, in fact, lead to diverging scat-
tered power, which clearly violates energy conservation. Besides, in
the lossless limit, the value of the electric dipole polarizability and
scattered power at resonance are fixed, no matter the shape and com-
position of the scatterer. The only way to enhance or suppress them
is by modifying the surrounding environment (i.e. the optical LDOS
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at the location of the scatterer), a phenomenon known as Purcell
effect in the context of quantum emitters (the spontaneous emission
rate, just as the classical radiation/scattering, is proportional to the
LDOS7).

Since at resonance the electric dipole polarizability is purely
imaginary, the local excitation field oscillates exactly in quadrature
with the induced dipole moment p, and exactly in phase with the
polarization current J = −iωpδ(r) (where δ(r) is a delta function
centered at the location of the object), in direct analogy with the
operation of an RLC circuit, in which the voltage oscillates in phase
with the current at resonance. A subwavelength dielectric scatterer is
typically largely off-resonance, as the induced polarization current is
out of phase with the excitation field, and thereby little power can be
extracted from the incident field according to Eq. (7.4). This corre-
sponds to the case of a non-resonant RC circuit, in which the voltage
lags the current. Building on this analogy, in order to make the scat-
terer resonate, an inductive element should be introduced, which can
be done by surrounding the small dielectric scatterer by a plasmonic
shell, consistent with optical nanocircuit concepts.35 Similar to the
cloaking case, the condition for scattering resonance, V TM

1 = 0, can
be greatly simplified for an isotropic core–shell geometry in quasi-
static regime, obtaining

(
a

ac

)3

=
(2ε0 + εc)(2εc + ε)
2(εc − ε0)(εc − ε) , (7.16)

where, again, a and ac are the radii of the core and shell, respectively,
and ε and εc are their permittivities. As in the cloaking case, a design
map for scattering resonances is shown in Fig. 7.4, which indicates
the range of permittivity values for which Eq. (7.16) admits physical
solutions. In particular, if the core is dielectric (ε > ε0), the scattering
condition (7.16) requires the permittivity of the shell to be negative,
i.e. εc < 0. This confirms that plasmonic materials offer an ideal
solution to achieve scattering resonance over deeply subdiffractive
footprints.
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Fig. 7.4. Similar to Fig. 7.1(b), but for the case of subdiffractive scattering
resonances. The map shows the range of permittivities for which the resonance
condition V TM

n = 0 admits physical solutions, and the corresponding aspect ratio
a/ac. c©2005 AIP Publishing. Adapted with permission from Ref. 48.

At a scattering resonance, not only is the radiation at maximum,
but also the fields induced inside the scatterer are enhanced. In the
lossless limit, the ratio between stored energy in the scatterer (and in
its reactive near field) and the radiated power is proportional to the
resonance Q factor, and determines the linewidth of the resonance
peak in the scattering spectrum. Interestingly, the Q factor of a dipo-
lar scattering resonance has a lower bound, known as Chu limit in
antenna theory49:

Q ≥ 1
k0a

+
1

(k0a)
3 , (7.17)

where a is the radius of the smallest spherical surface that completely
encloses the radiator/scatterer. It is clear that the bound (7.17)
becomes particularly stringent for small scatterers. In addition, the
Q factor of any higher-order resonance is generally higher than that
of a dipolar resonance. For example, for a small scatterer/radiator,
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i.e. k0a < 1, the Q factor of the n-th TE or TM resonance can be
estimated as50

Q ≈ n (2n+ 1)!!2

(kba)
2n+1 , (7.18)

where (·)!! indicates the double-factorial function.51 It is therefore
clear that the Q factor rapidly increases with the order n (note also
that Eq. (7.18) is consistent with (7.17) for n = 1). In general,
broadband resonant scattering/radiation, exceeding the Chu limit,
can only be achieved by juxtaposing, at nearby frequencies, multiple
resonances from different radiation modes,52,53 or by using active
and non-Foster structures, which allow achieving anomalously flat
frequency dispersion.54,55 Interestingly, while the Q factor of a scat-
tering resonance is bounded from below by (7.17), an upper bound
cannot be defined, meaning that the amount of stored energy can, in
principle, diverge in the lossless limit, as we will see in Section 1.5.

We have discussed earlier that, when a certain scattering order
resonates [i.e. Vn = 0 in Eq. (7.1)], maximum power is coupled
to the corresponding radiation channel. In the lossless limit, this
maximum power is a fixed quantity for each order n, and, accord-
ing to Eq. (7.11), it contributes to the total SCS as λ2

0(2n+ 1)/2π.
Although this contribution is fixed for each n, there is no funda-
mental limit on the number of resonating scattering orders that
can be “aligned” at the same frequency, hence achieving arbitrarily
large scattering cross-sections. This “superscattering” effect has
been demonstrated even in the quasi-static regime, by considering
multi-layered nanoparticles with optimized plasmonic and dielectric
layers.56,57 In Fig. 7.5, we show an example of such a structure, whose
SCS is indeed characterized by several scattering orders resonating
at the same frequency, so that their resonant peaks overlap and “pile
up” (Fig. 7.5(a)), determining much larger scattering than typically
achieved with subwavelength particles, as seen in the field distribu-
tion in Fig. 7.5(b).

In this section and in Section 1.3, we have discussed how the
scattering coefficients can be brought to zero or one by imposing
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Fig. 7.5. Superscattering from subwavelength particles. (a) Normalized scatter-
ing cross-section from a layered nanosphere (shown in the inset, details in Ref. 57),
in the lossless limit, and individual contributions from different scattering orders.
(b) Time-snapshot of the electric field distribution, around the particle at res-
onance, under plane-wave illumination. The power flow (white stream lines) is
strongly perturbed, particularly in the forward direction, as the scattering cross-
section of the sphere is much larger than its geometrical cross-section. c©2013
AIP Publishing. Adapted with permission from Ref. 57.

Un = 0 (cloaking) or Vn = 0 (scattering resonance) in Eq. (7.1).
The dispersion of these two conditions determines therefore the dis-
tribution of scattering zeros and resonances along the real frequency
axis. Interestingly, a few recent works have pointed out that, for
subwavelength scatterers with purely electric dipolar response, the
corresponding scattering coefficient cTM

1 exhibits a strict alternation
of scattering zeros and resonances, indicating that the dispersion of
UTM

1 = 0 and V TM
1 = 0 are necessarily interleaved.58−60 In other

words, two scattering zeros cannot exist without a scattering res-
onance between them, and vice-versa. Figure 7.6 shows an exam-
ple of this behavior, for a subwavelength core–shell particle.59 The
dispersion of the cloaking (blue) and resonance (red) conditions is
shown in Fig. 7.6(b) as a function of the cloak permittivity (or
function of frequency, since the permittivity is assumed to follow
Drude dispersion) and aspect ratio ηc = a/ac, confirming that the
different branches never cross. This intriguing phenomenon can be
understood, at least qualitatively, from the point of view of circuit
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theory. In fact, a subwavelength lossless particle is approximately
equivalent to a reactive lumped-element circuit32 (however, a small
“radiation resistance” should always be added near a resonance to
comply with passivity, consistent with the discussion above). Due
to a relevant theorem of circuit theory known as Foster’s reactance
theorem (which is essentially a form of Kramers–Kronig relations
for impedances), the reactive nanocircuit impedance monotonically
increases with frequency and exhibits a strict alternation of zeros
and poles (corresponding either to scattering zeros or resonances
according to the circuit representation of the scatterer). Since in the
quasi-static regime the scattering is proportional to this nanocircuit
impedance, such an alternation is directly reflected in the scatter-
ing cross-section, hence explaining the distribution of cloaking and
resonant states in Fig. 7.6(b). This “Foster’s theorem for scattering”
does not hold if the particle supports multiple scattering orders, or
if it is not subwavelength.

The alternation of scattering zeros and resonances in subwave-
length particles can be exploited to realize some intriguing scattering
effects. In fact, as seen in Figs. 7.6(c) and 7.6(d), a particle could
be designed such that a scattering zero lands close to a scatter-
ing resonance, hence obtaining an asymmetric scattering line-shape,
known as Fano resonance,61,62 which is usually interpreted as aris-
ing from the close coupling and interference between different modes
supported by the scatterer. As seen in Fig. 7.2(a) and Figs. 7.6(b)
and 7.6(c), the scattering spectrum of cloaked objects often exhibits
this asymmetric shape, as the dipolar oscillations in the core and
shell interfere destructively or constructively, determining a cloaking
dip (dark state) or resonant peak (bright state), respectively. Based
on this mechanism, multilayered plasmonic-dielectric particles can
be designed to achieve anomalous scattering signatures,58−60,63,64

including multifrequency cloaking,58 electromagnetically induced
transparency effects,59 and comb-like scattering responses character-
ized by superscattering states alternated by invisible states.60 Fur-
thermore, the abrupt scattering variation of these Fano resonances,
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Fig. 7.6. Alternation of scattering zeros and resonances in subwavelength scat-
terers. (a) Spherical core–shell scatterer of subwavelength size (details in Ref. 59).
(b) Dispersion of the conditions UTM

1 = 0 (blue/darker curves, cloaking) and
V TM

1 = 0 (red/lighter curves, resonant scattering) for the particle in (a), as a
function of geometrical aspect ratio ηc = a/ac and cloak permittivity εc. Since
εc follows a Drude dispersion model, the horizontal axis also corresponds to fre-
quency. The brighter (darker) colors of the background indicate regions of higher
(lower) scattering cross-section. (c–d) Normalized SCS, as a function of frequency,
for two different aspect ratios, corresponding to the two horizontal dashed lines
in (b). c©2012 NPG. Adapted with permission from Ref. 59.

combined with the large field intensity induced inside the nanoparti-
cle, represents an ideal condition to enhance and exploit weak non-
linear processes in order to realize, for example, all-optical scattering
switches and nanomemories.65
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7.5. Light Trapping in Open Structures

When the entire denominator of Eq. (7.1) goes to zero, i.e.
Un + iVn = 0, the corresponding scattering coefficient and polariz-
ability diverge. These scattering poles, which correspond to the eigen-
modes, or self-sustained oscillations, of the scatterer, can occur only
at complex frequencies, as required by passivity. The imaginary part
of the complex eigenfrequency, in fact, is related to the oscillation
damping of the corresponding eigenmode, which, in the limit of zero
material absorption, is purely determined by radiation loss. The Q
factor, or lifetime, of any scattering resonance is therefore determined
by the “distance” of the corresponding pole from the real frequency
axis. Note also that, if the radiation correction in Eq. (7.3), i.e.
−ik3

b/6πεb, was neglected, the scattering poles would be on the real
frequency axis, exactly at the location of the scattering resonances
(Vn = 0), which would violate passivity. Rather strikingly, however,
it has been recently shown that an eigenmode can be “embedded”
along the real frequency axis, leading to diverging oscillation lifetime
and stored energy, without violating power conservation.67,68 This
intriguing and counterintuitive scattering effect is the topic of this
section.

Consider the case of a layered sphere composed of a dielec-
tric core, surrounded by two plasmonic shells with slightly different
plasma frequencies, as it has been studied in.68 Figure 7.7(a) shows
the SCS of the particle as a function of wavelength and geometrical
aspect ratio, similar to Fig. 7.6(b). The dark and bright bands follow
the dispersion of the conditions UTM

1 = 0 and V TM
1 = 0 in Eq. (7.1),

respectively, and, consistent with the discussion in the previous sec-
tion, they strictly alternate since the scatterer is subwavelength.
However, we see that in some regions two opposite bands merge,
leading to a “degenerate state” in which UTM

1 = V TM
1 = 0. Near these

points, therefore, a scattering pole moves arbitrarily close to the real
axis, where it eventually “lands” exactly at the location of a zero,
which cancels the pole, hence respecting passivity. This shows that, in
the lossless limit, the Q factor and lifetime of a scattering resonance
can be arbitrarily large, as seen in Fig. 7.7(b). Strikingly, this effect



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch07 page 318

318 Handbook of Metamaterials and Plasmonics — Volume 1

Fig. 7.7. Embedded scattering eigenstates in open 3D structures. (a) Scattering
cross-section of a layered sphere, as shown in the inset (details in Ref. 68), as a
function of wavelength and geometrical aspect ratio. Numbers denote the regions
in which the Q factor of a scattering resonance diverges, as the dark and bright
branches merge. (b) Evolution of a scattering pole on the complex frequency
plane, as a function of the aspect ratio, and corresponding evolution of the SCS
under plane-wave illumination. The energy leakage from the scatterer vanishes, as
the pole gets closer and closer to the real axis. (c) Power flow distribution in the
near field, for plane-wave excitation at a slightly off-resonance wavelength (left
panel) and at the wavelength of the embedded eigenstate (right). (d) Correspond-
ing 3D view of the power flow distribution at resonance. c©2015 APS. Adapted
with permission from Ref. 68.

allows creating an ideally bound optical state, without radiation loss,
supported by a three-dimensional (3D) open cavity. In fact, different
from conventional light-confinement methods, which involve closing
the cavity with metals or photonic crystals, such that the coupling to
radiation modes is directly forbidden, here the cavity remains elec-
tromagnetically open, namely, radiation is in principle allowed, as the
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photonic LDOS of the surrounding environment has not been modi-
fied (the radiation-correction term in the electric polarizability (7.3)
is unaltered). This intriguing effect is the optical analog of so-called
“embedded eigenstates” in certain quantum potentials69 and dif-
ferent photonic implementations have been recently demonstrated,
considering both unbounded two-dimensional structures70,71,128 and
bounded 3D geometries,65,67 as in Fig. 7.7.

In the quasi-static limit, the equation UTM
1 = V TM

1 = 0 can
be simplified, leading to different closed-form conditions to realize
embedded photonic eigenstates in a spherical open resonator.68 For
example, the degenerate state “4” in Fig. 7.7(a) corresponds to the
following conditions:



η 3
2

η 3
1

=
2ε2 + ε1

2 (ε2 − ε1)
ε3 → 0

, (7.19)

where the ratios η1 = ac1/ac2 and η2 = a/ac2 define the geometry, as
indicated in the inset of Fig. 7.7(a). Equation (7.19) implies that a
bound state with infinite lifetime is achieved when the permittivity of
the outer shell ε3 goes to zero and, at the same time, the two inner
layers support a subdiffractive magnetic resonance (first condition
in (7.19)), as discussed in Ref. 68. It is important to stress that the
system is indeed electromagnetically open, as the fields inside the
particle, under external excitation, are non-zero when Eq. (7.19) are
ideally met, but radiation vanishes for a specific eigenmode of the
scatterer.f In other words, conditions (7.19) correspond to a non-
radiating current distribution, of purely dipolar nature, supported
by the open structure.67,68 This nicely connects the idea of embed-
ded photonic eigenstates with the intriguing concept of non-radiating

fNote that the non-radiating states discussed here are fundamentally different
from scattering dark states and cloaking states, which also imply a reduction of
the re-radiated energy, but do not correspond to eigenmodes of the scattering
system.
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sources, which was important, for example, in the development of
early classical atomic models.72−74

From an external excitation, we can pump energy into the embed-
ded eigenstate, working arbitrarily close to the non-radiating condi-
tion (of course, due to reciprocity we cannot couple energy into an
ideally non-radiating mode from external excitation). In the loss-
less limit, therefore, an arbitrarily large amount of energy can be
stored in the particle. As seen in Figs. 7.7(c) and 7.7(d), the energy
is indeed “trapped” in a self-sustained power flow, realizing a sort
of optical vortex or whirlpool. If a small amount of ohmic losses
is introduced, it can be shown that the stored energy rapidly drops
when conditions (7.19) are exactly met,68 because the optical vortices
in the particle lead to enhanced absorption even for very small level
of losses.

The structures discussed in this section can be implemented
at optical frequencies with low-loss plasmonic materials, and at
microwaves and RF with suitably designed metamaterials (e.g.
Refs. 21–23), and may have applications for enhanced energy har-
vesting and absorption/emission. In the spirit of this chapter, the
topic of embedded photonic eigenstates indeed represents a partic-
ularly illustrative case of “scattering at the extreme” enabled by
plasmonics and metamaterials.

7.6. Huygens Sources, Directional Scattering,
and Artificial Magnetism

In the previous sections, we have discussed electromagnetic scatter-
ing processes mostly from the point of view of the total scattering
cross-section, for which all the different scattering orders contribute
incoherently, i.e. only the amplitude, not the phase, of the individual
scattering coefficients matters, consistent with Eq. (7.11). In addi-
tion, large emphasis has been placed on subwavelength particles with
a dominant dipolar response, as they represent a fundamental build-
ing block of metamaterials and metasurfaces. However, scatterers
supporting a single, electric or magnetic, dipolar mode have a mostly
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isotropic scattering pattern (omnidirectional in the azimuthal direc-
tion, and proportional to cos(θ) with respect to the elevation angle θ)
with low directivity.50 In order to make the scattering pattern more
directive, higher-order multipolar scattering can be considered, as
the directivity grows with the scattering order n as50

D =
2n+ 1

2
, (7.20)

The multipolar radiation patterns for the first four orders at res-
onance are reported in Fig. 7.8(a), showing how the number of
radiation beams increases, and the beam-width decreases, with the
order n. Furthermore, the scattering in specific directions can be
controlled by suitably combining different scattering orders. In fact,
different from the total scattering cross-section, in specific directions
the scattering depends on the phase of the different scattering coeffi-
cients, namely, the different scattering orders contribute coherently.
For example, the backward scattering cross-section is given by2

σbw =
λ2

0

4π

∣∣∣∣∣
N∑

n=1

(−1)n(2n + 1)(cTM
n − cTE

n )

∣∣∣∣∣
2

. (7.21)

Therefore, by controlling the interference between TE and TM spher-
ical harmonics, it is possible to largely suppress or enhance the back-
ward scattering, hence modifying the shape and directivity of the
radiation pattern. Of particular interest is the case of exactly zero
backward scattering, obtained with cTM

n = cTE
n , so that TM and TE

spherical waves interfere constructively in the forward direction and
destructively in the backward direction, as predicted in a seminal
paper by Kerker.75 Such a radiating structure known as a Huygens
source, is of particular importance in several practical scenarios, such
as in antenna theory as it allows realizing electrically small antennas
with moderately high directivity (see, e.g. Refs. 76, and 77, and the
following discussion about optical nanoantennas), as well as in stealth
technology, in which the ability to minimize the backward scattering
(or “monostatic radar cross-section”) is typically more important
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Fig. 7.8. (a) Scattering patterns of the first four (TE or TM) scattering orders
at resonance (the electric or magnetic origin of these patterns influences their
orientation, but not their shape). c©2007 IEEE. Reprinted with permission from
Ref. 50. (b–c) Normalized scattering patterns of a subwavelength magneto-
electric sphere (radius a = λ0/10) with relative permittivity and permeability:
(a) εr = µr = 3, to fulfill the condition for a Huygens source, and (b) εr = 3 and
µr = 0.14 to fulfill condition (7.23) for an anti-Huygens source. The patterns are
rotationally symmetric with respect to the horizontal axis. Backward scattering
in (b) is identically zero, whereas the forward scattering in (c) has a residual
imaginary component, consistent with the discussion in the text.

than suppressing the total scattering.78 Figure 7.8(b) shows the typ-
ical radiation pattern of a Huygens sources with a marked null in the
backward direction.

The concept of Huygens sources is also strongly related to
the problem of impedance matching. To better appreciate this
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connection, consider the case of a magneto-electric subwavelength
sphere supporting only electric and magnetic dipolar responses. In
this case, it is easy to show that the condition cTM

1 = cTE
1 directly

implies that the relative permittivity and permeability of the sphere
need to become equal, i.e. εr = µr.75 As a result, the impedance of
the material, η0

√
µr/εr, matches that of free space, η0 ≈ 377Ω, and

the wave will propagate through the interface with zero back reflec-
tions (whereas the total SCS will generally be non-zero). In general,
it can be shown that any axially symmetric body (of any size) with
εr = µr exhibits zero backscattering if illuminated along its axis of
symmetry, a result known as Weston’s theorem.79−81

The possibility of having zero backscattering by suitably com-
bining electric and magnetic responses is also very important in
the context of metasurfaces operating in transmission.82−87 In fact,
early metasurface designs were based on subwavelength scattering
inclusions (e.g. V-shaped nanoantennas) supporting a purely electric
dipolar response,82,83 which therefore exhibit a symmetric scatter-
ing pattern, as discussed above. As a result, such metasurfaces suf-
fered from very low transmission efficiency, since half of the incident
power was inevitably reflected. It was soon realized that, even by
using ideally optimized inclusions, the maximum efficiency of these
metasurfaces was fundamentally limited.84 These limitations, how-
ever, can be easily overcome by breaking the radiation symmetries of
the metasurface, based on inclusions that radiate both electric and
magnetic dipolar fields.84,85 Consistent with the above discussion, in
fact, a metasurface composed of a dense array of Huygens sources will
be perfectly matched to free space, thereby producing no reflections.
Then, if the inclusions are locally designed to control the phase of the
forward scattering, while keeping the Huygens condition, the meta-
surface will be able to fully control the pattern of the transmitted
wave with 100% efficiency and no reflection.84−87

The possibility of controlling the backscattering by engineering
the interaction of electric and magnetic modes may suggest that a
similar degree of control may be achieved for the forward scattering
as well. This idea seems supported by the fact that the expression
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for the forward scattering cross-section is rather similar to that of
the backward scattering2:

σfw =
λ2

0

4π

∣∣∣∣∣
N∑

n=1

(2n + 1)(cTM
n + cTE

n )

∣∣∣∣∣
2

, (7.22)

In particular, a few works have investigated the possibility of real-
izing anti-Huygens sources, whose radiation pattern would have a null
in the forward direction, by imposing the condition cTM

n = −cTE
n .75,88

According to Kerker,75 this could be achieved with a magneto-electric
sphere in quasi-static regime, provided that its relative electric per-
mittivity and magnetic permeability respect the following condition:

εr =
4− µr

2µr + 1
. (7.23)

However, as extensively discussed in Ref. 88, this has led to some
confusion, and misinterpretation of experimental results.89,90 In fact,
different from the backward scattering considered above, the forward
scattering is directly related to power conservation by the optical
theorem (7.12), implying that if the forward scattering goes identi-
cally to zero, so does the total scattering cross-section, i.e. the object
does not scatter at all! Following the discussion in Ref. 88, the seem-
ingly paradoxical nature of anti-Huygens sources can be explained
by recognizing that if the radiation-correction term is not neglected
in the polarizabilities, Eq. (7.23) implies that only the real part of
the forward scattering is identically zero, whereas its imaginary part
is small but finite. It is this residual imaginary component of the for-
ward scattering that sustains a finite total scattering cross-section,
consistent with the optical theorem (7.12). Therefore, although the
condition cTM

n = −cTE
n can never be exactly fulfilled with passive

media, Kerker’s condition (7.23) leads to a minimum of forward scat-
tering (not a null), hence realizing an anti-Huygens source that com-
plies with power conservation. An example of radiation/scattering
pattern of this kind is shown in Fig. 7.8(c).

The above discussion shows that in order to control the scattering
in specific directions, design directive nanoantennas, realize efficient
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Fig. 7.9. Optical magnetism based on rings of plasmonic nanoparticles. (a) A
metallic split-ring resonator at microwaves realizes a resonant circulation of con-
duction current over a subwavelength footprint, supporting a strong magnetic
response without magnetic materials. This idea can be transplanted at optical
frequencies based on rings of plasmonic nanoparticles, in which the displacement
current takes the role of the conduction current. c©2014 RSC. Reprinted with
permission from Ref. 92. (b) Multipolar contributions to the total SCS, for a
four-particle nanoring assembled with AFM nanomanipulation (AFM image in
the inset). Dashed and solid lines correspond to the case of symmetric and slightly
asymmetric nanorings, respectively. Small structural asymmetries efficiently boost
the magnetic response (blue line). (c) Magnetic field intensity distribution at the
magneto-electric Fano resonance in (b). White arrows indicate the induced dipole
moments in the particles. c©2013 NPG. Adapted with permission from Ref. 96.
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metasurfaces, etc., it is necessary to efficiently excite magnetic and
higher-order multipolar scattering responses. This becomes particu-
larly challenging if the scatterer needs to be subwavelength, as in the
case of metamaterial and metasurface inclusions, since the excitation
of higher-order multipoles requires some field retardation within the
particle. The resonant frequency of higher-order spherical modes can
be lowered by loading the structure with reactive elements, as typi-
cally done in the case of split-ring resonators at RF to realize strong
magnetic resonances within a subwavelength footprint.91 At opti-
cal frequencies, an analogous effect can be achieved with plasmonic
materials. For example, it has been shown that subwavelength rings
of nanoparticles, as sketched in Fig. 7.9(a), can be designed to sup-
port a resonant circulation of displacement current, realizing strong
magnetic response at optical frequencies, where natural magnetism
is typically weak.92−95 Within the assumption of uniform magnetic
field across the loop, we can also define a magnetic polarizability
of the metamolecule, relating the local magnetic field to the induced
magnetic dipole moment, i.e. m = αmHloc (here, the polarizability is
scalar assuming magnetic field orthogonal to the nanoring plane), and
its closed form expression is given in Ref. 93. Consistent with the opti-
cal nanocircuit paradigm,32 this nanoring is the optical equivalent of
split-ring resonators at RF, as the plasmonic nanoparticles corre-
spond to inductors interleaved by capacitors (the insulating gaps) in
a ring configuration. The magnetic response can be further boosted,
for a given excitation, by suitably breaking the symmetry of the
nanoring, as demonstrated in Ref. 96. In fact, when the symmetry
of the metamolecule is broken, a magneto-electric coupling αem is
introduced, which modifies the induced dipole moments as:

p = αeEloc − αemη0n̂×Hloc

m = αmHloc − αem
n̂×Eloc

η0

, (7.24)

where n̂ is the unit vector normal to Eloc and Hloc. The scattering
from such a bi-anisotropic object may exhibit particularly strong
Fano resonances, due to the near-field interference between electric



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch07 page 327

Scattering at the Extreme with Metamaterials and Plasmonics 327

and magnetic modes of the scatterer. As seen in Fig. 7.9(b), this may
lead to strongly boosted magnetic response, which becomes the dom-
inant scattering contribution of the metamolecule, as well as intense
magnetic “hot-spots” (Fig. 7.9(c)), which may be particularly useful
to probe and enhance the direct interaction of matter with the optical
magnetic field.

Thepossibility to enhance theopticalmagnetic response represents
an important scientific breakthrough, as it overcomes the long-held
belief that magnetism is inherently weak at optical frequencies,92−97

and it isarelevantexampleof“extremescatteringengineering” inspired
by metamaterial concepts and enabled by plasmonics.

In general, systems of closely coupled plasmonic nanoparticles rep-
resent a particularly appealing platform to realize advanced scattering
responses at optical frequencies, based on suitably tailoring the collec-
tive plasmon modes of these metamolecules. A vast literature exists
on this topic, and we refer the interested readers to Ref. 98–100 for fur-
ther details. Particularly interesting examples include the realization
of directive optical scatterers, nanoantennas and nanoemitters,100−102

optical nanocircuits and nanofilters,103,104 Fano resonances for
enhanced energy concentration and sensing,62,105−107 etc.

An interesting alternative to realize higher-order scattering
responses is represented by high-index dielectric nanoparticles, which
have recently attracted large attention, since materials with relatively
high permittivity (and low losses) are readily available at optical
frequencies (e.g. silicon, gallium arsenide, germanium, etc.).108−112

For a dielectric sphere with refractive index larger than about two,
in fact, the lowest-frequency Mie resonance is magnetic, correspond-
ing to the first TE scattering coefficient cTE

1 . This magnetic resonance
occurs when the diameter of the particle is approximately equal to
the wavelength in the dielectric material, i.e.

2a ≈ λ0√
εr
. (7.25)

Therefore, a magnetic resonance can be obtained within a subwave-
length footprint if the refractive index of the particle is sufficiently
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high. Different from plasmonic scatterers, which can, in principle,
support a resonance for arbitrarily small dimensions, beating diffrac-
tion thanks to the excitation of surface plasmons, a dielectric
scatterer is inherently limited by diffraction and, therefore, it can
support a resonance for smaller and smaller dimensions (at a given
frequency) only if its refractive index is also proportionally increased
according to (7.25). Therefore, while the scaling of a plasmonic
resonator is limited by the unavoidable losses of the plasmonic
material (i.e. the imaginary part of εr), the scaling of a dielectric
resonator is limited by the availability of materials with high refrac-
tive index at the frequency of interest (i.e. it is limited by the real
part of εr).

High-index dielectric scatterers can be tailored to exhibit elec-
tric and magnetic dipolar responses in the same frequency range,
an ideal condition to realize robust Huygens or anti-Huygens optical
nanoantennas,113−115 as shown in Fig. 7.10, as well as Huygens meta-
surfaces at optical frequencies116−119 and antireflection coatings.120

Furthermore, as in the case of plasmonic nanoparticle clusters, the
combination of multiple dielectric particles allows realizing more
advanced scattering responses, such as different forms of electric
and magnetic Fano resonances.121,122 Rings of dielectric particles
can also be used to realize a so-called “toroidal” response at optical
frequencies,123 namely, the generation of an electric dipole moment,
orthogonal to the plane of the particle, from the circulation of a
magnetic current. This represents the dual of the case of artificial
magnetism realized in rings of plasmonic nanoparticles discussed
above. A toroidal current distribution radiates just as an electric
dipole,g with typically lower radiation efficiency, which results in
scattering resonances with higher Q factor. Recently, these ideas
have also been applied to design a scatterer in which the toroidal
contribution cancels the total electric dipole, leading to a so-called

gThe so-called toroidal moment, in fact, is a second-order contribution to the
electric dipole moment p, supported by a circulating magnetization current (see,
e.g. Ref. 124).
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Fig. 7.10. Scattering properties of a silicon nanoparticle in the visible range. (a)
Forward (green curve) and backward (blue) scattering cross-sections, and forward-
to-backward ratio (orange) of a spherical silicon nanoparticles with radius of 75 nm,
illuminated by a plane wave, as shown in the inset. (b) At different frequencies, the
combination of electric andmagnetic dipolar responses results in different scattering
patterns. From left to right: scattering pattern of a resonating electric dipole, anti-
Huygenssource(noticethenon-zeroforwardscattering),resonatingmagneticdipole,
and Huygens source. c©2013 NPG. Reprinted with permission from Ref. 115.

“anapole” current distribution with reduced radiation damping.125

Interestingly, this has also been connected to the concept of non-
radiating sources discussed above and to speculative models of dark
matter.125,126 However, some fundamental theorems67 imply that the
radiation loss can never be ideally zero in a 3D open resonator,
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unless materials with zero permittivity or permeability are used,
or the geometry has extreme features (infinitesimal or diverging
dimensions). The only way to achieve an ideally bound optical state
supported by an open resonator seems to be through the concept
of embedded eigenstates,67,68 as discussed in Section 1.5. Neverthe-
less, research on quasi-non-radiating current distributions, and their
application for extreme scattering, light trapping, Aharonov–Bohm-
like optical effects, etc., is an active and exciting area of research.

7.7. Conclusions

In this chapter, we have discussed some of the most exciting and
intriguing scattering effects based on, or inspired by, metamaterial
concepts and plasmonics. After a brief introduction on the gen-
eral scattering properties of linear and passive structures, we have
reviewed some of the different techniques available today to sup-
press, enhance and manipulate the electromagnetic scattering. Large
emphasis has also been placed on fundamental limits of passive scat-
terers, suggesting how to approach or exceed them. In this context,
we have discussed some extreme and counterintuitive scattering phe-
nomena, which clearly illustrate the power of metamaterial concepts
applied to scattering systems.

We believe that the reach of these concepts can be further
extended, in the near future, by introducing active, non-local, non-
reciprocal, and nonlinear materials and structures, which may allow
realizing even more intriguing and useful scattering effects. We expect
that the ability to largely control scattering processes, enabled by
metamaterials and plasmonics, will have disruptive impact for many
practical applications in the coming years.
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11. Alù, A., Yaghjian, A. D., Shore, R. A. and Silveirinha, M. G. (2011). Phys.
Rev. B 84, p. 054305.

12. Nussenzveig, H. M. (1972). Causality and Dispersion Relations (Academic
Press, New York).
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A. (2013). New J. Phys. 15, p. 033037.
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p. 095504.
33. Munk, B. A. (2000). Frequency Selective Surfaces: Theory and Design (John

Wiley & Sons Hoboken).
34. Soric, J. C., Chen, P. Y., Kerkhoff, A., Rainwater, D., Melin, K. and Alù, A.
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(2013). Nano Lett. 13, p. 1806.
115. Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. and

Luk’yanchuk, B. (2013). Nat. Commun. 4, p. 1527.
116. Lin, D., Fan, P., Hasman, E. and Brongersma, M. L. (2014). Science 345,

p. 298.
117. Arbabi, A., Horie, Y., Bagheri, M. and Faraon, A. (2015). “Dielectric meta-

surfaces for complete control of phase and polarization with subwavelength
spatial resolution and high transmission,” Nat. Nanotechnol., in press.

118. Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D. N., Brener, I.,
Pertsch, T. and Kivshar, Y. S. (2015). Adv. Opt. Mater. 3, p. 813.

119. Campione, S., Basilio, L. I., Warne, L. K. and Sinclair, M. B. (2015). Opt.
Express 23, p. 2293.

120. Spinelli, P., Verschuuren, M. A. and Polman, A. (2012). Nat. Commun. 3,
p. 692.

121. Chong, K. E., Hopkins, B., Staude, I., Miroshnichenko, A. E., Dominguez,
J., Decker, M., Neshev, D. N., Brener, I. and Kivshar, Y. S. (2014). Small
10, p. 1985.

122. Hopkins, B., Filonov, D. S., Miroshnichenko, A. E., Monticone, F., Alù, A.
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CHAPTER 8

All-Dielectric Nanophotonics:
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This chapter reviews a novel, rapidly developing field of modern light
science named all-dielectric nanophotonics. This branch of nanophoton-
ics is based on the properties of high-index dielectric nanoparticles which
allow for controlling both magnetic and electric responses of a nanostruc-
tured matter. Here, we discuss optical properties of high-index dielectric
nanoparticles, methods of their fabrication, and recent advances in prac-
tical applications, including the quantum source emission engineering,
Fano resonances in all-dielectric nanoclusters, surface enhanced spec-
troscopy and sensing, coupled-resonator optical waveguides, metamate-
rials and metasurfaces, and nonlinear nanophotonics.
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8.1. Introduction

Since the modern technologies largely depend on the rapidly growing
demands for powerful computational capacities and efficient informa-
tion processing, the development of conceptually new approaches and
methods is extremely valuable. One of these approached is based on
replacing electrons with photons as the main information carriers.1

The advantages of light for fast computing are obvious: the paral-
lel transfer and processing of signals using polarization and orbital
momentum of photons as additional degrees of freedom,2 the possibil-
ity of multi-frequency operations, and the high operating frequency
around 500 THz (wavelength of 600 nm). However, photons as alter-
native information carriers have relatively large “size” determined
by their wavelength. This leads to a weak interaction of photons
with nanoscale objects including quantum emitters, subwavelength
waveguides, and others, whereas the effective light-matter coupling
is extremely important for all-optical information processing.

The efficient light manipulation implies simultaneous control
of its electric and magnetic components. However, the magnetic
response of natural materials at optical frequencies is usually weak,
as was originally posted by Landau and Lifshitz.3,4 This is the reason
why photonic devices operate mainly with the electric part of a light
wave.5 At the same time, magnetic dipoles are very common sources
of the magnetic field in nature. A common example of a magnetic
dipole radiation is an electromagnetic wave produced by an excited
metal split-ring resonator (SRR), which is a basic constituting ele-
ment of metamaterials.6–8 Currents excited by the external electro-
magnetic radiation and running inside the SRR produce a transverse
magnetic field in the center of the ring oscillating up and down, which
simulates an oscillating magnetic dipole. The major interest in such
artificial systems is due to their ability to response to the magnetic
component of incident light and thus to have a non-unity or even neg-
ative magnetic permeability (µ) at optical frequencies. This provides
the possibilities to design materials with highly unusual properties
such as negative refraction,6,9–11 cloaking,12 or superlensing.13 The
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SRR concept works very well for gigahertz,8,14 terahertz15 and even
near-infrared16 frequencies. However, this approach fails for shorter
wavelengths and, in particular, in the visible spectral range due to
increasing losses and technological difficulties in fabrication of smaller
and smaller constituting split-ring elements.17 Several other designs
based on metal nanostructures have been proposed to shift the mag-
netic resonance wavelength to the visible spectral range.9,10 However,
all of them are suffering from losses inherent to metals at visible
frequencies.

An alternative approach to achieve strong magnetic response
with low losses is to use nanoparticles made of high-refractive index
dielectric materials (e.g. Si, Ge).18–31 As it follows from the exact
Mie theory of light scattering,32 a strong magnetic dipole response
can be achieved in spherical dielectric particles. Remarkably, for
the refractive indices larger than a certain value, there is a well-
established hierarchy of the magnetic and electric resonances. In
contrast to plasmonic particles, the fundamental resonance of high-
index spherical nanoparticles is the magnetic dipole one, occurring
when the wavelength of light inside the particle approximately equals
its diameter λ/n � 2R, where λ is the wavelength in free space, R
and n are the radius and the refractive index of spherical particle.
Under this condition, the polarization of the electric field is anti-
parallel at opposite boundaries of the sphere, which gives rise to
strong coupling to circulation displacement currents, while the mag-
netic field oscillates up and down in the middle. Today, such high-
index dielectric nanoparticles are the base of so-called all-dielectric
nanophotonics.

It should be noted that the all-dielectric nanophotonics is not
a part of so-called silicon photonics33,34 since it does not limited
by silicon as a material. Moreover, the silicon photonics is based
on silicon waveguides and circuits with dimensions of few hundred
nanometers, whereas the heart of all-dielectric nanophotonics is
high-index nanoparticles exhibiting a strong magnetic optical
response.
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The prediction of the resonant electromagnetic response of
small dielectric particles is not an absolutely new discovery. These
resonances have been recognized since the original work of G. Mie.35

Later, in 1930 J. A. Stratton has highlighted the effect of mag-
netic and electric dipole resonances of water drops in the atmo-
sphere (rain, fog, or clouds) on the propagation of short radio
waves.36 In the following studies (see, e.g., Ref. 37) the theoreti-
cal prediction of man-made artificial dielectrics based on high-index
particles was made. Then, the metamaterials based on the dielectric
particles have been proposed in the microwave and mid-IR frequency
ranges.18,19,23

In 2010 the possibility of enhanced optical magnetic response
of high-index nanoparticles in the visible range was discussed the-
oretically in Ref. 38. It should be noted that before this work, a
number of papers have been published, where the spectra of light
scattering by high-index dielectric cylinders including magnetic res-
onances were measured.39–42 However, an attention to the magnetic
nature of these resonances has not been paid. In 2011 the scattering
properties of silicon (Si) nanoparticles have been studied in details.43

Shortly after these theoretical works, the concept of “magnetic light”
has been experimentally realized in visible,44–46 infrared,47 and even
microwave48 frequency ranges.

Thismagnetic light concepthas paved theway formany fascinating
applications in the areas of quantum source emission engineering49–57

(Fig. 8.1(a)), frequency conversion58 (Fig. 8.1(b)), tunable routers and
switchers59–61 (Fig. 8.1(c)), sensors62–64 (Fig. 8.1(d)), dielectricwaveg-
uides65–67 (Fig. 8.1(e)), and all-dielectric metasurfaces,68,69 and meta-
materials22–24,47,70 (Fig. 8.1(f)). All these applications are discussed in
this Review (see Sec. 8.4).

This Chapter is intended to review the all-dielectric nanophoton-
ics as a part of the modern light-science. First, in Sec. 8.2 we discuss
the optical properties of high-index dielectric nanoparticles with an
example of silicon nanoparticles. Then, in Sec. 8.3 we describe the
various existing methods of such nanoparticles fabrication, including
the chemical deposition, the thin film dewetting, the femtosecond
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ω 1 ω 2

(b) frequency conversion

ω 0

(c) beam steering(a) nanoantennas

emitter

(d) oligomers for sharp
Fano resonances

(f) metasurfaces and
metamaterials

ω 0

ω
0

(e) discrete waveguides

Fig. 8.1. The variety of photonics structures based on high-indexed dielectric
nanoparticles are discussed in this Review: (a) Nanoantennas for enhanced
emission and focusing; (b) Nanoantennas for enhanced frequency conversion
effects; (c) Nanoantennas for steering of light; (d) Fano-resonant nanostructures;
(e) Waveguides composed of dielectric nanoparticles; (f) All-dielectric metasur-
faces and metamaterials.

laser ablation of bulk and thin Si films, and the reactive-ion-etching
approach. The examples of the produced structures are presented. In
Sec. 8.4.1 the applications of all-dielectric nanoantennas for the quan-
tum source emission engineering are presented. In Sec. 8.4.2 the all-
dielectric oligomers and their Fano resonances are discussed. Then in
Sec. 8.4.3 the applications of dielectric nanoantennas for the surface
enhanced spectroscopy and sensing are provided. The all-dielectric
nanoantennas and plasmonic ones are compared in the context of the
sensing applications. In Sec. 8.4.4 the properties of coupled-resonator
nanoparticle waveguides are discussed. The optical solitons and
bound-states-in-continuum in the dielectric waveguides in form of
chains of dielectric particles are also reviewed. Sec. 8.4.5 is devoted to
the brief review of the all-dielectric metamaterials and metasurfaces.
The references to the more comprehensive reviews of this topic are
proposed. In Sec. 8.4.6 the nonlinear properties of silicon nanopar-
ticles with electric and magnetic dipole responses, including higher
harmonics generation and electron-hole plasma photoexcitation, are
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discussed. In Conclusions the main statements of the Chapter are
summarized and the outlook of this area is given.

8.2. Optical Properties of High-index Dielectric
Nanoparticles

Two types of electric currents appear as the sources of electromag-
netic fields in Maxwell equations: the conductivity current and the
displacement current.72 In dielectrics and semiconductors, the dis-
placement currents strongly exceed the conductivity currents in the
spectral range far from their main absorption band. As an exam-
ple, the spectral dependencies of real and imaginary parts of the
refractive index of crystalline Si, measured at room temperatures,
are shown in Fig. 8.2(a).71 In Fig. 8.2(b) the ratio of the conductivity
and the displacement current is shown. One can see that in silicon
the displacement currents strongly exceed the conductivity currents
at wavelengths larger 400 nm. Therefore, from the electromagnetic
point of view, the pure and crystalline silicon can be considered as a
dielectric in the visible spectral range.

Silicon Silicon

(a) dielectric permittivity (b) conduction current/polarization current

real part
imaginary part

Fig. 8.2. (a) Real and imaginary parts of the permittivity of crystalline sil-
icon.71 (b) Ratio of the conductivity and displacement currents in crystalline
silicon. The displacement current strongly exceeds the conductivity current at
wavelengths above 400 nm — in this spectral range the pure and crystalline Si
can be considered as dielectric.
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A dielectric nanoparticle can be treated as an open resonator
supporting a series of electromagnetic resonances — eigenmodes.
Exact analysis of the plane wave diffraction by a spherical particle
(Mie scattering) shows that multipole modes of different orders can
be excited in the dielectric nanoparticle.32 The coupling strengths
between the incident wave and eigenmodes depend on the size param-
eter x = k0nR, where n is the refractive index of the particle, k0 is the
free space wavenumber of the incident radiation, and R is the radius
of the particle. If x� 1, the particle is optically small and its diffrac-
tion can be described by the Rayleigh approximation. With increas-
ing x, the fundamental magnetic dipole (MD) resonance appears in
the particle response. The electric field lines at this resonance are
shown in Fig. 8.3(c). The scattered field by the particle at the MD
resonance corresponds to the radiation field of a magnetic dipole.
With further increase of x, the first electric dipole (ED) resonance
is formed. For even larger values of the size parameter, the higher
order (quadrupole, octupole, etc.) multipole modes are excited.

The frequencies of the Mie resonances for a spherical particle
in the dipole approximation can be determined from the following

(a) (b) (c)
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Total scattering
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Fig. 8.3. (a) Scattering efficiency spectra of Si spherical particles with the radius
R located in air. (b) Extinction and scattering spectra of a Si particle (R =
65 nm). The arrows indicate the electric dipole (ED) and magnetic dipole (MD)
contributions to the total efficiencies. From the Ref. 38. (c) Distributions of the
electric field within the nanoparticle at magnetic dipole (MD) and electric dipole
(ED) resonances.
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where αe and αm are electric and magnetic polarizabilities, respec-
tively, εh is the host permittivity, kh =

√
εhω/c is the wavenumber

of light in host medium, ω is the angular frequency, c is the speed
of light in a vacuum, a1 and b1 are the scattering Mie coefficients.32

In Ref. 38 it was shown, that for a Si spherical nanoparticle, the
conditions of the lowest order multipole (dipole) resonances are ful-
filled for the radius of ≈ 70 nm. Figure 8.3 shows the numerically
calculated scattering efficiency spectra (a), as well as the extinction
and scattering spectra (b) of such particle. We would like to note
that the resonance frequencies of the particle can be shifted not only
by changing its size, by also its shape.73,74

Almost complete absence of conductivity currents in silicon in
the optical frequency range leads to low dissipative losses, in contrast
to plasmonic structures where the strong field localization is always
accompanied by high dissipation. Therefore, by exploiting dielectric
particles with the magnetic response one can design different low-loss
nanostructures, composite materials and metasurfaces with unique
functionalities.

8.3. Methods of High-index Dielectric Nanoparticles
Fabrication

Silicon is the most frequently used high-index dielectric in optical
and IR ranges owing to its relatively low cost and low imaginary
part of the refractive index. Moreover, the technology of fabrica-
tion of Si nanoparticles with Mie resonances has been developing
intensively during the last several years, resulting in the emerg-
ing of various techniques. The proposed methods of Si nano- and
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microparticles fabrication can be classified on the level of the par-
ticles size and location controllability. Here, we describe the various
existing methods of the high-index nanoparticles fabrication, includ-
ing the chemical deposition, the thin film dewetting, the femtosecond
laser ablation of bulk and thin Si films, and the reactive-ion-etching
approach.

Chemical deposition. Fabrication method of Si nanoparticles
with different sizes can be carried out by means of chemical vapor
deposition technique, in which disilane gas (Si2H6) decomposes at
high temperatures into solid Si and hydrogen gas by the follow-
ing chemical reaction: Si2H6 → 2Si(s) + 3H2(g). Spherical poly-
crystalline Si nanoparticles were produced by this method in Ref. 47.
Further, fabrication of monodispersed Si colloid was achieved via
decomposition of trisilane (Si3H8) in supercritical n-hexane at high
temperature in Ref. 75. In this advanced method, the particles size
can be controlled by changing of trisilane concentration and tem-
perature of the reaction. This relatively simple method allows one
to obtain plenty of similar Si nanoparticles with the size dispersion
of several percents, which can be ordered into hexagonal lattice via
a self-assembly process [Fig. 8.4(b)]. The main disadvantage of this
method is the porosity and high hydrogen content in each nanopar-
ticle as well as the necessity of their additional ordering to fabricate
functional structures.

Thin film dewetting. Disordered Si nanoparticles of different
sizes can be also produced via dewetting of thin Si film after its heat-
ing [Fig. 8.4(b)].76 In this case, the nanoparticles can be crystalline
and their sides are aligned along crystallographic facets. The main
controlling parameters in this method are the heating temperature
and the film conditions (defects and initial pattern).76 In thin film
dewetting technique, the control over the nanoparticles size and loca-
tion can be achieved only by using additional lithographical methods,
which is even more complicated in comparison with the chemical
deposition techniques. Indeed, the chemical deposition and thin film
dewetting methods are more suitable for the high-throughput and
low-cost nanoparticles fabrication.
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Femtosecond laser ablation. In order to improve the control
over the location of fabricated nanoparticles, the laser ablation by
focused beam can be used. Indeed, an ultrashort laser pulse focused
on the Si surface can heat the material up to the critical point, leading
to the material fragmentation into spherical nanoparticles and their
deposition nearby the heated area25,44 [Fig. 8.4(c)]. It worth noting
that the colloids of chemically pure nanoparticles can be obtained by
means of the laser ablation as well as the chemical deposition. The
main advantages of the ablation approach are the high-productivity
and the lack of harmful chemical waste.

Fabrication of Si nanoparticles, demonstrating Mie-resonances
in the visible range, with accurate control over their positions was

500 nm

500 nm

(b)

(e)(d) (f)

(c)(a)

Fig. 8.4. (a) Electron microscopy image of self-aligned Si nanoparticles
obtained by chemical deposition.75 (b) Dark-field optical image of Si nanoparticles
obtained by thin film dewetting.76 (c) Dark-field optical image of Si nanoparticles
obtained via femtosecond laser ablation of bulk Si.44 (d) Dark-field optical image
of Si nanoparticles obtained via femtosecond laser ablation of thin Si film.77 In
the picture (d) red nanoparticles are amorphized, while yellow ones are annealed
and crystalline. (e) Electron microscopy image of Si nanoparticles obtained by
means of reactive-ion-etching through a mask;26 (f) the same but with addition-
ally deposited Si3N4 thin film.78
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carried out by focusing the femtosecond laser onto the Si surface,
from which nanoparticles were emitted to the transparent receiver
substrate46,77,79 [Fig. 8.4(d)]. There are three main parameters that
affect ablated Si nanoparticles: laser intensity, beam spatial distribu-
tion and sample thickness. For instance, a single Si nanoparticle with
a certain size can be formed from bulk Si after irradiation by a single
laser pulse with ring-type spatial distribution,79 or after irradiation
of thin Si film by conventional Gaussian beam.77 The ultrashort laser
can be used not only for fabrication but also for Si nanoparticles post-
processing. In particular, the well-known effect of the laser annealing
was applied for Si nanoparticles in order to controllably change them
from the initially amorphized state to crystalline one, thus tailoring
their optical properties [Fig. 8.4(d)].77

Reactive-ion-etching. The most controllable fabrication of
Si nanoparticles was achieved by a multi-stage method, including
electron-beam lithography on Si-on-insulator wafers (formation of a
mask from resist) and the reactive-ion-etching process with following
removing of the remaining electron-beam resist mask. This advanced
technology enables the formation of Si nanocylinders [Fig. 8.4(e)],
in which Mie-resonances can be precisely tuned by varying the
basic geometrical parameters (diameter and height). Various types
of structures based on the Si nanocylinders have been designed in
order to show unique properties of the all-dielectric nanophotonics
devices.26,58,78,80 To achieve higher absorption of the fabricated Si
metasurface, this method was supplemented by a deposition of Si3N4

thin film78 [Fig. 8.4(f)]. Note that lithography-based methods have
such serious disadvantages as high-cost and low-productivity of tech-
nological process in comparison with above mentioned lithography-
free methods.

In order to summarize the section on methods of high-index
dielectric nanoparticles fabrication, we would like to emphasize that
currently developing approaches allow one to create various types
of all-dielectric functional structures with given optical properties,
which will be discussed below.
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8.4. All-Dielectric Nanophotonics Applications

8.4.1. Quantum source emission engineering

The recently emerged field of optical nanoantennas is promising for
its potential applications in various areas of nanotechnology. The
ability to effectively emit light in a desired direction, redirect propa-
gating radiation, and transfer it into localized subwavelength modes
at the nanoscale81 makes optical nanoantennas highly desirable for
many applications. Originally, antennas were suggested as sources of
electromagnetic radiation at radio frequencies and microwaves, emit-
ting the radiation via oscillating currents. Different types of antennas
were suggested and demonstrated for the effective manipulation of
the electromagnetic radiation.82 The recent progress in the fabrica-
tion of nanoscale elements allows bringing the concept of the radio
frequency antennas to optics, leading to the development of opti-
cal nanoantennas consisting of subwavelength elements.81 Currently,
nanoantennas are used mainly for near-field microscopy,83 high reso-
lution biomedical sensors,84 photovoltaics,85 and medicine.86 This
section is devoted to the review of nanoantennas based on all-
dielectric nanoparticles.

Apparently, the first work on the all-dielectric nanoantennas was
Ref. 87. However, in this article, specific implementations of such
nanoantennas have not been proposed. The first layout of all-dielectric
nanoantennas has been proposed in Ref. 88 in 2011. In this work it
has been shown that one Si nanoparticle can have the properties of
a Huygens element in the optical wavelength range (Fig. 8.5(a)). It
has been demonstrated, that such nanoantennas are able to switch
the radiation pattern between forward and backward directions due
to the presence of the electric and magnetic resonant modes. Then, in
the Ref. 49 it has been shown that Si nanoparticles can be arranged
in the Yagi-Uda geometry for creating highly efficient and directive
optical nanoantennas (see Fig. 8.5(b)). The radii of the directors and
the reflector have been chosen to achieve the maximal constructive
interference in the forward direction along the directors array. The
optimal performance of the Yagi-Uda nanoantenna has been achieved
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Fig. 8.5. (a) Directivity of the all-dielectric nanoantenna Huygens element, con-
sisting of a Si nanoparticle and poind dipole source vs. the radiation wave-
length.49,88 (b) Directivity of the all-dielectric Yagi-Uda nanoantenna, consisting
of the reflector with the radius of Rr = 75 nm, and smaller directors with the
radii of Rd = 70 nm vs. the radiation wavelength.49 Insert: 3D radiation patterns
at particular wavelengths. (c) Maximum of the directivity of the superdirective
nanoantenna depending on the position of the dipole source at the wavelength of
455 nm in the case of the Si nanosphere with (red curve) and without (blue curve)
notch.101 Inset: the geometry of the superdirective nanoantenna and the dipole
source location in the notch. (d) Near field of the all-dielectric nanoantenna for
chiral near-field formation and unidirectional excitation of electromagnetic guided
modes.55 (e) and (f) Normalized decay rates (Γ/Γ0) as a function of the wave-
length, for an emitter placed at 15 nm from the surface of a Si sphere of diameter
615 nm for transverse and longitudinal orientation of the dipole, respectively; the
surrounding medium is air.89

for the radii of the directors correspond to the magnetic resonance
(Rd = 70 nm), and the radius of the reflector, which corresponds
to the electric resonance (Rr = 75 nm) at a given frequency. In
Fig. 8.5(b) the directivity of the all-dielectric Yagi-Uda nanoantenna
as a function of wavelength for the separation distance between the
particles of D = 70 nm is presented. Inserts demonstrate the 3D radi-
ation patterns at particular wavelengths. A strong maximum of the
nanoantenna directivity at λ = 500 nm has been achieved. In this
resonant regime the nanoantenna has the directivity about 12 and the
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extremely narrow main lobe. The maximum of the dependence does
not correspond exactly to either magnetic or electric resonances of a
single dielectric sphere, which implies the importance of the interac-
tion between constitutive nanoparticles. By comparing plasmonic and
the all-dielectric Yagi-Uda nanoantennas, it has been demonstrated
that the all-dielectric ones may exhibit better radiation efficiency also
allowing more compact design.

These ideas were developed in the series of subsequent works.89–97

It has been demonstrated that the unique optical properties and low
dissipative losses make dielectric nanoparticles perfect candidates for
design of high-performance nanoantennas, low-loss metamaterials,
and other novel all-dielectric nanophotonic devices. The key to such
novel functionalities of high-index dielectric nanophotonic elements
is the ability of subwavelength dielectric nanoparticles to support
simultaneously both electric and magnetic resonances, which can
be controlled independently for particles of non-spherical forms.26

Moreover, the magnetic field localization in a vicinity of all-dielectric
nanoantennas has been theoretically predicted98 and experimentally
realized in the microwave99 and in the visible100 ranges.

Generally speaking, achieving of a high radiation directivity is a
very important issue for the field of optical nanoantennas.81 One of
the most straightforward ways to achieve high directivity is to com-
bine the nanoantenna constituent elements in the described above
Yagi-Uda geometry. However, there is one more general approach
consisting in the excitation of high-order multipole modes in the
nanoantenna. In Refs. 53, and 102, the concept of the so-called
superdirective nanoantennas has been proposed (see Fig. 8.5(c)). The
superdirective regime has been achieved by placing an emitter (e.g.
a quantum dot) within a small notch created on the nanosphere sur-
face. The notch has the shape of a hemisphere. The emitter is shown
in Fig. 8.5(c) by a red arrow. It turns out that such a small modifi-
cation of the sphere allows for the efficient excitation of higher-order
spherical multipole modes. Figure 8.5(c) shows the dependence of the
maximum directivity Dmax on the position of the emitting dipole
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in the case of a sphere Rs = 90 nm without a notch at the wave-
length λ = 455 nm (blue curve with crosses). This function achieves
the maximum value (Dmax = 7.1) when the emitter is placed inside
the particle at the distance 20 nm from its surface. The multipole
decomposition analysis has shown that, in this case, the electric field
distribution inside a particle corresponds to the noticeable excita-
tion of higher-order multipole modes. This becomes possible due to
a strong inhomogeneity of the external field produced by the emitter.
Furthermore, it has been demonstrated that the excitation efficiency
of higher-order multipoles can be significantly improved by making
a small notch on the Si nanoparticle surface and placing the emit-
ter inside that notch, as shown in Fig. 8.5(c). The notch has the
form of a hemisphere with the center at the dielectric nanoparti-
cle surface. The optimal radius of the notch Rn = 40 nm has been
found by means of numerical optimization. The red curve with cir-
cles in Fig. 8.5(c) shows the directivity maximum dependence on
the dipole source location for this geometry. The maximal directiv-
ity at the wavelength of 455 nm is Dmax = 10. Thus, Fig. 8.5(c)
demonstrates the importance of the notch presence for achieving
the higher directivity of the source radiation. Note that the pro-
posed superdirectivity effect is not associated with high dissipative
losses, because of the generally magnetic nature of the nanoantenna
operation.

Recently, study of nanoantennas for formation of chiral distri-
butions of the near-field has gained considerable interest.103–105 In
particular, in Ref. 105 it was shown that the chiral near-field can
be produced by a symmetric non-chiral nanoantenna. In work103

the chiral distribution of the near-field was investigated in the con-
text of trapping and rotation of nanoparticles. In paper106 it was
demonstrated that excitation of the chiral near-field leads to the
emergence of lateral optomechanical force acting on a chiral particle.
Moreover, such nanostructures enable the generation of light beams
with orbital angular momentum.107 These effects are the consequence
of the fundamental coupling between the spin angular momentum
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of an evanescent wave and the direction of its propagation, known
in the literature as the spin-orbit coupling .108–110 The asymmetric
excitation of high-index dielectric subwavelength nanoantenna by a
point source, located in the notch at the nanoantenna surface has
been studied in Ref. 55. The generation of the chiral near-field simi-
lar to that of a circularly polarized dipole or quadrupole depending
on the frequency of the driving source has been demonstrated (see
Fig. 8.5(d)). Using numerical simulations, it has been shown that this
effect is the result of the higher multipole modes excitation within the
nanoantenna. In this work it has been demonstrated that this effect
can be applied for the unidirectional launching of waveguide modes
in the dielectric and plasmonic waveguides. Contrary to the strategy
employed in Refs. 111, 112, the directional launching of the guided
modes achieved without a rotating or a circularly polarized point
dipole source, but due to the violation of the rotational symmetry of
the system.

One more important feature of the optical nanoantennas is their
ability to exhibit strong Purcell effect. The Purcell effect is man-
ifested in a modification of the spontaneous emission rate (Γ) of
a quantum emitter induced by its interaction with inhomogeneous
environment and is quantitatively expressed by the Purcell fac-
tor.113–118 This modification is significant if the environment is a
resonator tuned to the emission frequency. Open nanoscale resonators
such as plasmonic nanoantennas can change the spontaneous emis-
sion lifetime of a single quantum emitter, that is very useful in
microscopy of single NV centers in nanodiamonds,119 Eu3+-doped
nanocrystals,120 plasmon-enhanced optical sensing,114 and the visu-
alization of biological processes with large molecules.121

Mie resonances in dielectric particles can also increase the Pur-
cell factor associated with either electric or magnetic transition rates
in nearby quantum emitters. Their large quality factors compensate
their low field confinement as compared to the plasmon resonances
of metallic nanostructures for which nonradiative decay channels
dominate. In Ref. 89 it has been shown theoretically that near-
infrared quadrupolar magnetic resonances in Si nanoparticles can
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preferentially promote magnetic versus electric radiative deexcita-
tion in trivalent erbium ions at 1.54 µm (see Fig. 8.5(e,f)). The
distance-dependent interaction between magnetic (electric) dipole
emitters and induced magnetic or electric dipoles and quadrupoles
has been derived analytically and compared to quasiexact full-field
calculations based on Mie theory. The detailed analysis of the Purcell
effect in the plasmonic and all-dielectric nanoantennas is presented
in Sec. 8.4.3.

8.4.2. Fano resonances in all-dielectric oligomers

The Fano resonance50,122,123 is known to originate from the interfer-
ence of two scattering channels, one of which is nonresonant, while
the other is strongly resonant. Fano resonance was observed in dif-
ferent areas of physics, including photonics, plasmonics, and meta-
materials.124 It has been demonstrated that the Fano resonance is
highly sensitive to the optical properties of the background medium,
which makes it perspective for the design of sensors. In the last few
years, there is a growing interest in studying the Fano resonances
in the so-called plasmonic oligomer structures, that consist of several
symmetrically positioned metallic nanoparticles.125,126 In such struc-
tures, the Fano resonance appears as a resonant suppression of the
scattering cross-section of the structure, and it is accompanied by a
strong near-field enhancement and, consequently, absorption.

Recently, it was shown that the oligomers composed of high-
index dielectric nanoparticles are also able to exhibit the Fano reso-
nance.50–52,127–130 The important feature of such dielectric oligomers,
comparing to their metallic counterparts, is the localization of the
electromagnetic field inside the dielectric nanoparticles. Another
important property of such oligomers is that the fundamental mode
of the high-index spherical nanoparticle is magnetic dipole mode.44,46

Formation of this magnetic mode, as was mentioned above, is due
to excitation of a circular displacement current. It occurs when the
diameter of the particle is comparable to the wavelength inside the
nanoparticle.
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Fig. 8.6. Scattering cross-section of oligomer of silicon (left) and gold (right)
nanoparticles for various separation between the particles. The radius of the cen-
tral particle is R1 = 65 nm and outer particles R2 = 75 nm. The Fano resonance
depends weakly on the separation between particles for all-dielectric oligomers,
while for plasmonic analogue this dependence is very strong. It demonstrates a
difference in the coupling mechanism in both situations. From Ref. 50.

Authors of Ref. 50 have shown that the structure arranged of
six identical dielectric nanoparticles, positioned in the vertices of the
regular hexagon, and the particle of another radius in the center [see
Fig. 8.6], exhibits the Fano resonance at the resonance frequency of
the central particle, while six other particles are not resonant at this
frequency and they form a non-resonant mode of the whole structure.
The near-field interference of this two modes leads to the suppression
of the whole structure scattering and formation of the Fano reso-
nance.50 In Fig. 8.6 the scattering cross-section spectra of oligomer
of silicon (left) and gold (right) nanoparticles for various separation
between the particles are presented. It has been demonstrated that
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the Fano resonance depends weakly on the separations between par-
ticles for all-dielectric oligomers, while for plasmonic analogue this
dependence is very strong (see Fig. 8.6).

In Ref. 52 the existence of the Fano resonances in dielectric
oligomers has been demonstrated for the first time. Due to the scal-
ability of Maxwell equations, the authors used microwave ceramic
spheres with sizes of several centimeters (instead of Si nanoparti-
cles). Such particles exhibit the magnetic response in the microwave
frequency range. The authors measured the near magnetic field in the
vicinity of the dielectric oligomer with high accuracy, which allowed
to verify the origin of the Fano resonance, predicted in the theoretical
study.50

8.4.3. Surface enhanced spectroscopy and sensing

Resonant nanoparticles and nanostructures are proven to be pow-
erful tools for sensing applications due to their ability to enhance
and localize the optical energy in the near-field, whereas the posi-
tions of resonances depend on ambient media properties.132–135 More-
over, nanoscale resonators provide so-called Purcell effect,97,118,136,137

when the power radiated by a quantum light source (atom, molecule,
quantum dot, etc.) is enhanced due to the increase of the local density
of states (LDOS). There are numerous sensing techniques based on
all these effects: surface enhanced Raman scattering (SERS),138–140

surface enhanced fluorescence (SEF),141 Forster resonance energy
transfer,142–144 refractive index sensing,145–148 and thermometry.149

Despite plasmonics has demonstrated tremendous success in the sens-
ing applications, the concept of all-dielectric nanophotonics can also
serve as a platform for high-effective sensors. First of all, low Ohmic
losses in all-dielectric resonant nanostructures prevent parasitic heat-
ing of the analyzed objects,98,131,150 and second, high radiative part
of Purcell factor and directivity improve signal extraction.54

Figure 8.7 shows the enhancement of the radiative decay rate and
quantum efficiency of an electric dipolar emitter positioned between
two silicon (a–b) and gold (c–d) nanospheres, and the results of
temperature measurement in such nanoantennas (e–g). Figure 8.7
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Fig. 8.7. Enhancement of the radiative decay rate and quantum efficiency of
an electric dipolar emitter positioned in between two silicon ((a),(b)) and gold
((c),(d)) nanospheres of 150 nm radius. Orientations of the emitters positioned at
the centers of the systems are shown in the schematics. Gap widths are given in
the legends. (e), (f), (g) — Temperature measurement in nanoantennas. Box plot
for the average temperature T, measured for (e) silicon and (f) gold nanoantennas,
excited at resonance. The inset in each figure shows the calculated temperature
map around the disks for the heating laser intensity of 5 mW µm−2 in both
cases. Scale bar is 100 nm. (g) Extracted temperature in the gap for selected
silicon (cyan) and gold (magenta) nanoantennas as a function of the heating laser
intensity at 860 nm. The dashed lines show the numerical calculations for the
temperature at the gap, presenting good agreement with the experimental data.
The error bars show the s.d. of the temperature measurements, obtained from
error propagation from the fluorescence measurements. From Refs. 98,and 131.

(a–d) shows that the all-dielectric dimer nanoantennas have an abil-
ity to strongly enhance both electric and magnetic LDOS, whereas
the plasmonic nanoantennas work only with electric dipole sources.
It can be seen that the all-dielectric nanoantennas have the quantum
efficiency exceeding that of the plasmonic nanoantennas. Moreover,
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it also can be seen that the Au nanoantennas significantly increase
their temperature when the heating laser intensity increases while
the Si temperature remains nearly constant and does not affect the
molecules under study.

From the perspective of enhancement by individual nanoparti-
cles, the absence of cut-off frequency for dipole plasmon resonance
results in much higher field enhancement near plasmonic nanoparti-
cles as compared to dielectric ones with same sizes in the sub-100-nm
range. However, larger Si nanoparticles, possessing a magnetic Mie-
type resonance at the optical frequencies, yield comparable or even
larger near-field enhancement.98,131 This effect was proved in SERS
experiments, where Si resonant nanoparticles produce larger SERS
effect as compared to gold ones of the same sizes.151

In order to get a huge local field enhancement, plasmonic
dimers152 or oligomers are used.133,153–155 The same approach is also
possible for dielectrics, when local field enhancement factor in the
gap of a Si dimer could be more than one order of magnitude.100

Such enhancement was applied to achieve high SERS and SEF
effects.98,131,150 Therefore, all-dielectric nanostructures also provide
the field enhancement, which is high enough for detection of small
amount of organic materials.

Figure 8.8 shows the experimental results of all-dielectric nanoan-
tennas application for surface enhanced Raman scattering (a) and for
surface enhanced fluorescence (b). It has been demonstrated that the
Si-dimer nanoantennas exhibit high near-field enhancement within a
20 nm gap at the near IR wavelengths. This all-dielectric nanoantenna
is able to enhance the Raman scattering of a polymer thin film by a
factor of 103 (a) and also allow surface enhanced fluorescence by a fac-
tor of 2× 103, avoiding the well-known fluorescence quenching effects
observed for metallic structures when no spacer layers are used. More-
over, the molecular thermometry measurements have demonstrated
that the dielectric nanoantennas produce ultra-low heating when illu-
minating at their resonance wavelength, thus overcoming one of the
main drawbacks of traditional plasmonic materials such as gold.
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Fig. 8.8. (a) Surface enhanced Raman scattering (SERS) via all-dielectric dimer
nanoantenna. (i) Near-field distribution map for the silicon structure excited at
resonance, showing good confinement of the electric field in the gap; the maximum
enhancement value is 5.5. (ii) The SEM image of the Si nanoantenna fabricated on
a silicon-on-insulator substrate. The nanoantenna consists of two identical disks
with a diameter of 220 nm, a height of 200 nm, and a 20 nm gap in between.
(iii) Experimental 2D normalized Raman map, showing enhanced signal coming
from the molecules close to the nanoantennas. The SERS enhancement factor
reached in experiments is about 1500. (b) Surface enhanced fluorescence via all-
dielectric dimer nanoantenna. (ii) Experimental SEF map obtained for the Si
antennas. It can be clearly seen that fluorescence is enhanced over the nanoan-
tennas. (i) SEF enhancement factor (FSEF) obtained from the maximum values
over each nanoantenna in (ii). The error bars show half the difference between
the minimum and the maximum value in each nanoantenna. From Ref. 131.

It is worth noticing that placing a detected nanoobject in a “hot
spot” of a resonant nanostructure could be less effective for sensing
than positioning it in a place with the highest Purcell factor. More-
over, high Purcell factor can be achieved in “cold spots” of the nanos-
tructure.118 So, the conceptually different approach to extract more
signal from quantum emitters is to enhance Purcell factor within
the nanostructure. In case of all-dielectric nanostructures, a peri-
odical chain of resonant nanoparticles, supporting magnetic dipole
resonance, looks a promising device to achieve huge radiative part
of Purcell factor for an electric dipole source,118 whereas dielectric
material does not lead to any quenching effects.

Another important feature of the dielectric nanoparticles is the
ability to shift the incident light frequency via the Raman scattering
process. The Raman scattering is inherent for dielectric materials,
but almost does not exist in metals. Moreover, an intensity of the
Raman scattering strongly depends on the resonant properties of
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dielectric nanoparticle. In particular, magnetic types of low-order Mie
resonances provide much larger enhancement factors as compared to
corresponding electric types of Mie resonances.30 The enhancement
factor dependence on excitation wavelength demonstrates sharp peak
at a magnetic dipole resonance, demonstrating more than two orders
of magnitude variation in its vicinity and narrower width (∼10 nm) as
compared the width of the Mie resonance (∼30 nm). This effect could
also be promising for a number of applications related to sensitivity
of Raman signal to thermal and refractive index variations of ambient
medium.

8.4.4. Coupled-resonator optical waveguides

A design of highly efficient integrated circuits with combined opti-
cal and electronic components for the subwavelength guiding of the
electromagnetic energy is one of the main trends of the optical com-
munications technologies in the beginning of the 21st century.156 In
order to achieve high integration densities, optical waveguides with
subwavelength light localization have been proposed. Among those
are conventional Si (or other dielectric/semiconductor) nanowires,
photonics crystal waveguides and plasmonic waveguides. Silicon
nanowire waveguides have very small cross-section sizes, and they
can be manufactured being of a high quality.157 However, such waveg-
uides do not provide low-loss propagation of optical signals through
sharp bends and require rather large bending geometries thus increas-
ing the overall size of an optical chip.158 Photonic crystals have been
viewed as a possible alternative, and it has been already demon-
strated that light can be guided by a waveguide composed of defects,
and that such waveguides can have sharp bends.159 However, due
to the different mechanism of waveguiding, namely Bragg reflection,
the overall transverse size of the photonic crystal waveguide is usu-
ally about several wavelengths. Besides, the nice property of pho-
tonic crystals to propagate light through sharp bends was found to
depend strongly on the bend geometry being also linked to the strict
resonant conditions associated with the Fano resonance where the
waveguide bend plays a role of a specific localized defect,159 thus
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demonstrating narrowband functionalities. Conventional plasmonic
waveguides allow for truly subwavelength localization of light, but it
is always accompanied with severe Ohmic losses, which makes the
propagation lengths of surface plasmons impractically short.160

Another candidate for the efficient subwavelength guiding is a
coupled-resonator optical waveguide, where guided modes are formed
by coupled resonances of the single elements.162 The most recent
realization of such type of waveguide was suggested in Ref. 163 in
the form of the chain of high-index low-loss dielectric nanoparti-
cles. Such waveguide was fabricated and its properties were mea-
sured several years later.164 In Ref. 161 it was shown that guid-
ing of the electromagnetic energy in dielectric discrete waveguides is
achieved due to coupled Mie resonances. In addition, since dielectric
nanoparticles support both MD and ED resonances simultaneously,
waveguides composed of such nanoparticles support several modes
of different types. For the case of spherical particles, first several
modes (at low frequencies) calculated within the framework of the
dipole approximation and via full-wave numerical simulations are
shown in Fig. 8.9(a). Two longitudinally (transversely) polarized
modes marked LE and LM (TE and TM) are formed by coupling
between MD and ED dipoles, oriented along (perpendicular to) the
axis of the chain. Note that in the case of transverse modes there
is a coupling between EDs and MDs induced in different particles,
while longitudinal modes are independent of each other. However
in spherical particles ED and MD resonances are well separated in
frequency and, consequently, the coupling between EDs and MDs is
quite small. Therefore coupled resonances of nanospheres form quasi-
independent separate pass bands in different spectral ranges, due to
the different dipole-dipole interaction strength.

In Fig. 8.9(b) the results of modelling of light transmission
through the chain of 6 particles are presented. One can observe a
transmission band around ka/π = 0.5 formed by excited TM and
LM modes [Figs. 8.9(f,g)]. Transmission band around ka/π = 0.7
is formed by multipole modes. The most high-frequency peak corre-
sponds to the longitudinal magnetic quadrupole mode with β = 0
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Fig. 8.9. (a) Dispersion diagram of an infinite chain of lossless spherical Si
nanoparticles with radius 70 nm and period a = 140 nm. Only waveguide modes
under the light line β = k are shown. Numerically calculated eigenmodes are
shown with blue squares (and thin dashed blue lines). Oblique grey line is the
light line. (b) Numerically calculated transmission spectrum of a chain of 6 Si
spheres. (c–g) Electric field distributions in the corresponding modes. The opera-
tional range of normalized frequenices ka/π lies within an optical spectral range
for the chosen parameters. Adopted from the Ref. 161.

[Fig. 8.9(c)]. This mode crosses the light line (i.e. it is a radiating
leaky wave), and therefore it is not shown in Fig. 8.9(a), where only
unattenuated modes are present. Numerically found frequency for
β = 0 is ka/π ≈ 0.76, which coincide with the value in trans-
mission spectrum at the upper edge of the longitudinal magnetic
quadrupole band. One can also see a transmission peak at ka/π ≈
0.61 [Fig. 8.9(e)] corresponding to the TE mode, which is also excited
due to the inhomogeneity of current in the probes.

For nonspherical particles, resonance frequencies depend on the
orientation of the dipole oscillations, and the corresponding pass-
bands can be shifted by changing the particle parameters. Besides the
shifting of the operational frequency range, change of the resonance
frequencies can also substantially increase the coupling between EDs
and MDs of the neighboring particles. This happens for transversely
polarized modes when resonance frequencies of EDs and MDs ori-
ented perpendicular both to the axis of the chain and to each other
get closer. In Figs. 8.10(a,b) it is shown that second branch of the
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Fig. 8.10. (a,b) Numerically calculated dispersion curves for the transversely
polarized modes of an infinite chain of dielectric nanocylinders (a) with radius
R = 90 nm and height h = 180 nm and (b) with radius R = 130 nm and height
h = 120 nm; period is a = 200 nm in all cases. βa/π is the normalized Bloch wave
number and ka/π is the normalized frequency. (c) Calculated nonlinear dynamics
of the pulse propagating in the chain of dielectric nanocylinders with dispersion
properties shown in (b) in the nonlinear regime, excited with a Gaussian 100 fs
pulse with normalized center frequency 0.553. Adopted from Ref. 67.

chain of cylindrical nanoparticles with close ED and MD resonance
frequencies changes the sign of group velocity and group velocity
dispersion in a certain frequency range. One can see, that while it is
not possible for the chain of spherical nanoparticles, the interplay of
the ED and MD resonances in the cylindrical nanoparticles with cer-
tain parameters can induce the anomalous dispersion regime in the
discrete waveguide. This feature was employed in the study of the
nonlinear regimes of femtosecond optical pulse propagation through
all-dielectric waveguides.67 It has been shown that for the chains of
cylindrical particles the broadening of the propagating pulse can be
compensated by the nonlinear Kerr effect, thus making possible the
formation and propagation of solitary waves.

In Ref. 65, the transmission efficiency of the discrete waveguides
composed of arrays of high-index dielectric nanodisks with and with-
out sharp bends has been studied. The appropriate period of the
chain has been chosen so that longitudinal and transverse pass bands
of the nanodisk chain, formed by coupled MD resonances of nan-
odisks, overlap (which cannot be done with spherical particles). This
condition allows to realize an efficient transmission through sharp
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90◦ bends. In the straight chain of nanodisks two passbands formed
by Fabry-Perot resonances of mixed LM-TM modes and TE modes
of the finite chain were observed in transmission efficiency spectrum.
In the waveguide composed of 30 disks with a 90◦ bend in the middle
the maximum value of the transmission efficiency of about 0.6 was
achieved. Also it has been shown that the LM mode in the horizontal
branch can transform into the TM mode propagating in the verti-
cal branch and vice versa. These theoretical conclusions have been
supported by presenting the experimental results for the microwave
frequencies for an efficient guiding through 90◦ bend in a microwave
dielectric waveguide.

Recently, several studies proposed the chains of high-index dielec-
tric nanoparticles as a simple 1D platform for studying bound states
in the continuum (BICs).165,166 The BICs are the localized states
that exist within the continuum spectrum of radiative waves.167,168

In the Ref. 165 TE and TM BICs in a linear periodic array of
dielectric spheres were demonstrated. Field distribution and force
lines of the simplest TM BIC in a zero diffraction channel with zero
azimuthal wavenumber and zero Bloch wavenumber are shown in
Figs. 8.11(a,b), respectively. Different TE- and TM-polarized BICs
with non-zero azimuthal numbers and non-zero Bloch wavenumbers
were also predicted. Such peculiar states manifest themselves in the
spectra of scattering cross-section of a plane wave by infinite array of
nanoparticles. For the parameters of the system close to the existence
of a BIC, Fano-type resonance occurs due to the interference between
the plane wave and the localized mode of the array [see dashed green
and solid red curves in Figs. 8.11(c,d)]. For the parameters exactly
corresponding to the BIC state, quality factor of the localized state
tends to infinity which results in the collapse of the Fano resonance
[see dashed blue curves in Figs. 8.11(c,d)].

In the Ref. 166 light guiding above the light line in the chain of
dielectric nanospheres was also demonstrated. It was shown that at
the frequencies close to the BICs light can propagate to the large
distances in both stationary and pulse regimes. In the stationary
regime the possibility of waveguiding at different frequencies can
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Fig. 8.11. (a) The real parts of the EM field components and (b) the electric force
lines (red) and the magnetic force lines (blue) of the symmetry-protected bound
state embedded into the TM continuum with zero azimuthal number and zero
Bloch wavenumber. (c,d) Total scattering cross section of the array illuminated
by a plane wave. Scattering of the (c) TE and (d) TM plane waves is strongly
affected by the presence of the symmetry-protected BIC. (e,f) Light propagation
in the array of 400 nanoparticles. Absolute value of the leading Mie coefficient
versus (e) wave number of the stationary wave injected into the array and (f) the
particle number j for a light pulse with different pulse widths. Adopted from the
Refs. 165, and 166.

be determined from the standing waves formed in finite chain of
400 nanoparticles [Fig. 8.11(e)]. In Fig. 8.11(f) moments induced in
nanoparticles during the pulse propagation are shown for different
pulse widths. Such calculations revealed that pulses with a certain
width and the central frequency tuned exactly to the frequency of
the BIC can propagate in the chains of dielectric nanospheres for the
distances of tens and hundreds wavelengths.

Thus, chains of dielectric nanoparticles provides one with the
simple and efficient platform, allowing guiding and localization of
light in linear and nonlinear regimes. The discrete waveguides based
on high-index dielectric nanoparticles may exceed its currently exist-
ing analogs: plasmonic waveguides, dielectric photonic crystals, and



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch08 page 365

All-Dielectric Nanophotonics 365

homogeneous Si waveguides, offering a large number of customizable
options and negligible energy dissipation. Such waveguides can be
used in photonic components responsible for the transmission of
information in the optical and optoelectronic integrated circuits.

8.4.5. Metamaterials and metasurfaces

Future technologies will push for a steep increase in photonic
integration and energy efficiency, far surpassing that of bulk optical
components, Si photonics, and plasmonic circuits. Such level of
integration can be achieved by embedding the data processing and
waveguiding functionalities at the level of material rather than a
chip, and the only possible solution to meet those challenges is to
employ the recently-emerged concept of metamaterials and metasur-
faces. Metamaterials are artificial media with exotic electromagnetic
properties not available in natural media which are specially cre-
ated in order to reach functionalities required for particular applica-
tions.11,169 Metasurfaces are their two-dimensional implementations
that are much simpler for fabrication.170 Metamaterials have been
studied since 2000 and revealed such effects as negative refraction,
backward waves, beating of diffraction limit (subwavelength imag-
ing), and became a paradigm for engineering electromagnetic space
and controlling propagation of waves by means of transformation
optics.169–171 The research agenda is now focusing on achieving tun-
able, switchable, nonlinear and sensing functionalities of metamateri-
als. Since 2010 the studies have been shifted to the stage of practical
implementation and development of real metadevices. As a result, a
novel concept of metadevices, that can be defined as metamaterial-
based devices with novel and useful functionalities achieved by the
structuring of functional matter on the subwavelength scale, has
been developed.11 The metadevices practical implementation is the
general trend in the area of metamaterials.

The area of metamaterials has opened a broad range of tech-
nologically important capabilities ranging from the subwavelength
focusing to “stopped light”, including their ability to control mag-
netic response of novel subwavelength structured materials. This is
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important because the magnetic response of natural materials at
optical frequencies is very weak due to the diminishing of electronic
spin states at high frequencies.3 That is why only the electric compo-
nent of light is directly controlled in conventional photonic devices.
However, effective control of light at the nanoscale requires the pres-
ence of the electric and magnetic responses, simultaneously. A vast
majority of the current metamaterial structures exhibiting magnetic
response contain metallic elements with high conductive losses at
optical frequencies, which limits their performance. As it was men-
tioned above, one of the canonical examples is a split-ring resonator
that is an inductive metallic ring with a gap that is a building block of
many metamaterials. This concept works very well for gigahertz,8,14

terahertz15 and even near-infrared (few hundreds THz)16 frequencies.
However, for shorter wavelengths and in particular for the visible
spectral range, this concept fails due to the dissipative losses and
fabrication difficulties.17

In order to overcome these fundamental problems, an alter-
native approach of all-dielectric metamaterials has been pro-
posed.18–25,27,70,172,175,176 In this case, a high-index dielectric particle,
exhibiting magnetic and electric Mie resonances plays a role of a
single meta-atom. Such high-index dielectric particles replace their
metallic counterparts in metamaterials and metasurfaces. For exam-
ple, it has been shown that the 3D dielectric composite of high-index
dielectric particles [as shown in Fig. 8.12(a)] exhibits the negative
permeability near the first Mie resonance.20,172 Even more complex
geometry of such all-dielectric metamaterials have been proposed in
Refs. 173, 174. For theoretical treatment of such composites consist-
ing of high-index dielectric spherical particles embedded in a low-
index dielectric matrix the Levins model can be used.172,177

Conventional optical components rely on gradual phase shifts
accumulated during light propagation to shape light beams. The
nanostructured design can introduce new degrees of freedom by mak-
ing abrupt phase changes over the scale of the wavelength. A two-
dimensional lattice of optical resonators or nanoantennas on a planar
surface, with the spatially varying phase response and subwavelength
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Fig. 8.12. (a,b) All-dielectric metamaterials based on spherical and cylindrical
particles;22,172–174 (c-f) all-dielectric metasurfaces.68,70,78

separation, can imprint such phase patterns and discontinuities on
propagating light as it traverses the interface between two media. In
this regime, anomalous reflection and refraction phenomena can be
observed in optically thin metamaterial layers, or optical metasur-
faces (see Fig. 8.12(c–f)), creating surfaces with unique functionali-
ties and engineered reflection and transmission laws. The first exam-
ple of such metasurface — a lattice of metallic nanoantennas on Si
with a linear phase variation along the interface, was demonstrated
recently.178–182 The concept of metasurfaces with phase discontinu-
ities allows introducing generalized laws for light reflection, and such
surfaces provide great flexibility in the control of light beams, being
also associated with the generation of optical vortices. Metasurfaces
can also be used for the implementation of important applications
such as light bending178 and specific lenses.183

The phase gradient metasurfaces created by high-index nanopar-
ticles of varying shape have been recently proposed.68,184 In Ref. 68,
for the first time, highly efficient all-dielectric metasurfaces for near-
infrared frequencies using arrays of Si nanodisks as meta-atoms
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have been proposed and realized [see Fig. 8.12(f)]. The authors
have employed the main features of Huygens’ sources, namely
spectrally overlapping electric and magnetic dipole resonances of
equal strength, to demonstrate Huygens’ metasurfaces with a full
transmission-phase coverage of 360 degrees and near-unity trans-
mission, and confirmed experimentally full phase coverage combined
with high efficiency in transmission. Based on these key properties,
the authors show that all-dielectric Huygens’ metasurfaces could
become a new paradigm for flat optical devices, including beam-
steering, beam-shaping, and focusing, as well as holography and
dispersion control.

We also should note here that the studies in the field of dielectric
metamaterials in microwave frequency range performed until 2009
are summarized in the review paper.185 The current state of research
in this area given in Refs. 29, 186–188 and especially in the excellent
Review paper by S. Jahani and Zubin Jacob.176

8.4.6. Nonlinear nanophotonics applications

An enhancement of nonlinear optical response at the nanoscale is
also challenging area of nanooptics, where dielectric materials have
already been implemented for various micro-devices. In particular,
Raman lasing,189,190 supercontinuum generation,190 and all-optical
switching59,171,190 are the bright examples of nonlinear photonics
based on Si micro-devices (waveguides, ring-resonators, photonic
crystals etc.). Indeed, inherent nonlinear response of many dielectrics
(especially, semiconductors) is very high in the optical and IR
range, being comparable with metals or even much larger due to
non-centrosymmetrical crystalline lattice of some dielectric materi-
als (GaAs, GaP, Te, etc.). On the other hand, plasmonic nanode-
vices paved the way to creation of deeply subwavelength nonlinear
devices.171,191 Therefore, implementation of plasmonic principles for
developing of all-dielectric nonlinear nanodevices looks tempting.
Recently, the enhancement of optical nonlinearities in resonant Si
nanostructures has been demonstrated theoretically and experimen-
tally at the scale of single nanoparticles.58–61,192–195
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(a) (b)

Fig. 8.13. (a) Purple dots: third harmonic generation spectrum of the nanodisks
array (shown in the inset). The gray area represents the linear transmission spec-
trum. (b) Dynamical reconfiguration of a Si nanoantenna directivity via photoex-
citation: Front-to-Back ratio of a nanoparticle during the action of a 200 fs pulse
with peak intensities of 10 GW/cm2 (blue), 20 GW/cm2 (green) and 40 GW/cm2

(orange). Scattering diagrams of the incident beam at the largest intensity are
shown in the two insets.

One of the most attractive applications of all-dielectric nanos-
tructures is the efficient frequency conversion. In the pioneering work
on this topic58 enhancement of third-harmonic generation from Si
nanoparticles (in form of nanodisks) exhibiting both electric and
magnetic dipolar resonances has been demonstrated, Fig. 8.13(a).
The efficiency of IR-to-visible conversion by 2 orders of magnitude
in the vicinity of the magnetic dipole resonance with respect to the
unstructured bulk Si slab was achieved. The idea of the conversion
enhancement at the magnetic resonance has been developed in sub-
sequent works with regard to the generation of higher optical har-
monics127,194,196,197 and Raman scattering.30 Dielectric oligomers196

and nanoparticles supporting the anapole mode excitation198 have
also been employed for third harmonic generation enhancement.

Another intriguing non-linear effect arising in resonant Si
nanoparticles is the electron-hole plasma photoexcitation. Silicon is
a semiconductor, and at normal conditions, its conduction band is
almost empty. However, optical absorption causes the electrons to
fill the conduction band thus altering its permittivity and optical
response.199 Recently, the photoexcitation of plasma was employed
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for tuning of Si nanoantenna optical properties in the IR and visible
regions.60,61,193,194 It has been shown that the plasma photoexci-
tation allows for manipulating of electric and magnetic nanopar-
ticle responses, resulting in dramatic changes of both scattering
diagram and scattering cross section, Fig. 8.13(b). The 20% tuning
of reflectance of a single Si nanoparticle by femtosecond laser pulses
with the wavelength in the vicinity of the magnetic dipole resonance
has been demonstrated. In the recent work61 this effect has been
utilized for achieving a pronounced beam steering effect in an all-
dielectric dimer nanoantenna.

Last but not least, resonant dielectric nanoparticles demonstrate
much higher damage threshold. For comparison, the typical values
of damage threshold of metallic nanostructures are: gold nanorods
(∼70 GW/cm2 or ∼10 mJ/cm2 at 130 fs200), gold G-shaped nanos-
tructures (∼100 GW/cm2 or ∼3 mJ/cm2 at 30 fs201), and gold
nanocylinders (∼200 GW/cm2 or ∼20 mJ/cm2 at 100 fs202). Accord-
ing to the known data from the literature, low-loss Si nanoparti-
cles have significantly higher damage threshold: ∼400 GW/cm2 or
∼100 mJ/cm2 at 250 fs;194 and ∼1000 GW/cm2 or ∼100 mJ/cm2

at 100 fs.193 Such considerable difference in damage thresholds for
plasmonic (e.g. gold) and all-dielectric (e.g. Si) materials originates
form difference in their melting temperatures (Tm(Au)=1337 K and
Tm(Si)=1687 K), and enthalpies of fusion (H(Au)=12.5 kJ/mol
and H(Si)=50.2 kJ/mol). Therefore, silicon-based nanostructures are
more stable than plasmonic ones upon intense laser irradiation, which
makes them very attractive for nonlinear applications.

8.5. Conclusions and Outlook

In this Chapter, we have reviewed some of the recent developments in
the field of all-dielectric nanophotonics. This area of optical science
studies the light interaction with high-index dielectric nanoparticles
supporting optically-induced electric and magnetic Mie resonances.
We have described several advances in this field which demonstrate
that dielectric structures allow to control both magnetic and electric
components of light in a desirable way, and also discuss properties
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of high-index nanoparticles along with their fabrication methods.
We have reviewed practical applications of all-dielectric nanopho-
tonics, including the nanoantennas for the quantum source emission
engineering, the all-dielectric oligomers and their Fano resonances,
the surface enhanced spectroscopy and sensing, coupled-resonator
optical waveguides, optical solitons and bound-states-in-continuum,
all-dielectric metamaterials and metasurfaces, and the nonlinear
nanophotonics.

Future technologies will demand a huge increase in photonic inte-
gration and energy efficiency far surpassing that of bulk optical com-
ponents and silicon photonics. Such an integration can be achieved
by embedding the data-processing and waveguiding functionalities
at the material level, creating the new paradigm of metadevices. It is
now believed that robust and reliable metadevices will allow photon-
ics to compete with electronics not only in telecommunication sys-
tems but also at the level of consumer products. The main challenges
in achieving this goal will be in developing cost-efficient fabrication
and device integration technologies. All-dielectric nanophotonics is
seen as a practical way to implement many of the important concepts
of nanophotonics allowing high functionalities and low-loss perfor-
mance of metadevices.
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In this chapter, we give an overview of the various approaches for making
tunable metamaterials and focus in more detail on several particular
examples.

9.1. Introduction

Metamaterials and metasurfaces are designed to exhibit various
exotic properties and this is often done by utilizing resonant phe-
nomena. As a result, the electromagnetic response of metamaterials
is usually dispersive, and desired properties occur only in a very
narrow frequency range. This is why it was understood from the
very beginning of metamaterial research that one will need to be
able to dynamically tune the response of the composite structures
in order to achieve practically usable metamaterials. Alternatively,
when the broadband performance is not important, one may want to
change the properties of materials at a given frequency so that the
electromagnetic waves can be dynamically manipulated. This can be

387
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used, for example, in switching and modulation applications, making
the ability to tune material properties highly desirable. There is a
substantial amount of work done on tunable metamaterials to date,
with several reviews published1–5 and different journals having made
this a topic of special issues.6 Table 9.1 summarizes several tuning
methods, with their applicability in various frequency ranges as well
as their advantages and limitations.

First, we would like to define what we call tunable metamateri-
als. Some authors say that they “tune” the properties of materials by
fabricating a new sample with different parameters, or by changing
the operating frequency, or by changing the incidence angle of the
electromagnetic waves. Clearly, in these examples the properties of
each given material are not changed, with either a totally new mate-
rial fabricated or by changing the excitation conditions. Here, we
will call metamaterials tunable if their properties can be changed by
external influence, e.g. by control voltage, or by temperature, or by
magnetic field, etc. Overall, we can distinguish three distinct tuning
mechanisms that can be applied for changing the material properties:

• Tuning by changing the structural geometry: Achieved by mechan-
ically deforming the shape of the constituent elements or their
mutual arrangement in the metamaterial, which affects the overall
properties due to mutual coupling between these elements,7 e.g.
elastic deformation of the structure.

• Tuning by changing the constituent materials: Achieved by chang-
ing the properties of the materials composing the individual meta-
atoms, e.g. actively changing the conductivity of semiconductors
by injecting free electrons into them.

• Tuning by changing of the surrounding environment: Achieved by
immersing the metamaterial in an environment, which properties
can change, e.g. by a liquid crystal (LC).

Each of these tuning mechanisms can be realized in a different
way, which is also specific to the frequency range where this metama-
terial operates. Table 9.1 summarizes the most common techniques
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Table 9.1. Mechanisms for achieving tunability in various frequency ranges.

Tuning
mechanism µW THz Optics Advantages Limitations

Changing
geometry

Mechanical displacement
of components,

including micro-
electromechanical
systems (MEMS)

+ + + Strong tunability Slow, hard to implement at
higher frequencies

Pneumatic actuation + + +/− Gas pressure sensitive Complex fabrication and
control

Changing
meta-atoms

Lumped electronic
components

+ − − Strong tunability,
commercially available
components

Only available for lower
frequencies

Superconductors + − − Strong tunability, link to
quantum effects in
Josephson junctions

Cryogenic temperatures

Photo-excitation + + + Fast Currently requires large light
intensities

Phase change materials + + + Controlled by temperature Usually add losses
Ferrimagnetics,

Ferromagnetics
+ − − Higher microwave frequency

bands
Require large magnetic fields

Ferroelectrics + − − Control by relatively small
electric field

Relatively high losses in
ferroelectrics

Changing
environment

LCs + + + Available in most frequency
regions

Large volumes required in
microwaves. Difficult
pre-alignment

Semiconductor substrates +/− + − Can be tuned by voltage or by
light

(+) indicates that the tunability was demonstrated, (±) shows that the tunability is, in principle, possible, but was not demonstrated

yet, while (−) indicates that the tunability in a given frequency range is probably impossible by using the corresponding method.
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for achieving such tunability and the corresponding frequency range
of applicability.

Since various tunability concepts work differently in different fre-
quency bands, we split our chapter in three sections reflecting three
broad frequency ranges: microwave, terahertz (THz) and optics. In
Section 9.2, we briefly review the tunability mechanisms used for
microwave metamaterials. In the following sections, we review (THz)
and optical tunable metamaterials with a bigger focus on several
selected works in this area.

9.2. Tunable Microwave Metamaterials

There is a substantial amount of work done on tunable metama-
terials and composite right and left-handed transmission lines in
the microwave frequency range, and we see three main reasons for
this. Firstly, we have a large number of materials and commercially
available components whose properties change under external influ-
ence. Secondly, the fabrication of metamaterials is much easier at
microwave frequencies, where constituent components are quite large.
Thirdly, immediate applications of metamaterials seem to be more
feasible in this frequency range with several products currently being
developed.

The most obvious way to tune metamaterials or transmission
lines in microwaves is to use semiconductor components, such as
diodes. This was demonstrated, e.g. in Refs. 8–10. The tunability
obtained by this approach is quite large, since the parameters of, e.g.
varactor diodes can be changed by almost an order of magnitude.
An extension of this approach is based on the use of photodiodes for
biasing varactor diodes.11 When such structures are illuminated by
light, the photodiodes generate voltage, and microwave response of
the metamaterial changes. This may be convenient for creating light-
controlled tunable metasurfaces, as it was demonstrated in Ref. 11.
Moreover, such tunability not only controls linear properties of the
metamaterial, but also its nonlinear properties.12

Another way of making tunable metamaterials at low frequen-
cies is by utilizing superconductors. As an example, the properties of



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch09 page 391

Tunable Metamaterials 391

superconductor metamaterials in Ref. 13 were controlled by three dif-
ferent means in order to make tunable metamaterials, where authors
used temperature, dc magnetic field, and rf magnetic field to change
the properties of metamaterials. Superconductors in metamaterials
can further be used in Josephson junction configuration, and this
opens the path for the applications of metamaterials for solving
quantum problems. As an example, in Ref. 14, the authors used
metamaterial-type superconducting quantum interference devices
(SQUID) in order to achieve a tunable amplifier that can be used
for amplifying quantum signals without adding noise.

Further, tunable metamaterials in microwave frequency range
were achieved by using ferroelectrics,15 ferrimagnetics16 and ferro-
magnetics.17 LCs are a good platform for achieving tunability in
nearly all frequency ranges, and for microwaves the tunable metama-
terials were demonstrated by using either the electric18 or magnetic19

fields. This method is, however, often impractical for bulk microwave
metamaterial use due to large amounts of expensive LC required.

A completely new class of tunable (and nonlinear) metamate-
rials was developed after detailed studies of the near-field interac-
tion between metamaterial elements have shown strong potential and
importance of this method.7 Mechanical displacements of the meta-
material elements lead to change in the coupling of these elements,
and this tunes electromagnetic response of metamaterials. This was
demonstrated both in microwave and THz frequency ranges, and in
principle possible in optics, though required tolerances make it tech-
nologically difficult. An extension of this concept involves the use
of MEMS and pneumatic metamaterials, where the displacement of
metamaterial elements is achieved either by activating the MEMS
mechanisms1 or by changing pressure.20

9.3. Tunable Terahertz Metamaterials

Metamaterials are well placed for applications in manipulating
THz waves, since there is a small number of natural materi-
als which can be used for these purposes. The first demonstra-
tion of tunable THz metamaterials was done in 2006, when the
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Schottky-type semiconductor structure with metamaterial-shaped
electrodes exhibited strong tunability by voltage.21 In such a struc-
ture, the conductivity of the substrate was changing, resulting in
the modification of the strength of the metamaterial resonance. Fur-
ther advances in this field were done by creating a patterned semi-
conductor structure that would have conductivity increased only in
certain areas of metamaterial, leading to the frequency shift of the
metamaterial resonance.22,23 In these structures, the change in the
semiconductor excitation was achieved via photo-doping by intense
laser beam.

Ferroelectrics24 as well as vanadium dioxide25 can be used for
creating temperature-tunable metamaterials. At the same time, it
was shown that the using temperature for tuning LC-infiltrated THz
metamaterials is not efficient.26

The general concept of tuning metamaterial response by displac-
ing meta-atoms can be readily applied in the THz frequency range.
This was achieved by direct mechanical motion of the metamaterial
layers,27 by using polymer actuation,28 by pneumatic actuation29

or by stretching.30 We will focus on the first two of these meth-
ods along with the description of the liquid metamaterial, whose
properties change when we apply dc electric field31 that rotates the
metamolecules.

9.3.1. Mechanical offset of metamaterial layers

To demonstrate the practically strong modification of the transmis-
sion spectrum in a double-layer metamaterial, we consider metama-
terial layers containing electric field-coupled resonators.27 As the res-
onators in neighboring cells are electrically connected, the structure
exhibits substantial transmission only near its resonances. The meta-
material layers are fabricated using conventional optical lithography
followed by a lift-off process. The thickness of the gold is 150 nm, and
the resonators are arranged in a square lattice with a lattice constant
of 135µm. The overall structure occupies an area of 5mm by 5 mm.
After two metamaterial samples are fabricated, a small amount of
solidified heat-sensitive glue is put on top of each sample and then
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heated until it reaches the melting point. The two metamaterial
layers are face-to-face bonded and aligned with each other under a
microscope. The lateral displacement can be varied by reheating the
sample and moving the top layer with respect to the bottom one. The
spacing between the two layers can be controlled by moving the top
layer back and forth to redistribute the glue. Tunability is achieved
by controlling the coupling between the two adjacent metamaterial
structures: the frequency shift is controlled by moving the structures
laterally, while the maximum frequency shift is controlled by the
thickness of the glue. The lateral displacements can be changed from
S = 0µm to half unit cell S = 67.5µm.

Numerical simulations are performed using commercial electro-
magnetic solver CST Microwave Studio. In our simulations, we have
used normally incident waves polarized across the gap of the res-
onator. It is assumed that the structures are periodic in the x–y plane
and the computational area is terminated by perfectly matching
boundary layers in the z direction. The spacing between the metama-
terial layers is determined by measuring the optical transmission at
the edges of the fabricated samples outside the metamaterial region.
The frequency spacing between Fabry–Perot transmission fringes
depend on the distance between the plates. The average spacing for
six positions measured around the metamaterial region is 10.4µm
with variations below 2.5µm.

Transmission through the double-layered metamaterials is mea-
sured by using a THz time-domain spectroscopy system. The
polarization of the incident field is aligned across the gaps of the
resonators. The system is excited by a femtosecond laser pulse, and
the transmission response is sampled in the time domain. A Fourier
transform is used to obtain the amplitude and phase of the trans-
mitted wave, and further signal processing in the frequency domain
allows the calculation of the experimental transmission spectrum.
Fabry–Perot interference fringes in the transmission spectrum are
reduced by employing time gating in the time-domain signal.

The experimental and simulation results for the double-layered
structure with different lateral displacements are shown in Fig. 9.1.
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Fig. 9.1. Schematics, measurement versus simulation results, and alignment
taken under microscope (inset) of the double-layered structure when (a) S =
0µm, (b) S = 20µm, (c) S = 40µm, (d) S = 67.5 µm.

The alignment is also shown for different lateral displacements. The
alignment achieved by manual adjustment of alignment marks under
the microscope is reasonably good, demonstrating the feasibility of
the proposed post-processing approach. The shift of the transmission
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band is quite substantial, and it is accompanied by reshaping of the
spectrum. We also simulated the resonance shift for larger spacing
between the layers of 110 µm. For such large spacing, the vertical
coupling between two layers is significantly reduced. The resonance
of stacked layers in this case closely resembles isolated layers of meta-
materials due to the absence of strong interactions between them.
Hence, in this case the lateral displacement will induce negligible
resonance tuning.

This post-processing approach may find applications in building
tunable THz devices without involving re-fabrication processes and
can lead to a large tunability in a pair of layers. One can imagine a
THz filter made of two metamaterial layers, where one layer is fixed,
while another one can be moved by a translation stage. Various spec-
tral features can be designed by using other types of metamaterial
patterns.

9.3.2. Conductive polymers for metamaterial tuning

In order to achieve electric control of the metamaterial layers
offset, we proposed to use conductive polymers.28 The applica-
tions of π-conjugated polymers, or conducting polymers, have been
widely studied to develop various types of electronic devices rang-
ing from organic light-emitting diodes, organic thin film transistors
(TFT), organic photovoltaic cells and so on. They have also been
used to develop soft actuators. The basic working principle typi-
cal in π-conjugated polymer actuators is an electrochemical reduc-
tion/oxidation reaction, in which doped ions move into or out of
the π-conjugated polymer by applying and reversing voltages, giving
mechanical deformation of the polymer in a reversible manner. It
was found that heavily doped polypyrrole (PPy) film could be con-
tracted by applying only a few Volts, which controls the desorption
of water molecules. Such PPy films are known to behave as metals in
the THz and lower frequency ranges, and can exhibit extraordinary
transmission in a perforated film.32

Here we demonstrate electrically tunable device working in the
THz frequency range, however our approach may, in principle, be
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extendable to near infrared or visible wavelengths. We have fabri-
cated thin films of PPy doped with hexafluorophosphate (PF6) ions,
PPy(PF6), by electrochemical polymerization. They are used as lin-
ear actuators to laterally shift the relative position of two stacked
metamaterial arrays designed to work as electro-active THz metade-
vices. In this experiment, we used the same design of metamaterials
as in previous subsection with one resonator array fixed while the
adjacent array is free to move laterally, see Fig. 9.2. The PPy(PF6)
linear actuators are attached to both sides of the freely movable meta-
material array to allow one-dimensional (1D) linear lateral shift along
the capacitive gap of the SRR and also to recover the initial position,
which is required owing to the elastic nature of the film. It has been
reported that PPy(PF6) films contract only a few percent, therefore

(a)

PPy(PF6) linear actuator

CESRR array on quartz

Bottom CESRR array on quartz (fixed)

Top CESRR array on quartz (movable)

k
H

E

Y

X

W1

W3

W2

L1

L2

(b)

(c)

Fig. 9.2. Schematics of the tunable THz device based on a PPy(PF6) linear
actuator. (a) Geometry of the unit cell along with the polarization directions of
the incident THz wave (top view). (b) Schematics of the double-layered metama-
terial arrays with fixed substrate and movable superstrate. (c) Schematics of the
tunable THz device based on double-layered metamaterial with fixed substrate
and movable superstrate suspended with PPy(PF6) linear actuator. The top layer
can be laterally moved by applying voltage.



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch09 page 397

Tunable Metamaterials 397

we cut the PPy(PF6) film into 10 mm by 10 mm square pieces in
order to achieve tens of µm actuation range that will allow us to
obtain significant frequency shift in our THz device. The repeating
unit in each metamaterial layer is an electric field-coupled resonator,
and all of them are connected, therefore the single-layer structure
shows resonant transmission only near its resonances around 0.375
THz. It has been confirmed that by stacking these CESRR arrays,
two resonant modes were observed at 0.318 THz and 0.468 THz.
These two modes are symmetric and anti-symmetric modes corre-
sponding to the in-phase and out-of-phase loop currents, respec-
tively.27 The well-aligned device shows resonance around 0.320 THz
due to the symmetric mode (Fig. 9.3 (a)). We have successfully
obtained a frequency shift of resonant THz transmission by applying
a low bias voltage of only a few Volts to one of the polymer actua-
tors to pull the SRR array in one direction. Applying voltage leads
to contraction of the polymer film, and this laterally shifts the freely
movable layer. By turning off the applied voltage, the system recovers
its initial state and transmission spectrum. The optical microscope
images also confirm that an applied voltage of 1.5 V is enough to
have significant lateral shift of the SRR array to obtain frequency
shift in resonant transmission in our device, as shown in Fig. 9.3(b).
This approach can be a cheap alternative to a more complex and
expensive fabrication process for MEMS type devices.

9.3.3. Meta liquid crystals

Another structure utilizing the concept of mechanical motion of
the metamolecules for tuning its properties is meta liquid crystals
(MLCs).31 To achieve tunability, the meta-atoms are encapsulated
in elongated dielectric bars which are dispersed in a host liquid, and
are rotated by electro phoretic forces when a biasing electric field
is applied. When all such particles are aligned along the field, the
structure will exhibit strongly anisotropic properties. The axis of
anisotropy can be rotated by changing the direction of the biasing
field, tuning the electromagnetic properties of the metamaterial in
a manner similar to the mesogens of liquid crystals. Due to this
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Fig. 9.3. (a) Measured THz transmission spectra of the tunable THz device
based on double-layered CESRR arrays with PPy(PF6) linear actuator without
and with (1.5 V) applied voltage. (b) Optical microscope images of double-layered
CESRR arrays without and with (1.5 V) applied voltage. Scale bar is 100µm.

strong analogy, we call our metamaterial an MLC, and we call the
constituent elements meta-mesogens. The elements of MLCs are com-
plex meta-atoms with sub-wavelength features, and their properties
can be engineered in a wide range. Moreover, the electrostatic and
electromagnetic properties of our meta-mesogens are weakly corre-
lated, enabling us to construct MLCs with tunable properties not
available with conventional LCs, such as larger anisotropy, strong
magnetic and/or chiral (and in general bianisotropic) responses, or
well-designed spectral features such as electromagnetically induced
transparency. The liquid nature of such metamaterials allows them to
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flow and fill in spaces or cover surfaces of arbitrary 3D shapes, which
significantly widens the field where metamaterials can be employed.

While the concept could be realized over a wide range of frequen-
cies, here we experimentally demonstrate the idea in THz frequency
range. Metamaterials play a vital role in controlling THz waves and
creating passive and tunable devices, due to the lack of intrinsic
response from natural materials.

We chose two types of meta-atoms, electric split-ring resonators
(ESRRs) and I-beam resonators (IBRs). Each meta-mesogen con-
sists of a short array of identical metallic units encapsulated within
10-µm thick polyimide, so that the whole meta-mesogen functions as
an anisotropic dipole in an external bias field. The response of the
chosen meta-atoms to the high frequency field is strongly anisotropic,
therefore by rotating the whole meta-mesogen, we can tune the over-
all response of the composite medium.

Here, we study three designs — meta-mesogens made of three
ESRRs (3-ESRR), five ESRRs (5-ESRR) and two IBRs (2-IBR).
Each type of meta-mesogen is mixed in a non-polar liquid so that
they are free to rotate in response to an external bias electric field.
Paraffin oil is used in the experimental work as it is a readily available
liquid which is safe to handle and reasonably transparent in the THz
range.

The electrostatic torque of a meta-mesogen in a uniform static
electric field is well described within the dipole approximation and
is primarily determined by the length and aspect ratio of the meta-
mesogens. From the torque, we can calculate the response time of
meta-mesogens in different liquids. In paraffin oil, all three designs
show estimated response time around 100 ms for a bias field strength
of 1.6 × 105V m−1. This time can be further improved by using less
viscous liquids. In addition, paraffin oil is not ideal for realizing MLC,
since it is less dense than the mesogens, and they slowly sink. Further
search for more suitable host liquids is required, and as an exam-
ple, we simulated MLC with trichloroethylene. It is less viscous and
more dense than paraffin oil, making it more suitable for a faster
performing MLC. Our calculations predict that this can provide at
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least one order of magnitude enhancement of the operation speed.
Trichlorethylene was not used in our experiments due to its high tox-
icity. The dynamics can further be optimized by choosing the shape
and size of the meta-mesogens. Since the sign of the voltage output
from our source cannot be changed, there is a net dc contribution
leading to charge build up, which would result in the aggregation of
meta-mesogens, and therefore bursts of pulses are used to maintain
the alignment. To enable practical application of this idea, further
technical optimization is required so that the charging effect and
sinking problem can be addressed.

Figure 9.4 shows microscope photographs of three different MLCs
before and after application of the static electric field. To quantify
the anisotropy induced in the THz spectral response, the transmis-
sion is measured with a commercial THz time-domain spectrome-
ter. In the measurement, we rotate the sample with respect to the
polarization of the incident wave to characterize parallel and per-
pendicular effective refractive indices as well as the modulation of
transmission. Figures 9.5(a)–(c) show transmittance spectra |t|2 for

Fig. 9.4. Structural change of the three different MLCs before (top row) and 5
s after (bottom row) application of the bias electric field. (a) and (b) 3-ESRR,
(c) and (d) 5-ESRR, (e) and (f) 2-IBR. The scale bars in the main figures and
insets are 300µm and 100µm, respectively.
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Fig. 9.5. (a)–(c) Measured transmittance spectra of three different types of
meta-mesogens for orthogonal polarizations. The corresponding particle numbers
for 3-ESRR, 5-ESRR and 2-IBR are around 800, 370 and 1140, respectively. Spec-
tra of pure paraffin oil are also given as a reference. (d)–(f) Modulation contrast of
transmission for different number density. (g)–(i) Effective index difference calcu-
lated from the relative transmission phase difference for orthogonal polarizations.

three different samples. We note that in our experiments the trans-
mission curves are normalized to the free space transmission of the
THz signal. Thus, the transmission shown in the figures is affected
both by losses in the structure and by reflection. The most pro-
found effect is due to reflection at the air/quartz interface at the
input side and the PTFE/air interface at the output side, with only
around 1/3 of the energy left when the signal transmits through
an empty cell. Another contribution is due to absorption of energy
by the paraffin oil. The oil is quite transparent below 0.5 THz, and
the loss increases as frequency goes up. We believe the transmission
of the device can be improved by reducing reflection at the input
interface with a proper antireflection coating, and by finding a more
appropriate liquid with lower absorption. The modulation contrast,
defined as CM = |t2||− t2⊥|/|t2|| + t2⊥|, shows that the modulation effect
is quite noticeable (see Figures 9.5(d)–(f)). It is interesting to note
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that the trends in modulation contrast are different for the designs
with ESRRs and IBRs. For the two samples with ESRRs, there is an
increasing trend as frequency increases, and this is consistent with the
growing trend predicted in the calculated extinction cross-section.31

As a comparison, we also calculated the modulation properties of
the proposed MLCs based on the scattering properties of the meta-
mesogens. In the calculation, we assume that the meta-mesogens
form a cubic lattice and use Clausius–Mossotti formula to estimate
the effective permittivity for different number density. The results
of calculations showed overall good agreement with the experiment
apart from red shift of the resonances.

For sample 3-ESRR, we used a larger concentration (N ∼ 800,
ρN ∼ 32µL−1) due to its smaller number of effective meta-atoms.
Yet, due to the inherently smaller anisotropy and the partially non-
uniform orientation of meta-mesogens, the resonant peak around 0.5
THz is less noticeable (see Figure 9.5(d)). To compare the modulation
contrast of IBR and ESRR, we first used similar numbers of meta-
mesogens for sample 5-ESRR (N ∼ 370) and sample 2-IBR (N ∼
1140), and we found that the modulation contrast of sample 2-IBR is
approximately twice the value of 5-ESRR (see Figures 9.5(e) and (f)),
which is in agreement with the predictions from simulations.31

From the measured transmission phase, we calculate the effec-
tive linear birefringence δneff ≈ arg(t||/t⊥)/(k0h) produced by the
three different designs, where k0 = ω/c and h is the thickness
of the MLC sample (see Figures 9.5(g)–(i)). To have a fair com-
parison, we normalize the index to the same mesogen number of
N = 1200, ρN = 48µL−1. This normalization is based on the linear
approximation of the relation between effective index and number
density of mesogens neff ∝ N , and should be valid when the concen-
tration is low. The resonant features for all three samples are clearly
observed, and the effective index difference of sample 2-IBR is about
three times the value of 5-ESRR.

To summarize this section, we presented an experimental study of
3D tunable THz MLCs, where engineered meta-mesogens play a sim-
ilar role to the mesogens of a natural LC. The most important feature
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of MLCs is that the electromagnetic and electrostatic response can
be independently engineered, which provides a much greater flexibil-
ity in constructing tunable metamaterials and metadevices. Different
from conventional LCs, the MLCs studied here can provide a direct
and pronounced amplitude modulation of transmission, whereas con-
ventional LCs change the phase of the waves only. The meta-atoms
can be fabricated in a wide variety of shapes, and could even be made
from high index dielectric resonators, which are appealing due to
their low losses at optical wavelengths. We expect that with advances
in nanofabrication, MLCs could be fabricated on a length scale suit-
able for applications in optics.

9.4. Tunable Optical Metamaterials

In the early days of the development of optical metamaterials, the
research was mainly focused on the realization of bulk 3D materi-
als,33 motivated primarily by effects such as negative refraction and
cloaking. However, the fabrication of 3D metamaterials still remains
challenging, and the huge propagation losses at optical frequencies in
such materials make their use impractical. As such, most research was
done on 2D metamaterial structures, which were considered only as a
planar realization of the more desirable bulk structures. A paradigm
shift in this research happened after Capasso’s group introduced the
generalized law of refraction based on spatially varying optical sur-
faces34 (see also review papers [35, 36]). The term metasurfaces was
established as 2D nanostructured materials with unusual properties
derived from the structure of their constituent elements, called meta-
atoms. Based on such ultra-thin metasurfaces, a large number of
important functionalities have been demonstrated, including anoma-
lous beam-deflection, beam-shaping and even carpet cloaking.

However, similar to all other metamaterial structures, the prop-
erties of the optical metasurface are fixed by the design and arrange-
ment of their meta-atoms. However, for many applications it is
important to dynamically control the optical properties of such
designer metasurfaces. Following the need of such dynamic tun-
ability, a number of groups have demonstrated different tuning
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approaches, see Ref. 37. To a large extent, these optical approaches
overlap with the approaches reviewed above for microwave and THz
metamaterials. However, the 2D arrangements of such ultra-thin
optical metasurfaces enable greater flexibility. The field of optical
tunable metasurfaces has therefore been able to borrow a lot from a
number of established optical technologies, including nanoelectrome-
chanical systems (NEMS), LC displays, etc. Below, we review some
of the key works in this development.

9.4.1. Tuning by changing the structural geometry

The tuning derived from changes of the structural geometry relies
on mechanical variations of the shapes of individual meta-atoms or
their mutual arrangement. Within this approach, there are two pos-
sible scenarios that have been explored: (i) Mechanical changes of
the meta-atoms through exploration of nanomechanical forces, e.g.
acousto-optical effects and (ii) changes of the mutual arrangements of
meta-atoms through deformation of the substrate, e.g. metasurfaces
on flexible substrates.

The use of nanomechanical forces for dynamically reconfiguring
the properties of optical metasurfaces has been pioneered by the
group of Zheludev, see Ref. 5. These include thermal,38 electrical,39

magnetic40,41 and optical42,43 actuation of the metasurface structure
for changing its structural geometry. While enabling opportunities for
strong tunability, the fabrication of such nanomechanical structures
is complicated and the long-term reliability is low.

The fabrication of metamaterials on flexible substrates offers a
lot easier fabrication. Importantly, this approach also offers good
tunability due to stretching and flexing of the substrate, which alters
the geometry of mutual arrangement of meta-atoms. Following this
idea, flexible plasmonic44,45 as well as dielectric metamaterials46 have
been demonstrated. In the latter (dielectric) case, the sensitivity of
the metasurface properties to the lattice periodicity is very strong,47

which allows for highly tunable elastic metamaterials. However,
despite the simplicity of their fabrication, the tuning speed of meta-
materials on flexible substrates is substantially lower than in the case
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of nanomechanically actuated metamaterials. Therefore, the choice
of the particular technology will depend on the specificity of the
applications, including the cost-effectiveness and tunability speed.

9.4.2. Tuning by changing the constituent materials

This approach relies on changing of the constituent meta-atoms
through varying the properties of materials they are made of. For
example, changing the Fermi level of the electrons in the metallic
components can result in an overall change of the properties of the
meta-atoms. However, in contrast to the case of metamaterials in
the THz frequency domain, for optics changing the density of elec-
trons is much more difficult. Nevertheless, several important tun-
ability schemes have been devised and demonstrated as a proof of
principle. These include the use of phase change materials, electron
excitation of carriers in semiconductors, and the use of graphene.

9.4.2.1. Phase change materials

Phase change materials are materials that change their structure with
temperature. Due to presence of a phase transition, the properties
of the material can change from crystalline to amorphous or from
dielectric or metallic. When such materials are used to build meta-
atoms, then the overall optical properties of the meta-atoms can be
dramatically altered through the phase transition.

An important example of such a material is vanadium dioxide
(VO2). At room temperature, VO2 exhibits dielectric properties, but
at ∼ 67◦C it undergoes a change into a conducting state. Using this
phase transition of VO2, Kats et al.48 demonstrated thermally tun-
able metasurfaces. A metasurface designed from Y -shaped elements
was fabricated on top of VO2 and its reflectivity was investigated
at different temperature. The reflection spectrum was changing dra-
matically as the sample was heated up, with reflection peak corre-
sponding to antenna’s resonance shifting to the position of a dip in
the mid-infrared range.

Another important example of phase change materials are some
chalcogenides, often used in rewritable DVDs. The use of such
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materials is a well-established technology; however, their application
in reconfigurable metasurfaces has only been recently demonstrated
by Wang et al..49 The authors combined germanium–antimony–
tellurium-based films with a diffraction-limited resolution optical
writing process to demonstrate a variety of devices, including visible-
range reconfigurable bichromatic and multifocus Fresnel zone plates,
a super-oscillatory lens with subwavelength focus, a greyscale holo-
gram, and a dielectric metasurfaces with on-demand reflection and
transmission resonances. Due to the reversible phase change transition
in the chalcogenide films, such components can be written, erased and
rewritten as 2D binary or greyscale patterns into the thin film.

9.4.2.2. Graphene

The inclusion of graphene flakes as a part of the constituent meta-
atoms is a promising candidate for strongly tunable response of optical
metasurfaces. Because of the presence of Dirac cones in the electronic
dispersion of graphene, the electron density increases linearly with
the energy. This is in stark contrast to plasmonic metals, where the
electron density increases quadratically with the energy. Therefore,
in the case of graphene, it is easier to change the electron density by
external factors, such us temperature or biasing electric field.

Yao et al.50 demonstrated electrical tuning of graphene-loaded
antennas over a broad wavelength range of 10% of the resonance fre-
quency in the mid-infrared region. Similar ideas have been applied
at shorter infrared wavelengths (2µm) by Emani et al.,51 where
Fano resonant plasmonic nanostructures were fabricated on top of
a graphene sheet. The use of Fano resonant elements enhances the
interaction of incident radiation with the graphene sheet and enables
efficient electrical modulation of the plasmonic resonance.

9.4.2.3. Excitation of free carriers

The process of excitation of free charges in semiconductor mate-
rials has also been explored for tuning the properties of opti-
cal metasurfaces. This is especially important in the case of
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dielectric metasurfaces made out of silicon (or other semiconductor)
nanoparticles. When exciting such nanostructures with high pho-
ton flux, free carriers can be generated in the silicon due to one-
or two-photon absorption processes. The excited free carriers can
cause changes in the conductivity of the semiconductor and therefore
result in significant shift of the metasurface resonances.52 The use of
this effect has been recently employed to achieve strong modulation
of transmission52,53 through silicon nanodisc arrays. However, the
observed tuning of the parameters of such metasurfaces was relatively
weak, due to the limited density of the photo-excited carriers.

To overcome this problem, Huang et al.54 have recently demon-
strated metasurfaces tunable by the field-effect modulation of the
complex refractive index of conducting oxide layers incorporated into
the metasurface antenna elements. The conductive oxide, in their
case — indium tin oxide, was operated in the ε near zero regime,
which enabled strong modulation with relative small bias electric
field. As such, they have demonstrated modulation of the metasurface
reflectance at frequencies exceeding 10 MHz and electrical switching
of ± first-order diffracted beams. Importantly, the modulation was
realized by electrical control, which is a basic requirement for elec-
trically tunable beam-steering by gradient metasurfaces.

9.4.3. Tuning by changing of the surrounding

environment

While the above two approaches offer some unique advantages, their
implementation often requires sophisticated fabrication techniques
and the use of various exotic materials. In many cases, however, the
structure fabrication has to be as simple as possible, realized by stan-
dard fabrication techniques. In this case, their structural geometry
or constituent material properties cannot be easily altered. There-
fore, for post-fabrication tuning of such optical metasurfaces, the
only remaining option is to change the properties of the surrounding
environment. For example, liquids with different refractive indices
can be applied on top of the metasurfaces to alter their background
refractive index and hence their optical response. However, probably
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the most flexible technique is the infiltration of the metasurface with
LCs. LCs have a common use in several matured technologies, most
important of which are the LC displays for monitors and flat screen
television sets.

The LCs consist of highly elongated molecules with strong elec-
tric dipole moment. Due to the dipole–dipole interactions between
the LC molecules, they can align in a crystal-like fashion. Because
of this regular orientation of the elongated LC molecules, the LCs
exhibit the highest natural optical anisotropy of ∆n ≈ 0.3 and above.
Importantly, the LCs orientation and refractive index can be tuned
by temperature, electric or magnetic fields, as well as by the optical
field itself. These tuning mechanisms provide unique opportunities
for the use of LCs in tunable optical metasurfaces.

The first use of LC to tune the resonances of cut-wire pair meta-
materials was demonstrated by Xiao et al.57 The authors used the
change of the LC refractive index from nematic to isotropic phase
through increase of the temperature of the metamaterial above a
critical value.

Shortly after, Minovich et al.58 suggested how to control the opti-
cal properties of fishnet metasurfaces infiltrated with a nematic LC,
as shown schematically in Fig. 9.6(a). The tuning was achieved due
to the reorientation of LC molecules inside the fishnet holes, which
led to frequency shift of the hole modes. Changing of the effective
refractive index of the fishnet from negative to positive values was
predicted to be achievable with this method. The same group experi-
mentally demonstrated electrical and all-optical transmission control
through the LC fishnet structure55 (see Fig. 9.6(b)). In that case,
the reorientation of LC molecules was caused by the strong light
field of the incident laser beam. As seen in Fig. 9.6(b), the trans-
mission through the structure was changing non-linearly with the
increase of the laser power. Importantly, the transmission was fur-
ther controlled by the application of bias electric field, applied across
the substrate and the top layer of the metasurface, thus demon-
strating electrically tunable nonlinear transmission through optical
metasurfaces.
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Fig. 9.6. (a) Schematic of the LC-infiltrated fishnet metasurface (from Ref. 55).
(b) Tunable transmittance through the metasurface as a function of incident
optical power and applied electric field. (c) Schematic illustration of magnetic
metasurface attached to an LC cell (from Ref. 56). (d-e) Illustration of the LC
alignment with and without applied bias voltage. The insets show the corre-
sponding real-color photographs of the metasurface. The change of color is clearly
visible.

Furthermore, Decker et al.56 have demonstrated electro-optical
tuning of split-ring resonator (SRR) metasurface utilizing a pre-
oriented layer of LCs (see Fig. 9.6(c)). By applying external electric
field across the LC cell, 90◦ polarization rotation was achieved from
the top to the bottom surface of the LC cell (see Figs. 9.6(d) and
9.6(e)), which led to the switching of the excitation between the mag-
netic and the electric modes of the SRR metasurface. This switching
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causes a dramatic change of spectral transmission through the meta-
surface, accompanied by a visual change of its color, as seen in the
insets of Figs. 9.6(d) and 9.6(e). A similar effect was also reported by
Buchnev et al.,59 though for a metasurface consisting of plasmonic
zig-zag strips.

While, significant changes in the transmission was detected in
both works above, the actual spectral position of the resonances was
not strongly affected. Indeed, the optical mode of plasmonic meta-
surfaces is strongly confined to the metal layer, thus extending only
a few nanometers into the LC. On the other hand, due to strong
surface anchoring of the LC molecules, the refractive index of the sur-
rounding environment changes negligibly for these strongly confined
plasmonic modes. Therefore, all observed changes in the transmis-
sion were due to the polarization rotation inside the bulk of the LC
cell. Therefore, a practical scheme for spectral tuning of the optical
resonances of metasurfaces remained to be found.

A new solution to this problem was possible with the invention
of all-dielectric metasurfaces. Such metasurfaces are composed of
resonant high-refractive index dielectric particles (see Fig. 9.7(a))
and exhibit negligible losses at optical wavelengths. In addition, the
resonant modes of such dielectric particles extend further into the
surrounding offering better opportunities for tuning of the resonant
frequency.

LC tuning of dielectric metasurfaces has been recently demon-
strated by Sautter et al.60 A metasurface composed of silicon nan-
odiscs (see Figs. 9.7(a) and 9.7b)) was infiltrated with E7 LC and
sandwiched on the top with a cover slip that imposed linear alignment
of the LC at room temperature (see Fig. 9.7(c)). By heating the meta-
surface to temperatures near 60◦C, the LC undergoes phase transi-
tion and transforms into an isotropic phase (see Fig. 9.7(d)). Through
this phase transition, the resonance frequencies of both electric and
magnetic dipolar resonances of the metasurface shifted significantly,
with the strongest shift of about a full resonance width observed for
the electric mode of the metasurface (see Fig. 9.7(e)). This spectral
shift of the resonances also resulted in strong phase and intensity
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Fig. 9.7. (a) Schematic illustration of the LC cell with the dielectric metasurface.
(b) Scanning electron micrograph of the silicon metasurface, before infiltration.
(c) and (d) Illustration of the two different phases of the LC at temperatures
before and above the phase transition, respectively. (e) Measured transmittance
spectra versus temperature, demonstrating the strong tuning of both electric and
magnetic dipolar resonances of the metasurface (from Ref. 60).

modulation. For wavelengths of about 1.53µm, we observed inten-
sity modulation of 300% (see Fig. 9.7(e)). Even higher transmission
modulation of 500% could be achieved for properly designed optical
resonances of the metasurface.
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9.4.4. Outlook

The progress made in tunable optical metasurfaces in the last few
years is truly outstanding. This is a fast developing field and many
new exciting results remain in front of us. However, the biggest chal-
lenge in the field is to be able to design and demonstrate a tunable
metasurface that can modulate the phase of the input beam in the
full phase range of 0−2π without modulating the intensity of the
beam. Increasing the spectral range of operation of the metasurfaces
is also of enormous importance. Achieving these key functionalities
will truly open the field of tunable metasurfaces to a plethora of
practical applications, including tunable lenses, beam steering and
even dynamic holograms, just to mention a few.

9.5. Conclusions

To date we have seen the extensive research into the field of tun-
able metamaterials. Various schemes have already been explored and
some great advances in the field have been demonstrated. This gained
knowledge opens up the doors for the practical applications of tun-
able metamaterials. We already see the first examples of commer-
cialization of the technologies for tunable metamaterials. Starting
from longer wavelengths in the microwave spectral domain, the com-
mercialization efforts are moving to higher frequencies. We would
like to mention one particular example of application of tunable
metamaterials. It is the metamaterial-based antenna developed by
Kymeta,61 which is set to play a pivotal role in the development of
global communications. It will be able to deliver satellite communi-
cations not only to stationary structures, but also to moving objects,
such as cars, ships and airplanes. The tunability achieved by using
TFT technology, allows to dynamically tune the directivity of the flat
antenna so that it does not loose connection with a satellite as the
antenna moves.61 We expect that further developments will lead to
the applications of tunable metamaterials at higher frequency ranges,
including THz, infrared and visible.
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10.1. Introduction

Solitons are well-known globally with roots in hydrodynamics, dating
back1 to John Scott Russell in 1834. The investigation of the ability of
new substances, like metamaterials, to permit soliton2 propagation is
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therefore a beautiful modern development. For a realistic discussion,
however, it is convenient to focus upon only certain members of both
the large soliton family and the growing metamaterial family. For
this reason, without loss of generality, the attention of this chapter
will be upon spatial solitons3 and both double-negative and hyper-
bolic metamaterials.4 Spatial solitons are beams of electromagnetic
energy that rely upon balancing diffraction and nonlinearity in order
to retain their shape. This property, contrasts nicely with temporal
solitons, which are pulses that rely upon balancing phase changes
across their width that arise from material dispersion and nonlin-
earity. Spatial solitons, like their temporal counterparts, are stable
if they are the outcomes of what is known as the 1D cubic nonlin-
ear Schrödinger equation.1 This is because, even though a beam of
electromagnetic energy in an unconfined, bulk, medium, possesses
two degrees of freedom perpendicular to its propagation direction,
and can balance diffraction with nonlinearity, the balance is unsta-
ble. Nevertheless, it was shown, some time ago, that placing a beam
in a planar waveguide produces stability in an elegant fashion, and
this is the basic model adopted here.5 Within a planar waveguide, a
stable soliton can be created by permitting the beam to diffract in
the plane of the guide and the role of any diffraction-management
that is present, naturally, or artificially created, will be important.
In fact, for positive phase materials, diffraction-management, and
also managing dispersion, has been investigated already,6 not only
for optical fibers, but also for spatial solitons controlled through the
deployment of waveguide arrays.7

The fundamental 1D nonlinear Schrodinger equation is a sat-
isfactory model to describe how electromagnetic beams behave in
a bounded dielectric, but important additions to this basic equation
have to be investigated as well. One of these is the appearance of non-
paraxiality when the slowly varying amplitude approximation is par-
tially relaxed. However, for this chapter, it is the nonlinearly-induced
diffraction2,8,9 that is the vital addition to the nonlinear Schrodinger
equation. This type of diffraction dominates as the beams become
very narrow and can dominate any non-paraxial terms and quintic
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nonlinearity in its task of preventing beam collapse at high powers.
The coupling of nonlinear diffraction and the possibility of managing
the usual diffraction10 is exciting, and is something that will be dis-
cussed below through the appearance of the negative phase behavior
that is critically associated with metamaterials.11 If the core nonlin-
ear Schrodinger equation is modified, in order to take into account
other effects, the solutions will still be referred to as ‘solitons’. This
is,12 a convenient, and common, practice when dealing with excita-
tions that look and behave like solitons throughout their range of
applicability.

Investigating solitons in a nonlinear negative metamaterial gives
rise to a generalized nonlinear Schrödinger equation,13 which stresses
that by using the dispersion brought in by the relative dielectric per-
mittivity and the relative permeability a lot of new features emerge.
For example, it soon becomes apparent that the sign of the self-
steepening parameter can be changed through frequency manage-
ment. This has a dramatic impact upon modulation instability and
short pulse propagation.14−17 Another example is that, near to the
band edges of the relative dielectric permittivity and the relative per-
meability, slow solitons may be possible18 and the intensities needed
to launch such interesting beams can be assessed. The work that
will now unfold does not address dispersion but diffraction lead-
ing to dimensionless equations that deploy coefficients calculated
for a purely monochromatic beam. It is interesting, then, that the
metamaterial properties emerge as an influence upon the nonlinearly
induced diffraction.

The nonlinear Schrödinger equation developed below, concen-
trates upon diffraction-management and nonlinear diffraction. The
absence of any description of loss is because, as recent literature
shows, it is possible to minimize the role of loss,19−22 and still intro-
duce the fundamental double negative behavior that is such a globally
attractive feature of negative phase metamaterials. At this stage, it
is also worth mentioning that there is a perfect analogy between the
general, multidiscipline, nonlinear electromagnetic Schrödinger work
and the study of unstable waves on deep oceans. It is not a surprise
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that such instability in the hydrodynamic area was originally met
with considerable, and broadly based, skepticism. However, now it
has been shown to be correct that the conditions for modulation
instability are the conditions for the creation of solitons. This applies
to both spatial and temporal solitons.23,24

Taking another route, investigations of plasma oscillations and
waves in metallic and semiconductor nanostructures are of a great
interest, however, due to using these structures as building blocks
in metamaterials.25 Plasmonic metamaterials have applications in
nanocircuits, lasers, lenses with super-resolution and electromag-
netic concentrators. An important direction of metamaterial research
and applications for THz and optical transmissions lines, nanocir-
cuits, lasers, sensors, subwavelength imaging, and electromagnetic
concentrators26 is metamaterial plasmonics. Resonances of surface
plasmons can now be exploited for concentration of electromagnetic
field near plasmonic nanoparticles, and, respectively, enhancement of
effective (resonant) nonlinearity27 and sensitivity of corresponding
nonlinear devices. Because of the concentration of the electromag-
netic energy in bounded plasmas, various nonlinear phenomena can
be realized there, like harmonic generation and self-action.28 Usually
the nonlinearity is considered as moderate, when various perturba-
tion methods are applied. Generation of plasmonic second-harmonics
in the set of nanoparticles with proper asymmetry and plasmonic soli-
tons in a “metal-dielectric” structure have been considered in Refs. 29
and 30, respectively. Surface nonlinearity of metal nanoparticles has
been addressed, for example, in a classic publication of Ref. 28.

For wave propagation at the plasma –dielectric interface, oscilla-
tions of the surface charge occur. This surface charge has a high value
and is localized near the surface. Therefore, when the nonlinearity
in the volume is still moderate, or even very small, the values of
electron concentrations can be quite large at the interfaces. More-
over, the electron concentration cannot be negative; this fact limits
the use of the modern nonlinearity itself, because the amplitudes of
oscillations of the perturbations of the electron concentration cannot
be greater than the equilibrium value of the electron concentration.
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Below, the nonlinear electron waves in the plasma layer are
investigated. Within the approximation of a moderate surface non-
linearity, the resonant generation of the second harmonic of the
surface electron plasma wave is investigated. A general method to
take into account both surface and volume nonlinearity has been put
forward.31−35 It is shown that the new frequency regions of modu-
lation instability can be realized. For the (nonlinear) wave processes
in mesoscale layered structures,26,36 where the wavelength λ is of
the order of the scale Linh of the medium inhomogeneity, λ ∼ Linh

in one part of the system and λ � Linh in the other part of the
system, the combined method of “Complex geometrical optics-Full-
Wave nonlinear electromagnetics” has been developed.26,36 At the
same time, the grading in electromagnetic field concentrator, at least
in the linear approximation, is determined by the ideas of providing
an ideal all-direction concentration,37 similar to the transformational
optics.38 The methods for the derivation of the nonlinear evolution
equations for (wave processes in) layered structures (NEELS)26,31−35

are, in fact, the parts of the general metamaterial approach to
the wave processes, applicable for both artificial26 and natural36

media.
The general case that includes the strong surface nonlinearity is

simulated. The excitation of surface electron plasma waves in the
plasma slab is investigated with an initial oscillatory distribution of
perturbations of the volume electron concentration. The main result
is the occurrence of the strong nonlinearity at the interfaces, when
the amplitudes of initial perturbations exceed some threshold. The
collapse of nonlinear plasma waves takes place. The nonlinearity can-
not be considered as moderate there. The values of the electron con-
centration near the plasma boundaries reach extremely high values,
and sharp peaks of concentration are formed that are localized both
in longitudinal and transverse directions. A similar behavior occurs
when the oscillatory distributions of the longitudinal electron velocity
are given initially. Below the threshold for observing wave collapse,
the surface nonlinearity dominates over the volume one but can be
considered as moderate.
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10.2. Solitons in Metamaterials

10.2.1. Bright spatial solitons in double-negative

metamaterials

10.2.1.1. General discussion

Suppose that ω is the angular frequency of a guided wave in the pla-
nar structure shown in Fig. 10.1, then it can be associated with the
Fourier transforms D̃, B̃ ,Ẽ ,H̃, P̃NL, M̃NL, of the displacement vec-
tor, the magnetic flux density vector, the electric field, the magnetic
field, the dielectric nonlinear polarization and the nonlinear magne-
tization, respectively. Bianisotropy, anisotropy or spatial dispersion,
is not taken into account at this stage. Any nonlinearity is intro-
duced by the polarizations that are labelled with the subscript NL.
In the time domain, t, these fundamental quantities will be simply
designated as D, B, E, H, PNL, MNL.

For the type of metamaterial capable of sustaining both nonlinear
electric and magnetic polarizations, the frequency Fourier transforms
of the constitutive relations are

D̃(r,ω) = ε0ε(ω)Ẽ(r,ω) + P̃NL(r,ω), (10.1)

B̃(r,ω) = µ0µ(ω)H̃(r,ω) + µ0M̃NL(r,ω), (10.2)

Cladding

X

Y

Substrate

Waveguide 

Propagation axis 

Ex

Hy

Z   

Fig. 10.1. Typical planar waveguide structure sustaining an optical beam char-
acterized by an electric field E and a magnetic field H. Propagation of the beam
is along the z-axis and diffraction is only possible in the x-directions.
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where ε(ω) and µ(ω) are, respectively, relative permittivity and
permeability functions. ε0 and µ0 are the standard free-space val-
ues of the permittivity and permeability. In order to observe spa-
tial solitons, a monochromatic beam, with a frequency ω0, should
be launched into the kind of planar guide sketched in Fig. 10.1.
Maxwell’s equations then yield the fundamental equations

∇2E−∇(∇ · E) + k2
0(ω0)E +

ω2
0

c2
µ(ω0)

PNL

ε0

+iω0µ0∇×MNL = 0, (10.3)

∇2H−∇(∇ ·H) + k2
0(ω0)H

+
ω2

0

c2
ε(ω0)MNL − iω0∇×PNL = 0, (10.4)

in which k2
0(ω0) = ω2

0
c2
ε(ω0)µ(ω0).

The notation can be made simpler by using the definitions
k ≡ k0(ω0), ε ≡ ε(ω0) and µ ≡ µ(ω0). For a TE-polarized beam, the
field vectors are E = x̂Ex and H = ŷHy, where x̂ and ŷ are standard
unit vectors. Nonlinear polarizations, generated by Kerr-like material
properties, are PNL = ε0ε

(3)
NL|Ex|2Ex and MNL = µ

(3)
NL|Hy|2Hy, where

ε
(3)
NL and µ(3)

NL are, respectively, the electric and magnetic cubic nonlin-
earity coefficients. Although this assumption avoids introducing any
saturation, such a medium can be readily modelled, for example, by
including quintic terms in this nonlinear model.

Any fast spatial variation can be accounted for by making the
transformation Hy ⇒ Hy(x, z)eik0z. Hence, with this procedure, Hy

is replaced by the slowly varying function Hy(x, z). In the same man-
ner Ex ⇒ Ex(x, z)eikz . Retaining only the significant order terms, the
equations for the TE-mode components of E and H are

2ik
∂Ex

∂z
+

∂2

∂x2
Ex +

ω2
0

c2
[µε(3)NL|Ex|2 + εµ

(3)
NL|Hy|2]Ex = 0, (10.5)

2ik
∂Hy

∂z
+

∂2

∂x2
Hy +

ω2
0

c2
[µε(3)NL|Ex|2 + εµ

(3)
NL|Hy|2]Hy = 0. (10.6)
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At this stage, it should be noted that the nonlinear coefficients ε(3)NL

and µ
(3)
NL can be positive, or negative, and that a sign has not been

given to the wave number k. Also

|Hy|2 =
ε0|ε|
µ0|µ| |Ex|2. (10.7)

Equations (10.5) and (10.6) can now be modified by including higher-
order linear diffraction, nonlinear diffraction and non-paraxiality.
Nonlinear diffraction is dominant,11,12 and the quintic contribution
to the nonlinearity can be taken as negligible. The final form of the
nonlinear Schrodinger equations to be used in the numerical simula-
tions, shown later, assumes that narrow beam formation requires the
dominance of nonlinear diffraction over non-paraxial terms. Hence,
the latter will not be included but higher-order linear diffraction
will be retained because it may emerge into prominence during any
diffraction-management stage. The next set of equations recognizes
that the nonlinear diffraction of the TE-polarized beam equation
depends upon the condition ∇ · E �= 0 and that the TM-polarized
beam equation depends upon the condition ∇ ·H �= 0.

The evolution equations for spatial solitons are, therefore:

(a) TE-polarized beams

i
∂Ex

∂z
+

1
2k
∂2Ex

∂x2
− 1

8k3

∂4Ex

∂x4
+

1
2k
ω2

0

c2

[
µε

(3)
NL + εµ

(3)
NL

ε0|ε|
µ0|µ|

]
|Ex|2Ex

+
1

2εk
ε
(3)
NL

∂2

∂x2
(|Ex|2Ex) = 0, (10.8)

which shows clearly that only the dielectric nonlinear polarization
can produce the nonlinear diffraction. In the now classic double-
negative metamaterial, µ = −|µ| and ε = −|ε| and backward waves
exist, for which k = −|k|. For this scenario, bright spatial solitons
only exist whenever NTE =

(|µ|ε(3)NL + |ε|µ(3)
NL

ε0|ε|
µ0|µ|

)
< 0. A sufficient

condition to make NTE < 0 is to make ε
(3)
NL < 0 and µ

(3)
NL < 0.

However, it is not a necessary condition and it is possible to have
either ε

(3)
NL > 0, or µ

(3)
NL > 0, according to their magnitude and



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch10 page 427

Spatial Solitonic and Nonlinear Plasmonic Aspects of Metamaterials 427

it does not need to happen simultaneously. This is very interest-
ing because, although the introduction of a metamaterial could be
directed towards lenses,39 the coefficient of the nonlinear diffraction
term is entirely controllable with such artificial materials.40 Gap soli-
tons are also of interest.41

(b) TM-polarized beams

i
∂Hx

∂z
+

1
2k
∂2Hx

∂x2
− 1

8k3

∂4Hx

∂x4

+
1
2k
ω2

0

c2

[
εµ

(3)
NL + µε

(3)
NL

µ0|µ|
ε0|ε|

]
|Hx|2Hx

+
1

2µk
µ

(3)
NL

∂2

∂x2
(|Hx|2Hx) = 0. (10.9)

Here, the vector H = (Hx, 0, 0) is used for the TM beam and only the
magnetic polarization can produce the nonlinear diffraction. Once
again, it is the signs of k, ε(3)NL and µ

(3)
NL that determine the behavior

of the critical coefficient NTM =
(|ε|µ(3)

NL + |µ|ε(3)NL
µ0|µ|
ε0|ε|

)
< 0.

For the propagation of bright spatial solitons in a double-negative
metamaterial, each polarization, has a fast variation that is a back-
ward wave, with a wave number k = −|k|. The beam propagation is
along the z-axis, and this can be scaled in the familiar manner by
setting z = |k|w2Z and x = wX, where w is the beam width that will
be measured as an integral number of wavelengths. In fact, it will be
set equal to mλ, where m is an integer and λ is the wavelength of
the guided beam. At this stage, by legitimately ignoring higher-order
linear diffraction term, both nonlinear Schrödinger equations become

i
∂ψ

∂Z
− 1

2
∂2ψ

∂X2
− |ψ|2ψ − κ ∂2

∂X2
(|ψ|2ψ) = 0. (10.10)

It is correct to assert that the nonlinear coefficient, in the TE-
polarized case, is ε(3)NL = −|ε(3)NL| and that µ(3)

NL is negligible, whilst,
in the TM-polarized case, it is correct to say that the nonlinear
coefficient is µ(3)

NL = −|µ(3)
NL|, with ε

(3)
NL set as negligible. Physically,

for TE beams, the nonlinear diffraction is controlled by ε(3)NL and for
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TM beams, it is controlled by µ(3)
NL. In either case, the fundamental

control parameter is κ, and this can be modelled for a particular
metamaterial. The latter can be varied by changing the operating
frequency of the beams, and ψ has been normalized to the following:

TE: ψ =

(√
w2ω2

0

2c2
|µ||ε(3)NL|

)
Ex

TM: ψ =

(√
w2ω2

0

2c2
|ε||µ(3)

NL|
)
Hx. (10.11)

It is important now to get some idea of how a metamaterial can
influence spatial soliton propagation, through the role of κ, and then
to go on to investigate whether the diffraction can be controlled in
any kind of way. For the waveguide shown in Fig. 10.2

κTE = κTM =
1

k2w2
=

c2

ω2w2(ε(ω)µ(ω))
≡ κ, (10.12)

where k is the wave number. If the well-known Drude model is
adopted for the permittivity and the permeability, associated, respec-
tively, with plasma frequencies ωpe and ωpm, then both the permit-
tivity and permeability assume Drude models, where the ratio of the
plasma frequencies is assumed to be ωpm/ωpe = 0.6. Positive phase
material yields the red line, and the negative phase metamaterials
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0

m = 3 m = 1

Fig. 10.2. Plot of the variation of the nonlinear diffraction coefficient, κ, with
frequency normalized to the dielectric resonance (plasma) frequency, ωpe. The
permeability resonance frequency is ωpm.



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch10 page 429

Spatial Solitonic and Nonlinear Plasmonic Aspects of Metamaterials 429

yields the blue curve. Left-hand scale, m = 3, for which the input
beam width is 3λ and the right-hand scale, m = 1, is for an input
beam width equal to λ.

Clearly, κ changes very rapidly with frequency compared to using
a normal positive phase material. It is important, therefore, to inves-
tigate how nonlinear diffraction can be controlled with the use of
metamaterials. One method of control can be called diffraction-
management, which will now be discussed.

10.2.1.2. Diffraction-management

A form of diffraction-management can be arranged using the arrange-
ment shown in Fig. 10.3, which is assumed to be impedance-matched
so that any degradation due to inherent mismatch need not be con-
sidered. A nonlinear positive phase medium (PPM) competes with
nonlinear negative phase medium (NPM) and creates an influence
over spatial soliton beam propagation along the z-axis. The assess-
ment of this process will now be presented in a way that will yield
the final form of a slowly-varying envelope equation capable of being
used for bright spatial soliton applications.

As shown in Fig. 10.3, the unit cell is split into two lengths, l1L
and l2L, each containing a PPM and an NPM material, respectively.
For a TE-polarized spatial soliton, the appropriate form of the non-
linear Schrödinger equation, in each part of the unit cell, is

PPM
NPM

l1L l2L

L

+∞

−∞

y

x

z

Fig. 10.3. A planar waveguide structure consisting of alternating layers of PPM
and NPM. z is the propagation direction and diffraction that takes place along
the x-axis. Note that the periodic structure has a unit cell of length L.
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PPM:

2i
∂Ex

∂z
+

1
k1

∂2Ex

∂x2
+

ω2

c2k1
ε
(3)
NL1|Ex|2Ex

− 1
4k3

1

∂4Ex

∂x4
+
ε
(3)
NL1

ε1k1

∂2

∂x2
(|Ex|2Ex) = 0, (10.13)

NPM:

2i
∂Ex

∂z
− 1
|k2|

∂2Ex

∂x2
− ω2

0

c2|k2| |NTE||Ex|2Ex

+
1

4|k3
2 |
∂4Ex

∂x4
+

ε
(3)
NL2

|ε2||k2|
∂2

∂x2
(|Ex|2Ex) = 0, (10.14)

where

NTE =
(
|µ|ε(3)NL + |ε|µ(3)

NL

ε0|ε|
µ0|µ|

)

and the subscripts 1 and 2 are used to label the regions of the unit
cell. For a TM-polarized beam, NTE is simply substituted by NTM .
For this polarization, the final term in Eq. (10.14) is absent because,
in a PPM, there is no nonlinear magnetic polarization. In the NPM,
however, the TM-polarization does permit a nonlinear diffraction
term, for which the coefficient is µ(3)

NL2/(|µ2||k2|). T is interesting.
Note that both nonlinear diffraction and higher-order diffraction are
included at this stage. Building upon the previous discussion, how-
ever, it can be assumed, now, that the nonlinear diffraction actually
dominates over the other possible contributions from non-paraxiality
and the impact of any possible quintic nonlinearity and any nonlin-
ear saturation that could prevent beam collapse. The procedure is to
consider the unit cell and introduce all the terms in the Schrödinger
equations one at a time. The coefficients are adjusted according to
whether they refer to the PPM, or the NPM, part of this cell. In
other words, the averages are simply going to be integrations with
respect to z over L, but it must be accepted that this type of unit
cell is smaller in scale than a diffraction length measured as k1w

2 or
|k2|w2, where 1, 2 label the unit cell regions and w is the width of the
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spatial soliton. It is possible now to look at the unit cell in Fig. 10.3
and perform a straightforward average of each term in the envelope
equation for TE modes, for example. The integration, for each term,
is over the distance L and this is split into parts concerning the PPM
and NPM, which are small enough to make the terms appear to be
constant over each section. Useful outcomes of this strategy are

Linear diffraction:

1
L

∫ L

0

1
k

∂2Ex

∂x2
dz ≈ 1

k1

(
l1 − k1

|k2| l2
)
∂2Ex

∂x2
. (10.15)

Nonlinearity:((
ω2

0ε
(3)
NL1

c2k1

)
1
L

∫ l1L

0
dz −

(
ω2

0

c2|k2|
)

1
L

∫ L

l1L
|NTE2|dz

)
(|Ex|2Ex)

≈ ω2
0

c2k1

(
l1ε

(3)
NL1 −

k1

|k2| l2|NTE2|
)

(|Ex|2Ex). (10.16)

Nonlinear diffraction:

1
L

∫ L

0

ε
(3)
NL

εk

∂2

∂x2
(|Ex|2Ex) ≈ 1

k1

(
l1
ε
(3)
NL1

ε1
+

k1

|k2| l2
ε
(3)
NL2

|ε2|

)
∂2

∂x2
(|Ex|2Ex).

(10.17)
Higher-order diffraction:

1
L

∫ L

0

1
4k3

∂4Ex

∂x4
≈ 1

4k3
1

(
l1 − l2 k

3
1

|k3
2 |
)
∂4Ex

∂x4
. (10.18)

The net results are the following equations:
TE:

2ik1
∂Ex

∂z
+D

∂2Ex

∂x2
+
ω2

0

c2

(
l1ε

(3)
NL1 −

k1

|k2| l2|NTE2|
)
|Ex|2Ex

− F

4k2
1

∂4Ex

∂x4
+

(
l1
ε
(3)
NL1

ε1
+

k1

|k2| l2
ε
(3)
NL2

|ε2|

)
∂2

∂x2
(|Ex|2Ex) = 0.

(10.19)
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TM:

2ik1
∂Hx

∂z
+D

∂2Hx

∂x2
+
ω2

0

c2

(
l1ε

(3)
NL1

µ0|µ|
ε0|ε| −

k1

|k2| l2|NTM2|
)
|Hx|2Hx

− F

4k2
1

∂4Hx

∂x4
+

(
k1

|k2| l2
µ

(3)
NL2

|µ2|

)
∂2

∂x2
(|Hx|2Hx) = 0, (10.20)

where the linear diffraction and higher-order linear diffraction coef-
ficients are

D = l1 −
√
ε1µ1

|√ε2µ2| l2, F = l1 −
(
ε1µ1

|ε2µ2|
) 3

2

l2 (10.21)

and εi, µi are the relative permittivities and permeabilities of the
parts of the unit cell shown in Fig. 10.3. The control process will
now aim at reducing D so that any first-order linear diffraction can
be minimized and enable nonlinear diffraction to become important.
If the first-order linear diffraction is reduced in this way, however,
it opens up the possibility, in principle, that the higher-order linear
diffraction term, controlled by the parameter F , is not minimized.
However, k1

|k2| does not have to be unity, and higher-order linear
diffraction can be changed by simply manipulating the structure,
in order to control D or F . This means that for any choice of D, it
is possible to arrange for the ratio k1

|k2| to make the contribution of
higher-order linear diffraction negligible. This good outcome shows
that a reduction of D does not necessarily mean that higher-order
linear diffraction has to be introduced. This conclusion means that it
will not be regarded here as an important contribution to the enve-
lope equation. Instead, the emphasis will be directed towards first-
order diffraction-management. Also, even though non-paraxiality is
reduced as D tends to zero, nonlinear diffraction is the dominant
influence as beams become narrower. Indeed, it takes over the role of
preventing beam collapse. Clearly, if a nonlinear material is selected
that has a large quintic contribution, then the latter will compete
with the nonlinear diffraction. There are two broad scenarios, namely,
(a) no diffraction-management but the nonlinear diffraction becomes
a very important influence as the beams narrow and (b) manipulating
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D, to engage in some form of linear diffraction-management that can
be arranged in a number of ways to make D → D(z) through the
deployment of a metamaterial.

The scales z = (kw2)Z and x = (w)X can still be used, where w
is actually an arbitrary unit but can be physically interpreted as the
beam width. Hence,

i
∂ψ

∂Z
+
D

2
∂2ψ

∂X2
+ |ψ|2ψ + κTE,TM

∂2

∂X2
(|ψ|2ψ) = 0, (10.22)

where

TE:

ψ = w
√
GTE

1 Ex, GTE
1 =

ω2
0

c2

(
l1ε

(3)
NL1 −

k1

|k2| l2|NTE2|
)
,

GTE
2 =

(
l1
ε
(3)
NL1

ε1
+

k1

|k2| l2
ε
(3)
NL2

|ε2|

)
. (10.23)

TM:

ψ = w
√
GTM

1 Hx, GTM
1 =

ω2
0

c2

(
l1ε

(3)
NL1

µ0|µ|
ε0|ε| −

k1

|k2| l2|NTM2|
)
,

GTM
2 =

(
k1

|k2| l2
µ

(3)
NL2

|µ2|

)
(10.24)

and for each polarization κTE = GTE
2

w2GTE
1

and κTM = GTM
2

w2GTM
1

.
Equations (10.22)–(10.24) reveal that a number of metamate-

rial types could support typical bright spatial solitons. However, the
focus here is upon two quite realistic cases. PPM, for TE beams, con-
tributes the major part of the nonlinearity. In this case, ε(3)NL2 = 0 and
µ

(3)
NL2 = 0 and, of course, µ(3)

NL1 = 0. Without nonlinear diffraction,
it is not necessary for TM beams to use only magnetic nonlinearity.
However, if κTM is required, then it will be assumed that this applies
to the case when the nonlinearity is located within the NPM, and
that ε(3)NL2 = 0, ε(3)NL1 = 0 and µ

(3)
NL2 �= 0. For the diffraction-managed
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cases to be presented below, therefore, κTE and κTM reduce to the
simple forms

κTE =
1

k2
1w

2
, κTM =

1
k2

2w
2
. (10.25)

10.2.1.3. Simulations

Nonlinear diffraction will prevent beam collapse as the power carried
by a spatial soliton increases and results in a limit on how narrow
the beams can be. It is a process that dominates non-paraxiality
and even quintic nonlinearity, provided the latter is not too large.
Nonlinear diffraction is still, nevertheless, a diffraction process so
that as beams become narrow, and the power goes up, and it will
still have to compete with the linear diffraction, unless the latter is
managed to be of small influence.

The question of soliton control has been addressed39,40 as has the
properties of gap solitons.41 The latter, however deals with quadratic
nonlinear material that does not feature in this discussion. All of the
issues addressed here involve only bright spatial solitons driven by
third-order nonlinearity. Figure 10.4 shows the behavior of bright spa-
tial solitons in a homogeneous metamaterial guide for which l2 = 0 and
both TE and TM modes have the same nonlinear diffraction coefficient

Fig. 10.4. Behavior of a bright soliton beams, with beam width the order of a
wavelength (m = 1), (m = 1) in a homogeneous guide (D = 1). Initial (input)
beam shape is sech(X). (a) κ = 0, (b) κ = 0.17.
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(a) (b)

Z

X

Z

X

Fig. 10.5. Initial input: 3 sech(X), m = 3. No linear diffraction management.
(a) κ = 0, (b) κ = 0.0028.

κ. Figure 10.4(a) shows the behavior in the absence of nonlinear
diffraction. There is no diffraction management so, in 10.4(b), the
presence of nonlinear diffraction creates a limitation, with a lowering
of intensity and the introduction of some broadening.

In the absence of diffraction-management, Fig. 10.5. shows what
happens to a higher order, breathing soliton if nonlinear diffraction
is introduced. The presence of 100% of the linear diffraction means
that a first-order soliton, namely a sech(X) input, would need to
be a beam with a width the order of a wavelength for the nonlinear
diffraction to disturb its stability. Figure 10.5(a) shows, however, that
a higher-order soliton, such as 3 sech(X) is, in fact, three first-order
solitons held together with zero binding energy. Unperturbed, this
soliton will propagate down the z-axis as a breather. Figure 10.5(b)
shows that it is rapidly perturbed by the presence of nonlinear diffrac-
tion. The breathing is interrupted and a narrow, first-order soliton is
created, plus some low-energy radiated beams. However, this behav-
ior could be frequency-controlled. It can be seen that there is a special
position on the z-axis at which the beam starts to split, where control
by a metamaterial, an appropriate frequency, could be introduced.

In order to achieve the outcomes in Fig. 10.6, diffraction-
management is created, by the deployment of a double-negative
metamaterial. To begin with, Fig. 10.6. shows, in the absence of
nonlinear diffraction, what happens when the linear diffraction is
reduced from its starting value, on the input plane, to 10% on the
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(a) (b)

Z

X

Z

X

Fig. 10.6. Illustrating the impact of linear diffraction management. Initial
inputs: sech(X), m = 3. The diffraction-management factor is reduced from an
input value of 100%–10% over a distance of 10 Rayleigh lengths setting (a) κ = 0
and (b) κ = 0.0028.

(a) (b) (c)

Z

X

Z

X

Z

X

Fig. 10.7. Linear diffraction set at 10%. Inputs: ψ = sech(X). (a) κ = 0 (b) κ =
0.00168 (c) κ = 0.005. In (b) splitting occurs after 45 Rayleigh lengths.

output plane. This is illustrated here, just as an example, by using
a linear reduction as progression down the z-axis takes place. It is
interesting that the intensity scale is now much more compressed
than in the previous figures. κ = 0 is an interesting case because it
can arise simply because the linear diffraction is dominant. κ need not
be exactly zero for this outcome to appear. In contrast, κ = 0.0028
is closer to the κ resonance region. In both cases, ultra-narrow beam
formation occurs.

Figure 10.7 shows what happens when the diffraction-
management is fixed to reduce the linear diffraction to 10%. For
a first-order soliton, launched at z = 0, decreasing the linear diffrac-
tion to 10% creates a situation in which there is now too much
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power available for the propagation of this first-order soliton. In
optical fiber work, this kind of diffraction reduction would lead to a
breathing soliton of order

√
10. Figure 10.7(a) shows that this is pre-

cisely what happens, and a third-order breathing soliton is created.
In Fig. 10.7(b), nonlinear diffraction is introduced into the system
and it acts as a perturbation that splits the breather. The outcome
now is three low-power, pseudo-solitons. However, the power con-
tained within each one is not enough to retain a soliton status if it is
entered into a normal, 100% diffraction medium. Each one will sim-
ply radiate. In Fig. 10.7(c), a higher value of the nonlinear-diffraction
coefficient has been used and, therefore, as a perturbation, it is larger
and the breather is split quite quickly.

10.3. Bright Spatial Solitons in Hyperbolic
Metamaterials

10.3.1. Basic features of the metamaterial

In this type of metamaterial, monochromatic electromagnetic fields,
with complex amplitudes that vary with time as e−iωt, propagate in a
non-magnetic dielectric, anisotropic environment, which has a diago-
nal permeability tensor µ = µ0I, where I is the standard unit tensor
and µ0 is the permeability of free space. The dielectric permittivity,
however, is characterized by a tensor ε, which has off-diagonal terms
determined by its uniaxial nature. Two out of three eigenvalues of ε
coincide. The latter can defined as ε⊥ (double multiplicity), while the
other eigenvalue is defined as ε‖ (single multiplicity). From an opti-
cal viewpoint, ε⊥ and ε‖ are the dielectric permittivities “sensed” by
linearly polarized electric fields oscillating normal and parallel to the
optic axis n̂, respectively, corresponding to the symmetry axis of the
medium. Without loss of generality, it can be assumed that n̂ lies in
the (yz) plane. The dielectric tensor ε then assumes the form

ε =



εxx 0 0

0 εyy εyz

0 εzy εzz


,
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where, in general, all the elements are space-dependent functions.
Cylindrical symmetry implies εij = ε⊥δij + εaninj(i, j = x, y, z),
where δij is the Kronecker’s delta, ni are the Cartesian compo-
nents of the optic axis, and εa = ε‖ − ε⊥ is the optical anisotropy.
Given the condition n̂ · x̂ = 0, then setting θ to be the angle
between n̂ and the axis z, yields the tensor components εxx = ε⊥,
εyy = ε⊥ + εa sin2 θ, εzz = ε⊥ + εa cos2 θ, and εyz = εa sin θ cos θ. In
the absence of sources, and using the label NL to denote nonlinear
components, Maxwell’s equations give

∇×E = iωµ0H, (10.26)

∇×H = −iωε ·E − iωPNL, (10.27)

where, in Eq. (10.27), the linear and nonlinear contributions to the
medium polarizability are separated. Also, in this equation, a local
response is assumed in the linear regime that neglects spatial disper-
sive effects such as optical activity. An extra feature is that, without
losing any generality, it is simpler, and perfectly accurate, to conduct
investigations with 2D geometries by setting ∂x = 0. In this limit, the
ordinary and the extraordinary waves are decoupled, even in the non-
paraxial limit. For the hyperbolic metamaterial being investigated
here, the focus is upon the extraordinary wave, i.e. it is assumed that
the electric field oscillates in the plane yz. In addition, PNL · x̂ = 0,
since the nonlinearity is assumed to not couple extraordinary and
ordinary polarizations. If the spatial derivatives of εij are neglected,
Eqs. (10.26) and (10.27), using a Cartesian reference system, yield42

Ez = − i

ωεzz

∂Hx

∂y
− εzy

εzz
Ey − 1

εzz
PNL,z, (10.28)

∂Hx

∂z
+
εyz

εzz

∂Hx

∂y
= − iω

(
εyy − εyzεzy

εzz

)
Ey

− iω
(
PNL,y +

εyz

εzz
PNL,z

)
, (10.29)

∂Ey

∂z
+
εzy

εzz

∂Ey

∂y
= −iωµ0Hx − i

ωεzz

∂2Hx

∂y2
− 1
εzz

∂PNL,z

∂y
. (10.30)
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This system of equations governs light propagation in the paraxial
and non-paraxial regimes, regardless of the nature of the nonlinear
response, which, in principle, could include second- and third-order
nonlinearities, and local and non-local responses.

10.3.1.1. The walk-off angle

In the absence of losses, or gains, the dielectric tensor ε is Hermitian
(i.e. εij = ε∗ij) and energy is conserved, as revealed by the Poynting
theorem in the harmonic regime. Without losses, all the elements of ε
are real, yielding εyz = εzy. Also, in a uniaxial medium, the Poynting
vector S of an electromagnetic wave packet, with a spatial spectrum
centerd around ky = 0, propagates at a walk-off angle δ = arctan( εyz

εzz
)

with respect to the axis z. This is sketched in Fig. 10.8. Another way
of putting this is to note that, while the wave-fronts are normal to
the axis z, the electromagnetic energy propagates at an angle δ with
respect to it. The angle δ depends on the orientation of the average
wavevector with respect to the optic axis, i.e. in this case on the
angle θ. Finally, the walk-off angle does not depend on the spectrum
of the input beam; thus, the approach remains valid for wave packets
as narrow as a few wavelengths.43

Fig. 10.8. Pictorial sketch of the beam walk-off. The Poynting vector S, i.e.
the transmission direction of the electromagnetic energy, forms an angle δ with
respect to the wavevector k, the latter depending on the angle θ between the
optic axis and the wavevector.
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An important point is that Eqs. (10.28)–(10.30) apply no matter
what the values of εij are: this implies that the tensor elements can
be real, positive or negative (i.e. the case of hyperbolic dispersion),
or even complex (when losses are present).

In order to consider the creation of bright spatial solitons,
Eqs. (10.28)–(10.30) can be rewritten as a single Helmholtz equa-
tion. Equations (10.28) and (10.29) can be combined into a single
equation using the coordinate transformation43

x′ = x

y′ = y − (tan δ)z

z′ = z.

This new coordinate system, x′y′z′, is the frame of reference in which
the ray is at rest. The equations are valid if the walk-off angle does not
undergo substantial changes across the wave front (i.e. in planes z =
constant) and its longitudinal (i.e. along z) variations are adiabatic.

Light propagation then obeys the single scalar Helmholtz
equation42

∂2Hx

∂z′2 +Dy
∂2Hx

∂y′2 + k2
0n

2
eHx

= −iω∂(PNL,y + tan δPNL,z)
∂z′ +

iωn2
eε0

εzz

∂PNL,y

∂y′ , (10.31)

where the local, extraordinary, refractive index ε0n
2
e = εyy − εyzεzy

εzz

is introduced together with the diffraction coefficient Dy = ε0n2
e

εzz
.

The expression for ne shows that the physics of anisotropic media is
richer than in the isotropic case: a photonic potential can arise from
changes on either of the two eigenvalues ε⊥ and ε‖, as well as from
space-dependent rotations of the optic axis (when θ is a function of
position). The diffraction coefficient

Dy = −k0n0
∂2kz

∂k2
y

∣∣∣∣
ky=0

accounts for the local concavity of the spatial dispersion kz(ky). In
isotropic media, the dispersion curve is a circle (in the 2D limit),
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yielding Dy = 1. In the anisotropic case, the dispersion curves are
ellipses due to the direction-dependent refractive index, thus the
diffraction coefficient depends on the direction of the optic axis,
i.e. on θ.

10.3.1.2. Hyperbolic dispersion

To address the main features of bright spatial solitons in the presence
of hyperbolic dispersion, it is essential that the role of Dy in the light
evolution is examined. To achieve this outcome, consider Eq. (10.31),
for paraxial waves, (∂2

z
′Hx ≈ 0), in the linear regime (PNL = 0). For

the slowly varying envelope of the magnetic field A,

i
∂A

∂z′ = − Dy

2k0n0

∂2A

∂y′2 −
k0

2n0

(
n2

e − n2
0

)
A, (10.32)

where n0 is the average extraordinary refractive index and A is
defined through Hx = A(y′, z′)eik0n0z′ .

Equation (10.32) is a Schrödinger-like equation, with z′ playing
the role of an effective time and where the substitution �→ 1 must
be performed. The effective mass is then given by k0n0/Dy, and
the effective photonic potential is −k0(n2

e − n2
0)/(2n0). Thus, the

diffraction coefficient Dy is inversely proportional to the equivalent
mass of the light beam.

Striking differences in electromagnetic propagation arise from the
signs of the two dielectric eigenvalues, ε⊥ and ε‖. When both eigenval-
ues are positive, the standard anisotropic medium features an ellip-
tic dispersion. A topological transition in spatial dispersion kz(ky)
occurs when ε⊥ε‖ < 0: the dispersion curves become hyperbolae44

and the corresponding metamaterials are known as hyperbolic, or
indefinite. The different signs of the eigenvalues imply dielectric,
or metallic, responses according to the polarization of the imping-
ing field. A hyperbolic dispersion can be achieved in metamaterials
consisting of planar multilayers of dielectrics and metals, or in the
presence of metallic nanowires embedded in a dielectric.45

Another property is how Dy depends on the geometric features of
the dispersion curves. For elliptic dispersion,Dy > 0, and light beams
propagate as massive particles subject to a potential given by the
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Fig. 10.9. Typical behavior of beam walk-off δ (left axis, blue solid lines) and
diffraction coefficient Dy (right axis, dashed red lines) versus the angle θ between
the wavevector and the optic axis, for elliptic and hyperbolic materials. The per-
mittivity eigenvalues are |ε⊥|/ε0 = 2.25 and |ε‖|/ε0 = 2.89. In the hyperbolic
case, the plotted range of θ corresponds to the existence of non-evanescent plane
waves.

sign-inverted change in refractive index. For hyperbolic dispersion,
the diffraction coefficient is always negative due to the opposite cur-
vature of the dispersion curves kz(ky) with respect to the elliptic
case. In fact, using the relationship ε0n

2
e = ε⊥ε‖/εzz, the diffraction

coefficient can be rewritten as

Dy =
ε⊥ε‖
ε2zz

. (10.33)

The dependence of the diffraction coefficient Dy and the walk-off
angle δ on the optic axis position, θ, is shown in Fig. 10.9. For ellip-
tic dispersion, the walk-off angle reaches a maximum value around
θ = 45◦, and the sign is that of the anisotropy εa. The diffraction
coefficient is always positive. In the hyperbolic case, two qualitatively
different behaviors arise, according to whether ε‖ < 0 (Type I) or
ε‖ > 0 (Type II). For Type I dispersion, the walk-off angle is always
positive, because anisotropy εa is negative. Furthermore, δ increases
monotonically with θ and reaches 90◦ at the edge of the existence
region. The diffraction coefficient, Dy, starts from a value close to −1
for θ = 0, and then decreases, continuously, with θ, finally reaching
a singularity at the border of the existence range. Type II material
has a similar behavior, but now the walk-off angle is always negative.
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The similar behavior for Type I and Type II stems from the fact that
they are related by a 90◦ rotation in the 2D case being treated here.

A negative diffraction coefficient heavily affects light propagation:
beams now behave like particles with negative masses. This means
that light gets attracted towards regions where the refractive index is
lower, in sharp contrast with the standard Fermat’s principle. Thus,
graded-index (GRIN) waveguides in hyperbolic media require a core
with lower refractive index.

Starting from the results in the linear case, it is straightforward to
elucidate the main properties of bright spatial solitons in hyperbolic
media. To address light self-localization in hyperbolic materials, is
assume that a local Kerr-like nonlinear response, leading to a refrac-
tive index variation, dependent on the beam intensity, i.e.

n2
e − n2

0 = n2|A|2. (10.34)

The detailed analysis of other nonlinearities can be performed start-
ing from Eq. (10.31). Substituting Eq. (10.34) into Eq. (10.32) results
in a standard nonlinear Schrödinger equation. A simple analogy with
temporal solitons in fibers can be carried out.46,47 Due to the nega-
tive diffraction (dispersion in time), the formation of bright spatial
solitons requires n2 < 0, whereas for n2 > 0 dark solitons can exist.
This is in agreement with the theoretical results reported in the lit-
erature and based on coupled mode theory,48,49 or in the analogy
with gravitational systems.50 Figure 10.10 shows the evolution of a
Gaussian beam in the presence of a focusing/defocusing nonlinearity
in a Type I material for θ = 0, computed using a beam propagation
code for θ = 0, i.e. in the absence of walk-off. When n2 < 0, the
beam undergoes self-focusing and a hyperbolic secant bright soliton
emerges after radiation sheds away (Fig. 10.10(a)). For n2 > 0, a
Gaussian beam undergoes enhanced diffraction with respect to the
linear case (Fig. 10.10(b)). Figure 10.10(c) finally shows the beam
cross-sections for a given propagation distance versus the effective
excitation n2P : the transition from a self-trapped state to a beam
wider than in the linear case is clearly appreciable.
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Fig. 10.10. Light self-trapping in hyperbolic metamaterials. Evolution of a Gaus-
sian beam of waist 2 µm in the presence of local Kerr (a) focusing and (b) defo-
cusing nonlinearity for the same input power. (c) Normalized beam cross-section
versus y at z = 500 µm versus the normalized excitation n2P . Intensity profile
on the plane yz for a fixed input beam when for (d) θ = 0◦, (e) θ = 10◦, and
(f) θ = 40◦. Input beam is launched normal to the sample and the observed
deflection is exclusively due to the linear walk-off. Here, λ = 1µm, ε⊥ = 2.26 and
ε‖ = −2.87.

Figures 10.10(d)–10.10(f) show the soliton dependence on the
optic axis angle, θ, for fixed n2P . First, the solitonic beam follows the
linear walk-off plotted in Fig. 10.9, thus it is possible to steer the self-
confined beam by rotating the optic axis.51 Second, despite the fact
that n2P is fixed, the soliton width changes with θ due to the varia-
tion of the diffraction coefficient, because the amount of self-focusing
necessary to form a soliton depends on the diffraction spreading.

10.4. Nonlinear Plasmonic Aspects of Metamaterials

10.4.1. Metamaterial field concentrator

The idea of a nonlinear “transformational optics-inspired” electro-
magnetic cylindrical energy concentrator can be appreciated from
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(a) (b)

Fig. 10.11. (a) The geometry of isotropic graded-index nonlinear field super-
concentrator. One incident beam is shown. Angle coordinate in the cylindrical
system is θ = π − Ψ0. The mode (Hr,Hθ, Ez) is considered for isotropic concen-
trator. (b) The system “Lithosphere–Atmosphere–Ionosphere–Magnetosphere”,
where the method of modelling, similar to that used for the field concentrators, is
applicable. The conductivity of the lithosphere is supposed, for the simplification,
to be the homogeneous one and the same as everywhere in the Earth.

Refs. 37, 52–57. Such a concentrator includes both an external linear
region with a dielectric constant increasing towards the center and
an internal region with nonlinearity characterized by constant coef-
ficients. Figure 10.11(a) shows the cross-section of such a cylindrical
concentrator. The coordinate system is defined as (r, θ, z) and the
cylinder axis coincides with the z-axis. The linear external region
(r > R0) is occupied by a homogenous medium, with a relative per-
mittivity of ε0, and the inner core (r ≤ Rc) is nonlinear, homogeneous
and non-magnetic.

The nonlinearity of the core capture region is expressed through
a change to its linear dielectric behavior through the addition of a
saturable nonlinear permittivity δεNL. The outer cylindrical shell,
(Rc ≤ r ≤ R0) is both inhomogeneous and linear. The inhomoge-
neous permittivity increases with decreasing the radius, thus ensuring
light capture through a graded-index technique.37 In a semiconduc-
tor, such a profile of the permittivity is due to non-uniform doping
and, thus, a non-uniform steady electron concentration.

The cylindrical shell structure can capture electromagnetic
energy approaching it externally, through a form of graded-index in
the outer cylindrical shell. Ideally, an isotropic form of permittivity
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can be used that will capture incoming electromagnetic energy.37

This energy is deposited into the core of the concentrator. The cre-
ation of such a concentrator, which will capture energy, will not
engage in reflections that will diminish its effectiveness. This scenario
can be created using a straightforward form of radially dependent
permittivity distribution,37 to which now will be added the possibil-
ity that the core can become strongly nonlinear.

The form of the relative permittivity distribution to be adopted
here, including absorption in the outer cylindrical shell and a non-
linear core, can be written very simply as

ε(r) =




ε0, r > R0,

ε0(R2
0/r

2) +
iγloss

(R2
0/R

2
c)− 1

((R2
0/r

2)− 1),

Rc < r < R0

εc + δεNL + i(γloss − γgain), r < Rc.

(10.35)

In (10.35), γloss and γgain are (linear) absorption and gain parameters,
respectively. An absorption parameter γloss has been included for the
core and also the external cylindrical shell. Note that in the latter, the
damping changes with radius r and goes to zero at r = R0 and goes
to γloss when r approaches Rc. The elementary form εc = ε0(R2

0/R
2
c)

ensures that, as r → Rc, there is complete continuity across the
interface in the absence of amplification (γgain = 0).

The nonlinear addition to the relative permittivity of the core is
set to the saturable Kerr form

δεNL = α|Ez |2/(1+β|Ez |2+γ|Ez|4)+i(αs2|Ez|2+αs4|Ez|4), (10.36)

in which α is complex and β, γ, αs2 and S4 real constants. α describes
complex saturable nonlinearity, coefficients β, γ determine nonlin-
ear saturation (including saturation of fourth order with a coef-
ficient γ) and coefficients αs2 and αs4 determine additional non-
saturable nonlinear losses, again, including the fourth-order nonlinear
term (∼ αs4). The contact with a previously used simple form37 of
the permittivity is achieved by setting γ = 0, and setting δεNL = 0,
in order to stay in the linear domain. It is easy to see that, in a linear
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environment, each dielectric permittivity has been set to merge into
the other as the appropriate radius is reached.

Again, the transverse electric mode (Hr,Hθ, EZ) is considered,
and the corresponding full-wave equation is

1
r

∂

∂r

(
r
∂Ez

∂r

)
+

1
r2
∂2Ez

∂θ2
+ k2

0ε(r)Ez = 0. (10.37)

In order to simulate this type of structure, the complex geometrical
optics, within the inhomogeneous region Rc ≤ r ≤ R0, is developed
to get the precise matching on the boundary r = Rc. Inclusion of the
saturation, characterized by β in nonlinear electrodynamic region, is
very important, because any superfocusing will lead to such strong
field concentrations that the core will move rapidly out of the weakly
nonlinear regime and beyond the scope of the recently reported57

nonlinear transformation optics. Generally, several beams are inci-
dent upon the concentrator simultaneously.

Within the nonlinear core, the nonlinear equation has been solved
directly by means of the expansion of Ez and the permittivity by the
Fourier series on the angle θ. The beams incident to the core figure
in the boundary conditions at r = Rc.

A new nonlinear effect called “switching nonlinear focusing” is
found. Accurately speaking, the tendency to “hot spot” formation
(small region, of order of wavelength with very strong field concen-
tration) is found, and “switching” to such a new regime is achieved,
when amplitude(s) of input beam(s) exceeds some threshold value.
For moderate values of “impact distance” ρ(ρ ≤ 0.75 R0) and inci-
dent beams propagating parallel to the axes X (Fig. 10.11), a “hot
spot” is placed near the coordinate

(x ≈ −Rc, y ≈ 0). (10.38)

It is interesting that the point, where strong nonlinear focusing is
possible, corresponds to the position of focusing of linear beams (in
the absence of any core nonlinearity) in the CGO approximation,
which was demonstrated directly by means of numerical modelling
for the chosen distribution of linear part of electric permittivity (see
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Eq. (10.35)). Note first that a tendency to such a regime is rather
universal. Namely, it will be demonstrated now that formation of
hot spots may start as a result of any of the following processes:
increase of input amplitude (Ainp), increase of linear amplification
(γgain) (or decrease of linear losses γloss) in the central nonlinear
region, decrease in nonlinear losses (Im(α), αs2 or αs4) or decrease in
saturation of nonlinearity (β or γ) (see Eq. (10.36)). The “start of hot
spot formation” or “tendency to hot spot formation” reveals itself in
increase of field intensity in the vicinity of the point of “possible hot
spot” with coordinates determined by Eq. (10.37).

Figures 10.12(a)–10.12(c) illustrate a tendency to “hot spot”
formation when an input amplitude, defined here as a normalized
quantity Ainp tends to the threshold value, which is a bit larger
than 0.4445 as shown in Fig. 10.12(c). In the absence of nonlinearity
(δεNL = 0), some diffraction and interference maxima and minima
are produced as shown in Fig. 10.12(a). In the presence of focusing
nonlinearity, however, with δεNL �= 0, the input amplitude plays
a critical role in what the final outcome will be. Below a thresh-
old value, of the order of 0.4445, nonlinear focusing does take place
within the nonlinear region, but with a larger amplitude, and smaller
peak area (Figs. 10.12(b) and 10.12(c)) than could be achieved for an
entirely linear system. When the input amplitude exceeds a threshold
value, the peak position “jumps” from some point inside the nonlin-
ear cylinder (Figs. 10.12(b) and 10.12(c)) to a point near to the inter-
face between the linear and nonlinear cylinders, and Fig. 10.12(c)
shows “the start of preparation” of such a “jump”. Figure 10.12(d)
illustrates (only) a tendency to the “hot spot” formation, when an
incident beam amplitude slightly exceeds the threshold value. The
“hot spot” can be considered as a self-consistent strongly nonlinear
surface resonator on the boundary between the linear and nonlinear
region (in the vicinity of the point) x = −Rc, y = 0.

Thus, in this nonlinear system the nonlinear focusing takes place
at the input amplitudes below the threshold, or, in other words,
the formation of spatial solitons occurs. Also, the hot spot forma-
tion may occur above the threshold value in the near-surface region
of the internal cylinder. After exceeding by an input amplitude a
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(a) (b)

(c) (d)

Fig. 10.12. Tendency to hot spot formation, while input amplitude of incident
beam(s) to a tends threshold value. Number of incident beams Nb = 2; (a) field
distribution in the core for purely linear system (a = 0, αs2 = 0, αs4 = 0) for
normalized input amplitude (of each of the incident beams) Ainp = 0.444; (b) field
distribution in the nonlinear core for the same parameters, as in the case (a), while
incident amplitude is below the threshold value; (c) incident amplitude is very close
to but still below a threshold value,Ainp = 0.4445; (d) tendency to the formation of
“hot spot” in the vicinity of the point (x = −Rc, y = 0) when incident normalized
amplitude is slightly above a threshold value,Ainp = 0.452. Numerical convergence
in this range of amplitude is problematic due to non-regular dependence of “output”
on “input” amplitude; here “input” and “output” amplitudes mean an amplitude of
an incident beam(s) and an amplitude in the “hot spot”.

threshold value (Fig. 10.11(d)) the nonlinearity is strong and cannot
be considered as moderate. Moreover, it should be considered in a
non-local manner. Therefore, in this range of amplitudes, we can say
only about an illustration of a tendency to “hot spot” formation (see
also a caption to Fig. 10.11(d). Let us emphasize that the numerical
convergence in the “above-threshold” region of parameters, to which
Fig. 10.11(d) does correspond, is problematic, because in such a
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region a non-regular dependence of “output” on “input” amplitude is
observed. To clarify the question of “above-threshold behavior”, now
a new, non-phenomenological model of an active medium accounting
for non-locality and non-small nonlinearity is under development.

10.4.2. Nonlinear plasma waves in near-zero

metamaterial structures

10.4.2.1. Basic equations

Consider the excitation of electron plasma waves in a plasma slab, see
Fig.10.13(a).Theslab isboundedbythinsmoothdielectricsatz = ±Lz

with a low dielectric permittivity. Outside there is a vacuum, so the
dielectric permittivity in the remaining space is ε = 1. The thickness
of the plasma slab is 2Lx. The electron plasma waves are investigated
with the componentsEz ,Hy ≡ H,Ex, vx, vz,which are symmetricwith
respect toEx and vx components. The ions are considered as immobile.

The hydrodynamic equations for the volume concentration n and
the velocity v of the electron gas are58,59:

∂�v

∂t
+ (�v · �∇)�v =

e

m

(
1− v2

c2

)1/2(
�E +

1
c
�v × �H − �v

c2
(�v · �E)

)
− ν�v

−
(

1− v2

c2

)1/2
v2
T

n
�∇n;

∂n

∂t
+ �∇ · (n�v) = 0.

(10.39)

Fig. 10.13. (a) is the geometry of problem. (b) is the wave dispersion for linear
electron plasma waves in the plasma layer.
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The moving charges are assumed as positive, e > 0. The weakly
relativistic case is considered: v/c ≤ 0.2, where c is the velocity of
light in vacuum. Here, vT = (kBT/m)1/2 is the electron thermal
velocity. In metallic plasmas, it is replaced by the Fermi velocity
cF ∼ 108 cm/s.

Maxwell equations for this case are:

�∇× �H =
1
c

∂ �E

∂t
+

4π
c
en�v;

�∇× �E = −1
c

∂ �H

∂t
; n�v = 0 for |z| > Lz. (10.40)

At the boundary z = Lz, the conditions are the continuity of EM
field components, also the normal component of electron velocity is
vz = 0.

The dispersion equation for the symmetric vx(−z) = vx(z) lin-
ear electron plasma waves in the plasma layer is (the cold plasma,
T = 0):

tanh(rLx) +
r

pε(ω)
= 0, where r =

(
k2 − ω2

c2
ε(ω)

)1/2

,

p =
(
k2 − ω2

c2

)1/2

, ε(ω) = 1− ω2
p

ω2
. (10.41)

For a linear, cold plasma wave when T = 0, the volumetric oscil-
lations of the electron concentration are absent: n = n0, whereas the
oscillations of the surface charge are present. The dispersion curves
for different parameters are presented in Fig. 10.13(b).

In the following development, the simulations of the resonant
second-harmonic in the bounded electron plasma are presented and
the surface nonlinearity is dominant and is assumed to be moderate.

10.4.2.2. Giant generation of second-harmonics in
permittivity-near-zero plasmonic metamaterial

The nonlinear phenomenon that provides localized generation of the
second-harmonic with a high amplitude is very useful for sensor
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applications. The general method for the demonstrating the exis-
tence of nonlinear waves in the layered structures using a plasma,
and accounting for both volume and surface nonlinearities, is pre-
sented. Once this is achieved, estimations based around gaseous and
semiconductor plasmas and metals are presented, with a discus-
sion of possible plasmonic metamaterial structures using arrays of
nanoparticles.

Consider the nonlinear motion in an electron plasma in the sim-
plest layered structure supporting surface plasmons, namely, the
structure plasma-linear dielectric, see Fig. 10.13(a). Suppose that the
plasma occupies the half-space x ≤ 0 and that a (linear) dielectric,
with permittivity constant ε occupies half-space x > 0, while a wave
packet propagates along the x-axis. If ε = 1 (dielectric is vacuum),
the linear dispersion equation for surface plasmons is straightforward
to obtain when the width of the plasma layer is large.

If the field components vary as ∼ exp[i(ωt − kz)], ω and k are
frequency and wavenumber, respectively. In the nonlinear problem
they would play the roles of carrier frequency and wavenumber of
a narrow wave packet. ωp and c are plasma frequency and speed
of the light, respectively. The evolution of the coupled main and
second-harmonics of surface plasmons, uses the methods reported
earlier.31−35 A weak nonlinearity and a slowly varying amplitude
will now be assumed together with the introduction of the varia-
tion of the plasma concentration, velocity and electric and magnetic
fields in the example form ñ∗2, �v∗2 , �E∗

2 ,
�H∗

2 . If the suffix 1 is used, such
values would correspond to surface nonlinear plasmons and are pro-
portional to the slowly varying nonlinear amplitude. The index “2”
describes corresponding linear waves in the same system, but with-
out any nonlinearity. The upper index “*” simply means complex
conjugation. Corresponding equations of motion in nonlinear plasma
have the form

∂ñ1

∂t
+ div(n�v1) = −div(ñ�̃n),

∂�v1
∂t

+
e

m
�E1

= −(�v1�∇)�v1 − e

m
[�v1x �H1]
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curl �H1 =
1
c

∂E1

∂t
+

4π
c

(−en0�v1 − eñ�v),

curl �E1 = −1
c

∂ �H1

∂t
. (10.42)

Similar equations (but without nonlinear terms) can be written for
the linear components with indices “2”. In Eqs. (10.42), we put elec-
tron concentration n to be equal to n = n0 + ñ, where n0 and ñ are
stationary and variable parts of the electron concentration, and e and
m are electron charge and mass, respectively. The corresponding sys-
tem of complex conjugated equations for linear plasma, and the pro-
cedure similar to that used for the derivation of energy conservation
law.60 We account for boundary conditions at the interface (z = 0)
“plasma-dielectric”, the presence of free carriers, and, respectively,
surface charge and surface current jsurf , namely

H1y|x=+0 −H1y|x=−0 = −4π
c
jzsurf , jzsurf = −eδ�vz|x=+0 (10.43a)

Here, δ is the surface charge concentration. Using (10.43a), we get

[ �E∗
1 × �H2]x:x=+0 − [ �E∗

2 × �H1]x:x=−0 =
4π
c
E∗

2zeδvz |x=+0. (10.43b)

In Eq. (10.43b), a notation like [. . .]x:x±0 means x-component of the
vector [. . .], taken at x = ±0.

Finally, the integral nonlinear relation is obtained in the form

∂

∂t

∫ x

−∞

{
1
4π
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�E∗
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�E∗

2) +mn0�v1�v
∗
2

}
dx

+
c
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∂
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∫ ∞
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2(ñ�v)dx.

(10.44)
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Note that plasma concentration n0 in the first term in Eq. (10.44) is
non-zero only in the region x ≤ 0, and, in the expressions like E∗

2(ñ�v),
etc., in (ñ�v), the terms ∼ exp(iωt) are revealed. The terms in the
integral relation (3.4) have a clear physical sense. Accounting for the
fact that nonlinear terms with index “1” are proportional to slowly
varying amplitude Ai, it is possible to show that the first and second
terms in the left-hand part of Eq. (10.44) are proportional to the time
and spatial derivatives of the slowly varying amplitude, respectively,
while the coefficients of proportionality are integral densities of linear
wave energy and energy flow, respectively. Moreover, more detailed
analysis shows that the total linear operator, describing the evolution
of the slowly varying amplitude in the parabolic approximation,61

may be revealed from the left-hand part of the Eq. (10.44), including
linear dispersion and diffraction. The third term in the left-hand part
of Eq. (10.44) describes the surface nonlinearity, while the right-hand
part of this equation describes the volume nonlinearity. The first,
second and third terms in the right-hand part of Eq. (10.44), cor-
respond to the substantial, Lorentz and concentration volume non-
linearities, respectively. Therefore nonlinear evolution equation for
slowly varying amplitude can be obtained from Eq. (10.44). To do
this, the presence of zero and second-harmonics in the nonlinearities
contained by Eq. (10.44) should be accounted for, and these higher
harmonics should be expressed in the terms of the slowly varying
amplitude A1 of the main harmonic. Then, the terms ∼ exp(iωt)
are revealed from the all combinations of values, which include non-
linear fields in Eq. (10.44), while (complex conjugated) linear fields
(with index “2”) are proportional to ∼ exp(−iωt). Finally, the “fast
phase” is totally removed from Eq. (10.44) and the evolution equa-
tion for slowly varying amplitude of the main harmonic is obtained.
To find zero and second-harmonics, they are considered as “effective
forced oscillators” with “external force” determined in the terms of
the amplitude A1 of main harmonic. Proper boundary conditions
and surface nonlinearities (due to the motion of nonlinear surface
charge) are accounted for. All zero harmonic components are found
in this way. Second-harmonic components �H2, �E2 ∼ exp[2i(ωt− kz)]
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are found from the set of Maxwell and plasma equations (similar to
the system of equations (10.42)). For example, the second-harmonic
of x-component of electric field in plasma region (z ≤ 0) is obtained
in the form

E(2)
z = E0e

q(2ω)x − iekω2
pε(ω)[8me2q2ω2ε(2ω)]−1A2

1e
2qz , z ≥ 0,

(10.45a)
where q(2ω) = (k2

2 − k2
02ε(ω2))1/2k2 = 2k, k02 = 2ω/c, ω2 = 2ω

E0 =
iekω2

pA
2
1

2mω4q

1 + ω2ε(ω)[4c2pqε(2ω)]−1

2ε(2ω)q(2ω)−1 + 1
. (10.45b)

As seen from Eqs. (10.45a) and (10.45b), under the condition of “tem-
poral resonance”, corresponding to the regime of near-zero-epsilon
metamaterial, namely

ε(2ω) ≈ 0, ω ≈ ωp/2, (10.46)

the amplitude of the second-harmonic can become very large. The
term “temporal resonance” is connected with the fact that, at the
same frequency, “spatial resonance” is absent because k(2ω) �= 2k.
In the vicinity of temporal resonance frequency (Eq. (10.46)), the
amplitude of the second-harmonic A2, should be described by the
separate evolution equation. In the near-resonant region (see rela-
tion (3.46)), equations for the second-harmonic (see Eqs. (10.45a)
and (10.45b) reduce to the form

E(2)
z = (1/2)A2e

′2(ωt−kz)f2(x), ε(2ω)A2f2(x) = RA2
1f2(x)

R = iekω2
pε(ω)[8mc2q2ω2]−1, f2(x) = eq(2ω)x − e2qx.

Then in the vicinity of the resonant frequency, ω2 = 2ω ≈ ωp, we
could write ε(2ω) ≡ ε(ω2) = ε(ω2−ω20 +ω20−ωpc +ωpc) = ε(ωpc)+
(dε/dω)(∆ω0 + ∆ω), ε(ωpc) = 0, where the values ∆ω0 = ω20 −
ωpc,∆ω = ω2 − ω20 are small. Using proper Fourier transform and
making the replacement i∆ω → ∂/∂t, it is possible to obtain, for the
amplitude of the second harmonic, the equation

∂A2/∂t+ i∆ωA2 = (∂ε/∂ω)(−1)RA2
1. (10.47)
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Using the relations (10.44) and (10.47), it is possible to obtain, in
the near-resonant region, the following set of equations for the main
and second (resonant) harmonics

∂A1

∂t
+ vg

∂A1

∂z
+
iωkx

2
∂2A1

∂z2

+ ig2
∂2A1

∂y2
+ α1A

∗
1A2 + iα0|A1|2A1 + γ1A1 = 0, (10.48a)

∂A2

∂t
+ (i∆ω0 + γ2)A2 = α2A

2
1. (10.48b)

Here, vg, ωkk, g2,∆ω0 and γ1,2 are group velocity, coefficients of (lin-
ear) dispersion and diffraction, deviation of the frequency of the
main harmonic from the resonant frequency and losses of the main
and second harmonics, respectively. Note that both quadratic (with
coefficients α1,2) and cubic (with coefficient α0) nonlinearities are
included into the system (10.48a) and (10.48b). The detailed forms
of the nonlinear coefficients are not presented here, because they are
rather cumbersome. Nonlinear coefficients in the equations for the
main harmonic include contributions from “volume” and “surface”
nonlinearities: α0 = α0surf + α0volume, α1 = α0surf + α0volume, while
the main contribution into nonlinear coefficient α2 in the equation
for resonant second-harmonic comes from the volume nonlinearity.
We would like to emphasize that the contribution from surface and
volume nonlinearities have different signs

α0surf · α0volume < 0, α1surf · α1volume < 0 (10.49a)

and the main contributions, in fact, come from the surface nonlin-
earities, because

|α0surf |/|α0volume| ∼ 3, |α1surf |/|α1volume| ∼ 7. (10.49b)

The inclusion of the surface nonlinearity may change the sign of
the “effective nonlinear coefficient”, and a qualitative change of the
behavior of a nonlinear system due to the surface nonlinearity can be
expected. In particular, the estimations show that for ω/ωpe > 0.65,
the time derivative in Eq. (10.48a) can be neglected, and the system
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of equations (10.48a) and (10.48b) reduces to standard nonlinear
Schrödinger equation (NSE) with the effective nonlinear coefficient

αeff = α− α1α2/∆ω. (10.50)

In this equation, ωkk < 0, αeff > 0 and “formal” Lighthill criterion61

(in other words, the criterion obtained using Eq. (10.50) for effective
nonlinear coefficient) are not fulfilled,

αeff ωkk < 0, (10.51)

therefore solitons are impossible. In distinction to this case, if surface
nonlinearity is absent, effective nonlinear coefficient αeff changes
sign, and solitons would be possible. Numerical calculations based
on the system (10.48a) and (10.48b),34 are illustrated in Fig. 10.14.
The giant second-harmonic generation creates an amplitude that
is greater than the first harmonic; compare Fig. 10.14(b) with
Fig. 10.14(a). It is shown, in accordance with relation (10.49b), that

Fig. 10.14. The dependence of the normalized amplitude of the first (a) and
second (b) harmonics of normalized coordinates for the normalized time value
T = 4.5, which took place from the “switching on” the main harmonic (pump
pulse) at input of the system. Both cubic and quadratic nonlinearities are present,
and the sign of full nonlinear coefficient corresponds to the surface of nonlinearity.
The pumping field (main harmonic) on the input of the system is a step function,
which can be considered as approximately stationary after starting pumping,
E1(x = 0) ≈ const = 0.2. Normalized (to the frequency to fundamental harmonic)
frequency mismatch and the decrement of decay for the first and second harmonics
are equal to each other (−∆ω) = γ1,2 = 0.01.
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the contribution of the surface nonlinearity in the nonlinear coeffi-
cients, which determine the generation of the giant second-harmonic
resonance, is about three times greater than the contribution of
the volume nonlinearity. During the calculations, the control of the
parameters characterizing the smallness of the relative values of zero
and second-higher harmonics of electron density, respectively, is pro-
vided.

Evaluations can now be made of typical parameters correspond-
ing to possible experimental observations of nonlinear effects in dif-
ferent layered plasmonic structures.

(a) Gaseous plasma–dielectric structure. The analysis of the
nonlinear coefficients in the Eqs. (10.48a) and (10.48b) shows that,
by the order of values,

|α0| ∼ ωpe

8E2
e

, |α1| ∼ ωpe

60E2
e

, |α2| ∼ ωpe

5E2
e

, where Ec =
mcωpe

e
.

Typical parameters for observation of nonlinear wave phenomena
including giant generation of the second-harmonic in the structure
“gaseous plasma-dielectric” are the following. For the plasma with
electrons concentration n0 ∼ 1011 cm−3 and ωpe ∼ 1.6.1010 s−1, the
amplitude of the input pulse should be A1(x = 0) ∼ 0.1Ee ∼ 100 Gs,
and the intensity of pumping wave ∼ (c/8π)A2

1 ∼ 1MW/cm2 at the
frequency (ω/2π) ∼ 1.5 GHz. The localization depth is, in this case,
of order of 3 cm, and the duration of the pumping pulse of the first
harmonic should be no less than 100 ns.

(b) Semiconductor–dielectric structure. For narrow-gap semi-
conductor (n-InSb), the essential nonlinearity is the Kane one.61 Cor-
responding dispersion law is an analog of the relativistic law, namely
E2(p) = m∗(0)2v2

n + p2v2
n, where E, p are energy in the conduc-

tion band and quasi-momentum, respectively, m∗(0) is the effective
mass at the bottom of the conduction band, vn = [Eg/2m∗(0)]1/2 ∼
1.8·108 cm/s (for InSb) is the characteristic velocity, Eg is the forbid-
den gap (∼ 0.2 eV for InSb), and “effective quasi-relativistic mass” is
m∗ = m∗(0)(1−v/v2

n)−1/2. For InSb with n0 ∼ (1015−1017) cm−3 and
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ωpe ∼ (1013 − 1014) s−1, ω ∼ ωpe/ε
1/2
L (εL ∼ 10 is the lattice dielec-

tric constant), the estimation for the first harmonic amplitude yields
∼ 0.1(m∗vnωpe/e) ∼ 3.101 Gs, the pulse duration should be ∼100 ps,
and input intensity of the first harmonic should be ∼100 kW/cm2.

(c) Metal–dielectric structure. For metals like Au, with n0 ∼
1023 cm−3, ωpe ∼ 2.1016 cm−3, characteristic nonlinear field is Ee ≈
1/(χ(3))1/2, where nonlinear cubic constant is χ(3) ∼ 10−9 Gs−2,
and the estimation for the first harmonic yields ∼0.1Ec ∼ 3.103 Gs,
the input pulse duration should be ∼100 fs, and the input inten-
sity of the first harmonic should be ∼10 GW/cm2. The estimations
confirm also a possibility of observations of solitons in the “metal–
dielectric” structures.30 Note also that a possibility of generation of
the giant plasmonic second-harmonic in the metal–dielectric struc-
tures is connected with a presence of proper quadratic nonlinearity.
The best way to achieve this may be using metamaterial structures
like metal-dielectric, with a set of nonlinear nanoparticles with proper
asymmetry, which allows a presence of quadratic nonlinearity. In this
connection, let us note that excitation of the second-harmonic in the
optical range in the system, containing the asymmetric set of metal
nanoparticles, with intensity of pumping wave of order of 1 GW/cm2,
was considered in Ref. 63. Note that such a value lies in the range of
the necessary intensities of the main harmonic, in accordance with
the estimations, presented in our chapter earlier.

A possibility of “giant” generation of the second-harmonic of the
surface plasmons in the regime of the “temporal” resonance of such
a harmonic is now discussed, as well as a possibility of soliton and
quasi-soliton pulse propagation. Both quadratic and cubic nonlinear-
ities are accounted for. The general method for the derivation of the
evolution equation in the layered structures with a nonlinear plasma,
including both volume and surface nonlinearities, is presented. An
issue of importance of surface nonlinearity, which may change qual-
itatively a behavior of a nonlinear system, is addressed. It is shown
that under a condition of the temporal resonance of the second-
harmonic, modulation-like instability and quasi-soliton propagation
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are possible even in the range of parameters out of fulfillment of
“formal” Lighthill criteria. A possibility of observations of nonlinear
surface plasmons in different layered structures, including gaseous,
semiconductor and metal plasma and plasmonic metamaterials, is
discussed. The considered phenomena may be useful for sensors, sub-
wavelength imaging and other applications.

10.4.2.3. Strong surface nonlinearity and collapse

For numerical simulations, the basic equations have been rewritten in
unidimensional form, Eqs. (10.52) and (3.53). The time is normalized
to tn = ω−1

p , where ωp = (4πe2n0/m)1/2 is the plasma frequency, the
distances are normalized to ln = ctn. The electromagnetic field is
normalized to En = mcωp/e, the electron velocity is normalized to c.
The electron concentration is normalized to the equilibrium one n0.

∂n

∂t
+

∂

∂x
(nvx) +

∂

∂z
(nvz) = 0,

∂vx

∂t
+ vx

∂vx

∂x
+ vz

∂vx

∂z

= γ−1

(
Ex − 1

c
vzH − vx(�v · �E)

)
− νvx − γ−1 c

2
s

n

∂n

∂x
,

∂vz

∂t
+ vx

∂vz

∂x
+ vz

∂vz

∂z

= γ−1

(
Ez +

1
c
vxH − vz(�v · �E)

)
− νvz − γ−1 c

2
s

n

∂n

∂z
,

(10.52)

where γ−1 = (1− v2)1/2, c2s = v2
T /c

2 � 1,

∂H

∂t
=
∂Ez

∂x
− ∂Ex

∂z
;

∂Ex

∂t
= −∂H

∂z
− nvx;

∂Ez

∂t
=
∂H

∂x
− nvz,

|x| > Lx:n�v = 0. (10.53)

Here, c2s is unidimensional electron temperature, in the cold electron
plasma its value is c2s ≤ 10−3 � 1.
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It is considered primarily that the initial excitation of the per-
turbation of the electron concentration is ñ ≡ n− 1 at |x| ≤ Lx:

ñ(t = 0, z, x) = a0 sin
(
z − z1
z02

)
exp

(
−
(
z − z1
z01

)6
)

; vz(t = 0) = 0.

(10.54)
The distance z01 determines the modulation scale, whereas the dis-
tance z02 � z01 determines the spatial oscillation period. The ampli-
tude of the initial excitation is a0 � 1.

The initial values of Ex and Ez should satisfy the Maxwell
equation:

∂Ex

∂x
+
∂Ez

∂z
= ñ ≡ n− 1. (10.55)

Therefore, the initial values of Ex and Ez are calculated from the
electric potential ϕ:

�E(t = 0) = −�∇ϕ, ∆ϕ = −ñ. (10.56)

Initially, the electron velocity is absent: vx = vz = 0. The case when
vz �= 0 is also considered below. The magnetic field is absent initially,
H(t = 0) = 0. The Poisson equation for the electric potential ϕ has
been solved by the fast Fourier transform with respect to z.

In the numerical methods, the cross-like explicit difference
schemes have been used64:

np+1
j,k − np−1

j,k

2τ
− hx2(nvx)pj,k−1

hx1(hx1 + hx2)
+

(hx2 − hx1)(nvx)pj,k
hx1hx2

+
hx1(nvx)pj,k+1

hx2(hx1 + hx2)
+

(nvz)
p
j+1,k − (nvz)

p
j−1,k

2hz
= 0. (10.57)

Here, j, k are numbers of nodes for z and x; p is the node for t;
τ, hz are steps for t, and z, hx1 and hx2 are the steps for x near the
node with the number k. Generally, the variable steps for x are used:
hx1 �= hx2. The step hz for z is constant. Near the boundary x = Lx,
the steps for x should be much smaller than in the center x = 0
because the details of the dynamics of the electron concentration are
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important there, as shown below. The temporal step τ is chosen from
the condition of stability.

At the boundary x = Lx, the equation for the concentration n

has resulted from the balance of electrons near the boundary x = Lx

and from the condition vx = 0 at this boundary.
The initial excitation of electron plasma waves in the plasma layer

has been considered at low amplitudes of the perturbations of the
concentration a0 � 0.1, when the volume nonlinearity is negligibly
small. Initially, the surface charge near the boundaries is absent and
is excited during the evolution of the plasma wave.

When the amplitudes are very small, a0 ≤ 0.01, the initial exci-
tation results in oscillations of the electron concentration near the
plasma boundary. But at higher initial amplitudes, a0 � 0.01, the
dynamics change drastically. The sharp peaks of the electron con-
centration near the surfaces are formed, which are localized both
in longitudinal (z) and transverse (x) directions. The thickness of
the localization for the transverse coordinate x is about 0.01. The
maximum values of ñ > 4 are 50–100 times higher than within the
volume. The nonlinearity ceases to be moderate near the surface.
Moreover, under the values of a0 > 0.01, the calculations overflow.
It is possible to interpret this phenomenon of the sharp growing and
the narrowing of the peaks of the electron concentration near the
surface as a manifestation of the wave collapse.65 The dynamics of
the wave collapse depend on the electron temperature. Namely, at
unidimensional electron temperatures, c2s > 0.005, the dynamics of
surface charge in the electron plasma waves do not lead to collapse
phenomena. Therefore, the electron heating can be a mechanism of
stabilization of the wave collapse.

In Fig. 10.15(a), the dependencies of the maximum values of per-
turbations of the electron concentration ñ on the time t in the plasma
layer for different values of the initial amplitudes a0 are shown. The
sizes of the plasma slab are: Lz = 100, 2Lx = 2. The parameters on
the initial excitation are z01 = 15 and z02 = 1. The unidimensional
temperature is c2s = 10−4. The wave dynamics is tolerant to changes of
the sizes of the plasma layer 2Lx, Lz and to the values of z01, z02. For
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(a) (b) (c)

Fig. 10.15. (a) is dependencies of maximum values of perturbations of electron
concentration ñ on time t. Curve 1 is for the initial amplitude of the perturbation
of the volume concentration a0 = 0.05, curve 2 is for a0 = 0.02, curve 3 is for
a0 = 0.015 and curve 4 is for a0 = 0.01. Curves 5 and 6 are for a0 = 0.05
and for a0 = 0.02 for the non-zero initial distribution of the longitudinal electron
velocity vz with the amplitude a0. Figures 10.15(b) and 10.15(c) are the dynamics
of the wave collapse at a relatively high initial amplitude a0 = 0.05 above the
threshold, see curve 1 in Fig. 10.2; Fig 10.15(b) is the perturbation of the electron
concentration ñ for t = 0; (c) is ñ for t = 0.8.

the initial amplitudes that correspond to the curves 1, 2, 3, 5 and 6, the
wave collapse takes place. In the numerical simulations, this manifests
in the overflowing after some time of calculations, when the perturba-
tions of the electron concentration near the plasma boundary reaches
high values, ñ > 5. Note that the results of simulations do not change
when the spatial or temporal steps have been varied.

At low initial amplitudes, the oscillatory behavior of the surface
charge takes place. The values of the concentration near the boundary
exceed the values within the volume 10 times only. At higher ampli-
tudes, the surface nonlinearity cannot be considered as moderate,
and wave collapse occurs.

The distributions of the electric field component Ez and the com-
ponent of the electron velocity vz on the coordinate x are smooth.

Also, the excitation of plasma waves has been considered when
the initial non-zero value of the longitudinal component of the elec-
tron velocity vz has been given. Typical results are similar to the
excitation by perturbations of the electron concentration.

It is possible to conclude that the wave collapse, i.e. the sharp
increase of the plasma concentration near the boundaries, is a gen-
eral phenomenon. It occurs when the initial excitation of the plasma
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waves takes place within the volume and initially the surface charge
near the plasma boundaries is absent.

Because at higher electron temperatures the wave collapse dis-
appears, a possible mechanism of limitation of high values of the
electron concentration can be electron heating.

10.4.2.4. Final remarks

The exciting possibility of nonlinear control over strongly nonlin-
ear phenomena is discussed in terms of a self-consistent nonlinear
surface concentrator. It involves jumping the focusing point and
a tendency to “hot spot” formation in a metamaterial nonlinear
concentrator (nonlinear electromagnetic “black hole”) by means of
applying an additional “controlling” beam. The tendency to hot spot
formation reveals itself in any of the following processes: an increase
of input amplitude; an increase of linear amplification in the cen-
tral nonlinear region; a decrease in nonlinear losses, or decrease in
saturation of nonlinearity. Therefore a tendency to a formation of
“hot spots” is a rather universal feature in the strongly nonlinear
behavior of the “nonlinear resonator” system. At the same time, the
system is not sensitive to the “prehistory” of approaching a nonlin-
ear threshold intensity (amplitude). The analysis given here shows
that the proposed method of matching Complex Geometrical Optics
with full-wave electromagnetic (nonlinear) solution can be used for
modelling a field concentrator based on isotropic and strongly non-
linear metamaterials. Nevertheless, this method can be used also
for anisotropic (hyperbolic) metamaterials as well as propagation
of electromagnetic waves through the layered anisotropic system
“Lithosphere–Atmosphere–Ionosphere–Magnetosphere”,66 and inter-
pretation of data of observations in space projects.

Systems under consideration could be used for creation of
antenna with strongly nonlinear focusing and for providing strongly
nonlinear effects such as higher harmonic generation, etc.

A general method for the derivation of a nonlinear evolution
equation for (wave processes in) layered structures (NEELS) with
surface and volume nonlinearities is developed and the importance
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of surface nonlinearity in the nonlinear processes is addressed.
The methods for the nonlinear wave processes in the layered
structures31−35,67 and36 are, in fact, the parts of the general meta-
material approach to the wave processes, applicable for both an
artificial26 and natural36 media.

A possibility of “giant” resonant generation of the second-
harmonic of the surface plasmons in the regime of the “tempo-
ral” resonance of such a harmonic is shown clearly in this chapter.
A possibility of observations of nonlinear surface plasmons in differ-
ent layered structures, including gaseous, semiconductor and metal
plasma and plasmonic metamaterials, is discussed. The considered
phenomena may be useful for sensors, subwavelength imaging and
other applications.
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CHAPTER 11

Metamaterial Catheter

Receivers for Internal

Magnetic Resonance Imaging
RICHARD R. A. SYMS,∗ IAN R. YOUNG
and LASZLO SOLYMAR

Imperial College London, UK

Metamaterial catheter receivers for high-resolution internal magnetic
resonance imaging (MRI) of the biliary system are described. The
clinical goal, early detection and staging of bile duct cancer, is first
introduced. Current approaches to diagnosis are then described, with
an emphasis on MRI, and the advantages of internal imaging with
an endoscopically-delivered receiver are highlighted. Magneto-inductive
(MI) waveguides — linear arrays of magnetically-coupled L-C res-
onators — are proposed as a solution. MI waves and waveguides are
reviewed, thin-film MI cables are introduced as a low-loss and stable
format that can easily be mounted on a flexible catheter and the lay-
outs needed for an inherently safe receiver are described. Experiments
designed to demonstrate endoscopic compatibility, confirm safe opera-
tion and demonstrate high-resolution imaging are then presented. Fre-
quency scaling is discussed, and experimental receivers are shown to
out-perform surface coil arrays in vitro, over a limited field of view.
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11.1. Introduction

The observation by Pendry1 that periodic arrangements of structured
conductors could be used to form artificial media with novel electro-
magnetic properties and hence realize the predictions of Veselago2

concerning media with negative permittivity and permeability has
led to the new field of metamaterials. In the following decade and
a half, interest has been immense. Many different unit cells have
been proposed, a wide variety of lattices have been explored and the
operating range has been raised from radio frequency to the optical
domain.3−5 In addition to identifying opportunities, this activity has
also (naturally enough) stumbled upon difficulties. Metallic meta-
materials are inherently narrow band and lossy, and it has proved
difficult to manufacture large arrays at low cost, especially at high
frequency when expensive patterning is needed to fabricate the fine
details involved. As a result, applications are likely to be limited to
those for which the novel properties of metamaterials can overcome
these drawbacks.

The aim of this chapter is to demonstrate an application that
appears to fit the bill, in that a metamaterial approach seems capa-
ble of out-performing conventional techniques. The application is in
medical imaging, specifically in internal magnetic resonance imaging
(MRI) of cholangiocarcinoma (CCA). The disease problem is serious
and without a current solution, encouraging the idea that metama-
terials could help to solve a global problem. To explain how this may
be, we shall first give some background on CCA and on current imag-
ing approaches, explaining their limitations. We will then introduce
the particular metamaterial involved — the magneto-inductive (MI)
waveguide — and explain how it may be used in internal MRI. We
will then give examples of imaging performance, and conclude by
outlining the path to clinical trials.

11.2. Clinical and Imaging Background

CCA6 is a cancer of the bile ducts that lie between the liver and
the duodenum (Fig. 11.1(a)). CCA is rare in the West (US annual
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Fig. 11.1. (a) Anatomy of the biliary ductal system and (b) flexible duodeno-
scope.

incidence 1 in 100,000) although incidence is rising.7 Incidence is
much higher in the Far East, especially in Thailand, due to infesta-
tion of the local population with parasitic liver flukes (O. viverrini
and C. sinensis) following ingestion of cysts in uncooked or pickled
river fish.8 An estimated 9.4% of the Thai population (6 million) is
infected, and the annual CCA incidence is >100 per 100,000 in Khon
Kaen province, the region with the highest worldwide incidence. As
the flukes develop, they induce chronic irritation and hyperplasia of
the duct lining or epithelium, leading to malignant transformation
and adenocarcinoma. Unfortunately CCA is resistant to chemother-
apy and radiotherapy, and surgical resection or liver transplantation
offer the only real hope of a cure.9 Several factors combine to yield
a dismal 5-year survival. CCA generally recurs unless the lesions are
detected early, when they are less than 1 mm in size. However, the
initial symptoms are mild, so CCA patients present late. Further-
more, existing imaging methods lack the resolution and contrast for
diagnosis and accurate staging, contributing to poor prognosis even
when surgery is feasible.

The biliary and pancreatic ducts are normally investigated using
endoscopic retrograde cholangio-pancreatography (ERCP).10 A flexi-
ble duodenoscope (Fig. 11.1(b)) is passed down the throat to the duo-
denum, using a side viewing optical system to locate the sphincter of
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Oddi (the common opening to the ducts). The instrument contains a
biopsy channel with a steerable side port, allowing the ductal system
to be cannulated with catheter tools. Usually a guidewire system is
used; a wire is first inserted into the duct, and a hollow catheter is
then inserted over the wire. For X-ray imaging, the wire is then with-
drawn and a contrast agent containing iodine is injected through the
catheter. This approach allows imaging of the entire ductal system
using X-ray fluoroscopy, and observation of constrictions can then
be used to identify the location of lesions. However, owing to the
lack of soft tissue contrast, such images only allow visualization of
the duct boundaries and cannot differentiate between malignant and
non-malignant strictures.

Endoscopic ultrasound (EUS) using a duodenoscope with a
mechanically or electrically scanned transducer at its tip allows
acoustic imaging to be carried beyond the duodenum.11 Although
EUS does provide soft tissue contrast, there is a trade-off between
range and resolution caused by increasing acoustic attenuation at
high frequency. Furthermore, EUS suffers from near-field artifacts
arising from reflections in the transducer housing that tend to obscure
important details. Strongly reflecting anatomical features also cause
reverberation artifacts or acoustic shadowing. Intraductal ultrasound
(IDUS) using a catheter with a much smaller, electronically scanned,
transducer extends ultrasonic imaging to the duct itself, but with an
even shorter range.12

Improvements in contrast are offered by MRI, which operates
by controlled manipulation of nuclear magnetic dipoles.13 The most
abundant nuclear species in the body is the proton, so 1H MRI is
commonly used for medical imaging; however, other nuclei such as
13C, 14N, 17O and 31P are also used. The patient lies in a super-
conducting magnet, whose effect is to align the magnetization vector
M of dipole ensembles almost parallel to the static magnetic field
B0 (normally, the z-direction). However, the alignment is not per-
fect at finite temperature; instead, M precesses around the z-axis
at the Larmor frequency ωL, an angular frequency related to the
magnetic field and the gyromagnetic ratio γ of the nuclei. The
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magnetization vector then has two components, a longitudinal com-
ponent Mz parallel to the z-axis and a transverse component Mxy

rotating around it; however, in equilibrium, Mxy is much smaller
than Mz. For protons, γ/2π = 42.576 MHz/T, so in a 1.5 T magnetic
field (the strength of many clinical magnets) the Larmor frequency
is fL = ωL/2π = 63.86 MHz, a radio frequency.

MRI is a two-step process. The first step is excitation, and it is
carried out by applying a short pulse of a time-varying field B1 that
also rotates around the z-axis at the Larmor frequency. The B1 field
exerts a torque that alters the dipole alignment so that M rotates
with respect to the z-axis. The “flip angle” depends on the duration
of the excitation pulse; a 90◦ pulse rotates M until it is perpendic-
ular to the z-axis. The second step is detection. The excitation is
removed, and a resonant circuit tuned to ωL is used to detect the
signals induced by the precessing dipoles as they return to equilib-
rium. They relax exponentially, but with different time constants
T1 and T2 for Mz and Mxy. Importantly, these vary from tissue to
tissue, so the differences can be converted into amplitude variations
that provide contrast. Different excitation sequences can also be used
to render the contrast more sensitive to variations in T1 or T2, and
contrast agents can be used to enhance the difference still further.
Because the excitation is only effective if its frequency matches ωL,
an axial gradient in B0 (which spatially varies ωL) can localize the
excitation to a slice of tissue. Transverse gradients then encode the
origin of the detected signal in frequency and phase, allowing a 2D
image to be recovered by fast Fourier transformation.

By analogy with ERCP, the technique used for ductal imaging is
known as magnetic resonance cholangio-pancreatography (MRCP).14

Excitation is carried out using the system body coil, a large RF coil
in the magnet tunnel, while detection is carried out using a surface
coil array on the patient’s abdomen (Fig. 11.2(a)). Unfortunately,
the resolution achievable is directly linked to the signal-to-noise-ratio
(SNR) of the detected signal. The largest source of electrical noise
is thermal noise arising from the patient, whose soft tissue is a lossy
dielectric at radio frequency.15 For surface coils, which have a large



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch11 page 476

476 Handbook of Metamaterials and Plasmonics — Volume 1

Fig. 11.2. (a) Alternative locations for signal detectors and (b) standing waves
on conductors.

field of view (FOV), this noise is extremely significant and cannot
be increased significantly by averaging due to patient motion. As a
result, it is difficult to achieve the sub-millimeter resolution required
for imaging cancers such as CCA.

Since they have a much smaller FOV for noise, small internal
coils can have much higher SNR provided they can be located close
enough to the region of interest (ROI).16 A variety of catheter-based
coils have been developed for intravascular imaging,17,18 and MRCP
has been adapted to use these coils, inserted through percutaneous
drainage tubes into the biliary region in a procedure known as intra-
biliary MRI19 (Fig. 11.2(a)). The image quality is much higher than
with external coils, but the procedure is inherently invasive and gen-
erally involves surgery.

Internal coils also suffer from other drawbacks. The B1 field of
the transmitter must be prevented from coupling directly to the
detection coil, or it will induce large unwanted currents. Less obvi-
ously, there is generally a large RF electric field E near capacitors
in the body coil. This field can excite surface waves on long conduc-
tors, and if the frequency is such that standing waves are excited
(Fig. 11.2(b)), the resulting current can be high. First-order reso-
nances will be excited if the conductor length d is half a wavelength,
so that d = c/(2fL

√
εr tissue), where c is the velocity of light and

εr tissue is the relative permittivity of the surrounding tissue. At
63.86 MHz, εr tissue ≈ 77, so the critical length can be as short as
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0.27 m. There can then be significant tissue heating near the con-
ductor ends, and problems have been identified with many metallic
medical components designed for internal use such as guide-wires
and leads.20,21 Several solutions have been proposed, including the
insertion of chokes or tank filters at intervals to block the flow of
currents,22 and transformer segmentation.23

The arguments above suggest a need for alternative approaches
that might allow high-resolution MRI of CCA. To increase SNR,
internal coils should be used; however, to access the biliary ducts
without surgery, they should be endoscopically delivered. Conse-
quently, they should be catheter-mounted and capable of passing
through the biopsy channel of a duodenoscope, which has a length
of ≈1.5 m and an internal diameter of ≈3 mm. The catheter should
be flexible, so it can be bent through around 90◦ for insertion into
the sphincter of Oddi. To allow efficient cannulation, the catheter
should be capable of passing over a guidewire. Finally, for intrinsic
safety, the system should contain circuitry to minimize direct cou-
pling between the receiver and the scanner. These requirements are
challenging, but can be met using a metamaterial construction based
on MI waveguides, as we now show.

11.3. Magneto-Inductive Systems

Magneto-Inductive (MI) media are periodic arrays of magnetically
coupled L-C resonators.24 The arrays can exist in one, two or three
dimensions,25 but the simplest arrangement involves a linear waveg-
uide with period a. There are two conventional configurations: axial
and planar (Fig. 11.3(a)).

In each case, the resonant elements are planar loops. However,
in the axial geometry, the elements lie in stacked planes, with their
magnetic fields parallel to the axis of the guide. In the planar geome-
try, the elements lie in the same plane with their fields perpendicular
to the axis. An equivalent circuit suitable for both variants is shown
in Fig. 11.3(b). Here, magnetic coupling is represented by mutual
inductance M between neighboring elements, and losses by resistors
R. In the absence of voltage sources, Kirchhoff’s voltage law implies
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Fig. 11.3. (a) MI waveguides in axial and planar configurations and (b) equiva-
lent circuit, (c) and (d) example dispersion and loss variations.

that the current In in the nth element at angular frequency ω can
be related to the currents In−1 and In+1 in its neighbors by the
recurrence relation:

(R+ jωL+ 1/jωC)In + jωM(In−1 + In+1) = 0. (11.1)

Solution of an infinite set of equations of this type can be achieved
by assuming currents in the form of traveling waves, as In = I0
exp(−jnka) where I0 is the wave amplitude and k is the propagation
constant. Substitution into Equation (11.1) yields the dispersion rela-
tion:

1− ω0
2/ω2 − j/Q+ κ cos(ka) = 0. (11.2)

Here, ω0 = 1/
√

(LC) is the angular resonant frequency of the ele-
ments, Q = (ω/ω0)Q0 where Q0 = ω0L/R is the quality factor and
κ = 2M/L is the coupling coefficient. Assuming that k = k′ − jk′′,
and that losses are small, Eq. (11.2) may be approximated as

1− ω0
2/ω2 + κ cos(k′a) = 0

k′′a = 1/{κQ sin(k′a)}. (11.3)

The upper equation is the dispersion relation for lossless waves. In
the axial configuration, M and κ are positive, the guide supports
forward waves (whose phase and group velocities have the same
sign) and propagation is obtained only over the frequency band
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1/
√

(1 + |κ|) ≤ ω/ω0 ≤ 1/
√

(1− |κ|). The lower equation shows that
losses depend on k′ and hence on frequency, and are smallest when
k′a = π/2 and ω = ω0. In the planar configuration, κ is negative and
backward waves are supported. Figure 11.3(c) shows dispersion char-
acteristics for the axial case, assuming a coupling coefficient κ = 0.2
for different Q-factors. For Q = 10, 000 (achievable using supercon-
ducting elements), the results are indistinguishable from the lossless
case. For Q = 100 (more realistic for conventional elements), there
are clearly departures from ideal behavior. Differences now occur at
the band edges, and the effect of loss is to allow propagation outside
the ideal band. Figure 11.3(d) shows the frequency variation of loss;
losses rise rapidly at the band edges.

A further important characteristic of any waveguide is its char-
acteristic impedance. By inserting an impedance Z0m into the final
element of a finite guide, and choosing its value to eliminate reflec-
tion, it can be shown26 that the characteristic impedance of a MI
waveguide is

Z0m = jωM exp(−jka). (11.4)

Generally, Z0m is complex and varies with frequency. However,
for lossless systems at resonance, it simplifies to the real value
Z0M = ω0M .

This argument also implies that a resonant element can act
as a transducer connecting the MI waveguide to a terminating
impedance Z0, which might represent a conventional system with
real impedance. Overall behavior can then be modelled by writing
all the circuit equations, including those for transducers, in the form
V = ZI. Here, V and I are column vectors describing the voltages
and currents, and Z is a square matrix of self and mutual coupling
impedances. The equations may be solved to find the unknown cur-
rents in terms of known voltages, as I = Z−1V. The reflection coef-
ficient may then be extracted by resolving the input current into
incident and reflected waves, which in turn allows the transmission
coefficient to be found.

The characteristics above have been verified experimentally using
wire-wound elements,27 and MI waves have been observed in other
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magnetically coupled media at gradually rising frequency, including
“Swiss rolls”,28 solenoids,29 split-ring resonators30 and negative index
photonic media.31 Consequently, MI waves are now well established.
However, performance must be high for practical systems. Dispersion
is one problem; however, most applications proposed have been nar-
row band. Loss is a more significant obstacle. Equation 11.3 imply
that low loss requires a high Q-factor and a high coupling coeffi-
cient. The former is limited by the conductivity of the material used
(normally copper) and the skin effect. The latter is controlled by the
arrangement of the elements. Planar elements can have a large extent
in the direction of propagation, but have a relatively small coupling
coefficient since |κ| < 1 in this geometry. Axial elements have a larger
coupling coefficient that can approach κ = 2, but only if the period
is so small that the distance propagated per element is extremely
short. The net result is that losses per meter are high by comparison
with other guides, since the power dissipated in each element (which
depends on R) is high compared with the power flowing through it
(which is determined by Z0M ).

Efforts have been made to reduce losses, and for a while the
best performance quoted was the 0.12 dB/element obtained at 150
MHz using printed circuit board elements arranged in an axial
configuration but based on double-sided spirals to maximize κ.32

Figure 11.4(a) shows the configuration, which has a resonant trans-
ducer coupled to the input and output of the guide and designed

Fig. 11.4. (a) MI link and (b) measured performance.
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to match the impedance Z0M to a signal source VS with output
impedance Z0 = 50Ω and to a similar load.

Matching requires the inductance L′ and capacitance C ′ of the
transducers to satisfy 1/

√
(L′C ′) = ω0, and the mutual inductance

M ′ at the terminations to satisfy

ω0M
′ =
√

(Z0Z0M ). (11.5)

Exact matching is only obtained at resonance, but performance can
be surprisingly good. For example, Fig. 11.4(b) shows the measured
response with different numbers of elements (in each case, with Q =
110 and κ = 0.76), which shows low-loss transmission over the MI
band. However, it is important to note that with the period used
(a = 2.5 mm) the propagation distances are very short (0.175 m with
70 elements).

A further problem is unwanted coupling. The fields are gener-
ated by each element spread, leading to magnetic coupling between
second and higher neighbors. In an equivalent circuit, this can
be represented by (for example) a mutual inductance M2 between
second-neighbors in addition to the desired term M1 between nearest
neighbors (Fig. 11.5(a)), and leads to additional evanescent waves at
the same frequency as the MI wave.33 The effects can be reduced by
careful design (in the axial configuration, by using elements that are
thick, but closely spaced).

Fig. 11.5. Unwanted effects represented using equivalent circuits: (a) non-nearest
neighbor magnetic coupling, (b) electric coupling and (c) reflections at a discon-
tinuity.
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Retardation, which leads to phase shifts in the coupled cur-
rents, also allows additional modes of propagation.34 However, this
effect occurs at high frequency. The elements may also be coupled
electrically35 ; this effect again occurs at high frequency in small,
widely spaced elements, but also at low frequency in large, closely
spaced elements. This coupling may be represented using capacitors
C1 between nearest neighbors (Fig. 11.5(b)) and gives rise to extra
bands above the MI band.

Discontinuities — variations in the resonant frequency ω0 from
element-to-element, or in the coupling coefficient κ between ele-
ments — cause further difficulties. An incident wave I will give rise
to a reflected wave R in addition to the desired transmitted wave
T (Fig. 11.5(c)) with a reflection coefficient that varies slowly across
the MI band.36 However, multiple discontinuities — for example, two
consecutive variations in κ — cause multiple reflections, and coherent
summation results in Fabry–Perot interference. For rigid elements, it
is simple to minimize variations in ω0, and straight guides may be
constructed with a well-controlled spacing as previously shown in
Fig. 11.4(a). For the planar geometry, curved guides can easily be
defined. However, the same cannot be done in the axial geometry; in
this case, bends inevitably degrade performance, introducing rapid
variations in transmission and reflection.37

These difficulties have spurred the development of a flexible vari-
ant, MI cable,38 which has the inductance and capacitance of res-
onant elements subdivided into two parts with values L/2 and 2C
(Fig. 11.6(a)). This geometry allows capacitor plates to be formed on

Fig. 11.6. (a) Equivalent circuit and (b) construction of MI cable; (c) completed
cable.
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either side of a thin dielectric, and linked by inductors that can be
overlaid with those of neighboring elements (Fig. 11.6(b)). The entire
structure can be formed using patterning and etching of copper-clad
polyimide, in much longer lengths. Cables up to 2 m long with peri-
ods of a = 10 cm have been made with 35µm thick Cu on 25µm
thick Kapton, using varying inductor widths w and lengths h to
control ω0 and Z0M . As before, a resonant transducer can be used
for connection to a 50Ω system (Fig. 11.6(c)). If Z0M corresponds
to this value, matching can be achieved at ω0 using an element with
inductance and capacitance L and C. However, improved matching
can be achieved with values L/2 and 2C, which can be provided
by a halved cable element. This arrangement gives exact matching
at two frequencies, ω0 and ω0/

√
(1 − κ2),39 and more sophisticated

transducers have since been developed.40

Neighboring elements must be offset to reduce electric coupling
via the capacitance between the tracks.41 However, with this pro-
viso, the overall arrangement has several advantages. High coupling
with a positive coefficient (typically, κ > 0.65) can be achieved, with
minimal second neighbor coupling. Losses per element are low, but
the geometry is planar, and the period is approximately half the ele-
ment length. Consequently, losses per meter can also be low; 2.3 dB
per meter was demonstrated using elements with h = 4.7 mm and
a = 10 cm operating at 130 MHz.38 Even lower figures have been mea-
sured at Imperial with much larger elements operating at lower fre-
quency (0.5 dB/meter with h = 40 mm, a = 600 mm, f0 = 20 MHz).
Accompanying low loss is low noise. Resistance in the elements results
in Johnson noise, which also propagates as MI waves42 and has been
measured as standing waves in isolated arrays.43 The noise factor of
MI cable has recently been measured and was found to be excellent.44

The element shape confers further benefits. Simulation shows
that a long, thin inductor can be bent through an arc of a circle
of radius r (Fig. 11.7(a)) without a significant change in its induc-
tance L′, provided r does not fall much below the track separation
h (Fig. 11.7(b)). Because the elements are held together by the sub-
strate, the mutual inductance M is also largely unaffected. MI cable
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Fig. 11.7. (a) CAD model of a curved inductor, and (b) variation of inductance
with radius.

Fig. 11.8. (a) Spiralled MI cable; (b) frequency dependence of scattering param-
eters for straight and spiralled cable.

can therefore be bent through curved paths (Fig. 11.8(a)) without
changing ω0 or κ, and hence without reflections.37

As a result, the transmission characteristics of waveguides spi-
ralled with a bend radius as small as a 5 mm are similar to those
of a straight guide (Fig. 11.8(b)). The only significant drawback is
that the unshielded nature of MI cables allows cross-talk between
adjacent guides45; however, this characteristic is advantageous for
signal detection.
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Additional components are needed in a complete system. Many
passive MI components, including mirrors, Bragg gratings, Fabry–
Perot interferometers, Y-junction splitters and directional couplers
have been investigated theoretically.26,36 Generally, these have
involved discrete elements. However, because of the poor performance
in this format, few experiments have been performed; the exceptions
are detailed investigations of directional couplers.46 Several cable-
based components have been demonstrated, including splitters,47

phase shifters and Mach–Zehnder interferometers.48 Active systems
have also been proposed to overcome losses; two-frequency para-
metric amplification has been analyzed theoretically,49 and three-
frequency amplification50 and negative impedance converters51 have
been demonstrated experimentally. However, such systems are rela-
tively complex.

MI waves have been considered for use in low-frequency
communications52 (particularly in underground,53 underwater54

or challenged environments55). Systems for contact-less power
transfer56 and combined communications and power57 have also been
described. Distributed sensing has also been considered, exploiting
impedance discontinuities caused by movement to monitor structural
health,58 or changes in loading to measure conductivity.59 However,
MRI appears to offer the greatest potential. For example, arrays of
“Swiss rolls”60 and wires61 have been proposed for near-field image
transfer. Applications involving MI waves have included RF flux
concentrators based on coupled loops of decreasing size,62 planar
imaging lenses based on sheets of coupled loops63 and bird-cage
coils based on resonant rings.64 In each case, advantages have been
claimed. However, some systems have required fundamental changes
to MRI (for example, parallel imaging in place of frequency-coded
serial imaging), while others have been too bulky, or yielded only
modest improvements in SNR. As a result, the advantages have not
been overwhelming. However, the realization that magnetic segmen-
tation of a signal-carrying path can provide intrinsic safety65 in an
internal imaging system with an inherent gain in SNR may now be
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altering the balance. Such systems can be based on MI cable, as we
now show.

11.4. Magneto-Inductive Catheter Receivers

A length of MI cable can be converted into an RF receiver for inter-
nal MRI as follows.66 The resonant elements must first be tuned to
the Larmor frequency. A voltage VS may then be induced by pre-
cessing dipoles at in a detecting element at one end of a waveguide
(Fig. 11.9(a)). The element shape — a long, thin rectangle — results
in a detection sensitivity that falls off as 1/r2, where r is the radial
distance from the axis. Consequently, the sensitivity is non-uniform
and the FOV restricted to a multiple of the track spacing h. The
induced signal may then be transmitted as an MI wave to the scan-
ner input at the other. Resonant elements located part way along
the cable may of course act as detectors as well. In this case, the
induced voltage will generate two MI waves, one of which travels to
the scanner input, and the other to the detector, where it is absorbed.

For efficient transmission, the output transducer should satisfy
the previous matching condition ω0M

′ =
√

(Z0Z0M ). The mutual
inductance M ′′ at the detector (which for light loads has an output
impedance at resonance equal to the loop resistance R) should sat-
isfy a modified condition ω0M

′′ =
√

(RZ0M ). Although Z0M may be
comparable to Z0, R is generally much smaller. As a result, matching

Fig. 11.9. (a) Equivalent circuit model of catheter receiver with signal injected
at tip; (b) simulation of receiver performance.
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is narrow band, and the frequency variation of sensitivity is a com-
posite of a resonant response near ω0 and a band response elsewhere
(Fig. 11.9(b)). Here, parameters comparable to those of experimental
devices (Q = 40, Z0M = 40Ω and κ = 0.63) have been assumed.

The entire circuit can be realized in thin-film form, by careful
design of the resonant elements. Protection against coupling to exter-
nal E fields can be obtained by making the element length 2a less
than the resonant length d of an element in tissue. Protection against
uniform B1 fields can also be provided, by twisting the shape of each
element into a figure-of-eight so the signals induced in each half of
the loop cancel (Fig. 11.10(a)). Long, thin capacitors can be used to
increase flexibility. Impedance matching to the detector element can
be achieved by adjusting the overlay b between the waveguide and
the final detector (Fig. 11.10(b)). Thin-film circuits can be produced
in batches, as a closely spaced array. Individual circuits can then be
separated with a scalpel and mounted on a hollow catheter scaffold
with heat-shrink tubing so the long coil conductors lie on a diameter
(Fig. 11.10(c)). The internal lumen acts as a passage for a guidewire
during clinical use and allows construction to be carried out on a
wire rail. If the resonant element connected to the MRI system is
constructed from a separate thin-film circuit, the output transducer
can be demountable (Fig. 11.10(d)).

Prototype receivers have been constructed in batches of 24. Each
receiver was approximately 1.6 m long, and formed from 15 resonant

Fig. 11.10. Layout of (a) resonant elements and (b) complete receiver;
(c) catheter construction; (d) transducer operation.
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Fig. 11.11. Use with a duodenoscope: (a) insertion into biopsy channel, (b) exit
at tip.

elements with a period of a = 100 mm. The element length was then
0.2 m, significantly less than the critical value of 0.27 m described
earlier. The scaffold was a 2.25 mm diameter PTFE tube, and the
heat-shrink was a thin-walled polyolefin. The transducer was a two-
turn thin-film inductor, which was epoxied onto the inside of a split
Perspex clamp attached to the outside of the catheter. The result was
a low-cost, disposable receiver that can be inserted into the biopsy
channel of a non-magnetic duodenoscope (Fig. 11.11(a)) and emerge
from the side-port at the distal tip (Fig. 11.11(b)).67

Experimental measurement of individual and paired elements
suggested a Q-factor of 30–40, a characteristic impedance at reso-
nance of 40 Ω, a coupling coefficient of 0.63 and a propagation loss
of 4.5 dB/m.

In practice, overlay of the elements implies that signal detection
must be more complicated than suggested by Fig. 11.9(a). Depend-
ing on its position, an external dipole (which can be represented
as a resonant loop with a voltage source in an equivalent circuit
model) can couple to more than one element (Fig. 11.12(a)). As a
result, several MI waves will normally be generated, and the signal
reaching the receiver is their coherent sum. These effects may easily
be modelled66; simulation of the transmission between a source at
different positions along the receiver and the load shows that the
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Fig. 11.12. (a) Equivalent circuit model of external signal detection; (b) simu-
lated axial variation in sensitivity.

sensitivity must be high at the resonant tip, falls at the junction to
the cable, and then gradually rises towards the load (Fig. 11.12(b)).
The receiver will therefore detect MRI signals along its whole length,
but the brightest images will be at the tip.

Experiments to demonstrate 1H MRI and verify intrinsic safety
with prototype catheter receivers were performed using a 1.5 T GE
Signa Excite clinical scanner at St Mary’s Hospital, London. Imaging
was carried out in vitro using phantoms filled with a solution doped
with NaCl and NiC2 to obtain relaxation time constants T1 and T2
similar to those of tissue. A variety of gradient-recalled echo (GRE)
and 2D spin echo (SE) sequences were used for imaging, while more
specialized sequences were used to investigate the possibility of RF-
induced heating.

Decoupling from external B1 fields was investigated by com-
pletely immersing individual catheter-mounted resonant elements in
signal source (Fig. 11.13(a)). This arrangement was then excited and
imaged using the system body coil. The resulting sagittal slice image
(Fig. 11.13(b)) shows little perturbation to the magnetization pat-
tern, implying that the figure-of-eight layout has indeed largely elim-
inated coupling to the B1 field. Similar experiments were carried out
using unmounted elements, held flat against a cuboid phantom filled
with the same signal source, or bent through increasing angles θ
(Fig. 11.13(c)). The resulting axial MR images (Fig. 11.13(d)) show
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Fig. 11.13. Arrangements for investigating B1 field coupling to MI cable with
(a) mounted and (b) unmounted elements; (c) and (d) corresponding body coil
images.

Fig. 11.14. (a) Arrangements for investigating E field coupling; (b) variation of
temperature with time turing RF heating experiments.

that there is little change in the magnetization beneath the element
with θ, implying that the figure-of-eight arrangement is still effective
even when it is abruptly bent.

Decoupling from external E fields was investigated by immersing
arrays of catheter-mounted cables containing different numbers of
resonant elements in a doped polyacrylic gel whose dielectric proper-
ties simulated those of the tissue (Fig. 11.14(a)). Temperature mea-
surements made using fiber-optic thermometers at the midpoints and
ends of the cables confirmed the absence of any temperature rise,
even when the coil array was placed close to the body coil and when
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Fig. 11.15. (a) Arrangement for imaging, (b) and (c) coronal images of straight
and spiral tracks.

excitation sequences involving high RF power were used for long peri-
ods (Fig. 11.14(b)). These results have been confirmed by numerical
simulation of thin-film circuits.68

Imaging experiments were performed with a complete receiver on
a cuboid phantom (Fig. 11.15(a)). The resulting coronal slice image
(Fig. 11.15(b)) shows that signals are only detected from regions in
the immediate vicinity, in discrete segments corresponding to the
loops of the figure-of-eight elements. The image is clearly brightest
at the resonant tip. However, the receiver does form an image along
its entire length, and functions correctly even when its track is bent
into a spiral (Fig. 11.15(c)).

Imaging was also carried out with a dummy component repre-
senting the tip of a non-magnetic duodenoscope,69 using a tank of
immersion fluid as a signal source (Fig. 11.16(a)). Sagittal images
obtained using the body coil with the receiver in place (Fig. 11.16(b))
show little perturbation to the magnetization. Similarly, local images
were successfully acquired using the catheter receiver even when its
track was bent through 90◦ to simulate cannulation during ERCP
(Fig. 11.16(c)).

Catheter receivers have also been modified to operate in higher
magnetic fields.70 Scaling from 1.5 T to 3 T implies that the Lar-
mor frequency ωL must double, and also (provided the dielectric
constant of tissue is slowly varying) that the critical length d of an
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Fig. 11.16. (a) Catheter receiver in dummy duodenoscope; (b) and (c) sagittal
images obtained with the body coil and catheter receiver.

immersed element must halve. Conveniently, halving the period of
an MI waveguide to satisfy this new requirement will double the
resonant frequency of the elements, since the process reduces the
capacitance C and the inductance L by a factor of two. Using this
simple scaling, similar frequency variations in detection sensitivity
were obtained from catheter receivers operating at 1.5 T and 3 T.

In vitro 1H MRI with prototype 3 T catheter receivers was per-
formed using a GE Discovery MR750 scanner, again at St Mary’s
Hospital. Comparative measurements of the SNR achievable with an
eight-element chest coil array and a catheter receiver when both are
loaded with cuboid phantoms designed to mimic the human torso
(Fig. 11.17(a)) highlight the advantage of a restricted FOV. The
spatial variation of SNR obtained in the array is almost indepen-
dent of position, and it provides approximately constant brightness
in axial images (Fig. 11.17(b)). However, the SNR is relatively low
(here, around 100). In contrast, the SNR achieved using the catheter
receiver with the same sequence varies as 1/r2, where r is the distance
from the catheter axis. Correction for this variation can be provided
using software. Importantly, the SNR is highest near the catheter,
and hence should allow high-resolution imaging of duct walls.

The SNR peaks at around 500. As a result, the catheter receiver
can outperform the array coil for radii less than 20 mm — which
represents the useful FOV — but is clearly less effective outside this
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Fig. 11.17. (a) Arrangement for comparison of catheter receiver with 3 T surface
coil array; (b) axial images and spatial variations in SNR.

range. The peak SNR using the catheter receiver is around five times
larger. This increase could in principle be recovered using the array
by averaging the results of multiple signal acquisitions. However, the
statistics of signal averaging imply that the number needed is around
52 = 25, prohibitively large. Not only would the duration of the MRI
examination increase drastically, but the advantage in SNR gained
by averaging would be nullified by the effects of patient motion;
organs such as the liver are significantly displaced and distorted by
the expansion of the lungs in breathing. Thus, provided it can be
safely delivered into the body, the metamaterial design appears to
offer a performance that conventional approaches struggle to match.
Considerable further work is required before this can be verified in
vivo, but a program of early stage trials at Khon Kaen University
Hospital is now in place.

11.5. Conclusions

Catheter-based receivers for internal MRI are now showing
considerable promise. The receivers are based on a particular type
of metamaterial, the MI waveguide, which consists of a linear array
of magnetically coupled L-C resonators. MI waveguides can be real-
ized as a thin-film cable by double-sided patterning of copper-clad
Kapton. MI cable is highly flexible and can easily be mounted on a
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catheter, but has low propagation loss and is relatively immune to
bending. Segmentation into resonant elements with a short, figure-
of-eight shape prevents direct coupling to electric and magnetic RF
fields during the excitation phase of MRI, and hence provides intrin-
sic patient safety. The receiver has a sensitive tip, but can detect
an image along its entire length in sections that match the cable
divisions. Its limited FOV reduces the mount of body noise detected.
As a result, the receiver can provide a gain in SNR compared to an
external detector, but only over a limited volume. If this matches the
target tissue, improved performance can be obtained. The proposed
application is imaging of the biliary ductal system, where very high
resolution is required for diagnosis and staging of CCA. The receivers
have been shown to be compatible with the side-opening duodeno-
scopes used for introduction of catheters into the bile ducts. Early
stage trials are now taking place in Khon Kaen University Hospital,
Thailand, where CCA is epidemic due to liver fluke infestation.
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Microwave sensors based on the symmetry properties of transmission
lines loaded with metamaterial resonators are reviewed in this chapter.
In most microwave sensors based on resonant elements, the physical vari-
able to be measured modifies the resonance frequency, phase or quality
factor of the sensing resonant structure. In this chapter, a novel sensing
principle, based on the disruption of symmetry, is studied. The proposed
sensors are implemented by loading a transmission line either with sym-
metric resonators (typically, although not exclusively, resonant elements
useful for the implementation of metamaterials) or with symmetric con-
figurations of resonator pairs. In the unperturbed state, the whole struc-
ture (line and resonator/s) is symmetric, and it is designed to exhibit
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either an all-pass behavior (Type I sensors) or a single transmission zero
(Type II sensors). Conversely, when symmetry is broken by the physi-
cal effect to be sensed (e.g. a linear or angular displacement, dielectric
loading, etc.), a notch appears in Type I sensors, whereas a split-off (i.e.
two transmission zeros) emerges in Type II sensors. Hence, Type I and
Type II sensors can be designated as resonance-based and frequency-
splitting sensors, respectively. These sensors are of special interest as
comparators and are robust against changes in environmental conditions.
Potential applications include contactless linear and angular displace-
ment and velocity sensors, alignment sensors, permittivity sensors, etc.

12.1. Introduction

Transmission line metamaterials based on split-ring resonators
(SRRs) were first proposed in Ref. 1, where it was demonstrated that
a coplanar waveguide (CPW) transmission line loaded with pairs
of SRRs (etched on the back substrate side) and shunt inductive
strips mimic the first left-handed (LH) bulk metamaterial, reported
in 20002 (see Fig. 12.1). In the artificial medium of Fig. 12.1(a), left-
handedness is manifested as long as the incident radiation is polarized
with the electric field parallel to the metallic posts and the magnetic
field axial to the SRRs. Under these conditions, the metallic posts
exhibit a negative effective permittivity up to the so-called plasma
frequency, which depends on the distance between posts and their

(a) (b)

Fig. 12.1. (a) Photograph (courtesy by D.R. Smith) of the first artificial LH
medium, based on a combination of metallic posts and SRRs. (b) Layout of the
first LH (actually CRLH) line based on a CPW loaded with shunt inductive strips
and SRRs. In (b), the SRRs (in black color) are etched on the back substrate side.
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radius,3 and can be tailored and set to frequencies in the GHz range.
The array of SRRs is responsible for the negative effective permeabil-
ity, which takes place in a narrow band above the SRR fundamental
resonance frequency.2,4 If that frequency is set below the electric
plasma frequency of the posts, a narrow band with simultaneous
negative permittivity and permeability arises, and wave propagation
is LH (or backward) in that band.5 Despite the fact that the fields
generated in a CPW transmission line are not uniform, the orien-
tation and position of the shunt strips and pairs of SRRs make the
structure of Fig. 12.1(b) to behave as a 1D LH medium.a Indeed, the
structures of Figs. 12.1(a) and 12.1(b) can be described by identical
circuit models,1,6 i.e. a transmission line circuit model magnetically
coupled to resonators and with shunt connected inductors.b From
the analysis of the dispersion relation of such circuit model, it can be
easily deduced that the structures of Fig. 12.1 exhibit LH behavior in
a certain (narrow) band, and right-handed (RH)c behavior at higher
frequencies.9

The band pass functionality of SRR/strip-loaded CPW trans-
mission lines switches to a stop band (in the vicinity of the SRR
resonance frequency) if the strips are removed. This stopband behav-
ior can be interpreted as due to the negative effective permeability
(related to the presence of the SRRs) above the SRR fundamental

aNote that the shunt strips are parallel-oriented to the electric field generated by
the line, and a significant component of the magnetic field generated by the line
on the back substrate side is axial to the SRRs.
bThe former circuit model of a CPW loaded with SRRs and shunt strips was
reported in Ref. 1, and revised in Ref. 7. The effect of coupling between resonators
of adjacent elemental cells was studied in Ref. 8, whereas the interaction between
the resonators belonging to the same unit cell was treated in Ref. 59.
cThe term RH is used here as synonymous of “forward”, to indicate that above the
LH band there is a region where wave propagation if forward or RH (i.e. the prop-
agation vector, the electric field intensity vector and the magnetic field intensity
vector form a RH triplet, in contrast to the LH triplet that form such vectors
when propagation is backward). Transmission lines exhibiting LH and RH wave
propagation have been called composite right/left-handed (CRLH) lines.9 Indeed,
purely LH lines do not actually exist since at sufficiently high frequencies, the host
line elements dominate over the loading elements (shunt strips and SRRs).
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resonance and to the high positive permittivity (causing a strong
mismatch) below that frequency. SRR-loaded lines have been applied
to the design of notch and stopband filters,10 where the resonance
phenomenon of the loaded lines is exploited.

Although the genuine applications of metamaterial transmis-
sion lines concern the design of microwave components on the basis
of impedance and dispersion engineering,4,11−13d transmission lines
loaded only with electrically small resonators, such as SRRs or other
resonators formerly used for the synthesis of metamaterials, are of
interest in certain applications, including stopband and notch fil-
ters (as mentioned above) multiband printed dipole and monopole
antennas,14−16 multiband matching networks,17 and microwave sen-
sors (see for instance Ref. 18), among others. As long as the loading
resonators of these lines are used for the synthesis of metamaterials,
and the working principle of these lines is the controllability of the
resonance phenomenon (rather than the controllability of the phase
constant and characteristic impedance), such resonator-loaded lines
can be designated as transmission lines with metamaterial loading.13

The majority of the microwave sensors studied in this chapter
are based on transmission lines with metamaterial loading. Most of
the considered sensors are implemented by using SRRs (or variations
of the typical topology of this particle). The reasons that have led us
to consider a specific resonator topology will be given in detail later.
Microwave sensors based on the variation of the resonance frequency,
phase or quality factor of resonator-loaded lines have been reported in
the last few years.18−26 These electrical parameters may be influenced
by environmental changes (temperature, moisture, etc.),27 and hence
proper calibration is required, in general, before sensing (exceptions
may be sensors based on differential measurements). Otherwise, mea-
surements are likely to be affected by random errors as a result of
changing ambient factors.

dTo this end, CRLH lines, such as CPW transmission lines loaded with shunt
strips and SRRs or many other lines loaded with different combinations of reactive
elements, are required.
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Alternatively, a novel sensing principle, where the symmetry
properties of transmission lines loaded with electromagnetic res-
onators are exploited, has been recently pointed out.28,29 The idea in
this approach is to symmetrically load the transmission line with a
single resonant element, which must be chosen and configured to
achieve all-pass behavior (total transmission) in the unperturbed
symmetric state, while creating a notch (transmission zero) when
symmetry is disrupted. In these sensors, the notch magnitude varies
with the level of asymmetry, and therefore these sensors can be iden-
tified as notch-depth sensors or resonance-based sensors.e The sensors
based on this design principle are robust against variations of envi-
ronmental conditions and especially suitable for alignment purposes,
since alignment is a geometrical property invariant to these condi-
tions. Prototypes of linear and angular displacement sensors28−39 as
well as angular velocity sensors37,38 have been demonstrated. The
purpose of this chapter is to describe the operation principle of these
sensors and to report some examples. Nevertheless, some immunity
to variable ambient conditions can also be attained using pairs of
identical resonators. In this approach, the loaded line exhibits a sin-
gle transmission zero in the unperturbed (symmetric) state, and a
split-off (i.e. two notches) emerges when symmetry is broken. On the
basis of this frequency-splitting principle, displacement sensors40 and
sensors for dielectric measurements41 have been proposed.

The principle of operation of sensors based on symmetry rupture,
namely resonance-based sensors and frequency-splitting sensors, is
explained in detail in Section 6.2. In Section 6.3, some prototype
sensors are reported, including linear and angular displacement sen-
sors, rotation speed sensors and permittivity sensors. Advantages and
disadvantages of these sensors, compared to other microwave sensors

eThis nomenclature obeys to the fact that the resonance phenomenon appears
when symmetry is broken. As will be shown, in the symmetric state, the resonator
is not effectively coupled to the line and resonance is prevented. If symmetry is
disrupted, the coupling level (and hence the notch magnitude) varies with the
level of asymmetry.
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based on different approaches, are also discussed. Finally, the main
conclusions are highlighted in Section 6.4.

12.2. Microwave Sensors Based on Symmetry
Properties of Resonator-Loaded Lines: Principle
and Potential Configurations

In this section, the working principle of resonance-based and
frequency-splitting sensors is presented, and different combinations
of transmission lines and resonators, useful for the implementation
of such sensors, are pointed out.

12.2.1. Resonance-based sensors

As will be shown, the principle of operation of resonance-based sensors
relies on controlling a resonance by means of the coupling between a
transmission line and a resonator. It is for this reason that these sen-
sors may be said to be based on a coupling-modulated resonance29

or on a coupling-controlled resonance. However, for simplicity, these
sensors are referred to as resonance-based sensors throughout this
chapter.

The most usual transmission lines for the implementation of
microwave sensors based on symmetry properties are microstrip lines
and CPWs. The 3D view of these lines and the field distributions for
the fundamental modes are depicted in Fig. 12.2. Both lines exhibit
a magnetic wall (H-wall) at the symmetry plane. Let us now assume
that the line is loaded with a single symmetric and planar resonator,
parallely oriented to the plane of the line (e.g. etched in the back
substrate side of the CPW, or in the ground plane of the microstrip
line, provided a slot resonator is considered). Typically, when a trans-
mission line is loaded with a resonator coupled to it, the transmission
coefficient exhibits a stopband (a transmission zero or notch) at the
fundamental resonance frequency. Suppression of the signal transmis-
sion occurs because the injected power is reflected back to the source.
However, it is possible to prevent resonance and the appearance of
the associated notch in the transmission coefficient.
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(a)

(b)

Fig. 12.2. Three-dimensional views and electric (left) and magnetic (right) field
distributions of a microstrip line (a) and CPW (b) for the fundamental (even)
modes.

The absence or presence of resonance is determined by the align-
ment of the symmetry planes of the line and the resonator as fol-
lows. Assume that the symmetry plane of the resonator is perfectly
aligned with the symmetry plane of the transmission line, so that the
structure is perfectly symmetric with regard to its longitudinal mid-
plane. If the two symmetry planes are of the same electromagnetic
nature (either electric or magnetic walls), the resonator is excited.
The structure is resonant and signal transmission is suppressed in
the vicinity of the resonance frequency, resulting in a stopband
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response (|S21| ≈ 0). The resonator may be electrically, magnetically
or magnetoelectrically coupled to the line. Conversely, if the two
symmetry planes are of different electromagnetic nature (one being
a magnetic wall and the other one an electric wall) the resonator
cannot be excited. Because of perfect symmetry, the net electric and
magnetic field components “illuminating” the resonator exactly can-
cel (the electric and magnetic fluxes over the resonator area are zero).
Therefore, the resonance condition is inhibited because it cannot be
established by either electric or magnetic coupling. Accordingly, the
whole structure behaves as a transmission line exhibiting an all-pass
response (|S21| ≈ 1).

To clarify the previous assertions related to the resonance pre-
vention, consider as an illustrative example a CPW transmission line
(see Fig. 12.3). The fundamental CPW mode of interest is an even
mode (see Fig. 12.2) and hence the transmission line exhibits a mag-
netic wall at its symmetry plane. If we align with such a line an SRR

Fig. 12.3. CPW transmission line loaded with a single SRR. (a) Line and res-
onator aligned and excitation with the fundamental (even) mode; (b) line and
resonator aligned and excitation with the slot (odd) mode; (c) line and resonator
misaligned and excitation with the fundamental (even) mode. It is apparent that,
for misaligned loadings, the magnetic wall at the symmetry plane of the line is
altered.
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(it exhibits an electric wall at its symmetry plane at the fundamental
resonance), the resonator will not be excited (Fig. 12.3(a)). However,
for the slot (odd) mode of the CPW, the resonator will be excited,
since the symmetry plane of the line is an electric wall for that mode
(Fig. 12.3(b)).

In the situations considered above, the symmetry planes of the
line and the resonator are aligned. Let us now consider an all-pass
structure in the unperturbed symmetric state (for instance the one
of Fig. 12.3(a)), where the resonator is movable (e.g. by etching it
in another substrate). If the resonator is rotated and/or laterally
displaced, the perfect cancellation of fields over the resonator no
longer holds, and a notch in the transmission coefficient emerges (see
Fig. 12.3(c)). Due to symmetry disruption, the resonator is effec-
tively coupled to the line, the coupling level (and hence the notch
magnitude) being intimately related to the level of asymmetry. From
the previous words, it follows that transmission lines loaded with
movable symmetric resonators can be used for sensing linear and
angular displacements and velocities. Obviously, the line and res-
onator geometries need to be optimized in order to achieve optimum
sensor performance (linearity, sensitivity, dynamic range, etc.). This
depends on the specific type of measurement and is left for the next
section, where various examples are reported. Since symmetry is not
affected by changes in environmental conditions, these sensors based
on symmetry properties are robust against variable ambient condi-
tions (temperature, moisture, etc.). It should be noted that these
sensors are specially suited to detect a misalignment between the
resonator and the line, and are therefore useful as alignment sensors.

So far, the considered symmetry disruption mechanism is a linear
or angular displacement, with the result of a misalignment between
the line and the resonator. However, the lack of symmetry can be
caused by other mechanisms which do not involve the relative ori-
entation between the line and the resonator. For instance: (a) the
resonator symmetry may be topologically destroyed; (b) other ele-
ments can be included (e.g. dielectric loads); or (c) the surrounding
medium can be subjected to inhomogeneities. In those cases where
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the symmetry rupture is not based on geometrical misalignments, the
propagation characteristics of the structure should be defined in a
general sense in terms of symmetry/asymmetry rather than on align-
ment/misalignment. Provided that a transmission line is loaded with
a resonator, and that the line may also be loaded with other inclu-
sions (see Fig. 12.4), if the whole structure is symmetric (for which the
line and the resonator are necessarily symmetric) and the symmetry
planes of the line and the resonator are of distinct nature, resonance
is inhibited (|S21| ≈ 1). Obviously, resonance is established if the
symmetry planes are of the same electromagnetic nature (|S21| ≈ 0).
However, if the whole structure is asymmetric, resonance is allowed,
the stopband characteristics being dependent on the asymmetry level
(0 < |S21| < 1). Therefore, the stopband characteristics may be mod-
ulated by symmetry properties as a whole. The previous statements
are valid regardless of the symmetry disruption mechanism.

By means of the sensing principle based on the symmetry proper-
ties of resonator-loaded lines, it is possible to implement spatial sen-
sors, sensors for dielectric characterization, comparators, etc. There
are many potential combinations of resonators and lines that can
be useful for the implementation of these sensors, besides the one

Fig. 12.4. Illustration of symmetry rupture by square-shaped inclusions in the
resonance approach based on a single resonator, where a CPW is loaded with
an SRR.
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(a) (b) (c) 

Fig. 12.5. Metallic symmetric resonators. (a) SRR; (b) FSIR; (c) ELC. The driv-
ing mechanisms (electric and/or magnetic field) and their direction are indicated.

considered to describe the sensing principle (an SRR-loaded CPW).
The main line types are those depicted in Fig. 12.2. Concerning
the resonant elements, multiple possibilities arise. Let us briefly
review some of these resonators, dividing them into metallic and slot
resonators.

Figure 12.5 depicts typical topologies of metallic resonant ele-
ments, i.e. the SRR, the folded stepped impedance resonator (FSIR),
and the electric-field-coupled LC resonator or simply electric LC
(ELC) resonator. The distribution of charges and currents, as well as
the electromagnetic nature of the symmetry plane (E-wall or H-wall),
at the fundamental resonance are also indicated. The SRR, proposed
by Pendry et al. in 1999,42 is a well-known particle for the imple-
mentation of negative effective permeability media. As mentioned
before, it exhibits an electric wall at the symmetry plane at the
fundamental resonance, and its electrical size is small by virtue of
the coupling between the two metallic open loops of the resonator.
The size of the particle can be made even smaller by etching the two
metallic loops in opposite sides of a narrow substrate (the resulting
particle has been denominated broadside-coupled SRR, BC-SRR43),
and electrical sizes (side length for a square geometry) as small as
λ/16, λ being the wavelength in the considered substrate material at
the fundamental resonance, have been demonstrated.44 One further
advantage of this particle is that by etching the two loops of the
resonator on different substrates (with relative motion), it is possible
to implement displacement sensors based on them, as will be shown
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later. The FSIR also exhibits an electric wall at its symmetry plane
at the fundamental resonance. Loaded to a CPW or to a microstrip
line, the dominant coupling mechanism is electric (at least in the
configurations of Refs. 30, 33) and, by virtue of the broadside capac-
itance between the line and the resonator, the physical size of the
particle, for a given resonance frequency (a requirement in many
applications), can be very small.30,33 A very interesting particle for
sensing purposes is the ELC (Fig. 12.5(c)). This is a bisymmetric
resonator simultaneously exhibiting an electric wall and a magnetic
wall (orthogonally oriented) at the fundamental resonance. This par-
ticle was proposed in order to achieve resonant-type negative effective
permittivity media.45 Note that the particle cannot be excited by a
uniform time-varying magnetic field orthogonal to the plane of the
particle, but it can be excited by an electric field applied in the direc-
tion orthogonal to the electric wall. According to the current distri-
bution at the fundamental resonance, the particle can also be excited
by counter (i.e. non-uniform) magnetic fields applied to the loops, as
those present in the slots of a CPW for the fundamental CPW mode.

The slot resonators depicted in Fig. 12.6 are the dual (or com-
plementary) counterparts of those represented in Fig. 12.5. The slot
version of the SRR has been designated as complementary SRR
(CSRR).46 The slotted ELC has been called complementary ELC,47

and magnetic LC (MLC),48 but we prefer the latter designation to
emphasize the fact that the particle can be excited by a uniform
magnetic field (rather than electric field) applied in the plane of the

(a) (b) (c) 

Fig. 12.6. Slotted symmetric resonators. (a) CSRR; (b) complementary FSIR;
(c) MLC. The driving mechanisms (electric and/or magnetic field) and their direc-
tion are indicated.
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particle. The roles of the magnetic and electric walls, as well as the
driving mechanisms (electric and magnetic fields), are interchanged
in the metallic and slot resonators, as can be appreciated by com-
paring Figs. 12.5 and 12.6.

By adequately combining the previous resonant elements with
the transmission lines depicted in Fig. 12.2 (or with other transmis-
sion lines not shown), it is possible to implement microwave sen-
sors based on symmetry disruption. A possible combination is the
CPW transmission line with the SRR, as considered in Figs. 12.3
and 12.4. Another prominent resonant element for the implementa-
tion of sensors in CPW technology, especially for 90◦ angular dis-
placement measurements, is the ELC resonator (see Fig. 12.7). The
reason is that the particle is bisymmetric. Thus, when the electric
wall is aligned with the line, the structure is transparent, but par-
ticle rotation induces magnetic coupling between the line and the
resonator. The tightest coupling corresponds to the case when the
magnetic wall of the particle is aligned with the line, causing a deep
notch in the transmission coefficient. According to these words, this
configuration is expected to exhibit high linearity of the notch depth
with the rotation angle (this aspect will be treated later).

Fig. 12.7. Illustration of the modulation in the suppression by alignment/mis-
alignment of the symmetry planes in a CPW loaded with an ELC resonator. The
stopband characteristics may be modulated by rotating the resonator.
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In principle, any combination of transmission line and symmetric
resonator exhibiting different electromagnetic walls at the symmetry
plane for the unperturbed symmetric state can be useful for sensing
purposes on the basis of symmetry disruption. By etching FSIRs (or
even unfolded SIRs) in a movable substrate, these resonators are also
useful for the implementation of displacement sensors in both CPW30

and microstrip33 technology. Note also, for instance, that differential
microstrip lines (excited by differential signals) can be combined with
CSRRs, or with any other resonant element exhibiting a magnetic
wall in its symmetry plane (e.g. ELC and MLC) at the fundamental
resonance.49

12.2.2. Frequency-splitting sensors

Thus far, we have analyzed the symmetry properties of transmis-
sion lines loaded with a single resonator, and it has been demon-
strated that these structures are potentially useful for sensing pur-
poses. Symmetry properties in transmission lines loaded with any
other number of resonators (arranged transversally to the line) can
also be derived. Let us consider the particular case with pairs of
resonators. The generalization of the symmetry rupture for pairs of
resonators is subjected to using identical resonators (symmetric res-
onators are not necessary) in order to exhibit a plane of symmetry
(at the midway between the resonators). Thereby, the loaded line
can be symmetric by aligning the plane of symmetry of the paired
resonators with the plane of symmetry of the line. However, there is
a fundamental difference as compared to using a single resonator: if
symmetric resonators are used, the two resonators cannot be simul-
taneously aligned with the line (we can align only one resonator).
Therefore, only one resonance frequency can be inhibited at most in
transmission lines loaded with pairs of resonators (and in the general
case with more than a single resonator). The relevant conclusion is
that resonance always occurs. In terms of absolute symmetry, pro-
vided that a transmission line is loaded with a pair of resonators,
and that the line may also be loaded with other inclusions, if the
whole structure is symmetric (where the line must be symmetric and
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the pair of resonators must be identical and symmetrically oriented
to the line axis), there is only one transmission zero because the
resonance frequencies of the two resonators degenerate to the same
value (|S21| ≈ 0@f0). However, if the whole structure is asymmetric,
in general there are two transmission zeros because two different res-
onances arise (|S21| ≈ 0@f1; f2), i.e., frequency splitting. It should be
highlighted that resonance frequency-splitting is used in this chapter
in a broad sense involving splitting as well as shifting. For instance, if
a transmission line is loaded with a pair of resonators with different
resonance frequencies, it is apparent that there is actually no split
from a single resonance frequency.

Consequently, in this approach based on pairs of resonators, a
high controllability in regard to the number and frequency of reso-
nances as a function of symmetry may be achieved (the bandwidth
and depth of the notches, however, may also depend on symmetry).
Figure 12.8 illustrates the above-mentioned assertions where symme-
try is disrupted by inclusions. As can be seen, an interesting aspect of
this approach is that there is no restriction in the orientation of the
individual resonators in regard to the line. It would be interesting to
cancel mixed-coupling effects in certain topologies.50 For instance,

Fig. 12.8. Illustration of symmetry rupture by square-shaped inclusions in the
frequency-splitting approach based on pairs of resonators, where a CPW is loaded
with a pair of SRRs. Note that the symmetry planes of the SRRs are not required
to be parallel to the longitudinal x-direction, preventing from mixed coupling.
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if symmetric SRRs are considered, their symmetry planes do not
need to be oriented longitudinally and the SRRs are coupled only
magnetically to the line.

Symmetry rupture by adding inclusions to the structure may be
useful for the implementation of differential sensors and comparators.
Potential applications are dielectric characterization, defect detection
in samples (by comparison to a reference), biosensors, etc. It is also
possible to use this sensing principle based on frequency splitting for
the implementation of spatial sensors, as will be shown later.

12.3. Microwave Sensors Based on Symmetry
Properties of Resonator-Loaded Lines: Examples

In this section, several examples of sensors (or proof-of-concept
demonstrators) based on the principles pointed out in the preceding
section are reported. Specifically, we will present linear displacement
sensors, angular displacement and velocity sensors, and sensors for
dielectric measurements.

12.3.1. Linear displacement sensors

Resonance-based28−31,33,34,36 and frequency-splitting40 sensors for
linear displacement measurement have been proposed. In Ref. 31,
it is demonstrated that a right-angle bended CPW transmission line
loaded with four single-loop SRRs can be used as a 2D displacement
sensor, and more precisely, as a 2D position sensor, able to distin-
guish between displacements in the positive or negative directions
of the 2D space (Fig. 12.9). For the implementation of the sensor,
four SRRs of different dimensions (and hence fundamental resonance)
must be etched on a movable substrate (with relative motion with
regard to the CPW transmission line). The resonators SRR∆x and
SRR∆y are called displacement sensing resonators, and when they
are laterally displaced (with regard to the corresponding line sec-
tion axis), a notch in the transmission coefficient appears. To distin-
guish between the ±x and ±y directions, the resonators designated
as SRR±x and SRR±y play the key role, namely, the corresponding
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Fig. 12.9. Topology of the 2D displacement sensor based on the resonance
approach. The SRRs must be etched on a movable substrate. The CPW dimen-
sions are W = 1.67 mm and G = 0.2 mm, respectively. The dimensions of the
SRRs are: l1(SRR∆x) = 9.95 mm, l1(SRR±x) = 7.05 mm, l1(SRR∆y) = 13.4 mm,
l1(SRR±y) = 7.8 mm, l2 = 1.67 mm and c = 0.2 mm. The considered substrate
is Rogers RO3010 with relative permittivity εr = 10.2, thickness h = 127 µm and
loss tangent tan δ = 0.0023.

resonance frequency (notch) is “activated” or not, depending on the
sign of the displacement. Activation occurs only for positive displace-
ment in x- or y-directions, since for negative shifts the resonators
SRR±x and SRR±y are out of the influence of the CPW and are not
coupled to it. Indeed, resonators SRR±x and SRR±y, whose sensing
principle is not based on symmetry arguments, act as flags that are
activated for positive displacements.

To demonstrate the potential of this approach, a proof-of-concept
was reported in Ref. 31, where several samples with SRRs etched on
the back substrate side of the CPW but at different locations (corre-
sponding to different displacements) were fabricated. The device cor-
responding to the unperturbed state is depicted in Fig. 12.10, and the
notch magnitudes of the transmission coefficient at the frequencies of
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(a) (b)

Fig. 12.10. Photograph of the proposed proof-of-concept device for the aligned
position; (a) top and (b) bottom face.

Fig. 12.11. Notch magnitude of the transmission coefficient S21 at the indicated
frequencies for x = y-oriented displacement; results for (a) x- and (b) y-axis
position sensing. Reprinted with permission from Ref. 31.

the different resonators for x = y-oriented displacement is depicted
in Fig. 12.11. It can be appreciated that for positive displacements,
the SRR±x and SRR±y resonators are activated as is manifested by
a clear increase in the notch at f±x and f±y, whereas the threshold
level (−3 dB) is not exceeded for negative displacements (indicating
that the shift is in the negative direction).

In Ref. 34, the proposed sensor (1D) uses also single-loop SRRs
coupled to a CPW transmission line, but the shape is optimized to
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improve the linearity and dynamic range. In addition, the sensor is
able to operate at a fixed frequency since the notch frequency is
constant with the displacement, bypassing the need for a frequency
sweeping source and measurement system.

A different approach is used in Ref. 36, where a 2D displace-
ment and alignment sensor is implemented on the basis of the reflec-
tion coefficients of orthogonally oriented open microstrip lines loaded
with SRRs. An original aspect of these sensors is that they work in
reflection, rather than transmission, but the symmetry-related oper-
ating principle is the same. The layout of the device is depicted in
Fig. 12.12. For the unperturbed state, the resonators are not excited
and the injected signals to both ports are reflected back to the source.
Hence, the reflection coefficients are |S11| = |S22| = 1. However, if
the alignment is broken by a displacement in the x- and y-directions,
the SRRs will be excited and notches will appear in the reflection
coefficients. Further displacement in the x- and y-directions gives rise

Fig. 12.12. Top (a) and side (b) views of the 2D displacement sensor based on
the resonance in the reflection coefficients. The structures are patterned on Rogers
RO4003 substrates with 0.81 mm thickness. The geometrical dimensions of the
line and SRR are w = 1.84 mm, a = 7 mm, g = 0.5 mm and c = 0.5 mm. There
is an air gap with ga = 0.76 mm between the two substrates.
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to a stronger coupling between the transmission lines and the SRRs,
in turn resulting in deeper notches in the reflection coefficients at the
resonance frequency of the SRRs. These notches result from radiation
effects,39 and this is another relevant feature of this sensing strategy
based on (one-port) open-ended transmission lines.

Note that displacement in the x-direction has no effect on the
depth of notch in |S22| (nor displacement in the y-direction onto
|S11|). Thus, misalignment in the x and y directions can be indepen-
dently sensed from the depth of notches in |S11| and |S22|, respec-
tively. One advantage of this method is that both SRRs can be
designed to operate at the same resonance frequency. This is in con-
trast to the previous 2D displacement sensor based on the trans-
mission characteristics of a CPW, where SRRs needed to have dis-
tinct resonance frequencies. Note that the direction of motion cannot
be determined with the sensor depicted in Fig. 12.12. Nevertheless,
additional resonant elements, tuned at different frequencies, can be
added to the movable substrate in order to distinguish the directions
of motion, similar to the strategy of the sensor of Fig. 12.10.

The photograph of the fabricated device is shown in Fig. 12.13.
Figure 12.14 depicts the reflection coefficient measured from any of

Fig. 12.13. Photograph of the fabricated sensor implemented through open-
ended transmission lines.



September 8, 2017 8:23 Handbook of Metamaterials and Plasmonics — Volume 1 9in x 6in b2857-v1-ch12 page 519

Microwave Sensors Based on Symmetry Properties 519

Fig. 12.14. Measured |S11| (or |S22|) for different values of displacement ∆x

(or ∆y) from 0.1 to 0.8 mm in steps of 0.1 mm. Reprinted with permission from
Ref. 36.

the ports for different lateral displacements (seen from the corre-
sponding port). One important feature of the proposed sensor is that
displacement affects only the depth of the notch, and leaves the res-
onance frequency nearly intact. As mentioned earlier in conjunction
with Ref. 34, a fixed resonance frequency can be an important feature
that enables the proposed sensor to operate at a fixed frequency. To
validate this important feature, Fig. 12.15 depicts the simulated and
measured |S11| and |S22| at a fixed frequency of 4.253 GHz against
∆x, while ∆y is 0 mm. The figure clearly shows that the movement
in the x-direction can be sensed from |S11|, whereas |S22| remains
unaffected and shows the alignment in the y-direction.

Frequency-splitting 2D alignment and displacement sensors
based on broadside-coupled split ring resonators (BC-SRRs43) were
reported for the first time in.40 The side and top views of the pro-
posed sensor are depicted in Fig. 12.16. Note that a right-angle
bended microstrip line is considered for sensing, where the two reso-
nant elements are designed to resonate at different frequencies. The
typical topology of the BC-SRR was modified so that the resonant
frequency is altered by the displacement in one direction only. To
this end, the upper rings are replaced with straight strips. In this
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Fig. 12.15. Comparison between measured and simulated |S11| and |S22| at a
fixed frequency f = 4.253 GHz against ∆x, for ∆y = 0 mm. Owing to the
symmetry of the proposed sensor, identical comparison is valid between |S11| and
|S22| against ∆y. Reprinted with permission from Ref. 36.

configuration, provided the strips are long enough, the pair of mod-
ified resonators that are coupled to the horizontal section of the
microstrip line is only sensitive to a displacement in y direction, while
the pair of the modified BC-SRRs coupled to the vertical section of
the line is only responsive to a displacement in x direction. An air
gap, to avoid abrasion of metallic layers and substrates, is added
between the two substrates, as indicated in Fig. 12.16.

Figures 12.17(a) and 12.17(b) depict the simulated response of
the proposed 2D sensor to displacements in x and y directions,
respectively. Figure 12.17(a) depicts the simulated transmission coef-
ficients of the proposed 2D sensor for different values of displacement
in x direction from 0 mm to 3 mm in steps of 1 mm when no dis-
placement in y direction is applied, i.e. ∆y = 0 mm. At the initial
position, when both pairs of the modified BC-SRRs are aligned with
the symmetry plane of the corresponding sections of the microstrip
line, only two notches at fx0 and fy0 appear in the transmission
spectrum of the line. The resonances at frequencies fx0 and fy0 are
associated with Pair 1 and Pair 2, respectively. However, as shown
in the figure, a displacement in x direction results in the splitting of
the resonance of Pair 1 in two notches at fx0 and fx1. The difference
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Fig. 12.16. (a) Side view and (b) top view of the proposed 2D displacement
sensor. Rogers RO4003 substrate with relative permittivity εr = 3.38 and thick-
ness h = 0.81 mm is used for the bottom and top substrates, which are separated
with an air gap ga = 0.25 mm. The microstrip line has a width w = 1.85 mm,
which corresponds to a 50-Ω line. The dimensions of the resonators are as follows:
a = 12.2 mm, b1 = 15.5 mm, b2 = 10.5 mm, c1 = 2.5 mm, c2 = 1.2 mm, s = 0.2
mm and at initial position e = 4.8 mm.

between the two frequencies, i.e. ∆fx = fx1 − fx0, is increased with
an increase in displacement in x direction, thus it can be used for
sensing the value of ∆x. Similarly, Fig. 12.17(b) shows the simulated
transmission coefficients of the proposed sensor for variation of ∆y
from 0 mm to 3 mm in steps of 1 mm while the Pair 1 is aligned with
the symmetry plane of the vertical section of the microstrip line, i.e.
∆x = 0 mm. The figure clearly shows that ∆fy = fy1− fy0 increases
with ∆y, allowing for sensing a displacement in y direction.

In order to validate the concept and the simulation results, the
designed 2D sensor was fabricated and measured. The photographs
of the top and bottom substrates of the fabricated prototype are
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Fig. 12.17. Simulated transmission coefficients of the proposed sensor (a) for
different values of displacement in x direction from 0 mm to 3 mm in steps of 1
mm, while ∆y = 0 mm, and (b) for different values of displacement in y direction
from 0 mm to 3 mm in steps of 1 mm, while ∆x = 0 mm. Reprinted with
permission from Ref. 40.

Fig. 12.18. Photographs of the fabricated prototype: (a) top and (b) bottom
substrates.

depicted in Fig. 12.18. Figure 12.19 shows a photograph of the mea-
surement setup, which is composed of a pair of micrometer actuators
for adjusting the air space between the two substrates, as well as two
pairs of micrometer actuators for accurate displacement in x and y
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Fig. 12.19. Measurement setup, composed of three sets of micrometer actuators
for accurate adjustment of the air gap between the substrates and displacement
in x and y directions.

Fig. 12.20. Measured transmission coefficients (a) for three different values of
displacement in x direction, while ∆y = 2 mm, and (b) for three different values
of displacement in y direction, while ∆x = 0.5 mm. Reprinted with permission
from Ref. 40.

directions. The gap uniformity is guaranteed because the considered
substrates are of sufficient rigidity.

Figure 12.20(a) depicts the measured transmission coefficients of
the sensor for different values of ∆x = 1 mm, 2 mm and 3 mm, while
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Fig. 12.21. Comparison between measured and simulated spurious resonance
frequency versus displacement: (a) ∆fx versus ∆x and (b) ∆fy versus ∆y.
Reprinted with permission from Ref. 40.

the sensor has a fixed displacement of 2 mm in y direction. The
figure shows that while frequency difference ∆fx is increased from
105 MHz to 267 MHz, ∆fy does not change. Similarly, Fig. 12.20(b),
shows the measured results for a fixed displacement of 0.5 mm in
x direction, resulting in fixed notches at fx0 = 2.5 GHz and fx1 =
2.6 GHz, while ∆y is changed from 1 mm to 3 mm in steps of 1
mm, which can be sensed from the increase in ∆fy from 95 MHz
to 210 MHz. The experiment shows that each pair of the modified
BC-SRRs are exclusively responsive to a displacement either in x or
y direction. Thus, the proposed structure can be efficiently used as
a 2D alignment and displacement sensor.

In Figs. 12.21(a) and 12.21(b) the measured ∆fx and ∆fy versus
displacement in x and y directions, respectively, are compared with
those of the simulation results. The figure shows the satisfactory
linearity of the proposed sensor. Note that the air gap distance can
modify the resonance of the notch, but if there is alignment, only
one notch is expected. Thus, for alignment purposes, the sensor ben-
efits from robustness against environmental changes. Nevertheless,
tolerances in the gap distance may also influence the results. This
is actually (along with the fabrication and measurement setup tol-
erances) the reason for the discrepancy between measurements and
simulations in the results of Fig. 12.21. However, as clearly shown
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in Fig. 12.21, the trend of the measured frequency difference is very
well matched with the simulated results. This can be quantitatively
verified through Pearson’s correlation coefficient between simulated
and measured data.51 The correlation coefficient is better than 0.99
for displacement in both x and y directions, which quantitatively
verifies the good agreement between the simulated and measured
data. Hence, calibration of the sensor can be used in order to remove
the effect of tolerances in fabrication and in the gap distance.

Since the purpose of this chapter is to provide initial proof-of-
principles, a vector network analyzer (VNA) is used for the mea-
surement of the reflection/transmission coefficient of all the sen-
sors presented. However, in a practical application, in frequency-
splitting sensors, a voltage-controlled oscillator (VCO) can be used
to excite the sensor. By sweeping the frequency in the region of
interest, by means of an envelope detector cascaded at the output
port, the frequencies where the notch (for alignment) or notches (for
misalignment) appear can be detected. Similar feeding and readout
circuits can be used in resonance-based sensors, where the VCO can
be replaced with an oscillator of fixed frequency in the case of a
frequency-independent notch.

Furthermore, through an in-between air gap, the displacement
and alignment sensing in the proposed sensors can be implemented
by displacing the top substrate without any friction over the bottom
substrate. Due to a contactless measurement, the sensors benefit from
minimum aging effects and a high repeatability.

12.3.2. Angular displacement and velocity sensors

Resonance-based angular displacement and velocity sensors have
been reported in Refs. 32, 37 and Ref. 38 in CPW and microstrip
technology, respectively. In all the cases, a circularly-shaped ELC res-
onator and line are used since by these means linearity is optimized.
For the CPW-based sensor, the line is non-uniform along the prop-
agation direction. However, matching is preserved provided the cen-
tral strip and slot widths have the appropriate dimensions. For the
microstrip-based sensors, the transmission line is actually composed
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Fig. 12.22. Angular displacement sensor. (a) Layout, and (b) photograph. The
substrates are Rogers RO3010 with relative permittivity εr = 11.2, thickness
h = 1.27 mm (microstrip line) and h = 0.635 mm (resonator), and loss tangent
tan δ = 0.0023. The line widths W are 2.06 mm and 1.04 mm. ELC mean radius
r0 = 8.05 mm, w1 = 6 mm, w2 = l1 = s = 0.2 mm and w3 = 0.5 mm.

of a circularly-shaped divider/combiner, as depicted in Fig. 12.22.
This is the sensor prototype that has been chosen to be reported
in this chapter, hence let us analyze it in detail. Let us consider
that a circular ELC resonator (attached to the rotating object) is
symmetrically placed above the pair of lines. Under these condi-
tions, the symmetry plane (i.e. the midplane) behaves as a magnetic
wall. As proven in,49 and also according to the discussion of Sub-
section 6.2.1, the structure is transparent to signal transmission if
the ELC electric wall is aligned with the symmetry plane of the line.
Contrarily, a transmission zero arises if the alignment is with the ELC
magnetic wall. In the former situation, the fundamental ELC reso-
nance cannot be excited. However, the resonator is strongly coupled
(magnetically) to the lines if the magnetic walls are aligned. Such
behavior, explained through equivalent circuit models in,49 suggests
that rotations with a 90◦ dynamic range can be measured from the
common-mode transmission coefficient.
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By feeding the structure with a single-ended signal, the divider
acts as a single-ended to common-mode signal transition. Conversely,
the combiner converts the common-mode signal into a single-ended
signal. The circularly shaped lines exhibit 50-Ω even-mode character-
istic impedance. The combiner/divider is implemented with 35.35-
Ω impedance inverters (quarter-wavelength lines at 1.45 GHz) to
achieve matching to 50-Ω reference ports. The circular 50-Ω line pair
(which is responsible for resonator coupling) is arranged face-to-face
with the ELC external ring in order to enhance electromagnetic
coupling. Furthermore, the line pair as well as the resonator was
circularly-shaped to enhance linearity, as mentioned above.

The displacement measurement was performed using an experi-
mental setup similar to that reported in Fig. 12.19, and shown in
Fig. 12.23(a). The ELC substrate was attached to a step motor
through a Teflon slab with 3.5 cm thickness and relative permittivity
εr = 2.08. The air gap between the ELC resonator and the microstrip
lines was set to 0.254 mm. As shown in Fig. 12.23(b), the rotation
angle can be sensed from the notch magnitude (and frequency as
well, in this configuration), with a reasonably linear dependence.

(a) (b)

Fig. 12.23. (a) Experimental setup, and (b) notch magnitude and frequency ver-
sus the angular displacement. The frequency shift is attributed to substrate and
fabrication tolerances (f0 is very sensitive to the resonator parameters). Reprinted
with permission from Ref. 38.
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Fig. 12.24. Angular velocity measurements for an arbitrary initial time t0.
Reprinted with permission from Ref. 38.

Let us now consider that the ELC resonator is continuously rotat-
ing. To obtain the angular velocity, ωr, a harmonic signal tuned at a
fixed frequency (e.g. the notch frequency corresponding to θ = 10◦,
f0 = 1.308 GHz) is injected to the input port, whereas an isolator
plus an envelope detector are cascaded to the output port. The enve-
lope signals at the output (which are dependent on the transmis-
sion coefficient) are captured by an oscilloscope (Fig. 12.24), and the
velocities are derived from the time difference between consecutive
transmission peaks Tm = Tr/2 = 1/2fr. By configuring the step
motor with fr = 1 Hz and 50 Hz (ωr = 2πfr), the measured veloc-
ities are fr = 0.998 Hz and 50.251 Hz, respectively, validating the
approach. Rotation speeds as high as required can be measured by
means of this approach since the carrier signal frequency (within the
microwave region of the electromagnetic spectrum) is much higher
than the equivalent linear velocity of actual rotating systems. As long
as the rotation speed is constant over transmission peaks, precision
can be improved by merely averaging the time between peaks.

12.3.3. Permittivity sensors

In this subsection, it is shown that frequency-splitting sensors, based
on symmetry properties, for dielectric measurements can be imple-
mented. Microwave sensors for dielectric characterization of biolog-
ical substances (such as organic tissue), for biological cell analysis,
or for the determination of component concentration/composition in
aqueous (or other liquid) solutions by means of microfluidics have
been proposed.19−22,52−58 In most of these approaches, sensing is
based on frequency shift. Let us now explore the principle for the
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implementation of microwave sensors for dielectric measurements on
the basis of frequency splitting. The main idea was detailed in Sec-
tion 6.2.2, where a perturbation of the symmetry in a transmission
line loaded with a pair of resonators produces a frequency splitting
(see Fig. 12.8). In particular, symmetry can be perturbed by asym-
metric dielectric loading. Hence, the structures can be utilized to
work as differential sensors, and they are of special interest as com-
parators, where defects or abnormalities of samples as compared to
a reference can be easily detected.

The proof-of-concept demonstrator reported here is based on a
CPW transmission line loaded with a pair of step impedance res-
onators (SIRs). The analysis of these structures, where magnetic
coupling between the SIRs is necessary for an accurate modelling,
was carried out in Ref. 41. Therein, it was demonstrated that asym-
metric SIRs (or, equivalently, identical SIRs with asymmetric load-
ing) provide two resonances (i.e. frequency splitting). However, due to
magnetic coupling between the resonant elements, frequency splitting
is higher than the frequency span corresponding to the frequencies
of the isolated resonators. This aspect is not beneficial in terms of
sensitivity for differential measurements, but is not dramatic for the
use of the structure as a comparator. Figure 12.25 depicts the fab-
ricated proof-of-concept demonstrator, implemented specifically in
conductor-backed CPW (CB-CPW). By loading the structure with
a piece of glass (εr = 4.6) on top of one of the SIRs, two transmission
zeros appear, as compared to the structure (symmetric) without the
piece of glass. As an alternative to SIRs, a similar frequency-splitting
sensor can be realized by loading a CPW transmission line with a
pair of SRRs. An exhaustive analysis of this structure (including
magnetic coupling between the SRRs) was carried out in Ref. 59, and
similar conclusions (as compared to the SIR-loaded line) relative to
the effects of magnetic coupling between resonators were drawn.

12.4. Conclusions

In conclusion, it has been shown in this chapter that microwave sen-
sors inspired by metamaterials and designed on the basis of the
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(a) 

(b) 

Fig. 12.25. (a) Photograph of the proof-of-concept demonstrator without (left)
and with (right) a piece of glass on the top; (b) measured transmission coefficient.
The dimensions are: W = 350 µm, G = 210 µm, the lengths of the SIR are l1 = 90
µm (low impedance section) and l2 = 100 µm (high impedance section), and the
widths of the SIR are w1 = 800 µm and w2 = 20 µm. The substrate parameters
are εr = 4.6, h = 200 µm and tan δ = 0.0021. Reprinted with permission from
Ref. 41.

symmetry-related electromagnetic properties of transmission lines
loaded with electrically small resonators can be implemented. The
sensing principle, based on symmetry disruption, has been explained
comprehensively. It has been shown that the presented sensors can
be classified into two types: resonance-based sensors and frequency-
splitting sensors. Several prototype devices to demonstrate the
potential of the two approaches have been presented, including linear
displacement sensors, angular displacement and velocity sensors and
permittivity sensors.
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LH behavior, 501
linear and angular displacement
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linear displacement sensors, 514
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local permeability, 53
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localized plasmons, 8
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magnetic coupling, 529
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magnetic dipole, 339, 343
magnetic field, 338
magnetic resonance
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magnetic response, 338

magnetic transition, 352
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magneto-electric coupling, 326
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magnetoelectric coupling, 24, 267
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matching, 527
Maxwell Garnett formula, 4
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meta liquid crystals, 397
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metatronics, 2
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microstrip lines, 504

microwave metamaterials, 390
microwave sensors, 502, 504, 511
Mie resonances, 343

Mie scattering, 343
Mie theory, 297
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mixed-coupling, 513
mixing rules, 3
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nanomechanically actuated
metamaterials, 405
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near-field interaction, 391
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negative effective, 510
negative effective permeability, 501

negative effective permeability media,
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negative effective permittivity, 500

non-local dielectric function, 52
non-radiating mode, 320

non-reciprocal elements, 271
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notch-depth sensors, 503
nuclear magnetic dipoles, 474
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optical anisotropy, 438
optical magnetism, 325

optical nanoantennas, 348
optical nanocircuit, 307
optical theorem, 303
optical waveguides, 359

ordinary, 438
orientation distribution, 18
oscillator, 525

Pasteur, 25
Pearson’s correlation coefficient, 525
percolation, 23
percolation threshold, 24

permeability, 338
permittivity media, 510
permittivity sensors, 503, 528
phantoms, 489

phase change materials, 405
phase resonances, 143, 168
photonic potential, 440
physical bounds on cloaking, 308

planar geometry, 477
plane of symmetry, 512
plasma frequency, 16, 500, 501
plasmonic, 404

plasmonic Brewster angle, 167
plasmonic cloaking, 306
polarizabilities, 344
polarizability, 4

porcupic sphere, 27
post-processing approach, 395
Poynting, 439
Poynting vector, 78, 287

precision, 528
prolate spheroid, 13
Purcell effect, 352

quadratic forms, 74
quadrupole resonance, 9

quality factor, 478
quasi-static, 3, 11, 29

RA sphere, 27
radial anisotropy, 29

radiation effects, 518
raindrops, 18

raisin-pudding, 17
Rayleigh scattering, 10
Rayleigh–Wood (RW) frequency, 145

reactive-ion-etching, 347
redshift, 13, 15
redshifted, 9

reference ports, 527
reflectarray, 286
reflection, 249

reflection coefficient, 518
reflection/transmission coefficient,

525

refraction, 223
relaxation frequency, 17
resonance phenomenon, 502

resonance-based, 500, 514
resonance-based angular displacement

and velocity sensors, 525

resonance-based sensors, 503, 504, 525
resonant scattering, 309
resonator-loaded lines, 504

retardation, 482
right-handed (RH) behavior, 501
rotation speed sensors, 503

scalar Helmholtz equation, 440
scattering cancellation, 302

scattering coefficients, 297
scattering cross-section, 302

scattering efficiency, 8
scattering particles, 218
scattering poles, 317

Schrödinger-like equation, 441
semiconductor superlattices, 42, 59
sensing, 358

sensitivity, 507, 529
sensors, 514
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sensors for dielectric characterization,
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sensors for dielectric measurements,
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sheet impedance, 251

shifting, 513
Shtrikman, 20
signal-to-noise-ratio, 475

silicon, 344
silicon nanodiscs, 410
silver, 10
single-ended, 527

single-ended signal, 527
singularity, 8
Sipe–Kranendonk condition, 299

skin effect, 480
slot (odd) mode, 507
slot resonator, 504
small apertures theory, 140

snow, 21
solitary waves, 362
spatial sensors, 508, 514

spin echo, 489
spin-orbit coupling, 352
split-ring resonator, 338, 480, 500

splitting, 513
spontaneous emission, 352
SQUID, 391
step impedance resonators, 529

step motor, 527
stratified dielectric media, 173
structured metal surfaces, 141

super-resolution imaging, 87
superconductivity, 87
superconductor metamaterials, 391

superdirective nanoantennas, 350
superscattering, 313
surface averaging, 250
surface enhanced Raman scattering,

355
surface plasmon-polaritons, 139, 140
surface susceptibility, 251

susceptibility, 201
Swiss cheese, 16, 20

Swiss rolls, 480

symmetric and anti-symmetric
modes, 397

symmetric resonators, 499

symmetry disruption, 508, 511

symmetry plane, 504–507

symmetry properties, 512, 528

systropic, 27

Tellegen, 25

temperature-tunable metamaterials,
392

temporal dispersion, 7

terahertz metamaterials, 391

thermal noise, 475

thermodynamics, 21

thin film dewetting, 345

time constants, 475

time-domain spectroscopy, 393

tin, 19

topological transition, 441

toroidal response, 328

transducer, 479

transition conditions, 257

transmission, 249

transmission coefficient, 520, 523, 526

transmission line metamaterials, 500

transmission lines, 502, 504

transmission peaks, 528

transmission phase, 402

transmission zero, 500, 503

transmitarrays, 275

tunability, 390

tunability mechanisms, 390

tunable lenses, 412

tunable metamaterials, 387

tunable optical metamaterials, 403

tunable THz metamaterials, 391

tuning mechanisms, 388

twist-polarizer, 269

uniaxial anisotropy, 26

unperturbed symmetric state, 507
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vector network analyzer, 525
virtual waveguide, 141, 143, 166
voltage-controlled oscillator, 525

walk-off angle, 439
Walser, 2
water, 17
waveguide discontinuity problem,
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wavelength, 509
Weston’s theorem, 323
Wiener bounds, 20
Wikipedia, 2

Yagi-Uda nanoantenna, 348

zincblende semiconductors, 55
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Preface by Main Editor

It is our pleasure to present you this Handbook of Metamaterials
and Plasmonics, charting the tremendous progress that has occurred
in this exciting area of research over the last years. What contin-
ues to fascinate me about the field above all is its interdisciplinary
breadth — we have arrived at a stage where metamaterials make
an impact on many arrays of science where control over waves is a
prominent ingredient — be they electromagnetic, acoustic, elastic,
or even seismic! In these four volumes, we hence attempt to set out
the richness of the field, taking metamaterials in the widest sense as
artificial media with sub-wavelength structure for control over wave
propagation.

Volume 1 focuses on the fundamentals of electromagnetic meta-
materials in all their richness, including metasurfaces and hyper-
bolic metamaterials. Volume 2 widens the picture to include elastic,
acoustic, and seismic systems, whereas Volume 3 presents nonlin-
ear and active photonic metamaterials. Finally, Volume 4 includes
recent progress in the field of nanoplasmonics, used extensively for
the tailoring of the unit cell response of photonic metamaterials.

In its totality, we hope that this handbook will be useful for
a wide spectrum of readers, from students to active researchers in
industry, as well as teachers of advanced courses on wave propa-
gation. I want to thank the volume editors Ekaterina Shamonina,

v
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Richard Craster, Sébastien Guenneau, Ortwin Hess and Javier
Aizpurua, and all the authors for their excellent and sustained work
to put these four volumes together.

Stefan A. Maier
Imperial College London, UK

September 2016
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In December 2013, the United Nations proclaimed 2015 as the Inter-
national Year of Light and Light-based Technologies. Metamaterials
were amongst the most popular subjects in public lectures deliv-
ered in 2015 with topics such as invisibility cloaks attracting popular
attention. However, there is more potential to metamaterials than
simply one research area: correspondences between the governing
equations for electromagnetic waves and acoustic, elastodynamic and
hydrodynamic waves suggest that topics such as invisibility cloaks
could translate into these fields and find exciting applications. For
instance, a cloak for pressure waves, the sound of silence, might
improve the acoustics of concert halls by acoustically concealing
columns, or a seismic metamaterial provide protection from earth-
quakes by rerouting or diverting seismic waves. Allied to designing
or creating devices, many interesting conceptual questions naturally
arise, for instance one question from a public audience was about
the reciprocity principle: If light cannot reach a fictional character
covered by an invisibility cloak, can he or she see the outer world?
In fact, he or she would be in complete darkness if the cloak would
have no eyeholes; these two defects in the cloak could then be per-
ceived by an outer observer. Similarly, in other wave systems, one
has to think of the consequences of such cloaking or devices, for
instance, the invisibility region should act as a quiet zone if one were

vii
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to design a cloak for acoustic waves. The present acoustic volume
of the Handbook for metamaterials will present many more poten-
tial applications of acoustic, hydrodynamic and seismic metamate-
rials. This collection of chapters by leading international experts in
the fields of acoustic and elastodynamic waves includes a survey of
space–time transformations as a design tool for acoustic metama-
terials underpinning intimate connections between Maxwell’s equa-
tions and Einstein’s theory of relativity, the book then moves on to
practical applications in the control of mechanical waves, from the
laboratory scale (micrometer to meter) the civil engineering (meter
to decameter) and geophysics (decameters up to kilometers) scales.
All these contributions promise to revolutionize ways of controlling
the propagation of sound, light, and any particular form of waves at
macroscopic and microscopic scales. Indeed, potential applications
range from subwavelength lensing and time reversal, to underwater
camouflaging and electromagnetic invisibility, to enhanced biosen-
sors and protection from harmful physical waves (e.g., tsunamis and
earthquakes). This volume covers theoretical as well experimental
aspects in these different areas that include nanoscale (plasmonics)
and meter-scale (geophysics) media. The outline of the chapters is as
follows:

The theory of homogenization is a vast and highly interdisci-
plinary topic (rooted in the theory of composites, calculus of vari-
ations, asymptotic analysis etc.) that can be traced back to Lord
Rayleigh’s work on effective medium formulae towards the end of
the nineteenth century. However, Rayleigh’s work was limited to the
static, infinite wavelength, case and much of the research progress in
homogenization theory throughout the twentieth century has been to
add dynamic corrections to Rayleigh’s formulae in the quasi-static
limit, with notably so-called dipole approximations in the dilute
composite limit. Interestingly, for densely packed and high-contrast,
composites, alternative asymptotic theories have been developed by
groupings in Australia, France, USA and Russia. For wavelengths on
the order of the periodicity of the composite, which is of particular
physical interest as this allows for analysis of effective properties near
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stop bands, progress has been made using high-frequency homoge-
nization (HFH). A comprehensive survey of HFH and its application
to problems of interest to the metamaterial community in acoustics
and elastodynamics is presented by the group of Richard Craster,
in Chapter 1. HFH actually encompasses long-wavelength and high-
contrast homogenization theories, and only requires a priori knowl-
edge of eigenfrequencies and associated eigenfields associated with
Floquet-Bloch standing waves within an infinite periodic structure,
to recover the fine features of any wave propagating in the same struc-
ture when it has some defects or when it is finite (what makes possi-
ble the study of scattering problems by finite size photonic/phononic
crystals and metamaterials).

The second chapter by the group of Nicholas Fang at Mas-
sachusetts Institute of Technology is a review of inspiring lensing and
cloaking results with acoustic metamaterials. The authors start with
a general overview of key advances in this field, and then embarks
the reader on a scientific journey where notions of effective disper-
sive parameters with non-local properties at low frequencies (similar
to those achieved via high frequency homogenization in Chapter 1),
are deduced from models Macroscopic Maxwellian acoustics and use-
ful analogies between electromagnetic and acoustic meta-atoms. The
concept of meta-atoms underpins much of the averaging theories of
metamaterials and was put forward by Sir John Pendry at the turn
of this millennium. Pendry’s perfect lens via negative refraction is
revisited in light of simultaneously negative density and compress-
ibility modulus. Theory of transmission line network is then used
to design acoustic cloaks, the touchstone being the Telegraph equa-
tion. This chapter finally discusses acoustic metasurfaces, and here
again the averaging approach chosen by the authors proves very use-
ful. Importantly, theory and numerics are nicely complemented by
experimental data.

The third chapter by Patrick Sebbah at Institut Langevin in
Paris and Marc Dubois at University of California Berkeley dis-
cusses theoretical and experimental results on flat lens focusing of
flexural waves in a thin plate structured with air holes. A review
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of all-angle-negative refraction in periodic structures is made, with
analogies drawn between light and sound, in the framework of the
Floquet-Bloch theory for time-harmonic waves. The authors then
move on to the fascinating problem of focusing and high-resolution
for time driven super oscillations, this is the concept of a convergent
flat lens with subwavelength resolution without evanescent waves,
which is an interesting alternative to Sir John Pendry’s perfect lens.

As we have seen in the preceding chapter, control of space and
time can break physical barriers. Chapter 4 on space-time cloaking
starts with a survey by Martin McCall at Imperial College London
and Paul Kinsler at Cockroft Institute and Lancaster University
of space-time transformations as a design tool for metamaterials
underpinning intimate connections between Maxwell’s equations and
Einstein’s theory of relativity, and their extension to practical appli-
cations in moving electromagnetic media and acoustic waves. Quite
amazingly, an experiment on a temporal cloak at telecommunication
data rate combining a split-time lens with single-mode and dispersion
compensating optical fibres has validated these theoretical concepts
back in 2012, and this scientific odyssey is recalled together with a
proposal for a digital signal processing circuit modified to incorporate
a spacetime cloak.

Chapter 5 by the group of Mathias Fink at Institut Langevin
in Paris, provides core material on acoustic metamaterials, demon-
strated with a popular science device consisting of soda cans. A stan-
dard time reversal experiment, waves generated by a source are first
measured by an array of antennas positioned around the source and
then time reversed and simultaneously rebroadcasted by the same
antenna array. Due to the time invariance of the wave process, the
re-emitted energy will focus back on the original source, whatever the
complexity of the propagation medium. This chapter concentrates on
the application of negative refraction (associated with Bragg inter-
ferences or local resonances) and time reversal to the high-resolution
focusing and manipulation of sonic waves, and as its title suggests
it also has strong connections with the first chapter beyond classical
homogenization.
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John William Strutt, 3rd Baron Rayleigh is most famous among
the wave community for Rayleigh scattering (this explains why the
sky is blue) and Rayleigh waves that are, with Love waves, respon-
sible for many of the earthquake disasters in human infrastructures.
Rayleigh’s textbook, “The Theory of Sound”, has been together
with Augustus Edward Hough Love’s monograph “Some Problems
of Geodynamics”, an invaluable source of inspiration for generations
of physicists, engineers, and mathematicians. The sixth chapter of
this volume by the geophysics group of Philippe Roux and his col-
laborators in mathematics and physics fields, is a detailed analysis,
based on numerical simulations, experimental observation and phys-
ical interpretation in light of effective properties near stop bands, of
an extreme control of flexural (Lamb) waves in plates structured (at
the centimeter scale) with a forest of thin straight rods and Rayleigh
surface waves in soils structured (at the meter scale) with a forest of
trees. The starting point of this work is an experiment where plate
waves interact with a dense collection of sub-wavelength resonators
that consist of long vertical rods attached to the plate. Wide band
gaps are observed at the laboratory scale inside this locally-resonant
metamaterial as well as sub-wavelength and supra-wavelength modes
from which optimal sub-wavelength focusing can be achieved inside
the metamaterial. When combined with numerical simulations and
theoretical predictions, the full understanding of the complex wave
interaction can be performed, which then leads to potential cloaking
applications when the forest of vertical rods is shaped accordingly.
Finally, the transition from the laboratory configuration to the geo-
physical scale is considered with vertical trees in a dense natural
forest playing the role for seismic surface waves of the rods attached
to the plate for Lamb waves. This review paper gathers results from a
collection of papers published since 2013 on this plate and rods con-
figuration and its natural generalization to geophysics scale that were
interpreted through the physics of locally-resonant metamaterials.

The previous chapter can be considered as a milestone in the
emerging field of seismic metamaterials, although this terminol-
ogy remains debatable. Indeed, metamaterials are composites with
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extraordinary properties that were introduced for electromagnetic
waves by Sir John Pendry, a British physicist working at Imperial
College London, and his colleagues at GEC-Marconi Materials Tech-
nology Ltd. (A. J. Holden, D. J. Robbins, W. J. Stewart) and the
Defence Research Agency Holton Heath (I. Youngs) in the UK and at
the University of California of San Diego and Duke University in the
USA, towards the end of the twentieth century, following the advent
of photonic crystals (PCs). Unlike for seismic metamaterials, that
are structured on the meter scale, electromagnetic metamaterials are
concerned with wave wavelengths on the order of a few hundredths of
nanometers (for visible light) and their fabrication requires advanced
nanotechnologies. To achieve the tour de force of an invisibility cloak
for microwaves (whose wavelengths are on the order of a few centime-
ters), Sir John Pendry and his colleague David Smith proposed to
combine electrical circuits with intertwined split-ring resonators and
thin, straight wires, which exhibit, respectively, a strongly disper-
sive anisotropic permeability and permittivity. With a bit of imag-
ination, one might argue that thin-straight wires are reminiscent of
the forest of trees in Chapter 6, and an interesting parallel could be
drawn. Chapter 7, by the civil engineering group of Stéphane Brûlé at
Ménard company, physicists at Institut Fresnel and a mathematician
at Imperial College, actually focuses its attention on control of soils
structured by an array of boreholes (that are more akin to photonic
crystals than metamaterials, as they essentially work in the Bragg
regime), that have been shown to allow for shielding and focusing
effects. Interestingly, the first experimental proof of negative refrac-
tion came in 2000 with the team of David Smith, inspired by Victor
Veselago’s 1968 proposal of a flat convergent lens via negative refrac-
tion, which was popularized by Sir John Pendry (who pointed out
the theoretically infinite resolution achieved by capturing not only
the propagating but also the evanescent components of the source
in the image construction), and a double focusing effect of Rayleigh
waves through an array of boreholes observed by Brûlé’s team in a
field test near Lyon in France suggests some similar ray trajectory
to the Veselago-Pendry lens.
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The eighth chapter by the group of Alexander Movchan at Liv-
erpool University points out that external cloaking, an emerging
topic first touched upon by Nicolae Nicorovici, Ross McPhedran and
Graeme Milton in 1994, can be seen as a look-a-like contest: the goal
is to make some object A surrounded by active sources appear like
another object B with respect to some physical observable. Early
mathematical literature has indeed spoken of the nonuniqueness of
the tomography (inverse) problem with the works of Calderon (1980),
Kohn and Vogelius (1984), and Greenleaf et al. (2003). The focus of
this chapter is on acoustic and elastic plates, but as noted in the
preceding two chapters, one can envisage to scale up such designs to
geophysics and end up with seismic external cloaks.

The ninth chapter by Richard Porter at University of Bristol
is a thorough review of various cloaking routes towards control of
surface water waves. These approaches include notably the beautiful
design of cloaks with spatially varying bathymetry in water depth.
Porter uses not only conformal but also non-conformal mappings, in
the Helmholtz and mild-slope equations and he investigates various
routes that have either great potential or, equally important, are
found to be cul-de-sac.

The tenth chapter on molding sound propagation and scattering
with acoustic metamaterials and metasurfaces by Romain Fleury and
Andrea Alù at the University of Texas at Austin aims at providing a
comprehensive insight into recent developments and applications of
sound manipulation via anomalous matching and tunneling effects,
some analogue of plasmonic cloaking for acoustic waves, as well
as impedance matching phenomena with near zero effective density
(so-called acoustic DNZ which is somewhat a counterpart of ultra-
refractive optics). This chapter also invites the reader to read more
about active acoustic metasurfaces obeying parity-time symmetry
conditions, which can induce anomalous tunneling effects with large
reflection asymmetry, and the potential to relax some of the lim-
itations associated with bulk passive 3D metamaterials, including
sensitivity to losses, bandwidth of operation and imperfect isotropy.
Some aspects of linear nonreciprocal acoustics are presented in light
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of the by now famous acoustic circulator, which gives birth to a new
field in acoustics akin to magneto-optics.

The eleventh chapter on the carpet cloak by Fu Liu and Jensen
Li at Birmingham University (UK) and Jingjing Zhang at Nanyang
Technical University (Singapore) concerns the observables light and
sound, in the framework of quasi-conformal mappings. The concept
of ground cloak was first proposed in 2008 by one of the authors
in collaboration with Sir John Pendry, and has given rise to numer-
ous theoretical and experimental works. Notably, carpets with linear
boundaries lead to piecewise homogeneous and anisotropic material
parameters which can then be achieved via classical homogenization
formulas (for layered media).

The twelfth chapter by Andrew Norris and William Parnell
on Hyperelastic cloaking: transformation elasticity with pre-stressed
solids is concerned with transformational elastodynamics, a counter-
part of transformational optics dealing with coordinate transforms
in Navier, rather than Maxwell’s, equations. including pre-stressed
media. Navier equations, unlike the Helmholtz equation for acous-
tics of the preceding chapter, do not retain their form in general.
As discovered by Graeme Milton, Marc Briane and John Willis in
2006, the former equations usually take the form of transformed
Willis equations with not only an anisotropic heterogeneous rank-
4 tensor of elasticity, but also rank-3 tensors of inertia and viscosity,
and a rank-2 tensor of density. However, there are certain cases of
transformed Navier equations, which have simpler structure such as
a Navier equation that retains its form at the cost of a symmetry
breaking of the elasticity tensor, or pre-stressed media, as unveiled
by Norris and Parnell in 2012. The authors review this emerging field
of transformational elastodynamics and make it as fun and rigorous
as it possibly can be.

The thirteenth chapter on acoustic metamaterials with conical
dispersion by Xueqin Huang and Meng Xiao and Che Ting Chan
at Hong Kong University of Science and Technology and Fengming
Liu at Hubei University of Technology (China) is concerned with
graphene-like acoustic metamaterials. The physicists Sir Konstantin
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Novoselov and Andre Geim shared a Nobel Prize in Physics in 2010
for ‘groundbreaking experiments regarding the material graphene’.
In the tracks of this revolution in condensed matter physics, the
grouping of Prof. Chan has made long lasting contributions to the
study of Dirac and Weyl points in periodic acoustic structures with
unit cells and supercells, respectively, leading to exciting effects such
as extraordinary transmission and cloaking associated with dynamic
effective anisotropy at certain frequencies. Numerical simulations are
complemented by analytic expressions that capture the essence of the
physical mechanisms underpinning long wave high frequency effects
near Dirac cones (as unveiled by the Bloch Hamiltonian which is akin
to that in the electronic band structure of graphene). These beautiful
results and their physical insight can be paralleled to predictions
using High Frequency Homogenization as shown in Chapter 1.

The fourteenth, and last, chapter of the book on an interface
model for homogenisation of acoustic metasurfaces by Agnes Mau-
rel at Institut Langevin in Paris and Jean-Jacques Marigo at École
Polytechnique in Palayseau takes us full circle as these researchers
take us on a journey to the homogenization of structured interfaces
for acoustic waves, and some of the asymptotic tools they introduce
can be paralleled with those in the preceding chapter and chapter
1 on HFH. More precisely, Maurel and Marigo are concerned with
ultra-thin metamaterials that can be replaced by anisotropic disper-
sive and non-local effective interfaces that encapsulate the boundary
layer effects. Matched asymptotic expansions are the tools of choice
to identify the limit problems, and asymptotic predictions are com-
pared against fully numerical solutions to validate this approach.

This acoustic volume of the Handbook of Metamaterials and
Nanophotonics touches upon many hot subjects in the mathemat-
ics and physics of phononic crystals and metamaterials, which were
discovered less than a quarter of a century ago. Much remains to be
discovered, and doubtless the future will be exciting, we hope that
the present book will help foster theoretical and experimental efforts
in metamaterials. We stress that all these contributions promise to
revolutionize ways of controlling the propagation of sound, light, and
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any particular form of waves at macroscopic and microscopic scales.
Indeed, potential applications range from subwavelength lensing and
time reversal, to underwater camouflaging and electromagnetic invis-
ibility, to enhanced biosensors and protection from harmful physical
waves (e.g., tsunamis and earthquakes). This volume covers theo-
retical as well as experimental aspects in these different areas that
include nanoscale (plasmonics) and meter-scale (geophysics) media.
The fourteen chapters constituting this acoustic volume give a com-
prehensive survey of recent advances in this field.

We would like to convey our warmest thanks to all chapter
authors, who are the principal architects of this volume, for their
excellent scientific contribution and their willingness to share their
knowledge of acoustic metamaterials. The assistance and profession-
alism of the World Scientific team is also greatly acknowledged. We
hope that you will enjoy reading these chapters and find these as
informative as we did.

Richard Craster
London

and

Sébastien Guenneau
Marseille

September 2016
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CHAPTER 1

Dynamic Homogenization

of Acoustic and Elastic

Metamaterials and Phononic
Crystals
RICHARD CRASTER∗

Imperial College London, UK

TRYFON ANTONAKAKIS

Multiwave Technologies, Switzerland

SÉBASTIEN GUENNEAU

Institut Fresnel and Aix-Marseille Université, France

1.1. A Brief History of Homogenization

It is naturally highly subjective, given the vast literature on homoge-
nization theories, to even attempt to chart the journey from its source
in static and quasi-static effective media to its current location in
the area of waves through periodic media. Limitations of space mean
that we will unfortunately omit some routes and hence the path we
describe is a personal one and cannot be exhaustive, none the less

∗Corresponding author: r.craster@imperial.ac.uk

1
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we hope to capture a flavour of the journey. Although of a genuinely
cross-disciplinary nature, homogenization theories take their root in
problems of electrostatics and magnetostatics in the 19th century.
The philosophy expressed by Lord Rayleigh in 1892 concerning the
Lorentz-Lorenz equations acts as the foundation of homogenization
theory, at least from a physical standpoint: “In the application of our
results to the electric theory of light we contemplate a medium inter-
rupted by spherical, or cylindrical, obstacles, whose inductive capacity
is different from that of the undisturbed medium. On the other hand,
the magnetic constant is supposed to retain its value unbroken. This
being so, the kinetic energy of the electric currents for the same total
flux is the same as if there were no obstacles, at least if we regard the
wave-length as infinitely great. [Strutt (1892)] ”, which sets the scene
for contemplating an effective medium at least in a quasi-static sense.

1.1.1. Early history and static homogenisation

As far as we know, the first theoretical works related to homoge-
nization in electromagnetism began with the static effective medium
models of Ottavanio Fabrizio Mossotti in 1836, and Michael Faraday
in 1837, which proceeded in a similar way to analyse the distribution
of electric charge on several metallic bodies embedded in a dielec-
tric medium; Mossotti’s analysis was based on earlier closely related
work by Siméon Poisson on magnetic media. The latter analysed
the interaction between the polarizable entities, invoking the first of
many cavity considerations in the derivation of the effective field for a
dielectric medium. The English version of Mossotti’s paper [Mossotti
(1850)] has had a long lasting influence in the theory of composites
[Milton (2002)]. Historically, since Mossotti was made prisoner by
the Austrians during the first war for Italian independence (1848–
49), his paper first submitted in 1846 was only published in 1850.
A subsequent step was taken by Ludvig Lorenz, whose 1869 and 1875
papers in Danish were succeeded by one in 1878 by Hendrik Lorentz
[Born and Wolf (1970)]. In their papers, Lorenz and Lorentz assign
a refractive index to the interior of the molecules, which differs from
that of the surroundings and then proceed in a way akin to modern
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wave propagation theories in stochastic media: in the presence of the
irregularly distributed molecules Lorenz and Lorentz search for the
value of the propagation constant of light such that the deviations
from this well behaved sine-wave average out to zero, and do not
build up. From a mathematical standpoint the Lorenz and Lorentz
effective medium theory amounts to considering a large sphere cut
out of the dielectric, centered about the molecule in consideration, to
derive the effective macroscopic field. The large sphere separates the
far away molecules, which can be treated as a continuum, from the
close molecules which have to be taken into account more explicitly.
In contrast to Lorenz, Rudolf Clausius assumed [Clausius (1858)],
as did Mossotti and Faraday, that molecules are conducting spheres,
and considered each molecule as contained in a small sphere tightly
cut out of the continuous surrounding (perforated) medium, which
is characterized by the final dielectric constant of the material.

All these works, which have a strong physical flavour, set the
scene for the 1892 foundation paper of John William Strutt, the
third Lord Rayleigh, who was able to mathematically solve Laplace’s
equation in two dimensions for rectangular arrays of cylinders, and
in three-dimensions for cubic lattices of spheres. Although a mathe-
matical tour de force, the original proof of Rayleigh suffers a condi-
tionally convergent sum in order to calculate the dipolar field within
the array. Many authors proposed extensions of Rayleigh’s method to
avoid this drawback, amongst them George Batchelor with an influ-
ential paper on micro-hydrodynamics of dilute dispersion of spheres
[Batchelor (1972)]. Another limit of Rayleigh’s method is that it does
not hold when the volume fraction of the inclusions increases: there
is a point where there exists a connected path through the mate-
rial, along which a current may flow. This phenomenon is known
as a percolation threshold, which has been extensively studied by
Dirk Bruggeman [Bruggeman (1935)], who developed two effective
medium theories for dielectric materials in 1935–1936. The first one
made a distinction (like previous theories), between the inclusions
and the background matrix, whereas the second one exhibited a
percolation threshold; his two theories agreed well with the Lorenz-
Lorentz equation for the small volume fractions.
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An important act in the history of homogenization theory, as
applied to waves (which propagate with a given, non-zero, frequency),
takes place in the Electrical, Transport and Optical Properties in
Inhomogeneous Media (ETOPIM) congress of 1977, where Ross
McPhedran and David McKenzie proposed to extend Rayleigh’s fun-
damental work of 1892 (replacing Laplace by Helmholtz equation). At
this occasion further developments were discussed with Ping Sheng,
David Bergman and Graeme Milton in relation with new mathemati-
cal techniques, which appeared one year after in a fundamental book
by Alain Bensoussan, Jacques-Louis Lions and George Papanicolaou
[Bensoussan et al. (1978)], which remains a treasure trove of ideas.
In this book, asymptotic methods such as multiple scale expansions
were applied to governing equations for conductivity, heat, electro-
statics, magnetostatics, elastostatics, elastodynamics and so forth.
The first mathematical results obtained in conjunction with abstract
mathematical homogenization theory were in fact that of the Italian
mathematician Sergio Spagnolo in 1968. Spagnolo studied elliptic and
parabolic problems of diffusion, when the operators were symmetric,
and he chose the term of G-convergence to refer to convergence of
Green’s functions [Spagnolo (1968)], which clearly is a reference to
earlier work by physicists. The term homogenization itself was first
introduced in mathematics by Ivo Babuska [Babuska (1975)].

In the early seventies, Luc Tartar and François Murat devel-
oped the powerful mathematical tool of H-convergence [Murat and
Tartar (1978)] (a name chosen in reference to G-convergence) for
mathematical homogenization theory. In 1974, Tartar described
the notion of weak convergence (introducing a mathematical tool
known as compensated compactness), to link microscopic and macro-
scopic scales [Tartar (1975)] in relation to effective properties
in homogenization, which were derived heuristically by Sanchez-
Palencia [Sanchez-Palencia (1972)], thanks to asymptotic expansions
for periodic structures (note that Sanchez-Palencia was inspired by
similar multiple scale methods used to approximate solutions of non-
linear oscillation problems in the applied mathematics and mechan-
ical engineering communities, not for analyzing spatial oscillations
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as in homogenization). In 1974, Murat referred to the method of
H-convergence (H for homogenization) in a famous seminar he gave
in Alger. The H-convergence approach inspired probabilistic mod-
els, such as those of George Papanicolaou and Sathamangalam R.
Srinivasa Varadhan [Papanicolaou and Varadhan (1978)] and Ser-
guei Kozlov [Kozlov (1977)]. Ten years ago, Blanc, Le Bris and Lions
applied stochastic homogenization theory [Blanc et al. (2007)] to lin-
ear elliptic problems associated with random media characterized by
a diffusion coefficient combining a periodic function with a random
diffeomorphism, which models random media that are small pertur-
bation of periodic media. This approach can also be used to model
periodic media with defects. Bouchitté, Guenneau and Zolla [Bouch-
itté et al. (2010)] proposed an alternative approach to homogeniza-
tion of other types of almost-periodic media based on the cut-and-
projection method, which amounts to applying homogenization tools
in an upper periodic dimensional space. Importantly, the homog-
enized problem derived in [Bouchitté et al. (2010)] making use of
abstract functional spaces in Fourier space has been recently recast
in a mathematical framework compatible with two scale asymptotic
expansions [Wellander et al. (2017)]. This opens new avenues for
asymptotic analysis of quasi-periodic structures with multiple scale
methods.

Overall, a great number of papers have appeared on homogeniza-
tion theory in electromagnetism in the past forty years. To choose,
but a couple of directions: the extension of Rayleigh’s technique
to arbitrary multipole orders for cylindrical and spherical inclu-
sions [Perrins et al. (1979)], to formulae for the effective conduc-
tivity and the investigation [McPhedran et al. (1988)] of models
for arrays of circular inclusions, which were both close to touching
and highly conducting. These multipole methodologies, although lim-
ited to cylinders and spheres are powerful and provide considerable
insight. Connecting with a later chapter, another limiting case of
great physical interest is the homogenization of gratings to get effec-
tive gratings as studied by Bouchitté and Petit about thirty years ago
[Bouchitté and Petit (1985); Bouchitté (1990)], i.e. for structured
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interfaces, and it is interesting to note that the last Chapter 14, of
this volume by Maurel and Marigo builds upon this work to propose
a new homogenization theory devoted to lower dimensional periodic
structures.

1.1.2. Quasi-static extensions and multipole methods

Thus far we have only considered static problems, and the results
can be vastly different from dynamic problems — except for very
long waves relative to the microstructural lengthscale.

In the case of a dynamic problem in a periodic medium, say a
periodic arrangement of rods (photonic crystal fiber, PCF [Russell
(2003)]), the solutions are in general not periodic (they undergo a
phase shift on opposite edges of periodic cells) and exist in modes,
or energy bands, which are functions of the spatial frequency of the
solution. The behaviour of waves that exist in the system is described
by a dispersion diagram relating frequency to the wavenumber of the
phase shift, a typical set of dispersion curves for a PCF preform,
is shown in Fig. 1.1. There is a substantial literature on periodic
systems and we describe some of this in the next section. The static
homogenisation simply captures the behaviour of the system at the
origin (see Γ point on the right panel of Fig. 1.1.) and nowhere else,
clearly it makes sense to extend the static theory to describe the
linear pieces of the dispersion curves near the origin and such quasi-
static extensions are often made.

For instance, the so-called Generalized Rayleigh Method for cir-
cular inclusions, inspired by Rayleigh’s technique for static problems
[Strutt (1892)], can be utilised for a wide range of physical systems.

A dynamic theory can be used to solve Maxwell’s equations in a
heterogeneous periodic medium and then take the long wavelength
limit in order to determine the effective properties of the struc-
tures in this long wave limit. This methodology expands the solu-
tion in terms of a set of functions that satisfy the boundary condi-
tions exactly on the inclusion. The periodicity conditions are then
satisfied approximatively, by the appropriate choice of expansion
coefficients [Chin et al. (1994); Nicorovici et al. (1995); McPhedran
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Fig. 1.1. (Left panel) Scanning electron micrograph of the preform used in a
son et lumière experiment in a photonic crystal fibre preform by the group of
Philip Russell at Bath University. PCF has two solid defects, an inter-hole period
of 80µm, a hole diameter of 59µm, and an interstitial hole diameter of 8µm.
(Right panel) Band structure for in-plane mixed-polarized shear and dilatational
waves in the sonic crystal depicted in left panel, with defects removed but includ-
ing interstitial holes. The experimentally observed resonances (at 23 and 23.25
MHz — the dashed lines) sit near the middle of the sonic band gap, which extends
from 21.8 to 25 MHz. Figure taken from [Russell et al. (2003)].

et al. (1997)], large matrix systems of equations ensue, but simplifi-
cations occur in the long wave limit. These quasi-static low frequency
theories capture the behaviour near the Γ point in Fig. 1.1 but cannot
capture any of the behaviour at higher frequencies (e.g. the nearly flat
band on the upper edge of the stop band has potential applications
in slow wave guiding).

The multipole method takes its root in an aforementioned sem-
inal paper of Lord Rayleigh (1892) which is the foundation stone
upon which the current edifice of homogenization theories is built.
More precisely, in that paper, John William Strutt, the third Lord
Rayleigh, solved Laplace’s equation in two dimensions for rectan-
gular arrays of cylinders, and in three dimensions for cubic lattices
of spheres. However, a limitation of Rayleigh’s algorithm is that it
does not hold when the volume fraction of inclusions increases, and
this pitfall has also been observed for elastic waves [Zalipaev et al.
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(2002); McPhedran et al. (2009)]. Multipole methods, in conjunction
with lattice sums, overcome such obstacles and lead to the Rayleigh
system which is an infinite linear algebraic system; this formulation,
in terms of an eigenvalue problem, facilitates the construction of dis-
persion curves and the study of both photonic and phononic band-
gap structures. In the limit of small inclusion radii, when propa-
gating modes are very close to plane waves, one can truncate the
Rayleigh system ignoring the effect of higher multipoles, to produce
a series of approximations each successively more accurate to higher
values of filling fraction. At the dipole order, one is able to fit the
acoustic band, which has linear behaviour in the neighbourhood of
zero frequency, see Fig. 1.1 (Left panel), except of course in the
singular case whereby Dirichlet data are enforced on the boundary
inclusions [Poulton et al. (2001, 2004)] and there is a zero-frequency
stop band.

1.1.3. Photonic crystals and other advances

in periodic structures

Until relatively recently, attention in terms of homogenisation theory
was mainly focussed on the so-called quasi-static limits discussed
above. Recent developments have been driven by the discovery,
implementation, and extensions of, exotic wave phenomena created
by waves through periodic structured media.

Thirty years ago, the physicists Eli Yablonovitch and Sajeev John
published two seminal papers [Yablonovitch (1987); John (1987)] in
the same issue of Physical Review Letters, that reported the discov-
ery of composites that became known as photonic crystals (PCs).
PCs are periodic structures displaying a photonic band spectrum
similar to that of semiconductors in electronic band diagrams, at
wave frequencies away from the quasi-static limit (beyond the mod-
els of low frequency homogenization). Ultimately this has driven
the interest in generating homogenisation theories or effective media
models valid at high frequencies that are no longer limited by quasi-
static low frequency assumptions.
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There is now, a huge literature on photonic crystals, the scale of
which can be seen from Jonathan Dowling’s webpage at Louisiana
State University on photonic and sonic band gaps and metamaterials
that started in 1994 and ceased in 2008 as the number of papers
exceeded 12,000. Thus we outline our own personal introduction to
the topic and journey through it.

In the early nineties, in the tracks of Yablonovitch and John, Sir
John Pendry and Daniel Maystre and their colleagues at the Con-
densed Matter Theory Group (CMTH) at the Physics Department
of Imperial College London and at the Laboratoire Optique Electro-
magnetique (LOE) of Aix-Marseille University started to work on PCs
for perfect dielectric mirrors, absorbers, and photonic band gap light
guidance. Exchange of postgraduate students between the photonics
groups in London and Marseille were subsequently initiated about
twenty years ago. In parallel, strong links were maintained between
LOE and the group of Ross McPhedran in University of Sydney, who
had been working in collaboration with Maystre on the theory of grat-
ings since the early seventies, when he was a postdoc in Marseille.
The rich common history of the photonics laboratory in Marseille,
nowadays known as Institut Fresnel, and the laboratory CUDOS in
Sydney, led to the so-called yellow and white books. The yellow book
on Theory of Gratings has been edited by Roger Petit and published
by Springer in the early eighties, [Petit (1980)] and the white book
on Foundations of Photonic Crystal Fibres has been edited by Fred-
eric Zolla et al. and published by Imperial College Press 12 years ago
[Zolla et al. (2005)]. One of the authors of this chapter (Richard Cras-
ter, from the Mathematics Department at Imperial College), was a
critical reader of a preliminary version of the white book back in
2003–2004, and he initiated scientific collaboration on periodic acous-
tic waveguides with Sébastien Guenneau who was back then a research
associate in Physics at Imperial. The demand for asymptotic theories
devoted to Crystal Fibres for sound and light control through Bril-
louin scattering, an example of which is shown in Figure 1.1, was one
of the physical motivations for such advanced mathematical models,
see [Russell et al. (2003)] for more details.
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Actually, two other laboratories have had a long lasting collabora-
tion, namely the Department of Mathematical Sciences of Alexander
Movchan at Liverpool University and the Royal College of Sciences of
Sir John Pendry at Imperial College London. It is Ross McPhedran
who initiated the exchange programs between Master and PhD stu-
dents, Postdocs and permanent staff between the photonic and math-
ematical groups in London, Liverpool, Marseille and Sydney. During
his seven years of postdoctoral studies in UK, one of us has initi-
ated a new collaboration between Institut Fresnel and the Depart-
ment of Mathematical Sciences at Imperial College London, and as
a result a co-edited book on Acoustic Metamaterials was published
by Springer in 2012 [Craster and Guenneau (2012)]. Electromagnetic
and acoustic metamaterials are periodic structures displaying exotic
effective properties such as negative refraction (with the electromag-
netic paradigm of Pendry’s perfect lens), cloaking with strong artifi-
cial anisotropy(see Fig. 1.2 for an application of this concept to water
waves) at low frequencies and can be considered an extension of pho-
tonic crystals where subwavelength resonance becomes important.

1.1.4. Band gap and related phenomena

Over the last 30 years, many significant advances have created a deep
understanding of the optical properties of photonic crystals (PCs),
as described in [Yablonovitch (2001); Zolla et al. (2005); Joannopou-
los et al. (2008)], and such periodic structures prohibit the prop-
agation of light, or allow it only in certain directions at certain
frequencies, or localize light in specified areas, and this occurs for
high-frequencies [Villeneuve and Piché (1992)], and this behaviour
has been also observed for acoustic waves [Sigalas (1998)]. This sort
of metamaterial (using the loose terminology that this means artifi-
cial materials engineered to have desired properties that may not be
found in nature, such as negative refraction, see e.g. [Pendry (2004);
Ramakrishna (2005); Guenneau and Ramakrishna (2009)]) enables a
marked enhancement of control over light propagation.

PCs are periodic media whose spectrum is characterized by pho-
tonic band gaps and pass bands [Conca et al. (1995); Gazalet et al.
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Fig. 1.2. (Upper left panel) Photo of an aluminium cloak (20 cm in diameter)
working for water, sound and transverse electric waves (courtesy of Stefan Enoch
at Institut Fresnel). (Upper right panel) Artistic view of a scaled-up version of the
aluminium cloak immersed in ocean for protection (still water) purpose (courtesy
of Martin Wegener’s group at KIT). (Lower panel) Measured field map (with green
color for vanishing field) of a transverse electric wave incident upon aluminium
cloak (whose inner and outer boundaries are marked by black circles) at 4.3
GHz (courtesy of Redha Abdeddaim at Institut Fresnel). One notes the almost
unperturbed field outside the cloak (invisibility) and the vanishing field inside its
center (protection).

(2013)], just as electronic band gaps exist in semiconductors. In PCs,
light propagation in particular directions can be disallowed for certain
frequencies if partial band gaps occur, as shown by Yablonovitch and
Gmitter [Yablonovitch and Gmitter (1989)] or even in all directions.
The search for such complete stop bands is usually done by traversing
the edges of the irreducible Brillouin zone, which can be misleading
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[Figotin and Kuchment (1998); Dossou et al. (2007); Craster et al.
(2012)] as complete stop bands very rarely turn out to be partial
stop bands if the inside of the Brillouin zone is checked. The effect
of photonic stop bands is well-known, with many textbooks offer-
ing comprehensive introductions to the physics and models of PCs
[Movchan et al. (2002); Zolla et al. (2005); Melrose and McPhedran
(2005); Joannopoulos et al. (2008)], and these effects form the basis of
many devices, including Bragg mirrors, dielectric Fabry Perot filters
and distributed feedback lasers. All of these contain low-loss dielectrics
periodic in one dimension, and so are one-dimensional PCs.

Bragg mirrors are tremendously useful, but their reflecting prop-
erties critically depend upon the frequency of the incident wave with
regard to its incidence. For broad frequency ranges, one wishes to
reflect light of any polarization at any angle (which requires a com-
plete photonic band gap) and for Dirichlet media (i.e. those composed
with microstructure where the field is zero on the microparticles) such
a gap occurs at zero frequency. This explicitly excludes dispersion
curves passing through the Γ point in dispersion diagrams and pre-
cludes any long-wave homogenisation being effective. Zero-frequency
band gaps are important as they mean that very long waves cannot
propagate through a structure and a similar situation occurs in peri-
odically perforated elastic plates with clamped holes: zero-frequency
platonic stop bands then disallow the propagation of flexural waves at
arbitrarily low frequencies [Antonakakis and Craster (2012)]. Using
approximate models of thin plates to predict the propagation of
surface elastic waves in structured soils [Brûlé et al. (2014)], it is
therefore possible to create seismic shields for moderately low and
even ultra-low-frequency waves [Antonakakis et al. (2014b); Achaoui
et al. (2017)].

Zero-frequency band gaps are just one feature not captured
with quasi-static homogenisation effects, many more exotic wave
phenomena exist that require and deserve understanding through
effective media: all-angle negative refraction [Yablonovitch (1987);
Zengerle (1987); Notomi (2002)], ultra-refraction [Dowling and Bow-
den (1994); Gralak et al. (2000); Enoch et al. (2002)] and cloaking
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at Dirac-like cones [Chan et al. (2012)]. We will demonstrate in this
chapter that an effective, frequency-dependent non-local medium can
be created that accurately reproduces these effects.

Given the importance of wave propagation through periodic
media there has naturally been considerable recent activity and
advances in numerical techniques. The main methods used are based
on Fourier expansions in the vector electromagnetic Maxwell equa-
tions [Johnson and Joannopoulos (2001); Joannopoulos et al. (2008)],
finite elements [Zolla et al. (2005)] and multipole and lattice sums
[Movchan et al. (2002)] for cylinders, to name but a few: these allow
one to visualize the various effects and design PCs. In practical terms
these methods and commercial software such as [COMSOL (2012)]
dominate the analysis of PCs and their implementation. One of us,
from the spin-off company Multiwave Technology, develops alterna-
tive numerical solutions to advance research in metamaterials, such
as those based on so-called High Frequency Homogenization, which
is introduced in the next section.

1.1.5. High Frequency Homogenization (HFH) theory

Although the numerical approaches discussed briefly are efficient,
they still require substantial computational effort and can obscure
physical understanding and interpretation. An option to substan-
tially reduce the numerical complexity of the wave problem is to
use asymptotic analysis; this has been developed over the last 40
years by applied mathematicians primarily for solving partial dif-
ferential equations (PDEs), with rapidly oscillating periodic coef-
ficients, in the context of thermostatics, continuum mechanics or
electrostatics. Indeed, the past forty years have been marked by
strong research monographs on the topic by Bensoussan, Louis and
Papanicolaou [Bensoussan et al. (1978); Sanchez-Palencia (1980)],
Bakhvalov and Panasenko [Bakhvalov and Panasenko (1989)], Jikov,
Kozlov and Oleinik [Jikov et al. (1994)] and Milton [Milton (2002)].
The available literature on such effective medium theories is vast,
but only a very few groups have addressed such problems as the
homogenization of media in three dimensions with moderate contrast
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in the material properties, [Guenneau and Zolla (2000); Wellander
and Kristensson (2003); Cioranescu et al. (2008)] and high-contrast
two-dimensional [Zhikov (2000)] photonic crystals, that have impor-
tant potential applications in photonics [Zolla et al. (2005)]. Besides
this, the aforementioned literature does not address the challenging
problem of homogenization for moderate contrast photonic crystals
near stop band frequencies. Classical homogenization (by classical we
mean the static and quasi-static theories) is constrained to low fre-
quencies and long waves in moderate contrast PCs, but it nonetheless
provides interesting results for effective properties of 3-D-connected
and non-connected wire metamaterials [Silveirinha and Fernandes
(2005)] and other metamaterials with negative parameters [Silveir-
inha (2007)].

So-called high-contrast homogenization captures the essence of
stop bands in PCs when the permittivity inside the inclusions is much
higher than that of the surrounding matrix [Bouchitté and Felbacq
(2004)]. Here, the contrast is typically of the order of η2, where η is
the array pitch, which in turn is much smaller than the wavelength,
and this area of homogenization theory is fuelled by interest in artifi-
cial magnetism, initiated by the work of O’Brien and Pendry [O’Brien
et al. (2002)]. We should also point out that moderate contrast one-
dimensional photonic crystals have been recently shown to display
not only artificial magnetism, but also chirality, using techniques of
high-order-homogenization [Liu et al. (2013)].

For all these reasons, there is a need for homogenization or effec-
tive medium theories of PCs that would cover the spectrum, not just
at vanishing (quasi-static) frequencies, in order to grasp, and fully
exploit, the rich behaviour of photonic band gap structures [Notomi
(2002)]. This demand has created a suite of extended homogenization
theories for periodic media called Bloch homogenization by applied
mathematicians such as Conca, Allaire, Piatnitski, Birman, Suslina,
Hoefer and Weinstein from the PDE analysis community [Conca
et al. (1995); Allaire and Conca (1998); Allaire and Piatnitski (2005);
Birman and Suslina (2006); Hoefer and Weinstein (2011)]. There is
also a flourishing literature on developing homogenized elastic media
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from the theoretical mechanics community, such as Nemat-Nasser,
Willis, Auriault and Boutin, who achieve frequency-dependent effec-
tive parameters, also based upon periodic media [Nemat-Nasser et al.
(2011); Auriault and Boutin (2012)]. There is indeed considerable
interest in creating effective continuum models of microstructured
media that break free from the conventional low-frequency homoge-
nization limitations.

In 2010, noting that striking physical effects such as slow light
can be achieved at arbitrarily high frequencies on edges of stop
bands where the wave group velocity vanishes [Figotin and Vitebskiy
(2006)], Craster, Kaplunov and Pichugin realized that they would be
able to develop an asymptotic theory around these critical points
in the band spectrum. They called their asymptotic method high
frequency homogenization, or HFH in short [Craster et al. (2010a)].
The mathematical tools involved in HFH come from earlier work
on effective equations in waveguide theory, in particular from high-
frequency long-wave models for the vibrations of plates [Berdichevskii
(1977)] or weakly curved waveguides [Gridin and Craster (2003)], or
even electronic states in rings [Gridin et al. (2004)]; the cut-off fre-
quencies for waveguides are the analogues of the band-gap edges and
this analogy is explored in [Craster et al. (2014)]. The philosophy
of HFH is also closely related to ideas in [Bensoussan et al. (1978);
Birman and Suslina (2006); Allaire and Conca (1998)] from Bloch
homogenisation and it applies to any of the linear PDEs in peri-
odic continua from electromagnetism, acoustics, hydrodynamics or
elasticity, the only requirement being applicability of Floquet-Bloch
theory. It can be summarized schematically as in Fig. 1.3, where the
two typical lengthscales X and ξ involved in the asymptotic model
account respectively for fast oscillations of the field on the order of
supercells and the much smaller cells. Importantly, unlike for classical
low frequency homogenization whereby the angular wave frequency
ω (resp. the wavelength λ) is rescaled as ηω (resp. λ/η), here we shall
perturb away from a finite, possibly high, frequency ω.

In this remainder of this chapter, we survey the applications of
HFH theory to the physics of acoustic and platonic metamaterials,
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Fig. 1.3. High Frequency Homogenisation (HFH) principle: An elementary cell
(a) of sidelength 2l, modelled by a fast oscillating variable ξ, is repeated periodi-
cally within a supercell (b) of sidelength L, modelled by a slow variable X, which
is itself repeated periodically in space (c). One then assumes that the parameter
ε = l/L is small, and its vanishing limit thereafter studied. The leading order,
homogenised, term of Floquet-Bloch eigenfields within the crystal is then sought
as u0(X, ξ) = f0(X)U0(ξ; Ω0), wherein f0 accounts for variations of the fields on
the order of the supercells, and U0 captures their fast oscillations in the much
smaller cells, when either periodic or anti-periodic conditions are enforced on
the cells: Perturbing away from these standing waves of frequency Ω0 allows for
a complete reconstruction of the Bloch spectrum and associated Floquet-Bloch
eigenfields, by considering larger and larger cells of sidelength 2Nl instead of
elementary cells 2l [Antonakakis et al. (2013b)].

in the context of phononics for anti-plane shear waves and in-plane
coupled shear and pressure waves in periodic arrays of inclusions,
as well as for flexural (Lamb) waves in pinned plates. The latter
analysis is made possible thanks to the extension of HFH to plate
theory [Antonakakis and Craster (2012)]. Our aim is to show the
universal features of stop band structures thanks to HFH, and to
further exemplify their potential use in control of light and mechan-
ical waves, with novel applications ranging from cloaking [Milton
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and Nicorovici (2006); Guenneau et al. (2007b); Craster and Guen-
neau (2012); Achaoui et al. (2017)] to seismic shields [Antonakakis
et al. (2014b); Brûlé et al. (2014)]. The need for modern asymptotic
models of PCs and metamaterials is because these composites (that
can be structured from the nanoscale to the meter scale, depend-
ing upon whether one would like to control light, sound, water or
seismic waves) have typically tens to thousands of elementary cells
and it is therefore fairly difficult to improve their designs without
resorting to simplified models. For instance, seismic waves propagat-
ing in structured soil require use of super-computers if one simply
attacks the complete full three-dimensional elastodynamic problem
[Colombi et al. 2016]. Dynamic effective anisotropic effects achieved
with arrays of boreholes could help prevent the disastrous impact of
earthquakes in sedimentary basins and there are recent patents being
filed in this direction [Achaoui et al. (2016)]. Similarly, hydrodynamic
wave models are very demanding computationally, a full 3D Navier
model for a water wave cloak like in Figure 1.2 is computationally
intense and again, HFH can help simplify the model.

1.2. HFH for Acoustic Metamaterials
and Phononic Crystals

1.2.1. The scalar problem: theory

The basic theory is more easily illustrated by considering a scalar
wave equation, with time-harmonic waves assumed, and allowing
for periodic variation in the material properties or geometry. For
infinite perfectly periodic media, consisting of elementary cells that
repeat, one focuses attention on a single elementary cell as shown
in Fig. 1.4. Quasi-periodic Floquet-Bloch boundary conditions on
the elementary cell describe the phase-shift as a wave moves through
the material and a dispersion relation relates the Bloch wavenumber,
the phase-shift, to frequency. Figure 1.4(b) shows the irreducible Bril-
louin zone [Brillouin (1953)] ΓMX associated with a single repeating
elementary square cell containing, say, a circular hole. The dispersion
diagrams we show are of the frequency versus wavenumber around
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(b) Brillouin zone

Γ (0,0)

N (0,π/2) M (π/2,π/2)

M′ (π/4,π/4)

X (π/2,0)

κ 2
κ

1

(a)

Fig. 1.4. Panel (a) An infinite square array of split ring resonators with the
elementary cell shown as the dashed line inner square. Panel (b) shows the irre-
ducible Brillouin zone, in wavenumber space, used for square arrays in perfectly
periodic media based around the elementary cell shown of length 2l. Figure taken
from [Antonakakis et al. (2013a)].

the edges of the Brillouin zone as is traditional in solid state physics.
There are occasions upon which doing this misses interesting details
[Craster et al. (2012)] where the path M ′X, see Fig. 1.4(b), yielded
important dispersion properties. We also note that the symmetry
of the hole is important, and for the two thin ligament SRR of
Fig. 1.4(a) one should use the square ΓXMN .

The eigensolutions that emerge are the Bloch modes at the
edges of the Brillouin zone, and when these eigensolutions are per-
fectly in-phase or out-of-phase across the cell then standing waves
exist and there are standing wave frequencies (whose frequencies can
be arbitrarily high). Asymptotic techniques based around high fre-
quency long wave asymptotics have been developed [Craster et al.
(2010a)] and Schrödinger ordinary differential equations in 1D peri-
odic media (or partial differential equations in 2D) emerge; this
approach also works for microstructured discrete [Craster et al.
(2010b)] or frame-like media [Nolde et al. (2011)]. These recent
theories avoid the issue of holes with various boundary conditions
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and have the material properties varying periodically on the scale of
the elementary cell and only treat model problems, mainly in one
dimension, for which completely analytic progress can be made. The
key idea for periodic media is to replace the complicated microstruc-
tured medium with an effective (possibly anisotropic) continuum on
a macroscale, that is, one wishes to homogenize the medium even
when the wavelength and microstructure may be of similar scales.

The theory is ultimately not limited to just reproducing disper-
sion curves asymptotically, it can be used to obtain envelope func-
tions of the resulting fields or it can be adjusted to treat localized
defect modes and other features due to local non-periodic material
changes or boundaries, with these effects coming through in extra
forcing terms within the continuum partial differential equations and
effective boundary conditions.

We begin with a two dimensional structure composed of a square
lattice geometry of identical cells with identical holes inside each of
them. The side length of the direct lattice base vectors, i.e. the side of
each square cell, is taken as 2l. Note that for simplicity equal length
lattice vectors and a square lattice are assumed and both assumptions
could be relaxed. These elementary cells define a lengthscale which
is the micro-scale of the structure. As noted above, real structures
could be created from many hundreds or thousands of such elemen-
tary cells and we introduce a macro-scale length denoted by L that
could be viewed as a characteristic overall dimension of the structure:
The ratio of these scales, η ≡ l/L, is assumed small, see also Fig.
1.3. Each cell is identical in geometry and the material within each
cell is characterized by two periodic functions, in ξ ≡ (x1/l, x2/l),
namely a(ξ) and ρ(ξ); these are stiffness and density for pressure
waves.

A time harmonic dependence of propagation exp(−iωt), with
angular wave frequency ω, is assumed throughout, and hence-
forth suppressed, together with a non-dimensionalization of phys-
ical parameters by setting, a ≡ a0â(ξ), ρ ≡ ρ0ρ̂(ξ) and x = lx̂
where c0 =

√
a0/ρ0 is the characteristic wave speed. This leads to

the resulting equation of study where the hat decoration has been
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removed:

l2∇x · [a(ξ)∇xu(x)] + Ω2ρ(ξ)u(x) = 0, with Ω =
ωl

c0
, (1.1)

on −∞ < x1, x2 < ∞, Ω is the non-dimensional frequency and u is
the out-of-plane displacement in elasticity.

The two scale nature of the problem is incorporated using the
small and large length scales to define two new independent coordi-
nates namely X = x/L, and ξ = x/l, see Figure 1.3. Equation (1.1)
then becomes,

∇ξ · [a(ξ)∇ξu(X, ξ)] + Ω2ρ(ξ)u(X, ξ)

+ η[2a(ξ)∇ξ +∇ξa(ξ)] · ∇Xu(X, ξ) + η2a(ξ)∇2
Xu(X, ξ) = 0.

(1.2)

Standing waves occur when there are periodic (or anti-periodic)
boundary conditions across the elementary cell (in the ξ coordi-
nates) and these standing waves encode the local information about
the multiple scattering that occurs due to the neighbouring cells.
The asymptotic technique is then a perturbation about these stand-
ing wave solutions. As these are associated with periodic and anti-
periodic boundary conditions, which are respectively in-phase and
out-of-phase waves across the cell, the conditions in ξ on the edges
of the cell, ∂S1, are known:

u|ξi=1 = ±u|ξi=−1 and u,ξi
|ξi=1 = ±u,ξi

|ξi=−1, (1.3)

where the subscript, ξ denotes partial derivatives with respect to
the variable ξ and with the +,− for periodic or anti-periodic cases
respectively. We now pose an ansatz for the field and the frequency,

u(X, ξ) = u0(X, ξ) + ηu1(X, ξ) + η2u2(X, ξ) + · · · ,
Ω2 = Ω2

0 + ηΩ2
1 + η2Ω2

2 + · · · (1.4)

The ui(X, ξ)’s adopt the boundary conditions (1.3) on the edge of the
cell. An ordered set of equations emerge indexed with their respective
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power of η, and are treated in turn

(au0,ξi
),ξi

+ Ω2
0ρu0 = 0, (1.5)

(au1,ξi
),ξi

+ Ω2
0ρu1 = −(2au0,ξi

+ a,ξi
u0),Xi − Ω2

1ρu0, (1.6)

(au2,ξi
),ξi

+ Ω2
0ρu2

= −au0,XiXi − (2au1,ξi
+ a,ξi

u1),Xi − Ω2
1ρu1 − Ω2

2ρu0. (1.7)

The leading order Eq. (1.5) is independent of the longscale X and is
a standing wave on the elementary cell excited at a specific eigenfre-
quency Ω0 and associated eigenmode U0(ξ; Ω0), modulated by a long
scale function f0(X) and so

u0(X, ξ) = f0(X)U0(ξ; Ω0). (1.8)

At this point we will assume isolated eigenfrequencies, but repeated
eigenvalues arise and are discussed later. The entire aim is to arrive at
a PDE with a matrix valued coefficient for f0 posed entirely upon the
longscale, but with the microscale incorporated through coefficients
that are integrated, not necessarily averaged, quantities.

1.2.1.1. The Neumann problem

We define the Neumann boundary conditions on the holes, ∂S2,

∂u

∂n
= u,xini|∂S2 = 0, (1.9)

where n = (n1, n2) is the unit outward normal to ∂S2 and which, in
terms of the two-scales and ui(X, ξ), become

U0,ξi
ni = 0, (U0f0,Xi + u1,ξi

)ni = 0, (u1,Xi + u2,ξi
)ni = 0.

(1.10)

The leading order eigenfunction U0(ξ; Ω0) must satisfy the first of
these conditions. Moving to the first order equation (1.6) we invoke a
solvability condition by integrating over the cell the product of equa-
tion (1.6) and U0 minus the product of equation (1.5) and u1/f0(X).
The eigenvalue Ω1 is zero and we can solve for u1 = f0,XiU1i(ξ),
so U1 is a vector field and U1i its ith component. By re-invoking a
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similar solvability condition for equation (1.7) we obtain the desired
partial differential equation for f0

Tijf0,XiXj + Ω2
2f0 = 0 where,

Tij =
tij∫∫

S ρU
2
0 dS

for i, j = 1, 2 (1.11)

posed entirely on the longscale X. The tensor tij consists of inte-
grals over the microcell in ξ and is ultimately independent of ξ. The
formulations for tij ’s read,

tii =
∫∫

S
aU2

0 dS +
∫∫

S
a(U1i,ξi

U0 − U1iU0,ξi
)dS for i = 1, 2,

(1.12)

tij =
∫∫

S
a(U1j ,ξi

U0 − U1jU0,ξi
)dS for i �= j. (1.13)

There is no summation over repeated suffices for the tii. The numer-
ical solutions of U0, and subsequently U1j , are computed using a
standard finite element package [COMSOL (2012)], although many
other numerical methods could be used instead, thereby allowing us
to treat general geometries. Besides this we note that a could be a
spatially varying function.

Floquet Bloch boundary conditions on the cell imply f0(X) =
exp(iκjXj/η). In this notation κj = Kj − dj and dj = 0, π/2,−π/2
depending on the location in the Brillouin zone with Kj ∈ [0, π/2].
Equation (1.11) and the frequency expansion of Eq. (1.4) lead to,

Ω ∼ Ω0 +
Tij

2Ω0
κiκj (1.14)

and thus one can compare directly with the full numerics. It is worth-
while noting the utility of Tij coefficients as their sign and absolute
value give information about the group velocity for the specified fre-
quencies and locations of the Brillouin zone. We have glossed over
some tedious details here, in particular how to deal with repeated
roots for which coupled PDEs emerge for the, now multiple, f0’s
[Antonakakis et al. (2013a)].
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1.2.1.2. The Dirichlet problem

If boundary conditions on the inside boundary of the cell (∂S2)
change to Dirichlet then

u(X, ξ)|∂S2 = 0 ⇐⇒ ui(X, ξ)|∂S2 = 0, i ∈ N (1.15)

and are set in the short-scale ξ so, for i = 0, U0(ξ; Ω0)|∂S2 = 0. Using
the same solvability conditions as in section 1.2.1.1 we obtain the
following equation on the long scale,

Tijf0,XiXj + Ω2
2f0 = 0, with Tij =

tij∫∫
S ρU

2
0 dS

for i, j = 1, 2.

(1.16)
In particular, the coefficients Tij encode the anisotropy at a specific
frequency and the tij’s are integrals over the small-scale cell

tii =
∫∫

S
aU2

0 dS + 2
∫∫

S
aU1i,ξi

U0dS +
∫∫

S
a,ξi

U1iU0dS, (1.17)

tij = 2
∫∫

S
aU1j ,ξi

U0dS +
∫∫

S
a,ξi

U1jU0dS for i �= j, (1.18)

where U1i is the ith component of vector function U1. Note that
there is no summation over repeated indexes for tii.

The PDE for f0, equations (1.16) or (1.11), is crucial as the
local microstructure is completely encapsulated within the tensor Tij

(physically a hallmark of effective anisotropy); these are, for a spe-
cific structure at an Ω0, just numerical values. Notably the tensor can
have negative values, or components, and it allows one to interpret
and, even more importantly, predict changes in behaviour or when
specific effects occur. The structure of the tensor depends upon the
boundary conditions of the holes, the results for the Dirichlet prob-
lem, for instance, are different from those of the Neumann case in
section 1.2.1.1. Another key point is that numerically the short scale
is no longer present and the PDE (1.16) is simple and quick to solve
numerically, or even by hand.
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1.2.2. Effective dispersive media

The major goal of HFH is to represent the periodic medium of finite
extent using an effective homogeneous medium.

Transforming equation (1.16) back to the original xi = XiL coor-
dinates and using the solution of Ω2 we obtain an effective medium
equation for f̂0 that is,

Tij f̂0,xixj(x) +
Ω2 − Ω2

0
l2

f̂0(x) = 0. (1.19)

The nature of equation (1.19) is not necessarily elliptic since T11 and
T22 can take different values and/or different signs. In the illustra-
tions herein the Tij = 0 for i �= j. The hyperbolic behaviour of equa-
tion (1.19) yields asymptotic solutions that describe the endoscope
effects where, if one of the Tii coefficients is zero as often happens
near the point M of the Brillouin zone, waves propagate only in one
direction. Note that when the cell has the adequate symmetries the
dispersion relation near pointN(0, π/2) is identical to that near point
X(π/2, 0), which explains the existence of two orthogonal directions
of propagation instead of only one.

At Dirac-like cones that correspond to the coalescence of three
dispersion curves as would happen in Fig. 1.5(b) if the radius
decreases toward zero, the linear behaviour of the effective medium
yields an equation slightly different from (1.19). Typically it is rep-
resented by a system of three coupled PDEs that uncouple to yield
one identical PDE for all f (i)

0 s that is of the form,

f̂0,xixi(x) + β
(Ω2 − Ω2

0)
2

l2
f̂0(x) = 0, (1.20)

where β is a coefficient equivalent of the Tij but this time is the same
for all combinations of i and j. The quadratic mode that emerges in
the middle of the linear ones follows Eq. (1.19).

1.2.3. Dispersion curves and asymptotics

To illustrate the results we consider the dispersion curves for a system
of split-ring resonators, as shown in Fig. 1.6; there have been many
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Fig. 1.5. The dispersion diagram for an array of square cells (side 2) with circular
inclusions of radius 0.4. Panel (a) shows dispersion curves from finite element
simulations (solid lines), the asymptotic solutions from HFH theory (dashed lines)
and the linear long wave classical homogenization asymptotics are the dotted lines
emerging from the origin. Panels (b) and (c) show enlargements near repeated
eigenvalues where the asymptotics from repeated roots are used. Taken from
[Antonakakis et al. (2013a)].

numerical studies for dispersion diagrams for instance in [Guen-
neau et al. (2007a)] and semi-analytical work for narrow gaps as
in [Llewellyn-Smith and Davis (2010)]. Figures 1.6(a, b, c) show the
dispersion curves together with the HFH asymptotics. Notable here
is the appearance of a low-frequency stop band (at roughly Ω ∼ 1)
below the Bragg stop band (at roughly Ω ∼ 1.75), whose upper
edge remains virtually unaffected by the insertion of the resonator
in each circular inclusion of the array. The low frequency stop band
is associated with a localized mode upon resonance of the resonator;
the inner cylinder of material acts as a resonator attached by thin
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Fig. 1.6. The dispersion diagram shown for an array of square cells (side 2)
containing circular holes of radius 0.8, and with circular inclusions of radius 0.7,
attached to the rest of the cell by 2, 4 and 8 thin ligaments in panels (a, b) and
(c) respectively. The dispersion curves from numerics are shown as solid lines,
the asymptotic HFH results are shown as dashed lines with the low frequency
linear classical homogenization shown dotted emerging from the origin. Taken
from [Antonakakis et al. (2013a)].

ligaments to the outer material. The low frequency stop band appears
at frequencies already beyond the scope of classical homogenization,
but HFH captures its finer details, as in Figs. 1.6(a, b, c).

The flat band along the MX path is captured by HFH, and
this band is associated with a localized mode in the SRR (which is
therefore insensitive to any variation of the Floquet-Bloch phase-shift
across the unit cell along this path). The highly dispersive physics
of the low frequency stop band can lead to ultra-refraction and all-
angle-negative-refraction effects.

Figures 1.6(a, b, c) also show changes of curvature, in say, the
second dispersion curve around Γ point, which flattens for 4 holes,
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Fig. 1.7. The dispersion diagram for a doubly periodic array of square cells with
circular inclusions, of radius 0.4, fixed at their inner boundaries shown for the
irreducible Brillouin zone of Fig. 1.4. The dispersion curves are shown in solid
lines and the asymptotic solutions from HFH are shown in dashed lines. Taken
from [Antonakakis et al. (2013b)].

and the curvature actually changes sign when comparing 2 and 8
ligaments; the HFH asymptotics capture this behaviour. A minor
note of warning is worth sounding regarding the irreducible Brillouin
zone, it is all too easy to overlook the fact that the two ligament SRR
does not have the appropriate symmetries such that one can use just
the triangle ΓMX as the irreducible Brillouin zone, but here one
loses nothing in the physical interpretation.

As noted earlier a commonly arising issue for Dirichlet (clamped/
fixed) inclusion is that a zero-frequency band gap occurs, see Fig. 1.7,
which illustrates the typical dispersion curves versus the asymptotics
for wavenumbers, on the specified path of Fig. 1.4, for the example of
a hole with radius 0.4. There is, as expected, a wide zero-frequency
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Table 1.1. The first six standing wave frequen-
cies for in-phase waves at Γ, cf. Fig. 1.7, together
with associated values for T11 and T22. Symmetry
between T11 and T22 is breaking when the multi-
plicity of the eigenvalue is greater than two. Nega-
tive group velocity is demonstrated by the negative
sign of both Tij ’s.

T11 T22 Ω0

0.6988 0.6988 1.7009
7.8677 7.8677 3.3616
0.3230 −8.9980 3.6327
4.9681 14.2899 3.6327
4.7755 4.7755 4.1487

−4.2798 −4.2798 4.8770

stop-band and the lowest branch is isolated with a full stop-band also
lying above it. It is not possible to homogenize this using quasi-static
theories, but the HFH mehodology captures the behaviour perfectly.
At some standing wave frequencies two modes share the same fre-
quency, for instance the third and fourth modes at Γ; these modes
are asymptotically quadratic in the local wavenumber. Table 1.1
shows the T11, T22 values for point Γ of the Brillouin zone. Note how
T11 = T22 for all single eigenfrequencies, but that symmetry breaks
for the double roots. Moreover the signs of the T11 and T22 naturally
inform one of the local curvatures near Γ. Physically, this tells us the
sign of group velocity of waves with small phase-shift across the unit
cells, and thus whether or not they undergo backward propagation,
which is one of the hallmarks of negative refraction.

In this section, for simplicity, we assumed Dirichlet and Neumann
data on inclusions’ boundaries, but the HFH theory also works for
transmission boundary conditions (e.g. continuity out-of-plane dis-
placement and its flux). It is also well-known that the Helmholtz
equation models transverse electromagnetic waves, and HFH suc-
cessfully predicted parabolic and hyperbolic type features in the
microwave regime for an array of parallel dielectric rods [Ceresoli
et al. (2015)].
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1.3. HFH for Platonic Crystals

The presentation above was for the simple scalar Helmholtz equation,
but the methodology works for all other linear continuum equations.
We now turn our attention to thin elastic plates, which support flexu-
ral waves and have been much studied particularly in connection with
the dynamics of shells [Kaplunov et al. (1998)] and the vibration of
periodic engineering structures [Mead (1996)]. More recently the sub-
ject has undergone a renaissance with the analysis of doubly-periodic
arrays of supports, [Mace (1996); Langley (1997)], revisited from the
point of view of phononic crystals [Movchan et al. (2007)] with these
structured elastic plates being dubbed platonic crystals [McPhedran
et al. (2009)]; the aim being to manipulate and re-direct vibra-
tional wave fields through negative refraction and ultra-refraction
[Farhat et al. (2010a,b)], Dirac-like point effects [Torrent et al. (2013);
Haslinger et al. (2016)], highly-directive dynamic anisotropy [Lang-
ley (1997); Antonakakis et al. (2014b)] and these ideas use Bragg
scattering and interactions due to the periodic structuring.

Elastic plates and beams are not governed by a simple wave equa-
tion and instead classical Bernoulli-Euler beam or plate theory [Graff
(1975)] allows for bending moments and transverse shear forces to be
present; a fourth order equation emerges for the out-of-plane plate
displacement u as

ρA
∂2u

∂t2
+∇2 (EI∇2u

)
= 0. (1.21)

Here ρ, A, E, I are density, cross-sectional area, Young’s modulus
and cross-section moment of inertia, respectively.

We operate in non-dimensional variables that is we choose con-
stant reference values for the physical parameters E0, I0, ρ0, µ0, A0

and incorporate any spatial variation through β̂, µ̂ defined through
EI = E0I0β̂(x̂) and ρA = ρ0A0µ̂(x̂). The spatial coordinate x = lx̂
and, assuming time harmonic dependence u = u0û exp(−iΩt) (hence-
forth suppressed) leads to a non-dimensional frequency Ω̂ from

Ω̂2 =
ρ0A0l

4Ω2

E0I0
.
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The governing equation (1.21) is now

∇2
x̂

(
β̂∇2

x̂û
)
− µ̂Ω̂2û = 0 (1.22)

The subscript on ∇ denotes that differentiation is now with respect
to x̂. Henceforth we operate in the non-dimensional setting and drop
the hat decoration, and the subscript for ∇.

Following the same method as for the Helmholtz equation, with
the multiple scales and leading order solution as in Eq. (1.8), we
obtain

f0,XiXj

∫ 1

−1

∫ 1

−1
2((β(V1(i) − ξiU0),ξkξk

),ξj
U0

+ (β(V1(i) − ξiU0),ξj
),ξkξk

U0)dξ1dξ2

+ f0,XjXj

∫ 1

−1

∫ 1

−1
(βU0,ξiξi

U0 + (βU0),ξiξi
U0) dξ1dξ2

+ f0,XiXj

∫ 1

−1

∫ 1

−1
4(βU0,ξi

),ξj
U0dξ1dξ2

− Ω2
2f0

∫ 1

−1

∫ 1

−1
µU2

0dξ1dξ2 = 0. (1.23)

Note that Eq. (1.23) is like Eq. (1.11) in the form of a second
order PDE,

Tijf0,XiXj −Ω2
2f0 = 0, (1.24)

where Tij are the respective coefficients in front of the double inte-
grals normalised by double integral coefficient in front of the last
term of Eq. (1.23). Invoking the Bloch conditions for, in and out of
phase waves, in both directions we obtain a relation for f0(X) =
exp(iκjXj/η) where κj = Kj − dj and dj = 0, π/2,−π/2 depending
on the location we refer to in the Brillouin zone. The final asymptotic
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dispersion relation reads as

Ω ∼ Ω0̂ −
Tij

2Ω0̂
κiκj , (1.25)

repeated indexes imply summation. Note that the generic Ω0̂ denotes
the standing wave frequency for the respective location in the Bril-
louin zone that is defined by the parameters di and dj. For the case
of triple modes originating from the same point, as for example the
Dirac-like cones, Eq. (1.24) is no longer valid and one obtains three
coupled equations for f (i)

0 for i = 1, . . . , 3.
We stress that Eq. (1.24) is of second order and not fourth. The

fourth order plate equation yields two types of solutions namely
propagating and exponentially decaying. Indeed in the long scale,
solutions follow a second order PDE and the remaining information
of the fourth order problem is enclosed in the Tij integrated quanti-
ties. This homogenization theory is not limited to long-waves relative
to the microstructure, one apparent pitfall is that the asymptotics
appear to be only valid near the band edge frequencies but further
refinements are possible, using foldings of the Brillouin zone (by con-
sidering a supercell instead of an elementary cell in Fig. 1.3), that
extend the theory to provide complete coverage of the dispersion
curves (for a large enough supercell) and provide useful information
at all frequencies and Bloch wavevectors [Antonakakis et al. (2013b)].

1.3.1. Applications in platonics

Generating asymptotic dispersion curves is a nice verification of the
theory, but naturally one wants to do more with it and actually
model real effects. Let us now move to the fascinating area of pla-
tonics, plates structured in a periodic way so that one can achieve
an extreme control of flexural waves via dynamic effective anisotropy,
see Fig. 1.8 (left), wherein the HFH is required to predict frequencies
at which some ultra-directive, or lensing, effects can occur. Platonics
now encompass the case of plates structured periodically, with the
paradigm of invisibility cloak for flexural waves, see Fig. 1.8 (right),
wherein the required shape and spacing of stress-free inclusions was
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Fig. 1.8. (Left panel) Photo of a duraluminium plate (group of Patrick Sebbah,
Institut Langevin, Paris) structured with a periodic array of boreholes (stress-
free inclusions) that allows for focussing and directive effects of flexural waves
via dynamic effective anisotropy (high-frequency homogenization). (Right panel)
Schematic view of a thin plate structured with radially symmetric stress-free inclu-
sions of increasing area with distance from the center of the cloak that achieves the
required spatially varying effective anisotropy (low-frequency homogenisation).

deduced from low frequency homogenization techniques (a limit case
of HFH when the frequency goes to zero).

In this section, we shall focus on the periodic case (Fig. 1.8 (left)),
but HFH indeed encompasses the aperiodic case, when the unit cell
size varies from one row to the next as in Fig. 1.8 (right).

1.3.1.1. Guiding bending waves in platonic crystals

A useful special case is that of pinned points for which there is an
explicit solution [Mace (1996)], for this we take a doubly periodic
array of points at x1 = 2n1, x2 = 2n2 where u = 0 and so the
elementary cell is one in |x1| < 1, |x1| < 1 with u = 0 at the origin.
Floquet-Bloch conditions are applied at the edges of the cell. The
PDE problem is

∇4u− Ω2u = −
∑
n1,n2

Fn1n2δ(x1 − 2n1)δ(x2 − 2n2). (1.26)

Solving for the unit cell with Bloch conditions a dispersion relation
emerges,

D(κ1, κ2,Ω) =
∑
n1,n2

1
[(πn1 − κ1)2 + (πn2 − κ2)2]2 − Ω2 (1.27)
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Fig. 1.9. Bloch dispersion curves around the edges of the Brillouin zone ΓXM
(inset) for an array of clamped circles (radius 0.01) of pitch 2. One notes the
stop band for Ω ∈ [0, π2/4] and four Dirac-like cones (so-named by analogy with
gapless dispersion curves in graphene electronic band structure wherein the energy
of electrons is a linear function of momentum k) [Novoselov et al. (2004)] at
frequencies Ω = π2/2 (marked A), Ω = π2 and 2π2 (marked B and D) and
Ω = 5π2/4 (markedC). Solid curves are computed with finite element simulations,
and dashed curves are from HFH.

which converges as 1/n4
i , in n1 and n2. Note that when κ = 0 it is

immediate that Ω = 0 is not a solution and thus that a zero-frequency
stop-band ensues. The dispersion curves, actually generated by finite
elements for a very small clamped circle but indistinguishable from
this exact solution, are given in Fig. 1.9 and show a zero frequency
stop band, Dirac-like points, and many other interesting features.

We illustrate potential applications of platonic crystals whose
dynamics are described by Fig. 1.9, very small clamped holes, namely
a shielding effect, a directive antenna and focusing effects. A finite
array of these small clamped holes is embedded within an infinite
elastic plate and the full finite element simulations (making use of
specially designed perfectly matched layers [Farhat et al. (2011)])
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are compared to solutions constructed using the continuum long-
scale HFH theory to replace the finite array; standard continuity
conditions then join this HFH material to the surrounding infinite
elastic plate.

This theory captures a rich array of behaviours, for instance the
material can be used to display the shielding effect of the zero fre-
quency stop band or strong anisotropy with propagation along char-
acteristics, that is well captured by HFH. When the coefficients Tij of
the HFH theory are of opposite sign the theory captures the strong
anisotropy of the medium and the effective material becomes hyper-
bolic rather than elliptic, which unveils the similar lensing effect,
shown in Fig. 1.10(c), without negative refractive index similarly to
that observed in [Luo et al. (2002)]. Qualitatively one can notice
the opposite slope of the dispersion curves at the second standing
wave frequency on point X that is responsible for such effects. Quan-
titatively the difference in group velocities in the two orthogonal
directions is determined with coefficients T11 and T22 and cannot be
evaluated by only looking at the band diagram.

Figures 1.10(c) and (d) show a focusing effect wherein a point
source located close to a tilted array leads to a localised beam. The
behaviour near point M of the Brillouin zone is responsible for the
focussing effects of Fig. 1.10(c) where the group velocities are of
opposite sign for each of the two directions and waves are there-
fore directed along the diagonals of the cells, what a physicist would
consider as a hyperbolic type metamaterial effect.

1.3.1.2. Cloaking with a pinned elastic plate

Last, but not least, the triple crossings in the dispersion diagram in
Fig. 1.9 comprise Dirac-like cones with a flat mode passing through
the vertex. This is highly interesting given that Dirac-like cones are
normally limited to graphene-like hexagonal structures [Neto et al.
(2009)]; the current situation involves a square lattice is akin to the
Dirac-like cones for photonic crystals recently described in [Huang
et al. (2011); Liu et al. (2011)]. One can use the properties of Dirac
cones-like to reduce the scattering of a clamped obstacle placed
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Fig. 1.10. A bending wave excited by a forcing of normalized frequency Ω =
3.7952 (that of vanishing group velocity at Γ point in Fig. 1.9) inside an array
of clamped circles (pitch 2, radius 0.01) tilted through an angle π/4 gives rise to
respectively four (a) and two (b) highly-directed beams outside 24 clamped circles
making a square (a) and 47 clamped circles making a rectangle (b). Focusing
through a slab of 48 clamped circles is shown in (c) with its HFH equivalent in
(d) for a point forcing at normalized frequency of Ω = 6.58. The focusing (d) and
antenna (e) effects are simulations of the continuum PDEs generated by HFH with
respective (T11, T22) coefficients of (25.65,−11.18) at point X and (6.2524, 6.2524)
at point Γ, where the effective media are highlighted by white lines. Panels (a)
and (b) use the array in the ΓM symmetry direction and panel (c) uses the ΓX
symmetry direction. Figure taken from [Antonakakis et al. (2014b)].

within a periodic array, as demonstrated in Fig. 1.11(a),(b). This
behaviour is also captured by HFH asymptotics: In this particular
case three coupled equations emerge with variables f (i)

0 for i = 1, 2, 3.
The system decouples to yield the same governing equation for all
three functions f (i)

0 as,

8π6 ∂
2f0

∂x2
i

+
(Ω2 − Ω2

0)
2

l2
f0 = 0, (1.28)
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(a) (b)

(c) (d)

Fig. 1.11. A plane bending wave of normalized frequency Ω = 9.7 (just below
the first Dirac-like cone at Γ point in Fig. 1.9) incident from the top on an array
of clamped circles (pitch 2, radius 0.01) undergoes considerably less scattering (a)
than by a clamped obstacle on its own (b); panels (a, b) are from finite element
simulation. The asymptotic HFH PDEs from equation (1.28) capture the essence
of physics, and the equivalent results are shown for cloaking (c) and scattering (d)
by the same clamped obstacle. Taken from [Antonakakis et al. (2013c, 2014b)].

where the coefficient in front of f0 comes from the first order correc-
tion Ω1 and the change into the original coordinates; the numerics
using HFH are shown in Fig. 1.11(c). The front and back scatter-
ing do not depend on the shape of the obstacle but mostly on its
area. Figure 1.12(c) and (d) show the scattering of three different
obstacles (a square, a tilted square and a circle) are virtually indis-
tinguishable, whereas in panels (a) and (b) the three curves can be
clearly told apart. The platonic crystal is used to destroy any one-
to-one correspondence between the scattered field and the shape of
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Fig. 1.12. Shape independence for three obstacles of same area ∼4 centered at
(0, 0), namely a square in blue, π/4 tilted square in black and a circle in red, in
the same setting as in Fig. 1.11 but with a bending wave’s normalized frequency
of Ω = 5.75. (a) and (b) plot forward and back scattering on the respective paths
x = 0 and x = 15 (outside the obstacle abscissa) for three different obstacle shapes
without any periodic medium. (c) and (d) plot forward and back scattering on the
same paths only this time with an effective medium that surrounds the obstacle
just like in Fig. 1.11(c) [Antonakakis et al. (2013c)].

an obstacle, which is the essence of cloaking in impedance tomogra-
phy [Greenleaf et al. (2003); Kohn et al. (2008)]. However, we note
that the present cloaking is constrained to normal incidence and is
reminiscent of [Urzhumov and Smith (2010)] which is a more elab-
orate type of cloaking somewhat constrained to the eikonal limit of
transformation optics with photonic band gap media [Liang and Li
(2011)].

We hope that our results will foster experimental effort towards
Dirac-cone platonic cloaking. Recent experiments have already
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validated HFH prediction of dynamic anisotropy in platonic crystals
[Lefebvre et al. (2016)]. However, to convince experimentalists to
engage into the more challenging case of cloaking might require fur-
ther theoretical and numerical efforts using the more elaborate, full
elastic, Navier system, instead of the Kirchhoff-Love theory. In actu-
ality, HFH theory has already been applied to elastic wave equations,
and we now pursue our journey in this framework.

1.4. HFH for Elastic Metamaterials

Full vector elasticity is clearly more complicated, however the
methodology carries through again. The elastic medium is taken to
be linear and isotropic with the stress related to the elastic displace-
ments via the constitutive relation

σij = µ(ui,xj + uj,xi) + λδijuk,xk
. (1.29)

The usual Einstein summation convention is adopted and x =
(x1, x2) are a Cartesian coordinate system with µ, λ the Lamé param-
eters and, xj denoting differentiation with respect to variable xj. The
equation of state, with exp(−iΩt) time dependence assumed and sup-
pressed hereafter, is

σij,xj + ρΩ2ui = 0, (1.30)

and ρ is the density. To generate the effective description of the
medium we follow the methodology given in [Antonakakis et al.
(2014a)] with the separation of scales and HFH approach giving the
leading to the order solution

u0i = f0(X)U0i(ξ; Ω0). (1.31)

Where U0i is the ith component of the short scale vector dispalcement
field U0 and it is entirely on the short-scale and its behaviour is
modulated by a long-scale, unknown, function f0(X). The short-scale
displacement field is different for each standing wave frequency Ω0

and we emphasise this by including it in the argument of the U0i . It is
worth dwelling on (1.31) and noting that one could envisage having
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two different scalar functions f01 , f02 multiplying each displacement
field or, if one used a potential formulation, the shear and com-
pressional potentials. However, ultimately for self-consistency one is
drawn to conclude that f01 = f02 and unexpectedly a single scalar
function f0 emerges on the long-scale.

Associated with the ith component of the short-scale displace-
ment, U0i , is a stress field, S0ij (ξ; Ω0), defined as

S0ij = µ(U0i,ξj
+ U0j ,ξi

) + λδijU0k,ξk
. (1.32)

The leading order equation, for the short scale, is then

S0ij ,ξj
+ ρΩ2

0U0i = 0 (1.33)

and this can be solved, subject to the boundary conditions, to identify
the displacements U0i and stresses S0ij; in the examples treated later
these solutions are found numerically.

As in the earlier sections, one moves up the hierarchy of equations
arriving at a solvability equation for the longscale function as

f0,XkXj

∫
S
µ(U0i(U1ik ,ξj

+ U1jk ,ξi
)− U1ik

(U0i,ξj
+ U0j ,ξi

)

+ λ(U1ik ,ξi
U0j + U0k

U0j − U1kj
U0i,ξi

))dS

+ f0,XjXj

∫
S
µU0iU0idS + f0,XiXj

∫
S
µU0iU0jdS

+ f0Ω2
2

∫
S
ρU0iU0idS = 0. (1.34)

The important point about this equation is that the short-scale is
completely absent, it has been integrated out and is encapsulated
within coefficients of a rank-2 tensor Tij as (1.34) can be written as

Tij
∂2f0

∂Xi∂Xj
+ Ω2

2f0 = 0. (1.35)

We will verify this using non-trivial examples later where we use
equation (1.35) to find asymptotic dispersion curves for perfectly
periodic Floquet-Bloch problems and compare with full numerical
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solutions. We stress that we have reduced the complexity of the elas-
ticity problem described by (1.29) and (1.30) to solving the scalar
PDE (1.35), which has the exact same form as the effective equation
(1.11) that emerged from the HFH of Helmholtz case. If we were to
perform our analysis in a three-dimensional elastic periodic setting
(e.g. a cubic array of rigid or traction-free spheres), the derivation of
(1.35) would apply mutatis mutandis with i, j ranging from 1 to 3
and the Bloch vector now describing the edges of a tetrahedron. We
finally note that Auriault and Boutin [Auriault and Boutin (2012);
Boutin et al. (2014)] independently developed a theory for long
wave wavelength near cut-off frequencies in elastic composite mate-
rials, which also produces dynamic effective elastic parameters at
high-frequencies.

1.4.1. Long wave zero frequency limit

Under traction free boundary conditions on the holes the medium
permits wave propagation at frequencies of the order of Ω2 ∼ O(η2);
the case of clamped boundary conditions is fundamentally different
and the material exhibits a zero-frequency stop-band and no long-
wave low frequency solution, see the dispersion curves of Fig. 1.13.
Note this can have potential applications in shielding elastic waves
of very long wavelengths (e.g. seismic waves).

For the traction-free case, the leading order equation is σij,ξj
= 0

and admits two independent solutions for ui = f
(l)
0 (X)U (l)

0i
, where

U
(l)
0i

are constants. Constant U0 solutions are inserted in the first

order equation to yield Ω1 = 0. Then we solve for u1i = f
(l)
0,Xj

U
(l)
1ij

where the first order equation is the same as the leading order but
the boundary conditions are σ1ijnj = 0. Finally Ω2 is obtained and
using that Ω0 = ηΩ2 gives the linear asymptotics.

1.4.2. Effective equation

Changing back to normal coordinates equation (1.34) yields the effec-
tive medium equation which is scalar and entails a bulk envelope wave
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Fig. 1.13. Bloch dispersion curves and HFH asymptotics for cylinders of radius
0.4 in an elementary cell of side 2: (a) Clamped and (b) traction free boundary
conditions. The solid lines are from finite element numerical simulations and the
dashed lines are from the HFH. Taken from [Antonakakis et al. (2014a)].
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propagation law even in vector elasticity.

Tijf0,xixj +
Ω2 − Ω2

0
l2

f0 = 0, (1.36)

where l = 1 is the short characteristic length as half the length of a
square cell. By reordering terms in equation (1.36) the effective wave
velocity is given by the tensor,

cij =
Ω2l2

Ω2 − Ω2
0
Tij , (1.37)

to yield,

cijf0,xixj + Ω2f0 = 0 (1.38)

Equation (1.37) depicts the dependence of the effective velocity on
the Tij coefficients as well as on the perturbation away from the
standing wave point. The effective medium is often anisotropic ellip-
tic or even hyperbolic causing the occurence of highly directive effects
as will be seen in the following illustrations.

1.4.3. Bloch dispersion curves

We begin by verifying the accuracy of the asymptotic technique
by creating asymptotic dispersion curves from HFH and comparing
them to full numerical simulations performed using finite elements,
before then moving on to investigate some of the broad features and
wave phenomena that can arise in elasticity. For definiteness we fix
the normalised elastic Lamé parameters λ, µ as 2.3, 1 respectively,
and similarly for the density ρ = 1, in all of the following com-
putations as typical material values. These normalised parameters
can be used for elastic media with a Poisson ratio close to 0.35, for
instance fused silica, which is drilled to fabricate photonic crystal
fibres (in dimensional terms ρ = 2.2×103 kg m3, λ = 31.15×109 Pa,
µ = 16.05 × 109 Pa).

Typical Bloch dispersion curves, with both the HFH asymp-
totics (dashed lines) and numerical simulations from finite elements
(solid lines) shown are plotted in Fig 1.13 for cylindrical inclusions
of radius 0.01 in a square array of side 2. This figure shows the
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clamped inclusions in panels (a) and traction free holes in pan-
els (b); an immediate conclusion is that clamped inclusions have a
zero frequency stop-band, in common with Dirichlet inclusions in
the acoustic/polarised electromagnetic analogues, c.f. [Antonakakis
et al. (2014b)], whereas traction-free inclusions share features with
the analogous Neumann case at low frequencies, i.e., there is a low-
frequency linear response. The zero-frequency stop-band behaviour
of the clamped inclusions completely derails the classical homogeni-
sation approach of effective media that requires low frequencies and
long waves and the microstructured medium supports no waves in
this limit: nonetheless the HFH asymptotics accurately represent the
dispersion curves close to the edges of the Brillouin zone for both
clamped and traction-free cases.

It is satisfying to note that the asymptotics based upon the scalar
f0 equation capture the detailed behaviour of the dispersion curves
and this is strong verification of the approach we have employed.
We now move on to using the asymptotics to predict and explain
specific phenomena. The power of the asymptotic technique, is that
it allows us to replace a microstructured medium by an effective
dispersive medium whose elastic properties are encapsulated within
the coefficients Tij in the PDE for f0, or by the coefficients in the
coupled cases of repeated roots. The form of the f0 equation then
guides one to anticipate or predict particular features.

1.4.4. Elastic metamaterials applications

1.4.4.1. Highly-directional standing waves

Highly-directional waves are shown in Fig. 1.14 and the cross effect
is predicted by the Tij coefficients where one is of order one while
the other is nearly null and vice versa, depending on which point of
the Brillouin zone is considered, X(π/2, 0) or G(0, π/2).

1.4.4.2. Unidirectivity

Another application of the unidirectivity of the effective medium is
shown in Fig. 1.15 where the source’s position and direction is defined
by the arrows. In all four panels the excitation frequency is Ω = 2.19



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch01 page 44

44 Handbook of Metamaterials and Plasmonics — Volume 2

Fig. 1.14. Directive emission in horizontal and vertical directions, caused by a
point compressive source at frequency Ω = 2.19, in a doubly periodic array of
square cells with circular holes of radius r = 0.4, clamped at their surface. c.f
Fig. 1.13(a) first mode at point X. Panel (b) shows FEM calculations and panel
(a) reproduces the effects by HFH with T11 = −0.18255 and T22 = 2.46973 (see
Table 1.2). Taken from [Antonakakis et al. (2014a)].

Table 1.2. The first seven standing wave frequencies for a
square cell with clamped holes of radius r = 0.4 at wavenumber
κ = (π/2, 0) at X, c.f. Fig. 1.13(a), together with associated
values for T11 and T22. Opposite signs of T11, T22 together with
absolute values of similar orders of magnitude yield charac-
teristic type of propagation. If one coefficient is much less in
magnitude than the other, e.g. |T11| � |T22|, then directive
propagation emerges in the horizontal and vertical directions.
The above coefficients are used in Fig. 1.14.

T11 T22 Ω0

−0.1826 2.470 2.112
1.6246 −2.4885 3.3317

−196.4900 −0.1476 3.5485
200.6397 −0.6115 3.6216

1.0742 4.9378 4.3847
−28.7271 4.0614 4.5952

27.4797 0.2967 4.6258
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Fig. 1.15. A doubly periodic rectangular array of 52 clamped circular holes of
radius r = 0.4, is excited at a frequency of Ω = 2.19 c.f. Fig. 1.13(a) and with a
prescribed direction of (1, 0) and (1, 1) for panels (a) and (b) respectively. Pan-
els (c) and (d) show the equivalent effects by replacing the periodic array by an
effective medium of material values prescribed by HFH. The preferred direction of
propagation is in the horizontal direction. The effect is magnified when the source
is placed inside the array as shown in panels (b) and (d). The HFH coefficients
of interest are T11 = 2.4697 and T22 = −0.1826 and at the excited frequency
there is a superposition of two effective media each with interchanged values of
T11 and T22.

and is close to the standing wave frequency Ω0 = 2.1120, where
the effective medium admits exactly one Tii ≈ 0 coefficient. This is
near the first mode of Fig. 1.13(a) where T11 = 2.4697 and T22 =
−0.1826. The prefered directivity of the source is in the horizontal
direction due to the large length to height ratio of the crystal. The
two dimensional effective medium is then governed by equation 1.36,

2.4697f0,x1x1 − 0.1826f0,x2x2 + 0.3440f0 = 0 (1.39)

1.4.4.3. Dirac cone

A cloaking application is observed in Fig. 1.16 where an obstacle
is placed in a photonic crystal slab composed of a doubly periodic
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Fig. 1.16. An elastic slab clamped at a doubly periodic array of 72 points with a
rectangular hole of width 7 and height 3 is placed in between a homogeneous elas-
tic material. In panel (a) a normal incident wave, at frequency Ω = 3.14 where the
dispersion curves are reminiscent of a Dirac-like cone, coming from above travels
through the crystal which removes all detail in the front and back scattering fields
when compared to the same obstacle placed alone in the homogeneous medium
shown in panel (b). Although the amplitude of the wave is damped behind the
obstacle in panel (a), the wavefronts are neatly flattened compared to panel (b).

array of very small clamped holes (r = 0.01) with the dispersion
diagram given in [Antonakakis et al. (2014a)]. This is not the typical
definition of cloaking as the transmitted field in panel (a) contains
a shadow of the obstacle but the wavefront appears to stay parallel
to that of the incident one and so removes all detail of the hidden
obstacle. On the contrary in panel (b) the wavefront is distorted
which reveals information about the obstacle.

1.4.5. HFH for periodic bianisotropic media

As a further note, we can apply this approach very widely, for
instance there is currently a surge for effective properties of advanced
designs of photonic crystals and electromagnetic metamaterials. In
most cases electric and magnetic fields are inherently coupled, even
in the transverse case, and so called bianisotropy comes in to play.
In this section, we would like to make a note of a useful corre-
spondence between in-plane elastodynamic and electromagnetic wave
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equations, which can be used to translate HFH results of section 1.4
to bianisotropic media. Let us first recall that an electromagnetic field
(E,H) is solution to the so-called time harmonic Maxwell-Tellegen
equations in a bianisotropic media:

∇×E = ωκHE + iωµH, ∇×H = −iωεE + ωκEH, (1.40)

where ω is the angular wave frequency, ε the permittivity, µ the
permeability and κ the magneto-electric coupling parameter.

If we assume that the material parameters and the electromag-
netic field are independent of the longitudinal coordinate x3 (i.e. we
consider a bianisotropic medium invariant along x3), we can write
(1.40) as six coupled PDEs:

∂x2E3 = ωκH(E1 + E2) + iωµ(H1 +H2),

−∂x1E3 = ωκH(E1 + E2) + iωµ(H1 +H2),

∂x1E2 − ∂x2E1 = ωξE3 + iωµH3,

∂x2H3 = ωκE(H1 +H2)− iωε(E1 + E2),

−∂x1H3 = ωξ(E1 + E2)− iωµ(H1 +H2),

∂x1H2 − ∂x2H1 = ωκEH3 − iωεE3.

Noting that one can express the above equation only in terms of
the longitudinal components of the electric and magnetic fields, then
one can recast (1.40) as follows [Liu et al. (2016)]

∇ · (C : ∇u) + ρω2u = 0 , (1.41)

where C is the rank-4 elasticity tensor with the following non-zero
entries:

C1111 = C2222 = − ε
µε−κEκH

, C1211 = C1222 = iκE
µε−κEκH

,

C2111 = C2122 = iκH
µε−κEκH

, C2211 = C2222 = µ
µε−κEκH

where εµ − κEκH �= 0 and the displacement field u = (E3,H3).
Besides from that, ρ is a rank-2 density tensor whose entries are
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given by:

ρ11 = ε, ρ12 = iκE , ρ21 = iκH , ρ22 = −µ. (1.42)

One can then straightforwardly apply the homogenization results
of elastic crystals to bianisotropic crystals. However, this correspon-
dence does not hold for three-dimensional periodic structures, in
which case one need generalize high-frequency homogenization of the
Maxwell’s system [Maling et al. (2016)] to the Maxwell-Tellegen’s
system. Taking the low frequency limit in HFH, one recovers result
of [Guenneau and Zolla (2007)].

1.5. Concluding Remarks

In this chapter, we reviewed the key features of HFH which is a
universal approach for any wave equation in physics. HFH can also
be applied to diffusion problems, such as heat or mass diffusion
in thermal and biological metamaterials. A key feature of HFH is
that it identifies simplified, limit, equations that unveil deep analo-
gies between quite different physics areas. For instance, anti-plane
shear/pressure/transverse electric waves in cylindrical media (all of
which are solutions of a Helmholtz equation) and flexural waves in
thin plates (solutions of a Kirchhoff-Love equation) are governed by
the same second order limit PDE unveiled by HFH. This makes pos-
sible mathematical correspondences between different wave physics,
and in turn facilitate designs of mechanical metamaterials by analogy
with electromagnetic metamaterials at least in a qualitative sense.
Another important point is the flexibility of the HFH approach, it
can be simply accommodated with most linear PDEs, for instance
in water wave theory one might wish to use the mild-slope equation
instead of the Helmholtz equation to model water waves propagat-
ing in structured liquids with a varying depth. In fact, applicabil-
ity of HFH is virtually unlimited. We believe the future of HFH is
bright as many areas of physics of metamaterials remain unexplored,
notably three-dimensional bianisotropic or high-contrast media that
have considerable interest for negative refraction, and non-linear and
dispersive media in general.
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2.1. Introduction

Over the past decade, electromagnetic metamaterials have shown
tremendous potential in many disciplines of science and technol-
ogy, and have led to a broad interest in devising techniques for
manipulating different classes of waves with unconventional materi-
als. Among them, acoustic metamaterials show the greatest promise
for manipulating acoustic waves in a novel fashion for imaging, com-
munication, detection and sound protection applications. Because of
similar governing equations of electromagnetic waves and acoustic
waves, which are the Maxwell equations and Helmholtz equations,
respectively, the successes of metamaterials study in electromag-
netic wave can be extended to the acoustic community. Permittivity
and permeability of materials are used to describe electromagnetic
wave properties, while acoustic wave properties are determined by
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Table 2.1. Analogy between electromagnetic and acoustic variables and mate-
rial characteristics.

Electromagnetism (TMz) Acoustics Analogy

∂Ez

∂x
= −iωµyHy

∂P

∂x
= −iωρxvx

∂Ez

∂y
= iωµxHx

∂P

∂y
= −iωρyvy

∂Hy

∂x
− ∂Hx

∂y
= −iωεzEz

∂vx

∂x
+
∂vy

∂y
= −iωχP

Electric field Ez Acoustic pressure P P ↔ −Ez

Magnetic field Hx, Hy Particle velocity vx, vy vx ↔ −Hy, vy ↔ Hx

Permittivity εz Dynamic compressibility χ χ ↔ εz

Permeability µx, µy Dynamic density ρx, ρy ρx ↔ µy , ρy ↔ µx

the mass density and compressibility of materials. Moreover, in a
two-dimensional (2D) case, when there is only one polarization mode,
the electromagnetic wave has scalar wave formulation. The two sets of
equations for the electromagnetic and the acoustic waves in isotropic
media are dual of each other by the replacement as shown in Table 2.1
and this isomorphism holds for anisotropic medium as well. Table
2.1 presents the analogy between acoustic and transverse magnetic
fields in 2D under harmonic excitation. It is noted that this analogy
between the electromagnetic and acoustic waves is not unique. We
can also have the one-to-one mapping between the acoustic and trans-
verse electric field. The latter analogy, which is presented in Table
2.2 for 1D propagation case (here, according to x-axis), is used, in
particular, within the nonlocal description of acoustic wave propa-
gation (see Section 2.2). From the equivalence shown in Tables 2.1
and 2.2, the desirable effective density and compressibility need to
be established by structured material to realize unusual sound wave
properties. Therefore, the basic question in acoustic metamaterials
is to build “acoustic artificial” atoms, on a scale much smaller than
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Table 2.2. Analogy between macroscopic electromagnetics and macroscopic
acoustics in 1D, including temporal and spatial dispersion. Macroscopic acoustic
variables are described in page 75.

Electromagnetism Acoustics Analogy

∂Bz

∂t
= −∂Ey

∂x

∂B

∂t
= −∂Vx

∂x

∂Dy

∂t
= −∂Hz

∂x

∂Dx

∂t
= −∂H

∂x

Dy(ω, k) = ε(ω, k) Ey(ω, k) Dx(ω, k) = ρ(ω, k) Vx(ω, k)

Hz(ω, k) = µ−1(ω, k) Bz(ω, k) H(ω, k) = χ−1(ω, k) B(ω, k)

Sx = Ey Hz Sx = H Vx

Electric field Ey Velocity field Vx Vx ↔ Ey

Electric displacement field Dy Acoustic Dx field (momentum
density)

Dx ↔ Dy

Magnetic Bz field Acoustic B field (condensation) B ↔ Bz

Magnetic Hz field Acoustic H field (pressure) H ↔ Hz

Pointing vector (x-component)
Sx

Acoustic part of energy current
density Sx

Sx ↔ Sx

Effective permittivity ε(ω, k) Effective density ρ(ω, k) ρ↔ ε

Effective permeability µ(ω, k) Effective compressibility χ(ω, k) χ↔ µ

the relevant wavelength, to achieve effective parameters beyond the
properties existing in nature.

There are several ways to design acoustic “atoms” in acoustic
metamaterials. One option is to use mechanical oscillation to build
deep subwavelength local resonators. Due to the resonant properties
of the artificial structures, they can exhibit novel effective parame-
ters for acoustic waves (i.e. singly or simultaneously negative mass
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Fig. 2.1. (a) Cross section of a coated lead sphere that forms the basic man-made
“atom” with local resonance; (b) Unit cells arranged in an 8 × 8 × 8 sonic crystal,
which is the block of acoustic metamaterial that was experimentally tested; (c)
A simple cubic structure of coated spheres from 200 to 2000 Hz. Three modes
(two transverse and one longitudinal) are distinguishable in the [110] direction,
to the left of the Γ point. The two transverse modes are degenerate along the
[100] direction, to the right of the Γ point. Note the expanded scale near the Γ
point.1

density and compressibility) in a certain frequency range.1–7 The
effective parameters of the acoustic metamaterials can be retrieved by
analyzing the acoustic wave scattering coefficients. Further studying
the oscillation modes of the resonators, we can find either monopolar
or dipolar resonances, which lead to negative compressibility or mass
density. Some analytical analysis have been applied on simple geome-
tries, e.g. cylindrical or spherical resonators.8,9 Experimentally, the
negative mass density has been demonstrated by immersing core-shell
structures (lead core in rubber shell) in epoxy matrix,1 as shown in
Fig. 2.1. In addition, the structure of air bubble in liquid has also been
explored because of the different orders of Mie scattering, which lead
to monopolar or dipolar resonance at different frequencies to achieve
negative compressibility or negative mass density.4 Recently, another
type of resonators — Helmholtz resonators — has been studied to
demonstrate negative compressibility.3,4,7,10,11 A typical Helmholtz
resonator (as shown in Section 2.2.2, Fig. 2.3(a)) can be presented as
a series of inductance and capacitance. The fluid inside the cavity is
much easier to be compressed compared with that in the neck part.
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Moreover, the pressure gradient along the open neck is much greater
than that inside the large cavity. Therefore the cavity displays capac-
itive property and leaves the smaller neck as an acoustic inductor.
According to the transmission line method12 (see Section 2.2.1), the
negative properties of the acoustic metamaterials can be designed
by an array of subwavelength Helmholtz resonators. Experimentally,
the negative compressibility was achieved in 1D Helmholtz resonator
array,3 and focusing effect by negative index acoustic metamaterial
(mass density and compressibility are negative simultaneously) was
demonstrated in 2D Helmholtz resonator array.13 In addition, using
the long-wavelength approximation, the effective mass density and
compressibility can also be retrieved from reflection and transmission
coefficients.14,15

Recently, a new design paradigm called conformal mapping and
coordinate transformation has inspired a series of key explorations to
manipulate, store and control the flow of energy, in the form of either
sound, elastic waves or light radiation. In electromagnetism, because
of the coordinate invariance of Maxwell’s equations, the space for
light can be bent in almost any arbitrary ways by providing a desired
spatial distribution of electric permittivity ε and magnetic perme-
ability µ.16,17 A set of novel optical devices were proposed based on
transformation optics;18–21 they usually call for complicated medium
with anisotropic and spatially varying permittivity and permeability
tensors to accomplish the desired functionality. Recent advances in
synthetic structured metamaterials22,23 whose properties are deter-
mined by subwavelength structures, offer the potential to physically
implement these complicated media. By modifying the shape and
arrangement of these subwavelength constituent elements, anisotropy
and spatial variation can be achieved in the artificial metamateri-
als. Due to the coordinate invariance of Helmholtz equations, the
concept can be extended to the acoustic waves as well, which is
called transformation acoustics. Similar to the optical metamate-
rials, generally, we need spatially varying mass density and com-
pressibility tensors to manipulate the acoustic wave in the desired
fashion.
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The central theme of this chapter is to introduce the design and
realization of acoustic metamaterials aimed at controlling and guid-
ing acoustic waves in applications such as acoustic imaging or com-
munication. We will first describe the approach to build an acoustic
metamaterial unit cell — Helmholtz resonator — based on the trans-
mission line model. The basic concept and derivation of lumped acous-
tic circuit will be introduced (Section 2.2.1). The realization of neg-
ative dynamic compressibility for the acoustic wave using Helmholtz
resonator array will be demonstrated (Section 2.2.2). Newly devel-
oped nonlocal theory of the acoustic wave propagation in Helmholtz
resonator array will be discussed (Section 2.2.3). By this theory, the
effective medium parameters are calculated, and the behavior of the
effective modulus which appears negative near the resonance will be
shown to be a consequence of the nonlocal effects in this material
exhibiting local resonance phenomenon. As a promising application in
acoustic imaging, the lens with negative index by acoustic metamate-
rials will be presented (Section 2.2.4). Both the theoretical and experi-
mental studies demonstrate the focusing of ultrasound waves through
the negative index lens, which is implemented by a two-dimensional
array of subwavelength Helmholtz resonators. We will also introduce
a subwavelength focusing using two-dimensional Helmholtz resonator
array based on strong local resonance mode (Section 2.2.5). In the next
section (Section 2.3), we will focus on the realization of acoustic cloak
in various ways. The design of acoustic cloak is based on transforma-
tion acoustics. The mathematical background, numerical simulation
results, and experimental characterization results will be given then.

2.2. Acoustic Metamaterials Made of Helmholtz
Resonators

In this section, we first review the simple principles of the acous-
tic transmission line method, followed by the application of the
method to design metamaterials with Helmholtz resonator as the
material building block. In Section 2.2.2, we describe the first appli-
cation related to the one-dimensional subwavelength metamaterial,
whose elastic modulus is found to be negative experimentally near
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resonance frequency.3 This metamaterial, consisting of an array of
Helmhotz resonators, exhibits local resonance phenomena in the
long-wavelength limit where the wavelength is much larger than the
unit cell composed of one resonator. This medium property which
leads to negative modulus is described precisely in Section 2.2.3,
by a nonlocal theory of sound propagation taking into account the
effects due to spatial dispersion and also viscothermal dissipation.24

In Section 2.2.4, we present the focusing of a point source from a
designed ultrasonic metamaterial consisting of a planar network of
subwavelength Helmholtz resonators which has been experimentally
investigated in Ref. 13. Transmission line method has been employed
to guide us for designing this material and analysing the experimental
results. In Section 2.2.5, we demonstrate the extraordinary focusing
in an array of Helmholtz resonator.25 We explain the experimental
observations based on an analytical effective-medium model as well
as finite-element calculations.

2.2.1. Transmission line method

We will review in the following an analogy which can be estab-
lished between acoustic systems and electrical circuits. This analogy
is based on the equivalence of the fluid motion in the acoustic system
and the current in the electrical circuit. In the acoustic counterpart
of the electrical circuit, acoustic capacitance and inductance can be
defined in the framework of a parameter model. This model is valid
when the length of the acoustic medium is much smaller than the
wavelength. The effective density and compressibility of the network
structure are found to be related to the capacitance and inductance
in this lumped circuit.

Acoustic impedance of a tube

We consider a hollow cylindrical tube of length l and cross section
area S, open at one end and closed at the other end with impedance
Z. The origin of coordinates is chosen to be coinciding with the
position of the open end of the tube. We assume that the diameter
of the tube is sufficiently small so that the waves travel down the tube
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with plane wave fronts. For an initial pressure wave traveling in the
positive x direction, p+ = p̃+ exp(ikx − iωt), the reflected wave at,
traveling in the negative x direction writes as p− = p̃− exp(−ikx −
iωt). The corresponding particle velocity can be written as v+ =
(p̃+/Zc) exp(ikx− iωt), and v− = −(p̃−/Zc) exp(−ikx− iωt), where
Zc = ρ0c0 is the characteristic impedance of the fluid in the tube, and
ρ0, and c0 are the density and sound velocity in the fluid, respectively.
The total pressure and total velocity at a given position and time
are p(x, t) = p+(x, t) + p−(x, t), and v(x, t) = v+(x, t) + v−(x, t),
respectively. This yields the impedance at x

Zx =
p

Sv
=
Zc

S

p̃+eikx + p̃−e−ikx

p̃+eikx − p̃−e−ikx
(2.1)

We can immediately obtain the impedances Z0 at the open end
x = 0, and Zl at x = l. This gives Z0 as a function of Zl

Z0 =
Zc

S

Zl − iZc
S tan kl

Zc
S − iZl tan kl

(2.2)

Acoustic inductance

We consider that the tube is acoustically rigid and open on both ends
[Fig. 2.2(a)]. Since all quantities are in phase when the dimension of
the tube is much smaller than the corresponding wavelength, the
fluid moves as a whole under the action of an unbalanced force. The

(a) (b)

Fig. 2.2. A pipe with (a) open and (b) rigid ends is analogous to an acoustic
inductor and an acoustic capacitor, respectively.
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whole fluid moves without appreciable compression because of the
open ends. We substitute Zl = 0 in (2.2)

Z0 = −iZc

S
tan kl (2.3)

Since l is much smaller than the wavelength, kl is a small value.
Therefore we can use the Taylor series to write tan kl = kl + (kl)3

3 +

2 (kl)5

15 + · · · . Then (2.3) becomes Z0 = −iω ρ0l
S − iω3 ρ0l3

3Sc20
+ · · · . When

l < λ/16, we can keep only the first term and neglect the higher
order terms within about 5% error. Thus, the acoustic inductance
for an open end tube can be written as

LA � ρ0l

S
(2.4)

Taking into account the radiation impedance, l should be
replaced by an effective length of the tube l′, and augmented with a
correction factor: l′ = l+ 8r/3π = l+ 0.85r, where r is the radius of
the tube.

Acoustic capacitance

If the tube is rigidely closed at one end [Fig. 2.2(b)], we substitute
Zl =∞ in (2.2)

Z0 = i
Zc

S
cot kl (2.5)

For a small value of kl, cot kl = 1
kl − kl

3 − (kl)3

45 , and consequently
(2.5) becomes Z0 = i

ω
1

(V/ρ0c20)
− iω lρ0

3S + · · · . This impedance is valid
within 5% for l up to λ/8 as a combination of acoustic inductance and
capacitance in series. Furthermore and as before, when l < λ/16, we
can keep only the first term and neglect the higher order inductance
term within about 5% error, such that the impedance

CA � V

ρ0c
2
0

(2.6)

where V is the volume of the tube.
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(a) (b)

Fig. 2.3. (a) Schematic cross-sectional view of a Helmholtz resonator. The sam-
ple is made of aluminum, consisting of a rectangular cavity of 3.14 × 4× 5 mm3,
and a cylindrical neck 1-mm long and 1-mm in diameter. The cavity and neck
are filled with water, and are connected at the same side to a square water duct
with a 4 × 4 mm2 opening. The resonators are placed in a periodicity of 9.2
mm. The inset illustrates the analogy between a Helmholtz resonator and an
inductor-capacitor circuit, showing the fluidic inductance due to the neck, and
the acoustic capacitance due to the cavity. (b) Illustration of the setup of the
ultrasonic transmission experiment.3

Helmholtz resonator

A typical Helmholtz resonator as in Fig. 2.3(a) can be presented as
a combination of inductance and capacitance. The fluid inside the
cavity is much easier to compress compared with that in the neck
part. Moreover, the pressure gradient along the open neck is much
greater than that inside the large cavity. Therefore, the cavity dis-
plays capacitive property and leaves the smaller neck as an acoustic
inductor.

2.2.2. Negative bulk modulus

A new class of ultrasonic metamaterials is presented in Ref. 3 with
subwavelength resonant structural units, which leads to the nega-
tive bulk modulus near the resonance. The building block of this
ultrasonic metamaterial, the Helmholtz resonator, consists of a cav-
ity of known volume with rigid walls and a small hole in one side
[Fig. 2.3(a)]. The material is embedded in water, and the periodicity
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is considerably smaller than the corresponding longitudinal wave-
length in water (d � λ/5). A pressure variation in the channel causes
the plug of fluid in the hole to oscillate in and out, producing adia-
batic compression and rarefaction of the liquid enclosed in the cavity.
Such a resonator, as it has been mentioned above, is analogous to
an inductor-capacitor circuit [Fig. 2.3(a)], with the enclosed cavity
acting as the capacitor with capacitance C � V/ρ0c

2
0, and the neck

acting as the inductor (L � ρ0(L′/S)), where V is the volume of the
cavity, ρ0 is the density of water, c0 is the sound speed in the water,
L′ is the effective length of the neck, and S is the cross-sectional area
of the neck. Because the Helmholtz resonator does not use typical
standing waves to create a resonance, the dimension of each element
can be made much smaller than the acoustic wavelength (at 33 kHz,
λ = 4.4 cm in water).

Following the formalism of electromagnetic response in metama-
terials,26,27 the combination of many Helmholtz resonators into a
periodic array allows the material to behave as a medium with an
effective modulus χ−1(ω) that can be expressed in the form

χ−1(ω) = χ−1
0

[
1− Fω2

H

ω2 − ω2
H + iΓω

]
(2.7)

where F = V/Scd is a geometrical factor, Sc the cross-sectional area
of the main conduit, ωH = c0

√
S/L′V is the resonant angular fre-

quency, and Γ is the dissipation loss in the resonating Helmholtz
elements due to viscous effects. In Fig. 2.4(a), the imaginary part
of the modulus has a negative sign because the acoustic analogue of
permeability corresponds to χ. This frequency dependent response
is essential to the negative modulus over a range of frequencies. At
frequencies near resonance, the induced displacement in the neck
becomes very large, as is typical in resonance phenomena. The large
response represents accumulation of energy over many cycles, such
that a considerable amount of energy is stored in the resonator rela-
tive to the driving field. This stored energy is significant to maintain
the sequence of displacement near resonance even when the excitation
field changes the sign. That is, as the frequency of the driving
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(a) (b)

Fig. 2.4. (a) The calculated effective bulk modulus in the one-dimensional sub-
wavelength Helmholtz resonators. (b) Measured and calculated dispersion of
ultrasonic metamaterial. The red circles represent data measured from the peri-
odical array of Helmholtz resonators in the duct, the black triangles represent
the data in the duct without Helmholtz resonators, and the blue solid line is
calculated using a sum of lossless Bloch waves.3

pressure field is swept through the resonance, the instantaneous
velocity of the mass centre in the unit cell flips from in-phase to out-
of-phase with the driving field, and the material shows a negative
response. Similarly, a polariton effect is also observed in the electro-
magnetic response of metamaterials, where a negative permittivity
or permeability (generally on the higher frequency side of the reso-
nance) implies a purely imaginary wavevector in the bulk medium.
Here, this idea has been implemented in the context of elastic com-
posites at ultrasonic frequencies. By varying the size and geometry
of the structural unit, we can tune the effective elastic moduli to
negative values at desired frequency ranges.

Theory on the lossless resonators predicts that a full bandgap
opens up between 32 and 34 kHz, whereas away from this dip the
dispersion behaves linearly. However, experimental data show that
possible propagation modes can exist in the bandgap with a back-
bending of the dispersion curve, which suggests an antiparallel rela-
tion between group and phase velocities. This is a direct result of
the loss in the system. When ultrasonic metamaterials approach
resonance, the complex modulus χ−1 = −|�(χ−1)| + i�(χ−1) =
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−α − iβ is expected in the spectral dip as a result of friction dis-
sipation (α, β > 0 as shown in Fig. 2.4(b)), where �(χ−1) indi-
cates the imaginary part, and α, β are parameters corresponding
to the real and imaginary parts of the complex modulus. It is
straightforward to write the propagation constant in the system as
k = (−α+ iβ)1/2ω

√
ρ0/(α2 + β2), with a small real component

�(k) = −ω
2

√
ρ0

α2 + β2

{√
α2 + β2 − α

}1/2
(2.8)

characterizing a propagating mode in the bandgap, whereas the imag-
inary part

�(k) = +
ω

2

√
ρ0

α2 + β2

{√
α2 + β2 + α

}1/2
(2.9)

describes the decaying length of the pulse. The dispersion of these
complex wavevectors can be well captured in our experiment by
sweeping in real frequencies. Taking into account a small propagating
component as an effect of resonant re-emission in parallel to the dom-
inant tunnelling process in the transmission dip, the dispersion rela-
tionship can be characterized in the experimental results [Fig. 2.4(b)].
In addition, as frequency increases above the band edge, the atten-
uation (β) increases leading to the reduction of the real wavevector
�(k), resulting in the back-bending of the dispersion curve observed
in Fig. 2.4(b). The loss term (Γ = 2π×400 Hz) is determined empir-
ically by fitting the calculated transmission data along the edges of
the experimental expectral dip.3

2.2.3. Nonlocal description of sound propagation

We employ here a generalized macroscopic nonlocal theory of sound
propagation in rigid-framed porous media saturated with a viscother-
mal fluid28 to describe the behavior of an acoustic metamaterial made
of an array of Helmholtz resonators filled with air [see Fig. 2.5(a)].24

Inspired by the electromagnetic theory and a thermodynamic con-
sideration relating to the concept of acoustic part of energy current
density, this macroscopic theory allows us to go beyond the limits of
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(a) (b)

Fig. 2.5. (a): A unit cell in a 2D array of Helmholtz resonators. The dimensions
are L = 1 cm, Σ = 0.2 L, σ = 0.015 L, and l = 0.15 L. (b): Illustration of slit
portions and plane waves propagating in different parts of the resonator. Different
positions are indicated by m, and different amplitudes by Am, m = 1, . . . , 10.

the classical local theory and within the limits of linear theory, to
take into account temporal and spatial dispersion. By macroscopic
theory we mean that the theory is concerned with averaged fields
only. Assuming that there is a suitable ensemble of realizations of the
medium, the macroscopic theory then is developed to describe the
dynamics of the ensemble-averaged fields. A special case will be that
of a periodic medium. The ensemble will be the collection of configu-
rations generated by random translations of a single sample, and the
ensemble average will be related to cell average of one sample. In the
framework of the new approach, a homogenization procedure is pro-
posed, through solving two independent microscopic action-response
problems each of which related to the effective density and effective
bulk modulus of the material. Contrary to the classical (two-scale
asymptotic) method of homogenization, no asymptotic approach has
been employed and there is no length-constraint to be considered
within the development of the new method. Thus, there would be
no frequency limit for the medium effective properties to be valid; in
addition, materials with different length scales can be treated. The
homogenization procedure offers a systematic way of obtaining the
effective properties of the materials, regardless of their geometries.
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These characteristics of the nonlocal approach permits the descrip-
tion of the porous media with specific geometries causing meta-
material behavior. A metamaterial with periodic structure will be
studied: two-dimensional array of Helmholtz resonators connected in
series.

By local theory, we refer to space locality. Nonlocality in time,
or temporal dispersion, has been already taken into account through
models for wave propagation in porous media.29–32 That is, in Fourier
space the effective density and bulk modulus depend on the frequency
ω. In other words, the field dynamics at one location retains a mem-
ory of the field values at this location but is not affected by the
neighboring values. The local description is usually based on retain-
ing only the leading order terms in the two-scale homogenization
method.32–38 An asymptotic two-scale approach is applied in terms
of a characteristic length of the medium, the period L in periodic
media, which is assumed to be much smaller than the wavelength
λ.39,40 Efforts have been performed to extend the asymptotic method
of homogenization to higher frequencies for the periodic compos-
ite materials41,42 and rigid porous media43 by introducing another
type of scale separation to which the asymptotic multi-scale proce-
dure applies. An enhanced asymptotic method has been adapted to
describe sound propagation in rigid porous media with embedded
damped Helmholtz resonators44 exhibiting scattering different from
Bragg scattering at high frequency in periodic media.

An effective medium approach has been proposed for periodic
elastic composites based on surface responses of a structural unit
of the material,45 which can describe the macroscopic parameters
beyond the frequencies within the long wavelength limit. Unlike the
classical methods, based on the introduction of two-scale asymp-
totic expansions, or coherent potential approximation46 based on
the effective-medium parameters minimizing scatterings in the long-
wavelength limit, the homogenization scheme presented in Ref. 45
uses matching the lowest-order scattering amplitudes arising from a
periodic unit cell of the metamaterial with that of a homogenized
material. As such, local resonant scattering can be captured as well
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by the latter method in the elastic metamaterials. The asymptotic
method of homogenization has been enhanced to provide the weak
nonlocal effects as a small correction to the local behavior.47 An
approach has been presented48 for random elastic composites based
on ensemble averaging of the material responses to a body force,
giving rise to effective parameters of the medium depending on fre-
quency and wavenumber. By this method, the case of periodic media
can be treated as well.

The nonlocal theory we use here takes fully the temporal dis-
persion and spatial dispersion into account. The medium is assumed
unbounded and homogeneous in the stationary random statistical
sense; therefore, the spatial dispersion refers only to the dependence
of the permittivities, i.e. effective density and bulk modulus, on the
Fourier wavenumbers k present in the macroscopic fields.49 As men-
tioned above, the theory can be applied with certain considerations
to a periodic medium; in particular it gives the Bloch wavenumbers
and defines Bloch impedances. The materials susceptible to show-
ing the nonlocal behavior may be classified into two main groups
regarding their microgeometry. The first comprises the materials
which exhibit this behavior in sufficiently high frequency regime. The
second one concerns materials with microgeometry constituting the
resonators, which exhibit spatial dispersion phenomena even at not
very high frequencies; the resonance phenomena act as a source gen-
erating nonlocal behavior. In this article, we investigate the second
type of these geometries in the form of daisy-chained Helmholtz res-
onators. A material made of an array of Helmholtz resonators filled
by water has been studied experimentally, and has been found to
show negative bulk modulus in the resonance frequency range3 (see
Section 2.2.2). Later, Helmhotz resonators as structural units were
used to design novel metamaterials for focusing ultrasound waves13

(see Section 2.2.4 and broadband acoustic cloaking50).
Here, we apply the nonlocal theory to quantatively describe the

macroscopic dynamics of such a metamaterial filled with air as a
viscothermal fluid, in 2D. Using a simplified analytical solution of
the complete equations, we present the method of obtaining the
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nonlocal efffective density and effective bulk modulus. When these
effective parameters satisfy the dispersion equation based on the non-
local theory, we can compute the wavenumber of the least attenuated
mode, among other modes. We can then check that the wavenumber
resulting from the macroscopic nonlocal theory coincides with the
wavenumber associated with the Bloch wave propagating and atten-
uating in the medium. The Bloch solution is determined using the
same simplifying way of solving as in the nonlocal modeling. Thus the
results based on the two calculations should be comparable. Finally,
as a check of the validity of the simplifying assumptions introduced in
our modeling calculations, we have performed direct Finite Element
Method (FEM) computations based on the exact equations in the
framework of nonlocal homogenization.

First, we review briefly the general framework of the nonlocal
theory which is used in this section. The microscopic equations gov-
erning sound propagation in a rigid porous medium are summarized,
before mentioning the macroscopic Maxwellian equations describing
the macroscopic nonlocal dynamics of the homogenized equivalent
fluid. Then, we will see the nonlocal modeling allowing the calcu-
lation of the effective parameters and the wavenumber of the least
attenuated wave in the medium. The direct calculation of the Bloch
wavenumber, using similar simplifications, is presented next, followed
by the results and analysis of the three different calculations.

General Framework of the Nonlocal Theory

In the following, we state the microscopic equations applied at the
pore level, and the nonlocal Maxwellian macroscopic equations that
describe the dynamics of the material as a homogeneous equivalent
fluid medium. Then, we recall briefly the upscaling procedures allow-
ing to obtain the frequency and wavenumber dependent effective
parameters of the macroscopic equivalent fluid medium, i.e. effective
density and effective bulk modulus. This section is a summary of the
results which have been discussed in detail in Ref. 28. Hence, we will
frequently refer to Ref. 28, for the in-depth explanations.
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Microscopic Equations

The dynamics of a small amplitude perturbation in a rigid-framed
porous material filled with a viscothermal fluid is governed by the
linearized equations of the mass, momentum, and energy balance,
and a general fluid state equation as follows: in the fluid region Vf

ρ0
∂v

∂t
= −∇p+ η∇2v +

(
ζ +

η

3

)
∇(∇ · v) (2.10a)

∂b

∂t
+ ∇ · v = 0 (2.10b)

γχ0p = b+ β0τ (2.10c)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (2.10d)

where v, b ≡ ρ/ρ0, p and τ , are the fluid velocity, excess conden-
sation, thermodynamic excess pressure, excess temperature, respec-
tively, and ρ is the excess density. The fluid constants ρ0, η, ζ, γ,
χ0, β0, cp, T0, κ, represent the ambient density, first viscosity, sec-
ond viscosity, ratio of the heat capacity at constant pressure to heat
capacity at constant volume cp/cv , adiabatic compressibility, coeffi-
cient of thermal expansion, specific heat capacity per unit mass at
constant pressure, ambient temperature, and coefficient of thermal
conduction, respectively.

In the (rigid) solid phase region Vs, energy balance equation is
reduced to ρscsp(∂τ s/∂t) = κs∇2τ s, where ρs is the constant solid
density, τ s solid excess temperature, and κs solid coefficient of ther-
mal conductivity. On the fluid/solid interface ∂V, we have the condi-
tions of continuity of the excess temperature τ = τ s and the heat flux
κ∇τ = κs∇τ s. We admit that the coefficient of thermal conductivity
of the solid is much larger than that of the fluid κs � κ, and the
heat capacity at constant pressure of the solid part is much larger
than that of the fluid part, i.e., (1− φ)ρscsp � φρ0cp; where φ is the
fluid volume fraction (porosity). The latter assumptions combined
with the Fourier heat diffusion in the solid, and the temperature and
heat flux continuity relations, generally result in the vanishing of the
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fluid excess temperature at the fluid/solid boundaries. In addition,
we assume no-slip condition on the fluid/(rigid) solid interface. The
boundary conditions for the velocity and excess temperature on ∂V
are finally written as

v = 0, τ = 0 (2.11)

Macroscopic Maxwellian Acoustics
Before going through the macroscopic equations for sound propaga-
tion in rigid-framed porous media, and the homogenization proce-
dure, we will precise the notion of field averaging in the nonlocal
approach.

Averaging: The present macroscopic theory is statistical in nature
and has been developed in principle for fluid-saturated rigid-framed
media which are homogeneous in an ensemble-averaged sense; this is
the case of stationnary random media. The macroscopic properties
represented in the theory refer to the ensemble of realizations. Thus,
for example, the propagation constants of the medium would refer
to the propagation constant of coherent waves in multiple-scattering
theory. Here, the material we wish to study is not defined by station-
ary random realizations. It belongs to the important class of periodic
materials. The macroscopic theory can still be applied by considering
the ensemble obtained through random translation of one sample. It
turns out that the ensemble-average 〈 〉 properties of the space are, in
this case, precisely computable by spatial averaging over a periodic
cell in a single realization. This, in a sense, reminds of ergodicity in
stationary random media.

The macroscopic condensation and velocity are defined as the
average of pore scale microscopic fields: V ≡ 〈v〉, and B ≡ 〈b〉; aver-
age over the periodic cell in the case of the periodic media. A macro-
scopic equation can be obtained directly by averaging Eq. (2.10b),
using the commutation relation 〈∇.v〉 = ∇.〈v〉 which is automati-
cally satisfied owing to (2.11) (see Eq. (56) in Ref. 28). The second
macroscopic field equation, as well as the macroscopic constitutive
relations, are written using the electromagnetic analogy. This anal-
ogy suggests that the system of macroscopic equations can be carried
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through by introducing new Maxwellian fields H and D, as well as
linear operators ρ̂ and χ̂−1. The field equations and constitutive rela-
tions are written as (see Section 3.3 in Ref. 28)

Field equations:
∂B

∂t
+ ∇ · V = 0,

∂D

∂t
= −∇H

(2.12)

Constitutive relations: D = ρ̂V , H = χ̂−1B

(2.13)

where the integral operators of density ρ̂ and bulk modulus χ̂−1 are
such that

D(t, r) =
∫ t

−∞
dt′
∫
dr′ρ(t− t′, r − r′)V (t′, r′) (2.14a)

H(t, r) =
∫ t

−∞
dt′
∫
dr′χ−1(t− t′, r − r′)B(t′, r′) (2.14b)

We notice that the kernels ρ and χ−1 depend on the difference
t − t′ and r − r′, which is due to the homogeneity of the medium
with respect to time and space. Therefore, we can write (2.14a) and
(2.14b) in the Fourier space, respectively, as

D(ω,k) = ρ(ω,k)V (ω,k), H(ω,k) = χ−1(ω,k)B(ω,k) (2.15)

provided that

ρ(t− t′, r − r′) =
∫
dω

2π
dk

(2π)3
ρ(ω,k) e−iω(t−t′)+ik.(r−r′)

χ−1(t− t′, r − r′) =
∫
dω

2π
dk

(2π)3
χ−1(ω,k) e−iω(t−t′)+ik.(r−r′)

In other words, because of the medium homogeneity with respect to
time and space, D(ω,k) is related to V (ω,k), and H(ω,k) is related
to B(ω,k), for the same values of ω and k.
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In nonlocal theory, the macroscopic H field is defined through
the Poynting-Schoch condition of acoustic part of energy current den-
sity28,51 which is postulated as (see Section 3.4 in Ref. 28)

S = HV = 〈pv〉 (2.16)

As a result of this definition, the density and bulk modulus
operators become susceptibility functions determinable, in principle,
through independent action-response problems (see Section 2.4 in
Ref. 28). Regarding Eqs. (2.14) and (2.15), it is visible that the
theory allows for both temporal dispersion, shown by integration
over time variable t′ in physical space and frequency dependence
in Fourier space, and spatial dispersion, shown by integration over
space coordinates r′ and wavenumber dependence in Fourier space.
We will recognize the quantities in physical space (t, r) and Fourier
space (ω,k) by their arguments. Now, in order to clarify the relation-
ship between constitutive operators and microgeometry, the kernel
functions ρ(ω,k) and χ−1(ω,k) are needed to be determined, by
introducing action-response procedures coarse-graining the dissipa-
tive fluid dynamics of the pore scale.

Procedures to Compute Effective Density and Bulk
Modulus

In the 1D case of macroscopic propagation along a symmetry axis,
for instance x-axis with the unit vector x̂, we will have D = Dx̂ and
V = V x̂, r = xx̂, and k = kx̂ in the above equations (2.12–2.16).
To determine the Fourier functions ρ(ω, k) and χ−1(ω, k) for the 1D
acoustic propagation in a medium with porosity φ, we solve two
independent action-response problems (see Section 4 in Ref. 28). For
computing the effective density we consider the macroscopic response
of the fluid subject to a single-component (ω, k) Fourier bulk force.
The effective bulk modulus is related to the response of the fluid
subject to a single-component Fourier rate of heat supply.

Two sets of equations to be solved

The two systems of equations to be solved are written as
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In the fluid region Vf :

∂b

∂t
+ ∇ · v = 0 (2.17a)

ρ0
∂v

∂t
= −∇p+ η∇2v +

(
ζ +

1
3
η

)
∇ (∇ · v)

+ F e−iωt+ikx︸ ︷︷ ︸
Added for determination of density

(2.17b)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ

+ Q̇e−iωt+ikx︸ ︷︷ ︸
Added for determination of bulk modulus

(2.17c)

γχ0p = b+ β0τ (2.17d)

On the fluid/solid interface ∂V:

v = 0, τ = 0 (2.18)

For convenience the excitation amplitudes are written as: Q̇e−iωt+ikx

= β0T0(∂/∂t)(Pe−iωt+ikx), and F e−iωt+ikx = −∇(Pe−iωt+ikx).
Here, it is important to note that the excitation variables ω and
k are set as independent variables. The solutions to the above sys-
tems for the fields p, b, τ , and components of v take the form
p(t, r) = p(ω, k, r)e−iωt+ikx, and so on. Recall that the theory is
formulated for a geometry that is stationary random, and the aver-
aging operator 〈 〉 refers to the ensemble averaging. Thus, here, the
amplitude fields v(ω, k, r), p(ω, k, r), b(ω, k, r), and τ(ω, k, r), are
stationary random functions of r. Passing to the case of periodic
geometry, we can limit ourselves to considering one periodic sample.
The fields become periodic functions over a cell, and 〈 〉 is interpreted
as a volume average over a cell.

Frequency and Wavenumber Dependent Effective Density and Bulk
Modulus

Once the two systems of equations are solved independently, using
the right hand Maxwellian macroscopic equations in (2.12) and
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(2.13), we arrive at the following expressions for the nonlocal effective
density and bulk modulus

ρ(ω, k) =
k (P + P (ω, k))
ω 〈v(ω, k, r)〉 (2.19a)

χ−1(ω, k) =
P (ω, k) + P

〈b(ω, k, r)〉 + φγχ0P (2.19b)

where P 〈v〉 = 〈pv〉, which has been inspired by (2.16).

Wavenumbers, Constants of the Medium

Contrary to the case of local theory, here, since we fully take into
account spatial dispersion, several normal mode solutions might
exist, with fields varying as e−iωt+ikx. Solutions should satisfy the
following dispersion equation

ρ(ω, k)χ(ω, k)ω2 = k2 (2.20)

which is easily derived from the Maxwellian macroscopic equa-
tions. With each frequency ω, several complex wavenumbers kn(ω),
�(kn) > 0, n = 1, 2, . . . , may be associated.

Frequency Dependent Effective Parameters

With each wavenumber kn solution of the nonlocal dispersion equa-
tion (2.20) are associated a frequency-dependent density and bulk-
modulus, such that

ρn(ω) = ρn(ω, kn(ω)) (2.21a)

χ−1
n (ω) = χ−1

n (ω, kn(ω)) (2.21b)

The fact that at each frequency ω, we can obtain several modes
propagating and attenuating in the medium, with wavenumbers
kn(ω) constants of the medium, and effective parameters ρn(ω)
and χ−1

n (ω), is a direct consequence of the nonlocal description.
In other words, the existence of multiple wavenumbers at each fre-
quency, associated with unique effective parameters, is a signature of
the nonlocal effects or spatial dispersion in the medium. In what
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follows, with the aim of obtaining the nonlocal effective density
ρ1(ω), effective bulk modulus χ−1

1 (ω), and wavenumber k1 of the
least attenuated mode, we will apply this theoretical framework
in analytical simplified manner, to a 2D array of Helmholtz res-
onators, illustrated in Fig. 2.5(a). Sound propagation through this
material exhibits resonance phenomena resulting in metamaterial
behavior.

Nonlocal Modelling

For 2D structures, we proceed to determine the functions ρ(ω, k)
and χ−1(ω, k) sufficiently precise to give an appropriate modeling of
the least attenuated mode, which results then in purely frequency
dependent functions ρ(ω) and χ−1(ω). For this purpose, we do not
need to consider in full detail the microscopic fields v and p. In the
waveguide t and cavity c, instead of the microscopic fields, we can
use the mean values Vt(c) = 〈v〉S · x̂ and Pt(c) = 〈p〉S , where 〈 〉S
denotes the average at a given x over the waveguide or the cavity
width; and in the neck n, we can use the mean values Vn = 〈v〉S · ŷ
and Pn = 〈p〉S , where 〈 〉S denotes the average at a given y over
the neck width, and ŷ is the unit vector in the y direction. At the
same time, we make some simplifications consistent with describing
the propagation of these averaged quantities in terms of the Zwikker
and Kosten densities ρ(ω) and bulk moduli χ−1(ω), in the differ-
ent slit portions. These depend only on the slit half-widths, which
we shall denote by st, sn, and sc, in the tube, neck, and cavity,
respectively. The different slit-like tube portions are illustrated in
Fig. 2.5(b). The main tube t is divided in two Zwikker and Kosten
ducts, a left duct, and a right duct, oriented in the x direction. The
same separation is made for the cavity c, whereas the neck n is not
divided but viewed as one Zwikker and Kosten duct oriented in y

direction.

Determination of nonlocal effective density

Considering the periodic cell of Fig. 2.5(a), and the corresponding
cell average operation 〈 〉, we look for the response of the fluid when
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a harmonic driving force f(t, x) = fe−iωt+ikx in the direction of x̂ is
applied. If we can determine the microscopic response velocity and
pressure fields v, p, then we will have the function ρ(ω, k) through
the relation (see Eq. (2.19a))

ρ(ω, k) =
f − ikP(ω, k)
−iω〈v(ω, k, r)〉 (2.22)

with P(ω, k) = 〈pv〉/〈v〉, where the v is the x-component of the micro-
scopic velocity v.

In [51, Appendix], the Zwikker and Kosten local theory is
expressed for tubes of circular cross-section. For 2D slits, exactly the
same general principles of modeling may be used; only some details
of the calculations are changed. In particular, the Bessel functions J0

and J1 are replaced by cosh and sinh functions. Zwikker and Kosten’s
effective densities ρα(ω) and bulk modulii χ−1

α (ω) in the guide, neck
and cavity, will be52

ρα(ω) = ρ0


1−

tanh
(√−iωρ0s2α/η

)
√−iωρ0s2α/η



−1

(2.23a)

χ−1
α (ω) = γP0


1 + (γ − 1)

tanh
(√−iωρ0cps2α/κ

)
√−iωρ0cps2α/κ



−1

(2.23b)

for α = t, n, c, where the indexes t, n, and c are related to the tube,
neck, and cavity, respectively; P0 the fluid pressure at rest. The corre-
sponding wavenumbers kα(ω) and characteristic admittances Yα(ω)
are expressed as kα = ω/cα, and Yα(ω) = 2sα/(ραcα), for α = t, n, c,
where cα = 1/

√
ραχα, is the corresponding Zwikker and Kosten’s

phase velocity. Notice that we include the slit width 2sα (resp. Σ, σ,
and L − Σ − 2l in the resonator, see Fig. 2.5(a)) in the definition
of the characteristic admittance, because it simplifies the subsequent
writing of continuity conditions.
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We start writing the Zwikker and Kosten’s equations in the dif-
ferent parts of the periodic cell. For the tube and the cavity, i.e.,
α = t, c, we have

−iωρα(ω)
Sα

Vα = −∂Pα

∂x
+ feikx (2.24a)

iωSαχα(ω)Pα =
∂Vα

∂x
(2.24b)

where, Vα = VxSα is the flow rate field across the cross section Sα,
with Vx the x-component of the velocity in the sense of Zwikker
and Kosten (averaged over the section), and Pα is the Zwikker and
Kosten’s pressure. In the neck, the external excitation having no
y-component, we have

iω
ρn(ω)
σ

Vn =
∂Pn

∂y
(2.25a)

iωσχn(ω)Pn =
∂Vn

∂y
(2.25b)

where, Vn = Vyσ is the flow rate, with Vy the y-component of the
velocity, and Pn is the Zwikker and Kosten’s pressure in the neck.

The general solution of the non homogeneous equations in the
tube and the cavity, (Pα, Vα), α = t, c, is written as the sum of
the general solution (Pα,h, Vα,h) of the homogeneous equations and
a particular solution (Pα,p, Vα,p) of the non homogeneous equations.
A general solution of the homogeneous equations (2.24) is written as(

Pα,h

Vα,h

)
=
(

1
Yα

)
A+eikαx +

(
1
−Yα

)
A−e−ikαx (2.26)

where A+ and A− are the amplitudes of the plane waves in direction
of the positive x-axis and negative x-axis, respectively. The following
particular solution can be considered(

Pα,p

Vα,p

)
=
(
Bα

Cα

)
feikx (2.27)

where Bα and Cα represent four constants (for each ω) to be deter-
mined. Substituting (2.27) in (2.24) gives the four constants Bt =
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ik/(ω2ρtχt− k2), Ct = iωχtΣ/(ω2ρtχt− k2), Bc = ik/(ω2ρcχc− k2),
and Cc = iωχc(L − Σ − 2l)/(ω2ρcχc − k2). The particular solution
is the same in the left and right portions of the tube and the cavity.
On the contrary and because of the presence of the neck, the general
solution will have different amplitude constants in the left and right
portions. Thus, the general solution of Eqs. (2.24) can be written as(

Pt

Vt

)
=
(

1
Yt

)
A1,3fe

iktx +
(

1
−Yt

)
A2,4fe

−iktx +
(
Bt

Ct

)
feikx

(2.28a)(
Pc

Vc

)
=
(

1
Yc

)
A7,9fe

ikcx +
(

1
−Yc

)
A8,10fe

−ikcx +
(
Bc

Cc

)
feikx

(2.28b)

where (2.28a) with amplitudes A1 and A2 corresponds to the left
part of the tube, and with amplitudes A3 and A4 to the right part
[Fig. 2.5(b)]; similarly for (2.28b): A7 and A8 for the left part of the
cavity, and A9 and A10 for the right part [Fig. 2.5(b)]. These eight
amplitudes are to be determined. The general solution of Eqs. (2.25),
(Pn, Vn) has the form(

Pn

Vn

)
=
(

1
Yn

)
A5fe

ikny +
(

1
−Yn

)
A6fe

−ikny (2.29)

where A5 and A6 are the neck amplitude-relating constants to be
determined (Fig. 2.5(b)).

Indeed, in the framework of our simple plane-wave modeling,
there are 10 relations concerning the flow rate and pressure, which
are assumed to be verified. These continuity relations involve the
values of the fields at different locations indicated by numbers
m = 1, . . . , 10, in Fig. 2.5(b). As such, we have 10 equations for
10 unknown amplitudes A1, . . . , A10.24 Once these are determined,
we will have all the Zwikker and Kosten’s fields through Eqs. (2.28)
and (2.29). At this point, we can easily obtain the cell averages 〈v〉
and 〈pv〉, regarding the fact that the Zwikker and Kosten’s flow rate
has no component along the y-axis.24 Subsequently, we can obtain
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explicitly the effective density function ρ(ω, k) through Eq. (2.22). In
the next section, the effective bulk modulus is computed in a similar
way but with a different excitation term, and with exactly the same
conditions on the flow rate and pressure fields at different junctions.

Determination of nonlocal effective bulk modulus

Considering the periodic cell [Fig. 2.5(b)], when a harmonic heat-
ing Q̇(t, x) = Q̇0e

−iωt+ikx = −iωβ0T0Pe−iωt+ikx is applied in the
medium, we write the Zwikker and Kosten’s equations, in each part
of the resonator: tube, neck, and cavity. The aim is to obtain the
function χ−1(ω, k) as it is indicated in Eq. (2.19b). In the main tube
and the cavity, for α = t, c, we write

−iωρα(ω)
Sα

Vα = −∂Pα

∂x
(2.30a)

iωSαχα(ω)Pα + iωSα (χα(ω)− γχ0)P =
∂Vα

∂x
(2.30b)

The second term in the second equation might not seem to be obvious
but follows the very procedure of obtaining (2.19b). In the neck, the
equations are written as

iω
ρn(ω)
σ

Vn =
∂Pn

∂y
(2.31a)

iωσχn(ω)Pn + iωσ (χn(ω)− γχ0)P
〈
eikx

〉
σ

=
∂Vn

∂y
(2.31b)

where the term P〈eikx〉σ comes from the averaging of Q̇ over the
neck cross section. Here also, the second equation might not appear
obvious, but follows the procedure of the determination of (2.19b) in
nonlocal theory.28

As before, the general solution of the non homogeneous equations
(2.30) in the right or left part of the tube and the cavity, is written
as the sum of the general solution (Pα,h, Vα,h) of the homogeneous
equations and a particular solution (Pα,p, Vα,p) of the non homoge-
neous equations. A general solution of the homogeneous equations
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(2.30) is written as Eq. (2.26). The following particular solution can
be considered (

Pα,p

Vα,p

)
=
(
Bα

Cα

)
Peikx (2.32)

where Bα and Cα are four constants to be determined. Substituting
(2.32) in (2.30) gives the four constants Bt = ω2ρt(χt − γχ0)/(k2 −
ω2ρtχt), Ct = ωk(χt − γχ0)Σ/(k2 − ω2ρtχt), Bc = ω2ρc(χc −
γχ0)/(k2−ω2ρcχc), and Cc = ωk(χt−γχ0)(L−Σ−2L)/(k2−ω2ρcχc).
Thus, the general solution of Eqs. (2.30) can be written as Eqs. (2.28),
replacing f with P. The amplitudes A1, A2, A3, A4, A7, A8, A9, and
A10 (Fig. 2.5(b)) are to be determined.

As for the tube and the cavity, the general solution of the non
homogeneous equations (2.31) in the neck, is written as the sum of
the general solution (Pn,h, Vn,h) of the homogeneous equations and
a particular solution (Pn,p, Vn,p) of the non homogeneous equations.
We can find a particular solution in the following form(

Pn,p

Vn,p

)
=
(
Bn

Cn

)
P (2.33)

where Bn and Cn are two constants which will be determined by
substituting (2.33) in (2.31):

Bn = (2/kσ)(γχ0/χn − 1) sin(kσ/2), and Cn = 0. To obtain the
above expression for Bn, the average 〈eikx〉σ can be easily calcu-
lated.24 Therefore, the general solution of Eq. (2.31) in the neck can
be written as(

Pn

Vn

)
=
(

1
Yn

)
A5Peikny +

(
1
−Yc

)
A6Pe−ikny +

(
Bn

0

)
P

(2.34)

where A5 and A6 are amplitude-relating constants to be determined
[Fig. 2.5(b)].

As noted previously, in the framework of our modeling, there are
10 relations which are assumed to be verified, allowing to relate the
flow rates and pressures at different indicated points in Fig. 2.5(b).
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These relations result in 10 equations by which we can compute the
amplitudes A1, . . . , A10.24 Consequently, all Zwikker and Kosten’s
fields will be found. After the averages 〈v〉, 〈pv〉, and 〈b〉 are cal-
culated24 for the actual fields, the expression for χ−1(ω, k) will be
obtained.

Bloch Wave Modeling

In this section, without using the principles of the nonlocal macro-
scopic theory but within the same plane wave modeling, we directly
seek the macroscopic Bloch wavenumber kB of the least attenuated
wave propagating in the direction of positive x-axis, such that(

P
(4)
t

V
(4)
t

)
= eikBL

(
P

(1)
t

V
(1)
t

)
(2.35)

with the field constituted of 10 Zwikker and Kosten’s slit waves,
as illustrated in Fig. 2.5(b), are associated 10 complex amplitudes
A1, . . . , A10. As before, between these 10 amplitudes there are a set
of 10 relations; where two of them express the Bloch condition (2.35),
and 8 relations are based on the continuity equations. Here, all these
relations are homogeneous relations, so that nontrivial solutions will
be obtained only if the determinant of the coefficient matrix van-
ishes. This condition will give the analytical expression for Bloch
wavenumber kB , as follows

kB = − i
L

ln

(
D

2
±
√
D2

4
− 1

)
(2.36)

whereD = 2cos ktL−i(Yr/Yt) sin ktL, Yr = V
(5)
n /P

(5)
n is the entrance

admittance of the resonator (see Eq. (31) in Ref. 24).

2D structure filled with air

For the geometry considered in Fig. 2.5(a), to perform the com-
putations, we have set L = 1 cm, Σ = 0.2 L, and σ = 0.015 L.
The functions ρ(ω, k) and χ−1(ω, k) are first determined within the
approximations of our nonlocal modeling. Given these expressions,
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we know that according to nonlocal theory the possible wavenum-
bers in the medium will be the solutions of the dispersion relation
(2.20). Solving the equation (2.20) by a Newton-Raphson scheme, we
have checked that the obtained expressions for ρ(ω, k) and χ−1(ω, k)
are such that a complex solution k(ω) to (2.20) exists, which is
very close to the value kB(ω) in (2.36). The frequency dependent
effective density ρ(ω, k(ω)) = ρ(ω), and effective bulk modulus
χ−1(ω, k(ω)) = χ−1(ω), are then obtained by putting k = k(ω) in
the aforementioned excitation terms.

Solving the equation (2.20) by the Newton-Raphson method, we
varied frequency step by step, taking as initial value for k(ω) at a
given frequency, the solution value obtained at the preceding fre-
quency. Only for the starting frequency ω0 in the range of interest,
we have chosen the value kB(ω0) with a 10% discrepancy. In order to
ascertain the validity of the modeling, we have also performed direct
FEM simulations to solve the action-response problems, giving, sub-
sequently, FEM evaluations of the functions ρ(ω, k) and χ−1(ω, k).
Based on these functions, the computation of the wavenumber of
the least attenuated wave was performed in the same way as just
seen, with the only difference that (due to computation time) the
initial k(ω) value at a given frequency was systematically taken to
be kB(ω) with 10% discrepancy. Finally, FEM evaluations of the
frequency dependent effective density ρ(ω, k(ω)) = ρ(ω), and effec-
tive bulk modulus χ−1(ω, k(ω)) = χ−1(ω), were obtained by putting
k = k(ω) in the aforementioned excitation terms. The FEM compu-
tations have been performed using FreeFem++,53 an open source
tool solving partial differential equations. Adaptive meshing was
employed. According to all of the calculations, the effective density
remains practically constant and, therefore, does not play an impor-
tant role in the macroscopic dynamics of this material.

We see in Fig. 2.6(a), that the real and imaginary parts of k(ω)
computed by nonlocal theory via Newton’s method converge exactly
to the real and imaginary parts of kB which have been computed
by a simple Bloch-wave modeling without any use of nonlocal the-
ory. The horizontal axis is the dimensionless frequency k0L/π, where
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Fig. 2.6. Wavenumber (a) and bulk modulus (b) in terms of a dimensionless
frequency, for the 2D structure filled with air. For the wavenumber, results by
three calculations are compared: Bloch-wave modeling, nonlocal modeling, and
nonlocal theory by FEM.24

k0 = ω/c0. The results based on the Finite Element Method (FEM)
simulations are also in good agreement with those obtained by the
Bloch wave modeling and nonlocal modeling. The frequency range
has been chosen so that it covers the resonance regime. In the same
frequency range, Fig. 2.6(b), shows the real and imaginary parts of
K(ω) = φχ−1(ω), representing the effective bulk modulus, computed
by nonlocal FEM simulations and nonlocal modeling. Here also, we
see excellent agreement between the two calculations. We notice the
metamaterial behavior demonstrated in the real part of effective bulk
modulus which becomes negative in a frequency range within the
resonance regime. It is clear that the results by FEM computations
based on the exact microscopic equations, can be considered more
precise compared with our two modeling results in which we have
applied simplifying approximations. As such, the good agreement
between FEM results and others, validate the modeling framework.
The discrepancies between the results based on the models and FEM
simulations can be due in particular, to the fact that the model
describes the admittance of the resonator Yr, without considering
the length correction of the neck; what might generate errors in the
calculation of the wavenumber.
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We observe here the same kind of behavior for the wavenum-
ber and bulk modulus as it has been demonstrated experimentally
in Ref. 3 (see Figs. 1 and 2 in that reference) for the case of the
3D material embedded in water. We have observed that removing
the thermal effects by decreasing the coefficient of thermal conduc-
tivity κ to a value close to zero, would have a negligible effect on
the wavenumber and the effective bulk modulus. That is the case
also for the second viscosity ζ, associated with losses in the com-
pressional/dilatational motions in the bulk fluid. On the contrary,
the material dynamics in terms of the macroscopic wavenumber and
bulk modulus is quite sensitive to the values of the shear viscosity η.
In a frequency range, for instance, between k0L/π = 0.1 and 0.4, a
maximum and minimum appear for the real part of the wavenumber.
By decreasing the value of the shear viscosity, the maximum becomes
sharper and finally diverges as the viscosity tends to zero at the reso-
nance frequency of the ideal fluid ωH = c0[σ/l(L− 2l)(L−Σ− 2l)]

1
2 ,

namely k0L/π = 0.15 here; the minimum flattens and a bandgap
is created. As a matter of fact, the important feature, here, is the
resonant behaviour which induces important values of the velocity in
the neck, and thus also important viscous dissipation. Furthermore,
at small enough η, at frequencies close but smaller than resonance
frequency, the corresponding neck flow becomes predominant and
the effective wavelength is drastically reduced, leading to a so-called
slow speed. However, when the shear viscosity increases, the neck flow
adjusts to a smaller value, eventually leading to the disappearance of
the slow speed. The viscous losses also smooth out the extrema of the
real and imaginary parts of the modulus in Fig. 2.6(b). Consequently,
a wider frequency range of the negative real part of the bulk modulus
is achieved by increasing the viscous losses. The thermal boundary
layers close to the cavity walls, where the fluid bulk modulus passes
from adiabatic to isothermal value, mainly bring a small correction
to the cavity spring constant (the cavity dimension is much larger
than the boundary layer thickness δt = (2κ/ρ0cpω)

1
2 ). Therefore,

their presence do not affect much the effective bulk modulus.
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As explained before, the dynamics of the material will be very
sensitive to the width of the neck, where a considerable part of the
viscous losses take place. In our case (see values of the parameters
in Fig. 2.5), between the frequencies k0L/π = 0.1 and 0.4, the ratio
of the viscous boundary layer thickness δv = (2η/ρ0ω)

1
2 to the width

of the neck, insensibly changes from 0.35 to 0.39. We observed that,
in general, to maintain the similar behavior of the wavenumber and
modulus, this ratio should remain in the same order, regardless of
changing the scale of the material or the saturating fluid. Here, well
above the resonance, at k0L/π = 0.5, we can check that the effective
wavelength in the material λeff is comparable to that in air λ0:
λeff/L ∼ 5, and λ0/L = 4. At the resonance frequency k0L/π =
0.15, we find that λeff/L ∼ 8. Roughly, this is a reduction by a factor
of two of the wavelength in air (λ0/L ∼ 13.33), and an illustration of
the mentioned trend of a slow speed close to the resonance. Although
this structure represents a subwavelength material, and therefore, can
be regarded in the large wavelength limit λeff � L, the local theory
based on the two-scale homogenization at order zero does not predict
correctly the acoustics, ignoring the resonance behavior. The origin
of the failure is the presence of widely different length scales, allowing
for resonances.

The same modeling framework has been used to study the case
of 3D materials.24 It has been noted that,24 if the structure with
the same geometrical parameters is embedded in water, there would
be less loss as the the viscous boundrary layer thickness is smaller
compared with that of air. To keep the same dynamic behavior with
water as with air, it would be necessary to very significantly decrease
the width of the neck; at this point it should be in mind that the
complicated effect of nonlinearities would certainly have to be taken
into account. Furthermore the thermal effects in water are not impor-
tant. The general thermodynamic identity γ− 1 = β2

0T0/ρ0cp, shows
that the deviation of γ ≡ cp/cv from unity, is a second order effect
on the thermal expansion coefficient β0. For a liquid, like water, β0

is very small; what implies that γ is practically 1. In this case, adi-
abatic bulk modulus χ−1

0(adiab) and isothermal bulk modulus χ−1
0(isoth)
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are very close, since in general, χ−1
0(adiab) = γχ−1

0(isoth). Therefore, ther-
mal exchanges have practically no effects.

2.2.4. Sound focusing and negative index

acoustic metamaterials

The first experimental demonstration of focusing ultrasound waves
through a flat acoustic metamaterial lens composed of a planar net-
work of subwavelength Helmholtz resonators has been presented in
Ref. 13. A tight focus of half-wavelength in width at 60.5 kHz by
imaging a point source has been observed. This result was in excel-
lent agreement with the numerical simulation by transmission line
model in which the effective mass density and compressibility has
been derived.

Negative Refractive Index Lens

The refractive index is a fundamental parameter describing the inter-
action between waves and material. In late 1960s, Veselago54 first
considered the theoretical possibility for a medium having simultane-
ous negative permittivity and negative permeability. When ε(ω) < 0,
µ(ω) < 0 at certain frequency, the refractive index is n = −√εµ and
the negative sign is taken to satisfy causality. When light passes
from a positive (n > 0) to a negative (n < 0) medium, Snell’s law
implies that the angle of refraction is negative, showing the refracted
ray emerges on the same side of the normal as the incident ray. In
2000, Pendry55 proposed that a thin slab of metamaterial with neg-
ative refractive index could make a perfect lens without any loss of
details. A conventional lens cannot focus light onto an area smaller
than a square wavelength due to the diffraction limit. The reason
for this limit is that the evanescent waves which carry the subwave-
length details of the object are exponentially decaying, leading to
the loss of those fine features in the image. However, utilizing neg-
ative refractive index material, a perfect lens can focus propagation
waves and also amplify evanescent waves to generate subwavelength
imaging.
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(a) (b)

Fig. 2.7. A flat lens brings all the diverging rays from an object into two focused
images (a). The NI medium can enhance the evanescent waves across the lens, so
the amplitude of the evanescent waves are identical at the object and the image
planes (b).

As shown in Fig. 2.7, negative refraction allows a flat slab lens of
negative index (NI) to focus all the diverging light rays from an object
into two images: one inside the slab and the other one outside the
slab. The evanescent waves have been enhanced across the lens and
decay again after emerging from the negative index lens. Therefore
the amplitude at the two image planes reaches their original level.
At the same time, the propagating waves pass through the negative
index lens with a reversed phase front, leading to zero phase change
at the image planes. By completely recovering both propagating and
evanescent waves in phase and amplitude, a perfect image is obtained.

An approximation of the perfect lens called as super lens was
built in optical frequency range under near-field condition. In the
near field, since the electric and magnetic components are decou-
pled, the super lens only needs negative dielectric permittivity for
one polarization light. The optical superlensing effect on the scale
of 60 nm (λ/6) was observed by excitation of surface plasmons56

through the metal/dielectric layer structure. The sub-diffraction-
limited image was recorded by optical lithography at 365 nm
wavelength. In microwave frequency, subwavelength focusing was
realized by different groups. An example of subwavelength focusing in
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microwave frequency has been realized using a planar transmission-
line structure.57 The negative index lens is a planar slab consisting
of a grid of printed metallic strips over a ground plane, loaded with
series capacitors and shunt inductors. In the experiment, the loaded
grid is sandwiched between two unloaded printed grids that act as
effective homogeneous media with a positive refractive index.

Sound Focusing by Acoustic Transmission Line Network

Figure 2.8 shows the experimental setup to study the focusing
phenomena of the acoustic metamaterial. To prepare the sample,
we machined a 2D array of periodically connected subwavelength
Helmholtz resonators in an aluminum plate and the resonators are
filled with water. As shown in previous work,58–60 a main transmis-
sion channel with recurrent side branches, which are closed at the

Fig. 2.8. Schematic showing the experimental setup. The sample with PI-NI
interface is composed of an array of different designed Helmholtz resonators
machined from an aluminum plate. Unit cells of each half part and the corre-
sponding inductor-capacitor circuit analogy are shown in the insets.13
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outer end, is analogous to a circuit of a series of inductors with
shunt capacitors. On the other hand, when the side tubes inserted
in the main channel are open on the outer end, the acoustic system
can be described by a lumped network of a series of capacitors with
shunt inductors. The left and right half parts in the sample are 2D
periodic versions of those different types of topology, respectively.
One unit cell from each half part is enlarged and shown in the two
insets, respectively.

The left half part is composed of a 2D array (40 × 40) of large
cavities connected with main channels. The volume of the cavity is
around 10 times that of one section of the channels. Such an acoustic
system is analogous to an inductor-capacitor circuit as shown in the
inset of Fig. 2.8 with the channels acting as a series of inductors
(LP ) and the cavity providing the stiffness element as capacitors
(CP ). The periodicity (3.175 mm) of the sample is one-eighth of the
wavelength at around 60 kHz frequency range. Given this value, the
lumped circuit model is a valid approximation for the distributed
acoustic system with only 10% error.62 Following the approach of
EM circuit analysis (see also Section 2.2.1),27,57,61 the effective den-
sity and compressibility of this network can be expressed in the form
as ρP = LPSP/dP , χP = CP /SPdP , where dP is the periodicity and
SP is the cross section area of the channels. Both effective density
and compressibility are positive. Effective relative acoustic refractive
index nP can be determined by nP = c0

√
LPCP/dP where c0 is the

speed of sound in water. We call this half part the effective posi-
tive index (PI) medium. Such an acoustic system is described as a
lumped network with a series of capacitors (CN ) for the main channel
part and a shunt inductor (LN ) due to the orifice. The periodicity is
the same as that in the left part, so the effective mass density and
compressibility can be similarly estimated as ρN = −SN/(ω2CNdN ),
χN = −1/(ω2LNdNSN ) where dN is periodicity and SN is the cross
section area of connecting channels. Both parameters are negative.
The refractive index nN = c0/c(ω) = −c0/(ω2dN

√
LNCN ) is neg-

ative. Therefore, this material acts as a medium exhibiting NI of
refraction. The two half parts are designed with effective indices of
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Fig. 2.9. Pseudocolor map of the normalized pressure field distribution at
60.5 kHz. Measured (a) and simulated (b) field map of the acoustic NI metamate-
rial and line plot of pressure field across the focal plane parallel to interface (c).13

equal and opposite value and matched impedance
√
ρ/χ at the design

frequency 60.5 kHz.
In the experiments, the pressure field through this PI-NI interface

has been measured to confirm the focusing in this material. Compari-
son of Figs. 2.9(a) and 2.9(b) shows that the field plots found through
simulation, by circuit simulator SPICE, are in remarkable agreement
with the experimental results.

In Fig. 2.9(c), the measured data shown by the blue line is shifted
to the left by 3.175 mm for comparison purposes. The comparison
demonstrates a very good match in the focus width between the
measurement and the numerical simulation. This analysis predicts
that the negative refractive index approaches -1 relative to the PI
part at 60.5 kHz. In order to achieve high-quality focus imaging,
the ratio of the refractive index should be -1 at the PI-NI interface.
Only when the index is matched, based on ray acoustics, the angle
of refraction equals the angle of incidence for each ray such that all
rays can be brought to the same focal spot in the NI part. However,
the refractive index is not exactly matched in the experiment. This
discrepancy is related to the loss as well as variation in the inductors
and capacitors from their designed values due to machining tolerance.
It has been noted that single PI-NI interface does not allow enough
growth of evanescent fields to achieve subdiffraction focusing61 while
sandwich structure (two PI-NI interfaces) offers a better chance to
overcome the diffraction limit.57
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The emission of a point source at kilohertz frequency which was
brought to a focus through the PI-NI interface because of the neg-
ative refraction in this ultrasonic metamaterial, has been expected
to be a step toward a novel acoustic imaging lens. The resolution of
0.5 wavelength was recorded by focusing the acoustic field of a point
source. This is not subdiffraction imaging, but among the best achiev-
able passive acoustic imaging elements. The unit cell of the acoustic
network is only one-eighth of the operating wavelength, making the
lens a compact size. Compared with conventional lenses, the flat thin
slab lens has advantages in that there is no need to manufacture the
shapes of spherical curvatures and the focus position is insensitive
to the offset of source along the axis. Also, this negative-index lens
offers tunable focal length at different frequencies.13

2.2.5. Extraordinary focusing of sound above

Helmholtz resonator array

Recently, Lemoult et al.63 used time reversal to focus sound above
an array of soda cans into a spot much smaller than the acoustic
wave length in air. However, the time reversal may not be necessary
to achieve the extraordinary focusing in such system. In this section,
we will experimentally demonstrate the extraordinary focusing above
an soda can array using monochromatic sound excitation. We will
also explain the experimental observations based on an analytical
effective-medium model as well as finite-element calculations.25

2.2.5.1. Experimental configuration and results

As shown in Fig 2.10(a), we arranged 37 empty soda cans in a hexag-
onal array. Six commercial speakers, which were continuously driven
at a given frequency, were placed symmetrically around the array. In
the experiment, the Coca-Cola cans have a volume of 350 cm3 and
an opening area of 4 cm2 similar to those used by Lemoult et al.,63

with the fundamental Helmholtz resonance at 420 Hz. A micro-
phone mounted on a translation stage was suspended at a height
of 12±2 mm above the top of the cans to collect acoustic intensity
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Fig. 2.10. (a) Experimental arrangement inside the anechoic room; (b) top view of the array with the scan line shown;
(c) Acoustic intensity profiles along the diameter of the array at different frequencies. The bottom right panel shows an
intensity profile measured without soda cans. Symbols are experimental points, connecting lines are guides to the eye.
Dashed lines are Bessel function envelopes.25
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distribution. The experimental results of the acoustic intensity pro-
files at different frequencies as well as a reference profile measured
without cans are plotted in Fig. 2.10(b). Without the soda can array,
a focal spot with a FWHM (full width at half maximum) of 31 cm at
410 Hz is observed, which is around 0.37 of the wavelength. With the
soda can array, the focal spot at the center of the array gets progres-
sively smaller as the resonant frequency is approached from below,
becoming as narrow as 2 cm, or about λ/40, at 415 Hz. Above the
Helmholtz resonance frequency, the intensity profile changes dramat-
ically with maxima at the edges of the array and attenuation towards
the center.

2.2.5.2. Theoretical modeling

In the effective medium approach, the acoustic wavelength is assumed
to be much greater than the average distance between the resonators.
The resonators can be modeled as mass-on-a-spring harmonic oscilla-
tors with pistons of mass M attached to springs with spring constant
K as shown in Fig. 2.11(a). The resonators are regularly distributed
in two dimensional plane with the average fractional piston area F .

For a Helmholtz resonator with a zero neck length, the effective
mass is estimated as (16/3)π−3/2ρ0A

3/2, where A is the opening area
and ρ0 is the density of air, whereas the spring constant K is given
by ρ0c

2A2/V , where c is the speed of sound and V is the volume
of the resonator.64 For our soda cans, this model yields an effective
mass of 9.23 mg and a spring constant of 64.8 N/m, resulting in a
resonance frequency ω0/2π = 422 Hz.

The vertical position of a piston Z is obeying the equation of
motion:

Z̈ = −ω2
0Z −

pA

M
, (2.37)

where p is a deviation of the pressure above the piston from the
equilibrium value and A is the area of the piston. In the case of long
wavelength assumption, the average displacement of the boundary
can be written as uz = FZ. This leads to an effective boundary condi-
tion relating the average displacement and pressure at the boundary
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Fig. 2.11. (a) The model system. (b) Dispersion of acoustic waves propagating
above the hexagonal array of soda cans calculated by FE (symbols) along the
ΓK direction of the reciprocal lattice vs. the effective medium calculation (solid
line). Shaded area represents the continuum of bulk modes in the semi-infinite
space whereas FE calculations yield discrete modes due to the finite height of the
simulation domain. The inserts are distributions of the sound pressure amplitude
in the guided mode above a soda can for points A and B of the dispersion curve.25

z = 0,

üz + ω2
0uz = −pFA

M
, (2.38)

which replaces the boundary condition of zero displacement at the
rigid boundary in the absence of resonators. By assuming a harmonic
wave propagating along the x direction, φ = φ̃(z) exp (iωt− ikx), we
can achieve the following equation of motion:

∂2φ̃

∂z2
=
(
k2 − ω2

c2

)
φ̃, (2.39)

and finally get a dispersion relation for ω and k,(
k2 − ω2

c2

)1/2

(ω2
0 − ω2) =

ω2FA

M
. (2.40)

The dispersion relation is plotted in Fig. 2.11(b) (solid line) for
ρ0 = 1.23 kg/m3, c = 343 m/s, F = 0.106 (calculated for dense
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hexagonal packing of the cans). In the limit of small k the dispersion
approaches that of the bulk wave in air, ω = ck, whereas in the
opposite limit of large k the frequency asymptotically approaches
the resonance frequency ω0. For a more accurate description of the
wave propagation above a hexagonal lattice of soda cans, we use
finite element (FE) calculations.

The acoustic module in COMSOL Multiphysics was applied to
calculate the dispersion relation of soda cans arranged in a hexago-
nal lattice. Soda cans were modeled as cylinders with rigid walls of
11.5 cm in height and 6.6 cm in diameter. The opening in the model
was circular and centered at the axis of the cylinder, with the same
area of 4 cm2 as the opening of a real can. Due to the computational
resource limitation, the height of the simulation domain was set as
1 m, with rigid wall boundary conditions at the “ceiling”. Floquet
periodic boundary conditions were applied in order to find acoustic
eigenmodes of an infinite 2D hexagonal lattice. The calculated dis-
persion relation along the ΓK direction of the reciprocal lattice is
plotted in Fig. 2.11 (symbols). Discrete modes in the shaded area
above the sound line ω = ck are due to a finite height of the simu-
lation domain. For a semi-infinite half space, the shaded area should
be filled by a continuum of bulk waves propagating at oblique angles
to the floor. The mode below the sound line is guided by the can
array, and its dispersion is close to what the simple effective medium
theory has predicted.

In conclusion, we have demonstrated that focusing of sound in a
metamaterial formed by a 2D array of soda cans results in an increas-
ingly narrow intensity peak as the acoustic frequency approaches the
Helmholtz resonance from below. The observed phenomenon results
from the small acoustic wavelength in the metamaterial in combi-
nation with a near-field effect, i.e., the localization of the acoustic
intensity at the opening of a can at frequencies close to the resonance.
Furthermore, we found that the acoustic wave propagating along the
Helmholtz resonator array is a guided mode becoming increasingly
confined to the array as its frequency approaches the Helmholtz res-
onance from below.
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2.3. Acoustic Transformation and Its Application

As we could see earlier, acoustics and electromagnetism have been
brought together through different analogies derived from high simi-
larities in their formalisms, despite deep differences in their physical
nature. How coordinate transformation was used in both fields, does
not make an exception to that rule. In 2006, Pendry et al.16 showed
that one could manipulate at willa the wave propagation in the
framework of a relatively easy formalism -transformation optics, the
coordinate transformation in optics- in comparison with the offered
possibilities. Soon, the concept was transposed to acoustics.

Among the foreseen applications, the invisibility cloak has been
the subject of first experimental studies in late 2006.20 It was followed
later by the acoustic (“inaudible”) cloak, first realized in 2011 for
acoustic waves50 and in 2012 for elastic waves.66 In this section, we
start by a brief summary of the recent rebirth of coordinate transfor-
mation in optics and acoustics, with an emphasis on the “inaudible”
acoustic cloak.50 Then, we show how coordinate transformation can
be broadly applied to different physics and lead for example to sur-
face wave cloaking. Finally, we show that the concept of coordinate
transformation can be applied more generally, allowing for example
the design of a complementary material meant to remove the aber-
rations resulting from the transmission of an acoustic wave through
any arbitrary heterogeneous medium.

2.3.1. Transformation acoustics

2.3.1.1. Coordinate transformations and invisibilty

The work by Pendry et al. that was published in 2006, is in fact based
on the conclusions of an article published 10 years earlier. In 1996,
Ward and Pendry showed that Maxwell’s equations are invariant
under any arbitrary transformation of coordinates.65 In other words,
after the coordinate transformation, their form is the same as the one

aThe control of wave propagation relies by spatially controlling the material
parameters ε and µ.
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they have in the Cartesian mesh. The only difference is that if we
start with an isotropic material for which ε and µ are scalar, after the
coordinate transformation, we generally end up with anisotropic and
heterogeneous material for which ε and µ are represented by tensors.

This form invariance can be used in a smart way. Indeed, chosen
in a suitable manner, the coordinate transformation makes it possible
to exclude the field from any arbitrary surface (2D) or volume (3D).
Furthermore, it can be chosen so that the field lines are reformed on
each side of the prohibited area, thus making this space invisible to
any observer or listener.

In view of the invisibility cloak, the first coordinate transforma-
tion scheme that was historically provided, was to exclude waves from
a sphere.16 As we discuss later the two dimensional case, we present
here one coordinate transformation which allows us to exclude the
field from a disk surface:

r′ = R1 + r(R2 −R1)/R2

θ′ = θ

z′ = z

(2.41)

This coordinate transformation makes the region of space that
is comprised in the circle of radius R1 inaccessible, as it moves the
points of that region to the region defined by R1 < r < 2R1−R1

2/R2.
Meantime, the space that was originally defined by R1 < r < R2, is
squished in the region defined by 2R1 − R1

2/R2 < r < R2. Space
beyond R2 remains unchanged. For the rays, whether they are of light
or sound, the trajectories that initially borrow straight lines within
the region r < R2 become more or less severely curved in order to
avoid the forbidden region (see Fig. 2.12).

This apparent simplicity has a cost, which is reflected in the
way the parameters of the medium are changed by the coordinate
transformation. Their calculation involves the Jacobian matrix of
the latter, and the parameters of the non-deformed/homogeneous
medium. As we have mentioned earlier, the new material parameters
generally depend on the position but also on the direction.

Finally, we note that in the invisibility cloak, the trajectories are
curved, and therefore they are longer than the straight trajectories
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(a) (b)

Fig. 2.12. Starting with a homogeneous configuration (a), the medium is
deformed to exclude rays — of light or sound — (thick arrow lines) from the
desired area (b). The coordinate transformation is recorded by comparing the ray
arrows on both side, and applied to the equations to find the value of the new
material parameters (or metamaterial).

in the medium surrounding the cape. For the wavefront to emerge
non-deformed after it went through the cape, it is necessary that
the speed of the wave is higher in the cloaking device than in the
surrounding material.

This raises some issues in optics, where it is hard to fabricate a
medium in which light propagates faster than in a medium of refer-
ence such as air.b On the contrary, in acoustics, there exists many
media in which sound travels faster than in reference media such as
water or air.

2.3.1.2. From transformation optics to transformation
acoustics

In acoustics, the first study on coordinate transformation coincides
with an article from Milton et al. which shows that the equation of

bIn the cloaking device, it is the phase speed cφ that is higher than the speed of
wave outside the cloaking device. The group velocity cg is given by the relation
cg = c0

2/cφ which ensures that it is always lower than c0.
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elasto-dynamic does not generally remain unchanged by coordinate
transformation.67 From this observation, attempts to apply coordi-
nate transformation to the equation of acoustic, mainly focused on
finding forms of the equation of acoustic that are similar to the form
of Maxwell’s equations.

Steven Cummer and David Schurig68 consider the propagation
of acoustic wave in a z-invariant 2D inviscid homogeneous fluid with
anisotropic density ρ = [ρr, ρφ] and bulk modulus K0.c Assuming
time harmonic wave (exp (+jωt) convention), they write the equa-
tions for the conservation of momentum and mass in cylindrical coor-
dinates as follows:

jωρφvφ = −1
r

∂p

∂φ
, (2.42)

jωρrvr = −∂p
∂r

, (2.43)

jωK−1p = −1
r

∂(rvr)
∂r

− 1
r

∂vφ

∂φ
. (2.44)

where p is the pressure and v = (vr, vφ) is the particle velocity. At
the same time, Cummer and Schurig notice that the z-invariant 2D
Maxwell equations for transverse electric (TE) polarization, can be
written in the following form:

jωµr(−Hr) = −1
r

∂(−Ez)
∂φ

, (2.45)

jωµφHφ = −∂(−Ez)
∂r

, (2.46)

jωεz(−Ez) = −1
r

∂(rHφ)
∂r

− 1
r

∂(−Hr)
∂φ

. (2.47)

Comparing these three equations to the equations of acoustics (2.42–
2.44), they find that these two sets of equations are similar under the

cThis medium is a transversely isotropic fluid.
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following substitution:

[p, vr, vφ, ρr, ρφ,K
−1]↔ [−Ez,Hφ,−Hr, µφ, µr, εz] (2.48)

This analogy between the time harmonic acoustic equations and
Maxwell equations also preserves boundary conditions. Indeed, the
pressure and the normal velocity component are continuous at a fluid-
fluid interface, as the vertical component of the electric field and the
tangential component of the magnetic field are at an electromagnetic
material interface.

Following analogy (2.48) and applying the coordinate transfor-
mation corresponding to the equations (2.41) imposes the value of
the material parameters K and ρ, inside the cloaking shell (R1 <

r < R2), as follow:

ρr

ρ0
=

r

r −R1
(2.49)

ρφ

ρ0
=
r −R1

r
(2.50)

K−1

K0
−1 =

(
R2

R2 −R1

)2 r −R1

r
. (2.51)

Within the cloaking device (R1 < r < R2), the effective material
parameters continuously change. In the limit r → R1, ρr → +∞,
ρφ → 0 and K → +∞. Note here that there is no restriction on the
values of K and ρ in the cloaked area, i.e., in the region r < R1.

Other studies have shown such analogy between electromag-
netism and acoustic equations. In particular Chen and Chan have
shown that, in 3D, the acoustic equation in a heterogeneous fluid and
the electrical conductivity equation have equivalent forms, therefore
allowing to use coordinate transformation in order to guide acoustic
wave in 3D-fluid.69

2.3.2. Broadband acoustic cloak for ultrasound

First numerical simulations are reported by Cummer and Schurig
in Ref. 68 where a cylindrical cloaking shell is simulated based on



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch02 page 106

106 Handbook of Metamaterials and Plasmonics — Volume 2

Fig. 2.13. Numerical simulation of an acoustic cloak from Ref. 68. (a) An acous-
tic beam is propagating in a homogeneous medium. (b) The acoustic beam is
scattered by a cylindrical scatterer (� = 0.7λ). (c) The scatterer is surrounded
by the acoustic cloaking shell.

analogy (2.48). Three configurations are compared: (a) an acoustic
beam is sent in a homogeneous medium, (b) the beam encounters
an incompressible cylindrical scatterer and (c) the beam encounters
the cylindrical cloaking shell (0.75 wavelength thick) surrounding
the scatterers. As expected, in configuration (b), the incompressible
cylinder is responsible for large scattering and a shadow behind the
cylinder. The latter disappears in configuration (c). Indeed, in the
forward direction, the wavefront is reformed and retrieves with fairly
good agreement the shape of the wavefront in configuration (a), as
if there was no scatterer. As in Ref. 67, the difficulties going from
the numerical study to the experimental proof are raised. Indeed, in
nature, no material has the features of the cloak, namely, a contin-
uous variation of the parameters of the medium along the radius of
the cloaking shell, and an anisotropic density.

This challenge was met by Zhang et al. to whom we owe the
first experimental realization of the acoustic inaudible cloak50 for 2D
acoustic wave in water. As shown in Fig. 2.14, the cloaking shell is
divided in several concentric rings, each one being characterized by a
particular set of acoustic material parameters.d The rings themselves

dAs a reminder, ρr, ρθ and K all vary along r.
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Fig. 2.14. Schematic of cloaking shell for 2D acoustic wave in water, from.50

The aluminum cloak is devided into 16 concentric rings, with inner and the outer
radii of the cloak equal to 13.5 mm and 54.1 mm.

are divided in small cells arranged in a circular array. Each cell is
made of a large cavity surrounded by four narrow channels, commu-
nicating with the four neighboring cells (two on the same ring and
two on the two surrounding rings). The cavity behaves as acoustic
capacitor whereas the channels act as serial inductors as seen in Sec-
tion 2.2.1. Around the central working frequency (60 kHz), each cell
is only of the order of one tenth of the wavelength.

Figures 2.15(a–c) shows experimental pressure field mappings
resulting from the scattering of an acoustic wave by a bare steel
cylinder in water at three different frequencies (60 kHz, 52 kHz and
60 kHz). It is compared to the pressure field mappings when the
steel cylinder is surrounded by the acoustic cloak (Figs. 2.15(d–f)).
Although the acoustic cloak central frequency is 60 kHz (Figs. 2.15(a)
and (d)), the acoustic cloak shows also great results at 52 kHz
(Figs. 2.15(b) and (e)) and 64 kHz (Figs. 2.15(c) and (f)). Indeed,
the steel cylinder shade is almost completely removed once it is sur-
rounded by the acoustic cloak.

2.3.3. Molding water, acoustic and electromagnetic

waves with a single cloak

In the most of invisibility cloaking demonstrations, the carefully
designed artificial structure can be valid only for one physical
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Fig. 2.15. Measured pressure field mappings of the bare cylinder and the cloaked
steel cylinder illuminated with a point ultrasound source. The cloak lies in the
center of a water tank and surrounds the steel cylinder. The scattering field
patterns of the bare cylinder at (a) 60 kHz (b) 52 kHz, and (c) 64 kHz. The
pseudo-color map in the immediate environment of the cloaked steel cylinder at
(d) 60 kHz (e) 52 kHz, and (f) 64 kHz.50

variable, e.g., electromagnetic wave,20,70–73 acoustic wave,50,68,69,74,75

elastic wave,66,76,77 and heat flux,78–80 etc. In this section, we will
introduce a cylindrical cloak which can work equally for linear surface
liquid wave, acoustic wave, and electromagnetic wave.74,81 This struc-
tured cloak behaves like a surface liquid wave cloak with an effec-
tive anisotropic shear viscosity, an acoustic cloak with an effective
anisotropic density, and an electromagnetic cloak with an effective
anisotropic permittivity, respectively. The effective anisotropic effect
parameters are proceeded with mathematical approach of homoge-
nization,82,83 which amounts to replacing a structured material by
an effective medium that captures the essential wave phenomena for
wave with wavelength large compared to the typical heterogeneity
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Fig. 2.16. Photo of the structured cloak. 100 rigid sectors are evenly machined
in a metallic ring of inner radius R1 = 41 mm and outer radius R2 = 100 mm.74

size. We also numerically and experimentally demonstrate the per-
formance of the cylindrical cloak in these three kinds of waves.

2.3.3.1. Sample configuration

The invisibility cloak as shown in Fig. 2.16 is manufactured in alu-
minum using classical numerically controlled machine tools. The
outer and inner radii are R2 = 100 mm and R1 = 41 mm, respec-
tively. The cloak is first divided into 14 layers with the layer thickness
as the function of r as (R2(r−R1)

r(R2−R1)
)2. One layer in two is further divided

into 100 identical angular sectors along the azimuthal direction as
shown in the figure, and there are seven rows of rods along the radius.

2.3.3.2. Theoretical and numerical approaches

For the the surface of a linear fluid medium, the conservation of
momentum leads to the Navier-Stokes equations:

ρ0

(
∂

∂t
+ v · ∇

)
v− η∇2v = −∇p+ ρg (2.52)
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where v is the velocity field, η∇2v accounts for the fluid’s viscosity,
p the fluid pressure, ρ0 is density and g the vector of gravity force.
Note that g = −ge3, where g denotes the acceleration caused by
gravity and e3 a vertical unit vector. It is noted that η∇2v can be
neglected outside the cloak region due to the fairly low viscosity of the
surrounding fluid. In addition, the fluid should be also incompressible
(divergence free), irrotational (curl free), and undergo only small
fluctuations around a mean vertical position. Therefore, the deduced
vertical displacement of the fluid for the harmonic oscillation can
satisfy with Helmholtz’s equation.84 By solving the Eq. (2.52) for
the cloak region, we can achieve an anisotropic matrix of viscosity
whose nontrivial part (transverse shear) is:

[ηhom] =
1

A(Y �)

(
A(Y �)− ψrr ψrθ

ψθr A(Y �)− ψθθ

)
(2.53)

Here, A(Y �) denotes the area of the region Y � surrounding a
rigid inclusion (subject to Neumann boundary conditions) in an ele-
mentary cell Y of the periodic array, and ψij represent corrective
terms, which is related to periodic hydrostatic fields, as shown in
Fig. 2.17(a). For simplification, in our sample, we can introduce some
variation in the radial length of sectors for which it seems reasonable
to assume that the improved cloak is characterized by an effective
anisotropic fluid whose shear viscosity (a diagonal matrix in polar
basis) is

η′rr =
(
R2(r −R1)
r(R2 −R1)

)2

, η′θθ =
(

R2

R2 −R1

)2

(2.54)

where R1 and R2 are the inner and outer radii of the ring, respec-
tively. Importantly, the effective fluid’s density is the same as the fluid
density, which does not play any prominent role. These parameters
were actually first proposed in Ref. 85 for the case of electromag-
netic waves. The snapshot of the surface waves for the homogenized
coating is shown in Fig. 2.17(b), which is calculated by COMSOL
Multiphysics. The stream lines indicating the direction of the fluid
flow, clearly demonstrate the bending effect in the cloaking area.
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Fig. 2.17. (a) Calculated periodic hydrostatic field. (b) Pattern of the concentric
surface wave and associated stream lines (indicating the direction of fluid flow)
generated by a forced term with frequency 15.84 Hz. A rigid cylinder of radius
38 mm is placed in the center of a homogenized cloak.74

Similar approaches are applied for acoustic wave and electro-
magnetic wave as well. The homogenized wave equations (in polar
coordinates) for acoustic waves can be written as:

−∇ ·
([
ρ−1

rr 0
0 ρ−1

θθ

]
(r)∇p(r, θ)

)
=

ω2

Keff
p(r, θ) (2.55)

where the tensor of effective density is given by

[
ρ−1

rr 0
0 ρ−1

θθ

]
=

1
area(Y )

∫ 2π

0

∫ 1

0
ρ(r, r′, θ′)

×
[
area(Y )− ψrr ψrθ

ψθr area(Y )− ψθθ

]
r′dr′dθ′ (2.56)

Here, ψij are periodic potentials.
And for electromagnetic wave:

−∇ ·
([
ε−1
rr 0
0 ε−1

θθ

]
(r)∇Hz(r, θ)

)
= ω2µeffHz(r, θ) (2.57)
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where ε−1
rr and ε−1

θθ are the coefficients of the tensor of effective per-
mittivity which are also given by Eq. (2.56) (replacing ρ by µ in
the equation) and µeff is the effective permeability which can be
written as:

µeff =
1

area(Y )

∫ 2π

0

∫ 1

0
µ(r, r′, θ′)r′dr′dθ′ (2.58)

It is noted that this equation is simply derived from the vector
Maxwell equation by considering a magnetic field H = (0, 0,Hz).

It can be shown that the reduced effective parameters are good
approximations for well-known transformed density and permittivity
in their reduced forms:

ρ′rr =
(
R2(r −R1)
r(R2 −R1)

)2

, ρ′θθ =
(

R2

R2 −R1

)2

(2.59)

ε′rr =
(
R2(r −R1)
r(R2 −R1)

)2

, ε′θθ =
(

R2

R2 −R1

)2

(2.60)

The numerical simulation for all these three cases are conducted
by using the commercial finite elements package COMSOL Multi-
physics. The geometric configuration in the simulation is same as the
real structured cloaking device. Here, we select electromagnetic wave
as an example to demonstrate the invisible cloak behavior as shown
in 2.18. In order to quantitatively assess the cloaking efficiency of
the metamaterial, we numerically compute its total radar cross sec-
tion (RCS),86,87 and plot them in Fig. 2.18(d). We can observe that
a small infinite conducting (resp. rigid for pressure waves) obstacle
surrounded by the cloak is slightly above RCS of the cloak on its
own, but lower than RCS of small infinite conducting (resp. rigid)
obstacle, which is itself smaller than RCS of the large infinite con-
ducting (resp. rigid) obstacle of same diameter as the cloak up to
7 GHz (resp. 8 KHz for pressure waves). The theoretical and numer-
ical results confirm that these two-dimensional finite element simu-
lations are valid for all water wave, acoustic wave, and transverse
electromagnetic wave.
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Fig. 2.18. The simulated real part of the transverse magnetic (resp. pressure)
field for a plane wave incident at 4.5 GHz (resp. 5 kHz) from the left on the small
obstacle surrounded by the cloak on the small obstacle on its own (a), on the
large obstacle (b), and on the cloaked obstacle (c). (d) Numerical simulation of
radar cross section (RCS) for cloak and cylindrical rigid obstacles.81

2.3.3.3. Experimental characterization

The performance of the invisible cloak has been characterized for
water, acoustic, and electromagnetic waves, respectively. In Fig. 2.19
(a), we present the schematic experimental setup for observing back
scattering water wave from the cloak. In the system, a halogen lamp
modulated by a perforated rotating disc illuminates a transparent
vessel containing the liquid. We choose a small tube to excite a local-
ized pressure with the same frequency as the modulation of the light.
The surface waves create local curvatures of the liquid and the light
is refracted when crossing the surface. Therefore, on the screen the
dark and light zones allow visualizing the liquid surface waves. We
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Fig. 2.19. Schematic view of the experimental setup for linear surface water
waves. (b–c) Experimental results of reduced backscattering adapted from74 for a
concentric liquid surface wave of frequency 10 Hz interacting with a rigid cylinder
(7.6 cm in diameter) on its own (b) and the structured waterwave cloak (20 cm
in diameter) (c).81

take snapshots of the liquid surface waves when a metallic cylinder
is placed in the vessel alone and with the invisibility cloak, which are
shown in Fig. 2.19(b) and (c). The dramatic reduced back scattering
field can be observed if the metallic cylinder is placed in the cloak.

The schematic view of acoustic wave experimental setup is shown
in Fig. 2.20(c). A commercial loudspeaker is placed at 20 cm from
the structure cloak. The loudspeaker is driven by a programmable
functional generator and a power amplifier. A high sensitive micro-
phone mounted on an x-y translation stage is used to record the two-
dimensional acoustic pressure field distribution. The loudspeaker,
acoustic cloak, and microphone are placed at the same level for char-
acterizing how the pressure field is affected by the cloak. In the exper-
iment, a five-period sinusoidal wave is launched by the loudspeaker.
The time-dependent pre-amplified signal collected by the microphone
is recorded by an oscilloscope and downloaded to a computer for fur-
ther analysis. The signal generation and acquisition are synchronized
by the computer program. Therefore, we can map the 2D pressure
field distribution with both amplitude and phase information. The
scanning area is 25 × 25 cm2. The measured forward scattering fields
for a cylindrical scatterer with or without the cloak are plotted in
Fig. 2.20(a). We can observe that the acoustic wavefront is neatly
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Fig. 2.20. (a, b) Experimental results in forward scattering for pressure waves
(a) and transverse electric microwaves (b) for the same cloak containing a large
glass bottle obstacle (a) and a small square metallic obstacle (b). (c, d) Schematic
view of the experimental setup for acoustic wave (c) and microwave (d). (e) Top
view of 2D configuration for forward scattering wave mapping. The measured
area are indicated by the dashed box.

reconstructed behind the cloak, with a good agreement with the
numerical simulation results.

The schematic view of microwaves experimental setup which is
positioned in an anechoic chamber is shown in Fig. 2.20(d). A ridged
horn antenna is positioned at 24 cm from the structure cloak. A rect-
angular metallic obstacle is inside the cloak structure. The magnetic
probe is positioned 5 mm above the structure cloak. The probe is a
homemade magnetic loop with diameter 5 mm and the loop is posi-
tioned perpendicular to the magnetic field of the emitter antenna.
In this configuration, the magnetic probe measures a single compo-
nent (vertical component) of the three Cartesian components of the
magnetic field. The magnetic loop scanned a 33 × 71 cm2 surface
thanks to a 3D axis positioning system.86 The antenna and the probe
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are connected to a vector network analyzer that generates and mea-
sures the electromagnetic field. The electromagnetic field is emitted
by the antenna and the probe only receives the field. The vector
network analyzer measures the transmission coefficient between the
emitter antenna and the magnetic probe. The complex transmission
coefficient between the antenna and the probe is displayed in terms
of magnitude in dB to visualize the intensity of the field. The real
part of the magnetic field is also displayed since this is related to
the phase of the field. The measured forward scattering longitudinal
magnetic field for a square metallic obstacle placed in the cloak is
plotted in Fig. 2.20(b). Similar to the results of the acoustic wave,
the electromagnetic wavefront is reconstructed.

In conclusion, we present three experiments demonstrating that
a cylindrical cloak works equally well for linear surface liquid wave,
acoustic wave, and electromagnetic wave. Measured forward scat-
tering for pressure and magnetic fields are in good agreement and
confirm broadband cloaking with a central frequency of 5 kHz for
sound and 4.3 GHz for microwaves. Microwave experiments further
confirm the much reduced forward and backscattering when a rectan-
gular metallic obstacle is surrounded by the structured cloak range of
cloaking frequencies between 2.6 and 6.0 GHz. This suggests, as sup-
ported by numerical simulations, sound waves are cloaked between 3
and 7 kHz and linear surface liquid waves are cloaked between 8 to
14 Hz. Moreover, microwave experiments confirm the field is reduced
by 10 to 30 dB inside the invisibility region, which suggests the multi-
physics cloak could be used as a protection against water, sonic or
microwaves.

2.3.4. Anisotropic complementary acoustic

complementary metamaterials

In the previous sections, we have introduced conventional cloak-
ing strategies50,74,88 by compressing the space and hide the object
inside an enclosure in which there is no interaction with the outside
world. However, this solution is not suited to the problems for
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the application of medical ultrasound or non-destructive evaluation
(NDE). In these problems, ultrasound needs to be transmitted
through an aberrating layer,89–95 where either the transmission
is desired to be maximized or the reflection needs to be min-
imized. One of the most representative examples is transcranial
ultrasound beam focusing, which could find usage in both brain
imaging and treatment.91,92 However, transcranial beam focusing
is extremely challenging due to the presence of the skull. A com-
mon approach to achieve transcranial beam focusing is based on
the time-reversal/phase conjugate technique and ultrasound phased
arrays.96,97 Although the focal position can be corrected, one sig-
nificant shortcoming of this strategy is that it does not compensate
for the large acoustic energy loss due to the impedance mismatch
between the skull and the background medium (water). Recently,
Lai et al. demonstrated that cloaking/illusion based on electromag-
netic wave (EM) complementary metamaterials (CMM)98 can open
up a virtual hole in a wall without distortion.99,100 In addition, this
type of approach does not require the cloaked object to be inside
an enclosure/cloaking shell and is valid in free space.101 Due to the
similarity between acoustic and EM wave equations in 2D, CMMs
have been also proposed for acoustic cloaking.102,103

In this section, we will introduce a type of anisotropic, acous-
tic complementary metamaterials (CMM) and their application in
restoring acoustic fields distorted by aberrating layers.104 The pro-
posed quasi 2D, non-resonant CMM consists of unit cells formed
by membranes and side branches with open ends. Simultaneously
anisotropic and negative density is achieved by assigning membranes
facing each direction (x- and y-direction) with different thicknesses
while the compressibility is tuned by the side branches. Numerical
examples demonstrate that, the CMM, when placed adjacent to a
strongly aberrating layer, could acoustically cancel out that aberrat-
ing layer. This leads to dramatically reduced acoustic field distortion
and enhanced sound transmission, therefore virtually removing the
layer in a noninvasive manner.
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Fig. 2.21. (a) Schematic of the CMM, the aberrating layer, and the background
medium. (b) Schematic of acoustic cloaking using CMM, the dashed lines indicate
the boundaries of layer 4.

2.3.4.1. Theoretical approach for CMM

The CMM is placed on top of the aberrating layer, as illustrated
in Fig. 2.21(a). The aberrating layer is assumed to be sufficiently
long so that the edges do not significantly affect the acoustic
field. The CMM compresses and cancels the information of the
selected aberrating layer. Let ρ(c)(x(c), y(c), z(c)), χ(c)(x(c), y(c), z(c))
and ρ(a)(x(a), y(a), z(a)), χ(a)(x(a), y(a), z(a)) be the effective den-
sity and compressibility tensors of the CMM and the aberrating
layer, respectively. x(c), y(c), z(c) and x(a), y(a), z(a) are generalized
curved coordinates. Based on the acoustic coordinate transformation,
we have69: [

ρ(c)
]−1

= A
[
ρ(a)
]−1

AT /detA, (2.61)

χ(c) = χ(a)/detA, (2.62)

where A is the Jacobian transformation tensor of compressing trans-
formation given by:

A =




∂x(c)

∂x(a)
∂x(c)

∂y(a)
∂x(c)

∂z(a)

∂y(c)

∂x(a)
∂y(c)

∂y(a)
∂y(c)

∂z(a)

∂z(c)

∂x(a)
∂z(c)

∂y(a)
∂z(c)

∂z(a)


 (2.63)

In this study, we focus on 2D problems and only wave propaga-
tion in the x-y plane is of interest. The z component in the Jacobian
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matrix is therefore dropped. Without loss of generality, the thick-
ness of the CMM is assumed to be half of the aberrating layer, which
leads to ∂x(c)

∂x(a) = 1 and ∂y(c)

∂y(a) = −0.5, whose ratio is negative since
the acoustic information is folded in the CMM and would cancel out
that of the aberrating layer. Other components ∂x(c)

∂y(a) and ∂y(c)

∂x(a) in the
tensor are equal to zero, as the transformation in each direction (i.e.,
x- and y-directions) are independent. For more complicated geome-
tries, off-diagonal components may appear. They could, however, be
eliminated by coordinate rotations.105

Finally, the tensor A = ( 1 0
0 −0.5 ), and consequently, the density

and compressibility tensors of the CMM are: ρ(c) = (−0.5 0
0 −2 ) × ρ(a)

and χ(c) = −2 × χ(a). It is noted that a generalized CMM requires
strongly anisotropic density as well as negativity for both density
and compressibility. In addition, the density can be isotropic if the
thickness of the CMM is chosen to be the same as the aberrating
layer. However, in this case, the refractive index is −1 and the k

vector along the interface goes to infinity.106 In other words, such a
CMM will be very sensitive to the unit cell size and can be difficult to
demonstrate. Furthermore, a generalized CMM is preferred in prac-
tice as its thickness can be arbitrarily chosen, i.e., it does not depend
on the thickness of the aberrating layer, providing a great flexibility.

2.3.4.2. Unit cell design for CMM

Periodic cubic blocks with clamped elastic membranes and side
branches as shown in Fig. 2.22 are chosen to achieve the double neg-
ative and anisotropic properties for CMM. The membrane is intro-
duced here to tune the effective density. The side branches are open
ended and are introduced to tune the effective compressibility. In the
demonstration, we choose the operating frequency of the CMM to be
50 kHz, at which the wavelength in water (background medium) is
15 times larger than the size of a unit cell. By adjusting the thick-
nesses of the membranes facing each direction (x- and y-), the effec-
tive density can be tuned therein in order to achieve anisotropy.
Assuming the interaction and coupling between membranes in the
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Fig. 2.22. (a) Schematic of a portion of the quasi 2D CMM. (b) Schematic of a
1D side brand and membrane-based metamaterial. (c) Equivalent acoustic circuit
of the 1D membrane-based metamaterial.

x- and y- directions is negligible, the effective density and compress-
ibility in either x- or y- direction can be estimated separately by one
dimensional (1D) studies.107 To this end, 1D models are first studied
in order to determine the appropriate thicknesses of the membranes
and the dimensions of the side branches by both theoretical analysis
and numerical simulations (Fig. 2.22(b)).

Theoretically, the effective compressibility with open ended side
branches in theory can be written as108: χe = χ0(1 − S

Adρ0β0l′ω2 ),
where β0 is compressibility of the background medium, S, A, d, l′

are, respectively, cross section area of the branch, cross section area
of the waveguide (cubic block), length of unit cell, the effective length
of the branch, and is the angular frequency. On the other hand, the
effective density of the unit cell depends on the properties of the
membranes.108–111 The side branches are assumed to have negligible
effect on the effective density.108 The effective density with clamped
membranes can be derived by using the lumped model, with the
equivalent acoustic circuit of the 1D membrane-based metamaterial
shown in Fig. 2.22(c). Here, ma = ρ0

A(d−h) is the effective acoustic
mass of the tube, Ca = Aχ0(d−h) is the acoustic capacitance of the
waveguide, where h is the membrane thickness. Zam is the acoustic
impedance of the membrane and can be approximated by an inductor
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Fig. 2.23. Effective densities and compressibility extracted from full wave sim-
ulations and predicted by the lumped model.104 (a) Effective densities in x- and
y-directions. (b) Effective compressibility. At 50 kHz, the desired density and
compressibility are achieved.

and capacitor in series in the low-frequency region,109 and defined as:

Zam =
Zm

A2
=

�
∆pdA
jωξA2

, (2.64)

where ∆p = p1 − p2 is the pressure difference across the membrane,
Zm is the mechanical impedance of the membrane and ξ represents
the average displacement of the membrane. Therefore, the expression
for the total acoustic impedance of the tube is: Zas = jωma + Zam,
with the effective density of a unit cell written as: ρe = Zas

jω
1

dA .
The effective acoustic parameters calculated by theoretical pre-

diction are compared with the numerical simulation by COMSOL
Multiphysics, which are shown in Fig. 2.23. We can observe a good
agreement. We need to address that negative properties of these
structures are not relying on the resonance, since the negative proper-
ties appear in a broad-band frequency range. The material properties
and geometric parameters in the simulation are listed: the membrane
made by aluminum film is 2 mm × 2 mm; the Young’s modulus is
70 GPa; the Poisson’s ratio is 0.33; the density is 2700 kg/m3; the
thicknesses of the membranes are 0.083 mm and 0.11 mm in x and
y directions; the radius and length of the side branches are 0.25 mm
and 1.25 mm. The density and sound speed of background medium
(water) are 1000 kg/m3 and 1500 m/s.
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2.3.4.3. Numerical simulation

We conduct two sets of full wave simulation to validate the designed
CMM by using COMSOL Multiphysics. The acoustic-solid interac-
tion module is chosen for numerical simulations. The entire CMM
consists of 120 × 10 unit cells: there are 120 units along x-direction
and 10 units along y-direction. Perfectly matched layers (PML) are
used to minimize reflections from the boundary. The thickness of
the aberrating layer is 40 mm, with the material density 2000 kg/m3

and sound speed 2500 m/s, for mimicking human skulls. The acoustic
impedance of aberrating layer is therefore over 3.3 times larger than
the background medium, providing a sufficient amount of mismatch.
According to the effective material property calculation, the effec-
tive density of the unit cells are −1000 kg/m3 (along x-axis) and
−4000 kg/m3 (along y-axis), as well as the effective compressibility
is −1.6×10−10 m2/N, which meet the requirement of the coordinate
transformation.

In the two simulations, we configure a curved/focused array and a
linear array to generate different acoustic fields. In the first case, the
curved acoustic source array which can generate a focal point in the
free space (shown in Fig. 2.24(b) as a control case) is placed in front
of the aberrating layer. It is straightforward that the aberrating layer
can block most of the transmission acoustic energy due to the large
impedance mismatch, as shown in Fig. 2.24(a). By placing the CMM
layer on the same side with the array, the CMM can effectively cancel
out the aberrating layer, so a strong focal point which is 60 mm (total
thickness of the CMM and the aberrating layer) behind the original
one can be observed. The curved source array is moved 60 mm away
from the aberrating layer when the CMM is inserted, so that the
focal point remains at the desired location, as shown in Fig. 2.24(c).
Quantitative analysis shows that in the curved array case, the inten-
sity amplitude at the focal point is 88% of that of the control case,
while it is 28% without the CMM. A significant improvement in
terms of the sound transmission (> 300%) is achieved. As indicated
in the white dash line in Fig. 2.24(c), the focal point of the CMM
case results in an accurate position, which is only 3 mm (1/10 of
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Fig. 2.24. (a–c) Acoustic intensity field for a curved array (focused beam). The
CMM is placed in front of the aberrating layer. White dotted lines indicate the
position of the focal plane. Three cases are presented: (a) Skull only. (b) Homo-
geneous medium. (c) With CMM and skull. (d–f) Acoustic intensity field for a
linear array (unfocused beam). The CMM is placed behind the aberrating layer.
Three cases are presented: (d) Skull only. (e) Homogeneous medium. (f) With
CMM and skull.104

the wavelength) off the desired location as in the control case, while
it is 14 mm (about 1/2 of the wavelength) off without the CMM.
This example demonstrates one potential application of CMMs to
focus ultrasound behind aberrating layers, which could be extremely
useful for improving ultrasound imaging or therapy. In the linear
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array case (unfocused acoustic field), which we place the CMM layer
behind the aberrating layer, the total acoustic intensity is 97% of that
of the control case, whereas the transmission is only 31% without the
CMM. The numerical simulation results are plotted in Fig. 2.24(d–f).
This example demonstrates another potential application of CMMs
to detect passive acoustic source emissions or reflections from an
object to be imaged/detected behind aberrating layers. Also, inter-
estingly, this example indicates that the CMM can be placed behind a
reflective layer and yet achieve anti-reflection, thus has the advantage
of being virtually concealed.

In both cases, the effective density and compressibility are
extracted from the simulation results and are very close to the ones
predicted by the earlier 1D model. It is noted that in ideal case, the
CMM should exactly restore the sound field without considering the
energy loss inside the metamaterial. However, it would require an
infinitely small unit cell so that the homogenization is perfect. In the
current simulation, the material losses are not taken into account in
the simulations, since aluminum (membrane material) is known to
have a small loss factor and the attenuation in water is also negligi-
ble. In addition, the side branch and membrane-based metamaterials
used here are non-resonant metamaterials,108 therefore the material
loss is not expected to be a significant factor.

A single CMM layer can significantly enhance the acoustic energy
transmission through the aberrating layer. However, the phase of
the acoustic field cannot be recovered, which induces the focal point
shift in the curved source array case. Similar to the electromagnetic
CMMs, an additional restoring layer added on top of the CMM layer
can recover both amplitude and phase information of the acoustic
field to achieve an acoustic cloaking. The same mathematics of coor-
dinate transformation is applied to retrieve the effective parameters
for layer 1 and 2. The effective density and compressibility tensors
for layer 2 are the same as the previous result, since layer 2 plays
the same function to cancel out the aberrating layer. Layer 1 will
restore the information of layer 4 (combine with layer 1, 2, and
3), which has the acoustic properties of the background medium.
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Fig. 2.25. (a–c) Acoustic pressure filed for a point source which is blocked by
a slab. An acoustic cloaking device is placed on top of the slab so that it can
effectively cloak the slab.104 (a) Slab only. (b) Homogeneous medium. (c) With
cloaking device adjacent to the slab. The wave fields in (b) and (c) are almost
identical.

Therefore, the effective density and compressibility tensors for layer
1 are ρ(1) = ( 0.25 0

0 4 )× ρ0 and χ(1) = 4× χ0. We conduct the numeri-
cal simulation by using the homogenized effective media with desired
properties, and plot them in Fig. 2.25. The simulation results show
that a slab is effectively cloaked by the cloaking device with a CMM
layer and a restoring layer.

In conclusion, we design acoustic CMMs based on the coordinate
transformation of acoustic waves to cancel out an object in free space.
Numerical examples demonstrate that the CMMs are able to restore
the acoustic fields distorted by aberrating layers, which is capable
of virtually removing an aberrating layer in a non-invasive manner.
Therefore, it could greatly facilitate NDE, transcranial ultrasound
imaging and treatment. In addition, the method for designing acous-
tic CMMs can be readily used to cancel out multiple layers if needed.
CMMs are also expected to be useful for the design of acoustic cloak-
ing and all angle anti-reflection materials.112,113
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CHAPTER 3

Flat Lens Focusing of Flexural
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PATRICK SEBBAH∗

Institut Langevin, France and University of Bar Ilan, Israel

MARC DUBOIS

University of California Berkeley, USA

3.1. Introduction

This chapter will focus on negative refraction concept and materi-
als with negative index of refraction. Negative index materials for
electromagnetic waves were first considered in 1968 by Victor Vese-
lago [Veselago (1968)]. His statement is as follows, if a medium
presents simultaneous negative electric permittivity and magnetic
permeability then the index of refraction is negative. Several appli-
cations of negative index media have been discussed in this seminal
paper. Among them, the ability to create a lens from a parallel flat
slab of negative index medium will later become the most stimu-
lating perspective. In 2000, John Pendry demonstrate that such a
slab of negative index material can beat the diffraction limit and
focus waves on a scale smaller than the wavelength [Pendry (2000)].
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This superfocusing property has triggered an important number
of theoretical, numerical and experimental studies. In spite of a
potential breakthrough for many lensing application such as imag-
ing or lithography, negative index material have not been observed
in nature yet. Two main approaches have been considered in order
to achieve negative refraction experimentally: crystalline structures
and metamaterials. In this chapter, we will focus on the realization
of negative refraction in periodic structures. The first part of the
chapter will introduce the concept of negative refraction in periodic
structure in a general framework. In a second part, we will see how
these notions can be applied to elastodynamics and present the first
experimental demonstration of flat lensing for flexural waves in thin
plates. In a last part, we will explore the dynamic behavior of such
flat lens when excited with broadband source signals.

3.2. Negative Refraction in Periodic Structures

Wave propagation in periodic structures has been widely studied over
the last century. Bloch theorem was first used to describe electronic
wave function in crystals. It has now been extended to a broad class of
waves including electromagnetic, acoustic, elastic or water waves. As
an example, the presence of band gap is a universal hallmark of peri-
odic structures. This phenomenon, related to destructive interference,
results in a frequency band wherewaves cannot propagate in a periodic
medium. The following will present the theoretical tools and methods
used to explore the dispersion properties of periodic structures.

3.2.1. Waves in periodic structures

Crystallography and solid state physics methods are used to obtain
properties of periodic structures. Periodic structures are described
by a direct Bravais lattice. This lattice is an infinite array of points
obtained by discrete translations represented by vectors named prim-
itive vectors ai, i = [1, 2, 3] in three dimensional lattices. A recipro-
cal lattice is associated to this direct lattice, its primitive vectors
bi, i = [1, 2, 3] are defined by ai.bj = 2πδij . The unit cell of the
reciprocal lattice is defined as the first Brillouin zone. This unit cell
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Fig. 3.1. Schematics of direct lattice, reciprocal lattice and first Brillouin zone.
Irreducible Brillouin zone and critical points are presented for two dimensional
(a) square lattice and (b) triangular lattice.

can be reduced to the irreducible Brillouin zone delimited by sym-
metry centers known as critical points. Γ represents the origin of
the irreducible Brillouin zone in any periodic structure. Figure 3.1
presents the direct lattice, the reciprocal lattice, and the irreducible
Brillouin zone for the two dimensional square and triangular lattices.

Bloch’s theorem was initially used to describe electronic wave
functions in periodic potential [Kittel (2007)]. In a periodic potential
with period r0 wave functions Ψ(r) associated with a wave vector k
are Bloch waves

Ψ(r) = eik.ruk(r)

with uk a periodic function with period r0. The variable couple (k, uk)
is not unique but we can always write this wave vector as

k = k0 +
∑

i

ni.bi

consequently k0 is kept inside the irreducible Brillouin zone. Thus,
we can calculate the wave function associated with all wave vectors
by calculating the response of the crystal only for wave vectors
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Fig. 3.2. Dispersion diagram of a square lattice phononic crystal for flexural
waves in a thin plate. The red ellipse denotes a band with a negative derivative
as the frequency increases and wave vector decreases.

bounded in the irreducible Brillouin zone. It is common to represent
the relation that links the energy of the wave functions to the wave
vectors on a diagram called the band diagram of the crystal.

As mentioned before, Bloch’s theorem can be applied to deter-
mine the propagation properties of electromagnetic or acoustic wave
in periodic structure. Such crystals for light and sound are no longer
semiconductor crystals. They result in a periodic modulation of the
index of refraction or speed of sound, leading to the so called photonic
crystals [Yablonovitch (1987)] and phononic crystals [Kushwaha et al.
(1993)]. The band diagram now represents the dispersion relation of
the structure that links pulsation ω and wave vector k. An example
of such a band diagram is presented in Figure 3.2. It is calculated
for flexural waves propagating in a square lattice of circular holes
drilled in a thin plate. The dispersion curve is plotted on the three
segments of the irreducible Brillouin zone, namely ΓX, ΓM and XM
for a square lattice.

3.2.2. Negative refraction at an interface

Snell’s law dictates the refraction of a plane wave at an interface
between two materials. Accordingly, the transverse component of the
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Fig. 3.3. Ray tracing according to Snell’s law. Refraction of incident wave vector
�k1 at the interface between two medium with index of refraction n1 and n2.
(a) Case with both positive index. (b) Case where n1 is positive and n2 negative.

incident wave vector is conserved in the refraction process. As shown
in Figure 3.3(a), it is possible to calculate the angle of refraction
with the following equation n1sin(θ1) = n2sin(θ2). It is to be men-
tioned that the dot product of group and phase velocity is positive
�Vg.�k > 0 in any positive index medium. Snell’s law is still valid if one
of a medium presents a negative index of refraction. Figure 3.3(b)
presents the ray tracing obtained for n2 < 0. Victor Veselago demon-
strate that phase velocity and group velocity have to be opposite such
has �Vg2. �k2 < 0 [Veselago (1968)]. From causality relations, group
velocity �Vg2 has to be directed away form the interface. Therefore,
the phase velocity must be directed in the opposite direction.

Phase and group velocities in periodic medium can be calculated
from the dispersion curves presented in Figure 3.2. Phase velocity Vφ

is given by

Vφ =
ω

k
(3.1)

and group velocity Vg is defined as

Vg =
δω

δk
(3.2)
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In Figure 3.2, the second band of ΓX segment, denoted by the red
dotted ellipse, presents a negative slope as wave vector decreases
when frequency increases. This negative slope leads the dot prod-
uct �Vg.�k to be negative and as a consequence the effective index of
refraction of the crystal can be considered negative in this band.
This property arises from band folding that occurs for frequency
above the first band gap in photonic or phononic crystal. It has been
used to demonstrate negative refraction of a single wave vector in
electromagnetics [Cubukcu et al. (2003); Berrier et al. (2004)], in
acoustics [Yang et al. (2004)] and for elastic waves in solids [Pierre
et al. (2010)].

3.3. Flat Lensing with Periodic Structures

The previous section depicted how negative refraction can be
observed for a plane wave incident on a periodic structure. Negative
index flat lenses are build to image a point source. In order to form
the image of a point source, one needs to design a medium where any
angle of incidence presents a negative refraction. This property, called
All Angle Negative Refraction (AANR), requires specific attention to
the crystal design.

3.3.1. Snell’s law and equifrequency surfaces

Equifrequency surfaces are used in order to represent the disper-
sion of a medium in function of the direction of propagation. In two
dimensional structure, the dispersion relation can be represented in
the space (kx, ky , ω). Equifrequency surface or equifrequency contour
represent the spatial dispersion at a constant pulsation. In the case of
homogeneous and isotropic media, equifrequency contours are con-
centric circles which radius are proportional to the index of refrac-
tion. This representation becomes essential to study wave refraction
in the presence of anisotropy.

Equifrequency surface allow a simple geometrical relation
between wave vector and group velocity, �Vg = �∇�k

ω(�k). The direction
of group velocity is given by the outgoing normal of the equifrequency
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Fig. 3.4. (a) Ray tracing obtained with Snell-Descartes law. (b) Ray tracing
obtained from the equifrequency contour method. (c) Refraction obtained in the
case where medium 2 is anisotropic (elliptical equifrequency contour).

contour. Figures 3.4(a,b) represent a ray tracing based on Snell’s law
with the use of equifrequency contours. In this case, both medium
are described by an isotropic index of refraction such that equifre-
quency contours are circle and as a consequence wave vector �k and
group velocity �Vg are always collinear. In the last case presented in
Figure 3.4(c), medium 2 presents a strong anisotropy. One can notice
that for different angle of propagation wave vector and group velocity
are no longer collinear.

3.3.2. All angle negative refraction

Two main strategies have been used in order to achieve AANR in
periodic structures. The first one uses the effective negative index of
refraction obtained by band folding above the first band gap. Many
demonstrations will elect the triangular lattice that reduces the effect
of anisotropy and ensure an index of refraction independent from the
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Fig. 3.5. (a) Typical dispersion relation for a two dimensional triangular lattice.
The dotted curve represent the dispersion of the homogeneous, isotropic host
medium. (b) Equifrequency contour at three different frequencies in the second

band, wave vector �k and group velocity �Vg are represented.

angle of incidence. Figure 3.5 presents an example of two dimensional
triangular lattice dispersion relation and equifrequency contour for
three frequencies. As expected, the three equifrequency contours pre-
sented in 3.5(b) are perfectly circular. These contours also confirm
that the index of refraction can be considered as negative such that
the radius of these contours reduces when frequency increase. As
a consequence, wave vector and group velocity are aligned but in
opposite direction. This confirms the effective index of refraction to
be isotropic and negative for these frequencies.

AANR effect has been demonstrated in triangular lattices for
photonic crystals at microwave frequency [Lu et al. (2005)], infra red
frequency [Berrier et al. (2004)], and in phononic crystal for ultra-
sound in water [Sukhovich et al. (2008)] and for elastic surface wave
[Veres et al. (2012)].

3.3.3. Focusing resolution and index matching

Veselago’s flat lens design presents one more requirement. Magnitude
of host medium and negative index slab must be equal. This relation
is not always satisfied by the AANR effect in crystals. This index mis-
match can be interpreted geometrically with different equifrequency
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Fig. 3.6. Refraction of a flat slab in different configurations. (a) in the case where
|n2| < n1. (b) if n2 = −n1. (c) Ray tracing in Veselago’s flat lens with the two
images inside and outside the lens.

radii between host and crystal medium as depicted in Figure 3.6(a).
This schematics shows a slab of negative index n2 embedded in a host
medium with index n1 such as |n2| < n1. In that specific case, one
can notice that only a portion of incident angles can penetrate the
crystal. This effect is perfectly equivalent to a total internal reflection
and alters the focusing performance. Figure 3.6(b) presents the case
where index are matched n2 = −|n1|. In this specific condition any
incident wave vector is focused and creates two image source, one
inside the slab and one on the other side.

The index matching step has been realized experimentally for
ultrasonic wave in water [Sukhovich et al. (2008)]. A triangular lattice
of steal beam was first immersed in water. At this point, the index
of the crystal was negative in the AANR frequency range but the
magnitude of the index was too small. From the same limitations
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discussed in 3.6a, the lateral resolution of the measured focal spot
after the slab was 1.15λ. This resolution loss can be interpreted as
a reduction of the numerical aperture of the system. In a second
experiment, the phononic crystal was again composed of a triangular
arrangement of steal beams but immersed in liquid methanol to from
the negative index slab [Sukhovich et al. (2008)]. Pressure waves are
slower in methanol such that the index of refraction of the phononic
crystal matches the index of water. The lateral resolution measured
improved to 0.55λ demonstrating the importance of index matching.

3.4. Platonic Crystal for Flexural Wave Focusing

3.4.1. Elastic waves in thin plates

In three dimensional solids, elastic waves can propagate with two
different polarizations, namely longitudinal and transverse. These
different polarizations do not couple in homogeneous and isotropic
solids. However, the presence of discontinuities in the mechanical
parameters will generate interactions between these two modes. Such
coupling is at the origin of elastic guided mode or surface mode that
are confined at the interface between two media. The most studied
surface waves in solids are the Rayleigh waves. This mode is confined
at the interface between a solid and a light fluid. Rayleigh waves
present an elliptic polarization due to a phase quadrature coupling
between longitudinal and vertical transverse waves. The displacement
field is confined at the interface and exponentially decays in the solid.
A solid medium is considered as a thin plate if one of the dimensions
is strongly reduced. In that case, two principal propagation modes
exist:

• TH mode corresponds to the in-plane transverse horizontal polar-
ization.

• Lamb modes originate from the coupling of longitudinal and trans-
verse vertical polarizations. The mechanism is similar to Rayleigh
wave generation at one interface. However, in the case of thin
plates, the two interfaces air-solid and solid-air are separated by
a short distance. This configuration induces a coupling between
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the two Rayleigh waves of each interface and creates the different
Lamb modes.

At low frequency, only two cut-off free Lamb modes can propa-
gate. The S0 mode or symmetric mode is mostly in-plane and present
very small vertical displacement. The A0 mode or anti-symmetric
mode is mainly out of plane and correspond to the flexural waves
with important vertical displacement. In the low frequency approx-
imation, Kirchhoff-Love theory of plates can be used to calculate
flexural wave propagation [Royer and Dieulesaint (1996)]. Flexural
wave propagation is obtained with a fourth order scalar equation on
vertical displacement w called bi-harmonic equation (3.3).

D

ρh
∆2w +

δ2w

δt2
= 0 (3.3)

Flexural rigidity D is given by D = Eh3

12(1−ν2) with Young’s modulus

E, thickness h and Poisson’s ratio ν. For harmonic excitation, we
can define the following dispersion relation between pulsation ω and
wave vector k

ω =

√
D

ρh
k2 (3.4)

This quadratic behavior at low frequency is typical for the flexural
wave in thin plates.

3.4.2. Negative refraction based on anisotropy

In the previous sections, we studied how negative effective index of
refraction can be obtained in the second band of periodic structures.
This paragraph will focus on negative refraction in the first band
of highly anisotropic crystals. The anisotropy obtained from circular
inclusions in a square lattice can be appreciated in Fig. 3.7. One
dimensional arrangement are represented through different angle,
normal to the lattice or in diagonal. The filling fraction obtained
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Fig. 3.7. Anisotropy of the square lattice with circular inclusion. Two cuts shows
the filling fraction difference.

Fig. 3.8. (a) Black solid line, dispersion relation of flexural waves in a square
lattice of cylindrical holes in a 1 mm thick duraluminium plate. The lattice con-
stant is 15 mm and hole diameter is 12 mm. This dispersion is obtained by 3D
finite element method. Dotted line, beam lattice analytic model valid for the first
band calculation (red dotted line). (b) Equifrequency contour in the first band,
each line represent a 1 kHz step, the first Brillouin zone is represented in dotted
line, from [Dubois et al. (2013)].

are 50% for the normal incidence and 35% in the diagonal. As a con-
sequence, the response of the crystal will be anisotropic and band
gap frequencies will depend on the direction of propagation.

The Figure 3.8(a) presents the dispersion relation of flexural
waves propagating in a square lattice of cylindrical holes in a 1 mm
thick duraluminium plate. The lattice constant is 15 mm and hole
diameter is 12 mm. Two different methods are used to calculate the
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dispersion relation. Finite Element Method is plotted in solid lines,
this three dimensional model account for any displacement. The dis-
persion relation represented in dotted lines is obtained with a beam
lattice model where the entire lattice is built from crossing straight
beams creating square inclusions. This analytic model is based on
Euler-Bernoulli beam theory and accounts for the vertical displace-
ment only. It is valid for the first band of the dispersion relation while
wavelength is large compare to the inclusions [Farhat et al. (2010);
Dubois et al. (2013)].

Equifrequency contour are presented in Figure 3.8(b). For fre-
quency below 8 kHz, these contours are circles centered around the
point Γ, origin of the Brillouin zone. As the normal to the contour
is outgoing, this crystal behaves like a isotropic positive index mate-
rial. After 8 kHz, there is a bandgap in the direction ΓX. However,
because of the lattice anisotropy, the propagation is still allowed
along ΓM . Consequently, the equifrequency contour are now wrapped
around the M point of the Brillouin zone with a normal pointing
toward the M point. This property can be exploited to observe nega-
tive refraction. As presented in Figure 3.9, a 45◦ rotation of the unit
cell is required to align the M point with slab normal incidence. For
10 kHz incidence, the group velocity points inside the cell reproduc-
ing Veselago’s initial design. Negative refraction is obtained but the
effective index of refraction remains positive as the relation �Vg.�k > 0
is satisfied.

This negative refraction effect in the first band of anisotropic
crystals has been used in experimental demonstrations for photonic
crystals [Cubukcu et al. (2003)], phononic crystals [Zhang and Liu
(2004)] and for water wave crystals [Hu et al. (2004)].

3.4.3. Index matching with thickness variation

Flat lens focusing is achievable with this structure, but we can
observe from Figure 3.9(b) that the equifrequency contours dimen-
sions are not matched and a small angle portion is collected by
the lens. As mentioned in previous section, it is necessary to adapt
the index of refraction in order to increase the focusing performance.
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Fig. 3.9. (a) Refraction ray tracing at 10 kHz for normal incidence. Equifre-
quency contour of the host plain plate and crystal are scaled. (b) Ray tracing
obtained at the same frequency once the unit cells of the crystal are rotated by 45◦.

The specificity of flexural waves in thin plate allow us to use the
thickness of the plate in order to adapt these index of refraction.
In the low frequency regime, Kirchhoff-Love theory’s provides an
analytic expression of the flexural wave dispersion relation (3.5).

ω =
cP√
12
hk2 (3.5)

with cP =
√

E
ρ(1−ν2) , E the Young’s modulus, ρ the density, h the

thickness and ν the Poisson’s ratio. This equation can be used in
order to define the flexural waves phase velocity (3.6).

vφ =
ω

k
= 4

√
Eh2ω2

12ρ(1 − ν2)
(3.6)
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Fig. 3.10. (a) Equifreqncy contour reduction for different thicknesses. Each are
taken at 10 kHz frequency. (b) Sketch of the two machined duraluminium plates.
Top, constant 1 mm thickness. Bottom, the thickness profile is 2 mm outside of
the crystal and 1 mm inside.

Consequently, increasing the thickness of a plate is equivalent to
reduce the size of the equifrequency contour. Figure 3.10(a) presents
the evolution of 10 kHz equifrequency contour of the host plate for
increasing thickness.

As the equifrequency contour is reduced by increasing thickness,
the wavelength of flexural waves is modified accordingly. If the thick-
ness of the host plate is multiply by a factor four, the wavelength is
doubled. Large wavelength will be hard to machined as they required
larger plates (more than a meter square at 10 kHz). For this reason,
we use the plates presented in Figure 3.10, where a 2 mm thick plate
is reduced to 1 mm in the crystal area.

3.4.4. Experimental demonstration of flexural

wave focusing

Duraluminium alloy is chosen as it presents a low loss factor,
η = 0.0001 at kHz frequencies. Two samples are machined in 500
mm× 300 mm plates using computer aided manufacturing. The
phononic crystal represents a surface of 98 mm× 250 mm. One crys-
tal is drilled in a plate with constant thickness 1 mm. The other
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Fig. 3.11. Picture of the backside of the sample with varying thickness. The
piezoelectric patch is bound to the surface and used as a point source. Adhesive
paste covers the edge of the plates in order to reduce reflections. The sample is
supported by felt squares.

sample presented in Figure 3.11 is processed in a 2 mm thick plate
that has been milled to 1 mm in the crystal region.

A piezoelectric patch PKS2-4A1 Murata Shock Sensor is used
to generate flexural wave in our samples. The patch is bound to
the plate with Salol salt. Salol melting point is 41◦C, it returns to
crystalline phase when cool down. This crystallization is used to cre-
ate a solid bind between the piezoelectric patch and the plate. The
sample edges are covered with 2 cm wide adhesive paste in order to
reduce reflection from the boundaries. This reduction is about 3 dB

at 10 kHz frequencies. A gaussian pulse S(t) = sin(2πf0t)e
− (t−t0)2

2σ2

centered at frequency f0 with standard deviation σ is numerically
produced and transmitted to the piezoelectric patch with a digital-
to-analog converter Agilent U2542A (500kS/s). The analog input is
amplified by a large band amplificator ProSystem US300 and sent
to the piezoelectric element. Flexural waves are imaged with a Laser
Doppler vibrometer OFV505 Polytec. A continuous monochromatic
Laser is shined onto the sample. When the sample presents vertical
motion, the reflected light frequency will shift due to Doppler effect.
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Fig. 3.12. Snapshots of amplitude of normal displacement velocity at t = 780 µs.
Each map is measured or simulated with the thickness modified plate. The first
map is measured for a pulse centered at 5 kHz and the two lasts are for pulse
centered at 10 kHz. Black dots depict the the position of the point source.

A Mach-Zender interferometer is used to measure the Doppler shift
and thus extract the vertical displacement at the observation point.
This device uses a single photodiode allowing measurement of time
dependent vertical displacement upto several hundred kHz. A point
by point scan of the vertical displacement velocity is realized over
the sample. The scan covers an area of 440 mm× 260 mm with 2 mm
spatial sampling. Ten measurements are averaged on each point in
order to increase the signal to noise ratio.

Figure 3.12 presents snapshots of the amplitude of normal dis-
placement velocity at t = 780 µs for the sample where the thickness of
the plate has been modified. The top map gives experimental results
for a gaussian pulse centered at f0 = 5 kHz and σ = 1.5 kHz. The
map in the center presents the same map for a pulse centered at at
f0 = 10 kHz and σ = 2.1 kHz. The map in the bottom shows FDTD
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simulation results for the 10 kHz pulse. The black dots denote the
position of the piezoelectric point source.

The top map does not show any focusing effect as expected from
the equifrequency contour study. Below 8 kHz, equifrequency contour
are circles centered around Γ such that the index of refraction remains
positive. The experiment confirms this theory as we can observe
cylindrical wavefronts going through the crystal without complex
interaction with the structure. However this behavior is drastically
modified for frequencies above 8 kHz. For a pulse centered at 10 kHz
a bright focus point is observed on the other side of the phononic
crystal. This experiment is the first demonstration of flexural waves
focusing with negative refraction [Dubois et al. (2013)].

The Figure 3.13 presents the transverse cut made from the focus
at t = 830 µs. This representation is used to measure the transverse
dimension of the focal point and extract the transverse resolution

Fig. 3.13. Lateral cut of amplitude of normal displacement velocity at t = 830 µs.
The horizontal axis is normalized by the wavelength. The experimental results
from the constant thickness plate are presented in orange circle line. The experi-
mental results from the varying thickness sample are plotted in purple square line.
The FDTD simulation of the varying thickness plate are shown in black dotted
line. The lateral resolution is calculated from the full width at half maximum of
the focus point. From [Dubois et al. (2013)]
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achieved by the lens. The horizontal axis is normalized by the wave-
length at 10 kHz, λ (2 mm) = 44.6 mm and λ (1 mm) = 31.6 mm
in Duraluminium plate. The figure presents results obtained for the
phononic crystal with index matching (purple square line) and for the
phononic crystal with a 1 mm constant thickness (orange circle line).
The dotted line show results from FDTD simulation in the index
matching case. One can observe an important reduction of the focal
spot lateral size thanks to the thickness adaptation. The only draw-
back observe is a small reduction of the maximum amplitude focused
that reduces from 36% to 27%. Nonetheless, this amplitude decrease
is negligible considering the improvement of the lateral resolution
from 1.05λ to 0.59λ. This work is a clear experimental demonstra-
tion of flexural wave index matching through thickness modification
[Dubois et al. (2013)].

3.5. Superlens in Time Domain

As mentioned in the introduction, the main benefit of flat lenses
is the super resolution effect. Indeed, the flat lens is able to focus
the propagative information but also restores the evanescent field
emanated from a point source. If the focusing of the propagative
part can be represented with simple ray tracing, the amplification
of evanescent field is a consequence of the existence of sharp reso-
nances inside the lens [Gómez-Santos (2003); Wee and Pendry (2011);
Ambati et al. (2007)]. The inevitable presence of loss in any system
brings several challenges that need to be addressed in order to exper-
imentally observed the superlensing effect. As a direct consequence,
source plane and image plane have to be located in the near field
of the structure as the evanescent field cannot be fully restored due
to limited amplification in the lens [Fang et al. (2005); Sukhovich
et al. (2009)]. Another restriction appears in the time scale of this
super focusing effect. The amplification of evanescent information
requires high quality factor resonances. Thus, the field associated
with this resonance is extremely well confined within the lens and it
will be difficult to excite these resonance with a point source located
outside of the lens. This inefficient coupling between the source and
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the resonances in the lens will introduce a transient regime which
duration scales with the quality factor of the resonances [Gómez-
Santos (2003); Wee and Pendry (2011); Archambault et al. (2012)].
It has been shown numerically that the super resolution needs a cer-
tain transient time before being observe [Archambault et al. (2012)]
and the fundamental resolution limit can be obtained by comparing
the loss rate to the transient dynamics of the lens.

3.5.1. Time-resolved experiments

Experimental investigation of this time dependent resolution are
challenging at optical frequencies because time scale is on the order of
picosecond. On the other hand, time-resolved experiments for acous-
tics or elastic waves are commonly carried out as ultrasonic frequen-
cies do not required ultrafast electronics. The flat lens for flexural
waves presented in the previous sections represents an appropriate
opportunity to explore this lensing dynamics. Unlike previous experi-
mental studies restricted to narrow band excitation, our experimental
setup enables pulsed excitation and time resolved measurement of the
focal spot obtained [Dubois et al. (2015)]. The snapshot represented
in Figure 3.12 corresponds to the time when the amplitude at the
focal spot is maximum. However, it may not correspond to the time
when the resolution is maximum.

Figure 3.14(a) presents the lateral dimension of the focal spot
in function of time for two gaussian pulses centered at 9 kHz and
10 kHz with equal standard deviation σ = 2.1 kHz. These curves
are extracted from the temporal evolution of the focal spot observed
frame by frame. The trend of both curves confirm the reduction of the
focal spot size with time. The horizontal black dotted line represents
the diffraction limit 0.5λ. For the pulse centered at 9 kHz, the lateral
resolution becomes smaller than the diffraction limit with a minimum
of 0.35λ at t = 1150 µs. This first result experimentally demonstrates
that the resolution of a flat lens improves with time for pulse excita-
tion. Figure 3.14(b) shows the equifrequency contours of the crystal
and the host plate. Brace brackets represent the width of each pulses.
One can observe that the 9 kHz gaussian pulse excites contours with
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Fig. 3.14. (a) Lateral resolution in function of time. Red curves correspond to
10 kHz centered gaussian pulse, experiments with solid line and FDTD numerical
results with open circles. Blue curves correspond to 9 kHz pulse, respectively.
The horizontal black dotted line represents the diffraction limit 0.5λ. (b) Equifre-
quency contour of the square lattice and the host plate. Brace brackets represent
the width of each pulses.

larger transverse wavevector, leading to a better resolution in the
focal plane. Nonetheless, the equifrequency contour representing the
dispersion of an infinite square lattice fails to predict the super res-
olution observed for this 9 kHz pulse excitation. It is mandatory to
observe the field inside the lens and identify the resonance of the
finite system.

Figure 3.15 presents measured and simulated intensity snapshots
for the gaussian pulse centered at 9 kHz at t = 800 µs when the
focal spot amplitude is maximum, and at t = 1150 µs when the
lateral resolution is maximum. The ability to scan the displacement
field inside the crystal is crucial in order to unravel the different
resonances of the finite size lens.

The decay of the intensity inside the lens is used to investigate the
resonances present in the lens. Figure 3.16(a) presents the average
vertical displacement velocity in the lens in function of time. The
red dotted line represents the duration of the pulse used to excite the
lens. The persistent linear tail observed after the end of the pulse is a
clear indication of resonances existence in the medium. Figure 3.16(b)
represents the Fourier transform of the vertical displacement velocity
averaged over the lens surface. Several resonances can be spotted
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Fig. 3.15. (a) Snapshot of experimental normalized intensity of vertical dis-
placement velocity at t = 800 µs for the gaussian pulse centered at 9 kHz.
(b) Experimental intensity at t = 1150 µs. (c) Numerical intensity at t = 800 µs.
(d) Numerical intensity at t = 1150 µs. Blue dots are located at the source
position. The intensity inside the crystal is divided by a factor 9 to avoid the
colorscale saturation. From [Dubois et al. (2015)]

Fig. 3.16. (a) Decay of the intensity inside the lens in logarithmic scale. The
red dotted line represents the duration of the pulse used to excite the lens. (b)
Spectral amplitude spatially averaged over the lens. The red dotted line represents
also the spectral width of the pulse used to excite the lens.
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in this spectrum. However, due to the large density of peaks, it is
impossible to resolve these resonance and extract information.

3.5.2. Spatial Fourier transform

Resonances are described by one eigenfrequency and one eigenvector
associated to the spatial distribution of the field. We have seen in
Figure 3.16 that it is impossible to resolved the frequency spectrum
observed in our lens because of the high peak density. In order to
address this issue, we perform the Fourier transform over the spatial
variables and resolve the different resonances in the reciprocal space.
Such analysis has been carried out previously [Engelen et al. (2007);
Veres et al. (2012); Otsuka et al. (2013)] in order to experimen-
tally observed the equifrequency contour of photonic and phononic
crystals.

Figure 3.17 presents the reciprocal space obtained at t = 1176
µs after the spatial Fourier transform. The white dotted circle at the
center of the map shows the equifrequency contours of the 2 mm thick
host plate for 9 kHz frequency. The equifreqency of the phononic
crystal for the frequency 8.5 kHz and 10.5 kHz are superposed to
the reciprocal space. These two contours are centered around the
M point of the first Brillouin zone. Figure 3.17 shows two differ-
ent reciprocal spaces, one obtained from the entire real space and
another one extracted from the lens space only. The entire signal
processing based on Fourier transform is a linear process such that
by cropping the real space, it is possible to observe the eigenvectors
present in the lens. As expected, these resonance are located on top
of the corresponding equifrequency contour, each spot corresponding
to a specific resonance of the finite lens. Unlike the Fourier trans-
form over the time variable, these different spots obtained by spatial
decomposition are well resolved. Therefore, we can filter them out
individually to determine the contribution of each of these resonances
to the lateral resolution.

Figure 3.18(a) depicts the locations of the different resonances.
Due to the four fold symmetry, 7 resonances are identified in the
upper right corner of the reciprocal space. Again, the white dotted
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Fig. 3.17. Spatial Fourier transform processing applied to experimental measure-
ment at t = 1176 µs for the 9 kHz pulse excitation. On the left are represented the
different signals used in the real space. The right hand side presents the reciprocal
space obtained for each map. The white dotted lines represents the equifrequency
contours at 9 kHz for the 2 mm host plate and at 8.5 kHz and 10.5 kHz for the
phononic crystal.

circle represents the equifrequency contour of 2-mm-thick the host
plate at 9 kHz. Depending on the magnitude of the transverse compo-
nent of the wavevectors, it is possible to sort the different resonances
into two categories. If the resonance spot can be horizontally pro-
jected to the circle, the field associated with this resonance will be
able to propagate in the host medium. These resonances are labeled
P1,2,3,4 for “propagating”. On the other hand, the resonances labeled
E1,2,3 are located above the circle. Therefore, the field radiated by
these modes will be evanescent in the host plate. Figure 3.18(b)
shows the real space distribution associated with each resonance. It is
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Fig. 3.18. (a) Snapshot of the reciprocal space at t = 1176 µs. The white dotted
circle represents the equifrequency contour of 2-mm-thick the host plate at 9 kHz.
The two horizontal lines represents the limit between propagating and evanescent
resonance. Seven resonances are spotted, 4 in the propagating region P1,2,3,4 and
three in the evanescent counterpart E1,2,3. (b) Real space representation of the
normalized amplitude of the field distribution associated with each resonance.
(c) Table indicating the eigenfrequencies of each resonance. The batch frequency
correspond to the central frequency of the narrow band excitation used in the
FDTD simulations.

obtained by isolating the resonance spot and apply the inverse spa-
tial Fourier transform. The filtering act as a low pass filter, such that
the field inside the holes is interpolated. The table in Figure 3.18(c)
presents the eigenfrequency of each of these resonance. These fre-
quencies are obtained by numerical simulations with narrow band
pulses, σ = 0.7 kHz against σ = 2.1 kHz in the original experiment.
Perfect absorbing boundaries are set in numerical experiment in order
to extract these eigenfrequencies.
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Fig. 3.19. Snapshots of the reciprocal space at times 250 µs, 500 µs, 850 µs, and
1176 µs. The horizontal dotted lines in the snapshot t = 1176 µs represents the
conservation of the transverse component of the wavevector when the field goes
from the lens to the exterior host medium.

As the different resonances existing in the lens are identified,
we can relate the field radiated by the lens to these resonances
and understand the time-dependent behavior of the focal spot.
Figure 3.19 presents four snapshots of the reciprocal space obtained
at four different times. The first two at t = 250 µs and t = 500 µs
are taken while the pulse source is emitted. As all the wave vectors
are emitted by the point source, the reciprocal space do not present
the different spots shown previously. However, once the emission
is stopped at t = 850 µs, only the wavevectors corresponding to
the resonances are maintained in the structure. Thus, we can apply
the Snell’s law in order to extract the field radiated by each reso-
nance. When the field radiated by the resonance crosses the interface
between the lens and the host medium, we observe the horizontal
projection of the wavevectors from the crystal equifrequency contour
(centered around the M point) to the equifrequency contour of the
host medium (inner circle centered in Γ point). This projection, cor-
responding to the conservation of the transverse component of the
wavevector, is depicted by horizontal dotted line on the snapshot
at t = 1176 µs. Therefore, we can isolate the field radiated by the
different resonances and observe the spatial distribution in the real
space with the inverse transformation method. This filtering can be
done frame by frame in order to obtain the amplitude and phase of
the radiated fields in function of time.
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Fig. 3.20. (a) Amplitude of the field radiated by each resonance in function of
time. The amplitude is taken at the center of the focal spot. (b) Lateral cut at
the focal point of the field radiated by each resonance at t = 1176 µs. Only the
“propagating” resonances P1,2,3,4 are shown. (c) Lateral cut of the field at the
focal point at t = 1176 µs. The original signal without processing is plotted in
solid red curve. The sum of the “propagating” contributions is plotted in marked
blue line. The focusing Rayleigh limit at 9 kHz in a 2 mm thick plate is presented
in black dotted line.

Figure 3.20(a) shows the amplitude of the field radiated by each
resonance in function of time. This amplitude is recorded at the
focal spot frame by frame. Surprisingly, the contribution form the
evanescent resonances E1,2,3 is negligible even at time t = 1176 µs
when the superfocusing is observed. Figure 3.20(b) presents the lat-
eral cut at the focal point of the fields radiated by the “propagat-
ing” resonances P1,2,3,4 at the time t = 1176 µs. Contrary to the
classic image construction through a classic lens, here the different
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contributions are not in phase and have different amplitudes resulting
in a complex interference pattern. This interference pattern is pre-
sented in Figure 3.20(c) at time t= 1176 µs. The solid red line shows
the lateral cut of the focal spot without signal processing. The
marked blue line presents the profile obtained by coherently adding
the four contributions presented in Figure 3.20(b). The cardinal sine
function in black dots represents the focusing Rayleigh limit. One can
observe that the lateral profile of the focal spot is obtained without
any evanescent field radiated by the lens. This result goes against the
previous studies where the evanescent contribution is responsible for
the superfocusing effect [Luo et al. (2003); Sukhovich et al. (2009)].

3.5.3. Superfocusing without evanescent waves

In 1990, Yakir Aharonov and his colleagues demonstrated that a
mathematical function can present features that oscillate faster than
their higher Fourier component [Aharonov et al. (1990)]. These func-
tions are called superoscillations. Michael Berry and Sandu Popescu
demonstrated that these functions can be obtained form plane wave
interference. A suitable grating might lead to subwavelength field
oscillation without the need of evanescent waves [Berry and Popescu
(2006)]. Pioneering studies from Giuliano Torraldo di Francia [Fran-
cia (1952)] are further explored by Nikolay Zheludev and colleagues
and lead to the experimental demonstration of superoscillations of
light waves obtained in the far field of a quasi-crystalline lattice
of holes [Huang et al. (2007)]. In the introduction of the previous
article, authors proposed a simple scheme to obtain a superoscil-
latory function out of the coherent sum of six sinusoidal harmon-
ics: f(x) =

∑5
n=0 an cos(2πnx) with coefficients an such as a0 = 1,

a1 = 13295 000, a2 = −30 802 818, a3 = 26581 909, a4 = −10 836 909
and a5 = 1762 818. This simple function is able to create a cen-
tral spot that oscillates nine times faster than the higher harmonic
used. However, such performance is not achievable without a coun-
terpart, here the energy present inside this superoscillatory window
is extremely small. The subwavelength spot is surrounded by side
lobes which are seven orders of magnitude larger. The same team



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch03 page 159

Flat Lens Focusing of Flexural Waves in Thin Plate 159

Fig. 3.21. Principle scheme representing the link between the Fourier plane and
the lateral cut of the focal spot obtained in real space. The complex amplitude
of the different components are presented on the top line. The center line presents
the field distribution in the focal plane for the different case. The bottom line
present the size of central spot by normalizing the different amplitude at the
center.

demonstrated later that for less arbitrary fast features, the contrast
with the side lobes can be reduced [Rogers et al. (2012)].

The Figure 3.21 presents different case where the amplitude and
phase of the different components used in the construction of a focal
spot can lead to different focal profile. Figure 3.21(a) presents the
classic lens scheme where all the different component have the same
phase and the same amplitude. In the Fourier plane, this situa-
tion correspond to a low pass filter or a gate function. The focal
spot obtained by this a configuration is the well known cardinal
sine function that leads to the diffraction limit. The other config-
urations show how the profile of the focal spot can be affected by
the modifications in the Fourier plane. Figure 3.21(b) shows that
you can already create a subwavelength spot by weighting carefully
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the different components. The Figure 3.21(c) presents the most
extreme case where only the largest transverse wavector is filtered.
The spatial details are smaller than the cardinal sine function but
the contrast is zero. The superoscillation behavior can be observed
in the Figure 3.21(d) where the amplitude of the different compo-
nents can access negative values, meaning that the different compo-
nents are no longer in phase. In this specific case, the central spot
can present oscillations faster than the cosine function presented in
Figure 3.21(c). As discussed before, the counterpart of such extreme
behavior is a negative contrast where the amplitude of the side lobes
is larger than the amplitude at the central spot. This paragraph
describes an intuitive approach to the superoscillation behavior in
the wave lensing effect. Studies have explored superoscillations in a
mathematical framework and unraveled the fundamental concepts
associated [Kempf (2000); Calder and Kempf (2005)].

3.5.4. Time-driven superoscillations

We demonstrated previously that only the propagating field ema-
nating from our phononic flat lens is involved in the creation of the
focal spot. These four components can be described by four sinusoidal
functions in the focal plane of the lens, the lateral profile f(y) can
be described as

f(y) =
4∑

i=1

ai cos(ky(Pi).y) (3.7)

with ai the complex amplitude associated with each component. The
Figure 3.22 presents these complex coefficients in phasor diagram.
This representation gives a simultaneous access to the amplitude, the
phase and the frequency of each coefficient. Three phasors are pre-
sented in the Figure 3.22, they correspond to three different regime
of focusing:

• at t = 718 µs when the spot appears
• at t = 882 µs when the diffraction limit is reached
• at t = 1176 µs when the focal spot is subwavelength.
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Fig. 3.22. Top, Amplitude and phase of the fields radiated by each propagating
resonance Pi for three different times t = 718 µs, t = 882 µs and t = 1176 µs.
Bottom, Complex coefficients ai presented in histograms. Coefficient are obtained
by vertical projection of the phasor vectors.

The vertical projection of the phasor vectors leads to the complex
coefficients ai for the three different times selected. As showed in the
phasor at time t = 1176 µs, it is possible to understand the subwave-
length focusing as the coefficient associated with the low transverse
wavevector P1 becomes out of phase with the other contributions.
This negative coefficient results in a superoscillation pattern in the
focal plane of the lens explaining the superfocusing without the pres-
ence of evanescent information. More than this observation, the value
of these coefficients in function of time can explain in details the time
dependent behavior of the focal spot.

By measuring the value of the transverse wavevector component
of each resonance in the reciprocal space, we can reconstruct analyt-
ically the pattern observed in the focal plane frame by frame with
the following function

f(y) =
4∑

i=1

ai cos(ky(Pi).y). (3.8)

with ai the complex coefficients, ky(P1) = 35.1 rad.m−1, ky(P2) =
74 rad.m−1, ky(P3) = 116 rad.m−1 and ky(P4) = 140.1 rad.m−1, the
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Fig. 3.23. Transverse profile of the field at the focal point at times t = 718
µs, t = 882 µs and t = 1176 µs. The red solid line is obtained from the raw
experimental data without processing. The blue line marked with circles shows
the contribution of the four propagating resonance excited in the lens. The grey
line marked with squares represents the profile obtained analytically from the
coefficients extracted previously. The cardinal sine function in dotted line shows
the theoretical diffraction limited focal spot. The bottom right quadrant presents
the lateral resolution relative to the diffraction limit and the contrast of the focal
point in function of time.

transverse wavevectors of the resonances. Figure 3.23 presents the
transverse profile of the field at the focal point at times t = 718 µs,
t = 882 µs and t = 1176 µs. The red solid line is obtained from
the raw experimental data without processing. The blue line marked
with circles shows the contribution of the four propagating resonance
excited in the lens. The grey line marked with squares represents the
profile obtained analytically from the coefficients extracted previ-
ously. The cardinal sine function in dotted line shows the theoretical
diffraction limited focal spot. The bottom right quadrant presents
the lateral resolution and the contrast of the focal point in function
of time.



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch03 page 163

Flat Lens Focusing of Flexural Waves in Thin Plate 163

First, the agreement between the calculated profile and the profile
observed experimentally confirms and validates the approach used to
describes the construction of the focal point through our phononic
lens. Secondly, this approach can be used to finally link the temporal
evolution of the lateral resolution to the different resonances excited
inside the lens.

The time t = 718 µs corresponds to the early manifestation of the
focal point. At this specific time, the contribution of the resonance P1

is predominant as showed in Figure 3.22. However, the resonance P1

corresponds to the lowest transverse wavevector. As a consequence
the focal spot observed at this time presents a low lateral resolution,
coarser than the actual diffraction limit.

As the point source fades above t = 850 µs, the amplitudes asso-
ciated to the different resonances start to even. As a result, the lateral
profile obtained at time t = 882 µs match the cardinal sine function
denoting the diffraction limit. Consequently, the relative resolution
represented in the bottom right corner crosses the zero line and the
contrast at the focal spot is maximum.

The extinction of the source signal affects both the amplitude and
the relative phase between resonances. The table presented in the
Figure 3.18(c) shows that each resonance possess a different eigen-
frequency. These eigenfrequencies correspond to different rotation
speeds of the vectors presented in Figure 3.22. As soon as the point
source vanishes, these vectors will rotate at their own rotation speed.
Consequently, the phase between the different resonances is going
to evolve with time. At time t = 1176 µs, the contribution of P1

is negative as it is out of phase in regard to the other resonances.
The lateral profile obtained in the focal plane can be described as
a superoscillation and present subwavelength features. The negative
value of the contrast at this specific time is the direct aftermath to
this superoscillation behavior.

This spontaneous organization of the field radiated by the reso-
nances of the lens into a superoscillation behavior is an unexpected
result [Dubois et al. (2015)] as recent studies insist on the extreme
care of the amplitude and phase of the different wavevectors [Wong
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and Eleftheriades (2013); Rogers and Zheludev (2013)]. However, the
exhaustive study of the finite lens resonance help us to identify their
role in the focusing process. This study addresses fundamental issue
of dynamics in anisotropic and dispersive system. The next para-
graph will show that this self organization due to time-dependent
excitation leads to a better resolution independently from the central
frequency of the pulse or the source position.

3.5.5. Time-domain resolution improvement

In this section, we want to show that even if the temporal evolu-
tion of the system does not always lead to superfocusing or super-
oscillation, a significant improvement of the resolution is observed
between monochromatic and pulsed regime. As mentioned previ-
ously, the experimental measurement of the monochromatic response
is hindered by the presence of partial reflections at the boundaries of
the sample. Nonetheless, we have shown that the Finite Difference
Time Domain simulations can reproduce accurately the experimen-
tal observations and allow the implementation of perfectly absorbing
boundaries. The goal of this section is to compare the resolution
obtained with our phononic flat lens for monochromatic and pulsed
source at different carrier frequencies.

Figure 3.24 presents the two source signals used for this demon-
stration. Results are presented for five different carrier frequencies,
f0 = 8 kHz, 8.5 kHz, 9 kHz, 9.5 kHz and 10 kHz. The gaussian
pulses represented in dotted black have the same standard deviation
σ = 2.1 kHz. The monochromatic signal represented in solid grey
starts with a half of a gaussian envelope but the amplitude stay
constant once the maximum value is reached. These two envelopes
are kept identical through all the simulations, we vary the carrier
frequency of the sinusoidal part of the signal. For every frequency
used, the pulse signal leads to a significant better resolution than
the stationary resolution observed with the monochromatic signals.
In the next figure we are going to compare the properties of the
reciprocal space for monochromatic and pulsed excitation.
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Fig. 3.24. Top left corner, representation of the two different excitation used
in the different simulations. The dotted black line represents the gaussian pulse
with a standard deviation of σ = 2.1 kHz. The grey solid line represent the
monochromatic source signal. Lateral resolution in function of time is pre-
sented for the five different carrier frequency for both monochromatic and pulsed
excitation.

Figure 3.25 presents the reciprocal space associated with the
two different excitation for the carrier frequency f0 = 9 kHz. The
snapshots are taken at time t = 1190 µs for the pulsed excita-
tion (maximum lateral resolution) and at time t = 1660 µs for the
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Fig. 3.25. Snapshots of the reciprocal space for the pulse and monochromatic
excitation for the frequency f0 = 9 kHz. The phasors and the complex coefficients
associated with each propagating resonance are also represented.

monochromatic excitation when the profile is stationary. We first
realize that the monochromatic excitation does not imply that a
single mode is excited in the lens. The same resonances will be excited
inside the lens since their quality factor is low. Secondly, the phasors
associated with both excitation present the amplitude and phase of
the fields radiated by each propagating resonance. As explained pre-
viously, the pulsed excitation allows the amplitude and phase of the
different resonances to evolve with time and improves the lateral
resolution. In the case of the monochromatic excitation, after a tran-
sient regime, these amplitudes and phases remain stationary since
the lens is continuously driven at the frequency of the monochro-
matic source. This property does not depend strongly on the car-
rier frequency since all the simulations presented in the Figure 3.24
confirm an improvement of the lateral resolution for pulsed
excitation.
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Fig. 3.26. Snapshots of the amplitude of the normal displacement velocity at
time t = 450 µs during the emission of the signal source and at time t = 1190
µs during the focusing process. Point source is located at a distance L/6, L/3
and L/2 from the left side of the lens, where L = 98 mm represents the width of
the lens.

3.5.6. Influence of the source location

This last section is dedicated to the influence of the location of the
point source. We have seen in the introduction that the superfocusing
demonstration in a real experiment requires the point source to be in
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the near field of the lens since the evanescent field is involved in the
superresolution obtained. As presented previously, the subwavelength
focusing observe in our phononic crystal lens is based on superoscilla-
tion behavior and does not involve evanescent information emitting
from the point source. The Figure 3.26 presents snapshots of the
amplitude of the vertical displacement velocity for a point source
located at a distance L/6, L/3 and L/2 form the left edge of the
lens, where L = 98 mm represents the width of the lens. The gaus-
sian pulse centered in f0 = 9 kHz with σ = 2.1 kHz is used in the
three different simulations. Snapshots are taken at time t = 450 µs
during the emission of the signal source and at time t = 1190µs when
the focal point is subwavelength.

The original experiment was using a point source located at a
distance L/6 form the edge of the lens. One can observe that the focal
point remains sharp as the point source is moved away from the near
field of the lens (L/2 is equivalent to one wavelength at f0 = 9 kHz
in a 2-mm-thick duraluminium plate). This numerical experiment
confirms that the initial location of the source does not deteriorate
the spontaneous construction of the superoscillation pattern in the
focal plane of the lens.

3.6. Conclusions

In summary, we have first theoretically explored the negative refrac-
tion in periodic structures and review pioneer experimental demon-
strations in electromagnetics and in acoustics. We have demonstrated
that such notions could also be applied to flexural waves in thin
plates. This is an important first step towards the generalization of
these concepts to elastodynamics which involves more complex ana-
lytic treatment as many polarizations coexist. After demonstrating
the flat lens focusing of flexural waves, we studied the dynamic behav-
ior of this flat lens. Along with previous theoretical and numerical
efforts, this first experimental study in the time domain confirms
that the subwavelength resolution builds up over time due to the
interplay of multiple resonance inside the lens. Finally, the analysis
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of these discrete resonances in the reciprocal space has shown that
the resolution observed was the result of a spontaneous organization
of the radiated fields in a superoscillatory function. Although, this
effect tends to reduce the contrast at the focal point, it presents sev-
eral benefits as the evanescent fields are not required to focus waves
down to the subwavelength regime. We believe this work provides a
new perspective for the design of optimized Veselago flat lenses and
tailored superfocusing devices.
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CHAPTER 4

Space-time Cloaking
MARTIN W. McCALL∗

Imperial College London, UK
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4.1. Introduction: What is a Space-time Cloak?

It all seems like something out of Star Trek. A cloak in space and
time. Not just those working in the new science of metamaterials,
but a much wider general audience have virtually all heard some-
thing about the idea of cloaking and invisibility as popularised by
J. K. Rowling in the Harry Potter novels. When wearing his cloak, the
aspiring wizard Harry cannot be seen. It is not merely that he is hid-
den from the light by which we would otherwise see him, such as if he
were to hide in a box, for example; light is cleverly refracted around
him so that the rays from all the objects behind Harry reach any
observer’s unsuspecting eyes just as if he wasn’t there (Fig. 4.1(a)).
Now imagine replacing the y-axis in Fig. 4.1(a) with time as shown
in Fig. 4.1(b). Light’s uniform speed in either vacuum or a uniform
medium mean that the ‘rays’ are now slanted. Distorting the rays
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Fig. 4.1. (a) A cloak in space. Optical rays are refracted around an object so that
an observer located to the far right does not see the object. (b) A cloak in space-
time that conceals events near the spacetime origin. The intensity distribution
for various times is shown on the right indicating the formation and subsequent
evaporation of the intensity null that is fully developed at t = 0. The observer
to the right never suspects the occurrence of any non-radiating events near the
spacetime origin and sees a uniform intensity for all time. The vertical dashed
line represents the world line of an object whose visible history is temporally
redacted. Figure 1 from Ref. 1 c© IOP Publishing. Reproduced with permission.
All rights reserved.

as shown results in a neighbourhood of the spacetime origin being
unvisited by any of the rays. Since points in a spacetime diagram
refer to events, the schematic depiction of Fig. 4.1(b) is of a cloak
that conceals happenings or events. By reconstituting the rays to
their parallel undistorted form, a downstream observer at x = a

does not suspect the occurrence of any events that occur at or dur-
ing the cloak’s operation. For such an observer the concealed events
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are edited out of their version of observed history. Figuratively, the
operation of an event cloak allows a safecracker to enter a scene,
open a safe and steal the contents, and exit the scene (being careful
to close the safe before he leaves!) whilst a surveying cctv camera all
the while records the safe as being closed.

The remarkable thing about the new science of metamaterials
is that methods now exist to transform these delightful, if rather
fanciful concepts, into reality. The underpinning concept is that of
Transformation Optics, a method that delivers a theoretical recipe
for any cloak design. The spatial cloak, after being proposed in
2006 by Pendry et al.2 and Leonhardt3, 4 was first demonstrated by
Schurig et al.5 A 2-D object of about 6 cm diameter was cloaked
at microwave frequencies (λ0 = 4cm). Since that paper there have
been several improvements in the experimental realization of various
spatial cloaks.6–14 The event cloak, or spacetime cloak, was first pro-
posed theoretically by McCall et al. in 2011.1 Its first experimental
realization was demonstrated by Fridman et al. a few months later.15

Experimental demonstration of these concepts brings applica-
tions to closer realization. Hiding objects in space has obvious
attractions for the military, whilst event cloaking opens up new
possibilities, including an important ‘interrupt-without-interrupt’
functionality, that may find application in optical signal processing.

In this chapter we will overview spacetime cloaking from its
conception, through to its experimental realization and beyond.
In Section 4.2 we describe the theory of electromagnetic cloaking in
general, showing how both spatial cloaking and spacetime cloaking
are brought within the same theoretical framework. In particular, we
show the close connection between spacetime cloaking and a mov-
ing dielectric medium. Then, in Sec. 4.3 we discuss how, remarkably
quickly, the abstract notion of a spacetime cloak was turned into
an experimental reality. In Sections 4.4.1, 4.4.2 and Sec. 4.4.3, we
discuss respectively the applications, illusions and implications of
spacetime cloaking. Beyond optics, in Sec. 4.5 we discuss how an
acoustic model can embrace spacetime transformations. Finally, in
Sec. 4.6 we conclude.
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Although the term ‘Temporal Cloaking’ has come to be associ-
ated with the concept introduced in Ref. 1, we, as originators of the
concept, still prefer the term ‘Space-Time Cloak’, as it captures more
precisely the nature of the cloaking operation it represents. Cloaking
in a single dimension (e.g. time) is topologically impossible, and any
concealment of events in time must necessarily be localized in space.

4.2. Transformation Optics

Transformation Optics is the recipe by which any space or space-
time distortion can be actualized in an electromagnetic medium. The
constitutive parameters of the medium are designed so that the field
vectors E,B,D and H are actually morphed by the prescribed dis-
tortion. When discussing general distortions that can include time as
well as space, it is convenient to use the indexed covariant form for
the electromagnetic constitutive relations:

Gαβ =
1
2
χαβµνFµν , (4.1)

where in Cartesian coordinates

Gαβ =




0 Dx Dy Dz

−Dx 0 Hz −Hy

−Dy −Hz 0 Hx

−Dz Hy −Hx 0


, and

Fαβ =




0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


. (4.2)

The index µ = 0 refers to the time component, while the remaining
three indices µ = 1, 2, 3 refer to the spatial dimensions, and the
Einstein summation convention is used. The fourth rank tensor χαβµν

contains the linear electromagnetic constitutive parameters of the
medium. The independent components of χ can be represented by
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the block form

χ =
( −ε0ε η−1

0 α

η−1
0 α† µ−1

0 µ−1

)
, (4.3)

where ε,µ−1 and α represent respectively the (relative) permittivity
tensor, the (inverse) permeability tensor and the magneto-electric
tensor. The symbol † in Eq. (4.3) indicates Hermitian conjugate,
and η0 = (µ0/ε0)1/2 is the vacuum impedance. For subsequent con-
venience we take the vacuum speed of light c = (ε0µ0)−1/2 = 1.
The indexing scheme for χαβµν can be adduced from comparing Eqs.
(4.1), (4.2) and (4.3). In an isotropic, non-magneto-electric medium
we would have, for example Dy = −χ0202Ey and Hz = χ1212Bz.
The block form of Eq. (4.3) allows the linear constitutive relations
between E,B,D and H to be written as(

D
H

)
=
( −ε0ε η−1

0 α

η−1
0 α† µ−1

0 µ−1

)(−E
B

)
. (4.4)

The apparently odd-looking appearance of the signs in Eq. (4.4)
arises from a combination of χαβµν effectively raising the covariant
indices of Fµν in Eq. (4.1), and the Minkowskii metric signature being
taken as − + ++. The symmetries of the constitutive tensor are16

χαβµν = χµναβ = χ−βαµν = −χαβνµ.
We can now state the Transformation Optics algorithm succinctly

and very generally. Suppose we have a medium (which might be
vacuum) characterized by χαβµν in which there exists the electro-
magnetic fields Gαβ , Fµν , at each spacetime point xγ . Under the
morphism ϕ : xγ → x̃ρ the electromagnetic field is similarly morphed
provided the medium is replaced by one described by

χ̃µνρλ = ∆−1ϕµ
αϕ

ν
βϕ

ρ
γϕ

λ
δχ

αβγδ , (4.5)

where ϕµ
α = ∂x̃µ/∂xα and ∆ = |det(φµ

α)|. Incidentally, the above
equation can also be interpreted as the prescription for expressing the
χ tensor in different local coordinate systems; between Cartesian and
polar coordinates for example. Under the morphism interpretation,
in which points in space or spacetime are relocated, Eq. (4.5) is the
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most general statement of Transformation Optics. For morphisms
of space that do not involve time it reproduces the transformation
optics that led to the spatial object cloak, for example. This arises
from the polar transformation on the disc r ≤ b

r→
(
1− a

b

)
r + a, θ → θ, z → z, (4.6)

This morphism bends linear paths around an origin-centred disc of
radius a (cf. Fig. 4.1(a)) and is thus the recipe for an electromag-
netic cloak. Taking χαβγδ to be vacuum it is straightforward to show
from Eq. (4.5) that in conventional notation the required recipe is in
(r, θ, z) coordinates

ε = µ =


1− a/r 0 0

0 (1− a/r)−1 0
0 0 (1− a/r)(1 − a/b)−2


, (4.7)

which was the basis for the design of the first experimental electro-
magnetic cloak made by Schurig et al. in 2006.5 Firstly, the coordi-
nate transformation interpretation of Eq. (4.5) is applied to express
the vacuum constitutive parameters in cylindrical polar coordinates.
Then, the polar cloaking morphism of (4.6) is applied using the mor-
phism interpretation of Eq. (4.5). The result is the material prescrip-
tion of Eq. (4.7). In the next section we will apply Eq. (4.5) to show
how a spacetime cloak can be designed.

4.2.1. The space-time cloak as an example

of transformation optics

Within the framework of transformation optics, consider the space–
time transformation (x, t) → (x̃, t̃) and restrict to light propagating
forwards along the x-axis. In Fig. 4.1(b) for example, a spacetime
transformation is carried out in the (x, t) plane that is analogous
to the spatial transformation carried out in the (x, y) plane of
Fig. 4.1(a). In contrast to the spatial cloak, where the direction of
propagation in the x–y plane is arbitrary, the vacuum light rays
must follow the straight lines x = ct + const. These rays are then
mapped under the transformation to the curved rays shown so that
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the events within the disc surrounding the origin are avoided by the
new rays. The new light trajectories are actualized when they prop-
agate through a suitable inhomogeneous time-dependent medium,
and will then curve around the event occurring at x = 0, t = 0. The
intensity along the x–axis for different times is shown on the right
of Fig. 4.1(b), indicating the formation of the intensity null that is
fully developed at t = 0. For later times the null closes up restoring a
uniform intensity distribution so that the observer at x = a records
a constant intensity for all time. All events in the (y, z) plane that
occur near (x = 0, t = 0) are concealed, so that effectively a space-
time corridor is opened along which non-radiating events, such as
the movement of matter, exchange of information etc., can occur
undetected.

While Fig. 4.1 highlights the conceptual similarity between spa-
tial and spacetime cloaking, it is schematic. Some rays in Fig. 4.1(b)
would be required to have a phase speed exceeding the vacuum speed
of light (e.g. ray A in the inset), and some rays very close to the
cloaked region (e.g. ray B) propagate backwards in time. Through
careful design, however, both of these shortcomings can be circum-
vented. Consider carrying out the coordinate transformation on a
space that is filled with a medium with uniform and identical permit-
tivity ε = nε0 and permeability µ = nµ0, rather than vacuum. The
medium then has a refractive index n = (εµ/ε0µ0)1/2 c=1−−→ (εµ)1/2,
and superluminance can be avoided provided n > 1 and the dynamic
modulation of the phase speed of light around its average value of 1/n
is not too large. One proposed spacetime transformation to achieve
this is shown in Fig. 4.2. Figure 4.2(b) shows a detailed calculation of
the resulting electromagnetic energy density in the medium defined
by the transformation. Unlike the cloak of Fig. 4.1(b), this spacetime
cloak only works for light travelling in the +x direction. An observer
to the left of the origin does see the cloaked events, though time sep-
arations between the cloaked events are first speeded up, then time
shifted, and then finally slowed down, before progression returns to
normal. The recipe does not compromise the forward action of the
spacetime cloak.
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Fig. 4.2. (a) Construction of a sub-luminal space–time cloak. As with Fig. 4.1(b)
the map (x, t) → (x′, t′) creates a void near the spacetime origin. However, the
base space is filled with a medium of refractive index n rather than vacuum,
so that prior to the transformation light rays are straight lines of gradient n.
The transformation is a composition of a Lorentz boost, a ‘hole-opening’ trans-
formation, followed by an inverse Lorentz transformation (see McCall et al.1 for
details). The deformed rays all have positive gradients (i.e. propagate forwards in
time) and have speed ≤ c. (b) Electromagnetic energy density for various times
for the map of (a). Figure taken from Ref. 20. c© IOP Publishing. Reproduced
by permission of IOP Publishing. All rights reserved.

4.2.2. The relationship between a space-time cloak

and a moving electromagnetic medium

A very simple example of a spacetime transformation is a
Lorentz transformation. Suppose the base medium is isotropic with
ε = µ = n, i.e.

χ =
(−nε0 0

0 (nµ0)−1

)
, (4.8)
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where is the 3-D identity. Setting such a medium in motion with
velocity v along the x-axis is equivalent to subjectingχ to the Lorentz
boost 


t̃

x̃

ỹ

z̃


 =



γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1





t

x

y

z


, (4.9)

where γ = (1 − v2)−1/2. In the notation required for Eq. (4.5) we
have ϕ0

0 = ϕ1
1 = γ, ϕ0

1 = ϕ1
0 = γv, ϕ2

2 = ϕ3
3 = 1, yielding after

straightforward calculation the block components of χ̃ as

ε =


n 0 0

0 ε⊥ 0
0 0 ε⊥


, µ−1 =


n−1 0 0

0 µ−1
⊥ 0

0 0 µ−1
⊥


,

α =


0 0 0

0 0 −α⊥
0 α⊥ 0


, (4.10)

where ε⊥ = n
[

1−v2/n2

1−v2

]
, µ−1

⊥ = n−1
[

1−n2v2

1−v2

]
and α⊥ = v

n

[
n2−1
1−v2

]
.

When Eq. (4.4) is recast as(
D
B

)
=
(−ε0 (ε+αµα†) αµ

−µα† µ0µ

)(−E
H

)
, (4.11)

it is found that for Eq. (4.10) that ε + αµα† = µ i.e. the equiv-
alent medium has identical dielectric and magnetic properties. It
is also seen that the equivalent medium is magneto-electric, which
in fact is always the case for any transformation that mixes space
and time. A meta-medium with constitutive parameters designed
according to Eq. (4.10) would emulate an electromagnetic medium
with refractive index n, moving with velocity v. Although such
non-reciprocal bi-anisotropic meta-media would be difficult to man-
ufacture, the possibility of such a medium has been studied by
Tretyakov17 who has shown that such media can be constructed from
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small magnetized ferrite spheres combined with planar-chiral metallic
inclusions.18

For a monochromatic plane wave travelling along the x-axis E =
E0 exp i(kx− ωt), the constitutive relations of Eqs. (4.10) and (4.4)
can be substituted into the Maxwell’s relations ∇ × E = iωB and
∇ × H = −iωD to find that the phase velocity vp = ω/k of light
travelling in the moving medium is given by

vp =
v + n−1

1 + n−1v
, (4.12)

which is just the relativistic velocity addition formula. In the absence
of dispersion this is also the group velocity of the propagating light.
The possibility of a longitudinal light velocity profile v(x) in a meta-
medium gives rise to the conceptualization of the spacetime cloak
illustrated in Fig. 4.3. If the equivalent medium speed is small (v �
c), then the speed of light along the direction of motion is just vp ≈
c/n+v and the medium velocity v can be used to modulate the speed
of light. Imagine initially that the medium is moving to the right in
the Lab frame with speed v so that the phase speed of light along +x
is c/n+ v. Now consider the situation from the medium’s rest frame
as shown in Figure 4.3(a) in which the light travels at phase speed
c/n. Viewed from the same frame, Figure 4.3(b) shows the situation
when the medium acquires a velocity profile in which the front part
of the medium moves with velocity vm, whilst the rear half moves
with velocity −vm. The leading part of the light is then sped up to
c/n+ vm, whilst the trailing part is slowed down to c/n− vm. In the
Lab frame these two velocities are c/n+v+vm and c/n+v−vm respec-
tively. A dark region then emerges at the mid-point and the cloak
is opened. When the velocity profile is reversed (Figure 4.3(c)), the
leading part is slowed down, whilst the trailing part sped up, and
the cloak is closed. From the Lab perspective, the mid-point, where
the cloak is opened and closed, moves at the medium’s average speed
v. Provided v < vp, then the light never travels ‘backwards’ in the
Lab frame. The reformed light contains no information about what
happened at the origin when the cloak was open. Any non-radiating
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Fig. 4.3. Relating the formation of a spacetime cloak to a moving medium. In
the Lab frame the medium moves to the right with speed v � c, so that the speed
of light in the +x direction is c/n + v0. The three sketches are drawn from the
viewpoint of an observer in the rest frame of the medium, where the nominal phase
speed of light is c/n. (a) medium rest frame (b) medium with outward velocity
profile (opening the cloak) (c) medium with inward velocity profile (closing the
cloak).

events, such as the movement of matter, exchange of information
etc. can occur undetected. It must be emphasised that the event
that occurs within the dark region opened by the cloak must be non-
radiating if it is to be hidden from the view of a distant observer.
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An ideal spacetime cloak therefore requires the construction of a
metamaterial that mimics propagation in a medium with a velocity
v(x, t). Near t = 0, the effective medium is arranged so that v(x, t)
is negative for x < 0 and positive for x > 0. The trailing and leading
parts of the light are thus respectively slowed down and sped up to
produce the required intermediate null.

Moreover, each of the parameters ε⊥, µ⊥ and α⊥ is required to
depend on both space (x) and time (t), the details depending on the
transformation t′(x, t), x′(x, t).

The magneto-electric parameter, α(x, t), in Eq. (4.11) arises
invariably whenever the transformation (x, t) → (x′, t′) mixes space
and time. This occurs, for example, when the base medium ε = µ = n

moves with velocity v. Then, by applying the Lorentz transformation
L0′

0 = L1′
1 = (1− v2)−1/2, L0′

1 = L1′
0 = v = (1− v2)−1/2, the constitu-

tive parameters of Eq. (4.10) are found to be

ε|| = ε, µ−1
|| = µ, ε⊥ = ε

[
1− v2/n2

1− v2

]
,

µ−1
⊥ = n−1

[
1− n2v2

1− v2

]
, α = n−1

[
1− n2

1− v2

]
v. (4.13)

An ideal spacetime cloak therefore requires the construction of a
metamaterial that mimics propagation in a medium with a velocity
v(x, t). The occurrence of the null can then be understood via the
relativistic velocity addition formula v′(x, t) = [1 + nv(x, t)]/[n +
v(x, t)] where v′(x, t) is the phase velocity of light in the moving
medium. Near t = 0, the effective medium is arranged so that v(x, t)
is negative for x < 0 and positive for x > 0.

4.3. Experimental Realizations of Spacetime Cloaking

It will be noticed that throughout the above, dispersion was
neglected. This is an important omission that has only very recently
started to be addressed in the theory of spacetime cloaking.19 Iron-
ically, dispersion turned out to be the key to realizing the first
experimental spacetime cloak by Fridman et al. in 2012.15 Rather
than utilize the acceleration and deceleration of different parts of
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a ray by manipulating the refractive index, their experiment, illus-
trated in Fig. 4.4 achieved the temporal gap by utilizing a ‘split time
lens’. This technique relies on translating, via four-wave mixing, a
chirp imposed on an intense pump wave, on to a weaker cw probe
(1569 nm) over a time window in which the gap will be produced (cf.
Fig. 4.4(b)). The initial and trailing parts of the probe beam then
carry linearly chirped regions of opposite sign (∼1 nm ps−1). On prop-
agating through a prescribed length of normal dispersing fiber, the
longer wavelengths travel relatively slowly, whilst the shorter wave-
lengths relatively quicker. After a prescribed propagation distance
through a single mode fiber, the wavelengths are brought into tem-
poral alignment at the ‘focus’ of the temporal lens (cf. Fig. 4.4(c)).
The method was able to open a gap of about 15 ps, during which
time a further pulsed four-wave-mixing event took place in the cen-
tral region. Generation of new frequencies relied on the presence of
the probe, although the ‘event’ of the pump pulses (5 ps) interact-
ing in the central region occurred independently of the presence of
the probe. After passing through a length of complementary neg-
atively dispersing fiber, the chirp profile is restored to its original
shape, to be finally ‘de-chirped’ and brought back to a single fre-
quency cw beam (cf. Fig. 4.4(d)). Without the cloak, an additional
frequency (1539 nm) is generated every 24 µs in the central region
(cf. Fig. 4.4(II)). With the cloak on, these pulses are not seen, demon-
strating the hiding of the mixing event during the 50 ps for which
the cloak operates. The experiment thus succeeded in hiding for the
first time, and however briefly, an event from an observer’s view,
vindicating the concept of the spacetime cloak.

Impressive though the first demonstration was, the fraction of
time cloaked was very small, amounting to about 10−4 of the avail-
able temporal window. An improvement on Fridman et al.’s proof-
concept experiment was made by Lukens et al. at Purdue as reported
in Ref. 20, another Nature paper. Similar to the Cornell experi-
ment, the Purdue scheme also exploited a temporal analogue of a
spatial diffractive effect, this time the time-analogue of the Talbot
effect.21 The spatial Talbot effect occurs when light passes through
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Fig. 4.4. (I) Experimental configuration and (II) Experimental results for cloak-
ing an event in spacetime. The temporal gap is opened via a ‘split time lens’ in
which a double chirp is imposed on a probe (1569 nm) over a time window in which
the gap will be produced (Ib). On propagating through a normal dispersing fibre,
the longer wavelengths travel relatively slowly, whilst the shorter wavelengths
relatively quickly. After a prescribed propagation distance, the wavelengths are
brought into temporal alignment at the ‘focus’ of the lens (Ic). A gap of ∼50 ps is
opened, during which a further pulsed four-wave-mixing event takes place in the
central region. Generation of new frequencies relied on the presence of the probe,
although the ‘event’ of the pump pulses (5 ps) interacting in the central region
occurs independently of the presence of the probe. After passing through a length
of complementary negatively dispersing fiber, the chirp profile is restored to its
original shape, to be finally ‘de-chirped’ and brought back to a single frequency
cw beam (Id). Without the cloak, an additional frequency (1539 nm) is generated
every 24 µs in the central region (II), whereas with the cloak on, these pulses are
not seen. Taken from Ref. 15. Reprinted by permission from Macmillan Publishers
Ltd: Nature, 481, 62–65, copyright 2012.

an aperture whose transmittance is modulated periodically as in a
diffraction grating. The optical distribution just beyond the aperture
is regenerated periodically at multiples of the so-called Talbot dis-
tance zT = d2/λ, where d is the grating period. If the transmittance
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is a sinusoidal phase variation (i.e. leaving the intensity distribution
uniform), then at zT /4 the intensity distribution becomes spatially
periodic. The temporal Talbot effect works analogously. A signal
acquiring a temporal sinusoidal phase variation via a phase mod-
ulator at z = 0, becomes periodically intensity modulated after
propagating a distance zT /4 through a medium whose dispersion
characteristics analogize free-space diffraction — see Fig. 4.5. This
already contains the genesis of spacetime cloaking, because intensity
modulating/absorbing ‘events’ that occur at the periodic intensity
nulls have no effect, and hence leave no evidence when the signal is
reconstituted to a constant intensity. Moreover, the technique pro-
vides a periodic series of spacetime cloaks, occurring at a repetition
rate roughly equal to the period of the signal. Rapid, repetitive space-
time cloaking at telecoms frequencies thus becomes possible. As a
detail, the essentially sinusoidal peaks passing through z = zT /4 were
‘sharpened up’ through applying an additional phase-modulation and
propagation step — essentially the temporal equivalent of passing a
sinusoidal spatial distribution through an array of lenses that focus
each sinusoidal peak. The result in the experiment was a cloaking
window of about 20 ps at a repetition rate of about 40 GHz. Attempts
to intensity modulate at the null points of each spacetime cloak will
not result in any modulation being passed to the signal beam, which
will be restored to its uniform state after passing through appropriate
inverting dispersion delay/phase modulation steps. Figure 4.6 shows
the result of applying a sequence of ones and zeros in the event-
cloaking plane both with and without the cloak switched on.

4.4. Implications, Applications, and Illusions

The idea of spacetime cloaking generalizes in a rather similar way as
did the original spatial cloak to various types of distorting, illusion
generating, or wave guiding devices. In its simplest form, however, as
we have seen, spacetime transformation design can be seen in terms of
speeding or slowing signals, and not solely or necessarily just steering
them. This speed control then affects the pace at which events will
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Fig. 4.5. Experimental set-up to achieve spacetime cloaking at telecom rates.
The CW signal (a) is first phase modulated (PM) before passing through a
Chirped Fiber Bragg Grating (CFBG). Together these steps are the temporal
analogue of imposing a periodic phase distribution on a plane wave and then
propagating through a distance zT /4, at which point the distribution becomes
periodically modulated in intensity (b). A further phase modulation/dispersion
delay serves to focus the sinusoidal modulation to the sharp peaks seen at (c). This
temporal distribution constitutes a rapid repetitive series of spacetime cloaks.
Any data imposed on the signal via the Intensity Modulator (IM) during the
intensity nulls between peaks will not be recorded by the signal. The subsequent
dispersion delay/phase modulation steps serve first to defocus the sharp peaks to
the sinusoidal distribution at (d) and then restore the constant intensity at (e).
Taken from Ref. 20. Reprinted by permission from Macmillan Publishers Ltd:
Nature, 498, 205–208, copyright 2013.

finally be perceived; and opening up a gap in the illumination is the
core concept in building a spacetime cloak. A range of possibilities for
spacetime transformation devices has been discussed in more detail
elsewhere.22, 23

To understand spacetime transformation design we need to think
of observers as those attempting to deduce cause and effect from light
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Fig. 4.6. A defined bit sequence of ones and zeros observed when the spacetime
cloak is concealed when the cloak sequence is switched on. Taken from Ref. 20.
Reprinted by permission from Macmillan Publishers Ltd: Nature, 498, 205–208,
copyright 2013.

or sound signals providing information about the environment. And
since most of us are so used to the rapid and accurate view of the
world offered to us by our eyes, it is often more instructive, when
considering transformation design, to think of how bats or dolphins
investigate their environment using sonar.

4.4.1. Applications

It has already been suggested23 that not only continuous signals
but also pulse trains are candidates for the velocity-modulation
approach to spacetime cloaking. This would require time-dependent
(i.e. dynamic) group velocity control24, 25 that can change the spac-
ing between pulses; first opening up a wider time interval between a
selected pair of pulses, then closing it again.

To elucidate this point, we will first discuss how a signal pro-
cessing application can be altered to incorporate spacetime cloaking.
In the realm of digital computation the pulse train is not “illumi-
nation” in the strobe-light or sonar-ping sense, but being used as
a clock signal to control the behaviour of some signal processing
unit (SPU). This is depicted in Fig. 4.7, where a kind of interrupt-
without-interrupt functionality1 can be achieved using a spacetime
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Fig. 4.7. A digital signal processing circuit modified to incorporate a space-
time cloak. The normal (“background”) operation of the SPU is controlled by
clock CLK0 and processing data DAT0. This is modified by the insertion of a
high-priority (“cloaked”) computation on lines CLK1 & DAT1. After the signal
processing unit (SPU) has processed the incoming data, the output has the extra-
neous CLK1 & DAT1 signals deleted, and the priority results diverted to OUT1.
Lastly, the CLK0, DAT0, and OUT0 lines have their original timings restored
and apparently pristine; however the priority results on OUT1 are available for
use. The shifts in the signal timings are indicated in the lower panel, showing
how the interior of the cloak is used to perform the priority computations. Taken
from Ref. [23, Fig. 4] and used in accordance with its Creative Commons license.
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cloaking method. The advantage of this over a straightforward tem-
porary hijacking is that it can hide the disruption by a clever and
reversible timing control that merely smoothly and fractionally over-
clocks the processor– perhaps only demanding e.g. only one extra
clock pulse in ten. Such a pulse-based scheme could also be adapted
to any telegraph-like electrical or electronic signal, to particle-like
‘illumination’ such as cars on a road, or to pulsed wave models of
almost any type.

4.4.2. Illusions

A typical spacetime cloaking diagram such as Fig. 4.2 can have its dif-
ferent regions considered in isolation, so that each piece can be seen
to perform elementary spacetime transformations. One part slows
the illumination, another speeds it up; these provide the observer
with the impression that events before the manipulation are occur-
ring more or less rapidly. These are the spacetime analogs of spatial
T-devices that do not cloak but shrink or expand the apparent size
of an object; such time lens like effects — albeit not transformation-
based ones — have a well-established track record in optics. Other
parts divide the illumination into separate spacetime paths, another
joins them together.

It has already been noted that the spatially magnifying T-device
changes signals so that they not only imply a changed size for objects,
but also of a space bigger on the inside than on the outside, in a sort of
‘tardis’ illusion. Likewise, a spacetime tardis26 would be a T-device
that seems to allow more time to pass than would be expected –
unfortunately not a time machine, but only the illusion of one. Nat-
urally, the opposite ‘smaller on the inside’ effect is also possible.

We can also consider manipulating an observer’s view with the
aim of confusing cause and effect. Figure 4.8 shows how this might
be achieved, by first separating and distinguishing between the cause
and effect segments of the sound stream forming the observer’s view.
Various methods of distinguishing between segments are possible,
such as frequency conversion, polarization switching, or physical
separation by routing into different waveguides. At the end of the
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Fig. 4.8. Causality editing is where the a sequence of events BCEF is observed
as reordered. With all signals initially in one ‘parallel’ (//) channel (i), those
signals in interval E (the effect) are converted (ii) into a distinct ‘perpendicular’
channel (⊥). This allows (iii) the cause signals C to be slowed down, whilst the E
signals are speeded up, so that they can switch places in the temporal sequence
(iv). Finally, a continuous (but rearranged) history is constructed (v) by mapping
the perpendicular channel back into the original parallel one.

process, the observer will then detect a view of history containing all
of the expected information, but in a misleading sequence. Further,
in the spacetime cloak experiment of Fridman et al.,15 four wave mix-
ing was used to imprint a continuous modulation of the illumination.
Although this has not yet been attempted, it should allow us to not
just re-order but actually reverse a segment of the historical record,
as depicted in Fig. 4.9.

4.4.3. Implications

One implication of the discussion here is the change in emphasis of
transformation design from implementation to the possibilities of sig-
nal manipulation. Just as the re-pitching of notions of superpositions
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Fig. 4.9. Causality reversal, where the middle portion of a single frequency view
of a sequence of events (i) is mapped continuously onto a chirped version (ii), as
suggested by the rainbow coloured bar. Next, dispersion (i.e. frequency dependent
wave speed) is then used in (iii) to slow early events (here lower frequencies, or
red) and speed up later events (higher frequencies, or blue). Once the colour
sequence is reversed (iv), the frequency chirp can be removed (v). This pro-
duces a continuous historical record, albeit one where one interval has been time
reversed.

and coherence in quantum mechanics into the modern discussion of
entanglement as a resource has unleashed a wave of new thinking and
exciting results in quantum information and quantum cryptography,
here we can see a way in which transformation design gives rise to a
new operational way of thinking about signal manipulation.

4.5. Beyond Optics — Acoustic Space-time
Transformations

In this subsection we will use a deliberately simplified acoustic model
in order to clarify the features of spacetime transformations in an
acoustic system.
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4.5.1. Acoustic model

The version of p-acoustics presented here is generalised version of
that used in the investigation of spacetime carpets26; it has also
been used in an investigation of a general theory of transformation
design.27 Rather like macroscopic electromagnetism, it consists of
two first order differential equations and one constitutive equation
relating pairs of dynamical system properties. The system properties
are a velocity field vi and momentum density V i, in combination
with population P and a generalised pressure/stress pij ; the indices
span the three spatial dimensions x, y, z.

The p-acoustic equations are

∂tP = −∂iv
i, ∂tV

m = −∂np
mn, (4.14)

p jk = −κjkP V m = ρm
iv

i, (4.15)

where we also need to know that κrs ¯[κ]rs = 1, and ¯[ρ] i′
m ρm

i = δi′
i .

Here the first differential equation relates a velocity field to local
population, and so can be interpreted as a conservation (of num-
ber) law; the second differential equation relates momentum to the
generalised pressure/stress, and can be interpreted as a force law.
As would be expected, the momentum density field is related to
the velocity field by a matrix of mass-density parameters ρm

i. We
also assume that in the rest frame of the acoustic material, there
are no exotic cross-couplings between vi and pjk or between P

and V l; however as we will see they can be induced by spacetime
transformations.

For ordinary p-acoustics, P is a scalar field representing the local
population, and κij = κoδ

ij repesents the bulk modulus; as a result
pkl = poδ

kl so that po is a pressure field. There is also a version of
p-acoustics that mimics pentamode materials,28 where the modulus
κij is a symmetric matrix but ρij = ρoδ

ij . Most generally, p-acoustics
allows the case where κij and pjk can be (at least in principle) any
symmetric matrix; in this case P represents the amplitude of an
oscillating stress field whose orientation is determined by κjk, and
where the restoring stress is pjk is proportional to P .
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The usual process for generating a second order wave equation
then leads straightforwardly to

∂2
t P = ∂iC

ij∂jP (4.16)

with a speed-squared matrix Cis that depends on the bulk modulus
κ and the mass density matrix ρ, i.e.

Cij = ρ̄ i
n κ

nj , (4.17)

A complementary wave equation for the momentum density V m can
also be obtained.

In a spacetime picture, as is most convenient for spacetime trans-
formations, it is best to convert the above formalism into a tensor
representation, just as we can convert the vector (Heaviside) for-
mulation of Maxwell’s equations into a tensor form. As part of this
process we need to rescale the components so that all elements of
each individual tensor have identical units; however from a practi-
cal perspective we can avoid doing this explicitly, since the relative
changes induced by the transformation design process are the same
irrespective of the units system.

We therefore pack a two index F with the scalar F 00 compo-
nent P , the velocity field vi in F 0i and F i0, and an auxiliary sym-
metric matrix quantity qij in F ij . Likewise, we pack another two
index G with the momentum density field V i in G0i and Gi0, the
stress/pressure matrix pij in Gij , and an auxiliary scalar Q in G00.
The whole p-acoustic theory then can be written in a way that closely
matches an EM tensor forma but for symmetric tensors rather than
antisymmetric ones. We have, in the source free case

∂αF
αβ = 0, ∂νG

µν = 0, (4.18)

Gαβ = χµν
αβF

αβ . (4.19)

aAlthough the standard EM formulation uses a lower-index object Fµν , here we
refer to the upper index 2-form version26, 27 that maps more directly onto a vector
formulation.
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We can now determine that the standard constitutive parameters ρ
and κ are slices of χ such that

ρ i
n = χ i0

n0 , κnj = c2 χnj
00, (4.20)

where c is the the p-acoustic equivalent of the vacuum speed of light.
This c is most naturally set to unity in the tensor form, but usually
has both a value and units in the vector calculus picture.

In addition to the usual constitutive parameters, two exotic cou-
plings can also be induced, namely αjk

i = cχjk
i0 between F i0 and Gjk

(i.e. from velocity vi to stress pjk), and another βi = cχ0i
00 between

F 00 and G0i (i.e. from occupation P to momentum V i). These are
the p-acoustic analogues of EM’s magneto-electric couplings.

The auxiliary quantities qij , Q also have a role to play in the ten-
sor reformulation. However, these (and their respective constitutive
parameters and relations) must be matched exactly to the standard
quantities described above; this assumed, they do not need to be
treated independently or explicitly.

In what follows, we follow the approximation used in Ref. 27,
namely that we only transform the effective p-acoustic metric by
means of transforming the constitutive parameters. This means we do
not consider or allow for the effects of scattering induced by impedance
changes induced by the transformation (see e.g. Ref. 29), nor do we
allow for the effect of the transformation on the differential equations
eqn. (4.18) (see e.g. Ref. 30). However, for sufficiently gradual trans-
formations, we would expect that both these omitted effects would be
negligible; so that the new effective metric induced by the transforma-
tion will at least get the steering of p-acoustic waves correct.

As a final note, the upper index nature of the field tensors Fµν

and Gαβ means that they transform with a factor according to the
determinant of the transformation, whereas the mixed index nature
of the constitutive χµν

αβ is independent of the determinant.27

4.5.2. Space-time transformations

It is worth investigating the simplest transformations to start with.
There are two cases, either (a) a purely spatial transformation, with
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a compression or expansion (scaling) along one spatial axis (see e.g.
Refs. 31 and 27) or (b) a spacetime transformation, with a time-
dependent spatial offset or shear. Further, we will consider the effect
of such transformations when starting from an isotropic material
characterized by a single density parameter ρo and a single modulus
parameter κo, with no exotic couplings.

Spatial case: here we choose an x-axis scaling such that the only
change between primed and unprimed coordinates is x′ = γx. Note
that we cannot scale two axes and still maintain continuity across the
plane perpendicular to the x scaling. An alternative transfomation
to consider would be a shear.

The spatial transformation matrix, and its inverse, for this is

T i′
i =

[
∂xi′

∂xi

]
=


 γ 0 0

0 1 0
0 0 1


; T i

i′ =
[
∂xi

∂xi′

]
=


 γ−1 0 0

0 1 0
0 0 1


.

(4.21)

The transformed density, perhaps unexpectedly, does not change
because the transformation-induced factors of γ cancel out. This hap-
pens as a result of it having mixed indices (one upper and one lower).
The transformed (but nevertheless unchanged) density is

ρ′ =
[
ρ′ij
]

= ρo


 1 0 0

0 1 0
0 0 1


 . (4.22)

The modulus has two upper indices and so transforms differently,
so that the zz component accumulates a factor of γ2. It becomes

κ′ =
[
κ′ij
]

= κo


 γ2 0 0

0 1 0
0 0 1


. (4.23)

Spacetime case: here we choose an x-axis offset such that the only
change between primed and unprimed coordinates is with x′ = γx+
ξt. The retention of a x scaling factor in this transformation allows
us to use it as part of the construction of a 1D carpet cloak.26
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The transformation matrix (and inverse) for this is

Tα′
α =

[
∂xα′

∂xα

]
=



γ ξ 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

T α
α′ =

[
∂xα

∂xα′

]
=




γ−1 −ξγ−1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (4.24)

The full transformation for the p-acoustic constitutive tensor χ is[
χ′µ′ν′

α′β′

]
=
[
T µ′

µ

] [
T ν′

ν

] [
χµν

αβ

]
[T α

α′ ]
[
T β

β′

]
. (4.25)

The altered constitutive parameters can now be calculated; but
we need to be careful since the spacetime transformation means that
the transformed constitutive parameters can depend on any of the
original ones. We therefore have to allow for all of the summations
in Eq. (4.25), which might cause κo to influence ρ′, and vice versa.
Further, we also check for the presence of new elements in χ – namely,
the exotic couplings α and β, which we had started off without.

For the transformation chosen, which depends on only t and x, we
only need to consider a subset of elements, i.e. those where spatial
indices i become (only) x. For clarity, we also write the temporal
index as ‘t’ rather than the more common ‘0’.

For the density [ρ′ij ] = [χ′it
jt] we have

χ′x′t′
x′t′ = T x′

x T
t′
t χxt

xt T
x
x′T t

t′ + T x′
x T

t′
x χxx

tt T
t
x′T t

t′ (4.26)

ρ′xx = γ.1. ρo .γ
−1.1 + γ.0.

κo

c2
.(−ξγ−1).1 = ρo. (4.27)

And for the modulus [κ′ij ] = c2[χ′ij
tt] we have

χ′x′x′
t′t′ = T x′

x T
x′
t χxt

xt T
x
t′T

t
t′ + T x′

x T
x′
x χxx

tt T
t
t′T

t
t′ (4.28)

κ′xx = c2γ.ξ. ρ0 .0.1 + γ.γ. κo .1.1 = γ2κo. (4.29)
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We also need to check for exotic couplings that might be induced
by the transformation. For [α′ij

k] = c[χ′ij
kt] we find that this space-

time transformation induces a coupling between the velocity and
stress fields, i.e.

χ′x′x′
x′t′ = T x′

x T
x′
t χ

xt
xtT

x
x′T t

t′ + T x′
x T

x′
x χ

xx
ttT

t
x′T t

t′ (4.30)

= γ.ξ. ρo .1.1 + γ.γ.
κo

c2
.(−ξγ−1).1 (4.31)

α′xx
x = cξρo − γξκo

c
. (4.32)

In contrast to the situation with α′, for [β′ti] = [χ′ti
tt] we find

no induced coupling β′ between occupation and momentum. This is
because the transformed time t′ has no dependence on position x. In
detail, the calculation runs as follows

χ′x′t′
t′t′ = T x′

x T
t′
t χ

xt
xtT

x
t′T

t
t′ + T x′

x T
t′
x χ

xx
ttT

t
t′T

t
t′ (4.33)

β′x = c.γ.1. ρo .0.1 + c.γ.0. κo .1.1 (4.34)

= 0. (4.35)

4.5.3. Time-dependent spatial expansion

Cloaks in expanding spacetime has been a topic of recent interest.32

As a partial investigation of how this kind of transformation device
might be implemented in p-acoustics, we now consider the expand-
ing (or contracting) space transformorphism where �r′ = �r exp(ζt).
Because the scalings are independent of orientation, we can just con-
sider the t, z coordinate axis, and copy the consequences over to x and
y as necessary. Fortunately, this case maps closely onto the previous
one, but we now write ζz exp(ζt) in place of ξ, and exp(ζt) in place
of γ. Thus we find that we need

ρ′ = ρo, (4.36)

κ′ = e2ζtκo, (4.37)

α′ = ζz′[cρo − eζtκo/c] = ζz′c2ρo[1− n−2
o eζt], (4.38)
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where no = c/co is the original speed (“refractive”) index.
Although it is not all that well justified, it is instructive to con-

sider the approximation that the induced velocity-stress coupling
terms α′ can be ignored. With such a viewpoint, then the z-direction
wave speed would be predicted to be

c′guess = eζt
√
κo/ρo = eζtco. (4.39)

We can now see that the retained terms account correctly for the
change in scaling induced by the transformation. We can then inter-
pret the α′ coupling as the rest of the physical modification caused
by the transformation — i.e. α′ represents how the acoustic medium
is moved relative to itself as the space expands/contracts.

An alternative transformation might be to instead use �r′ =
�r cosh(ζt). This provides the useful property that there is no α′ at
t = 0, regardless of the co/c ratio. As a result, we can always have
an initial condition corresponding to our preferred “ordinary” case.
This choice requires time-dependent constititive parameters which
are given by

ρ′ = ρo, (4.40)

κ′ = cosh2(2ζt)κo, (4.41)

α′ = ξzc2ρo sinh(ζt)
[
1− n−2

o cosh(ζt)
]

(4.42)

= ξz′c2ρo tanh(ζt)
[
1− n−2

o cosh(ζt)
]
. (4.43)

From this, we have seen how one useful spacetime transformations is
implemented under our model, and described the meaning of the two
induced transformation effects. This and the other transformation
used earlier can now be combined into more complicated transfor-
mation devices such as event cloaks.

4.6. Conclusion

In conclusion, in this chapter we have briefly summarized the field of
spacetime transformation optics, firstly from its theoretical inception,
through to experimental realization. We then showed how these con-
cepts can be converted over to an acoustic realization, using a quite
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general p-acoustic model. This model has the advantage of a simple
construction, avoiding many of the complicating details involved in
more realistic (microscopic) formulations of acoustics. This simple
and straightforward presentation enables us to clearly show how the
basic principles of spacetime transformation design can be applied
generally. We see this as an enabler for workers intending to inves-
tigate spacetime transformation design — cloaking — in their own
fields of interest.
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CHAPTER 5

Soda Cans Metamaterial:

Homogenization

and Beyond
FABRICE LEMOULT∗, GEOFFROY LEROSEY,
NADÈGE KAÏNA and MATHIAS FINK

Institut Langevin, France

Phononic crystals and metamaterials are both man made media that
allow us to tune the propagation of waves. Due to their very different
typical spatial scales — wavelength and deep subwavelength — and
underlying physical mechanisms — Bragg interferences or local reso-
nances — they are often considered to be very different. As such, while
the former are commonly used to manipulate and control waves at the
scale of the wavelength, the latter are usually considered for their effec-
tive properties.Yetwehave shown in the last few years that under some
approximations, metamaterials can be used as phononic crystals, with
the great advantage that they are much more compact. In this chapter,
we review our results obtained on an acoustic metamaterial whose the
unit cell is very simple and consists on an everyday object: a mere soda
can, that is, a Helmholtz resonator of deep subwavelength dimension.

∗Corresponding author: f.lemoult@gmail.com
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We will first show that their properties can be understood, likewise
phononic crystals, as resulting from interferences only, through mul-
tiple scattering effects and Fano interferences. Then, we will demon-
strate that below the resonance frequency of its unit cell, a soda can
metamaterial supports a band of subwavelength varying modes, which
can be excited coherently using time reversal, in order to beat the
diffraction limit from the far field. Above this frequency, the metama-
terial supports a band gap, which will be used to demonstrate cavities
and waveguides, very similar to those obtained in phononic crystals,
albeit of deep subwavelength dimensions. We finally show that mul-
tiple scattering can be taken advantage of in these metamaterials, by
correctly structuring them. This allows to turn a metamaterial with a
single negative effective property into a negative index metamaterial,
which refracts waves negatively, hence acting as a superlens.

5.1. Introduction

Waves, whatever their nature, acoustic or electromagnetic for
instance, are subject, while propagating, to phenomena such as reflec-
tion, refraction and diffraction. Refraction and reflection, in particu-
lar, result from the mismatch between the propagating properties of
two different media at a given interface. The propagating properties
that we refer to are the typical parameters that permit to describe
the way a wave propagates in a bulk material. In the case of acoustics,
these are the sound velocity c and the bulk density ρ. Obviously, those
parameters can be related to other physical parameters characteriz-
ing the medium, and for instance the wave velocity can be written
in terms of the adiabatic fluid compressibility χ as c =

√
1/ρχ.

In electromagnetic materials, the macroscopic parameters that are
commonly used are the permittivity ε, the permeability µ and the
resulting index of refraction n =

√
εµ. Such macroscopic parameters

are very useful because they allow us to predict most of the waves
phenomena, but one has to keep in mind that those parameters do
not necessarily describe the physics happening at the “microscopic”
scale (where microscopic refers here to a scale much smaller than the
typical scale of the waves, that is the wavelength).
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In the late 60s of the last century, Veselago [Veselago (1968)]
demonstrated in the specific case of electromagnetic waves that a
medium having simultaneously negative permittivity and perme-
ability is theoretically not prohibited, even if it had not yet been
observed, and should lead to very unusual wave phenomena. In the
late 90s, this theoretical prediction became real with the proposal
of heterostructures that can be described respectively with a neg-
ative permittivity [Pendry et al. (1996)] and a negative permeabil-
ity [Pendry et al. (1999)]. A mixing of those two media exhibiting
both the properties to be negative were eventually proposed [Smith
et al. (2000)]. The revolution in those proposals comes from the
fact that the propagating media are heterostructures organized on
a scale much smaller than the wavelength of operation. Thus, they
can be homogenized to an effective bulk material described by effec-
tive propagating properties: the concept of a metamaterial was born.
This idea did not take long to reach the acoustic community, and
no later than in 2000 the first mention of an acoustic metamaterial
that can be described with a negative density appeared [Liu et al.
(2000)]. Though metamaterials were historically introduced to reach
the negative effective property, it is not the only interesting one of a
subwavelength resonant medium. In this chapter we will for example
see that even the positive effective properties can lead to interesting
phenomena.

The research presented in this Chapter results from a very sim-
ilar approach. Everything started after initial experiments obtained
in electromagnetics in the microwave range where focussing waves
below the diffraction limit from the farfield inside a random collec-
tion of conducting wires was demonstrated [Lerosey et al. (2007)]. At
this time, it was not thought that such a complex and heterogeneous
medium could be described as a metamaterial, and a multiple scatter-
ing point of view was adopted. To better understand those results,
the medium was simplified to a periodic arrangement of identical
wires and this permitted to highlight the importance of resonance
coupling when packing individual resonant wires on a subwavelength
scale [Lemoult et al. (2010, 2011c,b)].
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Because of our multiwave background, we decided to transpose
those results from electromagnetics to acoustics and replaced the
half-wavelength microwave resonator by an acoustic resonator that
also presents a dimension smaller than the wavelength. In airborne
acoustics, there is a typical object that fulfills this condition: the
Helmholtz resonator [von Helmholtz (1885)]. It consists of a rigid
container enclosing a volume of air, coupled to the outside through
a small open-ended neck in order to admit sound. The resonance
frequency of such an object can be tuned by changing its volume, its
aperture or the length of the neck, and can thus completely behave
as a subwavelength object at its resonance frequency. We have to
mention that this resonance can be easily probed by anybody in the
daily life since blowing in a bottle-neck generates a sound that is a
signature of this effect. Starting from this simple observation, instead
of manufacturing our own Helmholtz resonator, we decided to work
with a mass-produced object exhibiting this resonance. After few
tests and for some reasons that we will discuss later on, we ended up
on using a simple soda can as our Helmholtz resonator. Experiments
performed on a medium composed of several soda cans gave similar
results [Lemoult et al. (2011a)] as the microwaves ones and will be
discussed in this chapter.

The commonly used homogenization procedure in the metamate-
rial community to describe the propagation requires the wavelength
to be large compared to the material scale, which is the case of the
soda cans medium, so it happened that our research completely fell
in the field of metamaterials even if at this moment we did not really
mention it. Therefore, among the huge variety of acoustic metama-
terials that have been proposed within the last 15 years [Liu et al.
(2000); Fang et al. (2006); Guenneau et al. (2007); Ding et al. (2007);
Zhang et al. (2009); Lee et al. (2010); Christensen et al. (2013); Yang
et al. (2013); Garćıa-Chocano et al. (2014); Ma et al. (2014); Brunet
et al. (2015); Ma and Sheng (2016)], we will now focus on a specific
class: the locally resonant metamaterials. They consist on an arrange-
ment of unit cells that resonantly interact with waves. So, in the first
section of this chapter, we will show that arranging several soda cans
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on a subwavelength scale builds a propagating medium that typi-
cally behaves as a locally resonant metamaterial. Notably, it exhibits
a polariton-like dispersion relation, that results from the coupling of
a continuum of propagating waves and a local resonance. Equiva-
lently, the propagation in this medium can be described by effective
parameters, one of them being typical of a resonant behavior.

In the next two sections, we will exploit this specific dispersion
relation for applications in different frequency ranges. Below the
intrinsic resonance of one resonator, the wave propagation exhibits
an effective wavelength that is of the order of the spacing between
two cans, meaning deeply subwavelength compared to the free space
wavelength. We will show that one can exploit this property in order
to beat the free-space diffraction limit from the farfield. Slightly
higher in frequency, the medium can be described with a negative
compressibility which overall results in an inhibited propagation
of waves, a phenomenon which we will refer to as hybridization
bandgap. We will show how one can exploit this property in order to
trap and guide waves on a very small scale by introducing small
defects in the structure. Those defects cannot be caught by the
homogenization approach which averages the response over the free
space wavelength scale, and it will eventually lead us to the last
section of this chapter where we study the possibility to build a
double negative medium just by using one type of resonator that
should expectedly only bring one type of negativeness, using a clever
structuration of the metamaterial.

5.2. The Soda Can as a Building Block
of an Acoustic Metamaterial

5.2.1. Why the soda can?

As already mentioned in the introduction, our research started in
electromagnetics in the microwave range where we studied a wire
medium [Lemoult et al. (2010, 2011c)]. The latter consists in a sub-
wavelength periodic arrangement of identical conducting wires. It is
well known that each of these wires exhibits a resonance resulting
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from the stationary current in the wire when its length is a mul-
tiple of half the freespace wavelength. Therefore, such a wire can
be seen from the top as a physically tiny object compared to the
wavelength. Packing such resonant wires on a small scale we end up
on a composite medium that falls within the class of locally resonant
metamaterials.

The first idea that came out to mimic this electromagnetic exam-
ple in acoustics was therefore to reproduce the behavior of the half-
wavelength-long conducting wire. In acoustics, the complete equiv-
alent of this resonator is used in the fabrication of many wind
instruments: an open-ended half-wavelength-long pipe [Kinsler et al.
(2000); Kergomard and Chaigne (2008)]. Indeed, there is always a
propagating mode in a rigid-walled pipe whatever its cross section.
Especially, at low frequency when the wavelength becomes large com-
pared to the typical scale of the cross section, the pipe behaves as a
single mode waveguide. This propagating mode presents a uniform
profile of pressure along the cross section and propagates at the speed
of sound. When cutting the pipe with two open-ended terminations,
the impedance mismatch at both extremities builds a stationary reso-
nant mode inside the pipe. The resonance frequency occurs when the
frequency f = n c

2L (where L is the pipe’s length and n an integer).
Such a pipe is therefore the acoustic equivalent of the conducting
wire in our microwave experiment.

Therefore the acoustic equivalent of the wire medium was built,
and it was unfortunately impossible to obtain similar results. This
comes from a strong difference between the two types of resonators:
while the electromagnetic resonator can be considered as almost loss-
less because copper is a good conductor, the pipe resonance suffers
from losses. Indeed, the attenuation in the pipe originates from the
viscous damping along its walls induced by the sliding layer near the
interfaces. The ratio between the damping volume, which is located
on a skin layer along the pipes walls, and the overall volume in the
pipe increases while reducing the cross-section of the pipe. As a con-
sequence, a pipe with a small cross-section (remember that we want
to have a subwavelength resonator at the end) is described by an
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Fig. 5.1. (a) A basic Helmholtz resonator with its important geometric param-
eters. (b) The chosen experimental resonator: a soda can. (c) Measure of the
resonance frequency with a microphone placed inside the can.

attenuation length which can be much smaller than the attenuation
length in air [Kosten and Zwikker (1949)].

After this unsuccessful attempt, we had to look for another acous-
tic resonator that fulfills the requirements of being small compared to
the wavelength and of presenting relatively low losses due to viscous
damping. This drove us to consider the case of the well known acous-
tic resonator introduced by Herman von Helmholtz [von Helmholtz
(1885)] more than one century ago. The latter consists of a rigid
container enclosing a volume V , terminated by an open-ended neck
of length l and cross section S (Fig. 5.1(a)). The resonant behavior
of such an object stems from the oscillation of the mass of the gaz
column located in the neck, while the cavity behaves as the restor-
ing force of the harmonic oscillator. The resonance frequency of the
Helmholtz resonator therefore is simply:

f =
c

2π

√
S

V l
(5.1)

The resonance frequency can occur in the low frequency range
where the operating wavelength is much larger than the resonator
dimension. In our case, we want a subwavelength unit cell so we
prefer to choose a relatively high volume V . We also know from the
pipe experiment that most of the damping effects occur in the small
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cross section, so we would rather prefer a short neck. As a conse-
quence, in order to keep the resonance in the low frequency range it
imposes to decrease S. Then started a real experimental strategy dur-
ing which we tested dozens of mass-produced objects: glass bottles,
glasses of different geometries, Christmas baubles or even chemical
flasks. . . Out of those experiments stood out the “ideal” resonator
for which both the neck was short enough to diminish the viscous
damping and the geometrical dimensions appropriate to ensure the
subwavelength nature of the resonator: we ended up on the use of
a 33 cL soda can as a Helmholtz resonator (Fig. 5.1(b)). Experi-
mentally, a resonance frequency of 420 Hz is measured (Fig. 5.1(c)),
meaning that the lateral dimension of the can (i.e. 6.6 cm) is roughly
λ/12 at resonance.a

5.2.2. Wave propagation in a soda can medium

Now that the unit cell is found, we want to study the propagation of
waves in a locally resonant metamaterial based on it. To do so, we
move from the single soda can to a medium made of several ones.
Since the resonance occurs in the low frequency range, namely in the
large wavelength regime, this medium in first approximation can be
seen as a homegenous medium as sketched in Fig. 5.2(a). This homog-
enization procedure which is the scope of most of the metamaterials
research is the exact analogous of dielectrics for light. Indeed, in this
case the resonant unit cells are the atoms, which are deep subwave-
length resonators. They are excited by the incoming light waves and
their relaxation participate to the total transmitted optical field. This
gives rise to variations of the optical index of refraction, which can
present values larger or lower than that of vacuum. Stated otherwise,
the interaction of light with microscopic resonant scatterers creates,
at the macroscopic scale, an effective index of refraction. Our locally
resonant metamaterials behave just the same way: the interaction

aNote that increasing the volume and keeping the lateral scale constant was doable
by using a 50 cL can, which would have resulted on a more subwavelength res-
onator, but in France the 33 cL container is more common.
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Fig. 5.2. (a) The metamaterial made of soda can can be seen as a homogeneous
medium in the long wavelength regime. (b) The dispersion relation of waves inside
the metamaterial is a so-called polartion which results from the avoiding crossing
of the free space dispersion relation and the local resonance. (c) Description of
the dispersion relation in terms of an effective property which in the case of the
soda can is the effective compressibility χeff.

of acoustic waves with the soda cans gives birth to effective prop-
erties that relates to the resonant behaviour of each of them. There
is, however, a big difference between atoms in dielectrics and soda
cans. While the former present an albedo close to zero, meaning that
their scattering cross-section is much smaller than their absorption
cross-section, the latter present an albedo closed to unity [Lagendijk
(1993)]. In other words, while most of the incoming interacting light
is absorbed by atoms through inelastic scattering, the soda can is able
to re-radiates most of the stored energy at resonance, as a result of
our quest for the least lossy acoustic resonator.

Nevertheless, the physics of dielectrics is very similar to that of
locally resonant metamaterials if we make the approximation that
the metamaterial unit cells are not strongly coupled by any near field
interaction. Though this approximation is not valid for any unit cell,
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in the present case, the soda can walls are rigid enough to guarantee
that the pressure field inside a given one does not influence the pres-
sure field on its nearest neigtbours. Under this approximation, the
interaction of acoustic waves and subwavelength resonators creates a
polariton, just as light interacts with atoms in a dielectric. Namely,
there is an avoided crossing between the local resonance of the soda
can and the plane wave dispersion line (Fig. 5.2(b)). This gives rise
to a binding branch of subwavelength modes below the resonant fre-
quency f0 of a single can, a band gap above it, and eventually an
anti-binding branch of supra-wavelength modes. We have interpreted
recently this behaviour in terms of Fano interferences [Fano (1961)]
between the continuum of plane waves propagating in the matrix of
the metamaterial and the local resonance [Lemoult et al. (2013)].

A more common way of describing the physics of locally resonant
metamaterials consists in using the idea of effective properties. In
acoustics, a given unit cell will act on macroscopic properties which
are typically the effective mass density ρeff and the effective com-
pressibility χeff depending on which type of excitation it is sensitive
to [Brunet et al. (2013)]. In the case of the soda can, the volume V of
the soda can behaves as an extra compressive volume for the incident
wave encountering it and will therefore locally affect the effective
compressibility seen by the pressure field. As shown in Fig. 5.2(c)
the soda can creates below its resonance frequency a band of very
high effective compressibility — equivalent to the branch of subwave-
length modes in the polariton description — then a band of negative
effective properties — the band gap — and finally a band of low
effective property — the supra-wavelength modes branch.

5.3. Exploiting the Propagating Band
for Subwavelength Focussing from the Far-Field

5.3.1. Metamaterials for subwavelength focussing

In the metamaterial community, much attention has been paid in
the past 10 years to using the negative effective property band for
focusing waves below the diffraction limit. Indeed, if one can realize a
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metamaterial presenting two almost co-localized subwavelength unit
cells which are resonant at the same frequency and which act on
both properties of the medium, one can obtain a metamaterial that
has both its effective properties negative. As was pointed out more
than 40 years ago by [Veselago (1968)], this results in a medium
whose effective index is negative. John Pendry proposed in a seminal
paper in 2000 [Pendry (2000)] that a slab of such a medium should
behave as a perfect lens for imaging and focussing purposes since
it amplifies infinitely the evanescent waves coming from a source or
object, making them measurable in the far field with conventional
optical components. This approach has been shown to be largely
hampered by losses of materials, especially for applications in optics
where materials are relatively dissipative.

Subwavelength control of acoustic waves has not been studied as
much as in electromagnetics, but there have been a few proposals in
order to realize super-resolution imaging based on canalization [Zhu
et al. (2011)] or hyperlens [Li et al. (2009)]. Concerning focussing
under the diffraction limit there have been propositions based on the
analogue of the optical “Bulls eye” [Christensen et al. (2007)], or
by using negative index material [Zhang et al. (2009)]. Nevertheless,
none of those proposals clearly demonstrated subwavelength control
of the acoustic waves below the wavelength scale. The only exper-
imental proofs that clearly showed super-focussing comes from the
use of an acoustic sink [de Rosny and Fink (2002)] which requires an
active source at the focal point, or a proposal which uses a phononic
crystal where both the source and the image are in the near field of
it [Sukhovich et al. (2009)].

While most of groups were focused on the negative index meta-
material, we realized that the high effective property band offered by
the locally resonant metamaterial could be used for such a purpose.
Indeed, this band is inherently composed of evanescent waves since
at a fixed frequency the wavenumber is higher than the freespace
one. In the following, using our soda cans metamaterial, we will
explain how and under which conditions they can indeed be used
for subwavelength focussing. The reader has to keep in mind that
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the soda can medium is a very good airborne acoustic example
which has been published in [Lemoult et al. (2011a)], but similar
results have been obtained in underwater acoustics in the ultrasonic
range with a bubble as a unit cell [Lanoy et al. (2015)], with Lamb
waves in a thin plate [Rupin et al. (2015)], in electromagnetics in the
microwave regime [Lemoult et al. (2010, 2011b)], and in the opti-
cal range [Lemoult et al. (2012); Pierrat et al. (2013)], making the
approach both robust and general.

5.3.2. Eigenmodes of a two dimensional

array of soda cans

The infinite medium described in the previous section is not real-
izable and we will see in this section that the finite dimension of
a real medium plays a crucial role for the subwavelength focussing
application. So, let us first start by the experimental measurments
that we have been able to perform. We conducted experiments on
two-dimensional array of 7 × 7 closed-packed square lattice of soda
cans as shown in Fig. 5.3(a). The medium is surrounded by a set
of 8 computer controlled speakers, while a motorized microphone is
placed on top of the array of Helmholtz resonators. One speaker emits
a short pulse (actually we used chirped emission and applied matched
filtering to recover a short pulse) and the microphone placed 1 cm
on top of the aperture of one can records the temporal signal. The
typical temporal signal obtained is shown in Fig. 5.3(b). It extends
over hundreds of milliseconds compared to the initial pulse duration
of 20 ms which is a clear signature of resonant effects. The signal’s
spectrum (Fig. 5.3(c)) reveals that they actually correspond to the
existence of many resonant peaks ranging from 250 Hz up to the
resonance frequency of a single resonator, that is f0 = 420 Hz.

We then repeat the same experiment when each speaker emits a
short pulse and we move the microphone on top of the array. Know-
ing the entire set of temporal Green’s functions relating the pres-
sure field at a given position in the medium related to the emission
from one of the speakers, we can then mimic different monochro-
matic experiments. We show in Fig. 5.3(d) the monochromatic field
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Fig. 5.3. (a) Experimental setup: 8 commercial computer speakers (1) are con-
trolled using a multi-channel soundcard (4) and create sounds exciting the soda
cans metamaterial (2). Mounted on a 3D moving stage (5), a microphone records
the pressure field. (b) Typical emitted pulse (red) and the measured signal (blue)
on top of one can and their corresponding spectra (c). (d) Measured monochro-
matic patterns at distinct frequencies and with different emitting patterns. (e)
Experimental dispersion relation and its equivalent in terms of effective com-
pressibility (f).
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maps at various frequencies and with different emission patterns (a
monopolar, a dipolar along the x direction, a dipolar along the y
direction and a quadrupolar). All of those maps clearly show the
subwavelength nature of the modes supported by the medium. For
example the first mode shows two nodes of the field while the entire
dimension of the medium is roughly λ/2.

The measured bank of data does not limit to those 4 modes but
covers the whole frequency range so that we can extract the disper-
sion relation out of it. To do so, the wave field for each frequency
is spatially Fourier transformed to retrieve an effective wavenumber
for the corresponding mode. The result of such a treatment is sum-
marized in Fig. 5.3(e). The experimental dispersion relation exhibits
the expected polariton behavior that has been introduced in the first
section. One can note that we measured wave fields oscillating on a
scale as small as the medium’s lattice. From this dispersion curve,
we can then extract the effective compressibility as a function of
frequency (Fig. 5.3(f)) which is in very good agreement with the
general behavior of locally resonant metamaterials: we see the high
effective compressibility below the resonance frequency f0, and we
note the absence of modes above it. The latter has two origins: in
the bandgap regime there is obviously no propagating wave so no
mode actually exists. For higher frequencies however we should have
observed supra-wavelength modes corresponding to the anti-binding
branch of the polaritonic dispersion relation, but the latter actually
falls within the propagating cone and correspond to leaky modes that
radiate acoustic waves out of plane.

Interestingly and quite surprisingly, the homogenization proce-
dure that applies for an infinite medium can be probed on a physical
two-dimensional metamaterial which typical dimension is only half a
free space wavelength. Because of the finiteness of the medium, how-
ever, other phenomena have to be discussed. Indeed, as the typical
spectrum shown in Fig. 5.3(c) the finite size medium only supports
a discrete set of resonant eigenmodes. This has several consequences
that are the key features for subwavelength focussing. First, because
of the finiteness, the supported eigenmodes are stationary modes
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trapped inside the medium and therefore they experience a res-
onance phenomenon. Second, such collective eigenmodes can leak
some energy through radiative damping to the farfield area, and this
is the reason why we have been able to probe them when doing the
reciprocal operation, namely exciting from the far-field and probing
in the near-field of the medium. As a consequence, the high effective
compressibility which results in the existence of subwavelength (with
respect to the freespace wavelength) modes cannot been used as it
in order to build a focal point: exciting the medium with a single
monochromatic source placed in the far-field one will only excite the
combination of eigenmodes that can radiate energy in the direction
of the source, and for our small medium (i.e. λ/2×λ/2) it reduces to
4 modes (monopolar, dipolar and quadrupolar radiation patterns).
Furthermore, one has no control over the relative phases between
the 4 trapped monochromatic eigenmodes by using only one source.
Increasing the number of sources allows the manipulation of the rel-
ative phases between the different types of radiation patterns but
actually it is not sufficient enough to be able to focus everywhere on
the sample. This strategy has been adopted in [Maznev et al. (2015)]
where the authors demonstrated the ability to build a focal hot spot
in the middle of the sample that is thinner than the free space wave-
length. If we want to focus everywhere in the sample we need to have
access to all the different spatial scales which is only realizable by
taking advantage of the dispersion of the medium: at one frequency
the spatial variation of the field is given by the dispersion relation.
Consequently, as we will see in the next section we proposed to use a
polychromatic approach, namely time reversal [Fink (1997)], in order
to treat coherently the spatio-temporal degrees of freedom [Derode
et al. (2001); Lemoult et al. (2009); Mosk et al. (2012)].

5.3.3. Subwavelength focussing from the farfield

Before entering the case of the soda can medium, let us start by a
control experiment while removing the Helmholtz resonators’ array.
The latter consists in recording with the microphone placed at a given
position the set of 8 Green’s functions when each of the speaker emits
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a short pulse. We then time reversed each of those signals and simul-
taneously reemit them by their corresponding speaker, meaning that
each speaker emits first what arrives later in time and reciprocally.
Note that in this experiment, we also take advantage of the spatial
reciprocity of the wave equation since we did not place a source at
the position where we want to focus, but we learn the Green’s func-
tions from the speakers to the microphone. We then map the wave
field generated around the initial microphone’s position by moving it
(and repeating the simultaneous emission each time the microphone
has moved). As a result of such a procedure, we plot the square
of the maximum in time of each received signal. This is equivalent
to show the maximum power received on each position. The result
of such an operation is displayed in Fig. 5.4(a). The obtained field
map show that 8-channel time reversal in a typical laboratory room
permits to focus wave on isotropic focal spots whose dimension is

(a) Control (without cans):λ/2 (b) Time reversal: λ/8 (c) Iterative time reversal: λ/25

Fig. 5.4. Sub-diffraction focusing of sound. (a) Diffraction limited focal spots
obtained using time reversal without the array of cans. (b) The foci obtained using
time reversal onto the same locations with the array of Helmholtz resonators. (c)
Foci obtained with inverse filter signals demonstrating focal spots as thin as λ/25.
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half-wavelength, only limited by the diffraction limit [Lord Rayleigh
(1879)].

We then perform the same procedure with the cans array. This
time, the set of emitting signals span a longer time range as a
signature of the modes resonances. The time reversal permits to
synchronize at the desired location and at the desired time all of
the eigenmodes that are non-zero. This results in a spatio-temporal
focusing of the acoustic waves. The measure of the focal width is
as thin as λ/8 (Fig. 5.4(b)), far beyond the diffraction limit. This
is a consequence of the subwavelength nature of the modes inside
the metamaterial. This experiment clearly shows that thanks to the
resonant nature of the eigenmodes trapped inside the metamaterial,
the conversion from free space wavelength to subwavelength varying
fields is guaranteed. This permits us to beat the diffraction limit from
the far field by focussing waves on a thinner scale than the free space
wavelength.

But, even if this is a breakthrough, we have not reached the
limit of the device since we initially probed eigenmodes that oscillate
on scales as thin as the distance between two cans. This limitation
comes from the fact that time reversal does not compensate for losses
during the propagation. It only recombines the different frequency
components by coherently adding them — they all add in phase at
the focus — but does not play any role on their relative amplitudes.
And we know that the modes that suffer most from the losses are
the highest Q ones, or equivalently the ones with the smallest group
velocity, which exactly corresponds to the most subwavelength ones.
So, in order to circumvent this issue, we need to compensate for the
losses by increasing the relative weight of these modes at the focus.
To do so, we proposed to build signals that are the equivalent of an
inverse filter [Tanter et al. (2001)]. This procedure first requires the
knowledge of the set of all impulse responses between the 8 speakers
and each of the desired focal positions on top of the resonators array,
which we limited to 49 as the number of cans. We then numerically
computed a bank of 8 × 49 signals based on an iterative scheme of
time reversal [Montaldo et al. (2004)] that supposedly focus on each
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position with the lowest possible level of spatio-temporal side lobes
level. We then use 8 of those signals and simultaneously emit them
with the speakers. Eventually, we map the wavefield on top of the
cans while emitting those signals and we end up on the result shown
in Fig. 5.4(c) with focal spots as thin as λ/25. Of course, because
we cannot focus waves in between cans, the focussing resolution is
actually limited by the period of the medium. Overall, we prove that
we can beat the diffraction limit by a factor of 12.5 with a positioning
accuracy of λ/12. We only present two maps but this focussing can
be performed on any position on top of a can.

Apart from its evident fundamental interest, this experiment
opens up many avenues in terms of applications for sound and
ultrasound. We believe that our approach is very promising for the
design of arrays of actuators, micro-mechanical actuators in general
and by reciprocity, of sensors. Indeed, using subwavelength cou-
pled resonators offers three tremendous advantages. First, it intro-
duces the possibility to engineer matrix of actuators or sensors
that are arranged on a subwavelength scale. Second, because our
approach takes advantage of dispersion, it allows to address inde-
pendently many sensors using their temporal signature. Finally, as
we will prove it next, it also enhances the intensity deposited onto
one location, because of the subwavelength dimensions of the focal
spots.

As a principle proof of concept, we performed a visual exper-
iment: we suspended a 20-µm-thin sheet of metalized Mylar on
top of the array of cans, that is supposedly transparent to acous-
tic waves because it follows the displacement of the surrounding air
(Fig.5.5(a)). We deposited few glass beads (diameter around 120 µm)
on top of this sheet. While emitting the time reversal signals (or
inverse filters ones) we saw the glass beads moving on the desired
subwavelength area on top of the soda cans array. Anyone who visited
the laboratory at that time could enjoyed this visual experiment, but
translating it into publishable results revealed was a bit challenging.

We used a high frame rate camera in order to catch the beads
displacements. A white light projector illuminates the sheet of Mylar,
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(a)

without with

(b)

(c)

Fig. 5.5. Subwavelength actuators. (a) We added a Mylar sheet on top of the
soda can array and deposited some glass beads. (b) Due to a photo-reflective
effect the sheet appears dark without beads and very bright when the beads are
stuck to the surface. (c) We film the slow motion of glass beads on top of a
Mylar sheet for the control experiment without the cans (top) or when creating
subwavelength focal spots using time reversal (middle) and our iterative scheme
(bottom). Clearly, the beads are in movement solely on subwavelength areas and
at a given time, demonstrating the possibilities offered by our approach.

oriented a few degrees from its normal, while the camera is placed
exactly at normal incidence. Because of the small angle between the
projector and the camera, the Mylar sheet appeared dark except for
the direct image of the projectors bulb in the absence of beads. On
the contrary, after depositing the beads the Mylar sheet appeared
very shiny. This effects occurs thanks to the retro-reflection of the
light on the glass beads that are placed on top of a metalized surface.
This means that when beads stick to the Mylar sheet the image on
the camera appears white, while it reveals darker when the beads are
no more touching the sheet (Fig. 5.5(b)).

We have utilized this experimental procedure in order to make
high frame rates movies of the field created when we focus onto
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various locations on top of the array of cans. Figure 5.5(c) shows
few frames from films obtained for the three different types of emis-
sions we previously performed. While nothing happens on the control
experiment without cans, one can notice that we have actually been
able to darken the image on a small area by using time reversal (and
inverse filters signals) during roughly 1 ms. This means that the beads
located on a λ/12 squared area jumped on top of the Mylar sheet
and this has been controlled from speakers placed in the far field of
this medium. This entails that our approach can be exploited for sub-
wavelength size actuators and microelectromechanical systems [Lani
et al. (2016)].

5.4. Hybridization Bandgap: Subwavelength Trapping
and Waveguiding

5.4.1. Existence of the hybridization bandgap

Let us now move to a slightly higher frequency range, just above the
resonant frequency of a single soda can. In the previous experiment,
we were not able to measure any wavenumber because of the absence
of resonant eigenmodes, and therefore we were not able to extract
the effective compressibility this way. In order to show what happens
in this spectral domain, we represent in Fig. 5.6(a) the sketch of the
new experiment that is conducted. A speaker placed in the far-field
emits a short pulse that spans the frequencies ranging from 200 Hz to
600 Hz and a microphone measures the signal received on top of one
can. The spectrum represented in a logarithmic scale (Fig. 5.6(b))
clearly shows two distinct regimes. Below the resonant frequency of
one can (blue shaded area) the transmission is high and shows the
existence of the resonant peaks that we discussed in the previous sec-
tion; Above the resonance, the transmission drops down to −60 dB
and almost no energy is transmitted from the speaker to the micro-
phone. This frequency region is therefore associated to a so-called
band gap (red shaded area). One has to keep in mind that the overall
dimension of the soda can remains smaller than the free space wave-
length meaning that the attenuation length is really short. In order
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Fig. 5.6. (a) Single channel experimental setup: the sound-card of a computer
is connected to a single speaker placed in front of the metamaterial and to a
microphone that is mounted on a 2D moving stage and positioned above the
sample in its near field. (b) Transmission measured between the speaker and
the microphone when the latter is placed in the middle of the acoustic meta-
material. The transmission is normalized to unity. Below 420 Hz, resonant deep
subwavelength modes can be observed while above a dip asymmetric band gap
can be identified. (c) Map of the absolute value of the pressure field at 450 Hz in
logarithmic scale. No field can penetrate inside the metamaterial and after only
one layer an attenuation of 20 dB is observed.

to further investigate this attenuation effect, we mapped the field
at a frequency within the bandgap (450 Hz) while the loudspeaker
emits. We represent in Fig. 5.6.c the absolute value of the measured
monochromatic field in decibel scale again. This map clearly shows
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that the field cannot penetrate inside the soda can metamaterial at
this frequency and that the attenuation length is really short since
after only one layer of cans the transmission has been reduced by one
order of magnitude.

This bandgap was actually already introduced initially when we
mentioned the polariton dispersion relation. In terms of effective
parameter, the existence of the bandgap is associated to the neg-
ativeness of the effective compressibility which results in a complex
propagating velocity, that is, evanescent waves. We have to mention
here that in the acoustic community this type of bandgap has been
observed before the emergence of metamaterials and in the early
1990s researches referred to it as “hybridization bandgap” [Sigalas
and Economou (1993); Psarobas et al. (2002); Penciu et al. (2003);
Leroy et al. (2009b,a); Cowan et al. (2011)]. It results from the inter-
action of the propagating waves and the waves re-radiated from the
resonant unit cell: it is the result of destructive interferences between
those two waves. We have therefore reinterpreted this bandgap in
terms of Fano interferences [Fano (1961); Miroshnichenko et al.
(2010)] since it is clearly the interaction between a continuum of
modes (the free space waves) and a local resonator [Lemoult et al.
(2013)].

5.4.2. Creating a defect within the hybridization

bandgap

This kind of bandgap that occurs in the low frequency regime,
i.e. when the wavelength is large compared to the typical dis-
tance between resonators, presents an important difference compared
to the well documented ones in the context of phononic crystals
[Kushwaha et al. (1993); Sigalas and Economou (1993); Martinezsala
et al. (1995); De Espinosa et al. (1998); Yang et al. (2002); Page
et al. (2004); Sukhovich et al. (2008)]. In the phononic crystals, the
forbidden propagating band is due to Bragg interferences which are
inherently the consequence of the periodic nature of the medium:
the destructive interferences occur thanks to the periodic pattern-
ing of the medium. As a consequence, the proposed applications
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exploiting the forbidden propagation consists in locally breaking the
translational symmetry of the medium. Indeed, when doing so, solely
evanescent waves can penetrate from this location on small distances
inside the crystal. For example, a point defect can be created in
a phononic crystal by locally removing a scatterer. This results in
a small cavity because a resonant mode is created by the defect
within the band gap. Following this concept, many components have
been demonstrated based on periodic media such as waveguides using
line defects [Joannopoulos et al. (2011); Kafesaki et al. (2000); Khe-
lif et al. (2003); Miyashita (2005)] and the envisioned applications
span a large amount of domains from optronics [Chutinan and Noda
(1999)] to light matter interactions [Painter et al. (1999)]. However,
because of their wavelength scale period, phononic crystals result in
relatively large devices. This seriously restrains the range of appli-
cations, specifically in the low frequency regimes where the wave-
length is large. Contrary to Bragg interferences based bandgap, the
hybridization one, which originates from the destructive interferences
between the resonant response and the incident wave, is robust to a
spatial disorder: breaking the translational periodicity of the medium
does not close the bandgap [Penciu et al. (2003); Cowan et al. (2011);
Kaina et al. (2013)]. As a consequence we cannot use the trick of
breaking the periodicity of the medium as performed in phononic
crystals in order to create a defect state.

In order to illustrate the strong difference between those Bragg
bandgaps and the hybridization one observed in the soda cans
medium, we ran a set of simulations where we created a defect by
removing one can inside the array. We show in Fig. 5.7 (middle) the
spectrum of the transmission between an incident plane wave and
the location where we removed the soda can. This one has to be
compared to the one of the case without the defect in Fig. 5.7 (left).
No significant difference between the two spectra in the bandgap is
observed, a result that is further confirmed by the similitude of the
pressure field maps recorded at 440 Hz. This makes a big difference
compared to Bragg based bandgaps: the defect that we created this
way is actually too small to support a resonant mode, while in a
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Fig. 5.7. Simualtions corresponding to 3 different configurations: the regular 7
soda can array (left), an array in which we removed the central can (middle) and
an array where volume of the central can is reduced by 6 cL. For each, we show
the spectrum of the transmission 1 cm above the array and the pressure field
map at the frequency of 440 Hz. While removing a can cannot create a resonant
cavity, introducing a detuned resonator permits to create a (λ/15)2 area cavity.

phononic crystal removing one scatterer allows the existence of a
stationary defect mode since the typical scale of such a defect is the
wavelength. In order to tackle this issue, we actually have to physi-
cally add a resonant defect inside the soda can medium, or in other
words to introduce a detuned resonator compared to the rest of the
medium. In the case of the soda can medium, this is fairly easy to
build this defect resonator: the Helmholtz resonance of a single can
is parameterized by the volume of the air cavity. So, we can create
a detuned resonator just by changing this volume and we do so by
filling the can with a few centiliters of water. It results in a resonance
frequency that is upward shifted, thus falling within the forbidden
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band. The simulation corresponding to a water volume of 6 cL clearly
shows that this creates a defect: the spectrum of the transmission
shows a resonant peak near 440 Hz and the corresponding field map
displays that it corresponds to a resonant mode confined at the defect
position (Fig. 5.7 (right)).

The existence of this defect mode deserves few comments. First,
given the very small spatial scale of the soda can medium, one would
expect very strong near field interactions between the resonators.
Yet the polariton origin of the bandgap, that is the coupling of a
freespace plane wave and a local resonance, actually proves that the
dispersion in this deep subwavelength scaled medium is solely due to
interference effects which therefore guarantees the existence of this
defect mode. Second, because the unit cell is very small compared
to the freespace wavelength the modal volume of the confined mode
in this medium is deeply subwavelength. Third, while the quality
factor of a single can is around 10 it reaches 80 for the defect mode,
solely limited by the viscous losses. This comes from the fact that
the can filled with 6 cL of water cannot radiate waves toward far-
field, thus canceling any radiative damping of its intrinsic resonance.
Those two effects, namely a high quality factor and a low mode vol-
ume, are typical quantities that opticians are researching to enhance
the emission rate of an emitter and it is known under the name of
Purcell factor [Purcell (1946)]. Here, we have shown with an acous-
tic example that high Purcell factors are attainable in metamaterial
defect cavities. Similar results in microwaves [Lemoult et al. (2013);
Kaina et al. (2013)] have been obtained that permit to be confident
on the fact that the optical community can certainly reach this goal.

5.4.3. Molding experimentally the flow of acoustic

waves at a subwavelength scale

We now come back to the experimental setup described in Fig. 5.6(a)
and we use it to experimentally prove that it is possible to control
the waves at the subwavelength scale by introducing defects simi-
larly as we numerically performed. Obviously, the first experiment
consists in reproducing the point defect. So, we locally introduce a
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defect state by introducing 6 cL of water in the central can. While
emitting with the loudspeaker, we use our microphone mounted on
the 2D moving stage to map the field on top of the array. The
real part of the monochromatic map of the field at the defect reso-
nant frequency is given in Fig. 5.8(a) as well as the absolute value
profile along the dashed line. Clearly, we observe that the pressure
field is localized within one can of the array, meaning that waves
have tunneled through the metamaterial, and filled the cavity. The
effective cavity size of λ/15 is much smaller than in any realized
phononic crystal. And again, the measured quality factor for the
cavity is around 80, in very good agreement with the numerical
results.

We now concentrate on a second type of defect that probably
can lead to more applications in acoustics: a line defect. To that aim,
using a 5 × 12 cans array, a subwavelength line defect is obtained
by filling the soda cans of the central line with 6 cL of water. Now,
instead of having a resonant cavity we actually create a subwave-
length waveguide in the soda can array. Again, we measure the
acoustic field distributions on top of this array. The map of the
measured acoustic field for a frequency of 447 Hz is presented in
Fig. 5.8(b), as well as the transverse profile of the waveguide mode.
This demonstrates a λ/14 wide waveguide and we measure an atten-
uation transversely of 25 dB after the first row of cans. This kind
of waveguide is therefore extremely confined on the defect line at
the operating frequency. We cannot present all of the results here
but similar propagating behavior has been obtained for frequencies
around the presented one, except that the effective wavelength within
the waveguide is changing while changing the frequency. The band-
width is centered on the defect’s resonance frequency, which is typical
of a tight binding type of coupling. Indeed, the filled cans creating
the waveguide are embedded in a medium that does not support any
propagating waves, therefore the only channel for the coupling is a
tunneling from can to can. Note that we stated initially that the
physics of the soda can medium can be described by neglecting any
near field coupling because the picture of the polariton catches all of
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Fig. 5.8. Molding the flow of acoustic waves at the deep subwavelength scale.
Spatial distributions of the amplitude of the acoustic near field of the sample
when (a) the can positioned at (0,0) is filled with 6 cL of water, resulting in a
(λ/15)2 area cavity at 465 Hz, (b) a line of partly filled Helmholtz resonators at
y = 0 constitutes a λ/14 wide waveguide for acoustic waves at 447 Hz, (c) a 90◦

curved similar waveguide permits to bend with unity efficiency acoustic waves on
a λ/14 distance at 451 Hz and (d) a T-shaped waveguide splits acoustic waves
into two identical arms with equal amplitudes at 450 Hz. The insets show the
profiles of the magnitude of the fields along dashed colored lines.

the physics. Though it might seem contradictory with this previous
statement, note that the propagation mechanism is here constrained
by the presence of the hybridization bandgap. As no wave is allowed
to freely propagates the only mechanism for coupling two neighbours
is a tight-binding model.
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Using the same experimental protocol, we now move on to more
complex components to manipulate waves. We designed a corner
waveguide and a splitter by inserting those partly filled Helmholtz
resonators in a 7× 7 array of empty cans. Maps of the spatial distri-
butions of the fields in those samples are presented in Fig. 5.8(c) and
(d) alongside the profiles of their modulus in the directions of inter-
est. From those new experiments, we make a series of conclusions.
First, one can force the guided waves in any given direction, with no
specific engineering of the material structure, owing to the resonant
nature of the unit cell. In our case, we bend the waves 90◦ with unity
efficiency and within a λ/14 long unit cell. Actually, because a soda
can has an isotropic radiation pattern, there is no difference between
the 90◦ bend and the linear waveguide. This is in great contrast
with designs based on designers plasmons for instance [Martin-Cano
et al. (2010)], where scattering impairs seriously the ability of those
structures to bend waves within small propagation distances. Here,
since the waveguide lies in a band gap material, no scattering occurs.
Second, we can use our approach to split waves into two arms, which
ensures the possibility to realize deep subwavelength interconnections
and routing of acoustic energy.

As a conclusion, the presented approach gives unprecedented
solutions to manipulate acoustic waves, especially those for which
the wavelength seems large compared to the envisioned applications.
It then paves the way to the design of ultra compact components.
We insist here that this chapter is dedicated to the soda can medium
but this approach is very general and applies to any locally reso-
nant medium with neglectable near field coupling. Indeed, in our
initial paper [Lemoult et al. (2013)], we demonstrated very simi-
lar results in the context of electromagnetic waves where the unit
cell was a half-wavelength-long metallic wire. We also performed
experiments in microwaves where the subwavelength resonators were
placed in a disordered way: locally introducing a detuned resonator
in such a medium still creates a very confined cavity [Kaina et al.
(2013)]. Eventually, parametric experiments again performed in the
microwave range demonstrate very interesting applications for this
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kind of waveguides: thanks to the S-shaped dispersion relation the
waves can travel very slowly with unprecedented bandwidth-group
index product [Kaina et al. (2016)].

In the same time, those results raise interesting questions regard-
ing the physics of metamaterials. Indeed, with the conventional
homogenization approach one cannot predict what happens inside
metamaterials containing one or several defects because this pro-
cedure averages the response of all the resonators. For example, a
straight waveguide or a 90◦ bending one present the same num-
ber of defects but give completely different results. Our microscopic
approach nevertheless permits to understand that the interferences
phenomena occurring at the deep subwavelength scale of the meta-
material are actually very similar to the ones occuring at the wave-
length scale in phononic crystals.

5.5. Spatial Structuration and Multiple Scattering
Lead to Negative Refraction

5.5.1. Breaking locally the symmetry

In this section, instead of introducing localized defects we decide to
engineer locally the material with local defects that respect a given
translational symmetry of the metamaterial. Indeed, the previous
experiments have highlighted the fact that local modifications of the
metamaterial gives rise to interferences effect at the scale of the mate-
rial no matter what is the free space wavelength. Therefore we now
propose to slightly break the periodic nature of the initial metama-
terial either by changing the resonance frequency of one resonator
out of two, or by slightly off-centering one resonator (Fig. 5.9). Con-
sequently, the unit cell of the medium becomes a dimer made of two
resonant elements. This type of new cells, because of their dimeric
natures, should support a dipolar resonance overlapping with the
monopolar one that gives the metamaterial its effective macroscopic
property.

For the sake of simplicity, we start with the simplest exam-
ple of locally resonant metamaterial which consists in a one
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Fig. 5.9. (a) Typical polaritonic disperion relation for a periodic arrangement
of resonant point scatterers (mathematical equivalent of the soda can) or its
representation in terms of an effective index of refraction. By locally breaking the
periodicity of the chain either by off-centering one resonator out of two (b) or by
changing its resonant frequency (c) we ends up on dispersion relations showing a
negative band (the effective index of refraction is negative).

dimensional chain of point scatterers organized periodically on a
deep subwavelength scale. The dispersion relation of such a chain
of resonant unit cells, with a = λ0/12, is calculated analytically
using a combination of a Green’s function formalism and a trans-
fer matrix approach [Kaina et al. (2015); de Vries et al. (1998)]. As
seen before, the obtained dispersion is typical of the soda can array
already studied and exhibits the polaritonic behavior (Figure 5.9(a)).
Or again, equivalently, the medium can be described by a set of two
effective parameters with only one of them being negative. It then
can be named as a single negative metamaterial. This one dimen-
sional chain physically behaves as the soda can medium which can
be characterized with a negative compressibility.
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From this single negative medium, two new configurations are
created just by breaking the symmetry in two different ways: either
a bi-periodic chain is built by off-centering one resonator out of two,
or a bi-disperse one is generated by slightly shifting the resonance
frequency of half of the resonators. In both cases, we again analyti-
cally calculate the dispersion relation and extract the corresponding
effective refractive index (Figure 5.9(b) and (c)). Both of the new
symmetry broken metamaterials now exhibit, in the bandgap of the
single negative medium, a new propagating band that is character-
ized by a negative phase velocity.

5.5.2. Physical origin of the negative index branch

To understand the origin of the negativeness of the band, we para-
metrically study those two symmetry-broken formal metamaterials.
In the case of the bi-periodic chain, the parameter is the shift in posi-
tion, while for the bi-disperse one the frequency detuning between
the resonators is modified. For each parameter, we analytically cal-
culate the new dispersion relation with the same approach that takes
into account multiple scattering and extract an effective index out
of it. The results are shown in a colour-coded maps (Figure 5.10).
For the bi-periodic chain, we note that the index of the new band is
negative whatever the shift in position. In the bi-disperse case, how-
ever, this negative band only appears on a narrow frequency detuning
range. This suggests that multiple scattering may be involved since
it seems that the resonances due to each type of resonators have
to overlap. To confirm this intuition, we extract for the same set of
parameters, the effective index only by considering the independent
scattering approximation at the scale of the new unit cell made of
two resonators. Namely, we do not consider the Fabry-Perot res-
onator that is built on a deep subwavelength scale between the two
resonators. From the maps on Fig. 5.10, it is clear that this approxi-
mation does not permit to retrieve the existence of a negative index,
and positive index bands, typical of a double polariton, appear. This
shows that the negative index arises from multiple scattering between
the resonators of the unit cell, even if the distance is far below the
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tion (ISA). While the maps with the full multiple scattering calculation show the
existence of the negative band (blue color in the map) the ISA does not retrieve it.

wavelength. This, in turn, explains why, for the bi-disperse chain,
the existence of the negative index depends strongly on the chosen
detuning: for too large a resonance frequency mismatch, the two res-
onators cannot couple any longer owing to multiple scattering.

To grasp the physics of the approach, we carefully studied the
fields created by a dimer (the new unit cell of the symmetry-
broken media) and made the following observation: multiple scatter-
ing creates a dipolar resonance (the two resonators are out-of-phase)
overlapping with a monopolar resonance of the dimer. This dipolar
resonance is responsible for the opening of a narrow transparency
window within the large out-of-phase response of the monopolar
one. This is analogous to electromagnetic induced transparency in
quantum physics [Fleischhauer et al. (2005)], or more precisely to
its metamaterial equivalents [Papasimakis et al. (2008)]. This dipo-
lar resonance results from multiple scattering occurring between the
two adjacent resonators. Moving from the unit cell to the infinite
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medium, this dipolar mode gives rise to a band of propagating waves
within the bandgap of the single negative medium, the latter being a
consequence of the monopolar resonance of the unit cell. This band
has a negative slope, or equivalently, the metamaterial now presents a
negative index. This originates physically from the fact that owing to
the symmetry breaking, the lower polaritonic band folds in the first
Brillouin zone, analogous to optical branches in diatomic crystals or
band folding in phononic crystals. Here, though, the band folding,
owing to the change of sign of the Bloch mode between the two edges
of the unit cell has a different origin. Indeed, while in phononic crys-
tals, it arises from the fact that the host medium wavelength becomes
smaller than twice the lattice constant, in the former the change of
sign results from the dipolar nature of the resonant mode within the
unit cell. This implies that, contrary to negative refraction in crystals,
this new phenomenon exists even if the scale of the metamaterial is
deeply subwavelength, and happens at the same frequency as the
resonance of the original building block, which we can qualify as the
low frequency regime. Furthermore, since the original single negative
effective property does not rely on spatial order [Kaina et al. (2013)],
this negative index band should be robust even in a metamaterial
constituted of randomly placed dimers: both the monopolar and the
multiple-scattering-induced dipolar resonances should remain, hence
leading to a negative index medium [Li and Chan (2004)].

5.5.3. From 1D to 2D media

This idea of breaking the symmetry is rather simple in one dimension
and before starting experiments on the quasi-bidimensional medium
based on soda cans we need to move on to the two dimensional world.
Finding a lattice that paves the space and presents a bi-periodicity
in all directions is far much complicated than in one dimension. In
order to stay as isotropic as possible, we choose the Bravais lattice
that presents the first Brillouin zone that is the closest to the circle
which is the hexagonal lattice. Then, as we mentioned in the one
dimensional case the unit cell needs two resonant objects in order to
have the dipolar resonance creating the transparency window within
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Fig. 5.11. Dispersion relations from numerical simulations with Bloch boundary
conditions. (a) a triangular lattice of soda cans displays the polaritonic dispersion
behaviour while (b) the honeycomb lattice which consists of the superposition of
two triangular ones exhibit the presence of a negative band in the two principal
directions of the crystal. (c) The surface plot of this band shows the almost
isotropic nature of this band. Similarly, (d) the square lattice of soda cans displays
the polaritonic dispersion while (d) a square lattice made of two resonators with
two different resonant frequencies shows a negative band. (f) The surface plot
for this bidisperse crystal shows less isotropy but near its upper edge it seems
isotropic.

the bandgap created by the monopolar one. Therefore, we naturally
end up on the well-known honeycomb lattice. Carefully looking at the
positions of the Bragg planes one can see that it exhibits this double
periodicity in any of the M directions. This “crystal” is made of a
diamond-shaped unit cell comprising two resonators, and is compared
to the triangular lattice which has the same unit cell but with only
one resonator. Numerical simulations using Comsol Multiphysics give
the dispersion of both the regular and the symmetry-broken lattices
(Figure 5.11(a) and (b)). The triangular lattice medium presents a
polaritonic dispersion relation, while the honeycomb lattice (which
actually consists of the superposition of two identical triangular
lattice crystals) displays a negative band. The dispersion depends
slightly on the propagation direction but remains rather isotropic as
shown in the surface plot (Figure 5.11(c)) and can thus be described
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with an isotropic negative effective index of refraction for almost all
frequencies.

For the bi-disperse two-dimensional lattice, we have not found
ideal solution to deal with the isotropy issue. We chose to favor sim-
plicity by mixing two square lattices of slightly detuned Helmholtz
resonators in order to build a new square lattice whose unit cell con-
tains two resonators (Figure 5.11(d) and (e)). Again, the detuning is
really easy to achieve since it is experimentally realizable by pouring
some water in the can in order to reduce its volume. This bi-disperse
resonant crystal exhibits a negative branch although it is simply the
superposition of two almost identical single negative media. In this
case, the propagation is less isotropic, since the geometry of a square
unit cell tends to deform the isofrequency contours near the corners
of the first Brillouin zone as shown from the surface plot describing
the dispersion relation of the negative band within the entire first
Brillouin zone (Figure 5.11(f)). There is, however, no doubt that one
can find a more isotropic medium.

Then, in order to show that a band having a negative slope is
actually the signature of a medium exhibiting negative refraction, we
now focus on the honeycomb crystal and we perform simulations on
a slab geometry. We did not implement it experimentally because it
would have required a much larger sample than our rooms dimen-
sions. To avoid a too high number of mesh cells, those simulations
only consist in simulating a slab layer of height

√
3a (where a is

the distance between two adjacent soda cans) which corresponds to
the vertical unit cell of the honey comb arrangement of soda cans.
Periodic boundary conditions are applied on the vertical boundaries
to simulate the infinitely extended slab. This slab unit cell is excited
by an incident plane wave with an incident angle θ with respect to
the normal of the slab, and the phase shift applied on the periodic
boundary conditions matches this value. We perform a set of 61 sim-
ulations with θ ranging from -90◦ to 90◦. From those simulations,
we are then able to build an incident wave field impinging on the
slab that corresponds to a Gaussian beam with an incident angle θ0.
To do so, we perform the complex summation of the wave fields
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Fig. 5.12. Intensity maps of a simulated Gaussian beam impinging on an infinite
slab made of cans without losses with an incident angle of 30◦. The superimposed
ray tracing corresponding respectively to a refractive index of (a) −3 at 417.5 Hz,
(b) −2.4 at 418.5 Hz and (c) −1.5 at 419.5 Hz clearly shows the negative refraction
effect.

extracted from each simulation and multiplied by a Gaussian coeffi-
cient exp (−( θ−θ0√

2σθ
)2), where σθ corresponds to the angular aperture

of the beam and is chosen to be equal to 9◦. The complete field map
on positions that are not within the simulation area is built by the
use of the Bloch theorem for each incident angle.

Such a superposition of simulations is realized for an incident
angle of θ0 = 30◦ and for distinct frequencies in the negative band:
417.5 Hz, 418.5 Hz and 419.5 Hz (Figure 5.12). From the isofre-
quency contour calculated previously we extract an effective index of
refraction (respectively −3, −2.4 and −1.5) and we superimpose on
the figures arrows corresponding to the refraction at both interfaces
with respect to the Snell laws. Such a ray tracing is in very good
agreement with the propagation of the beam through the slab. This
simulation first confirms that we have negative refraction since the
outgoing beam seems to exit the slab from a y-coordinate that is
higher than the coordinate of the incident beam. Second, similar
results for different angles, but the same norm of the index of refrac-
tion, confirm that the refraction law can be described by an effective
index of refraction instead of anisotropic parameters. Third, those
results do not show any diffraction order at the exit of the slab as
one would expect from periodic media. This is a direct consequence of
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the subwavelength organization of the medium: all of the diffraction
orders are evanescent at the exit interface. This again legitimates the
description of the medium in terms of a negative index of refraction.

5.5.4. Experimental demonstration: acoustic

superlensing

Such an experiment with a Gaussian beam impinging on a meters-
scale slab is not realizable experimentally is not realizable given the
required dimensions. So, we decided to prove the index of refraction
through an experiment which consists on a point source illumination
where the slab should behave as a flat lens.

We again work with the bi-periodic medium, i.e. the honeycomb
arrangement of soda cans. We build a slab with 124 cans, surrounded
by acoustic absorbers to avoid reflections of sound off the bound-
aries of the room as shown in the photography of the experiment
(Figure 5.13(a)). An 8-cm-wide loudspeaker located approximately
5 cm away from the input interface of the medium is used as the
source of sound while 2 microphones mounted on a two-dimensional
translational stage measure the acoustic field above the medium. The
loudspeaker emits a long chirp ranging from 100 Hz to 800 Hz and
the data are treated by Fourier transform in order to obtain the field
maps at the desired frequency. Here, we work at the frequency of
417.5 Hz, which corresponds to the frequency close to the lower edge
of the negative band, that is, where the effective negative index norm
is the highest.

The real part of the field at this frequency is shown Figure 5.13(b)
and is hard to interpret due to the dissipation. We thus show the
intensity within the slab by numerically compensating for the losses
that occur during the propagation in the lens (Figure 5.13(c)). We
can clearly distinguish the path for sound refraction, with a focal
spot inside the lens, in very good agreement with the Snell law
for a metamaterial with an effective index of 3, consistent with the
numerical results. On the other side of the slab, in the vicinity of
the surface, we record the image of the source with a λ0/15 full-
width at half-maximum (Figure 5.13(d)). This is much smaller than
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Fig. 5.13. (figure on facing page). Experimental demonstration of subwave-
length focusing and imaging using a flat acoustic lens. (a) A photography of the
experimental setup: the flat lens, composed of a compact honeycomb arrangement
of soda cans, is insonified by a loud speaker placed close to the surface of the
medium. Two microphones mounted on a 2D moving stage record the acoustic
pressure field less than 1 cm above from the top of the cans. Absorbers surround
the lens to prevent from undesired reflections. (b) The real part of the pressure
field at 417.5 Hz and (c) its absolute value while compensating for the losses
due to the propagation within the lens. The direction of the refracted beams is
highlighted with the dashed arrows displaying the features of the negative refrac-
tion. (d) The normalized amplitude of the field in the close vicinity of the output
surface proves a focusing area of λ0/15 (red) while the source (blue) is λ0/5 wide
and the control experiment (black), that is without the lens, λ0/1.2 wide. The
same experiment is conducted with two sources playing sounds out of phase to
demonstrate super-resolution (e-g). It clearly proves the same negative refraction
results with a resolution of λ0/7

the diffraction limited focus obtained without the lens (black curve),
and even smaller than the width of the source, λ0/5, owing to a
hotspot created by the aperture of a single soda can: not only this
demonstrates the negative refraction property of the medium but it
also proves a superlensing effect. We stress here that this superlensing
effect owes to the high norm of the effective index of refraction that
allows the propagation of waves within the slab that are evanescent
in air as well as the negative refraction occurring at both interfaces.

Super-resolution can also be demonstrated by being able to dis-
criminate two sources separated by less than half a wavelength. Two
loudspeakers, emitting out-of-phase, are placed near the input inter-
face and separated by 13 cm (λ0/7). The measured pressure field,
as well as the loss-compensated intensity maps (Figure 5.13(e) and
(f)), show that the slab produces two distinguishable foci inside the
superlens. In the focal plane, the two images are efficiently sepa-
rated (Figure 5.13(g)), thereby demonstrating a λ0/7 imaging reso-
lution, far beyond the diffraction limit. On the contrary, the control
experiment realized without the superlens (black curve) only dis-
plays diffraction limited spots, again proving the focusing properties
stem from the negative index flat medium. We have further verified
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that the two sources can be distinguished whatever the phase shift
between them [Kaina et al. (2015)].

As a conclusion of this part, we have demonstrated that it is
fairly easy to build double negative media starting from a single neg-
ative one. Breaking the symmetry of the unit cell of a single negative
medium (either by changing the spacing or by adding a frequency
detuning), multiple scattering of waves guarantees the existence of
an overlap between a dipolar resonance and a monopolar one. This
ends on a negative effective index of refraction when considering the
infinite medium. This approach is very general and brings a new
paradigm to the physics of metamaterials since multiple scattering
is often neglected owing to the subwavelength spatial scale of those
media. This proves that not only the nature of the scatterers is impor-
tant but also their spacial ordering: this therefore opens the realm of
metamaterial crystals.

5.6. Conclusion

In this chapter we have exemplified, through the acoustic example of
the soda cans medium, that the physics of locally resonant metama-
terials is very rich thanks to interferences effects occurring at a deeply
subwavelength scale. Because the soda can interacts resonantly with
the continuum of freespace plane waves, the coupling results in a
polaritonic behaviour. This is well explained by the quantum picture
of the polariton and in a wave physics like description it is easily
understandable by Fano like interferences. Indeed, as for any reso-
nance, the waves scattered by a soda can experience π phase shift
near the resonant frequency. This results in a dispersive response
that adds additional phase to the transmitted wave. Depending on
the frequency range hypersonic modes, a bandgap or leaky modes
are then observed.

By using the modes that are below the cone shape of the freespace
dispersion relation, i.e. the lower band of the polaritonic dispersion
relation, we have demonstrated that one can focus acoustic waves
below the freespace diffraction limit. Indeed at a given frequency
those modes oscillate at a scale much smaller than the freespace



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch05 page 245

Soda Cans Metamaterial 245

wavelength and by using a finite-sized medium, those modes are
trapped and radiate some energy towards farfield. Reciprocally, by
smartly exciting simultaneously those modes we can build interfer-
ences that are constructive only at a desired position and at a given
time, thus resulting on focal spots that have dimensions smaller than
the freespace wavelength.

Exploiting the band gap that occurs at low frequency, i.e. for
freespace wavelength much bigger than the average distance between
unit cells, one can mold the flow of acoustic waves at a scale that is
completely independent of the wavelength. This is implemented by
locally introducing resonant defects which have a resonant frequency
falling into the bandgap created by the others. In the context of the
soda can medium it is really easy to realize since diminishing the
volume of the can by adding few centiliters of water at the bottom
increases its resonant frequency. We therefore demonstrate trapping,
waveguiding, bending and splitting abilities at the subwavelength
scale without much engineering.

Eventually, we showed that observations made in the context of
the phononic crystals which are wavelength scale media also occur
at the deep subwavelength scale of the soda can medium. Indeed, we
demonstrated that multiple scattering also occurs on scales that are
much smaller than the freespace wavelength. The accumulated phase
on a wavelength scale in phononic crystals is replaced by the disper-
sive response of resonant objects. As a consequence, breaking the
translational symmetry of the medium, highlighted with a biperiodic
medium and a bidisperse one, results in new propagation properties
such as the negative index of refraction. This in turn creates many
opportunities in the context of metamaterials because we can now
take advantage of the spatial structure in order to create new macro-
scopic properties: this paves the way to a new class of media that are
the “metamaterial crystals”.

There is no doubt that we are far from having exploited all
of the properties offered from such a locally resonant medium. We
have exploited separately multiple scattering, the bandgap or the
subwavelength modes, but by combining any of those properties one
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can easily find new applications. For example by adding resonators
creating a bandgap between the adjacent cans in the honey-comb
crystal we turn the coupling between them from a polariton-like to
a tight binding one, and we can therefore build a macroscopic ana-
logue of graphene for the propagation of electrons. By adding some
disorder in the structure but keeping the pair-correlations in posi-
tions we should also keep the negative effective property. All of this
will be scope of future works and the soda can medium is a fairly
good platform to demonstrate experimentally all of these fascinating
phenomena.
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6.1. Introduction

Man-made composite materials have been the subject of many inves-
tigations in the wave physics community over the last decade, as they
show wavefield characteristics that cannot be obtained with natural
materials. Theoretical and experimental work at the turn of the 21st
century [Pendry, 1999; Pendry, 2000; Shelby et al., 2001] has shown
that only ad-hoc subwavelength arrangements of resonant elements,
later on coined metamaterials, could provide the extraordinary neg-
ative refraction property first advocated by the visionary study by
Veselago in the late 60’s [Veselago, 1968]. Metamaterials nowadays
provide an opportunity to control and manipulate waves at differ-
ent wavelength scales [Engheta and Ziolkowski, 2006; Craster and
Guenneau, 2012; Pendry et al., 2006; Lemoult et al., 2013; Kadic
et al., 2013].

In general, the wave propagation properties of structured man-
made materials find their roots in two distinct origins: first, the
ordered or disordered spatial organization of their components; sec-
ond, the resonant or non-resonant nature of their unitary element
[Deymier, 2013; Sigalas et al., 2009]. When waves propagate in a
complex medium with structural order, they can undertake mul-
tiple scattering, which leads to frequency bands of permitted and
forbidden propagation, also called band gaps. These forbidden fre-
quency bands are analogous to electronic band gaps in natural crys-
tals [Kittel, 1996]. These materials have a typical spatial scale com-
parable to the average wavelength of the wave under investigation.
They are termed photonic crystals in electromagnetics [John, 1987;
Yablonovitch, 1987; Fan et al., 1998; Notomi, 2000; Joannopoulos
et al., 2008; Shen et al., 2014] and phononic crystals in acous-
tics [Martinez-Sala et al., 1995; Vasseur et al., 2008; Sigalas and
Economou, 1993; Poulton, 2003; Benchabane et al., 2006; Page et al.,
2004; Sukhovich et al., 2009; Farhat et al., 2010; Maznev et al., 2011;
Khelif et al., 2003; Pierre et al., 2010; Dubois et al., 2013, Lagarrigue
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et al., 2013, Page et al., 2013], and they constitute powerful tools to
shape the wavefield in various manners [Joannopoulos et al., 2008].

Other types of composite materials are made of a collection
of unitary resonant components (sub-wavelength resonators) from
which they extract their dispersive properties at the macroscopic
scale [Liu et al., 2000a, 2000b; Fang et al., 2006; Guenneau et al.,
2007; Lemoult et al., 2011(a), 2013; Leroy et al., 2009; Psarobas
et al., 2002; Cowan et al., 2011; Antonakakis and Craster (2012);
Christiansen and de Abajo, 2012; Achaoui et al., 2013; Deymier,
2013]. A key parameter of these so-called locally resonant metama-
terials lies in the arrangement of many sub-wavelength resonators
within a wavelength which also means that their collective behavior
cannot be explained by Bragg scattering. In fact, the proximity of
sub-wavelength resonators permits the coupling between a large set
of individual resonators [Pendry et al., 1999; Smith et al., 2000].
In this case, the metamaterial physics can be interpreted through
interferences between the incident field and the scattered waves gen-
erated by each resonant unit [Lemoult et al., 2013], which result
in a Fano interference due to the resonant nature of the unit cell
[Fano, 1961; Miroshnichenko et al., 2010]. At the macroscopic scale,
local resonances lead to the hybridization phenomenon [Sigalas and
Economou, 1993], which is analogous to the concept of polariton in
solid state physics [Lagendijk, 1993] that deeply modify the disper-
sion relation in the host medium, generating two hybridized modes
resulting from the anti-crossing effect between a continuum of states
with a localized one. By tuning the unit-cell resonance, it is possi-
ble to obtain media with effective parameters (such as compress-
ibility and density for acoustic waves, for example) that can be
positive [Shen et al., 2005; Choi et al., 2011], null [Silveirinha and
Engheta, 2006] or negative [Fang et al., 2006; Guenneau et al., 2007;
Gracia-Salgado et al., 2012; Kaina, 2015]. When both of the effec-
tive parameters are simultaneously negative [Veselago, 1968; Smith
et al., 2000; Smith et al., 2004; Li and Chan, 2004], exotic behav-
ior occurs such as negative refraction [Pendry, 2000; Shelby, 2001;
Sukhovich et al., 2008; Ramakrishna and Grzegorcyk, 2008; Farhat,
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2010; Pierre et al., 2010; Craster and Guenneau, 2012]. Contrary to
photonic or phononic crystals, which exhibit band gaps due to the
Bragg diffraction effect, the spatial organization of locally resonant
metamaterial is no longer relevant which means that band gaps can
be observed independently of its ordered or disordered nature [Cowan
et al., 2011; Kaina et al., 2013b, Kaina et al., 2015].

As a matter of fact, the width and efficiency of band gaps in
locally resonant metamaterials depend upon both the spatial density
of the resonators and the radiative quality factor of the resonances.
In the limit of small resonators compared to the wavelength, the
smaller the resonator, the higher its quality factor. This justifies why
locally resonant metamaterials classically support band gaps lim-
ited to narrow bandwidths. To overcome this fundamental limitation,
metamaterials can be created with resonator units that are small in
two dimensions that support wave propagation, but elongated in the
third one, where each resonator can expand [Lemoult et al., 2013].
Thus, one dimension is sacrificed to define the resonant property
of the resonators, while in the two-dimensional plane of propagation,
the resonators are much smaller than the wavelength [Lemoult et al.,
2010, 2011(b); Belov et al., 2006]. Such a uni-axial metamaterial was
created with a so-called wire medium in electromagnetism, which has
been used to control and/or focus waves below the diffraction limit.
When curved, such wire media can be used to design invisibility
cloaks with deep subwavelength features, as experimentally shown
for microwaves [Ktorza et al., 2015].

Most of the metamaterial research has been done experimentally
on small scales that are typically fractions of a millimeter. They are
typically either electromagnetic or phononic/ultrasonic regimes. For
larger elastic and acoustic propagation scales, the subwavelength res-
onators can be identifiable elastic components such as finite length
rods. For example, in acoustics, a collection of narrow, but long
pipes was recently used to form a super lens [Zhu et al., 2011]. This
approach is also perfectly suited to thin 2D plate supporting Lamb
waves that interact with a collection of resonators (also known as
meta-surfaces [Khelif et al., 2010; Oudich et al., 2011; Xiao et al.,
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2012; Rupin et al., 2014(a)]), as will be shown in the present review
paper. The purpose of this chapter is to explore examples of this
larger scale metamaterical regime from which we envision extending
mechanical metamaterials at a geophysical scale.

We start with an example of a flexurally vibrating plate to which
we add a collection of vertical rods that act as resonators analogous to
the smaller scale structures most commonly studied in the literature.

We present an experimental and theoretical analysis of the result-
ing metamaterial and we relate these results to the multimodal scat-
tering required for optimal propagation control. For example, we show
that high resolution focusing can be achieved in the metamaterial
region at subwavelength scales associated with the Lamb waves of the
plate. Further, it is demonstrated from the single mode experimental
data that cloaking can be achieved at the level expected by theory.
Finally, the results suggest that analogous composite structures exist
in nature at the geophysical scale. We provide an example in which
a forest of trees makes adequate resonant substructures for surface
waves propagating at the interface of a semi-infinite elastic medium.

6.2. Part I: Experimental Results

The investigation of the uniaxial metamaterial for Lamb waves is
made through experiments at a larger mesoscopic scale (and hence
at a lower frequency) than usually reported in the literature [Pennec
et al., 2009; Wu et al., 2009; Khelif et al., 2010; Oudich et al., 2011;
Assouar et al., 2012; Xiao et al., 2012; Hsu, 2013]. A 6-mm-thick and
1.5-m × 2-m-long aluminum plate is locally excited by a dynamic
shaker with a 1.8-s-long broadband chirp that ranges from 500 Hz
to 11 kHz (Fig. 6.1(a)). At low frequency, two Lamb modes [Lamb,
1904] propagate in the plate, which are defined as the anti-symmetric
A0 and the symmetric S0 modes. The A0 mode mostly corresponds
to out-of-plane displacement of the plate while the S0 mode corre-
sponds to in-plane longitudinal displacement. For symmetry reasons,
the shaker only excites the A0 mode and only the vertical displace-
ment of the plate is locally probed with the laser interferometer.
The shape of the plate (a Bunimovich stadium which has chaotic
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Fig. 6.1. (a) Experimental set-up. A shaker (1) generates A0 Lamb waves in the
aluminum plate. The wavefield is measured with a Doppler velocimeter (2) and a
PC-controlled (3) motorized mirror (4) on the rectangular area (5) on the upper
side of the plate. The metamaterial (6) is attached below the plate on one side
of the recording map. (b) The typical temporal dispersion exceeds 0.2 s, which
corresponds to more than 20 round-trips inside the plate. (c) The metamaterial
is made of 100 vertical aluminium rods that are arranged on a random pattern,
with an average inter-rod distance of the order of 2 cm. (Modified from Rupin
et al., 2014).

dynamical ray trajectories [Bunimovitch, 1979]) ensures that, what-
ever the source position, the waves propagate at long time in all
directions with equal probabilities [Gutzwiller, 1990; Bunimovitch,
1979]. Note that the A0 Lamb waves have a quadratic dispersion
relation [Royer and Dieulesaint, 2000] with typical wave speed of 340
m/s at 2 kHz (wavelength λ = 17.5 cm). The multiply-reverberated
waves are measured on the upper side of the plate and, after cross-
correlation with the emitted chirp, the plate response is spread over
more than 200 ms (Fig. 6.1(b)), to be compared to the 1-ms-long
autocorrelation signal. This corresponds to more than 20 round trips
of the propagating waves across the plate. Using computer-controlled
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motorized mirrors, the vertical displacement of the plate surface can
be scanned on a 0.20 m × 1.15 m surface S (Fig. 6.1(a), rectangle
numbered 5) with a resolution of 3 mm. This leads to the accurate
estimation of the spatio-temporal wavefield that describes the inter-
ference pattern created by the shaker in the plate.

Within this scanned area, a metamaterial is built with a set of
100 cylindrical 61-cm-long, 6.35-mm-diameter aluminum rods glued
on a 400 cm2 area on the lower side of the plate (Fig. 6.1(c)). The
spatial distribution of the vertical rods on the plate is random with
an average distance between resonators of the order of 2 cm (i.e. λ/9
and λ/4 for the A0 mode at 2 kHz and 10 kHz) and a 5-mm minimum
inter-rod distance. For Lamb waves, this collection of rods is equiva-
lent to a set of sub-wavelength resonant scatterers exhibiting several
resonances of different nature (longitudinal and flexural resonances
of rods) in the frequency range under study.

When the plate vertical displacement is probed outside the meta-
material, the spatially averaged Fourier transform shows a maximum
energy density below 2 kHz, followed by a plateau up to 11 kHz
(Fig. 6.2). The sudden 10-dB drop at 2 kHz is due to the radia-
tion leakage of the A0 Lamb mode in air. The Fourier spectrum

Outside

Inside

Fig. 6.2. Average Fourier spectra for the signals measured inside (red) and out-
side (blue) the metamaterial. The averaging is performed over two surfaces (yellow
dotted squares) within the rectangle measurement area (number 5) in Fig. 6.1.
The two vertical dashed lines correspond to the frequency band in which the
wavefield is filtered in Fig. 6.3 (Modified from Rupin et al., 2014).
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measured above the multi-resonator disordered metamaterials reveals
three wide band gaps starting at 2, 6, and 10 kHz. The shape and
intensity of the band gaps are independent of the random organi-
zation of the rods [Rupin et al., 2014(a)]. This demonstrates that
spatial disorder does not affect the properties of the metamaterial
whose macroscopic behavior cannot be explained with constructive
or destructive interferences associated with Bragg scattering.

In Figs. 6.3(a)–(d), the wavefield was filtered in the first band gap
(dashed vertical lines in Fig. 6.2), and then mapped after a propa-
gation time of 3.3 ms (corresponding to the ballistic field), 20 ms,

3 ms

20 ms

50 ms

102 ms

(a)

(b)

(c)

(d)

Fig. 6.3. Field maps measured with a Doppler velocimeter on the rectangular
area [see Fig. 6.1(a)] inside and outside of the metamaterial, (dashed purple area).
Snapshots of the temporal field at (a) 3 ms, (b) 20 ms, (c) 50 ms and (d) 102 ms
for signals filtered in the first band gap [2100 Hz – 2800 Hz]. After 100 ms, the
field has propagated more than 40 m inside the reverberating plate which results
in an omni-directional incident field onto the metamaterial. The colorbar is the
same for each panel with a field amplitude maximum equal to 1 for the incident
wave in the plate, leading to a strong saturation in panels (a) and (b) that further
confirm the very low field amplitude inside the metamaterial.
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(a)

(b)

(x)

(y)

Fig. 6.4. (a) Size of the (x)–(y) area scanned with the Doppler velocimeter
inside the metamaterial. (b) Spatial distribution (in dB scale) of the field intensity
recorded inside the first band gap [2100 Hz − 2800 Hz].

50 ms and 100 ms, corresponding to multi-reverberated Lamb waves
with travel distances of ∼7 m, ∼20 m and 40 m inside the 1.5-m × 2-
m plate, respectively. These ’snapshots’ reveal two effects. First, the
band gap is efficient, as waves have been clearly attenuated within a
small fraction of the A0 mode wavelength. Secondly, the band gap is
valid for all incident angles, as can be seen from the last snapshots
with a superposition of incident plane waves in all directions.

When filtered in the bandgap, the field amplitude decreases expo-
nentially as one penetrates inside the metamaterial along one direc-
tion perpendicular to its interface (Fig. 6.4). This penetration length
can be interpreted as a skin effect and depends on frequency. It varies
from 3 cm at 2.5 kHz in the first bandgap to 1.7 cm at 6.4 kHz in the
second one (Fig. 6.5). The formulation for the frequency-dependent
attenuation coefficient is proposed later in the chapter.

6.2.1. Dispersion curve within the metamaterial

Outside of the bandgaps, the wavefield propagates deep inside the
metamaterial. The billiard shape of the plate makes the field spatially
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Fig. 6.5. Normalized averaged intensity measured along the y-direction perpen-
dicular to the metamaterial rectangular area (see Fig. 6.4a) in both the first and
second bandgaps.

random after a few reverberations from the plate boundaries. Con-
sidering a time window associated with long-time reverberations, the
spatial Fourier transform of the field recorded inside or outside of the
metamaterial (Fig. 6.3) reveals a circle when filtered in a small band-
width that confirm the equi-distribution of the wave components on
all possible azimuthal directions (Fig. 6.6). At each frequency, the
circle radius is an accurate measure of the effective velocity inside or
outside of the metamaterial, from which the dispersion curve can be
plotted.

The dispersion curve of the metamaterial is thus obtained from
the collection of grid points measured solely inside the purple rectan-
gles in Fig. 6.3. Both propagative wavenumber and attenuation can
be extracted over the frequency band of the source excitation. For
each measured point, the temporal signal is Fourier transformed and
a 2D spatial Fourier transform of the wave field is then calculated
[Capon, 1973]. At each frequency, this 2D Fourier spectrum is trans-
formed into a frequency–wavenumber dispersion curve by averaging
the spectrum over a circle [see Figs. 6.6(e), (f)]. The wave physics of
the metamaterial is then encapsulated in a single dispersion relation
that shows the real part of the wave vector and the corresponding
attenuation length within the band gaps (Fig. 6.7). The dispersion
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Inside the Metamaterial Outside of the Metamaterial

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 6.6. Frequency-wavenumber representation of the field inside and outside
of the metamaterial. (a)–(b) A time window is selected (in red) that corresponds
to the multi-reverberated part of the field on the plate. (c)–(d) After Fourier
transform, a narrow frequency band is selected (in red : 1700 Hz − 1800 Hz).
(e)–(f) The kx–ky wavenumber representation is obtained both inside and outside
the metamaterial area for the time and frequency windows shown above. A radial
averaging provides the maximum phase velocity: (e) wave speed c = 137 m/s and
(f) c = 305 m/s, respectively inside and outside of the metamaterial.

relations of the A0 Lamb modes in the homogeneous plate are super-
imposed.

As written above, thin plates support two types of waves at low
frequencies: the symmetric and antisymmetric modes, S0 and A0.
In practice, A0 waves are mostly vertically polarized and can be
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(a) (b)

Fig. 6.7. (a) Frequency — wavenumber representation of the wavefield measured
inside the locally-resonant metamaterial. Theoretical dispersion of the A0 curve
for the homogeneous plate is superimposed (dashed gray). The red curves corre-
spond to the theoretical dispersion curve for a periodic distribution of resonators
inside the metamaterial using Bloch theorem. The horizontal axis at the top of
the panel corresponds to the wavenumber scaled by the average distance between
the resonators. The three blue dots and the four green dots refer to the frequency
components for the field maps displayed in Figs. 6.8 and 6.9, respectively. (b)
Imaginary part of the k-vector measured inside the metamaterial with the same
color code as in (a). (Modified from Williams et al., 2015).

characterized by out-of-plane (vertical) displacement when in-plane
(horizontal) displacements in the plate are described by S0 waves.
Numerical simulations performed with 3D elastic finite-element code
in the plate together with the metamaterial confirm that nearly no
energy is present in the S0 mode. This means that the potential
conversion of the excited A0 waves to S0 modes upon scattering of
the resonating beams can be neglected in the present configuration.
Indeed, given the plate thickness (6 mm), the flexural resonances
of the beams are weakly excited by the A0 incident wave, and we
can limit the analysis to the interaction between the A0 mode and
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the compressional resonances inside the beams. As will be shown
later, we expect things to be very different with a thinner plate (i.e.,
more flexible), where both A0 and S0 modes may be excited at the
local coupling between the plate and the resonators. In this case,
both flexural and compressional resonances may modify the band
gap structure observed in Fig. 6.7.

In the “rigid” 6-mm thickness plate configuration, the vertical
A0 mode of the plate solely hybridizes with the compressional res-
onances of the resonators, which gives rise to a polaritonic behav-
ior [Lagendijk, 1993] at each crossing of the A0 dispersion curve
with these low-quality-factor resonances (Fig. 6.7). Actually the dis-
sipation part of the quality factor of the rods is negligible and the
wide frequency spreading of the compressional resonances conveys
the optimal coupling with the A0 Lamb modes. Indeed there is a
symmetry matching between the polarization of the A0 mode and
the local motion of the plate imposed by the resonators. The latter
being placed on a single side of the plate, the compressional reso-
nances of the rods induce an asymmetric motion of the plate. The
energy trapped in the resonators is then fully converted into A0 Lamb
waves in the plate. As the metamaterial behavior results from Fano
interference between the incoming waves and the scattered waves
[Lemoult et al., 2013], the wide compressional resonances of the rods
result in wide band gaps that start at the resonance and end at
the anti-resonance of one single rod. These band gaps show strong
attenuation due to the high spatial density of resonators and are
insensitive to ordered or disordered configurations. Outside the band
gaps, the hybridizations between the A0 mode and the rod compres-
sional resonances give rise to two branches, namely, the anti-binding
branches and the binding ones. At frequencies above the band gaps,
supra-wavelength modes are observed. On the contrary, the bind-
ing branches at frequencies below the band gaps are composed of
subwavelength modes with spatial scales comparable to the average
distance between rods.

Some of us developed an analytical wave approach to describe the
physics properties of multi-resonant metamaterials for Lamb waves
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propagating in plates [Williams et al., 2015]. The metamaterial that
we characterize consists of a periodic array of long rods attached to
the surface of the plate that forms the substrate in which antisym-
metric A0 Lamb waves are excited. We show that the A0 Lamb wave
propagation through the metamaterial can be accurately modeled
using a simplified theory that replaces the two-dimensional array
with a one-dimensional horizontal beam on which is attached a
linear array of 10 vertical rods. This unidimensional approach is
legitimate because of the isotropic response of the metamaterial.
The wave propagation problem is solved rigorously for this one-
dimensional system using the scattering matrix formalism for a sin-
gle rod [Williams et al., 2015] in a manner related to the propaga-
tion matrix approach used to derive the realization of an anisotropic
medium [Gilbert, 1983; Schoenberg and Sen, 1983] but now with res-
onance substructures. The exact eigenvalues of the rod and beam sys-
tem are approximated in a long wavelength expansion to determine a
simple expression for the effective velocity ceff and dispersion of the
metamaterial:

ceff /cp =
[
Mb

M

tan (kbLb)
kbLb

+ 1
]−1/4

. (6.1)

In Eq. 6.1, cp refers to the speed of flexural waves in plate defined
as cp =

√
ω(EI

ρA )1/4 with, for the beam parameters, density ρ = 2700
kg.m−3, area A = hb with thickness h = 6 mm and width b = 2
cm, Young’s modulus E = 69×109 m−1.kg.s−2, and inertial moment
I = h3b/12; Mb is the total mass of a rod and M the mass of the
beam segment of length L = 2 cm corresponding to the inter-rods
distance, with Mb/M = 8.02 in the present configuration. Finally,
the rod length is Lb = 61 cm and we have kb = ω/cb with cb defined
as the non-dispersive wave velocity in the rod with Young Modulus
Eb = E and density ρb = ρ such as cb =

√
Eb/ρb = 5055 m.s−1.

The modeled dispersion is compared with the experimental
dispersion curve inside the metamaterial and we obtain excellent
agreement (Fig. 6.7(a)). The multi-resonant rods, restricted to lon-
gitudinal vibration consistent with A0 Lamb waves excited in the
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plate, produce two wide stop bands in the frequency domain from
0 to 10 kHz where the stop or passband boundaries align with the
minima and maxima of the rod’s impedance response.

The imaginary part of the eigenvalue problem solved using the
scattering matrix also provides an analytical expression for the atten-
uation inside the bandgaps:

α =
k√
2

[
Mb

M

tan(kbLb)
kbLb

+ 1
]1/4

(6.2)

with

k = ω/cp.

Analysis of the attenuation (Fig. 6.7(b)) indicates that the attenua-
tion is infinite at the anti-resonances of the rod (given by tan→ ±∞
or kbLb = π/2, 3π/2) and that these frequencies mark the onset
of the stop bands, shown in Fig. 6.7(a). Thus, at the onset of the
stop bands, the Lamb wave attempting to pass through a segment
experiences an extremely high attenuation due to the longitudinal
anti-resonances of the attached rod. These anti-resonances clamp the
motion of the beam. As the frequency increases, Eq. (6.2) indicates
that the attenuation coefficient decreases to zero at the end of the
stop band since tan(kbLb)→ 0. Of course, the decay through a forest
of N rods is given by attenuation of exp(−NαL) in the distance NL.

Finally, Eq. (6.3) for the effective density ρeff inside the metama-
terial shows that a negative effective density is obtained in the stop
band:

ρeff /ρ = −
∣∣∣∣Mb

M

tan(kbLb)
kbLb

+ 1
∣∣∣∣ (6.3)

In the characterization of metamaterials there is a large volume of
literature describing them as having negative mass density and/or
negative compressibility in the stop bands [Shelby et al., 2001; Smith
et al., 2004; Li and Chan, 2004; Koschny et al., 2004; Guenneau et al.,
2007; Wu et al., 2007; Park et al., 2012]. Generally this relationship
is made using monopole and dipole expansions of the metamaterial
element (our rod), which is assumed elastic through its cross section.
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The monopole (breathing mode of the cross section) relates to nega-
tive effective compressibility and the dipole (lateral displacement of
the cross section) to negative effective density [Wu et al., 2011]. In
our case, however, the rod is modeled as a point attachment, and the
force it applies to the plate is omnidirectional and thus monopole-like
in its excitation of A0 waves. Since in-plane, longitudinal S0 waves
in the plate are not excited, there is no dipole-like excitation, and
the result is a mono-modal system. Because of this, we can charac-
terize the metamaterial as having either negative effective density or
compressibility, but not both in the stop band.

In conclusion, theoretical results superimposed on experimental
results in Fig. 6.7 confirm that a 1D theory has been extremely suc-
cessful at predicting the 2D scattering from a rectangular patch of
10 × 10 rods attached to the surface of a plate with a reverberating
boundary shape.

These theoretical results confirm the hybridization phenomenon
between the dominant flexural A0 mode in the plate and the com-
pressional resonances inside the rods and demonstrated the presence
of sub-wavelength and supra-wavelength modes within the metama-
terial before and after each band gap (Fig. 6.7). The spatial mea-
surements described in Fig. 6.8 at three different frequencies show
the diversity of results that can be obtained within the metamaterial
(the purple dashed squares on the left between 0 and 0.2 m). In
particular, one can see clearly that the spatial wavelengths may be
very different within and outside of the metamaterial.

6.2.2. Subwavelength focusing

In the following analysis, we targeted four particular frequencies,
which correspond to four different spatial intensity distributions
(Fig. 6.9). Starting from the lowest frequency, it can be seen in
Fig. 6.7(a) (lowest green dot at 4.5 kHz) that it roughly coincides with
the wave-number of the A0 plate mode. In Fig. 6.9(a), the wavefield
amplitude distribution is similar inside (purple dashed square) and
outside of the metamaterial. The next two frequencies are closer to
the band gap (Fig. 6.7(a), green dots at 5.8 kHz and 6.0 kHz). The
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(a)

(b)

(c)

Fig. 6.8. Field maps measured for different frequency components (a) 6018 Hz,
(b) 6567 Hz, (c) 7513 Hz with a Doppler velocimeter on the rectangular area
[see Fig. 6.1(a)] inside and outside of the metamaterial, (dashed purple area).
The colorbar is chosen with a maximum frequency field amplitude of 1 for each
panel in order to magnify (a) the small-wavelength or (c) the large-wavelength
components inside the metamaterial at frequencies close to the boundaries of each
band gap.

corresponding amplitude distribution (see Figs. 6.9(b) and 6.9(c))
shows a smaller correlation length of the wavefield, compared to that
in the plate. In parallel, the wavefield becomes less and less energetic.
This attenuation is not due to an increase in dissipation since dissi-
pation is null outside of the bandgap, but rather to the fact that the
phase velocity varies quickly as the band gap is approached, which
makes the group velocity decrease towards zero. Finally, for the fre-
quency inside the band gap [green dot at 6.2 kHz in Fig. 6.7(b)], the
wavenumber is purely imaginary and no propagation can be observed
in the metamaterial as shown in Fig. 6.9(d).

These experimental results are connected with sub-wavelength
resolution [Fang et al., 2005; Lerosey et al., 2007; Lemoult et al.,
2010, 2011, 2013] from a single emission channel located in the far-
field of an elastic metamaterial for Lamb waves. The experiment
is performed in the kHz regime, with centimetric waves that are
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(a)

(b)

(c)

(d)

Fig. 6.9. Normalized spatial representation of the energy distribution within
the rectangular surface represented in Fig. 6.1 at four frequencies ranging from
the propagative regime (a) toward the full bandgap (d). Compared to Fig. 6.8, the
colorbar is such that no saturation is observed in each panel. The purple dashed
square indicates the location of the metamaterial. (Modified from Rupin et al.,
2015(a)).

refocused “in the computer” through cross-correlation computations
(Fig. 6.10). The basis of this approach lies in the direct link estab-
lished between sub-wavelength resolution results and the wavefield
dispersion induced by a metamaterial made of long rods that are
attached to a plate, and that basically transform the field to shorter
wavelength propagation.
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To realize sub-wavelength focusing from one channel in the far-
field, it is necessary to optimize the use of sub-wavelength modes
inside the metamaterial that correspond to modes located at the
right-hand side of the A0 dispersion curve in Fig. 6.7(a). But, due to
their strong attenuation inside of the metamaterial, a time reversal
based technique (One-Channel Time-Reversal, OCTR, [Fink, 1997;
Draeger and Fink, 1997]) is not the best suited. Indeed, even though
time-reversal, or equivalently cross-correlation, is well known to pro-
duce focal spots on the order of one wavelength from one single
channel in the presence of strong reverberation, it cannot go well
beyond the diffraction limit which requires near-field components
or, equivalently, locally-damped sub-wavelength modes. To overcome
this limitation, we use a more elaborated focusing technique– so-
called One-Channel Inverse Filter (OCIF) — based on the inverse
filter approach [Tanter et al., 2001, Gallot et al., 2012]. This tech-
nique was recently reported to allow optimal use of all of the temporal
degrees of freedom available in a reverberated wave-field for focusing
purposes. When using the OCIF focusing technique [Rupin et al.,
2014b, 2015a] within the metamaterial, the −3 dB width of the focal
spots is no longer wavelength-dependent (Fig. 6.10, black dashed
lines). This is a consequence of the successive hybridizations that
generate binding branches that give rise to extreme wavenumbers of
π/a, where a is the average distance between resonators, as shown
in Fig. 6.7(a).

In conclusion, the key parameter of the successive hybridiza-
tions is the spacing between the rods, which gives the fundamen-
tal upper limit of the reachable wave numbers (π/a). A decrease
in the intensity in the metamaterial goes along with the hybridiza-
tion effect, which we showed through spatial distribution maps of the
wave-field at different frequencies. Finally, we have demonstrated the
direct connections between the highest wave-numbers and the opti-
mal focal spot, through the use of an advanced single-channel focus-
ing technique. The One-Channel Inverse Filter allows us to reach
optimal super-resolution of λ/6.2 without involving any near-field
effects.
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L-3dB λ L-3dB ≈ Cste = a

OUTSIDE INSIDE
One Channel Time Reversal

4

(a)

(b)

(c)

One Channel Time Reversal One Channel Inverse Filter

Fig. 6.10. Spatial representation of the focal spots obtained for the three fre-
quency ranges that correspond to the binding branches due to the hybridization
with the three compressional resonances of the rods: (a) f0 ∼ 2 kHz; (b) f1 = 3f0;
and (c) f2 = 5f0 (see red dotted rectangles in the dispersion relation in the left col-
umn). For every frequency range, the reference −3 dB width (at λ/2) is defined as
the focusing obtained outside the metamaterial with the cross-correlation method
(it gives a −3 dB width, in agreement with the wavelength of the correspond-
ing central frequency). Inside the metamaterial, the single-channel focusing tech-
niques are compared: one-channel time reversal and the one channel inverse filter.
(Modified from Rupin et al., 2015(a)).

6.3. Part II: Numerical Results

Spectral element simulations were chosen to numerically compute
the plate motion using the SPECFEM3D software (Komatitsch
and Vilotte, 1998; Peter et al., 2011). The discretization of three-
dimensional models that embed several sub-wavelength elements is
notoriously challenging with respect to meshing and the numerical
cost required for the time integration. The mesh was designed using
an adaptive scheme that confines a finer mesh region around the
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Fig. 6.11. Side view of the plate geometry. A cluster of 11 × 11 sub-wavelength
resonators constituting the meta-material are vertically attached to a 6 mm plate.
The result of the adaptive meshing, characterized by three different coarsening
levels, is superimposed to part of the model. A Ricker point source (Fz) with a
central frequency of 4 kHz excites flexural waves (A0 mode) in the plate. The
cross-sections (a)–(b) show the relevant dimensions of the cluster for a regular
and a random distribution of resonators. Each beam has a 4×4 mm square section
and a length of 60 cm. Note that the wavelength of the A0 mode is much longer
than the section of the resonators. (c)–(d) The signals depict the displacement
recorded for a point outside (grey line) and inside the cluster (black line) at the
surface of the plate. Amplitudes are normalized. (Modified from Colombi et al.,
2014).

metamaterial, with a coarser mesh elsewhere (Fig. 6.11). The very
small time step (10−8 s) that results from the stability condition
(Peter et al., 2011) is mainly responsible for the computational cost.
After the application of a domain decomposition algorithm, the simu-
lations that are run in parallel require approximately 100 CPU hours
for a 20-ms long wave-field. The source excitation is a Ricker pulse
that is centered at 4 kHz, and is intentionally misaligned with the
center of the metamaterial to avoid symmetries, while it is kept at a
finite distance to avoid nearfield effects. The plate is assumed to be
isotropic, homogeneous, and non-dissipative. The three-component
displacement vector is recorded at any point of the mesh, with a sam-
pling frequency of 100 kHz [e.g., Figs. 6.11(c)-(d)]. A bandpass filter
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between 1 and 8 kHz is applied to the signal, to eliminate numerical
noise. The vertical point source excites flexural waves (A0 mode) in
the plate (Colombi et al., 2014(a), 2014(b)). Lamb wave dispersion
in the 1 to 8 kHz frequency band leads to wavelengths that range
from about 5 to 15 cm, which confirms the sub-wavelength character-
istic of the cluster of beams. As expected from experimental results,
reverberation on the plate boundaries in this ergodic cavity induces
long time-dispersed signals that spread over more than 20 ms.

To limit the influence of the ballistic wave [Fig. 6.12(a)], only sig-
nals that are recorded after 10 ms, with mainly reverberated waves
[Figs. 6.12(b)–(d)] are considered in the following study [Colombi
et al., 2014]. The motion of A0 Lamb waves in the plate is mostly
polarized along the vertical z axis, although a minor part of the
field is converted on the basis of the resonators along the horizontal

t = 0.3 ms 

t = 17.9 ms 

t = 2.9 ms 

t = 36.7 ms 

(a) (b)

(c) (d)

Fig. 6.12. Spatial display of wave-field snapshots for the vertical component at
different times. Records have been filtered in the first band-gap [2100 Hz − 2800
Hz] to highlight the wave-field cancellation inside the meta-material. Vertical
resonators show the position of the metamaterial on the plate surface. In each
panel, the inset represents a zoom of the field on a 40 cm × 40 cm area centered on
the metamaterial. The full video is available as multimedia material in Colombi
et al., 2014a.
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x and y directions too, thus creating a complex pattern. Numerical
simulations facilitate the analysis, as each component of the elastic
wave-field is available at any discrete point of the mesh, both in
the horizontal plate and along the vertical dimension of the beams.
This numerical study provides a novel approach for the characteriza-
tion of metamaterials made of closely spaced resonators, which can
be considered to be complementary to theoretical effective medium
approaches [Torrent and Sanchez-Dehesa, 2006; Yang et al., 2014]
or analog experiments at the laboratory scale. In an actual experi-
ment, the measurement of the elastic wave-field accurately in time
and space for such a complex structure is impossible, because of the
limits in the probing of the whole plate surface (or worse, the vertical
dimension of each beam). From a visual inspection of the field in the
plate filtered in the first bandgap [Figs. 6.12(c)–(d)], the wavefield
cancellation is obvious in the whole region enclosed by the first outer
layer of the resonators.

6.3.1. Presence of one defect

Although bandgaps are an essential characteristic of the meta-
material considered here, the scope of this section is rather to
address another phenomenon, which is defined as the energy trap-
ping in the presence of a defect within the resonators [Kaina et al.,
2013b; Khelif et al., 2003, 2004]. The reference models [presented in
Figs. 6.11(a)–(b)] are characterized by either a regular or a random
spatial distribution of beams of the same length. The insertion of a
defect, e.g., a shorter beam at the center of the structure, modifies the
wave properties inside the cluster by trapping energy at the defect.
Attention is now drawn to the propagative band from 3 to 6 kHz
with the signals treated here assumed to be bandpassed accordingly.
To account for the elastic wave-field in the resonator without making
a component-by component analysis, it is convenient to calculate the
local intensity I in each beam as:

I(x, y) =
1
T

3∑
i=1

N∑
k=1

∫ t0+T

t0

u2
i (x, y, zk; t) dt, (6.4)
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where (x, y) are selected pairs on the x−y plane, L is the total length
of the beam, zk is one element of the regularly sampled bar length
(with N elements dz between 0 and L), ui is the ith component of
the displacement (x, y, z) in the whole frequency band [Figs. 6.11(c)–
(d)], and [t0, t0 + T ] is the time integration window (10–20 ms). The
(x, y) pairs are selected on an 11 × 11 grid, such that there is a
sampling point for each beam in both the regular and the random
arrangements. The value of I(x, y) for the reference configuration
[Fig. 6.13(b)] where the beams share the same length (L = 60 cm)
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(c)
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Fig. 6.13. (a) The value of the beam intensity I(x, y) is superimposed on the
metamaterial (only the resonator region is depicted) for data filtered in the prop-
agative band [3000 Hz − 6000 Hz]. The color map is normalized. The resonator
size corresponds to the reference configuration depicted in (b). (b) Slice view of
the central row (or line) of the beam cluster used in the reference configuration.
(c) Same as (b), but the central resonator is halved in length. (d) Same as (c),
with a shorter central resonator. (From Colombi et al., 2014).
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is depicted in Fig. 6.13(a). The resonators accumulate and convert
the vertical motion caused by the A0 mode excitation. The energy
trapped in the cluster of resonators is then released progressively to
the plate. Thus, the local energy is much larger in the beam than at
any point of the plate surface, and for this reason the plate surface is
not involved in the analysis. By taking into account only the rever-
berated part of the signals, the distribution of energy appears quite
homogeneous among the resonators.

Figures 6.13(c) and 6.13(d) show two configurations of the clus-
ter that include a defect that consists of a central beam of different
length. The plot of I(x, y) in Fig. 6.14 demonstrates that in this case,
the energy is concentrated in the shorter resonator. By normalizing
the local energy function by its maximum value in Fig. 6.13, a ∼2
factor is found that is attributed to the magnitude of the energy trap-
ping. A further reduction of length [Fig. 6.13(d)] results in a stronger
amplification [Fig. 6.14(b)]. The longitudinal resonant frequency f0
is shifted to a higher frequency, at 4.2 kHz in the case of the 30-cm
long beam, and at 8.5 kHz for the 15-cm-long beam. The shift of f0

inside the propagative band cannot explain the energy trapping for
the shortest beam, and further work is required to understand this
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Fig. 6.14. (a) The value of the beam intensity I(x, y) for the configuration
depicted in Fig. 6.13(c). The normalization is the same as in Fig. 6.13(a). (b) Same
as (a), but for the configuration in Fig. 13(d). (c) Same as (a), but using a spatially
random arrangement. The data were filtered in the propagative band [3000 Hz −
6000 Hz] in all cases. (From Colombi et al., 2014).
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phenomenon. Finally, note that the energy amplification would have
been more spectacular if instead of the total energy, the energy per
unit length had been considered, by dividing I(x, y) by the length L
of the beam.

As observed in other studies (Kaina et al., 2013(b)), the elimina-
tion of one beam does not lead to any focusing effect. This configura-
tion would result in an empty cavity within the cluster that does not
support any local resonance effect. To demonstrate that the energy
trapping is not caused by collective modes (e.g., Bragg scattering),
Fig. 6.14(c) shows an example where the beams are spatially disor-
dered. The energy boost is similar to the ordered case, and hence this
confirms that local resonances are at the origin of the phenomenon.
It is worth noting that in each of the proposed configurations, the
energy trapping occurs from far-field excitation in a frequency band
outside the bandgaps, while in the study from Kaina et al. (2013(b)),
it was only observed within the bandgap from a near-field source.
In another simulation (not shown here), the case where the shorter
beam is not at the center but is closer to the outer layer of the random
cluster [Fig. 6.11(b)] was tested, with the same conclusion.

6.3.2. Directional cloaking

We now address the numerical design of a directional invisibility
cloak for backward-scattered elastic waves propagating in a thin plate
(excited with A0 Lamb waves, [Farhat et al., 2009]). The directional
cloak is based on a set of resonating beams that are attached per-
pendicular to the plate and are arranged at a sub-wavelength scale
in 10 concentric rings [Fig. 6.15(b)]. The exotic effective properties of
this locally resonant metamaterial ensures coexistence of bandgaps
and directional cloaking for certain beam configurations over a large
frequency band. The best directional cloaking was obtained when the
resonator length decreases from the central to the outermost ring.

The metamaterial is realized using ∼180 vertical rods (res-
onators) of varying lengths that are fixed perpendicular to a
6-mm-thick aluminium plate (Fig. 6.15(a)). The beams have an
equal, square 4× 4 mm2 section. Depending on the directional cloak
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Fig. 6.15. (a) The 6-mm-thick plate and the cloak made with the metamaterial
used in the simulations. The adaptive meshing technique is shown around the
cloak region. A plane wave is generated by a Ricker source time function acting
along the vertical direction, exciting the A0 modes. (b) The detailed structure of
the cloak made of 10 rings of beams that are almost equally spaced, to maintain
a constant density. A cross section view (Sec. A–A) shows the different shapes of
the cloak profile defined by the angle α. (Modified from Colombi et al., 2014).

type considered, the resonator lengths vary with a smooth gradient,
from the inner to the outer layer (Fig. 6.15(b)). The plate is elon-
gated in the longitudinal direction to allow long propagation and to
ensure that the first wave-train propagates for a sufficient distance
unperturbed by boundary reflections. The rods are arranged as a
closely spaced cluster, and they are made of the same material as
the plate; this cluster occupies a circular surface of ∼0.5 m diameter
(see Fig. 6.15(b)). There is a 5-cm-diameter cavity (i.e., a resonator-
free region) at the center of the cluster, and this is referred to as the
‘cloaked’ region.

Spectral element simulations using the highly parallelized soft-
ware SPECFEM3D and the meshing tool CUBIT [https://cubit. san-
dia.gov] were applied in a similar fashion to that described in [Colombi
et al., 2014(a)]. The plate was excited with a plane wave centered at 4
kHz using a broadband vertical Ricker point source (Fig. 6.15(a)) that
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extended from 1 kHz to 8 kHz. As the present analysis focuses on the
plate surface and not along the resonators, only the vertical compo-
nent of the displacement uz on the plate is considered. The wavefield
is recorded at any corner point of the finite elements for the whole
simulation length, which allows quick access for post-processing and
data analysis. As in Fig. 6.11, each simulation calculates a 20-ms-long
signal that is sampled at 100 kHz, and is band-pass filtered between
1 kHz and 8 kHz, to eliminate numerical noise.

Despite the recent advances in the field of elastic-wave cloaking,
the coexistence of both protection and cloaking regimes (although
conceptually possible [Norris, 2008; Chen et al., 2010; Brun et al.,
2009; Guenneau et al., 2011; Norris and Shuvalov, 2011; Parnell and
Norris, 2012; Milton et al., 2006, Diatta and Guenneau, 2014]) did
not turn into an actual application and only a few laboratory demon-
strations have been realized [Stenger et al., 2012; Scherrer et al., 2013;
Xu et al., 2015]. We introduce a directional cloak that combines the
two concepts for the backward-scattered field. Backward means in the
counter direction with respect to the incident field (as shown with
arrows in Fig. 6.16). The more complex case of a full cloak (which
controls both backward and forward scattering) will be addressed in a
future study. Thus, a directional cloak with a circular layout made of
10 concentric rings of resonators where each ring is characterized by
a series of resonators of identical length (i.e. the resonators’s length
is a function of the radius only) is introduced. As the effective prop-
erties of the metamaterial are given by local resonances and not by
Bragg scattering, the resonator layout does not need to be ordered.
However, the spatial arrangement of resonators locally modifies the
refraction index which usually leads to bending or lensing effect and
may even generate negative index of refraction [Kaina et al., 2015].
In particular, the choice of a circular shape has the advantage of
being isotropic, and hence being independent of the azimuth of the
incident field. While the (x, y) positions of the resonators in the cir-
cular layout remain fixed, a gradient of resonator length is applied
from the outer ring (with L = 40 cm) to the inner ring (with L = 70
cm, Fig. 6.15(b)).
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Fig. 6.16. (a) Differential field for a frequency band in the first bandgap (con-
figuration c1) at t = 2 ms. Arrows indicate the approaching direction of the wave
front. The cloak region is darkened to facilitate the interpretation. The vertical
component of the field is represented in the detailed view of the cloak. (b) As for
(a), but for the optimal directional cloak in the second bandgap (configuration c2).

In Fig. 6.16, the differential field ũz−uz, where ũz is the reference
field without the metamaterial and uzis the field in the presence of the
metamaterial, is represented for two frequency bands inside the first
and second bandgaps around frequency f1 = 2.5 kHz and f2 =5.6
kHz, respectively. As well as the obvious absence of back-scattering
with the f2 excitation, the difference between the total field for waves
centered at f1 and f2, as depicted in the close-up sections of Fig. 6.16,
should be noted. In configuration f2, the waves penetrate deep within
the cloak structure, undergoing an acceleration. At the same time,
waves do not propagate inside the central region. In configuration
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f1, the incident wave undergoes total reflection. In other words, the
radially-varying dispersion relationship prevents the backscattered
field to be retransmitted in the plate. This energy contribution bends
around the cloak and is finally scattered in the forward direction.

Thus, a novel type of metamaterial for two-dimensional plates
with resonators of varying lengths arranged in a concentric fashion
around a circular region of a plate is numerically shown to cancel
the back-scattering and to protect the cloaked region from an inci-
dent flexural wave over a large 300-Hz bandwidth within a range of
stop-band frequencies. One way to interpret these numerical results
is through an effective refractive index that vanishes at the inner
boundary of the cloak, in agreement with earlier studies [Farhat et al.,
2008; Fahrat et al., 2009; Stenger et al., 2012]. One way to improve
the cloaking (i.e., to also cancel the forward scattering) would be
to use a radially-dependent plate thickness to achieve an anomalous
effective refraction index [Climente et al., 2014].

6.4. Part III: From “Acoustic” to “Elastic Plate”
Metamaterial

In this section, we study the effect of the plate thickness on the
dispersion curves obtained inside a locally-resonant metamaterial.
Looking at the dispersion curve measured at the core of a multi-rods
metamaterial in the left panel of Fig. 6.17, a wide bandgap between
2 kHz and 4 kHz associated with the compressional resonance of
one rod is observed, a result comparable to the analog experiment
described in Fig. 6.7. Indeed, there are strong similarities between the
present experimental set-up and that studied previously on the effect
of a cluster of 60-cm long metallic rods glued at a sub-wavelength
scale to a 6-mm thick metallic plate (Fig. 6.1). The only difference lies
in the thickness of the plate, which is reduced in the present case to
only 2 mm, while the dimensions of the rods and their random spatial
distribution remain identical. As a consequence, new phenomena are
observed here that were not visible in the previous studies with the
thicker plate. As the flexural rigidity of a plate is proportional to the
cube of its thickness, this difference has the consequence of rendering
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(a) (b)

Fig. 6.17. (a) Frequency-wavenumber representation of the dispersion curve
inside the metamaterial determined from experimental measurements of the ver-
tical component of the field performed with a 3-mm thick flexible plate, to be
compared to the equivalent dispersion curve obtained in the 6-mm rigid plate
(Fig. 6.7). As with the rigid plate, a band structure is revealed which is different
from the dispersion curve of flexural waves in the free plate (red curve labelled
A0). However, propagative bands appear inside the first bandgap that correspond
to the flexural resonances of one single rod and confirm the coupling between the
vertical and horizontal components of the field. (b) Imaginary part of the k-vector
measured inside the metamaterial. The strong attenuation inside the first band
gap [1700 Hz − 4000 Hz] associated to the longitudinal resonance of one rod
gives rise to transmission bands at each flexural resonance of one rod. The fre-
quencies associated to flexural resonances are represented as blue dots in each
panel (Modified from Rupin et al., 2015b).

the present 2-mm thick plate more flexible than the previous 6-mm
plate. This is of critical importance for the influence of the flexural
resonances of the rods. While their effects were marginal with the
6-mm plate, where the hybridization of the wave-field was mainly
due to the compressional resonances of the rods, here they become
influent enough to be studied in detail.

First, three narrow transmitted bands in the frequency interval
of the compressional bandgap are clearly associated with the flexural
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resonances of one rod whose frequencies are computed and repre-
sented as blue dots in Figs. 6.17(a)–(b). Second, before the bandgap
at 2 kHz, a few narrow forbidden bands are seen that are also
connected with flexural resonances. Indeed, the continuous bending
branch that was observed below 2 kHz with the 6-mm plate in Fig. 6.7
is transformed for the 2-mm plate into a succession of propagative
bands that have an asymptotically flat band at every flexural reso-
nance frequency.

This is the polariton behavior that is expected when the free-
space dispersion relation crosses a flexural resonance frequency, which
was not observed with the more rigid plate. Note that flexural res-
onances for a vertical rod attached to a plate have a high quality
factor compared to compressional ones when the plate is excited
by vertically-polarized A0 mode [Rupin et al., 2014a]. Indeed, the
coupling between the out-of-plane vertical displacement in the plate
naturally excites each compressional resonance, inducing a strong
leakage from the plate to the bar, and is orthogonal to the motion
associated to flexural resonances in the rod. Flexural resonances with
high quality factor induce narrow bandgaps in the locally resonant
metamaterial.

Thus, the signature of flexural resonances of the rods from the
out-of-plane vertical displacements measured on the flexible plate
inside the metamaterial confirm the strong coupling between verti-
cal and horizontal components of the field associated to the local
interactions of the A0-type vertically polarized incident waves and
the cluster of resonators [Rupin et al., 2015b]. This result is confirmed
by numerical simulations on a large frequency band with two plates
of different thicknesses (Fig. 6.18) on which were attached the same
number of identical vertical rods. We also note that the width and
frequency interval of the bandgaps are different in these two configu-
rations, which seem at first sight in contradiction with the idea that
bandgaps are solely determined by the resonance and anti-resonance
frequencies of one rod (see Eq. (6.1)). In practice, however, these
resonance and anti-resonance frequencies are not only determined by
the length and elastic properties of one rod but also by the coupling
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(a) (b)

Fig. 6.18. Frequency-wavenumber representation of the dispersion curve inside
the same metamaterial determined from numerical simulations of the vertical
component of the field performed with two plates of (a) 6-mm and (b) 30-mm
thickness. Both S0 (green) and A0 (blue) modes for the free plate are represented.
In (a), this numerical simulation magnifies the role of flexural resonance as for-
bidden frequencies inside the three propagative bands (below 2 kHz, from 4 kHz
to 6 kHz, from 8 kHz to 10 kHz). Because of noise and damping, this effect was
barely observed in experimental measurements for a plate of the same thickness
(see Fig. 6.7). In (b), note that the band gaps are much narrower which means
that they are not solely determined by the resonator properties. The effect of flex-
ural resonances on the propagative A0 mode in the free plate are nearly invisible
for a thick and rigid plate. The frequencies associated to flexural resonances are
represented as blue dots in each panel.

between the rod and the plate (assumed to be perfectly clamped in
Eq. (6.1)), which is strongly dependent on the local rigidity of the
plate and, thus, directly associated to the plate thickness.

Finally, Fig. 6.19 also confirms with a 1-D numerical simulation
the presence of transmission bands inside the band gap at the flexural
frequencies of the resonators for a thin flexible plate. These peaks
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Fig. 6.19. (a) Schematic of the numerical 1-D configuration tested with verti-
cal resonators attached to a horizontal beam. The beam and resonators elastic
parameters are identical to the 2-D plate characteristics in Fig. 6.1. (b) Spatial-vs-
frequency representation of the vertical field measured inside the metamaterial.
Inside the first bandgap [2000 kHz – 4000 kHz, see Fig. 6.18(a)], three transmis-
sion peaks are observed at frequencies that correspond to the flexural resonances
of the vertical resonators.

correspond to the transmission peaks observed in the experimental
data between 2 kHz and 4 kHz (Fig. 6.17).

6.4.1. From the plate physics to the semi-infinite

half-space geophysics

In the second part of this section, we continue to expand the width of
the plate up to infinity, transforming the rod and plate mechanical
system into a rod and semi-infinite half space geophysics medium.
Although on the microscale, previous work on micropillar resonators
on an elastic half space had already proven the existence of sub-
wavelength bandgaps induced by local resonance [Khelif et al., 2012;
Achaoui et al., 2013], we move here to larger geophysics scale and
the Hz’s regime exploring the thesis that resonances in trees result in
forests acting as locally resonant metamaterials for Rayleigh surface
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waves [Aki and Richards, 1980] in the geophysics context. A geophys-
ical experiment demonstrates that Rayleigh wave, propagating in soft
sedimentary soil at frequencies lower than 150 Hz, experiences strong
attenuation, when interacting with a forest, over two separate large
frequency bands. This numerical experiment is interpreted using
finite element simulations that demonstrate the observed attenuation
is due to bandgaps when the trees are arranged at the subwavelength
scale with respect to the incident Rayleigh wave. The repetitive
bandgaps are generated by the coupling of the successive longitudi-
nal resonances of trees with the vertical component of the Rayleigh
wave. For wavelengths down to 5 meters, the resulting bandgaps
are remarkably large and strongly attenuating when the acoustic
impedance of the trees matches the impedance of the soil. Since
longitudinal resonances of a vertical resonator are inversely propor-
tional to its length, a man-made engineered array of resonators that
attenuates Rayleigh waves at frequency ≤ 10 Hz could be designed
starting from vertical pillars coupled to the ground with height larger
than 30 m. The quest for a seismic metamaterial able to manipulate
seismic waves is a new and challenging topic that involves only a few
prior studies [Woods, 1968; Brule et al., 2013; Sheng et al., 2014;
Kroedel et al., 2015; Colombi et al., 2016; Ungureanu et al., 2016].
We point out that research papers on Rayleigh wave attenuation in
marble quarry with air holes displaying kHz stop bands [Meseguer
et al., 1999] and similar filtering effects in microstructured piezoelec-
tric for MHz surface waves [Benchabane et al., 2006] triggered the
interest in control of Rayleigh surface waves in the phononic crystal
community. However, the present model of locally resonant meta-
material offers wave control in a subwavelength fashion and lower
target frequency. Both characteristics are well suited for potential
future seismic applications. Interestingly, one can achieve some pro-
tection against Rayleigh waves with columns of soft material buried
in the soil, by extending the concept of conformal optics [Leonhardt,
2006] to geophysics [Colombi et al., 2016]: Indeed, four Luneberg
lenses designed with a spatially varying soil’s density according to the
transformation seismology approach, and arranged in a checkerboard
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fashion, detour Rayleigh waves around a cloaked region without any
reflection. This new path to seismic cloaking, which does not require
stop bands, is based upon an effective medium approach akin to the
Maxwell-Garnett theory.

Because of the deeply subwavelength microstructure of locally
resonant metamaterials, it is essential to explore the wavefield within
the resonator array with spatio-temporal details that would require
thousands of seismometers in the present geophysical configuration
[Rost, 2002]. The physics of the subwavelength structure is accu-
rately analyzed in this paper through time domain spectral element
simulations. This method has been successfully applied to study the
case of the metamaterial plate and rods [Colombi et al., 2014(a),
2015]. By restricting the analysis to Rayleigh waves we reduce the
complexity to a 2D halfspace (hence 2D simulations) and consider
a linear, isotropic and homogeneous elastic medium with a linear
array of 30 trees (Fig. 6.20). The simulations are performed with
SPECFEM2D [see Komatitsch and Vilotte, 1998, for further details].
Perfectly matched layer conditions [so called PML, Komatitsch and
Martin, 2007] are applied on the bottom and vertical boundaries of
the halfspace which is otherwise traction-free. The 30-m thick halfs-
pace is characterized by a homogeneous material with shear velocity
vg
s = 500 m/s and density ρg = 1300 kg/m3. For a Poisson ratio typ-

ical of soil, the Rayleigh wave speed vg
r ≈ vg

s . While these parameters
are representative for an average soil, the results discussed next are
not strictly limited to this wave speed but they can be generalized
to very soft soils featuring vg

s < 300 m/s.
Each tree is represented as a homogeneous elastic vertical res-

onator with constant thickness (hence constant cross-section) char-
acterized by both longitudinal and flexural modes [Chopra, 1995,
Ewins, 2000]. We use trees of both constant and random size as well
as random spacing between trees to evaluate the effects of the vari-
ability that characterizes natural forests; the heights are drawn from
a uniform distribution with mean 14 m varying between ±2.5 m. The
regular and random configurations are shown in Figs. 6.21(a)–(b).
Typical mechanical properties of wood can be found in [Green et al.,
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Fig. 6.20. Snapshots at different times of the vertical component of the field uz

propagating from left to right into the metamaterial made of 14-m long randomly-
spaced trees on a semi-infinite ground. The panels (a) correspond to the reference
medium in the absence of metamaterial. R and S indicate surface Rayleigh and
body S-waves. The field was filtered in the first bandgap (see Fig. 6.21) for which
the Rayleigh wave is damped very fast inside the forest of trees. (Modified from
Colombi et al., 2016).

1999] and vary widely depending on species, fluid content, and age.
From this data, a reasonable approximation, is density, ρt of 450
kg/m3. Using elastic velocities vt

s = 1200 m/s and vt
p = 2200 m/s,

the Lamé parameters are well within the ranges given for wood.
The interactions between surface waves and trees underlying the

experimental results are captured by analyzing different snapshots
of the incident field propagating, from left to right, through the
forest [Fig. 6.20(a)–(b)]. The vertical force is driven by a Ricker
source time function centered on frequency 60 Hz. Most body wave
energy generated by the vertical force disappears through the bot-
tom boundary, as it should, leaving only horizontally propagating
Rayleigh waves. A reference simulation of the halfspace without trees
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Fig. 6.21. Spectral ratio computed from numerical measurements inside versus
outside of the metamaterial and shown here for two different forest configura-
tions. The start and end points of the measurements are marked on the x-axis.
(a) Random distribution of trees with different height and spacing; (b) equally-
distributed trees with the same height (14 m). The first and second band gaps are
indicated by the dashed red lines. For the regular arrangement of trees, note the
presence of narrow forbidden frequencies between the two bandgaps associated to
the flexural resonance of one tree. (Modified from Colombi et al., 2016).

is used to compute a spectral ratio, ensuring the frequency spectra
in Figs. 6.21(a)–(b) do not depend on the source spectrum.

In Fig. 6.21 is depicted the behavior of the spectral ratio as we
penetrate deeper into the array of trees. Notice the two bandgaps
appearing progressively after a so-called skin layer. As we proceed
towards the tail of the array (at x ∼ 115 m) the bandgap width no
longer changes. Because of the absence of a depth dependent velocity
gradient in the ground, waves diving toward depth do not return to
the surface. Hence, the bandgaps persist behind the trees. It turns out
that, as in the plate case, longitudinal resonance and anti-resonance
frequencies determine start and end points of the bandgap. This is
clearly shown by considering an array of equally sized and spaced
trees [Fig. 6.21(b)]. The absence of height, and thickness variability
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result in two main bandgaps with the same width as the random
configuration [Fig. 6.21(a)] and narrower bandgaps due to flexural
resonances.

A sensitivity analysis on the acoustic impedance of the ground
ρg v

g
s and the trees ρt v

t
l where vt

l is the tree’s longitudinal wave veloc-
ity is performed; parameters chosen for the simulation in Fig. 6.20 are
for a unitary ratio between the two impedances and a fluctuation of
the ratio between 0.5 and 2 (well within admissible material parame-
ter ranges) results in very similar bandgaps. For stronger impedance
mismatch however, they tend to disappear progressively, confirming
the mechanical coupling between ground and trees is the driving
parameter.

As expected, the so-called hybridization phenomenon [Kaina
et al., 2013a, Fano, 1961, Cowan et al., 2011] drives local resonances
and bandgaps in this type of locally-resonant metamaterial. Indeed,
the compressional resonances of tree-like resonators, excited by the
vertical component (uz) of the Rayleigh waves, introduces a phase
shift of π on the incident waves causing a reflection of the wave-
field around the resonant frequencies. At anti-resonance, the point of
attachment between ground and tree (z = 0, the forcing point) is at
rest [Williams et al., 2015, Ewins, 2000] and thus uz =0. Because the
trees are arranged on a subwavelength scale, the cumulative effect of
several trees over a wavelength interferes constructively thus creating
a band gap between resonance and anti-resonance [Fig. 6.21(a)]. In
this physical model, the role played by the narrower flexural reso-
nances of the tree-like resonator is marginal, despite the expected
coupling with the Rayleigh wave horizontal component, yet visible
with forest made of trees of the same length [Fig. 6.21(b)].

6.5. Conclusion

To conclude, we have experimentally studied ordered and disordered
Lamb wave metamaterials built from long metallic rods perpendic-
ularly attached to a thin metallic plate as a typical example of
locally-resonant metamaterial. Spatiotemporal maps of the wave field
inside and outside the metamaterials were measured on a frequency
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spectrum that spanned about a decade. Through this experiment and
the equivalent numerical simulations, these composite media were
shown to support sub- and supra-wavelength modes, as well as wide
band gaps. In the most general case, the metamaterial physics is
explained through hybridizations between theA0 and S0 plate modes
with the flexural and compressional resonances of the rods. Fitting
the experimental dispersion curve with an analytical formulation and
numerical simulations, we have confirmed, in the particular case of
a rigid plate, the scalar interaction between the incident A0 Lamb
mode and the compressional resonances of the rods. The extent of
the bandgap is then governed by the longitudinal resonance and anti-
resonance of the resonator that is further confirmed using Floquet-
Bloch theory. The key parameter of the successive hybridizations
is the spacing between the rods, which gives the fundamental upper
limit of the reachable wave numbers (π/a). A decrease in the intensity
in the metamaterial goes along with the hybridization effect, which
we show through spatial distribution maps of the wave-field at differ-
ent frequencies. As classically observed with locally-resonant meta-
materials, the wave field properties do not depend on the (ordered or
disordered) spatial arrangement of the resonators inside the meta-
material. Using an advanced single-channel focusing technique, we
have demonstrated the direct connection between the highest wave-
numbers and the optimal focal spot. Introducing a defect inside the
metamaterial, we also showed that energy carried by elastic waves
can be confined on a sub-wavelength scale from the far field. Using
two-dimensional plates with resonators of varying lengths arranged
in a concentric fashion, a directional cloak was numerically shown
to cancel the back-scattering and to protect the cloaked region from
an incident flexural wave over a large bandwidth within a range of
stop-band frequencies. Finally, expanding the size of locally-resonant
metamaterial to the geophysics scale, we demonstrated conclusively
that a forest of trees arranged on a sub-wavelength scale induce
large frequency bandgaps for Rayleigh waves at tens of Hz. Inter-
estingly, the variability in size and positions of trees produces larger
bandgaps than for uniform configuration. All these results suggest
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that numerous applications in electromagnetic metamaterials can be
translated to Lamb waves in plates or surface waves in semi-infinite
elastic media. In particular, this study should bridge exciting wave
phenomena unveiled in photonic and platonic metamaterials with
surface seismic waves propagation in soils structured on a large scale
by natural, or man-made, collections of resonators.
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STÉPHANE BRÛLÉ∗
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7.1. Introduction

Seismic risk assessment leads civil engineers to define the ground
motion for the design of structures, which are self-adapting to this
key parameter. We shall try to convince the reader that a promising
way to revisit seismic risk assessment would consist of creating an
artificially structured soil and thereby counteract the most devastat-
ing components of seismic signals.

In the past, a few authors [Woods (1968), Banerjee et al. (1988),
Semblat et al. (2009)] obtained significant results with vibration
screening in the soil itself for a local source such as industrial vibra-
tory machines located on concrete slab for example. We will illustrate
in this chapter how to extend this wave interaction concept to a
broader range of frequencies, including seismic waves generated by
earthquakes.

One needs to keep in mind that most of the vibration energy
affecting nearby structures is carried by Rayleigh surface waves and
the horizontal component of bulk waves traveling from the source
of vibration. Effective screening of earth-waves can be achieved by
proper interception, scattering, diffraction of surface waves or reso-
nance effects using devices such as trenches in soil, additional inclu-
sions, walls and the like.

7.2. From the Nano-scale to the Metre-scale

The transposition of concepts of photonic and phononic crystals, that
originate from the fields of Optics and Acoustics, open new avenues of
research for modelling the interaction of seismic signals with buried
structures (empty or filled) including special foundations for build-
ings. Our main objective is to understand what the structured soils
introduce as complementary effects on the soil dynamic response for
seismic disturbances: Bragg reflexion, band gap, directivity, etc.

Since the end of the last century, researchers have taken advan-
tage of technological improvements in structuring matter to achieve
control over the flow of light. Photonic crystals are periodic man-
made structures that have been proposed to inhibit emission thanks
to photonic band gaps [Yablonovitch (1987)] and localize light [John
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(e)(c)(a)

(b) (f) (d) 

(a’) (c’) (e’) 

Fig. 7.1. The change of scale concept. Panels (a) and (b) suggest the 1D and 2D
geometrical shape of photonic or phononic crystals [Joannopoulos et al. (2008)].
Middle panels are a description of the principle of a building with its foundations
lying respectively on 1D structured soil with vertical strata (c) or lying on a
2D metamaterial of soil reinforced with vertical cement columns (d). At metric
scale, panel (e) shows an outcrop with natural 2D alternation of rocky calcareous
and soft clay sedimentary layers (photography courtesy of S. Brûlé). Panel (e)
illustrates cells of vertical panels of concrete or grout mixed with the soils. Panel
(f) illustrates a 2D full-scale soil reinforcement with vertical and cylindrical lime
columns. The grid is around 2 × 2 m (photography courtesy of Ménard).

(1987)]. Photonic crystals are periodically structured electromag-
netic media, generally possessing photonic band gaps, i.e. ranges of
frequency in which light cannot propagate through the structure.
We show some structured media in Fig. 7.1 with photonic crystals
in Fig. 7.1 (a,b), the vision of translating these concepts to ground
vibration using structured soils is shown in Fig. 7.1 (c,d). Fig. 7.1
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(e,f) show natural occuring formations or artificially structured soils
that have similar properties. As an aside Fig. 7.1(e) shows horizontal
layering suitable for protection from deep shear or compressional
waves whereas the vertical layering of Fig. 7.1(c) is more appropriate
for protection from Rayleigh waves.

The ideas of structuring media in photonics were then taken a
stage further by introducing metamaterials. In 2001, the word “meta-
material” was coined by R. M. Walser [Walser (2001)], who gave
the following definition: macroscopic composite having a manmade,
periodic cellular architecture designed to produce an optimized com-
bination, not available in nature, of two or more responses to spe-
cific excitation. The concept of metamaterial arose from nano-scale
world and electromagnetism. Typically, a metamaterial uses peri-
odic arrangements of elements with size much smaller than the con-
sidered wavelength (typically hundreds of nanometers) that acquire
effective properties of materials with negative optical index [Pendry
(2000)], or highly anisotropic materials such as hyperbolic metama-
terials [Iorch et al. (2013)] or invisibility cloaking devices [Pendry
et al. (2006)]. The transition from electromagnetic to acoustic waves
is possible thanks to phononic crystals, which are artificial hand-
crafted structures. They range in scale from a few meters down to
hundreds of nanometers or less. At this scale, matter appears as
continuous and the laws of classical mechanics can be applied. The
search for structures with complete phononic band gaps began in
1992 with work by Sigalas and Economou [Economou and Sigalas
(1993)]. They showed that an infinite 2D array of high-density paral-
lel cylinders embedded in a low-density host material should possess
a complete band gap in two dimensions (Figure 7.2). Unaware of this
work, Kushwaha and co-authors [Kushwaha et al. (1993)] reported
the existence of photonic band gaps for polarized elastic waves in
2D elastic systems. Interestingly, as unveiled in [O’Brien and Pendry
(2002)] high-permittivity dielectric rods display stop bands induced
by low frequency localized modes, which are associated with artifi-
cial magnetism. In a similar way, high-density rods display unique
features upon resonance, such a negative effective density.
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a

z

x

y

Fig. 7.2. Example of 2D square-lattice (O,x,y) of high-density parallel cylinders
embedded in a lower density host material. The centre-to-centre spacing of the
cylinders is a. Note that 2D arrays of high-permittivity dielectric rods in electro-
magnetism lead to low frequency stop bands associated with artificial magnetism
[O’Brien and Pendry (2002)], which is an essential ingredient of electromagnetic
wave control.

The origin of band gaps is explained by considering the interfer-
ence of waves multiply scattered within a phononic crystal. A band
gap appears when scattered waves interfere destructively depending
on the wave frequency and on the phononic crystal geometry. The
first application suggested by Kushwaha and colleagues was to
acoustic insulation for human hearing, which is sensitive to frequen-
cies between 20 and 20 000 Hz. In 2005, Hu and Chan [Hu and Chan
(2005)] proposed a breakwater device for surface ocean waves as a
potential application of photonic crystals at the meter-scale domain.
In the same spirit, some of us envisioned in 2008 to reroute ocean
waves around a region of still water surrounded by concentric arrays
of pillars [Farhat et al. (2008)]; non-overtopping dykes for ocean
waves can be also envisaged with meter scale invisibility carpets for
water waves [Dupont et al. (2015)]. The theoretical concept of a seis-
mic 2D grid of inclusions in the soil interacting with a part of the
earthquake signal was translated to reality in [Brûlé et al. (2014)].

“Initially, seismic metamaterials only concern structured soils
with cylindrical and vertical elements. We could call them Seismic
Earth-Metamaterials and this is the theme of this chapter 7 [Achaoui
et al. (2016)].
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One can note that the definition then progressively extended to
buried and tuned resonators [Finocchio et al. (2014), Krodel et al.
(2015), Achaoui et al. (2016)] and very recently, to surface resonators
[Colombi et al. (2015, 2016), Brûlé et al. (2017)].”

We can imagine as well a 1D or 2D photonic or phononic crystal
as a 1D or 2D structured soil (natural or artificial) supporting the
weight of a building on its free surface (Figure 7.1) (note in passing
that 3D structured soils can be also envisaged to shield both surface
and bulk seismic waves of all polarization [Achaoui et al. (2016)]).
In 2012, with the aim of demonstrating the feasibility of the concept
with field data, two full-scale seismic tests were held by the Ménard
company in France. The first experiment used a grid of vertical empty
cylindrical holes with a 50 Hertz source [Brûlé et al. (2014)] and the
second test, presented in [Brûlé et al. (2017)], uses seismic conditions
closer to those that are generated during an earthquake, thanks to a
multi-frequency source generated by the impact of a mass on the soil.
Interestingly, Rayleigh wave attenuation was achieved back in 1999
in marble quarry with air holes displaying kHz stop bands [Meseguer
et al. (1999)].

7.3. A Tempting Analogy

No-one can dispute the validity of the physics of mechanical wave
propagation in all type of materials, at all range of frequency, but
one can wonder, legitimately, if components of the soils (sand, clay,
rocks) could be compared so freely and directly to materials used for
laboratory testing.

A first important stage to validate these intuitive analogies
between concepts arising in optics and seismology [Brûlé et al. (2012)]
is to compare the physical and mechanical characteristics of perfectly
elastic man-made materials used for laboratory tests or numerical
simulation and geophysical materials. Industrial materials (epoxy
resin, copper, iron, etc.) have perfectly known properties, which is
not at all the case for soils which are “triphasic” material (grains
with pores of water and gas). In Table 7.1, we present the density ρ,
the longitudinal, Cl, and transverse, Ct, velocities of Duralium (90%
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Table 7.1. Density and velocities of Duralium and epoxy resin
[Vasseur et al. (1998)].

ρ Cl Ct ρC2
l ρC2

t

kg.m−3 m.s−1 m.s−1 1010 N.m−2 1010 N.m−2

Duralium 2 799 6 342 3 095 11.26 2.681
Epoxy 1 142 2 569 1 139 0.754 0.148

Table 7.2. Density and velocities of geophysical materials and weathered con-
crete in soil [Brûlé et al. (2015)].

ρ Cl Ct ρC2
l ρC2

t

kg.m−3 v m.s−1 m.s−1 1010 N.m−2 1010 N.m−2

Clay or sand 1 800 0.3 673 360 0.082 0.023
Weathered 2 200 0.2 3 500 2 143 2.695 1.011

concrete in soil

of aluminium, 3 to 5% of copper, magnesium and manganese) and
Epoxy used for an experiment [Vasseur et al. (1998)]. The test was
held on cubic samples (10×10×10 cm) made of Duralium cylinders,
arranged on square and centred rectangular lattices, embedded in an
epoxy matrix resin. The source varied in the range of 0 to 500 kH,
showing band gap frequencies. At this stage, we only consider elastic
properties of soils (Table 7.2).

From Tables 7.1 and 7.2, we deduce the Young’s Modulus ratio
Eduralium/Eepoxy = 18.1 for the phononic man-made material test
versus the ratio Econcrete/Esoil = 40 for soils and concrete: It is
of fundamental importance that these ratios are of the same order
of magnitude. This means that, with geophysical materials, we can
obtain comparable contrasts with those metamaterials made in the
laboratory and with steel inclusions, rather than concrete, this ratio
is much higher.

With regard to the geometry of devices, the laboratory sample
is constituted of arrays of 25 parallel cylinders of Duralium. The
cylinder diameter, d, is 16 mm and the centre-to-centre spacing, a,
of the cylinders is 20 mm. Assuming a square lattice, the filling
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fraction πd2/4a2gives rise to a high value filling ratio of 50.3%. Ground
reinforcement works in civil engineering, commonly provided for an
improvement of the bearing capacity of the soil or for a reduction of the
settlement under the load applied by the building, use concrete, wood
or steel vertical inclusions, cylindrical or not. The common length of
these inclusions is in the range 0 to 20 m [Chu et al. (2009)], but recent
equipment can reach 50 m (Menard’s world depth record in Louisiana
clays, 2014). The diameters are in the range of 0.25 to 0.5 m, exception-
ally more (1 m). On work sites, hundreds to thousands of inclusions are
used for specific treatment under buildings or different type of storages
(oil, natural liquefied gas, etc.). Considering the typical inclusion grid
spacing (1.3 to 3 m), the filing ratio rarely exceeds 10%.

Next, we examine the order of magnitude of the signal. The
source in the laboratory tests, a transducer, generates frequencies
in the range of 0 to 500 kHz. That means the minimal wave-
length λmin = 0.0051 m for Cl epoxy and λ/a > 0.0257. Up to
128.45 kHz, the grid spacing is sub-wavelength and band gap fre-
quencies were observed in this range of frequency [Vasseur et al.
(1998)]. Those authors point to a band gap between 55 and 85 Hz,
i.e. 1.51<λ/a< 2.34.

In Seismology, the frequency range of interest is presented in
Table 7.3. We usually consider a frequency between 0.1 and 50 Hz
and more precisely 0.1 to 12 Hz. For a given spacing of inclusions,
range of frequencies and substitution rate (i.e. realistic), reaching λ/a
> 2 needs to consider very low values of shear velocities, Vs, thus
requiring soft to very soft soils (Vs < 150 m/s).

To conclude, we can definitively enact an analogy between mil-
limetric phononic crystals and meter-length seismic metamaterials.
However, at this stage of knowledge, we also have to keep in mind
that the density of vertical elements is important for the 2D meta-
material. Different avenues may be explored, as for example the role
of the anchoring of inclusion in the bedrock or a smart design of the
artificial anisotropy, by varying density of element per square meter,
arrangement and type of inclusions [Guenneau et al. (2015), Achaoui
et al. (2016, 2017)].
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Table 7.3. Frequency range of interest for seismic metamaterials: It is noted
that earthquake engineering is mainly concerned with frequencies from 0.1 to
50 Hz.

0.0001 0.001 0.01 0.1 1 10 100 1000 10000 

Earthquake engineering 

Earth’s free
oscillations 

Global surface waves 
tomography using 

earthquake 

Study of crustal properties with 
body waves 

Regional and local seismology 

Frequency (Hz) 

Seismic prospection, mining 
events, traffic, etc.

Wave velocity in crust: 
P wave: 5 to 7 km.s-1

S wave: 3 to 4 km.s-1

Surface waves: 2 to 4.5 km.s-1

Wave velocity in soft superficial 
soils: 
S wave or surface waves < 0.8 
km.s-1 

 Seismic metamaterial domain 

7.4. Overview of Photonic, Phononic and Platonic
Crystals and Links to Seismic Metamaterials

In this short section, we discuss the advent of platonic crystals and
their advantages, in particular as representative soil models for para-
metric studies of seismic wave propagation.

In 1987, the groups of E. Yablonovitch and S. John reported
the discovery of stop band structures for light [Yablonovitch (1987)]
and [John (1987)]. Photonic crystals (PCs) have, since then, found
numerous applications ranging from nearly perfect mirrors for inci-
dent waves whose frequencies are in stop bands of the PCs, to high-
q cavities for PCs with structural defects [Srinivasan and Painter
(2002)]. The occurrence of stop bands in PCs also leads to anoma-
lous dispersion whereby dispersion curves can have a negative or
vanishing group velocity. Dynamic artificial anisotropy, also known as
all-angle-negative-refraction [Zengerle (1987), Notomi (2000), Gralak
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et al. (2000), Luo et al. (2002)], allows for focusing effects through a
PC, as envisioned in the 1968 paper of V. Veselago [Veselago (1968)].
With the advent of electromagnetic metamaterials [Pendry et al.
(1999)] and [Smith et al. (2000)], J. Pendry pointed out that the
image through the V. Veselago lens can be deeply subwavelength
[Pendry (2000)], and exciting effects such as simultaneously negative
phase and group velocity of light [Dolling et al. (2006)], invisibility
cloaks [Schurig et al. (2006)] and tailored radiation phase pattern in
epsilon near zero metamaterials were demonstrated [Alù et al. (2007)]
and [Enoch et al. (2002)]. One of the attractions of platonic crystals,
which are the elastic plate analogue of photonic and phononic crys-
tals, is that much of their physics can be translated into platonics.
There are mathematical subtleties in the analysis, and numerics, of
the scattering of flexural waves [Antonakakis and Craster (2012)]
owing to the fourth-order derivatives in the plate equations, versus
the usual second-order derivatives for the wave equation of optics,
involved in the governing equations; even waves within a perfect
plate have differences from those of the wave equation as they are not
dispersionless. Nonetheless, drawing parallels between platonics and
photonics helps to achieve similar effects to those observed in electro-
magnetic metamaterials, such as the time dependent subwavelength
resolution through a platonic flat lens [Dubois et al. (2013)].

In parallel, research papers in phononic crystals provided numeri-
cal and experimental evidence of filtering [Martinez-Sala et al. (1995)]
and focusing properties [Sukhovich et al. (2009)] of acoustic waves.
Localized resonant structures for elastic waves propagating within
three-dimensional cubic arrays of thin coated spheres [Liu et al.
(2000)] and fluid filled Helmholtz resonators [Fang et al. (2006)]
paved the way towards acoustic analogues of electromagnetic meta-
materials [Christensen and Garćıa De Abajo (2012), Craster and
Guenneau (2013)], including elastic cloaks [Milton et al. (2006),
Brun et al. (2009)] and [Norris and Shuvalov (2011)]. The control
of elastic wave trajectories in thin plates was reported numerically
[Farhat et al. (2012)] and experimentally in 2012 [Brûlé et al. (2014)]
for surface seismic waves [Brûlé et al. (2012)] in civil engineering
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applications. In fact, Rayleigh waves are generated by anthropic
sources such as an explosion or a tool impact or vibration (sledge-
hammer, pile driving operations, vibrating machine footing, dynamic
compaction, etc.). In 1968, R.D. Woods created in situ tests with a
200 to 350 Hz source to show the effectiveness of isolating circular
or linear empty trenches [Woods (1968)], with the same geometry,
these results were compared in 1988 with numerical modeling stud-
ies provided by P.K. Banerjee [Banerjee et al. (1988)]. The main
thrust of this Chapter is to point out the possibility to create seismic
metamaterials not only for high frequency anthropic sources but for
the earthquakes’ frequency range i.e. 0.1 to 12 Hz. First, we have to
address a fundamental question: What is the range of wavelengths
taken into account for seismic building design?

We answer this fundamental question in the next section and
illustrate the order of magnitude of the seismic incoming signal,
sketching out what the differences are, with respect to idealised
numerical simulations of wave propagation or experiments in lab-
oratory on small samples made of perfect elastic materials.

7.5. Principles of Seismology

We now identify the components of the seismic signal with which the
seismic metamaterial may interact.

Seismology is the scientific study of mechanical vibrations of the
Earth. Quantitative seismology is based on seismograms, which are
recordings of vibrations, that in turn can be caused artificially by
man-made explosions, or caused naturally by earthquakes and vol-
canic eruptions [Aki and Richards (2002)]. Everyday there are dozens
earthquakes that are strong enough to be felt locally, and every few
days an earthquake occurs that is capable of damaging structures.
We place our analysis strictly in areas concerned with far field earth-
quake motion to satisfy the linear elastic hypothesis for soils; near
the epicenter strong nonlinearities are observed.

With the aim of distinguishing wave types propagating from
the epicenter of an earthquake to the surface, we illustrate wave
propagation using ray theory (rays are defined as the normal to
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Wave front at time t 

Wave front at time t + t 

x 

x’ 

Earth surface

x
z 

Fig. 7.3. A plane wave incident from below on a horizontal surface. The ray
angle from the vertical is termed the incidence angle θ.

the wavefronts) based on optics, with Huygens’ and Fermat’s prin-
ciples (Figure 7.3). Due to the remoteness of the epicenter, we
can approximate the spherical wave-front as a plane wave-front.
In smoothly varying layered media, ray theory can provide useful
approximate solution. The method is applicable to media in which
the characteristic dimensions of inhomogeneities are considerably
larger than the prevailing wavelength of considered waves.

The estimation of seismic site effects is a key concept in seis-
mic hazard assessment; the amplification of seismic waves at the
free surface, namely “site effects” may strengthen the impact of an
earthquake in specific areas (e.g. Mexico 1985). Indeed, when seismic
waves propagate through sediment layers (Figure 7.4) or scatter off
strong topographic irregularities, refraction/scattering phenomena
can strongly increase the amplitude and the duration of the ground
motion. It is then possible to observe stronger motions far away from
the epicenter. On the scale of a sediment-filled basin, that often con-
tain buildings, seismic effects involve various phenomena as wave
trapping (Figure 7.5), resonance of the whole basin, propagation in
heterogeneous media, surface waves bouncing from the edges of the
basin and creating interference patterns [Hobiger (2011)].

Structural damage due to seismic excitation is often directly cor-
related to local site condition in the form of motion amplification
and/or soil liquefaction inducing ground deformation. Seismologists
distinguish the so-called “one” to “two or three-dimensional effects”,
which depend mainly on the valley geometry and soil and rock proper-
ties [Hobiger (2011)]. The most important geometry parameter is the
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Fig. 7.4. Seismic site effect characterized by a local amplification of the signal in
the sedimentary basin in comparison with signal in surrounding rocky mountains.

Source 

Earth surface

x
z

Fig. 7.5. Wave trapping in U-shaped basin (ray tracing).

ratio between the horizontal dimensions of the valley and the sediment
thickness. If this ratio is large, “one-dimensional” site effects predomi-
nate and these consist in standing waves in vertical direction [Semblat
et al. (2009)]. “Two-dimensional” or “three dimensional” site effects
occur in presence of more complex structures, in other words waves
arrive with various incidence due to the structure itself.
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ρ1v1 > ρ2v2> ρ3v3> ρ4v4

Medium 2 

Medium 1 

Medium 3 
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θi1

θt2 θi2 = θt2

θi3 = θt3
θt3

Fig. 7.6. Schematic representation of verticalization and polarization of P, SH
and SV waves propagating in more and more low impedance ρivi layer up to
the surface. θi and θt are respectively the incident and refracted angle of the
seismic ray.

By making the simplistic hypothesis that the product of the den-
sity by the velocity of each sediment layer decreases from the seismic
substratum up to the surface (Figure 7.6), the seismic ray becomes
more and more vertical by analogy with a decreasing refraction index
in optics. This configuration leads to a specific polarization of body
waves: pressure waves (P) oscillate in an almost vertical plane and
shear waves (S) are polarized in a sub-horizontal plane.

It is important to note that buildings are very sensitive to
the horizontal component of ground motion, less so to the vertical
one. Earthquake engineering is also concerned with surface waves.
Although other surface waves such as Stoneley waves might play
some role in buildings’ damage, we focus our analysis on Rayleigh
waves (Figure 7.4) mainly generated by the conditions of the full-
scale experiment dropping a heavy weight. On the Earth’s surface,
the coupled propagation of P and Sv waves (shear wave vertical com-
ponent) is possible, generating Rayleigh waves.

It is fundamental to distinguish long period surface waves (low
frequency, i.e. <1 Hz) travelling along the Earth’s surface, on the
crust, and short ones (<10 Hz) mainly generated by the site effects
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described above or by human activities at the Earth surface. An
important fact is the low value of surface wave velocity Vs, generated
by natural seismic source or construction work activities, in super-
ficial and under-consolidated recent subgrade: less than 100 m/s to
300 m/s. In these soil layers, considering the 0.1 to 10 Hz frequency
range, wavelengths of induced surface waves are shorter than direct
P and S waves: from few meters to hundreds of meters; this order of
wavelength is similar to those of buildings. This is why we can expect
a building’s resonance to be triggered with some soils in the case
of earthquakes, which also makes it possible to conceive of seismic
metamaterials whose size could be similar to those of the building
project [Brûlé et al. (2014)].

At this stage of the chapter, we have defined the conditions of
validity for structured soils made of vertical elements (holes, concrete
or steel columns). The metamaterial can interact with the horizontal
component of the seismic signal in the plane (x, y) and site effect
may strengthen the horizontal component of the seismic motion.

In the case of seismic site effects, the wavelengths are of the order
of a few meters to hundreds of meters.

7.6. Characterization of the Seismic Signal

A way of expressing the “size” of an earthquake is the “magnitude”
of an earthquake which can be determined from the logarithm of the
amplitude of waves recorded by seismograph stations.

Earthquakes with magnitude of about 2.0 or less are usually
called “microearthquakes”; they are not commonly felt by people
and are generally recorded only on local seismographs. Events with
magnitudes of about 4.5 or greater — there are several thousand such
shocks annually — are strong enough to be recorded by sensitive
seismographs all over the world.

The amplitudes of seismic motion can be expressed in terms
of acceleration, velocity and displacement. The first data reported
from an earthquake record is generally the peak ground accel-
eration (PGA) which expresses the tip of the maximum spike
of the acceleration ground motion (Figure 7.7). Although use-
ful to express the relative intensity of the ground motion (i.e.,
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PGA : 3.42 m.s-2

Fig. 7.7. Imperial Valley Earthquake. Peak ground acceleration (3.42 m.s−2),
N-S component, recorded at El Centro Earthquake 1940-05-19 04:36:41 UTC.
Station: El Centro, California — Array Station 9; Imperial Valley Irrigation
District — 302 Commercial. Station Owner: USGS. Time History Data File Refer-
ence: Pacific Earthquake Engineering Research Center (http://peer.berkeley.edu/
research/motions/). Original data source: CIT-SMARTS (http://www.eerl.
caltech.edu/smarts/smarts.html).

small, moderate or large), the PGA does not give any informa-
tion regarding the frequency (or period) content that influences the
amplification of building motion due to the cyclic ground motion.
In other words, tall buildings with long fundamental periods of
vibration will respond differently than short buildings with short
periods of vibration. By contrast, response spectra provide these
characteristics.

A seismic metamaterial will have to interact with significant
earthquakes, but are we able to propose a clear definition of a strong-
motion disturbance?

Estimating strong-motion characteristics for seismic risk assess-
ment and earthquake-resistant design requires the clear definition
of parameters that reflect the destructive potential of the motion
[Bommer and Martinez-Pereira (2000)]. Strong earthquake ground
motion is a complex natural phenomenon associated with abrupt
energy release during fault rupture.

The intensity of the seismic event can be described in terms of
the perceived effects of ground motion according to different intensity
scales. The availability of strong ground motion records allows the
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definition of quantitative indices based on the amplitude, duration
and frequency content of the earthquake records.

For design, the duration of the design basis earthquake gener-
ally is not an issue since for response spectrum, equivalent static,
and even time history methods of analyses, only the peaks of the
response are used in developing design seismic forces. However, the
duration of strong earthquake motion is a significant parameter for
earthquake damage potential when considering low cycle fatigue, soil
liquefaction, soil settlement, and inelastic structural response.

Many definitions of strong-motion duration have been presented
in the literature, all of which attempt to isolate a certain portion
of the accelerogram during which the strongest motion occurs. We
select the significant duration, in seconds, of the seism Td, which is
determined from the Husid plot [Husid (1969)], usually based on the
interval during which a certain portion of the total Arias intensity
[Arias (1970)] (between the 5% and the 95% of a defined threshold
[Trifunac and Brady (1975)]). Td could vary from 5 to 20 s for earth-
quakes in the magnitude of 5 to 7.7 [Dowrick (2009)]. The duration
of the recorded earthquake and the duration of the faulting could be
different due to the complexity of wave propagation. The example of
the Imperial Valley Earthquake is presented in Figure 7.8, the signif-
icant duration Td is 24.42 s, it had a moment magnitude Mw of 6.9
and a maximum perceived intensity of X (Extreme) on the Mercalli
intensity scale.

The Arias Intensity Ia [Arias (1970)] is defined in a conventional
way as follows:

Ia =
π

2g

∫ T

0
a2(τ)dτ (7.1)

Husid plotted normalized Arias Intensity, which he denoted as
h(t) versus time:

h(t) =

∫ t
0 a

2(τ)dτ∫ T
0 a2(τ)dτ

=
π

2gIa

∫ t

0
a2(τ)dτ (7.2)
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95 % 

5 %

Td = 24.42 s

Fig. 7.8. Normalized Husid’s function applied to Imperial Valley Earthquake
recorded at Al Centro, station 9 (same references as Figure 7.7). Td is the sig-
nificant duration of the seism calculated between 5 and 95% of the normalized
Husid’s function.

Where a is the acceleration-time history in units of g, and g is
the acceleration gravity. T is the total duration of the acceleration
time-history.

The effect of an earthquake on the Earth’s surface is called
the intensity. The intensity scale consists of a series of certain key
responses such as people awakening, movement of furniture, damage
to chimneys, and finally — total destruction. Although numerous
intensity scales have been developed over the last several hundred
years to evaluate the effects of earthquakes, the one currently used is
the Modified Mercalli (MM) Intensity Scale. It was developed in 1931
by the American seismologists Harry Wood and Frank Neumann.
This scale, composed of increasing levels of intensity that range from
imperceptible shaking to catastrophic destruction, is designated by
Roman numerals (I to XII). It does not have a mathematical basis;
instead it is an arbitrary ranking based on observed effects. The
Modified Mercalli Intensity value assigned to a specific site after an
earthquake has a more meaningful measure of severity to the non-
scientist than the magnitude because intensity refers to the effects
actually experienced at that place. The intensity is classified “strong”
from the value V.

It can be clearly seen in Figure 7.9 that for the motion to be
potentially damaging to engineered structures (Modified Mercalli
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Fig. 7.9. Peak ground acceleration (PGA) versus Modified Mercalli Intensity
(MMI). Original diagram from [Bommer and Martinez-Pereira (2000)]. Red dot-
ted line charts the contour of a domain for which the MMI is greater than VIII
and PGA is superior to 0.2 g.

Intensity VIII) the value of PGA must be at least 0.2 g (2 m.s−2).
However, we can also observe that there are clearly many accelero-
grams with PGA greater than 0.2 g but which are clearly not dam-
aging, being associated with intensity of shaking as low as VI or even
V on the Modified Mercalli scale. The ability of any single parameter
to measure the damage potential of the ground motion will depend
to a significant degree on which features of the motion (amplitude,
frequency content, duration and energy) it reflects.

For more details on this methods we refer the readers towards
books specialized in quantitative seismology, for instance, [Aki and
Richards (2002)].

With the aim of comparing the order of length of a strong motion
earthquake and an anthropic source dedicated to the simulation of
ground motion during full-sale experiment, for instance, in Saint-
Priest in 2012 using dynamic compaction, we present the comparison
of different parameters in Table 7.4.

To conclude this paragraph, we point out that the first experi-
ments on-site had shown the need to use a source bringing enough
energy and a low-frequency signature (mean frequency around 8 Hz).
Free-fall mass of few tens of tons seems to be a good source for these
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Table 7.4. Comparison a strong-motion earthquake [Stover et al. (1981)] and
dynamic compaction test by means of free-fall punch ponder.

Imperial Valley
Earthquake, Dynamic
CA, USA compaction test
Station 9 Saint-Priest

(1940/05/19) (2012/09/26)

Duration Td 24.42 s 0.104 s
Nota: duration in

agreement with a
Mw magnitude 2–3

“Epicentral distance” 10.5 km 5 m

Peak Ground Acceleration PGA 3.42 m.s−2 8.7 m.s−2

Energy calculated from magnitude 3.5.1014 J 1.03.107 J
Mw = 6.9 Mw ∼ 2

experiments in terms of PGA, but the characteristic duration of the
signal is very short (a few tenths of a second) compared to those of
earthquakes (a few seconds). There is a need to explore a new type of
source, for instance, the seismic noise recording [Brûlé and Javelaud
(2014b)]; it is a large-band signal (1 to more than 50 Hz), with long
duration, free, it is continuously emitted, but energy-poor.

7.7. Different Ways of Representing the Seismic
Wave Propagation Before Writing Equations

During the 1980s, earthquake engineering tried to describe the sig-
nificant ground motions observed on Earth’s surface thanks to the
amplification of incident signals inside soft alluvium basins. To illus-
trate this concept, Figure 7.10(a), shows how the phenomenon is
modelled in 1D (hypothesis of infinite horizontal layers), considering
shear waves with pure vertical incidence and incident and reflected
waves at free surface, propagating in phase. Most of the time, the
media 1, of thickness H is constituted of a succession of layers but it
is arbitrary simplified with equivalent parameters (ρ1, µ1). A major
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Fig. 7.10. 1D soil-model with incident and reflected S-waves in phase in the
media 1 (a). Dispersive multilayered 1D media with a geometric pattern made off
two layers. e is the thickness of the elementary elements (b). 2D structured soils
with vertical inclusions (d) and cells of vertical panels of concrete or grout mixed
with the soils (c).

advance brought by metamaterials [Brûlé et al. (2016)] is to imag-
ine that the successive layers could be considered as a potentially
dispersive 1D media (Figure 7.10(b)) or to consider structured soils
with vertical inclusions as a 2D media (Figure 7.10(d)). Typical
methodologies of civil engineering are to design foundations only
in the sense that they have to resist pseudo-static loads, leading
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sometimes to thick structures (Figure 7.10(c)), that ignore the poten-
tial benefit of resonating elements as concrete columns buried in the
soil [Achaoui et al., (2016) and Achaoui et al. (2017)].

In earthquake engineering terminology, this seismic materials
may act on the kinematic and inertial effects, i.e. the soil-structure
interaction [Brûlé and Cuira (2017)].

7.8. Wave Propagation Theory in Artificially
Anisotropic Media

We have reviewed the fundamentals of seismic signal interaction with
layered soils. Let us now proceed more generally and consider a linear
partial differential operator L, with a spatially varying, time depen-
dent and isotropic, coefficient m, acting on a scalar or vector field u,
and a source (or forcing) term S such that:

L[m(x, y, z, t);u ] = S(x, y, z, t) (7.3)

If we make a change of variables in this governing equation (L
could be for instance the Maxwell curl operator in which case m
stands for the inverse of permittivity and u for the magnetic vector
field or in elastodynamics L would be the Navier operator and m the
rank-4 elasticity tensor): (x, y, z, t) → (x′, y′, z′, t) with x′, y′ and z′

functions of variables x, y, z, the above equation takes, in most cases,
the following form:

L[M (x ′,y ′, z ′, t);u ] = S(x ′,y ′, z ′, t) (7.4)

where M has become anisotropic with coefficients that can be
deduced from a product of Jacobian matrices (more precisely, in
electromagnetics, M is the product the product of the Jacobian of
the transform by its transpose divided by the determinent of the
Jacobian [Nicolet et al. (1994)], whereas in elastodynamics the trans-
formed elasticity tensor has a more complex expression [9,43,45]. The
transformation of coordinates is at the core of transformation optics,
which has been a useful and insightful tool in optics.
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As a first illustration of the usefulness of transformation optics,
let us follow Pendry’s proposal for the design of an invisibility cloak,
which is based upon the coordinate change (r, θ, z)→ (r′, θ′, z), with
r′ = R1+ r (R2 −R1)/R2 and θ′ = θ. This maps a disc of radius R2

to a corona of radii R1 and R2 (R1 < R2).
For a source S which oscillates periodically in time, we first con-

sider the time harmonic Maxwell operator LM = curl(m curl u) +
ω2/c2u where ω is the angular wave frequency and c the wavespeed
of light in vacuum (approximately 3.00×108 meters per second), and
the transformed operator looks like

curl(M curlu) +M−1ω
2

c2
u (7.5)

where the matrix M (in fact the representation of a rank-2 tensor) in
the first term (resp. second term), is a representation of the inverse of
permittivity (resp. permeability) tensor, for a longitudinal magnetic
field unknown u = (0, 0,H). The diagonalised expression of M in a
cylindrical basis is

Mr′′r′ =
r′ −R1

r′
, Mθ′θ′ =

r′

r′ −R1
, Mzz =

(
R2

R2 −R1

)2 r′ −R1

r′
(7.6)

One should note that on the inner boundary of the corona at r′ = R1,
the first and third eigenvalues Mr′r′ and Mzz vanish, whereas the
second eigenvalue Mθ′θ′ becomes infinite (we shall see in the sequel
that in the elastodynamic case the transformed elasticity tensor
presents similar features). Physically, this means that one needs infi-
nite anisotropy on the cloak’s inner boundary to avoid any phase
delay for the electromagnetic signal in forward scattering (behind
the cloak). This makes ideal invisibility cloaks for light unfeasible as
the wavespeed of light c in vacuum is a strong, unbreakable, upper
limit. One way to get around this limit is to consider a cloak sur-
rounded by a medium with refractive index n > 1, within which the
wavespeed of light is v = c/n (e.g. for visible light, the refractive
index of glass is n = 1.5). Another challenge is the fact that the
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Fig. 7.11. Invisibility carpet for surface plasmon polaritons (left panel) and invis-
ibility cloak for linear surface water waves (right panel). The carpet was designed
at Institut Fresnel (Aix-Marseille Université/CNRS/Ecole Centrale Marseille),
fabricated and characterized at ICFO (Romain Quidant’s group) from 700 nm to
1000 nm; the cloak was designed and characterized at Institut Fresnel for linear
surface water waves from 8 to 15 Hertz. The cloak was also characterized for
microwaves from 3 to 7 GHz (Institut Fresnel) and for pressure waves from 4 to 8
KHz (MIT, Nicholas’ Fang group). Photos courtesy of ICFO (Romain Quidant)
and Photothèque CNRS (Stefan Enoch).

transformed Maxwell operator has not only some anisotropic per-
mittivity, but it also has some anisotropic permeability hence arti-
ficial magnetism is required. We show in Figure 7.11 realizations
of a carpet cloak (left panel) and a cloak (right panel) working for
respectively surface plasmon in optics (from 700 to 900 nm) and
microwaves (from 3 to 7 GHz). Note that the latter also works for
linear water waves (from 8 to 15 Hz) and sound waves (from 4 to
8 KHz).

We show in Figure 7.12 a numerical simulation for a time-
harmonic source generating concentric waves a couple of wavelengths
away from the ideal cylindrical cloak with parameters as in Eq. 7.5
(left panel) and the structured cloak tested in practice (right panel).
The diffracting F obstacle in the center of the cloak has Neumann
boundary conditions that are a good model for an infinite conduct-
ing obstacle for microwaves (in transverse electric polarization), and a
rigid obstacle for linear water waves and sound waves. One notes that
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Fig. 7.12. Numerical simulations for linear surface water waves generated by an
acoustic source in presence of a rigid F obstacle surrounded by an ideal invisibility
cloak (left panel) and the approximated cloak (right panel). A slight phase delay
is observed in wavefronts behind the cloak in right panel.

the structured medium in the right panel is described by inclusions
with Neumann boundary conditions with the same geometry as for
right panel in Figure 7.11.

This simulation holds for microwaves, linear water waves and
pressure waves. There are almost no disturbances observed in
backward scattering in Figure 7.12 (right panel) but the slight
deformation of the wavefront in forward scattering can be attributed
to the phase delay induced by the longer wave trajectory followed by
the wave compared to a wave in free space. It turns out that similar
cloaking can be observed for flexural waves in a thin-structured plate
with perforations of same geometry as in Figure 7.12 (right panel),
see [Farhat et al. (2012)] for the numerical analysis and [Stenger et al.
(2012)] for experimental validation by the group of Martin Wegener
at Karlsruhe Institute for Technology. Similar results also hold for
Rayleigh waves in soils structured with the same kind of perforations
(boreholes with a cross-section as in Figure 7.12 right panel).

Let us now focus our attention on mechanical waves, which are
governed by the Navier equations of elastodynamics (in the frame-
work of small deformations i.e. linear elasticity). We consider an
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isotropic medium described by an elasticity tensor C (rank 4), which
is fully symmetric, and a density, for a time harmonic elastodynamic
wave, the displacement field u is solution of

∇.(C : ∇u) + ρω2u = S (7.7)

Note that here ∇u is a rank-2 tensor, so that C: ∇u is a rank-2
tensor. Let us once again apply Pendry’s transformation, then the
transformed Navier operator Ln = ∇.(C ′ : ∇u) + ρω2u has a rank-4
tensor C ′ expressed in cylindrical coordinates as [Brun et al. (2009)]

C ′
r′r′r′r′ =

r′ −R1

r′
(λ+ 2µ), C ′

θ′θ′θ′θ′ =
r′

r′ −R1
(λ+ 2µ),

C ′
r′r′θ′θ′ = C ′

θ′θ′r′r′ = λ, C ′
r′θ′r′θ′ =

r′ −R1

r′
µ,

C ′
θ′r′θ′r′ =

r′

r′ −R1
µ, C ′

r′θ′θ′r′ = C ′
θ′r′r′θ′ = µ (7.8)

One notes that C ′ does not have the minor symmetries, as C ′
r′θ′r′θ′

and C ′
r′θ′θ′r′ , which are equal to the shear modulus µ in the isotropic

homogeneous medium in original space, have after transform a fac-
tor (r′ −R1)/r′ and its inverse, that leads to antagonistic behaviour
when r’ goes to R1 (C ′

r′θ′r′θ′ goes to zero while C ′
r′θ′θ′r goes to infin-

ity). More precisely, at the inner boundary of the cloak there is
once again a divergence of the eigenvalues of the tensor, just as in
the electromagnetic case, however here it seems that the symmetry
breaking is only concerned with acceleration of the shear polariza-
tion of the coupled shear and pressure in-plane waves. Nevertheless,
there is no longer the problem of the constant wavespeed of light in
vacuum, here it is fairly easy to accelerate the tangential speed of a
mechanical wave inside the cloak with respect to the wavespeed in the
bulk medium surrounding the cloak. One can thus avoid phase delay
(deformed wavefront) behind the cloak. However, the challenge is to
achieve metamaterials described by an asymmetric elasticity tensor,
this requires some kind of elastic chirality that goes beyond the scope
of the chapter.
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7.9. Full-Scale Experiment

To build a theory of seismic cloaks based on transformational physics,
these theoretical concepts need to be checked against experimental
data. A test zone consisting of a regular mesh of vertical cylindrical
voids was carried out near the alpine city of Grenoble (France) in
August 2012 (Figure 7.15). The preliminary objective of this seis-
mic field test was to point out the analogies with the control of
electromagnetic and acoustic waves by a quantitative approach. In
theory, it seems realistic to influence seismic waves passing through
an artificial anisotropic medium. However, soils possess particular
characteristics: non-elastic behavior, high rate of signal attenuation,
large-scale heterogeneity, etc. These various uncertainties and the
objective of realistic values for modeling require in situ tests to
adjust soil’s parameters as shear modulus, quality factor, etc. The
measurement of the velocity of Rayleigh waves VR is given by a
preliminary seismic test, using the wave time arrival at various offset
from the source. The Ménard civil engineering team of one of us,
Stéphane Brûlé, obtained VR = 78 m/s. The tested soil is a homo-
geneous silty clay. The thickness of the basin with similar deposits
is up to 200 m. The length of columns is about 5 m and the grid
spacing is smaller than 2 m: 1.73 m. The columns’ mean diameter
is 320 mm. A numerical simulation with finite elements shown in
Figure 7.14 predicts a stop band for elastic surface waves around 50
Hertz.

The seismic metamaterial test is challenging to model in full (3D
Navier equations in unbounded heterogeneous media). We therefore
opted for an asymptotic model, which only captures the wave physics
at the air-soil interface. We do not claim to have a complete under-
standing of the elastic wave propagation with such a model, rather
it is guidance for the experiments. However, there is a qualitatively
good agreement between our numerical simulations, in Figure 7.14,
and Ménard’s company experiments, in Figure 7.13. Note that the
seismic source frequency at 50 Hz in Figure 7.13 is located inside the
first partial stop band in Figure 7.13, which confirms the stop band
origin of the wave reflection.
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Fig. 7.13. Photo of the experimental setup of the seismic field test in Grenoble
(Summer 2012), where the region highlighted in green is protected from sur-
face seismic waves generated by a source (crane with rotating head at 50 Hz)
thanks to the array of boreholes (region highlighted in blue). Boxes on the soil
are velocimeters.

We consider the following approximate plate model for surface
flexural waves

ρ−1∇.
[
E

1
2∇ρ−1∇.

(
E

1
2∇Ψ

)]
− ω2ρh

D
ψ = 0 (7.9)

where Ψ(x, y) is the amplitude of displacement along the z-axis which
is orthogonal to the air-soil interface in Figure 7.13 and ρ is the het-
erogeneous density of the plate: in the soil the density ρ = 1500
kg/m3 and in boreholes ρ = 1.2 kg/m3. Moreover, the spectral
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Fig. 7.14. Numerical simulation showing the band diagram of an infinite periodic
structure (boreholes in soil) and the shielding effect for time-harmonic surface
(bending) waves generated by a source at a frequency within the second partial
Stop band.

y 
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m 

Regular grid of 
cylindrical and 

empty boreholes

Source

Sensors

Line 1

Line 2

Line 3

Fig. 7.15. Experimental result map after interpolation between sensors: Differ-
ence of the measured energy’s field (arbitrary units) after and before carrying out
the boreholes. Black rectangles symbolise sensors.

parameter β4 = ω2ρh/D, with ω the angular flexural wave frequency,
h the plate thickness (assumed to be 5 m), and D the plate rigidity,
which in the present case is D = Eh3/(12(1−ν2)). From the Ménard
company characterization of the soil, we chose E = 100 MPA and
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ν = 0.3. In the finite element model, solved with COMSOL Multi-
physics software, we set Floquet-Bloch boundary conditions on either
sides of a periodic cell (in the xy-plane) of sidelength d = 1.73 m in
order to compute the dispersion diagram shown in Figure 7.14. We
also set perfectly matched layers (PMLs) on either boundaries of
the domain in order to account for the unbounded domain in the
xy-plane for the simulation shown in the inset of Figure 7.14. These
PMLs are deduced from a geometric transform in Eq. 7.9 that lead
to a Young’s modulus similar to matrix M in Eq. 7.5.

Regarding the experimental results shown in Figure 7.15, some
word of caution is in order for the experimental setup. Twenty sen-
sors were used simultaneously with a common time-base. In order
to map completely the energy’s field, the sensors were set four
times on site (green, blue, pink and orange grids in Figure 7.13)
before and after carrying out the boreholes. The fact that the elastic
energy is 2.3 times larger at the source point when it is in pres-
ence of the metamaterial in Figure 7.15 is reminiscent of the Local
Density of States obtained for a source placed near a mirror in
optics.

The frequency of the vibrating source in the experiments, 50 Hz,
with 14 mm of lateral amplitude in xy-plane, should therefore lead
to very strong reflection of surface elastic waves by the large scale
metamaterial (see inset in Figure 7.14). The experimental grid is
made of three discontinuous lines of ten boreholes 320 mm in diam-
eter. Sensors are three component velocimeters (x, y, z) with a cor-
ner frequency of 4.5 Hz (−3 dB at 4.5 Hz) electronically corrected
to 1 Hz. Twenty sensors were used simultaneously with a common
time-base. In order to map completely the energy’s field, the sen-
sors were set four times on site before and after carrying out the
boreholes.

The sensors A1 and B1 were kept at the same position during
the whole experiment. They are the two sensors in Figure 7.3 that
have green frames: A1 is the sensor right above the source; B1 is just
on the left side of the boreholes. Due to the strong soil attenuation,
the probe is close to the grid (1.5 m). Each record is about two
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minutes long and can be divided into three parts: a pre-experiment
part, record of ambient vibration noise, followed by the probe starting
phase during which the frequency of the generated signal increases up
to 50 Hz and the probe is set in place; the experimental phase itself,
about one minute long and a post-experiment part, during which the
mechanical probe stops, and that end by ambient vibration noise.

For each grid, the effective experimental phase’s length is deter-
mined for the A1 fixed sensor. It is defined as the aforementioned
experimental length reduced by ten seconds at both ends to ensure
that any effect of the probe’s starting and ending are well removed.
The signals’ average energy per second is then computed for each
sensor. They are consecutively normalized by the A1’s energy per
second, so as to reconstruct a uniform energy field over the whole
experimental area.

The boreholes’ effect on the energy field is given in Figure 7.15
where the difference of the measured energy’s field after and before
carrying out the boreholes is displayed with interpolation between
sensors. Before we finish our story-telling of the first large scale
experiment of a seismic metamaterial, we would like to point out
that performing such a test required a healthy dose of courage as
both the civil engineering and geophysics communities were initially
taken aback by the concept of a soil periodically structured on a
scale of a few meters that could somewhat counteract the devastating
effects of earthquakes in sedimentary basins.

7.10. Inertial Resonators for Smart Buildings

An alternative to structured soils to prevent seismic disaster is the
design of smart buildings, e.g. fitted with inertial resonators like
those shown in Figure 7.16. However, this approach requires tun-
ing resonators at the eigenfrequencies of the building, and the wave
protection cannot be broadband. An obvious pitfall of such smart
buildings is that once the building is erected it seems fairly hard to
change the resonators (note that alternative solutions include passive
mass dampers in the building’s foundations, and water tanks, share
the same pitfall).
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Fig. 7.16. Numerical simulation illustrating the concept of a meta-building with
the deformation of a five-storey building at eigenfrequency near 5 Hertz (left
panel) and its suppression with inertial resonators tuned to vibrate at 5 Hertz
(right panel). Color scale ranges from dark blue (vanishing displacement) to red
(maximum displacement). The same concept can be applied to suppress unwanted
vibrations in bridges and other urban structures.

Fig. 7.17. Numerical simulation for lensing (left panel) and ultra-directive (right
panel) effects for columns of concrete in soil. A large scale experiment has con-
firmed similar effects through an array of boreholes, about 2 meters in diameter,
5 meters in depth and with a grid spacing of 7 meters for a signal characterized
by a mean frequency value about 8 Hz with a range of frequencies going from 3
to 20 Hz [Brûlé et al. (2017)].
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7.11. Concluding Remarks

We have conclusively shown that one can enhance the interactions of
surface seismic waves with structured soils by making use of analogies
between optics and solid mechanics.

The possibility to conceive new seismic defences (even invisibilty
cloacks) to improve the building’s design and reflect/control seismic
wave.
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[13] Brûlé, S., Javelaud, E. H., Enoch, S. and Guenneau, S. (2014). Experi-
ments on seismic metamaterials: Molding surface waves, Phys. Rev. Lett.
112, p. 133901.
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[15] Brûlé, S., Guenneau, S. and Enoch, S. (2015). Structured soils under seismic
disturbances, Proceedings of Association Française du Génie Parasismique,
AFPS’15, 30 November–2 December 2015, Marne La Vallée, France.
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cesses, State of the Art Report, Proceedings of the 17 th International Confer-
ence on Soil Mechanics and Geotechnical Engineering, TC17 meeting ground
improvement, Alexandria, Egypt.
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A metamaterial for directive emission, Phys. Rev. Lett. 89, p. 213902.

[31] Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and
Zhang, X. (2006). Nat. Mater. 5, p. 452.

[32] Farhat, M., Enoch, S., Guenneau, S. and Movchan, A. B. (2008). Broadband
cylindrical acoustic cloak for linear surface waves in a fluid, Phys. Rev. Lett.
101, p. 1345011.

[33] Farhat, M., Guenneau, S. and Enoch, S. (2012). Broadband cloaking of bend-
ing waves via homogenization of multiply perforated radially symmetric and
isotropic thin elastic plates, Phys. Rev. B 85, p. 020301 R.

[34] Finocchio, G., Casablanca, O., Ricciardi, G., Alibrandi, U., Garesci, F.,
Chiappini, M. and Azzerboni, B. (2014). Seismic metamaterials based on
isochronous mechanical oscillators, Appl. Phys. Lett. 104, p. 191903.

[35] Goldstein, H. (1950). Classic Mechanics, Addison Wesley, Reading, Mas-
sachussets.

[36] Gralak, B., Enoch, S. and Tayeb, G. (2000). Anomalous refractive properties
of photonic crystals, J. Opt. Soc. Am. A 17, pp. 1012–1020.
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CHAPTER 8

Active Cloaking

and Resonances

for Flexural Waves
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8.1. Background

The cloaking transformation, referred to as geometrical optics, is
well known and well discussed in the literature (see [Dolin (1961)],
[Leonhardt (2006)], [Pendry et al. (2006)], [Greenleaf et al. (2003)]
for the seminal papers). The transformation of coordinates is non-
degenerate but singular at the origin, and in contrast with conformal
maps, the Laplace’s operator changes its structure. This has been
exploited in the context of modelling anisotropic media. In particular,
so-called “invisibility cloaks” have been designed and constructed for
problems of acoustics and out-of-plane shear elasticity [Leonhardt
(2006)], [Pendry et al. (2006)].

The work [Milton et al. (2006, 2007)] and [Pendry et al. (2006)]
has put cloaking in the framework of a new research direction, leading

∗Corresponding author: abm@liv.ac.uk
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to the theoretical design and implementation of “metamaterials”.
These are understood as multi-scale design materials that possess
certain properties, such as dynamic anisotropy and negative refrac-
tion amongst many others.

Cloaking for vector elasticity and for flexural waves in elastic
plates is more challenging than for the case of acoustics. The formal
reason is that the “cloaking transformation” leads to new equations,
which require additional physical interpretation and understanding.
For example, for plane strain elasticity problems, several gauge con-
ditions have been identified [Norris and Shuvalov (2011)] to refer to
the Cosserat type materials [Brun et al. (2009)] or to materials where
the mass is considered as a tensor quantity rather than a scalar [Mil-
ton et al. (2006)]. Substantial discussion and analysis of these chal-
lenges have been published by [Milton and Willis (2007)], [Norris et al.
(2012)], [Norris et al. (2013)], [Farhat et al. (2009)]. The paper [Farhat
et al. (2014)] poses an interesting and important question of passive
scattering cancellation for bending waves in plates. It was proposed to
introduce a coating around an elastic inclusion, and choose its param-
eters appropriately to reduce the scattering cross-section. The imple-
mentation presented by [Farhat et al. (2014)] is for a low-frequency
regime, for a special case of “decoupling” transmission conditions, and
it presents a fascinating idea of high potential impact.

The implementation of exact structured cloaks for vector elastic-
ity or thin Kirchhoff plates is impossible, and practical approximate
realisations are challenging. Active cloaking offers an efficient alter-
native which therefore deserves full attention. The work by Miller
[Miller (2006)] has introduced the general concept of active cloaking
and also discussed challenges linked to extending the cloaking action
across a wide frequency range. Acoustic cancellations and their mod-
elling in the context of active cloaks have been also discussed by
[Friot and Bordier (2004)], [Friot et al. (2006)]. The idea of active
sound filtering and noise cancellation goes back to the early eighties;
the fundamental theoretical concepts and numerical simulations were
discussed by [Ffowcs Williams (1984)] and by [Nelson and Elliott
(1992), pp. 290–293].
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In recent papers by [Guevara Vasquez et al. (2009(a)], [Guevara
Vasquez et al. (2009(b)] a rigorous variational approach has been
developed to achieve a broadband active exterior cloaking for time-
harmonic waves governed by the Helmholtz equation. This was fol-
lowed by the work of [Norris et al. (2012)], [Norris et al. (2013)]
which addressed the evaluation of active source amplitudes for exte-
rior cloaking in an inverse problem setting.

The paper [O’Neill et al. (2015(a)] presented a novel development
of active cloaking for problems involving flexural waves in Kirch-
hoff plates. The challenge of resonance modes was accounted for
by introducing a novel design that incorporates placing a specially
chosen coating around the inclusion. This work covers broadband
regimes and provides a constructive method to handle cases of reso-
nant localisation.

The recent paper by [Futhazar et al. (2015)] follows the earlier
work by [Guevara Vasquez et al. (2009(a)], [Guevara Vasquez et al.
(2009(b)] and the paper by [Norris et al. (2012)], [Norris et al. (2013)]
to approximate the active cloaking “devices” by multipole expan-
sions for the case of Kirchhoff plates. The algorithm of [Futhazar
et al. (2015)] has poor convergence, which implies the importance of
resonance regimes for the cloaking of inclusions in Kirchhoff plates.
The significance of resonance phenomena was also noted in [Guevara
Vasquez et al. (2011)].

Practical applications and viability of passive cloaking have been
discussed by [Monticone and Alù (2013)], who asked the pragmatic
question “Do Cloaked Objects Really Scatter Less?”, to which the
answer was not straightforward. It was demonstrated that practical
broadband cloaking benefits strongly from an active input generated
by external sources.

The work by [Jones et al. (2015)] emphasises the importance of
boundary conditions on the interior contours of cloaking coatings. In
this paper a counterexample was constructed for the case of Kirchhoff
plates, where cloaking was not possible — the notion of a “cloaking
illusion” was also introduced and discussed for the cases of membrane
waves as well as flexural waves in Kirchhoff plates.
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8.2. Outline of Results

In the recent papers [O’Neill et al. (2015(a)] and [O’Neill et al.
(2015(b)], we presented the first investigation into active cloaking
for flexural waves in Kirchhoff plates. The elegant and explicit ana-
lytical approach to biharmonic active cloaking, based on multipole
approximations, was motivated by the earlier investigations of the
interaction of flexural waves with structured systems of scatterers
([Norris and Vemula (1995)], [Evans and Porter (2007)], [Movchan
et al. (2007)], [McPhedran et al. (2009)] and [Movchan et al. (2009)]).

One of the simple but important features of solutions to flex-
ural wave problems is that their general representations involve
both Helmholtz and modified Helmholtz waves. Of course, all mod-
ified Helmholtz waves are evanescent, and there exists a percep-
tion that their amplitudes need not to be controlled for effective
cloaking at large distances from a scatterer (typically a finite inclu-
sion). However, these waves do contribute significantly to the bound-
ary conditions and hence may play an important role in resonant
regimes.

In [O’Neill et al. (2015(a)], [O’Neill et al. (2015(b)], the sources
are located outside the scatterer and their complex wave amplitudes
are chosen to eliminate propagating orders of the multipole repre-
sentation of the scattered field. The cloaking method described is
approximate in the sense that this elimination is of a certain order.
Nonetheless, the quality of the cloaking may be improved by increas-
ing this order.

Before presenting the analytical description of the problem and
its solution, we give an outline of some of the results, and demon-
strate the cloaking principles with illustrative computations. At this
point, we also allude to the difference between cloaking and shield-
ing, since there seems to be a common misconception of cloaks being
identical to shields. In shielding problems, a quiet region surrounding
the object is created where the wave field practically vanishes, which
makes the object virtually invisible. However, this does not guarantee
that the devices are undetectable and they may produce a scattering
signature in the far field. In cloaking problems, the scattered field
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Fig. 8.1. Enlarged view of the cavity within a thin plate and the locations of
the control sources surrounding the cavity.

from both the sources and the object is reduced in a region exterior
to the object and sources.

Finally, we emphasise that boundary conditions of scatterers
play an important role in cloaking: scatterers with Neumann bound-
ary conditions are much “easier” to cloak compared with scatter-
ers with Dirichlet boundary conditions. We also discuss transmission
boundary conditions which are posed when an inclusion is made of
a different material.

8.2.1. Cloaking of scatterers with clamped boundaries

Our first result is for an arbitrarily shaped scatterer in a thin elastic
plate. We cloak this scatterer in the presence of an incident (plane or
cylindrical) wave using seven active control sources. An enlarged view
of the scatterer (cavity) and surrounding control sources is shown in
Fig. 8.1.

We begin with considering the case of an incident plane flexural
wave propagating in a thin plate with an arbitrarily shaped scat-
terer whose boundary is clamped. Fig. 8.2(a) illustrates the propa-
gation through the plate in the absence of a scatterer; in Fig. 8.2(b)
the shadow region, the most prominent signature of a defect in the
medium, is clearly visible behind the scatterer; in Fig. 8.2(c) the scat-
tered field is suppressed, creating almost perfect cloaking. We also
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Fig. 8.2. (a): Flexural wave amplitude for a plane wave in an infinite thin plate;
(b) Flexural wave amplitude in the presence of an arbitrarily shaped cavity;
(c) Cloaking achieved by the use of seven control sources (sources not shown on
the contour plot). To avoid reflections from the boundaries of the computational
window we used perfectly matched layers.

Fig. 8.3. Same as in Fig. 8.3 but this time in the presence of an incident flexural
cylindrical wave. The incident wave is initiated by a remote point source.

present the interaction of an incident cylindrical flexural wave with
an arbitrarily shaped scatterer in Fig. 8.3; the incident wave prop-
agates from a point source located sufficiently far away from the
scatterer.

We note that when the boundary of the scatterer is clamped, even
if the characteristic size of the scatterer is very small, the scattered
field remains finite and considerable effort is required to suppress the
shadow region behind the scatterer. On the contrary, the prescription
of a free boundary condition reduces the scattered field significantly
and, especially when the wavelength is larger than the characteristic
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(a) (b)

Fig. 8.4. Plane incident wave: (a) Flexural wave amplitude with no control
sources present. The black dot in the middle depicts the position of the circular
clamped inclusion. (b) Flexural wave amplitude with six control sources. The six
smaller black dots surrounding the inclusion depict the positions of the control
sources.

(a) (b)

Fig. 8.5. Cylindrical incident wave: (a) and (b) as in Fig. 8.4. The small black
dot on the far left depicts the point source generating the incoming wave.

size of the scatterer, the incident wave may be reconstructed behind
the scatterer with very little effort.

For the case when the clamped boundary of the scatterer has
a circular shape, we devise an explicit analytical algorithm based
on the multipole representation of the wave amplitudes. In Figs. 8.4
and 8.5, we illustrate two different types of incident fields interacting
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Fig. 8.6. The absolute value of the monopole term E
(e)
0 as a function of the

frequency ω. Dashed/green: high contrast inclusion with no coating; solid/blue:
inclusion with a suitably designed coating for (a) first resonant regime, (b) second
resonant regime.

with a circular clamped scatterer: a flexural plane wave and a flexural
cylindrical wave. It is demonstrated in these two figures that utilis-
ing six active sources restores the incident field in the shadow region
to a high accuracy. In addition, we remark that in the immediate
neighbourhood of the cloaked scatterer the displacement field is
slowly varying, as commonly observed in non-resonant cases.

8.2.2. Cloaking of elastic inclusions in resonant regimes

Contrary to the static case, the scattered field around an elastic inclu-
sion with a different mass density will possess a non-zero monopole
term and the coefficient near such a term may change rapidly in the
case of resonant vibrations. Of course, other multipole coefficients
may undergo rapid variations when there is resonance but for a low-
frequency resonance it is convenient to use the monopole coefficient
for illustrative purposes. Consequently, in Fig. 8.6(a) and Fig. 8.6(b)
we show the absolute value of the monopole coefficient E(e)

0 as a func-
tion of the frequency ω of the incident plane wave for the case of an
uncoated inclusion (dashed/green). The resonant regimes are clearly
identified near the regions of rapid variation of the coefficient (see
the red boxes): a low value in (a) and the first non-trivial zero of the
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(a)

(b)

Fig. 8.7. Flexural wave amplitude in the case of an uncoated inclusion: (a) for
a frequency corresponding to the first non-trivial zero of the monopole coefficient
(see † in Fig. 8.6(b)), (b) for a nearby frequency corresponding to a large value
of the monopole coefficient (see ‡ in Fig. 8.6(b)). In both (a) and (b), the field
outside and inside the inclusion is presented on the left and right, respectively.

monopole coefficient in (b) are both denoted by †; a very small change
in the frequency results in a very large variation of the monopole
coefficient, denoted by ‡. These resonant regions are associated with
high contrast between the inclusion and the surrounding medium. In
the text below, we focus our attention on the case depicted in Fig.
8.6(b) where the variation is more drastic than in Fig. 8.6(a) for the
corresponding resonant regime. In Fig 8.7, contour plots of the total
wave amplitude corresponding to these two very close values of the
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frequency from Fig. 8.6(b) are shown: in Fig 8.7(a) scattering is pri-
marily due to the terms of dipole order, but the wave fronts behind
the inclusion are practically straight: in Fig 8.7(b) both monopole
and dipole terms are contributing to the distortion of the wavefronts
behind the inclusion. The scattering patterns change dramatically
even though the difference in frequency values is small.

At a frequency when the absolute value of the monopole coef-
ficient E(e)

0 is small but rapidly varying, active cloaking requires a
rapid adjustment of the source amplitudes. To overcome this diffi-
culty, a specially designed coating is devised with the aim of reducing
this variation of the monopole coefficient for the required frequency
range. Thus the coating may be considered to serve as a passive con-
trol of scattering. The two solid/blue curves in Fig. 8.6(a) and Fig.
8.6(b) illustrate the use of a suitably designed coating to tame the
region of steep gradient of the monopole term in a targeted frequency
interval. We note the enhancement of the scattering as a result of the
increase in the monopole coefficient. This drastic enhancement of
scattering corresponding to Fig. 8.6(b) is shown in Fig. 8.8: the wave
amplitude in the exterior and the interior of the coated inclusion are
both presented here (compare this with Fig. 8.7).

Fig. 8.8. Flexural wave amplitude: Scattering enhancement from an inclusion
with a suitably designed coating and the detailed interior field (compare these
with Fig. 8.7(a)).
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Fig. 8.9. Absolute value of the normalised outgoing wave components
E

(e)
l H

(1)
l (βeas) versus the multipole order l for the resonant frequency denoted

by † in Fig. 8.6(b).

Fig. 8.10. Flexural wave amplitude using 12 active control sources: exterior and
interior fields.

We note that for higher frequencies it is necessary to use more
sources to achieve high-quality cloaking. In fact, the required number
of control sources needed may be found by plotting the multipole
field components versus the multipole order. It is evident from Fig.
8.9 that twelve sources would almost guarantee an effectively perfect
cloaking. The result is presented in Fig. 8.10.

All these illustrations may be regenerated for different types of
incident waves. Here, we give the results for an incident cylindrical
wave in Figs. 8.11–8.13.
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(a)

(b)

Fig. 8.11. (a) and (b) as in Fig. 8.7 for an incident cylindrical wave.

Fig. 8.12. As in Fig. 8.8 for an incident cylindrical wave.
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Fig. 8.13. As in Fig. 8.10 for an incident cylindrical wave.

8.3. Mathematical Model

8.3.1. Governing equations

For the sake of simplicity, we formulate the problem for a canonical
geometry first. We note that the formulation can be extended to an
arbitrary geometry with a smooth boundary (see Sec. 8.3.5). The out-
of-plane elastic displacement W (x; t) satisfies the equation of motion

∆2W (x; t) +
ρh

D
Ẅ (x; t) + F(x; t) = 0, x = (r, θ) ∈ Ω, (8.1)

where the region of interest Ω is a Kirchhoff plate with a clamped
scatterer or an inclusion which is surrounded by an annular coat-
ing, as shown in Fig. 8.14(a) and Fig. 8.14(b) respectively; (r, θ)
are the polar coordinates. We note that in what follows we use the
sub/superscripts i, c and e to denote the inclusion, coating and exte-
rior, respectively.

In Eq. (8.1), F(x; t) represents the contribution from the active
point sources placed in the exterior of the clamped scatterer or the
coated inclusion, ∆2 is the biharmonic operator, a dot on the variable
denotes the derivative with respect to time t, ρ is the mass density,
h is the thickness of the plate, D = Eh3/[12(1 − ν2)] is the flexural
rigidity, with E the Young’s modulus and ν the Poisson’s ratio of the
corresponding elastic material.

Assuming time-harmonic vibrations W (x; t) = w(x) exp(iωt),
outside the support of the function F(x; t), the governing equation
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ρe, De, νe

ai x1

x2

ρi, Di, νi

ρc, Dc, νc

ρe, De, νe

ai ac
x1

x2

(a) (b)

Fig. 8.14. (a) a clamped inclusion; (b) a coated inclusion. The inclusion, coating
and exterior are associated with the subscripts i, c and e, respectively.

(8.1) can be reduced to(
∆2 − ρhω2

D

)
w(x) = (∆ + β2)(∆ − β2)w(x) = 0, x ∈ Ω. (8.2)

Here β2 = ω
√
ρh/D is the spectral parameter. Consequently,

w(x) can be written as the sum of solutions of the Helmholtz and
modified Helmholtz equations

w(x) = wH(x) + wM (x), (8.3)

where

∆wH(x) + β2wH(x) = 0, ∆wM (x)− β2wM (x) = 0. (8.4)

For the clamped inclusion within the plate (see Fig. 8.14(a)), we
have the boundary conditions

w(x) =
∂w(x)
∂r

= 0 on r = ai. (8.5)

For the coated inclusion (see Fig. 8.14(b)), we pose conditions for
perfect bonding along the interfaces r = ai and r = ac, that is, the
continuity of the displacement, its normal derivative, the moment
and the transverse force. These conditions, with spatial dependence
suppressed, lead to

w(c) = w(l),
∂w(c)

∂r
=
∂w(l)

∂r
, (8.6)
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Dc

[
∂2w(c)

∂r2
+
νc

r

(
∂w(c)

∂r
+

1
r

∂2w(c)

∂θ2

)]

= Dl

[
∂2w(l)

∂r2
+
νl

r

(
∂w(l)

∂r
+

1
r

∂2w(l)

∂θ2

)]
, (8.7)

Dc

[
∂

∂r
∆rθw

(c) +
1− νc

r2
∂2

∂θ2

(
∂w(c)

∂r
− w(c)

r

)]

= Dl

[
∂

∂r
∆rθw

(l) +
1− νl

r2
∂2

∂θ2

(
∂w(l)

∂r
− w(l)

r

)]
. (8.8)

On r = ai we have l = i and on r = ac we have l = e. In either
case, we can write the solution to (8.2), outside the positions of the
control sources, as

w(r, θ) =
∞∑

l=−∞

[
AlJl(βr) + ElH

(1)
l (βr) +BlIl(βr) + FlKl(βr)

]
eilθ,

(8.9)
where the terms inside the square brackets are the l-th multipole
components of the flexural wave. We note that the multipole coef-
ficients Al, Bl are associated with the incoming wave, whereas the
coefficients El, Fl correspond to the outgoing wave.

8.3.2. A circular clamped inclusion

In the case of a circular clamped inclusion, the boundary conditions
(8.5) lead to the simple matrix relation

(
H

(1)
l (βeai) Kl(βeai)

H
(1)
l

′
(βeai) K ′

l(βeai)

)(
E

(e)
l

F
(e)
l

)

= −
(
Jl(βeai) Il(βeai)
J ′

l (βeai) I ′l(βeai)

)(
A

(e)
l

B
(e)
l

)
, (8.10)
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whose solution may be given as(
E

(e)
l

F
(e)
l

)
= Sl

(
A

(e)
l

B
(e)
l

)
, (8.11)

with

Sl =
1

W[H(1)
l (βeai),Kl(βeai)]

×
(
W[Kl(βeai), Jl(βeai)] W[Kl(βeai), Il(βeai)]
W[Jl(βeai),H

(1)
l (βeai)] W[Il(βeai),H

(1)
l (βeai)]

)
.

(8.12)

Above, we have used appropriate sub/super-scripts for the spectral
parameter β and the multipole coefficients Al, Bl, El and Fl, W[·]
stands for the respective Wronskian, prime, ′, denotes the derivative
with respect to the entire argument and Sl is the l-th order scattering
matrix.

First, we consider the case when the scattered field is due to a
flexural plane wave travelling along the x1-axis. Then, the incident
field can be written as

w
(p)
(inc)(x1) = exp(iβex1) = exp(iβer cos θ) =

∞∑
l=−∞

ilJl(βer)eilθ,

(8.13)
according to the Jacobi-Anger expansion. Thus, (8.11) together with
(8.13) give a general expression for the scattered field as

w
(p)
(sc)(r, θ) =

∞∑
l=−∞

[
E

(e)
l H

(1)
l (βer) + F

(e)
l Kl(βer)

]
eilθ

= S11
0 (βeai)H

(1)
0 (βeai) + S21

0 (βeai)K0(βeai)

+
∞∑
l=1

2il[S11
l (βeai)H

(1)
l (βeai)

+ S21
l (βeai)Kl(βeai)] cos (lθ) .

(8.14)

Here we used A
(e)
l = il, B

(e)
l ≡ 0 which follow directly from (8.13).

Since the components of the scattering matrix are known explicitly
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from (8.12), the scattered field is completely defined by the formula
(8.14). To derive this well-known expression (see [Norris and Vemula
(1995)]), which is very useful for confirming the efficiency of our
cloaking, we applied the following symmetry relations

S11
−l(βeai) = S11

l (βeai), S12
−l(βeai) = (−1)lS12

l (βeai),

S21
−l(βeai) = (−1)lS21

l (βeai), S22
−l(βeai) = S22

l (βeai),
(8.15)

which hold for any l �= 0. We note that, for small βer, the first two
terms of the expression (8.14) have the form

−
[
H

(1)
0 (βer) +

2i
π
K0(βer)

]

− 2iπ cos θ
4iγ + π + 4i log(βeai/2)

[
H

(1)
1 (βer) +

2i
π
K1(βer)

]
, (8.16)

where the first group of terms in square brackets correspond to the
normalised Green’s function for the biharmonic operator and the
second group is the dipole contribution.

Second, we focus our attention on the case when the scattered
field is due to a point source located sufficiently far away from the
scatterer. Without loss of generality, we choose this location to be
x(inc) = (−s, 0) on the x1-axis. In this case, the incident wave is
represented by

w
(c)
(inc)(r, θ) =

1
8iβ2

e

[
H

(1)
0 (βe

√
(r cos θ + s)2 + (r sin θ)2)

+
2i
π
K0(βe

√
(r cos θ + s)2 + (r sin θ)2)

]

=
1

8iβ2
e

∞∑
l=−∞

(−1)l

×
[
H

(1)
l (βes)Jl(βer) +

2i
π
Kl(βes)Il(βer)

]
eilθ.

(8.17)
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It immediately follows that the multipole coefficients A(e)
l , B

(e)
l

have the form

A
(e)
l =

(−1)l

8iβ2
e

H
(1)
l (βes), B

(e)
l =

(−1)l

4πβ2
e

Kl(βes). (8.18)

The corresponding scattered wave coefficients E(e)
l and F

(e)
l can be

found using (8.11) which would lead to a similar formula to (8.14)
for scattered field w(c)

(sc)(r, θ).

8.3.3. Scattering from a circular clamped inclusion

with control sources present — incident plane

wave

Figures 8.4 and 8.5 depict cloaking of a circular clamped inclusion
with six active control sources. For the case of Fig. 8.4, the wave field
incident on the clamped inclusion consists of a plane wave as well
as the contributions from the active sources as shown in Fig. 8.15.
The active sources are characterised by the Green’s function for the
biharmonic operator and their representations vary according to their
locations x(s,n) = (x(s,n)

1 , x
(s,n)
2 ), n = 1, . . . , 6 (with the appropriate

modification of formula (8.17)). Distributing these six active sources
evenly, starting from the x1-axis, on a circle of radius as and labelling
them as Qn, n = 1 . . . 6, we can write the l-th order coefficients for

ai x1

x2

Q1

Q2(= Q6)(Q5 =)Q3

Q4

(Q3 =)Q5 Q6(= Q2)

as

w
(p)
(inc)(x1)

Fig. 8.15. A circular clamped inclusion surrounded by six active control sources.
w

(p)
(inc)(x1) represents the incoming flexural plane wave.
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the total wave incident on the clamped inclusion as

A
(e)
l = il +

H
(1)
l (βeas)
8iβ2

e

6∑
n=1

Qn exp
(

(n− 1)
3

ilπ

)
,

B
(e)
l =

K
(1)
l (βeas)
4πβ2

e

6∑
n=1

Qn exp
(

(n− 1)
3

ilπ

)
.

(8.19)

We remark that, to maintain an up-down symmetry, we set Q2 = Q6

and Q3 = Q5.
Now, using (8.11), we obtain the l-th order coefficient for the

H
(1)
l (βer) term in the field for r > as as

S11
l A

(e)
l + S12

l B
(e)
l +

Jl(βeas)
8iβ2

e

6∑
n=1

Qn exp
(

(n − 1)
3

ilπ

)
. (8.20)

Thus, we can derive four equations for the unknowns Q1, Q2 =
Q6, Q3 = Q5 and Q4, by substituting the representations for A(e)

l

and B
(e)
l from (8.19) into the expression (8.20) and equating them

to zero:

S11
l

[
il +

H
(1)
l (βeas)
8iβ2

e

6∑
n=1

Qn exp
(

(n− 1)
3

ilπ

)]

+ S12
l

[
K

(1)
l (βeas)
4πβ2

e

6∑
n=1

Qn exp
(

(n − 1)
3

ilπ

)]

+
Jl(βeas)

8iβ2
e

6∑
n=1

Qn exp
(

(n− 1)
3

ilπ

)
= 0,

(8.21)

l = 0, 1, 2, 3 (the entries of the scattering matrix are as given in
(8.12)). Once the complex wave amplitudes Qn, n = 1 . . . 6 are found,
the representation for the total flexural wave amplitude outside the
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scatterer is given by

w(r, θ) ≈ w(p)
(inc)(r, θ) +

6∑
n=1

QnG(r cos θ + x
(s,n)
1 , r sin θ + x

(s,n)
2 )

L∑
l=−L

[
E

(e)
l H

(1)
l (βer) + F

(e)
l Kl(βer)

]
eilθ (8.22)

where the summation limit L must be chosen sufficiently large to
ensure wave amplitude accuracy. The expression (8.22) of course
gives a complex value and its real part represents the wave amplitude
at a particular instant of time. In Fig. 8.4 we present two snapshots
of �[exp(−iΨ)w(r, θ)] for a particular value of the phase Ψ = π,
with no active control sources present in Fig. 8.4(a) and with six
control sources in Fig. 8.4(b). The radius of the clamped inclusion
is set to be ai = 1.0 and the control sources are located on a circle
of radius as = 2.5. We take the non-dimensional parameter βeai to
be equal to 0.3. It turns out that the summation limit could be set
as L = 2 for required accuracy. Solution of the algebraic system
(8.21) gives Q1 = −0.848 − 1.146 i, Q2 = Q6 = −1.114 − 0.582 i,
Q3 = Q5 = −1.114 + 0.582 i and Q4 = −0.848 + 1.146 i.

8.3.4. Scattering from a circular clamped inclusion

with control sources present — incident wave

generated by a point source

Figure 8.5 was obtained by replacing the incident plane wave by
a remote point source as shown in Fig. 8.16. The Green’s function
G(x;x′) in an infinite plate containing a circular clamped inclusion
satisfies

(∆2 − β4)G(x;x′) + δ(x− x′) = 0, x = (r, θ) ∈ Ω,

G(x;x′) =
∂G(x;x′)

∂r
= 0, |x| = ai,

(8.23)

where δ(x − x′) denotes the Dirac delta function centred at x′. We
recall that the point source generating the incoming wave is located
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ai x1

x2

Q1

Q2(= Q6)(Q5 =)Q3

Q4

(Q3 =)Q5 Q6(= Q2)

as

w
(c)
(inc)(x1, x2)

Fig. 8.16. A circular clamped inclusion surrounded by six active control sources.
w

(c)
(inc)(x1, x2) represents the incoming flexural wave generated by a remote point

source.

at x(inc) = (−s, 0). This point source, like the active control sources
surrounding the clamped inclusion, is described by the Green’s func-
tion for the biharmonic operator (see (8.17)).

Because G satisfies the boundary conditions imposed on the inclu-
sion, for six active sources and an incident cylindrical wave, we can
write

g(x;x(inc))=G(x;x(inc)) +
6∑

n=1

BnG(x;x(s,n)), (8.24)

for the representation of the cloaking Green’s function g(x;x(inc))
everywhere outside the scatterer, where x(s,n) denotes the position
of the n-th active source.

Hence, we can write the l-th order coefficients for the total wave
incident on the clamped inclusion as

A
(e)
l =

(−1)l

8iβ2
e

H
(1)
l (βes) +

H
(1)
l (βeas)
8iβ2

e

6∑
n=1

Qn exp
(

(n − 1)
3

ilπ

)
,

B
(e)
l =

(−1)l

4πβ2
e

Kl(βes) +
K

(1)
l (βeas)
4πβ2

e

6∑
n=1

Qn exp
(

(n− 1)
3

ilπ

)
.

(8.25)
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This formula can be obtained directly from (8.19) by replacing the
contribution of the incident plane wave (A(e)

l = il, B
(e)
l ≡ 0) with the

contribution of the the cylindrical wave given by (8.18). Now, substi-
tuting formulae (8.25) for the incoming wave coefficients into (8.20),
we can derive the equations for the unknowns Q1, Q2 = Q6, Q3 = Q5

and Q4 as

S11
l

[
(−1)l

8iβ2
e

H
(1)
l (βes) +

H
(1)
l (βeas)
8iβ2

e

6∑
n=1

Qn exp
(

(n − 1)
3

ilπ

)]

+ S12
l

[
(−1)l

4πβ2
e

Kl(βes) +
K

(1)
l (βeas)
4πβ2

e

6∑
n=1

Qn exp
(

(n− 1)
3

ilπ

)]

+
Jl(βeas)

8iβ2
e

6∑
n=1

Qn exp
(

(n− 1)
3

ilπ

)
= 0,

(8.26)

l = 0, 1, 2, 3. As in the case for the incident plane wave, the repre-
sentation for the total flexural wave amplitude outside the scatterer
is given by

w(r, θ) ≈ w(c)
(inc)(r, θ) +

6∑
n=1

QnG(r cos θ + x
(s,n)
1 , r sin θ + x

(s,n)
2 )

L∑
l=−L

[
E

(e)
l H

(1)
l (βer) + F

(e)
l Kl(βer)

]
eilθ,

(8.27)

once the complex wave amplitudes Qn, n = 1, . . . , 6 have been found.
Again, we present two snapshots of �[exp(−iΨ)w(r, θ)] for the

phase Ψ = π, one with no active control sources present in Fig.
8.5(a) and one with six control sources in Fig. 8.5(b). Geometric and
physical parameters associated with the illustrations have been kept
the same as those for the case of an incident plane wave. Solving Eqs.
(8.26) we obtain Q1 = −0.253 + 0.386 i, Q2 = Q6 = 0.224 + 0.275 i,
Q3 = Q5 = 0.470 − 0.119 i and Q4 = 0.282 − 0.292 i.
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8.3.5. A clamped cavity of arbitrary shape

with a smooth boundary

The algorithm of the previous sections can be generalised to cloak-
ing an arbitrarily shaped scatterer (cavity) with a smooth boundary.
Once again the method relies on annulling selected terms of the total
scattered field everywhere outside the scatterer via the appropriate
tuning of active source amplitudes. However, we now obtain the scat-
tered field representations via far field approximations to two model
problems: scattering of the incident field from the object and point
source scattering from each of the control source locations. For the
first model problem, the total wave amplitude w(x) satisfies the fol-
lowing boundary value problem

∆2w(x)− β4w(x) = 0, x ∈ R
2\D̄,

w(x) =
∂w(x)
∂n

= 0, x ∈ ∂D,

where D is the region occupied by the arbitrarily shaped scat-
terer. The incident wave may be a plane or a cylindrical wave (see
Fig. 8.17). The field w(x) can be written as the sum of the incident
field w(inc)(x) and the scattered field w(sc)(x) as

w(x) = w(inc)(x) + w(sc)(x).

If the incident field is a plane wave then we refer to (8.13) and if it
is a cylindrical wave then we refer to (8.17).

The scattered field w(sc), either resulting from the incident plane
or cylindrical wave has the asymptotic representation

w(sc) =
∞∑

l=−∞

[
ElH

(1)
l (βer) + FlKl(βer)

]
eilθ ∼

∞∑
l=−∞

ElH
(1)
l (βer)eilθ,

(8.28)
where El are constant coefficients. We note that the evanes-
cent term in the scattered field is neglected since Kl(βer) =
O(exp(−βer)/(βer)) as βer � 1, (see formula 9.7.2 in [Abramowitz
and Stegun (1965)]).
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(a)

(b)

Fig. 8.17. Scattering from an arbitrarily shaped cavity: (a) incident wave is a
plane wave; (b) incident wave is a cylindrical wave generated by a remote point
source.

The second model problem involves scattering of a cylindrical
wave from the arbitrarily shaped scatterer (cavity) (see Fig. 8.18).
We do this in order to find the contribution from the active sources to
the total scattered wave everywhere outside the scatterer. The total
amplitude resulting from the cylindrical wave perturbation emitted
from source n is denoted by w(s,n)(x) and satisfies the boundary value
problem

∆2w(s,n)(x)− β4w(s,n)(x) + δ(x − x(s,n)) = 0, x ∈ R
2\D̄,

w(s,n)(x) =
∂w(s,n)(x)

∂n
= 0, x ∈ ∂D,
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ρe, De, νe

w(s,j)(x1, x2)

x1

x2

Fig. 8.18. Scattering from a control source.

where δ(x−x(s,n)) denotes the Dirac delta function, centred at x(s,n).
In fact, w(s,n)(x) admits the solution

w(s,n)(x) = w
(s,n)
(inc)(x) + w

(s,n)
(sc) (x) = G(x− x(s,n)) + w

(s,n)
(sc) (x)

∼
∞∑

l=−∞
A

(s,n)
l H

(1)
l (βer)eilθ, n = 1, . . . , N,

(8.29)

where once again, exponentially small terms satisfying the modified
Helmholtz equation are not shown. Here G(x − x(s,n)) denotes the
Green’s function for the biharmonic operator, w(s,n)

(sc) (x) is the scat-

tered field due to the unit source at x(s,n), and A
(s,n)
l are constant

coefficients.
Assuming that the coefficients El and A

(s,n)
l are given, active

cloaking is achieved by introducing a set of N control sources with
complex amplitudes Qn placed at the points x(s,n) in the exte-
rior of the scatterer D (see Fig. 8.1 for a configuration with seven
active sources). After the truncation to order L in the expansions
(8.28), (8.29), we choose N = 2L + 1, so that the total ampli-
tude w(total)(x) is approximately equal to the incident field w(inc)(x),



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch08 page 364

364 Handbook of Metamaterials and Plasmonics — Volume 2

that is

w(total)(x) = w(x) +
2L+1∑
n=1

Qnw
(s,n)(x) ≈ w(inc)(x). (8.30)

To find the active source amplitudes Qn, we substitute (8.28) and
(8.29) into (8.30), and obtain the following system of linear algebraic
equations

El +
2L+1∑
n=1

QnA
(s,n)
l = 0, l = −L, . . . , L. (8.31)

The evaluation of Qn relies on the solution of the model problems
discussed above. For sufficiently large fixed βer, the asymptotic rep-
resentations (8.28) and (8.29) are in fact Fourier series of which we
only need to evaluate the first N = 2L+ 1 coefficients. This can be
done, for example, numerically using a FEM package such as COM-
SOL. Once the necessary coefficients El and A(s,n)

l for l = −L, . . . , L
are known, we solve the system (8.31) for the amplitudes Qn of the
control sources. Note here, that the number of sources determines
the value of L in Eq. (8.31).

The unperturbed plane wave propagating horizontally and the
plane wave interacting with the arbitrarily shaped clamped scatterer
are shown in Fig. 8.2(a) and Fig. 8.2(b), respectively. A shadow
region is clearly visible behind the scatterer in Fig. 8.2(b). Once
again, we note that perfectly matched layers are used on the exte-
rior boundary of the computational domain to provide non-reflective
boundary conditions.

To set up an active cloak, seven control sources are positioned
around the scatterer, as shown in Fig. 8.1. This means that we have
seven Fourier coefficients, which is sufficient to successfully approxi-
mate series (8.28) and (8.29).

The resulting computation in Fig. 8.2(c) indicates that the unper-
turbed plane wave has emerged behind the scatterer, so the cloak-
ing by active sources successfully eliminates the shadow region as
required.
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We obtained similar results for an incoming cylindrical wave
which are illustrated in Figs. 8.3(a), (b) and (c).

8.3.6. Multipole representation for a plane wave

scattered by a coated circular inclusion

Now, we focus our attention towards a coated inclusion, as shown in
Fig. 8.14(b). The general solution outside the position of the control
sources is given in (8.9) with appropriate indices i, c or e, depending
on the respective region. Using the appropriate representations, Eqs.
(8.6)–(8.8) give us two matrix relations

A(ci)



A

(c)
l

E
(c)
l

B
(c)
l

F
(c)
l


 = B(ci)

(
A

(i)
l

B
(i)
l

)
for r = ai, (8.32)

where A(ci) and B(ci) are 4× 4 and 4× 2 matrices, respectively; and

A(ec)



A

(e)
l

E
(e)
l

B
(e)
l

F
(e)
l


 = B(ec)



A

(c)
l

E
(c)
l

B
(c)
l

F
(c)
l


 for r = ac, (8.33)

where A(ec) and B(ec) are both 4 × 4 matrices. The representations
of these four matrices are given in Appendix A.1. At this stage, it is
important to emphasise that reducing the matrices A(ci) and A(ec)

to block-diagonal structure is essential to pursue the derivation of an
analytical formula for the scattering matrix Sl. We note that in what
follows A(ci,∗),A(ec,∗) denote the required matrices in block-diagonal
form and B(ci,∗),B(ec,∗) are the associated matrices, with all these
matrices being given in Appendix A.1.

We use the four matrices A(ci,∗), B(ci,∗), A(ec,∗) and B(ec,∗) to
construct two further matrices C(ci,∗) and C(ec,∗) as follows:

C(ci,∗) = A(ci,∗)−1B(ci,∗), C(ec,∗) = A(ec,∗)−1B(ec,∗), (8.34)
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where the expressions which would represent the results of the matrix
inversions in the previous equation are too cumbersome to be given
explicitly. The final step in the construction is to cascade via a matrix
product the progression from the interface between the inclusion and
the coating to the interface between the coating and the exterior,
yielding the explicit transfer matrix C(ei,∗), which incorporates the
interface conditions at both interfaces:

C(ei,∗) = C(ec,∗)C(ci,∗). (8.35)

The transfer matrix C(ei,∗) can then be used to obtain the wave
coefficients A(e)

l , B(e)
l , E(e)

l and F
(e)
l in the exterior region in terms

of the wave coefficients A(i)
l , B(i)

l inside the inclusion as:


A

(e)
l

E
(e)
l

B
(e)
l

F
(e)
l


 = C(ei,∗)

(
A

(i)
l

B
(i)
l

)
. (8.36)

The final step in this procedure is to eliminate the wave coeffi-
cients in the inclusion to determine the 2 × 2 scattering matrix Sl

which relates outgoing wave coefficients to incoming wave coefficients
in the exterior region. This was done for a circular clamped inclusion
in Sec. 8.3.2. Even though the matrix relation (8.11) remains the
same, the new scattering matrix Sl is much more complicated for a
coated inclusion. The details are given in Appendix A.2. We note
that the discussion in Sec. 8.3.2 is valid, though we replace the old
scattering matrix by this newly established one.

8.3.7. Active cloaking of a coated inclusion

As we briefly discussed in Sec. 8.2.2, the multipole coefficients asso-
ciated with the propagating part of the scattered field in the mul-
tipole representation may vary rapidly with frequency in the case
of resonant vibrations. We first consider an uncoated inclusion to
identify resonant regimes where our active cloaking method requires
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rapid adjustments. Figure 8.6 (see the dashed/green curve in both
(a) and (b)) illustrates exactly this for a high contrast inclusion.
The following geometric and material properties are used to obtain
the dashed/green curve depicting the absolute value of E(e)

0 as a
function of the frequency ω: the radius of the inclusion ai = 0.50;
the densities of the inclusion and exterior ρi = 0.05, ρe = 1.0; the
flexural rigidities Di = 2.5 × 10−4,De = 1.0; the Poisson’s ratios
νi = νe = 0.3. As we mentioned earlier, our focus is on the second
peak of the monopole term for which the rapid variation is more
prominent. Hence we direct the reader’s attention to Fig. 8.6(b).
This resonant region is highlighted by a red box in Fig. 8.6(b):
within this red box, E(e)

0 has a minimum at the value of ω = 11.15
(denoted by †) which is followed by a peak at ω = 11.30 (denoted by
‡). This interval of steep gradient causes dramatic changes in both
the spatial distribution around the inclusion and in its amplitude
variation, as shown in Fig. 8.7(a) for ω = 11.15 and in Fig. 8.7(b)
for ω = 11.30.

To tame the large variation in this resonant regime, we use a
specially designed coating, whose effect is illustrated in Fig. 8.6(b)
by the solid/blue curve. It is clear from the figure that the absolute
value of the monopole coefficient E(e)

0 has a flat profile within the
targeted frequency range. The properties of the coating are chosen
to be as follows: the radius ac = 0.77; the density ρc = 0.005; the
flexural rigidity Dc = 2.5 × 10−2; the Poisson’s ratio νc = 0.3. Com-
paring Figs. 8.7(a) and 8.8, we see that for ω = 11.15, the designed
coating enhances scattering. The active cloaking algorithm described
in detail in Sec. 8.3.3 for a clamped inclusion is also suitable for a
coated inclusion, even with enhanced scattering within the resonant
interval.

Figure 8.9 shows that at least 10 control sources are required
for the cloaking algorithm to produce effective cloaking at the fre-
quency ω = 11.15. This is because for l ≥ 5, the contributions to
the propagating part of the scattered field, |E(e)

l H
(1)
l (βeas)|, are suf-

ficiently small. However, in order to see the near perfect cloaking
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(as presented in Fig. 8.10) we use twelve sources. The material and
geometric properties of the coated inclusion are as before with the
frequency of the incident plane wave being ω = 11.15.

We obtain similar results for an incoming cylindrical wave which
are illustrated in Figs. 8.11–8.13. These results were obtained for
the same coated inclusion and the same frequency value within the
resonant regime discussed above.

8.3.8. A note on controlling the quasi-static regimes

It is a well-known result that scattering reduction can be achieved
by the addition of a coating whose density is chosen to annul the
leading-order behaviour of the monopole coefficient of the scattered
field. It is also well-known that for a Kirchhoff plate containing a
circular elastic inclusion the monopole and quadrupole terms are of
the same order O((βeai)2) when βeai → 0:

|E(e)
0 | ∼

π

4

[
ρi

2ρe
+

De

De(1− νe) +Di(1 + νi)
− 1
]

(βeai)2,

|E(e)
2 | ∼

π

4

[
De(1− νe)−Di(1− νi)

2(De(3 + νe) +Di(1− νi))

]
(βeai)2.

(8.37)

We note that when the shear moduli of the inclusion and of the
exterior matrix are the same, the quadrupole coefficient vanishes,
and the monopole term becomes dominant.

The notion of neutrality for coated inclusions is well developed
in mechanics of static composites (see, for example, [Milton (2002)]).
In quasi-static regimes, as βeai → 0, a finite coating may be intro-
duced around an inclusion, so that E(e)

0 and E(e)
2 vanish. An elemen-

tary example when E
(e)
2 is zero corresponds to the case when the

shear moduli of the inclusion, coating and exterior matrix are all
equal. For a general case of a coated inclusion, closed form asymp-
totic formulae for E(e)

0 and E
(e)
2 are cumbersome. For an illustra-

tion, we note that the monopole coefficient E(e)
0 is asymptotically

o((βeai)2) if the following relation for the parameters of the coating is
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satisfied:

[2Dea1(b1 + 2Dc − 2De)β4
e + a1b1b2β

2
cβ

2
e − 2Dca1b1β

4
c ] a4

c

+2a2b2[Dcβ
4
c −Diβ

4
i ] a4

i

+[4Dea2(b2 +De)β4
e + a2b

2
2β

2
cβ

2
e − 2Dia1b1β

4
i

+2Dc(a1b1 − a2b2)β4
c ] a2

i a
2
c = 0, (8.38)

where

a1 = Di(1 + νi) +Dc(1− νc), a2 = Di(1 + νi)−Dc(1 + νc),

b1 = Dc(1 + νc) +De(1− νe), b2 = Dc(1− νc)−De(1− νe).

Here, D, ν denote the flexural rigidity and the Poisson’s ratio for
the inclusion, the coating and the exterior with appropriate sub-
scripts. By assuming identical material parameter values (for exam-
ple of the coating and exterior matrix), the above formula reduces to
the well-known result derived by Konenkov [Konenkov (1964)] and
Torrent [Torrent et al. (2014)] (see (8.37)) for the case of an uncoated
inclusion.

It is also important to note that in the very special case of Di =
Dc = De, νi = νc = νe but ρi �= ρc �= ρe, Eq. (8.38) reduces to the
classical mass-compensation equation

ρc =
ρe − ρi(ai/ac)2

1− (ai/ac)2
. (8.39)

However, the above simple ideas of scattering reduction in the
quasi-static regimes fail entirely for higher frequencies, where asymp-
totic formulae (8.37) are not valid. In such cases of advanced scatter-
ing, and possible resonances, the active cloaking, described previously
is the way forward.

8.4. Concluding Remarks

We have presented a novel efficient asymptotic method to actively
cloak clamped scatterers in the presence of incident plane and
cylindrical flexural waves in Kirchhoff plates. If the geometry of the
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scatterer is circular, then the results are given in closed analytical
form using multipole expansions. The method is generic and works
equally well for cloaking arbitrarily shaped scatterers with piece-
wise smooth boundaries. We note that cloaking clamped scatterers
is a more challenging problem than cloaking scatterers with a free
boundary. This is due to a finite monopole term for the former case,
even in the low-frequency regime.

A natural extension is to cloak elastic inclusions from flexural
waves. The most interesting case corresponds to a high contrast
between the inclusion itself and the surrounding matrix leading to
resonances for specific frequencies. To overcome difficulties associ-
ated with these resonant regimes, we have combined passive and
active cloaking techniques by designing a coating for a circular elastic
inclusion which controls rapid variation of multipole coefficients.

The results, as shown in a series of illustrative examples within
the text, show a significant suppression of the shadow region behind
the scatterer.
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Appendix

A.1. Kirchhoff Plates: The Representations for the
Matrices A(ci), B(ci), A(ec), B(ec) and their
Reduced Forms A(ci,∗), B(ci,∗), A(ec,∗), B(ec,∗)

Here we give a detailed description of how to obtain the entries of the
matrices A(ci)

pq , p, q = 1, 2, 3, 4; B(ci)
pq , p = 1, 2, 3, 4; q = 1, 2 and their
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reduced forms A(ci,∗)
pq , p, q = 1, 2, 3, 4; B(ci,∗)

pq , p = 1, 2, 3, 4; q = 1, 2
used in Section 8.3.6.

A.1.1. Transmission conditions at the interior

interface of the coating

We first consider the interface between the inclusion and coating
positioned at r = ai. Substitution of the relevant field representations
(8.9) into the two conditions (8.6) of perfect bonding (corresponding
to the continuity of the displacement and its normal derivative across
the interface), for each multipole order l, gives

A
(c)
l Jl(βcai) + E

(c)
l H

(1)
l (βcai) +B

(c)
l Il(βcai) + F

(c)
l Kl(βcai)

= A
(i)
l Jl(βiai) +B

(i)
l Il(βiai), (A.1)

βcai[A
(c)
l Jl

′(βcai) + E
(c)
l H

(1)
l

′
(βcai)

+B
(c)
l Il

′(βcai) + F
(c)
l Kl

′(βcai)]

= βiai[A
(i)
l Jl

′(βiai) +B
(i)
l Il

′(βiai)], (A.2)

where above, and in what follows, the prime denotes the deriva-
tive with respect to the entire argument. With the help of equations
(A.1), (A.2), we can write condition (8.7), which corresponds to the
continuity of the moment across the interface, as

β2
c a

2
i [A

(c)
l Jl

′′(βcai)+E
(c)
l H

(1)
l

′′
(βcai)+B

(c)
l Il

′′(βcai) + F
(c)
l Kl

′′(βcai)]

=
Di

Dc
β2

i a
2
i [A

(i)
l Jl

′′(βiai) +B
(i)
l Il

′′(βiai)]

+
(
Di

Dc
νi − νc

)
βiai[A

(i)
l Jl

′(βiai) +B
(i)
l Il

′(βiai)]

−
(
Di

Dc
νi − νc

)
l2[A(i)

l Jl(βiai) +B
(i)
l Il(βiai)]. (A.3)
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Next, we deal with condition (8.8), which enforces the continuity of
the transverse force across the interface. We first note that

∂

∂r
∆rθw +

1− νk

r2
∂2

∂θ2

(
∂w

∂r
− w

r

)

=
∂3w

∂r3
− 1
r2
∂w

∂r
+

1
r

∂2w

∂r2
+

2− νc

r2
∂3w

∂r∂θ2 −
3− νc

r3
∂2w

∂θ2 .

(A.4)

Hence this condition can be written as

β3
c a

3
i [A

(c)
l Jl

′′′(βcai) + E
(c)
l H

(1)
l

′′′
(βcai) +B

(c)
l Il

′′′(βcai)

+ F
(c)
l Kl

′′′(βcai)]

− βcai[A
(c)
l Jl

′(βcai) +E
(c)
l H

(1)
l

′
(βcai) +B

(c)
l Il

′(βcai)

+ F
(c)
l Kl

′(βcai)]

+ β2
c a

2
i [A

(c)
l Jl

′′(βcai) + E
(c)
l H

(1)
l

′′
(βcai) +B

(c)
l Il

′′(βcai)

+ F
(c)
l Kl

′′(βcai)]

− (2− νc)βcl
2ai[A

(c)
l Jl

′(βcai) + E
(c)
l H

(1)
l

′
(βcai) +B

(c)
l Il

′(βcai)

+ F
(c)
l Kl

′(βcai)]

− (3− νc)l2[A
(c)
l Jl(βcai) + E

(c)
l H

(1)
l (βcai) +B

(c)
l Il(βcai)

+ F
(c)
l Kl(βcai)]

=
Di

Dc

{
β3

i a
3
i [A

(i)
l Jl

′′′(βiai) +B
(i)
l Il

′′′(βiai)]

− βiai[A
(i)
l Jl

′(βiai) +B
(i)
l Il

′(βiai)]

+ β2
i a

2
i [A

(i)
l Jl

′′(βiai) +B
(i)
l Il

′′(βiai)]

− (2− νi)βil
2ai[A

(i)
l Jl

′(βiai) +B
(i)
l Il

′(βiai)]

+ (3− νi)l2[A
(i)
l Jl(βiai) +B

(i)
l Il(βiai)]

}
. (A.5)
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Now, using (A.1), (A.2) and (A.3), equality (A.5) can be reduced to

β3
c a

3
i [A

(c)
l Jl

′′′(βcai) + E
(c)
l H

(1)
l

′′′
(βcai) +B

(c)
l Il

′′′(βcai)

+ F
(c)
l Kl

′′′(βcai)]

=
Di

Dc
β3

i a
3
i [A

(i)
l Jl

′′′(βiai) +B
(i)
l Il

′′′(βiai)]

−
{
Di

Dc
νi − νc +

Di

Dc

[
1 + (2− νi)l2

]− [1 + (2 + νc)l2
]}

βiai

×
[
A

(i)
l Jl

′(βiai) +B
(i)
l Il

′(βiai)
]

+ 3l2
(
Di

Dc
− 1
)[

A
(i)
l Jl(βiai) +B

(i)
l Il(βiai)

]
. (A.6)

A.1.2. Reduction of the system of transmission

conditions on r = ai to block diagonal form

To deal with the second and third-order derivatives in (A.3) and
(A.6) respectively, we consider the Bessel equations

z2W ′′
±(z) + zW ′

±(z) ± (z2 ∓ l2)W±(z) = 0,

and their derivatives with respect to z, rearrange and obtain

β2
c a

2
iW ′′

±(βcai) = −βcaiW ′
±(βcai)± (β2

c a
2
i ∓ l2)W±(βcai), (A.7)

β3
c a

3
iW ′′′

± (βcai) =
(
2∓ β2

ca
2
i + l2

)
βcaiW ′

±(βcai)

± (β2
ca

2
i ∓ 3l2

)W±(βcai), (A.8)

where we replaced z by βcai. Here W+ corresponds to Jl,H
(1)
l and

W− to Il,Kl, respectively. Using (A.7) and (A.8), we re-write equality
(A.3) as

A
(c)
l

[−βcaiJl
′(βcai)−

(
β2

ca
2
i − l2

)
Jl(βcai)

]
+E

(c)
l

[
−βcaiH

(1)
l

′
(βcai)−

(
β2

c a
2
i − l2

)
H

(1)
l (βcai)

]
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+B
(c)
l

[−βcaiIl
′(βcai) +

(
β2

c a
2
i + l2

)
Il(βcai)

]
+F

(c)
l

[−βcaiKl
′(βcai) +

(
β2

c a
2
i + l2

)
Kl(βcai)

]
= A

(i)
l

{
−
[
Di

Dc
(1− νi) + νc

]
βiaiJl

′(βiai)

+
[
−Di

Dc
β2

i a
2
i + l2

[
Di

Dc
(1− νi) + νc

]]
Jl(βiai)

+B(i)
l

{
−
[
Di

Dc
(1− νi) + νc

]
βiaiIl

′(βiai)

+
[
Di

Dc
β2

i a
2
i + l2

[
Di

Dc
(1− νi) + νc

]]
Il(βiai), (A.9)

and equality (A.6) as

A
(c)
l

[(
2− β2

c a
2
i + l2

)
βcaiJl

′(βcai) +
(
β2

ca
2
i − 3l2

)
Jl(βcai)

]
+E(c)

l [(2 − β2
ca

2
i + l2)βcaiH

(1)
l

′
(βcai)

+(β2
c a

2
i − 3l2)H(1)

l (βcai)]

+B(c)
l [(2 + β2

ca
2
i + l2)βcaiIl

′(βcai)− (β2
c a

2
i + 3l2)Il(βcai)]

+F (c)
l [(2 + β2

c a
2
i + l2)βcaiKl

′(βcai)− (β2
c a

2
i + 3l2)Kl(βcai)]

= A
(i)
l

{[
Di
Dc

[
(1− νi)(1 − l2)− β2

i a
2
i

]
+ 1 + νc + (2− νc)l2

]

×βiaiJl
′(βiai) +

(
Di
Dc
β2

i a
2
i − 3l2

)
Jl(βiai)

}

+B(i)
l

{[
Di
Dc

[
(1− νi)(1− l2) + β2

i a
2
i

]
+ 1 + νc + (2− νc)l2

]

×βiaiIl
′(βiai) +

(
−Di

Dc
β2

i a
2
i − 3l2

)
Il(βiai)

}
. (A.10)

Equations (A.1), (A.2), (A.9) and (A.10) finally lead us to the matrix
equation (8.32) with their left-hand and right-hand sides forming the
rows of A(ci)

pq and B(ci)
pq respectively. The components of the matrices
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A(ci)
pq , p, q = 1, 2, 3, 4; B(ci)

pq , p = 1, 2; q = 1, 2, 3, 4 are given below:

A(ci)
11 = Jl(βcai), A(ci)

12 = H
(1)
l (βcai),

A(ci)
13 = Il(βcai), A(ci)

14 = Kl(βcai),

A(ci)
21 = βcaiJl

′(βcai), A(ci)
22 = βcaiH

(1)
l

′
(βcai),

A(ci)
23 = βcaiIl

′(βcai), A(ci)
24 = βcaiKl

′(βcai),

A(ci)
31 = −(β2

c a
2
i − l2)Jl(βcai)− βcaiJl

′(βcai),

A(ci)
32 = −(β2

c a
2
i − l2)H(1)

l (βcai)− βcaiH
(1)
l

′
(βcai),

A(ci)
33 = (β2

c a
2
i + l2)Il(βcai)− βcaiIl

′(βcai),

A(ci)
34 = (β2

c a
2
i + l2)Kl(βcai)− βcaiKl

′(βcai),

A(ci)
41 = (β2

c a
2
i − 3l2)Jl(βcai) + (−β2

c a
2
i + l2 + 2)βcaiJl

′(βcai),

A(ci)
42 = (β2

c a
2
i − 3l2)H(1)

l (βcai) + (−β2
c a

2
i + l2 + 2)βcaiH

(1)
l

′
(βcai),

A(ci)
43 = −(β2

c a
2
i + 3l2)Il(βcai) + (β2

c a
2
i + l2 + 2)βcaiIl

′(βcai),

A(ci)
44 = −(β2

c a
2
i + 3l2)Kl(βcai) + (β2

c a
2
i + l2 + 2)βcaiKl

′(βcai);

B(ci)
11 = Jl(βiai), B(ci)

12 = Il(βiai),

B(ci)
21 = βiaiJl

′(βiai), B(ci)
22 = βiaiIl

′(βiai),

B(ci)
31 =

{
−Di

Dc
β2

i a
2
i + l2

[
(1− νi)

Di

Dc
+ νc

]}
Jl(βiai)

−
[
(1− νi)

Di

Dc
+ νc

]
βiaiJl

′(βiai),

B(ci)
32 =

{
Di

Dc
β2

i a
2
i + l2

[
(1− νi)

Di

Dc
+ νc

]}
Il(βiai)

−
[
(1− νi)

Di

Dc
+ νc

]
βiaiIl

′(βiai),
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B(ci)
41 =

(
Di

Dc
β2

i a
2
i − 3l2

)
Jl(βiai)

+
{
Di

Dc

[
(1− νi)(1− l2)− β2

i a
2
i

]
+ 1 + νc + (2− νc)l2

}

× βiaiJl
′(βiai),

B(ci)
42 = −

(
Di

Dc
β2

i a
2
i + 3l2

)
Il(βiai)

+
{
Di

Dc

[
(1− νi)(1− l2) + β2

i a
2
i

]
+ 1 + νc + (2− νc)l2

}

× βiaiIl
′(βiai).

The matrices A(ci,∗),B(ci,∗) are obtained by diagonalising the
matrices (using row operations) A(ci),B(ci), respectively:

−(β2
c a

2
i + l2)R1 +R2 +R3 −→ R∗

1,

2l2R1 − (β2
c a

2
i + l2 + 1)R2 +R3 +R4 −→ R∗

2,

(β2
c a

2
i − l2)R1 +R2 +R3 −→ R∗

3,

2l2R1 + (β2
c a

2
i − l2 − 1)R2 +R3 +R4 −→ R∗

4,

A(ci,∗)
11 = −2β2

ca
2
i Jl(βcai), A(ci,∗)

12 = −2β2
c a

2
iH

(1)
l (βcai),

A(ci,∗)
13 = A(ci,∗)

14 = 0, A(ci,∗)
21 = −2β3

c a
3
iJl

′(βcai),

A(ci,∗)
22 = −2β3

ca
3
iH

(1)
l

′
(βcai), A(ci,∗)

23 = A(ci,∗)
24 = 0,

A(ci,∗)
31 = A(ci,∗)

32 = 0, A(ci,∗)
33 = 2β2

c a
2
i Il(βcai),

A(ci,∗)
34 = 2β2

c a
2
iKl(βcai), A(ci,∗)

41 = A(ci,∗)
42 = 0,

A(ci,∗)
43 = 2β3

c a
3
i Il

′(βcai), A(ci,∗)
44 = 2β3

c a
3
iKl

′(βcai).

B(ci,∗)
1k = −(β2

ca
2
i + l2)B(ci)

1k + B(ci)
2k + B(ci)

3k ,

B(ci,∗)
2k = 2l2B(ci)

1k − (β2
c a

2
i + l2 + 1)B(ci)

2k + B(ci)
3k + B(ci)

4k ,
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B(ci,∗)
3k = (β2

c a
2
i − l2)B(ci)

1k + B(ci)
2k + B(ci)

3k ,

B(ci,∗)
4k = 2l2B(ci)

1k + (β2
c a

2
i − l2 − 1)B(ci)

2k + B(ci)
3k + B(ci)

4k , k = 1, 2.

A.1.3. Transmission conditions at the exterior

interface of the coating

To obtain the entries of the matrices A(ec)
pq ; B(ec)

pq , p, q = 1, 2, 3, 4, and
their reduced forms A(ec,∗)

pq ; B(ec,∗)
pq , p, q = 1, 2, 3, 4, we use a similar

method to that described above, however, at the interface between
the coating and exterior medium, the conditions for perfect bonding
are equated on the radius r = ac. By substituting the corresponding
field representations into the two conditions (8.6), we obtain

A
(e)
l Jl(βeac) +E

(e)
l H

(1)
l (βeac) +B

(e)
l Il(βeac) + F

(e)
l Kl(βeac)

= A
(c)
l Jl(βcac) + E

(c)
l H

(1)
l (βcac) +B

(c)
l Il(βcac) + F

(c)
l Kl(βcac),

(A.11)

βeac[A
(e)
l Jl

′(βeac) + E
(e)
l H

(1)
l

′
(βeac) +B

(e)
l Il

′(βeac) + F
(e)
l Kl

′(βeac)]

= βcac[A
(c)
l Jl

′(βcac) + E
(c)
l H

(1)
l

′
(βcac) +B

(c)
l Il

′(βcac)

+ F
(c)
l Kl

′(βcac)]. (A.12)

We can now use (A.11) and (A.12) to write the condition (8.7) on
r = ac as

β2
ea

2
c [A

(e)
l Jl

′′(βeac) + E
(e)
l H

(1)
l

′′
(βeac) +B

(e)
l Il

′′(βeac)

+ F
(e)
l Kl

′′(βeac)]

=
Dc

De
β2

c a
2
c [A

(c)
l Jl

′′(βcac) + E
(c)
l H

(1)
l

′′
(βcac) +B

(c)
l Il

′′(βcac)

+ F
(c)
l Kl

′′(βcac)]

+
(
Dc

De
νc − νe

)
βcac[A

(c)
l Jl

′(βcac) + E
(c)
l H

(1)
l

′
(βcac)

+B
(c)
l Il

′(βcac) + F
(c)
l Kl

′(βcac)]
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−
(
Dc

De
νc − νe

)
l2[A(c)

l Jl(βcac) + E
(c)
l H

(1)
l (βcac)

+B
(c)
l Il(βcac) + F

(c)
l Kl(βcac)]. (A.13)

In order to write condition (8.8) on r = ac, we use equation (A.4)
as well as equations (A.11), (A.12) and (A.13), grouping together
zeroth and first-order derivatives on the left-hand side. This gives

β3
ea

3
c [A

(e)
l Jl

′′′(βeac) + E
(e)
l H

(1)
l

′′′
(βeac) +B

(e)
l Il

′′′(βeac)

+ F
(e)
l Kl

′′′(βeac)]

=
Dc

De
β3

ca
3
c [A

(c)
l Jl

′′′(βcac) + E
(c)
l H

(1)
l

′′′
(βcac)

+B
(c)
l Il

′′′(βcac) + F
(c)
l Kl

′′′(βcac)]

−
{
Dc

De
νc − νe +

Dc

De

[
1 + (2− νc)l2

]− [1 + (2− νe)l2
]}

βcac

× [A(c)
l Jl

′(βcac) + E
(c)
l H

(1)
l

′
(βcac)

+B
(c)
l Il

′(βcac) + F
(c)
l Kl

′(βcac)]

+ 3l2
(
Di

Dc
− 1
)

[A(c)
l Jl(βcac) + E

(c)
l H

(1)
l (βcac)

+B
(c)
l Il(βcac) + F

(c)
l Kl(βcac)]. (A.14)

A.1.4. Reduction of the system of transmission

conditions on r = ac to block diagonal form

We use the relevant form of equations (A.7) and (A.8) to replace the
second and third order derivatives in equations (A.13) and (A.14).
Equation (A.13) simplifies to

A
(e)
l

[−βeacJl
′(βeac)−

(
β2

ea
2
c − l2

)
Jl(βeac)

]
+ E

(e)
l

[
−βeacH

(1)
l

′
(βeac)−

(
β2

ea
2
c − l2

)
H

(1)
l (βeac)

]
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+B
(e)
l

[−βeacIl
′(βeac) +

(
β2

ea
2
c + l2

)
Il(βeac)

]
+ F

(e)
l

[−βeacKl
′(βeac) +

(
β2

ea
2
c + l2

)
Kl(βeac)

]
= A

(c)
l

{
−
[
Dc

De
(1− νc) + νe

]
βcacJl

′(βcac)

+
[
−Dc

De
β2

c a
2
c + l2

[
Dc

De
(1− νc) + νe

]]
Jl(βcac)

+ E
(c)
l

{
−
[
Dc

De
(1− νc) + νe

]
βcacH

(1)
l

′
(βcac)

+
[
−Dc

De
β2

c a
2
c + l2

[
Dc

De
(1− νc) + νe

]]
H

(1)
l (βcac)

+B
(c)
l

{
−
[
Dc

De
(1− νc) + νe

]
βcacIl

′(βcac)

+
[
Dc

De
β2

c a
2
c + l2

[
Dc

De
(1− νc) + νe

]]
Il(βcac)

+ F
(c)
l

{
−
[
Dc

De
(1− νc) + νe

]
βcacKl

′(βcac)

+
[
Dc

De
β2

c a
2
c + l2

[
Dc

De
(1− νc) + νe

]]
Kl(βcac), (A.15)

and (A.14) becomes

A
(e)
l

[(
2− β2

ea
2
c + l2

)
βeacJl

′(βeac) +
(
β2

ea
2
c − 3l2

)
Jl(βeac)

]
+ E

(e)
l [
(
2− β2

ea
2
c + l2

)
βeacH

(1)
l

′
(βeac)

+
(
β2

ea
2
c − 3l2

)
H

(1)
l (βeac)]

+B
(c)
l

[(
2 + β2

ea
2
c + l2

)
βeacIl

′(βeac)−
(
β2

ea
2
c + 3l2

)
Il(βeac)

]
+ F

(e)
l [
(
2 + β2

ea
2
c + l2

)
βeacKl

′(βeac)−
(
β2

ea
2
c + 3l2

)
Kl(βeac)]

= A
(c)
l

{[
Dc

De

[
(1− νc)(1− l2)− β2

c a
2
c

]
+ 1 + νe + (2− νe)l2

]
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× βcacJl
′(βcac) +

(
Dc

De
β2

c a
2
c − 3l2

)
Jl(βcac)

}

+ E
(c)
l

{[
Dc

De

[
(1− νc)(1− l2)− β2

c a
2
c

]
+ 1 + νe + (2− νe)l2

]

× βcacH
(1)
l

′
(βcac) +

(
Dc

De
β2

c a
2
c − 3l2

)
H

(1)
l (βcac)

}

+B
(c)
l

{[
Dc

De

[
(1− νc)(1 − l2) + β2

c a
2
c

]
+ 1 + νe + (2− νe)l2

]

× βcacIl
′(βcac)−

(
Dc

De
β2

c a
2
c + 3l2

)
Il(βcac)

}

+ F
(c)
l

{[
Dc

De

[
(1− νc)(1− l2) + β2

c a
2
c

]
+ 1 + νe + (2 − νe)l2

]

× βcacKl
′(βcac)−

(
Dc

De
β2

c a
2
c + 3l2

)
Kl(βcac)

}
. (A.16)

The matrices A(ec) and B(ec) in equation (8.33) can be written explic-
itly, and their elements are given below:

A(ec)
11 = Jl(βeac), A(ec)

12 = H
(1)
l (βeac), A(ec)

13 = Il(βeac),

A(ec)
14 = Kl(βeac), A(ec)

21 = βeacJl
′(βeac), A(ec)

22 = βeacH
(1)
l

′
(βeac),

A(ec)
23 = βeacIl

′(βeac), A(ec)
24 = βeacKl

′(βeac),

A(ec)
31 = −(β2

ea
2
c − l2)Jl(βeac)− βeacJl

′(βeac),

A(ec)
32 = −(β2

ea
2
c − l2)H(1)

l (βeac)− βeacH
(1)
l

′
(βeac),

A(ec)
33 = (β2

ea
2
c + l2)Il(βeac)− βeacIl

′(βeac),

A(ec)
34 = (β2

ea
2
c + l2)Kl(βeac)− βeacKl

′(βeac),

A(ec)
41 = (β2

ea
2
c − 3l2)Jl(βeac) + (−β2

ea
2
c + l2 + 2)βeacJl

′(βeac),
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A(ec)
42 = (β2

ea
2
c − 3l2)H(1)

l (βeac) + (−β2
ea

2
c + l2 + 2)βeacH

(1)
l

′
(βeac),

A(ci)
43 = −(β2

ea
2
c + 3l2)Il(βeac) + (β2

ea
2
c + l2 + 2)βeacIl

′(βeac),

A(ci)
44 = −(β2

ea
2
c + 3l2)Kl(βeac) + (β2

ea
2
c + l2 + 2)βeacKl

′(βeac);

B(ec)
11 = Jl(βcac), B(ec,∗)

12 = H
(1)
l (βcac), B(ec)

13 = Il(βcac),

B(ec,∗)
14 = Kl(βcac), B(ec)

21 = βcacJl
′(βcac), B(ec)

22 = βcacH
(1)
l

′
(βcac),

B(ec)
23 = βcacIl

′(βcac), B(ec)
24 = βcacKl

′(βcac),

B(ec)
31 =

{
l2
[
Dc

De
(1− νc) + νe

]
− Dc

De
β2

c a
2
c

}
Jl(βcac)

− βcac

[
Dc

De
(1− νc) + νe

]
Jl

′(βcac),

B(ec)
32 =

{
l2
[
Dc

De
(1− νc) + νe

]
− Dc

De
β2

c a
2
c

}
H

(1)
l (βcac)

− βcac

[
Dc

De
(1− νc) + νe

]
H

(1)
l

′
(βcac),

B(ec)
33 =

{
l2
[
Dc

De
(1− νc) + νe

]
+
Dc

De
β2

c a
2
c

}
Il(βcac)

− βcac

[
Dc

De
(1− νc) + νe

]
Il
′(βcac),

B(ec)
34 =

{
l2
[
Dc

De
(1− νc) + νe

]
+
Dc

De
β2

c a
2
c

}
Kl(βcac)

− βcac

[
Dc

De
(1− νc) + νe

]
Kl

′(βcac),

B(ec)
41 =

(
Dc

De
β2

c a
2
c − 3l2

)
Jl(βcac)

+ βcac

{
Dc

De

[
1− β2

ca
2
c + l2(νc − 1) − νc

]

+ νe + 1 + l2(2− νe)
}
J ′

l (βcac),
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B(ec)
42 =

(
Dc

De
β2

c a
2
c − 3l2

)
H

(1)
l (βcac)

+ βcac

{
Dc

De

[
1− β2

ca
2
c + l2(νc − 1) − νc

]

+ νe + 1 + l2(2− νe)
}
H

(1)′
l (βcac),

B(ec)
43 =

(
−Dc

De
β2

c a
2
c − 3l2

)
Il(βcac)

+ βcac

{
Dc

De

[
1 + β2

ca
2
c + l2(νc − 1) − νc

]

+ νe + 1 + l2(2− νe)
}
Il
′(βcac),

B(ec)
44 =

(
−Dc

De
β2

c a
2
c − 3l2

)
Kl(βcac)

+ βcac

{
Dc

De

[
1 + β2

ca
2
c + l2(νc − 1) − νc

]

+ νe + 1 + l2(2− νe)
}
Kl

′(βcac).

A.1.5. Further algebraic simplification

In order to obtain the matrices A(ec,∗)
pq ; B(ec,∗)

pq , p, q = 1, 2, 3, 4, (where
A(ec,∗)

pq is block diagonal), we initially perform the following row oper-
ations on the matrix A(ec) which gives

(β2
ea

2
c + l2)R1 −R2 −R3 −→ R∗

1,

−2l2R1 + (β2
ea

2
c + l2 + 1)R2 −R3 −R4 −→ R∗

2,

(β2
ea

2
c − l2)R1 +R2 +R3 −→ R∗

3,

2l2R1 + (β2
ea

2
c − l2 − 1)R2 +R3 +R4 −→ R∗

4.

The reduced form matrix A(ec,∗)
pq , p, q = 1, 2, 3, 4, can be obtained as

A(ec,∗)
11 = 2β2

ea
2
cJl(βeac), A(ec,∗)

12 = 2β2
ea

2
cH

(1)
l (βeac),
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A(ec,∗)
13 = A(ec,∗)

14 = 0, A(ec,∗)
21 = 2β3

ea
3
cJl

′(βeac),

A(ec,∗)
22 = 2β3

ea
3
cH

(1)
l

′
(βeac), A(ec,∗)

23 = A(ec,∗)
24 = 0,

A(ec,∗)
31 = A(ec,∗)

32 = 0, A(ec,∗)
33 = 2β2

ea
2
cIl(βeac),

A(ec,∗)
34 = 2β2

ea
2
cKl(βeac), A(ec,∗)

41 = A(ec,∗)
42 = 0,

A(ec,∗)
43 = 2β3

ea
3
cIl

′(βeac), A(ec,∗)
44 = 2β3

ea
3
cKl

′(βeac).

We perform the same row operations on matrix B(ec)
pq , p, q = 1, 2, 3, 4.

It is clear that its reduced form reads as follows

B(ec,∗)
1k = (β2

ea
2
c + l2)B(ec)

1k − B(ec)
2k − B(ec)

3k ,

B(ec,∗)
2k = −2l2B(ec)

1k + (β2
ea

2
c + l2 + 1)B(ec)

2k − B(ec)
3k − B(ec)

4k ,

B(ec,∗)
3k = (β2

ea
2
c − l2)B(ec)

1k + B(ec)
2k + B(ec)

3k ,

B(ec,∗)
4k = 2l2B(ec)

1k + (β2
ea

2
c − l2 − 1)B(ec)

2k + B(ec)
3k + B(ec)

4k ,

k = 1, 2, 3, 4.

A.2. Kirchhoff Plate: Explicit Representations for the
Entries of the Scattering Matrix Sl and the
Coefficients A

(i)
l , B

(i)
l , A

(c)
l , E

(c)
l , B

(c)
l , F

(c)
l , E

(e)
l

and F
(e)
l

Splitting the matrix C(ei,∗) into two parts we can write(
A

(e)
l

B
(e)
l

)
=

(
C(ei,∗)

11 C(ei,∗)
12

C(ei,∗)
31 C(ei,∗)

32

)(
A

(i)
l

B
(i)
l

)
,

(
E

(e)
l

F
(e)
l

)
=

(
C(ei,∗)

21 C(ei,∗)
22

C(ei,∗)
41 C(ei,∗)

42

)(
A

(i)
l

B
(i)
l

)
.

Now eliminating A(i)
l , B

(i)
l from these two equations, we obtain(
E

(e)
l

F
(e)
l

)
= Sl

(
A

(e)
l

B
(e)
l

)
,
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where Sl is the scattering matrix with the elements

S11
l =

C(ei,∗)
21 C(ei,∗)

32 − C(ei,∗)
22 C(ei,∗)

31

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

, S12
l =

C(ei,∗)
11 C(ei,∗)

22 − C(ei,∗)
12 C(ei,∗)

21

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

,

S21
l =

C(ei,∗)
32 C(ei,∗)

41 − C(ei,∗)
31 C(ei,∗)

42

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

, S22
l =

C(ei,∗)
11 C(ei,∗)

42 − C(ei,∗)
12 C(ei,∗)

41

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

.

We note that using the relation (8.36), all coefficients appearing
in the representation (8.9) can be obtained as follows:

A
(i)
l =

C(ei,∗)
32

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

A
(e)
l ,

B
(i)
l = − C(ei,∗)

31

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

A
(e)
l ; (A.17)

A
(c)
l =

C(ci,∗)
11 C(ei,∗)

32 − C(ci,∗)
12 C(ei,∗)

31

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

A
(e)
l ,

B
(c)
l =

C(ci,∗)
31 C(ei,∗)

32 − C(ci,∗)
32 C(ei,∗)

31

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

A
(e)
l , (A.18)

E
(c)
l =

C(ci,∗)
21 C(ei,∗)

32 − C(ci,∗)
22 C(ei,∗)

31

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

A
(e)
l ,

F
(c)
l =

C(ci,∗)
41 C(ei,∗)

32 − C(ci,∗)
42 C(ei,∗)

31

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

A
(e)
l ; (A.19)

E
(e)
l =

C(ei,∗)
21 C(ei,∗)

32 − C(ei,∗)
22 C(ei,∗)

31

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

A
(e)
l ,

F
(e)
l =

C(ei,∗)
41 C(ei,∗)

32 − C(ei,∗)
42 C(ei,∗)

31

C(ei,∗)
11 C(ei,∗)

32 − C(ei,∗)
12 C(ei,∗)

31

A
(e)
l . (A.20)
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[10] O’Neill, J., Selsil, Ö. McPhedran, R. C., Movchan, A. B. and Movchan, N. V.
(2015). Active cloaking of resonant coated inclusions for waves in membranes
and Kirchhoff plates, http://arxiv.org/abs/1505.06138.

[11] Futhazar, G., Parnell, W. J. and Norris, A. N. (2015). Active cloaking of
flexural waves in thin plates, Journal of Sound and Vibration 356, p. 1.

[12] Norris, A. N., Amirkulova, F. A. and Parnell, W. J. (2012). Source ampli-
tudes for active exterior cloaking, Inverse Problems 28(10), p. 105002.

[13] Norris, A. N., Amirkulova, F. A. and Parnell, W. J. (2013). Active elasto-
dynamic cloaking, Mathematics and Mechanics of Solids 19, p. 603.

[14] Farhat, M., Guenneau, S., Enoch, S. and Movchan, A. B. (2009). Cloaking
bending waves propagating in thin elastic plates, Physical Review B 79,
p. 033102.

[15] Miller, D. A. (2006). On perfect cloaking, Optics Express 14, p. 12457.
[16] Friot, E. and Bordier, C. (2004). Real-time active suppression of scattered

acoustic radiation, Journal of Sound and Vibration 278, p. 563.
[17] Friot, E., Guillermin, R. and Winninger, M. (2006). Active control of scat-

tered acoustic radiation: A real-time implementation for a three-dimensional
object, Acta Acustica united with Acustica 92, p. 278.

[18] Ffowcs Williams, J. E. (1984). Review lecture: Anti-sound, Proceedings of
the Royal Society London A 395, p. 63.

[19] Nelson, P. A. and Elliott, S. J. (1992). Active Control of Sound, (Academic
Press).



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch08 page 386

386 Handbook of Metamaterials and Plasmonics — Volume 2

[20] Guevara Vasquez, F., Milton, G. W. and Onofrei, D. (2009). Active exterior
cloaking for the 2D laplace and helmholtz equations, Physcial Review Letters
103, p. 073901.

[21] Guevara Vasquez, F., Milton, G. W. and Onofrei, D. (2009). Broadband
exterior cloaking, Optical Express 17, p. 14800.

[22] Guevara Vasquez, F., Milton, G. W. and Onofrei, D. (2011). Exterior cloak-
ing with active sources in two dimensional acoustics, Wave Motion 48,
p. 515.
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CHAPTER 9

Cloaking in Water Waves
RICHARD PORTER
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9.1. Introduction

This review article is written with two goals in mind. The first is
to provide researchers working in the area of water waves an insight
into ideas emerging from the physics community on the use of meta-
materials in controlling waves in unusual ways. The second is to give
physicists already familiar with these ideas an overview of the theory
of water waves, the common approximations that are used in devel-
oping solutions, and how metamaterial concepts may be implemented
within this framework.

In particular, whilst there has been an expansive crossover of
ideas developed primarily from optics and electromagnetics into the
acoustics and elasticity research communities, much less has been
realised in terms of establishing such a connection in the water wave
community.

There is a good reason why this might be. Water waves are quite
different to waves in electromagnetics, acoustics or elasticity in that
there is a special direction (the vertical) which makes simple connec-
tions between theories less easy to establish: the limitations imposed

387
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by a free surface and a fluid depth are a recurring theme throughout
this article. The applications of metamaterials in water waves are
also perhaps a little harder to imagine. On the other hand wave phe-
nomena are easily visualised on the surface of water and this makes
it an attractive medium in which to develop ideas from other areas
of physics.

My own interest in this subject was stimulated after becoming
aware of the publication of the work of Ref. 11. Immediately evi-
dent was the widespread influence of the work of Refs. 19 and 30 on
invisibility cloaking in optics and other extensions to areas of science
including acoustics and elasticity. Although I’ve not fully engaged
with metamaterial science I’ve slowly picked up many of the intru-
iging developments that have been made over the last 15–20 years,
especially those with applications in water waves. Broadly speaking,
a metamaterial is a medium in which properties of a field can be prop-
agated in a manner not normally found in natural materials. They
are most often comprised of microstructures much smaller than the
natural lengthscales intrinsic to the underlying field variables in such
a way that their macroscopic effect on the field allows complex phe-
nomena to be exhibited. These include negative refraction in which
oblique waves bend backwards as they enter the metamaterial and
perfect lensing, e.g. Refs. 28 and 36. In the context of water waves,
see Ref. 13.

One of the most fascinating areas to emerge from the science of
metamaterials is invisibility cloaking in which obstacles are rendered
undetectable to the observer and it is principally on this topic which
the current article will focus. It turns out that the capacity to cloak
in water waves leads to a reduction (to zero for a perfect cloak) of
the so-called mean drift force. This is a second-order effect in water
waves and hence generally smaller in magnitude than the primary
oscillatory forces due to water waves but, unlike those wave forces,
it is steady and has important consequences in the design of marine
structures such as the foundations of offshore wind turbines.

The layout of the article is as follows. In the remainder of this
section, we shall introduce the underlying equations of motion which
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govern small-amplitude water waves and apply it to our canonical
problem of the scattering by a vertical cylinder. In Section 9.2, a
series of approximations to the full governing equation in which the
depth dependence is removed will be introduced and discussed in the
context of cloaking cylinders. Section 9.3 describes the transforma-
tion media approach and how it applies to depth-averaged models.
This includes a discussion of how to design the metamaterials needed
to practically implement the wave control needed to cloak. In Sec-
tion 9.4 we consider examples of cloaking in the unapproximated full
linear theory and the work is summarised in Section 9.5.

9.1.1. Linearised theory of water waves

There are many textbooks which carefully outline the derivation of
the linearised theory of water waves which we summarise below. It is
hard to beat the account in the book of Ref. 24 and we refer to this
extensively throughout.

Throughout this article we take z to be the vertical axis with z =
0 set to the level of the undisturbed free surface. A fluid of density ρ
under the influence of gravity g lies below z = 0 in equilibrium and is
bounded below by an impermeable bed at z = −h(x, y) where (x, y)
are the horizontal coordinates. It is assumed in deriving conditions
at the free surface that a fluid (such as the air) having density much
less than ρ and in which the pressure is constant lies above z = 0
in equilibrium. The effect of this fluid on the motion of the water is
then negligible.

There are many other assumptions used in the derivation of clas-
sical water wave theory. The first is that the fluid is inviscid. This is a
good assumption in the bulk but fails close to boundaries, including
on the free surface — see [Ref. 24, Section 9]. However, it is a good
approximation overall provided any experimental realisation of the
theory is performed on a large enough scale. Another assumption
is that the flow is irrotational (implying there is no vorticity in the
fluid). In order that theory can be realised in experiments this often
implies avoiding geometrical structures with sharp corners or edges
which induce vortex shedding. Irrotationality implies velocity of the
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fluid u(x, y, z, t) satisfies the condition ∇ × u = 0 which allows us
to write u = ∇Φ(x, y, z, t) where Φ is a scalar potential (called the
velocity potential) and ∇ = (∂x, ∂y, ∂z). Further, it is routine to
assume that the water is incompressible and this is expressed math-
ematically as ∇ · u = 0. Consequently, Φ satisfies

∇2Φ = 0, in V (9.1)

where V represents the domain occupied by the fluid and ∇2 = ∇·∇
is the three-dimensional Laplacian.

Euler’s equation expressing conservation of momentum for an
inviscid fluid allows the pressure to be determined in the fluid. Setting
this constant on the free surface and linearising on the assumption
of small steepness of the surface elevation defined by z = ζ(x, y, t)
about the mean level furnishes the dynamic boundary condition

Φt + gζ = 0, on z = 0. (9.2)

Similarly, a linearised version of the kinematic condition on the sur-
face, which states that the surface moves with the fluid, gives

ζt = Φz, on z = 0. (9.3)

The two equations (9.2) and (9.3) can be combined to eliminate ζ so
that

Φtt + gΦ = 0, on z = 0 (9.4)

expresses a combined kinematic and dynamic boundary condition.
The condition that there is no flow through all fixed wetted bound-
aries S with given unit normal n out of the fluid implies that

Φn ≡ n · ∇Φ = 0, on (x, y, z) ∈ S. (9.5)

One section of S is the sea bed where n = (hx, hy,−1) and (9.5)
reduces to

Φz +∇hh · ∇hΦ = 0, on z = −h(x, y) (9.6)

where ∇h ≡ (∂x, ∂y) is the gradient projected onto the two-
dimensional horizontal plane. The bed is often assumed to be flat
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outside some bounded region of the (x, y)-plane, and given by h = h0,
a constant, and there (9.6) reduces to

Φz = 0, on z = −h0. (9.7)

In order to fully specify a problem which can be solved (numeri-
cally or analytically) one must also impose initial conditions. These
most often imply stating the initial surface elevation and velocity
at a reference time t = 0. However advantage can be (and most
often is) taken of the fact that the governing equation for Φ and the
boundary condition it satisfies are linear and so any time domain
solution can be inferred via inverse Fourier transforms of frequency
domain solutions. Thus, we write Φ(x, y, z, t) = �{φ(x, y, z)e−iωt}
and ζ(x, y, t) = �{η(x, y)e−iωt} where ω is the assumed radian fre-
quency and now φ and η are frequency-dependent complex-valued
functions incorporating information about the amplitude and the
phase of the fluid motion.

It follows from (9.1), (9.4) and (9.5) that φ now satisfies

∇2φ = 0, in V (9.8)

with

φz −Kφ = 0, on z = 0 (9.9)

where K = ω2/g and

φn = 0, on S (9.10)

which includes (9.6) in the form

φz +∇hh · ∇hφ = 0, on z = −h(x, y) (9.11)

simplifying (9.7) to φz = 0 on z = −h0 where the bed is flat. Also
(9.2) translates to

η(x, y) = (iω/g)φ(x, y, 0) (9.12)

representing the time-independent free-surface elevation.
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9.1.2. The character of waves

Waves propagate on the surface of the water (they are akin to guided,
interface or surface waves in other physical disciplines) with exponen-
tial decay in the direction of increasing depth away from the surface.
Waves of amplitude A over a flat bed of depth h0 from infinity in a
direction θ0 w.r.t. the positive x-axis are given by the potential

φinc =
−igA
ω

cosh k0(z + h0)
cosh k0h0

eik0(x cos θ0+y sin θ0). (9.13)

This satisfies (9.8) and (9.11) on z = −h0 and (9.9) provided that
the unique positive real root k of

K ≡ ω2

g
= k tanh kh (9.14)

corresponding to h = h0 is assigned to k0. The equation (9.14) is
called the water wave dispersion relation and encodes information
on how waves of different frequencies travel at different speeds and
how both relate to the fluid depth. As usual, the phase speed is given
by c = ω/k and the group velocity has magnitude cg = dω/dk.

We shall refer to the shallow water regime as being when kh� 1
or λ � h where λ = 2π/k is the wavelength. In this case (9.14)
shows that k ≈ ω/√gh and c ≈ √gh whilst cg ≈ c. Water waves are
therefore non-dispersive in the shallow water approximation. On the
other hand in the deep water regime, kh� 1 or λ� h, (9.14) shows
that k ≈ ω2/g and c ≈ g/ω with cg ≈ 1

2c.
In many applications of linear wave theory one is interested in

how an incident plane wave as described by (9.13) interacts with
fixed or moving marine structures such as the legs of an oil rig, an
offshore breakwater, varying bathymetry, the coast, ships or wave
energy absorbing devices.

9.1.3. Scattering by a vertical circular cylinder

Even with the simplifying assumptions that comprise the lin-
earised theory of water waves, the three-dimensional boundary-value
problem is complicated and substantial analytic progress is often
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restricted to a small class of problems with a simple geometric con-
figuration. Many of these are posed in a two-dimensional reduction
of the water wave problem in which plane parallel-crested waves are
incident on a geometry which has constant cross-section in one hor-
izontal direction. In such problems wave propagation is essentially
one-dimensional and confined to the other perpendicular horizontal
direction. Thus, wave scattering problems are reduced to determining
a reflection and a transmission coefficient.

Undoubtably the simplest non-trivial problem to consider ana-
lytically in three dimensions involves the scattering by a circular
cylinder of constant cross section protruding vertically from a bed
of constant depth h0 through the surface of the fluid. This problem
forms the basis of much of what is to come in the rest of this article
and it is instructive to use it as an example of the theory introduced
so far.

It is natural to use cylindrical coordinates x = r cos θ, y = r sin θ.
Then it can be shown that

φinc = eik0r cos(θ−θ0) cosh k0(z + h0)

= cosh k0(z + h0)
∞∑

n=−∞
inJn(k0r)ein(θ−θ0). (9.15)

where Jn are Bessel functions. Note that here and henceforth we
dismiss the constant prefactor in (9.13) for clarity as the problem is
linear and solutions can be scaled a posteriori as necessary.

The fact that cylinder surface (radius a, say) is aligned with the
vertical and extends throughout the depth means that the scattered
wave response to the incident wave has the same depth dependence
as the incident wave (we elaborate on this in a moment). The total
diffracted field is φ = φinc + φs where

φs = cosh k0(z + h0)
∞∑

n=−∞
anH

(1)
n (k0r)ein(θ−θ0) (9.16)

and an are as yet unknown Fourier-Bessel coefficients. The poten-
tial in (9.16), derived by separation of variables, satisfies (9.8), (9.9)
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and (9.11) where H(1)
n (z) = Jn(z) + iYn(z) is the Hankel function

of the first kind. This choice, rather than any other combination
of Bessel functions, ensures that the scattered potential represents
outgoing waves at infinity. This so-called radiation condition is a pre-
viously unstated requirement in the specification of the water wave
boundary-value problem posed in the frequency domain.

Upon satisfaction of the cylinder boundary condition (9.10),
which here is φr = 0 on r = a, for all −h0 < z < 0, −π < θ ≤ π

determines

an = −in
J ′

n(k0a)

H
(1)
n

′
(k0a)

(9.17)

and the solution is complete. The solution φ = φinc +φs formed from
(9.15), (9.16) and (9.17) is attributed to Ref. 22 amongst researchers
in the water waves although it is familiar in other areas of physics.

As already indicated the geometry in this problem, which is
comprised of a flat bed and vertically-walled scatterers, means that
cosh k0(z + h0) can be factorised from the potential as

φ(x, y, z) = ψ(x, y) cosh k0(z + h0) (9.18)

and (9.8) reduces to the two-dimensional wave equation

(∇2
h + k2

0)ψ = 0 (9.19)

which shares solutions common to scalar TE- and TM-polarised
waves in electromagnetics and two-dimensional inviscid low-Mach
number acoustics. Unlike those physical disciplines, in water waves
where Neumann boundary conditions represent fixed impermable
boundaries, there is no physical realisation of a boundary which has
a Dirichlet condition imposed upon it. Boundary conditions of the
form φn + αφ = 0, α ∈ C are used in fluids to represent dissipative
surfaces such as rough walls or porous membranes.

As a brief aside, if the cylinder were truncated and did not extend
throughout the entire fluid depth, the reduction made in (9.19) would
not be possible. Instead, one would have to expand the scattering
potential outside the cylinder r > a in a complete set of depth
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modes (see Ref. 25, for example) which are defined by the infinite
sequence of imaginary roots of (9.14). The additional depth modes in
the series correspond to spatially evanescent or localised waves which
decay exponentially away from the scatterer. As shown in Ref. 25 this
solution would have to be matched to a series representation of the
potential in the fluid region in r < a no longer occupied by the
vertical cylinder.

Although we shall make some small diversions along the way,
the main thrust of this article will concern how to cloak a circular
cylinder extending through the depth. By cloak, we shall mean that
an observer suitably far away from the cylinder cannot detect the
presence of the cylinder by monitoring the wave field. In other words,
we require that there is no energy scattered in any direction away
from the cylinder.

Returning to (9.16), (9.17) and letting k0r →∞ we have

φs ∼
√

2
πk0r

eik0r−iπ/4A(θ; θ0) cosh k0(z + h0) (9.20)

representing an outgoing circular wave field with amplitude in the
θ direction due to an incident wave propagating in the direction θ0
given by

A(θ; θ0) = −
∞∑

n=−∞

J ′
n(k0a)

H
(1)
n

′
(k0a)

ein(θ−θ0) (9.21)

after using the large argument asymptotics of the Hankel function.
The total scattered energy — or scattering cross-section — is defined
here as

σ =
1
2π

∫ π

−π
|A(θ; θ0)|2 dθ = −�{A(θ0; θ0)}. (9.22)

The final equality, originally derived by Ref. 21 in the water wave
context, is familiar in physics and known as the optical theorem.
Either of the two definitions of σ in (9.22) can by used with (9.20)
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to show that

σcyl =
∞∑

n=−∞

∣∣∣∣∣ J ′
n(k0a)

H
(1)
n

′
(k0a)

∣∣∣∣∣
2

(9.23)

and this is never zero for any k0a, i.e. a cylinder will always scatter
energy (e.g. see Fig. 9.3(a)).

We now consider a range of possibilities for cloaking a cylinder.
Following the pioneering papers of Refs. 19 and 30 the principle idea
in cloaking is to alter the material parameters of a property within
a domain exterior to the object being cloaked in such a way to bend
waves around that object. There are a number of possibilities that
will be considered in this regard. A natural starting point is to exploit
the fact that waves refract under a change in depth; one can observe
oblique waves straighten up as the approach the shoreline of a shallow
beach.

Much of the complication we encounter lies in the fact that the
water wave problem is inherently three-dimensional with one special
direction (the vertical) and has boundaries defined by the free surface
and the sea bed.

Thus, initially we shall consider a number of reduced models —
approximations to the governing equations — which remove this
complication.

9.2. Two-Dimensional Approximations
to the Full Theory

9.2.1. Ray theory

We can consider an approximation to the three-dimensional water
wave scattering problem based on ray theory (or geometric optics).
In this approach, the effects of refraction due to changes in the depth
are captured but diffraction is not. The basis of the approximation is
that the wavelength is assumed to be much smaller than the length
scale of horizontal bottom variations. In other words, |∇hh|/kh� 1.
Then (following Ref. 24, Sections 3.1, 3.2 for example), a multiple
scales approach can be used to derive the Eikonal equation familiar
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Fig. 9.1. Ray paths according to (9.26) around the cylinder radius a = 1.

in optics and acoustics:

S2
x + S2

y = k2 (9.24)

where k is the wavenumber satisfying (9.14). Here, S(x, y) =
constant represent lines of constant phase and wave rays follow
paths that are perpendicular to these lines. Normally one might pre-
scribe a depth variation h(x, y) which, through (9.14) would define
a wavenumber variation k = k(h) and then solve (9.24) for S and
hence determine the ray paths — see [Ref. 24, Sections 3.3, 3.4] for
examples of how this done.

However we can also consider an inverse approach whereby the
function S(x, y) is prescribed and we infer a depth variation from
(9.14). To cloak a cylinder of radius a, rays will need to be bent
around the cylinder by changes in depth and so we will require S →
k0x at large distances and Sr = 0 on r = a. That is, the rays are to
be parallel and aligned with the x direction at large distances where
the depth is assumed to tend to h0 whilst lines of constant phase are
perpendicular to the cylinder on its surface. The simplest (but not
the only) choice of function satisfying these requirements is, in polar
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coordinates,

S(r, θ) = k0r cos θ + k0a
2 cos θ/r (9.25)

which is equivalent to the potential for the streaming flow of an
inviscid irrotational fluid past a circle. Since S is a harmonic function
the conjugate function provides us with the ray paths. Thus these
are given by

k0r sin θ − k0a
2 sin θ/r = constant. (9.26)

It follows from using (9.25) in (9.24) that

k2 = k2
0

(
1 +

a4

r4
− 2a2

r2
cos 2θ

)
≡ k2

0F
2. (9.27)

Although there is no restriction on the range of values of kh in this
theory, if we make the assumption kh� 1 everywhere in the domain
then we can use the shallow water dispersion relation to give

h

h0
=

1
F 2 . (9.28)

This formula predicts infinite depth at the ‘singular points’ (±a, 0)
fore and aft of the cylinder. On physical reasoning this is to be
expected and these are also points singularities in other solutions
to cloaking problems including those proposed by Ref. 30. The main
difficulty here is that |∇hh| � kh nor kh � 1 in large areas fore and
aft of the cylinder and the basis of the approximation is violated.
See Fig. 9.2(a) where the red coloured lobes represent depths greater
than six times the depth in the far-field.

Using the full dispersion relation (9.14) instead of the shallow
water version allows us to extend the range of values kh can take
and then

h =
1
k0F

tanh−1
(

tanh k0h0

F

)
. (9.29)

Now h is undefined for values of (r, θ) such that F < tanh k0h0.
These emerge fore and aft of the cylinder — in Fig. 9.2(b) they are
represented by the two white lobes.
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Fig. 9.2. The depth profiles around the cylinder radius a = 1, h0 = 1
2

under
ray theory assuming: (a) shallow water defined by (9.28); (b) unrestricted depth
defined by (9.29) with k0 = 1.

Other more exotic versions of the phase function can be used
(S is certainly not required to be harmonic) provided they satisfy
the two requirements stated earlier. Numerical experiments suggest
that issues of large gradients and regions of undefined depth that
invalidate these solutions cannot be overcome.

9.2.2. Shallow water equations

There are two common ways of deriving the linearised shallow water
equations (or linearised long wave equations). One is to return to
principles of fluid dynamics and make a shallow depth approximation
from the outset. We shall adopt this approach later. The other is to
apply the approximation directly to the full three-dimensional gov-
erning equations presented in Section 9.1.1. For a formal derivation
based on this latter approach one can follow Ref. 24, Section 4.1 who
rescales coordinates on physical lengthscales and then performs an
asymptotic expansion of the potential in a small parameter |∇hh|/kh.
This is all performed under the assumption kh� 1 so that (9.14) is
replaced locally by k2 ≈ ω2/(gh) and gives rise to the linear Shallow
Water Equation

∇h · (h∇hη) +
ω2

g
η = 0 (9.30)



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch09 page 400

400 Handbook of Metamaterials and Plasmonics — Volume 2

for the surface wave elevation, η(x, y) defined by (9.12). If the depth
is constant and h = h0 then (9.30) reduces to the two-dimensional
wave equation

∇2
hη + k2

0η = 0 (9.31)

which we have seen in (9.18) can be applied at any depth, not just
when k0h0 � 1 and waves propagating in the positive x direction
are given by η = eik0x.

By writing η = h−1/2η we can transform (9.30) into its canonical
form

∇2
hη + k2

0n
2η = 0 (9.32)

where

n2 =
h0

h

(
1 +
|∇hh|2
4k2h2 −

∇2
hh

2k2h

)
(9.33)

acts as a refractive index dependent upon the depth.

9.2.3. Conformal mapping

Following Ref. 19 we can introduce a conformal mapping from the
physical (x, y) plane into a new (u, v) plane via β = f(ξ) where
β = u+ iv and ξ = x+ iy. Under the transformation,

∇2
h ≡ ∂ξ∂ξ∗ = |f ′(ξ)|2∂β∂β∗ ≡ |f ′(ξ)|2∇̃2

h (9.34)

where ∇̃2
h = ∂uu + ∂vv . Thus (9.34) is mapped to

∇̃2
hη̃ + k2

0ñ
2η̃ = 0 (9.35)

where η̃(u, v) ≡ η(x, y) and

ñ2(u, v) = n2(x, y)/|f ′(ξ)|2 (9.36)

and so the transformation preserves the structure of the Shallow
Water Equation whilst the refractive index is transformed by the
mapping.
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In terms of cloaking a cylinder, we can introduce a conformal
transformation

f(ξ) = ξ + a2/ξ (9.37)

which maps the cylinder |ξ| = a onto the line −2a < u < 2a, v = 0 in
the β-plane. Thus, if h = h0 in the mapped system so that ñ = 1 with
the solution η̃(u, v) = eik0u representing waves propagating without
distortion past the line−2a < u < 2a, v = 0, then the mapping (9.37)
gives us the Shallow Water Equation (9.35) for waves deflected past
a cylinder of radius a with a depth profile h defined by

|1− a2/ξ2|2 =
h0

h

(
1 +
|∇hh|2
4k2h2 −

∇2
hh

2k2h

)
. (9.38)

This nonlinear PDE would have to be solved for h outside r = a.
It is not clear (at least to the author) how this would be done, and
it may not be possible to define a function h which satisfies (9.38)
everywhere.

We note in passing that if one chooses to return to (9.33) and
make it more tractable by neglecting derivatives of h (justified, per-
haps, because it shallow water approximation demands small gra-
dients) then the right-hand side term in (9.38) becomes h0/h and
so with ξ = reiθ, (9.38) is the same as (9.28) which we arrived at
by taking a shallow water approximation to ray theory. This is an
unsurprising outcome.

As was observed in Section 2.1 the difficulty here is that the
map (9.37) which transforms a line in Cartesian coordinates to the
exterior of the circle creates variations in the depth which violate the
assumptions of the model.

We remark however that this method can be useful in other appli-
cations where one wishes to control waves. Recently, for example,
Ref. 40 have used this method to bend, focus and directionally radiate
waves. Also recently, Ref. 5 has used conformal mappings of parallel
waveguides into meandering waveguides. Here the distortion to the
bed created by the mapping is small and the argument that higher
order terms in (9.38) can be approximately neglected is valid. Thus
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h = h0/|f ′(ξ)|2 is exactly the mapping of Ref. 5 to show that waves
can be perfectly transmitted with no reflection along a meandering
waveguide.

We return to the Shallow Water Equations later.

9.2.4. The Mild-Slope Equations

This is a good point at which to briefly mention an alternative
reduced model which is more sophisticated than the shallow water
approximation but retains its structure. Crucially, it is valid for all
kh although still restricted by |∇hh|/kh � 1. Thus the limitation
kh� 1 of shallow water theory is removed. As in shallow water the-
ory, the basis of the approximation is that bed gradients are small
enough to suppose the bed is locally flat. Thus, whilst h varies glob-
ally, locally we assume the separable representation, inspired by the
fact that (9.18) is exact for a flat bed,

φ(x, y, z) ≈ ψ(x, y) cosh k(z + h) (9.39)

where k = k(h(x, y)) is now determined locally by the dispersion
relation (9.14). There are many derivations, variants and extensions
of the Mild-Slope Equations (MSEs), originally attributed to Refs. 3
and 37. This partly reflects the rather ad hoc nature of the approx-
imation. See Refs. 24, Section 3.5 for a derivation which shows the
depth averaging process in action. For a more formal approach which
is underpinned by a variational principle, see Ref. 7. That work
resulted in the so-called Modified Mild-Slope Equations (MMSE)
which retained terms proportional to the gradient and curvature
of the bed neglected in previous derivations. Thus, the MMSE is
given by

∇h · (u0∇hψ) + (k2 + u1|∇hh|2 + u2∇2
hh)ψ = 0 (9.40)

where u0 = ccg (the product of phase speed and group velocity), u1

and u2 are defined in Ref. 7. and restated in Ref. 24, Section 3.5 in
terms of the local depth h; the surface elevation η is a scaled function
of ψ. As in Section 9.2.2 a transformation into canonical form can be
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achieved by writing ψ = u
−1/2
0 ψ so that (9.40) becomes

∇2
hψ + k2

0n
2ψ = 0 (9.41)

in which the refractive index n now given by

n2 =
k2

k2
0

(
1 +A|∇hh|2 +B∇2

hh
)

(9.42)

and A and B are known but complicated functions of h (see Ref. 14
for example). Comparison of (9.32), (9.33) with (9.41), (9.42) shows
that the structure of the Shallow Water Equation and the MMSE are
identical and the equations differ only in the complexity of the coef-
ficients multiplying the higher order terms. In principle, this means
that any problem that is considered under the Shallow Water Equa-
tions should also be considered under a mild-slope approximation
where the range of values of kh is unrestricted.

We shall also introduce another form the the MMSE later on.

9.3. Transformation Media Approach

The approach taken by Ref. 30 to cloaking has since seen widespread
use. As in the case of Ref. 19 it is also based on a mapping between
a space where waves propagate uninterrupted to a distorted space
surrounding an object. It had previously been shown in Ref. 41 how
Maxwell’s equations of electromagnetics were invariant under a coor-
dinate transformation, provided material parameters (permittivity
and permeability in this case) could be interpreted as tensors encod-
ing a spatially-varying anisotropic medium. We shall shortly see how
the same approach can be applied in the water wave problem and
the difficulties it introduces.

Soon after the paper of Refs. 30, 41 showed how such material
parameters could be achieved using sub-wavelength split ring res-
onators; this was experimentally demonstrated a year later in Ref. 38.
Thus the modern science of metamaterials was born and it has devel-
oped rapidly since. We shall discuss such structures in the water wave
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context shortly — the point is that it is no good devising a cloak if
it cannot be realised.

We shall work with the Shallow Water Equations initially but
will comment on the MMSE towards the end, having already made
the point in Section 9.2.4 that what you can do for kh � 1 should
extend to all kh under an equivalent MSE model.

9.3.1. The Shallow Water Equations revisited

It helps to return to the derivation of the Shallow Water Equa-
tions from first principles (see Ref. 24, Section 3.5). Thus, if the
wavelength is long compared to the depth and the bed gradients
are small compared to the wavelength it is resonable to assume
that the fluid velocity vector is approximately two-dimensional, or
u(x, y, z, t) ≈ (v(x, y, t), 0) where v = (u(x, y, t), v(x, y, t)). That is,
there is negligible dependence on the depth and negligible vertical
velocity. If the depth is h(x, y) and the surface elevation is ζ(x, y, t)
and |ζ| � h then conservation of mass is expressed as

ρζt +∇h · (ρhv) = 0 (9.43)

where ρ is the fluid density, ρhv is the flux and the momentum
equation is

ρvt = −∇h(ρgζ). (9.44)

and the pressure is approximately hydrostatic. Combining (9.43) and
(9.44) gives

ρζtt = ∇h · (h∇h(ρgζ)) (9.45)

and after assuming time harmonic motion with angular frequency ω
with ρgζ = �{ηe−iωt} we return to

∇h · (h∇hη) +
ω2

g
η = 0 (9.46)

as in (9.30). Now imagine waves travelling in different directions are
able to experience different material properties. For example, imagine
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the fluid depth h to be multi-valued so that waves travelling in the
x-direction experience a depth h1(x, y) whilst waves travelling in the
y-direction experience a depth h2(x, y). The same arguments could
apply to either gravity or the density ρ. To illustrate the ideas let us
assume that ρ and g are constant and h is allowed to be anisotropic
in the manner suggested. Now mass conservation (9.43) needs to be
modified to reflect the fluxes in x and y directions are different. Thus
we can write

ζt +∇h · (hv) = 0 (9.47)

where h is a rank-2 tensor given by

h =
(
h1 0
0 h2

)
(9.48)

and following through the derivation as before results in the Shallow
Water Equation modified for anisotropic depth:

∇h · (h∇hη) +
ω2

g
η = 0. (9.49)

We remark that full anisotropy can also be considered in which h has
off-diagonal entries. This would require development of a medium in
which fluid flow in one direction will induce mass flux in a perpen-
dicular direction. Realisations of fluid metamaterials are considered
in Section 9.3.4.

9.3.2. Mapping

We shall work in plane polar coordinates from now on. This means
that anisotropy will apply in radial and angular directions rather
than in Cartesian directions as considered in 9.3.1.

We start with waves propagating in the direction θ = 0 over a
flat bed h = h0 without scattering obstacles. The governing equation
(9.31), with the shallow water assumption k0 = ω2/(gh0), written in
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polars is

1
r

∂

∂r

(
r
∂η

∂r

)
+

1
r2
∂2η

∂θ2 + k2
0η = 0 (9.50)

and the solution is η(r, θ) = eik0x = eik0r cos θ.
Now consider a mapping (r, θ) → (�, θ) where r = f(�) for 0 <

r < b and r = � otherwise, such that r = b is mapped to � = b and
r = 0 is mapped to � = a. Then (9.50) remains unchanged for r > b

and for 0 < r < b it is mapped to

1
f ′f

∂

∂�

(
h0
f

f ′
∂η̃

∂�

)
+

1
f2

∂

∂θ

(
h0
∂η̃

∂θ

)
+Kη̃ = 0 (9.51)

for a < � < b where η̃(�, θ) = η(r, θ).

9.3.3. A linear map

The map suggested by Ref. 30 is defined by

f(�) =
b(�− a)
b− a . (9.52)

Using this in (9.51) gives

1
�

∂

∂�

(
�h1

∂η̃

∂�

)
+

1
�

∂

∂θ

(
h2

1
�

∂η̃

∂θ

)
+ K̃η̃ = 0 (9.53)

where

h1 = h0(1− a/�), h2 = h0/(1 − a/�) (9.54)

and

K̃ = K(1− a/�)/(1 − a/b)2. (9.55)

We see that (9.53) is a Shallow Water Equation in the form given
by (9.49) in polar coordinates where h1 and h2 are spatially-varying
anisotropic depths experienced by waves moving in radial and angu-
lar directions respectively.



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch09 page 407

Cloaking in Water Waves 407

On the edge of the cloak, the conditions in the unmapped system
are that η and h0ηr are continuous across r = b. Under the general
mapping r = f(�) this implies η̃ is continuous and

h0

f ′
η̃�|�=b− = h0η̃�|�=b+ . (9.56)

For the map (9.53) this reduces to

h1η̃�|�=b− = h0η̃�|�=b+ (9.57)

which is the exactly the physical shallow water flux condition
required of η̃ at the edge of the cloak. On the cylinder, � = a,
h1η̃� = 0 which confirms no flux into the cylinder in the mapped
problem. A snapshot in time of the surface elevation for the linear
transformation is shown in Fig. 9.3.

In the context of water waves Ref. 11 performed a transformation
of the Laplacian ∇2

h using homogenisation theory in which the cloak-
ing region a < � < b is filled with a fluid metamaterial consisting of
an annular array of narrow vertical posts embedded in the fluid. They
were able to show how the distribution of posts could be varied to
mimic a diagonal tensor h with a given radial variation. It is not
clear if Ref. 11 were using their metamaterial annular array of posts
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Fig. 9.3. (a) Snapshot of surface wave elevation for scattering by an uncloaked
vertical cylinder (a = 1, k0 = 4); and (b) perfect cloaking under a linear trans-
formation with depths (9.54) and gravity implied by (9.55) with cloak size b = 4.
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to mimic an effective anisotropic depth, or appealing to a different
underlying physical mechanism to vary the phase speed within the
cloak. In any case, Ref. 11 proposed a different prescription of the
diagonal tensor entries to (9.54) and held their value of K̃ fixed.
Nevertheless, they produced experiments to show that a degree of
cloaking could be achieved.

The mapped variables (9.54) and (9.55) are identical to those
given in Ref. 9 who considered cloaking in two-dimensional acoustics.
In this case the governing equations are analagous to the Shallow
Water Equations with density replacing depth and the bulk modulus
replacing gravity. They are also the same as TE-polarized waves in
electromagnetics specified by Ref. 30 with permeability and permit-
tivity taking the place of depth and the reciprocal of gravity.

9.3.4. Metamaterial depth and gravity

Under the linear mapping of the previous section (9.55) shows that
a cloak requires an effective gravity given by

g̃ = g(1 − a/b)2/(1− a/�). (9.58)

Such an effect can be realised in water waves since gravity enters
the equations of motion through one of the two conditions on the
free surface. Thus, one can load the free surface to mimic the effect
of changing gravity. This has been done in early papers modelling
the effect of floating broken ice on the ocean surface. For example,
Ref. 17 show that if the surface is loaded with a floating mass m, the
term in ω2/g occupied by gravity is replaced by

g(1−mω2/ρg). (9.59)

By allowing m(�) ≥ 0 to vary, (9.59) implies a reduction in the
effective gravity. Unfortunately the specification in (9.58) requires
gravity to vary above and below the reference value of g as a < � < b.

It is also worth mentioning the work of Ref. 15 who demonstrated
that doubly periodic sub-wavelength arrays of split ring resonators
acting as Helmholtz resonators could be used to change the effective
gravity felt by waves.
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With regard to realising an anisotropic metamaterial depth, we
have already referred to the method used by Ref. 11 in which
homogenisation theory applied a sub-wavelength array of vertical
posts can mimic the effects of anisotropic depth variations. The same
methodology was applied by Ref. 10 in creating an invisiblity carpet
for water waves in a channel: a device for hiding an obstacle placed
in front of a plane wall from the far-field observer.

An alternative sub-wavelength realisation of a metamaterial
water depth, again developed using homogenisation theory, was pre-
sented by Ref. 4. They considered how to redirect a propagating
water wave through an angled junction in a parallel-walled waveg-
uide without reflection. Crucially their transformation was volume-
preserving with the implication that gravity is unaffected by the
mapping. The physical realisation of their metamaterial depth was
comprised of a microstructured corrugated rectangular bed profile.
A similar technique was used by Ref. 8 who demonstrated how
a metamaterial depth could be used to rotate an incident wave
field.

A further possible realisation of the anisotropic depth, such as
the one demanded by (9.54), can be performed using two interlocking
arrays of thin closely-spaced vertical fins. One set of fins are arranged
radially so that their height follows the prescription given by the
function h2 and the second set are arranged in a circular pattern with
heights following the function h1. Then waves travelling radially are
not influenced by the radial fins but experience the depth profile of
the circular fins and vice versa.

9.3.5. A nonlinear map

More recently, Ref. 42 suggested an alternative mapping function for
the cloak in order to cope with the difficulty of having to alter gravity
this arising from the linear map. Instead of (9.52) they used

f(�) = b

√
�2 − a2

b2 − a2 (9.60)
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in (9.51) and this results in (9.53) with

h1 = h0(1− a2/b2)(1− a2/�2), h2 = h0(1− a2/b2)/(1 − a2/�2)
(9.61)

and now K̃ = K. That is, there appears to be no requirement that
gravity is altered under this nonlinear mapping.

However, on the boundary of the cloak the flux matching condi-
tion (9.56) gives

h0

1− a2/b2
η̃�|�=b− = h0η̃�|�=b+ (9.62)

and the prefactor on the left-hand side is not h1(b) as is required for
a physical flux condition, i.e. there is a mismatch in the flux at the
boundary of the cloak of (1− a2/b2).

One way to overcome this difficulty is to rescale h1 and h2 in
(9.61) by a factor of (1 − a2/b2). In doing so, one must also rescale
K and so we return to (9.53) with a transformed value of

K̃ = K/(1 − a2/b2). (9.63)

This implies gravity should be rescaled in the cloak by a constant
factor of (1−a2/b2). This reduction in effective gravity can be imple-
mented using the mass loading solution proposed in Section 9.3.4.

In Ref. 42 they argue instead that the flux mismatch factor of
(1−a2/b2) is small when b� a and computations show that cloaking
improves significantly as the b/a, the size of the cloaking increases.
This will be confirmed by the calculations below.

As Ref. 42 show, the effect of the flux mismatch on scattering of
waves can be analysed directly by solving the problem analytically.
A plane incident wave from infinity is scattered by a cloak defined
by the functions in (9.61) when the physical flux condition (9.57)
is enforced. Solutions outside the cloak where the depth is h0 are
written

η̃(�, θ) =
∞∑

n=−∞
(inJn(k0�) + anH

(1)
n (k0�))einθ, � > b (9.64)
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as in Section 9.1.3 for the problem of scattering by a cylinder and an

are scattering coefficients to be determined. If the cloak were perfect,
all an would be zero.

In a < � < b the most general solution to (9.53), which is bounded
on the cylinder � = a can be written

η̃(�, θ) =
∞∑

n=−∞
bnJn

(
k0b

√
�2 − a2

b2 − a2

)
einθ. (9.65)

The flux into the cylinder is lim�→a(h1η̃�) = 0 as required. It is also
interesting to note that η̃(a, θ), the complex wave amplitude around
the cylinder, is constant.

Matching η̃(b, θ) for −π < θ < π from (9.64) and (9.65) gives

inJn(k0b) + anH
(1)
n (k0b) = bnJn(k0b). (9.66)

Then we apply (9.57) to (9.64) and (9.65) to get

inJ ′
n(k0b) + anH

(1)
n

′
(k0b) = bn(1 − a2/b2)J ′

n(k0b). (9.67)

Eliminating bn gives

an =
in(a2/b2)J ′

n(k0b)Jn(k0b)

−2i/(πk0b)− (a2/b2)J ′
n(k0b)H

(1)
n (k0b)

(9.68)

after using a Wronskian relation for Bessel functions. If the flux mis-
match were not present the factor (1−a2/b2), on the right-hand side
of (9.67) would be replaced by 1 and this would result in an = 0 for
all n whilst bn = in — equivalent to a perfect cloak.

We remark that the cloaking solution above is not restricted to
plane waves. For example, the problem of a wave source placed at
r = c, θ = 0 outside the cloak can be considered by replacing the
Jacobi-Anger representation of a plane wave train in (9.15) by

∞∑
n=−∞

H(1)
n (k0r>)Jn(k0r<)einθ (9.69)

using Graf’s addition theorem where r< = min{r, c}, r> = max{r, c}.
The result is that the factor in carried throughout the previous cal-
culation is replaced by H(1)

n (k0c).
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Fig. 9.4. Normalised cloaking factor σ/σcyl for the nonlinear mapping against
cloak size b/a with k0a = 1 (solid), 2 (dashed) and 4 (dotted).

From (9.64), (9.22) the scattering cross-section is

σ =
1
2π

∞∑
n=−∞

|an|2 (9.70)

and hence σ = O((b/a)−4). Calculations confirm this decay rate and
Fig. 9.4 shows the variation of σ normalised against the scattering
cross section of an uncloaked cylinder, σcyl, given by (9.23) for differ-
ent incident wavelengths. Snapshots of the surface elevation for two
cloaks of sizes b = 2a and b = 4a with are shown in Fig. 9.5.

9.3.6. A note on the Mild-Slope Equations

In Section 3 we introduced the Modified Mild-Slope Equation
(MMSE), given in its original form by (9.40) and in its canonical
form by (9.41), (9.42). However, a different mapping of the variable
ψ(x, y), proportional to the free surface, was introduced by Ref. 32
using ψ = s(h)χ where s(h) is defined in Ref. 32, Section 2 and
results in the transformed MMSE

∇h · (k−2∇h χ) + (1− ν(h)|∇hh|2)χ = 0 (9.71)
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Fig. 9.5. Near-perfect cloaking under a nonlinear transformation with depths
given by (9.61) and gravity unchanged, a = 1, k0 = 4 and cloak sizes of (a) b = 2
and (b) b = 4.

where v(h) is a relatively complicated, but explicit, function of the
local depth. There are some advantages of this form of the MMSE.
First, terms in the second derivative of h are eliminated and this
means that jump conditions — required in the earlier versions of
the MMSE — across discontinuities in the bed slope are redundant.
Secondly, Ref. 32 calculates that v(h) < 0.030 for all h > 0 and so
the final term in (9.71) is small. Moreover, as v(h) ∼ O((kh)2) as
kh → 0 and it is easy to see that (9.71) tends to the Shallow Water
Equations in this limit. When kh is large v(h) ∼ e−kh and, since
k ∼ K, (9.71) tends to a wave equation with no depth effects, as
expected. As a result solutions of

∇h · (k−2∇hχ) + χ = 0 (9.72)

are expected to be good approximations to solutions of (9.71). The
advantage of using (9.72) is that its structure is aligned with the Shal-
low Water Equation (9.49), with k determined locally as a function
of h via (9.14).

In particular the transformation media methods outlined in Sec-
tion 9.3.2 can be applied to the MMSE in the form (9.72) and solu-
tions will be valid not just in the limit of kh� 1 but for all kh.
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For example, following Ref. 42 we could apply the transformation
media method with the mapping (9.60) to the define a cloak with
radial and angular wavenumbers

k1 =
k0√

(1− a2/b2)(1 − a2/�2)
, k2 = k0

√
1− a2/�2

1− a2/b2
. (9.73)

The depths h1 and h2 would then be defined by inverting the dis-
persion relation: hi = tanh−1(K/ki)/ki, i = 1, 2. It is anticipated
that such a solution would apply beyond the limitations of shallow
water theory although it would still suffer the flux mismatch problem
discussed in Section 9.3.5 and would still be subject to the small-
gradient constraint underpinning the mild-slope approximation.

9.3.7. Other cloaking devices

As demonstrated in the derivation of (9.46) the fluid density, whether
or not it is anisotropic, is not a material parameter in the Shallow
Water Equations (nor the full linear theory of Section 1). Thus spa-
tial variations of density in the horizontal coordinates will not influ-
ence wave motion. Reference 16 suggest otherwise, although their
governing equations do not appear to relate directly to the Shallow
Water Equations. Vertical density stratification fundamentally alters
the governing equations where it is normal to adopt the Boussinesq
approximation — see Ref. 31, for example.

As previously suggested, instead of (or in addition to) varying the
bathymetry, the free surface condition can be altered to control waves
and a simple mass-loading model was proposed in Section 9.3.4.
Another possibility is to place a thin flexible plate on the surface
of the water to act as a cloak. The floating thin flexible plate model
is widely used by researchers interested in the interaction between
ice sheets and ocean waves; for a comprehensive review of work in
this area, see Ref. 39. Problems involving waves in thin flexible plates
surrounding vertical cylinders have previously been considered in the
work of Ref. 6 and Ref. 20. Also see Ref. 2 for scattering problems
involving flexible circular plates of varying thickness.
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It is common to use Kirchhoff thin plate theory to model a flex-
ible sheet. Even in the simpler problem of a flexible plate in vacuo,
the fourth-order governing equations are not invariant under a coor-
dinate transformation. The addition of a shallow water layer below
the floating elastic plate complicates the underlying equations which
increase in derivative order from four to six. For an elastic plate with
variable thickness D(x, y) over a variable bed z = −h(x, y), Ref. 33
derive mild-slope equations for the reduced two-dimensional poten-
tial ψ(x, y) in the fluid. Under the additional simplifying assump-
tion of shallow water the governing equation for ψ is (Ref. [33,
Eq. (4.9)])

(1− α+ L)(∇h · ((h − d)∇hψ) +Kψ = 0 (9.74)

where α = K(ρs/ρ)D(x, y) and ρs is the plate density and thickness
and z = −d(x, y) represents the underside of the floating plate. In
the above

Lψ = ∇2
h(β∇2

hψ)− (1− ν)(βxxψxx + βyyψyy − 2βxyψxy)

(9.75)

where β = ED3(x, y)/(12ρg(1−ν2)) represents the bending stiffness
in terms of Young’s modulus, E, and Poisson’s ratio, ν. Of course,
one could keep D fixed and vary Young’s modulus or Poisson’s ratio
or vary all three. We note that if the floating plate is removed so that
α = 0, d = 0 and L = 0 in (9.74) then we simply return to the usual
free surface Shallow Water Equation (9.46).

Reference 43 have suggested an alternative model for the floating
plate equation which can be media transformed, following the earlier
work of Ref. 12 on in vacuo thin flexible plates.

We remark that (9.74) and (9.75) are derived under the usual
assumptions of isotropic elasticity. A derivation that incorporates
anisotropic material properties should be performed to assess the
feasibility of using a floating flexible plate as a cloak. This is cur-
rently the subject of an investigation by Zareei & Alam (personal
communication).
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9.4. Full Linear Theory

Thus far we have only considered approximations to full linear the-
ory in which the complication of the depth dependence and lateral
boundary conditions have been removed. Cloaking is the science of
rendering objects invisible and there is no guarantee that a cloak
developed under a reduced model will be effective in an unapproxi-
mated environment. One must be especially cautious when the limits
on the assumptions forming the basis of an underlying model have
been exceeded.

9.4.1. Conformal mapping

In this section the implementation of a mapping from (x, y, z) to
(u, v, w) space in the full linearised water wave boundary-value prob-
lem is described. As in Section 9.2.3 a conformal mapping in the
horizontal plane is introduced by writing β = f(ξ) where β = u+ iv
and ξ = x+iy. Laplace’s equation in three-dimensions is preserved by
a simultaneous rescaling of the vertical coordinate using w = |f ′|z.
That is ∇2φ is mapped into ∇̃2φ̃ = 0 where φ(x, y, z) ≡ φ̃(u, v, w)
and ∇̃2 ≡ ∂uu + ∂vv + ∂ww. The mapped free surface boundary con-
dition (9.9) is

φ̃w − K̃φ̃ = 0, on w = 0 (9.76)

where K̃ = K/|f ′|. The bed z = −h(x, y) is mapped to the boundary
w = −h̃(u, v) ≡ |f ′|h and the transformation of the general bed
condition (9.11) results in

φ̃w + {∇̃hh̃+ |f ′|h̃∇̃h(|f ′|−1)} · ∇̃hφ̃ = 0, on w = −h̃. (9.77)

In (x, y, z) space defined by a flat bed of depth h0 in the presence of a
thin impermeable vertical barrier −2a < x < 2a, y = 0, −h0 < z < 0,
plane waves propagating in the direction θ = 0 are described by the
potential φinc in (9.15). The mapping of the barrier to a cylinder in
(u, v, w) space is given by

ξ = β +
a2

β
(9.78)
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or β = f(ξ) = 1
2(ξ +

√
ξ2 − 4a2). Then f ′(ξ) = β2/(β2 − a2) and

|f ′| = 1√
1 + a4/�4 − 2a2 cos 2ϕ/�2

(9.79)

when β = �eiϕ. Apart from the singular points at β = ±a, h̃ =
h0|f ′| defines a physically-realisable variable depth. Here K̃ = K/|f ′|
represents a variation of effective gravity on the free surface which
both falls and rises above the far-field value, g. Thus the mass-loading
model described in Section 9.3.4 cannot be used to realise the surface
condition (9.76).

When h = h0 is a constant, the transformed bed condition (9.77)
simplifies to

φ̃w = 0, on w = −h̃(u, v) = −h0|f ′|. (9.80)

This is not the usual condition (c.f. (9.11)) φ̃w + ∇̃hh̃ · ∇̃hφ̃ = 0
required on a natural bed. Thus, in addition to the variable sur-
face condition, one would also need to design a metamaterial bed
to realise (9.80) in order to cloak a cylinder under full linear theory
using the mapping proposed here. For example, such a bed could
be formed by a vertical cascade of narrowly-spaced thin horizontal
plates immersed within the fluid whose edges are designed to follow
the profile h̃ = h0|f ′| where f ′ is given by (9.79). Surface waves would
feel the macroscopic effect of the variable bathymetry but locally the
fluid would satisfy a vertically-directed no-flow condition.

The solution described above was initially formulated in Ref. 34
although the details and the description of the metamaterial bed in
the paragraph above are new.

9.4.2. A direct approach

In this section the approach reported in Ref. 35 used to cloak a circu-
lar cylinder without relying on metamaterials is presented. Instead of
designing a cloak which bends waves around the cylinder it relies on
combining wave diffraction effects from the cylinder and an annular
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region of variable bathymetry to destroy outgoing waves in all direc-
tions. This approach shares similarities with the one used by Ref. 1 in
an electromagnetic context in which they coated a dielectric cylinder
with an annular dielectric with constant properties and showed how
the scattering cross-section could be reduced significantly.

The work published in Ref. 14, developed to investigate the focus-
ing of water waves over a bathymetric lens using the MMSE, was
adapted by Ref. 34 to include a vertical cylinder. The shape of the
bed in the annular cloak a < r < b was expanded in a weighted set
of prescribed modal functions:

h(r, θ) =
P∑

p=1

Q∑
q=1

αpqfp(r) cos 2(q − 1)θ (9.81)

in which

fp(r) = T2p

(
b− r
b− a

)
− (−1)p (9.82)

where Tp are Chebychev polynomials. This choice implies that hr = 0
at r = b so that there is no discontinuity in bed slope at the edge of
the cloak, a feature which was chosen for convenience as it avoided the
need to implement jump conditions in the MMSE solution. Cheby-
chev polynomials were chosen because it was anticipated that greater
resolution of the bed may be required close to the cylinder boundary
r = a. The incident wave was assumed to be aligned with θ = 0
and only even angular modes were used in the expansion (9.81) by
appealing to ideas of time-reversal symmetry.

In (9.81) the P×Q coefficients αpq were treated as free parameters
in a numerical multi-parameter optimisation whose objective func-
tion to be minimised was the normalised “cloaking factor” C defined
to be the scattering cross-section σ of the cloaked bed divided by
σcyl, say, for uncloaked bed, given by (9.23).

In the studies of Ref. 35 results were presented for cloaking tar-
geted at a particular frequency and geometry (k0h0 = 1, a/h0 = 1

2)
although other parameters were considered in numerical experiments
leading to that publication.
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Fig. 9.6. Cloaking factor against wavenumber under full linear theory calcula-
tions for axisymmetric beds (Q = 1) optimised for cloaking at k0h0 = 1, a/h0 = 1
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,

b/h0 = 5 with P = 2 (solid), P = 4 (dashed) and P = 8 (dotted).

The initial work using the MMSE was presented in Ref. 34 sug-
gested that cloaking factors could be progressively reduced towards
zero as the number of degrees of freedom defining the bed were
increased. A year later, Newman26 published work adopting the same
principles and methodology of Ref. 34 but using a modified version
of the fully three-dimensional boundary element code, WAMIT. The
work was combined in the paper of Ref. 35 where numerical results
supported the hypothesis that the cloaking factor could be reduced
to zero as the number of degrees of freedom in the bed were increased
under full linear theory — see Fig. 9.6 for example. That work also
alluded to the fact that cloaking was sensitive to small changes in
the bathymetry and the comparison between MMSE and full linear
theory was shown to be generally quite poor due to the large gra-
dients predicted in cloaking beds. This comment serves to act as a
cautionary note regarding the predictions made in Section 9.3 under
depth-reduced models.

Figure 9.7(a) shows the effect of the size of the cloak on the cloak-
ing factor for cloaking-optimised axisymmetric beds. Reference 35
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Fig. 9.7. In (a) the cloaking factor C = σ/σcyl and in (b) the normalised mean
drift force on the cylinder, F , both plotted against against wavenumber for an
axisymmetric bed, Q = 1, P = 8 optimised to cloak at k0h0 = 1 with a/h0 = 1

2

and b/h0 = 2 (solid), 3 (dashed), 4 (dotted), 5 (chained).

demonstrated that cloaking is best for b ≈ 5a whilst the cloaking
effect can also seen to be broadbanded. Figure 9.7(b) illustrates the
significant reduction in the mean second-order drift force on the cylin-
der (normalised against an uncloaked cylinder), especially around the
cloaking wavenumber k0h0 = 1.

Reference 35 also showed that convergence towards perfect cloak-
ing was improved by breaking axisymmetry and letting Q > 1. See
Figs. 9.8.

9.4.3. Extensions to the direct approach

Newman later developed a double-precision version of the original
single-precision code WAMIT to numerically investigate alternative
ways of cloaking a cylinder under full linear theory.27 This included,
amongst many other examples, surrounding the vertical cylinder
to be cloaked with a concentric circular ring of N fixed truncated
surface-piercing circular cylinders. Again, a numerical optimisation
procedure was used to tune a number of free parameters used to
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Fig. 9.8. Beds optimised to cloak at k0h0 = 1 for different values of (Q,P ) with
a/h0 = 1

2
, b/h0 = 5. Values of cloaking factor C = σ/σcyl achieved in each case

are shown. The yellow boundary depicts the edge of cloak.

encode the geometric configuration of the cloak. Newman27 was able
to show that whilist an axisymmetric ring quickly reduced the cloak-
ing factor as N increased, significant improvements to cloaking fac-
tors could be achieved by breaking the axisymmetry of the cloak,
with values of C = 1.1 × 10−9 being reported.

The numerical evidence seemed to suggest that perfect cloaking
is possible. However, M. McIver23 provides a formal proof that, under
certain conditions, perfect cloaking is not possible. The proof applies
to a specific class of cloaks comprised of elements individually satis-
fying the so-called “John condition” (e.g. see Ref. 18), Geometrically,
the John condition is satisfied if lines projected vertically downwards
from all points on the free surface meet the flat bed without inter-
secting a body in the fluid. This is a powerful result. Unfortunately,
Newman’s27 configuration of N surface-piercing truncated cylinders
discussed in the previous paragraph does satisfy the John condition
and so it transpires that perfect cloaking is not possible in this exam-
ple despite the extremely low cloaking factors calculated. This also
puts in doubt the suggestion that perfect cloaking is achievable in
the earlier example of Ref. 35 involving variable bathymetry.
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9.5. Summary

In this article, I have tried to present a range of different approaches
that can be used to investigate the cloaking in water waves. This
includes the simplified models of ray theory, shallow water theory
and the mild-slope approximation in addition to the consideration
of full linear wave theory. It has been shown how mapping methods
may be applied within the framework of each of these models. It has
also been shown how metamaterials can be designed in water wave
problem to realise unnatural boundary conditions that emerge from
these mappings such as anisotropic water depth and variable effective
gravity.

The most successful attempts at creating a cloak for a circu-
lar cylinder seem to be: (i) using the nonlinear transformation of
Ref. 42 shown in Section 9.3.5 within the framework of the shallow
water approximation and (ii) numerical optimisation of bathymetry
or other structures embedded in the fluid that form a cloak under full
linear theory. The latter has the advantage of being exact and realis-
able without metamaterial parameters. The former has the advantage
that they bend waves around the cylinder rather than relying on the
cylinder for multiple interference effects that are integral to the cloak.

The transformation media approach and, more generally, the
adoption of metamaterials in water waves can provide an interesting
range of new possibilities to water wave problems. For example, one
might consider mapping the well-known explicit Stokes edge wave
solution (or its shallow water approximation) along a plane sloping
beach under a coordinate transformation into circular coordinates to
provide a solution in which waves are trapped to a circular island by
a “metamaterial beach”.
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CHAPTER 10

Molding Sound Propagation

and Scattering with

Acoustic Metamaterials
and Metasurfaces
ROMAIN FLEURY and ANDREA ALÙ∗

The University of Texas at Austin, USA

Acoustic metamaterials are artificially structured materials that are
capable of interacting with acoustic waves in anomalous ways, leading
to exotic physical properties, not found in natural materials. In this
chapter, we review and highlight how the extreme sound interaction
properties associated with acoustic metamaterials can be exploited
to reach a new degree of acoustic wave control, enabling fascinating
wave phenomena with large application potentials, including cloak-
ing and sound manipulation via anomalous matching and tunneling
effects. We discuss the analogue of plasmonic cloaking for acous-
tic waves, as well as exceptional matching phenomena that occur
at the interface between a natural acoustic medium and a passive
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acoustic metamaterial with near zero effective density. We also
discuss active acoustic metasurfaces obeying parity-time symmetry
conditions, which can induce anomalous tunneling effects with large
reflection asymmetry, and demonstrate that such active planar sur-
faces have the potential to relax some of the limitations associated
with bulk passive 3D metamaterials, including sensitivity to losses,
bandwidth of operation and imperfect isotropy. Finally, the asymme-
try in the transmission properties of acoustic meta-atoms is discussed
within the context of linear nonreciprocal acoustics.

10.1. Introduction

Acoustic metamaterials are artificial materials that inherit their
acoustic properties from their engineered structure rather than from
their constituent materials.1 They do not behave like anything that
can be found in nature, and are described by constitutive param-
eters, like their density ρ or bulk modulus κ, which typically take
unusual and extreme values, for instance negative,2−9 zero,10−12 or
very large.6 Due to their anomalous physical properties, metama-
terials are associated with exotic wave phenomena, such as nega-
tive refraction,13 subwavelength imaging,14 and cloaking.15,16 This
chapter discusses a few fascinating phenomena associated with acous-
tic metamaterials, including unusual scattering features, such as
cloaking and scattering cancellation, and unusual propagation fea-
tures, such as anomalous tunneling and other exotic acoustic trans-
mission phenomena, not found in conventional media. In the fol-
lowing, we first discuss several examples of cloaking effects based
on a dominant scattering cancellation approach that leads to simple
cloak designs employing either homogenous layers or ultrathin acous-
tic metasurfaces. Then, we also discuss how acoustic metamaterials
can induce fascinating tunneling phenomena for sound, for instance
acoustic supercoupling through density-near-zero acoustic channels
and broadband acoustic energy funneling at the acoustic Brewster
angle with a metamaterial buffer. Finally, we discuss the case of
active metamaterials, and demonstrate how gain, fluid motion or the
use of time-modulated systems can be used as additional degrees
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of freedom to increase our ability to cloak sound and control its
transmission via unique matching effects. These additional degrees
of freedom will enable giant asymmetries in reflection, such as in the
case of PT symmetric structures, and asymmetry in transmission,
such as in the case of non-reciprocal acoustic systems.

10.2. Plasmonic and Mantle Acoustic Cloaking

Among the fascinating acoustic phenomena associated with meta-
materials, cloaking is arguably one of the most intriguing. Cloaking
refers to the possibility of cancelling the scattering from an object
by placing it inside a metamaterial cloak. Initially, cloaking was pro-
posed for electromagnetic waves as a way to turn objects invisible to
the human eye or to radar systems,17−20 and later it was extended to
acoustic waves,23 seeking invisibility to sonars or other kinds of acous-
tic imaging systems, or reduced disturbance in complex acoustic envi-
ronments. There exist two dominant techniques within the science of
cloaking. The first one was proposed independently by Pendry and
Leonhardt in 2006,18,19 and relies on transformation optics, a method
that re-interprets wave propagation in curved geometrical spaces as
propagation in inhomogeneous and anisotropic metamaterials. The
second method was proposed in 2005,17 and it was originally called
plasmonic cloaking. Unlike transformation optics, plasmonic cloaking
induces invisibility using a few homogenous and isotropic metama-
terial layers, and it is arguably simpler to implement in practice.
Later, a variant of plasmonic cloaking employing a single isotropic
homogenous metasurface, called a mantle cloak, was developed.22,23

More details on the history of cloaking techniques can be found in
recent review papers on the topic, see Ref. 15 for instance for a
complete overview of cloaking for both electromagnetic and acous-
tic waves, or Ref. 16 for a detailed comparison of all the available
cloaking methods and a discussion of their respective limitations.
Cloaking of acoustic waves is also thoroughly discussed in a recent
review article by Norris.23 We focus here specifically on the acoustic
analogues of plasmonic and mantle cloaking,24−28 i.e., a scattering
cancellation method that is able to drastically reduce the scattering
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Fig. 10.1. We consider the scattering from an acoustic sphere of radius a sur-
rounded by a spherical cloaking shell of radius ac. Both the cloak and the object
are assumed to be homogenous and isotropic. c© 2006 Elsevier. Adapted with
permission.25

of acoustic waves from a given object by using homogenous isotropic
metamaterials24−26 or metasurfaces.27,28

Consider the acoustic scatterer schematically shown in Fig. 10.1.
It is composed of a spherical core made of a given acoustic material
with density ρ and bulk modulus κ, and a spherical cover made of an
acoustic medium with density ρc and bulk modulus κc. The object
that we want to cloak is the spherical core, of radius a, and for this
purpose we consider a metamaterial cloak in the form of an isotropic
homogenous shell of external radius ac. Assuming an incident time-
harmonic plane wave of frequency ω propagating along �z, the pressure
field scattered by this spherically-symmetry target may be written
as a superposition of radiating spherical harmonics29

psc =
+∞∑
i=0

in(2n+ 1)pnAnh
(1)
n (k0r)Pn(cos θ). (10.1)

The coefficients pn represent the generic (known) coefficients of
the expansion of the incident wave in spherical harmonics, whereas
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the coefficients An represent the scattering coefficients of the object,
which are independent on the form of the incident field and only
depend on the geometry of the object, its acoustic properties, and fre-
quency. In Eq. (10.1), i is the imaginary number and k0 = ω

√
ρ0/κ0

is the wavenumber in the background. The scattering coefficients can
be calculated by enforcing pressure and normal velocity continuity
at the two spherical interfaces, yielding

An = −Un/(Un + iVn), (10.2)

with

Un =

∣∣∣∣∣∣∣∣∣∣∣∣

−jn(ka) jn(kca) yn(kca) 0

−1
ρkaj

′
n(ka) 1

ρc
kcaj

′
n(kca) 1

ρc
kcay

′
n(kca) 0

0 jn(kcac) yn(kcac) jn(k0ac)

0 1
ρc
kcacj

′
n(kca) 1

ρc
kcacy

′
n(kca) 1

ρ0
k0acj

′
n(k0ac)

∣∣∣∣∣∣∣∣∣∣∣∣
(10.3)

Vn =

∣∣∣∣∣∣∣∣∣∣∣∣

−jn(ka) jn(kca) yn(kca) 0

−1
ρkaj

′
n(ka) 1

ρc
kcaj

′
n(kca) 1

ρc
kcay

′
n(kca) 0

0 jn(kcac) yn(kcac) yn(k0ac)

0 1
ρc
kcacj

′
n(kca) 1

ρc
kcacy

′
n(kca) 1

ρ0
k0acy

′
n(k0ac)

∣∣∣∣∣∣∣∣∣∣∣∣
(10.4)

Each scattering coefficient An quantifies how much scattering is
expected from the object in the n-th spherical harmonic channel. The
relevant metric to quantify the overall visibility is the total scatter-
ing cross-section, which equals the ratio between the total scattered
power and the incident power flux

σ =
4π
k2

+∞∑
n=0

(2n+ 1)|An|2. (10.5)

Mathematically speaking, a perfectly invisible object must have
σ = 0, which implies that for any n, An = 0. However, for an object of
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given acoustic size k0ac, only contributions up to the order N ≈ k0ac

are non-negligible, and we can in practice truncate the sum in (10.5).
This means that invisibility can be induced by canceling only a finite
number of scattering coefficients, by focusing on the dominant scat-
tering from the object. This is at the basis of plasmonic acoustic
cloaking, which cancels each dominant scattering term in (10.5) by
using N homogenous spherical shells. Although one can cloak arbi-
trarily large spherical objects with this technique, for demonstration
purposes the example of Fig. 10.1 only considers a single homogenous
isotropic metamaterial layer, and therefore is relevant for objects such
as k0ac < 1. Cancellation of a given harmonic occurs when the coef-
ficient Un in (10.2) vanishes, provided that under the same condition
Vn �= 0, since Vn = 0 corresponds to a resonance associated with
enhanced scattering. In the long wavelength limit, the cancellation
condition Un = 0 can be found in close form to be(

a

ac

)3

= κ̄
1− κ̄c

κ̄− κ̄c
if n = 0, (10.6)

(
a

ac

)3

=
ρ̄c − 1
ρ̄c − ρ̄

nρ̄c + (n+ 1)ρ̄
nρ̄c + n+ 1

if n > 0. (10.7)

Note that Eqs. (10.6) and (10.7) can also be directly found using
Born approximation, as done in Ref. 30 for matter-waves, which,
like acoustic waves, follow a scalar Helmholtz equation, leading to
analogous cloaking conditions31,32 realizable with semiconductors or
quantum metamaterials.33 In this long-wavelength approximation, a
closed-form analytical expression of the cloaking condition can be
found, and for a given cloak thickness ac it is found that a single
layer cloak can only cancel the first two scattering orders n = 0
and n = 1, which is sufficient if the object is small enough. These
expressions are given in Ref. 25, and imply a full control over the
cloak mass and bulk modulus, i.e., the use of metamaterial concepts.

Figure 10.2 shows a contour plot of the total scattering cross-
section σ of a core-shell structure with ac = 1.1a and at a frequency
such that k0a = 0.5, in a wide range of cloak parameters (top). The
sphere to be cloaked has ρ = 2ρ0 and κ = 0.8κ0. We notice that
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Fig. 10.2. Variation of the total scattering cross-section for a wide range of
cloak constitutive parameters (top), and in the vicinity of the quasistatic cloaking
condition (bottom), for ac = 1.1a, k0a = 0.5, ρ = 2ρ0 and κ = 0.8κ0. The
black cross in the bottom diagram marks the position found using the analytical
quasistatic expression c© 2006 Elsevier. Adapted with permission.25

the scattering cross-section can take any value between −20 dB and
40 dB, with the minimum and maximum values obtained when the
conditions Un = 0 and Vn = 0, respectively, are fulfilled for a given
order n. Interestingly, U0 = 0 and U1 = 0 can be achieved with a
single layer with a cloak with density and bulk modulus lower than
the background (blue area in bottom plot). The quasistatic cloaking
conditions (10.6) and (10.7), specialized for n = 0, 1, are marked
by a black cross in Fig. 10.2, bottom. Here, the long wavelength
approximation does not apply, yet the quasistatic theory is useful as
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Fig. 10.3. Magnitude of the scattering coefficient versus frequency for (a) the
bare object, (b) a covered object under the cloaking condition and (c) a cov-
ered object under the resonance condition c© 2006 Elsevier. Adapted with
permission.25

an estimate, and still predicts the cloaking condition with reasonable
accuracy.

Figure 10.3 shows the behavior of the first five An coefficients
versus frequency, for three different cases: (a) the uncovered core,
(b) the core covered with a cloak designed to cancel the A0 and A1

coefficients at the frequency k0a = 0.5 and (c) the core covered with
a cloak designed to have a quadripolar resonance V2 = 0 at the fre-
quency k0a = 0.5. It is clear that the cloaking phenomenon is indeed
due to a drastic suppression of the dominant scattering of the object
at the design frequency. In both cases of a cloaked (b) or resonant
(c) object, the dominant scattering is of quadripolar nature, either
because the monopolar and dipolar terms are negligible or because
of a quadripolar resonance. The scattered field distribution around
the object is shown in Fig. 10.4. The scattered field of the cloaked
object (right) is compared to the one in the absence of the cloak
(left). We see that, in magnitude, the cloaked object scatters much
less than the bare object, and the dominant scattering is quadripolar,
unlike in the case of the bare object for which the scattering is domi-
nated by a mixture of a monopolar and a dipolar contribution. More
insights into the cloaking phenomenon may be obtained by looking
at a snapshot in time of the total acoustic pressure field around the
object, as in Fig. 10.5. The left panel of Fig. 10.5 shows the case of
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Fig. 10.4. Magnitude of the scattered acoustic pressure around the object in the
cases (left) of the bare object and (right) the cloaked object. c© 2006 Elsevier.
Adapted with permission.25

Fig. 10.5. Acoustic pressure field (snapshot in time) in the case of the bare sphere
(left) and the cloaked sphere (right). c© 2006 Elsevier. Adapted with permission.25

the bare object, to be compared with the case of the cloaked object.
We see that the cloak restores the incident field as if the object were
not there, with flat pressure contours, and this phenomenon is due
to resonant excitation of the cloak. Figure 10.6 shows the plot of
the acoustic particle velocity, on top of the acoustic pressure field
distribution. The velocity field is shown with white, black and grey
arrows in the background, core, and shell, respectively. It is interest-
ing that the velocity field inside the sphere remains unchanged when
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Fig. 10.6. Acoustic particle velocity field (snapshot in time) in the case of the
bare sphere (left) and the cloaked sphere (right). c© 2006 Elsevier. Adapted with
permission.25

the object is cloaked. It is the extra scattering source composed of
the cloak that compensates for the natural scattering from the core
and induce a much smoother and uniform particle velocity field in
the surrounding medium.

Similar effects can be induced by replacing the metamaterial shell
with an acoustic metasurface, i.e., an ultrathin surface whose acous-
tic impedance is tailored to cancel the dominant scattering from the
object.27,28 Figure 10.7 shows examples of acoustic metasurfaces that
may be used to induce acoustic scattering cancellation of a small
acoustic sphere. Figure 10.8 shows the dependency of the total acous-
tic scattering cross section (SCS) σ, for a soft object with 2a = λ/5
and κr = 0.1, on the acoustic surface reactance (panel a) and fre-
quency (panel b). It is evident that depending on the value of the
surface reactance, we may induce either a scattering resonance or
a scattering cancellation. Under the scattering cancellation condi-
tion, we are able to reduce the total SCS by more than 30 dB at
the frequency f0. Panel (c) and (d) show the case of a hard object
with κr = 10, which can also be cloaked using a surface reactance
of opposite sign. Interestingly, plasmonic and mantle acoustic cloaks
naturally let the incident power penetrate the cloak, a unique feature
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Fig. 10.7. Scattering cancellation may also be induced by using an ultrathin
acoustic metasurface. c© 2012 APS. Reprinted with permission.28

that may be used to realize cloaked acoustic sensors that can receive
and sense a signal while minimally perturbing probed field.34−40

10.3. Density-Near-Zero Acoustic Supercoupling

Beyond cloaking and scattering manipulation, acoustic metamate-
rials are capable of inducing novel guided propagation features for
acoustic waves, including anomalous matching and tunneling effects.
This section discusses the phenomenon of supercoupling of acoustic
waves through ultra narrow channels with near-zero density. In elec-
tromagnetics, a similar phenomenon is known as epsilon-near-zero
(ENZ) supercoupling. In these zero-index materials, wave propaga-
tion is accompanied by very large phase velocity, producing static-like
field distributions. These properties are observed, in particular, in an
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Fig. 10.8. Scattering cross section (SCS) of a soft acoustic sphere (κr = 0.1)
with a size of a fifth of a wavelength versus the value of the surface reactance
(a) and the frequency (b) for different ratios ac/a. Panel (c) and (d) are similar
to (a) and (b), but for a hard sphere (κr = 10) c© 2012 APS. Reprinted with
permission.28

abnormal tunneling and matching effect through very narrow waveg-
uides filled with ENZ materials, also known as ‘supercoupling’.41,42

This matching effect is based on compensating the large impedance
mismatch of waveguides with different transverse cross-section using
the anomalously large wave impedance of ENZ materials.41 Upon
tunneling, the electric field is enhanced in a uniform way through
the channel due to the extremely long wavelength in the zero index
material, implying properties usually observed at very low frequency
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in electrical wires, such as independence of the matching effect on
the length of the channel, as well as immunity to twists and bends.
This electromagnetic effect is interesting to build zero-delay cou-
pling lines,43 robust geometry-independent filters,41 concentrating
and harvesting light,44 sensing,45 boosting classical or quantum light
emission46,47 and non-linear effects.48,49 Here, we discuss the acoustic
analog of ENZ supercoupling, which is achieved using a metamaterial
with density near zero (DNZ).10 As in the case of ENZ supercoupling,
the effect is based on the extreme value of one of the constitutive
parameters in a waveguide, which totally cancels and compensate the
geometrical mismatch at the connection with a much larger waveg-
uide. The acoustic energy can therefore be squeezed in a small and
narrow volume with this method.

The typical geometry is sketched in the inset of Fig. 10.9: two
large acoustic waveguides with cross-section Swg are connected via
a narrow channel with Sch � Swg. The reflection coefficient at the
input of the narrow tube reads10

R =
(Z2

ch − Z2
wg) tan(βchl)

(Z2
ch + Z2

wg) tan(βchl) + 2iZchZwg
(10.8)

Fig. 10.9. Power transmittance between two air-filled large cylindrical waveg-
uides connected by a much smaller waveguide with near-zero effective density.
This metamaterial channel is built by periodically loading a narrow air-filled cir-
cular waveguide with polyimide membranes, effectively realizing a material with
zero density at a design frequency. c© 2013 APS. Reprinted with permission.10
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where Zwg and Zch are the line impedances of the outside and chan-
nel waveguide respectively, l is the channel length and βch is the
channel wave number. Total transmission can occur any time the
numerator in (10.8) vanishes, i.e. either under a Fabry-Perot (FP)
resonance (βchl = nπ), or under the condition Zch = Zwg, i.e. if the
line impedances happen to be matched. This matching condition,
independent of the channel length, implies that:

√
ρchκch

Sch
=
√
ρwgκwg

Swg
, (10.9)

where ρch, ρwg are the densities in the waveguides and κch, κwg are
the bulk moduli. Now because Sch � Swg, the matching condition
(10.9) can be met only if the characteristic impedance of the channel√
ρchκch takes extremely low value.

For instance, when ρch → 0 (DNZ), matching occurs with total
transmission associated with infinite phase velocity. This is the acous-
tic equivalent of ENZ supercoupling.

Such a density near zero material can be achieved in air-filled
channels by periodically loading them with transverse membranes
and operating near their resonance, at a specific frequency at which
the inertia of the membrane compensates the one of the fluid
contained within a metamaterial unit cell.10 The result of FEM
simulations of the corresponding acoustic structure and analytical
transmittance calculations are shown in Fig. 10.9, showing the first
two distinct transmission peaks. The first peak corresponds to DNZ
supercoupling, as it is independent of the length of the channel, unlike
the second peak, which is associated with the first FP resonance.
Figure 10.10 offers more insights into this peculiar transmission phe-
nomenon. The field distributions at the top of the figure correspond
to the magnitude of the acoustic particle velocity in the channel
in three different cases. The top plot corresponds to the case of a
negative density channel, in which propagation is evanescent and
transmission is zero. The middle case shows the case of the field at
the supercoupling frequency, demonstrating the uniform field profile
and velocity field enhancement, equal on average to the ratio of the
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Fig. 10.10. Top: Acoustic particle velocity below the supercoupling frequency
(top), at the supercoupling frequency (middle) and at the first FP resonance
(bottom). Bottom: Velocity magnitude enhancement along the channel’s center
in the three above-mentioned scenarios (left) and corresponding phase (right). c©
2013 APS. Reprinted with permission.10

waveguide cross-sections, consistent with conservation of the volu-
metric flow. This is very different from the field distribution at the
first FP frequency, shown in the bottom plot, which has a node at the
channel’s center and a non-uniform phase throughout the channel, as
confirmed by plotting the magnitude and phase of the velocity along
the channel’s center, done in the bottom graphs in Figure 10.10.
Different from resonant transmission through a FP mode, the DNZ
matching phenomenon does not rely on multiple reflections at the
entrance and output boundary of the channel, and is therefore inde-
pendent on the length of the channel. Even more fascinating, since
the phase velocity inside the channel is extremely large, everything
happens as if the channel had no acoustic length, and sound is trans-
mitted regardless of the specific channel’s topology, independently of
twists and bends, as demonstrated in Fig. 10.11. Similar to electrical



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch10 page 442

442 Handbook of Metamaterials and Plasmonics — Volume 2

Fig. 10.11. Acoustic DNZ supercoupling is independent of twists and bends of
the channel. c© 2013 APS. Reprinted with permission.10

wires operated at DC, propagation of acoustic waves is quasi-static
and it becomes insensitive to folding or bending.

10.4. Acoustic Brewster Angle and Broadband
Energy Funneling

Density-near-zero supercoupling is an impedance matching effect
that is inherently narrowband, due to the necessity of achieving zero
mass density via material dispersion engineering. In this section, we
demonstrate a different tunneling phenomenon that, on the contrary,
is extremely broadband. It is the acoustic analog of Brewster trans-
mission, i.e., an impedance matching phenomenon occurring for plane
waves at a metamaterial interface, in a wide frequency band but for
a specific angle of incidence.

Consider a plane boundary between two acoustic materials, 1 and
2, on which a plane wave is incident. Impedance matching occurs
when the line impedances Z1 and Z2 of the two media are equal,
which is the condition for having an angle of intromission, or acoustic
Brewster angle,50

tan2 θ =
m2 − n2

n2 − 1
(10.10)
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where m = ρ2/ρ1 is the ratio of densities and n = c1/c2 is the
ratio of sound velocities. The matching condition (10.10) can only
be fulfilled if m > n > 1 or the reciprocal case 1 > n > m, which
is not allowed by most natural materials because the speed of sound
typically increases with density. However, if one of the media is a
metamaterial, this may be possible. We now demonstrate that by
engineering a metamaterial buffer and placing it between the two
materials, it is possible to force broadband transmission and funnel
acoustic power at an angle regardless of the fact the two materials
are naturally extremely mismatched, and even when the intromission
condition (10.10) cannot happen in the absence of the buffer. To do
this, each interface of the metamaterial buffer must be matched to
the corresponding surrounding half-space. Assuming a metamaterial
made of hard wall material of a given thickness with periodically
carved slits in it, we can equate the line impedance Z1 of a plane wave
incident from a homogeneous half space with density ρ1 and sound
velocity c1 and the one Zch of the hard wall screen with straight sub
wavelength channels filled with some acoustic material with param-
eters ρch and cch. Similarly to the case of DNZ tunneling, we get the
matching condition

Z1 = Zch ⇒ ρ1c1
A1 cos θ

=
ρchcch
Ach

(10.11)

where A1 is the length of a unit cell of the periodic buffer and
Ach the one of the channel, θ being the angle of incidence. We see
that designing a buffer to match a given material is always possi-
ble, however matching two distinct media can only be done with
buffers with different slit widths. We therefore propose the geometry
of Fig. 10.12: materials 1 and 2 are connected through a buffer with
tapered slits, which are filled with Material 2. We assume the case
1 < n, n > m, i.e. there is no natural Brewster angle and no critical
angle from medium 1 to medium 2.50 We note l the thickness of the
buffer and a its period. The lengths a1 and a2 are the slit widths
at the interfaces with the media 1 and 2, respectively. A necessary
condition for funneling is that the two interfaces of the buffer are
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Fig. 10.12. A metamaterial made with a hard wall with tapered slits is used to
funnel acoustic energy between two naturally mismatched media over an ultra
large bandwidth. c© 2014 ASA. Reprinted with permission.51

matched:
a1

a
=
m

n
cos θi, (10.12)

a2

a
= cos θr. (10.13)

The angles θi and θr cannot be chosen independently, and must
conserve transverse momentum:

sin θi = n sin θr. (10.14)

We use this strategy to match two very mismatched materials, Alu-
minum and Silicon Rubber. The speed of sound and density in Alu-
minum are c1 = 6420 m/s and ρ1 = 2700 kg/m3. and c2 = 1006 m/s
and ρ2 = 990 kg/m3 in Silicon Rubber RTV-602.52 We therefore
have m = 0.37 and n = 6.38. Transmission between these two media
is naturally inefficient, with a maximum of 1% power transmission
under normal incidence.

Since 1<n, n>m, the condition (10.11) can never be
approached. Choosing θi =30 and a= 5 cm guarantees single Floquet
mode operation from 0 Hz to c2/a sin 30◦ = 40 kHz. The required
values for the width at the interfaces are a1 = 2.4 mm and a2 = 49.8
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Fig. 10.13. Power transmission coefficient versus angle of incidence and fre-
quency for a buffer of various thicknesses l inserted between Aluminum and Silicon
Rubber. c© 2014 ASA. Reprinted with permission.51

mm. The thickness of the screen needs to be sufficiently big to enable
broadband adiabatic matching through the tapered apertures, and
is determined via full-wave finite elements simulations, obtaining the
power transmission coefficient as a function of both angle of incidence
and frequency. In our simulations, the thickness is increased from 0
cm (no buffer) to 100 cm.

Figure 10.13 shows that, in the absence of buffer (top left plot),
transmission between Aluminum and Silicon Rubber is very poor
regardless of the frequency or the angle of incidence. When a thin
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buffer is used (cases with l = 6.25 cm and 12.5 cm), transmission
starts to increase until the buffer is thick enough to induce adiabatic
matching between the materials, obtaining very high transmission
over more than 30 kHz, for a buffer as thin as a few wavelengths.
Remarkably, the method is not very sensitive to the angle of incidence
for 100 cm thick buffers, with a high transmittance in a wide window
around the design angle, starting from 0◦ all the way to 60◦.

Figure 10.14 shows the distribution of the acoustic pressure, the
particle velocity and the RMS power flow over a unit cell of the

Fig. 10.14. Snapshot in time of (a) the acoustic pressure, (b) the particle velocity
and (c) the power flow at the funneling condition. c© 2014 ASA. Reprinted with
permission.51
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buffer at the funneling condition for the case of the 25 cm thick
metamaterial made of stainless steel. For such a matching effect the
thickness of the buffer can be arbitrary, and does not have to be a
multiple of the half-wavelength, as it would be under a longitudinal
resonance condition. The average power flow pictures the path of the
acoustic energy through the buffer, confirming its ability to funnel the
acoustic power with no reflection. Its value is identical on both sides
of the screen, but its direction is different, consistent with momentum
conservation along the buffer.

10.5. Unidirectional Invisibility Based on Parity-time
Symmetry

So far, we have only considered tunneling phenomena obtained using
lossless structures. However, the scattering and propagation through
systems built using elements that support loss or gain can also
provide surprising and unusual sound-matter interactions. Typically,
gain and loss can be considered as an additional degree of freedom
to engineer the flow of acoustic power and lead to unique solutions
in our ability to control sound. We demonstrate here how the use
of loss and gain in a Parity-Time (PT) symmetric metamaterial or
metasurface can lead to fascinating effects.

PT symmetry is a special kind of space-time symmetry that
describes the invariance of a system upon the combined operation
of two operators. The first one, the Parity operator P , takes all the
inversions of space (x, y, z) → (−x,−y,−z), and the second one,
the time reversal operator T , takes the inversion of time t → −t.
For example, a one-dimensional PT symmetric system must be the
same as its time-reversed mirror image. In practice, taking the time-
reversed image of a given acoustic medium means changing loss into
gain and flipping the sign of all parameters that are odd-symmetric
upon T , e.g. an external magnetic field bias. Taking the mirror image
means flipping the left and right side of the system using spatial inver-
sion about its central axis. The simple electronic circuit of Fig. 10.15
is an example of a PT symmetric system. It is composed of two
lumped elements separated by a portion of lossless transmission line
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Fig. 10.15. Example of a PT symmetric circuit made of a pair of resistors with
opposite values separated by a portion of lossless transmission line of length d.
c© 2014 APS. Adapted with permission.53

of length d, characteristic impedance Z0 and propagation constant
k0, and placed in a medium of characteristic impedance Z0. The
lumped elements have purely real impedance: the one on the left is
a simple resistor of value R > 0, while the one on the right is a
negative resistor of opposite value −R, i.e. an active source element.
Because the time-reversed image of a resistor of value R is a negative
resistor of value −R, the right hand side and the left hand side of the
two-port network shown in Fig. 10.15 are the time-reversed image of
each other, i.e. the system is PT symmetric.

PT symmetric systems have attracted a lot of attention over the
past few years. In quantum physics, there has been a lot of inter-
est in studying the spectral properties of non-Hermitian Hamilto-
nians that commute with the parity-time (PT) operator.54 These
PT-symmetric systems, surprisingly, can exhibit entirely real spec-
trum eigenvalues, and may be used to define a consistent unitary
extension of quantum mechanics. A fascinating property of PT sym-
metric systems is the notion of spontaneous symmetry breaking, i.e.,
the possibility for the state of the system to lose its PT symme-
try, yielding a particular solution of the physical equations that
is less symmetric than the theory itself. This generally happens
when a continuous parameter quantifying the non-Hermiticity of the
Hamiltonian exceeds a threshold value, and it is accompanied by
a phase transition from an entirely real spectrum to a complex, or
partially complex one. Interestingly, these properties can be observed
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in paraxial optical systems possessing an even distribution of the real
part of the refractive index along the optical axis, and an odd distri-
bution for its imaginary part, in a balanced loss/gain configuration.55

The perpendicular direction represents the time axis, on which the
time-evolution of the system is effectively observed, yielding unique
diffraction effects. Another distinctive aspect of PT symmetric sys-
tem is their scattering signature.56 For instance, the scattering matrix
S of a PT-symmetric system reflects its phase transition: the S matrix
is unimodular in the PT symmetric phase, with each eigenvalues
being unimodular, while the broken symmetry state is characterized
by pairs of eigenvalues with reciprocal moduli. These unusual scat-
tering properties may be used to our advantage to manipulate waves
in novel ways, and build novel loss-compensated metamaterials based
on PT symmetry.

It is quite straightforward to understand why PT symmetric
systems may induce strong asymmetry in reflection by considering
the following on-dimensional example of a generic two-port system
described by its scattering matrix S = {{r1, t12}, {t21, r2}}. If the
two-port network is lossless, its absorption is zero whether one excites
from port 1 or from port 2, and therefore 1 = |t21|2 + |r1|2 =
|t12|2 + |r2|2. If it is also reciprocal, then t12 = t21 = t and energy
conservation implies that |r1| = |r2|, i.e. any reflectance asymmetry
between the two sides is impossible. However, if the network has a
non zero absorption, the quantities |t|2+ |r1|2 and |t|2+ |r2|2 are both
less than one, and the reflectivity on both side can be different if the
distribution of the absorption losses is not symmetric with respect to
ports 1 and 2 (the input impedances are indeed different), i.e., if the
system does not have spatial inversion symmetry, i.e. P symmetry.
Therefore, asymmetry in the reflectance from a reciprocal system
can only be created by a using a loss or gain distribution that breaks
parity symmetry.

Now we show that the system of Fig. 10.15 not only supports
asymmetry in reflection, but that due to PT symmetry this asym-
metry is extreme, with a side being perfectly impedance matched
(transparent), while the other side is extremely reflective. In addition,
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the system shows fascinating transmission properties when operated
at an exceptional point. Its scattering matrix can be calculated and
depends on two parameters x and r:

S =




r(r − 2) sin(x)
r2 sin(x) + 2je jx

2j
r2 sin(x) + 2je jx

2j
r2 sin(x) + 2je jx

r(r + 2) sin(x)
r2 sin(x) + 2je jx


 (10.15)

Here, r = R/Z0 > 0 is the value of the resistor normalized to the line
impedance and x = k0d is the electrical distance separating the two
lumped elements. Quite interestingly, we see that when the system
is designed so that r = 2, the S matrix simplifies into

S|r=2 =
(

0 ejx

ejx 2− 2e2jx

)
, (10.16)

i.e. the system is completely matched from port 1 regardless of the
distance x, and is highly reflective from port 2, with a reflection |r2|
that can exceed unity depending on the distance. This unidirectional
reflectionless behavior is accompanied by an interesting property
of the system in transmission. The transmission from both port is
always unitary and is accompanied by a phase advance that is exactly
opposite of the phase the signal would acquire over the length x in
absence of the system. The same transmission behavior is observed
in a matched double negative slab, in which the backward phase
velocity enables phase compensation for a propagating wave. This
implies that here, one also has backward phase evolution between
the lumped elements, but because the transmission line that sepa-
rates the elements is right handed, this implies that the power flow
is also backward between the resistors. We have verified this behav-
ior experimentally for acoustic waves in a waveguide, implementing
a stable positive/negative resistor pair at a design frequency using
loudspeakers loaded with active electronic circuits.58 This experiment
demonstrated the feasibility of mimicking the properties of double
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Fig. 10.16. PT symmetric metasurface pairs can induce negative refraction of
acosutic beams in air and without the need of a bulk double negative metamaterial
and associated drawbacks. c© 2014 APS. Adapted with permission.53

negative bulk metamaterials with a pair of PT symmetric lumped
elements.

The phase compensation capability of double negative metama-
terials is at the origin of the phenomenon of negative refraction
enabling planar focusing in a Veselago lens. The above results sug-
gest that PT symmetric metasurface pairs can induce similar effects
without the need for a bulk metamaterials and avoiding all the asso-
ciated problems, like its imperfect isotropy, complexity, sensitivity
to losses, and bandwidth limitation due to its passive nature. This
is verified in Fig. 10.16, where we show that properly designed PT
symmetric metasurface pairs can induce negative refraction for an
acoustic Gaussian beam in a loss-immune, metamaterial-free, and
potentially broadband fashion. More details about the designs and
time-harmonic field animations can be found in Ref. 53. Once we
have negative refraction, we can have planar focusing in the form
of a Veselago lens, as demonstrated in Fig. 10.17. A similar effect
was exploited in Ref. 59 so induce unidirectional cloaking of large
objects by employing metasurfaces with PT symmetric gain and loss
distributions.
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Fig. 10.17. PT symmetric metasurface pairs can induce planar focusing in air
and without the need of a bulk Veselago lens and associated drawbacks. c© 2014
APS. Adapted with permission.53

10.6. Non-reciprocal Manipulation of Acoustic Waves

We have seen in the previous section that by using a distribution of
loss and gain that breaks P symmetry, but not PT symmetry, it is
possible to induce giant asymmetry in the reflection properties of an
acoustic system, with zero reflection on one side and a high reflection
on the other. However, in all the examples previously considered in
this chapter, transmission is symmetric both in phase and amplitude,
leading to the question: can we also induce giant acoustic transmis-
sion asymmetry, for instance creating an acoustic power flow diode,
that lets acoustic power be transmitted in one direction and blocks
transmission it in the other?
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In a linear system, symmetry of the transmission properties, also
known as Rayleigh reciprocity, is intimately related to a general prop-
erty of wave propagation: time-reversal symmetry. Breaking Rayleigh
reciprocity in these systems implies the use of an external bias, such
as a magnetic field, that is odd-symmetric upon time reversal.60 In
order to break reciprocity for airborne sound, which does not inter-
act with magnetic fields, another form of odd-symmetric bias can be
used: fluid motion.

Consider the situation shown in Fig. 10.18(a). A ring cavity is
carved in a hard wall material such as Aluminum, and filled with air.
The cavity is turned into a 3-port device by drilling three holes at 120◦

intervals to couple with three external waveguides. In order to break
time-reversal symmetry for this acoustic system, we assume that the
air inside the cavity is moving along the cavity in a circular motion
and at a constant velocity v. With time-reversal symmetry broken,
reciprocity does not hold anymore, and it becomes possible to trans-
mit sound from waveguide 1 to waveguide 3, but not from waveguide 3
to waveguide 1. This behavior has been experimentally demonstrated
for airborne acoustic sound around 800 Hz, by implementing the air
rotation using small fans placed inside the cavity (panel (b)).61 Panel c
shows the frequency dependency of the magnitude of the transmission
to port 2 and port 3 assuming excitation from port 1, assuming that
the internal fluid is at rest. We see that the transmission is resonant,
reaching a maximum at the ring resonance, and equally split into ports
2 and 3. By symmetry, transmission from port 3 to port 1 would be
identical, and the system with a fluid at rest is not capable of breaking
reciprocity. The situation drastically change when the fluid is moving
at a constant velocity of 0.5 m/s (panel d).

We see that at the cavity resonance, transmission to waveguide
3 is now unitary, with identically zero power going into waveg-
uide 2. By symmetry, from waveguide 3 the acoustic wave would
only be transmitted to waveguide 2, thereby breaking Rayleigh reci-
procity between waveguides 1 and 3. Sound is always transmitted in
the waveguide at the left of the input, in a uni-rotational manner,
creating a circulator for acoustic waves. Remarkably, this effect can
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Fig. 10.18. A non-reciprocal acoustic circulator can be obtained from a ring
cavity in which the air is circulated (a). (b) Implementation of the fluid motion
using fans in an Aluminum cavity. (c) Magnitude of transmission to waveguides 2
and 3 upon excitation from waveguide 1 (respectively |S21| and |S31|) for a cavity
in absence of internal air motion. (d) Same as (c) but for in the case of internal
air motion with a velocity of 0.5m/s. (e) Acoustic pressure field profile (color) and
average acosutic power flow (arrows) at the ring resonance frequency in absence
of internal air motion. (f) same as (e) but in the case of internal air motion with
a velocity of 0.5m/s c© 2014 AAAS. Adapted with permission.61

be obtained for extremely low fluid motion, 0.5 m/s, when compared
to the speed of sound in air, 340 m/s. This is due to the resonant
nature of the cavity, which enhances the interaction of the acoustic
wave with the fluid in motion.
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Fig. 10.19. (a) An alternative to fluid motion to break reciprocity is to apply a
rotating time-harmonic modulation to an acoustic resonators. Here, we consider
a resonator composed of three connected cavities and modulate the volumes of
the cavities in a rotating fashion. (b) Lumped circuit equivalent of the modulated
resonator. (c) Scattering parameters of the circulator. (d) acoustic pressure in the
unmodulated case and (e) in the modulated case. c© 2015 APS. Adapted with
permission.62

One drawback of using fluid motion is that it creates noise on top
of the acoustic signal, and the method is not easily transposable to
acoustic waves in solids or at higher frequency. To go around these
issues, it is possible to impart a sense of rotation to an acoustic
resonator by applying a time-harmonic modulation of the resonator
properties in a rotating fashion. Figure 10.19(a) shows an example of
an acoustic resonator composed of three cavities that are connected
to each other via small channels. The volumes of each cavity is mod-
ulated periodically in time with an amplitude δV and at a frequency
ωm, and this modulation is applied with phase differences of 2π/3
between adjacent cavities, essentially imparting a sense of rotation
to the structure. Figure 10.19(b) shows the lumped circuit equivalent
of the structure, which can be used as a good model to determine
the optimal modulation depth δV and frequency ωm to be applied to
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achieve acoustic circulation.62 For a signal at 18.6 kHz, we found that
a modulation depth of 5% at a frequency of 1200 Hz was enough to
induce more than 40 dB isolation with very low insertion losses (0.3
dB), with a device whose total size does not exceed λ/6. The scat-
tering parameters extracted from full-wave numerical simulations of
the modulated structure, under these optimal conditions, are shown
in panel (c), confirming the validity of the analytical modeling based
on a lumped circuit in a full-wave scenario. The associated pres-
sure field distributions in the unmodulated (panel d) and modulated
(panel e) cases confirm the giant breaking of reciprocity induced by
this method at the resonance frequency of the resonator.

10.7. Conclusions

In this chapter, we have discussed and reviewed the interesting
acoustic properties of metamaterials, metasurfaces, and meta-atoms,
which may be used to dramatically enhance our ability to control
acoustic waves. Homogenous isotropic passive metamaterials and
metasurfaces can be used to strongly reduce the scattering of objects,
by using a dominant scattering cancellation method analogous to
plasmonic cloaking of electromagnetic waves. Passive metamateri-
als with extreme constitutive parameters can lead to exotic acous-
tic tunneling phenomena such as density-near-zero supercoupling or
broadband Brewster acoustic funneling, of interest to transmit acous-
tic waves at mismatched boundaries or in acoustic signal manipula-
tion. Gain and loss in metamaterials and metasurfaces can provide
a new degree of freedom to induce novel tunneling effects, which in
the case of PT symmetric metasurfaces, lead to largely asymmet-
ric reflection phenomena and transmission with anomalously com-
pensated phase, a phenomenon that may be used to replace double
negative bulk metamaterials to induce negative refraction and pla-
nar focusing. Finally, the dual case of giant asymmetric transmission
can be induced in linear acoustic systems by breaking time-reversal
symmetry via the use of a moving medium or a spatio-temporally
modulated structure. Altogether, many degrees of freedom in acous-
tic metamaterials and metasurfaces can be exploited to control the
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scattering of sound and reach a new degree of control over acoustic
waves and signals.
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CHAPTER 11

The Carpet Cloak
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Carpet cloak constitutes a specific type of example in transformation
optics that is without singularity. It hides an object by squashing it
into a plane. The resultant devices become easier to fabricate and
have a larger frequency bandwidth. In this Chapter, we will discuss
two different approaches: the quasiconformal and the linear maps to
realize carpet cloaks. We will also examine different devices employ-
ing such maps.

11.1. Introduction

Certain types of animals such as octopus and chameleon change
their skin colours and patterns to resemble the background envi-
ronment as a camouflage to hide from their predators.1 While these
are visual illusions, recent advances in metamaterials allow us to
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obtain invisibility by directly bending light around an object, as if
the light follows its original path without the object.2−27 The invis-
ibility achieved is thus independent of the mechanism of detection.
The design of the required metamaterials to fabricate an invisibility
cloak is based on a framework called transformation optics (TO),2,3

which is driven by a coordinate transformation. Due to the form-
invariance property of Maxwell’s equations, a coordinate transforma-
tion induces a corresponding transformation of material parameters,
which can then be realized in the notion of metamaterials. The fields
are transformed, and thus are manipulated, in the way that they
stick to the coordinates being transformed. In addition to invisibility
cloaks, such an approach has also enabled a wide range of interesting
applications, including concentrators, field rotators and optical illu-
sion devices.28−35 For a general coordinate transformation,2−6 how-
ever, the induced electric permittivity and magnetic permeability are
generally both anisotropic and inhomogeneous. Their values can also
span a wide range if the coordinate transformation is very extreme
or is possessing singularities, e.g. in the case of a cylindrical cloak. It
limits the working frequency bandwidth of the resultant device as a
wide range of material parameters would require resonating metama-
terial atoms. In fact, such limitations can be partially circumvented
if the functionality of the device can be adopted and achieved by
employing maps without singularity and hence with simpler mate-
rial parameters. The carpet cloaks using quasiconformal maps7−15

and linear maps16−27 introduced in this chapter are representative
examples along this line. The quasiconformal map generates mate-
rials with minimized anisotropy, which becomes a constant near to
a value one in the device. By choosing appropriate boundaries to
avoid sharp corners for certain applications like a carpet cloak,7−15

the range of the refractive indices can be made smaller as well. The
quasiconformal map approach will then be useful, e.g. to design a
range of transformation optical devices, including waveguide benders,
couplers and surface-conformal antennas, simply based on an index
profile with very small or negligible anisotropy.33−42 On the other
hand, the linear map generates materials with constant index as well,
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although the anisotropy is not minimized.16−27 It has a huge benefit
that it allows the carpet cloak and other devices to be constructed
by only a single kind of anisotropic materials. Based on the linear
maps, analytic examples of transformation optics can be designed
easily with intuitive physical insights. It then allows a straightfor-
ward realization due to its simplicity.

11.2. Transformation Optics for Wave
Propagation in 2D

Here, we will concentrate on the case of wave propagation in two-
dimensions. We will look into the case of in-plane wave propagation,
in which both the fields and materials in the third dimension (along z)
are invariant. The coordinate transformation is assumed to be two
dimensional, between two sets of coordinates (x′, y′) and (x, y), where
z′ = z is assumed. The coordinate transformation can be captured
by the associated Jacobian matrix Λ defined by

Λ =
(
∂x′x ∂y′x

∂x′y ∂y′y

)
. (11.1)

For in-plane wave propagation where Ez and Hz polarizations are
decoupled, the transformation of the medium can be written for the
two polarizations separately. For Ez-polarization, the permittivity
along the z-direction and the in-plane 2× 2 permeability tensor are
transformed according to TO2 by

ε =
ε′

detΛ
= ε′ẑ · ∇x′ ×∇y′,

µ =
Λµ′ΛT

det Λ
with

√
µT

µL
+
√
µL

µT
=

Tr(µ)√
detµ

, (11.2)

where µT and µL are the two principal values (eigenvalues) of the
in-plane tensor µ. The quantity Tr(µ)/

√
detµ approaches a value of

2 for isotropic µ as a minimum. It measures the degree of anisotropy
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Fig. 11.1. A coordinate transformation maps corners to corners and edges to
edges, through an intermediate coordinate (U, V ) with common boundary values
in both spaces. Quasiconformal map is defined as the one that there exists con-
stants α and α′ so that (αU, V ) and (α′U, V ) are conformally mapped to (x, y)
and (x′, y′) respectively.

of µ if we are dealing with positive-definite permeability. For Hz-
polarization, we only need to exchange the roles of ε and µ in
Eq. (11.2).

11.3. The Quasi-Conformal Map

The investigation of a quasi-conformal map in TO is useful when
we are limited to isotropic dielectric materials or metamaterials with
small anisotropy. For convenience of discussion, a coordinate trans-
formation in two dimensions can be described through an intermedi-
ate coordinate (U, V ), as shown in Fig. 11.1. The boundaries of both
spaces are generally curved, with the 4 corners in both spaces under
transformation specified. Suppose we start from isotropic materi-
als in (x′, y′) space (e.g. vacuum to be perceived for the case of a
cloak). The materials are then sequentially transformed to (U, V ),
and then to (x, y) for physical realization. If we would like the maxi-
mum anisotropy of the physical medium to be minimized, it turns out
that we should look for a mapping, in which it is valid to define two
constants α and α′ so that (αU, V ) and (α′U, V ) can be conformally
mapped to (x, y) and (x′, y′) respectively. In other words, the overall
map is a composition of two conformal maps and a linear map in the
middle. It is technically called a Teichmüller map, a kind of quasicon-
formal maps which have a complex Beltrami coefficient of constant
modulus and spatially varying argument. Here, we simply call these
optimal maps as the quasiconformal maps for convenience because
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they are orthogonal maps, just look like the familiar conformal maps
(see also Refs. 7 and 43).

The quasiconformal property of the mapping can be written as

α∇U = −ẑ ×∇V,
α′∇′U = −ẑ ×∇′V.

(11.3)

Taking divergence on Eq. (11.3) gives the Laplace equations on an
analog potential V in both spaces:

∇2V = ∇′2V = 0. (11.4)

The quasiconformal map can be obtained by minimization of
anisotropy directly but here we adopt the analog potential
approach.7,34 By integrating along an arbitrary path AB in the
unprimed space and its corresponding transformed path in the
primed space, we obtain

γ � α′

α
=

∫ B
A dl′ · ẑ ×∇′V∫ B
A dl · ẑ ×∇V

, (11.5)

which is actually the ratio of conformal moduli of the two spaces.
The quasiconformal transformation medium can then be simplified
from Eq. (11.2), with Eq. (11.3) and assumed isotropic µ′, in the
form of

ε = ε′γ
|∇V |2
|∇′V |2 , µ =

µ′

γ
ÛÛ + µ′γV̂ V̂ (11.6)

where the orthogonal basis vectors along the U -lines and V -lines in
the unprimed space are given by Û = V̂ × ẑ and V̂ = ∇V/|∇V |.
The anisotropy measure defined in the last section is related to γ

by Tr(µ)/
√

detµ = γ + 1/γ, a constant in space. Similar formulas
can be obtained for U to express the quasiconformal transformation
medium.

The first example is a unidirectional cloak, which can hide an
object in a particular direction. For illustration of the principle, we
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(a) (b)

Fig. 11.2. A unidirectional cloak (from radii a = 2 to b = 3 ) with the quasicon-
formal map. (a) Permittivity profile with a square grid of the virtual space plotted
in the physical space. (b) Full-wave simulation for a plane wave of wavelength 1.7
incident from the left.

take an analytic quasiconformal mapping

x′ =
b2(r2 + a2)
(b2 + a2)r2

x, y′ =
b2(r2 − a2)
(b2 − a2)r2

y, (11.7)

where r2 = x2 + y2. It transforms a disk of radius b in the primed
space to a circular ring of a ≤ r ≤ b, the cloak, in the unprimed space.
An identity map is used outside the cloak for r ≥ b. The quality of
the map is shown in Fig. 11.2(a) for a square grid in the (x′, y′)-space.
By taking (U, V ) = (x′, y′), from Eqs. (11.6) and (11.5), we can write
the induced permittivity compactly as

ε = γ|∇y′|2, (11.8)

with γ = (b2 − a2)/(b2 + a2), meaning constant anisotropy through-
out the whole device. 1/γ and γ are also the two principal val-
ues of magnetic permeability along the orthogonal x′ and y′-lines
in Fig. 11.2(a). These constitute the material parameters of the
cloak. We have assumed vacuum as the background but a simple
scaling on the resultant material profile can be easily applied when
we change the background from vacuum to another homogeneous
medium. Figure 11.2(b) shows the full-wave simulation (COMSOL
Multiphysics for all numerical simulations here) when a plane wave
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(a) (b) (c)

Fig. 11.3. Three ways in making an object invisible: To squash an object into (a)
an infinitesimally small point, (b) an infinitesimally thin wire, and (c) an infinites-
imally thin plate, corresponding to (a) spherical complete cloak, (b) cylindrical
cloak and (c) carpet cloak.

impinges from the left. It passes through the cloak without being
scattered.

Next, we use the quasiconformal map to design a carpet cloak.
There are actually three different ways to hide an object by squashing
it into a tiny point, a thin wire or a thin sheet, as shown in Fig. 11.3.
The former two are related to a coordinate transformation with sin-
gularities, inducing an extremely wide range of material parameters
and anisotropy required for the cloak while the third one does not
require a coordinate transformation with singularity and therefore a
quasiconformal map is a suitable tool to generate the required cloak.
Being called a carpet cloak for this particular scheme, it can hide the
scattering of a bump when the cloak is placed on top of it.

In the current example for illustration, we transform a rectan-
gular region with dimension w × h(w = 3, h = 2) to the shape
shown in Fig. 11.4(a) with its bottom boundary curved upwards.
In this case, there is no straight-forward analytic solution. However,
the quasiconformal map in this case (with a rectangle in the vir-
tual space) can be very well approximated by solving Laplace equa-
tion on the coordinates.34 By using intermediate coordinate simply
as (U, V ) = (x′, y′) again, we set y′ = 0(2) at the bottom (top)
boundary and Neumann boundary condition for the left and right
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(a)

(c) (d)

(b)

Fig. 11.4. A quasiconformal carpet cloak. (a) Induced permittivity profile of the
cloak. (b) Full-wave simulation of Ez-profile with an incident beam at 45 degrees
to the curved PEC surface with the cloak on top of it at a free-space wavelength
of 0.4. (c) Scanning electron microscope image of the first infrared carpet cloak
made from a hole lattice of varying density on a silicon-on-insulator wafer.9 (d)
Experimental result. An infrared Gaussian beam incident on the carpet cloak has
reflection beam profile just like that reflected from a flat surface.

boundary to solve for “potential” y′: ∇2y′ = 0 as an electrostatic
analog. Figure 11.4(a) shows the numerically solved coordinate lines
with constant y′. Since we have already assumed to establish a quasi-
conformal map, it turns out that solving y′ without x′ (or vice versa)
will be enough to obtain the material profile. The constant γ, from
Eq. (11.5), can then be easily probed out by

1
γ

=
1
w

∫
∂y′

∂y
dx (11.9)

with integration along the top-boundary of the cloak. Again, 1/γ and
γ are the two orthogonal principal values of magnetic permeability,
with one of them along these lines. The scalar permittivity can be
obtained by ε = γ|∇y′|2 (Eq. 11.8). The permittivity profile, rang-
ing from 0.65 to 1.91, is plotted in Fig. 11.4(a). For the full-wave
simulation shown in Fig. 11.4(b), we have used a PEC boundary at
the bottom, and the cloak is placed on top of it with the dashed
line being the boundary of the cloak. In this case, γ = 0.96, which
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is sufficiently close to the case of isotropic materials with value one
for γ. Therefore, it can be neglected and we can set isotropic µ = 1
for the cloak as an approximation. When there is an incident beam
shining on the cloak together with the bump, chosen at 45 degrees
here as an example, the cloak cancels out the original scattering on
the bump and it just looks like a flat mirror with specular reflection.
Although the scattering is faithfully cancelled out, we note that due
to the isotropic approximation, there is unavoidably a small phase
aberration, or lateral shift, in the cloak.13 However, it will dimin-
ish to zero as the size of the cloak increases for the width and the
height. Such carpet cloak can be realized with varying density of a
hole lattice9 or nanometer-sized silicon structures.10 As an example,
Fig. 11.4(c) shows the first infrared carpet cloak fabricated by drilling
holes on a silicon-on-insulator wafer.9 The density profile of the hole
lattice provides the inhomogeneous permittivity profile. It cloaks a
small bump and when an infrared Gaussian beam illuminates on it,
the reflected light profile is just like that reflected from a flat mirror
when the cloak is on top of the bump, as shown in Fig. 11.4(d).

We have been using a Laplace equation to get one set of coor-
dinate lines. It is interesting to point out that a Poisson equation
(also an electrostatic analog) with a point source can also be used
to generate a quasiconformal map and the corresponding material
profile. Suppose we are transforming a circular disk of radius 1 in
the primed space to a regular hexagon in the unprimed space to act
as a 6-way collimator when a point source is put at the center. In this
case, we can set to solve a Poisson-like equation on V in both spaces

∇′2V = 2πδ(�r ′),

∇2V = 2πqδ(�r ), (11.10)

with V = 0 set at the outer boundary of the device. It can then be
proved that V = ln r′ in the primed space and the induced trans-
formation medium (from Eq. (11.6) and Eq. (11.5) with closed path
integration around the point charge) has the form of

ε = γ|∇r′|2, γ = 1/q. (11.11)
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(a) (b)

Fig. 11.5. Conformal TO medium with analog problem using a unit point charge
within cavity. (a) Induced permittivity (color map) in the physical space. Solid
lines are having constant r′ = 0.3, 0.6, and 0.9. (b) A 6-way collimator using the
TO medium with point source at origin as excitation, at a wavelength of 0.2.

The size of the point source q can be used to control the con-
stant anisotropy of the generated medium. As a special case, we set
q = 1 so that the quasiconformal map becomes strictly conformal.
Figure 11.5(a) shows the numerically solved constant-r′ lines in the
unprimed (physical) space. Now, we put a point source at the ori-
gin, due to the transformation, the wavefront should arrive the outer
boundary of the hexagon as if the point-source has its wavefront
arriving the outer boundary of a circular disk at the same phase. As
the boundary is flat, it becomes a beam travelling along the normal
direction of each facet. Figure 11.5(b) shows the corresponding full-
wave simulation, beams of 6 different directions are collimated from
the point source at origin.

11.4. Linear Transformation

In contrast to quasi-conformal map which generates isotropic and
inhomogeneous dielectric materials, linear transformation leads to
materials which are homogeneous and anisotropic.16,17 Under this
transformation, a line in the initial coordinate is still transformed to
a line in the physical space. Therefore, for an arbitrary triangular
region, we can always find a unique linear transformation to map it
to another one. This paves the way for the design of homogeneous
cloaks and other transformation optical devices. Figures 11.6(a) and
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Fig. 11.6. (a, b) The bilinear transformation for the design of a carpet cloak.
(c, d) Full-wave simulation of Hz-profiles with an incident beam at 45 degrees to
the (c) flat ground and (d) the homogeneous carpet cloak.

(b) show the schematic of designing a homogeneous carpet cloak by
applying a bilinear transformation which compresses the triangular
region along the y′ axis into a polygonal region (again, we restrict our-
selves in two-dimensional cases with z = z′ assumed for simplicity):

x = x′, y =
H2 −H1

H2
y′ +

d− |x′|
d

H1, (11.12)

By using Eq. 11.2 (with the roles of ε and µ swapped) for the Hz-
polarization to transform from vacuum, we obtain the permittivity
and permeability profiles as

ε =




H2

H2 −H1

H1H2/d

H1 −H2
sgn(x)

H1H2/d

H1 −H2
sgn(x)

H2 −H1

H2
+
H2

1H2/d
2

H2 −H1




µ =
H2

H2 −H1
(11.13)
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We invoke the so called reduced-parameter approximation by lump-
ing the permeability into the permittivity to design a non-magnetic
(µ = 1) carpet cloak, which now takes the form of

ε =




H2
2

(H2 −H1)2
− H1H

2
2/d

(H2 −H1)2
sgn(x)

− H1H
2
2/d

(H2 −H1)2
sgn(x) 1 +

H2
1H

2
2/d

2

(H2 −H1)2


 (11.14)

When the background medium is changed to a dielectric medium (in
an actual experiment), the above permittivity tensor is simply scaled
by the background permittivity. Moreover, the reduced parameter
approximation introduces a small mismatch of impedance or a small
reflection on the interface between the cloak and the background
medium, which is usually negligible.

Consider a transverse-magnetic (TM, magnetic field perpendicu-
lar to the cloak device) polarized Gaussian beam incident obliquely
upon such a carpet cloak on top of a flat surface. The anisotropic
cloak layer guides the beam around the bump, making the output
beam propagating exactly the same way as that reflected from a flat
surface, as shown in Figs. 11.6(c) and (d).

Note that the permittivity tensor in Equation (11.14) can be diag-
onalized by rotating the optical axis. Therefore, we may find natu-
ral birefringent crystals18−20 or metamaterials with effective uniaxial
material profiles, such as dielectric grating structures,21−24 to realize
such kind of cloaks. The latter offers more freedom as we can engineer
the geometrical parameters, such as the filling factor of the gratings, to
achieve anisotropy not found in natural materials. Figure 11.7 shows
two examples of carpet cloaks designed with linear transformation.
The top one is the first macroscopic carpet cloak for the whole visible
spectrum,18 made of two calcite crystals glued together. The bottom
one is an infrared cloak made of silicon grating structures.21

The linear transformation can be further applied to design an
omnidirectional cloak.25,26 The basic principle is to expand a line
segment into a cloaked region by stretching or compressing the space
in two orthogonal directions, as illustrated in Fig. 11.8. The cloak
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Fig. 11.7. (top) The experimental realization of the first macroscopic carpet
cloak for the whole visible spectrum, made of two calcite crystals glued together.18

(bottom) The experimental realization of a carpet cloak made of silicon gratings,
working at infrared spectrum.21

shown is achieved by applying two different linear transformations.
The gray regions are obtained by applying a space compression along
+y′ and −y′ directions, while the pink regions are more complicated:
The spaces are expanded along the y′ axis and then compressed along
the x′ axis, as described by the following transformation:

x = x′,

y = sgn(y′)
(
a2 − a1

a2 − a0
|y′|+ a2(a1 − a0)

b2(a2 − a0)
(b2 − |x′|)

)
, (11.15)

for the gray regions and

x = sgn(x′)
(
b2 − b1
b2 − b0

|x′|+ b2(b1 − b0)
a0(b2 − b0) (a0 − |y′|)

)
,

y =
a1

a0
y′ (11.16)

for the pink regions. As the white region in Fig. 11.8(a) is small
enough, a nearly perfect cloak is obtained.

The resultant cloak consists of eight blocks of birefringent
prisms and only two kinds of homogeneous materials are involved.
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Fig. 11.8. (a, b) The linear transformation for the design of an omni-directional
cloak. (c, d) Finite-element simulation of Hz-profiles with incident TM plane
waves from two orthogonal directions.

The permeability and permittivity are

ε =




a2 − a0

a2 − a1

a2(a1 − a0)
b2(a1 − a2)

sgn(xy)

a2(a1 − a0)
b2(a1 − a2)

sgn(xy)
b22(a2 − a1)

2 + a2
2(a1 − a0)

2

b22(a2 − a0)(a2 − a1)


,

µ =
a2 − a0

a2 − a1
(11.17)

for the gray regions, and

ε =



a2

0(b2 − b1)2 + b22(b1 − b0)2
a0a1(b2 − b0)(b2 − b1)

b2(b1 − b0)
a0(b1 − b2)sgn(xy)

b2(b1 − b0)
a0(b1 − b2)sgn(xy)

a1(b2 − b0)
a0(b2 − b1)


,

µ =
a0(b2 − b0)
a1(b2 − b1) (11.18)
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for the pink regions. Thus, without any further simplifications, a
nearly perfect cloak composed of eight blocks of homogenous mate-
rials is obtained. Numerical simulations demonstrate that the cloak
works effectively for light incident from any direction, as shown in
Figs. 11.8 (c, d).

Apart from invisibility cloaks, the linear transformation can also
be applied to design other photonic devices.44−47 One example is
a planar waveguide adapter which adapts electromagnetic waves
for waveguides with different widths, specifically, to compress the
energy from a planar waveguide with a width d1 into another with a
width d2 as shown in Figure 11.9. The compression from the original
waveguide in the virtual space with width d1 is done in two steps.
Each step corresponds to a transformation of a triangular region
to another triangular region, in which the linear transformation
can be uniquely determined. The linear map (with z = z′) can be
written as

x = αxx
′ + αyy

′ + α0, y = βxx
′ + βyy

′ + β0, (11.19)

Fig. 11.9. (a, b) The linear transformation for the design of a planar waveguide
adapter. (c, d) Finite element simulation of Hz-profiles with TM02 mode incident
from the left.



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch11 page 476

476 Handbook of Metamaterials and Plasmonics — Volume 2

where αx = (a + f)/a, αy = f(a − c)/(ad1), α0 = fc/a, βx = (d2 −
d1)/a, βy = ((a − c)d2 + cd1)/(ad1) and β0 = c(d2 − d1)/a for the
upper (blue) triangular region, and

x =
c+ f

c
x′ + f, y =

d2

d1
y′, (11.20)

for the bottom (brown) triangular region. The corresponding per-
meability and permittivity can then be obtained (from transforming
vacuum region within the original waveguide) as

ε =
1

αxβy − αyβx

(
α2

x + α2
y αxβx + αyβy

αxβx + αyβy β2
x + β2

y

)
,

µ =
1

αxβy − αyβx
=

ad1

(a− c)d2 + (c+ f)d1
(11.21)

for the upper (blue) triangular region, and

ε =




(c+ f)d1

cd2
0

0
cd2

(c+ f)d1


, µ =

cd1

(c+ f)d2
, (11.22)

for the bottom (brown) triangular region.
Equations (11.21) and (11.22) indicate that the adapter can be

realized with nonmagnetic materials provided that its geometrical
parameters satisfy

c =
ad2

d1 + d2
, f = a

(
d1 − d2

d1 + d2

)
. (11.23)

Figures 11.9(c) and (d) depict the results when electromagnetic waves
transmit through the two planar waveguides with different widths.
Without the waveguide adapter, the mode profile was severely
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disturbed, and only a small portion of electromagnetic energy was
transmitted into the thinner waveguide. On the contrary, the homo-
geneous nonmagnetic adapter can smoothly guide electromagnetic
waves through the waveguide without reflection. The similar concept
can also be applied to the design of plasmonic waveguide adaptors
(see Ref. 48 for more details).

11.5. Conclusion

Quasiconformal and linear mappings are two kinds of transforma-
tions that can be used to design carpet cloaks and a range of transfor-
mation optical devices. Both methods allow devices to be fabricated
with dielectric materials, making transformation optics applications
more straight-forward to implement and with large frequency band-
with. Moreover, they each have their own advantages and can be used
for different purposes. Quasiconformal mapping can minimize the
anisotropy in the transformed medium, yielding optical devices real-
ized using isotropic permittivity profiles. Such an approach is suitable
for both TE and TM polarizations of light. On the other hand, lin-
ear transformation gives rise to homogeneous material parameters,
thereby allowing for the realization of macroscopic transformational
optical devices for TM light polarization.
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12.1. Introduction

Various approaches to cloaking in the elastodynamic setting have
been presented but these can conveniently be partitioned into pas-
sive and active methods. Passive cloaking is usually based on
transformation elastodynamics to motivate a choice of inhomoge-
neous metamaterial [Milton et al. (2006); Brun et al. (2009); Nor-
ris and Shuvalov (2011)] whereas active cloaking uses active sources
[Norris et al. (2013); O’Neill et al. (2014); Futhazar et al. (2015)].
Passive cloaking theories in electromagnetism and acoustics are
underpinned by the transformation or change-of-variables method
[Greenleaf et al. (2003); Pendry et al. (2006)]: material properties
of the cloak are defined by spatial transformations. The general

481
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principals involved for both applications are similar so that the first
applications in electromagnetism (see e.g. [Schurig et al. (2006)])
were similarly applied to acoustics [Cummer and Schurig (2007);
Chen and Chan (2007); Cummer et al. (2008)] but various aspects of
the theory are quite different. The fundamental property underlying
transformations in both the acoustics and electromagnetic cases is
the observation that the Laplacian in the original coordinates maps
to a differential operator in physical coordinates that involves a ten-
sor that can be interpreted as having the new, transformed, material
properties embedded within it [Greenleaf et al. (2007)]. The equiva-
lence between the Laplacian in the original coordinates and the new
operator involves an arbitrary divergence free tensor [Norris (2008)],
implying that for the acoustic case the transformed material prop-
erties are not unique, unlike the case of electromagnetism. For a
given transformation function one can achieve acoustic cloaking by
a variety of materials, ranging from fluids with anisotropic inertia,
to quasi-solids with isotropic density but anisotropic stiffness [Nor-
ris (2008, 2009)]. In the electromagnetic case, non-uniqueness of the
material properties does not apply: the permittivity and permeability
tensors must be proportionate for a transformation of the vacuum.

A crucial aspect of transformation optics and acoustics is that
the mapped properties correspond to exotic material properties far
removed from the realm of the original material. This aspect is accen-
tuated in transformation elasticity where shear and compressional
waves couple and so simultaneous control of both wave types is
required. The first study of transformation elastodynamics was the
work by Milton et al. [Milton et al. (2006)], which concluded that
the transformed materials are described by the Willis equations. This
constitutive theory for material response is dispersive, involving cou-
pling between stress and velocity, in addition to anisotropic inertia
[Strutt (1871); Willis (1997); Milton and Willis (2007)]. Brun et al.
[Brun et al. (2009)] considered the transformation of isotropic elastic-
ity in cylindrical coordinates and found transformed material prop-
erties with isotropic inertia and elastic behavior of Cosserat type.
The governing equations for Cosserat elastic materials [Cosserat and
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Cosserat (1909)] are the same as those of standard linear elasticity
except that the elastic moduli do not satisfy the minor symmetry,
i.e. Ceff

jik� �= Ceff
ijk� (although they do satisfy the major symmetry

Ceff
k�ij = Ceff

ijk�). This implies a non-symmetric stress, TT �= T (where
the superscript T denotes transpose) which depends not only on the
strain (the symmetric part of the displacement gradient) but also on
the local rotation 1

2(∇u− (∇u)T ) where u is the displacement.
Thorough analysis of transformation elastodynamics reveals that

the range of mapped material properties is highly non-unique, as in
the case of acoustics [Norris and Shuvalov (2011)]. This explains the
divergence in previously obtained results [Milton et al. (2006); Brun
et al. (2009)]. The transformed elastodynamic constitutive parame-
ters may be characterized through their dependence on (i) the trans-
formation (mapping function) and (ii) on the relation between the
displacement fields in the two descriptions, represented by matri-
ces: F, the deformation matrix, and A (the so-called gauge matrix ),
respectively. It was shown that requiring stress to be symmetric
implies A = F [Norris and Shuvalov (2011)] and that the material
must be of Willis form, as in Milton et al. [Milton et al. (2006)].
Alternatively, setting A = I results in Cosserat materials with non-
symmetric stress but isotropic density, as in Brun et al. [Brun et al.
(2009)] and also by Vasquez et al. [Guevara Vasquez et al. (2013)].
A different approach to transformation elasticity has been proposed
that employs inextensible fibers embedded in an elastic material
[Olsson and Wall (2011); Olsson (2011)]. This has the advantage
that the effective material has isotropic density and retains both
the minor and major symmetries of the stiffness tensor. Micropolar
materials have also been employed in order to render cloaking effects
for Rayleigh surface waves [Khlopotin et al. (2015)] and experiments
regarding the seismic case were considered by [Brulé et al. (2015)].
A variety of behaviour of static properties associated with elastic
media have been predicted and measured, see the work of [Bückmann
et al. (2014, 2015a,b); Kadic et al. (2014, 2015)]. For recent thorough
reviews of elastic metamaterials see [Kadic et al. (2013)], [Christensen
et al. (2015)] and [Srivastava (2015)].
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Although significant progress has recently been made in the con-
text of waves in thin plates, [Farhat et al. (2009); Stenger et al.
(2012); Colquitt et al. (2014)], the major difficulty associated with all
current theories of elastodynamic metamaterials in a general setting
is that the required materials are, in all cases, beyond the realms of
possibility practically speaking. One way to circumvent many of the
difficulties regarding elastodynamic cloaking is to use pre-stressed
nonlinear elastic materials. Correctly-chosen pre-stress coupled with
specific strain energy functions yields incremental material properties
that are exactly right in order to guide linear elastic waves around
chosen regions of space, enabling a cloaking effect [Parnell (2012)].
What is more, this class of materials displays non-symmetric stress
of the type necessary to achieve elastodynamic cloaking [Norris and
Parnell (2012)]: moduli with the major symmetry (Ceff

ijk� = Ceff
k�ij)

that do not display the minor symmetry (Ceff
ijk� �= Ceff

jik�) are found in
the theory of incremental motion superimposed on finite deformation
[Ogden (2007)].

The starting point for the theory of hyperelastic cloaking is the
formal equivalence of the constitutive parameters of transformation
elasticity with the density and moduli for incremental motion after
finite pre-stress. This offers the possibility for achieving elasticity of
the desired form by proper selection of the finite (hyperelastic) strain
energy function. Such an approach has been shown to be success-
ful in the context of antiplane or horizontally polarized shear (SH)
wave motion. By using the neo-Hookean strain energy function for
incompressible solids and applying a radially symmetric cylindrical
pre-strain, [Parnell (2012)] and [Parnell et al. (2012)] showed that
the resulting small-on-large equations are identically those required
for cloaking of the SH wave motion. Comparisons with layered meta-
materials and other nonlinear media were made in [Parnell et al.
(2013)]. All of this theory is detailed in Sec. 12.4. The general com-
pressible two-dimensional case was considered in [Norris and Parnell
(2012)] where it was shown that for the two dimensional coupled
compressional/shear problem, the form of the finite strain energy is
restricted in form for isotropic elasticity. The equivalence between the



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch12 page 485

Hyperelastic Cloaking: Transformation Elasticity with Pre-stressed Solids 485

transformation and the finite pre-strain also limits the type of trans-
formation possible. This contrasts with the acoustic and electromag-
netic problems for which the transformation is arbitrary. The elastic
transformation is restricted in form because the pre-stress must be
statically equilibrated, implying that the transformation must satisfy
a partial differential equation. It was also shown that this constraint
can be cast as trF = constant, subject to symmetry constraints. In
order to accommodate hyperelastic invariance it was shown that a so-
called semi-linear strain energy function is the appropriate material
required for cloaking. The three dimensional setting is still open for
discussion: technical difficulties arise that shall be mentioned briefly
later on. Following on from this work, a theory for the disentangle-
ment of compressional and shear waves using pre-stress of a neo-
Hookean medium was developed in [Chang et al. (2015); Galich and
Rudykh (2015)]. The SH wave problem was also considered by [Wu
and Gao (2015)].

In this review of hyperelastic cloaking, we start with a discussion
of transformation elastodynamics in Sec. 12.2 before describing the
theory of nonlinear elasticity and associated details of small-on-large
in Sec. 12.3. The antiplane elastic wave problem is summarized in
Sec. 12.4. The general hyperelastic invariance theory is described in
Sec. 12.5 and applied in the two-dimensional, isotropic scenario in
Sec. 12.6. We close with a summary and conclusions in Sec. 12.7.

12.2. Transformation Elastodynamics

First introduce the equations of linear elasticity governing the
infinitesimal particle displacement u0(X0, t) for X0 ∈ B0, the so-
called virtual configuration, terminology that will be clarified shortly:

Div0T0 = ρ0Ü0, T0 = C0Grad0U0 in B0. (12.1)

Here T0(X0, t) is the linear Cauchy stress, ρ0 is the (scalar) mass
density and C0 is the elastic modulus tensor with full symmetry
properties C0

IJKL = C0
JIKL, C0

IJKL = C0
KLIJ ; the first identity
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expresses the symmetry of the stress and the second is the conse-
quence of an assumed strain energy density function. Note that we
use Div0 and Grad0 to refer to the divergence and gradient operators
respectively, with respect to X0 and ḟ refers to the time derivative
of the function f .

12.2.1. Transformation notation

Of interest is how the equations of linear elastodynamics (12.1) trans-
form given a spatial transformation (or mapping) from X0 ∈ B0 to
x ∈ b, which will be referred to as the current (or physical) configura-
tion. Component subscripts in upper and lower case (I, J, . . . , i, j, . . .)
are used to distinguish between explicit dependence upon X0 and x,
and the summation convention on repeated subscripts is assumed.
The transformation or mapping is assumed to be one-to-one and
invertible. It shall be shown that perfect cloaking requires that the
transformation is one-to-many at a single point in B0. This can be
avoided by considering near-cloaks, where, for instance, a small hole
in B0 is mapped to a larger hole in b. The transformation gradi-
ent associated with the transformation is defined as F0 = Grad0x
with inverse F−1

0 = grad X0, or in component form F 0
iI = ∂xi/∂X

0
I ,

F 0
iI
−1 = ∂X0

I /∂xi. The Jacobian of the transformation is J0 = detF0

and grad refers to the gradient operator with respect to x.
Particle displacement in the transformed domain, ueff(x, t), is

assumed to be related to the displacement in the virtual domain by
the non-singular matrix A as

U0 = AT ueff (U0
I = AiIu

eff
i ) (12.2)

where the superscript T denotes transpose. The choice of the matrix,
AT in (12.2) means that the gauge A and the transformation gradient
F0 are similar objects, although at this stage they are unrelated. Mil-
ton et al. [Milton et al. (2006)] specify A = F0 since this is the only
choice that guarantees a symmetric stress (see §12.2.2). Identifying
(see Milton et al. 2006) dX0 and dx with U0 and ueff, respectively,
and using dX0 = F0−1 dx would lead one to expect AT = F0−1.
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However, the displacements are not associated with the coordinate
transformation and F0 and A are independent quantities.

12.2.2. The transformed equations of linear

elastodynamics

Under the transformation (or change of coordinates) X0 → x the
equations of motion and constitutive relations (12.1) transform to
[Norris and Shuvalov (2011)]

T eff
ij,i = ṗeff

j , T eff
ij = Ceff

ijk�u
eff
�,k + Seff

ij� u̇
eff
� ,

peff
� = Seff

ij� u
eff
j,i + ρeff

j� u̇
eff
j , in b, (12.3)

with parameters Ceff, Seff and ueff defined as follows in the Fourier
time domain (dependence e−iωt understood but omitted)

Ceff
ijk� = J0C

0
IJKLQijIJQk�KL, (12.4)

Seff
ijl = (−iω)−1J0C

0
IJKLQijIJQk�KL,k, (12.5)

ρeff
jl = ρ0J

−1
0 AjKA�K + (−iω)−2J0C

0
IJKLQijIJ,iQk�KL,k, (12.6)

where QijIJ = J−1
0 F 0

iIAjJ . The elastic moduli and the density satisfy
the symmetries

Ceff
ijk� = Ceff

k�ij, ρeff
j� = ρeff

�j , (12.7)

although these are not the full symmetries for the Willis constitu-
tive model (which requires the additional “minor” symmetry Ceff

ijk� =
Ceff

jik�). Equations (12.3)–(12.6) are the fundamental result of elastic
transformation theory [Norris and Shuvalov (2011)].

The absence of the minor symmetries under the interchange
of i and j in Ceff

ijk� and Seff
ij� of (12.4) and (12.5) implies that the

stress is generally asymmetric. Symmetric stress is guaranteed if
QijIJ = QjiIJ , and occurs if the gauge matrix is of the form
A = αF0, for any scalar α �= 0, which may be set to unity with
no loss in generality. This A recovers the results of [Milton et al.
(2006)] that the transformed material is of the Willis form. As
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noted in [Milton et al. (2006)], it is the only choice for A that yields
symmetric stress.

The equations in the transformed domain, i.e. the physical sce-
nario, clearly display a great deal of non-uniqueness, corresponding
to a vast realm of possible material properties. Our preference is
for non-dispersive (i.e. independent of frequency) materials, in par-
ticular, those with the least “unusual” properties, so that they can
conceivably be related to actual materials. In this regard, isotropic
density is achieved by taking the constant matrix A proportional to
the identity, A = αI, with α = 1 without loss of generality. In this
case ρeff = ρeffI, Seff = 0, with non-dispersive density and elastic
moduli given by

ρeff = J−1
0 ρ0, Ceff

ijk� = J−1
0 F 0

iIF
0
kK C0

IjK�. (12.8)

The equations of motion in the current (physical) domain are then

(Ceff
ijk�u

eff
�,k),i = ρeff üeff

j . (12.9)

The effective moduli of (12.8)2 satisfy the major symmetry (12.7)1

but Ceff
ijk� �= Ceff

jik�, indicating a non-symmetric stress. Departure
from symmetric stress is possible in continuum theories such as
Cosserat elasticity and micropolar theories of elasticity. Another con-
text admitting non-symmetric stress is the theory of small-on-large,
i.e. wave propagation in pre-stressed nonlinear elastic media, which
we shall now describe.

12.3. Finite Deformation Elasticity
and Small-On-Large

Also known as the theory of incremental deformation, the theory of
small-on-large analyses small perturbations about a (stable) nonlin-
early pre-stressed equilibrium state. Here we are interested in per-
turbations that are time-harmonic (e−iωt for consistency with the
analysis above). In order to derive the appropriate equations it is
most useful to consider two finite deformations that are close to each
other.
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12.3.1. Kinematics

Consider an undeformed body of homogeneous elastic material in the
state B, with surface S, and let it be subjected to the two different
stable deformations

x = x(X, t), x = x(X, t), (12.10)

which take a point X ∈ B to the point x ∈ b or x ∈ b respectively.
The position vectors X,x and x have common origin. Define the
displacement of these deformations to be

U = x−X, U = x−X. (12.11)

The associated deformation gradient tensors are

F = Grad x, F = Grad x (12.12)

where Grad is the gradient operator with respect to X. Note that
F = RU = VR where U and V are the right and left stretch ten-
sors. Analogous forms can be stated for F. The principal stretches
associated with the deformations in (12.12) are λj and λj , j = 1, 2, 3
respectively, which in general are inhomogeneous. We also note that
in general, principal axes vary with position in the deformed medium.

Note at this point that x ∈ b in the previous section corresponded
to the position vector in the “transformed” domain. This notation
should not cause confusion since it will always be clear in which
context we are describing the analysis (i.e. transformation theory or
small-on-large) and indeed later on we shall equate the two analyses
in order to describe the theory of hyperelastic cloaking. What matters
more is that we distinguish between the dependent variables and
material properties in the two scenarios: in the transformation setting
these have the superscript “eff” as noted in the previous section.

Carrying on with the small-on-large analysis, define the difference
between position vectors in the perturbed and deformed configura-
tions as

u = x− x (12.13)
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and let us assume that (in some sense)

|x− x| = |u| � 1 (12.14)

which amounts to saying that the configurations b and b are “close”.
Next define the deformation gradient tensors

f = gradx, F = Gradx = fF. (12.15)

where grad is the gradient operator with respect to x. Define

γ = gradu = grad(x− x) = gradx− gradx = f − I (12.16)

so that

f = I + γ (12.17)

and so

Γ = Gradu = Grad(x− x) = fF− F = (f − I)F = γF. (12.18)

We have |Γ| � 1 and |γ| � 1, where the notation |B| with B as a
second order tensor is defined as

|B| = (B : BT )1/2. (12.19)

Note that

f−1 ≈ I− γ (12.20)

and is correct to terms that are linear in γ.

12.3.2. Stress

Defining J = Det(F), (which is unity for an incompressible medium)
the Cauchy and nominal stress in the finitely deformed body b are
given by [Ogden (1997)]

T = J−1F
∂W
∂F

, S =
∂W
∂F

, (12.21)

for a compressible body and for an incompressible body we have

T = F
∂W
∂F

+QI, S =
∂W
∂F

+QF−1. (12.22)
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We have used T for both linear and nonlinear Cauchy stress above.
It will always clear as to which we will refer. Note that we follow
the convention introduced by Ogden, that component-wise differen-
tiation follows the rule

Sij =
∂W
∂Fji

. (12.23)

Above, W is the strain energy function, defining the constitutive
behaviour of the medium in question and Q is the Lagrange multi-
plier, accommodating the constraint of incompressibility.

For reference, the Piola-Kirchhoff stress is often known as P = ST

and the second Piola-Kirchhoff stress is denoted as

S = F−1P. (12.24)

It is straightforward to show, by linearization that the corre-
sponding stresses in b can be written

T = T + τ , S = S + s (12.25)

where τ and s are the incremental Cauchy and nominal stress,
respectively. Upon linearizing about the deformed state b and writing
Q = Q+q, one can show that for the compressible and incompressible
cases,

s = L : γF, s = L : γF + qF−1 −QF−1γ, (12.26)

where L = ∂2W/∂F2 (equivalent to A in [Ogden (1997)]) and its
Cartesian components are defined via

LIjK� = ∂2W/∂FjI∂F�K , (12.27)

noting again the convention on subscripts here. Colon notation indi-
cates A : b = Aijk�b�k. In (12.26) quadratic and higher terms (in
γ) have been neglected since we are linearizing. Defining the push
forward of the incremental nominal stress as ζ = J−1Fs, we have for
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a compressible medium

ζ = M : γ. (12.28)

Here the Cartesian components of the tensor M are defined by

Mijk� = J−1 ∂2W
∂FjM∂F�N

FiMFkN . (12.29)

We note that M is equivalent to A0 in [Ogden (1997)]. For an incom-
pressible material, we have

ζ = M : γ + qI−Qγ. (12.30)

Q is determined from the large deformation problem but q is an
unknown in the incremental problem.

We note that the incremental Cauchy stress for a compressible
medium is given by

τ = ζ − tr(γ)T + γT (12.31)

whereas for an incompressible material, since tr(γ) = 0 we have

τ = ζ + γT. (12.32)

12.3.3. The tensors L and M

Note that in general the tensors L and M do not possess the minor
symmetries that are usually possessed by tensors of elastic moduli.
In general M is rather laborious to determine because the second
derivatives of W must be evaluated. The strain energy function W
depends on n invariants I1, I2, . . . , In and so

∂W
∂F

=
n∑

i=1

Wi
∂Ii
∂F

(12.33)

and

∂2W
∂F∂F

=
n∑

i=1

n∑
j=1

Wij
∂Ii
∂F
⊗ ∂Ij
∂F

+
n∑

i=1

Wi
∂2Ii
∂F∂F

(12.34)
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where we have denoted Wi = ∂W/∂Ii,Wij = ∂2W/∂Ii∂Ij for i, j ∈
{1, 2, . . . , n} where the index 3 is not included in the case of an
incompressible medium. We see that this reduces to determining first
and second derivatives of the strain invariants with respect to F.

When the medium is isotropic, the components of L reduce to
[Ogden (1997)] (no summation over repeated indices)

Liijj =Wij, (12.35)

Lijij − Lijji =
Wi +Wj

λi + λj
, i �= j, (12.36)

Lijij + Lijji =

{Wi−Wj

λi−λj
, i �= j, λi �= λj ,

Wii −Wij, i �= j, λi = λj .
(12.37)

where here we have introduced the short-hand notation Wi =
∂W/∂λi and Wij = ∂2W/∂λi∂λj , i, j ∈ {1, 2, 3} and recall that
J = 1 for an incompressible medium. Similarly the components of
the tensor M can be stated as

JMiijj = λiλjWij, (12.38)

J(Mijij −Mijji) = λiWi, i �= j, (12.39)

J(Mijij +Mijji) =



λiWi + 2λiλj

λjWi − λiWj

λ2
i − λ2

j

, i �= j, λi �= λj ,

λ2
i (Wii −Wij), i �= j, λi = λj .

(12.40)

12.3.4. Incremental equations of motion

We have, in succession

div(T) = ρ
∂2U
∂t2

(12.41)

and U = U + u. But the deformation to b is static, and U is inde-
pendent of t, so that

∂2U
∂t2

=
∂2u
∂t2

. (12.42)
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It can also be shown that

ρ = ρ+O(|u|) (12.43)

and so

div(T) = ρ
∂2u
∂t2

. (12.44)

Finally it can be shown that

div(T) = div ζ (12.45)

so that the incremental equations of motion are

div ζ = ρ
∂2u
∂t2

, (12.46)

noting that if the density if the reference configuration is ρr then
ρ = J−1ρr.

What is striking is that the incremental equations of small-on-
large have equivalent form to those for transformation elastodynam-
ics as stated in (12.9) and indeed the modulus tensor M does not
possess the minor symmetries, so that it seems we have found an
alternative mechanism for elastodynamic cloaking using pre-stressed
solids. What needs to be determined is which strain energy functions
yield invariance and this is achieved by equating the equations of
transformation elastodynamics (12.9) with those of small-on-large
(12.46). This shall be done via a general framework in Sec. 12.5 but
before this we describe some results in the context of antiplane elastic
waves.

12.4. Antiplane Elastic Waves

Let us first discuss some results associated with the scalar problem
of antiplane elasticity or horizontally polarized shear (SH) waves.
We first show how transformation elasticity yields required cloaking
properties and illustrate how, in principal these may be obtained
from layered media. We then go on to describe a special result in the
context of scattering from a cavity in pre-stressed media and how
this result informs hyperelastic cloaking.
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12.4.1. Transformation cloaking

With reference to Sec. 12.2, consider an unbounded homogeneous
linear elastic material with shear modulus µ0 and density ρ0 and
introduce a Cartesian coordinate system (X0, Y0, Z0) and cylindrical
polar coordinate system (R0,Θ0, Z0) with some common origin O.
This is the virtual configuration. Planar variables are related in the
usual manner, X0 = R0 cos Θ0, Y0 = R0 sin Θ0. Suppose that there is
a time-harmonic line source, polarized in the Z0 direction and located
at (R′,Θ′), with circular frequency ω and amplitude C0 (which is a
force per unit length in the Z0 direction). This generates antiplane
elastic waves with the only non-zero displacement component in the
Z0 direction of the form U0 = eZ0�[W0(X0, Y0) exp(−iωt)] where
eZ0 is a unit basis vector in the Z0 direction. The displacement W0

is governed by

div0 (µ0grad0W0) + ρ0ω
2W0 =

C0

R′ δ(R0 −R′)δ(Θ0 −Θ′). (12.47)

The assumed mapping from the virtual configuration to the phys-
ical configuration for a cloak for antiplane waves (cf. two dimensional
acoustics) expressed in plane cylindrical polar coordinates, takes the
form of the identity mapping for all R0 > D and

r = g(R0), θ = Θ0, z = Z0, for 0 ≤ R0 ≤ D, (12.48)

for some chosen monotonically increasing function g(R0) with g(0) ≡
a ∈ [0,D), g(D) = D ∈ R

+ (the set of positive real numbers) such
that D < R′, i.e. the line source remains outside the cloaking region.
The cloaking region is thus defined by r ∈ [a, d] where d = D. Note
once more that upper and lower case variables are employed for the
untransformed and transformed configurations respectively. Under
this mapping the form of the governing equation (12.47) remains
unchanged for R0 = r > D, whereas for 0 ≤ R0 ≤ D, corre-
sponding to the transformed domain a ≤ r ≤ d, the transformed
equation takes the form (in transformed cylindrical polar coordinates
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r, θ = Θ)

1
r

∂

∂r

(
rµeff

r (r)
∂weff

∂r

)
+
µeff

θ (r)
r2

∂2weff

∂θ2 + ρeff(r)ω2weff = 0

(12.49)

where (see Eqs. (26), (27) in [Norris and Shuvalov (2011)])

µeff
r (r) =

µ2
0

µeff
θ (r)

= µ0
R0

r

dg

dR0
, ρeff(r) = ρ0

R0

r

(
dg

dR0

)−1

.

(12.50)

Hence, both the shear modulus and density must be inhomogeneous
and the shear modulus must be anisotropic. Material properties of
this form cannot be constructed exactly since the shear modulus µeff

θ

becomes unbounded as r → r1 (the inner boundary of the cloak). In
this limit the density behaves as ρeff = (pca)−1ρ0R

2−p
0 + . . . where

p, c > 0 define the mapping in the vicinity of the inner boundary
according to r = a + cRp

0 + . . . as R0 → 0. In practice of course,
approximations are required as described in e.g. [Schurig et al. (2006);
Farhat et al. (2008); Zhang et al. (2011)]. Note that, as expected [Nor-
ris and Shuvalov (2011)], the total mass is conserved since, regardless
of the mapping, the integral of the density ρeff(r) over r ∈ [a, d]
is πD2ρ0.

A frequently quoted example due to its simplicity is the mapping

g(R0) = a+R0

(
d− a
d

)
(12.51)

so that the required cloak properties are

µeff
r (r) = µ0

(
1− a

r

)
, µeff

θ (r) = µ0

(
r

r − a
)
,

ρeff(r) = ρ0

(
1− a

r

)( d

d− a
)2

. (12.52)

We note that µeff
r and ρeff tend to zero and µeff

θ becomes unbounded
as r → a on the inner boundary of the cloak.
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12.4.2. Cloak realisation via homogenization

of layered media

From the transformation method above it is clear that a perfect cloak
cannot be produced (as should be expected). However if a mate-
rial that has approximately the same properties can be constructed
(we call this material a metamaterial) the cloak could be achieved
approximately, i.e. some wave scattering will occur but its magnitude
in comparison to the incident energy will be small. In order to achieve
this we require a metamaterial that has a very small mass density and
radial shear modulus near the inner cloak boundary but also a very
large azimuthal shear modulus near the inner boundary. Additionally
the material must be structured in such a way so that the mate-
rial properties are inhomogeneous and vary radially in the manner
described in (12.52) above. One can imagine various mechanisms for
producing such anisotropy and inhomogeneity. One such scheme was
proposed by Sanchez-Dehesa and Torrent [Sánchez-Dehesa and Tor-
rent (2008)] in the acoustics context. They imagined using a layered
medium as depicted in Figs. 12.1 and 12.2 with each layer itself pos-
sessing constant material properties. The radial variation in moduli

a

d

incoming wave

Fig. 12.1. Cloak with outer radius d and inner radius a. A zoom into the rectan-
gular region highlighted is given in Fig. 12.2 where we see that locally the material
is approximately a layered medium.
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Fig. 12.2. Local geometry of the cloak — i.e. a layered medium. Each “cell”
consists of two layers — here denoted with alternating shading. Local effective
properties of the two layer medium are determined from classical expressions for
effective properties of layered media.

is therefore piecewise constant and induces anisotropy. It becomes a
better approximation to the required metamaterial properties as we
increase the number of layers as we shall see below. The construction
of a finely layered medium itself is a rather difficult engineering task
and since we also require the properties of the layers to vary with
radial distance (by using some additional microstructure within each
layer) this increases the technological difficulty.

In order to induce the necessary anisotropy we introduce a cell
that consists of two isotropic layers. The properties of each layer vary
radially with the cell position as depicted by the different shadings
in Fig. 12.2. The effective antiplane shear properties of such a two
layered cell (with properties µ1, ρ1 and µ2, ρ2 with volume fraction φ
of phase 1 material, are [Backus (1962)]

µ∗r =
(
φ

µ1
+

1− φ
µ2

)−1

, µ∗θ = φµ1 + (1− φ)µ2,

ρ∗ = φρ1 + (1− φ)ρ2. (12.53)

We note that we have assigned the property in the direction per-
pendicular to the layer surfaces as µ∗r whereas that in the parallel
direction is µ∗θ neglecting the curvature effects here. As in [Sánchez-
Dehesa and Torrent (2008)] let us choose φ = 1/2 so that both layers
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are of equal thickness. Therefore (12.53) become

µ∗r
µ0

= 2
(
µ0

µ1
+
µ0

µ2

)−1

,
µ∗θ
µ0

=
1

2µ0
(µ1 + µ2),

ρ∗

ρ0
=

1
2ρ0

(ρ1 + ρ2)

(12.54)

where we have introduced the “background” material properties of
the exterior region µ0 and ρ0 in order to non-dimensionalize.

These properties vary from cell to cell because we choose differ-
ent material properties for the two individual layers in each cell. This
therefore permits us to determine the necessary material properties
within the cell by equating these homogenized properties (as func-
tions of r) with the required cloaking properties. Clearly in practice
the effective properties would be piecewise constant but as the layer
thickness gets smaller this dependence becomes smoother.

The choice of approach is non-unique. As an example, let us first
set µ2 = µ2

0/µ1 so that if we now consider the effective properties to
be a (continuous) function of r we require the homogenized properties
of the layered cloak to take the form

µ∗r(r)
µ0

= 2
(

µ0

µ1(r)
+
µ1(r)
µ0

)−1

,
µ∗θ(r)
µ0

=
1
2

(
µ0

µ1(r)
+
µ1(r)
µ0

)
.

(12.55)

Equating µ∗θ with the necessary cloak property µeff
θ as given for the

specific mapping in (12.52), and solving for µ1 we obtain

µ1(r) = µeff
θ (r) +

√
(µeff

θ (r))2 − µ2
0 (12.56)

so that

µ1(r)
µ0

=
r

(r − a) +

√(
r

r − a
)2

− 1. (12.57)

This also fixes the function µ2(r) via the relation µ2 = µ2
0/µ1 and

ensures that the shear modulus cloaking properties are achieved.
To prescribe the appropriate density one option is to set the phase

speeds of each layer to be equal c1(r) = c2(r). We wish to equate the
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effective density ρ∗ with the cloaked density property ρeff(r) so that

ρ∗(r) =
1
2
(ρ1(r) + ρ2(r)) = ρ0

(
1− a

r

)
α2 (12.58)

where we have introduced α = d/(d − a). Substituting ρ1(r) =
µ1(r)c21(r) and ρ2(r) = µ2(r)c21(r) into (12.58) then yields

c21(r) =
2ρ0α

2(r − a)
r(µ1(r) + µ2(r))

, (12.59)

from which we can determine ρ1(r) and ρ2(r). Alternatively, one
could insist that for example ρ1(r) has the same functional depen-
dence on r as µ1(r) which then fixes ρ2(r) via (12.58).

Suppose we have N cells in the cloak, i.e. we have a total of
2N layers in the region between r = a and r = d. These are the
alternating 1 and 2 phases but where the material properties of these
phases vary with r. The layer thickness is

δ =
(d− a)

2N
. (12.60)

The ordering of the layers does not matter, so begin on the inner face
of the cloak with phase 1, then 2. We assign the (constant) material
properties of the nth layer as those of the inhomogeneous functions
evaluated at their outer interface, i.e. on r = a+nδ, n = 1, 2, . . . , 2N
so that the outermost layer (a phase 2 layer) has properties evaluated
at r = d. Proceeding in this manner also avoids the obvious singu-
larity at r = a.

In Figs. 12.3 and 12.4 we illustrate the use of the above technique
in the situation where there are 50 and 200 layers within the cloak
region and a plane wave is incident from the right. The phase proper-
ties, varying as a function of r are chosen using the technique above.
In this case we have chosen D = d = 2a and ka = 4π which are
the same parameters as those used in [Sánchez-Dehesa and Torrent
(2008)]. The point source is located at (R′,Θ′) as above. In order
to solve this scattering problem we write down the solution to the
governing (Helmholtz) equation in the mth layer analytically via the



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch12 page 501

Hyperelastic Cloaking: Transformation Elasticity with Pre-stressed Solids 501

Fig. 12.3. A cloak consisting of 50 layers (N = 25) constructed via the homogeni-
sation method. The incident wave is a plane wave of unit amplitude impinging
from the right.

Fig. 12.4. A cloak consisting of 200 layers (N = 100) constructed via the
homogenisation method. The incident wave is a plane wave of unit amplitude
impinging from the right.
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standard separation of variables expansion, i.e.

wm(r, θ) =
∞∑

n=−∞
(cmnH(1)

n (kmR) + dmnH(2)
n (kmr))ein(θ−Θ′)

(12.61)

where km is the wavenumber in the mth layer and H(j)
n is the Hankel

function of nth order and jth type (j = 1, 2 correspond to outgoing
and incoming waves respectively). We satisfy continuity of displace-
ment and traction on each of the interfaces between the layers with
a traction free condition on r = a. On r = D we impose continu-
ity of traction and displacement with the solution in the external
medium, i.e.

w(r, θ) = wi + ws =
C0

4iµ0
H(1)

0 (k0S)

+
∞∑

n=−∞
(−i)nanH(1)

n (k0r)ein(θ−Θ′), (12.62)

where S =
√

(x−X ′)2 + (y − Y ′)2 and k0 is the wavenumber in the
host medium and we note the “incident” and “scattered” partition
of the field. The coefficients an are the scattering coefficients which
should be small if cloaking is successful. This solution scheme gen-
erates a large algebraic system which we invert numerically for the
coefficients cmn, dmn and an. This approach is described in further
detail in [Parnell et al. (2013)]. We plot the field in Figs. 12.3 and
12.4 for the cases of 50 layers (N = 25) and 200 layers (N = 100)
respectively. We see the qualitative improvement in cloaking (reduc-
tion of the shadow to the left) when we increase the number of layers
from 50 to 200. We have taken Θ′ = 0 and considered the limiting
case of an incident plane wave of unit amplitude which is derived by
taking the limit R′ →∞ together with source strength

C0 → Cpw = 2iµ0
√

2πk0R′ei(
π
4
−k0R′). (12.63)

Note that very few papers introduce a quantitative measure of the
success of cloaking via metamaterials. What we will do here is to
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introduce such a measure, i.e. the scattering cross section γ (see
(12.103)) and calculate its magnitude. We do this later when com-
paring this transformation (layered metamaterial) approach and the
hyperelastic method which we shall introduce shortly.

As noted earlier, although the above metamaterial construction is
feasible it is certainly formidable. An alternative construction would
be to begin with a cell which itself is transversely isotropic so that
the initial homogenization step is not required. This strategy still
requires a very large library of available material properties, now
anisotropic. Another option is to continue to use homogenization for
the local effective properties, but to limit the number of available
isotropic materials. Variation in effective properties is then obtained
by selecting the relative concentrations. Surprisingly, a considerable
degree of cloaking can be achieved with this approach, even with as
few as three distinct materials [Norris and Nagy (2010)].

12.4.3. Hyperelastic cloaking using a neo-Hookean

medium

Before describing how nonlinear pre-stress of an elastic medium can
be used to construct finite cloaks analogous to those just described
using layered materials, we shall first describe the solution of a
canonical scattering problem associated with antiplane waves in pre-
stressed nonlinear elastic media of neo-Hookean type, summarizing
the results of [Parnell (2012)].

12.4.3.1. Initial large deformation

With reference to Sec. 12.3 consider an isotropic incompressible mate-
rial of infinite extent in all directions with a cylindrical cavity of
initial radius A at the origin. Assume a finite deformation as that
depicted on the left of Fig. 12.5, which arises due to increasing the
pressure inside the cavity region, leading to an increase in the radius
(to say a) of the cavity. In order to describe this deformation math-
ematically write

R = R(r), Θ = θ, Z =
z

ζ
, (12.64)
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X

Y

R

Θ

pin = 0

pin > 0

Fig. 12.5. In an unbounded medium, a time-harmonic line source, located at
(R′,Θ′) is indicated by crossed lines and we show schematically the direction of
outward propagating waves and wave-fronts. This wave is scattered from a small
cavity of radius A � Λ where Λ is the wavelength of the source, with internal
pressure pin = 0 in the undeformed configuration. When the pressure is increased,
pin > 0, the cavity increases its radius to a such that a/Λ = O(1). A region of
inhomogeneous deformation develops around the deformed cavity.

where (R,Θ, Z) and (r, θ, z) are cylindrical polar coordinates in the
undeformed and deformed configurations, denoted B and b respec-
tively. The function R(r) will be determined from the radial equation
of equilibrium and incompressibility condition below and ζ ∈ R

+ is
an axial stretch.

The principal stretches for this deformation in the radial,
azimuthal and longitudinal directions, respectively, are

λ1 = λr =
dr

dR
=

1
R′(r)

, λ2 = λθ =
r

R(r)
, λz = ζ, (12.65)

and the deformation gradient tensor F (referred to cylindrical polar
coordinates) is

F =


λr 0 0

0 λθ 0
0 0 λz


 =


(R′(r))−1 0 0

0 r/R(r) 0
0 0 ζ


. (12.66)
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Since the medium is incompressible

λrλθλz =
rζ

R(r)R′(r)
= 1, (12.67)

which is easily solved to yield

R(r) =
√
ζ(r2 +M), (12.68)

where M = (A2 − a2)/ζ. In this section let us now consider the case
when there is no axial stretch, i.e. ζ = 1; the equation linking the
internal pressure pin and the radii a and A will be derived shortly. In
order to make further progress consider a neo-Hookean host medium,
having strain energy function [Ogden (1997)]

WNH =
µ

2
(I1 − 3) =

µ

2
(λ2

1 + λ2
2 + λ2

3 − 3). (12.69)

Integrating the radial equation of equilibrium and applying the
traction condition t|r=a = Tn|r=a = piner where er is the unit vector
in the radial direction and n = −er is the (outward) unit normal from
the elastic material, so that Trr|r=a = −pin, we find that the radial
stress is determined by

Trr(r) + pin =
µ

2

(
M

(
1
r2
− 1
a2

)
+ log

(
r2 +M

a2 +M

)
− log

(
r2

a2

))
.

(12.70)

Using the condition that Trr → 0 as r →∞ in (12.70) yields

pin

µ
=

1
2

(
1− A2

a2 + log
(
a2

A2

))
, (12.71)

which specifies the relationship of the deformed to undeformed radius
ratio a/A in terms of the scaled pressure pin/µ.

12.4.3.2. Incremental wave equation

As depicted in Fig. 12.5, SH waves are excited in the pre-stressed
medium by virtue of a line source, originally at the location (R′,Θ′)
of strength C0 (per unit length) which is moved to the location (r′,Θ′)
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after the initial (finite) deformation. The total incremental deforma-
tion is of the form

u = �[w(x, y)ez exp(−iωt)], (12.72)

where ez is the unit basis vector in the z direction. Using the theory
as presented in Sec. 12.3 the incremental equation governing w takes
the form (details of this derivation are also given in the Appendix of
[Parnell (2012)])

1
r

∂

∂r

(
rµr(r)

∂w

∂r

)
+
µθ(r)
r2

∂2w

∂θ2 + ρω2w =
C0

r0
δ(r − r′)δ(θ − θ′)

(12.73)

where

µr(r) = µ

(
r2 +M

r2

)
, µθ(r) = µ

(
r2

r2 +M

)
. (12.74)

Note that as r→∞, (12.73) reduces to

1
r

∂

∂r

(
r
∂w

∂r

)
+

1
r2
∂2w

∂θ2 +K2w =
C0

µr0
δ(r − r′)δ(θ − θ′) (12.75)

where K2 = ρω2/µ is the wavenumber associated with the unde-
formed material. Note that as r →∞ the deformation does not affect
the wave; the governing equation is simply the scalar wave equation
in the far field.

12.4.3.3. Scattering in the pre-stressed medium

In Appendix B of [Parnell (2012)] it is shown that in an unstressed
medium, given an incident point source field located at (X,Y ) =
(X ′, Y ′) of the form

Wi =
C0

4iµ
H(1)

0 (K
√

(X −X ′)2 + (Y − Y ′)2) (12.76)
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the scattered field that emanates from a cylindrical cavity of radius
A takes the form

Ws =
∞∑

n=−∞
(−i)nAnH(1)

n (KR)ein(Θ−Θ′) (12.77)

where X = R cos Θ, Y = R sin Θ,

An =
C0(−1)n

4µin−1
J′n(KA)

H(1)
n

′
(KA)

H(1)
n (KR′) (12.78)

and the prime here on the Bessel functions indicates differentiation
with respect to their argument.

In the knowledge that ζ = 1, the equation governing the incre-
mental waves in the configuration b is (12.73), or explicitly

1
r

∂

∂r

((
r +

M

r

)
∂w

∂r

)
+

1
(r2 +M)

∂2w

∂θ2 +K2w

=
C0

µr0
δ(r − r′)δ(θ − θ′), (12.79)

noting again that K is the wavenumber associated with the unde-
formed material. In this specific case of a neo-Hookean elastic mate-
rial we can, in fact, solve the problem analytically and we show,
perhaps surprisingly, that the scattering coefficients are completely
unaffected by the pre-stress and therefore even though the cavity
has increased significantly in size, its scattering effect on incident
waves remains weak, when the wavelength of the incident wave is
long compared to the undeformed cavity radius A.

To illustrate the method of solution, introduce the following map-
ping into (12.79):

R2 = r2 +M, Θ = θ (12.80)

and we note that this mapping corresponds exactly to the initial
finite deformation (12.64) and (12.68). Upon defining W (R,Θ) =
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w(r(R), θ(Θ)), we find

∂2W

∂R2 +
1
R

∂W

∂R
+

1
R2

∂2W

∂Θ2 +K2W =
C0

µ

1
r0
δ(r − r′)δ(Θ −Θ′).

(12.81)

It is straightforward to show that

1
r′
δ(r − r′) =

1
R′ δ(R −R′) (12.82)

and hence (12.81) becomes

∇2W +K2W =
C0

µ

1
R′ δ(R −R′)δ(Θ −Θ′). (12.83)

This can therefore be straightforwardly solved. The incident field in
the mapped domain is given by (12.76), which then gives rise to the
scattered field as in (12.77) except that An are replaced by an, the
scattering coefficients in the pre-stressed domain. Since the antiplane
traction-free boundary condition on R = A is not affected by the
imposed pre-stress, the scattering coefficients an are given by

an = An =
C0(−1)n

4µin−1
J′n(KA)
H′

n(KA)
Hn(KR′). (12.84)

We now map back to the deformed configuration, using (12.80);
the incident and scattered fields in the deformed configuration are
therefore

wi(r) =
C0

4iµ

∞∑
n=−∞

ein(θ−θ′)

×
{

Hn(K
√
r′2 +M)Jn(K

√
r2 +M), r < r′,

Hn(K
√
r2 +M)Jn(K

√
r′2 +M), r > r′,

(12.85)

and

ws(r) =
∞∑

n=−∞
(−i)nanHn

(
K
√
r2 +M

)
ein(θ−θ′) (12.86)

where we used Graf’s addition theorem to obtain the form (12.85)
[Martin (2006)].
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Perhaps most important to note is that the scattering coefficients
an depend on the initial distance R′ between the centre of the cavity
and the source location, and the undeformed cavity radius A and
they are unaffected by the pre-stress, an = An. The wave field close
to the cavity is affected by the pre-stress and in fact waves are bent
around the cavity, whereas in the far-field the wave that is seen will
be identical to the field that would be seen in that region when
scattering takes place from the undeformed cavity. Since scattering
is weak in the latter case (KA � 1), it will also be weak from the
deformed (large) cavity (Ka = O(1)).

The analytical solution to the scattering problem above was
first derived in [Parnell and Abrahams (2011)] and used in [Par-
nell and Abrahams (2012)] to consider antiplane wave scattering
in a pre-stressed microvoided composite with a neo-Hookean host
phase. A general asymptotic methodology that determines the scat-
tered field when the hyperelastic medium is more general than neo-
Hookean was introduced in [Shearer et al. (2015)].

12.4.3.4. Cloaking

In order to illustrate the above theory for a specific case, con-
sider the situation where a/A = 20 with KA = 2π/20,Ka = 2π.
We set KR′ = 8π,Θ′ = 0. On introducing the wavelength Λ via
Λ = 2π/K, this choice ensures that Λ/A = 20 (weak scattering)
whereas Λ/a = 1. Having the ratio Λ/a = 1 in an unstressed medium
would normally result in strong scattering and the notable presence
of a scattered field and shadow region. Using pre-stress however,
the scattering effect of a cylindrical cavity of radius a such that
Ka = O(1) is equivalent to that of the undeformed cavity with
KA � 1, i.e. very weak. Note that an inner pressure of around
pin/µ = 3.5 ensures this deformation.

We illustrate this situation with three plots of the total wave
field in Fig. 12.6. On the left we show the total field W = Wi +Ws

(defined in (12.76)–(12.78)) resulting from scattering from the small
cylindrical cavity (KA = 2π/20) in an undeformed medium. Since
Λ  A, scattering is very weak and the scattering effect cannot be
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Fig. 12.6. Total antiplane wave-field due to a line source located at R′ = 8π,
Θ′ = 0 in an undeformed configuration. The source is shown as a small finite
region to avoid the large values near its origin. We show the total field in the case
of a small cavity with KA = 2π/20 (left), a deformed cavity in the pre-stressed
medium (A → a) with Ka = 2π (middle) and a large cavity with KA = 2π
in an unstressed medium (right). This illustrates the possibility of cloaking via
pre-stress.

seen on the plot. In the middle plot we show the equivalent problem
but with the pre-stressed cavity inflated from A to a so that Ka = 2π
and the total displacement field plotted is w = wi +ws as defined in
(12.85) and (12.86). As shown theoretically above, the scattered field
remains the same as for the undeformed problem and therefore even
though Ka = 2π = O(1), scattering is weak. This is in contrast to
the plot on the right of the Fig. where we show the total field wave
W = Wi +Ws for an undeformed cavity with KA = 2π, illustrating
the total wave field that would result in an unstressed medium in
this scenario and the fact that it gives rise to strong scattering and
a noticable shadow region.

The above invariance result shall now be used in a more general
setting in order to illustrate how hyperelastic deformation can be
used to generate a finite cloak

12.4.4. Finite antiplane elastic cloaks using nonlinear

pre-stress

12.4.4.1. Invariance using a neo-Hookean cloak

A general objective is of course to develop a finite cloak, rather than
an infinite (hyperelastic) cloak as described in the previous section.
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a
A

d = D

D

1
ζ

µe, ρe

µ, ρ

µr(r), µθ(r), ρ

Fig. 12.7. The incompressible neo-Hookean cylindrical annulus is pre-stressed
as depicted on the right. This annulus then creates a cloak when slotted into a
cylindrical cavity in an unbounded elastic medium, as illustrated on the left.

One mechanism to achieve this in the SH case was described in [Par-
nell et al. (2013)]. Consider the configuration as depicted in Fig. 12.7:
an elastic material within which is located a cylindrical cavity of
radius D. Let us assume that the density of this medium is ρe and
its axial shear modulus (corresponding to shearing on planes parallel
to the axis of the cylindrical cavity) is µe. Additionally we take a
cylindrical annulus of isotropic incompressible neo-Hookean mate-
rial (with strain energy function defined by (12.69)) with associated
shear modulus µ and density ρ and with inner and outer radii A
and D respectively with A � D. The exact nature of this latter
relationship will be described shortly. We shall consider deforma-
tions of the cylindrical annulus in order that it can act as an elasto-
dynamic cloak to incoming antiplane elastic waves. We deform the
material so that its inner radius is significantly increased (to a) but
its outer radius d = D remains unchanged. The deformed cylindri-
cal annulus can then slot into the existing cylindrical cavity region
within the unbounded (unstressed) domain. We choose µ and ρ so
that subsequent waves satisfy the necessary continuity conditions on
r = d = D. We consider the initial deformation of the cylindri-
cal annulus domain as depicted in Fig. 12.7. Since the material is
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incompressible, the deformation is induced either by applying a uni-
form axial stretch ζ or a radial pressure difference pout − pin where
pout and pin denote the pressures applied to the outer and inner
face of the cylindrical annulus respectively. The ensuing deformation
in the annulus is therefore described via (12.64) but now we take
ζ �= 1 unlike the hyperelastic cloak case considered in the previous
subsection.

In this case, ensuring that d = D means that instead of (12.68) we
find that M = D2(ζ−1 − 1). Furthermore imposing the requirement
that R(a) = A we find that

ζ =
D2 −A2

D2 − a2 . (12.87)

One can easily determine the relation between applied pressures and
deformation as with the unbounded case above, and it is deduced
that

ζ

µ
(pin − pout) =

1
2ζ

(
1− A2

a2

)
+ log

( a
A

)
. (12.88)

Now assume that the cylindrical annulus has been pre-stressed in
an appropriate manner and slotted into the unbounded elastic mate-
rial with perfect bonding at r = d. We consider wave propagation in
this medium given a time-harmonic antiplane line source located at
(R′,Θ′) with R′ > d. In r > d the antiplane wave with corresponding
displacement which we shall denote by w(r, θ), is again governed by
(12.75) but with wavenumber ke = ω

√
ρe/µe and of course no inho-

mogeneous term on the right hand side. In the region a ≤ r ≤ d = D,
the wave satisfies a different equation since this annulus region has
been pre-stressed according to the deformation (12.64) and (12.68).
We can obtain the governing equation using the theory of small-on-
large [Ogden (1997)]. It was shown in [Parnell et al. (2012)] that the
wave in this region satisfies (12.73) but now where µr(r) and µθ(r)
are defined via

ζ

µ
µr(r) =

µ

ζµθ(r)
= 1 +

M

r2
. (12.89)

The density remains as ρ.
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Let us introduce the identity mapping for r > D and

R2 = ζ(r2 +M), Θ = θ, for a ≤ r ≤ D (12.90)

which corresponds to the actual physical deformation (12.68). Finally
define W (R,Θ) = w(r(R), θ(Θ)). It is then straightforward to show
that the equation governing wave propagation in the entire domain
R ≥ A is (12.83), provided that we choose µ = ζµe and ρ = ζρe.
These relations ensure that the wavenumbers in the exterior and
cloak regions are the same and they also maintain continuity of
traction on R = D. Furthermore since (12.90) corresponds to the
actual deformation, the inner radius a maps back to A. Therefore
with the appropriate choice of cloak material properties, the scat-
tering problem in the undeformed and deformed configurations are
equivalent. As with the unbounded cloak case considered in the pre-
vious chapter we can therefore solve the equation in the undeformed
configuration and map back to the deformed configuration to obtain
the physical solution. Decomposing the solution into incident and
scattered parts W = Wi +Ws where Wi is as defined in (12.76) and
Ws is as defined in (12.77) with An → an which is determined by
imposing the traction-free condition on R = A.

We want the wave field with respect to the deformed configura-
tion, so we map back using (12.90) in order to find w = wi + ws.
The incident wave is most conveniently determined by using Graf’s
addition theorem in order to distinguish between the regions r < R′

and r > R′, as was described in [Parnell (2012)]. The incident and
scattered fields are then, respectively,

wi(r) =
C0

4iµe

∞∑
n=−∞

ein(θ−θ′)

×




H(1)
n (KR′)Jn(K

√
ζ(r2 +M)), a ≤ r < D,

H(1)
n (KR′)Jn(Kr), D ≤ r < R′,

H(1)
n (Kr)Jn(KR′), r > R′,

(12.91)
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ws(r) = − C0

4iµe

∞∑
n=−∞

ein(θ−θ′) J′n(KA)

H(1)
n

′
(KA)

H(1)
n (KR′)

×

H(1)

n

(
K
√
ζ(r2 +M)

)
, a ≤ r < D,

H(1)
n (Kr) , r ≥ D.

(12.92)

The key to cloaking is to ensure that the scattered field is small
compared with the incident field, i.e. an � 1. Note from (12.84) that
an are solely dependent on the initial annulus inner radius A (and
source distance R′) but are independent of the deformed inner radius
a. Therefore we must choose A such that KA� 1 which will ensure
negligible scattering. We illustrate with some examples in Fig. 12.8,
showing that the hyperelastic cloak appears to work relatively well.
Quantitative analysis using the notion of a scattering cross section
will be described shortly.

12.4.4.2. Near-cloaks with other media

Mathematically it has been shown that neo-Hookean material
behaviour gives rise to the invariance principal and the idea of
hyperelastic cloaking. However one could suppose that since many
nonlinear materials behave in a neo-Hookean manner for relatively
small deformations these alternative media may also be reasonable
candidates for a cloak. Here we consider the Mooney-Rivlin strain
energy function as a candidate for more realistic materials and com-
pare this with layered media in the spirit of the work by [Sánchez-
Dehesa and Torrent (2008)], summarizing the work of [Parnell et al.
(2013)].

The neo-Hookean model for hyperelastic materials is an approx-
imation which is acknowledged to be valid up to “moderate”
strains. Clearly here, the larger the strain we induce the larger
the deformed cavity and the more effective the cloaking is. There-
fore we are certainly interested in the large strain regime. An
improved model for hyperelastic materials of a rubber nature is
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Fig. 12.8. Cloaking of antiplane shear waves. An antiplane line source is located
at Kr = KR′ = 8π, Θ′ = 0, shown as a white circle. Upper left: A region
of (nondimensionalized) radius Ka = 2π is cloaked using a classic linear elastic
cloak g(R) = a+R

`
d−a

d

´
in 2π ≤ Kr ≤ 4π as defined in (12.51). Upper right:

Scattering from a cavity of radius KA = 2π/20 in an unstressed medium. Lower
left: A hyperelastic cloak in 2π ≤ Kr ≤ 4π generated from an annulus with initial
inner radius KA = 2π/20. Lower right: Scattering from a cavity with radius
KA = 2π in an unstressed medium. Scattering and the shadow region presence
in the latter is significant, as compared with that for an equivalent sized cavity
for the hyperelastic cloak.

the so-called Mooney-Rivlin model with associated strain energy
function

WMR =
µ

2
(S1(λ2

r + λ2
θ + λ2

z − 3)

+ (1− S1)(λ2
rλ

2
θ + λ2

rλ
2
z + λ2

θλ
2
z − 3)) (12.93)

where S1 ∈ [0, 1] is an additional material parameter.
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As some background to the above, the neo-Hookean model was
apparently first proposed by Treloar in his 1943 paper [Treloar
(1943)]. It was shown by Rivlin, in 1948 [Rivlin (1948a)], that the
deformation produced on a unit cube of such a material by the action
of three equally and oppositely directed forces acting normally on its
faces is uniquely determined provided that the forces per unit area,
measured in the deformed state, are specified. The Mooney-Rivlin
model was proposed by Mooney in his 1940 paper [Mooney (1940)]
and the same uniqueness theorem as above was proved by Rivlin in
[Rivlin (1948b)] for this model.

In the case of a pre-stressed Mooney-Rivlin annulus, the wave
equation in the cloak region cannot be solved explicitly. It therefore
has to be solved numerically inside this finite domain. Outside the
cloak region we represent the field in the form w = wi + ws where

wi(r) =
C

4iµe

∞∑
n=−∞

ein(θ−θ′) ×
{

H(1)
n (keR

′)Jn(ker), D ≤ r < R′,
H(1)

n (ker)Jn(keR
′), r > R′,

(12.94)

and

ws(r) =
∞∑

n=−∞
(−i)naMR

n H(1)
n (ker) ein(θ−θ′) (12.95)

and we must understand how the scattering coefficients aMR
n vary

with pre-stress. From the analysis above we know that at fixed fre-
quency, they are invariant under pre-stress in the neo-Hookean case
(S1 = 1 in (12.93)) which makes it ideal for cloaking.

In the cloak region we denote the wave field as wc and we pose
the total field in the modal expansion

wc(r, θ) =
∞∑

n=−∞
(−i)nFn(r)ein(θ−θ′). (12.96)

This yields the governing ordinary differential equation

1
r

d

dr

(
rµr(r)

dFn

dr

)
+
(
ρω2 − µθ(r)

r2

)
Fn = 0 (12.97)
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where

µr(r) =
Tµ

ζ2

(
1 +

m

r2

)
, µθ(r) =

Tµ

ζ2

(
1− m

(r2 +M)

)
(12.98)

where m = MS1ζ/T and T = 1 + (ζ − 1)S1. Equation (12.97) is
solved numerically in the cloak region subject to dFn/dr = 0 on the
inner boundary (traction free) and continuity of displacement and
traction with the solution in the exterior domain on r = R2, the
latter condition being defined by[

µr(r)
∂wc

∂r

] ∣∣∣∣∣
r=D

=
[
µe

(
∂wi

∂r
+
∂ws

∂r

)] ∣∣∣∣∣
r=D

. (12.99)

Note the simplification µr(D) = µ/ζ2 upon using M = D2(ζ−1− 1).
We can eliminate the scattering coefficients aMR

n between the two
conditions at R = D which leads to the single condition

1
k0ζ

F′
n(D)−

(
H(1)

n
′
(keD)

H(1)
n (keD)

)
Fn(D)

=
C0

4iµe(−i)n H(1)
n (keR

′)

(
J′n(keD)− Jn(keD)

H(1)
n (keD)

)

(12.100)

on r = D. This approach is frequently known in the literature as
a “Dirichlet to Neumann mapping”. This condition together with
the traction free condition, dFn/dr = 0 on r = a, closes the system
and enables a numerical solution to be found once material prop-
erties are specified. The scattering coefficients are then determined
by substituting the solution in either of the continuity conditions at
r = D. Various aspects of this condition, including the behaviour of
the derivative of the Hankel function, pertaining to non-reflecting
boundary conditions for time domain solutions in two and three
dimensions are discussed in [Alpert et al. (2000)].

We have not yet specified the shear modulus and density of the
cloak region nor the additional parameter S1. We note here again that
in fact in the neo-Hookean case the only reason to choose µ = ζµe and
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ρ = ζρe was to ensure the invariance under mapping and hence the
ability to determine analytically the scattering coefficients under pre-
stress. Choosing different material properties would lead to different
scattering coefficients determined by a numerical solution. To avoid
an exhaustive material parameter investigation let us fix S1 �= 1 for
the Mooney-Rivlin case and choose µ = ζµe and ρ = ζρe as in the
neo-Hookean case.

With these parameters the ODE in (12.97) was solved in Math-
ematica 7, using the command NDSolve. In particular the Gelfand-
Lokutsiyevskii chasing method is used [Berezin and Zhidkov (1965)].
The AccuracyGoal was set to 10 digits and the WorkingPrecision
was set to 50. Results will be provided in the next section.

Using the hyperelastic cloaking technique, the anisotropic, inho-
mogeneous material moduli in the cloaking region, defined by (12.98),
are induced naturally by the pre-stress and therefore exotic metama-
terials devised by the use of upscaling (homogenization) procedures,
as described in the previous section are not required. Furthermore
such metamaterials by their nature require a microstructure of finite
size so that dispersive effects will become apparent at some frequency.
This will not be the case in the context of hyperelastic cloaks since the
naturally induced properties are continuously varying. Additionally
the density of the cloak is homogeneous in the hyperelastic case.

12.4.4.3. Scattering cross section

We wish to ascertain quantitatively the effectiveness of cloaking using
the techniques introduced above. In order to do this we need a mea-
sure of the magnitude of scattering. A convenient such quantity is the
scattering cross section (SCS). It is convenient to measure this for an
incident plane wave and therefore in the theory above we fix Θ′ = 0
and take the appropriate limit R′ → ∞ together with the source
strength limit (12.63) in order to yield an incident left propagating
plane wave of unit amplitude, i.e. wi = e−ikex. In this limit, we also
note that on the right hand side of (12.100)

C0

4iµe(−i)n H(1)
n (keR

′)→ 1. (12.101)
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Given the general form of a scattered antiplane wave field as

ws =
∞∑

n=−∞
(−i)nanH(1)

n (ker)ein(θ−Θ′) (12.102)

where an are the associated scattering coefficients, we define the scat-
tering cross section for antiplane wave scattering from an inclusion
of radius r1 as [Lewis et al. (1976)]

γSH =
2

ker1

(
|a0|2 + 2

∞∑
n=1

|an|2
)
. (12.103)

We note that for plane wave incidence on a traction free cavity of
radius a in an otherwise uniform elastic medium we would have

an = − J′n(kea)

H(1)
n

′
(kea)

(12.104)

and this case therefore corresponds to having no cloak around the
cavity. This is clearly a useful comparison case. We would of course
expect that having a good cloak leads to a reduction in scattering as
compared with this case.

In order to provide a fair comparison of results let us fix the inner
and outer radii of the cloak as a = 2π and D = 4π respectively. We
then plot γSH as a function of kea by varying ke which is equivalent to
considering incident waves of different wavelengths (or frequencies).
For the hyperelastic cloak we fix the initial inner radius as A = π/10.
Reducing A further would further reduce the associated scattering
cross section.

In Fig. 12.9 we plot γSH for the case of a layered cloak as
introduced above and we plot this for an increasing number of lay-
ers 2j , j = 1, 2, . . . , 8. The number of cells N as defined above is
N = 2j−1. We also plot the case of scattering with no cloak (the
red curve, notable by its lack of oscillations). For low frequencies
kea < 1 scattering is always small and so we pay attention mainly to
higher frequencies when kea > 1. As the number of layers increases
we see the significant reduction in scattering cross section, to the
extent that for kea > 1 and in the plot range considered, by the
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Fig. 12.9. Plot (on a logarithmic scale) of the scattering cross section for the lay-
ered metamaterial cloak with an increasing number of layers 2, 4, 8, 16, 32, 64, 128
and 256 (black then blue curves, top to bottom). We also plot the case of no cloak
to enable comparison (red curve with no oscillations). The improvement at larger
N is clear. We note the oscillations for the cloak case are due to the layers being
of finite width.

time we reach 128 layers γSH � 0.01 and for 256 layers γSH � 0.001.
We note that we need at least 32 layers before a significant cloaking
effect is achieved, although 16 layers achieves good cloaking up to
around kea = π with an approximate reduction in scattering of 90%.
The reason for the poor performance for small N is clearly because
by having a small number of layers we are introducing a number
of large impedance mismatches and hence significant scattering. The
magnitude of these mismatches reduce significantly as we increase the
number of layers. We note the oscillations in the plotted curves, which
are clearly associated with the fact that the cloak is constructed from
layers of finite width.

In Fig. 12.10 we retain a number of plots from the layered case
(the cases of 4, 16, 64 and 256 layers) in order to compare these results
with the hyperelastic case. The neo-Hookean cloak exhibits outstand-
ing cloaking performance, the results being equivalent to the 256 layer
metamaterial. Whilst the Mooney-Rivlin materials do not achieve the
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Fig. 12.10. Plot (on a logarithmic scale) of the scattering cross section for the lay-
ered metamaterial cloak with an increasing number of layers 4, 16, 64 and 256 (top
to bottom — curves with oscillations) together with the corresponding plots for
the hyperelastic cloaks (smooth monotonic curves) corresponding to neo-Hookean,
Mooney-Rivlin S1 = 0.9 and S1 = 0.8 (bottom to top). The initially uppermost
(red) smooth curve is associated with scattering when no cloak is present, which
enables useful comparisons to be made.

same level of performance as the neo-Hookean cloak we see that for
much of the parameter range considered γ � 0.1. This amounts to
a 90% reduction in scattering which in practical terms is extremely
useful.

12.5. Transformational Invariance
for Hyperelastic Cloaking

Let us now broaden our perspective and consider the general elasto-
dynamics problem of coupled compressional and shear waves. The
objective is to find possible hyperelastic solids, i.e. strain energy
functions W, such that the equations for small-on-large motion
are equivalent to those required after transformation of a material
assumed to be homogeneous with properties {ρ0, C

0
IjK�}.
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The connection between the transformation and the small-on-
large theories is made by first identifying the displacement fields as
equivalent, ueff(x, t) = u(x, t), and then requiring that the equations
of motion (12.9) and (12.46) (coupled with (12.28)) are the same.
This is the case if

ρ = γρeff, Mijk� = γCeff
ijk�, (12.105)

for some positive constant γ. Hence,

J−1ρr = γJ−1
0 ρ0, J−1 FiMFkN LMjN� = γJ−1

0 F 0
iIF

0
kK C0

IjK�.

(12.106)

The reference density ρr can then be chosen so that γ = 1, and
Eq. (12.106) then implies that the hyperelastic material is defined by

ρr = ρ0J
−1
0 J, LMjN� = J−1

0 J F−1
MiF

0
iI F

−1
NkF

0
kK C0

IjK�. (12.107)

Equation (12.107)1 is automatically satisfied if the transformation
and the finite deformation are related in the following manner:

F =
(
gρr/ρ0

)1/3 F0G−1, g = detG, (12.108)

for some non-singular G. Equation (12.108) combined with the
expression for LMjN� in Eq. (12.107) yields a second order differential
equation for the strain energy function,

∂2W
∂FjM∂F�N

=
(

ρr

g2ρ0

)1/3

GMIGNKC
0
IjK�. (12.109)

Recall that ρ0 and C0
IjK� are constant, but at this stage the

remaining quantities in (12.109), i.e. ρr and G, are not so constrained.
The density in the reference configuration could be inhomogeneous,
ρr = ρr(X). In that case (12.109) would not have a general solution
forW unless G also depends upon X in such a manner that the right
hand side is independent of X. This suggests that permitting ρr to be
inhomogeneous does not provide any simplification, and we therefore
take the reference density to be constant, although not necessarily the
same as ρ0. The quantity G could, in principle, be a matrix function
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of F, but this makes the integration of (12.109) difficult, if not impos-
sible. We therefore restrict attention to constant G. Consideration
of the important case of isotropic elasticity in §12.5.1 indicates that
the degrees of freedom embodied in G do not provide any significant
additional properties, and therefore from hereon-in we take G = I,
and set ρr = ρ0 with no loss in generality. In this case the solution
of (12.109) such that W = 0 under zero deformation (F = I) is

W =
1
2
(FjM − δjM )(F�N − δ�N )C0

MjN�. (12.110)

Equation (12.110) provides a formal solution forW that is consis-
tent with (12.109). However, the dependence of W in (12.110) upon
F points to a fundamental difficulty, since the strain energy should
be a function of the right stretch tensor U . The two are not equal in
general, unless

R = I ⇔ F = U = V . (12.111)

We henceforth assume (12.111) to be the case: that is, we restrict con-
sideration to deformations that are everywhere rotation-free. Equa-
tion (12.110) then suggests the following possible form of the finite
strain energy

W =
1
2
EjME�N C0

MjN� where E ≡ U − I. (12.112)

Although this has realistic dependence on U , it will not in general
satisfy Eq. (12.109), i.e. ∂2W/∂FjM∂F�N �= C0

MjN�. We return to this
crucial point for isotropic elasticity in §12.5.3 where we demonstrate
that Eq. (12.109) is satisfied by the isotropic form of (12.112) under
additional conditions. Note that the strain measure E, which is some-
times called the extension tensor, has as conjugate stress measure
Sa = ∂W/∂E = 1

2(SU +US) where S is the second Piola-Kirchhoff
tensor introduced in (12.24) [Dill (2007), §2.5].

Let us now summarize the two approaches of transformation elas-
ticity and the theory of small on large and explore their connections.
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Transformation elastodynamics

Untransformed (unphysical) medium, density ρ0, moduli C0
ijk�,

∂

∂Xi

(
C0

ijk�

∂U0
�

∂Xk

)
+ ρ0ω

2U0
j = 0.

Mapping x = χ0(X),F0 = Gradχ0 to the transformed (physical)
domain:

∂

∂xi

(
Ceff

ijk�

∂ueff
�

∂xk

)
+ ρeffω2ueff

j = 0,

where ρeff = J−1
0 ρ0 and

Ceff
ijk� =

1
J0
F 0

imF
0
knC

0
mjn�.

Small-on-large

Reference (undeformed) medium of density ρr, defined by strain
energy function W.

Finite deformation x = χ(X),F = Gradχ and small-on-large
equations:

∂

∂xi

(
Mijk�

∂u�

∂xk

)
+ ρω2uj = 0,

where ρ = J−1ρr and

Mijk� = J−1FiMFkN
∂2W

∂FjM∂F�N
.

Connecting the two theories

Properties are defined by equating the following quantities:

ueff = u, ρeff = ρ, Ceff
ijk� = Mijk�.
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We restrict attention henceforth to the case of hyperelastic mate-
rials that are isotropic in the undeformed state.

12.5.1. Isotropy — the semilinear strain energy

function

The initial moduli are C0
αjβl = λ0δαjδβl + µ0(δαβδjl + δlαδjβ) with

original Lamé moduli µ0 > 0, λ0 and Poisson’s ratio ν = λ0/[2(λ0 +
µ0)] ∈ (−1, 1

2). We consider the isotropic version of the hyperelastic
strain energy in (12.112),

W =
λ0

2
(trE)2 + µ0tr(E)2 =

λ0

2
(i1 − 3)2 + µ0

(
(i1 − 1)2 − 2(i2 − 1)

)
,

(12.113)

with the latter expression in terms of two of the three invariants
of U : i1 = λ1 + λ2 + λ3, i2 = λ1λ2 + λ2λ3 + λ3λ1 where λ1, λ2,
λ3 are the principal stretches of U . Materials with strain energy
(12.113) have been called semilinear [Lur’e (1968)] because of its
relative simplicity and the linear form of the Piola-Kirchhoff stress
P which we recall is related to the Cauchy stress by T = J−1FPT ;
thus P = 2µ0F +

(
λ0(trE) − 2µ0

)
R. John [John (1960)] proposed

the strain energy (12.113) based on the explicit form of its com-
plementary energy density in terms of P, a property also noted by
others [Zubov (1970); Raasch (1975)]. The semilinear strain energy
is a special case of the more general harmonic strain energy function
[John (1960)]. Plane strain solutions for harmonic strain energy are
reviewed in [Ogden (1997), §5.2]. Sensenig [Sensenig (1964)] exam-
ined the stability of circular tubes under internal pressure, while
Jafari et al. [Jafari et al. (1984)] considered both internal and external
pressure loading. The latter study has implications for the stability
of the pre-strain developed here, see §12.6.2.3.

For semi-linear materials, the Cauchy finite pre-stress follows as

T = J−1[λ0(i1 − 3)V + 2µ0(V2 − V)
]
. (12.114)

It is emphasized that we are restricting attention to deformations
with U = F = Ft, so that the Piola-Kirchhoff stress is also symmetric
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with P = λ0(trE)I + 2µ0E. Applying the equilibrium equation for
the finite deformation,

DivP = 0 ⇒ λ0xα,αj + 2µ0xj,αα = 0. (12.115)

We seek solutions with symmetric deformation gradient, xj,α = xα,j,
and hence xα,αj = xj,αα. Consequently Eq. (12.115) is satisfied
by finite deformations satisfying either of the equivalent conditions
xj,αα = 0 and xα,αj = 0. Thus:

if xj,α = xα,j then xα,αj = 0 ⇔ xj,αα = 0. (12.116)

Since the two partial differential equations in (12.116) are the same
we need only seek solutions of one. Focusing on xα,αj = 0 we conclude
that the most general type of deformation x(X) is described by

Div x = c (= constant > 0), where Div x =
(
Div x

)T
. (12.117)

The appearance of the positive constant of integration in (12.117)1

means that the sum of the principal stretches is fixed,

λ1 + λ2 + λ3 = c, (i1 = c). (12.118)

Further implications of the general solution (12.117) for a material
that is isotropic in its undeformed state are explored in greater detail
in the next section. For now we note that the pre-stress follows from
(12.114) and (12.118) as

T = 2µ0J
−1
(
V2 − V +

(c− 3)ν
1− 2ν

V
)
. (12.119)

12.5.2. The limit of ν = 1
2

It is of interest to consider the limit of the isotropic solution for ν = 1
2 .

By assumption the pre-stress must remain finite. Consequently, using
Eq. (12.119), it becomes clear that in the limit as ν → 1

2 the constant
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of integration c ≡ 3, i.e.

W = µ0 tr(U2 − I), T = pJ−1 V + 2µ0J
−1 (V2 − V),

(12.120)

Div x = 3, F = FT (= U = V), (12.121)

where the scalar p(X) defines the constraint reaction stress (the fac-
tor J−1 is included for later simplification). The latter arises from
the limiting process of ν → 1

2 in Eq. (12.119), and has also been
shown to be the unique form of the reaction stress for the con-
straint trV = 3 [Beatty and Hayes (1992)]. Note that in writing
T in (12.120) we maintain a term proportional to V in the second
term rather than incorporating it with the constraint term. This
form is consistent with the requirement that p = 0 and hence T = 0
in the undeformed state x ≡ X. The equilibrium equation for the
pre-strain follows from Eq. (12.120) as Grad p + 2µ0Div Gradx =
0, and since Div Gradx = 0 (see Eq. (12.116)) it follows that
p = constant.

Several aspects of (12.120) are noteworthy. The limit of ν = 1
2

is usually associated with incompressibility, i.e. the constraint J = 1
or equivalently i3 ≡ λ1λ2λ3 = 1, although the reason underly-
ing this identification originates in linear elasticity and is there-
fore by no means required. Strictly speaking, the isochoric con-
straint i3 = 1 conserves volume under the deformation. Here we
find that ν = 1

2 implies the kinematic constraint on the deforma-
tion that i1 = λ1 + λ2 + λ3 = 3. The latter is associated with the
notion of incompressibility in linear elasticity in the form trE = 0
and in the present context can be viewed as a “semilinear” fea-
ture, in keeping with the descriptor [Lur’e (1968)] for the strain
energy function (12.113). The kinematic condition, Divx = 3 or
equivalently

λ1 + λ2 + λ3 = 3
(
trV = 3

)
, (12.122)

has been called the Bell constraint [Beatty and Hayes (1992)] by
virtue of the fact that Bell [Bell (1985, 1989)] showed it to be
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consistent with numerous sets of data for metals in finite strain.
Solids satisfying this constraint have been called Bell materials
[Beatty and Hayes (1992)]. In contrast to the constraint λ1λ2λ3 = 1
it can be shown that volume decreases for every deformation of a Bell
material, and hence isochoric deformations are not possible [Beatty
and Hayes (1992)].

Another feature of the ν = 1
2 limit is that the strain energy

in (12.120) has the functional dependence W = µ0(λ2
1 + λ2

2 + λ2
3

−3). It is interesting to compare this with the strain energy for a
neo-Hookean solid, WNH = µ0

2 (λ2
1 + λ2

2 + λ2
3 − 3), associated with

incompressibility (i.e. i3 = 1). Both strain energies reduce to the
incompressible form for linear elasticity, and the factor 1

2 appearing
in W but not in WNH can be attributed to the different constraints
in each case (i1 = 3 or i3 = 1). Parnell [Parnell (2012)] and Parnell
et al. [Parnell et al. (2012)] considered neo-Hookean materials in the
context of transformation elasticity for isochoric deformation. The
present results indicates that the same form of the strain energy
but with a different constraint yields a quite distinct class of volume
decreasing deformations. This aspect will be examined further in the
next section in terms of specific examples.

12.5.3. Consistency condition

It remains to show that the semilinear strain energy (12.113) satisfies

Lαjβl = λ0δαjδβl + µ0(δαβδjl + δlαδjβ) (12.123)

where we recall that Lijk� was defined in (12.27). Since the modulus
tensor L is isotropic, it it sufficient to show the equivalence in any
orthogonal system of coordinates. We choose the principal coordi-
nate system, in which the non-zero components satisfy those given
in (12.35)–(12.37). Using W and c as defined in Eqs. (12.113) and
(12.118) gives

Wi = λ0 (c− 3) + 2µ0 (λi − 1), (12.124)

Wii = λ0 + 2µ0, Wij = λ0, i �= j. (12.125)
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These satisfy (12.35), and (12.37). The remaining conditions (12.36)
become

Wi +Wj = 0 ⇒ (λ0 + µ0) (c − 3)− µ0 (λk − 1) = 0,

i �= j �= k �= i. (12.126)

Equation (12.126) constitutes three conditions, which taken together
imply the unique but trivial solution λi = 1, i ∈ {1, 2, 3}, i.e. zero
pre-strain. We avoid this by restricting attention to two dimensional
dynamic solutions only, either in-plane (P/SV) or out-of-plane (SH)
motion.

12.5.3.1. In-plane (P/SV) motion

The small-on-large displacements for in-plane motion are of the form
u1(x1, x2, t), u2(x1, x2, t), u3 = 0. The condition (12.126) then only
needs to be satisfied in the single instance i, j = 1, 2, implying that
the out-of-plane extension is related to the sum of the in-plane exten-
sions by

λ3 = 1− 1
2ν

(λ1 + λ2 − 2). (12.127)

Since λ3 is strictly positive, this places an upper limit on the sum of
the in-plane extensions: λ1 + λ2 < 2(1 + ν).

12.5.3.2. Out-of-plane (SH) motion

The out-of-plane SH motion is of the form u1 = u2 = 0, u3(x1, x2, t).
The requirement now is that L1313 and L2323 are both equal to µ0 in
order to recover the out-of-plane equation of motion and associated
tractions. Using (12.36) and (12.37)

L1313 − µ0 =
(
λ0 + µ0

λ1 + λ3

)[
c− 3− (1− 2ν)(λ2 − 1)

]
, (12.128)

L2323 − µ0 =
(
λ0 + µ0

λ2 + λ3

)[
c− 3− (1− 2ν)(λ1 − 1)

]
, (12.129)

where c is the constant from Eq. (12.118). In this form it is clear that
if ν �= 1

2 then in-plane pre-stretches must be the same, λ1 = λ2 =
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1+(c−3)/(1−2ν), and therefore all the stretches are constant (since
c is a constant). This rules out the possibility of SH cloaking since we
require that the in-plane pre-strain be inhomogeneous. However, if
both ν = 1

2 and c = 3 simultaneously hold, then L1313 = L2323 = µ0

for inhomogeneous and unequal in-plane stretches λ1 and λ2. We are
therefore led to the conclusion that SH cloaking requires a separate
limit of the semilinear strain energy, one satisfying the Bell constraint
(12.122) for which the strain energy and stress are given by (12.120).
Note that we do not get the neo-Hookean strain energy in this limit.

12.6. Two Dimensional Hyperelastic Cloaking for
Isotropic Elasticity

12.6.1. Radially symmetric cylindrical deformations

Consider deformations that are radially symmetric, r = r(R), θ = Θ,
in cylindrical coordinates (r, θ, x3) and (R,Θ,X3). The stretch in
the x3-direction is assumed fixed, λ3 = constant. The deformation
gradient for r = r(R) is irrotational with

(
FT =

)
F = λrIr + λθIθ + λ3I3, λr =

dr

dR
, λθ =

r

R
,

(12.130)

where Ir = er ⊗ er, Iθ = eθ ⊗ eθ and I3 = e3 ⊗ e3. The condi-
tion (12.118) implies that the sum of the in-plane principal stretches
is constant, say c0, and the constraint (12.127) relates this to c of
Eq. (12.122),

(1− 2ν)c0 + 2νc = 2(1 + ν) where c0 = λr + λθ. (12.131)

Equation (12.117) for x reduces to an ordinary differential equation
for r(R),

dr

dR
+
r

R
= c0, (12.132)

with general solution

r =
c0
2
R+ c1R

−1, c1 = constant. (12.133)



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch12 page 531

Hyperelastic Cloaking: Transformation Elasticity with Pre-stressed Solids 531

Note that the free parameter c0 may be expressed in terms of either c
or λ3, using Eqs. (12.127) and (12.131). Using Eqs. (12.119), (12.132)
and (12.130) it follows that the principal stretches and stresses for
the radially symmetric cylindrical configuration are

λr = 2− λθ + 2ν(1− λ3), λθ =
r

R
, λ3, (12.134)

and

Trr =
µ0

λ3λθ
(λr − λθ), Tθθ =

µ0

λ3λr
(λθ − λr),

Tzz =
2µ0

λrλθ
(1 + ν)(λ3 − 1). (12.135)

Note that
r

R
→ 1, Trr → 0 as r→∞ iff λ3 = 1 (⇔ c0 = 2).

(12.136)

12.6.2. Two types of cloaking

12.6.2.1. Conventional cloaking (CC)

The conventional concept of a cloaking material is that it occupies
a finite region, in this case, the shell R ∈ [A,D] which maps to an
equivalent shell in physical space with the same outer surface and
an inner surface of radius larger than the original, i.e. r ∈ [a,D],
a ∈ (A,D). Applying (12.133) with the two constraints r(A) = a

and r(D) = D yields

r = R+ (a−A)

[(
D
R

)2 − 1(
D
A

)2 − 1

]
R

A
, R ∈ [A,D], (CC)

(12.137)

which specifies the previously free parameter λ3 (also c and c0) as

λ3 = 1− 1
ν

+

[
a
A − 1(

D
A

)2 − 1

]
> 1. (12.138)
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The constraint λ3 > 0 therefore sets a lower limit in the permissible
value of the outer radius as

D > A

(
1 +

1
ν

( a
A
− 1
))1/2

. (12.139)

The mapping (12.137) must also be one-to-one within the shell
with λr = dr/dR > 0. This means that there should be no zero
of dr/dR = 0 for R ∈ [A,D]. The convex nature of the solu-
tion (12.137) implies there is only one zero, say at R = R. Since
sgn dr/dR =sgn(R − R), it follows that R < A must hold. Noting
from (12.133) thatR2 = 2c1/c0, and using (12.137) to infer c0 and c1,
the condition R2 < A2 becomes

a < amax ≡ 2A

/[
1 +

(
A

D

)2
]
. (12.140)

The magnification factor a
A ≥ 1, which measures the ratio of the

radius of the mapped hole to the radius of the original one, is there-
fore bounded according to

a

A
< 2. (12.141)

In order to achieve a reasonable degree of cloaking one expects that
the magnification factor is large, so that the mapped hole corre-
sponds to an original hole of small radius and hence small scattering
cross section. The limitation expressed by (12.141) therefore places a
severe restriction on the use of the hyperelastic material as a conven-
tional cloak. Note that the upper limit on a in (12.140) is not strictly
achievable because a = amax implies λr(A) = r′(A) = 0 and hence
the principal stresses σpre

θ , σpre
zz become infinite at r = a. Examples

of the radial deformation are given in Fig. 12.11.
The hyperelastic mapped solid has other aspects that further

diminish its attractiveness as a conventional cloaking material.
Specifically, a non-zero traction must be imposed on both the outer
and inner boundaries to maintain the state of prestress. Noting that
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Fig. 12.11. The transformed radius r as a function of R for 2D radially symmetric
pre-strain, from Eq. (12.137). The seven curves correspond to A = 0.1, 0.2, . . . , 0.7
with B = 1 in each case. The value of the mapped inner radius for each curve
is a ≡ r(A) = 0.9 amax where amax is defined in Eq. (12.140). The dashed line
indicates r = R. Mappings that lie above this line represent spatial compression,
applicable to cloaking.

the radial stress is

Trr(R) = −2µ0

λ3

R

r

[ r
R
− 1− ν(1− λ3)

]
, (12.142)

with r given in (12.137), yields

Trr(A) = Trr(D)− 2µ0

λ3

(
1− A

a

)
, Trr(D) =

2µ0

λ3
ν(1− λ3).

(12.143)

The necessity of the inner traction at r = a is a reasonable condi-
tion, but the requirement for an equilibrating traction at r = D is
physically difficult. One way to avoid this is to let D → ∞, which
will be considered next.

12.6.2.2. Hyperelastic cloaking (HC)

The hyperelastic material is now considered as infinite in extent.
The cloaking effect is caused by allowing a radially symmetric hole
in the unstressed configuration to be expanded under the action of an
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internal pressure to become a larger hole. We therefore require that
the traction at infinity is zero, and that r/R tends to unity, so that
(12.136) applies. Then setting the mapped hole radius to r(A) = a

(> A) implies the unique mapping

r = R+ (a−A)
(
A/R

)
, R ∈ [A,∞). (HC) (12.144)

This deformation is simply the limiting case of (12.137) for D →∞.
Note that the restriction (12.141) still applies to the magnification
factor a

A , in order to ensure λr > 0 for r > a. The traction at the
inner surface is a pressure which follows from (12.143) in the limit
D →∞, λ3 → 1, as

Trr(A) = −pin, where pin = 2µ0

(
1− A

a

)
. (12.145)

It is interesting to note that the internal pressure is independent of
the Poisson’s ratio ν and it is therefore the same as pin found by
[Parnell (2012)] considering SH incremental motion.

12.6.2.3. Stability of the pre-strain

Jafari et al. [Jafari et al. (1984)] examined the stability of a finite
thickness tube composed of material with harmonic strain energy,
which includes semilinear strain energy as a special case. They
showed that radially symmetric two dimensional finite deformations
are stable under interior pressurization with zero exterior pressure.
This implies that the finite pre-strain HC is stable. The stability of
the CC deformation (12.137) does not appear to have been consid-
ered, and remains an open question. However, the stability of the
HC, corresponding to D →∞, means there exists a minimum Dmin

for which CC stability is ensured for all D > Dmin.

12.6.3. The limiting case when ν = 1
2

In this limit the constraint (12.122) applies and the pre-stress for the
radially symmetric deformation follows from (12.120) with constant
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“pressure” p (see §12.5.2) as

Trr =
2µ0

λ3λθ
(λr − γ0), Tθθ =

2µ0

λ3λr
(λθ − γ0), (12.146)

where the value of the constant γ0 = 1 + p/(2µ0) depends on the
specified boundary conditions, and λr = dr/dR, λθ = r/R, with
r(R) given by Eq. (12.133) for c0 ≡ 2. For instance, in the case
of hyperelastic cloaking as defined in §12.6.2.2 we find, noting the
result (12.136), that p = 0, yielding the same interior pressure pin as
Eq. (12.145).

12.6.4. Numerical examples

We illustrate the above theory in the two dimensional setting where
we consider wave scattering from a cylindrical cavity with and with-
out a cloak, where the cloak is a conventional cloak created via
pre-stress. We shall show that partial cloaking is achieved, in the
sense that scattering is significantly reduced by the presence of the
cloak. We are not able to achieve perfect cloaking since the cavity
has to be of finite radius initially and furthermore, the hyperelastic
theory above restricts the expansion to be at most twice the initial
radius, i.e. a < 2A. We consider two cases: horizontally polarized
shear (SH) waves and coupled compressional/in-plane shear (P/SV)
waves. We take D/a = 2 which upon using (12.140) gives an initial
inner to outer cloak radius ratio D/A = 1/(2 − √3) ≈ 3.732 and
a/A = β = 1/(2(2 −√3)) ≈ 1.866.

For the SH and P/SV wave examples considered, we need to
formulate the elastic wave scattering problem in the context of the SH
and P/SV problems. These are classical problems but it is convenient
to summarize them here for completeness.

12.6.4.1. Elastic wave scattering from cylindrical cavities

Brief summaries of the two wave scattering problems are now given;
for further details see e.g. Eringen and Suhubi [Eringen and Suhubi
(1975)]. Scattering is considered from a cylindrical cavity of radius
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A, located at the origin of a Cartesian coordinate system X =
(X1,X2,X3), related to a cylindrical polar coordinate system via
X = (R cos Θ, R sin Θ, Z). An incident wave is generated by a line
source of amplitude C (a force per unit length) located at the point
(R′,Θ′). We take Θ′ ∈ [0, 2π), subtended from the positive X axis.

SH wave scattering

In this case the line source is polarized in the Z direction thus creat-
ing incident horizontally polarized shear (SH) waves which are then
scattered from the cavity without mode conversion. The total wave
field in this domain will therefore be U = (0, 0,W (X,Y )) where W
satisfies

(∇2 +K2
s )W =

C

R′ δ(R −R′)δ(Θ −Θ′) (12.147)

with K2
s = ρω2/µ0 and C = C0/µ0. We seek W in the form W =

Wi +Ws where Wi = (C/4i)H0(KsS) is the incident field and S =√
(X −X ′)2 + (Y − Y ′)2 with X ′ = R′ cos Θ′, Y ′ = R′ sinΘ′. We

have defined H0(KsS) = H(1)
0 (KsS) = J0(KsS) + iY0(KsS), the

Hankel function of the first kind, noting that J0 and Y0 are Bessel
functions of the first and second kind respectively, of order zero.
Together with the exp(−iωt) time dependence in the problem, this
ensures an outgoing field from the source. Graf’s addition theorem
allows us to write this field relative to the coordinate system (R,Θ)
centred at the origin of the cavity [Martin (2006)] and we can use
the form appropriate on R = A in order to enforce the traction free
boundary condition µ0∂W/∂R = 0 on R = A, yielding the scattered
field in the form

Ws =
∞∑

n=0

εnDnHn(KsR) cos(n(Θ−Θ′)) with

Dn = C
i

4
J′n(KsA)
H′

n(KsA)
Hn(KsR

′). (12.148)
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where Hn and Jn are respectively Hankel and Bessel functions of
the first kind of order n. We have also defined ε0 = 1, εn = 2,
n ≥ 1. If we take R′ → ∞ and C0 = 2iµ0

√
2πKsR′ei(π/4−KsR′),

the incident wave of unit amplitude takes the (plane-wave) form
Wi = exp{iKs(X cos Θinc + Y sinΘinc)} where Θinc = Θ′ − π ∈
[−π, π) is the angle of incidence subtended from the negative X axis.
The scattered wave Ws takes the form (12.148)1 with Dn → Dpw

n ≡
−inJ′(KsA)/H′

n(KsA). The scattering cross section of the cylindri-
cal cavity for plane SH wave incidence from a cavity of radius r1 was
defined in (12.103).

P/SV wave scattering

In this case the line source at (R′,Θ′) with amplitude C0 is a
compressional source. Thus the incident field consists purely of in-
plane compressional waves. Due to mode conversion, the scattered
field consists of coupled in-plane compressional (P) and vertically
polarized shear (SV) waves. The total wave field will therefore be
U = (U(X,Y ), V (X,Y ), 0) and using the Helmholtz decomposition
U = ∇Φ +∇× (Ψk), we deduce that

∇2Φ +K2
pΦ =

C

R′ δ(R −R′)δ(Θ −Θ′), ∇2Ψ +K2
s Ψ = 0

(12.149)

where K2
p = ω2ρ/(λ0 + 2µ0), K2

s = ω2ρ/µ0 and C = C0/(λ0 + 2µ0).
We seek the wave field in the form Φ = Φi + Φs,Ψ = Ψs where Φi =
(C/4i)H0(KpS) is the incident compressional wave with S defined
above in the SH scattering problem. The traction free (TRR = 0,
TRΘ = 0) boundary condition on R = A is satisfied by using Graf’s
addition theorem, and the scattered field is

Φs =
∞∑

n=0

εnAnHn(KpR) cos(n(Θ −Θ′)),

Ψs =
∞∑

n=0

εnBnHn(KsR) sin(n(Θ−Θ′)). (12.150)
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The scattering coefficients are

An =
i

4
CHn(KpR

′)[I1
n(KpA)M22

n (KsA)− I2
n(KpA)M12

n (KsA)]/∆n,

(12.151)

Bn =
i

4
CHn(KpR

′)[I2
n(KpA)M11

n (KpA)− I1
n(KpA)M21

n (KpA)]/∆n,

(12.152)

where

I1
n(x) =

(
n2 + n− 1

2(KsA)2
)
Jn(x)− xJn−1(x), (12.153)

I2
n(x) = n(n+ 1)Jn(x)− nxJn−1(x), (12.154)

M11
n (x) = −M22

n (x) =
(
n2 + n− 1

2(KsA)2
)
Hn(x)− xHn−1(x),

(12.155)

M12
n (x) = −M21

n (x) = −n(n+ 1)Hn(x) + nxHn−1(x), (12.156)

∆n = M11
n (KpA)M22

n (KsA)−M21
n (KpA)M12

n (KsA).
(12.157)

If we take R′ → ∞ together with C0 = 2i(λ0 + 2µ0)
√

2πKpR′

ei(π/4−KpR′) the incident wave of unit amplitude takes the (plane-
wave) form Φi = exp{iKp(X cos Θinc + Y sinΘinc)} where Θinc was
introduced above for the SH wave case. The plane wave scattered
fields take the form in (12.150) with An, Bn → Apw

n , Bpw
n where

the latter are given by (12.151)–(12.152) under the replacement
i
4CHn(KpR

′) → −in. The scattering cross section γP of the cylin-
drical cavity for plane compressional wave incidence (subscript P
indicating this fact) from a cavity of radius r1 is [Lewis et al. (1976)]

γP =
2

Kpr1

∞∑
n=0

εn(|Apw
n |2 + |Bpw

n |2). (12.158)

12.6.4.2. Hyperelastic cloaking for SH waves

Consider first the case when the line source is located at a distance
R′ from the centre of the cavity with R′/D = 2 and the source is of
unit amplitude, C = 1. In this case the shear wavenumber Ks of the
medium is defined by K2

s = ω2/c2s = ρ0ω
2/µ0 where ρ0 is the density
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of the medium in the undeformed configuration. We use the solution
to the SH wave scattering problem above to solve the corresponding
(conventional, pre-stress) cloak problem, the difference arising merely
due to the modified argument due to the hyperelastic deformation
(and invariance of equations). We shall always consider the case when
R′ > D, the outer cloak boundary. Thus in R > D the solution can
be written as (12.148), noting that the scattering coefficients are
equivalent to scattering coefficients for a cavity of radius A. Therein
resides the reduction in scattering. In a < R < D, the total field is
given by Wi +Ws but with an argument given by

R(r) = c−1
0 (r +

√
r2 − 2c0c1) (12.159)

i.e. that corresponding to the hyperelastic deformation described
above (see equation (12.133)).

We take 30 terms in the modal sum (12.148) for the wave field,
sufficient for convergence of the solution. Figure 12.12 shows both the
total (top) and scattered (bottom) fields corresponding to the follow-
ing problems: scattering from a cavity of radius A with KsA = 2π
in an undeformed medium (left) and scattering from a cavity with
the presence of a hyperelastic cloak (right) with undeformed (A) and
deformed (a) inner radii defined via a = βA where we recall that
β = 1.866 was defined at the start of section 12.6.4. The outer cloak
boundary D is defined by KsD = 4π (right). This demonstrates sig-
nificantly reduced scattering due to the presence of the hyperelastic
cloak as compared with the non-cloaked case. Indeed we are able to
quantify this by determining the reduction in scattering cross section,
defined in (12.103) for plane wave incidence. Without the cloak we
have γSH = 5.39 whereas with the cloak γSH = 2.61 resulting in a
51.5% reduction in scattering. Figure 12.13 illustrates the scattering
cross section γSH (left) together with the percentage reduction in
scattering (right).

12.6.4.3. Hyperelastic cloaking for P/SV waves

The incident wave is now taken to be a pure compressional wave; a
line source is located at a distance R′ from the centre of the cavity
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Fig. 12.12. SH wave field. Left: Total (top) and scattered (bottom) fields cor-
responding to an undeformed cavity with scaled radius KsA = 2π. Right: Total
(top) and scattered (bottom) fields corresponding to a conventional cloak gener-
ated via pre-stress where the scaled deformed inner radius is Ksa = 2π and initial
inner cavity radius defined by a = βA where β ≈ 1.863.

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5 6

20

40

60

80

100
γSH γ%

KsaKsa

Fig. 12.13. Scattering cross section γSH (left) and percentage reduction in scat-
tering cross section γ% by using a hyperelastic cloak (right) (with a = βA where
β ≈ 1.863.), both plotted against scaled cavity radius Ksa for the SH wave case.
The cross section is plotted without (solid) and with (dashed) a hyperelastic cloak.
A significant reduction in scattering is achieved by using a hyperelastic cloak.
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with R′/D = 2 and it is of unit amplitude C = 1. In the P/SV case,
in addition to the shear wavenumber Ks we also introduce the com-
pressional wavenumber Kp. We employ the P/SV scattering prob-
lem summarized above as a means of determining the solution for
the cloak problem. This solution is employed in the exterior region
together with the same solution but with modified argument (due to
the hyperelastic deformation) in the cloak region. Thus in R > D

the solution can be written as (12.150) with scattering coefficients
An and Bn given by (12.151) and (12.152) respectively, noting that
they are equivalent to scattering coefficients for a cavity of radius A
and therefore as in the SH case, a reduction in scattering is present.
Note that here a different effect is introduced as compared with the
SH case: shear waves are produced as a result of mode conversion on
the boundary of the cavity. In a < R < D, the total field is given by
the sum of the scattered and incident fields but with the argument
as given in (12.159) due to the hyperelastic deformation.

We take 30 terms in the modal sums (12.150), which is sufficient
for convergence of the solution. Figure 12.14 shows the scattered
fields corresponding to the P-wave (top) and S-wave (bottom) fields
associated with ν = 1/3 and for the following problems: scattering
from a cavity of radius A with KsA = 2π in an undeformed medium
(left) and scattering from a cavity with the presence of a hyper-
elastic cloak (right) with undeformed (A) and deformed (a) inner
radii defined via a/A = β. The outer cloak boundary D is defined by
KsD = 4π (right). Scattering is significantly reduced due to the pres-
ence of the hyperelastic cloak as compared with the non-cloaked case
although it is relatively difficult to see this directly with the plots.
As with the SH case, let us quantify this by determining the reduc-
tion in scattering cross section, defined in (12.158) for plane wave
incidence. Without the cloak γP = 13.564 whereas with the cloak
γP = 7.258 resulting in a 46.48% reduction in scattering. Figure 12.15
illustrates the scattering cross section γP (left) together with the per-
centage reduction in scattering (right) compared for three different
Poisson ratios: ν = 1/3, 7/15 and 49/99. Note that for very low fre-
quencies there is a huge reduction in scattering, close to 100%. This
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Fig. 12.14. Scattered fields for the in-plane P/SV problem for an incident field
generated by a compressional source at R′ = 8π,Θ′ = 0. Left: Compressional
(top) and shear (bottom) fields corresponding to an undeformed cavity with
scaled radius KpA = 2π. Right: Compressional (top) and shear (bottom) fields
corresponding to a conventional cloak generated via pre-stress where the scaled
deformed inner radius is Kpa = 2π and initial inner cavity radius is KpA = π so
that a = βA where β ≈ 1.863.

tails off at higher frequencies but still remains at around 50% reduc-
tion in scattering which is clearly significant. Reduction is larger for
smaller Poisson ratios. We also note the rather interesting result that
the peak in the cross section actually induces an increase in scattering
at some values of Kpa as compared with the case without the cloak
although this is only for a narrow range of such values. This can be
associated with the increasing disparity in the P and and SV wave
numbers as ν tends to 1

2 , noting that K2
s /K

2
p = 2(1 − ν)/(1− 2ν).
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Fig. 12.15. Scattering of P/SV waves from a cylindrical cavity. Left: Scattering
cross section from the undeformed cavity (solid) with radius Kpa and from a
deformed cavity with initial scaled radius KpA such that a = βA where β ≈ 1.863
(dashed). Right: Percentage reduction in scattering cross section γ% due to pre-
stress. We have ν = 1/3 (top), ν = 7/15 (middle) and ν = 49/99 (bottom). Note
that for the latter case the peak in scattering cross section results in a narrow
range of values of Kpa where the cloak increases scattering. For other values,
there is significant reduction in scattering, especially at very low frequencies.

12.7. Summary and Discussion

In this chapter, we have indicated the close connection between
transformation elasticity and small-on-large theory. In particular this
means that the latter provides a mechanism for realizing materials
that can be employed for cloaking problems, in principle. In particu-
lar, for elastodynamic cloaking it has been shown that an alternative
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to complex inhomogeneous metamaterials are pre-stressed hyper-
elastic media. Here we have reviewed this field and provided the
associated theoretical basis for the theory of hyperelastic cloaking.
A number of results have been presented in the context of SH waves
for pre-stressed incompressible hyperelastic media where it has been
shown that the neo-Hookean cloak achieves perfect invariance in the
sense that the transformation is equal to the finite deformation (that
yields the pre-stress). In this case there is no theoretical limit on the
deformation, except for the practical ability of the material in ques-
tion to be deformed, in a stable manner to the required deformation.
Clearly the larger the deformation, the more useful the associated
“cloak” would be. More realistic strain energy functions have also
been described. Although they do not provide perfect invariance as
in the neo-Hookean case they appear to perform well (theoretically)
in terms of their cloaking potential in pre-stressed states.

In the general compressible case it was shown that the semilin-
ear strain energy function of Eq. (12.113) yields the correct incre-
mental moduli required for transformation of isotropic elasticity. As
for the incompressible case for SH waves the connection between
transformation elastodynamics and the theory of small-on-large is
that the transformation equals the finite deformation. The fact
that the pre-stress must be in a state of equilibrium places a con-
straint on the type of transformations allowed. Specifically, they are
limited by the condition (12.118), or equivalently, trV =constant,
which yields stable radially symmetric pre-strain [Jafari et al. (1984)]
for hyperelastic cloaking. This implies that the actual size of a cylin-
drical target can be increased in area by a factor of 4, its radius by
factor of two, without any change to the scattering cross section. The
restricted form of the transformation is not surprising considering the
fact that the theory can simultaneously control more than one wave
type, in contrast to acoustics. It should also be noted that the invari-
ance property also requires that R = I so that not all deformations
of semi-linear materials will have invariant elastodynamics. Having
said that one could expect that provided local rotations are small
this non-invariant effect would be weak.
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In the two-dimensional invariant problems for which results were
provided, it was shown that the presence of a conventional cloak
generated by the use of pre-stress leads to a significant reduction
in the scattering cross section from the cavity, as compared with
scattering from a cavity without a cloak. This effect is particularly
striking at low frequencies and for small Poisson ratios. We should
note that in general one has to consider stability of nonlinear elastic
solids in the large deformation regime. While we have not undertaken
a full stability analysis, we have noted that the deformation for what
we have termed hyperelastic cloaking (HC) is automatically stable
(see §12.6.2.3).

This work sheds some light on transformation methods in other
wave problems. In acoustics and electromagnetism there is no con-
straint on the transformation; any one-to-one mapping is permit-
ted. In principle, there is no constraint for transformation elasticity
either, although the transformed materials are quite difficult, if not
impossible, to obtain, especially since they are required to lose the
minor symmetry in their corresponding elastic modulus tensor. The
equivalence of transformation elasticity and small-on-large theory
provides a unique and potentially realizable solution, although with
a limited range of transformations allowed. It would be desirable to
relax this constraint, which as already explained, does not appear for
the related problem of SH wave motion in incompressible hyperelas-
tic solids. The limit of incompressibility offers a clue to a possible
resolution for solids with Poisson’s ratio close to one-half.

It is also of interest to consider the overlap between the present
approach of equating small-on-large with transformation elastody-
namics on the one hand and the use of solids with Poisson’s ratio
close to −1 on the other. Such auxetic materials have been found
useful in transformation optics [Shin et al. (2014, 2015)] because of
their intrinsic property that any deformation is close to conformal,
which leads to simplifications in transformation optics [Li and Pendry
(2008)], and by analogy, in transformation acoustics [Norris (2012)].
Conformal mappings, by definition, have right and left stretch ten-
sors U and V proportional to the identity. This makes them unique
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among transformations in that they preserve isotropy in optics and
acoustics and are of great interest for this simplification in material
properties. Conformal mapping can be achieved to a good degree of
approximation by considering the deformation of a solid with Pois-
son’s ratio close to −1. In this limit the ratio of the bulk to shear
modulus tends to zero so that volumetric deformation is much easier
(less energetic) than shearing. Applications in 2D [Shin et al. (2014)]
and 3D [Shin et al. (2015)] transformation optics have shown that the
mechanically defined deformations are close to conformal. Conformal
mappings do not provide the same simplification for transformation
elastodynamics since it can be easily verified that the transformed
moduli still yield non-symmetric stress. However, the kinematic con-
nection between auxeticity (ν close to −1) and transformation optics
and acoustics suggests possibly interesting small-on-large effects for
elastic strain energy functions with Poisson’s ratio close to −1 in the
linear regime.

A number of problems are stimulated by the present theory.
In particular, taking the incompressible limit, ν → 1/2 of the
compressible problem would be of significant interest. We also note
that manufacturing nonlinear elastic solids with specific strain energy
functions can be difficult to achieve in practice, although this is
certainly no harder than generating complex metamaterials, which
appears to be the current alternative. The three-dimensional set-
ting for hyperelastic cloaking has not yet been tackled, since it is
restricted by the condition of R = I for both the initial deforma-
tion and subsequent linear elastodynamics. Achieving this would be
of interest, but perhaps it is only possible approximately, i.e. small
rotations are required. This remains to be seen via further study but
could still be useful in the context of “near cloaks”. Near-invariance
is also of interest for the P/SV problem. If the constraint on the
expansion is relaxed, then perhaps materials with strain energy func-
tions can be found that provide near-invariance in the context of
larger cavity expansions. Finally it should be noted that the con-
cept of invariance and “near-invariance” offers potential in other
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small-on-large problems and could provide interesting results for elas-
todynamic metamaterials. Such effects have already been illustrated
with the concept of elastic wave disentanglement in [Chang et al.
(2015); Galich and Rudykh (2015)] phononic cloaks in [Barnwell
et al. (2016)] and deformation-independent band-gaps in [Zhang and
Parnell (2017)].
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13.1. Introduction

Acoustic metamaterial is an artificial material consisting of sub-
wavelength resonant structures designed to control acoustic waves
in order to achieve unusual functionalities and to realize novel phe-
nomena such as negative refraction,1−7 subwavelength imaging8−16

and invisible cloaking.17−33 As in the case of electromagnetics,
the initial effort on acoustic metamaterial was focused on real-
izing a negative refractive index, which in the case of acoustics
requires effective negative bulk modulus and negative mass den-
sity. Recently, zero-index and near zero-index metamaterials have
also attracted much attention in electromagnetic wave systems.34−51
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This class of artificial material has been studied theoretically34−49

and experimentally.50−53 They exhibit many intriguing properties
such as reflectionless transmission through an arbitrary cross-section
waveguide,34−40,51,52 tailoring wave front,41−43 and cloaking objects
embedded in channels.44−47,50 The natural question to ask is whether
one can also realize zero-index material in acoustic waves. The answer
is affirmative. One-dimensional (1D) acoustic transmission line meta-
materials with negative/zero/positive index has been reported in the
literature.54 Two-dimensional (2D) acoustic metamaterials have been
realized in 2D acoustic crystals.55 Subsequently, three-dimensional
(3D) zero-index material has also been realized.49

In this chapter, we will see that effective zero refractive index
can be realized in systems with Dirac cone dispersions at the zone
center.48−50,55 Dirac cones describe the linear dispersion relation-
ships between energy and momentum. Such dispersions can be
found at the Brillouin zone boundary (K or K’ point) in graphene
with a honeycomb lattice.56−69 As a consequence of the coni-
cal dispersion, graphene exhibits many interesting transport phe-
nomena such as Klein tunneling,62 quantum Hall effect63−65 and
Zitterbewegung.66−69 The existence of conical dispersions at the Bril-
louin zone boundary can be traced to the lattice symmetry and
time reversal symmetry. In fact, independent of the nature of the
wave, the band structure of a periodic honeycomb lattice will most
likely possess Dirac cones at the K and K’ points. Conical disper-
sions have been found at the Brillouin zone boundary in electromag-
netic wave70−78 and acoustic wave.79−82 The Dirac spectra are also
found in plasmonic honeycomb lattices.83 Many novel wave trans-
port properties such as Klein tunneling and Zitterbewegung are due
to the conical dispersion and the nature of wave, be it electronic,
electromagnetic or acoustic, is of secondary importance. For exam-
ple, while Zitterbewegung is commonly associated with graphene,
it had also been observed in acoustic waves systems in simulations
and experiments.80 Conical dispersion at the center of the Brillouin
zone is a different story. While lattice symmetry protects the linear
dispersion at K and K’ points, time reversal symmetry makes the
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formation of cones difficult at the zone center. It is well known that
time reversal symmetry generally implies quadratic dispersions at
k = 0, while conical dispersions need linear dispersions. As will be
demonstrated below, conical dispersions at k = 0 can be realized
in 2D photonic48−50 and acoustic55 systems using accidental degen-
eracy. The conical dispersions consist of a triply degenerate state
with two cones touching at one point and a flat branch intersecting
at the same frequency. In the following, we shall call this three-fold
degenerate point at the zone center a “Dirac-like point” in order to
distinguish this point from the Dirac point in the zone boundary
of graphene which has two degrees of freedom. In acoustic waves,
we will see that if the triply degenerate state is derived from the
monopolar and dipolar excitations, the system can be described as
a zero-index metamaterial with effective density and reciprocal of
bulk modulus equal to zero simultaneously.55 This is hence a subtle
relation between the zero-index material and conical dispersions.

One interesting implication of Dirac-like cones in 2D acoustic
wave system is the existence of interface states. We will see that
the interface states can be always found at the boundary of two
semi-infinite acoustic crystals (ACs) with system parameters slightly
perturbed from the Dirac-like cone formation condition. The assured
existence of interface states can be traced to the geometric phase of
the bulk bands.84−86

While the concept of Dirac point is intrinsically 2D, we will see
that using accidental degeneracy, the notion of a Dirac-like point can
be generalized from 2D to 3D in acoustic systems.49 If the accidental
degenerate state is derived from monopolar and dipolar acoustic exci-
tations, effective medium theory87 can be applied to describe the sys-
tem as an isotropic zero-index material with mass density and recip-
rocal of bulk modulus equal to zero simultaneously in all directions.

Elastic wave is also a classic wave but with more degrees of
freedom and hence the physics is more complicated than acoustic
waves. These additional degrees of freedom make the properties of
the conical dispersion at k = 0 are rather different from those in
acoustic systems. We will see that accidental degeneracy can also
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generate conical dispersion at k = 0 in elastic crystals.88 The subtle
relationship between the conical dispersions and zero-index materials
is also applicable to elastic wave system, but in this case the triply
degenerate state should be derived from the dipolar and quadrupolar
excitations.88 The conical dispersion has the novel consequence that
the equi-frequency contours become circular, which is unusual in elas-
tic crystals with a square lattice.89,90 In addition, the eigen-modes
in the conical dispersions exhibit the so-called “super-anisotropy”,91

as they support purely transverse mode in one direction but purely
longitudinal mode in another.

We will also show that 3D acoustic meta-crystals consisting of
coupled acoustic cavities with properly designed interlayer coupling
can exhibit Weyl points in the 3D band structure.92 Weyl points
are 3D conical dispersions and are formed as intersecting points of
3D linear bands.93−95 Weyl points are more robust than 2D Dirac
points. They are topologically protected in the sense that pairs of
Weyl points of opposite chirality can only be created or destroyed
together94 and hence destroying Weyl points generally require a sig-
nificant change of system parameters while a 2D Dirac points can be
gapped by either breaking parity or time reversal symmetry.

This chapter is organized as follows. In the second section, we
consider the conical dispersions in acoustic crystals and the realiza-
tion of zero-index materials. We extend the realization of zero-index
materials using conical dispersions from 2D to 3D in the third section.
In the fourth section, we show that the conical dispersion in phononic
crystals can be used to achieve super-anisotropy and we discuss its
related transport properties. In the fifth section, we briefly introduce
the realization of Weyl points in 3D acoustic metacrystals.

13.2. Conical Dispersions in Two-dimensional
Acoustic Crystals

Let us first see how we can obtain conical dispersions at the zone cen-
ter in ACs.55 The calculated band structure of a 2D AC consisting
of a square lattice of rubber cylinders embedded in water is shown in
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Fig. 13.1(a). Here, the lattice constant is a, the radii of the cylinders
are R = 0.224a. The mass densities of rubber and water are respec-
tively ρ = 1.3 × 103kg/m3, ρ0 = 1.0 × 103kg/m3; and the velocities
of waves in rubber and water are v = 490m/s and v0 = 1490m/s,
respectively. For simplicity, we treat rubber as an acoustic medium,
and we ignore the consideration of transverse waves inside. From
Fig. 13.1(a), we see that there is a triply degenerate state at k = 0
at f = 0.561v0/a. Two linear bands touch at the degenerate fre-
quency and these two degree of freedoms generate a conical dis-
persion with two cones touching at a Dirac-like point. There is an
additional flat band intersecting at the same frequency. We note
that time reversal symmetry requires quadratic dispersion bands at
k = 0. So, the typical dispersions are like those shown in Fig. 13.1(c)
and Fig. 13.1(d). Linear bands at k = 0, required to form conical
dispersions, can be obtained only if we have accidental degeneracy.
To see how the accidental degeneracy is related to the general case
of quadratic dispersions, we fix the mass densities and velocities of
waves of the rubber and water, and vary the radii of the rubber
cylinders from R = 0.224a. The triply degenerate state at k = 0
shown in Fig. 13.1(a) immediately breaks into a single state and a
doubly degenerate state, both showing the expected quadratic dis-
persion. For a smaller radius R = 0.2a, the frequency of the single
state at k = 0 is lower than that of the doubly degenerate state
as shown in Fig. 13.1(c). While for a larger radius R = 0.25a, the
frequency of the single state is higher than that of the doubly degen-
erate state as shown in Fig. 13.1(d). Therefore, there should be an
intermediate radius (R = 0.224a) where the single and doubly states
are at the same frequency at k = 0, which is the result shown in
Fig. 13.1(a).

In order to better understand the properties of the triply degen-
erate states, we plot the pressure distributions of the eigen-modes
near the Dirac-like point with a small k along ΓX direction (kx =
0.04π/a, ky = 0) as shown in Figs. 13.1(e)–13.1(g). Figures 13.1(e)
and 13.1(f) show the real and imaginary parts of the pressure
distributions of the eigen-mode on the upper Dirac-like cone at
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Fig. 13.1. (a) The band structure of a 2D square lattice acoustic crystal con-
sisting of rubber cylinders embedded in water. The lattice constant is a, the radii
of the cylinders are R = 0.224a. The mass densities of rubber and water are
ρ = 1.3 × 103kg/m3 and ρ0 = 1.0 × 103kg/m3, respectively. The velocities of
waves in rubber and water are v = 490m/s and v0 = 1490m/s, respectively.
(b) The effective mass density ρeff and reciprocal of bulk modulus 1/κeff of the
acoustic crystal as a function of frequency. (c)–(d) The band structures of two
acoustic crystals with different radii of the rubber cylinders in water. (c) is for
R = 0.2a, and (d) is for R = 0.25a. (e)–(g) The pressure distributions of the
eigen-modes near the Dirac-like point with kx = 0.04π/a. (e) and (f) represent
the real and imaginary parts of the pressure distributions at f = 0.592v0/a in the
upper cone. (g) shows the real part of the pressure distribution of the flat band
at f = 0.589v0/a.

f = 0.592v0/a. It is clear from the figure that they are the com-
binations of the monopolar and dipolar excitations. The dipole is a
longitudinal one with displacement parallel to the k direction. The
results for the lower Dirac-like cone are the same but not shown
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here. Figure 13.1(g) shows the real part of the pressure distribu-
tions of the eigen-mode at f = 0.589v0/a on the flat band. The
imaginary part is almost zero. We see that this is a quasi-transverse
dipole with displacement perpendicular to the k direction. Due to its
quasi-transverse nature, this mode cannot be excited by an incident
longitudinal acoustic plane wave in the effective medium limit and
hence this very flat mode is sometimes called a deaf mode.

As the Dirac-like cone is located at k = 0 and derived from
the lowest order monopolar and dipolar excitations, we can apply
the standard effective medium theory to extract effective medium
parameters. In 2D, there is a one-to-one correspondence between one
polarization of electromagnetic waves and acoustic waves, i.e. ρ↔ µ,
1/κ ↔ ε and hence effective medium theory developed for electro-
magnetic waves87 can be adapted to calculate the effective parame-
ters of the AC with a simple change of variables. The expressions for
the effective mass density ρeff and reciprocal of bulk modulus 1/κeff

are respectively:

ρeff (ω)− ρ0
J1(k0r0)

k0r0J ′
1(k0r0)

ρeff (ω)− ρ0
Y1(k0r0)

k0r0Y ′
1(k0r0)

=
Y ′

1(k0r0)
iJ ′

1(k0r0)

(
D1(ω)

1 +D1(ω)

)
, (13.1)

1/κeff (ω) + 2
κ0

J ′
0(k0r0)

k0r0J0(k0r0)

1/κeff (ω) + 2
κ0

Y ′
0(k0r0)

k0r0Y0(k0r0)

=
Y0(k0r0)
iJ0(k0r0)

(
D0(ω)

1 +D0(ω)

)
, (13.2)

Here, ρ0, κ0, k0 are the mass density, bulk modulus and wave vector
of the background material, r0 is the outer radius in the single-site
coherent potential approximation type effective medium theory (r0 =
a/
√
π). Jm(x), Ym(x) and J ′

m(x), Y ′
m(x) are the Bessel and Neumamn

functions and their first-order derivatives, respectively. Dm(ω) are
the Mie scattering coefficients. Using Eqs. (13.1) and (13.2), ρeff and
1/κeff as a function of frequency are shown in Fig. 13.1(b). At the
Dirac-like point frequency, we found that ρeff and 1/κeff are equal
to zero simultaneously.

From the above discussion, we can realize a Dirac-like point
at k = 0 using accidental degeneracy and we found that at the
Dirac-like point frequency, effective medium theory shows that the
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AC should behave as a double-zero-index material at the Dirac-like
point frequency with ρeff and 1/κeff equal to zero simultaneously.
We note that in electromagnetic wave system, photonic crystals with
C4v symmetry can also be tuned so that the frequencies of the single
state and the doubly degenerate state are at the same frequency so
that a Dirac-like point at k = 0 can be formed and the photonic crys-
tal can also be mapped by effective medium theory to a zero index
medium.48−50 We note however that effective medium theory can be
legitimately applied only in the small k and low frequency regime and
for the lowest order (in this case monopole and dipole) excitations.87

As such, only when the Dirac-like point is derived from the monopo-
lar and dipolar excitations can the system be faithfully described
as a zero-index acoustic material by the effective medium theory. A
double-zero-index material must have a Dirac-like cone at k = 0, but
not all the Dirac-like point at k = 0 (e.g. those formed with higher
multipoles) can be described as a zero-index material.48,55

Figure 13.2(a) shows the band structure of a 2D AC consisting
of steel cylinders with a square lattice embedded in water. Here,
the mass density and Lamb constants of the steer cylinders are
ρsteel = 7.9 × 103kg/m3, λsteel = 1.15 × 1011N/m2 and µsteel =
8.28 × 1010N/m2. The radius of the steel cylinder is R = 0.194a.
There is also a triply degenerate state forming a Dirac-like point at
k = 0. In this system, the wave velocity of steel is higher than that of
waver, and as a consequence, the displacement fields mainly localize
in water. This is very different from the case shown in Fig. 13.1(a), in
which the displacement fields mainly localize in rubber cylinders with
slow wave speed. The modes forming the conical dispersion are not
dominated by monopolar and dipolar excitations but have significant
projections in higher multipoles. In addition, the Dirac-like point is
also high in frequency. It is not expected that the effective medium
theory can be applied to describe the system. If one still insists to use
the effective medium formulas to obtain ρeff and 1/κeff as a function
of frequency as shown in Fig. 13.2(b), we will see that both ρeff and
1/κeff are not equal to zero at the Dirac-like point frequency. That
is to say, this system cannot be mapped to a zero-index material at
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Fig. 13.2. (a) The band structure of a 2D acoustic crystal consisting of steel
cylinders embedded in water with a square lattice. The radius of the steel cylinder
is R = 0.194a. (b) The effective mass density ρeff and reciprocal of bulk modulus
1/κeff of the acoustic crystal as a function of frequency.

Fig. 13.3. (a) The simulated pressure field distributions for a 2D acoustic crystal
with a silicone rubber defect (a), and a PMMA defect (b).

the Dirac-point frequency. We also note that the standard effective
medium description is good only near the zone center and is expected
to fail at large k-vectors. For example, Dirac-like points can also be
found at the M point periodic systems with C4v symmetry but the
physics near those Dirac-like point cannot be faithfully described by
a zero-index medium.48
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It has been shown in the literature that an electromagnetic zero
index medium can “cloak” an object inside a waveguide.44−47,49,50

We have to clarify here that the cloaking effect inside a zero index
channel is different from the invisibility cloak enabled by transfor-
mation optics in which the form invariance of the Maxwell equa-
tion under a coordinate transformation establishes a correspon-
dence between the material constitutive parameters and coordinate
transformation.96−102 Although transformation optics was developed
for electromagnetic waves, the same idea can be applied to acoustics
to design acoustic invisibility cloaks.17−33 As those transformation
optics based cloaks are not directly related to conical dispersions,33

we will not discuss them in detail here. We will focus on discussing the
channel cloaking effect enabled by the existence of Dirac-like cones,
which is demonstrated numerically in Fig. 13.3. In Fig. 13.3(a), a
silicon rubber defect is embedded in an AC with parameters shown
in Fig. 13.1(a). A plane wave illuminates from the left, and we see
that there is almost no reflection and the exit wave on the right side
preserves its plane wave front. The defect is apparently cloaked by the
effective zero-index AC. Apart from cloaking objects embedded in it,
zero-index materials can also realize total reflection dependent on the
parameters of the object embedded in it. Figure 13.3(b) shows that
a PMMA defect is embedded in it, the appearance of total reflection
is observed. For those ACs with Dirac-like cones that can be mapped
to a zero-index material, ρeff and 1/κeff are equal to zero simulta-
neous, there is no phase change when waves propagate through the
material. Such zero phase change has many interesting implications
including tunneling through an arbitrary waveguide and tailoring the
wave front.55

In the above discussion, we revealed the relationship between
the Dirac-like point physics and zero-index material. Zero-refractive-
index is related to a triply-degenerate state at k = 0 forming a Dirac-
like point with two linear dispersions and an additional flat band
intersecting at the same frequency. The existence of the flat band is
consistent with the constitutive parameters approaching zero at some
particular frequency. At first glance, the quasi-transverse flat band
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with a zero group velocity (in homogeneous material limit) cannot be
excited by incident plane waves and hence its existence has no role
in the Dirac-like point physics. This types of modes are sometimes
called “deaf modes” and are usually ignored in the wave propaga-
tion. However, its existence does have some subtle consequences. For
instance, if this flat band is ignored, the dispersion near the Dirac-like
point can be described by a 2×2 Hamiltonian which can be mapped
to that of a spinor, and such systems can potentially carry a non-zero
Berry phase.103,104 On the other hand, the dispersion near the triply
degenerate state requires a 3× 3 matrix to describe and is similar to
a (pseudo) spin-1 system103,104 and the Berry phase should be zero.
Using the multiple scattering theory, we found that the Berry phase
of the Dirac-like cone is indeed equal to zero.48 The Berry phase can
have qualitative implications when we consider effects such as disor-
der induced localization/anti-localization.56 Therefore, the existence
of the quasi-transverse state cannot be ignored when we consider the
Dirac-like point.

One implication of the Dirac-like cone at k = 0 and in particular
the existence of the flat band is the existence of interface states at
the boundary between two semi-infinite ACs. The schematic picture
of an interface along the y-direction is shown in Fig. 13.4(a). The
mass densities, wave velocities and radii of the cylinders in the left
and right ACs are ρ1, v1, R1 and ρ2, v2, R2, respectively. The mass
density and wave velocity of the background material are ρ0, v0. For
simplicity, we consider a system in which both the left and right ACs
consist of rubber cylinders embedded in water but with different
radii. The mass densities and velocities of rubber are ρ1 = ρ2 =
1.3×103kg/m3 and v1 = v2 = 490m/s. The radii of rubber cylinders
in the left and right ACs are R1 = 0.2a, R2 = 0.25a, respectively.
The bulk band structures of the left and right ACs are shown in
Figs. 13.1(c) and 13.1(d), respectively. The corresponding projected
band structures are shown in Fig. 13.4(b). The blue color denotes the
projected bands for the left AC and the red color marks those for
the right AC. There are three common band gaps in the projected
band structures marked with white colors. A common band gap is a
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Fig. 13.4. (a) Schematic picture of an interface along the y-direction separating
two semi-infinite 2D acoustic crystals with a square lattice of cylinders embedded
in water. The mass densities, wave velocities and radii of the cylinders in the
left and right acoustic crystals are ρ1, v1, R1 and ρ2, v2, R2, respectively. The
background is water with ρ0, v0. The lattice constants for both acoustic crystals
are a. (b) The projected band structures of these two acoustic crystals along the
ky direction with blue color for the left acoustic crystal and red color for the
right acoustic crystal. Here, ρ1 = ρ2 = 1.3 × 103kg/m3, v1 = v2 = 490m/s,
ρ0 = 1.0 × 103kg/m3, v0 = 1490m/s, R1 = 0.2a, R2 = 0.25a. The green lines
represent the band dispersions of the interface states. The bulk band structures
with a fixed ky = 0.6π/a for the acoustic crystals with (c) R1 = 0.2a and (d)
R2 = 0.25a. The inset in (c) shows the coordinate for calculating the Zak phase.
The origin is located on the left boundary of the unit cell. The Zak phases of the
bulk bands are labeled with green colors. The characters of the band gaps are
labelled by the sign of Im(Z) with red color for Im(Z) < 0 and blue for Im(Z) > 0.

necessary condition for the existence of interface states but it is not a
sufficient condition. In these three common gaps, there are only two
branches of interface states shown as the green lines in Fig. 13.4(b).
One point we want to emphasize is that the interface states of the
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ACs are robust in the sense that they always exist, no matter how
small the size of the common gap.

It is well known that the interface state formation condition
at the interface between two homogeneous materials can be formu-
lated analytically. If the effective medium theory can be applied,
the existence of interface states in discrete systems can also be
explained by the same formalism. However, the interface states shown
in Fig. 13.4(b) extend to large k where conventional effective medium
theory is invalid. We note that the condition for the formation of
an interface state can be expressed as the surface impedance condi-
tion: ZL(ω, ky) + ZR(ω, ky) = 0,105 where ZL(R)(ω, ky) is the sur-
face impedance of the semi-infinite AC on the left (right) side for a
given ky. We can obtain the surface impedance of the AC using a
layer-by-layer multiple scattering theory (MST) which considers the
2D AC as a stack of 1D ACs. The mathematical details can be found
in the literature106 and will not be given here. It can be shown that the
surface impedance is uniquely defined as long as inter-layer scatter-
ing is dominated by the zero-order scattering. In a lossless material,
Z(ω, ky) is purely imaginary for frequencies inside a band gap, and
Im(Z(ω, ky)) > 0 or Im(Z(ω, ky)) < 0. For a given ky, Im(Z(ω, ky))
decreases monotonically from +∞ to 0 with increasing frequency in
a region with Im(Z(ω, ky)) > 0, while Im(Z(ω, ky)) decreases mono-
tonically from 0 to −∞ with increasing frequency in a region with
Im(Z(ω, ky)) < 0. Therefore, knowing the surface impedances and
their monotonic behavior for frequencies inside a band gap, the inter-
face state formation condition shows that there must exist one and
only one interface state inside the common gap if Im(ZL(ω, ky)) and
Im(ZR(ω, ky)) have different signs and interface states cannot exist if
Im(ZL(ω, ky)) and Im(ZR(ω, ky)) have the same sign.

In the following, we will apply a bulk-interface correspondence
relationship that relates the surface impedance to bulk band geo-
metric phases to interpret the existence of interface states.84−86 It is
known that the guaranteed interface states are frequently related
to the topological properties of the bulk bands.107−126 To give a
“geometric” interpretation of the formation of interface states, we
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unfold the projected band structures to reduced 1D bulk bands. For
example, the projected bands in Fig. 13.4(b) come from the reduced
1D bulk bands with kx varying from −π/a to π/a for a fixed ky.
The reduced 1D bands of two ACs at ky = 0.6π/a are plotted in
Figs. 13.4(c) and 13.4(d). The geometric Zak phases84−86,127 of the
reduced 1D bands can be calculated using the formula:

ϕn = i

∫
〈unkx,ky |

1
κ(�r)

∂kx |unkx,ky〉dkx, (13.3)

where u
n�k

is the cell periodic part of the Bloch function of the pres-
sure field for the nth band at a particular �k, κ(�r) is position dependent
bulk modulus. The geometric Zak phase is calculated using the peri-
odic gauge and the origin is chosen at the left boundary of the unit
cell as shown in the inset of Fig. 13.4(c). The Zak phases for the three
lowest bands are π, 0, 0, respectively. In the 1D system with inversion
symmetry, the bulk-interface correspondence relates the ratio of the
signs of Im(Z(ω, ky)) in two adjacent gaps, say the nth and (n−1)th

gaps, to the Zak phase of the band sandwiched in between,84−86 and
the relationship can be written as:

Sgn[Im(Zn(ω, ky))]
Sgn[Im(Zn−1(ω, ky))]

= ei(ϕn−1+π). (13.4)

It can be proved that Im(Z(ω, ky)) < 0 in the lowest gap. Equa-
tion (13.4) then gives the signs of Im(Z(ω, ky)) for the band gaps at
higher frequencies. In Figs. 13.4(c) and 13.4(d), the red color denotes
the gaps with Im(Z(ω, ky)) < 0 and blue marks band gaps with
Im(Z(ω, ky)) > 0. These results are consistent with that calculated
by MST (not show here). Thus, using the band structure information
of one unit cell, we can calculate the Zak phase of the bulk bands and
then determine the sign of Im(Z(ω, ky)) without doing any further
calculations. In Figs. 13.4(c) and 13.4(d), there are two overlapping
gaps that Im(Z(ω, ky)) have different signs. The overlap of the second
gap in Fig. 13.4(c) and the third gap in Fig. 13.4(d) gives rise to the
lower branch of the interface states near the frequency 0.45v0/a and
the overlap of the third gap in Fig. 13.4(c) and the fourth gap in
Fig. 13.4(d) gives rise to the higher frequency branch near frequency
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0.53v0/a. In the system shown in Fig. 13.4, we find two branches
of interface states. We emphasize that the higher branch of inter-
face states is guaranteed independent of the system parameters. The
assured existence of interface states between the frequencies of the
two flat bands of the ACs is shown in the following. Firstly, the quasi-
transverse flat band supplies two band gaps, one above and one below
its projected band structure. Secondly, the zero Zak phase of the flat
band (required by symmetry) of the system dictates that the gaps
above and below the flat band have opposite signs of Im(Z(ω, ky)).
The common gap is above the projected band of the flat band of
one AC, while it is below that of the other AC. Together with the
monotonic behaviors of Im(Z(ω, ky)) inside the band gap, the AC on
the left side must have an opposite sign of Im(Z(ω, ky)) to the AC on
the right side in the common gap. As a consequence, one interface
state must exist in this gap. We note again that this behavior is
specific to a Dirac-like dispersion at k = 0.

13.3. Extension of Two-dimensional Conical
Dispersions to Three Dimension

In this section, we will extend the concept of a Dirac-like point from
2D to 3D.49 The aim is to realize an isotropic zero-index acoustic
metamaterial. For electromagnetic waves, it is known that the 3D
Dirac-like point at k = 0 can be realized in a simple cubic pho-
tonic crystal through the accidental degeneracy of the electric and
magnetic dipoles resulting in a six-fold degenerate state. For acous-
tic systems, we can use the accidental degeneracy of monopole and
dipole as suggested in Ref. 128. Since there is no monopole in 3D in
electromagnetic waves, the scheme proposed in Ref. 128 cannot be
straightforwardly realized in a photonic system, but can be imple-
mented in 3D acoustic systems. Using the accidental degeneracy
of the A1g and T1u modes, a 3D Dirac-like point at k = 0 with
a four-fold degenerate state can be realized in a simple cubic AC.
The bulk band structure of a 3D AC consisting of rubber spheres in
water is shown in Fig. 13.5(a). The mass density and radii of rubber
spheres are ρ = 1.3 × 103 kg/m3, R = 0.255a, respectively. a is the
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Fig. 13.5. (a) The band structure of a 3D simple cubic acoustic crystal consisting
of rubber spheres in water. The mass density and radii of rubber spheres are
ρ = 1.3 × 103kg/m3, R = 0.255a. Here, a is the lattice constant. The mass
density of water is ρ0 = 1.0×103kg/m3. The Lame constants of rubber and water
are κ = 1.17 × 108N/m2, κ0 = 2.22 × 109N/m2. (b) The effective mass density
(ρeff ) and reciprocal of bulk modulus (1/κeff ) as a function of frequency obtained
by effective medium theory. The horizontal green dash line marks the Dirac-like
point frequency (fD = 0.418v0/a) in the band structure which coincides with the
frequency at which ρeff = 1/κeff = 0. The displacement field distributions of the
eigen-modes at the Dirac-like point frequency are shown in (c) and (d).

lattice constant. The mass density of water is ρ0 = 1.0× 103 kg/m3.
The Lame constants of rubber and water are κ = 1.17 × 108 N/m2,
κ0 = 2.22×109 N/m2. For simplicity, we ignore the shear wave within
the rubber spheres due to the high velocity contrast between the
rubber and water, and the main features will be the same if we also
include the shear wave within the spheres.4 Figure 13.5(a) shows a
four-fold degenerate state at k = 0 at frequency fD = 0.418v0/a con-
sisting of two linear bands and another two quadratic bands intersect-
ing at the same frequency. Here, v0 is the acoustic velocity in water.
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Fig. 13.6. The band structure of 3D acoustic crystals in a simple cubic lattice
for different radii. R = 0.245a is for (a), and R = 0.265a for (b). Here, a is the
lattice constant. The parameters of rubber and water are the same as Fig. 13.5.

The linear bands generate equi-frequency surfaces that are spheres
with radii proportional to (ω − ωD). To see that the degeneracy is
accidental, we change the radii of rubber spheres from R = 0.255a.
The four-fold degenerate state immediately breaks into a single state
and a triply degenerate state. The band structures for different radii
are shown in Fig. 13.6. For smaller radius (R = 0.245a), the frequency
of the single state (A1g state) is lower than that of the triply degener-
ate state (T1u state). For a larger radius (R = 0.265a), the frequency
of the single state (A1g state) is higher than that of the triply degen-
erate T1u state. The inversion of the single and triply degenerate
state as a function of sphere radius imply that there exists a certain
radius at which these two states have the same frequency. We plot
the displacement fields of the eigen-modes at the Dirac-like point fre-
quency in Figs. 13.5(c) and 13.5(d). They represent the monopolar
and dipolar excitations, respectively. More technical details concern-
ing the existence of the 3D Dirac-like point can be found in Ref. 49.

Using effective medium theory,87 we can calculate the effective
mass density (ρeff ) and reciprocal of bulk modulus (1/κeff ) of this AC
as a function of frequency and the results are shown in Fig. 13.5(b).
Both ρeff and 1/κeff are equal to zero at the Dirac-like point fre-
quency. We note here that the zero-index enabled by the 3D Dirac-
like point is isotropic, while the 2D systems are inherently anisotropic
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with the Dirac-like point giving a zero-index only for in-plane trans-
port of acoustic waves.

13.4. Conical Dispersions in Two-dimensional
Elastic Wave System

Dirac-like points have been found in 2D and 3D acoustic waves. Can
the concept of Dirac-like point at k = 0 be extended to elastic waves
and if so, what are the consequences? To answer these questions, we
consider a 2D phononic crystal (PC) consisting of rubber cylinders
in a square lattice embedded in epoxy. The radius and mass den-
sity of rubber cylinder are respectively R = 0.266a, ρ = 1.3 × 103

kg/m3. The mass density of epoxy is ρ0 = 1.18 × 103 kg/m3. The
velocities of longitudinal and transverse waves in rubber (epoxy) are
vl = 817 m/s (vl0 = 2605 m/s) and vt = 335 m/s (vt0 = 1068 m/s),
respectively. The band structure of the PC for the in-plane modes is
shown in Fig. 13.7(a). A triply degenerate state forms a Dirac-like
point at k = 0 at the frequency fD = 0.721vt0/a. Similar to the
case of acoustic waves, the elastic wave Dirac-like cone also has two
linear bands and an additional flat band intersecting at the same
frequency.88 To better visualize the Dirac-like cone, we plot the 3D
band structure near the Dirac-like point frequency in Fig. 13.7(b).
The equi-frequency surfaces have circular contours at frequencies
slightly above the Dirac-like point as shown in Fig. 13.7(c). At a
first glance, this Dirac-like point is the same as that in the acous-
tic system but there are actually interesting implications unique to
elastic waves. For example, the equi-frequency contours are generally
anisotropic in a PC with a square lattice even in the low frequency
limit.89,90 Therefore, the circular isotropic equi-frequency contour is
a specific property of the Dirac-like cone elastic wave system.

Applying multiple scattering theory, we can obtain the formation
condition of the accidental degeneracy Dirac-like point. The band
structure of a PC is determined by the secular equation:

det
∣∣∣∣
(
T llGl T ltGt

T tlGl T ttGt

)
− I
∣∣∣∣ = 0, (13.5)
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Fig. 13.7. (a) The band structure of a phononic crystal in a square lattice for
the in-plane modes. A triply degenerate state at k = 0 consists of two linear
bands touching at the Dirac-like point frequency f = 0.721vt0/a and a flat band
intersecting at the same frequency. vt0 is the transverse wave velocity of epoxy.
(b) Three-dimensional band structure near the Dirac-like point frequency. (c)
The equi-frequency surfaces of the phononic crystal calculated by full-wave sim-
ulation (COMSOL, magenta circle) and by effective medium theory (blue dot) at
frequency (f = 0.73vt0/a) which is above the Dirac-like point.

where Tαβ is the T-matrix with matrix elements Tαβ
mm′ = Dαβ

m δmm′

and Dαβ
m are the elastic Mie scattering coefficients of angular momen-

tum m of the scatter. The indices α, β = l or t denote the lon-
gitudinal and transverse waves, respectively. The matrices Gland
Gtare given by the lattice sums Gβ

m′m” =
∑

q �=p g
β
m′m”e

i �K·�Rq =
S(β,m′ − m”) with (β = l, t). Explicit expressions of Dαβ

m and
S(β,m) can be found in the literature.129

The eigen-modes near the Dirac-like point are derived from the
dipolar (m = ±1) and quadrupolar (m = ±2) excitations. Hence,
we only consider the dipolar and quadrupolar modes. In a square
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lattice at k = 0, the lattice symmetry requires that S(β, 0) �= 0,
S(β,±1) = S(β,±2) = S(β,±3) = 0and S(β,±4) �= 0.90 Thus,
Eq. (13.5) reduces to:∣∣∣∣∣∣∣∣∣∣∣∣∣

Dll
2 S(l, 0) − 1 0 0 Dll

2 S(l, 4)

0 Dll
1 S(l, 0) − 1 0 0

0 0 Dll
−1S(l, 0) − 1 0

Dll
−2S(l,−4) 0 0 Dll

−2S(l, 0) − 1

Dtl
2 S(l, 0) 0 0 Dtl

2 S(l, 4)

0 Dtl
1 S(l, 0) 0 0

0 0 Dtl
−1S(l, 0) 0

Dtl
−2S(l,−4) 0 0 Dtl

−2S(l, 0)

Dlt
2 S(t, 0) 0 0 Dlt

2 S(t, 4)

0 Dlt
1 S(t, 0) 0 0

0 0 Dlt
−1S(t, 0) 0

Dll
−2S(t,−4) 0 0 Dlt

−2S(t, 0)
Dtt

2 S(t, 0) − 1 0 0 Dtt
2 S(t, 4)

0 Dtt
1 S(t, 0) − 1 0 0

0 0 Dtt
−1S(t, 0) − 1 0

Dtt
−2S(t,−4) 0 0 Dtt

−2S(t, 0) − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(13.6)

Then, Eq. (13.6) can be rewritten as:∣∣∣∣∣∣∣∣∣∣∣∣∣

Dll
2 S(l, 0) − 1 Dlt

2 S(t, 0) Dlt
2 S(t, 4) Dll

2 S(l, 4)

Dtl
2 S(l, 0) Dtt

2 S(t, 0) − 1 Dtt
2 S(t, 4) Dtl

2 S(l, 4)
Dtl

−2S(l,−4) Dtt
−2S(t,−4) Dtt

−2S(t, 0) − 1 Dtl
−2S(l, 0)

Dll
−2S(l,−4) Dlt

−2S(t,−4) Dlt
−2S(t, 0) Dll

−2S(l, 0) − 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Dll
1 S(l, 0) − 1 Dlt

1 S(t, 0) 0 0

Dtl
1 S(l, 0) Dtt

1 S(t, 0) − 1 0 0
0 0 Dll

−1S(l, 0) − 1 Dlt
−1S(t, 0)

0 0 Dtl
−1S(l, 0) Dtt

−1S(t, 0) − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(13.7)
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The cylindrical symmetry of the cylinders ensures that Dll
1 =

Dll
−1,D

tt
1 = Dtt

−1,D
lt
1 = Dlt

−1 and Dtl
1 = Dtl

−1. In Eq. (13.7), the lower
two block matrices satisfy

∣∣∣∣Dll
1S(l, 0) − 1 Dlt

1 S(t, 0)
Dtl

1 S(l, 0) Dtt
1 S(t, 0)− 1

∣∣∣∣
=
∣∣∣∣Dll−1S(l, 0)− 1 Dlt−1S(t, 0)
Dtl

−1S(l, 0) Dtt
−1S(t, 0) − 1

∣∣∣∣ = 0. (13.8)

This shows that the dipolar modes are doubly degeneracy at the
frequency ωd. The upper block matrix in Eq. (13.7) satisfies:

∣∣∣∣∣∣∣∣
Dll

2S(l, 0) − 1 Dlt
2 S(t, 0) Dlt

2 S(t, 4) Dll
2S(l, 4)

Dtl
2 S(l, 0) Dtt

2 S(t, 0)− 1 Dtt
2 S(t, 4) Dtl

2 S(l, 4)
Dtl

−2S(l,−4) Dtt
−2S(t,−4) Dtt

−2S(t, 0) − 1 Dtl
−2S(l, 0)

Dll
−2S(l,−4) Dlt

−2S(t,−4) Dlt
−2S(t, 0) Dll

−2S(l, 0) − 1

∣∣∣∣∣∣∣∣
= 0,

(13.9)
As S(l,±4) �= 0 and S(t,±4) �= 0, the quadrupolar modes at k = 0
will interact with each other and split into two nondegenerate modes
at different frequencies ωq1 and ωq2. In general, there is no require-
ment for the quadrupolar modes and the dipolar modes at the same
frequency, i.e. ωq1 �= ωd or ωq2 �= ωd. However, through tuning the
system parameters (such as the radius of the cylinder), we can achieve
accidental degeneracy by making one of the quadrupolar modes and
the dipolar modes to have the same frequency (ωq1 = ωd or ωq2 = ωd).
The triply degenerate state at k = 0 shown in Fig. 13.7(a) is realized
in this manner.

Figure 13.7(c) shows that the equi-frequency contours are circu-
lar near the elastic wave Dirac-like point. The dispersions are hence
“super-isotropic”91 as elastic wave equi-frequency contours are gen-
erally not isotropic for a square lattice.89,90 However, we will see
that the eigenvectors exhibit the so-called “super-anisotropic” behav-
iors. Figure 13.8 shows the displacement field distributions of the
eigen-modes near the Dirac-like point with a small k along the ΓX
(kx = 0.04π/a, ky = 0) and ΓM (kx = ky = 0.04π/a) directions.
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Fig. 13.8. The displacement field distributions of the eigen-modes near the
Dirac-like point with a small k along the ΓX (a–c) and ΓM directions (d–f).
(a) the real part and (b) the imaginary part of the displacement fields of the
linear band at f = 0.724vt0/a; (c) the real part of the displacement fields of the
flat band at f = 0.721vt0/a. (d) the real part and (e) the imaginary part of
the displacement fields of the linear band at f = 0.728vt0/a; (f) the real part of
the displacement fields of the flat band at frequency f = 0.721vt0/a. The arrows
denote the directions of the displacements.

The real and imaginary parts of the displacement fields of the lin-
ear band state along ΓX direction on the higher Dirac-like cone (at
f = 0.724vt0/a) are shown in Figs. 13.8(a) and 13.8(b). We see that
the eigen-mode is a linear combination of dipolar and quadrupolar
excitations. The dipole displacement is perpendicular to k and the
quadrupolar mode couples only to transversely polarized incident
waves. The linear band is hence a band of transverse modes along
ΓX direction. The eigen-mode for the lower Dirac-like cone is also
a linear combination of a quadrupole and a transverse dipole (not
shown here). The real part of the eigen-mode of the flat band is
plotted in Fig. 13.8(c) and the imaginary part is almost zero. It is a
dipolar mode with displacement parallel to k. Thus, the flat band is
a longitudinal band near the Dirac-like point along ΓX direction.

In contrast, the eigen-modes along ΓM direction is entirely differ-
ent. Figures 13.8(d) and 13.8(e) show the real and imaginary parts
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of the displacement fields of the eigen-mode on the higher cone at
f = 0.728vt0/a. The eigen-mode along ΓM direction is also a com-
bination of quadrupolar and dipolar excitations. The dipolar mode
displacement is parallel to k and the quadrupolar mode can only
be excited by longitudinal waves. This implies that the linear band
is a longitudinal band along ΓM direction. The eigen-mode for the
lower Dirac-like cone is similar to the higher one and not shown
here. The real part of the eigen-mode of the flat band is plotted in
Fig. 13.8(f). It is a dipolar mode with displacement perpendicular
to k. The nature of the flat band is also different to that along ΓX
direction. The Dirac-like cone modes are hence “super-anisotropic”,
in the sense that they are purely transverse in one direction but
purely longitudinal in another. We note that “super-anisotropic”
elastic wave metamaterials have been realized using a rather complex
structural design91 and the Dirac-like cone can offer a much simpler
alternative.88

As the wave velocity of the rubber is lower than that of epoxy,
the displacement fields are mainly localized in the rubber. Effective
medium theory can be applied to such systems to describe the physics
near the Dirac-like point. It is known that dipolar and quadrupolar
resonances are associated with mass density and certain components
of elastic moduli, respectively.7,129 Here, we employ the boundary
effective medium theory91 to obtain the effective moduli Ceff

11 , Ceff
12

and Ceff
44 of the PC as shown in Fig. 13.9(a). It is well known that

both C11 and C12 are positive for natural materials. The strains Sxx

and Syy compress or extend simultaneously under external stress.
Effective medium theory found that Ceff

11 and Ceff
12 have opposite

signs near the Dirac-like point, i.e. Ceff
11 ≈ −Ceff

12 . This is because of
the quadrupolar mode, which induce the displacement compression
in one direction and simultaneous extension in the orthogonal direc-
tion. Moreover, Ceff

11 ,Ceff
12 and Ceff

44 show divergence behavior near
the Dirac-like point frequency due to the quadrupolar resonance.
In Fig. 13.9(b), ρeff is plotted as a function of frequency, showing
that ρeff is equal to zero at the Dirac-like point frequency. Know-
ing the effective parameters of the PC, we can use the Christoffel’s
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Fig. 13.9. (a) The effective moduli Ceff
11 , Ceff

12 and Ceff
44 ; (b) the effective mass

density ρeff ; and (c) the reciprocal of effective modulus, 1/Ceff
44 , of the PC as a

function of frequency near the Dirac-like point.

equation to obtain the phase velocities v1, v2 of the two in-plane
modes.

The Christoffel’s equation is:

ρeff v
2u0

i = Γilu
0
l , (13.10)

where Γil = cijklnjnk is the Christoffel tensor, u0
i is the direction of

the displacement, and ni denotes the propagation direction. In 2D
PC with a square lattice, Γil has the form:

Γil =
∣∣∣∣Γ11 Γ12

Γ12 Γ22

∣∣∣∣ , (13.11)

where Γ11 = Ceff
11 cos2 ϕ+ Ceff

44 sin2 ϕ, Γ12 = (Ceff
12 + Ceff

44 ) sinϕ cosϕ
and Γ22 = Ceff

11 sin2 ϕ+Ceff
44 cos2 ϕ. Here, ϕ denotes the angle between

the propagation direction and the x axis. Solving Eq. (13.10), we
obtain two eigenvalues γm = ρeff v

2
m(m = 1, 2) as functions of ϕ,

2ρeff v
2
1 = Ceff

11 + Ceff
44
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+

√(
Ceff

11 − Ceff
44

)2
cos2 2ϕ+

(
Ceff

12 + Ceff
44

)2
sin2 2ϕ,

2ρeff v
2
2 = Ceff

11 + Ceff
44

−
√(

Ceff
11 − Ceff

44

)2
cos2 2ϕ+

(
Ceff

12 + Ceff
44

)2
sin2 2ϕ.

(13.12)

Above the Dirac-like point frequency, for Ceff
11 < 0, Ceff

44 > 0 and
Ceff

12 ≈ −Ceff
11 , the eigenvalues γ1 and γ2 reduce to γ1 = ρeff v

2
1 = Ceff

44
and γ2 = ρeff v

2
2 = Ceff

11 for any propagation direction ϕ. For ρeff > 0,

v1 =
√
Ceff

44 /ρeff is real and v2 =
√
Ceff

11 /ρeff is imaginary. Thus,
only the branch with eigenvalue γ1 is allowed for the upper cone.

Along the ΓX direction with ϕ = 0◦, Γ11 = Ceff
11 , Γ22 = Ceff

44 and
Γ12 = 0, through Eq. (13.10), the eigenvectors of the eigenvalues γ1

satisfy the following expressions:

(Ceff
11 − Ceff

44 )u0
1x = 0

(Ceff
44 − Ceff

44 )u0
1y = 0

. (13.13)

It can be seen that u0
1x = 0 and u0

1y is arbitrary. As the polarization
of plane wave is defined by the angle θ with tan θ = u0

1y/u
0
1x, the

plane wave along the ΓX direction is a transverse wave with θ = 90◦.
Along the ΓM direction with ϕ = 45◦, Γ11 = (Ceff

11 + Ceff
44 )/2,

Γ22 = (Ceff
11 + Ceff

44 )/2 and Γ12 = (Ceff
44 − Ceff

11 )/2, the eigenvectors of
the eigenvalues γ1 satisfy:

(Ceff
11 − Ceff

44 )
2

u0
1x +

(Ceff
44 − Ceff

11 )
2

u0
1y = 0

(Ceff
44 − Ceff

11 )
2

u0
1x +

(Ceff
11 − Ceff

44 )
2

u0
1y = 0

. (13.14)

Thus, the plane wave is a longitudinal wave with θ = 45◦.
The results for frequencies below the Dirac-like point are similar to

those above the Dirac-like point frequency. At the Dirac-like point fre-
quency, both the eigenvalues γ1 and γ2 are allowed simultaneously, the
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super-anisotropy vanishes. Considering all these cases above, near the
Dirac-like point frequency, the velocities of the in-plane modes of the
PCs only depend on the modulus Ceff

44 for any propagation direction
ϕ meaning that the equi-frequency surface is ”circular”. Hence, the
isotropy of the equi-frequency contours and the “super-anisotropy” of
the eigen-modes near the Dirac-like point frequency can be demon-
strated analytically using the effective medium parameters.

Figure 13.9(c) shows the reciprocal of effective modulus 1/Ceff
44

as a function of frequency which shows that 1/Ceff
44 also approaches

zero at the Dirac-like point frequency. Using ρeff and Ceff
44 , the

equi-frequency surface near the Dirac-like point can be given by

k = ω
√
ρeff /C

eff
44 as shown in Fig. 13.7(c) (blue dot). The result is

consistent with that calculated by the full-wave simulation (magenta
line shown in Fig. 13.7(c)), which indicates that the effective medium
theory is applicable near the Dirac-like point. As ρeff and 1/Ceff

44 are
proportional to ∆ω = ω−ωD when approaching ωD, where ωD is the
Dirac-like point frequency, it is easily seen that k is also proportional
to ∆ω implying that the dispersion relations are linear.

The effective medium theory relates the Dirac-like cone elastic
wave system to an effective zero-index material with ρeff and 1/Ceff

44
equal to zero simultaneously. It is known that homogeneous zero-
index elastic wave materials can exhibit some interesting wave trans-
port phenomena. We want to see whether our discrete system has the
similar phenomena as the homogeneous case. In the above discussion,
we know that the Dirac-like cone is super-anisotropic, thus it should
support different transporting properties for differently polarized
incident waves with different incident directions. Figures 13.10(a)–
13.10(d) shows the incident plane wave along the ΓX direction. The
transverse waves have total transmission independent of whether
there is a defect (a steel bar) embedded in it or not as shown in
Figs. 13.10(c) and 13.10(a). On the other hand, for longitudinal inci-
dent waves, total reflections appear as shown in Figs. 13.10(d) and
13.10(b) for the same configuration. This is because of the Dirac-like
cone only supports transverse wave along ΓX direction. By contrast,
the Dirac-like cone supports only longitudinal waves along the ΓM
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Fig. 13.10. Different polarized incident plane waves impinging the phononic crys-
tal slab along ΓX (a)–(d) and ΓM (e)–(h) directions with and without imbedded
steel defects. Along ΓX direction, (a) and (c) show that transverse waves can go
through the slab without or with steel defect embedded in it, respectively; (b)
and (d) show that longitudinal waves are totally reflected without or with steel
defect embedded in the PC slab, respectively. By contrast, along ΓM direction,
(e) and (g) shows that transverse waves are totally reflected; (f) and (h) show that
longitudinal waves can pass through. The working frequency is slightly above the
Dirac-like point at f = 0.745vt0/a. T and L denote transverse and longitudinal
incident waves, respectively.

direction. As a consequence, the transverse incident plane waves are
rejected as shown in Figs. 13.10(e) and 13.10(g) and the longitu-
dinal incident waves can pass through the slab without distortion
as shown in Figs. 13.10(f) and 13.10(h). The simulations shown in
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Figs. 13.10(c, d, g, h) give the impression that the steel defects are
cloaked by the PC slab similar to the results in acoustic and elec-
tromagnetic waves, but the physics is more complex here due to the
super-anisotropic character of the elastic wave Dirac-like cone. We
note here that in order to avoid the influence of the flat band, we
select a working frequency slightly above the Dirac-like point fre-
quency at f = 0.745vt0/a.

13.5. Weyl Point in Acoustic Systems

In this section, we will first use a simple model to illustrate how
Weyl points130 can emerge in acoustic systems which possess linear
dispersions along all the directions in the 3D moment space. The
dispersion around the Weyl points can be approximated by the Weyl
Hamiltonian93−95

H(k) =
∑

kivijσj , (13.15)

where i, j ∈ {x, y, z}, ki is the wave vector around the Weyl points
and σj is the Pauli matrix. Weyl points can be regarded as monopoles
of Berry flux, and we can define the charges or chirality of these
monopoles by c = sgn[det(vij)] = ±1. As an intuitive picture, we can
envision that Berry flux emerges from the Weyl point that possesses
a positive charge, and goes into the Weyl point with negative charge
just like the flux coming out of the a positive monopole charge and
ending with the negative monopole. When a Weyl point with posi-
tive charge encounters a Weyl point with negative charge, they will
annihilate with each other. Except from the pair annihilation which
typically requires strong perturbation, the Weyl points are other-
wise stable and this explains why the Weyl points are considered as
“topologically stable”.

Although both Weyl points130 and accidental degeneracy induced
Dirac points48−51,88 process linear dispersions around the degeneracy
points along all directions, there are many differences between them.

(1) Time reversal symmetry (TRS) ensures that a Weyl point at
wavevector k must have a Weyl point companion at −k with
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the same charge.93,94 Meanwhile the total charge of all Weyl
points inside the Brillouin zone must be zero.93,94 Hence, TRS
requires that the minimum number of Weyl point should be 4. On
the other hand, inversion symmetry ensures that a Weyl point
at one k point must have a Weyl point companion at −k with
the different charge.93,94 Because the chirality required by the
TRS and inversion symmetry is opposite, there must be no Weyl
point in a system with both TRS and inversion symmetry. Hence,
we must break at least one of these two symmetries to obtain
Weyl points. However, both TRS and inversion symmetry can
be kept when we construct accidental degeneracy induced Dirac-
like points at the zone center. TRS and inversion symmetry also
co-exist for Dirac points at zone boundaries.

(2) Weyl Hamiltonian involves only two linear dispersive bands,
while besides linear dispersive band, we must have additional
quadratic bands for accidental degeneracy induced Dirac-like
points at the zone center. The minimum number of additional
flat bands is 1 for 2D50,131 and 2 for 3D.49

(3) Weyl points are stable in the parameter space and can only
be annihilated with another Weyl point with opposite charge.
On the contrary, we must introduce degeneracy between modes
with appropriate symmetries to construct accidental degener-
acy induced Dirac-like points.131 Any parameter variation which
lifts this accidental degeneracy will eliminate the Dirac-like
points.

As we have discussed above, one must break either TRS or inver-
sion symmetry to generate Weyl points. The TRS is difficult to break
for acoustic systems which requires dynamic modulation113 or mov-
ing fluid.121,122 Here we only consider the effect of inversion symmetry
breaking. To construct linear dispersions along all the directions in
3D momentum space, we start with linear dispersion in 2D momen-
tum space. The simplest Hamiltonian which processes this property is

H(qx, qy) = qxσx + qyσy, (13.16)
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where q represents the wave vector with the origin at the degeneracy
point. The physical system which can be described by this Hamilto-
nian is graphene using simple tight binding model with the nearest
neighbor approximation. To construct a Weyl point, we still need to
introduce an additional term qzσz. In this case, this term means we
need to introduce an odd function (relative to qz) of the onsite energy
difference along the third direction. This happens when the onsite
energy on different sublattice sites as functions of kz have some linear
crossing points. Onsite energy difference can be introduced by adding
a constant energy gating difference or interlayer coupling difference
between difference sublattice sites. Here we consider the latter case
and we work with an AA stacked honeycomb lattice. Other kinds of
interactions which break the inversion symmetry may also introduce
similar effects which we will not discuss here.

A unit cell of our structure is shown in Fig. 13.11(a). We use
different colored bonds to represent different coupling coefficients
and coupling is non-zero only between connected sites. The Hamilto-
nian which describes this nearest-neighbor tight-binding model can
be written as

H =
∑
i,k

ε(ai,ka
†
i,k − bi,kb†i,k)

+
∑

〈ai,k ,bj,k〉
(tnai,kb

†
j,k + H.c.)

+
∑
i,k

(taai,ka
†
i,k+1 + tbbi,kb

†
i,k+1 + H.c.), (13.17)

where tn, ta and tb are hopping coefficients and are all real, a (b) and
a† (b†) are the annihilation and creation operators on the sublattice
site, respectively. Each lattice is specified by subscripts (i, k), where
the first labels the position in each layer and the second labels the
number of layers. For completeness, we also include the onsite energy
difference ε. The second term is identical to graphene described by
the nearest neighbor approximation where 〈·〉 means hopping is only
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Fig. 13.11. Weyl points can emerge if interlayer coupling coefficients are different
in a stacked lattice. (a) A unit cell of an AA stacked honeycomb lattice. Coupling
is only nonzero between connected sites and different colored bonds represent
different coupling coefficients. (b) A unit cell of the acoustic metacrystal under
study. Light blue and yellow represent respectively the area where hard boundary
and Bloch periodic boundary condition apply. (c) The reciprocal space with red
lines marking the position where band dispersions are calculated in (d). (d) The
band dispersion of the acoustic metacrystal under study, where the parameters
used were rc = 4cm, a = 11cm, w0 = w2 = 0.8cm, w1 = 1cm, hc = 10cm
and l = 3cm. The systems were filled with air (density ρ = 1.3kg/m3, and the
speed of sound v = 343m/s). A Weyl point is located at the K̄ point with kz =
0.628π/(hc + l). (e) Weyl points in the reciprocal space, where black and red
represent Weyl points with negative and positive charges, respectively.

between nearest neighbor on the same layer. The third term repre-
sents interlayer hopping.

The corresponding Bloch Hamiltonian H(k ) is obtained using
Fourier transform as

H(k) =
(
ε+ 2ta cos(kzdh) tnβ

(tnβ)∗ −ε+ 2tb cos(kzdh)

)
, (13.18)
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where β = exp(−ikxa) + 2 cos(
√

3kya/2) exp(ikxa/2), a is the
distance between the two sublattices and dh is the interlayer dis-
tance. When |ta − tb| > ε, there exists some special values kz =
±arccos[ε/(tb − ta)]/dh where the diagonal term are the same.
Around these special kz values, the difference between diagonal terms
is an odd function. As β is independent of kz and also has lin-
ear dispersion inside the kx − ky plane along the KH direction (see
Fig. 13.11(c)), the band dispersion around those points on the KH
line and with kz = ±arccos[ε/(tb − ta)]/dh should hence be linear
along all the directions. Those points in the momentum space are
Weyl points according to the definition of Eq. (13.15).

Now let us consider how to realize the above tight-binding model
using real acoustic systems. In Fig. 13.11(b), we show a unit cell
of the real acoustic metacrystal, where light blue and yellow show
respectively the area where hard boundary and periodic boundary
condition is applied. We use sound resonance cavities connected by
small tubes. Such a coupled acoustic resonator metacrystal can be
described quite well by the tight-binding model. The resonance cav-
ities filled with air can be viewed as “meta-atoms”, the hopping
between atoms is realized with small connection tubes and the hop-
ping strength can be tuned with the radius of the connection tubes.
When the radius of the connection tube is not too large, the hopping
strength is roughly proportional to the cross-sectional area of the
connection tubes. Hence if we choose w1 �= w2, the physics can be
described by the Hamiltonian in Eq. (13.17). Indeed, as we calculated
the band dispersion along the KH line as shown in Fig. 13.11(d), we
found a linear crossing point at kz = 0.628π/(hc + l). The crossing
point is not at the middle point of KH which means ε �= 0 if we map
our acoustic system to a tight binding model. We note that when
ε = 0, the crossing point should be at exactly kz = 0.5π/(hc + l).
This is because the connection tubes not only introduce coupling
between resonance cavities but will also change the boundary condi-
tion of the resonance cavities. The change of the boundary condition
from hard boundary to free boundary shifts the resonance frequency,
which is equivalent to an onsite energy term in the Hamiltonian.
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The right panel of Fig. 13.11(d) shows the band dispersion in the xy
plane at the linear crossing point. It is clear that the dispersions are
also linear along all the remaining directions. The metacrystal hence
exhibits Weyl points in the momentum space.

As we have discussed above, Weyl points have associated topo-
logical charges. In Fig. 13.11(e), we show the signs of charge distri-
bution in the reciprocal space, where red and black spheres represent
positive and negative charges, respectively. As TRS is maintained in
our system, Weyl points at k and −k have the same sign of charge.
There are two additional mirror planes besides the TRS, i.e., the
xz plane and the xy plane. Mirror symmetry relates two k vectors
with only one component opposite, and hence the charges of Weyl
points at those two k points should also be different as can be seen
in Fig. 13.11(e).

We have given one example of constructing Weyl points in the
acoustic metacrystals. Actually, there is another interesting view
point of understanding this. As the unit cell in Fig. 13.11(a) is
periodic along the z direction, the wave vector along the z direc-
tion, kz, is a good quantum number. For each fixed kz, the system
is reduced to an effective 2D honeycomb lattice. Now the different
interlayer coupling at different sublattice sites corresponds to differ-
ent kz-dependent onsite energy, which means that the effective in
plane inversion symmetry is now broken by introducing the inter-
layer coupling difference. At these special kz points where two band
cross with each other, the effective in plane inversion symmetry is
recovered, i.e., H(x, y, kz) = H(−x,−y, kz). We know that breaking
of inversion symmetry in honeycomb lattice lifts the degeneracy at
the K̄ points and the band gap opens. The gap opening through
inversion symmetry breaking is a topologically trivial band gap,132

i.e., the Chern numbers of the lower and upper band is zero (Here
we only have two bands for this tight-binding model). This can also
be seen from the distribution of Weyl points in Fig. 13.11(e). The
Weyl points are located on the plane with kz = ±0.628π/(hc + l) and
the net charge on each plane vanishes. Weyl points are the sources
or sinks of Berry flux, and hence the total flux through an arbitrary
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2D band with fixed kz vanishes. Chern number of a 2D band is pro-
portional to the total Berry flux through it and hence it is also zero.

To have nontrivial topology for reduced 2D bands with fixed kz,
one has to break the effective time reversal symmetry for the reduced
2D system. While it is difficult, if not impossible, to break TRS in
acoustic systems, we can introduce effective TRS breaking in the
reduced 2D system with a fixed kz. To achieve this goal, from the
point view of Weyl points, we need to relocate the position of Weyl
points such that the positive charges and negative charges are located
at different kz planes. We can then find some kz values that the net
Berry flux through a 2D band with these kz does not vanish. Indeed,
this goal can be realized if we introduce chiral interlayer coupling
which breaks all the possible mirror symmetries with mirror plane
parallel to the z-axis.92

Figure 13.12(a) shows an example of chiral coupling and we
assume the hopping strength is real and denoted by tc. The cor-
responding Bloch Hamiltonian is

H(k) =
(
tcf(kzdh) tnβ

(tnβ)∗ tcf(−kzdh)

)
, (13.19)

where f(kzdh) = 2 cos(
√

3kya− kzdh)+4 cos(3kxa/2) cos(
√

3kya/2+
kzdh). Now for a fixed kz , the interlayer coupling becomes next near-
est neighbor coupling with a complex hoping coefficient tceiφ with
φ = ±kzdh, where the sign of φ depends on the hopping direction.
On the right panel of Fig. 13.12(a), we use red arrows to denote the
direction along which φ = −kzdh. After a complete loop along the
direction indicated by the red arrows, the total phase accumulated
is −3kzdh. According to the rule of Peierls substitution,133,134 we
know there is nonzero gauge flux (−3kzdh) enclosed by this loop.
In the right panel of Fig. 13.12(a), we use dotted and crossed cir-
cles to denote the direction of local flux. The local flux distribution
shows that our metacrystal at a fixed kz is an acoustic analogue of
the topological Haldane model.132 The existence of gauge flux can
also be understood in terms of the Weyl points. In Fig. 13.12(b), we
show the distribution of the Weyl points and their associated charges.
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Fig. 13.12. (a) Left panel shows a unit cell of an AA stacked honeycomb lattice
with chiral coupling. The chiral hopping is realized with apple-green bonds with
strength denoted by tc. Right panel shows that this chiral coupling is an analogue
of Haldane model for a fixed nonzero kz, where dotted and crossed circle represents
the local gauge flux and the red arrows represent the hopping direction with
positive phase. (b) The distribution of Weyl points with this chiral kind coupling
and the signs of their associated charge. (c) Phase diagram of the parameter space
when considering both the different onsite couplings at different sublattice sites
and the chiral coupling, where cyan, gray and yellow represent region with Chern
numbers −1, 0 and +1 for the lower band, respectively. Red/black curves show
the trajectories of the Weyl points with positive/negative charges. (d) Right panel
shows the distribution of Weyl points with the parameters marked by the blue
dashed line in (c). Left panel shows the corresponding value of Chern numbers of
the lower band as a function of kz.

Weyl points with positive charges and negative charges are located
at kz = ±π/dh and kz = 0 plane, respectively. As the Weyl points
are sources or sinks of Berry flux, the total flux through a 2D band
with an arbitrary kz is nonzero.

Next, we consider the effect of incorporating both the different
onsite couplings at different sublattice sites and the chiral coupling,
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and the Hamiltonian becomes

H(k) =
(

2ta cos(kzdh) + tcf(kzdh) tnβ

(tnβ)∗ 2tb cos(kzdh) + tcf(−kzdh)

)
.

(13.20)
As β only depends on kx and ky, and is zero along the KH (see
Fig. 13.11(c)) direction, the Weyl points should also be located along
the KH direction and are given by the equality of the diagonal terms,
which is

2(ta − tb) cos(kzdh) + tc[f(kzdh)− f(−kzdh)] = 0. (13.21)

In Fig. 13.12(c), red and black curves show the trajectories of the
Weyl points with positive and negative charges, respectively. These
red and black curves divide the parameter space into regions with
different topological properties. Consider a specific set of coupling
coefficients as marked by the blue dashed line in Fig. 13.12(c), and
the corresponding distribution of Weyl points are shown in the right
panel of Fig. 13.12(d). To calculate the Chern number of the lower
band, we start with kz = π/dh and gradually decrease the value of
kz. At kz = π/dh, the Chern number is 0. With the decreasing of kz,
we first encounter a plane with net charge +1, and the Chern number
goes to +1. Then we encounter a plane with net charge −1 and the
Chern number decrease by 1 and jumps back to zero, and so on so
forth. As a result, we obtain the Chern number as a function of kz as
shown in the left panel of Fig. 13.12(d) with solid blue line. We also
label the different topological regions with the Chern number of the
lower band in Fig. 13.12(c), where cyan, gray and yellow represent
region with Chern numbers −1, 0 and +1, respectively.

The realization of this kind of chiral coupling in acous-
tic metacrystals with the connected resonance cavities (like
Fig. 13.11(b)) is conceptually straight forward. We can in principal
realize all the regions in the phase diagram of Fig. 13.12(c) as we
tune the coupling coefficients and vary kz. Actually, we can easily
design metacrystals that go beyond the tight-binding description.92
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The crucial part of breaking the effective TRS in a reduced 2D sys-
tem with a fixed kz is the chiral coupling which breaks the inversion
symmetry as well as all the possible mirror symmetry with mirror
plane parallel to the z-axis.

To recap, we discussed in this section the realization of Weyl
points in acoustic metacrystals, and discussed the similarity and dif-
ference between the Weyl points and accidental degeneracy induced
Dirac points. We find that acoustic Weyl points can be realized by
engineering the interlayer coupling of a stacked honeycomb lattice
of coupled acoustic cavities. In particular, we discussed the effects
of different coupling at different sublattice sites and chiral coupling.
These two kinds of couplings correspond respectively to the effective
inversion symmetry breaking and effective time reversal symmetry
breaking if we consider a reduced 2D system at a fixed kz. If both
types of coupling are incorporated in the metacrystal, we can realize
an acoustic analogue of the topological Haldane model. The above
systems can be realized using acoustic metacrystals comprising con-
nected resonance cavities.

13.6. Conclusion

In this chapter, we showed that conical dispersions at the Brillouin
zone center can be realized in acoustic and phononic crystals using
accidental degeneracy. We then focus on building the relationship
between zero-index metamaterials and conical dispersions at k = 0,
and reveal the subtle relationship between these two seemingly unre-
lated topics. We then see that the Dirac-like point concept can
be generalized from 2D to 3D, and thereby achieving an isotropic
zero-index acoustic metamaterial. For elastic waves, Dirac-like cones
give additional interesting physics such as super-anisotropy. Last
but not the least, we discussed the physics associated with an
acoustic Weyl point and proposed coupled-cavity structures to real-
ize such 3D conical dispersions and their implications in acoustic
metacrystals.
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An Interface Model
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14.1. Introduction

Acoustic metamaterials consisting in massive materials perforated
by periodic subwavelength holes [Pendry et al. (2004); Garcia-Vidal
et al. (2005); Zhu et al. (2011)] or more sparse structures involv-
ing periodic arrangement of wires [Lemoult et al. (2013)] have been
shown to be able to control the wave propagation with high flexibil-
ity. In comparison, phononic crystals have a priori higher dimensions
because of their wavelength-scale period. However, if the metama-
terial has subwavelength period, many of the observed phenomena
are attributable to Fabry-Perot type resonances, resonances in the
hole or resonances of the wires. Therefore, these structures have a

∗Corresponding author: agnes.maurel@espci.fr

599



September 9, 2017 8:6 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch14 page 600

600 Handbook of Metamaterials and Plasmonics — Volume 2

limitation in their thickness, which has to be at wavelength scale
to produce such resonances (and thickness refers to the size in the
direction perpendicular to the plane containing the periodic cells). In
order to reduce the size of the devices, structures with subwavelength
thickness have been developed. They are known as metasurfaces and
metafilms. Despite the vanishing thickness in comparison to the inci-
dent wavelength, the capability of these ultrathin devices to control
the wave propagation has been evidenced. This is because they are
based on a resonance which is not related to their thickness. It can
be a thin elastic membrane within the unit cell [Ma et al. (2014);
Zhao et al. (2014)], or resonances of labyrinthine or curled elements
squeezed in the unit cell [Peng et al. (2014); Li et al. (2014); Xie
et al. (2014)].

Because of their subwavelength unit cell, homogenization tech-
niques are natural tools to describe the effective properties of meta-
materials. Standard homogenization methods [Zhu et al. (2013);
Maurel et al. (2013)] or more empirical methods, as the retrieval
techniques [Arslanagic et al. (2013); Castanié et al. (2014)] (often
referred as Nicolson-Ross-Weir technique) and approximated modal
approaches [Pendry et al. (2004); Garcia-Vidal et al. (2005); Kelders
et al. (1998)] have been largely used for massive structures lead-
ing to effective bulk modulus and effective mass density, being the
acoustic counterparts of the effective permittivity and permeabil-
ity in electromagnetism. An enlightening review can be found in
Ref. [Simovski (2011)]. When metafilms or metasurfaces are con-
cerned, first attempts have been proposed which use the same
retrieval parameters as for bulk materials and affecting a thickness
value more or less relevant (see the discussions in § 3 of [Simovski
(2011)] and in §2 of [Holloway et al. (2009)]). It is now admitted
that these approaches are not pertinent and rather, jump condi-
tions or transmission conditions of the fields across a zero thick-
ness surface are thought. In the context of electromagnetism, effec-
tive surface parameters are expressed in term of effective surface
admittances [Zhao et al. (2011)] or surface susceptibilities [Holloway
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et al. (2009); Dimitriadis et al. (2012); Kuester et al. (2003); Hol-
loway et al. (2005)]. In addition to be closely related to the notion
of electric polarization density and surface magnetization, which are
not easily transposable to the case of acoustic or elastic waves, these
techniques require an inversion procedure to get the surface suscep-
tibilities, from the measurement of the scattering coefficients. Thus,
although the problem of the artificial thickness is avoided, the ques-
tion of wether or not the obtained parameters depend on the scat-
tering problem that has been considered remains.

In this paper, we present a homogenization method for van-
ishing thickness metamaterials which explicitly accounts for the
microstructure of the unit cell. The problem ends with jump con-
ditions for the acoustic pressure and for the normal acoustic veloc-
ity involving parameters being wave independent, by construction.
This is because, as in the standard homogenization, the parame-
ters are determined by solving (analytically or numerically) elemen-
tary cell problems in the static case (that is for zero frequency).
The model relies on a separation of scales, a micro scale associ-
ated to the small scatterer size and a macro scale associated to
the acoustic wavelength, and ε is the small parameter that mea-
sures the ratio of the two scales. Each scale is associated to a system
of coordinates which is relevant or not to describe the variation of
the acoustic fields wether we are close to the film or far from it.
Thus, a separation of the space is used, into an outer region, typ-
ically the far field, where only the macro scale makes sense and
an inner region, the near field, where both the micro and macro
scales are needed. Expansions of the fields in power of ε are per-
formed in both regions and finally, matching conditions are used
between the two regions. This approach has been developed in the
context of static elasticity, see [Marigo and Pideri (2011); David
et al. (2012)] for a complete description. The case of wave propa-
gation has been less regarded. We mention the works of Capdev-
ille and Marigo for seismic waves in the time domain [Capdeville
and Marigo (2007); Capdeville et al. (2010a); Guillot et al. (2010);
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Capdeville et al. (2010b); Capdeville and Marigo (2013)], and the
Refs. [Bonnet-Bendhia et al. (2004); Delourme (2010); Delourme
et al. (2012)] in the frequency domain. Note also works using alter-
native forms of the matched asymptotic expansions [Sanchez-Hubert
and Sanchez-Palencia (1982); Martin and Dalrymple (1988); Kakuno
et al. (1992)].

The paper is organized as follows. In Section 14.2, we apply
the interface model for the problem of acoustic wave propagation
through a thin film made of a periodic row of sound hard inclusions.
The jump conditions are derived, Eqs. (14.27), with the interface
parameters (B,C) being associated to the elementary problems, Eqs.
(14.17). Section 14.3 presents results in the case of rectangular inclu-
sions in two dimensions, with thickness e. This choice is not casual.
First, it allows for approximate, but explicit, solutions of the elemen-
tary problems. Thus, the interface parameters (B,C) are given, and
associated transmission and reflection coefficients of a plane wave
at oblique incidence, Eqs. (14.33), are obtained. Next, a compari-
son with the classical homogenization of layered media is possible
since again, explicit solutions are available in this case [Garcia-Vidal
et al. (2005); Oleinik et al. (2009)], Eq. (14.34). The validity of our
interface model is inspected by comparison with full wave simula-
tions, and discussed in the light of the comparison with the classical
homogenization. The results show that the interface homogeniza-
tion is accurate for kh, ke < 1, while classical homogenization can
be used for kh < 1 and e > h and it largely underestimates the
scattering properties of thin structured layers. The small parame-
ter ε can be forced to values of order unity; typically for ε and ke

of order unity, the discrepancy between the exact solution and the
solution of the homogenized problem do not exceed few per percent.
We end with an illustrative example of an ultra thin structured film
obstructing a waveguide with rigid walls. Again, an explicit solution
of the homogenized problem is possible and a good agreement with
direct numerics is obtained. Technical calculations are collected in the
Appendices.
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Fig. 14.1. Scattering problem for (a) the microstructured film (metafilm) and
(b) the equivalent interface. X = (X1,X2,X3) is the coordinate system in the
real space.

14.2. The Homogenized Interface Model

The acoustic pressure P (X) satisfies the Helmholtz equation outside
the inclusions (

∆ + k2)P (X) = 0, (14.1)

with k the wavenumber (the time dependance is e−iωt, with ω the
frequency, and it is omitted in the following). Here, we restricted our
study to sound hard inclusions, with Neumann boundary condition
on the boundary of the inclusions ∂nP = 0, where ∂n denotes the
normal derivative. Also, the wave propagation is associated to a wave
source and to a proper radiation condition that we do not need to
specify at this point. The inclusions form a periodic arrangement
located near the (X2,X3) plane (with typical thickness e along X1,
Fig. 14.1(a)). For simplicity, we assume that h is the period of the cell
along X2 and X3 (we could assume two different periods along X2

and X3 without additional complexity, except in the notations). We
inspect the possibility to replace this problem by a simpler one, where
the structured film is replaced by an interface associated to jump
conditions for the pressure P and its normal derivative, or normal
velocity, ∂X1P (the nature of the equivalent interface, in terms of its
thickness, will be discussed).

In our acoustic problem, the natural small parameter is ε =
kh � 1 and to be consistent, we need to write the Helmholtz equa-
tion in a dimensionless form, with x ≡ kX, and p(x) ≡ P (X). In
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x1
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y2
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−ym1
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ε
1
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Fig. 14.2. (a) Geometry of the structured film in non dimensional coordinates
x = (x1, x2, x3); (b) inner problem in coordinates y = (y1, y2, y3). D is the
region occupied by the rigid inclusion. We define Y = (−ym

1 , y
m
1 ) × (0, 1)2,

Y∞ = limym
1 →+∞Y, and x′ = (x2, x3), y′ = (y2, y3).

x = (x1, x2, x3), the period is now ε and the film thickness is ke
(Fig. 14.2(a)); it is assumed that e and h are of the same order of
magnitude. We get (∆x + 1) p(x) = 0, which is written, for conve-
nience using u,


divxu(x) + p(x) = 0, with u ≡∇xp,

u.n|∂D = 0,
(14.2)

and u is the acoustic velocity, in dimensionless form.

14.2.1. The inner/outer expansions and associated

matching conditions

The idea is now to expand the solution with respect to the small
parameter ε, namely


p = p0(x) + εp1(x) + ε2p2(x) + . . . ,

u = u0(x) + εu1(x) + ε2u2(x) + . . .
(14.3)

In principle, this expansion can be used in the whole space (see
e.g. [Martin and Dalrymple (1988)]). Nevertheless, if the spatial
derivatives in Eq. (14.2) make ε to appear, the resolution may become
tricky. Such complications are avoided if a displacement in x of order
unity produces a variation in p of order unity, namely ∂xip ∼ p. This
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is ensured in the far field of the film, where ∂XiP ∼ kP → ∂xip ∼ p.
The story is different in the near field: there, the film generates
evanescent waves whose strongest variations are associated to the
smallest scale of the microstructure, say ∂XiP ∼ P/h→ ∂xip ∼ p/ε.
Then, the wavefield satisfies pseudo-periodic conditions, for instance
along X2, P (X1,X2 + h,X3) = P (X1,X2,X3)eik2h, with k2 the
component of the incident wavenumber along X2 (the same applies
along X3). This behavior is associated to low variations of P (∂x2p ∼
p) for non normal incidence k2 �= 0. Thus, we have to deal with
different scales in the far and near fields, and two scales in the near
field.

The presented approach solves this annoying problem with two
ingredients: first, a separation of the space into an inner and an outer
regions, which correspond to the near and far fields, respectively. In
the outer region, the natural coordinates x ≡ (x1, x2, x3) are adapted
and the expansion, Eq. (14.3), applies. In the inner region, the rapid
variations of p and u are accounted introducing a new system of
coordinates y = x/ε such that ∂yip ∼ p for the rapid variations
of p; next, the slow variations along x2 and x3 are accounted for by
keeping x′ ≡ (x2, x3) as additional coordinates. Note that in the y
coordinates, the cell has a thickness unity (Fig. 14.2(b)). Owing to
this modification, the expansions read

Outer expansion



p = p0(x) + εp1(x) + ε2p2(x) + . . . ,

u = u0(x) + εu1(x) + ε2u2(x) + . . .

Inner expansion



p = q0(y,x′) + εq1(y,x′) + ε2q2(y,x′) + . . . ,

u = v0(y,x′) + εv1(y,x′) + ε2v2(y,x′) + . . .

(14.4)
Finally, both regions are connected in some boundary region,

where the evanescent field is vanishing at small x1 values correspond-
ing to y1 = x1/ε→ ±∞. These matching conditions are written using
Taylor expansions of p0(x1,x′) = p0(0,x′) + x1∂x1p

0(0,x′) + · · · =
p0(0,x′)+εy1∂x1p

0(0,x′)+. . . , same for u0, and identifying the terms
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in εn in the inner and outer expansions, Eqs. (14.4). We get

p0(0±,x′) = lim

y1→±∞ q0(y,x′),

u0(0±,x′) = lim
y1→±∞v0(y,x′),

(14.5)

at leading order, and

p1(0±,x′) = lim

y1→±∞

[
q1(y,x′)− y1

∂p0

∂x1
(0±,x′)

]
,

u1(0±,x′) = lim
y1→±∞

[
v1(y,x′)− y1

∂u0

∂x1
(0±,x′)

]
,

(14.6)

at first order, and fortunately, we do not need to go at higher
orders in the expansions. A last subtlety of the interface model is
to assume that the functions qn and vn are periodic with respect
to y2 and y3. Again, this is not meaningless in the present context
if we have in mind the condition of pseudo periodicity. This condi-
tion is handled by the variables x2 and x3, for instance qn(y, x2 +
ε, x3) = eik2hqn(y, x2, x3) (note that the condition of pseudo period-
icity applies for the outer solution (pn,un), and from (14.5)–(14.6),
it applies for (qn,vn) also). If one thinks to the qn in terms of sepa-
rable functions qn(y,x′) = f(y)g(x′) (and this will be the case in the
quasi-static limit), we recover the form of a Floquet solution, with
g(x′) = eik

′.x′/k and f periodic with respect to y′ ≡ (y2, y3).
Now, the matching conditions, Eqs. (14.5)–(14.6) can be written

in an alternative form, that will be used later


�
p0� = δq0,

�
p1� = lim

ym
1 →+∞

[
δq1(ym

1 )− 2ym
1
∂p0

∂x1
(0,x′)

]
,

�
u0� .e1 = δv0

1 ,
�
u1� .e1 = lim

ym
1 →+∞

[
δv1

1(ym
1 )− 2ym

1
∂u0

1
∂x1

(0,x′)
]
,

(14.7)
(Fig. 14.2), where we have defined

δf(ym
1 ) ≡ f(+ym

1 )− f(−ym
1 ), and δf ≡ δf(+∞). (14.8)
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In the above expressions, the dependence of f on y′ and x′ are
omitted.

14.2.2. Equations governing the outer and inner

terms at orders 0 and 1

The equations in the outer and inner problems read, from Eqs. (14.2)

Outer problem: divxu0 + p0 = 0, u0 = ∇xp
0,

Inner problem:




divyv0 = 0, ∇yq
0 = 0,

v0 = ∇yq
1 + ∇x′q0,

divx′v0 + divyv1 + q0 = 0,

v0.n|∂D = v1.n|∂D = 0.

(14.9)

For the inner problem, we must add, at orders 0 and 1, the periodic
conditions of qn and vn, n = 0, 1, with respect to y′.

These are the equations that will yield the elementary problems,
and, together with the matching conditions, Eqs. (14.5)–(14.6), the
jump conditions in the outer problem.

14.2.3. The jump conditions for the outer problem

of order 0

The first two equations of the inner problem in (14.9) show that
q0 does not depend on y and that

∫
dy′ v0

1(y1 = −∞,y′,x′) =∫
dy′ v0

1(y1 = +∞,y′,x′). This latter relation is obtained by inte-
grating divyv0 = 0 over Y∞\D and using the boundary condi-
tion v0.n = 0 on ∂D and the periodicity of v0 with respect to
y′. It follows from Eqs. (14.5) that (i) q0(x′) = p0(0±,x′) and
(ii)

∫
dy′ v0

1(±∞,y′,x′) = u0
1(0

±,x′), so that the jump conditions
at leading order read �

p0� =
�
u0� .e1 = 0. (14.10)

The structured film is transparent at leading order, with the pressure
and the normal velocity being continuous across the interface. In the
context of static elasticity, for microcraks or microholes in an elastic
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body, this has been referred as the “the principle of the dressmaker”
([Marigo and Pideri (2011)]): “It is not necessary to sew entirely two
pieces of fabrics in order to render invisible their relative opening, it
is sufficient to sew them at a great number of points regularly spaced.”
This is not trivial a priori, and it fact, it is not expected if we have
the limiting case of a rigid wall � = h in mind, and this will be
discussed below. For now, the solution (p0,u0) at this leading order
is the solution of the Helmholtz equation in the absence of interface,
which means that (p0,u0) correspond to the pressure and velocity
associated to a given incident wave. At this stage, the appropriate
radiation condition has to be accounted for to determine the unique
solution of the problem at leading order.

To capture the effect of the interface, we need to go at the next
order to find the jump conditions.

14.2.4. The jump conditions for the outer problem of

order 1 and the associated elementary

problems

At order 1, we have to consider a problem on the inner terms (q1,v0).
To do so, it is convenient to introduce (q,v) defined by


q(y,x′) ≡ q1(y,x′)− y1

∂p0

∂x1
(0,x′),

v(y,x′) ≡ v0(y,x′)− u0(0,x′).
(14.11)

From the equations (14.9) in the inner problem, (q,v) satisfy


divyv = 0, v = ∇yq,

lim
y1→±∞v = 0,

v.n|∂D = −u0(0,x′).n|∂D,

q and v.n being y′ − periodic,

(14.12)

where we have used that q0(x′) = p0(0,x′) and u0 = ∇xp
0, from

the outer problem. For the boundary conditions at y1 → ±∞, we



September 9, 2017 8:6 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch14 page 609

An Interface Model for Homogenization of Acoustic Metafilms 609

also used the matching condition, Eq. (14.5), u0(0,x′) = v0(y1 =
±∞,y′,x′).

If this problem is solved, the jump conditions can be determined.
Inspecting the form of

�
p1� in Eqs. (14.7), we see that the jump

condition on p is simply determined using the definition of q in
(14.11), yielding

δq1(ym
1 )− 2ym

1
∂p0

∂x1
(0,x′) = δq(ym

1 ), (14.13)

with the notations (14.8).
For the jump condition on u1, we integrate the third equation of

the inner problem in (14.9) over Y\D. This leads to

δv1
1(ym

1 )− ∂u0
1

∂x1
(0,x′) (2ym

1 − SD) +
∂

∂xα

∫
Y\D

dy vα = 0, (14.14)

where α = (2, 3), and with SD the volume of D in the y coordinates
(we use the summation convention on repeated indices). We have
used that (i) v1 is periodic with respect to y′, (ii) q0(x′) = p0(0,x′)
from the previous section and (iii) divx′u0 + p0 = −∂x1u

0
1 (from the

outer problem). Note that (2ym
1 − SD) is simply the volume of Y\D.

It is now sufficient to take the limit ym
1 → +∞ in Eqs. (14.13)–

(14.14) and using (14.7) to get


�
p1� = δq,

�
u1� .e1 = −∂u

0
1

∂x1
(0,x′) SD − ∂

∂xα

∫
Y∞\D

dy vα(y,x′),
(14.15)

with Y∞ = (−∞,∞)× (0, 1)2.
As written above, the jump conditions are not satisfactory in

the sense that both q and vα depend on the value of u0 on ∂D
(in (14.12)). However, it is possible to split the problem (14.12) on
(v, q) into simple problems on q(i)(y), i = 1, 2, 3, called elementary
problems. These problems are “elementary” in the sense that they
can be solved once and for all and this is because these problems are
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independent of x′ and of the value of u0 on ∂D. Specifically, (q,v)
can be decomposed into


q(y,x′) =

∂p0

∂xi
(0,x′) q(i)(y) + q̂(x′),

v(y,x′) =
∂p0

∂xi
(0,x′) ∇q(i)(y),

(14.16)

with q(i)(y) satisfying

the elementary problems:




∆q(i) = 0,

∇ [
q(i) + yi

]
.n = 0, on ∂D,

lim
y1→±∞∇q(i) = 0,

q(i) being y′ − periodic.

(14.17)
It is easy to see that such decomposition ensures that (q,v) is solution
of (14.12) (using u0 = ∇xp

0). Note that q̂(x′) has been introduced
since q(y,x′) in (14.12) is defined up to a x′-dependent field, but its
determination is not needed.

We can now express δq and vα in (14.15) in terms of the elemen-
tary solutions q(i)


δq =

∂p0

∂xi
(0,x′) δq(i),

vα(y,x′) = u0
i (0,x

′)
∂q(i)

∂yα
(y),

(14.18)

and the jump conditions (14.15) become


�
p1� =

∂p0

∂xi
(0,x′) δq(i),

�
u1� .e1 = −∂u

0
1

∂x1
(0,x′) SD − ∂u0

i

∂xα
(0,x′)

∫
Y∞\D

dy
∂q(i)

∂yα
(y),

(14.19)
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which can be written introducing the parameters b and c


�
p1� = bi

∂p0

∂xi
(0,x′),

�
u1� .e1 = cij

∂u0
i

∂xj
(0,x′),

(14.20)

with bi = δq(i) and


c11 = −SD, c1β = −
∫

Y∞\D
dy

∂q(1)

∂yβ
,

cα1 = 0, cαβ = −
∫

Y∞\D
dy

∂q(α)

∂yβ
,

(14.21)

where α, β take the values 2 and 3.
It is essential that the elementary problems, Eqs. (14.17), do not

depend on the incident wave (as the former problem Eqs. (14.12),
does, through u0 in the boundary condition). This ensures that the
parameters b and c are characteristic of the interface independently
of the particular scattering problem that will be considered.

14.2.5. Construction of the up to order 1 effective

problem

The final up to order 1 effective problem requires two additional
steps. First, we have obtained jump conditions at order 0 and at
order 1. Strictly, an iterative resolution of the problem is possible
which would involve first the resolution of the order 0 outer problem
(which does not see the structured layer) yielding (u0, p0), and then
the resolution of the order 1 outer problem associated to the jump
conditions (14.20) (the effective parameters entering in (14.20) being
known after the elementary problems (14.17) have been solved). How-
ever, it is stressed in [David et al. (2012)] that such procedure is not
suitable in practice, notably if we have numerical resolutions in mind,
and rather, a unique outer problem involving p0 + εp1 (and u0 + εu1)
has to be considered. To do so, we use f = f0 + εf1 + O(ε2) and�f� = ε

�
f1

�
+O(ε2) for any field f with

�
f0

�
= 0. From Eqs. (14.10)
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and (14.20), we get




�p� = ε
bi
2

[
∂p

∂xi
(0−,x′) +

∂p

∂xi
(0+,x′)

]
+O(ε2),

�u� .e1 = ε
cij

2

[
∂ui

∂xj
(0−,x′) +

∂ui

∂xj
(0+,x′)

]
+O(ε2),

(14.22)

where we have introduced for fields being discontinuous at x1 = 0
the mean value of their limits x1 → 0±.

Next, the above conditions will be written in an alternative form,
equivalent at order O(ε2). Loosely speaking, the new jump conditions
have to restore the initial thickness of the structured layer, and this
is required following the intuitive argument that the equivalent inter-
face has to support the acoustic energy in the actual layer in order
to ensure that it supports a positive energy, see [Marigo and Maurel
(2016)] for more details. In [Abdelmoula et al. (1998)], this is done
by considering that the problem is written in a domain of fixed size
in which the film of size ε has been inserted, resulting in a shift of
the boundaries. In [Delourme (2010); Delourme et al. (2012)], this is
done to overcome troubles in the homogenized problem due to the
signs of the (bi, cij), specifically some of these parameters have to
be positive or negative to ensure existence and uniqueness of vari-
ational solutions in the homogenized problem. In this latter case, a
family of equivalent jump conditions are proposed, which correspond
to interfaces “enlarged” of an arbitrary thickness; here, we consider
a shift of e. A shift of e in the real space corresponds to a shift
of ke in the x-space and we assume that e/h = O(1), from which
ke = εe/h = O(ε). To do so, we use the Taylor expansion of pn,
n = 0, 1,



p0
(
± εe

2h
,x′
)

= p0(0,x′)± εe

2h
∂p0

∂x1

(
± εe

2h
,x′
)

+O(ε2),

p1
(
± εe

2h
,x′
)

= p1(0±,x′) +O(ε),
(14.23)
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to get

p
( εe

2h
,x′
)
− p

(
− εe

2h
,x′
)

=
εe

2h

[
∂p0

∂x1

(
− εe

2h
,x′
)

+
∂p0

∂x1

( εe
2h
,x′
)]

+ ε
�
p1� +O(ε2). (14.24)

Finally, defining for any f , the mean value of f across the interface
of thickness ke

f =
1
2

[
f
(
− εe

2h
,x′
)

+ f
( εe

2h
,x′
)]
, (14.25)

and coming back to (14.26), the new jump conditions read




�p�e = ε
(
bi +

e

h
δi1

) ∂p

∂xi
+O(ε2),

�u�e .e1 = ε
(
cij +

e

h
δi1δj1

) ∂ui

∂xj
+O(ε2).

(14.26)

Now, the homogenized model is written in the real space for the
pressure field P (X) (Fig. 14.3): P satisfies the Helmholtz equation
∆P+k2P = 0 except in −e/2 < X1 < e/2 (this region is disregarded)
and it experiences jump conditions which link its values at X1 =
±e/2, with �P �e ≡ P (e/2,X′) − (−e/2,X′) , to the mean values
of its spatial derivatives ∂XiP ≡ 1

2 [∂XiP (−e/2,X′) + ∂XiP (e/2,X′)]

X1

X2

X3
∆P + k2P = 0

jump conditions

eTexte

Fig. 14.3. In the homogenized problem, the Helmholtz equation applies in the
whole-considered-space except in the region −e/2 < X1 < e/2 which is disre-
garded; the jump conditions (14.27) apply between X1 = −e/2 and e/2.
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(the same for ∂X1P ):

Jump conditions




�P �e = h Bi
∂P

∂Xi
,�

∂P

∂X1

�
e

= h Cij
∂2P

∂Xi∂Xj
,

(14.27)

with 


B1 =
e

h
+ δq(1), Bα = δq(α),

C11 =
e

h
− SD, C1β = −

∫
Y∞\D

dy
∂q(1)

∂yβ
,

Cα1 = 0, Cαβ = −
∫

Y∞\D
dy

∂q(α)

∂yβ
,

(14.28)

where α, β take the values 2 and 3.

14.2.6. Remarks

As previously said, it is essential that the elementary problems, Eqs.
(14.17), do not depend on the incident wave. This ensures that the
interface parameters are characteristic of the structured film only.
However, one can think to introduce a dependance on the frequency
in the elementary problems, as it has been done for classical homog-
enization (high frequency homogenization or resonant homogeniza-
tion) [Bouchitté and Felbacq (2004); Felbacq and Bouchitté (2005);
Craster et al. (2011); Antonakakis et al. (2013)]. For acoustic waves,
this could be done for metafilms containing long hard scatterers
wrapped in the unit cell, thus allowing for the resonance of the
enrolled element. For elastic or electromagnetic waves, this could
be done for metafilms containing inclusions with a contrast in its
material properties such that the wavelength inside the inclusions is
of the same order than the size of the inclusions.

The following remarks can be done on the elementary problems,
Eqs. (14.17)
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• The problem for i = 1 is nothing but the problem of a uni-
form potential flow past a rigid obstacle in a duct. With veloc-
ity potential ϕ(y) = q(1) + y1, we get ∆ϕ = 0, ∂nϕ|∂D = 0 and
limy1→±∞ ϕ = y1 + b±. The coefficient b1 = b+ − b− is called the
blockage coefficient and it has been calculated for several shapes
of obstacles (see [Martin and Dalrymple (1988)] and references
therein). This coefficient can be non zero even for zero surface
obstacle SD = 0, reducing to a plate of length �.

• For inclusion shape being symmetric with respect to y2, q(1) is
symmetric also. It results that

∫
Y\D dy ∂yαq

(1) = 0.
• The cell problem for i = 2, 3 is needed only for oblique inci-

dence of the wave. Besides, for inclusion shape being symmetric
with respect to y2, q(α), α = 2, 3 are antisymmetric; in this case,
δq(α) = 0.

Finally, we have said that the present derivation of the jump con-
ditions follows from previous works [Marigo and Pideri (2011); David
et al. (2012)] in the static case (k = 0). For the sake of completeness,
we report in the Appendix 14.5 a short discussion on the links with
this work.

14.3. The Case of Sound Hard Rectangular Inclusions
in 2D

In the following, we consider a 2 dimensional array made of rect-
angular inclusions infinite along X3 (otherwise of size � along X2

and thickness e along X1). This inclusion shape being symmetric
with respect to y2, the preceding remarks on the elementary problems
apply and the jump conditions (14.27) simplify to

Jump conditions




�P �e = hB
∂P

∂X1
,

�
∂P

∂X1

�
e

= hS
∂2P

∂X2
1

+ hC
∂2P

∂X2
2
,

(14.29)
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with S ≡ (e/h − SD), B ≡ e/h + δq(1) and C ≡ − ∫Y∞\D dy ∂y2q
(2).

As previously, f means the mean value of f at X1 = ±e/2.

14.3.1. The interface parameters

An obvious interface parameter is S = e/h(1 − �/h). Next, (B,C)
can be calculated by solving numerically the elementary problems,
Eqs. (14.17). A simple procedure to calculate (B,C) (based on
mode matching) and the associated scripts are provided in the
Appendice 14.6. Alternatively, we can use approximate but explicit
expressions. An estimate of C is, as a rule of thumb,


C � e

(
1− �

h

)
− π

8

(
1− �

h

)2

, if this leads to a positive value,

C � 0, otherwise,
(14.30)

which means that C (which is always positive) can be neglected for
small e/h values. A more precise estimate of B can be found in [Flagg
and Newman (1971)] (see also [Suh et al. (2011)]). It is written as the
sum of two terms, one of which does not vanish for e = 0 (blockage
coefficient of a flat plate)



B =

e

h− � +B0,

B0 =
2
π

log
(
d

2
+

1
2d

)
, with d ≡ tan

(
π(h− �)

4h

)
.

(14.31)

In fact, Ref. [Flagg and Newman (1971)] provides an approximation
of B0 � 2

π

[
1− log (4(1 − �/h)) + 1

3 (1− �/h)2 + 281
180 (1− �/h)] valid

for �/h close to 1. The expression of B0 in Eq. (14.31) above can be
found in [Morse and Ingard (1968)] (the calculation is done for flat
plates using techniques of complex variables). The parameters (B,C)
are reported in Fig. 14.4.
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Fig. 14.4. Interface parameters B and C computed numerically by solving the
elementary problems (14.17) (symbols), see Appendix 14.6. (a) (B − e/h) as a
function of �/h for e/h = 0.5, 1 and 2; plain lines show the values given by (14.31).
Same representation for C, with plain lines given by (14.30).

X1

X2

h

e

T ex

Rex

θ

jump c.

X1

X2
e

θ

T

R

(a) (b)

Fig. 14.5. Scattering of a plane wave at oblique incidence θ (a) in the real prob-
lem, (Rex, T ex) refer to the reflection and transmission coefficients of the incident
plane wave, characteristic of the propagating waves and an evanescent near field
is generated in the vicinity of the film, (b) in the homogenized problem, the jump
conditions (14.29) do not produce evanescent field and (R, T ) refers simply to the
reflection and transmission coefficients of the incident wave.

14.3.2. Validity of the interface model — The

scattering of an incident plane wave

We consider the problem of the scattering of an incident plane wave
at oblique incidence θ on the structured film (Fig. 14.5). When
replaced by the equivalent interface associated to the jump condi-
tions Eqs. (14.29), the problem reduces to a one dimensional problem
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whose solution reads{
P (X1 < −e/2,X2) = eik sin θX2[eik cos θ(X1−e/2) +Re−ik cos θ(X1−e/2)],
P (X1 > e/2,X2) = eik sin θX2 Teik cos θ(X1+e/2),

(14.32)
with


R = i

a− b
(1− ia)(1− ib)

, T =
1 + ab

(1− ia)(1− ib)
,

with a ≡ kh

2
cos θ

(
S + C tan2 θ

)
, b ≡ kh

2
cos θ B.

(14.33)

Note that for � → h, we have B → +∞ (thus b → +∞) and
C → 0. We obtain R → −1/(1 − ia) and T → ia/(1 − ia), with
a ∝ S �= 0 except for a flat array e = 0. Obviously, we would expect
R = 1, T = 0 in this case since the array becomes a sound hard wall.
It is a classical problem in homogenization theories when a new small
parameter is introduced, here ε′ = 1 − �/h. In the present case, the
problem ε′ → 0 appears in the jump conditions, Eq. (14.26); it has
been assumed that εB � 1 (as it has been assumed that εC � 1 and
εS � 1). Inspecting B in Eq. (14.31), we see that this assumption
can fail when (h − �) → 0, depending on how fast ε and ε′ go to
zero: (i) if e �= 0, it fails if ε/ε′ → ∞ and (ii) if e = 0, it fails if
ε log ε′ → ∞. This latter limit corresponds to the one established
in [Sanchez-Hubert and Sanchez-Palencia (1982)] for perforated thin
plate.

In the actual problem, the incident wave generates an evanes-
cent field in the vicinity of the structured film, which may have
a strong influence on the reflection and transmission of the plane
wave. Below, we inspect the validity of our homogenized solution,
namely its ability to incorporate the effect of the evanescent field in
the interface parameters.

To begin with, we report in Figs. 14.6 and 14.7 the pressure fields
for a structured interface of thickness e, with ke = 0.5 and 1 and, in
the unit cell, different aspect ratio �/h. For the considered geometries,
the interface parameters are given in the table below. The notation
X [Y] is used, with X the value of B or C given by the estimates
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(X
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(X
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k = 0.5 k = 0.9

min

max

Fig. 14.6. Wavefields in the (X1,X2) plane for ke = 0.5, kh = 1, and k� = 0.5
or 0.9 (a) P ex(X) and (b) P (X) coming from the interface model, Eqs. (14.32)–
(14.33). The white arrow indicates the wavenumber of the incident plane wave.
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(a)

(b)

k = 0.1

Fig. 14.7. Same representation as in Fig. 14.6 for ke = 1 kh = 1, and k� = 0.1
or 0.5.
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(14.30)–(14.31), and Y the value obtained by solving the associated
elementary problem (see Fig. 14.4 and Appendix 14.6).

e/h = 0.5 �/h = 0.5 �/h = 0.9
B 1.22 [1.25] 6.18 [6.22]
C 0.15 [0.17] 0.05 [0.05]

e/h = 1 �/h = 0.1 �/h = 0.5
B 1.12 [1.12] 2.22 [2.25]
C 0.58 [0.60] 0.40 [0.41]

The field P ex(X) refers to the solution of the actual problem cal-
culated numerically (a multimodal method is used, see [Maurel et al.
(2014)]) and P (X) refers to the prediction coming from the interface
model, Eq. (14.32), with Eqs. (14.33). We have considered θ = π/4,
kh = 1. This ε = kh = 1 value is obviously a limiting case for the
validity of any homogenization model but the fields P ex and P are
found in good agreement, with ||P −P ex||/||P ex|| ∼ 1% for ke = 0.5
(in both cases reported in Figs. 14.6) and ||P − P ex||/||P ex|| ∼ 5%
for ke = 1 (in both cases reported in Figs. 14.7); ||.|| is the norm L2,
considering the field in |X1| > e/2.

To go further, we inspect the variations of the reflection coef-
ficient as a function of k and e (say for a fixed h value). This is
done by comparing R in Eq. (14.33) (blue dotted lines in Figs. 14.8)
with Rex computed numerically (plain orange lines). We also report
the behavior of R̃ (grey dotted lines) given by the classical homog-
enization of layered media (see Appendix 14.7.1). In this approach,
the propagation inside the structured layer is explicitly accounted
for (while the boundary layer effects are disregarded) and the struc-
tured film is replaced by an equivalent film of thickness e filled with
an homogeneous anisotropic medium. Classical homogenization has
been shown efficient to predict the extraordinary optical transmis-
sion at the Brewster angle [Maurel et al. (2013); Akarid et al. (2014)]
and the behavior of “spoof plasmons”, which are the waves guided



September 9, 2017 8:6 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch14 page 621

An Interface Model for Homogenization of Acoustic Metafilms 621

10−2

10−2

100

100

10−2 100

100

102

10−2

100

10−2

100

10−2

100

10−2

100

10−2

100

kh e/h

ke = 1

ke = 1

ke = 1

ke = 1

ke = 1

ke = 1

|R
e
x
|,|
R

|,|
R̃

|

(a) (b)

Fig. 14.8. Variations of the reflection coefficients Rex calculated numerically
(orange plain lines), R given by the interface model, Eq. (14.33) (blue dotted
lines), and R̃ given by classical homogenization, Eq. (14.34) (grey dotted lines).
(a) as a function of kh for e/h = 10, 1, 10−1 (from the top to the bottom), and
(b) as a function of e/h for kh = 10−2, 10−1, 1 (from the top to the bottom). In
all plots, � = 0.9h and θ = π/4.

along the boundaries of a thick structured array [Garcia-Vidal et al.
(2005); Mercier et al. (2015)]. It has also been applied for the design
of a structure producing a rainbow type effect [Zhu et al. (2013)] (see
the supplementary material in this reference). In the case of sound
hard layers, this leads to a reflection coefficient R̃

R̃ =
(c2 − 1)eike cos θ/2

[c− i tan(ke/2)] [c+ i/ tan(ke/2)]
, (14.34)

where c = h cos θ/(h − �) (the derivation is given in the Appendix
14.7.1).

From Figs. 14.8, the ranges of validity of both homogenizations
can be defined: the interface homogenization is valid for ke, kh < 1,
while the classical homogenization is valid for e/h > 1, specifically
ke > 1 > kh (inspecting higher values of kh would reveal that both
homogenizations fail for kh > 1, as expected). The error in R̃ for
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small e/h is attributable to the behavior of B when ke→ 0, namely

lim
e→0

R � −i
kh

2
cos θB0, (14.35)

and B0 �= 0 while R̃ → 0 (a discussion on the jump conditions
obtained from the classical homogenization in the limit ke → 0 is
presented in the Appendix 14.7.2). Thus, classical homogenization
underestimates the scattering properties of thin films.

14.3.3. Application to the wave propagation in a guide

obstructed by a hard perforated screen

In addition to yield explicit solutions of several scattering prob-
lems, homogenization approaches are of particular interest if we have
numerical resolutions in mind. This is particularly true if the problem
under consideration involves very different scales between the largest
one and the smallest one, and this is what we exemplify in this sec-
tion. We consider the high frequency propagation of an acoustic wave
in a rigid guide of height H, with kH = 100 (Fig. 14.9). The guide
is obstructed, from wall to wall, by a rigid perforated screen with
h = H/100 and e = H/2000 (thus, kh = 1 and ke = 0.05). Thus, the
smallest scale is e and the largest scale is H, with H = 2000e and
this is demanding in terms of any computational method.

In general, the solution of guided wave problems can be expanded
in modes, associated to transverse functions ϕn(X2) with vanishing

X1

X2

0

H

e = H/2000

h = H/100
= 0.95h

Fig. 14.9. Configuration of the rigid waveguide obstructed by a perforated screen
at −e/2 < X1 < e/2. The screen has a periodic spacing h = H/100 and thickness
e = H/2000. The height of the rigid material in the screen is �/h = 0.95. The
guide is studied in the high frequency regime, with kH = 100.
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first derivative at X2 = 0,H, namely

P (X1,X2) =

N∑
n=0

Pn(X1) ϕn(X2),

ϕn(X2) =
√

2− δn0 cos
(
nπX2

H

)
,

(14.36)

(the
√

2 stands for proper normalization of the transverse functions).
At this stage, P stands for the solution of the actual problem or for
the solution of the homogenized one. For N → +∞, (14.36) is the
modal expansion of the solution, the Pn being the projections of P on
the basis ϕn; in the numerics, a finite and sufficiently large N -value
is used within a multimodal approach which accounts for the mode
coupling due the presence of the screen, see [Maurel and Mercier
(2012); Maurel et al. (2014)].

However, in the homogenized problem, no coupling is expected.
This is because the jump conditions, Eqs. (14.29), apply for each
mode owing to the orthogonality of the transverse functions, and
they take the form


�Pn� = hBP ′

n,

�
P ′

n

�
= hSP ′′

n − hC
(nπ
H

)2
Pn,

(14.37)

where we used that ϕ′′
n = −(nπ/H)2ϕn. Next, in the parts of the

waveguide free of scatterer, each mode satisfies P ′′
n + k2

nPn = 0, with

kn ≡
√
k2 −

(nπ
H

)2
(14.38)

the component of the wavenumber along X1. Except at the interface
−e/2 < X1 < e/2, this is the case and we can write for each Pn

Pn(X1) =



P inc

n

[
eikn(X1+e/2) + rne

−ikn(X1+e/2)] , for X1 < −e/2,

P inc
n tn e

ikn(X1−e/2), for X1 > e/2,
(14.39)
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with (rn, tn) the reflection and transmission coefficients of the
mode n. Now, it is sufficient to apply the jump conditions,
Eqs. (14.37), to get (rn, tn)



rn = i

an − bn
(1− ian)(1− ibn)

, tn =
1 + anbn

(1− ian)(1 − ibn)
,

with an ≡ knh

2

[
S + C

(
nπ

knH

)2
]
, bn ≡ knh

2
B.

(14.40)

The interface parameters for this structuration (e/h = 0.05,
�/h = 0.95) are : B = 2.62[2.64], C = 1.5 10−3[1.7 10−3] and
S = 2.5 10−3.

Figures 14.10 and 14.11 report the wavefields P ex(X) calculated
numerically and P (X) given by the explicit expressions, Eqs. (14.36)
to (14.40). The wavefield in the absence of the film for the same
incident wave P inc(X1,X2) = P inc

n eiknX1ϕn(X2) is reported for com-
parison (in both cases, P inc is a combination of the 100 first modes).
The fields P (X) and P ex(X) are found in good agreement (with a
relative discrepancy of about 1% in both cases), which confirms that
the jump conditions correctly account for the effect of the structured
screen.

Let us now inspect the reflection and transmission coefficients
mode by mode. In the numerics, the scattering properties are encap-
sulated in matrices T and R being N × N matrices. We calcu-
lated R and T at the interfaces of the film, namely P ex

m (−e/2) =
[δmn + Rmn]P inc

n (−e/2), and P ex
m (e/2) = TmnP

inc
n (−e/2). We have

checked that the scattering matrices are essentially diagonal (the rel-
ative weight of the off diagonal terms is about 10−4), which confirms
that the mode coupling is negligible. Figures 14.12 show the trans-
mission and reflection coefficients (rn, tn) from Eqs. (14.40) and the
diagonal terms (Rnn,Tnn) (the scattering properties do not depend
on the source, so they are the same in the cases of the Figs. 14.10 and
14.11). The agreement is relatively good, with 1% and 5% respec-
tively for the reflection and transmission coefficients, averaged for
n = 1, . . . 100.
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min max

P
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(X
)

P
(X

)
P
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c
(X

)
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0

(a)

(b)

(c)

(d)

(e)

−H H0

−H H0

−H/20 H/200

X1

Fig. 14.10. Scattering by the perforated screen in the guide (geometry of Fig.
14.9). (a) Wavefield P inc in the absence of the film (b) and (c) Wavefields P ex

calculated numerically and P in the homogenized problem, Eqs. (14.36) to (14.40).
(d) shows the profile P inc(X1,H/2) (in arbitrary unit) and (e) show the profiles
P ex(X1,H/2) (blue line) and P (X1,H/2) (black symbols); the discontinuity of
the field across the structured film is visible in the zoom of the profile for −H/20 <
X1 < H/20.

As can be expected, the full wave calculations have been demand-
ing. Indeed, it requires 3 different scales to be resolved, the largest
one H, the intermediate one, given by the incident wavenumbers
with kn, n = 0 to 100, from which the typical wavelength is about
H/100, and the smallest one, given by e = H/2000. This latter small
scale imposes the truncation N in the numerics, which means that
|kN |e ∼ 1. ThusNπe/H ∼ 1, leading toN ∼ H/e = 2000. In general,
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Fig. 14.11. Same representation as in Fig. 14.10 for an incident wave of beam
type.
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Fig. 14.12. Comparison of the reflection and transmission coefficients of the
modes, (Rnn,Tnn) for n = 1, . . . , 100 from direct numerics (computed with a
truncation N = 3000), and (rn, tn) given by the interface model, Eqs. (14.40).
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the smallest scale corresponds to the highest evanescent mode excited
in the near field of the structured film, and indeed, N = 2000− 3000
has been needed to reach a reasonably converged solution P ex (for
instance, the variation in P ex, Eq. (14.36), from N = 2000 to 3000
is about 0.8 %). This need in a high truncation is expected and not
expected. Indeed, it has been said, and it has been checked, that
no mode coupling occurs in our configuration (see Appendix 14.9).
Thus, in the present cases, the modes at n > 100 are not expected
to contribute significantly to the total field since we have consid-
ered an incident wave being a combination of the first 100 modes
only. The reason why high truncation is needed is in fact related
to the convergence of Rnn and Tnn with N , a convergence which is
often disregarded; the Appendix 14.9 presents a discussion on this
aspect.

14.4. Concluding Remarks

We have presented an interface model to identify the effective behav-
ior of a thin structured film composed of sound hard inclusions.
Parameters characteristic of the interface enter in jump conditions
for the acoustic pressure field and for the acoustic normal velocity.
They are given by the resolution of elementary problems written in
the static limit, and they are therefore wave independent by con-
struction. We have validated this model in the case of a layer made
of rectangular inclusions and for a plane wave at oblique incidence
on the structured layer. Explicit expressions of the scattering coeffi-
cients deduced from the interface parameters have been shown to be
accurate with a range of validity being kh < 1 and ke < 1. Results
have been compared to the scattering coefficients given by classical
homogenization of bulk material; these latter have a range of validity
kh < 1 and e/h > 1, and largely underestimates the scattering prop-
erties of thin structured layers. Finally, the validity and the interest
of such jump condition has been exemplified in the more involved
case of an ultrathin structured layer obstructing a guide from wall
to wall (there, due to the high frequency propagation in the guide,
the numerical cost is heavy).
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The present model is applicable to more involved geometries of
the inclusions and to inclusions being penetrable for the wave as well
as for three dimensional cases. More generally, it can be extended
to a large class of wave problems, in acoustics, in elasticity and in
electromagnetism.

14.5. Appendix A — The Present Derivation as a
Simplified Case of a Previous One

In [Marigo and Pideri (2011)], the problem of an elastic body con-
taining microcracks or micro holes periodically located on a surface
is considered. The elastic body is submitted to external forces (or
boundary conditions) on its boundaries, which impose variations of
the external stresses on the scale which is typically the size of the
body; this latter is assumed to be much larger than the spacing
between the holes. The size of the body in the elastic problem is the
equivalent of the incident wavelength in our acoustic problem.

The increased complexity in this work is that it requires to deal
with vectors instead of scalars p, q → U,V (the elastic displacement
vector) and a tensor instead of a vector u,v → σ, τ (the stress
tensor). Otherwise, the derivation of the interface parameters is the
same.

One noticeable difference is that the calculation of the jump con-
dition are performed after τ 0 and τ 1 have been extended by 0 in D.
This is possible in the static case since the equilibrium translates
in divyτ

0 = 0 and divyτ
1 + divx′τ 0 = 0 with boundary conditions

τ 0.n|∂D = τ 1.n|∂D = 0. Thus, extending τn by 0 in D is compatible
with the equilibrium and makes the boundary conditions on ∂D to
be automatically satisfied. This is not possible in our case, and this is
why the integrations are performed in Y\D instead of in Y in [Marigo
and Pideri (2011)]. The two results are of course identical. Namely,
the Eq. (40) in this reference reads

�
σ1

i1
�

= − ∂

∂xα

∫
Y
dy τiα(x′,y), (14.41)
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and τ ≡ τ 0 − σ0(0,x′) has been extended implicitly by −σ0(0,x′)
in D. It follows that

�
σ1

i1
�

=
∫
D
dy

∂σ0
iα

∂xα
(0,x′)− ∂

∂xα

∫
Y\D

dy τiα(x′,y), (14.42)

and owing to ∂σ0
iα

∂xα
= −∂σ0

i1
∂x1

given by the outer problem, we get

�
σ1

i1
�

= −∂σ
0
i1

∂x1
(0,x′)S − ∂

∂xα

∫
Y\D

dy τiα(x′,y), (14.43)

which is equivalent to our jump condition Eq. (14.15). Finally, the
elementary problems satisfied in the static elastic case are given by
Eqs. (28) are the equivalent of our Eqs. (14.17).

14.6. Appendix C — Multimodal Approach to
Compute (B,C) for Rectangular Rigid
Structuration

For piecewise constant geometry in the elementary problems, mode
matching is a simple way to get B and C. In both elementary prob-
lems (14.17), the idea is to project the solution q(i) onto bases of
transverse functions of y′ being adapted in the different regions
along y1. Below, we give a simple procedure to compute (B,C) for
rectangular rigid inclusions in two dimensions (in this case, only two
bases of transverse functions (f−n (y′), f+

n (y′) are needed). The sim-
plicity lies in the fact that the procedure does not require more than
the inversion of a matrix. The size N of the matrix fixes the spatial
resolution : with a cell of size unity along y2, the spatial resolution is
typically 1/N . As we assumed that all the dimensions of the inclu-
sions is of order unity, large N is not required (otherwise, the calcu-
lation may become tricky since mode matching has low convergence,
typically 1/N).

In the following, we consider h = 1 for simplicity.
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ϕ

Fig. 14.13. Mode matching configuration. The solutions Q− and Q+ are written
for 0 ≤ y1 ≤ e/2h and y1 ≥ e/2h respectively (with proper conditions at y1 = 0),
and the resolution involves only matching conditions at y1 = e/2h.

14.6.1. Calculation of B in the elementary

problem i = 1

Because q(1) is defined up to a constant and because the symmetry
of the inclusion w.r.t. y1, we can consider a function q(1) odd w.r.t.
y1, whence applying Dirichlet boundary condition at y1 = 0 (namely
q(1)(0, y2) = 0). It follows that q(1) → b1/2 for y1 → +∞ (and
b1 = δq(1)). We use Q(y) = y1+q(1)(y)−b1/2 which satisfies ∆Q = 0,
∇Q.n|∂D = 0, and (Q− y1)→ 0 for y1 → +∞. Finally, we use that∫ ϕ/2
−ϕ/2 dy2 ∂y1Q(0, y2) =

∫ 1/2
−1/2 dy2 ∂y1Q(+∞, y2) = 1 (by integration

of ∆Q = 0). Thus, Q can be expanded as

Q(y) =




Q−(y) =
y1

ϕ
+ q−0 f

−
0 0 ≤ y1 ≤ e/2

+
N−∑
n=1

q−n
sinhany1

sinh ane/2
f−n (y2),

Q+(y) = y1 e/2 ≤ y1,

+
N+∑

n=−N+,n �=0

q+n e
−|bn|(y1−e/2)f+

n (y2),

(14.44)
with an = nπ/ϕ, bn = 2nπ, and where

f+
n (y2) = eibny2 , f−n (y2) =

√
2− δn0

ϕ
cos
(
any2 +

nπ

2

)
, (14.45)
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are the transverse functions (forming a basis) adapted for solutions
being respectively periodic and for solutions with zero derivatives at
y2 = ±ϕ/2.

In the above projection, b1 being unknown has ben encapsulated
in the first coefficient q−0 of the expansion, and it is easy to see that
Q−(0, y2) = q−0 f

−
0 = −b1/2 (thus b1 = −2q−0 /

√
ϕ), by construction.

Now, we will ask to Q± to match (on average) their values and
their first derivatives at y1 = e/2, and this latter matching on the
derivatives will be done accounting for the Neumann boundary con-
ditions at y1 = e/2 and |y2| > ϕ/2 (note that Q− satisfies by
construction the Neumann boundary condition on at y2 = ±ϕ/2,
because of the choice of the f−m). To that aim, we use the following
relations




∫ ϕ/2

−ϕ/2
dy2 Q

−(e/2, y2)f−m(y2) =
∫ ϕ/2

−ϕ/2
dy2 Q

+(e/2, y2)f−m(y2),

∫ ϕ/2

−ϕ/2
dy2

∂Q−

∂y1
(e/2, y2)f+

m
∗(y2) =

∫ 1/2

−1/2
dy2

∂Q+

∂y1
(e/2, y2)f+

m
∗(y2),

(14.46)
with f+

m
∗ the conjugate of f+

m (f−m is real). The first relation is the
matching of the values in the region y2 ∈ [−ϕ/2, ϕ/2] where Q− is
defined. The second relation has more information: we have used that
the ∂y1Q

+ = 0 at y1 = e/2 for |y2| > ϕ/2, from which

∫ 1/2

−1/2
dy2

∂Q+

∂y1
(e/2, y2)f+

n
∗(y2) =

∫ ϕ/2

−ϕ/2
dy2

∂Q+

∂y1
(e/2, y2)f+

m
∗(y2),

(14.47)
afterwards we ask, on average, ∂y1Q

+ = ∂y1Q
− for |y2| < ϕ/2. We

get a matrix system for the two vectors q− = (q−n )n=0,...,N− and
q+ = (q+n )n=0,...,N+ of the form

(
I − tF∗

FA1 B

)(
q−

q+

)
=
(

Ss

Sd

)
, (14.48)
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with I the N− × N− identity matrix, A1 = diag(ancotanh(ane/2))
with A1(1, 1) = 0, B = diag(|bn|), and Fmn =

∫ ϕ/2
−ϕ/2 dy2f

+
n

∗(y2)f−n
(y2). The source terms (Ss,Sd) correspond to the projection of the
loading (y1/ϕ and y1) onto f−n and f+

n
∗. The expressions of Fmn and

Ss,d
n are given below

Fmn =




√
ϕ sinc

(
bm
ϕ

2

)
, n = 0,

=
√
ϕ

2

[
sinc

(
(an − bm)

ϕ

2

)
einπ/2 n �= 0,

+ sinc
(
(an + bm)

ϕ

2

)
e−inπ/2

]
,

(14.49)
and

Ss

n =
e

2

(
1
ϕ
− 1
)
δn0, n = 0, . . . , N−

Sd
n = −sinc(nπϕ), n = −N+, . . . ,−1, 1, . . . N+.

(14.50)

The system is of the form Mq = s with the matrix M being square
(this is not always the case in systems written using mode match-
ing). Next, M is invertible if one has taken care to consider only the
antisymmetric modes. Thus, the system can be solved to find q by
inverting M or it can be solved in the least squares sense (as done by
the operation M\s in Matlab). Once the system has been inverted,
b1 is obtained and thus, from (14.28), B = e+ b1

B = e− 2
ϕ
q(1). (14.51)

14.6.2. Calculation of C in the elementary

problem i = 2

The procedure to get C in the elementary problem i = 2 is sim-
ilar. We consider the solution Q = Q(2) + y2 satisfying ∆Q = 0,
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∇Q.n|∂D = 0 and Q → y2 for y1 → ∞. Because q(2) is even in y1,
we can project Q onto the bases (f±n ) as follow

Q(y) =




Q−(y) =
N−∑
n=1

q−n
cosh any1

cosh ane/2
f−n (y2), −e/2 ≤ y1 ≤ 0

Q+(y) = y2

+
N+∑

n=−N+,n �=0

q+n e
−|bn|y1f+

n (y2), 0 ≤ y1.

(14.52)
As previously, we ask to Q± to match (on average) their values and
their first derivatives at y1 = e/2, and we get a matrix system of the
form (

I − tF∗

FA2 B

)(
q−

q+

)
=
(
S
0

)
, (14.53)

with the same definitions as previously and now, A2 =
diag(an tanh(ane/2)) and Sn =

∫ ϕ/2
−ϕ/2 dy2 y2f

−
n (y2), specifically

Sn = −2
√

2
ϕ

1
a2

n

. (14.54)

Once the system has been inverted, we can determine

C = −
∫

dy
∂Q(2)

∂y2
=
∫ 0

−e
dy1

∫ ϕ/2

−ϕ/2

[
1− ∂Q−

∂y2

]
. (14.55)

where we have used that Q(2)(y1 ≥ 0, y2) = Q+(y) − y2 is periodic,
thus of vanishing contribution. It is now sufficient to write C = eϕ−
q−n tanhane/an[fn]ϕ/2

−ϕ/2 to get

C = eϕ+ 2
√

2
ϕ

tanhane

an
q−n . (14.56)
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14.6.3. Scripts in Matlab

Simple scripts providing (B,C) are given below.

function B=PbElem1(phi,e,Np)

%% version de B avec B=e+.... (elargi)

Nd=2*Np;

nd=0:2:Nd; np=[-Np:-1,1:Np];

Nd=length(nd); Np=length(np);

an=nd*pi/phi; bn=2*np*pi;

for mm=1:Np,

F(mm,1) = sqrt(phi)*sinc(bn(mm)*phi/(2*pi));

for nn=2:Nd,

a=an(nn); b=bn(mm); n=nd(nn); EX=exp(1i*n*pi/2);

temp=sinc((a-b)*phi/(2*pi))*EX+sinc((a+b)*phi/(2*pi))/EX;

F(mm,nn) = sqrt(phi/2)*temp;

end,

end

Ac=an./tanh(an*e/2); Ac(1)=0;

M=[eye(Nd) ,-F’;

F*diag(Ac), diag(abs(bn))];

s1=0*nd’; s1(1)=e/2*(sqrt(phi)-1/sqrt(phi));

s2=-sinc(np*phi).’;

S=[s1; s2];

q=M\S;

B=e-2*q(1)/sqrt(phi);

function C=PbElem2(phi,e,Np)

Nd=2*Np;

nd=1:Nd; np=[-Np:-1,1:Np];

Nd=length(nd); Np=length(np);

an=nd*pi/phi; bn=2*np*pi;

for mm=1:Np,

for nn=1:Nd,

a=an(nn); b=bn(mm); n=nd(nn); EX=exp(1i*n*pi/2);

temp=sinc((a-b)*phi/(2*pi))*EX+sinc((a+b)*phi/(2*pi))/EX;

F(mm,nn) = sqrt(phi/2)*temp;

end,
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y1
y2

y1
y2

(a) (b)

(c) (d)

Fig. 14.14. Static fields computed for the elementary problems i = 1 and 2.
(a) (c) q(1)(y) and (b) (d) q(2)(y). (a–b) for e/h = 0.1 and �/h = 0.5, (c–d) for
e/h = 0.01 and �/h = 0.9.

end

M=[eye(Nd) ,-F’;

F*diag(an.*tanh(an*e/2)), diag(abs(bn))];

s=sqrt(2/phi)*(((-1).^nd-1)./an.^2).’; S=[s; zeros(Np,1)];

q=M\S;qm=q(1:Nd);

C=phi*e+4*sqrt(2/phi)*sum( qm.’.*tanh(an*e/2)./an );

end
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14.7. Appendix D — Reflection Coefficient Using the
Classical Homogenization

In this Appendix, we consider h = 1 for simplicity.

14.7.1. Scattering coefficients in the classical

homogenization

Classical homogenization relies on the same expansion of the field in
power of ε. Let us consider penetrable inclusions presenting a contrast
in mass density and a contrast in bulk modulus with respect to the
surrounding medium. In a general way, the wave propagation is the
equation of propagation in inhomogeneous media

div [a(X)∇P ] + b(X)P = 0, (14.57)

with a the inverse of the mass density and b the inverse of the bulk
modulus; we denote a(X) = a, b(X) = b inside the inclusion and
a(X) = b(X) = 1 in the surrounding medium. At the inclusion bound-
aries ∂D, P and a(X)∂nP are continuous. For acoustic waves, It is easy
to see that applying a = b = 0 in the inclusions leads to the Neumann
limit, with ∆P + P = 0 in the surrounding medium and ∂nP|∂D = 0.
This is consistent with the intuitive idea that Neumann boundary
condition corresponds to heavy materials, with infinite mass density
and infinite bulk modulus. At leading order, P � P0 satisfies

div [aeff∇P ] + beffP = 0, (14.58)

with the tensor aeff and beff given by the resolution of two elementary
problems. The case of layered media, with inclusions infinitely long
along X1 and of width � along X2, we have a(X2) and b(X2) and
explicit solution is possible. It ends with diagonal effective mass den-
sity tensor aeff = diag(a1

eff, a
2
eff) and effective bulk modulus given by


a1

eff = 〈a(X2)〉 = [�a+ (1− �)]→ 1− �,
a2

eff = 〈a(X2)−1〉−1 = [�/a+ (1− �)]−1 → 0,

beff = 〈b(X2)〉 = [�b+ (1− �)]→ 1− �,
(14.59)
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where the limits correspond to the Neumann case (a = b = 0). In this
limit, the propagation inside the layered medium is described by the
wave equation a1

eff∂X2
1
P+a2

eff∂X2
2
P+k2beffP = (1−�)[∂X2

1
P+k2P ] =

0, from which we deduce that the component of the wavenumber
along X1 is k.

Imagine now that we cut the layered medium to create a slab,
which occupies the space X1 ∈ [−e/2, e/2], and outside the slab, the
medium has a(X) = b(X) = 1. For the real structure, the resulting
configuration corresponds to an array of rectangular hard inclusions
as studied in Section 14.2. For the equivalent homogenized medium, it
corresponds to a slab of thickness e filled with the homogeneous and
anisotropic material given by (aeff, beff). In this latter configuration,
the problem of the scattering for an incident wave coming from X1 =
−∞ with incidence θ is trivial and it has a solution of the form

P (X1,X2)

= eik sin θX2




[eik cos θX1 + R̃e−ik cos θ(X1+e/2)], for X1 < −e/2,[
AeikX1 +Be−ikX1

]
, for |X1| ≤ e/2,

T̃ eik cos θ(X1−e/2), for X1 > e/2,

(14.60)

where the component of the wavenumber along X2, k sin θ, is imposed
by the continuity of P (X1,X2) at the interfaces X1 = ±e/2. Next,
applying the relations of continuity for P and a1(X)∂X1P (with
a1(X) = a1

eff = 1−� in the slab and a1(X) = 1 outside) atX1 = ±e/2,
leads to usual forms of the scattering coefficients

R̃ =
2i(1− c2) sin ke e−ike cos θ/2

(1 + c)2e−ike − (1− c)2eike
, T̃ =

4ce−ike cos θ/2

(1 + c)2e−ike − (1− c)2eike
,

(14.61)
where c ≡ cos θ/(1 − �). The form of R̃ in the above equation is
written in an alternative form in Eq. (14.34).
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X1

X2

h
e

T ex

Rex

θ

R̃

X1

X2

e

θ

T̃

aeff, beff,

(a) (b)

Fig. 14.15. In the classical homogenization, the actual structured film (a) is
replaced by a homogeneous anisotropic film of thickness e.

The derivation of (R̃, T̃ ) is done accounting for boundary condi-
tions being the continuity of p and of aeff∇p.n, which is true at this
leading order (see [Marigo and Maurel (2017)]).

14.7.2. Jump conditions in the classical

homogenization

It is tempting to inspect if classical homogenization gives jump condi-
tions similar to those obtained from our interface model, Eq.(14.29).
To that end, we consider, from Eqs. (14.60) the quantities �P � =
T̃ − R̃ − 1, �∂X1P � = ik cos θ(T̃ + R̃ − 1), with ∂X1P (0,X2) =
ik cos θ(T̃ − R̃ + 1)/2, ∂X2

1
P (0,X2) = (ik cos θ)2(T̃ − R̃ + 1)/2 and

∂X2
2
P (0,X2) = (ik sin θ)2(T̃ + R̃+ 1)/2. Expanding at leading order

(T̃ , R̃) in Eqs. (14.61) for small ke, it is easy to see that we get

�P � =
e�

1− �
∂P

∂X1
(0,X2),

�
∂P

∂X1

�
= − e� ∂

2P

∂X2
1
(0,X2) + e(1 − �) ∂

2P

∂X2
2
(0,X2). (14.62)

This can be written in the form of interface parameters

B̃ =
e�

1− � , C̃ = e(1− �), S̃ = e�. (14.63)

While S = S̃ (in the non enlarged version of the jump conditions),
both C̃ and B̃ differ from C,B in Eqs. (14.30)–(14.31). The most
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evident difference is that the interface parameters given by classi-
cal homogenization misses the blockage coefficients B0 which pre-
cisely becomes dominant for e → 0. Next, C and C̃ differ from the
correction −π/8(1 − �)2 appearing for large enough thickness. Both
corrections are due to boundary film effect, see [Marigo and Maurel
(2016)].

14.8. Appendix E — Scattering Coefficients for the
Modes in a Waveguide

If the film of the equivalent anisotropic medium occupies the space
X1 ∈ [−e/2, e/2] and X2 ∈ [0,H] as considered in the Section 14.3.3,
it is possible to calculate the reflection and transmission coefficients
(r̃n, t̃n) mode by mode (and a mode is defined in Eq. (14.36)). This
is because no mode coupling occurs in this case, again owing to the
orthogonality of the transverse functions. The problem first reads

a1
eff
∂2P

∂X2
1

+ a2
eff
∂2P

∂X2
2

+ k2beffp = 0, (14.64)

in the film and ∆P + k2P = 0 outside, and the relations of conti-
nuity of P and a1∂X1P apply at X1 = ±e/2 (with a1 = a1

eff inside
the layer, a1 = 1 outside). Expanding the solution into the basis of
transverse functions, P (X1,X2) =

∑
n≥0 Pn(X1) ϕn(X2), the system

is decoupled, with



a1

effP
′′
n +

[
k2beff − a2

eff

(nπ
H

)2
]
Pn = 0, for |X1| ≤ e/2

P ′′
n +

[
k2 −

(nπ
H

)2
]
, outside

(14.65)
with Pn continuous at X1 = ±e/2, and P ′

n(−e/2−) = a1
effP

′
n(−e/2+),

P ′
n(e/2+) = a1

effP
′
n(e/2−). In the case of our layered sound hard

medium, a1
eff = beff = 1−� and a2

eff = 0, which leads to P ′′
n +k2Pn = 0

in the layer, |X1| ≤ e/2. Thus, the problem is identical to the previous
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one (Eqs. (14.60)), owing to k cos θ → kn and

r̃n =
2i(1− c2n) sin ke e−ikne/2

(1 + cn)2e−ike − (1− cn)2eike
,

t̃n =
4cne−ikne/2

(1 + cn)2e−ike − (1− cn)2eike
, (14.66)

with cn ≡ kn/k(1 − �).

14.9. Appendix F — Discussion on the Convergence
of the Scattering Coefficients in the Modal
Method

In the problem considered in Section 14.3.3, we have said that the
high truncation N = 2000 − 3000 was expected and not expected.
Expected because the smallest scale to be resolved is e = H/2000
which imposes N ∼ H/e (and this corresponds to the highest evanes-
cent mode with wavenumber kN ∼ Nπ/H). Unexpected because we
have checked that the mode coupling is negligible; the incident wave
being a combination of the first 100 modes, the absence of mode cou-
pling ensures that the modes at n > 100 are not excited. To be clear,
we have compared P ex(X) computed with 3 000 modes to the fol-
lowing field

P diag(X) =




100∑
n=0

P inc
n [eikn(X1+e/2) + Rnne

−ikn(X1+e/2)], X1 < −e/2,

100∑
n=0

P inc
n Tnne

ikn(X1−e/2), X1 > e/2,

(14.67)
which is precisely the field composed of the 100 first modes gener-
ated directly by the incident wave. The difference |P ex − P diag| is
less than 0.4% in both cases, thus the evanescent field generated by
higher modes is indeed negligible. The reason why high truncation
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Fig. 14.16. Reflection coefficients of the modes in the guide obstructed by a
perforated screen (same calculations as in Fig. 14.12). |Rnn| for n = 0 to 100
is shown for several truncation order N in the expansion Eq. (14.36) (orange
curves). For low truncation, N = 100, |Rnn| are found to be close to the r̃n given
by the classical homogenization in (14.66) (blue symbols); increasing N makes
|Rnn| to converge toward rn given by the interface homogenization, |rn| in Eq.
(14.40) (black symbols).

has been needed is in fact related to the convergence of Rnn and Tnn

for n ≤ 100 with N , a convergence which is often disregarded. In Fig.
14.16, we have reported the variation of |Rnn|, n ≤ 100, for several
truncations N = 100 to 3000. As it can be seen, increasing N pro-
duces a significant variation in |Rnn|, 70% on average for increasing
the truncation N from N = 100 to N = 3000. This low convergence
has already been observed for inclusions presenting a contrast in the
mass density [Maurel et al. (2014)]; it is a convergence law in 1/N ,
due to the low regularity of the field (with discontinuous pressure
gradient). Amusingly, for insufficient truncation N = 100, the scat-
tering coefficients coincide with the solution (r̃n, t̃n) given by classical
homogenization, which underestimates the weight of the evanescent
field (Eqs. (14.66), see Appendix 14.8).
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one-channel inverse filter, 269

one-channel time-reversal, 269
optical metamaterials, 61
optical theorem, 395

optics, 387, 388, 396, 397
out-of-phase, 68
out-of-plane, 529

outer region, 601

p-acoustics, 194

parabolic, 28
parity-time symmetry, 428
partial band gaps, 11

partial derivatives, 20
partial stop bands, 12
pass bands, 10

passive cloaking, 481
pentamode materials, 194
perfectly matched layers, 33

periodic, 16, 20, 67, 71
periodic boundary conditions, 100

periodic cell, 75, 80, 84
periodic composite materials, 71
periodic elastic composites, 71

periodic function, 5, 78
periodic geometry, 78
periodic materials, 75

periodic media, 10, 13, 71, 72, 75
periodic medium, 70, 72

periodic row, 602

periodic sample, 78
periodic structures, 8, 10
periodically perforated elastic plates,

12
permeability, 47, 57, 58, 61, 67, 403,

408
permittivity, 47, 57, 58, 61, 112, 403,

408

phase change, 92
phase speed, 392, 402, 408, 499

phase velocity, 68, 135
phase-shift, 17, 26, 28

phononic crystals, 29, 205, 206, 302
photonic, 302

photonic band gap, 14
photonic crystal, 8–10, 14, 34, 45, 46,

134

photonic crystal fiber, 6
Piola-Kirchhoff, 491, 523

Piola-Kirchhoff stress, 525
plane wave, 617

plane-wave modeling, 83
platonic crystal, 29, 32, 33, 36, 38

platonic metamaterials, 15
PML, 286
pointing vector, 59

Poisson ratio, 42
Poisson’s ratio, 121, 144, 415, 545

polariton, 68, 209, 213, 214, 229, 244
polarization, 191

pore scale, 75, 77
porosity, 74, 77

porous media, 69, 71
positive index, 94

potential, 390, 392–395, 398, 399,
415, 416

potential flow, 615

Poynting-Schoch condition, 77
pre-stress, 484

pre-stressed medium, 506
pre-stressed nonlinear elastic

materials, 484

pressure, 603, 607, 608, 613, 618
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pressure waves, 314, 324, 325

principal stretches, 504, 531
problem, 609, 611
propagating waves, 617

protection, 11
Purcell factor, 229

push forward, 491

quantum cryptography, 193

quantum information, 193
quasi-conformal map, 464
quasi-static, 7, 8, 14

quasi-static limit, 8

radial stress, 533
radially symmetric, 530
radiation condition, 394

radiation impedance, 65
random elastic composites, 72

random translation, 70, 75
ratio of the heat capacity at constant

pressure, 74

ray theory, 396, 399, 401, 422
Rayleigh, 3, 6–8
Rayleigh surface waves, 302, 483

Rayleigh system, 8
Rayleigh wave, 141, 285, 301, 304,

306, 311, 314, 325, 327
Rayleigh’s, 3–5
Rayleigh’s method, 3

reciprocal lattice, 99, 100
reflection, 624

reflection coefficient, 621
refraction, 96, 388, 396
refractive index, 91, 93–95, 400, 403

represent, 137
resonance frequency, 98

resonances, 151
resonant, 252
response, 67, 68, 77

response velocity and pressure fields,
81

retrieval, 600
retrieval parameters, 600

rigid boundary, 99

rigid porous media, 71
rigid porous medium, 73
rigid-framed, 69

rigid-framed media, 75
rigid-framed porous material, 74

rod length, 264
rubber, 514

Sébastien, 9
scale separation, 71
scattered, 508, 513

scattering, 106, 514, 617
scattering coefficients, 502, 519, 538,

627
scattering cross section, 395, 412, 418,

503, 514, 518, 541

scattering matrices, 624
scattering problem, 611
scattering properties, 602

screen, 622
scripts in matlab, 634

second viscosity, 74, 89
seismic metamaterials, 301
seismology, 311

semi-infinite, 99, 100
semi-infinite elastic medium, 255

semi-linear, 485, 525, 527, 544
separation of scales, 601
SH, 484

SH wave, 539
SH wave motion, 484

shallow water approximation, 392,
401, 402, 422

shallow water equation, 399–405, 406,
408, 413–415

shallow water regime, 392

shear modulus, 496, 499, 511
shear viscosity, 89, 110
shear wave, 314, 320

simulations, 602
site effect, 315

slit, 80
slow speed, 89, 90
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Snell’s law, 91, 137
solutions, 610
solvability condition, 21, 22
solvability equation, 39

sound, 621
sound focusing, 91, 93
sound hard, 602
sound hard inclusion, 603

sound hard wall, 618
space locality, 71
space-time cloak, 175, 180, 184
space-time cloaking, 173

space-time carpets, 194
space-time tardis, 191
space-time transformation optics, 200
space-time transformations, 175

spatial averaging, 75
spatial cloak, 175
spatial dispersion, 59, 63, 70, 72, 77,

79

SPECFEM3D, 270
specific heat capacity per unit mass

at constant pressure, 74
spectrum, 10, 14

split ring resonators, 18, 24
split time lens, 185, 186
stability, 534
standing wave, 16, 20, 28, 38, 42, 45

static homogenisation, 6
stationary random, 72, 78
stationary random functions, 78
stationary random media, 75

stationary random realizations, 75
statistical, 72, 75
stop band, 14, 15, 28
strain energy functions, 484

structured soils, 302, 315, 321, 331
sub-diffraction-limited, 92
sub-wavelength resonators, 253
subdiffraction, 95, 96

subwavelength, 59, 61–63, 91–93, 252
subwavelength focusing, 62

subwavelength Helmholtz resonators,
62

subwavelength resonance, 10

subwavelength structures, 61

superfocusing, 131

superlens, 92, 243

superluminance, 179

superoscillations, 158

superoscillatory function, 169

surface plasmons, 92

susceptibility, 77

switching, 191

symmetric S0, 255

symmetry axis, 77

system, 8

t-devices, 191

Talbot distance, 186

Talbot effect, 185

tardis, 191

techniques, 600

Teichmüller map, 464

temporal and, 59

temporal cloaking, 175

temporal dispersion, 70–72, 77

temporal lens, 185

temporal Talbot effect, 187

tensor, 111, 112, 118, 119, 125, 403,
405, 407, 408

theories, 618

therapy, 123

thermal, 91

thermal conductivity, 74, 89

thermal effects, 90

thermal expansion coefficient, 90

thermodynamic, 69, 90

thickness, 144, 264

thin, 25

thin elastic plates, 29

thin ligaments, 26

thin plate, 12, 32, 131, 132

time reversal, 96, 220, 221, 224

transformation, 481
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transformation acoustics, 61, 62, 101,
103, 545

transformation elasticity, 482, 543
transformation elastodynamics, 482,

483, 546
transformation media, 389, 403, 413,

414, 422
transformation optics, 37, 101, 103,

175–178, 545
transformational invariance, 521
transmission, 624
transmission coefficient, 393
transmission conditions, 600
transmission line, 93
transmission line method, 61, 63
transmission line model, 91
transverse, 629
transverse electromagnetic wave, 112
transverse functions, 622, 623, 629,

631, 639
transverse shear forces, 29
two-scale asymptotic expansions, 71
two-scale homogenization method, 71

ultra-refraction, 12, 26, 29
ultrasonic, 66, 96
ultrasonic metamaterial, 66, 68
ultrasound, 62, 91
ultrasound imaging, 123
ultrasound waves, 72
unbounded cloak, 513
uni-axial metamaterial, 254
unidirectional cloak, 465
unit cell, 26, 117, 119, 120, 122, 124
unstressed medium, 506
upscaling procedures, 73

vacuum impedance, 177
velocity, 601
vertically polarized shear, 537
virtual configuration, 485
viscothermal, 72
viscothermal dissipation, 63
viscothermal fluid, 69, 74

viscous boundary layer, 90
viscous dissipation, 89
viscous effects, 67
viscous losses, 90
volume average, 78

WAMIT, 419, 420
water, 66, 67, 72, 89, 90, 94
water wavee, 112, 387–389, 392, 394,

407–409, 418, 422
wave equation, 394, 399, 400, 413
waveguide, 602
waveguide adapter, 475
wavelength, 392, 396, 403, 404, 408,

409, 412
wavenumber, 17, 27, 28
wavenumber space, 18
weak nonlocal effects, 72
Willis constitutive model, 487
Willis equations, 482
wire metamaterials, 14

Young’s modulus, 121, 144, 415

zero frequency, 12
zero frequency stop-band, 33, 43
zero-frequency, 27
zero-frequency band gap, 12, 27
Zwikker and Kosten, 82
Zwikker and Kosten densities ρ(ω)

and bulk moduli, 80
Zwikker and Kosten duct, 80
Zwikker and Kosten local theory, 81
Zwikker and Kosten’s effective

densities, 81
Zwikker and Kosten’s equations, 82,

84
Zwikker and Kosten’s fields, 83
Zwikker and Kosten’s flow rate, 83
Zwikker and Kosten’s phase velocity,

81
Zwikker and Kosten’s pressure, 82
Zwikker and Kosten’s slit waves, 86
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Preface by Main Editor

It is our pleasure to present you this Handbook of Metamaterials
and Plasmonics, charting the tremendous progress that has occurred
in this exciting area of research over the last years. What contin-
ues to fascinate me about the field above all is its interdisciplinary
broadness — we have arrived at a stage where metamaterials make
an impact on many arrays of science where control over waves is a
prominent ingredient — be they electromagnetic, acoustic, elastic,
or even seismic! In these four volumes, we hence attempt to set out
the richness of the field, taking metamaterials in the widest sense as
artificial media with sub-wavelength structure for control over wave
propagation.

Volume 1 focuses on the fundamentals of electromagnetic meta-
materials in all their richness, including metasurfaces and hyper-
bolic metamaterials. Volume 2 widens the picture to include elastic,
acoustic, and seismic systems, whereas Volume 3 presents nonlin-
ear and active photonic metamaterials. Finally, Volume 4 includes
recent progress in the field of nanoplasmonics, used extensively for
the tailoring of the unit cell response of photonic metamaterials.

In its totality, we hope that this handbook will be useful for
a wide spectrum of readers, from students to active researchers in
industry, as well as teachers of advanced courses on wave propa-
gation. I want to thank the volume editors Ekaterina Shamonina,
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Richard Craster, Sébastien Guenneau, Ortwin Hess and Javier
Aizpurua, and all the authors for their excellent and sustained work
to put these four volumes together.

Stefan Maier
Imperial College London, UK

April 2017
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Preface by Volume Editor

In photonics and optoelectronics, metals were for decades perceived
as being rather dull, devoid of interesting or useful optical properties
that one could harness for optical components and devices. Scien-
tists likewise believed that the wave nature of light imposed seem-
ingly fundamental constraints on the degree to which we can resolve
nanoscopic details of an object, or reduce the size of photonic devices.
This changed, however, with the discovery of surface-enhanced
Raman scattering (SERS) in 1974, drewing appreciable attention to
the optical properties of metals and, more recently, the strong need
to integrate photonics with nano-electronics that propelled nanoplas-
monics and nanoplasmonic metamaterials to one of the most actively
researched areas of nanoscience and nanotechnology.

Indeed, when arrays of nanoplasmonic elements (each smaller
than the wavelength) are assembled in two or three dimensions they
may act as the ‘molecules’ or ‘atoms’ of an effective, engineered mate-
rial — a metamaterial. The macroscopic optical parameters (effec-
tive permittivity, permeability, refractive index, impedance) of such
a medium can be made to enter highly unusual regimes, e.g., exhibit-
ing a permittivity close to zero, a negative refractive index or mag-
netism at infrared and optical frequencies. This leads to negative
refraction and to completely surprising results, such as the ‘perfect
lens’, the ability of a planar slab of a negative-index (e.g. n = −1)

vii
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metamaterial to focus lightwaves without an intrinsic limit to reso-
lution, or the possibility to dramatically slow down and localise light
pulses in metamaterial and plasmonic heterostructures. Even greater
control on the propagation of electromagnetic waves is achieved when
the meta-atoms are allowed to vary smoothly in all three dimensions
according to ‘transformation optics’ design rules, forming anisotropic
materials that can, e.g., cloak objects of arbitrary shape from inci-
dent radiation. Metamaterials have also been shown to allow for an
exceptional degree of control on the polarisation of light, as well as for
enhanced nonlinear effects that in some cases can arise entirely from
the magnetic field of light — in sharp contrast to nonlinear effects in
ordinary optical media, which always arise from the electric field.

However, the interaction of photons with the conduction electrons
of a plasmonic metamaterial gives rise to dissipative optical losses,
which for visible light can be significant (of the order of 1000 cm−1 or
more). In essence, there exists a trade-off between localization and
loss — the more tightly light fields are localized to the surface of
a metal, the higher is the fraction of the modal energy inside the
metal, leading to an increase of dissipation as the effective mode
volume is reduced. Many applications can be negatively affected by
the losses, and although this limitation has been pointed out right
from the beginning of plasmonics and metamaterials research, it has
only more recently become possible to identify effective strategies to
mitigate losses. One of the most promising is the use of gain materials
placed in close proximity to the metal surface. The enhanced electric
fields associated with the plasmonic excitations strongly modify the
radiative and nonradiative properties of the deployed emitters, and
for suitably optimised structures loss-free operation or steady-state
net amplification is possible. Higher gain densities may lead into the
lasing regime if both dissipative and radiative losses are overcome.

Concurrently, (semiconductor) lasers have undergone a continu-
ous miniaturization culminating in the recent experimental demon-
stration of subwavelength nanolasing. Advancing beyond traditional
cavity-concepts, recent nanolasers employ plasmonic resonances for
feedback, allowing them to concentrate light into mode volumes that
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are no longer limited by diffraction. The use of localized surface plas-
mon resonances as cold-cavity modes, however, is only one route
to lasing on subwavelength scales. Lasing, in fact, does not require
modes predefined by geometry but merely a feedback mechanism
and it has been shown that cavity-free lasing is not restricted to
micrometer sizes in disordered media (using random feedback) but
using nanoplasmonic waveguide structures can even be realized on
subwavelength scales using local feedback (optical vortex states close
to singularities in the local density of photonic states).

This volume on “Active Nanoplasmonics and Metamaterials”
brings together the topics of nanoplasmonic lasing and sponta-
neous emission control and active and nonlinear metamaterials.
It comprises six chapters discussing the new science and some of
the surprising applications of nano-plasmonics and metamaterials
when combined with quantum emitters and (quantum) gain mate-
rials. The volume shall start by providing an introduction to active
plasmonics, plasmonic amplification and lasing (Chapter 1) and fol-
lowed by Chapter 2, discussing plasmonic stopped-light nanolasing.
Chapter 3 then reviews nonlinear metamaterials and Chapter 4 talks
about controlled radiative dynamics using plasmonic microcavities
while Chapters 5 and 6 discuss metamaterials and plasmonics with
optical gain and active metamaterials.

Hess Ortwin
Imperial College London, UK

April 2017
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CHAPTER 1

Active Plasmonics, Plasmonic

Amplification and Lasing
ELHAM KARAMI KESHMARZI and R. NIALL TAIT

Carleton University, Canada

PIERRE BERINI∗

University of Ottawa, Canada

1.1. Introduction

Plasma oscillations of conduction electrons on the surface of a
metallic structure can couple to an incident electromagnetic fields
at optical and near infrared frequencies to generate coupled excita-
tions called surface plasmon polaritons (SPPs).1 SPPs are transverse
magnetic (TM) polarized excitations propagating along the surface
of metal-dielectric structures. They are tightly bound to the metal’s
surface and are highly surface sensitive.

SPPs exhibit unique and remarkable properties, including strong
field enhancement, subwavelength field localization, high sensitiv-
ity to the local dielectric environment, and an energy asymptote in
their dispersion curves, which offer useful applications in integrated

∗Corresponding author: pberini@uottawa.ca

1

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 14, 2017 12:36 Handbook of Metamaterials and Plasmonics — Volume 3 9in x 6in b2857-v3-ch01 page 2

2 Handbook of Metamaterials and Plasmonics — Volume 3

photonics,2 bio-sensing,3 imaging,4 spectroscopy,5 nano-lithography6

(see also Refs. [7] and [8] for reviews of SPP applications).
Significant improvements in micro-and nano-fabrication tech-

niques have facilitated the study of various SPP supporting struc-
tures. Moreover, the existence of SPPs in nano-scale structures has
enabled the investigation of light-matter interaction in the scale of
single molecules.9

Unfortunately, the usefulness of SPPs is limited as these excita-
tions have a short lifetime. The intrinsic loss in metals restricts the
SPP propagation length. Inter-band transition absorption at short
wavelengths and free electron collisions and scattering are the main
sources of attenuation in metals. These losses could be reduced by
carefully selecting the operating wavelength and via improvements
in fabrication techniques. However; they cannot be fully eliminated.
As the SPP mode becomes more confined, the mode’s overlap with
the metal is larger and so is the mode’s attenuation.

Increasing the propagation length, while simultaneously main-
taining confinement, has been a topic of investigation for over a
decade. Loss compensation of SPPs is generally accomplished by
adding optical gain to the dielectric adjacent to the metal. Optical
gain has shown to reduce or even eliminate the attenuation, produc-
ing lossless SPPs propagation. It may also exceed the attenuation and
produce amplification of SPPs.10 SPP amplifiers can be integrated
with passive plasmonic devices to improve their performance. SPP
amplification combined with a feedback mechanism enables coherent
sources of SPPs, or SPP lasers (spasers).11 Nano-scale lasers are also
feasible by coupling the surface plasmon resonance (SPR) of metal-
lic nanoparticles to an optical gain medium.12 A new application of
amplified SPPs has emerged in optical parity-time (PT) symmetric
materials where the intrinsic loss of SPPs is balanced with optical
gain to produce a PT symmetric medium satisfying ε(z) = ε∗(−z),
where ε(z) is the relative permittivity of the medium as a function of
spatial coordinate z.13 These materials exhibit extraordinary optical
phenomena such as unidirectional reflectance in linear media.14

This chapter reviews recent studies on SPP loss compensation,
amplification, and lasing. Our focus is on the structures and media
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Active Plasmonics, Plasmonic Amplification and Lasing 3

involved and developed during last ten years and so. In Section 2,
SPP-supporting structures are classified based on how the SPP
mode is confined in the structure. A brief description of quantum
mechanical processes involved in the optical amplification of SPPs is
given at the end of Section 2. In Section 3, we review developments
and achievements in loss compensation, amplification, or lasing with
SPPs in one-dimensional structures. In Sections 4 and 5 we consider
two-dimensional and localized SPP structures respectively. In Section
6, a brief review of the applications of amplified SPPs is presented.
Finally concluding remarks are given in Section 7.

1.2. Review of Surface Plasmon Polariton Structures

SPPs can be confined to the metallic surface of various structures.
Metal strips, metal nano-particles, metal-cladded dielectrics are only
few examples. The SPP mode size can be as small as the nano-scale,
beating the diffraction limit.15 The reason that SPPs can be concen-
trated to subwavelength dimensions is that their momentum can be
much larger than that of photons. In fact, near the metal’s plasma fre-
quency the SPP group index grows significantly and maximum con-
finement can be attained, although the SPPs lifetime at this extrema
is very short.

In this chapter, we classify SPP structures depending on whether
they confine SPPs in one, two or three dimensions, and we highlight
each structure’s properties in terms of loss and confinement.

1.2.1. One dimensional SPP structures

In one-dimensional structures, SPPs are confined along only one
direction, perpendicular to the surfaces of metal-dielectric inter-
face(s) in the structure. One-dimensional planar structures include
single or double metal-dielectric interface(s) in structures as sketched
in Figs. 1.1(a) to 1.1(c).

Figure 1.1(a) shows a single metal-dielectric interface which sup-
ports a bound SPP of wavenumber γ = α + jβ = j2πλ−1

0 [εr,mεr,d/
(εr,m + εr,d)]1/2 where εr,m and εr,d are the metal and dielectric
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Fig. 1.1. Sketch of common one-dimensional SPP structures. (a) Single inter-
face, (b) symmetric dielectric-cladded metal film, (c) symmetric metal-cladded
dielectric. (Adapted from Ref. [10].)

relative permittivity, and λ0 is the free space wavelength.1 It is neces-
sary to have Re(εr,m) < 0 at λ0 in order for SPPs to be excited and
bound to the interface. Most metals at optical and infrared wave-
lengths have a negative real part of permittivity. The SPP fields
decay exponentially from the interface into the metal and dielectric
regions as sketched in Fig. 1.1(a).

The metal’s dispersion leads to the divergence of the SPP
wavenumber at the photon energy that corresponds to the energy
asymptote. The dispersion characteristic of an SPP on a single
Ag-SiO2 interface is shown in Fig. 1.2.16

The SPP wavenumber reaches an extrema at the asymptote.
However, the depth of the energy asymptote is limited due to the
metallic losses and the extrema bends back to the left of the light line,
where the SPP becomes radiative. The modal characteristics of the
SPP on the single Ag-SiO2 interface at three different wavelengths
are summarized in Table 1.1, where neff = βλ0/2π is the SPP mode
effective index, δw is the 1/e mode field width, and L = 1/(2α) is the
1/e propagation length.

Figure 1.1(b) shows another common one-dimensional SPP
waveguide comprising a thin metal film bounded by symmetric
dielectrics. This structure supports symmetric and asymmetric SPP
supermodes.16 By decreasing the metal’s thickness (t → 0) the
attenuation of the symmetric mode decreases to a few orders of
magnitude below that of the single-interface SPP of the correspond-
ing structure. The symmetric mode on the thin metal film is thus
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Fig. 1.2. SPP dispersion on a Ag-SiO2 interface; the cyan curve is the light
line in SiO2 and the dashed line marks the energy asymptote. (Adapted from
Ref. [16].)

Table 1.1. SPP mode’s characteristics on Ag-SiO2 interface.
(Adapted from Ref. [16].)

2α

λ0(nm) neff δw(nm) (cm−1) (dB/µm) L (µm)

360 2.537 44 5 × 105 218 0.02
633 1.565 176 1.6 × 103 0.71 6

1550 1.457 1269 1 × 102 0.044 1

termed a long-range SPP (LRSPP).17 However, the lower attenua-
tion of the LRSPP mode is accompanied with lower confinement.
On the contrary, the asymmetric mode’s attenuation increases with
decreasing t and is therefore termed the short-range SPP (SRSPP).
When the metal film is cladded symmetrically neither mode has a
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cut-off thickness t. The power attenuation (2α) of the LRSPP and
SRSPP modes at λ0 = 1550 nm in the Ag-SiO2 system with t =
20 nm is 0.0012 and 0.45 dB/µm respectively, both increasing as λ0

decreases.16

Figure 1.1(c) shows the complementary structure where a thin
dielectric film is cladded by metals. If the dielectric is thick, this
waveguide behaves as an ideal parallel-plate waveguide supporting
many TE and TM modes. The symmetric SPP mode remains guided
as the dielectric thickness shrinks (t → 0), and it has no cut-off so it
can be confined to an arbitrarily small width.16 However, the mode’s
attenuation increases as the thickness shrinks, so it is also a SRSPP.
Its attenuation in the Ag-SiO2 system with t = 50 nm is 0.85 dB/µm
at λ0 = 1550 nm, increasing as λ0 decreases.16

1.2.2. Two dimensional SPP structures

Two-dimensional SPP structures provide confinement along two
dimensions in the plane transverse to the direction of propaga-
tion. They typically comprise thin structured slabs of metals and
dielectrics on a substrate. As a natural extension of some one-
dimensional structures, they enable integrated plasmonic circuits.2

The most common two-dimensional SPP waveguides are pre-
sented in Fig. 1.3. In Fig. 1.3(a) shows a metal stripe of limited
width embedded in a symmetric dielectric medium.18 The attenu-
ation of the main symmetric SPP mode in this structure is about
ten times lower than of that on the infinitely wide film. It is also
several orders of magnitude smaller than the single-interface SPP in
the limit t→ 0. The main symmetric SPP mode in this regime is also
known as a LRSPP which offers low attenuation at the cost of less
confinement. The main anti-symmetric mode has high attenuation
and is also referred to as SRSPP.

Figure 1.3(b) sketches a dielectric-loaded SPP waveguide, where
SPPs are confined in a high-index dielectric ridge deposited on a
metal film.19 The mode’s attenuation in this structure ranges from
that of the corresponding single-interface SPP to about ten times
higher. Transverse SPP confinement in the structure of Fig. 1.3(c)
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Fig. 1.3. Sketch of common two-dimensional SPP waveguides. (a) Metal stripe,
(b) dielectric loaded, (c) gap, (d) hybrid, (e) wedge, and (f) channel waveguide.
(Adapted from Ref. [10].)

is produced by a two-dimensional gap waveguide, which resembles
rotated metal claddings.20 SPPs are confined strongly within the
gap but with a high attenuation, comparable to the corresponding
metal-cladded configuration. Figure 1.3(d) shows a two-dimensional
hybrid SPP waveguide21, 22 where a very thin, low-index dielectric is
sandwiched between a high-index dielectric and a metal substrate.
This waveguide allows strong localization to the thin low-index gap,
and its attenuation is bounded by the corresponding low-and high-
index SISPPs. Finally Figs. 1.3(e) and 1.3(f) sketch wedge and chan-
nel waveguides15 consisting of a metal protrusion and a groove in a
metal substrate respectively.

SPP waveguides in general trade confinement for attenuation,16

whether by varying the wavelength (Table 1.1) or the geometry
(Fig. 1.3). The trade-off is fundamental: increased SPP confinement
leads to greater overlap with the metal(s), leading to greater attenua-
tion. SPP attenuation therefore spans, in general, a very broad range
(1–105 cm−1), with the most strongly confined modes requiring the
greatest gains for loss compensation and lasing.

1.2.3. Localized SPPs

The interaction of metallic nanoparticles with an electromagnetic
field can lead to non-propagating SPP excitations which are referred
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to as localized SPPs. Localized SPPs are resonant surface plasmon
modes, with a resonant frequency dependent on nanoparticle shape,
size, composition, and the surrounding dielectric.23, 24 As localized
SPPs are resonant, a gain medium in the vicinity can give rise to las-
ing action through stimulated emission of radiation. This particular
type of SPP laser is often referred to as a spaser which is currently of
strong interest as it enables a nanoscale source of SPPs.12, 25 Metal-
lic nanoshells (complementary to metallic nanoparticles) and metal
nanoparticles on a metal substrate also confine SPPs in three dimen-
sions and could also be used as spasers.

1.2.4. Quantum processes involving SPP optical

amplification

Similar to light, SPPs can be quantized in energy (considering dis-
persion26, 27 and absorption28) to provide a quantitative description
of microscopic interactions between SPPs and matter. The quan-
tum nature of SPPs has been investigated and proved experimen-
tally, for example by the excitation of single SPPs along a metallic
nanowire. SPPs can be created or annihilated in a medium consisting
of, e.g., optically-active atoms and molecules through processes such
as absorption, spontaneous emission and stimulated emission. Some
quantum processes that may occur for dipolar emitters near a metal-
dielectric interface supporting single-interface SPPs are sketched in
Fig. 1.4.

In close vicinity to a metallic interface, dipoles may also
emit radiative modes, or interact with electron-hole pairs in the
metal via dipole-dipole transitions. The photonic mode density
(PMD), which is a critical factor in the assessment of sponta-
neous emission rates, is modified due to the presence of a metallic
interface.29

1.3. Amplification and Lasing in One-dimensional
SPP Structures

As it was earlier pointed out, one-dimensional SPP structures are
planar waveguides comprising a single metal-dielectric interface or

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 14, 2017 12:36 Handbook of Metamaterials and Plasmonics — Volume 3 9in x 6in b2857-v3-ch01 page 9

Active Plasmonics, Plasmonic Amplification and Lasing 9

Fig. 1.4. Optical processes occurring for dipoles (filled black circles) near a single
metal–dielectric interface. The magnitude of the SPP’s transverse electric field is
shown along with the associated dipole energy transition. The black dotted curves
indicate energy transfer. (a) Spontaneous emission of SPPs, (b) absorption of
SPPs, (c) stimulated emission of SPPs, (d) creation of electron-hole pairs, (e)
spontaneous emission of radiation. (Adapted from Ref. [10].)

a thin metal film sandwiched in dielectric, or a thin dielectric core
cladded with metals (Fig. 1.1).

SPPs are normally excited by grating or prism coupling configu-
rations in these structures.1 In prism coupling, such as the so-called
Kretschmann-Raether configuration, a metal film is deposited onto
the base of a high-index prism and the lower index dielectric covers
the other side of the film. The light incident on the prism above the
critical angle where total internal reflection occurs, couples to SPP
excitations at the other metal-dielectric interface. In grating coupling
a periodic perturbation in the metal film, such as bumps, corruga-
tions, or slits is used to diffract the incident light and excite the SPP
along the metal-dielectric interface. The role of the grating or prism
in general is to increase the in-plane momentum of TM-polarized
incident light to match that of the SPP, because SPPs cannot be
directly excited by light (due to their larger momenta — Fig. 1.2).
In the following we review the literature on SPP amplification or
lasing in various one-dimensional structures.

1.3.1. Single metal-dielectric interface

SPP amplification in a single-interface structure comprising a thin
Ag film sandwiched between a prism and a gain medium was inves-
tigated in theory by Plotz et al.30 Using Fresnel reflection formulas,
they computed the reflectance of light incident onto the prism ver-
sus angle of incidence and as a function of the gain of the medium.
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Fig. 1.5. (a) The attenuated total reflection configuration with θI as the angle
of incidence. (b) Reflectance computed versus angle of incidence (θI) and as a
function of gain (α). (Adapted from Ref. [30].)

In the passive case, near the angle for surface-plasmon excitation,
the usual attenuated total reflection (ATR) associated with the SPP
mode was observed. However, by increasing the gain, the ATR mono-
tonically reduced such that above a certain gain threshold, enhanced
reflectivity resulted. They also showed that above the gain threshold
one could adjust the metal film’s thickness to produce a singular-
ity in the reflectance. Figure 1.5 shows the ATR configuration used
in this modeling along with the reflectance computed as function
of gain.

The same structure was also studied by Sudarkin and
Demkovich31 considering higher gain in the amplifying medium.
They showed that at high gain the Fresnel formulas are not valid to
calculate the reflectance of the incident beam, which is of limited
width. They also predicted super-luminescence of surface waves in
the high gain regime and were the first to suggest a SPP laser based
on this phenomenon.
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The propagation properties of SPPs along a planar single inter-
face structure were theoretically investigated by Nezhad et al.32 They
analyzed the case of an infinite interface between a metal and a gain
medium, rigorously working with propagation constants and Poynt-
ing vectors, and found the required gain coefficient for lossless SPP
propagation. A material gain of ∼1260 cm−1 was estimated for a
lossless SPP propagation for an Ag-InGaAsP interface at λ0 = 1550
nm.

Kumar et al.33 considered a metal-semiconductor diode struc-
ture comprising a p-n junction of GaAs adjacent to an Au substrate.
The electron-hole recombination energy was coupled to SPPs on the
Au-GaAs interface. They showed how the carrier injection level in
GaAs controlled the spontaneous emission rate and provided gain for
SPP amplification. Lu et al.34 considered optical parametric ampli-
fication of SPPs in a nonlinear hybrid waveguide consisting of Ag-
LiNbO3. The seed and pump wavelengths required for efficient power
conversion were found. They estimated ∼30 dB gain over 3 mm of
coupling length for a pump intensity of ∼50 MW/cm2. Sirtori et al.35

used a single interface SPP waveguide on a quantum cascade semi-
conductor laser at far-infrared wavelengths (λ ∼ 11µm). Their goal
was to increase the mode’s confinement and overlap with the gain
medium, while simultaneously reducing the total layer thickness in
the structure. Shortly later, Tredicucci et al.36 similarly proposed
a single-mode SPP laser at λ0 ∼ 17µm, in a distributed feedback
(DFB) configuration using two-metal (Ti/Au) grating adjacent to a
quantum cascade active semiconductor.

Seidel et al.37 experimentally demonstrated SPP stimulated emis-
sion at optical wavelengths. They used 39 and 67 nm thick Ag films in
contact with liquid dye gain media (Cresyl violet or Rhodamine 101
in ethanol) in the Kretschmann-Raether configuration. A p-polarized
probe at λ0 = 633 nm was focused on the Ag-dye interface with a
specific incidence angle near the SPP excitation angle while the dye
medium was pumped at λ0 = 580 nm. The ATR was measured as a
function of the probe incidence angle, with and without pumping the
gain medium. The difference between the pumped and un-pumped
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cases was attributed to stimulated emission of SPPs on the Ag-dye
interface. The reflectance increased over the SPP excitation angle for
the 39 nm thick Ag films whereas it narrowed and deepened for the 67
nm thick Ag films, both cases in agreement with theory.31 A similar
study was conducted by Noginov et al.38 but with the gain medium
formed as a 10 µm-thick film doped with Rhodamine-6G. The gain
medium was pumped at λ0 = 532 nm by a Nd:YAG laser and a He-Ne
laser beam at λ0 = 594 nm was illuminating the Ag-gain interface
through the prism. Increased reflectance at the SPP excitation angle
was observed due to the stimulated emission of SPPs on the interface.
They obtained an optical gain of 420 cm−1 with a dye concentration
of N = 1.2×1022 cm−3 and a pump intensity of I = 1.7×107 W/cm2,
which compensated ∼35% of the SPP loss. In another experiment39

they excited SPPs through pumping a thinner (∼3 µm) dye-doped
polymer film at the dye’s peak absorption wavelength, and decou-
pled spontaneously emitted SPPs to the prism in ATR configura-
tion. They demonstrated narrowing of the SPP spectra by increas-
ing the pump intensity, which was attributed to stimulated emission
of SPPs.

Figure 1.6(a) sketches the SPP excitation and decoupling in the
ATR configuration used in the experiment. The SPP emission spec-
trum narrowing with increasing pump intensity from 10.9 mJ/cm2

to 81.9 mJ/cm2 is shown in Fig. 1.6(b).
Amplified spontaneous emission of SPPs (ASE-SPP) at the inter-

face of a 1 µm-thick PMMA layer doped with PbS quantum dots
(QDs) and a 100 nm thick Au film on a Silica substrate was observed
by Bolger et al.40 SPPs were excited at the QDs emission peak
and out-coupled through a grating on the interface. The full-width
half-maximum (FWHM) SPP emission was observed to decrease
with increasing pump intensity as expected for ASE-SPP. The pump
intensity threshold for ASE-SPP was measured as 5 W/cm2. It was
found that ASE-SPP at high pump intensities limits the available
gain such that only a 30% increase in SPP propagation length was
obtained. The gain depletion due to ASE was suggested as the
reason.
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Fig. 1.6. (a) Sketch of experimental the sample, excitation and decoupling of
SPPs. (b) Spectra of SPP emission at pump intensities below and above threshold.
(Adapted from Ref. [39].)

1.3.2. Metal slab in symmetric/asymmetric dielectric

The properties of strong optical amplification of SPPs for flat or
corrugated (∼10 nm period) Ag slabs in contact with a gain medium
were investigated theoretically by Avrutsky.41 SPP resonance was
obtained at λ = 350 nm, when the optical gain increased to ∼80,000
cm−1. The SPP resonance was accompanied by a huge group index
(∼5.4 × 104), extremely low group velocity (∼1 km/s), highly local-
ized SPPs, and an abrupt change of positive SPP loss to nega-
tive SPP loss (meaning loss overcompensation). The large material
gain required in this scheme sounds challenging, but it is interesting
that such extreme confinement may be possible. Although strongly
enhanced ASE-SPP may compromise the available gain and noise
performance.

Nezhad et al.32 considered a 40 nm Ag slab embedded in InGa
AsP gain media and found that ∼360 cm−1 of gain is required for
lossless LRSPP propagation at λ0 = 1550 nm.

Lasing in plasmonic bandgap structures was investigated42–44

using a 2D corrugated metal film sandwiched between two symmetric
dielectrics doped with dye molecules. It was shown experimentally
that the dye molecules’ fluorescence was highly enhanced in the vicin-
ity of the corrugated film. SPP lasing was proposed in these structure
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provided that the dye peak emission wavelength falls at the edge of
the plasmonic bandgap, supporting a standing LRSPP mode due to
highly enhanced SPP fields and lower absorption of this mode. The
same concept was also considered by Winter et al.45 who argued that
fluorescent dye can also decay into asymmetric SRSPP guided modes,
reducing the available gain for stimulated emission of LRSPP.

Genov et al.46 developed a new method based on a quasi-metal
approximation for the explicit solution of the dispersion relation of
an insulator-metal-insulator (IMI) structure, where the metal slab is
bounded by multiple quantum well (MQW) gain media. Using their
method they could obtain the critical gain required for lossless SPP
propagation in a thin Ag film cladded by InGaAsP, InGaN MQW
gain media.

De Leon and Berini developed a theoretical model for treating
SPP amplification in planar structures where gain is provided by a
laser dye solution.47, 48 They assumed a four-level dipolar gain sys-
tem, and accounted for the position dependency of dye molecules’
lifetime as well as an inhomogeneous pump intensity distribution.
Through their modeling, they predicted lossless LRSPP propagation
on a Ag film bounded in symmetric dielectric media involving R6G
in solvent using a modest pump intensity of ∼200 KW/cm2 and a
reasonable dye concentration of N = 1.8 × 1018 cm−3. They also
considered a single interface system using the same gain media but
found that a higher dye concentration (N = 2.4 × 1019 cm−3) and
a much stronger pump intensity (∼3.5 MW/cm2) were needed for
lossless SPP propagation. They later investigated the noise figure
for amplified single interface SPPs and LRSPPs49 and found that
the noise figure of LRSPPs is less than that of the single interface
SPPs, and that it diverges as the energy asymptote is approached in
both cases due to increased spontaneous emission rate. They also
showed50 that the spontaneous decay rate into LRSPPs is lower
than for decay into SRSPPs in close proximity to a metal slab in a
symmetric one-dimensional structure. Figure 1.8 shows the computed
decay rates into the guided modes of an infinite metal slab in sym-
metric dielectric.
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Fig. 1.7. Normalized excited state decay rates for isotropic dipole into different
energy decay channels on an infinite metal slab in symmetric dielectric media.
(Adapted from Ref. [50].)

Fig. 1.8. (a) ASE-LRSPP measurement setup in a symmetric dielectric-metal-
dielectric configuration. (b) Normalized spectrum of the TM polarized component
of output emission for different pump intensities. (Adapted from Ref. [51].)

Gather et al.51 reported LRSPP gain at visible wavelengths in a
symmetric structure consisting of a 1 µm thick fluorescent polymeric
gain layer and a 4 nm thick Au film. Figure 1.8(a) illustrates the
LRSPP structure under test which was optically pumped from the
top using 5 ns laser pulses at λ0 = 532 nm. They performed

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 14, 2017 12:36 Handbook of Metamaterials and Plasmonics — Volume 3 9in x 6in b2857-v3-ch01 page 16

16 Handbook of Metamaterials and Plasmonics — Volume 3

ASE-LRSPP measurements by increasing the pump stripe length
and demonstrated the emission threshold and spectrum narrowing as
plotted in Fig. 1.8(b). They obtained an LRSPP net gain coefficient
of ∼8 cm−1 at λ0 ∼ 600 nm.

Hahn et al.52 considered the interaction of the LRSPP mode
with optical gain in a symmetric PMMA-Ag-PMMA structure where
both claddings (top and bottom PMMA) were doped with IR-140
dye. They theoretically showed that the gain medium in the bot-
tom cladding doubles the LRSPP gain at high pump intensities
∼4 MW/cm2, even though the pump is applied from the top and
is partially reflected by the Ag film. They also measured the LRSPP
gain by the variable stripe length (VSL) method and found a gain
coefficient of 16.7 cm−1 with a pump intensity of 4 MW/cm2.

I. P. Radko et al.53 implemented an asymmetric dielectric-metal-
dielectric waveguide consisting of a 50 nm-thick Au film deposited
on a quartz substrate and covered with a thin layer of PMMA doped
with lead-sulphide (PbS) QDs. The sample was optically pumped
from the top at λ0 = 532 nm, whereas a CW probe at λ0 = 860 nm
was used to excite the SPP mode in the waveguide through a grating
coupler. By collecting the leakage radiation from the quartz side of
the sample at the Kretschmann angle they could estimate a SPP gain
of ∼200 cm−1.

1.3.3. Metal-cladded dielectric

Maier54 computed the gain required for lossless SRSPP propagation
in a symmetric metal-insulator-metal (MIM) heterostructure where
the core material exhibits optical gain. Gain coefficients of 1625 cm−1

and 4830 cm−1 were required for lossless propagation at λ0 = 1550 nm
in 500 nm-thick and 50 nm-thick semiconductor cores, respectively.

Chang and Chuang55, 56 formulated quasi-orthogonality and
normalization conditions suitable for computing field-enhanced
spontaneous and stimulated emission rates in micro- and nano-sized
metal-cladded dielectrics. They also modified the definition of the
confinement factor in SPP nano-lasers, where the group velocity is
very low and the SPP fields are highly confined.
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SPP amplification and lasing were investigated by Li and Ning57

in metal-semiconductor-metal (MSM) structures. They demon-
strated a SPP mode power gain 1000 times greater than the semicon-
ductor’s material gain near the energy asymptote where the group
velocity is very low. They also investigated the amplification and
lasing threshold conditions in these structures assuming electrical
injection.58 Khurgin and Sun59 investigated similar MSM structures
near the SPP energy asymptote. They found that a significantly
high current density injection of ∼100 kA/cm2 is required for loss
compensation due to the Purcell effect inherent to sub-wavelength
confinement in these structures.

Chen et al.60 used a finite difference time domain (FDTD)
method to model amplified SPP propagation in MSM structures.
They specifically considered an Au-InGaAs-Au structure and pre-
dicted lossless SRSPP propagation in a 75 nm-thick structure with
a material gain of 2500 cm−1 at λ0 = 1550 nm.

Yu et al.61 investigated the reflection and transmission of a short-
length, metal-cladded dielectric waveguide coupled to a small cavity
filled with an InGaAsP gain medium, showing that the cavity losses
can be fully compensated for a material gain of ∼2000 cm−1 at λ0 ∼
1550 nm. The gain assisted MDM plasmonic waveguide can work as
an ON/OFF switch in the presence/absence of pumping.

Hill et al.62 demonstrated electrically-pumped lasing from rect-
angular etched InGaAs pillars coated by 20 nm silicon nitride then
by a thick Ag layer. Vertical confinement was provided by steps in
refractive index in the gain region, whereas sub-wavelength confine-
ment along the horizontal direction occurs due to the Au coating.
Mirrors at the end facets define a Fabry-Perot cavity. Lasing was
obtained at cryogenic temperatures (10 K) observed via leakage radi-
ation microscopy through the substrate.

1.4. Amplification and Lasing in Two-dimensional
SPP Structures

The most common two-dimensional SPP structures are displayed in
Figs. 1.3(a)–(f). Thin metal stripes or films of narrow width bounded
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by nearly symmetric dielectrics support LRSPPs with significantly
lower loss than single-interface SPPs and metal slabs bounded by
symmetric dielectrics. The reduced loss comes with the cost of less
confinement so that sub-wavelength confinement cannot be achieved
with thin metal stripes. Dielectric-loaded waveguides based on using
a dielectric ridge of higher refractive index than the surround-
ing medium provide additional confinement through index contrast.
There are also two-dimensional hybrid dielectric-SPP waveguides
which take advantage of less loss and more confinement from dielec-
tric and metal waveguides respectively. In the following a literature
review of amplification and lasing in these common two-dimensional
SPP waveguides is presented.

1.4.1. Metal stripe in symmetric dielectric

Alam et al.63 considered a 1 µm-wide, 10 nm-thick Ag stripe on
AlGaInAs multiple quantum wells (MQWs) covered by barrier mate-
rial for the purpose of LRSPP amplification. The required material
gain for lossless LRSPP propagation at λ0 = 1550 nm was found
∼400 cm−1. LRSPP whispering gallery modes in GaAs-based, micro-
disk cavities incorporating a thin metal film were investigated at
λ0 = 1400 nm by Chen and Guo.64 They computed the resonator’s
Q and lasing gain threshold as ∼4000 and ∼200 cm−1 respectively.

Experimental demonstration of the stimulated emission of
LRSPPs on a 8 µm-wide, 20 nm-thick Au stripe cladded by Er-doped
glass was performed by Ambati et al.65 at λ0 = 1532 nm. Probe and
pump signals were both coupled to the waveguide LRSPP mode. By
applying a maximum pump power of 266 mW, the probe signal was
enhanced to ∼50%.

De Leon and Berini66 reported LRSPP amplification in a waveg-
uide comprising a 1 µm-wide, 20 nm-thick Au stripe on a 15 µm-thick
SiO2 on Si, and covered by IR-140 dye in solvent index-matched to
SiO2. The structure was probed at λ0 = 882 nm using butt-coupled
polarization maintaining, single-mode fibers and pumped optically
from the top at λ0 = 808 nm using 20 mJ/cm2, 8 ns laser pulses.
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A small-signal mode power gain coefficient of γ = 8.55 dB/mm was
obtained in this experiment.

A direct observation of plasmonic gain was reported by Kéna-
Cohen et al.67 in an asymmetric structure consisting of a 1 µm-wide,
21 nm-thick Au stripe of different lengths on a glass substrate and
covered by a thin polymeric gain medium (Alq3:DCM). The thickness
of the optically pumped gain medium was selected to support a con-
fined LRSPP mode. Grating couplers were used to probe the waveg-
uide using broadside incident beams and the pump was applied to the
top. Figure 1.9(a) sketches the waveguides in top view with input and
output grating couplers indicated. A typical loss-compensation mea-
surement showing the pump (200 µJ/cm2) and probe (TE and TM)

Fig. 1.9. (a) Optical micrograph of the plasmonic waveguides with locations of
the input and output gratings indicated. (b) A typical loss-compensation measure-
ment showing the pump (200 µJ/cm2) and probe (TE and TM) for a 30 µm-long
waveguide. (c) Signal enhancement as a function of length for a pump intensity
of 200 µJ/cm2. (Adapted from Ref. [67].)
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for a 30 µm-long waveguide is sketched in Fig. 1.9(b). Direct flu-
orescence is observed for both pump−probe (TE) and pump only
configurations. However, for the pump−probe (TM) arrangement,
the DC contribution due to the CW probe is seen and the addi-
tional signal in the presence of the pump corresponds to both the
CW contribution and gain, giving a signal enhancement factor of
F = 3.2±0.1. Using systematic measurements of the signal enhance-
ment as a function of waveguide length, they measured a net gain of
(3.4±16) dB/mm at λ0 = 633 nm using 200 µJ/cm2 pump intensity
as shown in Fig. 1.9(c).

Flynn et al.68 demonstrated LRSPP lasing at λ0 ∼ 1.46 µm in a
symmetric structure based on InP and consisting of a 15 nm-thick Au
film placed between MQW heterostructure layers with a minimum
lateral width of 100 µm. A 1 mm long Fabry-Perot structure formed a
LRSPP laser cavity which emitted a TM-polarized light under optical
pumping from the top at λ0 = 1.06 µm with 140 ns pulses. The
emitted spectrum narrowed with increasing pump intensity, and the
emitted power was linearly dependent on the pump intensity beyond
a clear threshold.

1.4.2. Dielectric-loaded SPP waveguide

Dielectric-loaded SPP waveguides (DLSPPW) using 600 nm thick,
400 nm-wide PMMA stripes, doped with PbS quantum dots (QDs),
and deposited on a 40 nm-thick Au film were investigated by Gran-
didier et al.69 Optical gain was provided by pumping QDs in the
waveguide from top at λ0 = 532 nm. Stimulated emission of the SPP
guided mode was qualitatively confirmed by linewidth narrowing of
the SPP mode. The SPP propagation length was measured versus
pump irradiance exhibiting a linear increase of propagation length
above the pump threshold ∼500 W/cm2. A maximum increase in
propagation length of ∼27% was obtained. The gain coefficient of the
amplified waveguide versus the pump irradiance was also measured
near the QD peak emission (λ0 ∼ 1550 nm). They subsequently
studied PMMA stripes doped with CdSe/ZnSe QDs deposited on
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a 50 nm-thick Ag film. Their work was based on leakage radia-
tion microscopy combined with surface plasmon coupled emission.
They reported a similar increase in SPP propagation length at
λ0 = 632.8 nm.70

C. Garcia et al.71 considered a DLSPPW at λ0 ∼ 860 nm com-
prising a 300 nm-thick, 300 nm-wide PMMA ridge doped with PbS
QDs deposited on a 70 nm-thick Au film on a glass substrate. They
similarly used leakage radiation microscopy to study stimulated emis-
sion of SPPs in the waveguide. About a 33% increase in the propa-
gation length of SPPs was reported for a probe power of 16 mW and
pump intensity of ∼4460 W/cm2 which produced an optical gain of
∼143 cm−1.

Colas des Francs et al.72 modeled in general the local density
of guided modes for two-dimensional SPP waveguides incorporat-
ing a gain medium. They assumed a 4-level dipolar gain medium to
describe spontaneous and stimulated emission rates into SPPs. They
specifically applied their model to a DLSPPW reported earlier69 and
deduced the stimulated emission cross-section of PbS QDs.

Rao and Tang73 derived conditions for lossless SPP propa-
gation in a single metal dielectric structure assuming stimulated
emission in the active dielectric. They considered a wide range of
wavelengths in the visible and infrared regions, and various metals. In
particular they studied lossless propagation at extremely short wave-
lengths near the energy asymptote. Using their model, they designed
a nanoscale DLSPPW with a dielectric cross section of 22× 20 nm2

and computed a required optical gain of ∼5×104 cm−1 in the dielec-
tric to produce lossless sub-wavelength propagation at λ0 = 450 nm.

Hahn et al.74 proposed a dielectric-loaded LRSPP waveguide in a
symmetric PMMA-Ag-PMMA structure, where a top PMMA ridge
is used to laterally confine a LRSPP mode. Both the top and bottom
PMMA layers were assumed to be doped with IR-140 dye molecules
and the waveguide is pumped optically from the top. They introduced
single-mode DFB lasers by stepping the width of the top PMMA
while optical gain is provided75 in both PMMA regions.
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1.4.3. Hybrid SPP waveguide

Hybrid SPPs are a coupled TM-polarized wave, guided in a nanoscale
low-index dielectric gap between a high-index dielectric and a metal
surface. It is a super-mode excited by coupling the SPP mode on
a metal-gap interface to the photonic mode of high-index dielec-
tric.76–78 Loss compensation or lasing with hybrid SSPs is possible
if the high-index region provides optical gain over which the hybrid
SPP overlaps sufficiently.

Oulton et al.79 reported an experimental demonstration of a
nanoscale laser in hybrid plasmonic structures consisting of a high-
gain CdS nanowire separated from a Ag substrate by a 5 nm-thick
MgF2 gap. Multi-mode lasing at λ0 ∼ 489 nm was observed from
the end facets of the nanowire under a ∼76.25 MW/cm2 pump
irradiance. Other designs for lasing using CdS nano-squares80 and
an embedded waveguide (WEM)81 were also reported in hybrid
structures.

A hybrid SPP laser consisting of an InGaN/GaN core-shell
nanorod separated from an Ag film by a thin SiO2 layer was demon-
strated by Lu et al.82 The nanorod as well as the Ag film were
epitaxially grown to provide the atomic-scale smoothness necessary
for reducing diffraction loss and providing low threshold CW lasing.
Figure 1.10(a) sketches the hybrid SPP structure showing the field
concentration in the low-index region but also significant overlap with
the nanorod in order to provide gain. Figure 1.10(b) shows lasing
emission spectra with increasing pump irradiance at 78 K. Bimodal
lasing at 510 and 522 nm was obtained with a CW pump intensity
of ∼26 KW/cm2 at 78 K as seen in Fig. 1.10(b).

Sidiropoulos et al.83 reported ultra-fast (shorter than 800 fs)
hybrid SPP lasing using ZnO nanowires separated from a Ag
substrate by a thin LiF gap. ZnO excitons at room tempera-
ture lie near the SPP frequency in the hybrid SPP laser, and
strong mode confinement leads to accelerated spontaneous emis-
sion recombination. The dynamics of the ZnO nanowire SPP laser
were compared to those of conventional ZnO nanowire photonic
lasers revealing a sub-picosecond pulse width for the SPP nanolaser
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Fig. 1.10. (a) Sketch of a hybrid SPP nanolaser consisting of an InGaN/GaN
core-shell gain nanorod on a thin SiO2 layer on an epitaxial Ag film. (b) Lasing
spectra at 78 K with increasing pump irradiance. Inset: Far-field laser spot with
contrast fringes indicative of spatial coherence resulting from lasing. (Adapted
from Ref. [82].)

but a much broader pulse width for the corresponding photonic
nanolaser.

A low loss hybrid SPP laser design using MQWs in a P-N het-
erojunction and electric pumping was reported by Li and Huang.84

Their design optimized the hybrid SPP mode’s overlap with the P-N
active region.
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1.5. Amplification and Lasing in Nano-structures

Conduction electrons in metal nanoparticles irradiated by linearly
polarized light form dipolar oscillations referred to as a surface plas-
mon resonance (SPR).85,86 Resonant surface plasmons are supported
by metal nanoparticles smaller than the skin depth (∼25 nm) so that
optical fields can penetrate throughout their volume and drive elec-
tron oscillations. SPRs of high quality in proximity to a gain medium
can lead to surface plasmon amplification by stimulated emission of
radiation (spaser).12, 25

Figure 1.11 sketches the spasing mechanism as explained by
Stockman25 in a spaser composed of a silver nanoshell covering a
dielectric core of 10–20 nm radius, and surrounded by two dense
monolayers of nanocrystal quantum dots (NQDs). Pumping the gain
medium (optical or electric) excites electron–hole (e–h) pairs (solid
arrow). The e–h pairs relax to excitonic levels (dotted arrow). The
excitons recombine and their energy is transferred to the plasmon
excitation of the metal nanoshell through resonant coupled transi-
tions (dashed-dotted arrows).

Noginov et al.87 demonstrated a spaser using spherical nanopar-
ticles consisting of a 14 nm Au core, coated with a 15 nm SiO2

shell and doped with Oregon Green 488 dye. The quality factor of
nanoparticles was found as ∼13.2. Stimulated emission of SPPs at
λ ∼ 531 nm by individual nanoparticles was reported. Meng et al.88

considered a monolayer of randomly oriented Au nanorods embedded
in the mesopores of a silica shell dispersed on a glass substrate and
covered with a 200 nm thick R6G-doped PVA film to supply gain.
The spaser emission was tunable from 562 to 627 nm with a spectral
line width narrowed down to 5–11 nm.

In a theoretical study by Khurgin and Sun,89 they showed that
lasing in electrically-pumped semiconductor spasers has an extremely
high current threshold of ∼105 A/cm2. They attributed the high
current threshold to gain depletion caused by enhanced spontaneous
emission. Dorfman et al.90 proposed a low threshold and efficient
spaser using quantum coherence in a three-level quantum emitter
based gain medium coupled to plasmonic nanostructures. Ginzberg
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Fig. 1.11. (a) Schematic of a spaser using a silver nanoshell on a dielectric core,
surrounded by two dense monolayers of NQDs. (b) Energy levels and transitions
in a spaser. External radiation excites e–h pairs (vertical solid arrow). The e–h
pairs relax to excitonic levels (dotted arrow). The exciton recombines and its
energy is transferred to the plasmon excitation of the metal nanoshell through
resonant coupled transitions (dashed-dotted arrows). (c), (d) Field amplitudes,
ϕ, around the nanoshell in two different resonant plasmon modes. (Adapted from
Ref. [25].)
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and Zayats91 developed a theory to obtain the linewidth and its
enhancement in semiconductor spasers. They specifically consid-
ered bulk GaAs as the active medium of a spaser and estimated a
linewidth enhancement of ∼3–6 which is about an order of magnitude
larger than that predicted by the Schawlow-Townes theory. Single
molecule detection based on surface enhanced Raman scattering
(SERS) is possible using spacers as they can produce near-singular
scattering hot spots.92–94

Array of nanoparticles for improved spaser quality has also been
investigated. Suh et al.95 reported coherent and directional emission
from optically pumped arrays of Au bowtie resonators on slabs of
IR-140 doped polyurethane on a Si substrate and covered with a
dielectric over-layer. Zhou et al.96 reports a two-dimensional plas-
monic lattice consisting of a pattern of Au nanoparticles on a glass
substrate, covered by a polyurethane layer doped with IR-140. Their
structure features high directionality due to lattice bandedge lasing
and ultrafast response due to plasmonic-enhanced localization. Loss
compensation in extraordinary optical transmission (EOT) systems
was theoretically studied by Marani et al.97 They specifically ana-
lyzed the spectral response of an optically pumped periodic array of
subwavelength slits in an opaque Au film sandwiched between two
thin layers of Rh800-doped polymer. They showed that this structure
can behave as an absorber, laser or amplifier due to strong spatial
hole-burning effects, depending on the pump intensity. van Beijnum
et al.98 demonstrated laser emission in the near infrared from an
array of subwavelength holes in a Au film on an optically pumped
InGaAs/InP gain medium at 150 K. Linewidth narrowing and lasing
threshold were observed with increasing pump power, and surface
plasmon lasing was justified by experimental observations. Highly
directional single-mode spasing at red wavelengths (λ ∼ 620 nm) was
demonstrated at room temperature by Meng et al.,99 where the plas-
monic nanocavity was formed by a periodic subwavelength hole array
perforated in a Ag film supporting SPP Bloch waves at λ ∼ 620 nm.
They suggested that the optical feedback for spasing was provided
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by SPP Bloch waves in the hole array nanocavity rather than the
plasmonic resonance in individual holes.

1.6. Applications of SPP Amplification

1.6.1. Amplifier

The performance of passive SPP elements such as waveguides, cou-
plers, splitters and Mach-Zehnder interferometers can be enhanced if
their loss is compensated by SPP amplifiers. SPP amplifiers can be
realized as a stand-alone component or as a gain section integrated
with other SPP devices to improve their performance. Ng et al.100

proposed gain assisted SPR biosensors based on the Kretschmann
configuration where optical pumping leads to photon emission in a
polymer which couples to surface plasmons via resonant transitions.

1.6.2. Laser/Spaser

SPP lasers can be constructed similar to conventional lasers, such
that SPPs are directly excited at the interface of a metal with the gain
medium within a cavity which allows SPPs to resonate. SPP lasers
are coherent sources of confined light and can be used to produce a
high-intensity, ultrafast source of light.

Tunable single-mode lasers were designed by Keshmarzi et al.101

using LRSPPs on a metal stripe waveguide in the distributed feed-
back (DFB) and distributed Bragg reflector (DBR) configurations.
Laser structures comprising step-in-width Bragg gratings in a 20 nm-
thick, 1 µm-wide Ag stripe embedded in PMMA were considered. The
proposed structures are thermo-optically tunable via current injected
along the stripe.

1.6.3. PT symmetric material

PT symmetry is a concept originating from quantum mechanics
which states that a non-Hermitian Hamiltonian can still have real
eigenvalues provided that it respects the PT symmetry condition.102
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It is shown that a necessary but insufficient condition for PT symme-
try is that the complex potential V(r) obeys V(r) = V∗(−r), with *
denoting the complex conjugate.103 The refractive index in photonics
plays the role of the potential function in quantum mechanics103 so
that optical PT symmetric materials can be created if the refractive
index n as a function of position r satisfies n(r) = n∗(−r), which
implies a complex refractive index consisting of balanced gain and
loss. These materials have attracted significant attention through the
unique and extraordinary properties that they exhibit at a so-called
PT spontaneous breaking point. (Reference 104 provides a review
of some PT symmetry applications in optics). Indeed, some opti-
cal functionality that is not possible with natural materials can be
realized by PT symmetric artificial materials. For instance, unidi-
rectional propagation in a linear medium is only possible if a bulk
magnetic device is incorporated. However, a PT symmetric medium
can produce unidirectional propagation in linear media without any
Faraday effect.105 Plasmonics provides a versatile platform to realize
PT symmetric materials, as loss inherently exists in SPPs and can be
tuned by geometrical adjustments.106 Gain can be incorporated and
balanced with loss in SPP structures to produce a PT symmetric
material. So far only a few groups have investigated PT symme-
try in plasmonic systems. Benisty et al.107 proposed a PT symmet-
ric hybrid plasmonic-dielectric co-directional coupler where gain and
loss were assumed in the dielectric and plasmonic waveguides respec-
tively. They used the singular behavior of the PT structure near the
spontaneous breaking point and showed that a small gain/loss modu-
lation results in a large change in propagation properties of the super-
modes. Later they proposed optical switching108 based on this idea
and emphasized on the positive role of loss provided by plasmonic
waveguides. Keshmarzi et al.106 proposed a PT symmetric Bragg
grating based on an LRSPP waveguide using gain and loss modu-
lations. The proposed Bragg grating was designed at the PT sym-
metry breaking threshold providing highly asymmetric reflectance
from the end facets. Hahn et al.109 designed a PT symmetric Bragg
grating similarly based on an LRSPP waveguide structure. They
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considered the complex modulation of effective refractive index by
modulating the width of a top PMMA cladding about a certain width
where the LRSPP mode couples to an antisymmetric SPP mode. The
PMMA width within the grating’s unit cell and the PMMA thickness
were judiciously arranged to produce PT symmetry at the break-
ing threshold. Again, asymmetric reflectance was observed when the
Bragg was probed from the left and right facets.

1.7. Concluding Remarks

SPPs are excited along the interface of metals with dielectrics at
infrared or visible wavelengths. They can be concentrated to sub-
wavelength scales beyond the light diffraction limit and offer poten-
tially useful applications. Metallic loss in SPP structures reduce the
SPP lifetime and limit their applications. Optical gain can be inte-
grated with SPP structures to reduce the loss and maintain con-
finement. The gain requirement significantly varies depending on
the SPP structure and mode of interest. Lossless SPP propagation
using good metals (e.g., Ag, Au) approximately requires a small sig-
nal material gain of 1–200 cm−1 for the LRSPP mode along thin
metal stripes or films, 1000–2000 cm−1 for the single-interface SPP
mode, 2000–5000 cm−1 for SPPs along thin metal-cladded dielectric
waveguides, and 80 000 cm−1 for SPPs near the energy asymptote.
Various gain media can be used to produce these gains (except per-
haps for the latter) including good dyes, QDs and semiconductors.
Dielectrics, particularly polymers, can be doped by optical dipoles
such as dyes and integrated with metals. Optical pumping is usually
applied to excite such materials. Epitaxial semiconductors can be
pumped electrically, but their integration with metallic structures,
especially buried ones, can be difficult and their gain may be polar-
ization dependent so that pump alignment with SPP is necessary.

Research on SPP amplification and lasing to date has been
mostly on the fundamentals and only primary demonstrations have
been made. Many avenues are yet open to explore, especially the
development of applications with usability and good performance in
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mind. Future works include the development and improvement of effi-
cient pumping techniques, room temperature operation, high quality
SP resonators, low power dissipation and stability. Despite exist-
ing challenges, the prospects of SPP amplification and active plas-
monics are promising. Substantial demonstrations have already been
reported for various amplified SPP structures, including LRSPPs on
stripes,66–68 and slabs,51 single interface SPPs,36 SPPs in hybrid80

and metal-cladded waveguides62 through which useful applications
can be developed.
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CHAPTER 2

Stopped Light Nano-Lasing
A. FREDDIE PAGE and ORTWIN HESS

Imperial College London, UK
o.hess@imperial.ac.uk

2.1. Introduction

Lasers generally comprise two essential elements, gain and feedback.
In a gain material, photons (or indeed surface plasmon polari-

tons) are generated by spontaneous and stimulated emission. Stimu-
lated emission can happen when a photon induces the relaxation of an
electron from an energetically higher state to another state of lower
energy, and, crucially, a second photon which is coherent with the
first is emitted. This process can be repeated, and while the electron
population is inverted (that is there are more electrons in the upper
rather state, rather than in the lower state), the number of photons
in a coherent state will grow exponentially. Such gain media that
are available include, for example, bulk semiconductors,11 quantum
dots19 and wells,3 as well as organic laser dye molecules.24

Feedback, on the other hand, is the means by which the photons
that are emitted are coupled back to interact with the same gain
medium, such that they may stimulate further emission. Most lasers
will use a resonant cavity for this purpose, where the cavity modes
localise electromagnetic energy over a gain medium. In the field of
nanolasing there have been many such examples including photonic

39
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crystal defect modes,1, 17 microcavity resonators,6, 13, 27 and even the
multiple scattering of a “random laser”.2, 28

Stopped light (SL) offers an alternative mechanism for feedback
than the feedback provided by a cavity. SL modes are only confined
in one spatial dimension, and not in the other two. This permits
a continuum of planewave solutions, i.e. SL modes are propagating
waves, rather than standing waves, albeit at (or sufficiently close to)
zero group velocity. Also, the lasing mode of a stopped light laser
forms dynamically, based on the gain support for the continuum of
modes instead of being predetermined by the geometry of a cavity.
Here the feedback is provided by a balance of adjacent forward and
backward power flows that form a closed-loop optical vortex on sub-
wavelength scales which gives rise to the zero group velocity.

2.2. Ultraslow and Stopped Light

Storing electromagnetic energy at a single location in space over long
timescales is the subject of the field of ultraslow or “stopped” light.
Such a phenomenon would find applications in data storage, quan-
tum information, and light harvesting.8 In this regard, there are three
properties of a wave-packet that must be reduced by a structure or
material in order to have stopped light: The speed of the wave-packet
itself, dispersion which causes the wave-packet to distort, and energy
loss to the material. We should note here however, that strictly,
there is not a single speed to be associated with the movement of a
wave-packet because a wave-packet can be composed of plane waves
which, in general, will each move at different speeds in a dispersive
material. Indeed, there are thus a number of measures which seek to
characterise the average speed of a wave-packet, such as the energy
transport velocity or the centrovelocity.23 Perhaps the most familiar
measure is the group velocity, which is well defined when energy is
transferred through a medium which is uniform in the propagation
direction, and is the speed that the mean of a Gaussian wave-packet
would travel through such a medium.

In this chapter, we shall consider light propagating through pla-
nar hybrid metal-dielectric waveguide structures, such as in Fig. 2.1.
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pump

output

metal

dielectric

metalgain

Fig. 2.1. Nanoplasmonic stopped-light laser. Light, guided in a hybrid metallo-
dielectric waveguide, is localised in the vicinity of stopped-light singularities
formed by the vertical metal-dielectric-metal heterostructure. In the overlap
region with a gain medium (blue box) a lasing vortex (blue arrows) is formed,
providing (in spite of an absence of a cavity) lateral feedback (i.e. in horizontal
direction) on sub-wavelength scales. In this setup, the gain is pumped from the
side and light is emitted as leaky wave towards the top. A field strength profile
is also shown superimposed on the structure.

Particularly we shall look at the waveguide modes, or bound modes,
as therein lie the greatest potential to alter the velocity, dispersion,
and loss by changing the structural parameters. These waveguide
modes can be solved for with a transfer matrix method.31 Bound
modes are such that there can be energy within the structure without
it being incident from the outside.

There are two ways to theoretically describe the propagation of
light within a waveguide. The first one is based on defining a driving
field at a single point at all times and propagate the field through
the waveguide. The second way implies that one knows the field con-
figuration throughout the system at a single instant and calculates
the time evolution. Both descriptions are in principle equivalent and
describe the same field evolution. However it is the second approach
that is the more natural picture when discussing ultraslow and stopped
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light as one analyses light that effectively does not or only very slowly
propagates. In the second picture there is a well defined wavepacket
which evolves in time, and this picture is more suited to understand-
ing translation and distortion than the first where indeed it is more
difficult to set up the wavepacket initially by exciting from a single
point in space. This choice has implications for the description of the
system in the Fourier domain: A wavepacket that is well defined in
space at an instant in time will have a well defined spatial Fourier
transform in that instant, i.e. parametrised by a real valued in-plane
wavevector β. This means however, that in dispersive media where the
permittivity ε is complex, the frequency ω is also rendered complex. A
complex frequency has two parts; the real part which determines the
phase change of waves in time evolution, and an imaginary part which
is the loss — the rate of exponential decay of energy in a material.

The dispersion relation ω(β) can be expanded about a central
wavevector β0 as,

ω(β) = vpβ0 + vg(β − β0) + vd
σ0

2
(β − β0)2 + . . . (2.1)

Here three velocities vp, vg, and vd have been introduced, which
are the phase, group, and dispersion velocities. respectively. Their
effects are most clearly explained when describing the time evolution
of a Gaussian wavepacket with a spatial bandwidth σ0 and carrier
wavevector β0. At time t = 0,

ϕ(x, t = 0) = exp
(
− x2

2σ2
0

+ iβ0x

)
. (2.2)

Then the evolution of such a wavepacket under the dispersion relation
ω(β) of Eq. 2.1 becomes,

ϕ(x, t) ∝ exp
(
− (x− vgt)2

2σ2
0 + 2(vdt)2

+ iβ0(x− vpt)
)

× exp
(
i

(x− vgt)2
2σ2

0 + 2(vdt)2
vdt

σ0

)
, (2.3)

where the first term indicates a Gaussian, the mean of which trans-
lates at a speed vg, with a standard deviation that increases in width
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with a speed that limits to vd, all whilst the phase propagates with
the velocity vp. The second term is a chirp term associated with the
dispersion velocity.

These velocities in general are complex quantities, with further
reshaping effects, though it is the imaginary component of the central
frequency i.e. the loss γ = Imω(β0), that is of most interest. This
will have the effect of multiplying the wavepacket by the damping
factor exp(−γt).

It is clear for a stopped light application, a dispersion relation is
required that has vanishing group velocity, and minimised dispersion
velocity and losses at a particular central wavevector. Therefore it
becomes a necessity to be able to design waveguides which have such
properties.

2.3. Plasmonic Stopped Light Structures

2.3.1. Planar waveguides

The structures that will be considered here are planar slab waveguide
structures with metallic layers. These will support surface plasmon
modes that, as shall be shown, can be tuned to optimise the dis-
persion properties of the structure. For the purposes of lasing, light
of a narrow frequency range needs to be confined to narrow mode
volumes with a gain medium. This can be achieved using stopped
light, by designing a structure with two stopped light points, i.e.
points of zero group velocity Redω

dβ = 0.
The dispersion relation between any two adjacent stopped light

points is necessarily monatonic since by definition, there are no
additional turning points within the interval. If the two adjacent
points are optimised to have large wavevector separation and small
frequency separation, then light can be confined within to widths
inversely proportional to the wavevectors within the interval. This
can be quantified as the band velocity, which is the average group
velocity between the ZGV endpoints,

vb =
ω2 − ω1

β2 − β1
=

∆ω
∆β

. (2.4)
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The wavevector bandwidth determines the minimum width that a
light pulse can be confined to, i.e. ∼ 2π/∆β, whereas the frequency
bandwidth will set the overall flatness of the band, and additionally
ensures the operation of the stopped light device to remain quasi-
monochromatic, which becomes important as the stopped light mode
is coupled to inverted emitters in a narrow frequency band. Hence
for the purposes of a stopped light laser, a heterostructure must be
found that minimises the band velocity.

2.3.2. Optimisation

The dispersion of plasmonic structures is ultimately determined by
how its layers are composed, i.e. their thickness, material, and rel-
ative ordering. It is possible to predict, and even control, how the
dispersion relation will look before explicitly calculating it. Having
such a model becomes useful in reducing the search space of parame-
ters in optimisation methods, since calculating the dispersion relation
consists of solving a transcendental equation, which requires numer-
ical methods. The predictive power stems from the spatial profile of
the plasmonic mode having peaks on metal/dielectric interfaces with
exponential tails,

φ(z) ∝
{

exp (−Imκ+(β)(z − z0)) z > z0
exp (Imκ−(β)(z − z0)) z < z0

, (2.5)

where Imκ(β) > 0, and broadly increases with β. For small values
of β, the tails are broad and the mode overlaps with the rest of the
structure, whereas for large β the mode only is only sensitive to the
interface. Each metal/dielectric interface hosts a surface plasmon,
and at low wavevectors they will overlap and hybridise, while for
high β they will decouple.

Early studies to seek dispersion relations with a stopped light
point were described in Ref. [10], using a metal substrate underneath
two dielectric layers, a high index beneath a low index dielectric.
The dispersion relation initially followed the steeper plasmon dis-
persion of the metal/low-index overshooting the lower frequency of
the asymptotic metal/high-index surface plasmon frequency which
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it would tend to for high wavevectors. This produced a ZGV point
between the two regimes, that was tunable by the thickness of the
middle layer.

A similar approach can be used for introducing two stopped
light points. The two modes to hybridise are that of a metal-
insulator-metal (MIM) system,5 and a metal-air (MA) plasmon. The
structures and dispersion relations are plotted in Fig. 2.2. The MIM

ZGV 1

ZGV 2

SPP

Odd

Even
ITO

ITO

III-V

ITO

Air

ZGV 2

ZGV 1

ITO

ITO

III-V

Air

Hybrid

(a)

(c)

(b)

Fig. 2.2. Hybridisation of modes. Dispersion relations, Reω(β), are plotted, with
the asymptotic light lines in vacuum ω = cβ, and in dielectric ω = cβ/ε2bg, and
surface plasmon frequencies, ωsp0 = ωp/

√
ε∞ + 1 and ωsp1 = ωp/

√
ε∞ + εbg.

Modes of interest are in black, and ZGV points are marked as red circles. a.
The SPP mode of a metal-air interface, is hybridised with b. the odd mode of
a metal-insulator-metal structure, c. forming a metal-insulator-metal-air struc-
ture in order to produce a mode with two zero group velocity points at finite
wavevector.
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system has two modes, one even and one odd; the odd mode (in the
z component of the E-field) contains two ZGV points itself, the first
one is at zero wavevector and is not useful being inside the light cone,
the second one is at a high wavevector near where the even and odd
modes become degenerate, and is preserved.

In the combination structure, that is a metal-insulator-metal-
air (MIMA) system, the odd mode of the MIM system hybridises
with the MA plasmon, removing the zero-wavevector ZGV point but
introducing a new point in the overlap. The second ZGV point can
also be perturbed and is being pulled in to a lower wavevector value,
depending of the precise structural configuration. Indeed, the posi-
tions of the ZGV points can be tuned by adjusting the thicknesses of
each layer, while further fine control can be attained by introducing
additional dielectric layers.9

Reducing the band index of a planar plasmonic heterostucture is
a problem suited for engaging an Evolutionary Algorithm (EA). EAs
are used to optimise systems that are specified by a set of discreet
or numeric parameters, which determine a figure of merit. In this
case of a plasmonic stopped light laser, the material composition
of layers, thicknesses, and order will determine the plasmon modes
that are supported and hence the band velocity, which is optimised
to reduce. The EA will compare multiple variants of a structure,
each with parameters that are randomly perturbed, hence having
slightly different dispersion relations. The structures are ranked by
their band velocity, and a subset of the structures with the lowest
band velocity are kept to the next round for further mutation. The
best structure in each round is continually improved upon until a
structure is found within required tolerances.

2.4. Properties of a Stopped Light Laser

In this chapter, we consider structures with materials characteristic
of a III-V semiconductor, i.e. InGaAsP for dielectric layers, and a
transparent conducting oxide,14 such as Indium Tin Oxide (ITO)
for metallic layers. The dielectric layer has a constant permittivity
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ε = 11.68. ITO, which has a plasma resonance in the visible which
can be tuned by doping, allowing for operation in the near infrared
(i.e. at telecoms wavelength, λ ≈ 1550 nm). It is modelled by a Drude
model with parameters as provided by experimental data,15 with a
reduced loss which can be achieved through high fabrication quality
and at low temperatures.12

A stopped-light heterostructure, optimised by an evolutionary
algorithm (EA) for a low band velocity, is presented in Fig. 2.3. It is
composed of an ITO substrate on the bottom, and a semiconductor
layer sandwiched between an ITO strip on top with layers optimised
to the nearest 10 nm. The modes of this structure are shown alongside
in Fig. 2.3(b), and indeed the bound TM1 mode hosts two ZGV
points. As a result it exhibits a very flat band with a band velocity,
in this case, of vb = −c/262.

The mode profile of the energy density of a planewave in the mode
is also shown in dependence on the wavevector β. Being plasmonic in
nature, the field is peaked on the interface between the metallic and
dielectric layers, and for low β values, where the dispersion follows
the light cone, it is primarily located in the air layer, entering the
structure for higher β values.

For completeness, the complex wavevector (β) modes are also
presented in Fig. 2.3. The first four complex β modes are listed here.
The modes map to the complex frequency set in particular places on
the dispersion curve, but pick up large loss where they diverge.

Having, to a large degree, removed the effects of drift and dis-
persion from our system, by choosing one with a wide flat band, we
are left with loss as the mechanism that will contribute to hindering
energy confinement. For all wavevectors where the dispersion relation
departs from the light line, the system experiences a loss of around
−2Imω ≈ γp ≈ 11ps−1. This will dissipate any energy within the
system on such a timescale. Naturally, the question arises, whether
the loss can be compensated for, such as by replacing the dielectric
layer with a semiconductor medium, or by explicitly adding emitters
such as quantum dots or gain molecules.
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Fig. 2.3. Dispersion relation of a stopped light structure. (a) Complex frequency
mode dispersion relations — The mode of interest is highlighted in blue and
its ZGV points marked as red dots. Also marked are the light line and surface
plasmon frequency, both for the vacuum and dielectric. (b) Group velocity log
plot of the mode of interest - Positive group velocities in blue, negative in red. The
point of zero dispersion is marked. (c) Description of the structure and energy
density throughout the structure of a planewave of wavevector β in the bound
mode. (d) Modal loss, Imω(β), up-to the limiting value of −γp/2. (e) Complex
wavevector modes Re β(ω). Of the first four modes which are shown the second
mode (red) is of negative phase velocity. The complex frequency modes are plotted
in the background (in light grey) to illustrate the correspondence. (f) Modal loss,
Im β(ω), of corresponding complex wavevector modes.
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2.4.1. Excitation of stopped light modes

Given a structure, such as the example presented in the previous
section, it is not immediately obvious how to excite light into the
stopped light mode. Indeed, the usual methods for coupling to a
plasmonic waveguide become unsuitable in the stopped light case.
Bound modes are by definition not coupled to external radiation
modes, which is to say that light energy cannot be transferred to a
bound mode by a beam of light incident on the surface. This is also
linked to the secondary reason, that there is a mismatch between
the wavevector of incident light and the bound modes of a plasmonic
structure, along the direction of propagation. Incident light is located
exactly on the light cone in energy-momentum space and has a pro-
jection in the propagation direction within it, whereas plasmonic
modes are on a line that sits outside the light cone, and indeed need
not be bounded at all in momentum.

In plasmonic structures, one method of coupling is achieved by
adding a local spatial inhomogeneity, such as a prism, or a grating.
In the case of the prism, light is sent down the prism, within the
prism’s shallower light cone (β ≤ nω/c), this allows for points where
the energy and momentum of both the incoming beam, and the plas-
mon mode match.16 In addition to this condition, the prism must be
finite in extent, as the incoming light is part of the radiation spec-
trum of the “waveguide with prism” system that will ultimately by
transmitted, reflected, or absorbed. This mode will mix with both
the radiation modes and bound modes of the “waveguide without
prism” system, and will decouple from the prism further down the
waveguide.

A grating, which is a periodic patterning of the waveguide along
the propagation direction, acts in a similar way.21 The regular pat-
terning allows for scattering between wavevector modes that are
integer multiples of the grating wavevector, 2/d, where d is the
period. This gives a momentum kick to the incident light field,
allowing it to match with the dispersion relation of the bound mode.
Again, the radiation mode of the “waveguide with grating” system
then mixes with the bound and radiation modes of the “waveguide
without grating”.
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However, these methods are ineffective with stopped light struc-
tures because the bound mode has a low group velocity such that the
incident light is unable to get sufficiently far away from the grating or
prism and instead is out-coupled back through the radiation modes
of the combined structures, instead of travelling far enough for the
system to be described by modes without a grating or prism.

Another possible scheme for coupling light into a waveguide is
end-fire coupling.25 Here the waveguide is assumed to terminate in a
plane perpendicular to the direction of propagation. If a light pulse
is incident on this terminal plane, its profile can be decomposed into
a mixture of bound modes and radiation modes of the waveguide;
the radiation modes propagate away, leaving the bound modes in
the system. This too is unsuitable for exciting stopped light modes,
as zero group velocity modes will not propagate down the struc-
ture, they will not enter and instead be reflected back. This method
of excitation is equivalent to using the complex wavevector picture,
where the temporal profile of excitation at one point along the axis
(the terminal) is known, however ZGV points are not well described
in the complex wavevector picture.

Finally, a way to excite the bound modes of a plasmonic waveg-
uide, that is compatible with stopped light, is to have them emitted
directly from within the structure. Here, an emitter would be placed
within the SL structure and these would be pumped to an excited
state, such that when they relax, by spontaneous or stimulated emis-
sion, they are able to emit directly into the bound stopped light
mode.

2.5. Small Signal Gain Properties

Adding gain to a nanoplasmonic heterostructure will alter the bound
modes that are supported by the passive structure. A material that
can spontaneously emit photons will also be available to emit light
via stimulated processes, thereby adding gain to the system. This
gain will be dispersive in two ways.

Firstly, different frequencies experience different amounts of gain.
Secondly, any change to the imaginary part of the refractive index
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(i.e. the material gain) will in turn induce a change in the real part
of the refractive index due to causality and the Kramers-Kronig rela-
tions. Thus, designing an active SL structure requires particular care
that the introduction of a gain medium does not damage the stopped
light character of the waveguide. The induced change in mode struc-
ture can be analysed using the same transfer matrix methods of
the previous section with the inclusion of a Lorentz resonance at a
defined emission frequency, ωe, to one of the dielectric layers. The
Lorentz resonance represents the transitions between the levels of a
two-level system with an energy difference �ωe In this picture, there
is an occupation density of upper and lower levels, averaged over
space, of single two-level emitters.

The strength of the resonance is proportional to the inversion
density of the two levels, i.e. how much more the higher level is
occupied than the lower one, ∆N = N2 −N1, such that a layer with
emitters embedded may be represented by:

ε = εbg +
∆N
N

ω2
pe

ω2
e − ω(ω + iγe)

(2.6)

ω2
pe = −N√εbgγeσec, (2.7)

where εbg is the permittivity of the layer hosting the resonance, σe

is the emission cross-section, and γe is the width of the resonance.30

Note that for negative inversion, the emitter becomes an absorber as
there is a higher density of emitters in the lower state. The SL struc-
ture as presented in the previous section is modified by replacing the
dielectric layer with a Drude-Lorentz emitter (with a 10 nm buffer
on both ends of zero inversion density to simulate quenching by the
metal layer). The emission frequency is set to match either one of the
ZGV points, and the other parameters are set as in Ref. [18] repre-
senting the inclusion of realistic laser dye molecules.24 The resulting
dispersion and loss relations are shown in Fig. 2.4 for inversion densi-
ties ∆N varying between 0 and N , with a fixed emitter density, and
excitation about ZGV1 and ZGV2. The first point of note is that,
even on full inversion, the addition of gain does not significantly
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Fig. 2.4. Perturbation of dispersion relation and loss with Lorentzian gain. The
change of mode shape is plotted as Lorentzian gain is introduced to the system.
For subfigures on the left, emission is about ZGV1, and on the right about ZGV2.
(a) and (b) show a zoom in of how the dispersion relation changes with increasing
inversion density, while (c) and (d) show the corresponding loss/gain of the mode.

change the dispersion, with the maximum shift in frequency being
around 0.6%. The presence of ZGV points is preserved, though they
may drift slightly, i.e. ZGV2 moves slightly right with emission about
ZGV1. There is no change at the frequency that is being excited, this
is because the permittivity change of a Lorentzian is zero at the res-
onant frequency. Adding gain has the side effect of making the struc-
ture a slightly better SL structure as the band velocity is marginally
reduced. The key change, however, is to be found in the loss. As
the inversion density increases, the loss decreases for wavevectors
where the dispersion is within the gain width. Initially the plasmons’
loss is reduced as the inversion increases, then for an inversion of
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around ∆N/N ≈ 0.4 some wavevectors become undamped, and even
eventually experience gain, Plasmons sitting in these modes will grow
exponentially in amplitude whilst small enough to remain in the small
signal gain regime. As ZGV2 is flatter than ZGV1, when the emis-
sion is about this point, a wider range of frequencies fall within the
gain width, leading to a larger range of β values that can become
undamped.

2.6. Dynamics

A frequency domain analysis can only bring valuable insight on
aspects such as the small signal gain, but it is unable to describe
(dynamic) nonlinearities. When plasmons are emitted, electrons are
demoted from higher energetic states to lower ones. This depletes the
population inversion, reducing the available gain over time, leading to
a nonlinear field-dependence. In addition, there are spatial effects to
consider, such as spatial hole burning; the TMM has assumed unifor-
mity in the direction of propagation, whereas the level of inversion
can vary both in this direction and perpendicular to the stacking.
Depending on the mode formed, some regions may host higher field
densities which can deplete the local gain. Thus a dynamic, spatially
resolved, time domain picture and simulation is required to capture
all the aspects of emission into a stopped light mode. In this section
we will thus present and discuss results from FDTD simulations that
fully take on board the spatio-temporal dynamics of the light field,
the gain system as well as the nanoplasmonic environment.

2.6.1. Four-level gain model system

The two level system, which we used in our discussion in the previous
section, is appropriate for modelling a single electronic transition.
However, its inversion density had been set “by hand”. Moreover, it
is well known that there is no way in which a two level system can
reach a state of inversion by relying solely on the processes of spon-
taneous emission and absorption (the best that can be achieved is
equal occupation of the levels). A four-level system on the other hand
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3

0

2

1

a - absorption e - emission

Fig. 2.5. Schematic of the four-level system. A four-level system is composed
of two two-level systems, a and e, with active transitions (0 ↔ 3) and (1 ↔ 2)
respectively, which are coupled by nonradiative transition rates τ−1

32 and τ−1
10 . In

this scheme, the emission subsystem permits radiative transitions at an energy
of �ω and has a slow nonradiative recombination rate τ−1

21 , while the absorption
subsystem is electrically pumped at a constant rate rp.

can be constructed such that there can be a dynamically maintained
population inversion between two of its levels, from where stimulated
emission can occur. Let us consider a four-level system that contains
two two-level systems, labelled e and a for emission and absorption; e
is a system with energy levels 1 and 2 and energy gap �ωe, in-between
a, a system with energy levels 0 and 3 and greater energy gap �ωa,
as depicted in Fig. 2.5. The two upper levels, 2 and 3 are coupled by
a fast nonradiative relaxation channel, with rate τ−1

32 , as are the two
lower levels, 0 and 1 (τ−1

10 ). This has the effect of rapidly depleting
the 1st and 3rd level shortly after they become occupied. Between
the levels of the emission two-level subsystem, there is additionally
a slow nonradiative channel (τ−1

21 ).
The key point of a four-level system which is useful to achieve

lasing is that electrons that are pumped from levels 0 and 3, will
quickly decay to level 2, leading to an inversion density of level 2 over
level 1, which is available for stimulated emission. Fortunately there
are may gain material systems such as laser dyes that meet this con-
dition. In general this will then allow optical pumping between levels
0 and 3 to generate inversion between levels 1 and 2. Alternatively,
a constant electrical pump rate rp can be used, placing the emphasis
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on the emitted fields, to which the stopped light singularities are
tuned.

Four-level systems are incorporated into the FDTD framework
using time-domain differential equation for the polarisation,

∂2Pe

∂t2
+ γe

∂Pe

∂t
+ ω2

ePe =
∆N
N

ω2
peε0E , (2.8)

Here the polarisation has been split off into a part Pe that is con-
nected with the radiative resonances, it is added to the total polar-
isation when entering into the electric field update equations. The
corresponding level occupation densities update with the auxiliary
differential equations,30

∂N3

∂t
= rpN0 − N3

τ32
(2.9)

∂N2

∂t
=
N3

τ32
+

1
�ωe

(
∂Pe

∂t
+
γe

2
Pe

)
· E− N2

τ21
(2.10)

∂N1

∂t
=
N2

τ21
− 1

�ωe

(
∂Pe

∂t
+
γe

2
Pe

)
· E− N1

τ10
(2.11)

∂N0

∂t
=
N1

τ10
− rpN0. (2.12)

Quantum noise and resulting amplified spontaneous emission (ASE)
can modelled on the basis of this semiclassical description by includ-
ing spatially resolved dynamic Langevin noise terms to the system,
which accounts for the dissipative reservoirs feeding back stochasti-
cally on the system. The noise couples to the four-level system and
induces incoherent transitions, which then become amplified, allow-
ing for the triggering of the lasing regime.20

2.6.2. Lasing dynamics

In order to use in FDTD, the layered geometry of Fig. 2.3 is recreated
to fit in a simulation box with the top and bottom layers (that were
unbounded in the analytic study) having a finite height of 500 nm,
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Fig. 2.6. Schematic of the FDTD setup. The layered structure described in the
frequency domain analysis is truncated to fit in a simulation domain surrounded
by CPML layers. The pumped gain region is placed in the horizontal centre of
the simulation, and extends over a width w; vertically it takes up the height of
the III-V layer which is embedded in up-to a 10 nm buffer on either side.

and the entire structure having a width of 12500 nm. The simula-
tion domain is surrounded with convolutional perfectly matched lay-
ers (CPML) layers, which quickly attenuate incident fields without
introducing reflection such that they do not interact with the simu-
lation boundary.22 This is depicted in Fig. 2.6.

In order to demonstrate the effect of a stopped light band on
lasing, we shall consider two cases: the first with the stopped light
structure as described, and the second with a control structure with
the effect of removing the stopped light points whilst keeping a TM1
mode that is in the same frequency range.

Figures 2.7(a–c) shows the mean inversion and energy density
of a point in the centre of the emitter region.For the cases in the
SL structure that did enter a lasing regime, characteristic relaxation
oscillations can be seen where the inversion initially builds up and
spontaneous emission events are induced. The fields then are ampli-
fied as they stimulate further emission, increasing the field in the
mode coherently. From here the emitted fields start to grow expo-
nentially, and when they are of sufficient strength will deplete the
inversion density. This reduction of inversion feeds back by decreas-
ing the available gain, leading to a decrease in field energy as the
energy in the field is lost to dissipative processes in the metal layers.
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Fig. 2.7. Lasing onset with increasing gain density. (a), (b), (c). Energy den-
sity and mean inversion in the stopped-light structure for (a) a gain density
N = 0.002 nm−3 and (b) ta gain densityN = 0.001 nm−3. (c) shows the dynamics
of the control structure with a gain density N = 0.004 nm−3.

The decrease in energy density in the field allows for the inversion
to rebuild. This continues in an oscillatory manner with the energy
density lagging behind the inversion by 90◦. The amplitude of the
inversion and energy oscillations decrease with each cycle until a
stable steady value for both is reached.

If the inversion density is less than a threshold value then the
system cannot enter a lasing regime and is only able to support
occasional bursts of amplified sponaneous emission (ASE). This case
is shown in the inversion and energy density of Fig 2.7(b). Once the
lasing threshold has been passed, the energy density in the mode
increases linearly with the gain density.

In contrast, the control structure, albeit entering a regime of
relaxation oscillations, is more erratic and the oscillations do not
settle to a steady state. Instead the oscillations continue with a factor
of 4 between the peak energy density and the trough.
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Fig. 2.8. Energy flux and density of lasing mode. The lasing mode of a SL
structure with a width 1000nm. a. and b. show the x and z component of the cycle-
averaged Poynting vector respectively, with positive values in red, and negative
in blue. Focusing on the bottom right lobe of the flux in (a), energy flows into the
gain region in the dielectric layers and out of it in the metal layer. For the same
lobe in (b), energy moves downwards out of the gain region towards the centre,
and upwards into the region at the edge. The counter-clockwise energy vortex in
this corner is mirrored in the other corners. The cycle-averaged energy density is
plotted in (c). and inversion in (d). The inversion is the complement of the energy
density, being highest in areas with low energy density, and depleted where the
mode sits.

2.6.3. Lasing mode

In this section, the lasing modes are investigated for SL structures
with varying width of the gain region in the range w ∈ [200, 1500] nm,
using a fixed gain density of N = 0.002 nm−3. The spatially resolved,
cycle averaged Poynting vector, energy density, and inversion are
shown in Fig. 2.8 for a structure with width 1000 nm. The energy is
concentrated on metal-dielectric interfaces, strongest on the lower
interface, and is localised around the gain medium despite the
absence of a cavity along the horizontal direction. It is the Poynting
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vector which shows how energy circulates in the structure to generate
a feedback which is required for lasing. There are four energy flux vor-
tices, one in each corner of the structure. These have energy moving
out of the gain region into the metal layers and into it in dielectric lay-
ers. Considering the x component of the Poynting flux, (Fig. 2.8(a)),
the forward and backward flows are in exact balance. The balanced
counter-propagation of energy in the negative-permittivity (metal)
layers against the dielectric layer. This is the basis of feedback in the
system.

The inversion is shown in Fig. 2.8(d), there are areas of spatial
hole burning where the energy density is highest. The spatial mod-
ulation seen is explained when considering the field profile and its
formation. It is important to note that the modes that are formed
when the structure enters the lasing regime are a dynamic synthesis
of the spectrum of planewave modes available rather than that of
a predefined cavity mode. Indeed, these dynamic modes that form
are propagating waves, with an advancing phase, rather than purely
standing waves, as shown in Fig. 2.9. It will be shown that this
results from modes being centred independently on finite positive
and negative β points, the relative excitation of each competing with
each other, rather than having symmetric excitation at β = 0. This
is in contrast even to the stopped light lasing structure considered
in Ref. 18, which is photonic in nature rather than plasmonic, and
emitted symmetrically about β = 0 as a standing wave.

In all cases, the modes are inwardly propagating, that is the
leftmost half propagates right and vice versa. These two halves form
a standing wave where they meet, and this node need not be in
the centre of the structure, instead being randomly chosen by the
spontaneous symmetry breaking at the transition from ASE to lasing.
The asymmetry of the mode profile will be discussed later in the
chapter.

Lasing is shown to be possible for structures with a gain region
width down to 200 nm, at which point the steady state inversion
rises to around 0.9. For this case one observes a standing wave in
the interior of the gain stripe, i.e. a symmetric excitation of positive
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Fig. 2.9. Field evolution in steady state. The dynamics of the Ex field along a
line slice at the bottom metal interface is displayed . For the 200 nm structure,
the field inside the gain region is a standing wave. The other structures have two
inward propagating waves which meet at a standing node. This node can appear
towards the edges, i.e. for 600 and 800 nm, or positioned towards the centre for
1000 and 1500 nm. A stream of plasmons is emitted at either side of the gain
region, with a predominantly negative phase velocity.

and negative β modes. The confinement of such a structure is at its
limit here, with significant parts of the field profile outside the gain
region. For widths smaller than this, there will not be enough gain
to pass the lasing threshold. This thinnest confinement at 200 nm is
12× the free-space wavelength, and indeed 3.5× the bulk wavelength
in the semiconductor layer.

Outside of the gain region, a stream of plasmons is emitted to
either side with a negative phase velocity. To describe these emitted
plasmons, it is convenient to use a complex-wavevector picture, as we
effectively have a steady state oscillating source for which the field is
known at a fixed point in space (the edges of the gain region) and such

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 14, 2017 12:36 Handbook of Metamaterials and Plasmonics — Volume 3 9in x 6in b2857-v3-ch02 page 61

Stopped Light Nano-Lasing 61

that we can consider the spatial evolution away from this point. Once
the system has entered into a steady state one can then analyse the
spectral content of the fields. Using discrete Fourier transform (FFT)
methods, the peak frequency component, ωpeak, of the electric field
is identified and isolated. This returns a spatially resolved, complex
valued function Ẽ(x, ωpeak). Taking a spatial Fourier transform along
the waveguide (x) axis, allows the extraction of the spatial power
spectrum, which is averaged over z positions within the gain layer,
I(β) = |Ẽ(β, ωpeak)|2.

The wavevector of the emitted plasmon can be extracted by
taking the FFT over positions outside of the emitting gain region.
Figure 2.10 shows the spectrum of fields emitted from the right

400nm

600nm 800nm

1500nm1000nm

200nm

0

0

00

0

0

Fig. 2.10. Complex wavevector plasmons. Power spectra of fields emitted from
the right terminal of the gain region (black dots). This is fit to the lineshape of the
first four complex β plasmons (black line), i.e. a Lorentzian function, |φ̃(β)|2 =
|P4

i φi/(β−βi)|2. The amplitudes are varied to fit, but the wavevectors are fixed
from the complex β plasmon dispersion at the lasing frequency. The imaginary
part becoming the width in the spectral density. In each, the negative phase
velocity β2 plasmon is strongest, with β4 having a large amplitude for 200 nm
and 800 nm which can be also seen in the field profiles of Fig. 2.9.
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terminal, i.e. integrating from the edge of the gain region up to
but excluding the CPML layer. These data are fit to the first four
analytically determined complex-wavevector modes (see Fig. 2.3) at
the lasing frequency. The wavefunction of such modes is the Fourier
transform of a complex decaying exponential,

φ(x) = θ(x) exp(iRe βi x) exp(−Imβi x) (2.13)

φ̃(β) ∝ 1
β − βi

, (2.14)

where βi is the complex wavevector of the bound mode SPP. This is
summed over each of the first four plasmons, each with a complex
amplitude, then the absolute square of this is compared with the
data, i.e.

|φ(β)|2 =

∣∣∣∣∣
4∑

i=1

φi

β − βi

∣∣∣∣∣
2

. (2.15)

The fit allows the amplitude of each resonance to change, but keeps
the wavevectors constant. Excellent agreement is found, confirm-
ing the presence and applicability of the description of complex-
wavevector plasmons.

The negative group velocity plasmon β2, has the strongest ampli-
tude in all cases, though the narrow width β1 plasmon is present
too. In cases where the standing wave node is close to the ter-
minal, i.e. for w = 200, 400, 800 nm there is significant excitation
of the short propagation length β4 plasmon. Thus, the stopped
light lasing principle can be utilised as a source of coherent plas-
mons at a single frequency and discrete wavevector. Alternatively
by adding a grating to the structure away from the gain region, the
plasmons may be coupled out, converting this into a photonic SL
laser.

To capture the profile of the lasing mode, the spatial power spec-
trum, I(β), can also be taken over the entire domain, rather than in
the interval to the right of the gain region. We note that this func-
tion is not symmetric about β = 0 since it was transformed from a
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Fig. 2.11. Power spectrum of lasing modes. (a) Coupling strength g(β, ω), which
is composed of the emission lineshape (left), the sinc function of the gain region
(bottom), and the mode support (overlayed). The frequency which maximises the
the integral of g over wavevector is picked by the system to lase at. (b) temporal
and spatial power spectrum of the lasing mode for model (black lines) and FDTD
data (black points). The spatial mode profile is modelled by a modified form of
the coupling strength at the lasing frequency, as given by Eq. 2.16. Results are in
excellent agreement with the FDTD results.

complex valued function. Hence it does not follow the usual evenness
properties of the Fourier transform of a real function. This allows for
inspection of how the positive and negative wavevector (and hence
phase velocity) modes are independently excited. Figure 2.11(c)
shows the power spectra of lasing modes in the range of gain widths
considered. It can be seen that in each case, the power spectrum is
a bimodal distribution with peaks about β ≈ ±30.7 µm−1, which
is exactly the wavevector of the second stopped light point. As one
would expect, the width of each peak is inversely proportional to the
gain width chosen, e.g. the smallest gain section at 200 nm, the width
is around 5 µm−1. There is no preferential excitation of the peaks,
and seemingly no correlation between their relative amplitude. This
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is because they are two competing modes, one of which will initially
take the lead in growth due to the spontaneous symmetry breaking
of amplified spontaneous emission. The first mode will dominate the
gain, being able to exponentially grow in field strength. The second
mode may still be allowed to grow but spatially separated from the
first, harvesting areas where the field and gain are less strongly cou-
pled. This picture is corroborated when viewing the time evolution
of the steady state fields, which show two lobes, inward propagating,
with a finite overlap width where the wave becomes standing, this is
depicted in Fig. 2.9. This is developed further in Ref. 29, where it is
shown how the location of the nodes move on longer time scales.

It is possible to predict the spectral content of the lasing mode,
I(β), up to a factor of the weights of the mode in the +β and −β
excitation (I+, I−), by a slight modification of g(β, ω), to include
both excitations,

I(β) ∝ γpl(β)
(ω − ωpl(β))2 + γpl(β)2

(
I+sinc

(
w(β − β2)

2

)

+ I−sinc
(
w(β + β2)

2

))2

, (2.16)

which is in excellent agreement with the FDTD spectra.

2.7. Conclusions

In this chapter we introduced plasmonic stopped light lasing, whereby
surface plasmon polaritons are localised by reducing the group veloc-
ity of a wavepacket to zero whilst within a gain medium. This is in
contrast to traditional nanolasing schemes, which localise energy in
a resonant cavity.

In order to explain the concept, topics of dispersion, and
the nuances of the complex-frequency/complex-wavevector pic-
tures have been discussed. Frequency domain methods have been
employed alongside an evolutionary optimisation algorithm in order
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to characterise the properties and quality of a structure and select
for optimal structures within constraints.

An exemplary structure was introduced, composed of realistic
materials, whose properties were studied throughout the rest of the
chapter. Analysis in frequency domain was continued to investigate
how, in the small signal gain regime, a two-level emitting resonator
could compensate for the inherent material losses in metal layers,
determining idealised threshold values of inversion required to free a
mode of damping.

Equipped with this analysis, finite difference time domain simula-
tions capture the dynamics of spatio-temporal and nonlinear effects.
The previous frequency domain analysis of the threshold inversion
was corroborated by varying the gain density in each time domain
simulation, and it was found that lasing is indeed possible in this
scheme.

The lasing mode was investigated, and a model for predicting
its modal content proposed. It was found that the feedback pro-
vided from stopped light lasing ultimately derives from a dynam-
ically formed vortex of power flow, with propagation and counter-
propagation balancing between the dielectric and metal layers.
Despite being stopped, the lasing mode carries a finite phase velocity,
with an inward propagating phase modulation that can be detected
from the top of the structure.

As an output of the lasing process, coherent plasmon polaritons
(sitting on the cusp of the complex-wavevector dispersion curve) are
emitted from the sides of the gain region.

This is a new type of sub-wavelength laser, where the active
component is smaller than a few hundred nanometres, and coher-
ently emits plasmons directly into a waveguide without relying on
external coupling mechanisms. The dynamic formation of the cavity-
free lasing mode is a new physical feature, the implications of which
are open. It could conceivably become the basis for single frequency
coherent SPP generation in quantum plasmonic applications,7, 26 or
function as the basis of a quantum fluid such as a photonic Bose-
Einstein Condensate.4
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Nonlinear metamaterials have attracted considerable interest in recent
years. Here, we review the current status of the research in this field and
discuss the nonlinear optical properties of metal-based metamaterials,
hybrid metamaterials, and purely dielectric metamaterials. In doing so
we concentrate on the near-infrared and visible parts of the spectrum.
We critically discuss the prospects and limitations of nonlinear metama-
terials for future applications.

3.1. Introduction

Metamaterials are rationally designed artificial solids composed of
sub-wavelength building blocks (“meta-atoms”) that are densely

69
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packed into a man-made crystal.1 In this spirit, metamaterials obtain
their properties from structure rather than chemistry. This concept
has enriched optics and photonics with new and fascinating aspects
and has led to the development of artificial materials with unprece-
dented linear optical properties such as magnetism at optical fre-
quencies, negative index materials, and strong chirality.

Regarding optical properties, not only linear but also nonlinear
properties are of great technological interest. For example, nonlinear
frequency conversion, optical switching, and electro-optic modula-
tion are readily used in today’s telecommunication systems. Also,
a compact and fairly efficient frequency-doubling crystal is used in
every green “laser pointer” emitting at 532 nm wavelength.

Here, we review the current status of the field of nonlinear meta-
materials. At this, we will concentrate on the near-infrared and visi-
ble spectral ranges. Nonlinear metamaterials operating at microwave
frequencies will not be covered. Readers interested in this spectral
range are referred to a recent colloquium.2 Moreover, we will not
consider the nonlinear optical properties of propagating surface plas-
mons and single particles. For these structures we point the reader to
a recent review article.3 Finally, we will not cover resonant gratings
or photonic crystals except for cases where they have played a role
in the development of metamaterial concepts.

This review is organized as follows. After a brief introduc-
tion to nonlinear optics, we discuss prospects as well as principal
limitations of nonlinear metamaterials and address the origin of
the nonlinear response of metamaterials. In Section 3.3, we review
metal-based nonlinear metamaterials. Here, we concentrate on the
second- and third-order nonlinear response of such metamaterials.
Higher-order nonlinearities will not be considered. Section 3.4 is
devoted to hybrid metamaterials in which metallic meta-atoms are
combined with an efficient nonlinear dielectric medium. Finally,
the emerging field of nonlinear dielectric metamaterials is covered
in Section 3.5. Finally, in Section 3.6, we present an outlook of
the field.
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3.2. Basic Concepts

3.2.1. Nonlinear optics

The optical response of materials is described by their polarization. In
everyday life, the polarization depends linearly on the applied optical
field. When the optical field is sufficiently strong, however, the scaling
is not linear anymore and we enter the regime of nonlinear optics.4

The nonlinear optical effects can often be described by expanding
the material polarization P (t) as power series in the optical electric
field E(t) as

P (t) = ε0[χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · · ], (3.1)

where ε0 is the vacuum permittivity and χ(n) are susceptibilities
of various orders. For a time-harmonic field at frequency ω, it is
evident that the nonlinear terms in Eq. (3.1) give rise to polarization
components that oscillate at the harmonics of the incident field. The
polarization acts as a source of radiation, providing output at the
harmonic frequencies.

The second-order term in Eq. (3.1) is by far the most impor-
tant for applications in frequency conversion. For example, second-
harmonic generation (SHG) forms the basis for the aforementioned
green “laser pointers”. The simple SHG can be extended to sum- and
difference-frequency generation by applying two different fields to the
medium. Another application is to use a low-frequency field to modify
the refractive index for an optical field, allowing electro-optic modu-
lation of light. However, all these second-order (and other even-order)
effects require additional considerations. Such effects can occur only
in non-centrosymmetric materials within the electric-dipole approxi-
mation of the light-matter interaction. This symmetry rule is a major
challenge in the search for new second-order materials.

In addition to third-harmonic generation, the third-order response
gives rise to a response also at the original frequency. This can be inter-
preted as a nonlinear contribution to the refractive index of materials.
Again, such responses can also be considered for fields at different
frequencies or fields propagating in different directions, giving rise to
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various four-wave-mixing schemes. An important application of this is
to use a control beam to modify the refractive index of a signal beam,
which provides the basis for all-optical switching.

The optical field and material polarization are vectorial quanti-
ties. In consequence, the susceptibilities are tensorial quantities. In
addition, the optical responses depend on frequency. By expressing
the optical field as a sum of several frequency components ωn

E(t) =
∑
n

E(ωn)e−iωnt, (3.2)

where the summation is over both positive and negative frequencies,
we can then express the second-order response as

Pi(ωn) = ε0
∑
j,k

χ
(2)
ijk(ωn;ωm, ωl)Ej(ωm)Ek(ωl). (3.3)

Here, the indices ijk refer to the field (polarization) components
of the field and material polarization and the output frequency is
ωn = ωm+ωl. The structure of the susceptibility tensor is determined
by the symmetry group of the material.

3.2.2. Conventional nonlinear optical materials

It is instructive to start by reminding ourselves about the design
strategies for conventional nonlinear materials, which will make it
easier to understand the additional issues that need to be consid-
ered for metamaterials. For this purpose, organic nonlinear materials
provide an ideal model case, because significant effort on molecular
engineering has been taken to optimize the nonlinear responses of
such materials.5 This is also in the spirit of metamaterials where
the individual nanoparticles can be considered as metamolecules or
meta-atoms.

The nonlinear responses of individual molecules are defined by
their hyperpolarizabilities of various orders. The hyperpolarizabilities
are tensorial quantities defined in the molecular frame such that the
structure of the tensors can be determined from the symmetry prop-
erties of the molecular structure.
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By considering either classical or quantum theories of the
nonlinear responses, we find that the hyperpolarizabilities can have
resonances associated with transitions between the various energy
levels of the molecules. These resonances can enhance the nonlin-
ear responses whenever any of the interacting frequencies is close to
any of the molecular transition frequencies. The resonance behavior
is also related to the so-called Miller’s rule, which states that the
nonlinear response of conventional materials can be understood to a
good accuracy from their linear optical responses at all the interact-
ing frequencies.6

As a collection of molecules are brought together to form a macro-
scopic sample, the individual molecules will never have exactly the
same orientation. The macroscopic nonlinear response, described by
the molecular susceptibility tensors, is therefore obtained by project-
ing the response of individual molecules from the molecular to sample
frame and then averaging this over the orientational distribution of
the molecules.

It is also important to note that the electromagnetic field acting
on a given molecule is not the same as the external field applied on the
macroscopic sample. Instead, the local field acting on the molecule is
obtained from the external field through multiplying by a local-field
correction factor, often treated using the Lorentz local-field factor L.4

In principle, this factor can be different for all the interacting frequen-
cies L(ω). However, for the most common cases, where the nonlinear
molecules are supported by a dielectric matrix (e.g, a polymer) and
the molecular number density remains sufficiently low, the correction
factors are essentially the same for all frequencies. For a second-order
process, for example, which describes the interaction of three fields,
the total local-field correction is thus L3.

Finally, we also have to consider the growth of the nonlinear
signal in the nonlinear material. Such phase-matching considerations
are particularly important for frequency conversion processes, where
the frequencies of the interacting fields can be widely different. In
consequence, the fields experience different refractive indices and
their phases accumulate differently in propagation. The incident and
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generated fields therefore maintain a favorable phase relation only
over a limited distance known as coherence length.4

Second-order (and other even-order) effects require additional
considerations. Such effects can occur only in non-centrosymmetric
materials within the electric-dipole approximation of the light-matter
interaction. This symmetry rule, which has to be taken into account
on both the molecular and sample levels, has been a major challenge
in the search for new second-order materials. Nevertheless, the sym-
metry is necessarily broken at the surface of any material, giving rise
to a non-vanishing second-order surface nonlinearity.7 On the other
hand, second-order effects become possible even in the bulk of cen-
trosymmetric materials once higher-multipole (magnetic-dipole and
electric-quadrupole) interactions are taken into account.8

3.2.3. Prospects and limitations of nonlinear

metamaterials

What aspects of nonlinear optics can be improved by investigating
metamaterials? After all, near 100% frequency conversion efficiency
from second-order nonlinear effects or 180◦ nonlinear phase shifts
(necessary for destructive interference, e.g., in a Mach-Zehnder inter-
ferometer) from third-order nonlinear effects in ordinary nonlinear
optical materials are routine already.

First, consider an optical-waveguide architecture in silicon pho-
tonics. Silicon has centrosymmetry and thus exhibits zero second-
order nonlinear susceptibility. To get a linear electro-optic effect or
to generate second-harmonic for measuring pulse durations on chip or
for second-order frequency mixing, one does need a material without
centrosymmetry. Growing such ordinary crystals on silicon appears
hopeless because of the lack of lattice matching. One can, e.g., add
organic molecules which can be poled. By locally straining the silicon,
the symmetry can be broken. Another option is to lithographically
fabricate a non-centrosymmetric metamaterial at locations where it
is needed. This appears like a reasonable idea because, after all, the
entire chip is fabricated lithographically anyway. Absorption losses
have to be reasonably low though.
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Second, we can hope for larger effective nonlinear optical coeffi-
cients from metamaterials, which would allow for making nonlinear
optical devices smaller or for reducing the necessary input powers.
This aspect is relevant especially when aiming towards compact inte-
grated optical-chip architectures. However, caution has to be exerted
that these larger nonlinear coefficients do not come at the prize of
largely increased losses. A meaningful quantity to address this aspect
is the so-called figure of merit, which can be defined as the frequency
conversion efficiency per absorption length or as the nonlinear phase
shift per absorption length. We will come back to this aspect below.

The first aspect should be clear by itself. Regarding the second
aspect, one might ask: On the basis of which physical effects can
we hope for enhanced effective nonlinear optical coefficients as com-
pared to advanced ordinary nonlinear optical crystals? Suppose we
do not change the microscopic electronic properties of the constituent
materials in their bulk when assembling them into a metamaterial.
In this case, an effective enhancement of the optical nonlinearities
can be due to (i) local-field enhancements (by metals), (ii) due to
(dielectric) cavity effects, or (iii) due to surface effects. To get some
intuition into

(i) local field-enhancement effects, let us consider a metamaterial
based on a cubic lattice with lattice constant a. Light with intensity
I impinges along one of the cubic axes. Suppose that every unit cell
acts like a funnel for light in the sense that it concentrates photons
by some means from the cross section of the unit cell, a2, to a smaller
area given by a2/f2, where f2 ≥ 1 is a dimensionless factor. With-
out absorption, the photon number is conserved. This means that
the photon current density (photons per unit area and time), and
hence the local intensity of light I in steady state increases accord-
ing to I → f2I. Correspondingly, the electric field amplitude of light
increases like E → |f |E. Obviously, we can identify the factor |f | as
the so-called field-enhancement factor. It is a critical parameter in
any discussion on nonlinear optical metamaterials. Here we neglect
for a while that f is space-dependent and might be unequal for the
different components of the electric near field.
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We now position a nonlinear material with macroscopic optical
polarization, P , at the output of the funnel. Inspection of Eq. (1)
shows that the n-th order contribution ∝ En in this expression is
enhanced by a factor of |f |n and the corresponding intensity by a
factor of |f |2n. However, as this nonlinear contribution is now emerg-
ing from an area that is reduced with respect to that of the unit cell
a2 by a factor of f2, the overall emerging power of the n-th order
contribution increases only by a factor of |f |2(n−1), and the corre-
sponding nonlinear electric field by the square root |f |(n−1). As this
field is proportional to the associated n-th order nonlinear optical
susceptibility, we can finally say that the effective nonlinear suscep-
tibility of the metamaterial gets enhanced like χ(n) → f (n−1)χ(n). For
example, for a field-enhancement factor of f = 10, the second-order
susceptibility for SHG or for optical rectification would get enhanced
ten-fold, that for third-order processes like self-phase modulation or
third-harmonic generation hundred-fold. The expected increase for
a high-harmonic generation process of order n = 11 would be ten
orders of magnitude — a truly gigantic factor.

For ideal phase matching, at a given incident power, one could
equivalently make the nonlinear medium thinner. Alternatively, keep-
ing the medium thickness fixed, one could go to much lower incident
powers. Both would be extremely useful for practical applications —
as pointed out above.

However, there is a catch. We have tacitly assumed that absorp-
tion is negligible. To get large field enhancements, metal nanostruc-
tures are attractive. Due to causality (the fact that we cannot change
the past), which leads to the Kramers-Kronig relations in optics,
we fundamentally cannot get field enhancements in passive media
via resonances without absorption (“no real parts without imag-
inary parts”). One might still hope that absorption only slightly
reduces the expected advantage. However, detailed quantitative theo-
retical model calculations for metal-based optical metamaterials have
shown9 that one cannot even get anywhere close to unity-efficiency
frequency conversion for four-wave mixing — regardless of meta-
material thickness and metal filling fraction within. Likewise,9 one
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cannot get even close to a 180◦ phase shift from self-phase modula-
tion. Both examples avoid further problems from possibly insufficient
phase matching between the fundamental wave and the nonlinear
wave. These findings mean that it is completely hopeless to think of
nonlinear optical metamaterials in terms of potential replacements
of existing ordinary nonlinear optical materials. Unfortunately, most
of the examples that we shall cover below fall into this category. The
situation is different when thinking in terms of integrating metama-
terials into optical chips, as already discussed above.

(ii) Effective field-enhancements can also be obtained in dielectric
cavities, for which the loss arguments outlined above do not apply.
One can imagine artificial materials composed of many internal cavi-
ties with high quality factors. The Bragg resonance in dielectric pho-
tonic crystals behaves much like that. Near a photonic band edge,
the group velocity of light can be slowed down, leading to enhanced
light-matter interactions and enhanced effective nonlinear optical
coefficients. We shall not cover nonlinear photonic crystals in this
Chapter and rather refer the reader to Ref. 10. A related situation
occurs when using one- or two-dimensional grating couplers on top
of constituent materials. Just like in a distributed-feedback laser, the
grating effectively acts like a cavity, thereby increasing the effective
optical nonlinearity. Examples like that shall be presented below.

(iii) For surface effects to become comparable to bulk effects,
the metamaterial must essentially be mainly composed of surfaces
between different constituent materials. This means that the meta-
material lattice constant must be on the scale of one nanometer
or just a few nanometers. We shall cover examples like that in
Section 3.5.1.

3.2.4. Nonlinear response of metamaterials

Metamaterials usually consist of two- or three-dimensional arrays
of nanoparticles. Early works on metamaterials were mainly based
on metal nanoparticles,1 whereas high-index dielectric (in particular,
silicon) materials are receiving increasing present attention.11,12 In
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both cases, the particles support morphological (Mie-type) electro-
magnetic resonances, which depend on the size and shape of the
particles as well as their environment. Such resonances are associ-
ated with strong local fields, which are expected to be beneficial for
enhancing optical interactions, as explained in the previous section.
For metals, the resonances are also referred to as localized surface-
plasmon resonances.

Due to the character of the morphological resonances of nanopar-
ticles, the design strategies for nonlinear metamaterials are very
different from those for conventional materials. First, the intrinsic
nonlinearities of the most common materials are spectrally flat in the
usual visible and near-infrared spectral regions. We can therefore not
take advantage of the resonances in the material response in order
to optimize the nonlinear responses of metamaterials. On the other
hand, we can treat the material nonlinearities by the respective sus-
ceptibilities, because metamaterials are already on the level beyond
the atomic or molecular responses.

We therefore need to focus on optimizing the strong local fields
supported by the morphological resonances. However, these local
fields cannot be treated in terms of the simple Lorentz local-field
factors. Instead, one needs to take into account that the local-field
factors are space-dependent, i.e., they are different at different loca-
tions r around the nanoparticles. In addition, the factors are tenso-
rial, i.e., they take into account the possibility that the local field
contains polarization components not present in the applied field.
The local field and the applied field are thus related by

Eloc,i(ω, r) =
∑

j

Lij(ω, r)Ej(ω), (3.4)

where i and j refer to polarization components of the fields.
Once the local fields at all the interacting frequencies are taken

into account, we find that the effective susceptibility of an individual
nanoparticle for a second-order process, for example, is13

χ(ωn;ωm, ωl) =
∫

L(ωn, r)L(ωm, r)L(ωl, r)χmaterialdr, (3.5)

where tensorial notation has been used.
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The most common materials (gold, silver, silicon) used to fabri-
cate metamaterials are centrosymmetric with no dipolar second-order
bulk nonlinearity. In addition, for the metals, the strongest hot spots
occur at the metal-dielectric interfaces. We can therefore expect that
the nonlinearity of an individual nanoparticle originates from the
local surface response that needs to be integrated over the shape of
the nanoparticle. The symmetry of the surface nonlinearity is such
that equal local responses from opposite sides of a nanoparticle tend
to be out of phase, i.e., they cannot radiate into far field. One there-
fore needs to tailor the local-field distributions in such a way that
they are in some sense asymmetric.

If the second-order nonlinearity originates from the surface
response, how can we ever expect it to give rise to an appreciable
effective response? The effective bulk susceptibility obtained from
the surface susceptibility is χbulk = χsurface/d, where d is the thick-
ness of the interfacial layer between the two materials. Here, the
value of d = 1 nm is certainly a conservative estimate. The exper-
imental values for the dominant components of the surface suscep-
tibility of the glass-air and gold-air interfaces are on the order of
10−20 m2/V14 and 10−16 m2/V,15 respectively. We then find that the
respective bulk susceptibilities would be on the order of 10 pm/V and
105 pm/V. The former value is comparable to the best conventional
crystals, whereas the latter value is much higher. It is therefore not
completely unreasonable to expect that well-designed metamaterial
structures could be built up to give rise to appreciable nonlinear
responses.

Higher-multipole (magnetic and quadrupole) effects are another
concept that can play an important role in the nonlinear responses of
metamaterials. However, these terms can mean very different things
depending on the context. For example, second-order effects become
allowed in the bulk of centrosymmetric materials due to magnetic and
quadrupole effects in the atomic-level optical response.8 Although
such effects are expected to play a minor role compared to the dipolar
surface response, their role is not yet fully understood in the effec-
tive response of metamaterials. On the other hand, the Mie theory

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 14, 2017 12:36 Handbook of Metamaterials and Plasmonics — Volume 3 9in x 6in b2857-v3-ch03 page 80

80 Handbook of Metamaterials and Plasmonics — Volume 3

describes the responses of nanoparticles in terms of (effective) elec-
tric and magnetic multipoles of various orders even when the atomic
response is strictly dipolar. A particular example here is the fact
that the fundamental morphological resonance of silicon spheres has
magnetic-dipole character.11 Furthermore, the magnetic resonances
of split-ring resonators are prominent in giving rise to negative per-
meability and refractive index of metamaterials.1

Metamaterials with effective properties consist of spatial arrange-
ments of individual nanoparticles. Their properties therefore also
depend on electromagnetic coupling between the individual parti-
cles. The near-field coupling between the two particles in a dimer, for
example, can give rise to very strong hot spots in the gap between the
two particles,16 which could further boost the nonlinear responses.
On the other hand, the coupling can also have a detrimental effect on
the quality of the resonances of the individual particles.17 In the most
common cases, the spatial arrangement of the individual particles (or
equivalently dimers or oligomers) is periodic. The typical periods of
a few 100 nm are smaller than the optical wavelengths used in exper-
iments, but not really so much smaller. This opens up the possibility
that the resonances of the individual particles are modified by the
electromagnetic resonances of the periodic lattice.18,19 Such surface-
lattice resonances can also have either a beneficial or detrimental
effect on the quality of the resonances.

Finally, metamaterials also allow the effective optical parameters
of the material to be tailored. Of particular interest here is the possi-
bility of tailoring the refractive index at the interacting wavelengths.
In particular, zero index or negative index could be used to advantage
in novel phase-matching schemes.

3.3. Metal-Based Nonlinear Metamaterials

3.3.1. Second-order nonlinearities

A large majority of the research on nonlinear metamaterials has
relied on the second-order response of metal-based metamaterials.
There are two main reasons for this. First, the whole research field
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of metamaterials was initiated because of the unique optical prop-
erties of metal nanostructures. Second, SHG is perhaps the simplest
nonlinear process of all, which is very easy to implement experi-
mentally. In addition, the designer aspects of metamaterials can be
nicely connected to the rather stringent symmetry requirements for
second-order effects. Such effects have therefore provided a conve-
nient platform to test how the fundamental considerations of nonlin-
ear materials should be modified for metamaterials.

As already mentioned, even centrosymmetric materials, includ-
ing gold and silver, have a dipolar second-order surface nonlinearity.
Coupling to this part of the nonlinearity requires that at least one
of the interacting optical beams has a field component along the
surface normal. In the plane-wave approximation, this requires that
the beam be applied at oblique angle of incidence on the sample. In
order to avoid such conventional surface effects, most experiments on
second-order metamaterials have relied on SHG at normal (or near
normal) incidence. Here, the beam at the fundamental frequency,
typically at a near-infrared wavelength, is applied on the sample and
the transmitted SHG signal is detected (see Fig. 3.1).

In this geometry, the symmetry rule for second-order response is
fulfilled as long as the sample appears non-centrosymmetric at nor-
mal incidence. Such geometry therefore allows the role of the designer
features of the metamaterial sample to the second-order response to

Fig. 3.1. Schematic representation of the experimental setup for second-
harmonic generation from metamaterials. The field at the fundamental frequency
ω is derived from a femtosecond laser at a near-infrared wavelength. The second-
harmonic signal at 2ω is usually detected in the transmitted direction. Various
polarization components of the fields are used for excitation and detection. A very
similar setup could be used for third-harmonic generation.
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Fig. 3.2. Basic shapes of nanoparticles for SHG-active metamaterials. L-shaped
(or equivalently V-shaped) particles of different generations (a–c), showing the
evolution in sample quality. (a) Year 1997 (adapted with permission from Ref. [22],
copyright 1999 Springer-Verlag), (b) Year 2004 (adapted with permission from
Ref. [28], copyright 2008 Optical Society of America), and (c) Year 2011 (adapted
with permission from Ref. [30], copyright 2011 Optical Society of America). Other
shapes used for SHG (d–f). (d) U-shaped split-ring resonators (adapted with
permission from Ref. [17], copyright 2011 American Physical Society), (e) T-
shaped particles (adapted with permission from Ref. [37], copyright 2015 Ameri-
can Chemical Society), and (f) triangular nanoholes in metal film (adapted with
permission from Ref. [45], copyright 2014 American Physical Society).

be investigated. Typical samples have consisted of gold nanoparti-
cles with lateral dimensions of a 100–200 nm, lattice period of a few
100 nm, and gold thickness of 20–50 nm (see Fig. 3.2).

After the early work on SHG from rough metal surfaces,20,21 the
first example of a metal nanostructure designed for second-order non-
linear response consisted of an array of L-shaped silver nanoparticles
(see Figure 3.2a), which was used for SHG autocorrelation measure-
ments to determine the plasmon dephasing time in the particles.22

Similar structures made of gold (see Figs. 3.2(b,c)) were then used for
more detailed investigations of their SHG response.23 As expected,
the SHG response was found to be strongest when the fundamental
wavelength was close to the plasmonic resonance of the particles. In
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addition, the response was also found to depend on the ordering of
the particles in the array.

The connection to metamaterials was made by studies of the SHG
response of U-shaped split-ring resonators (SRR, see Fig. 3.2(d)),
which have the same overall symmetry as the L-shaped particles.24

The resonances of SRRs can be classified as having either electric
or magnetic character. The first results suggested that the magnetic
resonances are favorable for SHG. However, the SHG response from
U-shaped nanoholes in a gold film was found to be comparable.25 For
such complementary structures, the roles of electric and magnetic
resonances are interchanged, and the question about the importance
of the magnetic resonances for the SHG response was left open. SHG
from other types of nanohole arrays has also been investigated.26,27

The early investigations showed that the expected symmetry
rules of SHG were fulfilled only approximately but not completely.
These results were explained by the breaking of the sample sym-
metry from ideal by the deviation of the particle shape from the
design and by the presence of unavoidable fabrication-related defects
in the particles (see Fig. 3.2(b)).28 Interestingly, such effects can
be interpreted in terms of effective higher-multipole (magnetic and
quadrupole) effects to the effective second-order nonlinearity of the
structure.29 Interference between the various multipoles can be used
to control the directional properties of radiation,12 and this was
thus observed in the context of nonlinear optics relatively early.
A few years later, samples of much higher quality (see Fig. 3.2(c))
were found to fulfill the expected symmetry rules of SHG at much
higher precision, thereby reaching the dipole limit in the effective
response.30

An important question, of course, is the role of resonance
enhancement in the nonlinear response. This becomes evident in
the comparison of the early, low-quality (see Fig. 3.2(b)) samples
to newer, high-quality (see Fig. 3.2(c)) samples.30 For the latter,
the plasmon resonances exhibit much less inhomogeneus broadening,
thereby improving the quality of the plasmon resonance and the SHG
yield by one order of magnitude.
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The role of plasmon resonances has been addressed more care-
fully by studying the strength of SHG as the fundamental or second-
harmonic wavelength is tuned over the plasmon resonance of the
structure. The initial experiments in this direction suggested that
a resonance at the fundamental wavelength is clearly beneficial for
the SHG response but that a resonance at the second-harmonic wave-
length acts as a loss mechanism that just absorbs the generated SHG
light.31 The nonlinear response could also be increased be increasing
the density of the metamolecules in the array. However, an attempt
towards this was ultimately limited by the broadening of the plas-
mon resonance for sufficiently high metamolecular densities due to
interparticle coupling effects.17

The role of the resonance at the SHG wavelength has recently
been revisited, first in the context of the response of individual metal
dimers, where both theory32 and experiments33 suggested that even
such resonances can be beneficial for SHG. These studies were then
extended to metasurfaces. First, the response from an array of alu-
minum nanobars was shown to be enhanced by the resonance at the
second-harmonic wavelength.34 However, here the origin of the SHG
response is not completely clear, because the nanobars are ideally
centrosymmetric. At about the same time, an array of V-shaped gold
nanoparticles demonstrated exactly the same effect.35

There are a few additional items that need to be considered when
discussing the resonance enhancement of the second-order response.
As already mentioned, the early results on U-shaped SRRs suggested
that their magnetic resonance is favorable for SHG. This result was
emphasized by comparing the responses of SRRs with T-shaped gold
particles, where the latter do not support the circulating currents
required for the magnetic resonance.36 On the other hand, the results
from U-shaped nanoholes contradicted this result.25 More recently,
the SHG response of L-shaped particles was compared to that of
different T-shaped particles (see Figure 3.2e).37 The overall proper-
ties of the L-shape are equivalent to those of the SRRs, i.e., they also
support magnetic resonances. Nevertheless, the strongest responses
from the T-shaped particles were comparable or even higher than
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those from the L-shaped particles. These results also showed that the
plasmonic resonances alone are not sufficient for a strong response.
At the same time, one needs to consider carefully the geometry
of the particles and the detailed local-field distributions supported
by the geometry, as also discussed in the early work on T-shaped
nanodimers.38

The nonlinear response of conventional materials can be pre-
dicted quite well by the Miller’s rule, which links the linear optical
properties of a material at the interacting frequencies to the nonlinear
properties.6 Miller’s rule has also been discussed in the context of
nonlinear metamaterials. At this time, it seems that the linear and
nonlinear properties are linked through the plasmonic resonances35

but not as universally as for conventional materials.39 In particular,
there is evidence that the constant that links the linear and nonlin-
ear properties depends on the type of a metamaterial, whereas the
constant is essentially universal for conventional materials.

The resonance properties of metamaterials can be tailored
through electromagnetic interactions between the nanoparticles,
which can give rise to, e.g., Fano-type lineshapes of the resonances.40

Another possibility is to rely on lattice interactions between the
particles in the array. Such interactions can give rise to very sharp
spectral features whenever a diffraction order opens in the ambient
material or the substrate of the sample, as demonstrated in the lin-
ear response of plasmonic arrays.18,19 For SHG, such surface lattice
resonances can come into play at the fundamental or the SHG wave-
length. Considering the facts that the period of typical arrays is on
the order of 500 nm and the fundamental wavelength is in the range
of 800–1100 nm, diffraction orders at the SHG wavelength can easily
be opened in the substrate even when no orders propagate in free
space.

The lattice interactions have influenced the SHG response of
metamaterials since the very early work,23 where the response
was found to depend on the ordering of the particles in the
array. However, the lattice interactions are becoming more promi-
nent only more recently. The role of the orientational distribution
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Fig. 3.3. Advanced structures for SHG-active metamaterials. Variations in the
ordering of L-shaped particles (a,b adapted with permission from Ref. [41], copy-
right 2012 American Chemical Society), combination of SHG-active L-shaped
particles with SHG-passive nanobars (c, adapted with permission from Ref. [42],
copyright 2013 American Physical Society), gold disks separated by a dielectric
layer (d, adapted with permission from Ref. [47], copyright 2015 American Chem-
ical Society), and a grating where the phase of the SHG wavelets is reversed by the
orientation of split-ring resonantors (e, adapted with permission from Ref. [49],
copyright 2015 Nature Publishing Group).

of the metamolecules in the array was investigated for L-shaped
metamolecules.41 The result was that, for a similar orientational dis-
tribution, the response can be either enhanced or suppressed com-
pared to a reference sample, depending on detailed ordering of the
particles in the array (see Figs. 3.3(a,b)). Here, the variations in
the ordering also changed the size of the unit cell of the array, thus
opening diffraction orders either in one or two directions. Surpris-
ingly, the lattice interactions were detrimental for the quality of the
plasmon resonances in one case and beneficial in the other. In a dif-
ferent context, the response of L-shaped particles was enhanced by
the presence of centrosymmetric nanobars with no SHG response as
such (see Fig. 3.3(c)).42 The enhancement was well explained by the
lattice interactions between the two types of particles.
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Metamaterials also provide a convenient way to investigate the
fundamental symmetry rules of nonlinear interactions. For example,
nanobars are centrosymmetric and should not give rise to SHG at
normal incidence and direct transmission. The reason for this is that
the local responses from the symmetrically opposite locations cancel
in the far field. However, the local responses can add up to other
directions, as first demonstrated early in Ref. [43] and discussed the-
oretically recently in Ref. [44].

A more subtle issue is that when the nonlinear responses are
analyzed in the basis of circular polarizations for the fundamental and
SHG frequencies, the in-plane orientation of the sample gives rise to
a topological phase in the SHG response (see Fig. 3.2(f)),45,46 which
could be used to control the phase of the emitted SHG field (see also
Section 3.3.2). In addition, the circular basis gives rise to new types
of selection rules for the allowed SHG signals, which would not be
easily revealed by an analysis in the Cartesian basis. In this context,
metasurfaces have made it easy to address fundamental symmetry
principles, because the analysis is not complicated by propagation
effects within the sample.

The role of electric and magnetic resonances to the SHG response
has also been investigated for dimers consisting of two gold nanodisks
separated by a dielectric layer.47 Such metamolecules are centrosym-
metric. However, when a metasurface of such dimers is fabricated,
the symmetry is broken in the direction of the surface normal (as in
conventional surface nonlinear optics), and the SHG response can be
accessed at oblique angles of incidence. The results suggest that, for
these particular samples, the SHG response is the strongest when the
fundamental wavelength is tuned close to the magnetic resonance of
the structure.

Very recent developments with regard to nonlinear studies of
metasurfaces have been closely connected to the more general
developments in the field of metasurfaces. A particular advance
was the development of semi-continuos phase control of the optical
response of metasurfaces, which gives rise to the generalized Snell’s
law.48 From a very general viewpoint, the phase control, of course, is
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associated with holographic principles and diffractive surfaces. This
was first demonstrated by flipping the phase of the SHG signal by
two opposite orientations of U-shaped SRRs and constructing basic
diffractive elements for SHG light (see Fig. 3.3(e)).49 The same prin-
ciple was further extended for more general shaping of the SHG
beam.50

Most of the concepts discussed above are based on metasurfaces
that are carefully designed to appear non-centrosymmetric at nor-
mal incidence. However, there are recent examples of more random
structures, consisting of densely-packed metal nanorods. Such struc-
tures exhibit hyperbolic dispersion in their optical properties and
have also been shown to possess interesting second-order nonlinear
properties.51

3.3.2. Third-order nonlinearities

The promise of metamaterials for nonlinear optics is related to the
enhanced local fields supported by the material structures. In this
development, third-order effects have been particularly important,
because they are not constrained by the non-centrosymmetry require-
ment and can therefore occur in any material. The most important
third-order effects are third-harmonic generation (THG), intensity-
dependent refractive index and absorption, as well as various four-
wave-mixing (FWM) processes.

The historical development also here goes back to the observa-
tions of surface enhancement of these processes. Surface-plasmon-
enhanced THG from silver films was observed in 1996.52 This work
was later extended to enhanced THG from silver nano-island films,
where the key differences between SHG and THG, arising from sym-
metry considerations, were also highlighted.53 Gold-silica nanocom-
posite films near the percolation threshold have been used to obtain
large third-order susceptibility for FWM.54

Bulk-type nanocomposites have played an important role in the
development of materials with tailored nonlinear refractive index
or nonlinear absorption. Here, the interest has been in three main
classes. The Maxwell-Garnett model is applicable to cases where one
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can make a clear distinction between a host material and inclusions
with low fill fraction.55 The Bruggeman model describes composites
where the constituents are treated equally, and is thus applicable
to arbitrary fill fractions.56 The multilayer structures typically have
layer thicknesses well below the wavelength.57 Note that these struc-
tures fulfill the definition of metamaterials quite well, perhaps even
better than some of the arrays used in more contemporary studies.

Experimentally, these effects have been mainly studied using
metal nanoparticles embedded in a dielectric host. For example, the
magnitude of the nonlinear absorption coefficient was controlled by
varying the fill fraction of gold nanoparticles in a nonlinear host
material.58 Later on, even sign reversal of nonlinear absorption was
observed in gold-silica composites with high fill fractions,59 and the
local-field enhancement was extended to other types of nonlinear
processes.60,61

With the development of metamaterial concepts, third-order
effects have received new attention. THG was first observed from
arrays of split-ring resonators.36 The role of resonance enhancement
in THG was investigated for bowtie dimer nanoantennas with a
nanogap between the two parts (see Fig. 3.4(a)).62 It was shown that
the THG response can be predicted well on the basis of the linear
response of the structure, with deviations occurring only for gap
sizes below 20 nm. A similar study was then extended for nanorod
antennas.63 In both cases, the results were interpreted in terms of

Fig. 3.4. Metamaterials used for THG experiments. (a) Bowtie nanodimers
(adapted with permission from Ref. [62], copyright 2012 American Chemical Soci-
ety). (b) Dolmen-shaped trimers with Fano resonances (adapted with permission
from Ref. [64], copyright 2014 American Chemical Society).
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a classical anharmonic oscillator model. THG has also been investi-
gated in more complex structures where the resonances exhibit Fano-
type characteristics (see Fig. 3.4(b)).64

Although third-order effects are allowed in all materials, their
properties do also depend on the symmetry of the sample. The topo-
logical phase arising from the interaction between circular polariza-
tions and anisotropic structures was used to achieve a continuous
control of the phase of the THG signal.46 By varying the orienta-
tion of the metamolecules in different parts of the sample, a semi-
continuous change of the phase was achieved, allowing the direction
of the THG signal to be controlled.

FWM was first investigated in a designed surface structure by
comparing the response from a continuous gold film and a film with
nanostructured grating65 (see Fig. 3.5(a)). The grating was found
to enhance the FWM process by more than one order of magnitude.
Even higher enhancement of 2000 was achieved by designing the grat-
ing grooves to support cavity modes, which were further coupled by
surface waves (see Fig. 3.5(b)).66 Enhancements reaching six orders
of magnitude have been predicted theoretically from nanogratings67

and a systematic design procedure to optimize surfaces consisting
of nanocavities has been presented.68 FWM from a nanostructured
metal film has also been used to achieve negative refraction, which
arises quite naturally from the phase matching considerations of the
process.69 The more recent concepts of phase gradients along the sur-
face have also been demonstrated for FWM, giving rise to anomalous
phase matching and nonlinear lensing (see Fig. 3.5(c)).70

Third-order effects also form the basis for all-optical switching
where a pump pulse is used to modify the optical properties expe-
rienced by a signal pulse. For instance, a modulation of 60% was
observed by using a pump pulse to vary the coupling of the probe
to propagating surface plasmons in a gold grating.71 This required
however relatively large pump fluences in the range of 60 mJ/cm2.
The switching efficiency could be improved by using plasmonic
nanorod metamaterials (see Fig. 3.6(a)) with non-local response,72

resulting in up to 80% modulation and fluence of 7 mJ/cm2. A further
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Fig. 3.5. Metal nanostructures used for various FWM processes. (a) A metal
grating for surface-enhanced FWM (reprinted with permission from Ref. [65],
copyright 2010 American Physical Society). (b) A metal grating whose grooves
support cavity resonance, giving rise to even higher enhancement (adapted with
permission from Ref. [66], copyright 2010 American Chemical Society). (c) Metal
nanocavities whose shape is used to control the phase of the emitted FWM
wavelets (adapted with permission from Ref. [70], copyright 2016 Nature Pub-
lishing Group). (d) A fishnet metamaterial structure75 with zero refractive index,
allowing simultaneous phase matching of the FWM signal in the forward and
backward directions (adapted with permission from Ref. [76], copyright 2013
American Association for the Advancement of Science).

advance was achieved by using a gold film with specially designed
holes (see Fig. 3.6(b)),73 which allowed sub-100 fs switching speeds
and 40% modulation at the estimated pump fluence of 270 µJ/cm2

and relied on interband transitions of gold. Very recently, it has been
shown that the nonlinear response of nanorod metamaterials can
be tailored over a broad range only through its geometrical design
parameters,74 although the response time was not yet determined.
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Fig. 3.6. Metamaterials for all-optical switching. (a) A hyperbolic metamaterials
consisting of plasmonic nanorods (adapted with permission from Ref. [72], copy-
right 2011 Nature Publishing Group). (b) A metal film with specially designed
hole pattern (adapted with permission from Ref. [73], copyright 2011 John Wiley
and Sons).

Most of the effects described above have been based on meta-
surfaces, i.e., structures that are optically thin. For thicker struc-
tures, one also needs to be concerned about phase matching, i.e.,
that the nonlinear signals from different parts of the sample add up
in phase. This is an important issue for frequency conversion where
the waves at the interacting frequencies can experience very different
indices of refraction. However, metamaterials also allow their linear
properties to be tailored. In particular, if the indices are zero, the
phase does not accumulate in propagation, allowing efficient nonlin-
ear interactions. This has been demonstrated in a fishnet metama-
terial where near-zero index was achieved in a narrow wavelength
range (see Fig. 3.5(d)).75 The experiment therefore relied on nearly-
degenerate FWM in order to ensure that all wavelengths were in the
zero-index band.

3.4. Hybrid Nonlinear Metamaterials

We have seen in the previous section that one can tailor the intrinsic
nonlinear optical properties of metallic metamaterials by controlling
the geometry as well as the arrangement of the meta-atoms.
A promising strategy to further enhance the nonlinear response is to
combine the metallic meta-atoms with an efficient nonlinear dielectric
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Fig. 3.7. Scheme of a nonlinear hybrid meta-atom consisting of a metallic
antenna and a nonlinear dielectric particle.

medium into a hybrid nonlinear metamaterial (see Figure 3.7). Inter-
estingly, this idea was already proposed in John Pendry’s seminal
paper on the split-ring resonator.77

Hybrid nonlinear metamaterials potentially offer several bene-
fits: (i) The resonant excitation of plasmonic modes by the pump
beam can give rise to a strong local-field enhancement in the vicin-
ity of the metallic meta-atoms (see above). By either embedding
the metallic meta-atoms in the nonlinear dielectric medium or by
depositing nonlinear dielectric nanoparticles in the “hot spots”, one
can hope to significantly enhance the interaction of the nonlinear
dielectric material with the light field. (ii) Another interesting aspect
of hybrid nonlinear metamaterials is that the electromagnetic near-
field in the vicinity of the meta-atoms can exhibit vector components
that are not present in the far-field, e.g., a component of the electric
field in the direction of the wave vector of the incident pump beam.
Hence, hybrid nonlinear metamaterials have the potential to access
components of the nonlinear susceptibility tensor of the dielectric
nonlinear material which cannot be excited in conventional far-field
experiments. (iii) The metallic meta-atoms can not only be used to
concentrate the incident pump light in small volumes at the position
of the nonlinear dielectric medium but can also help to control the
coupling of the generated nonlinear signal to the far field. To combine
both effects in a single metamaterial, one has to design metallic meta-
atoms such that they exhibit plasmonic modes resonant to both the
incoming pump light and the generated nonlinear signal.
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In the following, we will discuss selected examples of rationally
designed hybrid nonlinear metamaterials. We will not cover rough
metal surfaces or random ensembles of metal nanoparticles embedded
in a nonlinear dielectric medium or mixed with nonlinear dielectric
nanoparticles.

3.4.1. Nonlinear frequency conversion

3.4.1.1. Hybrid metamaterials containing bulk dielectric
nonlinear media

Gallium arsenide (GaAs) is a non-centrosymmetric semiconductor
that is known to exhibit a large second-order nonlinear optical
susceptibility. This property makes GaAs an attractive choice as
the nonlinear dielectric medium in hybrid nonlinear metamateri-
als designed for near- and mid-IR pump frequencies. For instance,
W. Fan et al. used optical interference lithography in combination
with several etching steps to fabricate arrays of coaxial holes in a
70-nm thick gold film filled with 140-nm thick GaAs annuli.78 Exci-
tation of the structures with femtosecond mid-IR-pulses tuned close
to the cut-off frequency of the coaxial waveguide mode resulted in a
strong SHG signal. The strength of the SHG signal was attributed
to a combination of the local field enhancement in the coaxial holes
and the large nonlinear response of GaAs. In contrast, no SHG sig-
nal was observed when GaAs was replaced by silicon, which exhibits
a vanishing bulk second-order nonlinear optical susceptibility. This
control experiment indicated that the intrinsic nonlinearity of the
gold did not significantly contribute to the SHG signal of the GaAs
sample. Subsequent experiments performed by the same group on
nanoaperture arrays in gold films filled with GaAs posts led to even
larger SHG signals.79

As stated above, the electromagnetic near-field of metallic nanos-
tructures can be employed to access components of the nonlinear
susceptibility tensor of a dielectric nonlinear material which cannot
be excited in conventional far-field experiments. F.B.P. Niesler et al.
demonstrated this effect in a series of SHG experiments on split ring
resonator arrays deposited on a (110) GaAs wafer.80 By varying the
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orientation of the split-ring resonators relative to the crystallographic
axes of the GaAs wafer and by analysing the polarization of the gen-
erated second-harmonic signal, they could identify a second-harmonic
signal that originated specifically from the interplay of the electro-
magnetic near-field component of the split ring resonators normal
to the wafer surface and an element of the bulk GaAs second-order
nonlinear susceptibility tensor, which can be only accessed by this
field component.

A promising strategy for nonlinear optics in the mid-IR spectral
range is to combine metallic metasurfaces with multi-quantum well
(MQW) semiconductor heterostructures. By properly designing the
MQW structure, one can engineer the intersubband transitions and
achieve an extremely large second-order nonlinear response.81 How-
ever, there is a catch. In order to benefit from this large nonlinearity,
all light fields must be polarized perpendicular to the semiconductor
layers. Hence, one cannot simply access the strong nonlinear response
of the MQW semiconductor heterostructures from the far-field. In
order to overcome this problem, Lee et al. sandwiched a 400-nm thick
MQW structure between a gold mirror and an array of asymmetric
gold nanocrosses.82 Excitation of the plasmonic mode of the long
arm of the nanocrosses with a quantum cascade laser operating at a
wavelength of 8 µm under normal incidence induced a strong local
electric field in the MWQ structure with the desired field orienta-
tion, i.e., perpendicular to the quantum well layers. The generated
second-harmonic light, which was also polarized perpendicular to the
quantum-well layers, coupled to the plasmonic mode of the short arm
of the nanocrosses and was efficiently radiated in backwards direction
to the far-field. A control experiment on the MWQ structure without
nanocrosses resulted in no significant nonlinear response for normal
incidence of the pump beam. Later it was shown that the coupling of
metamaterial resonators to the nonlinearity of MWQ structures can
be used to create second-harmonic phased-array sources.83

Electric-field-induced second-harmonic generation (EFISH) is a
nonlinear process that results from mixing of an optical pump beam
with a dc-electric field in a third-order nonlinear medium. This effect
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is potentially very useful as it allows to electrically control the non-
linear signal strength. However, the corresponding third-order non-
linear process is usually very weak in bulk materials and requires
large voltages (typically kilovolts). To overcome this problem, Cai
et al. combined a plasmonic metasurface with a cavity filled with
a nonlinear polymer.84 By pumping this device with a near-infrared
laser, they observed a voltage dependent second-harmonic signal with
a relative modulation of the nonlinear conversion efficiency as high
as 7% per volt.

3.4.1.2. Hybrid metamaterials containing nonlinear
nanoparticles

As a consequence of an increased demand for subwavelength coher-
ent light sources, an interest for subwavelength frequency conversion
schemes has also emerged. In principle, one could simply use nanome-
ter sized nonlinear dielectric crystals for these applications. Practi-
cally, however, nonlinear frequency conversion based on individual
nonlinear dielectric nanocrystals is usually not very efficient.

A strategy to overcome the poor conversion efficiency of individual
nonlinear dielectric nanocrystals could be to place the nanocrystals in
the hot spots of plasmonic nanostructures. By doing so, one could aim
at taking advantage of both the plasmonic field-enhancement effect
and the large nonlinear optical susceptibility of the dielectric nanopar-
ticles. Following this idea, Pu et al. fabricated core-shell nanocav-
ities consisting of 100-nm barium titanate (BaTiO3) nanoparticles
enclosed by a thin gold layer.85 Compared to bare BaTiO3 nanoparti-
cles, the core-shell nanocavities showed an enhancement in the second-
harmonic radiation power of more than 500 times. Control experi-
ments on 200-nm thick solid gold nanoparticles only gave rise to a
weak, spectrally broad two-photon photoluminescence signal. This
observation led the authors to the conclusion that the SHG enhance-
ment of the core-shell nanocavities was not dominated by the intrinsic
nonlinearity of the gold. However, one could argue on this occasion
that the proper reference should be a core-shell nanocavity with a
linear dielectric nanoparticle of the same size.
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In a recent experimental study on THG from gap nanoanten-
nas containing indium-tin-oxide (ITO) nanoparticles, the authors
reported on an upconversion enhancement of the hybrid nanostruc-
ture of up to 106-fold compared with an isolated ITO nanoparticle.86

However, this enhancement factor has to be interpreted with great
caution as already a bare gap nanoantenna gave rise to a THG sig-
nal that was approximately five orders of magnitude larger than
that of the isolated ITO nanoparticle (Supplement of Ref. [86]).
A second study on THG from gap nanoantennas containing ITO
nanoparticles casted serious doubts on the interpretation that the
nonlinear upconversion enhancement was caused by the third-order
susceptibility of the ITO nanoparticle.87 By performing THG spec-
troscopy on different sized gap nanoantennas, Metzger et al. found
strong indications that the nonlinear enhancement of the investi-
gated hybrid plasmonic/dielectric nanoantennas was mainly related
to changes in the linear optical properties of the gap nanoantenna
resonances due to the presence of the ITO nanoparticles. Hence,
the authors of the second study identified the gold nanoantennas
as the dominant source of the THG emission. This interpretation is
also supported by SHG experiments on different hybrid plasmonic-
dielectric nanoantennas.88 By using both linear and nonlinear dielec-
tric nanoparticles, the authors could show that an increase of the
SHG efficiency of plasmonic nanoantennas obtained by filling their
feed gaps with a dielectric nanoparticle was independent of the non-
linear properties of the nanoparticles.

3.4.2. Nonlinear switching and modulation

The strong electromagnetic near-field of metallic nanostructures
in combination with a third-order nonlinear medium can be also
employed to increase the nonlinear refractive index. For instance, Fu
et al. studied the optical nonlinearity of hybrid structures composed
of cadmium telluride (CdTe) quantum dots and gold nanoparticle
arrays using the Z-scan method.89 They observed an 8-fold increase
of the nonlinear refractive index of the hybrid structure compared to
the bare CdTe quantum dots when the plasmonic resonance of the
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Au surface was tuned to be in resonance with the exciton transition
in the CdTe quantum dots.

The resonance frequency and the electromagnetic near-field dis-
tribution of the plasmonic modes of a given metallic nanostructure
often react sensitively on minute changes in its dielectric environ-
ment. This feature is for instance employed in plasmonic sensor appli-
cations. In the context of nonlinear optics, one can use this effect in
combination with the nonlinear refractive index of appropriate dielec-
tric media to efficiently modulate and switch the optical properties
of hybrid metamaterials. This has been demonstrated in a fishnet
metamaterial based on silver and amorphous silicon.89 Photo excita-
tion of the amorphous Si layer at visible wavelength resulted in the
modulation of negative refractive index in the near-IR. The switch-
ing speed was found to be limited by carrier relaxation in silicon to
58 ps.90 A much faster, sub-ps, relaxation times were subsequently
observed in similar structures.91,92 Wurtz et al. investigated metal-
lic nanoaperture array covered with a nonlinear polymer.93 They
observed a bistable behavior of the transmission properties which
depended both on the wavelength and the intensity of the control
light field. In the control experiments performed under identical illu-
mination conditions on bare metallic nanoaperture arrays and on
bare polymer films no optical nonlinearity was observed.

3.5. Dielectric-Based Metamaterials

3.5.1. Second-order nonlinearities

As discussed above, to obtain a non-zero bulk effective second-order
nonlinear optical susceptibility, the metamaterial crystal must glob-
ally break inversion symmetry. At first sight, we can use the same
approaches as for metals, i.e., we could, for example, consider a
lattice of dielectric split-ring resonators or other motifs breaking
centrosymmetry.

Before proceeding, we should like to specify better though what
we mean by “dielectrics” within this section. Optical phonons and
other resonances in undoped semiconductors or isolators can lead to
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large positive and even to negative values of the electric permittivity.
Negative values occur for frequencies of light above the corresponding
eigenfrequency. In this regime, the physics of the dielectric is closely
similar to what we have said about metals. One might hope that the
unwanted effects of damping and dissipation are less pronounced for
dielectrics in this frequency regime compared to metals. However,
experiments have rather shown similar behavior to metals. For a fair
comparison, one must, of course, compare the imaginary parts of the
electric permittivity in the same frequency regime. For example, pro-
nounced phonon resonances in silicon carbide (SiC) occur at around
10 µm wavelength. There, the imaginary parts of the permittivity are
smaller than for metals in the visible regime, but they are comparable
to those of good metals like gold at around 10 µm wavelength. The
same holds true for doped semiconductors or isolators, where the
plasma frequency of the free-electron gas is much lower than in met-
als. Because of the overall similarity to metals, we refer the reader to
the above sections for this regime of dielectrics with negative electric
permittivity.

At frequencies of light below the corresponding eigenfrequency
of undoped semiconductors or isolators, the electric permittivity is
positive. Upon nanostructuring of the material, large positive values
allow for appreciable local-field enhancement effects and for localized
Mie resonances. We will come back this possibility in the next section
in the context of third-order optical nonlinearities. One should be
aware though that these large positive values in the vicinity of a
resonance are unavoidably connected to unwanted imaginary parts
via the Kramers-Kronig relations. Thus, the above general arguments
regarding possible nonlinear optical figures of merit in the bulk apply
here, too.

Notably, all ordinary high-end commercially available nonlinear
optical crystals pretty much avoid resonances and operate in the
off-resonant regime where dispersion and hence absorption are very
small. What good can metamaterials do for us within this regime?

We have seen that surfaces or interfaces between two different
materials locally break inversion symmetry, allowing for, e.g., surface
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second-harmonic generation. However, these effects involve only a
small fraction of the atoms, and, hence, the effects are much weaker
than those from the bulk.

ABCABC. . . nanolaminates composed of three different off-
resonant dielectrics A, B, and C are an interesting concept. Here,
each of the three dielectrics by itself shall exhibit centrosymmetry.
Laminates are stacks of layers and have already been discussed by
James Clerk Maxwell. Obviously, the ABC stacking globally breaks
inversion symmetry, whereas an ABAB. . . stacking does not. It is
intuitively clear right away that the number of atomic layers per
metamaterial layer plays a crucial role: If the ABC layers are very
thick, one has only few atomic interfaces for a given thickness and
the effective nonlinearity is expected to be low. On the other end, the
individual ABC layers just cannot be thinner than one atomic lattice
constant of the constituents A, B, and C. Furthermore, if the layers
are not atomically smooth, roughness will play an important role if
the layers become very thin. On this basis, one intuitively expects
an optimum in regard to the effective bulk second-order nonlinear
optical susceptibility at some intermediate period or metamaterial
lattice constant of the ABC stack.

Broadly speaking, ABC stacks of atomically thin layers can be
realized in many different ways. They have even been realized long
before the notion of metamaterials was born, e.g., by Langmuir-
Blodgett techniques — even in the context of nonlinear optics.
Recently, ABC nanolaminates have been realized using atomic-layer
deposition (ALD). ALD is generally accepted as a CMOS compatible
technology. This aspect has important implications for the use of such
ABC laminate metamaterials in platforms like silicon photonics. Fur-
thermore, ALD, unlike physical high-vacuum evaporation or other
forms of epitaxy like molecular-beam epitaxy, leads to conformal
deposition. This means that all (inner) surfaces are coated the same
way regardless of their orientation. This aspect might allow for fabri-
cating completely different metamaterial architectures in the future.

Recently, two groups published results on second-harmonic gen-
eration on ABC nanolaminate metamaterials made by ALD. One
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group94 used the three dielectrics A=aluminum oxide (Al2O3),
B=oxide (TiO2), and C=hafnium oxide (HfO2) as ingredients (see
Fig. 3.8), the other group95 used A=TiO2, B=Al2O3, and C=indium
oxide (In2O3). Both groups excited the stack under oblique incidence
of light and at a fundamental wavelength in the near infrared (800
nm94 and 980 nm,95 respectively) and detected the emerging second
harmonic in the deep blue or green spectral region. Reference [95]
reported a zzz-component of the second-order susceptibility tensor
as large as 5 pm/V, more than ten times larger than what was
reported in Ref. [94]. However, recent sample exchange among the
two groups led to values that are significantly less apart.96 Refer-
ence [94] carefully studied the dependence on the thickness of one
ABC period and found an optimum at around 3 nm thickness, which

Fig. 3.8. Second-harmonic generation from ABC nanolaminate metamaterials.
The ABC stacking breaks centro-symmetry. A=Al2O3, B=TiO2, and C=HfO2.
The upper part shows the measured second-harmonic power versus the number
of ALD growth cycles for each individual layer. The total thickness of the stack
is kept constant. The maximum at around 12 layers corresponds to a thickness of
one ABC laminate period of 2.7 nm. The maximum is due to a trade-off between
the number of interfaces per thickness on the one hand and the quality of the
interfaces on the other hand. The insets below illustrate two cases. (Reprinted
with permission from Ref. [94], copyright 2015 AIP Publishing LLC.)
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is more than hundred times smaller than the wavelength of both
the fundamental and that of the second harmonic. In this regime,
the effective-medium approximation is well justified. Correspond-
ingly, the measured second-harmonic signal scales quadratically with
the overall stack thickness, as expected for phase-matched second-
harmonic generation from a bulk metamaterial.

Intuitively, the ABC stacks can be seen as a bulk metamate-
rial composed of densely packed interfaces, breaking centrosymme-
try both locally and globally. Unfortunately, no theory has been
worked out to date to explain these findings on a microscopic foot-
ing. Such theory would be highly desirable to be able to ratio-
nally optimize these structures. The situation is remotely similar
to that investigated theoretically years ago for asymmetric semicon-
ductor quantum-well systems.97 There, the envelope approximation
was used for the electronic wave function. This approximation does
not appear appropriate though for the discussed ABC nanolaminate
metamaterials.

3.5.2. Third-order nonlinearities

Gustav Mie showed more than a century ago that dielectric nanopar-
ticles with positive electric permittivity exhibit Mie resonances just
like metallic nanoparticles. It is well known that the Mie resonances
exhibit alternating magnetic and electric character, with the funda-
mental (i.e., lowest frequency) resonance having a magnetic-dipole
character. Clearly, one can pack these nanoparticles into arrays. How-
ever, for low refractive-index contrast, such arrays or crystals do
not qualify as an effective medium because the lattice constant or
period is comparable to the wavelength of light. For example,1 the
free-space wavelength of the first magnetic resonance of a sphere is
given by the product of its diameter and its refractive index. Thus,
for a refractive index of 3 and a period of twice the diameter, the
free-space magnetic-resonance wavelength is only 50% larger than the
metamaterial period. The situation is yet worse for the next electric
resonance. The situation is slightly better for silicon within the visible
spectral regime. For example, at 450 nm free-space wavelength, the
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real part of the electric permittivity of silicon is around 20, leading
to a real part of the refractive index between 4 and 5.

Reference [98] studied a square array of amorphous-silicon nano-
cylinders on a thick silica layer on silicon. The disks had a diameter
of 500 nm, a height of 220 nm, and the lattice constant was 800 nm.
Under these conditions, the fundamental magnetic-dipole resonance
occurs at about 1240 nm free-space wavelength. The corresponding
wavelength of the third-harmonic is 413 nm. For normal incidence
of light with respect to the array, the authors found that the field
localization at the magnetic resonance results in two orders of mag-
nitude enhancement of the harmonic intensity with respect to an
unstructured bulk silicon substrate.

By the same physics, the magnetic-dipole resonance of such meta-
materials composed of silicon nanodisks also shows enhanced two-
photon absorption, which is proportional to the imaginary part of
the third-order nonlinear optical susceptibility. In degenerate pump-
probe experiments using 65 fs pulses, a recent paper98 shows an
80-fold enhancement with respect to bulk silicon, albeit on a com-
parably large thermal background. Herein, the center wavelength of
the pump and the probe pulses derived from a Ti:sapphire laser oscil-
lator has been tuned such that the corresponding photon energy is
slightly below the band edge of amorphous silicon. Correspondingly,
self-phase modulation, which is proportional to the real part of the
third-order nonlinear optical susceptibility, is also enhanced by the
magnetic resonance of the dielectric metamaterial. Standard z-scan
experiments also yield consistent results.99

3.6. Outlook

Based on the broad body of work discussed in this review one can
doubtlessly assert that the metamaterial concept is not restricted to
linear optics but can be also applied to nonlinear optics. As shown
above, quite different metamaterial designs can be used for nonlin-
ear frequency conversion and modulation schemes. Despite the rapid
progress in recent years there are however, a number of elementary
aspects of nonlinear metamaterials which are not fully understood
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yet. For instance, the role of surface and bulk terms in the local
second-order nonlinear response of metallic metamaterials has not
been completely clarified. Another open question is the origin of
the nonlinear response of hybrid metamaterials containing metallic
nanostructures and nonlinear dielectric nanoparticles.

Losses in metal based nonlinear metamaterials constitute a
serious limitation for their nonlinear performance. This might be
tolerable for proof-of-principle experiments and for building the
fundamental understanding as discussed in this review. However, if
one aims at replacing conventional nonlinear crystals by metal based
nonlinear metamaterials in real-world applications, losses turn out to
be a show stopper. In contrast, the situation appears more promising
when thinking in terms of using nonlinear metamaterials as localized
light sources, e.g., in optical chips. Another promising approach is to
use nonlinear metamaterials based on low-loss dielectrics. Here, we
expect to see new experiments and further progress in the future.
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CHAPTER 4

Controlled Radiative Dynamics

Using Plasmonic Nanocavities
GLEB M. AKSELROD∗ and
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4.1. Introduction to Purcell Enhancement Using
Plasmonic Nanocavities

Spontaneous emission from quantum emitters such as organic
molecules, quantum dots and bulk semiconductors is a fundamental
process central to many modern technologies including light emitting
diodes, lasers, single photon sources, and biological imaging. The
radiative properties of these emitters are determined by their tran-
sition dipole moment and the electromagnetic environment of the
emitter, as determined by Fermi’s Golden Rule. The dipole moment
is intrinsic to the electronic structure of the emitters and hence
cannot be readily changed. On the other hand, the electromagnetic
environment of emitters can be controlled by coupling them to optical
cavities that have a high density of optical states. This effect of
modifying the radiative dynamics by changing the optical density
of states is known as the Purcell effect1 and has been recognized and

113
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studied for decades. In addition to the fundamental importance of the
Purcell effect, it is also being explored in the context of developing
high-speed devices based on spontaneous emission, in which the
slow intrinsic emission lifetime of typical emitters is a serious lim-
itation. For example, ultrafast light-emitting diodes could be useful
for on-chip optical communication where stimulated emission light
sources (lasers) are not suitable. Likewise, the repetition rate of sin-
gle photon emitters is currently limited by the spontaneous emission
lifetime and could thus benefit from large Purcell enhancements.2–4

The Purcell enhancement, defined as the enhancement in the
spontaneous emission rate relative to emitters in free space, is related
to the geometrical parameters of the cavity, namely the ratio of the
cavity quality factor, Q, to the cavity mode volume, V . Thus the
quest for large Purcell enhancements generally focuses on two direc-
tions: increasing the quality factor of the cavity and reducing the
mode volume. The optical structures typically take the form of cavi-
ties based on either dielectric or metallic materials. Work on dielectric
cavities5–10 typically focuses on increasing the cavity quality factor
as the mode volume is limited to a substantial fraction of a cubic
wavelength. Despite advances in dielectric cavity fabrication resulting
in extremely high quality factors,7, 8 the maximum Purcell enhance-
ments have been limited to 10–100 due to limitations on the mode
volume. Plasmonic nanocavities based on noble metals are particu-
larly powerful for Purcell enhancement because the mode volumes are
no longer diffraction-limited. Another advantage of plasmonic cavi-
ties is their relative large linewidth (Q ∼ 10) which enables efficient
coupling to broadband room-temperature emitters, something not
possible with narrow-linewidth dielectric cavities. Plasmonic cavities
have been widely studied for absorption enhancement11, 12 as well as
spontaneous emission rate enhancement,3, 11, 13, 14 and for modifica-
tion of the emission directionality.15–17 These demonstrations have
led to a range of proof-of-principle devices based on enhancement
of absorption and spontaneous emission, including single photon
sources,2–4 nanolasers,18, 19 and photodetectors.20–22
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One downside to plasmonic cavities is that coupled emitters are
prone to large non-radiative rates due to Ohmic losses in the metal,
which must be managed through nanocavity design, as will be dis-
cussed below. Of particular note is the fact that the Purcell factor
becomes poorly defined in such lossy cavities. While in dielectric
cavities the enhancement in the total emission rate is equal to the
enhancement in the radiative rate, this is no longer true in metallic
cavities. Thus it becomes necessary to specify not only the Purcell
factor but also the quantum yield for free space photon emission of
the cavity, from which the radiative rate can be calculated given the
total emission rate. For the sake of consistency with literature, in
this chapter we will refer to the enhancement in the total emission
rate as the Purcell enhancement, while simultaneously being careful
to specify the quantum efficiency for emission.

One of the most well-studied metal nanocavities is the bowtie
nanoantenna,11 which combines a small metal-insulator-metal gap
along with a geometry that acts as an antenna, allowing coupling
of the cavity mode to free space. However, such structures are often
made using top-down nanofabrication techniques including electron
beam lithography11, 23 or ion beam milling,24 making it difficult
to create sub-10 nm lateral gaps in which the largest electric field
enhancements occur. In addition to small gaps, the nanocavities
must also act as optical antennas by efficiently coupling the con-
fined optical mode to free space or a waveguide. The patch antenna
is a promising geometry that can overcome the lateral gap fabri-
cation challenge and at the same time act as an efficient optical
antenna.4, 17, 25, 26 The patch antenna structure consists of a metal
disk or faceted metal nanoparticle which is situated over a metal
ground plane, separated vertically by a dielectric spacer. This vertical
geometry enables the use of planar fabrication techniques, allowing
the metal-insulator-metal gap to be controlled with nanometer27 and
even sub-nanometer28 precision. Patch antennas with micrometer
diameters have been used to enhance the total spontaneous emission
rate by a factor of ∼80 and showed directional emission, although the
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radiative quantum efficiency was only a few percent.17 The optical
patch antenna has also been theoretically proposed as an efficient
single photon source with a high repetition rate.4

In this chapter we will review recent work on optical patch
antennas, a system that has proved to be a very versatile and
well-controlled system for tailoring the spontaneous emission rate of
fluorescent emitters such as molecules,29 quantum dots,30, 31 and two-
dimensional materials.32 The structure consists of a metal nanocube
situated over a metal film, separated by a ∼ 10 nm spacer con-
sisting of a passive dielectric or an emissive material. This structure
forms a plasmonic nanocavity with an ultra-small effective mode vol-
ume of Veff ≈ 0.001(λ/n)3 and a typical quality factor of Q ≈ 15
(Figure 4.1(a)). Fluorescent emitters embedded into this nanocavity
have shown fluorescence intensity enhancement of up to a factor of

Fig. 4.1. (a) Schematic of the nanocavity formed by a colloidal silver nanocube
situated over a metal ground plane, separated by a dielectric spacer. Upward
beam illustrates the directional emission from the cavity due to its action as a
nanopatch antenna. (b) Transmission electron micrograph of a single nanocube,
showing atomically flat facets. Scale bar, 50 µm. (c) Cross-sectional schematic of
the nanocavity, showing the electric field enhancement in the z direction at the
fundamental resonance of the structure. An optimally oriented and positioned
dipole is illustrated.
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30,00033 as well as ∼1,000-fold enhancements in the spontaneous
emission rate.29, 34

The fundamental mode of the nanocavity is confined laterally
by the edges of the nanocubes and vertically by the nanoscale gap
formed between the nanocube’s bottom facet and the metal film
(Figures 4.1(a–b)). This unique plasmonic mode has a number of key
advantages. First, the nanoscale gap creates electric field enhance-
ments of up to ∼100-fold, and hence a ∼10,000-fold Purcell enhance-
ment over a large fraction of the nanocavity area27 (Figure 4.1(c)).
These large field enhancements can subsequently be used for the
enhancement of the spontaneous emission rate of emitters embed-
ded in the cavity.29, 35 Second, the resonance wavelength can be
tuned over a wide wavelength range by changing the thickness of the
spacer layer in the gap or by changing the nanocube size.27,36 Third,
despite the large field enhancements and the proximity of emitters to
metal surfaces, the radiative quantum yield of the structure is high,
up to ∼50%, due to the antenna action of the nanocavity.29, 33, 37

This is in contrast to many plasmonic structures in which significant
non-radiative quenching occurs for sub-10 nm gap sizes. Finally, the
patch antenna emission is directional in the vertical direction, with
a calculated collection efficiency of 84% using a standard microscope
objective.29

4.2. Optical Properties of the Nanocavity

We first review the basic optical and spectroscopic properties of
the nanoantenna, also referred to as the nanocavity. The nanocavity
formed by the film-coupled nanocubes have several unique features
that make it excellent for Purcell enhancement. The gap between the
nanocube and metal ground plane can be thought of as a Fabry-Pérot
resonator, with the longitudinal length of the cavity determined by
the side length of the nanocube, hence determining the fundamen-
tal resonance wavelength. The vertical (transverse) dimension of the
cavity is determined by the thickness of the polymer spacer layer,
or other material filling the resonator. The optical properties can
be predicted theoretically using a recently developed coupled-mode
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theory.38 Alternatively, the structure can be interpreted using trans-
mission line theory, in analogy with microwave transmission lines.39

In this chapter, we will only consider the optical properties of the
structure as obtained from full-wave simulations.37

4.2.1. Nanocavity resonances

The nanocavity resonances can be analyzed using full-wave numeri-
cal simulations.27 A typical scattering spectrum from simulations is
shown in Figure 4.2(a), for a cavity with an L = 81 nm nanocube
side length and a d = 8 nm gap. Several narrowband resonances
are observed, which have the same spectral positions under TM and
TE polarized excitation. The fundamental mode of the cavity has
a Lorentzian line shape with a resonance at λ = 675 nm and a
linewidth of ∼35 nm. These modes are analogous to waveguide cav-
ity modes that have been observed in other plasmonic structures
having a metal-insulator-metal structure.36, 40–42 The modes can be
excited from free space and simultaneously observed in the scattering
spectrum due to the leaky nature of the waveguide. Modes 1–3, as

Fig. 4.2. (a) Simulated scattering spectrum of a typical nanocavity under TM
and TE excitation, showing multiple resonances. Peak 4 is the fundamental res-
onance of the nanocavity, while peaks 1,2, and 3 are the second order modes.
(b) Electric displacement fields on the surface of the nanocube at the resonance
wavelength indicated in (a).

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 14, 2017 12:37 Handbook of Metamaterials and Plasmonics — Volume 3 9in x 6in b2857-v3-ch04 page 119

Controlled Radiative Dynamics Using Plasmonic Nanocavities 119

labeled in Figure 4.2(a) occur at shorter wavelengths in the scat-
tering spectrum and correspond to higher order modes that have
multiple field nodes. These modes have strong spectral overlap with
each other but are distinct from the fundamental resonance (mode 4),
which has been the focus of experimental work. To visualize these
modes, in Figure 4.2(b), the normal component of the electric dis-
placement field on the surface of the nanocube is shown. The complex
pattern of mode 3 is attributed to both x and y propagating compo-
nents. The modes have nearly identical profiles for both TE and TM
polarized excitation, indicating that these modes are independent of
polarization.

The electric field distribution of the fundamental mode has dipo-
lar character, with the maximum electrical field near the edges of
the cavity (Figures 4.3(a,c)). The dominant electric field is in the

Fig. 4.3. (a,c) Electric field enhancement and (b,d) magnetic field enhancement
relative to free space at the fundamental resonance of the nanocavity. The field
enhancement is higher under (a,b) TM excitation, as compared to (c,d) TE
excitation.
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vertical direction, normal to the metal surfaces. The maximum field
enhancement relative to free space is ∼100×, corresponding to an
optical intensity enhancement of 10,000×. While the field distribu-
tion is found to be similar for TE and TM excitation, TM excita-
tion results in larger field enhancements. Unlike the electric field, the
magnetic field distribution has a maximum in the center of the cavity
with the dominant field oriented in the plane, parallel to the metal
surfaces (Figures 4.3(b,d)).

4.2.2. Directional scattering and emission

While large field enhancement has been observed in other metal-
insulator-metal structures,11, 43 the film-coupled nanocube system is
unique in its ability to efficiently couple the confined plasmons to free
space by acting as an optical antenna, thus resulting in high radiative
efficiency. Figure 4.4 shows schematics of two well-studied plasmonic
antenna geometries — the bowtie antenna and the film-coupled

Fig. 4.4. Geometries and the radiation patterns of two plasmonic antenna
geometries — bowtie antenna and film-coupled sphere — and their radiation
patterns as compared to the film-coupled nanocube (nanopatch antenna). The
effective dipole for each structure and its image dipole in the substrate are shown.
The nanopatch antenna, which has an effective magnetic dipole, shows the highest
coupling into free space.
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sphere—and their free space radiation patterns, with a comparison to
the film-coupled nanocube. The plasmonic modes in these structures
result from the hybridization of plasmonic resonances that occur in
each of the constituent elements. This hybridization creates either
symmetric or antisymmetric modes. The highly confined antisym-
metric mode couples to free space, having the radiation pattern of
an electric dipole. In the case of the bowtie antenna on glass, the
image dipole is weak, and most of the radiation couples to the glass
substrate, although the main emission lobe is normal to the antenna.
The film-coupled sphere system has a vertical effective electric dipole
with a strong image dipole. These electric dipoles radiate primarily
along the substrate, making collection with free space optics
difficult.

In contrast to these structures, the film-coupled nanocube has
an effective magnetic dipole due to the opposing currents in the
top and bottom surface of the cavity. Two degenerate magnetic
dipoles are present, one along each in-plane axis. These dipoles radi-
ate out of plane, where the radiation lobe is perpendicular to the
surface, emitting into free space. This geometry is analogous to the
microwave patch antenna and has similar radiation characteristics.
Consequently, the film-coupled nanocube is also referred to as a
nanopatch antenna. In addition to acting like an antenna, the gap
region can also be considered a small mode volume cavity formed by
the nanoscale gap between the nanocube and the metal film.

The radiation pattern of a single nanopatch antenna was mea-
sured using momentum (Fourier) space imaging of the scattered light
resonant with the fundamental mode.29 The measurement involves
imaging the back aperture of the objective lens (the Fourier plane)
onto a CCD camera, and subsequently converting the intensity at
each pixel to the scattering angle.44 The measured radiation pattern
shows good agreement with the simulated far-field radiation pattern
obtained from finite-difference time-domain simulations (Figure 4.5).
Using an objective lens with an NA = 0.9, it is estimated that 84%
of plasmons that decay as free space photons can be collected by the
objective.
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Fig. 4.5. (a) Momentum space (angle) image of scattering from a single nanocav-
ity with L = 75 nm and g = 8 nm. (b) Measured and simulated radiation pattern
from a single nanopatch antenna, where the measurement is taken from the cross-
section of the image in (a). Gray regions indicate angular regions outside the
collection cone of the objective lens. Using an objective lens with NA = 0.9, it is
estimated that 84% of light is collected, based on the simulations.

4.3. Theory of Emitters Coupled to Nanocavity

The coupling of emitters to the nanocavity can be understood by con-
sidering the fluorescent emitters as four-level systems (Figure 4.6),
which is typical for organic dyes and colloidal semiconductor quan-
tum dots. In the absence of the nanocavity, excitation in free space
occurs at a rate γ0

ex from the ground state (4.1) to the excited state
(4.2), with transition energy �ωex. In the case of molecular or quan-
tum dot emitters, the absorption is followed by fast (∼ps) vibrational
relaxation to the relaxed excited state (4.3). The relaxed excited state
subsequently decays back to the ground state radiatively by sponta-
neously emitting a photon with energy �ωsp at a rate γ0

r . Likewise,
the decay to the ground state can occur nonradiatively with an inter-
nal decay rate γ0

int through emission of phonons. This spontaneous
decay transition occurs at an energy lower than the excitation energy,
allowing for control of excitation and emission independently by tun-
ing the plasmonic resonance. The internal nonradiative decay is an
intrinsic property of the emitter that is determined by factors such as
the solid-state environment or coupling of the excited electron to the
vibrational states of the molecule. The intrinsic radiative quantum
yield (QY0), also referred as the quantum efficiency, is defined as the
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Fig. 4.6. The energy diagram of a typical emitter with a four-level energy struc-
ture. Wavy lines indicate radiative transitions (absorption or emission), while
straight lines indicate non-radiative transitions. The relevant rates in the system
are labeled, including the excitation rate γex, the radiative decay rate due to
the plasmonic structure γr, the non-radiative decay rate due to the plasmonic
structure γnr, and the internal decay rate of the emitter γ0

int. The excitation
transition energy is �ωex, while the emission transition energy is �ωem.

fraction of excited molecules that emit a photon, given by

QY0 =
γ0

r

γ0
r + γ0

int
=

γ0
r

γ0
sp

, (4.1)

where γ0
sp is the intrinsic spontaneous decay rate, also referred to as

the spontaneous emission rate.

4.3.1. Simulation of nanocavity

When the emitter is coupled to the nanocavity, the emission rate
can be enhanced by controlling the spectral overlap between the
nanocavity resonance and the radiative transition energy of the emit-
ter. Likewise, the absorption rate can be enhanced by overlapping
the absorption resonance with the nanocavity resonance. To quantify
both absorption and emission, a full understanding of the emitters’
electromagnetic environment is obtained from finite-element simula-
tions of the structure in COMSOL Multiphysics. In this section, we
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describe the general approach for the simulations used to support
the experimental results described in Refs. 29, 32, and 33, although
details varied slightly in each of these works.

The nanocavity structure was first analyzed in the scattering
formalism in order to obtain the scattering spectrum and the spatial
maps of the field enhancement under the nanocube. In the scat-
tering formalism, the analytical solution for the incident fields in
the absence of the nanocube is used as the background field. In the
presence of the nanocube, modifications to this background field are
then attributed to the nanocavity structure. With this method, it
is possible to obtain the enhancement of the electric and magnetic
fields relative to the free space values, which is a convenient feature
for comparison with experimental results.

To model the structure, a large spherical domain was created
around a single nanocavity, and perfectly matched layer boundary
conditions were utilized to simulate an open boundary. The corners
of the nanocube were given a radius of curvature of ∼8 nm, in accor-
dance with the corner radius obtained from transmission electron
microscopy images of the silver nanocubes. A 3 nm shell with a refrac-
tive index of n= 1.45 was placed around the nanocube to simulate the
polymer (poly(vinyl pyrrolidone)) layer which remains after chemi-
cal synthesis. The spacer layer was simulated as a lossless dielectric
with a refractive index of n = 1.45. The spacer layer thickness and
nanocube size was varied to match the experimental conditions as
determined by ellipsometry and SEM analysis. The thickness of the
metal ground plane is not found to be critical as long as the thickness
is greater than ∼50 nm. The substrate under the metal film is semi-
infinite glass with a refractive index of n = 1.47. The excitation was
accomplished with a monochromatic plane wave either at normal
incidence, or at ∼62◦ relative to normal with TM polarization. The
excitation angle was not found to affect the resonance wavelength
or the electric field spatial distribution, but it does affect the maxi-
mum field enhancement.27 This simulation domain was also used to
simulate the spontaneous emission rate enhancement based on the
Green’s function formalism.
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The results from the scattering simulations produce the spatial
field distribution in the nanocavity (Figure 4.3) as well as its
spectral response, indicating the energy of the fundamental mode
(Figure 4.2). The excitation rate enhancement for a molecule placed
in the nanocavity at a position r is related to the field enhance-
ment by

γex(r)
γ0

ex(r)
=
|Eex(r) · n̂p|2
|E0

ex(r) · n̂p|2 (4.2)

where γex is the excitation rate in the cavity, E0
ex is the electric field

experienced for the molecule in free space or on a reference substrate,
Eex is the excitation rate in the nanocavity, and n̂p is the orientation
vector of the molecules absorption transition dipole moment. The
absorber/emitter molecules are assumed to be small perturbations to
the cavity system and hence are not included in the simulations. The
dominant field of the fundamental mode is in the vertical direction,
normal to the metal surfaces, and hence emitters with this vertical
orientation experience the highest enhancements.

4.3.2. Enhancement in the spontaneous emission rate

After vibrational relaxation following absorption, the emission tran-
sition can also be enhanced due to interaction with the nanocavity
via the Purcell effect. Emission and absorption in four-level systems
are incoherent processes and hence can be treated independently. To
simulate the spontaneous emission dynamics of emitters coupled to
the nanocavity, the Green’s function formalism was employed.14, 37

In this analysis, collective effects of multiple emitters was neglected
and the system was assumed to be in the weak coupling regime. The
weak coupling assumption is valid, as discussed in Ref. 34. Following
Fermi’s golden rule, the spontaneous emission rate for a point dipole
at position r is

γsp =
πω

3�ε0
|p|2ρ(r, ωem) + γ0

int (4.3)

where ωem is the transition frequency, p is the transition dipole
moment, and ρ(r, ω) is the local density of optical states (LDOS).
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The first term in Eq. (4.3) constitutes the coupling of the transition
dipole moment to free space or a photonic structure, determined by
the LDOS. The transition dipole moment of an emitter is assumed
to be unchanged in different electromagnetic environments, which is
the assumption of weak coupling. Meanwhile γ0

int is the internal decay
rate of the dipole, which is also not affected by the electromagnetic
environment. The LDOS, on the other hand, can be controlled using
photonic structures and is expressed in terms of the dyadic Green’s
function, G,

ρ(r, ω) =
6ω
πc2

[n̂p · Im{G(r, r)} · n̂p] (4.4)

where n̂p is the unit vector for the transition dipole orientation. The
Green’s function is obtained from

∇×∇×G(r, r0)− ε(r)k2
0G(r, r0) = Iδ(r0) (4.5)

where ε is the spatially-dependent permittivity in the structure, and
k0 is the free-space wavevector.

The LDOS for an emitter in free space is ρ0(ω) = ω2/(π2c3),
which gives the free-space spontaneous emission rate of

γ0
sp = γ0

r + γ0
int =

ω3|p|2
3�πε0c3

+ γ0
int. (4.6)

The presence of the plasmonic structure modifies the decay of the
emitter. When coupled to the nanocavity, the decaying emitter gen-
erates a plasmon excitation in the gap region. This plasmon subse-
quently decays either into free space by emitting a photon at a rate
γr, or decay by Ohmic losses in the metal with a rate γnr. The total
spontaneous decay rate of the emitter coupled to the nanocavity is
then given by

γsp = γr + γnr + γ0
int. (4.7)

The Green’s function formalism above does not make it possible
to distinguish between the radiative and non-radiative decay. Instead
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only the total coupling rate to the plasmonic mode can be calculated,
given by

γr + γnr =
2ω2

�ε0c2
[n̂p · Im{G(r, r)} · n̂p]|p|2. (4.8)

To determine the radiative and nonradiative rates in the nanocav-
ity explicitly, the Ohmic losses in the plasmonic structure are first
calculated directly by integrating the absorbed power over the entire
simulation domain Ω

γnr =
1
2
γ0

r

W 0
r

∫
Ω

Re{J∗ ·E}dV. (4.9)

Here J is the current density in the metal induced by the oscillating
molecular dipole, and W 0

r = ω4|p|2/(12πε0c3) is the total power radi-
ated by a dipole in free space. From knowledge of the non-radiative
losses, it is then possible to calculate the radiative decay rate using
γr = γsp−γnr−γ0

int. Alternatively, the radiative rate could be calcu-
lated by integrating the emission from the dipole over the upper half
sphere of the simulation domain, but this approach makes it difficult
to separate the contribution from surface plasmons that are launched
by the nanocavity. In the present simulations the contribution from
surface plasmon generation is not treated separately, but is rather
included in the radiative decay channel.

The enhancement in the spontaneous emission rate for an emit-
ter coupled to the nanocavity relative to free space or a control
substrate is γsp/γ

0
sp. This value is often referred to as the Purcell

factor, although this terminology has more precise meaning in the
context of low-loss dielectric cavities in which the enhancement in
the total spontaneous emission rate is equal to the enhancement in
the radiative decay rate, γr/γ

0
r . In the context of emitters coupled

to plasmonic structures, the Purcell factor in most works refers to
the enhancement in the total rate. We follow this convention in the
following sections. However, plasmonic structures often have large
non-radiative losses, making a short decay lifetime an insufficient
metric of the radiative performance of the nanocavity. Instead, it is
also important to calculate the complementary metrics of radiative
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rate enhancement and the radiative quantum yield, QY, as measures
of how well the structure enhances and radiates the fluorescence into
free space.

To simulate the quantum yield and Purcell enhancement, the
emitters were modeled as monochromatic point dipoles in COMSOL
Multiphysics. These dipole sources were swept in a grid pattern later-
ally across the nanocavity, calculating the Green’s function and decay
rates at each position. The same geometry was used to calculate both
the scattering and absorption properties, and the emission rates. The
four-fold symmetry of the structure was used to reduce the number
of simulation points.

4.4. Summary of Fabrication

Here we give a general summary of the techniques used in the exper-
iments described in this chapter, although the details of the fabrica-
tion varied slightly in each work. We refer readers to the individual
papers for details on methods and also to a detailed visual version of
the fabrication procedure.45 The key features that enables fabrication
of reproducible plasmonic nanocavities with small mode volumes is
the use of colloidally-synthesized silver nanocubes and a nanometer-
precision polymer spacer layer. The nanocubes, originally developed
by Sun et al.,46 are crystalline with atomically-flat facets of tun-
able size that form one side of the nanocavity. The nanocubes are
chemically synthesized using CF3COOAg as a precursor using the
method described by Zhang et al.47 As a byproduct of the synthesis,
the nanocubes are coated with a ∼3 nm thick layer of poly(vinyl
pyrrolidone) (PVP), which contributes to the volume of nanocavities
formed with the nanocubes.

The nanocavities are fabricated by first depositing a 50–75 nm
thin film of Au on a glass substrate by electron beam evaporation
using a 5 nm Cr adhesion layer, or by creating a flat gold surface using
template-stripping. The spacer layer between the nanocube and the
metal, which constitutes the volume of the nanocavity, is typically
composed of a polymer film assembled using a layer-by-layer dip
coating technique. To form this polymer film, the metal films are
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Fig. 4.7. Thickness of PAH/PSS polymer film as a function of number of PE
layers on a glass surface and on a gold surface measured by ellipsometry. The PE
layer number is defined as the total number of polymer solution dips, including
PAH and PSS.

immersed in alternating positively and negatively charged polymer
solutions of cationic poly(allylamine) hydrochloride (PAH) (3 mM)
and anionic polystyrenesulfonate (PSS) (3 mM) for 5 minutes each.
The samples are rinsed with water between each polymer deposition.
The alternating charge of each polyelectrolyte (PE) layer insures that
only a single monolayer of polymer is deposited at each step. The
thickness of the spacer layer is determined by the number of PE
layers used and the thickness is measured using variable angle spec-
troscopic ellipsometry. Each PAH-PSS bilayer contributes an approx-
imate thickness of 2 nm, although initial layers are thinner due to
lower adhesion to the gold surface (Figure 4.7). This vertical assembly
technique for forming the cavity spacer gives nanometer control of the
nanocavity dimensions, which is not possible with lithographic tech-
niques. The final layer of the polymer films is always the positively
charged PAH layer to promote adhesion of the negatively charged
nanocubes. In order to integrate molecular emitters into the cavity,
the polymer films are immersed in an aqueous solution of Ru dye,
which intercalate into the top layers of the polymer film. Alterna-
tively, the dielectric spacer can be formed by atomic layer deposition
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of an oxide such as aluminum oxide, or the emissive material itself,
in particular semiconductor quantum dots, can act as the spacer. To
complete the nanocavities, a solution of silver nanocubes is deposited
on the polymer film allowing them to attach to the PAH layer, and
the residual nanocubes are rinsed away with water. The concentra-
tion of nanocubes in solution and the deposition time is controlled
such that the final surface density gives a mean separation of >3µm,
allowing individual nanocavities to be addressed optically with a
focused laser beam. The nanocubes can also be deposited at a high
density to form perfectly absorbing metasurfaces.48

4.5. Probing the Mechanisms of Purcell Enhancement

In this section, we describe experiments aimed at understanding
the ability of the nanocavity to control the radiative dynamics of
quantum emitters. Measuring large Purcell factors with conventional
emitters such as fluorescent molecules and semiconductor quantum
dots is challenging due to their short intrinsic fluorescence lifetimes
of 1–10 ns. According to simulations, which will be discussed below,
the nanocavity is expected to produce Purcell enhancements of
4500-fold for optimally coupled emitters. This Purcell enhancement
would result in a spontaneous emission lifetime of several picosec-
onds, which is beyond the resolution limit of single photon detectors
with a temporal response of ∼30 ps. This temporal resolution barrier
was encountered in the time-resolved measurements in the work by
Rose et al.33

To overcome this challenge, we integrated into the nanocavity a
phosphorescent ruthenium metal complex which has an intrinsically
long lifetime of τ0 = 600 ns.29 The nanocavities were excited through
an objective lens non-resonantly with the nanocavity at λex = 535 nm
with a pulsed laser (150 fs pulse duration) at a repetition rate of
20 MHz (Figure 4.8(a)). The emission was collected by the same
objective lens, passed through a long-pass filter and detected using
time-resolved single photon counting. Only nanocavities with a res-
onance of λcav ≈ 620−650 nm were selected, regardless of the spacer
layer thickness. The transition dipole moment of the molecules was
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Fig. 4.8. (a) Absorption and emission spectra of the Ru dye, showing over-
lap between the emission spectrum and the nanocavity scattering spectrum.
(b) Schematic of the nanocavity structure with embedded Ru dye molecules. The
arrows represent the orientation of their transition dipole moments. (c) Measured
distribution of orientations of the Ru transition dipole moments.

found to be oriented at ∼75◦ relative to normal, as is illustrated
in Figures 4.8(b–c). The orientation was determined using angle-
and polarization-resolved fluorescence measurement of the dye on
a dielectric substrate.29 This orientation distribution was found to
be critical to accurately model the emission dynamics, as will be
discussed below.

Figure 4.9(a) shows a representative emission decay curve from
a nanocavity with an 8 nm total gap thickness (including the PVP
layer surrounding the nanocube). In contrast to the long intrinsic
decay with a lifetime of 1/γ0

sp = τ0 = 600 ns on glass, the nanocav-
ity displays a much faster decay with a highly non-exponential time
dependence. The fast initial decay is attributed to molecules that
are optimally positioned within the cavity and have the most favor-
able angular orientation. The non-exponential decay occurs because
each molecule coupled to the nanocavity experiences a different
emission rate depending on its position and orientation. To obtain
the underlying distribution of rates, the decay curve can be fitted
to a stretched exponential function, a standard technique for ana-
lyzing time-resolved fluorescence in complex environments.49 The
decay constant for the stretched exponential fit is found to be
1/γmax

sp = τmax = 0.7 ns, which characterizes the fastest decay rate
present in the distribution of rates. This maximum decay corresponds
to a Purcell factor of γmax

sp /γ0
sp = 860. A Laplace transform is then

applied to the stretched exponential to obtain the entire distribution
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Fig. 4.9. (a) Measured and simulated decay dynamics from Ru dye molecules
coupled to a nanocavity with an 8 nm spacer thickness. Also shown is the intrinsic
decay of Ru dye on glass, having a lifetime of 600 ns. (b) Distribution of decay
rates obtained from time-resolved emission data in (a). Experimental distribution
is obtained from a stretched exponential fit, while the simulated distribution is
obtained from the spatial map of the spontaneous emission decay rate.

of decay rates (Figure 4.9(b)). This distribution shows that while a
small fraction of molecules are optimally coupled to the cavity, the
most likely emission occurs with a Purcell factor of ∼60.

An important parameter in correctly simulating the emission
dynamics is the orientation of the emitter transition dipole moment
in the cavity. The orientation is critical because the emitter-cavity
coupling scales with cos2 θ, where θ is the angle between the dipole
direction and the electric field direction. In many studies of plasmon-
enhanced fluorescence, the distribution of orientations is assumed to
be isotropic12, 17 or to have an optimal orientation.50 In our work, an
experimental technique was used to directly measure the distribution
of Ru dipole orientations. To measure the dipole orientation, a sam-
ple was prepared consisting of a 5 PE layer polymer film embedded
with Ru dye deposited on a Si wafer with a ∼1000 nm thermal oxide
layer. Fluorescence from this sample was measured as a function of
incidence angle, observation angle, and polarization using a goniome-
ter setup as described in Ref. 51. Based on these measurements, it
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Fig. 4.10. Simulated map of the (a) spontaneous emission rate enhancement and
the (b) radiative quantum yield, as a function of position in a nanocavity with an
8 nm spacer and a resonance of λcav = 650 nm. The dipole orientation is assumed
to be vertical, along the direction of the dominant field. White dashed outlines
represent lateral extent of the nanocube.

was determined that most of the molecular emission dipoles are ori-
ented at 75◦ relative to the surface normal, with a distribution width
of ±15◦.

In order to predict the emission dynamics, the structure was sim-
ulated following the procedure outlined in Sections 4.3. Figure 4.10
shows the spontaneous emission rate enhancement, γsp/γ

0
sp, and the

radiative quantum yield, QY, as a function of position in a nanocavity
with an 8 nm total gap thickness and a λcav = 650 nm resonance. The
largest Purcell enhancement from these simulations is ∼4,500 for a
vertically oriented dipole located near the corners of the nanocavity.
The exponential decay for a molecule located at a position r in the
nanocavity and oriented at an angle θ relative to normal is given by

I(r, θ, t) ∝ γr(r) exp[−γsp(r) cos2 θ t]. (4.10)

By performing averaging over all dipole positions and over the mea-
sured orientation distribution, it is possible to predict the emis-
sion dynamics from the nanocavity. Averaging was also performed
over the vertical positions of the emitters, which were assumed to
be in the top 2 nm of the polymer film. The calculated dynamics
for a cavity with an 8 nm gap shows excellent agreement with the
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experimental data (Figure 4.9(a–b)). To obtain these decay curves,
no fit parameters were used other than normalization. The simu-
lated emission rates can be plotted as a distribution of rates, which
also shows good agreement with the distribution extracted from the
stretched exponential fit. As seen in Figure 4.9(b), a fraction of
molecules are expected to have Purcell factors of ∼1000.

To further demonstrate control over spontaneous emission,
nanocavities were fabricated with gap thicknesses ranging from
5 to 15 nm. Figure 4.11(a) shows the measured time-resolved emis-
sion from a representative nanocavity for each gap thickness. With
decreasing gap thickness a strong decrease in the initial emission
lifetime is observed. The maximum Purcell enhancement reaches a
value of ∼2000 for the d = 5 nm gap thickness (Figure 4.11(b)). The
most likely rate enhancement, γ∗sp/γ0

sp shows a similar trend, but with
lower values due to the non-optimal position of most emitters.

A critical question to answer in metal-enhanced fluorescence
experiments is whether short emission lifetimes, as those observed

Fig. 4.11. (a) Time-resolved emission from four representative nanocavities with
varying gap sizes from 5 to 15 nm. Simulated emission dynamics (black lines with
open circles) show good agreement with the experiment. (b) Enhancement in
the maximum spontaneous emission rate γmax

sp /γ0
sp , enhancement in the mostly

likely rate γ∗
sp/γ

0
sp, and enhancement in the maximum radiative rate γmax

r /γ0
r , as

a function of gap thickness.
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Fig. 4.12. Simulated spatially averaged enhancement in the (a) excitation rate
at λex = 535 nm, (b) the quantum yield at the emission wavelength of λ = 650 nm
(red squares). Also shown is the excitation enhancement and quantum yield at
the position of maximum Purcell enhancement (black triangles). (c) The total
fluorescence enhancement factor obtained from simulations and from experiments,
as a function of gap thickness.

in this system, are the result of non-radiative quenching or radia-
tive rate enhancement. While radiative quantum yield cannot be
measured directly, it can be inferred from a combination of sim-
ulations and a measurement of the fluorescence enhancement fac-
tor 〈EF 〉. This factor is defined as the enhancement in fluorescence
intensity from a single molecule in the nanocavity relative to the
same molecule on glass. Figures 4.12(a–b) shows the calculated exci-
tation rate enhancement and the quantum yield as a function of
gap thickness, averaged over the nanocavity. The simulated quan-
tum yield is highest for larger gap sizes, with quenching occurring
for gaps d < 8 nm. The intrinsic quantum yield of the dye in the
polymer film is assumed to be 20%. Using the calculated collection
efficiency from the nanocavity of η = 84% and the collection effi-
ciency from dipoles on glass of η0 = 15%, the spatially averaged fluo-
rescence enhancement factor is calculated (Figure 4.12(c)). To obtain
the experimental values for 〈EF 〉, the same polymer films embedded
with Ru dye were deposited on a glass substrate and the fluores-
cence was measured under the same experimental conditions as the
nanocavities. The experimentally measured enhancement factor as
a function of gap thickness is shown in Figure 4.12(c), normalized
for measurement area. The excellent agreement between the mea-
sured and predicted enhancement factor implies the accuracy of the
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constituent simulations — namely the excitation rate enhancement
and radiative quantum yield. Consequently, knowing the quantum
yield of the nanocavities, which is >50% for gap sizes d >8 nm, it
is now possible to calculate the radiative rate enhancement based on
the measured total emission rate. Using the quantum yield values,
Figure 4.11(b) shows that the maximum radiative rate enhancement
of γmax

r /γ0
r ≈ 1000 occurs for gap sizes of d = 5 and 8 nm. These

large radiative rate enhancements are achieved due to the tightly
controlled geometry of the nanocavity, which simultaneously pro-
vides large field enhancement and high quantum efficiency due to
efficient outcoupling. The experimental realization is enabled by the
bottom up fabrication method which gives nanometer scale control
over the spacer thickness and nanocube size. The inclusion of the
slow emitting Ru dye into the structure allowed for full character-
ization and understanding of the radiative and non-radiative rates
which would not have been possible with fast intrinsic emitters due
to experimental limitations.

4.6. Ultrafast Spontaneous Emission

Integrating Ru dye into the nanocavities demonstrated the capability
of this plasmonic structure for achieving large Purcell enhancements
while maintaining a high quantum yield due to the antenna action of
the cavity. For future device applications such as modulated LEDs
and single photon sources, it is important to develop ultrafast spon-
taneous emission sources based on stable and technologically relevant
materials. One such set of materials is colloidal semiconductor quan-
tum dots (QDs). These emitters have a wavelength-tunable room
temperature emission, excellent photostability, and can be easily inte-
grated with other materials due to their solution processability.52

For example, QDs have been used as stable, room-temperature sin-
gle photon sources,53 but their intrinsic radiative lifetime of ∼20 ns
limits the obtainable repetition rate. Likewise, light emitting diodes
are not suitable for high data rate telecommunications due to the
slow switching time of LEDs, limited by the spontaneous emission
lifetime.
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Various plasmonic structures have been used over the past sev-
eral years to control the spontaneous emission from QDs, but so
far Purcell factors of at most 145 have been demonstrated.17, 26, 54–56

However, these Purcell enhancements are often accompanied by large
non-radiative losses. For example, structures assembled by atomic
force microscopy consisting of a QD coupled to a Au nanoparticle
shows a Purcell factor of up to 145, but the radiative decay enhance-
ment is only ∼8×.

In our recent work,34 we demonstrated coupling of QDs to the
nanocube nanocavities, resulting in ultrafast spontaneous emission
with a lifetime of <11 ps, corresponding to Purcell factors of 880.
While a similar Purcell enhancement was achieved in this work as
compared to the work on Ru dye enhancement, the enhancement of
QDs results in an absolute lifetime in the picosecond time regime.
This produces a source of spontaneous emission that operates at
ultrafast frequencies and with high radiative efficiency. The struc-
tures are produced by first depositing a single PAH layer on a 50 nm
gold film which is evaporated on a glass substrate. CdSe/ZnS QDs
core-shell QDs, with an emission spectrum centered at λem = 620 nm
are spin coated on a gold film coated with PAH at a density such
that ∼10 QDs are located in each nanocavity. The QD coated sam-
ple is then immersed in a solution of nanocubes which adhere to the
top of the QDs, completing the nanocavities (Figure 4.13(a)). The
nanocavities with a resonance of λcav = 625−635 nm were identified
using darkfield microscopy.

To demonstrate the overall fluorescence enhancement of the QDs,
the nanocavities were excited with a continuous-wave laser non-
resonantly at λex = 514 nm. Figure 4.13(b) shows the fluorescence
intensity as a function of excitation power from three representative
nanocavities as well as a control sample consisting of the QDs on
glass. The fluorescence intensity from QDs coupled to the nanocavity
is substantially higher than from QDs on the control sample. A linear
dependence between excitation power and fluorescence intensity is
observed over the power regime probed. At higher excitation powers,
permanent photobleaching of the QDs occurs, before the saturation
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Fig. 4.13. (a) Schematic structure of colloidal QDs integrated into the nanocav-
ity, showing the directional radiation pattern of the structure. (b) Fluorescence
intensity as a function of excitation power with a continuous-wave laser for QDs
coupled to three representative nanocavities, as well as for QDs on glass, and
QDs on a gold film. Fits are to power laws, where p is the exponent. The vertical
dashed line indicates the power at which the time-resolved measurements were
performed.

regime can be reached. QDs that are on the gold film but not coupled
to a nanocavity show fluorescence quenching of 70% as compared to
the control sample. The spatially averaged fluorescence enhancement
factor is found to vary from 177 to 2,300 with an average value of
〈EF 〉avg = 831. This variation in 〈EF 〉 is attributed to: (1) the ran-
dom spatial distribution of the small number of QDs (∼10) within
the nanocavity, with QDs near the cavity edges experiencing higher
field enhancements (Figure 4.3); and (2) the random orientation of
the QD transition dipoles, with optimally oriented QDs experiencing
larger enhancement. As with the Ru molecular dyes, this fluorescence
enhancement is attributed to an increased excitation rate, modified
quantum yield, and a higher collection efficiency. To compare with
the predicted enhancement factor, the structure was simulated using
the method described in Section 3. Assuming an intrinsic quantum
yield for QDs on glass of 10%, the spatially averaged enhancement
factor was found to be 〈EF 〉 = 660, which is in good agreement with
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Fig. 4.14. (a) Normalized time-resolved emission from QDs coupled to a
nanocavity (green), QDs on glass (red), and QDs on gold without nanocubes
(blue). The instrument resosponse function (IRF) is shown in gray. A bi-
exponential function convoled with the IRF is used to fit the nanocavity emission,
while a single exponential convolved with the IRF is used to fit emission from the
other two samples. (b) Fast and slow components of the fluorescence decay times
for ∼30 nanocavities. Some decays showed more robust fits to a single exponential
function, in which case the slow component is absent.

the experimentally obtained value for ∼10 different nanocavities of
〈EF 〉avg = 831. This agreement indicates that the high quantum
yield of ∼50% predicted by simulations is close to the value observed
in the experimental system.

Having established the emission efficiency, we now turn to the
emission dynamics. Figure 4.14(a) shows the time-resolved emis-
sion from a nanocavity with embedded QDs under pulsed excita-
tion at λex = 535 nm, as well as emission from QDs on glass. The
control sample shows emission with a single-exponential lifetime of
τglass = 9.7 ns. For QDs on the gold film without the presence of
the nanocubes, the emission has a lifetime of τgold = 0.8 ns, but
with a substantially reduced intensity, as seen in Figure 4.13(b).
When the QDs are coupled to the nanocavity, the emission is dra-
matically shorter than from the control sample, which occurs con-
currently with a large intensity increase (Figure 4.13(b)). The spa-
tial and orientational distribution of the QDs is expected to pro-
duce a non-exponential decay curve, as observed with Ru dye cou-
pled to the nanocavity.29 However, the instrument response function
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of the avalanche photodiode used to detect the fluorescence has
a ∼30 ps resolution, which prevents the extraction of the entire
decay distribution. Instead, a bi-exponential function convolved with
the instrument response function is used to extract the dominant
decay components. This fitting results in a fast decay lifetime of
τ fast
NPA = 11 ps and slow decay time of τ slow

NPA = 981 ps. The fast com-
ponent, which contributes approximately 50% of the emission, cor-
responds to a Purcell factor of Fp = τglass/τ

fast
NPA = 880. This Purcell

factor is only a lower bound due to the limits of the detector and the
amount of deconvolution that can be performed. The lifetimes and
the relative fluorescence contributions of the fast and slow compo-
nents were measured for ∼30 other nanocavities (Figures 4.14(b–c)).
All nanocavities showed a fast decay lifetime between 11 and 51 ps,
corresponding to Purcell factors of 190 to 880. Some nanocavities
were found not to have a slower component, perhaps due to the
absence of QDs that are poorly coupled to the cavity. On average the
fast and slow component contribute equal amounts of fluorescence,
when integrated over time.

The simulated Purcell factor was obtained by calculating the
Purcell factor at each position for a randomly orientated QD dipole,
and then by performing averaging over all positions. This results
in an average Purcell enhancement of Fp = 990, corresponding
to a lifetime of ∼10 ps, which agrees well with the measured fast
decay lifetime. However, the simulations predict Purcell enhance-
ments of to 4,000× for optimally positioned and oriented QDs. This
suggests that such large enhancements are likely occurring in the
experimental system but are not resolved by the current fluores-
cence detection system. Overall, this work demonstrates that these
nanocavities can be used to generate spontaneous emission on the
pico-second time scale with high efficiency. This emission lifetime
points towards the possibility of ultrafast (>100 GHz) electrical
modulation of such a spontaneous emission source, which is on the
order of or beyond the capabilities of semiconductor lasers but with-
out the threshold requirements associated with stimulated emission
sources.
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4.7. Ultrafast Single Photon Generation

The Purcell enhancement of QDs can also be extended to the regime
of single photon generation by coupling individual QDs to a nanocav-
ity.31 Using the same fabrication procedure as in the previous sec-
tion, single QD coupling can be achieved by simply reducing the
QD concentration during deposition. By chance, when nanocubes are
deposited, certain nanocavities will have exactly one QD coupled to
the gap, and a fraction of these will have an optimally positioned QD
near one of the corners. Individual nanocubes to be used for detailed
experiments are first identified using wide field fluorescence imaging.
Those nanocavities exhibiting bright photoluminescence (PL) are
selected for single particle measurements. In particular, to identify
cavities with single QDs, second order photon correlation measure-
ments are performed using two single photon detectors using contin-
uous wave (cw) excitation at a wavelength of 488 nm. Figure 4.15(a)
shows the photon correlation function g2(t) from a typical nanocavity
exhibiting anti-bunching behavior at t = 0, indicating that a single

Fig. 4.15. (a) The second order photon correlation function g2(t) from a single
QD coupled to a nanocavity. Inset shows the measurement configuration using a
beamsplitter and two time-resolved single photon detectors. The correlation func-
tion has a minimum value of g2(0) = 0.32 indicating single photon emission, with
a binning-limited lifetime of τ < 250 ps. (b) The same correlation measurement
for a single QD on glass, also showing anti-bunching behavior (g2(0) = 0.17) but
with a longer lifetime of τ = 7 ns.
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QD is coupled to the cavity and is behaving like a quantum emitter.
The lifetime of the anti-bunching decay is <250 ps, limited by the
time bin size, and sets an upper bound on the QD excited state
lifetime. Similar correlation measurements were performed for ∼12
other nanocavities coupled to single QDs. In comparison, a single
QD on glass shows similar anti-bunching behavior, but with a much
longer lifetime of 7 ns (Figure 4.15(b)). These measurements hence
give a lower bound for the Purcell enhancement for single QDs of
Fp > 28, limited by the binning time used in this experiment.

To fully resolve the emission dynamics and determine the true
Purcell factor, time-resolved fluorescence measurements were per-
formed on the same nanocavities. The same nanocavity as shown
in Figure 4.15(a) is excited with a pulsed laser at a wavelength of
535 nm and shows a biexponential PL decay with a fast lifetime
of τfast = 13 ps and a slow component of τfast = 680 ps (Fig-
ure 4.16(a)). These lifetimes are obtained from a fit of the data to
a biexponential function convolved with the measured instrument
response function, which has a width of 30 ps (Figure 4.16(a)). From

Fig. 4.16. (a) Time-resolved PL from the same single QD as in Figure 4.16,
showing a biexponential decay, with a fast lifetime of 13 ps (extracted through
deconvolution) and a slow lifetime of 680 ps. The fast lifetime is limited by the
instrument response function (IRF) of the detector, show in gray. The lifetime of
a single QD on glass is 6.8 ns. (b) Histogram of the fast lifetime components for
13 nanocavities coupled to single QDs, as verified by anti-bunching measurements.
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the fit it was determined that a majority of the emission (>97%)
originates from the fast component. In contrast, a single QD on glass
shows single exponential decay with a lifetime of 6.8 ns, as determined
by averaging over several quantum dots. The fast component of the
coupled QD decay, which is still limited by the resolution of the detec-
tor, gives a lower bound to the maximum Purcell factor of FP > 540.
The increase in the radiative rate can then be calculated by using
the estimated quantum yield for a QD on glass of QY0 = 20% (based
on integrating sphere measurements) and the simulated quantum
yield of the nanocavity of QY = 50%. This results in a radiative
rate enhancement of γr/γ

0
r = (τglass/τfast)(QY/QY0) = 1350. This

number is slightly below the predicted value from simulations of
FP = 2000 for an optimally positioned, randomly oriented dipole.
Similar decay dynamics were observed for ∼12 other nanocavities
coupled to single QDs (Figure 4.16(b)), as confirmed by photon cor-
relation measurements.

As with ensemble emitter measurements discussed earlier, a key
consideration is whether the short emission lifetimes are due to
radiative or non-radiative enhancement. To address this, the time-
integrated fluorescence from a coupled QD and a QD on glass was
measured under cw excitation at a wavelength of 488 nm as shown
in Figure 4.17. The coupled QD shows a dramatic enhancement of
1,900-fold enhancement in the PL intensity at an excitation power of
1000 nW. Both the coupled and uncoupled QD show a linear depen-
dence between excitation power and PL intensity, for powers below
∼2000 nW. The large PL enhancement is attributed to three fac-
tors: (1) enhancement in the collection efficiency due to the antenna,
(2) enhancement in the excitation rate, and (3) enhancement in the
quantum yield. Simulating all three effects, including spatial and ori-
entation averaging of the emitters, results in a predicted enhancement
factor per QD of EF = 2500, which is in qualitative agreement with
the measured value. This agreement indicates that the quantum yield
of the experimental structure is indeed high at ∼50%, as predicted
by simulations.
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Fig. 4.17. Time-integrated PL intensity as a function of incident power for two
cases: a single QD coupled to a nanocavity (shown in red) and a single QD on
glass (shown in blue), performed using cw excitation. The nanocavity produces
an enhancement of 1,900-fold relative to the QD on glass.

The maximum detected count rate obtained from a single
enhanced QD was ∼1 MHz. Given that the collection, transmis-
sion and detection efficiency of the optical setup is ∼1%, the actual
emitted count rate is estimated to be ∼100 MHz. Saturation of the
QD was not possible because irreversible photodamage occurred at
intensities below the saturation level. However, given improvements
in material stability and possible encapsulation, the maximum count
rate expected from a single QD could be as high as 80 GHz, addi-
tionally assuming that multiphoton emission effects can be avoided.
Such high count rates could be achieved by integrating more stable
quantum emitters into the nanocavities, such as fluorescence crystal
color centers in diamond57 or silicon carbide.58

4.8. From Nanocavities to Metasurfaces

Thus far we have shown how individual nanocavities can be used
to control the radiative properties of luminescent emitters. For a
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number of applications, such as wavelength conversion and solid
state lighting, emission must be controlled over microscopic and
macroscopic areas. Due to the reproducible nature of our fabrication
method and the good size uniformity of the nanocubes, the film-
coupled nanocubes can be assembled into large scale metasurfaces
consisting of many nanocavities. As has been shown recently,36, 48

these nanocube-based metasurfaces can act as nearly-perfect spec-
trally selective absorbers. This absorption phenomenon arises from
destructive interference between reflection from the metal ground
plane and reflection (scattering) from the nanocavities. In addition to
acting as absorbers, these surfaces can act as large-area luminescent
emitters for future applications in wavelength conversion and light
sources. In this context, we review our recent results on large-area
metasurface absorbers.

Figure 4.18(a) shows an SEM image of a typical metasurface
composed of 75 nm nanocubes, with a mean spacing of ∼200 nm.
The metasurfaces are fabricated by the same colloidal, solution-based

Fig. 4.18. (a) SEM image of perfect absorber surface consisting of a gold film
covered with silver nanocubes. Inset shows a cross-sectional schematic of the
sub-wavelength resonators. (b) Reflection spectrum from an absorber with a res-
onance at 650 nm, utilizing 75 nm nanocubes and a 7 nm spacer, showing a
minimum reflectivity of 0.4%. (c) Image of sample with a 10 mm region coated
with nanocubes on top of gold, while surrounding region is coated only with gold.
A defocused laser with a diameter of ∼13 mm illuminates the absorber region.
(d) Images of the laser beam on a screen after reflection from the absorber sample
shown in (c), as the laser wavelength is swept from 500 to 700 nm. When the laser
is resonant with the absorption at 650 nm, no reflection is seen from the nanocube
coated region.
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method as described for assembly of individual nanocavities. The
only exception is that the concentration of nanocubes in the deposi-
tion solution is increased such that the final nanocavity surface cover-
age is ∼20%. Despite the non-periodic arrangement, the metasurface
exhibits narrowband and nearly-perfect absorption at a center wave-
length of 650 nm (Figure 4.18(b–d)), with a minimum reflection of
only 0.4%. To visually demonstrate the strong absorption, a defo-
cused laser spot was used to illuminate a sample having a 10 mm
round perfect absorber area. As the laser wavelength is tuned on-
resonance with the perfect absorber metasurface, the reflection from
the sample exhibits a black region indicating full absorption, while
the areas outside the metasurface region show full reflection.

As with individual nanocavities, the resonance of the entire meta-
surface can be controlled by changing the size of the nanocube and
the thickness of the polymer spacer layer. Figure 4.19(a–b) shows

Fig. 4.19. (a) Reflection spectra of metasurfaces with resonances ranging from
the visible to the near infrared using a range of nanocube sizes (L) and spacer
layer thicknesses (d). (b) Resonance wavelength as a function of particle size and
spacer thickness for the metasurfaces in (a). (c) SEM images of typical particles
from each synthesis having average particle size L. For L ≥ 140 nm the particles
become non-cubic, transitioning to a truncated cube, to a cuboctahedron, to
a truncated cuboctahedron. Schematics of each shape are also shown. As the
particle size increases, the facets become smaller, which blue-shifts the absorber
resonance, seen in (b).
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Fig. 4.20. (a) A 2-inch diameter wafer coated over the entire surface with a
gold film, a 7 nm spacer, and 75 nm nanocubes, with a resonance of 645 nm.
A defocused 645 nm laser beam is incident on the sample and the reflection is
imaged on a screen, showing almost no visible reflection. (b) For comparison with
(a), a 5 cm wafer coated only with a gold film shows strong reflection of the
laser beam, imaged using the same camera exposure settings. (c) A glass half-
sphere coated with 100 nm of silver and a 7 nm PAH-PSS spacer layer, followed
by conformal deposition of 75 nm nanocubes. Insets show SEM image taken on
the side slope of the sample, and the near-normal incidence reflectance spectrum
showing ∼90% absorption.

that the resonance can be tuned from the visible to the near-IR spec-
trum using nanocubes ranging from 75 to 140 nm and spacer thick-
nesses from 1–5 nm. The best absorption performance is achieved
from thicker spacer layers. The resonances cannot be moved beyond
∼1400 nm because larger nanocubes cannot be synthesized using
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our current procedure. As the nanocube synthesis reaction time is
increased, the particles develop new facets, decreasing the effective
area of the cavity under the nanocube even though the total diameter
of the particle is larger (Figure 4.19(c)).

The fabrication method for forming these metasurfaces is entirely
solution-based, including the spacer and nanocube deposition. As a
result, the metasurfaces can be coated onto objects of arbitrary size
and shape. Figures 4.20(a–b) show a two-inch wafer coated with the
metasurface and for comparison a gold-coated wafer. A defocused
laser beam at a wavelength of 645 nm is reflected from the bare gold
substrate while the beam is almost completely absorbed by the meta-
surface. The metasurface can also be coated on non-planar objects,
such as the half-sphere shown in Figure 4.20(c). The deposition of
the spacer layer and nanocubes was done using dip coating, as with
the planar wafer in Figures 4.20(a–b), showing the generality and
scalability of the approach.

4.9. Conclusions and Outlook

In conclusion, the nanocavity based on film-coupled nanocubes is a
powerful platform for controlling the radiative properties of emit-
ters such as molecules, quantum dots, and two-dimensional semi-
conductors. The large Purcell enhancements are enabled by the
small mode volume cavity and the efficient antenna action of the
structure. The very good agreement of the experimental results
with simulations is the result of excellent control of the nanocavity
dimensions using bottom-up colloidal fabrication, in particular the
nanoscale control over the gap thickness. Future work still remains
to improve on the current theoretical understanding of the structure
by accounting for possible losses from the nanocavity into surface
plasmons.59

Even larger Purcell enhancements could be enabled by controlling
the orientation and position of the emitter dipoles in the nanocavity
using chemical or nanofabrication methods. For optimally positioned
and oriented dipoles, Purcell enhancements of ∼4000 are possi-
ble, corresponding to terahertz-frequency modulation of fluorescence
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using an emitter with a 10 ns intrinsic lifetime. This platform is also
compatible with electric excitation, potentially allowing these struc-
tures to function as light-emitting diodes or as a high repetition-
rate single photon source, if only one dipole is coupled to the
cavity.
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CHAPTER 5

Metamaterials and Plasmonics

with Optical Gain
MIKHAIL A. NOGINOV

Norfolk State University, USA
mnoginov@nsu.edu

5.1. Introduction

As it has been shown in last fifteen years, metamaterials — engi-
neered composite materials with rationally designed composition,
shapes, sizes and mutual orientation of subwavelength inclusions —
can manipulate electromagnetic waves1–4 (as well as acoustic
waves5, 6 and heat flows7) with unprecedented efficiency, enabling
a variety of nearly fantastic phenomena and applications ranging
from negative index of refraction8, 9 and subdiffraction imaging8, 10–12

to transformation optics13–17 and invisibility cloaking.16, 17 Another
technological effort of paramount importance is aimed at the develop-
ment of the metamaterials-based electronics operating at optical fre-
quencies,18–23 whose operation speed will exceed that of conventional
semiconductor electronics by several orders of magnitude. In first sev-
eral years of the metamaterial development, the main focus was at the
design of passive nanocircuit components analogous to conductors,
inductances and capacitors in traditional electronics.18, 19 However,

153
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electronic circuits also require active elements, such as switches and
transistors.20–23 Their nanophotonic counterparts include metama-
terials and plasmonic structures with optical gain, nonlinearity and
tunability. The former phenomenon (gain) and its effect on optical
loss in metallic inclusions and nanostructures, stimulated emission,
and active control of metamaterials and plasmonic systems is the
major focus of this chapter. The chapter is not designed to provide
the comprehensive review of the research field, but it rather outlines
the major concepts, ideas, and experimental demonstrations.

5.2. Problem — Loss, Solution — Gain

Optical loss in metallic (and alternative non-metallic24) plasmonic
components of metamaterials presents a big challenge to the
widespread use of metamaterials and plasmonics and hinders many
existing and prospective applications. (Here and below, we will refer
to any plasmonic material as to “metal”.) The research field of plas-
monics covers two major classes of phenomena. The first of them
is the localized surface plasmon (SP), which is an oscillation of free
electrons in a metallic particle or nanostructure, whose resonance
frequency is the plasma frequency adjusted by the size and shape
of the particle.25, 26 The second, relevant to it phenomenon is the
surface plasmon polariton (SPP) — a surface electromagnetic wave
propagating along the interface between metal and dielectric, cou-
pled with collective oscillations of the free electron gas density. In
both localized surface plasmons and propagating surface plasmon
polaritons, electric field partly resides in a metal, where it experi-
ences strong loss, and partly — in an adjacent nominally loss-less
dielectric medium. In 1989, Sudarkin and Demkovich have predicted
that optical gain added to the dielectric can partly compensate SPP’s
propagation (and radiative) loss and, if gain overcompensates loss,
lead to a stimulated emission of SPPs.27 (The details of SPP prop-
agation in the presence of gain have been studied theoretically in
Refs. [28 and 29].) A similar concept of the SP loss compensation in
metallic nanospheres surrounded by a dielectric medium with gain
has been proposed by Lawandy in 2004.30)
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(b) (c)

(a)

Fig. 5.1. (a) Local field amplitude in the plane of the V-shaped metallic nanos-
tructure (inset) for one of the spaser eigenmodes. Adopted from Ref. [31]. (b)
Alternative schematic of a spaser consisting from a silver nanoshell deposited
onto a dielectric core (with a radius of 10–20 nm), and surrounded by two
dense monolayers of quantum dots. (c) Schematic of energy levels and transi-
tions in a spaser. The external radiation produces electron–hole pairs (vertical
arrow). The e–h pairs relax to excitonic levels. The exciton recombines and its
energy is transferred (without radiation) to the plasmon excitation of the metal
nanoparticle (nanoshell) through resonant coupled transitions. Adopted from
Ref. [32].

In 2003, Bergman and Stockman have theoretically predicted
stimulated emission of localized surface plasmons supported by a
V-shaped metallic nanostructure interfacing a (quantum dot based)
gain medium,31 Fig. 5.1(a). The proposed source of generated
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coherent SPs was termed SPASER, in analogy to LASER, in which
the letter L, standing for light, was replaced by the letters SP,
standing for surface plasmon. In a spaser, like in a regular laser,
active medium with population inversion provides for optical gain
and amplification. However, the feedback is provided not by the two
mirrors, whose separation cannot be smaller than half wavelength
(∼0.25 µm for visible light), but by the SP oscillation, which can be
supported by plasmonic nanostructures ten-to-hundred times smaller
than the wavelength. Correspondingly, spasers can be used in the
future nanocircuitry operating at optical frequency as ultra-compact
generators and amplifiers of coherent SPs.23 Surface plasmon oscilla-
tions outcoupled to photonic modes make spaser a nanoscopic laser,
whose size can be substantially smaller than the diffraction limit
(∼half wavelength). An alternative design of the spaser nanoparti-
cle, consisting on a dielectric core, silver shell and two monolayers
of quantum dots (which is easier to synthesize using wet chemistry
methods) has been proposed in Ref. [32], Fig. 5.1(b). The excita-
tion scheme of quantum dots and surface plasmons in a spaser is
depicted in Fig. 5.1(c). The scattering and the stimulated emission
of nanoparticles composed of an active SiO2 core (with gain) and
gold shell have been analyzed in Ref. [33].

The pioneering theoretical works27–33 laid the foundation to the
comprehensive studies of surface plasmons and gain undertaken over
the last decade.

5.3. Evaluation of the Critical Threshold Gain
for Simple Plasmonic Systems

5.3.1. Surface plasmon polaritons in the Kretchmann

geometry

In the Kretschmann configuration, thin metallic film (usually silver
or gold) is deposited on the high-index prism, interfacing with air
or low-index dielectric, Fig. 5.2(a). The surface plasmon polariton
propagating at the metal/dielectric interface is excited by p polarized
light incident onto the metallic film from the side of the prism at the
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Fig. 5.2. (a) Schematics of the experimental sample (Kretschmann geometry)
depicting high index glass prism, metallic film, and dye-doped polymer that is
optically pumped to produce gain. (b) Reflectance R0 calculated in the singularity
point (kx − k0

x −∆k0
x = 0) as the function of the imaginary part of the dielectric

permittivity of the dye-doped polymer ε′′2 (gain) at several different thicknesses
of the silver film. (c) Angular reflectance profiles R(θ) calculated for 55 nm Ag
film at gradually changing values of ε′′2 . This film, as well as the 50 nm film in
Fig. 5.2(b) are substantially thin. Correspondingly, no reduction of reflection has
been predicted with increase of gain in the dielectric medium.
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critical angle θ, at which the in-plane component of the photon wave-
vector kx(θ) matches the wave-vector of SPP k0

x,

kx(θ) = k0
x, (5.1)

where

kx(θ) = (ω/c)n0 sin(θ), (5.2)

k0
x =

ω

c

√
ε1(ω)ε2(ω)
ε1(ω) + ε2(ω)

, (5.3)

n0 is the index of refraction of the prism, ε1 is the (negative) real part
of the dielectric permittivity of metal, ε2 is the dielectric permittivity
of the dielectric medium above the metallic film, ω is the angular
frequency, and c is the speed of light. (The directions of the Cartesian
axes are shown in Fig. 5.2(a).) In a typical SPP excitation experiment,
the incidence angle or the wavelength is scanned while the reflectance
R is measured. At the critical angle, when kx(θ) = k0

x, SPP is excited,
the energy is transferred from the incident light wave to the SPP,
and the reflectance drops significantly. This is the manifestation of
the excitation of SPP, which is routinely observed experimentally. In
the expressions above, all dielectric permittivities and wave-vectors,
in the first approximation, were assumed to be real. This assumption
is not universal and does not hold for the analysis presented below.

The reflection (in p polarization), measured in the setup of
Fig. 5.2(a) as the function of the incidence angle θ or the angular
frequency ω is given by34

R(θ, ω) =
∣∣∣∣ r01 + r12 exp(2ikz1d)
1 + r01r12 exp(2ikz1d)

∣∣∣∣ , (5.4)

where

rik =
(kziεk(ω)− kzkεi(ω))
(kziεk(ω) + kzkεi(ω))

, (5.5)

and

kzi = ±√κ = ±
√
εi(ω)

(ω
c

)2 − k2
x, (i = 0, 1, 2). (5.6)
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The sign selection in Eq. 5.6 is based on cutting the k2
z complex

plane along the negative imaginary axis (meaning that the phase of
complex numbers is defined between −1/2π and 3/2π).35

In the limit of small plasmonic loss/gain, when the characteristic
length of the SPP propagation (decay length) L is much greater than
2π/k0

x, and in the vicinity of the resonance angle θ0, Eq. 5.4 can be
simplified, revealing the physics behind the gain-assisted plasmonic
loss compensation35:

R(θ) ≈ |r001|
[
1− 4γiγr

(kx − k0
x −∆k0

x)2 + (γi + γr)2

]
, (5.7)

where

r001 = r01(θ0), (5.8)

δ(θ) = 4(kx − k0
x −∆k0

x)Im(r0)Im(ei2k0
zd)/ξ, (5.9)

and

ξ =
c(ε′2 − ε′1)

2ω

(
ε′2 + ε′1
ε′2ε′1

)3/2

. (5.10)

(Here and below, ε′i and ε′′i stand for real and imaginary parts of
the dielectric permittivity. The shape of R(θ) is dominated by the
Lorentzian term in Eq. (5.7). Its width is determined by the propa-
gation length of SPP,

L = [2(γi + γr)]−1, (5.11)

which, in turn, is defined by the sum of the internal (or propagation)
loss

γi =
ω

2c

(
ε′1ε

′
2

ε′1 + ε′2

)3/2( ε′′1
ε
′2
1

+
ε′′2
ε
′2
2

)
, (5.12)

and the radiation loss caused by SPP leakage into the prism,

γr = Im(r01ei2k0
zd)/ξ. (5.13)
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The radiation loss also leads to the shift of the extremum of the
Lorentzian profile from its resonant position k0

x,

∆k0
x = Re(r01ei2k0

zd)/ξ. (5.14)

As gain in the dielectric medium is getting larger (ε′′2 becomes
more negative), the propagation loss γi, evaluated in the singularity
point kx− k0

x−∆k0
x = 0, monotonously changes from positive values

(loss) to negative values (gain). At the same time, the radiative loss
γr remains practically unchanged, as long as |ε′′2 | � |ε′2|. Correspond-
ingly, in relatively thick metallic films, when the initial internal loss
γi (without gain) is larger than the radiative loss γr, by gradual
increase of the gain in the dielectric, the system transitions through
the following regimes: (i) At very small gain |ε′′2 | � |ε′′1ε′′22 /ε

′′2
1 |, its

increase makes γi and the reflectance R0 in the singularity point
(kx − k0

x − ∆k0
x = 0) smaller, see Eq. 5.7 and Fig. 5.2(b). (ii) At

γi = γr, the reflectance R0 becomes zero, R0 = 0. (Note that in
very thin metallic films, γi < γr and zero reflectance is achieved
when a dielectric medium has the loss rather than the gain. In this
case, the regimes (i) and (ii) are not present and the transforma-
tion of the reflectance spectra starts from the step (iii) below, see
Figs. 5.2(b) and 5.2(c)) (iii) With further increase of the gain, γi

reduces even further and the minimal reflectance R0 becomes larger.
(iv) At γi = 0, the reflectance R0 becomes equal to unity, R0 = 1. (v)
As the gain becomes even larger, γi is getting negative (propagation
gain instead of propagation loss) and a dip in the reflectance profile
changes to a peak. (vi) At γi + γr = 0 (gain in the dielectric com-
pensates both propagation and radiative losses), the denominator in
Eq. 5.7 becomes equal to zero and the reflectance is predicted to be
infinitely high, R0 → ∞. It is apparent that the regime vi (and
possibly regime v) cannot be adequately described in the steady
state approximation, calling for a more advanced time dependent
model taking indo account amplified spontaneous emission and gain
saturation.

Depending the dielectric permittivity of metal (Ag) and dielec-
tric used in the calculations, full compensation of the internal
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(propagation) loss γi requires optical gain in the dielectric ranging
from 420 cm−1 to 1310 cm−1.35 These values are achievable in liq-
uid solutions and polymeric films doped by laser dyes with emis-
sion cross sections of ∼10−16 cm2 in concentration ∼2 × 10−2 M,
pumped with ∼10 ns Q-switched laser pulses at pumping density
∼10 MW/cm2.35

5.3.2. Localized surface plasmons in metallic

nanoparticles

Similarly to the case of surface plasmon polaritons, localized sur-
face plasmon resonance in spheroidal metallic nanoparticles is pre-
dicted to get enhanced when the surrounding dielectric medium has
critical optical gain.30, 36 Its value can be estimated as follows. The
polarizability (per unit volume) for isolated metallic nanoparticles is
given by

β = (4π)−1 [εm − εd]
[εd + p(εm − εd)] , (5.15)

where εm and εd are the dielctric permittivities of metal and dielec-
tric, respectively, and p is the depolarization factor, equal to 1/3
for a sphere and smaller values for oblong spheroids.37 (Note that a
fractal aggregate of Ag nanoparticles discussed in Section 4.2 can be
roughly thought of as a collection of spheroids, with different aspect
ratios, formed by various chains of nanoparticles in the aggregate.37)
If at the wavelength λ0,

ε′d = −pε′m/(1 − p), (5.16)

then the real part of the denominator in Eq. 5.15 is nullified, leading
to a singularity. The latter, however, is limited by imaginary parts
of dielectric permittivities ε′′m and ε′′d, which are always positive in
passive media. Using the Drude formula

εm = εb −
ω2

p

ω(ω + iΓ)
, (5.17)
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where εb, ωp, and Γ are the interband dielectric constant, plasma
frequency, and relaxation rate, respectively, one gets

λ0 = λp

√
εb + ε′d(1− p) (5.18)

(here λp is the plasma frequency).
The situation changes dramatically if the dielectric medium has

optical gain, ε′′d < 0. In this case, at

ε′′d = −pε′′m/(1 − p), (5.19)

the condition, which can be reached at appropriate population inver-
sion and gain, both real and imaginary terms in the denominator
of Eq. 5.15 are canceled, leading to extremely large local fields,
restricted only by saturation effects.38 According to Ref. [30], this sin-
gularity can be evidenced by an increase of the Rayleigh scattering.

The gain coefficient can be written as

g = 4πn′′/λ0 = −(2π/λ0)ε′′d/
√
ε′d, (5.20)

where the basic relation n = n′ + in′′ =
√
ε′ + iε′ and the approxi-

mation n ≈√ε′d have been used.
Thus the gain needed to compensate for the loss of the localized

SP is given by

g = (2π/λ0)[p/(1 − p)]ε′′m/n
= (2π/λ0)(Γ/ωp)[p/(1− p)][εb + n2(1− p)/p]3/2. (5.21)

For the resonant wavelength λ0 = 0.56 µm, ε′′m = 0.405, and p =
0.114 (oblong spheroids), the required ε′′d = −0.052, and the gain
coefficient is g = 4 × 103 cm−1. (Here n = 1.33 and known optical
constants from Ref. [39] were used). For spherical nanoparticles (p =
1/3), the critical gain is several times larger, g ∼ 104 cm−1. Note that
the critical gain of ∼104 cm−1 has also been predicted in silver-coated
SiO2 nanospheres doped with rare earth ions.33

The gain g ∼ 103 cm−1 is within the limits of highly concentrated
laser dyes and dye-doped polymers pumped with ∼10 ns pulses of a
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Q-switched laser.36 The gain of the order of ∼104 cm−1 is still not
impossible but more challenging.

5.4. Loss Compensation: Experiment

5.4.1. Propagating surface plasmon polaritons (SPPs)

The first experimental demonstration of partial compensation of the
SPP loss by optical gain in the dielectric medium has been reported
in Ref. [40]. The Kretschmann schematics of the experiment, featur-
ing flow cell with the laser dye solution serving as the gain medium,
is depicted in Fig. 5.3. The laser dye above the silver film was opti-
cally pumped (with the cw 10 mW dye laser at λ = 580 nm, at the
angle corresponding to SPP excitation at the pumping wavelength)
to produce the population inversion and optical amplification. The
reflectance of the optically pumped sample was measured as the func-
tion of the incidence angle R(θ) at λ = 632 nm. The slight change

Fig. 5.3. Schematics of the first SPP loss compensation experiment. The signa-
ture of the partial loss compensation is found in the slight change of the angular
reflectance profile R(θ), right inset. The depicted differential reflectance curves
have been measured in the samples with 40 nm and 62 nm thick Ag films and
rhodamine 101 laser dye. Qualitatively similar results have been obtained using
cresyl violet dye. Adopted from Ref. [40].
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of the angular reflectance profile R(θ) (right inset of Fig. 5.3) man-
ifested partial compensation of the SPP loss by optical gain. Note
that in this first experimental demonstration, the pumping and the
gain were very low, resulting in a very small change of reflectance (of
the order of ∆R ∼ 10−5).

The substantially larger SPP loss compensation has been demon-
strated in Ref. [35]. Experimentally, the poly(methyl methacrylate)
polymer (PMMA) doped with rhodamine 6G laser dye (R6G) was
deposited on top of the Ag film (Fig. 5.2(a)). It was pumped from
the top with the Q-switched frequency-doubled Nd:YAG laser at
λ = 532 nm, tpulse ∼ 10 ns, and the time-dependent reflectance
kinetics was measured before, during, and after the pumping pulse
(Fig. 5.4). Note that the peak pumping power in this particular
experiment, ≥1 MW, exceeded that in Ref. [40] by eight orders of
magnitude.) The reflectance values measured before the laser pulse
and during the laser pulse resulted in two distinctly different angular
reflectance profiles R(θ) depicted in Fig. 5.4(b). Their ordering corre-
sponded to that of the theoretical curves R(θ) calculated in the pres-
ence of gain and in absence of gain, Fig. 5.2(c). By fitting the experi-
ment with the model predictions, it has been shown that the achieved
optical gain in the dielectric medium (≈420 cm−1) compensated
nearly one third of the SPP loss. (Note that the corresponding change
of reflectance ∆R ≈ 280% was much larger than that in Ref. [40],
∆R ≈ 0.001%.)

Partial compensation of the SP propagation loss by gain at the
telecom wavelength λ = 1532 nm has been demonstrated in Ref. [41].
In this study, thin (20 nm) gold nanostrip plasmonic waveguide was
sandwiched between two optically pumped slabs of Er3+-doped phos-
phate glass providing for gain (in the long-range surface plasmon
polariton configuration), Fig. 5.5. It has been shown that in this
regime of the relatively low loss, even moderate gain available in the
Er3+-doped glass (not exceeding several tens cm−1) is sufficient to
produce a reasonably strong amplification of the propagating signal,
1.73 dB at the waveguide length of 8 mm. This leads to the (rather
obvious) conclusion of practical importance: the compensation and
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Fig. 5.4. (a) SPP reflectance kinetics showing substantial enhancement of
reflectance during the pumping pulse. (b) Angular dependences of reflectance
measured (at λ = 594 nm) before the pumping pulse (diamonds) and during the
pumping pulse (circles). Solid lines — model fitting. Dashed lines — guide for
eyes. Adopted from Ref. [35].

overcompensation of the SP loss by gain is easier to implement
(taking into account required pumping energy and laser damage)
in the systems, in which the loss is sufficiently low. This makes the
development of low-loss plasmonic waveguides (with advanced mate-
rial properties and low-loss geometries) of paramount importance.
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Fig. 5.5. Signal enhancement in the surface plasmon polariton waveguide as a
function of pumping power in continuous mode. At the maximum pumping power
of 266 mW, the signal is ∼50% enhanced. Inset: Schematics of the experimental
sample. Adopted from Ref. [41].

5.4.2. Localized surface plasmons

As it has been predicted in Refs. [30 and 33], compensation of
SP loss by optical gain in the surrounding dielectric medium can
lead to enhancement of the Rayleigh scattering. Experimentally,
the Rayleigh scattering in suspensions of aggregated Ag nanopar-
ticles in methanol solution of R6G laser dye has been studied in
the pump/probe experiments in Refs. [36 and 42], Fig. 5.6(a). The
Q-switched laser pumping (λ = 532 nm, tpulse ∼ 10 ns) approxi-
mately corresponded to the maximum of the dye’s absorption, while
the wavelength of the probing laser beam (λ = 562 nm) was close
to the maximum of the dye’s gain band. The pumping (and the cor-
responding optical gain in the dye molecules) were varied, while the
intensity of the probing light was kept constant. It has been shown
that with increase of the pumping intensity, the intensity of the scat-
tered probing light could increase up to six times, Fig. 5.6(b). In
agreement with Refs. [30 and 33], this effect was explained by (par-
tial) compensation of the plasmon loss in Ag aggregates by optical
gain, leading to increase of the quality factor of the SP oscillations,
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Fig. 5.6. (a) Pump-probe setup for the Rayleigh scattering experiment. The
home-build R6G laser was pumped by the same frequency doubled Nd:YAG laser,
which excited dye molecules in the dye/Ag aggregate suspension. (b) Intensity
of the Rayleigh scattering as the function of the pumping energy in two different
dye-Ag aggregate mixtures. Suspension # 1 (squares and absorption spectrum
#1 in the inset) demonstrated strong enhancement Rayleigh scattering, while
suspension #2 (diamonds and absorption spectrum #2 in the inset) did not.
Adopted from Refs. [36, 42].

increase of the effective scattering cross section, and corresponding
increase of the Rayleigh scattering.

The regimes of mixing and steering of the dye/Ag aggregate
suspension, time, temperature and other ambient conditions could
make the absorption spectra and the Rayleigh scattering of two
nominally identical mixtures different from each other. Correspond-
ingly, gain-induced increase of the Rayleigh scattering could be large
(Fig. 5.6(b), squares), small, or even negative (Fig. 5.6(b), dia-
monds). The strength of the effect was linked to the shape of the Ag
aggregate’s absorption spectrum, which depended on the nanoscopic
details of the aggregation. The latter appeared to be very important
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to the compensation of loss by gain. Thus, no loss compensation has
been observed in suspensions of isolated Ag nanoparticles in the dye
solution. Most probably, the major contribution to the loss compen-
sation came from the dye molecules adsorbed to Ag aggregate in some
critical hot spots of the electric field. (See the relevant discussion in
Section 5.4.3 and Ref. [43].)

5.4.3. Metamaterials

The concept of compensation of optical loss with gain, is, of course,
not limited to simplest plasmonic structures but can be extended to
more complex composite systems and metamaterials.

As an example, the effect of optically pumped PbS quantum dots,
providing for optical gain at ∼1050 nm, on the transmission of the
metamaterial depicted in Fig. 5.7 has been studied in Ref. [44]. At
the available pumping density, 50 W/cm2, the optical transmission

Fig. 5.7. Schematics of the metamaterial with gain (PbS quantum dots). Top
right: metamaterial’s meta-atom. Bottom right: Difference between pump-induced
changes of the transmission signal for x and y-polarizations for different levels of
pumping. Adopted from Ref. [44].
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of the metamaterial changed by ∼1%. Although this demonstration
served as a proof of principle of compensation of loss with gain in a
metamaterial, much larger levels of pumping and gain are required
for full compensation of loss with optical gain and achieving the
threshold for coherent stimulated emission of plasmonic meta-atoms.

As it has been argued in Ref. [43], the effect of the optical gain
in a dielectric medium on the metallic absorption loss in a metama-
terial or composite plasmonic material is maximized when the gain
is not distributed uniformly but rather placed in judiciously chosen
hot spots of the electric field. This idea has been experimentally real-
ized in Ref. [45], in which the gain medium (epoxy doped with the
rhodamine 800 dye) has been placed inside the fishnet metamaterial
with negative index of refraction, Fig. 5.8.

Fig. 5.8. (a) Unit cell of the fishnet metamaterial, which has the dye-doped
epoxy in the spacer region and above the fishnet structure. (b) The transmission
spectra without pumping (line 1), with the optimized delay between pump and
probe (54 ps) and 1-mW pumping power (line 5), with the optimized delay and
0.12-mW pumping power (line 3), with the optimized delay and 0.16-mW pump-
ing power (line 4), and with the pump preceding the probe and 1-mW pumping
power (line 2). The wavelength-dependent relative transmission change from the
pump–probe experiment is shown by the top-most solid line. (c) The effective
refractive index, n = n′+in′′, evaluated with (solid) and without (dashed) gain.
Adopted from Ref. [45].
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It has been experimentally demonstrated that optical pump-
ing, providing for population inversion and amplification in the gain
medium, doubles the sample’s transmittance, from ∼0.15 to ∼0.3.45

The comparison of the experiment with the theoretical model has
shown that the pumping makes the negative real part of the index
of refraction n′ more negative and fully compensate the absorption
loss n′′ (at λ = 737 nm, n′ changes from −0.66 to −1.017) wheares
n′′ decreases from 0.66 to 0.039). This study has demonstrated the
possibility of creating an optical negative-index metamaterial (and
probably a much broader class of photonic metamaterials), which are
not limited by inherent losses in their metallic constituents.

5.5. Stimulated Emission

5.5.1. Surface plasmon polariton lasers (1D mode

confinement)

An even stronger pumping, resulting in full compensation of loss by
gain, can lead to stimulated emission of SPPs — the effect exper-
imentally demonstrated in Ref. [46] in the setup similar to that
in Fig. 5.2(a). First, when the pumping is weak, excited R6G dye
molecules spontaneously emit to the available modes, including SPP
modes. The generated SPPs propagate at the metal/polymer inter-
face and partly out-couple to the photonic modes in the glass prism.
The broad spectrum of the out-coupled SPP emission is depicted in
Fig. 5.9(a). With increase of the pumping intensity (λ = 532 nm,
tpulse ∼ 10 ns), the spectrum of emission (measured approximately
along the direction of the reflected beam in Fig. 5.2(a)) is getting
much narrower (Fig. 5.9(a)) and the input-output emission curve
features the threshold characteristic of lasers, Fig. 5.9(b).

Furthermore, the threshold pumping density depends on the
detection angle, reaching its minimum at the same angle as the
SPP reflection profile R(θ), Fig. 5.9(c). The first two phenomena —
narrowing of the emission line and threshold in the input/output
curve — suggest onset of the stimulated emission. At the same
time, the similarity of the angular reflectance profile and the angular
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Fig. 5.9. (a) Emission spectra of SPPs excited by optically pumped R6G dye
molecules and outcoupled to the glass prism at θ = 68.7◦ (in the setup of
Fig. 5.2(a)). Blue diamonds — spontaneous emission below the threshold; pink
squares — stimulated emission above the threshold. (b) Input/output curves
of the SPP stimulated emission recorded at different out-coupling angles. (c)
Normalized threshold of the SPP stimulated emission measured at different out-
coupling angles (circles) plotted together with the angular reflectance profile R(θ)
(squares). Adopted from Ref. [46].

dependence of the threshold indicates that the observed stimulated
emission is supported by surface plasmon polaritons.

The stimulated emission of SPPs discussed above46 did not have
any intentional feedback and was analogous to amplified spontaneous
emission (ASE) known in dielectric gain media. To the contrary,
the stimulated emission of surface plasmon polaritons in Ref. [47],
did have the feedback provided by the microcyllindrical cavity, as
described below. Experimentally, thin (d = 10 µm diameter) gold
wire was dipped into the dichloromethane solution of R6G dye and
PMMA polymer and then dried in air. This simple procedure allowed
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Fig. 5.10. (a) Spectra of dye emission below (trace 1) and above (trace 2) the
stimulated emission threshold. Inset: microphotograph of the Au wire (10 µm
diameter) with deposited R6G:PMMA cylindrical cavity (∼30 µm outer diam-
eter). (b) Schematic cross section of the cylindrical microcavity. (c) Values nd
corresponding to the Fourier Transform peaks. Adopted from Ref. [47].

one to obtain a microcyllindrical SPP cavity as shown in inset of
Fig. 5.10(a) and Fig. 5.10(b). At weak pumping of the dye with the
frequency doubled Q-switched Nd:YAG laser, only very dim spon-
taneous emission has been observed, trace 1 in Fig. 5.10(a). With
increase of the pumping energy, several sharp and intense emission
lines (characteristic of multimode stimulated emission) appeared in
the spectrum, trace 2 in Fig. 5.10(a). The Fourier transform of the
multi-line emission spectrum resulted in a series of equidistant peaks
corresponding to the effective optical length of the circumference
traveled by the SPP equal to (nd)exp = 19.6 µm (Fig. 5.10(c)),
where d was the wire diameter and n was the effective refrac-
tive index for the supported wave. This figure was close to the
one calculated based on the known values of d and n for SPP,
(nd)SPP

calc =17.4, and very far from that expected of the whispering
gallery mode wave propagating at the interface of R6G:PMMA and
air (nd)whisper

calc = 45. Therefore, it was concluded that the experimen-
tally observed stimulated emission was supported by SPPs propagat-
ing at the interface of Au and dye-doped polymer. The stimulated
emission originating from the whispering gallery mode was never
detected, probably because of high roughness of the air/polymer
interface.
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Fig. 5.11. (a) Emission spectra in the RB:PMMA film deposited on roughened
bulk silver (with surface roughness equal to 234 nm), pumped with 7 mJ (1), 13
mJ (2) and 20 mJ (3) laser pulses. (b) Scanning electron microscope (SEM) image
of the roughened silver substrate. (c) Equidistant peaks in the Fourier Transform
of the stimulated emission spectrum, corresponding the cavity length ≈21 µm.
Adopted from Ref. [48].

The easiest to realize SPP laser feedback has been demonstrated
in Ref. [48], in which the PMMA film doped with rhodamine B dye
(RB:PMMA) was deposited on top of intentionally roughened bulk
silver, Fig. 5.11. In this series of samples, the evolution of the emission
spectra with increase of the pumping energy (Fig. 5.11) qualitatively
resembled that observed in the microcyllinder cavity in Ref. [47]
(Fig. 5.10) — in both cases, a series of sharp laser lines emerged
above the well-defined threshold. In analogy with photonic random
lasers,49 in which the lasing is supported by random cavities formed
by multiple scatterers, the observed stimulated emission served as
a manifestation of the Surface Plasmon Random Laser, the phe-
nomenon first reported in Ref. [50]. Contrary to the expectations, the
Fourier Transforms of the stimulated emission spectra have shown
that the lasing effect on top of randomly roughened (meta)surfaces
is dominated by one particular cavity size, whose length (ranging
between ∼10 µm and ∼30 µm) increased with increase of the pump-
ing density. This intriguing observation, similar to that in photonic
random lasers,51, 52 calls for further theory development.
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Fig. 5.12. (a) Schematic diagram of the room-temperature plasmon laser show-
ing a thin CdS square atop a silver substrate separated by a 5 nm MgF2 gap. (b)
The room-temperature laser spectra and the input-output curve (inset) show-
ing the transition from spontaneous emission (1.096 MWcm−2, black) through
amplified spontaneous emission (1.280 MWcm−2, smallest line intensity) to full
single-mode laser oscillation (1.459 MWcm−2, largest line intensity). Adopted
from Ref. [53].

The family of plasmonic nanolasers is rapidly growing, utilizing
new materials and morphologies. One particularly interesting geom-
etry, based on the total internal reflection of surface plasmons in the
structure consisting of 1 µm CdS square “nanopatch” separated from
Ag surface by a thin layer of MgF2 spacer (Fig. 5.12(a)), has been
demonstrated in Ref. [53]. This room-temperature semiconductor sub-
diffraction-limited plasmonic laser combined strong confinement with
low metal loss (as the most intense electric fields resided in lossless
MgF2.) High cavity quality factors, approaching 100, along with strong
λ/20 mode confinement, lead to enhancements of spontaneous emis-
sion rate by up to 18-fold. By controlling the structural geometry, the
number of cavity modes was reduced to achieve a single-mode lasing.

Surface plasmon polaritons supported by Ag or Au surfaces have
relatively large loss in the visible part of the spectrum, making the
stimulated emission difficult to achieve. At the same time, SPP loss
is much smaller in the near-infrared spectral range. Correspondingly,
it has been experimentally demonstrated54 that the threshold of
the SPP stimulated emission can be reduced nearly twenty-fold if
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Fig. 5.13. (a) Stimulated emission spectra of the HITC:PMMA film on top of
thick (∼200 nm) Ag film. Pumping energies (from bottom to top) range from 0.06
mJ to 0.5 mJ (tpulse∼10 nm, pumped spot d ∼ 1.7 mm). (b) Schematics of the
experimental sample. Stimulated emission, scattered by unintentional scatterers,
was collected from the front of the sample. (c) Input/output curves of the SPP
stimulated emission at 0.87 µm (HITC dye) and 0.6 µm (R6G dye), showing
nearly twentyfold reduction of the lasing threshold in the former.

HITC dye, whose stimulated emission has a maximum at ∼0.87 µm,
replaces R6G dye that emits at ∼0.6 µm, Figs. 5.13(a,b,c).

5.5.2. Spaser based nanolaser (3D sub-diffraction

mode confinement)

A SPASER, theoretically proposed in Ref. [31], provides for stim-
ulated emission of surface plasmons in resonating metallic nanos-
tructures adjacent to the gain medium. It generates coherent surface
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plasmons, in the same way as a LASER, whose invention more than
half a century ago revolutionized science and technology, generates
stimulated emission of coherent photons.55 In the plasmonic lasers
discussed in Section 5.5.1, the mode had sub-diffraction confinement
in one dimension but was spread over more than one wavelength in
the other two dimensions. At the same time, spaser is the sole means
of enabling a true nanolaser, because only a localized SP resonance is
capable of squeezing optical frequency oscillations into a nanoscopic
cavity in all three dimensions. The grand challenge in the experimen-
tal demonstration of a spaser is the absorption loss in metal. This
problem is particularly severe when the mode is nanoscopic (sub-
diffraction) in all three dimensions.56–58

In Ref. [55], the loss of localized SPs has been completely over-
come by gain and the stimulated emission achieved in the 44 nm
diameter hybrid Au/silica/dye SPASER nanoparticles. In this study,
the 14 nm diameter Au nanospheres with a thin sodium silicate shell
were covered by a thick (15 nm) silica shell doped with the Ore-
gon Green dye, OG-488, Figs. 5.14(a,b,c). The key to a success was
obtaining a sufficiently large number of dye molecules per nanopar-
ticle (∼3 × 103), which was sufficient to overcome SP absorption
loss in the metallic core. The water suspension of nanoparticles was
pumped with ∼5 ns pulses from an Optical Parametric Oscillator
(OPO) lightly focused into a ∼2.4 mm spot. When the pumping
energy exceeded a critical threshold value, a narrow peak appeared
at λ = 531 nm in the emission spectrum, Fig. 5.14(c). The intensity
of this peak plotted versus pumping energy resulted in an input-
output curve with a pronounced threshold, characteristic of lasers,
Fig. 5.14(d). In a separate experiment, oscillating behavior of the
emission kinetics, characteristic of relaxation oscillations in lasers,
has been observed in the range of the pumping energies exceeding
the threshold. The combination of the three phenomena, (i) nar-
rowing of the emission spectrum, (ii) input/output curve with the
threshold, and (iii) relaxation oscillations in the emission kinetics,
manifested stimulation emission in a spaser-based nanolaser — the
first operating at a visible wavelength and the smallest (at that time)
reported in the literature.
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Fig. 5.14. (a) Schematic of the hybrid nanoparticle architecture (not to scale)
indicating dyes throughout the silica shell. (b) TEM image of Au core. (c) SEM
image of Au/silica/dye core-shell nanoparticles. (d) stimulated emission spectra
of the nanoparticle sample pumped with 22.5 mJ (1), 9 mJ, (2) 4.5 mJ (3), 2
mJ (4) and 1.25 mJ (5) 5 ns OPO pulses at λ = 488 nm. (e) Corresponding
input-output curve (lower axis — total launched pumping energy, upper axis —
absorbed pumping energy per nanoparticle). Adopted from Ref. [55].

Note that the spaser effect in the core-shell nanoparticles, whose
morphology was similar to those in Ref. [55], although with a different
dye and multiple sizes of Au cores, has been recently reported in
Ref. [59].

5.5.3. Plasmonic lasers with nanowire gain medium

(2D mode confinement)

Sections 5.5.1 and 5.5.2 above highlighted plasmonic lasers with 1D
mode confinement (SPPs on a metallic surface) and 3D mode con-
finement (nanoparticle based spaser). Plasmonic lasers, whose mode
confined in two dimensions, are described below.
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Fig. 5.15. (a) Plasmonic laser based on CdS nanowire: CdS semiconductor
nanowire on top of a silver substrate, separated by a nanometre-scale MgF2 layer.
Adopted from Ref. [60]. (b) Plasmonic laser based on InGaN@GaN core-shell
nanorod: single InGaN@GaN core-shell nanorod on top of SiO2-covered epitaxial
Ag film (28-nm-thick). (c) The calculated energy-density distribution of the device
in Fig. b. Adopted from Ref. [61].

The first nanolaser of this kind, consisting of a high-gain
cadmium sulphide semiconductor nanowire, separated from the sil-
ver surface by 5-nm-thick MgF2 spacer, has been demonstrated in
Ref. [60], Fig. 5.15(a). Direct measurements of the emission lifetime
revealed a broad-band enhancement of the nanowire’s exciton spon-
taneous emission rate (up to six times) owing to the strong mode
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confinement. This has allowed one to realize the nanolaser, whose
optical mode was ∼5 nm in one transverse direction and ∼38 nm in
the other transverse direction — much smaller than the diffraction
limit at the 489 nm lasing wavelength. At the same time, the length
of the nanowire (and the corresponding longitudinal size of the laser
mode) was comparable to or greater than the wavelength. The very
tight transversal localization of the laser mode was predicted to
enable extreme light-matter interaction, opening up new avenues in
the fields of active photonic circuits, bio-sensing and quantum infor-
mation technology.

Conceptually similar nanolaser, although based on a different
semiconductor nanowire serving as the gain medium (with InGaN
core and GaN cladding), has been demonstrated in Ref. [61],
Figs. 5.15(b,c). The special effort in this study was aimed at growth
of atomically smooth epitaxial silver film. The atomic smoothness of
the metallic film is crucial for reducing the plasmonic loss, the modal
volume and, correspondingly, the lasing threshold. The authors of
Ref. [61] have further emphasized that advancement of the technol-
ogy allowing one to grow atomically smooth epitaxial Ag on Si — a
new platform for plasmonics — promotes the development of mono-
lithically integrated plasmonics and Si-based electronics.

Note that more recently, the growth of high-quality epitaxial
silver films has been reported in Ref. [62] and, the sputtered Ag
films have been shown to support SPPs propagating ≥100 µm at
λ ≥ 650.63

Before concluding this section, we highlight the theoretical pro-
posal64 of using the spaser as an ultrafast nanoamplifier — an optical
counterpart of the MOSFET (metal-oxide-semiconductor field-effect
transistor). As it has been predicted in Ref. [64], the spaser can
perform functions of an ultrafast nanoamplifier in the two regimes:
transient (amplifier) and bistable (dynamic memory). In particular,
it has been shown that the spaser can amplify with gain ≥50 and
the switching time ≤100 fs (potentially, ∼10 fs). This prospective
spaser technology has a promise of enabling ultrafast microproces-
sors working at 10–100 THz clock speed. Other potential applications
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of spasers include sensing and ultrafast high-density information
storage.

5.5.4. Stimulated emission in metamaterials

As we have seen in Sections 5.5.1, 5.5.2 and 5.5.3, (i) both localized
and propagating surface plasmons can be generated via the stimu-
lated emission process similar to that in lasers and (ii) outcoupling
of SP oscillations to photonic modes enables nanoscopic lasers with
the mode confined in one, two or three dimensions. Can more com-
plex metamaterial geometries improve the spaser performance and
make possible new functionalities, which are not achievable in sim-
ple plasmonic structures? The affirmative answer to this question is
supported by several examples outlined below.

The stimulated emission of surface plasmons propagating on
top of multilayered hyperbolic metamaterials coated with dye-
doped polymeric films (HITC:PMMA) was studied in Ref. [65],
Figs. 5.16(a,b). It was shown to have a much lower (2.5–7 times)
threshold than that in similar dye-doped films on top of thick Ag
films, Fig. 5.16(c). Red shift of the stimulated emission spectrum on
top of the metamaterial, as compared to that on top of thick Ag
film, is consistent with the lower threshold in the metamaterial sam-
ple, Fig. 5.16(d). This observation correlates with more than 2-fold
shortening of the spontaneous emission kinetics on top of a lamellar
metamaterial as compared to that on top of silver. The propagation
of surface plasmons on top of the metamaterial and silver substrates
was modeled (in the Otto geometry) using COMSOL Multiphysics. It
has been shown that at given system parameters, the plasmon prop-
agation loss in a metamaterial is smaller than that in silver by ∼14%
and cannot explain the dramatic reduction of the lasing threshold
observed experimentally in the metamaterial samples. It has been
inferred that the stimulated emission of propagating plasmons on top
of a metamaterial is enhanced by the nonlocal dielectric environment
and high local density of photonic states.

The spaser, originally proposed in Ref. [31], was deigned to pro-
duce stimulated emission of surface plasmons supported by single
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Fig. 5.16. (a) Experimental sample — dye doped polymeric film (HITC:PMMA)
on top of the lamellar Ag/MgF2 metamaterial (25 nm Ag and 35 nm MgF2). (b)
Stimulated emission setup. (c) Stimulated emission spectra of the HITC:PMMA
film on top of the 200 nm thick Ag film and metamaterial. Red shift of the spec-
trum on the metamaterial is consistent with the lower threshold. (d) Input/output
stimulated emission curves demonstrating smaller threshold on the metamaterial
than on the thick silver film. Adopted from Ref. [65].

metallic nanoparticles (plasmonic oscillators) coupled to the gain
medium. The further development of the spaser concept, aligned with
that of active metamaterials, has been done in Ref. [66], proposing
that one can create a narrow-divergence coherent source of electro-
magnetic radiation based on multiple “single meta-atom” spasers
coupled to each other. The particular design of Ref. [66] involved a
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Fig. 5.17. Lasing spaser. (a) The structure consists of a gain medium slab (green)
supporting a periodic array of metallic asymmetric split-ring resonators. The
dashed box indicates an elementary translation cell of the array, and the arrows
along the arcs of the ring illustrate the antisymmetric currents of plasmonic
oscillations. In-phase plasmonic oscillation in individual resonators leads to the
emission of spatially and temporarily coherent light propagating in the direction
normal to the array. Adopted from Ref. [66]. (b) Alternative configuration of the
experimentally demonstrated lasing spaser device. The system is composed of a
periodic hole array covered by a thin layer of the R101(dye):PVA(polymer) film.
Adopted from Ref. [67].

two-dimensional array of asymmetric split-ring resonators supporting
coherent current excitations with high quality factors, Fig. 5.17(a).
The proposed device, termed a ‘lasing spaser’, was predicted to act
as a planar source of spatially and temporally coherent radiation.

The originally proposed design depicted in Fig. 5.17 is not the
only possible realization a lasing spaser, and many other types of
spaser meta-atoms, arranged into periodic arrays and coupled to each
other, can lead to a qualitatively similar result. The first experimental
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demonstration of the lasing spaser has been reported in Ref. [67],
in which a highly directional spaser emission in the visible part of
the spectrum has been observed in a periodic subwavelength array of
holes perforated in the silver film (functioning as plasmonic nanocav-
ities) combined with an organic laser dye providing for a gain. The
single mode lasing effect occurred in the red wavelength range. It has
been inferred that the optical feedback for spasing is provided by the
SPP–Bloch wave. This conclusion is supported by the fact that no
spasing was attained in aperiodic holes as well as in periodic holes
that do not support the SPP–Bloch wave at the spasing wavelength.

Another very interesting concept of a metamaterial-based laser,
theoretically proposed in Ref. [68], rests on the idea that the stimu-
lated emission feedback can be provided by the stopped light (SL),
Fig. 5.18(a). When light is brought to a standstill, its interaction
with the gain media increases dramatically due to a singularity in
the density of optical states.68 Concurrently, stopped light provides

Fig. 5.18. (a) The core layer of the metal-dielectric SL multilayer structure is
filled with gain material (blue). (b) Spatially selective excitation of the homoge-
neous gain layer using a near-field tip leads to the formation of a subwavelength
spot of inverted gain, in which the stimulated emission processes take place.
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for an inherent cavity-free feedback mechanism, similar to the one
demonstrated in large-scale disordered media and random lasers.49

The fundamental principle behind the stopped light lasing is to
trap and amplify photons in the same location where they were
emitted. In planar plasmonic heterostructures, the stopping of light
arises from balancing of opposing energy flows in layers of mate-
rials with positive (dielectric) and negative (metal) permittivities.
At the SL point, the overall energy flow cancels, forming a charac-
teristic closed-loop vortex (Fig. 5.18(b)), which results in a strong
enhancement of the local density of optical states. Combined with
gain, this SL feedback mechanism can lead to coherent amplifica-
tion of the trapped photons via the stimulated emission processes.
The experimental realization of this feedback mechanism would be
a major breakthrough in nanolasing and cavity-free active quantum
plasmonics.

5.6. Discussion and Summary

To summarize, in multiple examples, we have demonstrated that
optical gain adjacent to plasmonic surfaces, nanostructures and
meta-atoms (which compose metamaterials) can compensate absorp-
tion loss in metal, enable stimulated emission of plasmonic lasers,
and provide for ultra-fast signal processing. In the visible part of the
spectrum, the smallest critical gain, ∼103 cm−1, which is required to
conquer optical loss in metal, has been theoretically predicted and
experimentally demonstrated for surface plasmon polaritons propa-
gating on top of metallic surfaces. This magnitude of gain is relatively
easy to achieve in dye-doped polymeric films and concentrated dye
solutions pumped with nanosecond or picosecond laser pulses. Sev-
eral examples of stimulated emission of SPPs, with and without laser
feedback, have been reported in the literature.46–48, 53, 54

Similar values of critical gain (in scattering and stimulated emis-
sion experiments) are predicted for localized surface plasmons sup-
ported by elongated or aggregated Ag nanoparticles.26 At the same
time, the gain required to compensate loss in isolated metallic and
metal-dielectric nanospheres is larger, ∼104 cm−1 to ∼105 cm−1.33
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This level of gain is still achievable in laser dyes, although the laser
damage of dye-doped polymeric films and photobleaching of dye
molecules present a serious problem.

Given that the maximal concentration of dye molecules in a solid
can be as high as ∼1021 cm−3 and the emission cross section can be
as high as ∼10−15 cm2,69 the maximal gain can, in principle, be of
the order of ∼106 cm−1. This upper limit is unlikely achievable due to
very strong luminescence quenching in highly concentrated molecular
ensembles. However, the gain of ∼105 cm−1 has been demonstrated
in Ref. [55].

Overall, the very large gain, which can be achieved in optically
pumped laser dyes, makes them the material of choice many for proof-
of-principle demonstrations. However, laser damage, photobleaching,
and the need for a short-pulsed pumping laser make optically pumped
organic dyes unsuitable for many practical applications.

Quantum dots (QDs) have much higher stability than dye
molecules and, reportedly, can have optical gain of ∼105 cm−1.70, 71

They have been theoretically proposed as a gain medium for loss
compensation in the fishnet metamaterial with negative index of
refraction72 and used in the loss compensation experiment employing
a different metamaterial design44 (Fig. 5.7). However, the experimen-
tally demonstrated loss compensation was not very high.47

Practical applications of plasmonic lasers and active plasmon-
ics require electrical (rather than optical) pumping. It can be real-
ized in semiconductor heterostructures and multiple quantum wells.
(The latter, reportedly, can have optical gain exceeding 103 cm−1 73).
Several micrometer- and submicrometer-scale semiconductor lasers
with electrical pumping have been reported in the literature,74–76

Fig. 5.19. However, none of them had the mode size (in all three
dimensions) substantially smaller than a half of the lasing wavelength
in the medium.

It has been argued56, 58, 77 that electrically pumped semiconduc-
tor nanolasers, whose mode is smaller than half of the wavelength
in the medium in all three dimensions, are nearly impossible to
realize (using available plasmonic materials), since the threshold
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Fig. 5.19. (a) Laser schematics. The coaxial waveguide that supports plasmonic
modes is composed of a metallic rod enclosed by a metal-coated semiconductor
ring (six quantum wells gain medium). (b) Scanning electron microscope image
of the device. (c) Evolution of the emission spectra with increase of the pumping
power (room temperature). Adopted from Ref. [76].

current density would significantly exceed the damage threshold.
The reduction of loss in plasmonic material was claimed to be
the only possible way of reducing the lasing threshold.77 The loss
reduction can, in principle, be achieved by moving from the visible
spectral range to the near-infrared range,54 reduction of the tem-
perature,78–81 and improving the quality of the metallic (silver)
films. The recent advance in the latter direction62, 63 gives a hope
of bringing electrically pumped plasmonic lasers, as well as the
whole technological area of active plasmonics and metamaterials, to
reality.
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Lasing in metallic-coated nanocavities, Nature Photonics 1, 589–594.

75. Hill, M. T., Marell, M., Leong, E. S. P., Smalbrugge, B., Zhu, Y., Sun, M., van
Veldhoven, P. J., Geluk, E. J., Karouta, F., Oei, Y.-S., Nötzel, R., Ning, C.-
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CHAPTER 6

Active Metamaterials
MICHAEL D. SINGH and MAREK S. WARTAK∗

Wilfrid Laurier University, Waterloo, Canada

The outstanding properties of metamaterials open the door of oppor-
tunity for a number of exciting practical applications. Fascinating
applications such as: perfect lenses that break the diffraction limit of
conventional lenses, optical quantum storage, and invisibility cloaking.
These dramatic new technological advancements are being severely hin-
dered by the significant loss effects of metamaterials. Overcoming loss
limitations is currently one of the most important topics in metamateri-
als research. Presented in the paper are loss reduction schemes regarding:
the geometric shape of metamaterial components, parameter manip-
ulation, and parametric amplification. Active gain is then discussed
with experimental and theoretical approaches involving loss compen-
sation of active metamaterials. Next, surface plasmons are introduced
discussing the intriguing concepts of spasers and metamaterial lasing
spasers. Finally, we move to the opposite direction and consider increas-
ing losses in metamaterials to create near perfect metamaterial absorbers
that can find applications in the solar cell industry as well as other fields
of science.

6.1. Introduction

The properties exhibited by a substance which is found in nature
is determined by the chemical elements and bonds that form the

∗Corresponding author: mwartak@wlu.ca
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structure. By precisely arranging the elements of a structure, an arti-
ficial material can be created. This artificially engineered material,
a material that is beyond a naturally occurring one, is known as a
metamaterial (“meta” — Greek word for beyond).1 Since a metama-
terial is artificially produced and to the best of our knowledge cannot
be found in nature, it exhibits exotic and potentially advantageous
properties that we can utilize.

The electromagnetic properties of any medium are determined
by two fundamental parameters: electric permittivity (ε) and mag-
netic permeability (µ). The square-root of the product of the two
parameters defines the refractive index of a material

n =
√
εµ (6.1)

A material simultaneously having negative electric permittivity
and negative magnetic permeability is a metamaterial. Since both ε
and µ are negative, the product of the two is a positive real number.
Interestingly, this means that the refractive index is a real negative
number. To illustrate why the refractive index becomes a negative
number, see this simple example (for a more complete discussion,
see2)

Let, ε = −1 and µ = −1

n =
√
εµ

n =
√

(−1)(−1)

n =
√

(−1)
√

(−1)

n = i× i
n = −1

Thus, metamaterials are characterized by having a negative index
of refraction, and are often referred to as negative index materials.

In recent years the field of metamaterials has received remarkable
attention with the number of published papers growing exponentially.
This is due to unusual properties of such systems (see Ref. 3 for
a recent review) and also important practical applications like per-
fect lenses,4 invisibility cloaking,5, 6 slow light,7 and enhanced optical
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nonlinearities.8 Parallel to theoretical developments there has been
spectacular experimental progress.9

The full exploitation of metamaterials suffers due to the exis-
tence of losses which at present are orders of magnitude that are too
large for practical applications and are considered as an important
factor limiting practical applications of metamaterials. For exam-
ple, detailed analytical studies show that losses limit the super-
resolution of a theoretical super-lens.10 There was some controversy
about the possibilities of eliminating losses11 but as shown by Webb
and Thylen12 it is possible to completely eliminate losses in meta-
materials.

In recent years there has been several reports13–15 about pos-
sible compensation of losses in metamaterials by introducing gain
elements. For example, Wegener et al.14 formulated a simple model
where gain is represented by a fermionic two-level system which is
coupled via a local-field to a single bosonic resonance representing
the plasmonic resonance of metamaterial. Also recently, Fang et al.15

described a model where gain system is modelled by generic four-
level atomic system. They conducted numerical analysis using FDTD
technique and showed that one can compensate the losses in of the
dispersive metamaterials. Some other reports of the design and anal-
ysis of active metamaterials are by Yuan et al.16 and Sivan et al.17

6.2. Metamaterial Structures

The idea of left-handed materials was first introduced theoretically
by Vesalgo in his theoretical work,18 but it was not until Pendry
et al.19 in 1999 when the scientific world took notice. Their work
demonstrated a practical way of fabricating the once theoretical
metamaterials by using a split-ring resonator structure. Since then
metamaterial research has been a highly popular and significant
research area. Currently the two most prominent metamaterial struc-
tures which effectively achieve simultaneous negative electric per-
mittivity and magnetic permeability are split-ring resonator (SRR)
structures and fishnet structures.20
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6.2.1. Split-ring resonator structures

A split-ring resonator consists of a pair of concentric non-magnetic
metallic rings, with slit separations on opposite sides (see Fig. 6.1).
One can generate a magnetic resonance by inducing rotational cur-
rents within the SRR. As shown in Ref. 19, a negative permeabil-
ity can be realized in a periodic array of SRRs. A negative electric
permittivity can be achieved by using ultra-thin metallic wires, at
all frequencies below the plasma frequency.19 Thus a periodic array
of SRRs consisting of non-magnetic metallic nanowires can achieve
simultaneous negative electric permittivity and magnetic permeabil-
ity, given the correct parameters, as shown in Ref. 21.

6.2.2. Fishnet structures

A fishnet metamaterial structure is made of two very thin metallic
layers, separated by a thin dielectric slab, with periodically arrayed
rectangular holes.22 This can be seen in Fig. 6.2(a).

The goal is to achieve a simultaneously negative: electric permit-
tivity and magnetic permeability, for a given frequency of incident

Fig. 6.1. A split-ring resonator structure.
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Fig. 6.2. A fishnet structure with metallic layers on either side of a dielectric
slab.

light wave. A negative permeability can be achieved if a strong mag-
netic resonance is formed at a frequency, ωm.23 Such a process can be
described and analyzed using an inductance-capacitance (LC) circuit
where,

ωm =
1√
LC

(6.2)

For an incident optical signal, an (LC) circuit is formed in the
fishnet structure by the wire-dielectric-wire configuration that runs
parallel to the incident magnetic field whilst simultaneously inducing
anti-parallel currents in the metallic layers on either side of the dielec-
tric slab.22 These two processes allow for the formation of a magnetic
field and ultimately a negative permeability through a strong mag-
netic resonance between the incident and induced magnetic field.

A negative electric permittivity can be achieved through a system
of parallel wires separated by a dielectric slab. These parallel wires
essentially exhibit plasmonic behaviour similar to that of Drude met-
als. 22, 23 The permittivity then can be represented by,

ε(ω) = 1− ω2
p

ω2 (6.3)
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where ωp is the plasma frequency which can be tuned by changing
the distance between the wires (i.e., by changing the thickness of the
dielectric slab). Thus from Eq. 6.3, a slab thickness corresponding
to an ωp value such that, ωp > ω, will result in a negative electric
permittivity (ε < 0). By viewing Fig. 6.2, it can be clearly seen that
parallel wires are separated by a dielectric slab in a fishnet struc-
ture, hence providing a perfect environment for a negative electric
permittivity.

6.3. Applications

The growing popularity of metamaterial research can likely be
attributed to the fascinating potential applications. Among others,
metamaterials have been proposed to be capable of: storing light,
breaking the diffraction limit or in other words; achieving super-
resolution, making objects invisible, and becoming nearly perfect
absorbers (optical black holes).

6.3.1. Photon storage

Photon storage is of particular interest for storing qubits in mem-
ory for quantum computing, i.e., quantum optical memory. Stopping
light or even slowing it down can provide a major technological boost
in quantum electronics. Storing light has recently been demonstrated
(2007) theoretically by Kosmas L. Tsakmakidis et al., in Ref. 7. The
2007 paper proposes the use of a tapered negative index waveguide
core to completely and effectively stop the propagation of light. Anal-
ysis of said waveguide reveals the propagation of a light ray which
becomes trapped due to the waveguides effective thickness reduc-
ing it to zero at a critical point.7 To illustrate this effect, imagine
a cladding of positive refractive index surrounding a waveguide of
negative index that gradually decreases in thickness. As the light
ray propagates through the negative index core, it will experience
a negative refraction (known as a negative Goos-Hänchen lateral
displacement7) at the interfaces of the mediums. Once the critical
waveguide thickness is reached, a double light cone (referred to as
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Fig. 6.3. (a) The negative index waveguide approaching critical thickness. The
light ray experiencing negative Goos-Hänchen lateral displacements. (b) A double
light cone (‘optical clepsydra’) forms at critical thickness.

an optical clepsydra in Refs. 7) will be formed, thus permanently
trapping the ray of light. This process is shown in Fig. 6.3.

6.3.2. Perfect lenses

The sharpness of an image from a conventional lens is limited by
the diffraction limit, preventing the fine details from being realized.
A conventional lens cannot focus light onto an area smaller than the
square of the light’s wavelength.4 To understand this limit, as shown
by Pendry in Ref. 4, one can consider an infinitesimal dipole with
freedom ω placed in front of a lens. The electric component of the
field can be represented by a 2D Fourier expansion,

�E(�r, t) =
∑

σ,kx,ky

�Eσ(kx, ky)× exp(ikzz + ikxx+ ikyy − iωt) (6.4)

Using Maxwell’s equations and choosing z to be the axis of the
lens,

kz =

√
ω2

c2
− k2

x − k2
y , where

ω2

c2
> k2

x + k2
y (6.5)

It is shown in Ref. 4 for large values of the transverse wave vector,
that propagating waves are limited to: k2

x + k2
y <

ω2

c2
such that,

kmax =
ω2

c2
(6.6)
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then the maximum attainable resolution of an image is,

Rmax =
2π
kmax

=
2πc
ω

=
2πc
2πf

= λ, where ω = 2πf (6.7)

Thus it can clearly be seen that the maximum area one can focus
light onto is equal to λ2.

J. B. Pendry proposed in Ref. 4 that this limit in the optical range
of a classical lens can be surpassed using a negative index material
(metamaterial).

As shown earlier, the refractive index of a medium will become
negative if its electric permittivity and magnetic permeability are
simultaneously negative. However the impedance of the medium
defined by,

Z =
√
µµ0

εε0
(6.8)

will remain positive.4 Moreover, if one selects values of ε = −1 and
µ = −1, the medium matches that of a vacuum space allowing
for zero reflection at the interface between vacuum and the nega-
tive index medium. At both boundaries of the medium (entering
and exiting the medium), the impedance match allows the light to
stay unchanged. The transmission coefficient of the negative index
medium turns out to be,

T = e−id
√

ω2c−2−k2
x−k2

y (6.9)

where d is the thickness of the metamaterial slab. This slab can pre-
vent the decay of evanescent waves by amplifying them, as shown in
Ref. 4. Sparing the intensive details, after some analysis the trans-
mission coefficient of the S-polarized waves when the limit of ε and
µ each approach −1 is taken, one obtains,

Ts = e−ikzd (6.10)

and similarly taking the same limit for P-polarized waves,

Tp = e−ikzd (6.11)
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Thus amplification of evanescent waves is achievable using a
negative index medium. More importantly, the propagating waves
as well as the evanescent waves can contribute to the resolution of
the image.4 This should be a point of emphasis that theoretically
speaking, a metamaterial lens can focus light onto an area smaller
than the square of the light’s wavelength.

Quite interestingly, it was proposed that the earlier mentioned
limit can even be broken using a thin slab of silver, which alone is
not capable of achieving a negative refractive index, only rather a
negative electric permittivity given the correct design parameters.

If one considers the dimensions of the silver slab to be smaller
than the incident light wavelength, known as the electrostatic limit
where,

ω � c0

√
k2

x + k2
y (6.12)

the transmission coefficient of said slab, as shown in Ref. 4, is com-
pletely independent of µ. Following the analysis in,4 the transmission
coefficient in the electrostatic limit turns out to be,

lim
k2

x+k2
y→∞

T =
4εeikzd

(ε+ 1)2 − (ε− 1)2e2ikzd
(6.13)

It can clearly be seen that the transmission is dependent on the
electric permittivity and independent of the magnetic permeability.
Thus even a metal such as silver, with a negative electric permittivity,
can achieve image focusing beyond the classical limit.

6.3.3. Invisibility

The prospect of making objects appear invisible is a fascinating idea
that once seemed to be of science fiction. Invisibility now appear to
be a real possibility with the advent of the field of metamaterials.

Typically, we are able to manipulate light with homogeneous
materials such as lenses to magnify and focus light to produce
images.24 These homogeneous materials generally have a uniform
refractive index throughout. However, since metamaterials consist
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Fig. 6.4. Object surrounded by a metamaterial medium, acting as a cloak, with
varying refractive index such that light rays curve around the object, effectively
making the object completely invisible.

of sub-wavelength elements to achieve their characteristic negative ε
and µ, one can arrange those elements in a way to produce a varying
ε and µ, resulting in a varying refractive index throughout the device.
This metamaterial device will then be an inhomogeneous material,
which can be tailored to have a gradient of refractive index, capable
of manipulating light in ways of our choosing based on its design.24

With the manipulability of metamaterial structures, one can create
a metamaterial with a gradient refractive index designed to curve
light around a given object (See Fig. 6.4). Such a design would make
the object completely invisible while allowing anything behind the
object to be visible as if nothing was in front of it.

Invisibility using metamaterials is now just a sub-field of research
within a larger field known as transformation optics.

6.4. Losses in Metamaterials

6.4.1. Origin of losses

The current metamaterial structures, namely fishnet and SRR struc-
tures, utilize metallics such as copper, gold, or silver to obtain the
characteristic properties of a left-handed material. Metals are known
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to exhibit high energy dissipation with incident electromagnetic radi-
ation, which is what we would refer to as losses in many practical
applications. The fundamental processes which occur that result in
losses of metals are rarely discussed in scientific literature; some-
thing that should be much more extensively studied since it pertains
to losses in metamaterials. Jacob B. Khurgin has some well written
work 25–27 who discusses the origin of losses in metallics, offering a
unique point of view, as well as making significant connections to
metamaterials.

A propagating electromagnetic wave in an optical cavity will
exchange energy between two forms, stored in the electric field and
stored in the magnetic field. The total energy conservation expression
will be,

EE + EH = Etotal (6.14)

Substituting EE = 1/2εE2 and EH = 1/2µH2 to obtain,

1/2εE2 + 1/2µH2 = Etotal (6.15)

where E and H are the electric and magnetic field magnitudes, ε is
the electric permittivity, and µ is the magnetic permeability.

If free carriers are introduced (i.e., electrons), such as in a metal,
it can be shown that a third form of energy will enter the system in
the form of carrier kinetic energy (see Refs. 26 and 27). Equation 6.14
then becomes,

EE + EH + Ek = Etotal (6.16)

Subsequently, substituting Ek = 1/2ε0(ω2
p/ω

2)E2, where ε0 is
vacuum permittivity, ω and ωp is the frequency and plasma fre-
quency, respectively, to obtain,

1/2εE2 + 1/2µH2 + 1/2ε0(ω2
p/ω

2)E2 = Etotal (6.17)

It can then be shown that the electric field energy, EE , is much
greater than the magnetic field energy, EH . In fact, for a confinement
scale close to the plasma wavelength, λp = 2πc/ωp, the magnetic
field energy almost vanishes.25 Thus the majority of the energy will
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be exchanged between the electric field and the kinetic motion of
electrons.25 It means that half of the time, nearly all of the energy
of the propagating electromagnetic field is stored in the form of car-
rier kinetic energy. This kinetic energy eventually gets dissipated
throughout the metal due to scattering by defects and phonons at a
rate of 2γ, where γ is the damping rate.26

6.4.2. Limitations of loss compensation

So far, reducing losses experienced by metamaterials has proven to
be quite a challenging task. However, this has not deterred theorists
and experimentalists alike from attempting to achieve low-loss meta-
materials which would unleash a plethora of extraordinary technolo-
gies. As mentioned earlier, the main problem is the high dissipative
loss that occurs due to metallic layers used in the fabrication of a
metamaterial device.

One technique to compensate metal loss in metamaterial, and
currently probably the most promising, is to introduce an active
gain medium with sufficient pumping parameters to achieve full
compensation and even lasing.28 Loss compensation of a meta-
material device through active gain media has been experimen-
tally successful through meticulous fabrication, which is discussed
in Section 6.6. However, according to Khurgin et al. in Ref. 29,
the only successful demonstration of internal miniature lasers in
plasmonic waveguides, so far, has been the ones which operate
with optical pulses rather than continuous signals and are always
larger than half of the wavelength in each structure in at least one
direction.29

Currently, to the best of our knowledge, the only detailed
theoretical analysis of a gain integrated plasmonic waveguide was
performed by Khurgin et al. in Ref. 29. They show that there appears
to be general limitations for loss compensation and lasing using active
gain media. These apparent limitations should be studied much more
extensively and understood before attempting to create a loss com-
pensation or lasing environment. A review of the work by Khurgin
et al. in Ref. 29 will be presented.
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Analysis on two different practical plasmonic waveguides with
semiconductor gain materials — one with a silver waveguide and
one with a gold waveguide — revealed two interesting findings. The
first, pertains to tightly confining plasmonic waveguides such that the
confinement is much less than half the wavelength, the modal loss was
found to inevitably approach the loss of the metal itself, independent
of the geometry of the structure. The second shows that the current
densities necessary to achieve complete loss compensation approach
unsustainable levels.

If one assumes that the total energy of light is stored in the kinetic
energy of carriers for half of a full oscillation, as shown Section 6.4.1.
above, then the expression for modal loss can be represented by,

γeff = γ(1 − n−2
eff) (6.18)

where γ is the damping rate, and neff is the effective refractive
index.

Calculations can be carried out and then γ and neff can be plot-
ted as functions of effective waveguide thickness. These plots can be
seen in Ref. 29, showing that once neff reaches a value of approxi-
mately 1.5, the modal loss is commensurate with the metal loss i.e.,
1014/s. The calculations assumed no specific geometry and therefore
the results are independent of geometry.

To compensate for this modal loss, the modal gain per second
was represented by,

g(ω) = B
√

�ω −Egap(fc(ω)− fv(ω))Γ (6.19)

where fc and fv are the Fermi-factors that depend on carrier den-
sity in the conduction and valence bands, and B is the stimulated
emission coefficient. The confinement factor is expressed as,

Γ = 2qs
∫ da

0
e−2qsxdx (6.20)

where the thickness of the active layer was chosen to be da = 1
2qs,

allowing for a confinement factor value to be obtained.
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The transparency carrier density, when g(ω) = γeff (ω), was then
plotted as a function of waveguide thickness yielding a reasonable
range of: 1018–1019 cm−3. However, such transparency density range
requires extremely high current densities, i.e., 100 kA cm−2 for silver
waveguides and 300 kA cm−2 for gold, at effective waveguide thick-
ness deff < 0.25. These current densities are at minimum two orders
of magnitude higher than threshold current densities in high pow-
ered double heterostructure semiconductor lasers. The current den-
sity expression used in Ref. 29,

Jtr =
4edaε

3/2
s

cλ2 BFp

∫ ∞

Egap

√
�ω − Egapfc(ω)(1 − fv(ω))dω (6.21)

includes Purcells factor,

Fp = 1 + πΓqskxk
3
sω

(
dkx

dω

)
(6.22)

which can get large due to the reduced group velocity and tight
confinement which resulted in decreased recombination times by
orders of magnitude. See Ref. 29 for specific numbers.

The current densities necessary to sustain full compensation and
then lasing seem to be impractically high. However it should be
emphasized that though these current densities seem to be unsus-
tainable for continuous pumping, they are achievable through optical
pulsed pumping.

With all this said, it seems that more extensive research should
be done in this area to validate the work in Ref. 29. There is much
to learn about plasmonics and many more configurations and new
materials to explore.

6.5. Loss Reduction Schemes

Techniques for reducing loss in these left-handed materials are
imperative in the field of metamaterials. Many proposed techniques
attempt to optimize the geometric design of a given metamaterial in
order to minimize energy dissipation.
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Fig. 6.5. (a) A fishnet structure section with a circular hole instead of a typical
rectangular/square hole (b) Fishnet section with an elliptical hole.

6.5.1. Effects of different hole shapes

The double-fishnet structure currently seems to be the most effec-
tive fabrication of a metamaterial device. As such, exploring vari-
ous design characteristics of the fishnet structures can provide useful
information regarding loss reduction. In Fig. 6.2, the holes of the
fishnet structure are shown to be of square or rectangular nature.
One can also design a fishnet to have circular or elliptical holes (See
Fig. 6.5). Another design characteristic is the dielectric spacer thick-
ness, as alluded to in the previous section. The authors in Ref. 30
numerically analyze the effects on the figure of merit (FOM) of a
fishnet structure containing different shaped holes. The main finding
was that differing hole shapes can have a large impact on losses.

As a standard of comparison, Dolling et al. in Ref. 30, used the
highest experimentally verified FOM. At the time of their writing,
the highest achieved FOM of a silver-based double-fishnet structure
operating at around 1.4µm was approximately 3, reported in Ref. 31,
where this structure contained rectangular holes. Thus, the numerical
simulations used the same parameters described in Ref. 31 to ensure
consistency. Evidently, the theoretical FOM of a rectangular-hole
fishnet structure containing those same parameters turned to be,
FOM = 3.72.
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To determine the optimum circular-hole structure FOM, they
considered the number of free parameters of a rectangular hole struc-
ture. Three free parameters are apparent; the width and the length of
the rectangle, and the lattice constant. The problem with a circular-
hole structure is that there is only one dimensional parameter, being
the radius, and the other parameter being the lattice constant; result-
ing in two free parameters. Thus another parameter must be con-
sidered, which was the thickness of the dielectric spacer. The same
reasoning can be used for square shaped holes, since the lengths
and widths are equal. In principle, since the circular-hole/square-
hole structure has the same number of the free parameters as the
rectangular-hole structure, one should be able to achieve performance
comparable to that of rectangular-holes.

The simulations were done by simultaneously varying the lat-
tice constant and either the width of the square or radius of the
circle, depending on which structure was being simulated. The oper-
ational wavelength was held fixed at 1.4µm, and the highest FOM
was searched for as the parameters varied. The retrieved optimum
FOM’s of the circular-hole and square-hole structures were 1.21 and
1.29, respectively. As they predicted, the FOM’s had large differences
from the rectangular-hole case (3.72); a difference of 2.51 and 2.43.

These losses were said to occur due to magnetic resonance deteri-
oration leading to the negative real part of the magnetic permeability
almost vanishing above resonance. Also, the real part of the electric
permittivity becomes overly negative, larger than the rectangular-
hole case, due to the larger fraction of metal in the diluted-metal
parts. It seems that one needs more free parameters for loss optimiza-
tion of square/circular holes. From the work presented in Ref. 30, it
is apparent that rectangular holes for fishnet structures provide the
best configuration for low losses in the metamaterial device.

6.5.2. Loss reduction via geometric tailoring

It has been proposed that ohmic losses can be reduced by geomet-
rically tailoring a metamaterial structure. This section will be an
overview of the proposed technique in Ref. 32.
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Fig. 6.6. (a) square cross-section (b) SRR with circular cross-section.

6.5.2.1. Ohmic loss in left-handed materials

Ohmic loss of a metamaterial is the power dissipation resulting in
heat production due to resistance in the metallic layers of the struc-
ture.32 In the high frequency range, the dominant loss component
in a metamaterial is ohmic loss. Precisely modifying the geometric
details of the structure can significantly change the amount of ohmic
loss experienced. In this way, field concentration and current distri-
bution will be affected with different curvatures and precise dimen-
sional changes.32 A geometric tailoring technique is computationally
demonstrated in Ref. 32 for split-ring resonator (SRR) structures,
however it should also be applicable to other metamaterials such as
fishnet structures.32 Two types of split-ring resonators are shown in
Fig. 6.6.

6.5.2.2. Low frequency loss

In general, it was found that sharp corners and edges of a SRRs
metallic wires greatly affect current density distributions, as the cur-
rent tends to concentrate in sharp edged areas of the structure. It can
be seen in Fig. 6.7 that the current density is distributed much more
uniformly in the SRR with circular cross-section, than in the SRR of
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Fig. 6.7. The current density distribution is shown for (a) and (b). Cross-
sectional areas are the same for both SRRs. (a) SRR with square cross-section.
Current density seems to be increased in the corners. (b) SRR with circular cross-
section. The current density seems to be much more evenly distributed.

square cross-section. The square cross-section SRR exhibits increased
current concentration in the corners of the wire. Power density goes
with the square of current density, thus decreasing the current density
concentration in specific areas will decrease the overall ohmic loss.32

Therefore geometrically tailoring a structure in a metamaterial to
have smooth curvatures will, for low frequencies, decrease the power
loss experienced by the structure.

6.5.2.3. High frequency loss

The smoothening of corners will more uniformly distribute the cur-
rent density at low frequencies, ultimately resulting in the reduction
of power loss. However for high frequencies, the ratio of skin depth to
wire thickness is much higher, meaning the current density is already
distributed uniformly.32 The previous technique then is of no use for
high frequencies.

To reduce the skin depth ratio, one can increase the wire thickness
as can be seen in Fig. 6.8. By increasing the wire thickness toward the
bulk limit, the skin depth decreases significantly, effectively confining
the current distribution to the surface of the wire. Increasing wire
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Fig. 6.8. The trend demonstrates that as ring thickness increases, skin depth
decreases.

thickness also directly decreases the resistance of a wire. Consider
the common resistance equation for a conductive wire,

R =
ρL

A
(6.23)

where R is the total resistance of the wire, ρ is the resistivity, L is the
length of the wire, and A is the cross-sectional area of the wire. One
can see that by increasing the cross-sectional area (wire thickness),
A, the total resistance of the wire, R, will decrease. As alluded earlier,
the resistance of the metallic layers is directly involved in the amount
of ohmic loss a metamaterial structure experiences; where resistance
is proportional to ohmic loss. Thus, reduced skin depth along with
increased wire thickness will effectively result in a decrease of ohmic
loss in a metamaterial.32

However, problems may arise with this technique as one cannot
arbitrarily increase wire thickness since wires need to be sufficiently
thin to obtain negative electric permittivity in the structure.19
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6.5.3. Loss reduction via parameter manipulation

It can be theoretically shown that increasing the ratio of inductance
(L) to capacitance (C) of a fishnet structure, will effectively reduce
its losses. This section will be an overview of the findings in Ref. 33.

An important aspect of the findings is that loss reduction can be
realized using the proposed technique in the optical frequency range,
which so far has been difficult to demonstrate. This method is shown
specifically for fishnet metamaterial structures, but it is a generic
method that should also be applicable to alternate structures.33

6.5.3.1. Resistance, inductance, and capacitance

The resonance frequency of a fishnet structure is independent of the
structure’s separation S. This property can be used to our advan-
tage, as it allows us to change the capacitance and/or the inductance
without affecting the resonance frequency.33 As mentioned earlier, an
RLC circuit can be used to model the magnetic element of a fishnet
structure unit cell. The magnetic element is the vertical wire that
lies along the H axis (see Fig. 6.9). The RLC circuit schematic can
be seen in Fig. 6.10.

The expression for total capacitance is given by,

C =
1
2
Cm (6.24)

C =
1

4S
εr(lw) (6.25)

where,

Cm =
εr(lw)

2S
(6.26)

and total inductance is given by,

L = Lm =
µr(lS)
w

(6.27)

Parameters l, S, and w are shown in Fig. 6.9.
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Fig. 6.9. Front facing view of a fishnet structure.

Fig. 6.10. RLC circuit model.
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It is known that for RLC circuits, the loss is indirectly propor-
tional to the quality factor,33

Q =
1

2R

√
L

C
(6.28)

It can immediately be seen from Eq. 6.28 that by decreasing the
resistance R and/or decreasing the capacitance C and/or increasing
the inductance L, the quality factor Q can be increased. Due to
the relationship of Q and the loss, the losses of the RLC circuit,
and ultimately the fishnet structure metamaterial, can effectively be
reduced by varying R,L, and C.33

Reducing the resistance R can simply be done by choosing a good
conductor material such as copper or gold. Inductance L increases
linearly with the spacing S (from Eq. 6.27), while the capacitance C
decreases linearly with S (Eq. 6.26). These proportionalities work in
our favour. One can increase the thickness of the dielectric slab which
increases the spacing between the metallic layers, which will increase
the inductance while simultaneously decreasing the capacitance.

Increasing the separation S cannot be done arbitrarily, as it is
restricted by the unit cell az which can be defined from Fig. 6.9 as
the perpendicular vector to ax and ay. The separation can go no
larger than az, and az must be much smaller than the wavelength of
electromagnetic radiation.33 It must also be kept small enough to not
affect the negative electric permittivity of the long wires.33 Another
potential problem occurs according to the computational findings in
Ref. 33 that the magnetic resonance disappears after the spacing is
increased to a certain value larger than the width of the wires. This
apparently occurs because the short wires decouple from each other
at that critical value.33

6.5.4. Optical parametric amplification

Optical parametric amplification was theoretically proposed in
Ref. 34 as a means of compensating loss in negative index materials.
The scheme utilizes a positive-index auxiliary electromagnetic field
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signal as a control field which enables a loss-balancing optical para-
metric amplification for a negative-index signal wave.34 This section
will present a review of the proposed loss compensation scheme.

The setup considers a negative-index wave signal of frequency
ω1 which has a wave vector �k1 in the positive direction, let us say
along the z-axis. This negative-index signal’s Poynting vector �S1 is
anti-parallel to �k1; directed against the z-axis. The auxiliary control
signal travels in a positive-index domain, and hence is a positive-
index signal along the z-axis with frequency ω3 and wave vector �k3.
This positive-index wave has a Poynting vector �S3 which is directed
parallel to �k3. The two coupled waves with parallel wave vectors �k1

and �k3 will give rise to an idle wave of frequency, ω2 = ω3 − ω1,
that travels in the positive-index domain. The idle wave then has a
wave vector �k2 and a Poynting vector �S2 that travel along the z-axis.
Figure 6.11 shows the direction of each signal’s wave vectors and
Poynting vectors. The generated frequency-difference idle wave will
enable a phase-matching scheme for optical parametric amplification

Fig. 6.11. The direction of each signal’s wave vectors and Poynting vectors. L is
the slab thickness.
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at ω1 through three-wave mixing by converting the pump field energy
at ω3 into a signal.34

Following the analysis in Ref. 34, the normalized amplitudes for
the signal and idler waves can be expressed as,

aj =
(
ej
µj

)1
4 hj√

ωj
(6.29)

Then the rate of change of amplitudes along the z-axis for the
signal waves and idler waves can be written as,

da1

dz
= −iga∗2ei∆kz + a1

(α1

2

)
(6.30)

da2

dz
= −iga∗1ei∆kz − a2

(α2

2

)
(6.31)

where,

g =
√
ω1ω2

(
ε1ε2
µ1µ2

)− 1
4
(

8π
c

)
χ(2)h3 (6.32)

and ∆k = k3 − k2 − k1. The pump amplitude h3 is assumed to be
a constant, αj are the absorption coefficients. The values a2

1 and a2
2

are proportional to the number of photons at each corresponding
frequency.

Using boundary conditions: a1(L) = a1L and a2(0) = a20 where
L is the slab thickness, one can solve Eqs. 6.30 and 6.31 to obtain
solutions,

a1(z) = A1e
β+
1 z +A2e

β+
2 z (6.33)

a∗2(z) = κ1A1e
β−
1 z + κ2A2e

β−
2 z (6.34)
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where

β±1,2 = β1,2 ± (i∆k/2) and β1,2 =
1
4
(α1 − α2)± iR

A1,2 = ± 1
D

[
a1Lκ2,1 − a∗20eβ

+
2,1L
]

D = κ2e
β+
1 L − κ1e

β+
2 L

κ1,2 =
1
g
(±R+ is) and R =

√
g2 − s2

s =
1
4
(α1 + α2)− i∆k/2

Then the amplification factor is,

η1a(z) =
∣∣∣∣a1(z)
a1L

∣∣∣∣
2

(6.35)

and for the case a1L = 0,

η1a(z) =
∣∣∣∣a1(z)
a20

∗∣∣∣∣
2

(6.36)

Upon simulation, resulting graphs show that amplification of sev-
eral orders of magnitude occurs for phase-matched waves. Figure 6.12
shows a plot of the output amplification factor, η1a, versus gL, where

Fig. 6.12. The output amplification factor, η1a, plotted against gL.
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g is from equation 6.35. Such amplification can provide complete loss
compensation of a metamaterial medium.

6.6. Active Gain

Gain in metamaterials can be incorporated utilizing fluorescent dyes,35

and quantum dots,36, 37 and quantum wells.38, 39 Severalmetallic struc-
tures were investigated, including SRR, inverted SRR, and fishnets.
Gain material is typically modelled as a four-level system.40, 41

A simple model of plasmonic material with gain known as toy
model14 will now be summarized. The model can provide some gen-
eral insight about the influence of gain.

6.6.1. Toy model

Several years ago a simple model of a metamaterial incorporat-
ing optical gain was proposed by Wegener et al.14 It consists of a
fermionic two-level system (TLS) which represents gain medium and
a single bosonic resonance which represents plasmonic resonance of
metamaterial. The systems are connected via a local-field coupling,
see Fig. 6.13.

Fermionic TLS is described by the Bloch equations

dpTLS

dt
+ (iΩTLS + γTLS)pTLS =

i

�
dTLS(E + Lppl)(1 − 2f)

(6.37)

Fig. 6.13.
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df

dt
+ ΓTLS f =

i

�
(p∗TLSdTLS(E + Lppl)− pTLSd

∗
TLS(E + Lppl)∗)

(6.38)

In the above expressions, pTLS represents (dimensionless) complex
transition amplitude, f = fTLS is the occupation probability of the
upper level, dTLS is the dipole matrix element, ΩTLS is the transition
frequency, γTLS is the damping or transverse relaxation rate, ΓTLS is
the longitudinal relaxation rate, L is the phenomenological coupling
constant between fermionic and bosonic systems. Pump rate Γpump

can also be added on the right-hand side of Eq. (6.38). It will account
for pumping of TLS via additional energy levels.

The equation of motion for bosonic mode is

dppl

dt
+ (iΩpl + γpl)ppl =

i

�
dpl(E + LpTLS) (6.39)

with Ωpl being the plasmonic frequency, γpl is the damping rate and
dpl dipole matrix element. Occupation factor for plasmonic mode is
(1 − 2f) = 1. E the external electric field of the light. As can be
seen from the above equations the coupling between both systems is
provided by the local-field effects.

For the toy model, effective parameters can be obtained from the
Maxwell-Garrett effective-medium theory. Some of the results are
illustrated in Fig. 6.14 where the real part of the refractive index
is shown with and without coupling L for an increasing values of
occupation probability f from 0 to 1.14

Time-dependent analysis with a pump rate Γpump = Γ0(1 − f)
reveals relaxation oscillations. Those can be obtained by numerical

Fig. 6.14. The real part of the refractive index plotted against frequency with
the occupation probability increasing from 0 to 1.
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integration of the above equations. The results can help in designing
practical spaser structures.

6.6.2. Maxwell-Bloch Theory

In this Section we summarize the fundamental equations which
are used in the study of dynamical processes inside metamate-
rials. The approach involves combining the finite-difference time-
domain (FDTD) method with auxiliary differential equations that
self-consistently describe both, the material dispersion of the plas-
monic cladding and the nonlinear, spatially resolved polarization
response of the gain medium.

Gain medium is modelled as a four-level system with pump oper-
ating between level 0 and level 3;42 the emission transitions take place
between levels 2 and 1, see Fig. 6.15. The approach is known as the
Maxwell-Bloch (MB) formalism.

The spatio-temporal dynamics of the occupation densities N0 to
N3 are given by the set of equations40

∂N3

∂t
=

1
�ωr,a

(
∂Pa

∂t
+ ΓaPa

)
· Eloc−N3

τ32
(6.40)

∂N2

∂t
=
N3

τ32
+

1
�ωr,e

(
∂Pe

∂t
+ ΓePe

)
·Eloc − N2

τ21
(6.41)

Fig. 6.15. Schematic of the four-level system and its parameters.
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∂N1

∂t
=
N2

τ21
− 1

�ωr,e

(
∂Pe

∂t
+ ΓePe

)
·Eloc − N1

τ10
(6.42)

∂N0

∂t
=
N1

τ10
− 1

�ωr,a

(
∂Pa

∂t
+ ΓaPa

)
·Eloc (6.43)

The evolution of polarization densities Pa = Pa(r, t) of the tran-
sition 0 ↔ 3 and Pe = Pe(r, t) of the transition 1 ↔ 2 under the
local electric field E(r, t) is described by the differential equations
(i = a, e)

∂2Pi

∂t2
+ 2Γi

∂Pi

∂t
+ ω2

0,iPi = −σi∆NiEi (6.44)

The resonance frequencies are defined as ω0,i = (ω2
r,i + Γ2

i )
1/2,

∆Na(r, t) = N3(r, t) − N0(r, t) is the inversion of the pump transi-
tion and ∆Ne(r, t) = N2(r, t)−N1(r, t) is the inversion of the probe
transition, σi is a phenomenological coupling constant.

Details of the numerical implementation are provided in Ref. 43.

6.6.3. Approach by Wuestner et al. (2010)

Wuestner et al applied MB approach and considered two configu-
rations, passive and active. In the passive configuration two silver
fishnet films were embedded inside a dielectric host with a value of
refractive index nh = 1.62. The permittivity of silver was modeled
by Drude approach corrected by two Lorentzian resonances to match
experimental data at visible wavelengths. In the active configuration
it is shown that incorporation of a gain medium in a structure of
a double-fishnet metamaterial (see Fig. 6.16) can fully compensate
losses in the regime where the real part of the refractive index is
negative.

6.6.4. Experiment by Xiao et al.

It has been experimentally demonstrated in Ref. 35 by Xiao et al.
that a fishnet metamaterial structure with an active gain medium
spacer can effectively overcome optical losses, resulting in an essen-
tially lossless negative index material.
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Fig. 6.16. Two silver fishnet films embedded in a dielectric host consisting of
gain material (dye molecules).

Fig. 6.17. Real and imaginary part of the retrieved effective refractive indices of
the double-fishnet structure for different pump amplitudes.

The typical dielectric medium spacer used in fishnet material (see
Fig. 6.2) was replaced with a gain medium. A fishnet structure was
initially fabricated with an Alumina spacer. This Alumina spacer
was then removed and immediately replaced with the gain medium
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which was the epoxy medium doped with rhodamine 800 (Rh800)
dye molecules.

The active fishnet structure can be optically pumped to form
a population inversion within the Rh800 dye molecules. The laser
pump must be of frequency, ω = (E3 −E0)/�, which corresponds to
a wavelength equivalent to the stimulated emission wavelength of the
dye molecules. The quantum processes which occur to compensate for
loss can be described using the four-level system shown in Fig. 6.15.
The device is pumped by a light pulse which will propagate through
the device and excite electrons within the Rh800 molecules from the
ground state level, N0, to the third energy level, N3, (see Fig. 6.15).
This is known as a population inversion. After a lifetime, τ32, excited
electrons will transition from, N3, to, N2, either radiatively or non-
radiatively. Then after another lifetime, τ10, electrons in the, N1,
energy level will relax to the ground state level, N0, and the process
will repeat.28

Measurements were obtained using a pump-probe setup, in which
the delay time between the pump and the probe was optimized for
maximal gain. The results are shown in Fig. 6.18 where the black line
is the transmission spectrum with pumping power 1 mW, and the
gray line is the transmission spectrum with no pump. It can clearly
be seen that the losses are significantly decreased when pumping the

Fig. 6.18. Transmission spectra with no pumping (gray) and of pumping power
1 mW (black line).
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gain medium. The radiative transitions from N3, to, N2, amplify the
probe light, and thereby increase the transmission as it propagates
through the device. This is only possible if the correct delay time
is chosen. Ideally, the probe light must happen when the radiative
transitions are occurring.

This experimental work conclusively shows that, although the
metamaterial structure must be meticulously constructed, it is pos-
sible to completely overcome losses in a realistic negative index mate-
rial by replacing the typical dieletric spacer with a gain medium.

6.6.5. Experiment by Plum et al.

As mentioned earlier, gain can be incorporated into a metamaterial
device using quantum dots. The first experimental demonstration
of the use of semiconductor quantum dots to fully compensate for
Joule (ohmic) loss in a metallic metamaterial device was done by
Plum et al. in 2009 in Ref. 36.

The metamaterial structure was a hybrid metamaterial device
consisting of an array of asymmetrically split ring resonators made of
gold, which sat in between a silica gain substrate (below) and a layer
of semiconductor PbS quantum dots (above). Asymmetrical SRR’s
were chosen since the quality factor of the trapped-mode resonance is
controllable by changing the amount of asymmetry in the split.36 The
asymmetrical SRR’s can also create arrays of trapped-mode currents
which would allow the device to form a lasing spacer, where the gain
substrate could be used as an energy source to support the spaser
mechanism. See Section. 6.7.1 for a discussion on spasers.

An interesting finding that resulted from the deposited layer of
quantum dots was a large red-shift in the transmission spectrum,
moving from 860 nm to 1000 nm. It was reasoned in Ref. 36 that the
red-shift was due to the shortened excitation wavelength caused by
the increased effective permittivity.

The more relevant and significant finding was the reduction
in Joule loss due to the optically pumped quantum dots. The
transmission of a quantum dot layer atop a glass substrate was
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first measured, and found to steadily increase as the pump intensity
increased. This transmission increase was attributed to the quantum
dot luminescence. When the quantum dots within the hybrid meta-
material device were optically pumped, the transmission spectrum
at the trapped mode resonance frequency was significantly altered,
in the background of quantum dot luminescence. The transmission
spectrum modification was separated from the quantum dot lumines-
cence which depended upon pump intensity, by introducing pump-
induced change of the differential transmission signal for two per-
pendicular polarizations, which was then plotted. It can clearly be
seen (see Ref. 36) that the luminescence signal has no dependence
on the polarization of the probe light used to measure the transmis-
sion. Thus, it can be concluded that any change in the transmis-
sion spectrum is solely caused by gain in the metamaterial device.
It was argued that the gain must occur due to the strong interac-
tion between the optically pumped quantum dot layer and surface
plasmon modes.

Thus, Plum et al. have shown that by creating a hybrid metama-
terial device with an optically pumped quantum dot layer, one can
effectively reduce Joule loss within the device.

6.6.6. Powered active metamaterial cells

Experiments have successfully shown loss compensation through
powered active cells, however only in unrealistic configurations.16

Yuan et al. in Ref. 16 were able to experimentally demonstrate a
realistic tunable powered active-magnetic metamaterial, capable of
completely compensating for loss at certain frequencies.

The reasoning in Ref. 16 for their design considered the magnetic
moment of a unit cell and the resulting effective magnetic permeabil-
ity. The relationship between the magnetic field, �B, and the magnetic
field strength, �H, where magneto-electro coupling is nonexistent, can
be expressed as,

�B = µ0( �H + �M) (6.45)
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where �M is the magnetization vector. Using Eq. 6.45, and recogniz-
ing the relation,

�B = µ0µr
�H (6.46)

one can determine the relative permeability tensor. Assuming �B,
�H, and �M are colinear, the relavant component of the permeability
tensor can be expressed by,

µr = 1 +
�M

�H
(6.47)

where magnetization �M is the resulting magnetic moment due to the
magnetic strength field, �H, and thus can be given by,

�M = |M |eiφ (6.48)

where φ is the phase of �M with respect to �H.
Using44 as a reference, the authors in Ref. 16 recognized that

control of the phase φ from Eq. 6.48 enables control of the real
and imaginary parts of the magnetic permeability. The design of
the metamaterial device used this fact to enable for high tunability.

The experiment utilized an active-magnetic metamaterial con-
sisting of arrays of unit cells, where each unit cell was powered by a
DC supply. The unit cell design was inspired by the work in Ref. 44.
Each unit cell comprised of a sensing loop for the incident mag-
netic field, a radiofrequency (RF) amplifier to amplify the sensed
signal, and a driven loop in order to tune the magnetization vec-
tor �M . Adjacent to the sensing and driven loops was an SRR, which
reduced the amount of active gain required for the device.16 The
RF amplifier inputs a signal into a voltage-controlled phase shifter
which controls the phase at the driven loop. The phase shifter turns
out to be of high importance as it distinguishes the unit cell from any
other previously designed powered active metamaterial. This phase
shifter is ultimately responsible for controlling the real and imaginary
parts of the effective magnetic permeability. Since the phase shifter is
voltage-controlled, the unit cell then has a highly tunable magnetic
permeability property. This unique design and capability can be of

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 14, 2017 12:37 Handbook of Metamaterials and Plasmonics — Volume 3 9in x 6in b2857-v3-ch06 page 227

Active Metamaterials 227

great significance when considering loss in the magnetic regime of a
metamaterial device.

Upon testing a single unit cell by applying DC bias voltages
ranging from 0 V to 12 V, it was found that at each applied voltage
there was a strong magnetic response just above the self resonant
frequencies of the SRRs. Zero magnetic loss frequencies were found
at corresponding points of real (µ

′
r) and imaginary (µ

′′
r ) permeability,

at specific bias voltages. More interestingly, at certain µ
′
r and µ

′′
r , it

was found that zero magnetic loss is possible for an array of unit cells.
However, one cannot choose an arbitrary frequency as it was found
that the electric response can become large, resulting in a device
that exhibits zero magnetic loss but nonzero overall loss. For cer-
tain frequencies, the electric antiresonance is negligible allowing the
material to be completely lossless. See Ref. 16 for specific numbers
and figures.

The authors in Ref. 16 experimentally demonstrated loss com-
pensation of a realistic metamaterial device, albeit only for certain
frequencies. This work however provides a great step forward for
low-loss metamaterials.

6.7. Surface Plasmons

Surface plasmons (SPs) can be described as collective and coherent
oscillations of electron-fields confined to the surface of a medium.
Plasmons are collective oscillations of a free electron gas within a
medium, away from the surface. Metallics in particular have surface
plasmons that are tightly bound to the surface, which makes them
effective scatterers of incident electromagnetic waves.45 As mentioned
in Section 6.4., much of the energy of electromagnetic waves gets
dissipated by the kinetic energy of electrons. This kinetic energy is
usually in the form of coherent oscillations, i.e., (surface) plasmons.

Surface plasmons can also propagate along the surface of met-
als, reaching distances of up to several hundreds of microns.45 Since
propagating SPs are moving charges, an electromagnetic wave is gen-
erated on the interface of the metal and dielectric. These propagating
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electromagnetic field waves which couple with the moving SPS are
known as surface plasmon polaritons (SPPs).45

6.7.1. Spaser

The spaser (acronym for “surface plasmon amplification by stimu-
lated emission of radiation”) device was first proposed by Bergman
and Stockman in 2003. A spacer is analogous to a laser, the main
difference being that, as the name suggests, a spaser emits surface
plasmons instead of photons. The resonant cavity of a spaser is a
nanoparticle, such as a semiconductor quantum dot. An externally
excited gain medium can then be used as the energy source for spas-
ing to occur.46

Stockman proposed a particular design of a spacer in Ref. 46 to
consist of a dielectric core surrounded by a silver nanoshell, which
was then surrounded by a few monolayers of nanocrystal quantum
dots (NQD) (see Fig. 6.19). The dielectric core surrounded by the
silver nanoshell would then act as the resonant nanoparticle and the
NQDs would act as the gain medium.

The idea is to use an external optical radiation source to excite
an electron-hole pair from an NQD, which will eventually relax into

Fig. 6.19. Proposed spaser setup with an interior dielectric core surrounded by
a silver shell which is surrounded by nanocrystal quantum dots.
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an excitonic level state due to carrier multiplication.46 Typically
the recombination of an exciton would result in the generation of
a photon, however since the NQDs are in contact with a resonant
nanoparticle, the energy is transferred virtually radiationless to the
resonant SPs of the nanoparticle. The excited SPs will then continue
to stimulate electron-hole transitions from the gain medium, which
will in turn excite more SPs.46 This is precisely the process of a
spaser.

6.7.2. Metamaterial lasing spaser

Zheludev et al. combined the concepts of spasers along with metama-
terials in Ref. 47 to propose a metamaterial lasing device which uses
plasmonic oscillations to generate a coherent source of electromag-
netic radiation. The proposed device consists of a slab of gain medium
containing an array of metallic asymmetric split-ring resonators (See
Fig. 6.20).

This array must be a special type of metamaterial array of plas-
monic resonators that support a high quality factor for current oscil-
lations in which total emission losses for the in-phase oscillations
are at a minimum. These metamaterial arrays were referred to as
coherent metamaterials. It was recently shown in Ref. 48 that SRR’s

Fig. 6.20. Slab of gain medium containing an array of metallic asymmetric
SRR’s.
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with weak antisymmetry may be excited by a high-quality mode of
intense anti-symmetric current oscillations.47

The active medium of the lasing spaser is the combination of
the electromagnetic resonators where the supporting gain substrate
is the energy source. Since the trapped-mode oscillations in a plas-
mon resonator are typically non-radiative, a small asymmetry can be
introduced to make the resonator radiative. Some of the energy that
would typically by trapped could then be emitted into free space as
electromagnetic radiation.47 The authors in Ref. 47 drew a compar-
ison to that of the leakage of radiation through the output coupler
of a laser resonator. The electromagnetic emission would then be
directed perpendicular to the plane of the metamaterial array slab
(see Fig. 6.21).

Fig. 6.21. Direction of electromagnetic emission.
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6.8. Moving in the Opposite Direction: Increasing
Losses to Create Metamaterial Absorbers

The inherent lossy effects of metallics that are used for metamaterial
structures severely plague metamaterial practicality in a plethora
of ways. However, if one were to look from a different perspective,
the high lossy effects could be used to our advantage. Loss in meta-
materials is the result of the metallic’s ability to absorb incident
radiation and convert it into another form of energy (typically heat).
One can increase the losses in metamaterials to create near perfect
electromagnetic absorbers. Techniques can then be devised to convert
the absorbed energy into useful electrical energy rather than heat.
In theory, the absorptivity of a metameterial absorber can approach
unity, mimicking a miniature black hole.49 Such an absorber can pro-
duce practical technological advancements such as photodetectors,
microbolometers, thermal images, and novel solar cell systems.50

As it is well known, the electric permittivity and magnetic per-
meability is characterized by real and imaginary parts such that,

ε = εre + iεim (6.49)

µ = µre + iµim (6.50)

Most of the focus regarding optimizing metamaterials for prac-
tical use has been on the real parts of ε and µ. However in the case
of creating novel applications where loss is required, the imaginary
parts (εim and µim), which are the loss components of the permit-
tivity and permeability, must become points of interest. Independent
manipulation of the resonances of εim and µim can result in a meta-
material that can absorb both incident electric and magnetic fields.
By matching the two variables, the metamaterial can be impedance-
matched to free space which will in turn minimize reflectivity.51

Landy et al. in Ref. 51 proposed, fabricated, and then numerically
simulated and experimentally tested, a metamaterial absorber struc-
ture which demonstrated a near perfect absorbance. The absorber,
made exclusively with metallic elements, consisted of a type of a
split-ring resonator, referred to as the electric-ring resonator (ERR,
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Fig. 6.22. (a) Electric-ring Resonator (ERR) (b) Cut wire (c) The metamaterial
absorber unit cell consisting of the ERR and the cut wire separated by a dielectric
substrate.

shown in Fig. 6.22(a)), and a cut wire (Fig. 6.22(b)) separated by a
dielectric substrate, as shown in Fig. 6.22. The electric coupling was
attributed to the ERR and the magnetic coupling was supplied by
the final combination of the ERR and the cut wire separated by the
substrate (shown in Fig. 6.22(c)). The authors drew a comparison
to that of a fishnet structure where two anti-parallel currents are
driven in metallic layers that give rise to the magnetic response, as
explained in Section. 6.2.2. The magnetic response was then tunable
by changing the shape of the cut wire and the spacing between the
cut wire and ERR (dielectric slab thickness). Thus the magnetic
coupling was manipulable independent of the ERR, allowing ε and
µ to be decoupled which enabled each response to be individually
tunable.51

The experimental absorbance data was obtained and plotted
along with simulation data for comparison. The simulated data
showed an absorbance peak at 96% at 11.48 GHz, while the experi-
mental data showed a peak at approximately 88%. The plots can be
seen in Fig. 6.23. Thus the authors in Ref. 51 were able to exper-
imentally demonstrate a near perfect metamaterial absorber that
excellently agreed with the simulated data.
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Fig. 6.23. The solid line is the measured data (experimental) and the dotted
line is the simulated data.

On one side of the spectrum, multitudes of research is being done
towards reducing losses in metamaterials in hopes of creating novel
devices, but it seems that much more research should be done on the
other end of the spectrum where loss can be significant for equally
novel devices. The work done by the authors in Ref. 51 is a great
step in that direction.

6.9. The Future for Metamaterials

A central problem hindering the practicality and progress in the
development of negative index materials is the substantial dissipa-
tive losses which are exhibited. Reducing such losses via geometric
tailoring seems to work up to a certain extent but not enough to
completely overcome the losses. The future seems to lie in the active
metamaterials where experiments such as the ones mentioned in Sec-
tion 6.6 conclusively show total loss compensation using active gain
media. Even though the fishnet structures used in the mentioned
experiments are judiciously designed, in ways that may be far from
practical designs, they should not be overlooked. Building upon these
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foundational experimental and theoretical works is imperative if we
are to see metamaterial devices meet their true potential.

One interesting idea to think about is if there are better, less
lossy, structures that bring about the simultaneous negative permit-
tivity and permeability. One may think that maybe instead of attack-
ing surface problems such as loss, the root of the problem should be
addressed; which is the components of the structures themselves that
are causing the loss. What if there are better suited structures that
completely differ from SRR’s and fishnets that provide the charac-
teristic negative refractive index which exhibit considerably less loss?
This may sound questionable but it may be true that the ideal design
for a metamaterial structure is yet to be engineered.

However, proposals have already been made towards replacing
the typical gold or silver parts that comprise negative index struc-
tures with heavily doped semiconductors or by various alloys. Such
replacements seem to show some loss decrease but need to be exam-
ined further. Another proposal considers an all-dielectric metamate-
rial that also showed better loss performance.45

Metamaterials display tremendous potential with a promise to
advance numerous technologies beyond our imagination. Fascination
of metamaterials within the scientific community will continue at
its fast pace until these technologies are actualized. The remarkable
growth of attention this field has received and continues to receive
ensures a very bright future for metamaterials.
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a complex frequency, 42

absorption, 74–76, 99

absorption length, 75

Al2O3, 101

all-optical switching, 72, 90

alumina spacer, 222

aluminum, 84

amorphous silicon, 98, 103

amplification, 2

amplified spontaneous emission, 55

anharmonic oscillator model, 90

anisotropic structures, 90

anomalous phase matching, 90

artificial materials, 70, 77

atomic-layer deposition (ALD), 100

autocorrelation measurements, 82

auxiliary differential equations, 55

band edge, 103

band velocity, 43

BaTiO3, 96

bistable behavior, 98

Bloch equations, 218

bound modes, 41

bowtie dimer nanoantennas, 89

Bragg resonance, 77

Bruggeman model, 89

causality, 76

cavity effects, 75
cavity modes, 90

CdTe, 98
CdTe quantum dots, 97

centrosymmetric, 79
centrosymmetric materials, 81

centrosymmetry, 74, 98, 100–102
chirality, 70

circular polarizations, 87, 90
coaxial holes, 94

coherence length, 74
complex wavevector (β) modes, 47

complex-wavevector modes, 62
complex-wavevector picture, 60

complex-wavevector plasmons, 62
conversion efficiency, 75, 96

convolutional perfectly matched
layers, 56

core-shell nanocavities, 96
crystallographic axes, 95

cut-off frequency, 94

damping, 99

dielectric cavities, 77
dielectric metamaterials, 69, 70

dielectric nanoparticles, 93
dielectric spacer thickness, 207

difference-frequency generation, 71
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diffraction order, 85, 86

dimers, 80
dispersion relation, 42

dissipation, 99
double light cone, 198

effective-medium approximation, 102

electric resonance, 83, 87, 102
electric-dipole approximation, 71, 74

electric-field-induced second-harmonic
generation, 95

electric-quadrupole, 74

electro-optic effect, 74
electro-optic modulation, 70, 71

electromagnetic coupling, 80
enhanced optical nonlinearities, 194

evolutionary algorithm, 46, 47
exciton, 98

Fano resonance, 85, 90

Fano-type lineshapes of the
resonances, 85

far-field, 93
FDTD simulations, 53

feedback, 39

field enhancements, 76, 77, 96
field-enhancement factor, 75, 76

figure of merit, 75, 99
fill fraction, 89

fishnet metamaterial, 91, 92, 98
fishnet structures, 195

fluorescent dyes, 218

four-level system, 218
four-wave-mixing (FWM), 72, 76, 88,

90, 91

free-electron gas, 99

frequency conversion, 70, 71, 73–76,
92, 94, 96, 103

frequency mixing, 74
frequency-doubling, 70

gain, 154–157, 159–171, 175–179,
181–186

Gallium arsenide (GaAs), 94

gap, 89

generalized Snell’s law, 87
geometric design, 206
geometric tailoring, 208

glass-air interface, 79
gold, 79, 81–84, 86–89, 91, 94–97, 99

gold film, 90
gold-air interface, 79
gold-silica composites, 89

gradient refractive index, 202
grating, 77, 86, 90

group velocity, 77

HfO2, 101

higher-multipole, 74
host material, 89
hot spots, 79, 93, 96

hybrid metamaterial device, 224
hybrid metamaterials, 69, 70

hybrid nonlinear metamaterial, 93
hybridisation of modes, 45
hyperbolic dispersion, 88

hyperpolarizabilities, 72, 73

In2O3, 101
inclusions, 89
index of refraction, 92

indium-tin-oxide (ITO), 46, 97
inhomogeneous material, 202

inhomogeneus broadening, 83
intensity-dependent refractive index,

88

interactions, 74
interband transitions, 91
interference lithography, 94

interparticle coupling, 84
intersubband transitions, 95

inversion symmetry, 98–100
invisibility, 201

Kramers-Kronig relations, 51, 76, 99

Langevin noise, 55
Langmuir-Blodgett techniques, 100
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lasers, 39

lasing, 2
lasing dynamics, 55
lattice, 80

lattice interactions, 86
lattice matching, 74

lattice period, 82
light-emitting diodes, 114
local-fields, 73, 78, 88

local-field correction factor, 73
local-field coupling, 218

local-field distributions, 79, 85
local-field enhancement, 75, 89, 93,

94, 99

local-field factor, 73, 78
localized SPPs, 8
localized surface-plasmon resonances,

78
long-range SPP, 5

Lorentz local-field factor, 73, 78
loss compensation, 2

magnetic effects, 79
magnetic resonance, 83, 84, 87, 102,

103

magnetic-dipole, 74
magnetism at optical frequencies, 70

Maxwell-Bloch (MB) formalism, 220
Maxwell-Garnett model, 88
meta-atoms, 69, 70, 72, 92, 93

metal dimers, 84
metal-based metamaterials, 69, 70,

76, 80
metal-dielectric interfaces, 79
metamaterial lasing, 229

metamaterials, 69
metamolecules, 72, 84, 86, 87, 90

metasurfaces, 84
microbolometers, 231
Mie resonances, 78, 99, 102

Mie theory, 79
Miller’s rule, 73, 85

modulation, 90, 103
morphological resonance, 78, 80

multi-quantum well, 95

multipole effects, 79

nano-island, 88

nano-scale lasers, 2

nanoantenna, 97

nanoantenna resonances, 97

nanocavities, 90

nanocomposite, 88

nanogratings, 90

nanohole arrays, 83

nanoholes, 83

nanolaminates, 100

nanolaser, 174–176, 178, 179, 185

nanolasing, 39

nanoparticle, 97

nanorod antennas, 89

near-field, 75, 93–95, 97, 98

near-field coupling, 80

near-zero index, 92

nearly-degenerate FWM, 92

negative group velocity plasmon, 62

negative index, 80, 98

negative index materials, 70

negative permeability, 80

negative permittivity, 99

negative refraction, 90

non-centrosymmetric material, 71, 74

non-centrosymmetry, 88

non-local response, 90

nonlinear absorption, 88

nonlinear absorption coefficient, 89

nonlinear crystal, 96

nonlinear lensing, 90

nonlinear metamaterials, 69, 70, 75

nonlinear optical effects, 71

nonlinear optical susceptibility, 76

nonlinear optics, 70

nonlinear phase shift, 74, 75

nonlinear polymer, 96

nonlinear refractive index, 71, 88, 97,
98

nonlinear response, 82
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nonlinear susceptibility, 94–96, 98,
100, 103

nonlinear susceptibility tensor, 93

ohmic loss, 209
oligomers, 80

optical clepsydra, 199
optical gain, 2

optical phonons, 98
optical switching, 70

orientational distribution, 73, 85, 86

parity-time (PT) symmetric
materials, 2

percolation threshold, 88
perfect electromagnetic absorbers,

231

perfect lenses, 199
phase matching, 76, 77, 90, 92

phase, group, and dispersion
velocities, 42

phase-matching, 73, 80
phonon resonances, 99

photodetectors, 231
photon absorption, 103

photon storage, 198
photonic band edge, 77

photonic crystals, 70, 77
planar slab waveguide, 43

plane-wave approximation, 81
plasmon dephasing time, 82

plasmon resonance, 83, 84, 86
plasmonic modes, 93

plasmonic nanocavities, 113
plasmonic resonance, 82, 85, 97, 195

plasmonic sensor, 98

plasmonic stopped light lasing, 64
plasmonic waveguides, 204

polarization, 71, 72, 76, 78, 81, 95
powered active cells, 225

powered active metamaterial, 226
powered active-magnetic

metamaterial, 225

Poynting vector, 215

pump beam, 93

Purcell enhancement, 113

quadrupole effects, 79
quantum dots, 218, 224

quantum wells, 218

refractive index, 80, 92
resonance, 73, 76, 98, 102

resonance enhancement, 83, 84, 89
resonant gratings, 70

rough metal surfaces, 82

second-harmonic generation (SHG),
71, 76, 81–88, 94–97, 100, 102

second-order effects, 71, 74, 79, 81
second-order materials, 71

second-order process, 78
second-order response, 72, 80–82, 84

second-order susceptibility, 76, 94, 95,
98, 100, 101

selection rules, 87

self-phase modulation, 76, 77, 103
semiconductor, 94, 98

short-range SPP, 5
silicon, 77, 79, 80, 94, 98, 102, 103

silicon photonics, 74, 100
silver, 79, 81, 82, 88, 98

single bosonic resonance, 218

single photon sources, 114
slow light, 194

small signal gain, 50
solar cell systems, 231

spaser, 8, 155, 156, 176, 177, 179–183,
228

split-ring resonator, 80, 83, 86, 93–95,
98

split-ring resonator structure, 195
spontaneous emission, 113

SPP amplifiers, 2
SRRs, 83, 84, 88

stimulated emission, 39, 154–156,
169–177, 180, 181, 183, 184

stopped light, 40, 198
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stopped-light heterostructure, 47
stopping light, 198
sum-frequency generation, 71
surface effects, 75, 77
surface enhancement, 88
surface lattice resonances, 85
surface nonlinearity, 74, 79, 81
surface plasmon polaritons, 228
surface plasmons, 70, 90, 277
surface susceptibility, 79
surface waves, 90
surface-lattice resonances, 80
susceptibilities, 71
susceptibility tensor, 72
switching, 91
symmetry, 72, 74, 79, 81, 83, 87, 88

template, 71
tensorial notation, 78
thermal images, 231
third-harmonic generation (THG),

71, 76, 88–90, 97
third-order effects, 88

third-order response, 71
third-order susceptibility, 88, 97, 103
threshold, 169–176, 179–181, 185, 186
TiO2, 101
topological phase, 87, 90
toy model, 219
transcendental equation, 44
transition frequencies, 73
transitions, 73
two-photon photoluminescence, 96

ultraslow or “stopped” light, 40
unidirectional reflectance, 2
unit cell, 86
upconversion, 97

waveguide, 94
waveguide modes, 41
wavevector bandwidth, 44

z-scan, 97, 103
zero-index, 82, 92
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Preface by Main Editor

It is our pleasure to present you this Handbook of Metamaterials
and Plasmonics, charting the tremendous progress that has occurred
in this exciting area of research over the last years. What contin-
ues to fascinate me about the field above all is its interdisciplinary
broadness — we have arrived at a stage where metamaterials make
an impact on many arrays of science where control over waves is a
prominent ingredient — be they electromagnetic, acoustic, elastic,
or even seismic! In these four volumes, we hence attempt to set out
the richness of the field, taking metamaterials in the widest sense as
artificial media with sub-wavelength structure for control over wave
propagation.

Volume 1 focuses on the fundamentals of electromagnetic meta-
materials in all their richness, including metasurfaces and hyper-
bolic metamaterials. Volume 2 widens the picture to include elastic,
acoustic, and seismic systems, whereas Volume 3 presents nonlin-
ear and active photonic metamaterials. Finally, Volume 4 includes
recent progress in the field of nanoplasmonics, used extensively for
the tailoring of the unit cell response of photonic metamaterials.

In its totality, we hope that this handbook will be useful for
a wide spectrum of readers, from students to active researchers in

v
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industry, as well as teachers of advanced courses on wave prop-
agation. I want to thank the volume editors Ekaterina Shamon-
ina, Richard Craster, Sébastien Guenneau, Ortwin Hess and Javier
Aizpurua, and all the authors for their excellent and sustained work
to put these four volumes together.

Stefan A. Maier
Imperial College London, UK

April 2017
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The revolution of nanotechnology has impacted a broad range of
disciplines across science and technology. The fabrication and manip-
ulation of nanostructures has reached levels of control never foreseen,
and a variety of spectroscopies and microscopies are now able to rou-
tinely probe different physical and chemical properties of matter at
the nanoscale. The interaction of light and matter has not escaped
off this progress: sophisticated routes of chemical synthesis and a
variety of lithographic techniques have managed to construct semi-
conductor and metallic nanostructures which act as effective blocks
that bring light down to the nanoscale, achieving the longstanding
dream of beating the diffraction limit of light, pushing optics beyond
conventions.

Light can exchange energy and momentum very effectively with
electron-hole pair excitations in semiconductor quantum dots, how-
ever, it is its interaction with the collective behavior of the con-
duction electrons in metals what provides one of the best oppor-
tunities to establish a direct connection between light and the
nanoworld. The oscillation of the electron gas confined in finite
metallic nanostructures provides a resonant and effective manner
of localizing and enhancing light down to the nanoscale, showing a
nanoantenna effect that can be used to allow a variety of physical pro-
cesses such as enhancing molecular spectroscopy signals, controlling

vii
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nanoscale optoelectronics, driving optical forces, producing an
enhanced nonlinear response, or interfacing the exchange of quantum
states of light, among others.

In this volume, a review of many of these aspects is covered by
some of the best experts worldwide on each topic. An introductory
chapter by Luis Mart́ın Moreno and Francisco J. Garćıa Vidal guides
through the basics of nanoplasmonics, where the common model of
the dielectric function for metals is presented, together with its appli-
cation to derive the dispersion relationship in plasmonic waveguides
and in localized surface plasmons. This chapter provides a clear pic-
ture of the basic concepts that will serve to understand many complex
aspects of the optical response in nanostructures which involve plas-
monic excitations, thus introducing basic plasmonic nanostructures
as canonical building blocks of nanooptics.

In Chapter 2 of the volume, Jean-Jacques Greffet provides very
useful insights about the role of plasmonic nanostructures as opti-
cal nanoantennas, developing a battery of concepts that connect
nanooptics, electrical engineering and quantum optics. Concepts such
as impedance of an antenna, gain, and efficiency are introduced in
great detail and adapted to the situation of plasmonic antennas, with
expressions that allow to describe important processes of light and
matter interaction such as the spontaneous emission of an emitter,
the modification of its decay rate by the presence of a local density
of photonic states, or molecular spectroscopies that can be strongly
modified and enhanced by the presence of plasmonic nanoantennas,
as in Surface-Enhanced Raman scattering, and Surface-Enhanced flu-
orescence.

Chapter 3 completes the local description of light and nanos-
tructures within the linear dielectric response theory, typically used
to solve Maxwell’s equations in inhomogeneous media, by consid-
ering the importance of nonlocality in the description of the opti-
cal response of plasmonic nanostructures. The dynamical screening
of the electron gas can be effectively introduced with the use of
a hydrodynamical model which considers an extra pressure term
in the dynamics of the electron gas. This model can be extended
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with the consideration of a drift-dissipation term, which effectively
produces a damping of plasmonic modes. The implementation of
hydrodynamical model in powerful computation tools based on Finite
Element Methods to solve Maxwell’s Equations is an important high-
light introduced in this chapter by N. Asger Mortensen, Jacob Khur-
gin and Martijn Wubs, which allows to adopt the hydrodynamical
model in the calculation of the optical response of arbitrarily shaped
plasmonic nanostructures.

In Chapter 4, Andrey Borissov and myself introduce the impor-
tance of the quantum nature of the electron gas in the optical
response of plasmonic nanoantennas. By adopting a jellium model
of the electron gas, the optical response of metals in confined nanos-
tructures is developed within the framework of the Time-Dependent
Density Functional Theory (TDDFT). The quantum nature of the
electron gas is considered in this way, with the excitations in the
metal subjected to the boundaries of the different surfaces defining
the nanostructure. Particular attention is paid to the location of the
centroid of charge of the surface plasmon excitation as a key to under-
stand the spectral evolution of the quantum size effect, as well as
the tendencies found for Ångstrom-size plasmon rulers in plasmonic
dimers at subnanometric distances. This chapter also addresses tun-
neling across the gap at optical frequencies, and how this effect mod-
ifies the optical response in subnanometric gap-plasmonics.

Coming back to classical descriptions, during the last years a
powerful methodology to address the optical response in plasmonic
antennas has been developed in the context of transformation optics.
Antonio Fernández-Domı́nguez and Sir John B. Pendry, together
with Yu Luo and Rongkuo Zhao introduce the concepts of transfor-
mation optics in Chapter 5, and describe their application in the con-
formal mapping of 2-dimensional plasmonic structures that present
singular structures, such as edges and corners, as well as blunt mor-
phologies and hybridized structures. A fascinating aspect of trans-
formation optics is that it allows to obtain analytical expressions for
the optical response and local fields in a very elegant way for many
plasmonic structures that show singular shapes, and which could
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not be tackled otherwise. 3-dimensional structures are also addressed
in this chapter with the study of equally challenging morphologies.
Important corrections related to radiative effects and nonlocality are
also considered in this review, fully completing the picture of trans-
formation optics in nanoplasmonics. Finally, an application to the
calculation of Van der Waals forces and comparisons with experi-
ments are nicely illustrated.

Chapters 6 and 7 deal with a modern and vibrant field within
nanophotonics which is at the heart of the essence of nanoplasmon-
ics: the ultrafast nature of plasmonic excitations. Otto Muskens,
Peter Wiecha and Arnaud Arbouet describe in great detail in chap-
ter 6 the time scales and the processes involved in the dynamics of
metallic nanostructures, as well as the optical nonlinearities gener-
ated in them. Nonlinear processes in plasmonic nanoparticles such
as Second-harmonic generation, third-harmonic generation, or two-
photon luminescence are described in the chapter, and both exper-
imental evidence and theoretical calculations of the processes are
shown. Electron gain spectroscopy is also addressed in the context of
nonlinear response, and finally, the access to the nonlinear response of
plasmonic structures via femtosecond time-resolved spectroscopy is
introduced in single particles paying special attention to their vibra-
tional modes of excitation. Finally, the applications of plasmonic
structures in nonlinear devices ends this chapter.

Chapter 7 retakes the ultrafast response of plasmonic struc-
tures by Jue-Min Yi, Petra Groß, and Christoph Lienau, focusing in
the access to spectral information of plasmonic nanostructures from
time-domain spectroscopy techniques. The spectral response of single
particles is introduced by Fourier transform spectroscopy, together
with aspects of plasmon propagation in time domain, and the non-
linear response of particles is shown to be accessed via interferomet-
ric frequency-resolved autocorrelation techniques. The application of
time-resolved techniques to nanoplasmonics allows to study the effect
of photoemission in nanotips, and thus to control local fields at the
nanoscale. This effect is also covered in this chapter, which ends
with a topic of current interest connected with the strong coupling of
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emitters and plasmonic antennas: time-domain techniques, as pump-
probe spectroscopy allow to access Rabi oscillations, typical of the
strong interaction regime, in real time, showing a very nice oppor-
tunity to address interactions between quantum units of potential
application in quantum nanooptics.

As an alternative to optical excitations in metallic nanostruc-
tures, graphene has emerged as a novel material that shows a collec-
tive response of the electron gas in the mid-infrared and TeraHertz
range of the spectrum. In Chapter 8, Alexey Nikitin introduces the
basic concepts of graphene plasmons, and derives its dispersion rela-
tion, in connection with the properties of its conductivity. This serves
to introduce different aspects of the propagation of these special
plasmons. After analysing the different approaches to describe the
conductivity in the graphene layer, a chart of methods to optically
excite plasmons in graphene is reviewed, giving account of the typical
mechanisms of plasmon launching by optical means. Among others,
optical excitation of point emitters, of graphene medium interfacing
with other media, or the use of resonators on top of the graphene
sheet, are among some of the options pointed out for graphene plas-
mon excitations. In this context, the existence of a modulation in the
conductivity, as a grating for optical excitation, is described in great
detail. This chapter serves, among other purposes, to reveal the rich
possibilities of alternative materials to handle plasmonic excitations.

Another fascinating option to excite surface plasmons in nanos-
tructures is provided by an anternative excitation probe: fast elec-
trons as those commonly used in Scanning Transmission Electron
Microscopy. Ulrich Hohenester describes in great detail in Chapter 9,
the basic principles of interaction between fast electrons and plas-
monic nanoparticles within a classical electrodynamical description
of the electromagnetic interactions involved. A variety of methods to
tackle the induced fields responsible for the energy losses in Electron
Energy Loss Spectroscopy (EELS) is also described in detail, and the
usefulness of the quasi-static approach to deal with a modal expan-
sion of the solution to the interaction is brought up. A set of key
nanostructures where surface plasmons can be excited and mapped,
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including metallic disks, coupled particles, and particles deposited on
substrates is also reviewed in the context of EELS. Some effects like
the interplay with photons, the possibilities of electron tomography,
and quantum effects are quoted in this context. As observed in this
chapter, electrons have become a usual tool to explore plasmonic
excitation in nanostructures and reveal many properties which are
elusive to optics.

Although the localization and enhancement of light is a leitmo-
tiv in plasmonics, plasmons show another important aspect related
to their decay in the form of heat. Guillaume Baffou and Romain
Quidant elaborate in Chapter 10 a review of thermoplasmonics where
they introduce the basic concepts of heat generation, and tempera-
ture increase in these nanostructures, focusing on arrays of particles
and typical experimental situations of pulsed illumination. After dis-
cussing the thermal microscopy techniques used to map temperature
in these nanoenvironments, a variety of applications of thermoplas-
monics are reviewed ranging from heat-assisted magnetic recording
to catalysis, through thermophotovoltaics or chemical vapor deposi-
tion. The possibilities in nanomedicine also deserve special attention
in this chapter.

Even if the excitation of surface plasmons is often revealed in far-
field optical spectroscopy techniques as resonances in the response,
the most powerful aspect of plasmonics is the actual nanoscale dis-
tribution of the local fields induced around plasmonic nanostruc-
tures. The access to this information can be achieved mainly by the
use of near-field optical probes. In Chapter 11, Edward Yoxall and
Rainer Hillenbrand introduce the principles of Scattering-type Scan-
ning Near-field Optical Microscopy (s-SNOM) that allow to access
the local field of plasmonic excitations in nanostructures. Once the
technique is introduced, interesting near field patterns in dipolar
antennas, focusing antennas, and propagating plasmons are revealed
and described, showing the evanescent nature of the plasmonic fields
evolving and being distributed in the nanoscale.



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-fm page xiii

Preface by Volume Editor xiii

It has been mentioned in the beginning of this preface that the
control of the systematic fabrication of metallic nanoparticles show-
ing very sophisticated morphologies and compositions on demand has
been one of the key drivers of the field of plasmonics. It is thus impor-
tant to have access to the state of the art in chemical synthesis of
plasmonic nanostructures, as Dorleta Jiménez de Aberasturi, Cyrille
Hamon and Luis Liz-Marzán report in the last chapter of this volume.
In spite of the long tradition of more than a century in this field of
science, wet chemistry synthesis of inorganic nanoparticles is now
more than ever a vibrant field where many different parameters and
effects need to be controlled. The team of Luis Liz-Marzán stresses
the role of the seed crystallinity and the effect of adsorbates in the
synthesis process, and how its control allows to generate a vast chart
of plasmonic nanoparticles. Isotropic particles, nanorods, core-shell
particles and other novel possibilities are reviewed and itemized in
this chapter providing a clear perspective of the current possibilities
of this field of chemistry.

All together, this volume becomes an excellent reference for a
reader to approach different aspect of nanoplasmonics which are con-
nected with hot topics currently being developed in the field. Plas-
monics is a very broad discipline within nanooptics, and of course
any compilation unavoidably leaves relevant things for future com-
pletion. It might occur that not everything which is important in
plasmonics is covered in this volume, but everything in this volume
is very important to plasmonics. I am devoted and tremendously
thankful to all the collaborators of the different chapters. All of them
have shown their best skills and attitude to build this compilation
work. We all hope that every reader can enjoy this volume, making
nanoplasmonics feel closer.

Javier Aizpurua
Donostia-San Sebastián

April 2017
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CHAPTER 1

Basics of Nanoplasmonics

LUIS MARTÍN-MORENO

CSIC-Universidad de Zaragoza, Spain
lmm@unizar.es

FRANCISCO J. GARCÍA-VIDAL

Universidad Autónoma de Madrid, Spain
fj.garcia@uam.es

This chapter is intended to serve both as a brief introduction and a
reference frame for the rest of the chapters of this book. First, we ana-
lyze the optical response of metals, describing why noble metals are best
suited for plasmonics in the optical regime. We also show the theoret-
ical foundations of the surface plasmons supported by two-dimensional
(2D) metal surfaces, with special emphasis on analyzing their dispersion
relations, confinement and propagation lengths. A historical note on the
discovery of these surface electromagnetic (EM) modes in the fields of
Optics and Condensed Matter Physics is also presented. Finally, the
surface plasmon modes supported by metal particles (0D structures)
and 1D metal waveguides and their feasible applications are briefly
introduced.

1.1. General Introduction

Nanoplasmonics encompasses the electromagnetic (EM) phenomena
that either occurs in the nanoscale proximity to, or are due to the

1
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existence of nanometric features in, metal–dielectric interfaces. These
interfaces support EM modes known as surface plasmon polaritons
(SPPs), which result from a combination of EM fields with the collec-
tive excitation of electrons. SPPs possess several appealing character-
istics: ability to concentrate light beyond the diffraction limit, strong
modification of the local density of photonic states, high sensitivity
to the dielectric environment and ultra-fast response. Furthermore,
to a large extent, these properties can be tailored by geometry. These
properties are attractive for applications in physics, medicine, secu-
rity and environmental monitoring.

This chapter presents a succinct description of the basic
properties of SPPs that, hopefully, will lay the foundations needed
to follow the different aspects of nanoplasmonics covered by this
book. The interested reader can find a more extended introduction
to nanoplasmonics in the text by Greffet,1 and several more in the
extended monographs on the topic.2–7 A more general overview on
the field of nanophotonics (i.e. not only covering plasmonic systems)
can be found in the book by Novotny and Hetch.8

In order to study the EM properties of metal structures, we need
to know the constitutive relation between the displacement vector D
and the electric field E inside the metal. Assuming that the external
electric fields are much weaker than the interatomic field, this relation
is linear. Assuming also that the metal is both homogeneous and
isotropic, the constitutive relation can be expressed as a convolution
integral:

D(r, t) =
∫

dr′
∫

dt′ε(r− r′, t− t′)E(r′, t′) (1.1)

leading to

D(k, ω) = ε(k, ω)E(k, ω) (1.2)

for the Fourier components of the fields, defined as F(r, t) =∫
drdtF(k, ω)ei(kr−ωt). Maxwell’s equation ∇ · D = 0 leads to

ε(k, ω)k · E(k, ω) = 0. Thus, the electric field is transversal
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(E(k, ω) ⊥ k) whenever ε(k, ω) �= 0. But, when ε(k, ω) = 0, there
are longitudinal solutions with k · E(k, ω) �= 0. These solutions are
known as bulk plasmons.

It is usually an excellent approximation to ignore the spatial dis-
persion of the dielectric function and work with ε(r, ω). The validity
of this local description arises from the large difference between the
time variation of optical fields and speed of electrons in a metal, as
the Fermi velocity is ∼100–1000 times smaller than the speed of light.
Thus, the local approximation is valid when the relevant length scales
involved are ∼100–1000 times smaller than the free space wavelength.
As a rule of thumb, non-local effects are important when the length
scales are smaller than 2 nm. Alternatively, non-local effects must be
considered when the relevant wavevectors in the problem are ∼100–
1000 times larger than the free space wave vector. In what follows in
this chapter we will always use the local approximation. The analysis
of the linear response of metals beyond the local approximation will
be analyzed in Chapter 3, while nonlinear effects will be covered in
Chapter 6.

In principle, the dielectric function in metals can be computed
with the general expressions for linear response functions provided by
the Kubo formalism. As this involves the evaluation of expectation
values of operators in the ground state of an interacting electronic
system, in practice this is a very complex many-body problem that
cannot be solved without approximations. The crudest one is assum-
ing that the electrons are independent. The next level of approxi-
mation is treating the electron–electron interaction within the mean
field, leading to what is called the Random-Phase Approximation
(RPA).

Within RPA, and ignoring the existence of a crystalline structure,
the dielectric function of a metal can be accurately described by the
classical Drude formula:

εRPA(ω) = 1− ω2
p

ω (ω + ıΓ)
, (1.3)
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Fig. 1.1. Measured real (left panel) and imaginary (right panel) parts of the
dielectric constant of the metals most commonly used in nanoplasmonics: Ag,
Au, Al and Cu. The inset in the right panel shows Imε for Al. All data are taken
from Ref. 9, except the ones marked by *, which are from Ref. 10.

where ωp =
√

4πne2/m is the plasma frequency, which only depends
on the density of free carriers, n and on the electron charge (e) and
mass (m), and Γ is the electronic transport mean free rate. Typical
values for ωp in metals are in the 6–15 eV range. The existence of a
crystalline structure (and thus a periodic potential seen by the elec-
trons) modifies the electronic band structure in the metal, allowing
for interband transitions that contribute to the dielectric function.
In practice, the dielectric function of metals is obtained phenomeno-
logically from the fitting of experimental data (like reflectance and
absorbance of incoming radiation).

Figure 1.1 renders the tabulated dielectric constant spectra of
several metals that, as will be discussed later on, are the most
promising for nanoplasmonics. In the case of two best candi-
dates, gold and silver, we include the data from both Johnson and
Christie10 (a classical reference) and those compiled by Norris et al.,9

who recently brought to attention a set of processing rules that
lead to high-quality metal surfaces. For later comparison, Fig. 1.2
shows the data for other metals, which are not commonly used in
plasmonics.
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Fig. 1.2. Measured real (left panel) and imaginary (right panel) parts of
the dielectric constant of some metals which are not commonly used in
nanoplasmonics. The data for Na is taken from Ref. 11, Ref. 12 provided the
data for Fe and Ni, and the data for Pb, Pt and Pd are from Ref. 13.

1.2. Surface Plasmon Polaritons

1.2.1. Characteristics of surface plasmon polaritons

As mentioned above, SPPs are surface EM modes that appear at
metal–dielectric interfaces. The simplest geometry that can be ana-
lyzed is a planar interface separating two semi-infinite materials: at
z > 0, the material is characterized by a dielectric constant ε1, while
the material at z < 0 is characterized by ε2.

Suppose that we look for a solution to Maxwell’s equations that
is bounded to the interface. As each semi-infinite medium is trans-
lationally invariant, the solutions must propagate as plane waves,
with Exi = Eeıkxe±ıkziz, where E is the amplitude of the electric
field, i = 1, 2 labels the media, x is the in-plane direction of prop-
agation, k is the in-plane wavevector (which is the same for both
Ex1 and Ex2, in order to satisfy the matching of the parallel E-field
component along the interface) and ± refers to 1 and 2, respectively.
The corresponding z-components are Ezi = ∓(q/qzi)Exi, where the
dimensionless q is the modal wavevector in units of the free-space
wavenumber (q ≡ k/k0, with k0 = ω/c), so that qzi =

√
εi − q2. An
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Fig. 1.3. Snapshot of the electric field of an SPP in a silver–air interface. The
chosen wavelength is λ = 430 nm and the metal is characterized by εM = −6 +
0.4ı (as corresponding to Ag9). The amplitude of the in-plane component of the
electric field at z = 0 is taken as 1, and the color code renders the intensity of
the electric field |E(x, z)|2.

important technical point is that the sign of the square root must be
taken such that Imqz > 0, as the field must vanish at infinity.

Continuity of the normal component of the displacement vector,
εiEzi, readily leads to the condition for the existence of an EM mode
bounded to the interface:

ε1qz2 = −ε2qz1. (1.4)

For lossless materials (Imε1 = Imε2 = 0), this equation does not have
solutions when ε1ε2 > 0. However, when the dielectric constants in
both media have different signs, there is an EM mode bounded to
the surface with wavevector

qp =
√

ε1ε2
ε1 + ε2

. (1.5)
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Fig. 1.4. Dispersion relation of SPPs for a metal characterized by a Drude dielec-
tric constant. The black and red curves are for the case of a lossless metal, while
the blue curve has been computed for the case Γ = 0.1ωp. The red curve is when
the dielectric is characterized by a dielectric constant ε = 5, while in the other
two cases the dielectric is vacuum. The dashed lines represent the corresponding
light cones, while the dotted line shows the asymptote of the dispersion relation
when ε = 1,Γ = 0.

Figure 1.3 renders a representation of the electric field associated
with an SPP. It is apparent that the normal component of the electric
field (i) is discontinuous across the surface and (ii) changes sign along
it. This is related to the existence of a surface polarization wave. On
the other hand, Figure 1.4 shows the dispersion relation ω(kp) of
these SPP modes for the case of a metal and a dielectric, charac-
terized by dielectric functions that are Drude-like for the metal and
a frequency-independent ε for the dielectric. This figure illustrates
several characteristics of the dispersion of SPPs:

• The dispersion relation of SPPs (as for any bounded mode) lies to
the right of the light cone ω = ck/

√
ε. In fact, the distance of the

SPP dispersion relation to the light cone is directly related to the
SPP confinement to the surface: the larger the distance, the more
confined the SPP mode becomes.

• The light cone is the asymptote of the SPP dispersion relation at
small frequencies (ω � ωp).

• In a lossless system, no EM bounded modes exist when εM >

−ε, i.e. when ω > ωSP ≡ ωp/
√

1 + ε. The frequency ωSP is the
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surface plasmon frequency, which would be obtained if retardation
effects were neglected, i.e., in a model where the electrons interact
via the instantaneous Coulomb potential. Therefore, SPPs can be
understood as resulting from the coupling of dispersionless electron
density surface modes with light waves.

• Without absorption, SPPs would propagate indefinitely. Absorp-
tion causes the modes to acquire an Imkp �= 0 and thus propa-
gate a typical distance LSPP = 1/Imkp. Additionally, absorption
induces a back-bending in the dispersion relation close to the ωSP

asymptote.
• SPPs exist for a wide frequency range, which implies that they

can provide an inherent fast response. This topic will be covered
in Chapter 7.

It must be noted that Fig. 1.4 and the previous analysis have been
done considering that ω is real, so the solution to Eq. (1.4) is a com-
plex kp. The dispersion relation for real kp and complex ω is very
similar at small frequencies, but it does not present back-bending.1

Different experiments may explore different parts of the complex-ω
versus complex-kp dispersion relations, but usually the general pic-
ture shown in Fig. 1.4 is a good starting point as, in real metals,
SPPs close to the ωSP are strongly damped anyway.

The dispersion relation of SPPs in real metals is represented in
Figs. 1.5 and 1.6 in a slightly different way. The left panels show
the real part of the dimensionless SPP wavevector as a function of
free-space wavelength. The advantage of this representation is that the
in-plane plasmon period (λspp) is readily obtained as λspp = λ/Re(qp).
The right panels show the spectra of the SPP figure of merit FOM ≡
Re(qp)/Im(qp). FOM is 2π times the number SPP of periods that prop-
agate before its field amplitude decays by a factor 1/e.

These figures show that SPPs propagate in the visible regime
longer in Ag, Au and Cu than in other metals, with propagation
lengths of the order of several microns, while Al is the most promising
material for plasmonics in the UV. Of course, the characteristics
of the dielectric constant of the metal is not the only parameter
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Fig. 1.5. Left panel: Dimensionless in-plane plasmon wavevector qp = kp/(ω/c)
for the metals most commonly used in plasmonics. Right panel: corresponding
figure of merit FOM ≡ Reqp/Imqp. dielectric constant of the metals taken from
the same references as Fig. 1.1.

Fig. 1.6. Left panel: Dimensionless in-plane plasmon wavevector qp = kp/(ω/c)
for metals not commonly used in plasmonics. Right panel: Corresponding figure of
merit. Dielectric constant of the metals taken from the same references as Fig. 1.2.

that determines the performance in plasmonics; the possibility to
prepare ultra-smooth surfaces and to keep them uncontaminated is
of paramount importance. In this regard, Au is usually preferred to
both Ag and Cu, which oxidize fast and require surface protection
for applications.
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In order to complete the description of the SPP wavefield, Fig. 1.7
shows the confinement length of an SPP. This length is defined as
the distance to the interface at which the field amplitude has decayed
by a factor 1/e. In the optical regime, the confinement length inside
the metal (commonly referred to skin depth, δ = Lmetal

z ) is of the
order of a few tens of nm and the corresponding confinement in air
is smaller than the wavelength.

These properties can be understood by using Eq. (1.5) assuming
both −εm 	 ε and |Re(εm)| 	 Im(εm), which are good approxi-
mations for a metal–air interface and in the optical regime, respec-
tively (see Fig. 1.1). Then, the dimensionless SPP wavevectors in
the normal direction in the dielectric (qzd) and in the metal (qzm)
are qzd ≈ ıε/

√
εm and qzm ≈ ı

√
εm. Therefore, these vectors satisfy

Im(qzd) Im(qzm) ≈ ε, which is an illustrative relation showing that
(i) in adimensional units, the confinement in the metal is inversely
proportional to the confinement in the dielectric, and (ii) this confine-
ment increases with the dielectric constant of the dielectric. In real
space, these expressions lead to

Lmetal
z Ldielectric

z ≈ ε

4π2
λ2. (1.6)

In the case of a Drude metal in the optical regime,
√−εm≈ωp/ω∝λ,

so the skin depth does not depend on frequency, while the confine-
ment length in air scales with λ2. The metals represented in Fig. 1.7
are not exactly Drude metals, but they follow these trends.

Obviously, the considered system of two semi-infinite media is
an idealization which is never present in nature. However, it is
useful when the metal thickness, W , is much larger than the
penetration depth of the field inside the metal, δ, in which case the
two interfaces support different SPPs (note that δ is in principle
frequency-dependent, so the following argument may apply differ-
ently in different frequency regimes). If W ∼ δ, the SPP field in
one interface will feel the boundary condition imposed by the oppo-
site interface, causing the hybridization of the SPPs of the isolated
interfaces, in a process very much like the formation of molecular
orbitals from atomic ones. One of the resulting hybridized modes has
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Fig. 1.7. Confinement length of an SPP in the direction perpendicular to the
air–metal interface. The left panel shows the decay in air, while the right panel
shows the decay in the metal. All dielectric constants have been taken from Ref. 9.

a reduced electric field in the metal (in the case of equal substrate
and superstrate, this mode would be the antisymmetric combination
of the SPPs of the individual interfaces). Correspondingly, compared
to the independent SPPs, this hybridized mode has a larger extension
into the dielectric, a dispersion relation closer to the light-cone and a
longer propagation length, hence its name long-range SPP (LRSPP).
The other hybridized mode, or short-range SPP (SRSPP) has, again
compared to the independent SPPs, a larger proportion of the electric
field inside the metal, a reduced proportion in the dielectric and a
shorter propagation length. Also, it has a smaller in-plane wavelength
and thus a dispersion relation that deviates more from the light cone.
All these characteristics are progressively more apparent as the film
thickness decreases. In fact, nowadays, it is possible to manipulate
SRSPPs in the extreme limit of atomic-thin materials. To date, the
best-studied case is graphene, which will be covered in Chapter 8.
The interested reader may find recent introductions to the plasmonic
properties of other families of 2D materials in Refs. 14,15.

1.2.2. Historical note

The prediction that the metal–air interface supports a bound EM
mode at a frequency ωSP = ωp

√
2 was first made by Ritchie in 1957,16
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when analyzing the energy loss spectra of fast electrons in thin metal
films.

The experimental data showed that electrons were not only
exciting the predicted bulk plasmons at frequencies ≈ωp, but also
some other modes at lower frequencies. Ritchie proposed that these
modes were surface excitations. Definite experimental confirmation
was not straightforward, due to the strong influence of surface prepa-
ration and possible contamination on the electron energy loss spectra
(EELs), but it appeared 2 years later, when EELS experiments in
Al films of high surface and volume purity were conducted.17 The
extreme sensitivity of SPPs to changes in surface environment was
highlighted by Stern and Ferrell,18 who found that even a 2 nm thick
oxide layer could appreciably modify the surface plasmon frequency.
In fact, this latter work was the one that introduced the term surface
plasmon which, as the name suggests, was defined as the quanta of
surface plasma oscillations. This extreme sensitivity of SPPs to the
environment is the basis of sensing.

All these theoretical works considered a non-retarded interaction
between electrons, and electron losses were ignored, so they could
only provide the high frequency “horizontal” asymptote of the full
SPP dispersion relation (see Fig. 1.4). Interestingly, the full elec-
trodynamical calculation leading to the condition for the existence
of a bound surface mode (Eq. (1.4)) had already been published by
Zenneck,19 50 years before. Here, the context was the amazing results
on long-distance wireless radio propagation that had been reported
by Marconi. Zenneck found that the interface between air and a
lossy dielectric supports a non-radiative surface EM mode, which
could carry radio signals. Sommerfeld analyzed how these modes
could be excited with an oscillating electrical dipole (which is why
some authors denote these surface modes as Zenneck waves, while
others use the name Zenneck–Sommerfeld waves). After the realiza-
tion that the main mechanism for radio propagation is reflection by
the ionosphere (itself a plasma at radio frequencies!), Zenneck waves
disappeared from the forefront of research.
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We stress that previous paragraphs do not intend in any way to
diminish the accomplishments of the scientists previously named. But
it is interesting to note that neither Zenneck nor Sommerfeld seem
to have considered whether their modes would exist in a metal at
optical frequencies, of if they did, to the best of our knowledge, they
did not report it. Maybe they did consider the possibility, but the
sub-mm distances travelled by SPPs did not appeal to them at the
time. The scientific community had to wait for the insight of Ritchie
to discover the existence of surface plasma oscillations supported
by metal interfaces, using an approach more familiar in Condensed
Matter Physics than in Classical Optics.

1.2.3. Excitation of SPPs

The SPPs of a flat interface cannot be directly excited by incoming
radiation: the dispersion relation of incident radiation (which lies
within the light-cone) and the SPP one does not have any common
point (see Fig. 1.4), so parallel momentum and energy could not be
simultaneously conserved in the process. There are two main strate-
gies to excite SPPs:

• Breaking the conservation of parallel momentum: This can be
achieved by eliminating the translational symmetry of either the
structure or the source. Instances of the first case are the presence
of surface roughness and gratings. In fact, uncontrolled coupling
to SPPs were a highly detrimental feature of metal surfaces in
optics until the influence of surface roughness could be tamed.
Gratings provide a good way to excite SSPs with a particular
wavevector with the flexibility in their design even allowing for uni-
directional launching.20 Alternatively, the structure can be trans-
lationally symmetric, but the source may not be so, for instance
by being localized in a region of space ∆x (for simplicity, we focus
on one spacial dimension in our analysis, but the extension to
a source with 2D or 3D confinement is straightforward). In this
case, by Fourier transformation, the source can be visualized as
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Fig. 1.8. Geometries for evanescent coupling of SPPs. Left panel: Kretschmann
configuration. Right panel: Otto configuration.

extended in k-space with components within ∆k ∼ 1/∆x that can
be outside the light-cone. These components are evanescent from
the source, but, if the source is placed close enough of the metal-
dielectric interface, they can excite SPPs. Another possibility is
using the electric fields confined to electron beams, as was done in
the original experiments leading to the discovery of SPPs. Recent
developments of EELS in connection with the study of SPPs are
covered in this book in Chapter 9.

• Evanescent coupling: This technique excites the SPP of a given
metal–dielectric interface with light incoming from another dielec-
tric with a higher dielectric constant. To illustrate this concept,
consider Fig. 1.4. The spectral region between the red and black
discontinuous curves corresponds to waves that propagate in the
medium with higher ε (as this region is inside the light-cone of
that medium), but are evanescent in air. Those propagating waves
can excite the SPPs of the metal–air interface, but not those of
the metal–high dielectric one. The dielectric should be placed at a
distance of the order of the SPP confinement length in air, as oth-
erwise, the coupling to SPPs would be negligible (for much larger
distances), or the characteristics of the metal–air SPP would be
strongly modified (at much smaller ones). In practice, the high
dielectric medium is a prism, illuminated normally at one of the
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lateral surfaces, so that there is no diffraction at the air–prism
interface, see Fig. 1.8. The coupling to SPPS is then either across
the metal film (Kretschmann configuration) or by the evanescent
field present in conditions of total internal reflection (Otto config-
uration).

1.3. 0D Surface Plasmons (Particle Plasmons) and 1D
Surface Plasmons (Plasmonic Waveguides)

The existence of surface plasma oscillations is not restricted to the
geometry of the plane. On the contrary, virtually any metal–dielectric
interface will support them in the optical regime. In fact, SPPs in
particles have been used for centuries due to its ability to color sur-
faces without degradation with time. Renowned examples are the
Lycurgus cup (4th century, whose glass contains nanoparticles of
gold and silver which give it a different color when looked in reflec-
tion than in transmission), the stained glass that can be found in
medieval cathedrals from the 10th century, and the lustre technique
used in ceramics to provide iridescence (developed also around the
4th century).

mm

Fig. 1.9. Cross-section spectra (normalized to the geometrical cross-section) of
spherical Ag nanoparticles for three different radii: 10, 50 and 80 nm. Left panel:
absorption cross-section. Right panel: scattering cross-section. The dielectric con-
stant of Ag is taken from the experimental data in Ref. 9.
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As a difference with their 2D counterpart, SPPs in particles can
be directly excited by incident radiation. To illustrate this, we con-
sider the scattering of light by a spherical homogeneous particle. This
problem was solved analytically by Mie already in 190821 and which,
despite its apparent simplicity, presents a rich physical behavior.22

Figure 1.9 summarizes how a spherical silver nanoparticle interacts
with light, showing both absorption and scattering cross-sections,
normalized to the geometric cross-section, for nanoparticles of three
different sizes. The scattering by a spherical particle presents reso-
nances at frequencies that are largely independent on particle size.
Depending on the particle size, the particle cross-section is mainly
due to absorption (smaller particles) or to scattering (larger ones),
the cross-over being at a radius ∼50 nm.

Particles with other geometrical shapes also present resonances
at frequencies that depend on geometry. Correspondingly, the EM
field close to the particle is strongly enhanced. A great deal of work
has been devoted to understanding, controlling and optimizing the
spectral position and field distribution of SPPs in particles. These
efforts are summarized in several chapters in this book. Chapter 12
is devoted to the actual fabrication of the nanoparticles, whereas
Chapter 5 studies the field enhancement in a variety of geometries
(both in a single particle and in the gaps created between two nearby
particles) within the quasistatic approximation. In fact, the present
capability to create interparticle gaps in the nm and sub-nm scale
requires understanding how both the electronic wavefunction spill-
out out of the geometric boundary described by the atoms and
electron quantum tunneling across the gap influence the plasmonic
modes of the coupled particles. These quantum effects are addressed
in Chapter 4. Generally speaking, the coupling between radiation
and particle plasmons is of great relevance to many scientific areas,
as these plasmons concentrate light in the nanoscale, thus acting as
optical antennas, an aspect that is covered in Chapter 2.

Once particle plasmons are excited, they act as localized sources
of light, which can help us beat the diffraction limit and be able to
“see” objects with nanoscale resolution with optical fields (subject
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(a) (b)

m
1

Fig. 1.10. Transverse electric field of (a) wedge plasmon and (b) channel plas-
mon, in gold, defined with the same geometrical parameters by interchanging the
metallic and vacuum regions. The panel lateral size is 2 µm and the wavelength is
λ = 1.5µm. This figure is an adaptation of Ref. 26, courtesy of Esteban Moreno.

covered by Chapter 11). Additionally, the absorption of energy by
the plasmonic modes can heat up the particle, which thus becomes a
localized source of heat, with promising applications for heat-assisted
magnetic recording and, in medicine, in cancer therapy and the con-
trolled release of drugs (see Chapter 10).

Let us finish this section by stating that surface plasmons also
exist in one-dimensional (1D) systems, which can be used then as
plasmonic waveguides. These waveguides are lossy and present the
typical trade-off between confinement and losses: the higher the
confinement, which is usually a desired quality, the higher the losses,
which are usually to be avoided. However, although this trade-off
exists for all geometries, the actual figures may greatly depend on
geometry. This is exemplarily represented in Fig. 1.10, which shows
the modal field of both a gold wedge and a channel in gold, defined
by the same geometrical parameters.

Plasmonic waveguides are also interesting in combination with
both classical dipoles and quantum two-level systems, as the small
modal volume leads to an enhanced coupling between the emitters and
the waveguide, which opens the way to “blind” optical circuits.23–25
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CHAPTER 2

Plasmonic Nanoantennas
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jean-jacques.greffet@institutoptique.fr

Antennas are widely used to couple efficiently electromagnetic waves
with subwavelength emitters and receivers. In this chapter we discuss
how the concept of antenna can be used in the optics regime to con-
trol light-matter interaction processes such as absorption, scattering or
spontaneous emission by a quantum system such as an atom, a molecule
or a quantum dot. The aim of this basic introduction is to establish
connections between the electrical engineer, the optics and the cavity
quantum electrodynamics point of view.

2.1. Introduction

Antennas are widely used in radiowaves to efficiently couple waves
propagating in open space to electrical lines which are subsequently
coupled to detectors or emitters. The wires are subwavelength in the
radiowave regime so that antennas confine electromagnetic waves well
below the diffraction limit, something that cannot be achieved with
lenses and mirrors. In order to efficiently transfer electromagnetic
energy between the source/detector and the vacuum, it is required
to avoid reflection in the lines. In this context, a key concept is the
line impedance which has to be matched with the emitter/receiver

21
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impedance on one hand, with the antenna impedance on the other
hand. When comparing radiowaves antennas with optical anten-
nas, some differences appear. The subject of optical antennas was
first envisioned in the context of near-field imaging.1–3 Early discus-
sion of modification of decay rate and emission directivity can be
found in Refs. 4–6 and experimental demonstrations were reported
in Refs. 7–10. Excellent reviews can be found in Refs. 11–13. In this
chapter we focus on the interaction between a nanoantenna and a
single emitter such as a molecule, an atom or a quantum dot.5 The
first section reviews briefly the key figures of merit of radiowaves
antennas. This will be used as a guide to identify the relevant con-
cepts and functions of an antenna. The second section introduces the
corresponding key features in the electromagnetic optics framework.
We then specifically study how elementary light-matter interaction
processes at the single quantum emitter level are modified by the
presence of an antenna. We first compare a nanoantenna with a
microcavity and show that the concepts introduced in cavity quan-
tum electrodynamics can be applied to nanoantennas. Finally, we
analyse different light-matter interaction processes such as sponta-
neous emission, Raman Scattering and Fluorescence both in the lin-
ear regime and in the saturation regime. Surface Enhanced Infra Red
Absorption (SEIRA), non-local effects and quantum effects will not
be touched upon here as they will be the subject of specific chapters
in this book.

2.2. Antennas: Basic Concepts

2.2.1. Radiation resistance, efficiency, superradiance

Let us first consider an antenna used to emit radiowaves. The antenna
is fed by an electrical source through a line as shown in Fig. 2.1(a).
From the electrical circuit point of view, the antenna is a dipole
connected to the line. It is characterized by an impedance Zant whose
real part is the antenna resistance R.

The power dissipated by the antenna is either transformed in heat
in the antenna wires or radiated. Two resistances are introduced to
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θ

φ

Source Line Load:antenna

(a) (b) (c) (d)

Fig. 2.1. Basic antenna concepts. (a) An electrical source is connected to an
antenna through a line. (b) Definition of the angles for a dipolar emitter with
dipole moment p. (c) Metallic nanosphere antenna, (d) dimer of dipolar antennas.

account for these two processes:

R = RR +RNR, (2.1)

where RR is the radiation resistance (accounting for power radiated
only) and RNR accounts for the non-radiative losses (i.e. Joule losses
in a metallic antenna). The fraction of dissipated power which is
converted into radiation is given by the antenna efficiency

ηant =
RR

RR +RNR
. (2.2)

In order to optimize the emitted power, it is important to avoid
reflections between the source and the line and between the line and
the antenna. In other words, the line needs to be impedance matched
with both the source and the antenna.14 Here, we want to pinpoint
the very basic physical phenomenon responsible for the power radi-
ated by an antenna. To start this qualitative discussion, we consider a
short antenna wire with length L� λ where a current with intensity
I is flowing at frequency ω = ck. The emitted power is given by14

PR =
η0

12π
(kL)2I2, (2.3)

where η0 = µ0c = 377Ω is the vacuum impedance and k = 2π/λ is
the wavevector modulus. It is clearly seen that the field increases lin-
early with L so that if the length is multiplied by N while satisfying
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the condition NL � λ, the radiated power is multiplied by N2. An
antenna with length NL can be viewed as a collection of N antennas
of length L driven by the same current. This simple effect is a direct
consequence of constructive interferences of emitted electromagnetic
fields. It is called collective radiation or superradiance15 in the con-
text of light emission by an ensemble of N atoms in the low excitation
regime.a This result follows directly from the fact that the field varies
linearly with the antenna length L. Assuming that all the sources are
in phase, we simply add the fields produced resulting in a factor N
for the field amplitude and a factor N2 for the radiated power.

This simple remark can also be used to analyze the power emitted
by a metallic nanosphere. It is proportional to the square of its dipole
moment and therefore to the square of its volume or in other words,
to the square of the number of electrons. By realizing that a particle
with a radius of 50 nm contains approximately 107 free electrons, it is
clear that such a particle is a much better emitter than a single atom
or molecule. This remark explains why the metallic nanoantennas
must be chosen to be on the order of a fraction of a tenth of a
wavelength to be efficient. If the radius is smaller, the radiated power
decays faster than non-radiative losses so that the efficiency drops.
Let us make an order of magnitude estimate. The typical decay time
due to losses (i.e. generation of a hot electron) is on the order of
5 fs in a metal whereas a typical atomic decay time by spontaneous
emission is on the order of 10 ns. If the radius is 5 nm, the number
of electrons is on the order of 104 so that the radiation decay time
becomes 1 ps. Instead, for a radius of 50 nm, we have N ≈ 107 so that
the radiative decay time is on the order of 1 fs and becomes faster
than non-radiative losses. If the radius is larger than λ/10, the path
differences cannot be neglected anymore. In other words, the fields

aThis classical superradiance effect corresponds to the spontaneous emission of
one excited atom among N − 1 non-excited atoms. The emitted power scales as
N2, N times more than an ensemble of N incoherent emitters. The spontaneous
emission rate is then multiplied by N . This effect should not be confused with
the superfluorescence effect observed when the N atoms are all excited. In that
case, a burst of light is observed on a time scale also given by τ/N .15
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emitted by different electrons are no longer all in phase so that the
(classical) super radiance effect saturates. In summary, the figure of
merit to characterize the amount of radiated power is the radiation
resistance. As we have seen in the two examples, the key parameter
is the size of the antenna or in more physical terms, the number of
electrons radiating coherently.

2.2.2. Gain

Another key feature of an antenna is the control of the angular radi-
ation pattern. To characterize the ability of an emitting antenna to
radiate light in direction (θ, φ) (see Fig. 2.1(a)), the gain G(θ, φ) is
defined as the flux of the Poynting vector S(r) at an observation
point r divided by P/4πr2:

G(θ, φ) =
S(r) · r̂
P/4πr2

, (2.4)

where P is the total power delivered to the antenna. Hence, the gain
compares the antenna with an isotropic antenna that would radiate
a power P . A slightly different quantity called directivity is defined
when normalizing with the actual radiated power PR = ηantP . The
directivity accounts for the antenna efficiency:

D(θ, φ) =
G(θ, φ)
ηant

, (2.5)

so that it verifies: ∫ 2π

0
dφ
∫ π

0
sin θdθD(θ, φ) = 4π. (2.6)

It is worth discussing briefly the conditions required to obtain a direc-
tional antenna. Let us consider the radiation by an antenna described
by a monochromatic current density j(r, ω) in a finite volume V .
We use the following definition of Fourier transform:

j(r, t) =
∫ ∞

−∞
j(r, ω) exp(−iωt)dω

2π
. (2.7)



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch02 page 26

26 Handbook of Metamaterials and Plasmonics — Volume 4

The retarded vector potential is given by:

A(r, ω) =
µ0

4π

∫
V

j(r′, ω)
exp(iω|r−r′|

c )
|r− r′| d3r′. (2.8)

This form clearly displays the fact that different elements of the
source produce spherical waves. The resulting total potential is due
to the interferences between these waves. To discuss directivity, we
need to move to the far field. In the far-field approximation, valid
provided that r � L2/λ where L is a characteristic length of the
current distribution, the retarded potential can be simplified:

A(r, ω) =
µ0

4π
exp(iωc r)

r

∫
V

j(r′, ω) exp
(
−iω

c

r
r
· r′
)
d3r′. (2.9)

In this approximation, the interference of the fields radiated by
different points located at different positions r′ appears clearly: the
potential vector results from adding the contributions of all the
volume elements accounting for a path difference given by r

r · r′.
This equation shows explicitly how the vector potential depends on
the emission direction r/r. It is seen that the dependence is given
by the Fourier transform of the current density. Hence, it follows
immediately from a very general property of the Fourier transform
∆x∆kx ≥ 2π that the radiation in the far field can be confined to
small solid angles if and only if the antenna is much larger than
a wavelength. Assuming an extension along the x-axis of L, we find
that the radiated field has a spatial spectrum with width ∆kx ≈ 2π/L
corresponding to an angular width λ/L. We recover the well-known
result of diffraction theory. This is not unexpected as diffraction
theory is based on the Huygens-Fresnel principle which amounts to
transforming the diffraction problem into a radiation problem by
introducing secondary sources. As this discussion is based on the
retarded potential solution of Maxwell equations and the far-field
approximation, the conclusion is very general and can be applied
to any radiating system. It follows that any subwavelength antenna
cannot be highly directional. Note however that some degree of
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directivity can be obtained due to either polarization effects (e.g. a
sin2 θ dependence for dipolar radiation) or to interferences between
dipolar and quadrupolar modes.

2.2.3. Receiving antenna

When an antenna is used to collect incident power and funnel it
into a detector, an interesting quantity is the effective antenna area
Aeff (θ, φ). The effective area is defined by the equation:

Pabs = SincAeff , (2.10)

where Pabs is the absorbed power in the load and Sinc is the Poynt-
ing vector amplitude of an incident plane wave. In this equation,
it is assumed that the antenna is impedance matched with the line
and the line is impedance matched with the load so that there are
no reflections. This effective area is close to the real geometrical
cross section of the antenna for very large antennas. By contrast, for
small resonant antennas, it can be very different. In particular, for a
resonant dipolar electromagnetic antenna, it is given by14:

Aeff =
3λ2

8π
sin2 θ, (2.11)

even if the dipole is much smaller than the wavelength. A very impor-
tant result is the connection between the receiving effective area and
the gain:

Aeff =
λ2

4π
G(θ, φ), (2.12)

a general result valid for any antenna as can be shown using the
reciprocity theorem.14 This is a fundamental property of antennas
which shows that emitting and receiving properties are connected. It
also clearly shows that the directivity of an antenna is given by its
effective area in units of λ2:

G(θ, φ) = 4π
Aeff

λ2 . (2.13)
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2.2.4. A simple model of a nanoantenna

In this section, we introduce an elementary model to illustrate how
a nanoantenna can enhance the radiation of a quantum emitter. In
our model, the emitter is characterized by an electric dipole moment
p. The plasmonic nanoantenna is simply a metallic nanosphere with
radius a and dielectric permittivity ε(ω). We assume that the permit-
tivity is given by a Drude model ε(ω) = 1−ω2

p/(ω
2+iΓω). We choose

the dipole to be aligned with the axis connecting the dipole and the
nanoantenna (see Fig. 2.1(c)). In the near-field regime (r � λ/2π),
the leading contribution to the field generated by the dipole at the
nanoantenna position is:

E(r) =
1

4πε0
p
r3
. (2.14)

This field polarizes the spherical nanoantenna which has a polaris-
ability:

α(ω) = 4πa3 ε(ω)− 1
ε(ω) + 2

, (2.15)

so that the antenna dipole becomes:

pant = α(ω)ε0E =
[a
r

]3 ε(ω)− 1
ε(ω) + 2

p. (2.16)

With this simplified model, we see that the dipole moment of the emit-
ter p is essentially replaced by the dipole moment of the antenna pant.
Hence the radiated power will be much larger. The enhancement factor
contains two terms: a purely geometrical factor (a/r)3 < 1 as r > a

and a resonant factor ε(ω)−1
ε(ω)+2 . The first term is specifically a near-field

effect similar to the lightning rod effect: it is due to the concentration
of surface charges on a conductor. In the case of a sphere, it is smaller
than 1 so that there is no enhancement. However, for other geometries
such as a dimer (see Fig. 2.1(d)), the enhancement can be much larger
than 10. The second term is associated to a plasmon resonance at
ωp/
√

3 + iΓ/2 corresponding to Re(ε) + 2 = 0. A more detailed anal-
ysis can be found in Ref. 25. This discussion has put forward two key
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characteristics of a plasmonic nanoantenna: it must be much larger
than the emitter in order to radiate more power, it needs to generate
a large electric field in the near field (a hot spot) in order to be effi-
ciently coupled to the dipole source. In summary, a nanoantenna is
an intermediate resonator which is well coupled to both the emitter
and the propagating waves. With this point of view, the concept of
impedance matching to a line is lost. We will discuss in Section 2.9
how it is possible to introduce this concept.

2.3. Spontaneous Emission

The goal of this section is to discuss how the presence of a nanoan-
tenna modifies the spontaneous emission of a two level system charac-
terized by an electric dipolar transition. We will compare the classical
antenna point of view and the quantum point of view for radiation
emission. We will specifically discuss what is quantum and what is
classical in the spontaneous emission process.

2.3.1. Decay rate of a classical oscillator

We start by establishing the connection between the power radiated
and the decay rate of the energy of the oscillator. We model the emit-
ter by a harmonic oscillator with amplitude x(t) = x0(t) cos(ω0t),
velocity v(t) = ẋ(t) and electric dipole moment −ex(t). The oscilla-
tor has a resonant frequency ω0 and a mass m. The instantaneous
energy is given by

U =
1
2
mv2(t) +

1
2
mω2

0x
2(t). (2.17)

The amplitude x0(t) is a slowly decaying function of time due to
radiative losses. Assuming a slow amplitude decay ẋ0 � ω0x0, we
can approximate the energy by:

U =
1
2
mω2

0x
2
0(t). (2.18)
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We can write an energy conservation equation:

dU
dt

= −PR(t) = −ω
4
0e

2x2
0(t)

12πε0c3
= −γclU, (2.19)

where the classical decay rate γcl is given by

γcl =
e2ω2

0
6πε0c3m

. (2.20)

As expected, the larger the dipole moment, the larger the radiated
power and the larger the decay rate.

2.3.2. Quantum spontaneous emission decay rate

in vacuum

The full quantum calculation of the decay rate in vacuum gives a
very different result19 with a different frequency dependence:

γ0 =
|d12|2ω3

3πε0c3�
, (2.21)

where d12 is the matrix element of the dipole operator and 2π� is
Planck’s constant. The presence of � stresses the quantum nature of
this result. It can be shown using the Wigner-Weisskopf method that
the decay is exponential.17 The decay rate of this exponential can be
found using Fermi golden rule19:

γR =
2π
�2 |Ŵif |2g(ω), (2.22)

where Ŵif is the matrix element of the interaction Hamiltonian and
g(ω)dω is the number of electromagnetic states in the frequency inter-
val dω with the electric field parallel to the dipole moment. Let us
stress that an electromagnetic state is nothing but a mode of Maxwell
equations (e.g. a mode in a cavity or in a waveguide). In vacuum, the
states or modes are plane waves characterized by a frequency and a



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch02 page 31

Plasmonic Nanoantennas 31

wavevector. The density of states is given byb:

g(ω) = V
ω2

3π2c3
. (2.23)

Using the quantized electromagnetic field with amplitude√
�ω/2ε0V , it is found that the interaction Hamiltonian matrix

element Ŵif = 〈f |d̂ · Ê|i〉 is given by:

|Ŵif |2 =
|d12|2 �ω

2ε0V
. (2.24)

Upon inserting Eqs. (2.23) and (2.24) into Eq. (2.22), we obtain the
radiative decay rate in vacuum (2.21). Although the quantum result
is very different from the classical one, it is interesting to note that
it is possible to recover the quantum result by simply replacing two
terms in the classical calculation by their quantum counterpart. The
first term is the classical energy U = 1

2mω
2
0x

2
0 which can be replaced

by �ω, the second term is the classical dipole moment ex0 which can
be replaced by 2d12.

2.3.3. Classical radiation in vacuum: Radiation

reaction work

In this section, we establish a connection between the power radi-
ated and the power done by the radiation reaction, namely, the field
radiated by a source on itself. We start by considering the power
radiated by a classical dipole in vacuum. We consider a dipole source
inside a volume V enclosed in a surface A. Energy conservation in

bIn k-space, the volume corresponding to electromagnetic modes with frequency
in the interval [ω, ω+dω] is 4πk2dk where k = ω/c. Using the periodic boundary
conditions for a cubic volume with side L, it is shown that the volume associated
to a single mode is given by (2π/L)3 = 8π3/V . A factor 2 needs to be included
to account for the two polarizations for each plane wave. Finally, a factor 1/3
is included to account for the fact that the electric dipole couples only to the
z-component of the electric field, parallel to the dipole moment. This is called the
projected density of states.



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch02 page 32

32 Handbook of Metamaterials and Plasmonics — Volume 4

time domain yields:∫
V

∂u

∂t
d3r = −

∫
V

j(r) ·E(r) d3r−
∫

A
S · dA, (2.25)

where u is the electromagnetic energy density, j is the current density
and E the electric field. We now consider a monochromatic point-like
dipole source with dipole moment p in stationary regime such that
j(r) = −iωpδ(r−r′). We can now compute the time-averaged energy
conservation relation using complex amplitudes:

1
2
Re [iωp ·E∗] =

∫
A
〈S〉 · dA = PR, (2.26)

where we have introduced the radiated power PR. The term on
the left involves the electromagnetic field generated by the dipole
on itself. This field is known as radiation reaction. The electric
field generated by the dipole source can be cast in the form

E(r) = µ0ω
2 ↔
G

(0)
(r, r′)p, where we have introduced the vacuum

Green tensor16,17:

↔
G

(0)
(r, r′) = P

[↔
I +

1
k2

0
∇∇

]
exp[ik0R]

4πR
−

↔
I

3k2
0
δ(r − r′), (2.27)

and where P stands for principal value of the integral and k0 = ω/c.
Using Eq. (2.26), the power generated by a dipole p = pez can

be cast in the form:

PR =
µ0ω

3

2
Im
[
G(0)

zz (r, r)
]
|pz|2. (2.28)

Although the real part of G(0)
zz diverges, its imaginary part is well

defined and takes the value ω/(6πc) so that we recover the usual
Larmor formula for the power radiated by a dipole:

PR =
µ0ω

3

2
ω

6πc
|pz |2 =

1
4πε0

ω4|p|2
3c3

. (2.29)
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(a) (b)

(c) (d)

Fig. 2.2. Illustration of the energy conservation: the work done by the radiation
reaction (b and d) is equal to the power radiated (a and c). Figure (a) shows a
dipole radiating in vacuum. The black lines represent symbolically the lines of
the Poynting vector. (b): The red line represents symbolically the field produced
by the dipole acting on itself. (c): the black lines represent the flow of energy
radiated directly or through the antenna. (d): the red line represents symbolically
the radiation reaction produced by the antenna on the dipole.

2.3.4. Classical radiation in vacuum:

Damped oscillator

In the previous section, we have found that the emitted power can
be viewed as the work done by the radiation reaction. We adopt
in what follows an alternative point of view to illustrate the role
of the radiation reaction. Here, we write a dynamical equation for
the dipole moment in vacuum. Let us consider for the sake of sim-
plicity that the dipole consists of a charge −e oscillating along the
axis 0z. We assume that the forces due to the atom are modelled
by a parabolic potential mω∗2

0 z
2/2. Furthermore, there is an electric

field produced by the charge itself (namely, the radiation reaction)
given by µ0ω

2Gzz(r, r)(ez). Newton’s equation yields:

−mω2z = −mω∗2
0 z + eµ0ω

2Gzz(r, r)(ez). (2.30)
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It follows that the eigenfrequency is a solution of the equation:

ω2 − ω2
0 + i

e2µ0ω
2

m
Im[Gzz] = 0, (2.31)

where we have introduced the notation ω2
0 = ω∗2

0 − e2µ0ω2

m Re[Gzz].
Hence, it is seen that accounting for the radiation reaction introduces
both a frequency shift and an imaginary part describing the radiation
damping. The frequency shift is the Lamb shift.18 The eigenfrequency
can be approximated by

ω ≈ ω0 − iγcl

2
, (2.32)

where we recover the classical decay rate

γcl =
e2µ0ω0

m
Im[Gzz ] =

e2ω2
0

6πmε0c3
. (2.33)

2.3.5. Classical radiation in the presence

of an antenna

In this subsection, we consider the power radiated by a classical
dipole source with dipole moment pS in the presence of an antenna.
What is called antenna here can be any object made of any arbitrary
material. The dipole and the antenna are located in a volume V . The
dipole is outside the object. It drives a current density jant(r′) in the
environment which leads to an ohmic dissipation rate jant(r′) ·E(r′)
where E(r′) is the electric field induced in the antenna. The energy
conservation can now be cast in the form:

1
2
Re [iωpS · E∗] =

∫
V

jant(r) ·E(r) d3r +
∫

A
S · dA. (2.34)

This equation shows that the power delivered by the dipole is equal
to the sum of the radiated power and the power dissipated in the
antenna by losses. It is thus seen that the energy conservation can
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now be written in the form:

µ0ω
3

2
Im [Gzz(r, r)] |p|2 = PNR + PR (2.35)

It is important to note that the Green tensor is no longer the
vacuum Green tensor. It provides the field produced by the dipole in
the presence of the antenna.

E(r) = µ0ω
2 ↔
G (r, r′)p, (2.36)

In particular, the radiation reaction includes a term which is the
field radiated by the antenna back onto the dipole source. Hence, the
only formal modification to the previous classical calculation is to
replace G(0) by G. The decay rate is thus proportional to Im[Gzz].
The decay rate γant in the presence of the antenna is given by:

γant

γ0
=

Im[Gzz]

Im[G(0)
zz ]

. (2.37)

Although the spontaneous emission decay rate depends on � and
on the quantum electric dipole moment matrix element, the sponta-
neous emission decay rate γant in an arbitrary environment is simply
the vacuum decay rate γ0 in vacuum multiplied by a correction fac-
tor accounting for the modification of the radiation reaction. This is
simply given by the ratio of the imaginary part of Green tensor.

Using the quantum point of view, we can rephrase this statement
by invoking the modification of the density of states. However, our
previous discussion based on the radiation reaction clearly pointed
out that the decay rate depends on the exact position of the emitter.
In terms of density of modes, this requires to introduce the concept
of local density of states ρ(r, ω) which is a density of states per unit
volume. To understand the origin of the spatial dependence of the
density of states, it suffices to think of the spatial distribution of
a mode in a gap between two mirrors forming a cavity. There are
modes with nodes and antinodes. A dipole will couple efficiently to
a mode if it is located at an antinode.

Finally, we stress that the decay rate can be increased either by
the increase of the radiated power or by the additional decay channels
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due to losses in the antenna as shown in Eq. (2.35). In other words,
the calculation of the local density of states based on the imaginary
part of the Green tensor takes into account the non-radiative decay.

2.3.6. When quantum physics meets classical physics

We now compare the classical and quantum approches. The connec-
tion between the two points of view can be established in a simple
manner. In vacuum we have:

ω2

π2c3
=

6ω
πc2

Im[G(0)
zz (r, r′)] (2.38)

where the left hand side term was introduced as a density of elec-
tromagnetic states and the right hand side term was introduced as
the radiation reaction. If we now consider a more general situation
than vacuum by introducing nanoantennas, the radiation reaction is
still well defined. It turns out that it can be shown20 that the local
density of states ρ(r, ω) is proportional to the imaginary part of the
Green tensor:

ρ(r, ω) =
2ω
πc2

Im[tr
↔
G (r, r)]. (2.39)

This formula is a general formula for the local density of states in
presence of lossy objects.c,20 When dealing with spontaneous emis-
sion, we restrict the LDOS to the axis parallel to the dipole moment
to obtain the projected LDOS. Inserting this form in the spontaneous
emission decay rate given in Eq. (2.22), we obtain:

γR =
2π
�2 |Ŵif |2 2ω

πc2
Im[Gzz(r, r)]. (2.40)

It is seen that the structure of the decay rate is given by the
product of a quantum term (2π

�2 |Ŵif |2) and the local density of states

cThe formula is valid in a non-lossy medium close to lossy media but is not valid
inside a lossy local medium. The formula predicts an unphysical divergence of the
density of states. The origin of the divergence is a consequence of the absence of
cutoff frequencies for wavevectors when using a local model of the permittivity.
This is similar to the divergence of the number of phonon modes in a crystal
which is avoided by introducing the Debye cutoff frequency.



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch02 page 37

Plasmonic Nanoantennas 37

which is a classical quantity. Upon comparing the decay rate with
antenna and in vacuum, we recover again the simple result:

γant = γ0
Im[Gzz]

Im[G(0)
zz ]

. (2.41)

To summarize, the classical point of view identifies the power
radiated with the power due to the radiation reaction which is pro-
portional to Im[Gzz]. The quantum point of view shows that the
decay rate is proportional to the density of states which is propor-
tional to Im[Gzz]. At this point, we emphasize that both the classical
and the quantum approach show that the spontaneous decay rate is
proportional to Im[Gzz]. The key remark is that modifying the envi-
ronment of an emitter amounts modifying the local density of states
and also the radiation reaction. Both modifications are described by
the imaginary part of the Green tensor. It follows that a classical
calculation of the modification of the spontaneous decay rate allows
predicting the quantum result.

2.4. Controlling the Spontaneous Decay Rate
by Modifying the Environment

The purpose of this section is to explain how the lifetime of an emitter
can be modified by changing the environment. We will discuss several
cases: modification of the refractive index, the case of lossy materials,
the presence of a cavity and the presence of an antenna.

2.4.1. Modification of the spontaneous decay rate

in a dielectric

We first consider the modification of the decay rate γR of an emitter
located in a homogeneous transparent dielectric with a real refractive
index n as compared to the decay rate in vacuum γ0. The first obvious
consequence of the presence of a refractive index is that light speed is
changed from c to v = c/n. It follows directly from Eq. (2.23) that the
local density of states is multiplied by a factor n3. However, this does
not mean that the spontaneous emission rate has been multiplied by
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the same factor. Indeed, the amplitude of the quantized electric field
in a dielectric is given by

√
�ω/ε0εV . Hence, the matrix element

|Ŵif |2 is divided by n2. Finally, it is seen that the density of states
term in Eq. (2.22) is multiplied by n3 while |Ŵif |2 is divided by
ε = n2. The spontaneous emission rate is thus γR = nγ0.

We now use the radiation reaction point of view to address the
same issue. We have seen in Eq. (2.28) that the power radiated by
a classical dipole with a fixed dipole moment is proportional to the
imaginary part of the Green tensor. In a homogeneous dielectric, the
imaginary part of the Green tensor is given by nω

6πc . Hence, we see
from Eq. (2.28), that the power radiated by a classical dipole in a
lossless dielectric with refractive index n is multiplied by a factor n.

2.4.2. Modification of the density of states close

to an interface

We now discuss the behaviour of the local density of states (LDOS)
in the vicinity of an interface separating two homogeneous isotropic
materials. This effect was first observed experimentally by Drex-
hage21 for europium ions located above a silver mirror. The distance
was varied by inserting an adjustable number of organic monolay-
ers. A seminal contribution by Chance, Prock and Silbey22 showed
that this result could be explained using a classical dipole model.
The reason for the success of this classical model was just discussed
in the previous sections. Radiation reaction and density of states
are classical concepts. Here, we will discuss the case of an interface
between two dielectrics. We start by displaying the result in Fig. 2.3
for a dielectric interface. This question was studied extensively in
Ref. 23.

It is seen that the LDOS oscillates as the distance to the interface
changes. This behaviour can be understood in terms of interferences.
As the radiated field is the sum of the field emitted upwards and
the field emitted downwards and reflected on the substrate, it is seen
that the total field radiated depends on the distance to the inter-
face. An alternative and equivalent interpretation is to consider the
structure of the modes in the presence of an interface. The modes



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch02 page 39

Plasmonic Nanoantennas 39

n=1.5 

n=1 h 

Perpendicular 

Parallel 

Fig. 2.3. Local density of states close to an interface. The LDOS nor-
malized by the LDOS in vacuum has an asymptotic value of 1.5 in the dielectric
away from the interface. Note the very different behaviour depending on the
field polarization. For both dipole orientations, the presence of the interface is
responsible for oscillations.

in vacuum are plane waves. In the presence of interfaces, the modes
are the sum of an incident and a reflected wave on one side of the
interface and a transmitted wave on the other side. The interfer-
ence between the incident and reflected waves produces an oscillat-
ing field with a period that depends on the z-component of the wave
vector. By adding all possible angles of incidence, the visibility is
smeared out except close to the interface where the path difference
is null. Indeed, at the interface, the boundary condition imposes the
phase of the interference pattern. For instance, for a perfect conduc-
tor, the field has to be zero on the interface whatever the angle of
incidence so that all the interference patterns have a node at the
interface.

We observe in Fig. 2.3 that the LDOS close to a dielectric inter-
face presents a clear maximum in the vacuum for p-polarization (for
a dipole normal to the interface). This variation is observed close
to the interface. It seems that the emitters in vacuum benefit from
the larger LDOS of the dielectric material while the LDOS in the
dielectric decays close to the interface. The decay of the LDOS in
the dielectric can be analysed as a consequence of the interferences
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between an incident wave and the reflected wave. In total internal
reflection, the z-component of the reflected field changes sign so that
the LDOS decreases as compared to the bulk in dielectric. We also
observe that the LDOS increases in vacuum. This is due to the modes
existing in the dielectric and totally reflected at the interface. These
modes have an evanescent tail which extends in vacuum providing
an additional contribution to the LDOS in vacuum. This mechanism
also explains why the enhancement is confined close to the interface
at a distance roughly given by λ/2πn.

To explain why the LDOS is larger in vacuum than in the dielec-
tric, we note that the normal component of D is continuous across
the interface so that the normal electric field is larger by a fac-
tor ε in vacuum. The ratio of LDOS is proportional to the ratio
of intensity and is thus given by ε2 = n4. In the example shown
in Fig. 2.3, a factor 5.06 is expected in good agreement with the
exact numerical calculation. By contrast, for parallel polarization,
the electric field is continuous so that no discontinuity of the LDOS is
expected.

We now consider the case of an interface between a metal and
vacuum. The result is shown in Fig. 2.4(a) in vacuum above the inter-
face. We observe again the oscillatory behaviour due to interferences.
It is seen that for the field polarized perpendicular to the interface,
the LDOS diverges when the distance to the interface goes to zero.
This large LDOS in the near field is associated to the excitation of
non-radiative modes in the metal. These non-radiative modes decay
into heat. We discuss this topic in the following section.

2.4.3. Radiation quenching

One of the major limitations of nanoantennas is the competition
between losses and radiation. The goal of this section is to provide
a physical picture of the mechanisms at work in this process. We
start with an analysis in the framework of classical electrodynam-
ics. We consider a monochromatic electric dipole located above a
metallic interface at a distance d. The electric field produced by
the electric dipole at a distance r varies as 1/r3 when r � λ. If a
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(a) (b)

Fig. 2.4. Influence of a metal on the spontaneous emission. (a) Decay rate of an
electric dipole normalized by the decay rate in vacuum. h is the distance in µm to
a gold film. It is seen that the decay rate increases at small distances due to the
non-radiative energy transfer to the surface. (b) Fluorescence signal of a molecule
at a distance d from a gold nanosphere. It is seen that the signal decays for a
distance smaller than 5 nm indicating non-radiative energy transfer to the metal
nanoparticle. The fluorescence is quenched. Figure reproduced from Ref. 17

subwavelength electric dipole is brought at distances smaller than λ
from an interface separating vacuum from a lossy material, it induces
large current densities which results in large losses. These losses may
become much larger than the power radiated so that the radiative
efficiency drops to zero. This phenomenon is called quenching and has
been known for many years. Although the previous discussion is made
in the framework of classical electrodynamics, it is valid for quantum
emitters such as atoms or quantum dots.22,24 Non-radiative losses
in the metal are due to interband absorption, electron-hole excita-
tion and electron-scattering losses. The trade-off between quenching
and fluorescence is well illustrated in Fig. 2.4(b) where the fluores-
cence enhancement of a molecule as a function of the distance to
a gold nanosphere is plotted. This result suggests that fluorophores
should be at distances larger than 5 nm from the surface to prevent
quenching.
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It is possible to analyse quenching in terms of local density of
non-radiative states. To this aim, we simply derive the asymptotic
behaviour of the LDOS for small distances20:

Im[Gzz]

Im[G(0)
zz ]

=
Im(ε)
|ε+ 1|2

3
4(k0z)3

. (2.42)

This result shows clearly that the divergence of the LDOS is
proportional to Im(ε) and therefore associated to losses in the metal.
The presence of the resonant term 1

|ε+1| indicates a surface plasmon
contribution at the frequency such that Re(ε) = −1. For a distance
of 1 nm and gold, the increase of the decay rate is about 5 orders
of magnitude. In other words, all the energy is transfered to the
metal losses. This is referred to as non-radiative energy transfer. As
this process becomes very efficient, the radiative decay becomes very
unlikely. This is called quenching. This suppression of radiation due
to fast non-radiative decay has been studied in detail in.24 Of par-
ticular importance is the review of non-local effects which become
important for length scales smaller than a 1 nm.

The physical origin of the non-radiative additional states in a
metal is the presence of electrons. More generally, the increased den-
sity of states close to matter is due to the presence of electronic
excitations which are coupled to the electromagnetic field. The sim-
ple idea is as follows. Since each atom contributes to one electron in
the conduction band, the number of decay channels per unit volume
is several orders of magnitude larger than the number of electromag-
netic modes per unit volume. The vast majority of these modes have
a large wavevector and are therefore non-radiative. A simple way to
avoid the non-radiative decay is to increase the distance between the
emitter and the metal taking advantage of the spatial decay 1/(k0z)3.
It is only recently that it has been recognized that the contribution
to the LDOS of a few modes properly engineered can compete with
the non-radiative states. In the next section, we introduce the idea
that a single mode can produce a very large density of states per
unit volume and a given frequency interval if it is properly confined
in space.
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2.4.4. Controlling Im[Gzz] with a cavity: Modifying

the LDOS

The first proposal to control spontaneous emission by modifying the
environment was introduced in the context of nuclear magnetic res-
onance by Purcell in the microwave regime. We now give a back of
the envelope derivation of the modification of the spontaneous emis-
sion rate. Assume that there is an emitter in a single mode cavity
with mode volume V and a decay rate κ. Although the cavity has a
single mode, the presence of radiative and non-radiative losses of the
cavity introduces a broadening of the cavity spectrum. If the cavity
width κ is much larger than the two-level width γR, the cavity can
be considered to be a quasi continuum to which the two-level system
is coupled so that the Fermi golden rule can be used. We further
assume that the resonance is Lorentzian so that the spectral density
is given by the normalized function:

g(ω) =
1
2π

κ

(ω − ω0)2 + κ2/4
. (2.43)

At resonance, the spectral density is g(ω0) = 2/πκ. The local density
of states is thus easily found. We have one mode in a volume V with
a spectral density g(ω0). We also assume that the mode is uniform in
the cavity for the sake of simplicity. It follows that the local density
of electromagnetic states is given by g(ω0)/V . Equation (2.37) shows
that the acceleration factor of the decay rate, also called Purcell
factor FP , γcav/γR is given by the ratio of LDOS:

FP =
γcav

γR
=

2
πκV

3π2c3

ω2n3 =
3Q
4π2

λ3

V
, (2.44)

where 2π/λ = nω/c and the cavity quality factor is defined byQ = ω
κ .

This is the form originally introduced by Purcell. It is seen that the
LDOS can be increased by confining the mode spectrally (large Q
factor) and spatially (small mode volume). For a dielectric micro-
cavity, the quality factor can be higher than 105. On the other hand,
the ratio λ3/V is typically on the order of 10 or less.
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2.4.5. Controlling Im[Gzz] with a cavity: The cavity

quantum electrodynamics (CQED) point of view

In this section, we adopt the notations of the CQED community
to describe the modification of spontaneous emission by the cavity.
We aim at establishing a link between different notations and points
of view used by different communities. Losses are responsible for a
broadening so that, if κ � γR, the cavity can be modelled as a
continuum of states and Fermi golden rule can be used. The density of
states is given by g(ω0) = 2/πκ. In CQED notations, the interaction
energy |Ŵif | is denoted �g. It follows from Eq. (2.22) that:

γcav =
2π
�2 (�g)2

2
πκ

=
4g2

κ
. (2.45)

The Purcell factor in the cavity is thus given by:

FP =
γcav

γR
=

4g2

γRκ
. (2.46)

With these notations, the Purcell factor appears as a dimen-
sionless quantity. It is worth mentioning that the quantity g2/(κγ) is
often called cooperativity or single-photon cooperativity and denoted
C1 in a different context. The reason for this name is that in the case
of N emitters in a cavity, the quantity that describes the collective
(or cooperative) interaction between the N emitters and the cav-
ity is CN = Ng2/(κγR). Obviously, with a single emitter, there are
no cooperative or collective effects but the comparison shows that
FP = 4C1.

2.4.6. Controlling Im[Gzz] with a nanoantenna

If we now consider a nanoantenna, it is usually difficult to estimate
a mode volume associated with an antenna. The field confinement is
mostly associated to evanescent waves whereas the field of a micro-
cavity is associated to stationary waves in a cavity. On the other
hand, it is possible to derive the Green tensor. An elementary deriva-
tion is made for a toy model in the case of a metallic sphere modelled
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by a dipole in Ref. 25. A much more powerful technique has been
introduced recently by Sauvan et al.26 to deal with lossy antennas.

The key difference between a microcavity and a nanoantenna is
that the antenna has usually a quality factor on the order of 10 and
a mode volume significantly subwavelength. In other words, the elec-
tric field is extremely confined in space while the spectrum is poorly
confined in frequency domain. This makes nanoantennas very inter-
esting for broadband emitters. The bandwidth of a radio antenna is
of course an important figure of merit. It is desirable to use the same
antenna while scanning different transmission channels with different
carrier frequencies. In summary, a nanoantenna or a cavity allows
engineering the field confinement in direct space and in frequency
space.

2.4.7. The Rabi oscillation regime

In this section, we give a brief introduction to the strong coupling
regime. The reader is refered to Ref. 27 for an extensive discussion.
Let us consider a single atom in the cavity depicted in Fig. 2.5.
Here, we ask the question: will a photon trapped in the cavity be
absorbed by the atom? To answer that question, we simply use the
Beer-Lambert law: the transmission through a scattering medium
with thickness L is given by exp(−L/labs). The absorption length
is given by labs = 1/ρσ where ρ is the number of atoms per unit
volume and σ is the absorption cross section. A photon in the cavity
spends on average a time τ = 1/κ in the cavity so that it travels
over a distance L = (c/n)(1/κ). The distance normalized by the
absorption length L/labs = c/(nκlabs) is called optical thickness. The
absorption probability increases with the optical thickness. With one
atom in the cavity with volume V , we have ρ = 1/V and the absorp-
tion cross-section at resonance is given by σ = 3λ2/2π.d It follows

dHere a vocabulary note may be useful. In the context of atoms, absorption means
that the atom is excited. The absorbed energy will be subsequently radiated by
spontaneous emission. In the case of a molecule with a more complex energy
spectrum, there will be fluorescence and the emission frequency may be smaller. In
the case of a particle, absorption means that the electromagnetic incident energy
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R

g

Fig. 2.5. Increasing the spontaneous emission rate with a cavity. The sponta-
neous emission decay rate is denoted γR, the coupling rate between the two-level
system and the cavity is denoted g. The cavity decay rate is denoted κ, it is due
to the transmission of the partially reflecting mirros for a Fabry-Perot cavity. The
Purcell regime corresponds to the situation where the coupling to the cavity rate
4g2/κ is faster than the coupling to the vacuum γR. In the bad cavity regime
2g � κ, the cavity energy is released. Noe that the same picture applies to a
nanoantenna.

that

c

nκ
ρσ =

c

nκ

1
V

3λ2

2π
=

c

nω

(ω
κ

) 1
V

3λ2

2π
=

3Q
4π2

λ3

V
= FP = 4C1.

(2.47)

It is seen that the Purcell factor appears to be the optical thickness
of the cavity with one two-level system at resonance. With this argu-
ment, it is seen that a cooperativity C1 larger than 1 means that a
photon in the cavity will be absorbed by the atom before escaping the
cavity. This suggests that the energy can be periodically exchanged
between the atom and the cavity. The regime where the energy is

will be transformed into heat in the particle. While the excitation of an atom can
relax only through spontaneous emission, a plasmon excitation of a particle can
relax either through radiation or through internal losses. The consequence is that
the absorption cross-section at resonance is given by σ = 3λ2/8π for a resonant
dipolar particle and σ = 3λ2/2π for a resonant atom.
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exchanged periodically between the cavity and the atom is the Rabi
oscillation regime. It can be shown that the Rabi oscillation frequency
is given by g. Hence, the oscillations are observed if their period is
smaller than 1/κ. This condition defines two regimes: either g � κ

or κ� g. In the regime

γR � g � κ, (2.48)

the coupling between the emitter and the cavity takes place on a
time scale 1/g much shorter than the spontaneous decay time 1/γR.
Once the cavity is excited, the photon is released as the cavity decay
time is even shorter g � κ. This is the so-called “bad-cavity” limit
or Purcell regime. Antennas operate in this regime. Conversely, if the
cavity has a large quality factor ω/κ such that

γR � κ � g, (2.49)

the photon is reabsorbed before leaving the cavity. In the context of
the Rabi oscillation regime, the quantity g2/(κγ) is called cooperativ-
ity instead of Purcell factor. The system oscillates between a photonic
state and an atomic state, it is the Rabi oscillation regime. In this
regime, the eigenstates of the system are linear superposition of the
emitter state and the cavity state. The spectrum is characterized by
a Rabi splitting given by ΩR = 2g. Note that the terminology differs
between authors. For some of them, the regime of strong coupling
covers only the case of Rabi oscillation γR � κ � g. Others use
the term strong coupling if the cooperativity is large (g2 � κγR),
i.e. for both the case of Rabi oscillation and the bad-cavity regime
with large Purcell factor. Finally, we conclude by noting that the key
difference between cavities and antennas is the quality factor. The
usual situation for antennas is to operate in the bad cavity limit.
The small quality factor is compensated by a very small mode vol-
ume. The observation of the Rabi oscillation regime with plasmonic
nanoantennas is extremly challenging because the cavity decay rate is
extremly fast due to metallic losses. On the other hand, it is possible
to reduce the mode volume to extremly small values and therefore
to enhance the coupling parameter g. Recent experiments have been
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reported with spectral scattering signatures showing the Rabi split-
ting.28,29

2.5. Raman Scattering

We now address the question of the control of the Raman scattering
process using a nanoantenna.30 Before discussing the phenomena, we
need to define the set-up. We consider a confocal microscope set-up
as depicted in Fig. 2.6 with two pinholes in front of the source and
the detector. The light coming from the source S is collimated and
focussed on the sample by an objective. The antenna is located in
the focus of the objective. The molecules are thus illuminated and
scatter the light which is collected by the same objective and then
reflected by the dichroic mirror towards the detector. Note that the
detector is placed behind a pinhole in a confocal setup so that its
position is the symmetric of the source position. We are interested in
the analysis of the light scattered at frequency ω2 by the molecules
illuminated with a laser light at frequency ω1. To analyse the system,

Fig. 2.6. Confocal set-up for Raman scattering. The antenna is represented by
an orange nanosphere, the fluorophores are represented by red dots.
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we consider that the incident light is produced by a polarized point-
like source with dipole moment pS located at the pinhole position
rS . It follows that the field at r, close to the focus of the objective
can be cast in the form:

E(r) = µ0ω
2G(r, rS , ω1)pS . (2.50)

In the presence of the antenna, the field is modified and we denote
it as:

Eant(r) = µ0ω
2Gant(r, rS , ω1)pS . (2.51)

The effect of the antenna is to enhance the electric field amplitude
by a factor denoted K(ω1):

K(ω1) =
|Gant(r, rS , ω1)pS |
|G(r, rS , ω1)pS | . (2.52)

We stress that this field enhancement differs from the LDOS
enhancement. The former deals with the value of the field in a specific
illumination condition whereas the latter is an intrinsic quantity. The
former is related to |Gant(r, rS , ω1)pS | whereas the latter is propor-
tional to Im[Gant(r, r, ω1)]. The field produced by the induced dipole
at frequency ω2 due to the Raman shift is proportional to the Green
tensor Gant(rD, r, ω2). By noting that D and S are symmetrical, we
can replace the Green tensor by Gant(rS , r, ω2). We now make use of
the reciprocity of the Green tensor Gnm(r, r′, ω) = Gmn(r′, r, ω).e

It follows that Gnm,ant(rS , r, ω2) = Gmn,ant(r, rS , ω2). According
to Eq. (2.52), the latter is simply proportional to the amplitude
enhancement at frequency ω2. This result demonstrates that the
antenna serves both to increase the amplitude of the field illumi-
nating the dipole, and the field radiated by the dipole towards the
detector. The reciprocity theorem shows that these are two sides of

eThis equality follows from the equality p1 · E2 = p2 · E1 derived from Maxwell
equations where the electric field Ei is produced by the dipole pi in an arbitrary
environment with the only restriction that the materials have a symmetric per-
mittivity tensor εij = εji. Inserting En(r1) = µ0ω

2Gnm(r1, r2, ω)p2m, we find
that reciprocity implies Gnm(r2, r1, ω) = Gmn(r1, r2, ω).
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the same coin. Thus, we find that the field amplitude at the detector
is multiplied by K(ω1)K(ω2) and the intensity is multiplied by the
square of this quantity. Finally, if we assume that the antenna and
the microscope do not change between the two frequencies, we con-
clude that the presence of the antenna amounts to multiplying the
Raman signal by a factor of K4(ω1). It is worth emphasizing that the
field enhancement can be two orders of magnitude so that the signal
enhancement can be eight orders of magnitude. We also emphasize
that scattering is not limited by saturation, a key difference with
fluorescence as we now discuss.

2.6. Fluorescence in Stationary Regime

We now consider the effect of an antenna on fluorescence.30 The effect
of the antenna cannot be summarized in a few words. It depends
on the illumination: pulsed or stationary, intensity in the linear or in
the saturated regime. It also depends on the nature of the emitter:
the effect on a two level system or a dye molecule is not the same.
This effect has been studied by many groups using either tips4 or
controlled nanospheres.8,9 The effect of the antenna is more subtle
than for Raman scattering because fluorescence is not a pure scatter-
ing process, it depends on the population of the excited emitters. It
follows that there may be saturation effects. The aim of this section is
to give a simple analysis of the dependence of the fluorescence signal
on the parameters of the antenna.

2.6.1. Fluorescence signal

In the absence of an antenna, the fluorescence signal is proportional
to the radiative rate of the molecule and the number of molecules N2

in the excited state. We denote γR the radiative rate of the molecule
without antenna and ΓR the radiative rate in the presence of the
antenna. The signals with and without antenna Sant and S0 are thus
given by:

Sant = CfcollΓRN2; S0 = C γRN2, (2.53)



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch02 page 51

Plasmonic Nanoantennas 51

Fig. 2.7. Scheme of the fluorophore energy levels.

where C is a constant that accounts for the detector response and fcoll

is a number smaller than 1 that accounts for the fraction of collected
radiation (collection efficiency). We now need to write populations
equations to find the number N2 of molecules in the excited state.

2.6.2. Population equations

Let us begin by introducing a simplified level structure for the fluo-
rophore. The energy scale is depicted in Fig. 2.7. The fundamental
level is denoted 0. A laser pump at frequency ωp illuminates the
system and excites the fluorophore to level 3. A fast non-radiative
decay process then populates level 2. The fluorescent radiative decay
takes place between level 2 and level 1. Finally, level 1 has a fast
non-radiative relaxation towards level 0. If we consider that the non-
radiative decay of level 3 and 1 are very fast, it is possible to consider
that their populations are negligible. The molecule has a radiative
decay rate γR and a non-radiative decay rate γNR leading to an
intrinsic quantum yield ηint:

ηint =
γR

γR + γNR
(2.54)

With obvious notations, we can then write that the total number
of fluorophores N satisfies:

N = N0 +N2. (2.55)
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In stationary regime, the rate of variation of N0 is given by:

dN0

dt
= ΓtotN2 +BWfN2 −B′WpN0 = 0, (2.56)

where Wf is the power density at the fluorescence frequency, Wp =
K2Winc is the power density at the pump frequency Winc enhanced
by the antenna, Γtot = ΓR + ΓNR + γNR is the total decay rate of
the molecule accounting respectively for the radiative decay in the
presence of the antenna, the non-radiative decay in the presence of
the antenna and the internal non-radiative decay rate. B and B′ are
the Einstein coefficients for stimulated emission for the transition
between levels 1 and 2. The solution yields:

N0 = N2
Γtot +BWf

B′Wp
. (2.57)

Combining Eqs. (2.55) and (2.57) yields:

N0 = N
Γtot +BWf

Γtot +BWf +B′Wp
; N2 = N

B′Wp

Γtot +BWf +B′Wp

(2.58)

2.6.3. Saturation regime

Here, we consider the case of large pumping intensity B′Wp �
Γtot + BWf so that N2 ≈ N . In this so-called saturation regime,
all molecules are excited. The signal is then given by:

S
(sat)
ant = C fant

coll ΓRN. (2.59)

In the saturation regime, the signal is limited by the spontaneous
emission rate ΓR. In simple words, the pumping efficiency is so large
that all the molecules are excited. However, as opposed to the scat-
tering signal which cannot be saturated, the fluorescence intensity
is limited by the spontaneous emission rate. On average, an excited
molecule needs a time 1/ΓR to decay radiatively and this does not
depend on the incident intensity. Without antenna, the saturated
signal S0 is proportional to γR so that the effect of the antenna is
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given by:

S
(sat)
ant =

ΓR

γR

fant
coll

fcoll
S

(sat)
0 (2.60)

In this regime, the Purcell effect can increase the signal but the
incident field enhancement does not play any role.

2.6.4. Linear regime

We now consider the low-pumping regime where we can approximate
the population of the excited state by:

N2 = N
B′Wp

Γtot
, (2.61)

so that the population is proportional to the incident intensity. This
is the linear regime. The fluorescence signal is then given by:

S
(lin)
ant = C fant

collΓR
B′Wp

ΓR + ΓNR + γNR
. (2.62)

In the case ΓR + ΓNR � γNR, the result can be approximated by

S
(lin)
ant ≈ C fant

collΓR
B′Wp

ΓR + ΓNR
= C fant

collηantB
′K2Winc. (2.63)

Without antenna, the signal is given by

S
(lin)
0 = C fcollηintB

′Winc, (2.64)

so that the antenna signal is given by:

S
(lin)
ant =

ηant

ηint

fant
coll

fcoll
K2S

(lin)
0 (2.65)

The effect of the antenna is therefore manyfold. The intensity is
multiplied by the local intensity enhancement factorK2. The antenna
can concentrate the emission pattern into the detection solid angle of
the receiving system thereby increasing fcoll. Finally, the quantum
yield of the molecule ηint is replaced by the radiative efficiency of
the antenna ηant if ΓR + ΓNR � γNR. It is seen that the antennas
are of particular interest for molecules with low intrinsic quantum
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yield.32 The physical reason is simple: a low quantum yield means
that the non-radiative decay channels are faster than the radiative
decay channel (γNR � γR) so that light cannot be emitted efficiently.
If the antenna introduces a new decay channel faster than the non-
radiative decay channel (ΓR > γNR), the molecule energy can be
funneled to the antenna. The intrinsic quantum efficiency is then
replaced by the antenna radiation efficiency.

2.6.5. Fluorescence for broad spectrum emitters

The previous discussion considered the case of emitters with a sin-
gle fluorescence transition between level 2 and level 1. The effect
of the antenna is markedly different31 if the emission has a broad
spectrum as it is the case of dye molecules with a distribution of
sublevels in the ground state. In particular, the signal is no longer
proportional to the quantum yield in the linear regime. To under-
stand qualitatively this behaviour, let us analyse the signal given by
Eq. (2.62). While the numerator is proportional to the decay rate
ΓR(ω) at frequency ω, the denominator results from all the decay
channels towards all the sublevels of the ground level at all different
frequencies Γtot =

∫∞
0 dωΓtot(ω). This term is no longer a function of

frequency. It follows that the fluorescence signal of a dye close to an
antenna in the linear regime is proportional to ΓR(ω). A consequence
of this result is that the emission spectrum can be modified. Indeed,
if the antenna has a spectral width similar or smaller than the width
of the emission spectrum, the spectrum of ΓR(ω) will be different
from the emitter spectrum.

2.7. Fluorescence in the Impulse Regime

We derive in this section a model for the fluorescence signal when
using a periodic pulse excitation. Considering an ensemble of N
emitters, we first derive the number of emitters in the excited
state as a function of time N2(t). We consider periodic pulses
with a repetition rate R of small duration δt and irradiance φinc.
After the pulse, the emitters in the ground state are excited with a
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probability Π. Let N2(0) be the number of excited emitters before
the pulse; the number of excited emitters after the pulse is thus
N2(0+) = N2(0−) + Π[N − N2(0−)]. This population decays with a
rate Γ and the number of excited emitters at the end of a cycle is
N2(t = 1/R) = N2(0+) exp(−Γ/R). Because the excitation is peri-
odic, we have N2(t = 1/R) = N2(0−). We consequently derive the
number of excited emitters as a function of time:

N2(t) = N2(0+) exp(−Γt); N2(0+) = N
Π

1− (1−Π)e−Γ/R
.

(2.66)

We can now use the population to derive the emitted intensity.
The radiative decay rate of the emitter is ΓR and the collection effi-
ciency of the system is fcoll. During an excitation cycle, the signal
consisting of the mean intensity collected (in photons.s−1) per pulse
is:

S = R

∫ 1/R

0+

ΓR fcollN2(t)dt, (2.67)

which yields:

S =
ΓR

Γ
RfcollN

Π
1− (1−Π)e−Γ/R

(1− e−Γ/R) (2.68)

Possible saturation effects are included in the dependence of the
excitation probability Π on the pump irradiance. We introduce this
effect using rate equations for populations of an ensemble of emit-
ters. The excitation is assumed to be proportional to the product of
the absorption cross-section σabs, the pump irradiance φinc and the
population of emitters in the ground state. In this simple model, we
have assumed that internal relaxation processes after excitation are
faster than the radiative decay. During the excitation (duration δt),
the population equation is:

dN2(t)
dt

=
σabsφinc

�ωinc
[N −N2(t)]− ΓtotN2(t). (2.69)
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We solve this equation using the initial condition N2(0) = 0. The
transition probability Π for an emitter initially in its ground state
can then be cast in the form:

Π(φinc) =
N2(δt)
N

=
1

1 + Γ�ωinc
σabsφinc

(
1− e−

δtσabs
�ωinc

φince−Γδt

)
(2.70)

These results give a model for the fluorescence collected per pulse
regardless of the relative values of the repetition rate R and the decay
rate Γ and for any intensity regime. We now consider the particular
case of a low-excitation regime φinc � Γ�ωinc

σabs
, so that Π � 1 and

a low repetition rate Γ/R � 1. We get the following form of the
fluorescence signal:

S =
ΓR

Γ
RfcollN

σabsφincδt

�ωinc
. (2.71)

This result shows that under these conditions, the fluorescence
signal per pulse has a similar structure as in the stationary regime.
It is proportional to the antenna radiative efficiency, to the intensity
enhancement and to the collection efficiency. However, there is an
additional factor that introduces a difference. The total fluorescence
signal is proportional to the repetition rate R. As we have made the
approximation that the pulse repetition rate R satisfies Γ/R � 1,
the signal is bounded by Γ. Hence, in the pulse regime, the signal
can be increased by increasing the decay rate.

2.8. Antenna Design Rules

The purpose of this section is to briefly analyse the rules to design an
efficient nanoantenna operating in the Purcell regime. More specif-
ically, we address the issue of an efficient coupling between a plane
wave and a quantum emitter while preserving a good radiation effi-
ciency. We are thus interested in discussing the trade-off between
local field enhancement and quenching. On one hand, the coupling
to the antenna mode is increased by reducing the mode volume. Typ-
ical examples are a dimer of nanorods or a bow-tie antenna.33 The
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field is increased as the gap between the two parts of the antenna
is reduced. However, as the gap is reduced below 10 nm, an emitter
placed at the center is at a distance of 5 nm to the metal surfaces so
that quenching is expected to start playing a negative role. Hence,
enhancing the LDOS by reducing gaps to values below 10 nm has
been considered to be plagued by the onset of non-radiative losses.
Several results reported after 2012 have challenged this point of view.
It has been shown both theoretically34–37 and experimentally 38 that
large Purcell factors with radiative efficiencies on the order of 50%
are possible. In what follows, we want to provide some physical argu-
ments providing some hope for future improvement of the antennas
efficiencies with very large Purcell factors. Finally, we note that when
the distance becomes smaller than 1 nm, tunnel effect becomes pos-
sible, considerably modifying the enhancement.39–41

2.8.1. Radiative and non-radiative modes

A key issue is the competition between radiative and non-radiative
modes. As discussed in Section 4, the LDOS can be 4 or 5 orders of
magnitude larger than the LDOS in vacuum. This is usually mostly
due to the very large numbers of non-radiative modes in metallic
structures. However, it has also been shown that the LDOS due to
a single mode can be very large provided that the mode volume is
very small and its quality factor is good. The key to a 50% efficiency
is simply to ensure that the antenna or cavity contribution to the
LDOS matches the non-radiative contribution. This can be achieved
by two means: (i) using a hot spot to take advantage of the light
confinement, (ii) using a plasmonic resonance to further enhance the
mode field. The light confinement can be obtained by engineering
the antenna. For instance, a tip produces a singular behaviour of the
field taking advantage of the so-called lightning rod effect, a dimer
of nanospheres produces a highly localized field between the spheres,
etc. By combining light confinement and plasmonic resonance, it is
possible to design a hot spot characterized by a LDOS which can be
five orders of magnitude larger than in vacuum.
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2.8.2. Radiative efficiency of the antenna mode

Generating a hot spot is by no means sufficient to obtain a good
antenna. A hot spot merely ensures that the emitter will excite
the antenna mode. A second issue is the radiative efficiency of the
antenna mode. Indeed, the antenna mode can either relax by emit-
ting radiation or through losses in the material. It is thus necessary to
reduce non-radiative losses and to increase the radiated power. Non-
radiative losses can be reduced by designing metallo-dielectric anten-
nas.34,36 Radiated power can be increased by properly designing the
size of the antenna and its structure. This requires a minimum size.
As a rule of thumb, it is useful to keep in mind that the absorption
cross section of a metallic sphere is equal to its scattering cross section
for a diameter on the order of 40 nm. For smaller radii, absorption
dominates while radiative losses dominates for larger radii. In sum-
mary, an efficient nanoantenna needs to be large to radiate efficiently
and to have some localized hot spots to couple efficiently to the emit-
ter. This is the case of all the recently proposed nanoantennas such
as nanocones, nanocubes, nanopatches.

2.9. Nanoantenna and Two-Level System Impedances

In this section, we introduce the concept of impedance for nanoanten-
nas following Ref. 42. An extended discussion can be found in Ref. 43.
The motivation for the definition of the concept of impedance is
based on the fact that there are concepts such as impedance match-
ing, reactive energy, radiation resistance which are widely used in
antennas and can be useful in optics. Of particular importance is
the idea of impedance matching: how can we optimize the transfer
of the power collected by the antenna to a load? We note that this
issue can be addressed without using the concept of impedance. By
computing the Green tensor of the structure, the field is known and
therefore, any quantity of interest can be computed. Yet, it is of
practical interest to reformulate the multiple scattering equations
of optics using the vocabulary of electrical circuits. When adressing
this question, the first difficulty is the definition of the feed points. In



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch02 page 59

Plasmonic Nanoantennas 59

electrical engineering, there is a line connecting the antenna to the
source or detector. It is possible to define the line impedance. The
line is connected to the antenna at two feed points and it is possible
to define the voltage difference between these two points. If we now
consider an atom radiating light (the source) in proximity to a metal-
lic nanoparticle (the antenna), it is not possible to define the line nor
the feed points. In this section, we first introduce an impedance for
the antenna and for a two-level system. We then apply this concept
to discuss the maximal power absorbed by a nanoparticle close to
an antenna. This is for example the goal of an antenna designed to
funnel energy into a subwavelength detector.

2.9.1. Nanoantenna impedance

Since impedance is the concept that allows to discuss the power
radiated by an antenna, let us try to introduce heuristically the
impedance by analyzing the power emitted by an optical antenna. We
start from the power P0 delivered by the dipole to the optical field.
The time averaged value is given by P0 = 〈−dp

dt ·E〉 = 1
2Re(iωp ·E∗).

There is a clear similarity between the structure of this equation
and the familiar form of the electrical power P dissipated in a load
P = 1

2Re(IU∗). This suggests to introduce a linear relation between
the dipole moment and the field. This is analogous to the relation
U = ZLI where ZL is the impedance of the load in an electrical
circuit. Such a relation can be written using the Green tensorf that
yields the field radiated at r0 by a dipole located at r0:

E(r0) =
↔
G(r0, r0, ω) · p =

↔
G(r0, r0, ω)
−iω · [−iωp]. (2.72)

Figure 2.8 shows the dipole near a nanoantenna. The dipole is
assumed to be oriented along the z axis so that p

↔
G

∗
(r0, r0, ω)p∗ =

|p|2G∗
zz(r0, r0, ω). The energy transfered by the dipole to the field

can be written in the form Po = 1
2Im(Gzz(r0,r0,ω)

ω )|ωp|2. This has

fNote that the definition used here follows Ref. 42 and differs by a factor µ0ω
2

from the definition used before in the chapter.
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Fig. 2.8. Sketch of the system. N.A. stands for Nanoantenna. A dipole is
located at r0 near the nanoantenna and the dipole moment is oriented along the
z-axis. Ez is the z-component of the electric field E at r0.

the structure of the power 1
2Re(ZL)|I|2 dissipated in a load ZL. A

comparison between the two forms of the power delivered by a source
suggests the following identification:

I ↔−iωpz,

U ↔−Ez(r0),

Z ↔ −iGzz(r0, r0, ω)
ω

, (2.73)

where we have U = ZI.g As for lumped elements, losses are given
by the real part R of the impedance Z = R+ iY . The resistive part
of the impedance is thus Im(Gzz)/ω and accounts for both radiative
losses and non-radiative losses. It is important to emphasize that this
impedance has the dimension of Ω ·m−2. It is thus an impedance per
unit area. The difference stems from the fact that we use −iωpz

(in Am) instead of I (in A) and Ez (in V/m) instead of U (in V).
We shall therefore use the term specific impedance. We note that
this approach is similar to the so-called emf method introduced by
Brillouin44 in 1922 to derive the input impedance in the case of a
wire antenna.

gNote that the signs — are due to the relations j = ∂p
∂t

= −iωp and E = −∇φ
where φ is a scalar potential.
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2.9.2. Two-level system impedance

Defining an internal specific impedance for the source amounts to
finding a linear relation between the induced dipole moment pind

and the electric field. Far from the saturation regime, such a linear
relation is simply given by the polarisability of a two-level system:
pind = αε0E. We can thus write E = Zint(−iωpind), where we have
introduced the source scalar specific impedance.

Zint =
i

ωαε0
. (2.74)

Let us consider a two-level system for the sake of illustration.
The density matrix formalism allows deriving the particular form
of the polarisability for such a system. The transition frequency
ω0 is defined by �ω0 = E2 − E1 (from a classical point of view,
ω0 is the bare frequency of the dipole decoupled from all fields)
where the atomic Hamiltonian eigenvalues are denoted E1 and E2

respectively. The polarisability of the system can be written in the
form19:

α(ω) =
α0

ω2
0 − ω2 − iγ0ω

(2.75)

where α0 can be written using the oscillator strength f as α0ε0 =
(e2/m)f or α0ε0 = 2d2

12ω0/�, with d12 = |p| the dipole moment of the
transition. The term γ0 accounts for the broadening of the resonance.
It consists of several contributions. First of all, the radiative emission
is characterized by a contribution γR. It corresponds to a popula-
tion decay of level 2. Coupling to the environment can also provide
inelastic interactions leading to a population decay of the excited
state. It corresponds to a non-radiative decay and is included in the
term γNR = 1/T1. Finally, elastic collisions produce a dephasing of
the wave function without modifying the population of the excited
state. This contribution to the resonance broadening is called dephas-
ing and characterized by a contribution γ∗2 = 2/T ∗

2 so that we have
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γ0 = γR + γNR + γ∗2 . Finally, the impedance can be cast in the form:

Zint =
γ0

α0ε0
+ i

ω2
0

α0ε0

1
ω
− iω 1

α0ε0
(2.76)

= R− 1
iCω

− iLω (2.77)

This impedance has the structure of the impedance of a RLC
series circuit where R = γ0/α0ε0, L = 1/α0ε0 and C = α0ε0/ω

2
0 .

Let us consider the resistance here. It is proportional to the sum
γR + γNR + γ∗2 . The first term corresponds to spontaneous emission
in vacuum. The corresponding resistance is denoted R0. The other
terms account for non-radiative interactions with the environment.
From the impedance point of view, it is easier to consider the radia-
tive resistance as an external load, and to write the impedance of
the source using only γ = γNR + γ∗2 instead of γ0. We will now write
Rint = γ/α0ε0, Lint and Cint the lumped elements of the source.

2.9.3. Conjugate impedance matching condition

We consider here the absorption of energy coming from an external
source. In electricity, it is well known that a conjugate impedance
matching condition must be fulfilled to optimize absorption in a load
impedance. Here, we will apply the concept of impedance to anal-
yse the absorption by a nanoparticle or an atom when located in a
given environment. This analysis will provide a guideline to design
a structure that enhances the absorption of a nanoparticle or a two-
level system.

The nanoparticle (or the atom) has a specific impedance Z1 and
the environment acts as a load Z2. The system is illuminated by
an external field Eext. The amplitude of the dipole moment of the
system, illuminated by a field that is the sum of the incident field and
the field scattered by the environment, is given by pz = αε0[Ez,ext +
Gzzpz] where α is the nanoparticle (or the atom) polarisability and
Gzz is the Green tensor that accounts only for the environment. This
equation can be reformulated as Ez,ext =

[
i

ωαε0
+ −iGzz

ω

]
(−iωpz) =

[Z1 + Z2](−iωpz). We now sketch the equivalent circuit in Fig. 2.9.
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Uext

Z1

Z2 V 

Fig. 2.9. Equivalent circuit of a nanoparticle in a given environment.
An external field is represented by a source voltage. The potential difference for
the load Z2 is V .

The illuminating field is represented by a voltage Uext applied
to Z1 and Z2 in series. The potentiel difference for the load is V .
We recognize a potential divider so that V = Z2/(Z2 + Z1)Uext. It
is now a simple matter to derive the condition for maximum power
dissipated in the load. Let us write Z1 = R1 + iY1 and Z2 = R2 + iY2.
The power dissipated in the environment (nanoantenna for instance),
due to both radiative and ohmic losses, is given by:

P0 =
1
2

R2|Uext|2
(R1 +R2)

2 + (Y1 + Y2)
2 (2.78)

where R1 and R2 are always positive, respectively accounting for the
losses of the source and the local density of states at the position of
the source. Y1 and Y2 can be either positive or negative depending on
the frequency. The maximum power dissipated by the nanoantenna
is obtained when Y1 + Y2 = 0 and R1 = R2. This condition is the
usual conjugate impedance matching condition Z1 = Z∗

2 that ensures
an optimized power transfer between a source and a load.
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3.1. Introduction

The field of plasmonics has developed with a solid foundation in
classical electrodynamics employing semiclassical descriptions of the
interactions of light with matter.1–3 In particular, our conceptual
understanding of plasmons — the collective oscillations of the free
conduction electrons subject to driving optical fields — largely relies
on analysis of problems within Drude theory and the local-response
approximation (LRA). By assumption, the material response occurs
only in the point of space of the perturbation, while there is no
response at even short distances. For dielectrics, this is of course a
well-established and accurate approach all the way down to atomic
length scales [see panel (c) in Fig. 3.1], while it is traditionally

∗Corresponding author: namo@mci.sdu.dk
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Dielectric

Metallic

(a) (b)

(c)

Fig. 3.1. Examples of metallic and dielectic nanostructures, indicating character-
istic length scales a for (a) isolated metal particles and (b) metal-particle dimers
with gaps. While the local-response approximation is typically adequate for dielec-
tric structures as in (c), the nonlocal correction becomes important for metallic
nanostructures in the mesoscopic regime where a −→ ξ, with ξ being an intrinsic
length scale associated with the finite range of nonlocal dynamics of the electron
gas. In dielectrics, there are no free conduction electrons and the local-response
approximation remains accurate all the way down to the atomic length scale.

being adapted for metals too, including for plasmonic nanostructures
[see panels (a) and (b) in Fig. 3.1]. Admitting its simplifications, the
LRA framework has nevertheless fostered both striking predictions
and novel experimental confirmations of a zoo of plasmonic phenom-
ena, such as the squeezing of light beyond the diffraction limit,4,5

the tunability of the optical properties of metallic structures with
size and shape,6 and large enhancement of the electric field in metal
nanoparticles of close proximity7 as well as in metal geometries with
sharp surface corrugation.8 Basically, all the fascinating aspects of
plasmonics have been driven forward by a basic understanding deeply
rooted in the LRA approach!

In dealing with light-matter interactions we in a first place com-
monly rely on linear-response theory. For insulating materials the
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further simplification associated with the LRA is usually excellent,
while the success of the LRA in nanoplasmonics is perhaps more
intriguing. As an example, novel experimental explorations of gold
bow-tie dimers with few-nanometer gaps were found to be classical
down to the nanometer scale.9 On the other hand, such structures are
in general considered potential candidates for the observation of non-
local response associated with spatial dispersion, which is potentially
manifesting when light interacts with the free conduction electrons
in metals.10 So, one could rightfully ask what makes the LRA so rea-
sonable for many nanoplasmonic problems and in which situations
can we expect to find appreciable corrections?

As a first reflection on this, we note that the underlying quan-
tum dynamics of the electron gas manifests itself when approaching
intrinsic length scales of the metal. Here, the Fermi wavelength λF

is a key parameter of the electron gas and for most metals of inter-
est to plasmonics it is in the nanometer-to-Ångström regime.11 This
largely explains the success of the LRA and the application of Drude
theory to plasmonics even in nanoscale metallic structures. However,
this also anticipates the existence of an intriguing mesoscopic size
regime hosting electrodynamics with a need for corrections of the
LRA description. In fact, there is now a general understanding in
the community that the neglect of nonlocal effects is the foundation
for field-singularities in the LRA response, e.g. for arbitrarily sharp
changes in the metal-surface topography or in dimers with vanishing
gaps.12

Nonlocal response and spatial dispersion has a long history,13–15

while developments in the exploration of yet smaller plasmonic struc-
tures have stimulated a growing interest and more recent revival of
the field.16–19 Most importantly, theory developments are now stim-
ulated by amazing experimental explorations of plasmons in true
nanoscale structures.20–29 Figure 3.1 shows schematic representa-
tions of archetype mesoscopic geometries with competing extrinsic
and intrinsic length scales, such as characteristic geometrical dimen-
sions a and the finite range ξ of nonlocal response. In order to
address such problems, we will discuss developments of a real-space



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch03 page 70

70 Handbook of Metamaterials and Plasmonics — Volume 4

formulation19,30 and numerical implementations31 of nonlocal hydro-
dynamic theory. We will also in more detail discuss a more recent
extension to a generalized account of drift-diffusion dynamics (the
so-called GNOR theory, Generalized Nonlocal Optical Response)32

along with discussions of Landau damping33 in connection to nonlo-
cal response.34–36

3.2. Linear-Response Nonlocal Theory

In order to simplify our discussion of nonlocal response, we will limit
ourselves to the linear-response regime with scalar fields, while later
offering a vectorial description. We here consider a generic system
that we perturb by a field F , which is in turn causing a response Z.
As an example of mechanical system, we recall Hooke’s law where
F would be a classical force field, while Z would then be the asso-
ciated displacement in position of the mechanical system. When we
later turn our discussion to plasmonics, the electrons constituting
the plasma are driven out of equilibrium by an electrical field E and
the associated response of the electron gas is given in terms of an
induced current density J. Note that alternatively the response could
be formulated in terms of the displacement field D. Naturally, Z
should be considered a functional of F , written as Z[F ]. We empha-
size that in general the exact functional could be of a complicated
nonlinear nature, obviously depending on the detailed dynamics of
the underlying microscopic system. However, being interested in only
the linear response, we may proceed without such detailed insight in
the dynamics. To support a more phenomenological path, we utilize
a series expansion of Z[F ]. For our case where fields depend on both
space and time, this is known as the Volterra series. Thus, to linear
order in the perturbing field we get

Z(t, r) =
∫ t

−∞
dt′
∫
dr′ χ(t− t′, r, r′)F(t′, r′) (3.1)

where the expansion coefficient χ is our linear-response susceptibil-
ity of the system. Spatial coordinates are given by r and r′, while
t and t′ denote different time instances. Note that the expansion
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itself does not help us to determine χ. For this, we need some other
physical input, e.g. from microscopic or semiclassical theory or from
linear-response experiments. The principle of causality implies that
there is only a response at times following the action, i.e. t > t′.
Note that the linear response function χ(t − t′, r, r′) contains both
temporal memory effects and spatial nonlocal effects. We may con-
veniently turn to Fourier space, in which case the temporal response
is associated with frequency dispersion (ω-dependence) while nonlo-
cal response gives rise to spatial dispersion (k-dependence) in the
response function. Furthermore, for a homogeneous medium, the
translational invariance implies that χ(t− t′, r, r′) = χ(t− t′, r− r′).
This consequently turns both the temporal and the spatial integrals
in Eq. (3.1) into convolutions, with the immediate consequence that
in frequency-momentum space the linear response becomes a simple
product, i.e.

Z(ω, k) = χ(ω, k)F(ω, k). (3.2)

In this way, the synonymous reference to nonlocal response and spa-
tial dispersion is apparent. In this chapter we focus on finite plas-
monic nanostructures, i.e. with broken translational invariance (see
Fig. 3.1). Consequently we will focus on the real-space notation, and
emphasize the terminology of nonlocal response. We will pursue a
phenomenological approach37 that explores

Z(ω, r) =
∫
dr′ χ(ω, r, r′)F(ω, r′) (3.3)

in the situation where nonlocal response is considered a perturbative
correction to the common local-response approximation associated
with a homogeneous system. Mathematically, this means that

χ(ω, r, r′) = χLRA(ω)δ(r − r′) + δχ(ω, r − r′). (3.4)

where δχ is a nonlocal response function, being of a short range
nature. If the system is furthermore isotropic (as it is the case for
the free-electron gas), then δχ is symmetric, i.e. δχ(ω, r − r′) =
δχ(ω, |r − r′|).
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If the perturbing field F varies slowly on the scale of δχ, we
may conveniently proceed with a Taylor expansion of F around the
point r,

F(r′) � F(r) + [∇F(r)] · (r′− r) +
1
2
(r′− r)T · [HF(r)] · (r′− r) + · · ·

(3.5)
Here, H is the Hessian matrix with elements Hij = ∂2/(∂i∂j) where
i, j = x, y, z. We now substitute this expansion into Eq. (3.3), thus
allowing us to perform the integration over r′ term by term to any
desired order in our Taylor expansion. In fact, all we now need to do
is to calculate different moments of the function δχ. By assumption,
the zero-order moment satisfies∫

dr δχ(ω, r)� χLRA(ω), (3.6)

while the first moment vanishes for symmetry reasons (the integral
is over the product of an odd and an even function),∫

dr rδχ(ω, r) = 0. (3.7)

On the other hand, the second moment is finite (the integral is over
an even function), ∫

dr r2δχ(ω, r) ≡ 2ξ2, (3.8)

where we have introduced the phenomenological parameter ξ as the
characteristic range of the nonlocal response function. Note that the
factor of 2 in this definition of ξ is only introduced for the later
convenience of canceling the factor 1/2! appearing in the second-
order term of the Taylor expansion in Eq. (3.5).

To appreciate the importance of these moments, we now return
to Eq. (3.3). For simplicity, we absorb the zeroth-order moment into
our definition of the local term χLRA(ω). As the first-order terms
vanish, the leading order-correction to the constitutive relation is



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch03 page 73

Nonlocality in Plasmonics 73

now written as

Z(ω, r) � [χLRA(ω) + ξ2∇2]F(ω, r). (3.9)

We emphasize that our consideration based on a series expansion
does not in itself help us to determine the nonlocal length scale ξ.
For that we will need further physical input. As we shall see, for
plasmonics this ξ is roughly the distance that an electron can travel
during the time of an optical cycle. Also, note that the occurrence of
the Laplacian is a consequence of our scalar treatment. In Section 3.3
we relax this assumption and offer a vectorial description, as a result
of which contributions from other second-order spatial derivatives
will also arise.

At this stage we briefly discuss the immediate implications of the
nonlocal correction to the constitutive relation. First of all, Eq. (3.9)
is entirely generic for any scalar problem, with the nonlocal response
always manifesting itself through a Laplacian correction term. Quite
notably, this Laplacian form of the correction holds irrespectively
of the microscopic or semiclassical origin of nonlocality. In turn, this
also implies the possibility of several coexisting nonlocal mechanisms
that would simply add up to form an effective nonlocal length, i.e.

ξ2 =
∑

i

ξ2i . (3.10)

This is a point already hinted to by Landau and Lifshitz10 and we will
provide an example of this below. We also highlight a most remark-
able property of Eq. (3.9) when compared to Eq. (3.3): Stating only
very few generic assumptions we have conveniently transformed the
challenging nonlocal two-point integral relation into a more attrac-
tive constitutive law that is mathematically of a local-response form,
i.e. only involving a single spatial coordinate. The practical conse-
quences are immediate: if we can handle an additional Laplacian term
(indeed, such differential operators are already present in Maxwell’s
wave equation), then we have conceptually returned to a formula-
tion that is already routinely explored in local-response computa-
tional photonics and plasmonics.38 Thus, with few almost pedestrian
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manipulations we have eased both our conceptual understanding and
computational explorations of nonlocal effects in nanoplasmonic sys-
tems.

Let us next turn to a discussion of the additional physics brought
about by the Laplacian term. Laplacian terms are well known from
diffusion problems and here the Laplacian term likewise causes a
spatial smearing of fields (but not only due to diffusion, as shown
below). Thus, we anticipate its importance for field-enhancement
phenomena, where it will serve to regularize field singularities asso-
ciated with the common local-response contribution in Eq. (3.9).
This motivates us to also emphasize a more practical aspect of
the Laplacian smearing. In computational hydrodynamics based on
numerical solutions of the Navier–Stokes equation it is a common
pragmatic practice to introduce a small artificial diffusion as a use-
ful and even essential move to stabilize numerics.39 For computa-
tional plasmonics, the Laplacian smearing actually benefits numer-
ical convergence in a similar way. The presence of the smearing
term in the wave equation facilitates electrodynamic simulations
of metal structures with even arbitrarily sharp features in the sur-
face topography, without suffering the usual convergence issues due
to the underlying singular response inherent to the local-response
approximation.31

Above, we have interchangeably used the terms nonlocal response
and spatial dispersion and we now for completeness provide an
explicit link between the two terminologies. When Fourier trans-
forming Eq. (3.9) and relating it to Eq. (3.2), we see immediately
that χ(ω, k) � χLRA(ω)− (kξ)2, i.e. spatial dispersion with a leading
quadratic k-correction for kξ � 1.

Having now treated the linear-response nonlocal theory in a most
general way, we next turn to the electrodynamics associated with
plasmonics.

3.3. Linear-Response Electrodynamics

Theoretical modeling of light-matter interactions in plasmonic
nanostructures is commonly relying on the macroscopic Maxwell
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equations1 with the optical response of metals described through
constitutive relations, which relate the response of the material to
the applied field. The common approach is

D(ω, r) � ε0ε(ω, r)E(ω, r) (3.11)

where the spatially local relationship between D and E is almost
taken for granted. Of course, this LRA is well motivated for dielectric
structures with the polarization of electronic states highly localized
to the individual atoms, see Fig. 3.1(c), while the approximation is
perhaps less obvious for materials such as metals with also delocalized
conduction electrons. Given our more general discussion above, see
Eq. (3.3), the displacement field D caused in response to a perturbing
electric field E is given by

D(ω, r) = ε0

∫
dr′ε(ω, r, r′)E(ω, r′). (3.12)

In passing, we note that the LRA in Eq. (3.11) follows from Eq. (3.12)
by assuming ε(ω, r, r′) � ε(ω, r)δ(r − r′). Combining Eq. (3.12)
with Maxwell’s equations we arrive at an integro-differential wave
equation

∇×∇×E(ω, r) =
(ω
c

)2
∫
dr′ε(ω, r, r′)E(ω, r′) (3.13)

which constitutes an eigenvalue problem. While this formulation
clearly conveys the nonlocal aspect of the problem, the equation is
perhaps not too appealing and this goes for both numerical imple-
mentations as well as for further analytical efforts. In order to allow
any progress we would as a first prerequisite need the actual response
function ε(ω, r, r′). Thus, there is a call for some kind of microscopic
or semiclassical description. A more phenomenological avenue is to
assume a simple short-range function as a modification to the usual
Drude delta-function response.40 Instead, adapting the approach
that lead us to Eq. (3.9), we here transform the integro-differential
equation into a more attractive regular partial-differential equation
(PDE). Obviously, we should now turn to a vectorial treatment and
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with only few additional notational complications of vector-field cal-
culus, we arrive at the conclusion as for the scalar considerations
given above. In fact, within the nonlocal hydrodynamic model we
get30,32,41

∇×∇×E(ω, r) =
(ω
c

)2 [
εLRA(ω) + ξ2∇(∇·)]E(ω, r). (3.14)

In comparison to Eq. (3.9), we note that the nonlocal correction term
is qualitatively of a Laplacian form, as discussed above for scalar
fields. To appreciate this, we first quote the relation ∇ × ∇ × F =
∇(∇·)F − ∇2F that holds for any vectorial field F . Conceptually,
we may thus turn the gradient-of-divergence term into a Laplacian
term by simultaneously grouping the remaining double-curl operator
with the already-existing double-curl operator on the left-hand side
of Eq. (3.14). Interestingly, this would only serve to re-normalize
the equation and the effect of this re-normalization could even be
neglected if ξ2ω2/c2 � 1. In fact, this condition is equivalent to
kξ � 1 or ξ � λ, with k = 2π/λ being the free-space wave vector.
Intuitively, this condition is commonly fulfilled in noble-metal plas-
monics. As we shall see in the hydrodynamic model, this is com-
mensurate to the condition vF � c. Nevertheless, we will proceed
with the explicit structure in Eq. (3.14) since the explicit gradient-
of-divergence form will respect the vectorial nature of the problem.
In particular, we hereby address transverse and longitudinal field
components differently30 which is key to accurately account for both
transverse resonances having a frequency below ωp and longitudi-
nal resonances occurring above ωp, with ωp being the plasma fre-
quency.19,42

3.4. Hydrodynamic Equation of Motion:
Drift-diffusion Theory

With Eq. (3.10) we have already speculated on the possibility of sev-
eral underlying physical mechanisms co-existing and contributing to
the overall nonlocal response. In this section we offer a semiclassical
theory which underlines this possibility, by including two distinct
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contributions to ξ from celebrated classical transport mechanisms,
i.e. convection and diffusion of charge carriers. The detailed deriva-
tion starts from a classical hydrodynamic-diffusion problem of an
electron responding to an external electric field. In line with com-
mon treatments in classical condensed-matter physics and plasmon-
ics text books1,11 we apply Newton’s second law to the description
of an electron subjected to an electrical field. This is the essence of
the linearized hydrodynamic equation-of-motion (for simplicity, we
suppress spatial and temporal variables)14,19

∂

∂t
v = −γv +

(−e)
m

E− β2

n0
∇n1. (3.15)

Here, v is the non-equilibrium velocity correction to the static elec-
tron problem, while γ is the phenomenological Drude damping
parameter also appearing within LRA. The right-hand side con-
tains an additional semiclassical correction. This pressure term ∇n1

is classical in spirit, while β is a quantum parameter. In fact, β
is really not that mysterious: by dimensional analysis we see that
it has dimensions of speed, being thus a characteristic velocity for
pressure waves associated with the finite compressibility of the elec-
tron gas. In the high-frequency limit (ω � γ), Thomas–Fermi the-
ory gives β2 = 3/5v2

F , with vF being the Fermi velocity of the
electron gas.30

To facilitate the linearization, we may conveniently write the elec-
tron density as n(r, t) = n0 + n1(r, t). Here, n0 is the equilibrium
density, while n1 is assumed to be the small (n1 � n0) induced
density variation associated with the perturbing E field that drives
the system away from its equilibrium density.

Of course, Eq. (3.15) is complemented by the principle of charge
conservation and extending our considerations to include both con-
vective and diffusive transport of charge, we invoke the linearized
convection-diffusion equation

∂

∂t
{(−e)n1} = D∇2(−e)n1 −∇ · {(−e)n0v} = −∇ · J (3.16)
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with D being the diffusion constant (note that this is not to be
confused with the previously discussed displacement field D).

By a straightforward manipulation of Eqs. (3.15) and (3.16),
followed by a temporal Fourier transformation, we arrive at a gov-
erning equation that explicitly connects the current density J with
the driving electrical field E,

ξ2∇(∇ · J) + J = σDE. (3.17)

Here, we have introduced the nonlocal parameter

ξ2 =
β2

ω(ω + iγ)
+
D

iω
(3.18)

and recalling the local-response Ohm’s law (J � σDE), we have also
introduced the usual frequency-dependent Drude conductivity

σD =
ie

2n0
m

ω + iγ
=

iε0ω
2
p

ω + iγ
(3.19)

with ωp =
√

e2n0
ε0m being the plasma frequency. Naturally, we immedi-

ately recover the LRA in the limit ξ −→ 0 where Eq. (3.17) reduces
to Ohm’s law.

The generalized constitutive equation, Eq. (3.17), can now be
used with the Maxwell equation

∇×∇×E =
(ω
c

)2
E + iωµ0J (3.20)

where we are for simplicity neglecting interband transitions. We will
continue to do so throughout this chapter, while a contribution εb due
to bound electrons can be included straightforwardly. Obviously, the
remaining step is to illustrate that this indeed leads to Eq. (3.14).
We might be tempted to substitute Eq. (3.17) into Eq. (3.20) in
order to eliminate the current density from the latter. However, the
perhaps less obvious procedure is to eliminate the current density
from Eq. (3.17) and then use that ∇ · (∇ × F) = 0 for any vector
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field F . In this way, we finally arrive at41

∇×∇×E(ω, r) =
(ω
c

)2 [
εD + ξ2∇(∇·)]E(ω, r) (3.21)

where

εD = 1 +
iσD

ε0ω
= 1− ω2

p

ω(ω + iγ)
(3.22)

is the Drude dielectric function. Eq. (3.21) clearly has the same
structure as Eq. (3.14). Consequently, Eq. (3.18) offers the desired
semiclassical estimate of the length scale ξ that was first introduced
phenomenologically. From Eq. (3.18), we also immediately see how
convection and diffusion are playing in concert and how they are
adding up to give an effective nonlocal length scale in accordance with
Eq. (3.10). Note, that the end result is a complex-valued nonlocal
parameter, with convection predominantly contributing to the real
part, while diffusion shows up as an imaginary-valued addition. This
has immediate consequences for the physics: Diffusion of induced
charge over time will degrade the polarization of charge, thereby
representing a nonlocal damping mechanism. On the other hand,
convection is associated with non-dissipative propagating pressure
waves, thereby to a first approximation not causing any additional
broadening.

Note that in our derivation of Eq. (3.21) we have deliberately
followed a route close in spirit to the common LRA, while carefully
maintaining a lowest-order account for nonlocal corrections. Nev-
ertheless, the correction term proportional to ξ2 can near surfaces
(where field derivatives are significant) give rise to pronounced cor-
rections. In fact, the diffusive damping can locally exceed the stan-
dard Drude damping proportional to γ. We will later discuss how this
diffusive damping amounts to enhanced Landau damping occurring
in the near vicinity of any metal surface.
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3.5. Boundary Conditions

Naturally, we need to also discuss boundary conditions when solv-
ing a PDE in a finite geometry as suggested in Fig. 3.1. For the
LRA we have to solve Eq. (3.21) in its ξ −→ 0 version. The bound-
ary condition for E of course follows as a consequence of Maxwell’s
equations themselves, i.e. the derivation of the boundary conditions
only involves Maxwell’s equations and the use of Gauss’ and Stokes’
theorems. On the other hand, solving the coupled equations for the
nonlocal problem, Eqs. (3.20) and (3.17), there are now extra field
components to be determined. We clearly need an additional bound-
ary condition (ABC) that accounts for the behavior of J on the
boundary of the metal.

We emphasize there is no ambiguity or freedom in the choice of
this ABC. Perhaps no need to say, but the ABC should reflect under-
lying physical assumptions, and not just convenient mathematical
or numerical choices. In other words, we should first formulate the
physical assumptions and then boundary conditions simply follow
from our governing equations. For more detailed accounts, we refer
to Refs. 19, 43, 41, 32.

The linearized equation-of-motion in Eq. (3.15) is resting on an
inherent assumption of a spatially homogeneous equilibrium elec-
tron density n0, while the induced charge n1 exhibits the temporal
and spatial dynamics, i.e. n(r, t) = n0 +n1(r, t). In this way, n0 is
assumed constant throughout the metal while it turns abruptly to
zero outside the metal surface. This step-like variation unambigu-
ously leads to exactly one required ABC, namely the continuity of
the normal component of the free-electron current density J.19,44

Our implicit assumption of an infinite work function does not allow
electrons outside the metal. Consequently, we have J = 0 outside
the metal, while being still finite inside the metal. Thus, no elec-
trons move across the metal surface, while they are still free to
move parallel to the surface (in this way our hydrodynamics of elec-
trons is different from the more common treatment of hydrodynamic
flow assuming a no-slip boundary condition for the fluid velocity).
In other words, the normal component of J is zero at the surface,
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which we mathematically express as n · J = 0, with n being the nor-
mal vector. Here, we have emphasized the physical arguments, but
this can also be derived rigorously by applying Gauss’ theorem to
Eq. (3.16).

We note that in the context of Eq. (3.21), the condition n ·J = 0
implies that n · E is only continuous across the boundary in the
absence of interband transitions and for vacuum surroundings. How-
ever, in general there is a normal-component electric-field discon-
tinuity if the interband contribution on the metal side is not fully
compensated by dielectric contributions on the dielectric side of the
interface.43

Let us now briefly reflect on our physical assumptions. The
assumption for the ground state of the electron gas corresponds
to an infinite work function, thus suppressing quantum-spill out of
electrons beyond the surface of the metal, while we are clearly also
neglecting any density variations inside the metal, i.e. confinement
effects such as Friedel oscillations. Our pragmatic defense is that
despite the limitations, this picture is close in spirit to the LRA that
involves an implicit assumption of a spatially uniform equilibrium
electron density. We emphasize that this is a reasonable descrip-
tion of noble metals that are commonly employed in plasmonics,
while spill-out effects are mainly important for less common cases
like sodium.36,45–48 In passing, we emphasize that there have been
attempts of relaxing the assumption of a homogeneous equilibrium
density49–51 and it was recently demonstrated how to include density-
gradient corrections to also account for quantum-spill out in a hydro-
dynamic model.52–55 We will return to problems with quantum spill-
out in our later ab initio considerations of Landau scattering near
the surface of jellium metals.

3.6. Numerical Solutions

While Eq. (3.21) can be solved analytically in a few special cases,
more complex and arbitrarily shaped geometries call for numerical
solutions. These solutions can either invoke the coupled-wave formu-
lation [Eqs. (3.20) and (3.17)] or they can rely on the generalized wave
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equation [Eq. (3.21)]. Of course, the end result will be the same, while
details numerical procedures can be different. In either case, the field
of computational nanophotonics has witnessed great progress and
there is access to a wide range of numerical methods.38 In principle
the nonlocal problem can be addressed by many approaches ranging
from Mie-scattering descriptions applied to cylindrical and spherical
geometries19,57,58 and Fourier-modal methods to periodic systems59

to finite-element implementations31,60 and boundary-element meth-
ods61 applicable to arbitrarily shaped metallic geometries.

Mie-scattering descriptions are highly efficient for problems
employing nanostructures with e.g. cylindrical or spherical symme-
try, and Chulhai and Jensen have released a Mie-based tool to sim-
ulate the fields for spherical dimers using the discussed nonlocal
model.62

The finite-element method constitutes another powerful approach
that can handle more arbitrarily shaped geometries. Here, we briefly
discuss our finite-element implementation.31 For our numerical solu-
tion of the system of equations [Eqs. (3.20) and (3.17)] we take advan-
tage of a commercially available code dedicated to solving partial
differential equations based on the finite-element method (FEM).
We rely on a weak-form implementation63 that allows us to draw on
built-in routines for electromagnetic scattering and the code is also
offering built-in meshing and mesh-refinement routines for arbitrarily
shaped geometries. Our code is made freely available64 and works as
an add-on to COMSOL Multiphysics 4.1. The performance of the
implementation has been supported by numerous examples and it
has been documented in detail. In particular, convergence tests and
rigorous benchmarking have been performed for geometries where
semi-analytical accounts, such as Mie expansions, allow for solutions
with arbitrary numerical accuracy.56

Figure 3.2 illustrates an example of the scattering of an inci-
dent plane wave from a metallic nanowire where the cross section
has a nontrivial triangular shape. Despite the three-fold cylindrical
rotational symmetry of the equilateral triangular cross section, the
structure remains too complex for any significant analytical progress.
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Fig. 3.2. Example of the use of the finite-element method for a numerical solution
of the nonlocal wave equation, Eq. (3.21), in a complex geometry with arbitrarily
sharp corners. The use of a finite-element mesh allows to discretize a triangular
cross with a refinement of the mesh density in regions with abrupt changes in
surface topography. While the LRA treatment of such a problem will not converge,
the nonlocal smearing facilitates numerical convergence upon appropriate mesh
refinement near the corners. Courtesy of Giuseppe Toscano.56

As such, the geometry serves our purpose of illustrating the capabil-
ities of our finite-element based numerical approach. Rather than
introducing some arbitrary rounding of corners, which is critical to
circumvent field divergence in any LRA numerical treatment of this
geometry, we straightforwardly account for the arbitrarily sharp cor-
ners. No matter the mesh refinement, LRA treatments would exhibit
no convergence in the fields due to the singular nature of the problem.
However, for the nonlocal treatment, the presence of the nonlocal
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length scale ξ changes the situation completely and the problem con-
verges with a mesh refinement that allows spatially resolving vari-
ations on the scale of ξ, see lower right panel of Fig. 3.2. This is
illustrated in the upper right panel of Fig. 3.2 where the electrical
field varies smoothly in space while attaining large but finite val-
ues, despite the underlying arbitrarily sharp change in the surface
topography of the metal.

As a final comment on the numerics, we emphasize that our
finite-element implementation was initially targeting the common
hydrodynamic model where ξ2 reflects only convection dynamics.19,31

However, in the light of Eq. (3.10) the code is sufficiently general to
also include any other effects that are of a short-range and isotropic
nature. As such, the inclusion of diffusion is straightforward, since
this only renders the length scale in Eq. (3.18) complex valued,
while leaving all other governing equations and boundary conditions
unchanged.32 Most importantly, this conclusion also applies to any
other method that relies on the original hydrodynamic equations,
including other methods and approaches19,31,57,58,60,61,65 that we have
briefly discussed above.

3.7. Estimates of Characteristic Material Parameters

So far, we have with general arguments derived the nonlocal correc-
tions to the LRA and with the hydrodynamic drift-diffusion model
we have provided a semiclassical account for the nonlocal length scale
ξ, see Eq. (3.10). Obviously, the real part reflects the Fermi velocity
of the metal, which is a property resulting from a quantum treatment
of the electrons, and as such the correction term is clearly of a semi-
classical nature. The imaginary part contains the diffusion constant,
which is our classical approach to phenomenologically account for
complex many-body interactions and scattering events at the metal
surface. One first approach is the semiclassical estimate of D, being
related to the mean-free path � and the relaxation rate γ = 1/τ
already present in the usual Drude description, i.e. � = vF τ and
likewise, the diffusion constant is given by D = �vF = v2

F τ .
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Table 3.1. Characteristic length scales and parameters for Au,
Ag, and Na.

Fermi Mean-free Convec. Scat.
wavelength path length Dif. length time

λF � vF /ωp

p
D/ωp ωpτ

Au 0.52 nm 103 nm 0.10 nm 1.9 nm 1000a

0.52 nm 50nm 0.11 nm 1.3 nm 465b

Ag 0.52 nm 103 nm 0.10 nm 1.9 nm 1000a

0.52 nm 40nm 0.10 nm 1.1 nm 421b

Na 0.68 nm 2.6 nm 0.12 nm 0.32 nm 21b

0.68 nm 4.4 nm 0.12 nm 0.42 nm 37c

0.68 nm 2.3 nm 0.12 nm 0.31 nm 20d

aData for crystalline materials taken from Ashcroft and Mermin.11
bData tabulated by Blaber et al.68 cData used in simulations by
Teperik et al.47 cData used in simulations by Stella et al.66

In Table 3.1, we summarize characteristic length scales and
parameters for the common plasmonic metals Au and Ag. We have
also included data for Na which has recently received considerable
attention in the ab initio quantum plasmonic community.47,66,67 The
entries for different metals are based on Fermi wavelengths λF ,
Fermi velocities vF , and plasma frequencies ωp taken from standard
tables,11 while the values for τ originate from various references as
indicated in the right-most column of the table.

Inspecting the numbers, we note that all length scales are nano-
metric. In fact, in most cases they are even approaching atomic
dimensions. This underlines the success of the LRA when applied
to larger plasmonic structures; the nonlocal correction to the delta-
function response of the LRA is indeed negligible on longer lengths
scales due to the vanishing surface-to-volume ratio.

In their textbook discussion of spatial dispersion, Landau and Lif-
shitz10 already mentioned the simultaneous occurrence between con-
vection and diffusion length scales, and that spatial dispersion would
be dominated by one of these two transport mechanisms, i.e. the one
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that manifests itself on the largest scale. Often, we are led to con-
sider diffusion a slow process, which would imply that D � v2

F/ωp.
However, given our classical estimate for D, Table 3.1 indicates that
diffusion and convection are indeed playing in concert when consider-
ing plasmons in metals at optical frequencies. The two length scales
appear comparable and if so, the mechanisms should naturally be
treated on an equal footing. This is indeed made possible by our
Eq. (3.18)!

3.8. The Relation of GNOR to Higher-level
Descriptions

Above, we have used the classically widely accepted drift-diffusion
model to account for diffusive effects in the hydrodynamic descrip-
tion of plasmons in metallic nanostructures. Here, we briefly mention
more recent discussions of this. In particular, it is long known how the
hydrodynamic model with the convective contribution can be derived
from higher-level descriptions such as the Boltzmann transport equa-
tion or Kubo formalism.69 Can our more recent diffusive contribution
be derived in a similar manner? Here, we recall that for convection
and diffusion sharing the same underlying microscopic mechanism,
their high and low-frequency limits should be intimately connected
by the fluctuation-dissipation theorem.70 Focusing on the convective
contribution as it occurs in the standard hydrodynamic model of
a bulk metal, we see that it actually already contains both high-
frequency convective and low-frequency diffusive contributions, i.e.

v2
F

ω(ω + iγ)
�



v2
F

ω2 , ω � γ

v2
F

iωγ = D
iω , ω � γ

(3.23)

where D = v2
F/γ is the classical estimate for the diffusion constant

introduced above. Now, this also indicates that a high-frequency dif-
fusive contribution term would not emerge out of Boltzmann con-
siderations applied to the homogeneous bulk system and indeed
this can also be shown explicitly.71 Simply stated, bulk diffusion
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at optical frequencies is negligible. So, what is then the physical
mechanism behind the observed diffusion at optical frequencies? Here,
surface-enhanced Landau damping represents a surface-scattering
effect beyond the bulk description of the metal. As we shall see,
estimated numbers for D remain in the same ballpark of Table 3.1.

3.9. A Test Case for GNOR Theory: Monomers
and Dimers

Nonlocal hydrodynamics is a long established theory with the
account for both longitudinal plasmons at frequencies above the
plasma frequency and with frequency shifts of transverse plasmon
resonance below the plasma frequency. However, what is the test of
the GNOR theory with the inclusion of diffusive effects?

Here, monomers and their dimer counterparts represent an inter-
esting and important test case. In the context of size-dependent
broadening, the Kreibig model72 only addresses monomers while the
quantum-corrected model73 exclusively applies to dimers, and we
turn to both below. Obviously, any versatile theory could rightfully
be expected to offer new insights for such archetypical plasmonic
structures and of course there should be some unifying aspect.

The phenomenological theory of Kreibig and co-workers success-
fully mimics the size-dependent spectral broadening observed for few-
nanometer sized and close-to-spherical monomers.72 Although this
theory satisfactorily explains size-dependent broadening in spherical
nanoparticles quite well, it is not immediately clear how to extend it
to particles of other morphology, let alone to dimers. In particular,
the theory does not address the question whether diffusive surface
scattering would be of importance to small-gap dimers, e.g. dimers
composed of monomers that are not necessarily small themselves.

On the other hand, the gap-dependent broadening in such nano-
gap dimers has been explained by the phenomenological quantum-
corrected model73 that invokes additional dissipation attributed to
relaxation of tunneling currents. Resting on a tunneling picture
where charge tunnels across the classically prohibited nano-gap
from the one nanoparticle to the other, it is clear that this theory
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cannot explain the observed size-dependent broadening of individual
nanoparticles, the broadening that the Kreibig theory does capture.

As we shall see, this is where the GNOR proves versatile and
with a predictive power reaching far beyond the case of spheri-
cal monomers. In fact, despite GNOR’s simplicity and semiclassical
nature, it unifies the phenomena observed for monomers and dimers,
while also suggesting a close connection between size-dependent
damping in monomers and gap-dependent broadening in dimers.
Here, diffusion associated with surface scattering is the key to under-
stand both monomers and dimers.

We start with a brief comparison of models for a spherical par-
ticle of radius R. The approach of Kreibig is to boldly add a AvF/R

size correction to the bulk damping parameter to phenomenologi-
cally account for surface-scattering effects obviously not exposed in
the bulk of the particle. We note that this size dependence is generic
for any scattering effect that reflects the surface-to-volume ratio. In
the context of GNOR, the complex-valued nonlocal length scale ξ in
Eq. (3.18) leads to 1/R corrections too.32 Furthermore, this obser-
vation immediately allows us to link the diffusion constant D to
Kreibig’s A-coefficient, where A is experimentally found to be of the
order of unity for most considered metals. Interestingly, this way of
estimating D agrees fairly well with the estimates in Table 3.1, sug-
gesting that surface-scattering rates are not too different from bulk-
damping rates. In Fig. 3.3 we illustrate the main differences between
the GNOR and the LRA models when applied to a R = 1.5 nm spher-
ical metal particle. In particular, the figure is highlighting the LDOS
and extinction spectra with the GNOR model exhibiting a blueshift
and a further broadening of the dipole resonance as compared to the
behaviour within the LRA.

Next, the crucial check is to explore whether the very same choice
of D-value would also serve to explain spectra of dimers. In Fig. 3.4
we illustrate simulations of extinction spectra of a Na dimer, con-
trasting the LRA and the GNOR. For simplicity, the dimer consists of
cylindrical nanowires with a radius of R = 10 nm, while the gap size
g is varied between 50 Å and -50 Å in steps of 5 Å. We emphasize that



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch03 page 89

Nonlocality in Plasmonics 89

Fig. 3.3. GNOR and LRA calculations for the LDOS and extinction spectra for
a R = 1.5 nm metal particle. Courtesy of Thomas Christensen.74

the negative gap values (g < 0) correspond to overlapping wires, in
which case conducting nano-junctions are formed, where charge can
flow back and forth in a classical manner rather than being trans-
ferred in quantum tunneling fashion.

If we now focus on the spectra in Fig. 3.4 for decreasing but
positive gap sizes, then we notice that the GNOR dimer spectra
become increasingly broadened while the LRA dimer spectra do not.
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Fig. 3.4. Extinction cross section as a function of energy for a Na dimer with a
radius R = 10 nm and a gap size g varying from 50 Å to -50 Å in steps of 5 Å.
The values next to the spectra denote the corresponding values for the gap size g.
Courtesy of Søren Raza.76

Such gap-size dependent broadening has been observed experimen-
tally, and sometimes been interpreted solely as due to quantum tun-
neling. It is therefore important to stress that both the LRA and
GNOR spectra in Fig. 3.4 are obtained with an entirely semiclas-
sical model where the simplifications and the resulting boundary
conditions (see Sec. 3.5) are incompatible with a quantum-tunneling
interpretation. Most critically, the work function is considered infinite
and the metal surfaces serve as hard walls or perfectly reflecting mir-
rors for the electrons, so that inter-nanoparticle charge transport is
entirely prohibited for g > 0. Instead, the gap-dependent broadening
is due to surface scattering as mimicked by the diffusion contribution
to the nonlocal response. In this way, size-dependent broadening
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becomes pronounced as the gap approaches the magnitude of the
nonlocal length scale. Note that broadening also occurs for weakly
overlapping wires; a case were quantum-tunneling is suppressed, with
the charge-transport being of a classical nature. To summarize, gap-
dependent broadening sets in for nanometric dimer gaps and GNOR
spectra agree qualitatively with both experiments22,75 and ab initio
studies.47

So, what is the important common feature of the monomers of
Fig. 3.3 and the dimers of Fig. 3.4? Clearly, tunneling has no meaning
for monomers! On the other hand, if surface scattering appears near
any metal surface, then this effect could explain both the enhanced
scattering at the surfaces of monomers as well as the scattering near
the surfaces of almost touching dimers. (This being said, although
quantum tunneling is systematically excluded from our semiclassical
theory, we do not rule out the possibility that quantum tunneling
may lead to additional gap-size-dependent broadening in dimers,
as an additional physical mechanism of spectral broadening.36) In
the following, we turn to our ab initio studies where more rigor-
ous insight consolidates the importance of surface-enhanced Landau
damping (mimicked as diffusive broadening). In particular, we show
how this indeed acts as a unifying feature of both monomers and
dimers.

3.10. Surface-Enhanced Landau Scattering: ab initio

Insight

The phenomenological Kreibig model for size-dependent broaden-
ing has already been linked to quantum mechanical calculations of
Landau damping associated with electron-hole pair generation in
the metal near the surface, see recent work.34 Likewise, ab initio
studies36,48 and electron spectroscopy28,77 have established strong
plasmon damping at the very surface of metals. Most importantly,
the damping may exceed the attenuation occurring in the bulk. Here,
plasmons decay into electron-hole pairs and at the surface they
do so more effectively than in the bulk. This is what the GNOR
model seeks to capture with the diffusion parameter D, i.e. by using
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this single parameter in a classical equation. Since induced charge
associated with the plasmon always resides in the near vicinity of
the surfaces, density gradients make diffusion effective only near the
surface. In other words, our nonlocal term in Eq. (3.21) is most pro-
nounced at the surface where E varies the most. As a result, the
drift-diffusion model successfully mimics both longitudinal pressure
waves and surface-enhanced Landau damping. The enhanced damp-
ing near the surface is illustrated in Fig. 3.5 where we show the
local effective permittivity εeff(r, ω) at a planar metal-air interface as
extracted from GNOR simulations via

D(r, ω) ≡ ε0εeff(r, ω)E(r, ω). (3.24)

The εeff(r, ω) so defined is called ‘effective’ because both the displace-
ment and the electric fields are determined using a nonlocal-response
theory (being GNOR theory in this case, other theories below), and
it is the effectively local quantity εeff(r, ω) that by definition con-
nects the two electromagnetic fields, i.e. close in spirit to the LRA
of Eq. (3.11). Note in Fig. 3.5 that due to the abrupt termination of
the surface and the associated hard-wall boundary condition for the
normal component of the current, the additional damping is ‘forced’
to occur slightly inside the surface. This links up to the Feibelman
parameter and the importance of the actual position of the surface
of the electron plasma was recently excellently discussed by Teperik
and co-workers47,78 in the context of plasmonic ruler effects of sub-
nanometer gap dimers. Here, we note that the hard-wall boundary
condition can be relaxed to also include density-gradient and spill-out
effects in a hydrodynamic model.52

The common importance of surface-enhanced Landau damping
for monomers and dimers can be conveniently explored with ab initio
solutions of the optical response of the electron gas near the surface
of the metal.36,79 For the ease of the ab initio simulations we con-
sider the jellium approximation applicable to simple metals, such
as sodium (Na). Using time-dependent density-functional theory we
seek the response to a time-dependent electrical field. The calculation
provides us both with the equilibrium density n0(r) (now with a
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Fig. 3.5. GNOR results for the real part (top panel) and imaginary part (lower
panel) of εeff(x, ω) as defined in Eq. (3.24), for a planar metal-air interface, as
a function of position and of frequency, for frequencies throughout the optical
range. Reproduced from Ref. 79.

space dependence that we neglected in our GNOR model) and with
the induced charge density n1(r). In the context of Eq. (3.24), we also
obtain the displacement field D that occurs in response to the per-
turbing E field, thus allowing us to infer an effective relative dielectric
function εeff(r, ω), see Eq. (3.24). In this way, we can now explore and
visualize the enhanced damping associated with the more efficient
electron-hole pair generation near the surface.

Figure 3.6(a) shows the ab initio counterpart of the GNOR
results in Fig. 3.5. In addition, the top panel illustrates the equilib-
rium density (exhibiting both Friedel oscillations and quantum spill-
out) which is assumed step-like in the GNOR treatment. Inspecting
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(a) (b) (c)

Fig. 3.6. Equilibrium density in the jellium model (top panels), exhibiting both
Friedel oscillations and quantum spill-out, along with the TD-DFT results for the
real part (middle panels) and imaginary part (lower panels) of εeff as defined in
Eq. (3.24), for different frequencies throughout the optical range. Panel (a) is for
a single interface. Panel (b) is a full calculation for interacting surfaces. Finally,
panel (c) is for a dimer with a 0.5 nm gap separating two independent interfaces,
and is based on the results in (a). Reproduced from Ref. 79.

the imaginary part of the response (lower panel), we immediately
note that near the surface the Landau damping is exceeding its bulk
limit. Although electron spill-out occurs at the surface, the surface-
enhanced imaginary part of the response still occurs mostly inside
the classical geometric interface, at least for energies below 3 eV. This
may serve as a justification of adopting the simpler GNOR model in
that energy range.

We also note that the enhanced imaginary part of εeff(r, ω)
near the surface is accompanied by a vanishing real part occur-
ring right where the decaying tail of the equilibrium electron density
n0(r) is small enough for the dilute plasma to exactly balance the
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vacuum background polarization.50 As such, the enhanced Landau
damping could also be seen as a manifestation of damping inherently
associated with epsilon-near-zero phenomena.80

We now repeat the calculation for a dimer, i.e. two opposing jel-
lium surfaces separated only by a sub-nanometric vacuum gap. As an
example, Fig. 3.6(b) shows the results for a 0.5 nm gap. Quite remark-
ably, we here recover the physics found for a single interface, but this
time with significant Landau damping occurring at both interfaces.
On the other hand, there is no pronounced damping occurring inside
the gap. The close similarity with the single interface is perhaps best
illustrated by comparison with panel (c) which shows a simple super-
position of the response of two opposing independent surfaces. The
similarity of panels (b) and (c) illustrates how the surface scattering
characteristic of a single isolated interface also dominates the dissi-
pation exhibited in a dimer. The truly surprising aspect is that this
seems to be the case even for a gap of only 0.5 nm. It is this dominant
role of Landau damping that the diffusive term in the GNOR model
captures so well.

3.11. Surface-enhanced Landau Scattering:
Microscopic Insight

All nonlocal-response phenomena of the previous sections are
described by the spatial dispersion of the optical susceptibility [see
Eq. (3.2)], both by its real and imaginary parts. In principle, differ-
ent microscopic theories may give rise to the same nonlocal optical
response function. In the phenomenological theory of prior sections,
the spatial dispersion of the susceptibility is represented through
the nonlocal parameter ξ of Eq. (3.18), whose real part defines the
range over which the perturbation at point r affects the dielec-
tric response at point r. As shown above, this range is given by
Re{ξ} ≈ β/ω =

√
3/5 vF/ω i.e. roughly the distance traveled by

the electron near the Fermi surface over one optical cycle. In our
phenomenological theory this term is interpreted as convection and
its inclusion in the model of plasmonic structures leads mostly to the
size-dependent changes in resonant frequencies of plasmonic modes.
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On the other hand, the imaginary part of the nonlocal term mostly
originates from the diffusion of the electrons, i.e. Im{ξ} ≈ √D/2ω.
When introduced into the plasmonic model this leads to the size-
dependent damping of the plasmonic modes, and to changes in the
plasmonic spectra that are more drastic than the ones caused by the
changes in the real part of ξ. These size-dependent damping phe-
nomena have been studied and described in depth by Kreibig and
co-workers72 and they are associated with surface collisions. Accord-
ing to Kreibig, the electrons moving with Fermi velocity inside the
metal particle of size a [see example in panel (a) of Fig. 3.1] are
expected to experience a collision with the surface after the time
τc ∼ a/vF . This collision alters the momentum of electrons and thus
leads to additional damping of the Drude dielectric function of the
metal. For a spherical particle of radius R, the dielectric function
would then appear as

εeff(r, ω) =


1− ω2

p

ω[ω−iγ−iγs(R)] , r < R

1, r > R
(3.25)

where γ is the already introduced bulk damping rate, while γs denotes
the surface origin of the size-dependent surface damping contribution
γs(R) = AvF/R. As we have already discussed briefly in Sec. 3.9,
the dimensionless constant A is of the order of unity. Note that the
dielectric function in Kreibigs interpretation is entirely within the
spirit of the LRA, i.e. it is a stepwise constant local dielectric function
that depends only on the size of the nanoparticle. Hence, even though
γs is referred to as a surface damping, it is included into the Drude
expression for the entire volume of the nanoparticle and not just for
the points close to the surface.

A simple qualitative interpretation of the Kreibig damping can be
made by first considering the conductivity of a lossless Drude metal,
σD = iε0ω

2
p/ω [see Eq. (3.19)]. In the lossless metal electrons do not

experience any momentum-altering collisions, hence the conductivity
is purely imaginary [Eq. (3.19)]. If collisions do occur, the time over
which interaction between the electrons and the electric field takes
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place is limited by the mean time between collisions τ = �/vF , where �
is the mean-free path that we also discussed in Sec. 3.7. Then, accord-
ing to the Heisenberg Principle the frequency of the electromagnetic
wave has an uncertainty γ = 1/τ and its inclusion as ω → ω + iγ

immediately leads to the Drude formula in Eq. (3.19) and thereby to
the expression for the dielectric function (3.25). Note that any event
that shortens the interaction time between the electromagnetic wave
and the electrons, will contribute to the damping rate, be it a phonon
absorption/emission process, scattering on a defect, collisions with a
wall, or, simply an electron exiting the region where the electro-
magnetic wave is concentrated. In that respect, a more descriptive
name for γs could perhaps be confinement damping which states that
as long as the region where the electrons and electro-magnetic field
interact is restricted to a characteristic size a, the interaction time is
limited to a/vF which causes damping with the rate γs ∼ vF/a. We
will return to this question of confinement versus surface-collisions
damping shortly.

A full quantum origin of the confinement damping can best be
described by considering two free-electron states with wave functions
ψ1(r, t) = exp[i(k1 · r−ω1t)] and ψ2(r, t) = exp[i(k2 · r−ω2t)], with
energies E1 = �ω1 and E2 = �ω2 below and above the Fermi level
respectively, as shown in panels (a) and (b) of Fig. 3.7 in k-space and
real space, respectively. In the presence of the electric field E(r, t) =
E0 exp[i(k · r − ωt)], where ω = ω2 − ω1, the transition involves a
matrix element of the interaction Hamiltonian H12 = −eE · r12 =
−eE · p12/mω which becomes

H12 = − e�

mω
(E0 · k2)

∫
dr exp[i(k2 − k1 − k) · r] (3.26)

wherem is the free electron mass, and we have used the standard rela-
tion between matrix elements of coordinate r12 and momentum p12.
The matrix element is finite if k = δk = k2−k1, or k > k2−k1 ≈ kLD

where kLD = ω/vF is the wave-vector at which the onset of Landau
damping occurs. We note that in relation to the hydrodynamic theory
and ξ in Eq. (3.18), the wave vector kLD is also a characteristic cutoff
for the otherwise unbound wave vector in the LRA.41,43,81
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Landau damping33 occurs when the phase velocity for the
electromagnetic wave vph = ω/k is matched by the velocity of an elec-
tron, which allows them to exchange energy. This process is shown
as a straight diagonal line in Fig. 3.7(a). For noble metals the Fermi
velocity has a value of vF ≈ 1.4× 106 m/s, which is about two orders
of magnitude less than the phase velocity of propagating electromag-
netic waves. Hence Landau damping is not too effective in the bulk of
a metal, even if the phase velocity would be reduced as for polaritons
and other surface waves. Because of the small wave-vector of the
propagating waves k � ∆k, many absorption processes (including
free-carrier absorption) involve some other process (phonon, carrier-
carrier interaction defect) to provide momentum ∆k. This interaction
is represented in Fig. 3.7(a) as a two-step process of first absorbing
a photon and then subsequently scattering into the final state.

The situation of Landau damping changes, however, if the
region in which electrons and the electric field interact is restricted.
This occurs either because the field itself is spatially dependent as
E0(r) exp(−iωt), or because the electrons are confined within the
finite region (or, most often, both). Basically, the finiteness of the
structure and the abruptness of the surface termination will in a

(b)(a)

Fig. 3.7. Free-carrier absorption in the conduction band between the states
k1 and k2. (a) k-space diagram of Landau damping (direct diagonal line) and
phonon/defect (dashed lines) transitions. (b) Real-space diagram illustrating the
wave-functions and confined electric field near the surface.
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Fourier representation promote wave-vector components exceeding
the cut-off kLD = ω/vF associated with Landau damping. Return-
ing to Eq. (3.26), the integral in the matrix element of the inter-
action Hamiltonian becomes

∫
metal

drE0(r) exp[i(k2 − k1) · r] [see
Fig. 3.7(b)], where the integration is taken over the now finite vol-
ume of the metal. While the integral is zero for a translationally
invariant system, it now clearly remains finite due to the finite size
of the structure, and the transition between the states ψ1 and ψ2 can
take place with a finite rate. This is a quantum picture of Landau
damping.

As a first example, consider the most simple case of the surface-
plasmon polariton (SPP) propagating on the boundary between
a metal and a dielectric,35 as shown in Fig. 3.7(b). The normal
component of the electric field inside the metal can be written as
Ex = E0 exp(−x/Lm) cos(kzz−ωt) where kz is the propagation con-
stant and Lm is the decay length in the metal. The matrix element
of the interaction Hamiltonian is then

H12 ∼ −e�E0kx

2mωL

∫ ∞

0
dx exp(−x/Lm) sin(∆kxx)

= − e�kx

2mωL
E0∆kx

L−2
m + ∆k2

x

, (3.27)

where L is a quantization length. The sine function appears in
Eq. (3.27) due to the boundary conditions for the electron wave
function. (For the field polarized along the z-direction one ends
up with a much smaller value of integral and that is why we con-
sider only the normal component of electric field here.) One can
then in a next step use Fermi’s Golden rule in order to estimate
the transition rate from a given state kx in the conduction band as
R(kx) = 2π�

−1 |H12|2 Lρx(EF ) where ρx(EF ) = (2π�|vF ,x|)−1 is the
one-dimensional density of states near the Fermi level and vF ,x is
the projection of the Fermi velocity onto the x-direction. Using the
relation ∆kx ≈ vF ,x/ω and ∆kxLm � 1 one quickly arrives at the
transition rate R(kx) = e2|v3

F ,x|E2
0/(4�

2ω4L). Performing the sum-
mation over all wave vectors k and subsequent multiplication by �ω
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results in the expression for the energy loss per unit of surface area

dU

dt
= −�ωL

∑
k

R(kx) = −e
2m2v4

FE
2
0

16π2�3ω2 = −2γsU (3.28)

where 2γs, the effective rate at which U decays, is equal to twice
the momentum decay rate γs. The energy density U experiencing
the decay is the time-averaged density of the kinetic energy of free
electrons

U(x) =
∫ ∞

0
dx

e2

4mω2n0E
2
x(x) =

Lm

24π2
e2m2v3

FE
2
0

�3ω2 (3.29)

where n0 = k3
F/3π2 = m3v3

F/3π2
�

3 is the density of free electrons also
appearing in the Drude conductivity [Eq. (3.19)]. From Eqs. (3.28)
and (3.29) we immediately obtain the relation γs = (3/4)vF /Lm,
which would be remarkably close to Kreibig’s phenomenological esti-
mate γs ∼ AvF/a if in the latter we would have used the decay length
Lm in place of the particle size a. Therefore, one may generalize the
phenomenological estimate, by stating that the surface damping is
determined by the effective size of the region in which both the elec-
trons and the electric field are contained. Obviously, if the size of the
metal structure a is smaller than decay length Lm of a given surface
plasmon mode, then it is a that determines the surface damping.
Alternatively, for the large metal structures it is the decay length
that defines γs.

To generalize these results we should note that the evaluation
of the interaction Hamiltonian for the transition between two free-
electron states was in its essence nothing but an evaluation of the
spatial Fourier transform of the electric field E(r). This observation
can lead us in the direction of using the Lindhard expression for
the dielectric function of the free electron gas to evaluate the effec-
tive dielectric function seen by the confined electromagnetic wave.
According to Lindhard,82 the k-dependent longitudinal dielectric
function is

ε(ω, k) = 1 +
3ω2

p

v2
Fk

2

[
1− ω

2vFk
ln
ω + vFk

ω − vFk

]
. (3.30)
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(a)

(b)

Fig. 3.8. Spatial dispersion of (a) real and (b) imaginary parts of Lindhard
metal dielectric function and their overlaps with the spatial power spectrum of
the electric field in the metal.

For convenience, we next introduce a normalized wave vector q =
k/kLD = vFk/ω, i.e. being normalized to the onset of Landau Damp-
ing, with the aim to obtain separate expressions for the real and
imaginary parts. For the real part one can write Re{ε(ω, q)} =
Re{ε(ω, q → 0)}+Re{∆ε(ω, q)}, where Re{ε(ω, q → 0)} = 1−ω2

p/ω
2

is a long-wavelength Drude dielectric function [see Eq. (3.22)], while

Re{∆ε(ω, q)} =
ω2

p

ω2

[
1 +

3
q2
− 3

2q3
ln
∣∣∣∣1 + q

1− q
∣∣∣∣
]

(3.31)

is the nonlocal correction also being illustrated in Fig. 3.8(a).
For a discussion of the imaginary part of the dielectric function we

focus on the limit without scattering: For small wave vectors k < ω/

vF (corresponding to q < 1) it remains zero, while for larger wave
vectors Landau damping engenders a non-vanishing imaginary part
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of the dielectric function. Finally, since the logarithm of a negative
number has an imaginary part of iπ, one obtains

Im{ε(ω, |q| > 1)} =
ω2

p

ω2
3π
2q3

, (3.32)

as depicted in Fig. 3.8(b). One can now evaluate the Fourier trans-
form F(k) of the Lindhard dielectric function and a power density
spectrum |F(k)|2 of the electric field E(r) inside the metal. It is only
logical then to assume that all the longitudinal field components
with spatial frequencies with kL > ω/vF get Landau damped and
thus contribute to the imaginary part of the dielectric function. For
each value of the wave vector k the power density of the longitudinal
field is |FL(k)|2 = |F(k) ·k|2/k2. One can then evaluate the effective
longitudinal dielectric function εeff(ω), which is a function of the size
and shape of an SPP mode, by evaluating the overlap of |FL(k)|2
with ε(ω, k) as seen in Fig. 3.8(a) & (b) for the real and imaginary
parts of the dielectric function, respectively. The imaginary part of
this dielectric function is then

Im{εeff} =
3πω2

p

2ω2

∫∞
q>1 d

3q q−3|FL(q)|2∫∞
0 d3q |F(q)|2 . (3.33)

Now, according to the Drude formula for bulk metals [Eq. (3.25)] one
has Im{εeff} = ω2

pγ/ω
3 in terms of the bulk damping parameter γ.

Likewise we can now use the above analysis to introduce the Landau
damping rate as Im{εeff} = ω2

pγLD/ω
3, so we eventually find that

γLD =
3πω
2

∫∞
q>1 d

3q q−3|FL(q)|2∫∞
0 d3q |F(q)|2 =

ω

Qs
, (3.34)

where Qs is the structural quality factor of the mode which repre-
sents the broadening associated with nonlocal dynamics.83 The total
damping is then γ → γ + γLD as previously expressed in Eq. (3.25).
The novelty here is that we have a theoretical estimate for the surface
damping rate based on the Landau damping mechanism.

Let us now again evaluate the Landau damping rate for the prop-
agating SPP that we considered above, but this time based on the
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power density spectrum analysis that we just developed. The nor-
malized power spectrum has a Lorentzian shape for positive wave
vectors, shown in Fig. 3.8,

|F(k)|2 =
2

πLm

1
k2 + L−2

m
=

2vF

πLmω

1

q2 +
(

vF
ωLm

)2 . (3.35)

Since the second term in the denominator is much smaller than unity,
it can be neglected for q > 1, and then the evaluation of a simple
integral of q−5 in Eq. (3.34) yields γLD = (3/4)vF /Lm, which is pre-
cisely the value of surface collision damping γs that we obtained
below Eq. (3.29) using Fermi’s Golden rule.

Interestingly enough, if instead the electron rather than the elec-
tric field is confined, then a similar result is obtained. For instance,
if one considers a very thin slab of metal of thickness a < Lm, then
the normalized power spectrum of the mode in the metal is

|F(q)|2 =
aω

πvF

sin2 (qaω/2vF )
(qaω/2vF )2

. (3.36)

For q > 1 the sine function oscillates fast and its square can be
replaced by its average value 1/2 with the result γLD = (3/4)vF /a,
which is no different from the previous one. In fact, similar results
can be obtained for just about any mode shape as long as there is
a sharp boundary separating the metal from the dielectric, because
at large wave vectors the power spectrum would always have the
same wave-vector dependence of ∼q−2, which of course happens to
be the square of the Fourier transform of the Heaviside step function
describing the boundary.

On the other hand, if the confinement does not involve a sharp
boundary, then the situation is strikingly different. For instance,
if, hypothetically, the mode confinement had been Gaussian, Ex =
E0 exp(−x2/2a2) and the metal spread out over both positive and
negative x, then from the normalized power spectrum |F(q)|2 =
(vF/aωπ

1/2) exp[−(qaωa/vF )2] one would have obtained an entirely
different result γLD ≈ (3/4)(vF /a) × π1/2(vF/ωa)2 exp[−(ωa/vF )2],
which decays very quickly with effective confinement width a. For
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example even for a = 1nm and a wavelength λ = 750 nm, one
would have had γLD ≈ 0.02 × vF/a, in other words the Kreibig con-
stant A would have come out with a value of only 0.02 rather than
of order unity. If, on the other hand a single sharp boundary was
restored into our model by restricting the metal to positive x, then
the Fourier transform would no longer be Gaussian, but rather a
complex error function. The corresponding power spectrum would
then be |F(q)|2 ∼ (4vF/aωπ

2) exp[−(qaω/vF )2]
∣∣erfc(iaω/√2vF )

∣∣2.
This function at large values of argument again decays inversely pro-
portional to q2. As a result, once again one would obtain the relation
γLD ≈ (3/2π)vF /a = AvF/a with A = 3/2π ≈ 1/2.

The above exercise of comparing sharp, loose, and semi-loose
electron confinement confirms that the phenomenological “surface
collision” model does reflect a correct physical picture — only a sharp
discontinuity is capable of providing momentum matching that facil-
itates significant absorption of photons by free electrons. In passing,
we note that this discussion can also be directly linked to Feibel-
man parameters.48,71 Our analysis here also justifies the use of sharp
boundaries in the GNOR model in combination with the interpre-
tation of the diffusion (and hence size-dependent damping) in the
GNOR model as due to Landau damping, while leaving open the
possibility for other microscopic mechanisms, such as surface imper-
fections that produce similar phenomena.

Let us now turn our attention to the real part of ε. In a confined
geometry, its change into an effective response can be found as

Re{∆εeff(ω)} = Re{εeff(ω)} − ε(ω, q = 0) =
ω2

p

ω2

∫ ∞

0
gr(q)|F(q)|2dq

(3.37)
where gr(q) = 1 + 3/q2 − (3/2q3) log |1 + q|/|1 − q|, as also shown
in Fig. 3.8. Numerical calculations show that Re{∆εeff(ω)} ≈
ω2

pγ
2
LD/ω

4, which is in agreement with the amount predicted by the
phenomenological theory of Kreibig.72

This result predicts a small positive change in the real part of
the effective dielectric constant, which then leads to a small redshift
of the resonance, while in reality the nonlocal response leads to a
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blueshift in noble metals. One can account for this fact by noticing
that the integral in Eq. (3.37) is taken all the way to infinity and
is small because gr changes sign as seen in Fig. 3.8(a). It is more
reasonable to cut off the upper integration limit when the wave vector
approaches the maximum value that can be supported by the Fermi
gas, which is of the order of the Thomas–Fermi screening wave vector
(inverse convection length), ωp/vF . That corresponds to cutting off
the integration in Eq. (3.37) at qmax ≈ ωp/ω, which has a value not
much larger than unity. The net result of this cutoff will be a negative
change in the real part of ε and indeed a resulting blueshift of the
resonance. At the same time, cutting off the integration at qmax will
not change the result for the imaginary part of ε, since the integrand
shown in Fig. 3.8(b) does not change sign and decays very fast.

Thus changes of both real and imaginary parts of the dielectric
function can lead to the manifestations of nonlocality described in
earlier sections. Of those the increased loss and broadening associ-
ated with the imaginary part of ε becomes important roughly when
vF/a ≈ γ when Landau (surface) damping becomes commensurate
with the bulk damping, i.e. when all the electrons located within
the mode are no more than a mean free path away from the sharp
interface. Diffusion theory gives essentially the same result. Since
the scattering time is related to the bulk broadening as τ = γ−1,
one can estimate the diffusion term as D∇2 ≈ v2

Fγ
−1a−2 and this

term is equal to bulk dissipation rate γ when vF/a ≈ γ. For a typical
noble metal Landau (surface damping) thus becomes important for
the mode size that is as large as 10 nm.

The corresponding change associated with change in the real part
of the dielectric constant (or convection) is manifested as a blueshift.
There is no direct analogous estimate for what sizes the nonlocal
blueshift becomes significant, since there is no bulk energy shift
to compare with. Qualitatively one can estimate that the blueshift
becomes important on a significantly smaller scale, when the smallest
dimensions, such as gap size, become comparable to the Thomas–
Fermi screening length, which is on the order of a few Ångstrom.
In experiments this turns out to be too conservative, as blueshifts



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch03 page 106

106 Handbook of Metamaterials and Plasmonics — Volume 4

in few-nanometer particles are well observed,23,24 for the smallest
particles even larger than the theory predicts.24,28

Obviously, the tighter is confinement of electric fields, the larger is
γLD, hence all the resonances broaden. This effect is most noticeable
in the study of dimers (Fig. 3.3). But increase in γLD causes not
just broadening but also a change in the shape of the mode itself,
as high spatial frequencies of the electric field are attenuated and
the resulting change in the shape of the mode can be described as
diffusion. For example, as the size of the nanogap in the two cylinder
dimer decreases, higher-order modes in the cylinders get excited.84

But since these higher-order modes are close to the surface, they get
strongly damped and suppressed85 which causes spreading (diffusion)
of the gap mode in real space.

3.12. Concluding Remarks

In this chapter we have summarized recent developments in nonlocal
plasmonics. In particular, two descriptions of nonlocality have been
developed. One is semiclassical or “hydrodynamic” for which we used
a real-space formulation, while the other is microscopic and reciprocal
space was emphasized.

According to the hydrodynamic description, as explained in ear-
lier sections of this work, electrons are localized in real space and
the local effective dielectric function of Eq. (3.24) changes in the
vicinity of the surface as a result of diffusion. We showed that the
hydrodynamic “GNOR” theory quite accurately describes Landau
damping at the surface of individual nanoparticles, reproducing well-
known phenomenological size-dependent damping as a nonlocal dif-
fusion phenomenon. Moreover, by comparison of GNOR theory with
microscopic TD-DFT calculations, we also find a good agreement
for larger dimer structures with small gaps. In particular, even for
gap sizes down to 0.5 nm, the agreement is quite good since quan-
tum tunneling, that is neglected in GNOR theory, only sets in for
even smaller gaps. It follows that spectral broadening for dimer gaps
below 0.5 nm is due to a combination of surface-enhanced damping
and quantum tunneling.
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According to the microscopic “reciprocal space theory” of
Sec. 3.11, free electrons are delocalized in space and different spec-
tral components of the electric field experience different dielectric
function. Still, even in this picture, the enhancement of the imag-
inary part of the dielectric function is caused not simply by the
confinement of optical fields, but rather by the presence of sharp
discontinuities of the electric field, or the electron density, or both.
Kreibig’s phenomenological theory for size-dependent damping is
again reproduced, now based on quantum calculations. It is also
generalized by the quantum calculations, with the prediction that
the size-dependent damping will depend on the smallest of two sizes,
either the size of the structure, as is commonly assumed, or the typ-
ical length of the optical mode in the metal.

Both theories predict damping of large-k-vector components of
the field distribution, with diffusion in real space as a result. Not
unlike the diffraction limit, this diffusion sets an ultimate limit on the
degree of electromagnetic-field confinement achievable in nanoplas-
monic structures.
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Excitation of localized surface plasmon resonances in metal nanoparti-
cles and nanoparticle assemblies allows to manipulate light at nanometer
scales well beyond the wavelength and opens the possibility of many
applications. The complexity of the variety of methods to fabricate
plasmonic structures and the sophistication of optical characterization
techniques invites for completing the plasmonics landscape with a com-
prehensive theoretical understanding of the optical response. Classical
approaches based on the solution of Maxwell’s equations using local
(model or empirical) bulk dielectric constant are extensively used to
describe plasmonic systems and gain the necessary intuition. At the same
time, recent experimental and theoretical developments have clearly
demonstrated that as soon as nanometer and subnanometer scales are
approached, quantum effects such as tunneling, non-local screening and
the atomistic structure of the metal nanoparticles become important.
In this chapter, we discuss the major manifestations of quantum effects
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in the properties of localized plasmons, with particular emphasis on the
underlying physics.

4.1. Introduction

Interaction of light with metallic nanoparticles can be greatly
enhanced if the incident electromagnetic wave is at resonance with
collective electron excitations, so called plasmons. Known for a long
time in surface science, where intense research on plasmons has been
developed in the context of the interpretation of electron energy
loss spectroscopy (EELS) experiments,1 and studied in detail in the
context of cluster physics,2 nowadays plasmonic properties of nanos-
tructured materials are receiving renewed attention as a key building
block in nanophotonics.3–5 Driven by technological progress, plas-
monics is now a flourishing field of fundamental and applied research
as it allows “to manipulate light at the nanoscale”.3 Indeed, advances
in nanofabrication6,7 allow to engineer the plasmonic response of sys-
tems and fully exploit strongly enhanced near fields and scattering
resonances in far fields produced by plasmonic nanoparticles. 3–5,8–12

While noble metals such as gold and silver are the most common
materials in infrared plasmonics, recent reports address the possi-
bility of using Al nanoparticles with the perspective to exploit their
plasmon resonances in the ultraviolet.13

The design of the optimal nanostructure with a specific optical
response in the near or far fields requires accurate theoretical predic-
tions. Thus, the availability of theoretical tools capable of modelling,
predicting, describing, and interpreting experimental data at formal
and numerical levels is of paramount importance. Most of the formal
approaches and numerical techniques developed to obtain the opti-
cal response of a nanoobject root back to the classical macroscopic
Maxwell’s equations.5,7,14 The non-dispersive local dielectric permit-
tivity is routinely used to describe the optical response of metallic
nanoparticles delimited by sharp boundaries. It is only recently that
technology has allowed to engineer plasmonic nanostructures where
quantum aspects of the motion of conduction electrons significantly
affect the optical response.15–19 Basically, observing the quantum
regime of response implies that the characteristic size(s) of the system
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is at the nm scale, comparable to the Fermi electron wavelength in
the metal. Thus, several studies have been performed on quantum
effects in the energy and lifetime of the collective plasmon excitations
in small metal clusters,2,20–23 as well as on photon-assisted electron
tunneling through narrow gaps in semiconductor and metal nanos-
tructures in the THz range.24,25 Current research on quantum effects
in plasmonics at optical frequencies is mainly focused on two aspects:

(1) Non-locality of the screening, where the spatial profile of the
induced electron density cannot be infinitely sharp, as assumed
in classical theories.

(2) The coupling between the electromagnetic field and electron
tunneling across narrow junctions between metal nanoparticles,
where the conductive contact can be established prior to the
direct geometrical overlap.

The above-mentioned quantum effects are not captured within
standard classical approaches, and so the description of the cor-
responding plasmonic structures requires new developments. The
non-local screening can be modelled within a classical electromag-
netic theory framework within the non-local hydrodynamical model26

(NLHD) allowing to partially lift such non-physical results as e.g.
the divergence of near fields upon narrowing the gap between plas-
monic nanoparticles. This theory has recently been greatly improved
to include the quantum spill out of the electron density outside metal
boundaries.27 For a detailed account of the NLHD theory, we refer
to Chapter 3 by N. A. Mortensen et al. The description of electron
tunneling requires a quantum treatment beyond classical electrody-
namics. Such approaches become available nowadays, and the opti-
cal response of plasmonic nanostructures can be calculated either
extending the classical theory to incorporate electron tunneling, or
by adopting a full quantum treatment using e.g. the time dependent
density functional theory (TDDFT) combined with ab initio atom-
istic or model free-electron descriptions of metal nanoparticles. 28–39

Besides properly accounting for electron tunneling, the TDDFT cal-
culations reveal a sensitivity of the near and far fields to the fine
details of the atomistic structure inside the gap between plasmonic
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nanoparticles, such as vertices and edges at contact of different crys-
tallographic planes.

Later in this chapter, we present a detailed account of the theo-
retical developments based on the full quantum TDDFT calculations
and discuss related recent experiments. It is noteworthy that owing
to the extremely strong field enhancement in the narrow gap between
plasmonic nanoparticles, the plasmonic dimer appears as the system
of choice to address quantum effects and will be often quoted in this
chapter.

4.2. Non-local Screening

Non-locality of the screening results from the collective quantum
behavior of the interacting many-electron system and reflects the fact
that the response of the conduction electrons at a particular point in
space depends not only on the field applied at that point but also on
the fields applied at other different points. For a monochromatic inci-
dent electromagnetic wave with frequency ω, one can write P(r, ω),
the polarization of the medium at point r, as:

P(r, ω) =
∫

dr′χ(r, r′, ω)E(r′, ω), (4.1)

where E(r′, ω) is the electric field, and χ(r, r′, ω) is the susceptibility
of the medium.

Contrary to local classical descriptions, the non-local effect and
the spill out of the valence electron density outside the metal prevents
a sharp localization of the screening charges at the boundaries of the
interfaces. The screening charges thus have finite spatial extension,
as we illustrate in Fig. 4.1, where the results of the TDDFT calcula-
tion of the electron density dynamics triggered by an external laser
pulse incident at a sodium nanowire dimer in vacuum are shown.33,34

Sodium is a typical free-electron metal for which the jellium metal
(JM) approximation applies well. Within the JM model, the ionic
cores are not explicitly introduced into the calculation, but they
are replaced by a uniform positive background charge with density
n+ = [4πr3s /3]−1. The Wigner–Seitz radius is rs = 2.12 Å for Na. The
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Fig. 4.1. Dynamical screening. (a) Sketch of the geometry of a nanowire dimer.
Two identical cylindrical nanowires are infinite along z-axis and have a diame-
ter D = 2Rcl. The nanowires are separated by a gap of width S. The incident
radiation is linearly polarized with the electric field along the dimer axis (x-axis).
(b) Evolution of the density induced by an incident field at the surface of the left
cylinder facing the junction. The data are shown as a function of the x-coordinate
for D = 9.8 nm, and S = 1.3 nm. x = 0 is at the center of the junction. Different
curves correspond to instants of time spanning 1/2 optical period starting from
t0 (black curve). The frequency of the incoming x-polarized electromagnetic wave
is in resonance with the bonding dipole plasmon mode at ωdp = 3.157 eV. The
vertical blue line denotes the position of the jellium edge.

boundary between the background charge density n+ and surround-
ing medium is set at half of the spacing between atomic planes in the
direction of the surface. This boundary, also called “jellium edge”,
will be considered here as the geometrical surface of the metal.

While in the local classical approach the screening charges reside
at the geometrical surfaces of the cylinders separated by the junction
of width S, the shape of the induced charge density obtained in
TDDFT calculations shows a pronounced time-dependence in the
finite spatial profile. In particular, because of the spill-out effect,
the induced charge density extends outside the metal boundaries
by some Å. One can then define the real part of the centroid of the
induced charge density (Feibelman parameter) Re[d(ω)] as a measure
of the actual position of the plasmon-induced surface charges with
respect to the jellium edge.20,21,40–42 The Feibelman parameter plays
a central role in the theory of dynamic screening at surfaces and
allows to describe the dispersion of propagating surface plasmons
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and finite size effects in localized nanoparticle plasmons, as we will
show below. For the present case of sodium nanowires, Re[d(ω)] is
positive ≈0.9 Å in the frequency range of interest.42 This means that
the screening charge is shifted by 0.9 Å into the vacuum and located
at ≈3 Å outside the surface atomic plane of the nanoparticle.

One of the most prominent manifestations of the non-local
screening is the nanoparticle size-dependent shift of the frequency
ωdp of the localized nanoparticle plasmon with dipolar charac-
ter, as has been thoroughly studied in the case of extinction
resonances in cluster physics. 2,20,23,41,43 For nanoparticles char-
acterized by a radius Rcl, comparable with the wavelength of
the incident radiation λ, retardation effects lead to a redshift
of the localized dipolar plasmon frequency. As the size of the
nanoparticles decreases, the solution of classical Maxwell’s equa-
tions predicts that ωdp converges to a constant value ωMie (Mie
frequency) as ωdp = ωMie

(
1−A[Rcl/λ]2

)
,44 where A is a con-

stant. However, for nanoparticles of nanometer scale size, the
classical description is no longer applicable, and ωdp is deter-
mined by the electron many-body screening at the nanoparticle
surface.20,41

ωdp/ωMie = 1− Re[d(ωdp)]/Rcl +O(R−2
cl ). (4.2)

For alkali metals and aluminum, Re[d(ωdp)] is positive. Thus, with
decreasing cluster size, the plasmon resonance redshifts from the Mie
value ωMie for small size clusters.45–49 For noble metals such as Au
and Ag, the final size effects lead to a blue shift of the dipolar plasmon
resonance with decreasing cluster size. 16,43,50–54 The sheer contrast
between alkali and noble metals is due to the localized d-electron con-
tribution to the total screening in the latter case.41 The d-electrons
reside close to the atomic planes beyond the jellium edge determined
by the extension of the wave functions of the delocalized s-p elec-
trons. When the d-electron contribution to the screening is accounted
for, Re[d(ω)] turns negative indicating that the screening charge is
predominantly induced inside the metal.
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Fig. 4.2. Plasmon energy of Ag clusters as a function of the inverse of the cluster
diameter 1/D. The dipolar bulk limit (Mie plasmon) is at 3.5 eV. The experimen-
tal data (1–5) have been scaled to obtain the resonance energies in vacuum.43

The horizontal error bars on the data (3) give the widths of the size distributions
of the corresponding Ag particles. Red line with red circles shows the results of
the TDDFT calculations55 using the jellium model with a polarizable background
allowing to account for the d-electron contribution. Blue circles (1) — experimen-
tal data from Ref. [50]; Black squares (2) — experimental data from Ref. [51];
inverted blue triangles (3) — experimental data from Ref. [52]; green triangles
(4) — experimental data from Ref. [53]; gray circles (5) — experimental data from
Ref. [16]; (6) — data obtained in the STM induced light emission experiments.54

The difference between free electron (alkali and Al) and noble
metals is illustrated with Figs. 4.2 and 4.3. Measured and calculated
cluster size dependence of the dipolar plasmon resonance frequency is
shown for silver and sodium clusters, respectively. For the theoretical
calculations, the jellium model of the metal has been used in both
cases. In the TDDFT study of the optical response of Ag clusters, the
polarizable background with radius Rd has been introduced inside
the cluster to model the contribution of the localized d-electrons
to the screening.36,56 The polarizable background is described by
the non-dispersive dielectric function εd = 4.58, and it has a radius
defined as Rd = Rcl − 1.2 Å. As follows from the Figs. 4.2 and 4.3,
and in agreement with the general discussion based on the Feibelman
parameter, Ag and Na clusters display opposite finite size effect. It is
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Fig. 4.3. From Ref. 47, energy of the dipolar resonance of Na clusters as a
function of the average number of atoms < N > forming the cluster. Frequencies
are derived from experimental data (solid and open circles) and compared with
theoretical calculations45 (circles) based on the free-electron description of Na.

worthwhile to stress the good agreement between the experimental
data and the theoretical results based on the jellium description of the
metal. This indicates that the JM captures the main physics of the
screening as recently confirmed by quantum studies that adopt a full
atomistic description of the metal nanoparticles.37,57–61 As appears
from the discussion above, the dynamical surface screening is the
main mechanism determining the size dependence of the energy of
the localized plasmons in small metallic spherical nanoparticles. In a
recent work, R. C. Monreal, T. J. Antosiewicz and S. P. Apell show
that for quantum confinement effects linked with the quantization of
the electronic states to become noticeable the nanoparticle size has
to be in the 1 nm range and below.23

Dynamic screening not only affects the energies of the plasmon
modes in individual nanoparticles, but it also does affect plasmon
hybridization in adjacent metallic nanostructures. The plasmonic
dimer,33,34 a canonical coupled structure, allows for a clear cut
physical interpretation of quantum effects in the optical response.
Fig. 4.4 presents the analysis of the role played by dynamic screen-
ing in determining the frequency of the bonding dipole plasmon,
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(a)

(b) (c)
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Fig. 4.4. Dynamic screening in a cylindrical nanowire dimer with D = 9.8 nm
and S = 0.8 nm, as sketched in Fig. 4.1. (a) The TDDFT result for the charge
density ∆n induced by the incident x-polarized laser pulse at resonance with
the lowest bonding dipole plasmon mode of the system (ωdp = 3.1 eV). Positive
(negative) values correspond to red (blue) color code. ∆n is shown at the instant
of time corresponding to the maximum dipole moment of the dimer. (b) Zoom into
the junction with schematic representation of the location of the plasmon-induced
screening charges. Within the local classical approach, the screening charges are
exactly located at the geometrical surfaces of the cylinders (here equivalent to the
jellium edges) separated by the junction of width S. As calculated with TDDFT,
the centroids of the screening charges (red area for positive charge and blue area
for negative charge) are located at Re[d(ω)] in front of the jellium edges, and
therefore separated by S−2Re[d(ω)]. (b) Energy of the dipole plasmon resonance
as a function of the junction width S. Dots: TDDFT results obtained for nanowire
dimers formed by D = 6.2 nm (blue) and D = 9.8 nm (red) individual nanowires.
The results of classical Drude calculations for D = 6.2 nm and D = 9.8 nm dimers
are shown, respectively, with blue and red lines. Dashed/solid line type: separation
S is measured between the jellium edges/centroids of the induced charges. For
more details, see the main text.

also known as gap plasmon. Panel (a) shows the TDDFT result for
the charge density induced by a x-polarized laser pulse incident on
the D = 9.8 nm, S = 0.8 nm nanowire dimer sketched in Fig. 4.1. The
incident radiation is at resonance with the bonding dipolar plasmon
of the dimer formed by the hybridization of the plasmon dipolar
modes of the individual nanowires. The systems with narrow gaps are
characterized by a strong field enhancement in the junction because
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of the large charge densities of opposite sign induced by the plasmon
at the facing metal surfaces across the gap [see panel (a)]. In turn,
this results in an attractive interaction leading to the redshift of the
energies of the bonding plasmon modes of the dimer as compared
to those of the individual particles. In the classical theory, the field
enhancement and the redshift diverge for a vanishing width of the
junction S → 0.62 The “zero width catastrophe” is removed when
the electron tunneling is accounted for as we discuss in the next
section. At present, we limit the discussion to S > 0.5 nm, where the
tunneling effect is negligible, and the induced charge densities can be
well assigned to the individual cylinders forming the junction.

We recall that within TDDFT, the real part of the centroid
of the induced charge density Re[d(ω)] corresponds to the position
of the plasmon-induced surface charges with respect to the jellium
edge of each cylinder. For the present case of sodium nanowires,
Re[d(ω)] ≈ 0.9 Å with screening charge shifted from the jellium edge
into the vacuum. As we schematically show in panel (b) of Fig. 4.4,
for a junction with width S measured between the jellium edges,
the actual distance between the plasmon-induced charges across the
junction is Σ = S − 2Re[d(ω)]. This insight provides an explanation
of the dependence of the energies of the bonding dipolar plasmon
as a function of gap width, as shown in Fig. 4.4(c) for two differ-
ent nanowire dimers.34 While classical electromagnetic calculations
reproduce the TDDFT data overall, the latter is systematically red-
shifted with respect to the former. Indeed, in the classical theory, the
screening charges are confined at the metal surfaces separated by the
junction of width S, while in the quantum theory, the actual distance
between the screening charges Σ is smaller leading to a stronger inter-
action (dots versus dashed lines in Fig. 4.4(c)). Thus, the TDDFT
data obtained for a junction with a specific width S (dots) should
be compared with the classical results calculated for a gap of effec-
tive width Σ = S − 2Re[d(ω)] (solid lines). In doing so, the agree-
ment between TDDFT and the classical simulations becomes excel-
lent indicating that in this case the effect of the non-local screening
can be accounted for within the classical theory by simple distance
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rescaling.33,34 The distance rescaling provides an estimate of the char-
acteristic gap sizes S, for which the non-local screening is important.
Indeed, the shift of the plasmon energy from the classical value starts
to be noticeable for 2Re[d(ω)]/S ∼ 0.1. Provided that the Feibelman
parameter Re[d(ω)] is in the Å range for typical metals, we obtain
S ≤ 2− 3 nm. Note that for small widths of the gap S < 0.5 nm, the
electron densities of the individual nanowires overlap indicating the
onset of efficient tunneling which then dominates the optical response
(see next section).

In addition to an explanation of the change of energies of the
localized nanoparticle plasmons, the dynamic surface screening the-
ory can be also applied to describe the cluster size dependence of
the excited electron dynamics in the system. Indeed, via many-body
interactions, the collective electron excitation (plasmon) decays into
an incoherent excitation of electron–hole pairs. 2,21,22,56,63–66 The
surface contribution to this Landau damping mechanism can be
described via the imaginary part, Im[d(ω)], of the Feibelman parame-
ter.21 For the sake of clarity, we will use much simpler phenomenolog-
ical description here.65 The width of the localized plasmon resonance
Γ (inverse of the lifetime of the collective mode τ = 1/Γ) is given by
several contributions:

Γ = Γrd + Γ0 + gs vf/Rcl. (4.3)

The first term, Γrd ∝ R3
cl, stands for the radiative decay rate.66,67 The

second term gives the bulk contribution to the Landau damping and
the last term describes the surface contribution. The latter mainly
introduces a decay rate which is proportional to the frequency of
the collisions with the surface vf/Rcl of a classical electron moving
with Fermi velocity vf . As follows from Eq. (4.3), for large nanoparti-
cle sizes, radiative decay dominates; however, for small nanoparticles
the incoherent electron–hole excitation becomes a leading mechanism
with the surface contribution increasing as 1/Rcl. This is further illus-
trated in Fig. 4.5, where it can be observed that as a silver nanopar-
ticle size decreases, the spectral width, Γ, of the plasmon resonance
shows a transition from a radiative decay regime to a regime of decay
via electron hole-pair excitation.
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Fig. 4.5. From Ref. 65, spectral width Γ of the localized surface plasmon reso-
nance measured in different single Ag/SiO2 nanoparticles as a function of the
inverse of their equivalent diameter Deq, optically determined by fitting the
extinction spectra. Error bars on size determination and width are indicated
for three typical sizes. The blue dashed line is a linear fit using Eq. (4.3) and
assuming negligible radiative decay Γrd = 0, with gs = 0.7 and Γ0 = 0.125 eV.
The shaded area indicates the estimated Γ0 value in bulk silver.

While transfer of the electromagnetic energy trapped by the
localized plasmon to the electron–hole excitations in the metal
is one of the main bottlenecks in using plasmonic materials for
information technology, this effect is extremely beneficial for many
applications induced by hot electrons such as local heating, photo-
voltaics, nanoscale detectors and photochemistry at surfaces.10,68–71

4.3. Electron Tunneling

Electron tunneling through the potential barrier separating classi-
cally allowed regions of motion is one of the prominent quantum
features that cannot be captured by the classical theory. This effect
forms the basis of a powerful method of surface analysis, namely
scanning tunneling microscopy (STM),72 where a tunneling current
across the junction formed by a STM tip and a surface is triggered
by an applied external DC bias. In the AC regime, photon-assisted
tunneling in metal–dielectric–metal or semiconductor junctions has
been studied in the THz range.24,25 However, it is only recently that
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full quantum theories and experimental studies performed with well-
controlled junctions addressed tunneling phenomena in plasmonics at
optical frequencies.15–19,28,30–38,73–79,82–84 Electron tunneling, or, in
broader terms, electron transfer between nanoparticles and its inter-
action with photons coupled to plasmonic excitations is at the origin
of many physical phenomena in narrow gaps. To access the tunneling
regime in plasmonics allows (i) to understand the transition from sep-
arated nanoparticles to touching particles, when the gap sizes are of
the order of the distances between atomic planes in the metal, (ii) to
design nanoscale electro-optical devices capable of either generating
electronic currents with incident photons or producing electrolumi-
nescence due to inelastic tunneling of electrons, and (iii) to develop
strategies for controlling the plasmon response such as those offered
by functionalization of the junction with self-assembled molecular
layers (SAMs).

Because of the difficulty to reach reproducible sub-nanometer
gaps in experimental conditions, the tunneling effect in plasmonics
was first studied in nanoparticle dimers theoretically.28,30,31 These
theoretical predictions have been followed by experimental verifi-
cation of the tunneling regime.15–19,73–76 In Fig. 4.6 we show the
optical response of a D = 9.8 nm jellium Na nanowire dimer in vac-
uum (Fig. 4.1). The results are obtained using different, classical,
quantum and mixed, approaches not allowing or allowing to account
for the electron transport through plasmonic gap.34 Similar results
have been reported for a dimer formed by two spherical nanoparti-
cles represented using the free-electron JM,28,30,31 or described at full
atomistic level.37 Thus, one can identify general and robust features
of the modification of the optical response due to the electron transfer
between nanoparticles.

A comparison between the quantum TDDFT results and the
results from the classical electromagnetic calculations reveals several
important differences as the junction width S is decreased:

• The redshift of the energies of the plasmon modes as calculated
with TDDFT is finite, not diverging as in the classical theory.
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Fig. 4.6. Optical response of a Na nanowire dimer in vacuum. The diameter
of each nanowire is D = 9.8 nm, as depicted in Fig. 4.1. Results are obtained
with the TDDFT calculations (TDDFT), with classical Drude electromagnetic
calculations (Drude), and with the quantum corrected model (QCM). The latter
allows to account for electron transport across the junction within the framework
of classical electrodynamics. The incoming plane wave is polarized along the dimer
axis x. Upper panels: Waterfall plots of the dipole absorption cross-section per
unit length, σ, as a function of the width of the junction S and frequency ω of
the incident radiation. The centers of the wires are at x = ±(D+S)/(2), and S is
negative for overlapping cylinders. For clarity, a vertical shift proportional to S is
introduced for each absorption spectrum. The red curves are used for a change of
S every 2.65 Å. These curves are labeled with the corresponding S-values every
5.3 Å. The plasmonic modes responsible for the peaks in the absorption cross-
section are labeled: Bonding Dipole Plasmon (DP), Bonding Quadrupole Plasmon
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Fig. 4.6. (caption continued) (QP), high-order hybridized mode (HM), lowest
(dipole) Charge Transfer Plasmon (C1), and higher energy Charge Transfer Plas-
mon (C2). Lower panels: Color plots of the local field enhancement at the center
of the junction for positive separations. Results are shown as a function of the
frequency ω of the incident radiation and junction width S. The color code is
displayed at the bottom of the corresponding panels.

• The number of plasmon resonances is much smaller in the TDDFT
results.

• The bonding plasmon modes of the separated dimer disappear,
and the charge transfer plasmon modes89 emerge in the TDDFT
results prior to direct geometrical contact between the nanowire
surfaces at S = 0.

• The field enhancement in the middle of the junction, as obtained
with TDDFT, stays finite and it is quenched for small S in sheer
contrast with the divergence of the fields observed from the clas-
sical description.

All over, the transition from a capacitively (S > 0) to a con-
ductively (S ≤ 0) coupled system is not discontinuous as in classical
calculations, but continuous. This is because the electron tunneling
between metal surfaces separated by the narrow gaps leads to the
establishment of a conductive contact across the junction prior to
the direct geometrical touch between the surfaces. Indeed, in the
local classical calculations the divergence of the shifts of the plasmon
modes energies and the field enhancement at vanishing gap width
results from the divergent coulomb interaction between the screening
charges of opposite sign localized at the geometrical surfaces across
the junction. In the quantum calculations, however, the tunneling
current neutralizes the plasmon-induced charges and thus reduces
the field enhancement and the shift of the plasmon modes energies.
This tunneling current also leads to the progressive attenuation of
the bonding plasmon modes of the dimer formed by the hybridization
of the plasmon modes of the individual nanoparticles. From the point
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of view of the underlying physics, accounting for the ability of con-
duction electrons to tunnel through the potential barrier separating
two nanoobjects allows to correctly capture the transition from the
the situation of disconnected nanoparticles to the situation with the
continuous metal bridge linking the junction.

Recently, quantum effects in the optical response of metallic
nanoparticles have been addressed with computationally involved
calculations based on a full atomistic description of the nanopar-
ticles.37–39 Undoubtedly, the atomistic structure of the nanoparticles
leads to a quantitative dependence of the near fields and optical
cross-sections on particular morphological aspects of the surfaces, e.g.
specific surface facets forming the junction. The formation of atomic-
size hot spots at the vertices and edges between crystallographic
planes has been also reported.39,85 Nevertheless, the general trends
of the plasmon modes evolution in narrow gaps derived from
TDDFT calculations within the JM description of the nanoparticles
hold.

More insights into the effect of electron tunneling across the
junction can be gained by analyzing the dynamics of currents and
charges in the nanowire dimer induced by an incident x-polarized
laser pulse resonant with the lowest (DP or C1) plasmonic modes,
as displayed in Fig. 4.7. For a wide junction with S = 7.95 Å, the
total induced dipole is formed by the in-phase dipolar polarization
of each nanocylinder, as expected for the bonding DP mode. The
maximum of the dipole is reached at the instant of time when the
maximum charge separation has occurred and the currents inside the
nanoparticles are minimal. In that situation, high charge densities are
induced at the surfaces facing the junction, resulting in large electric
field enhancement. The structure of the induced charges and fields
is similar to previous classical results for coupled cylinders86,87 or
metal spherical dimers.62 For such large separations, the probabil-
ity of tunneling between nanowires is negligible. When the junction
width is reduced to S = 2.65 Å, basically the same profiles for induced
densities and fields are obtained. However, in this situation, optically-
assisted AC tunneling current between the nanoparticles can now be
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Fig. 4.7. Plasmon dynamics in a D = 9.8 nm nanowire dimer system. The inci-
dent x-polarized laser pulse is at resonance with the lowest bonding dipolar plas-
mon DP for S > 0, or with the lowest charge transfer plasmon C1 for S ≤ 0.
Panels in the left column: snapshots of the induced charge density ∆n; middle
column: snapshots of the electric field along the x-axis Ex; right column: current
density Jx along the x-axis. Positive (negative) values correspond to the red (blue)
color code. Results within each row correspond to a fixed junction width S, as
indicated to the left of each row. The induced densities are shown at the instant
of time corresponding to the maximum dipole moment of the dimer. The induced
currents and fields are shown at the instants of time when the induced fields in
the junction reach the maximum. Jx is not shown for the S = 7.95 Å because the
tunneling current is negligible in that case.

observed.24,25,80,81 The junction shows a resistive character24 with
the maximum tunneling current between nanowires reached at the
maximum field and consequently at the maximum induced dipole.
Because of the tunneling, the field enhancement in the junction is
reduced (see Fig. 4.6).
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Further reduction of the junction width S increases the tunneling
probability and short-circuits the junction. When the conductive con-
tact is formed, the fields are expelled from the junction,32,88 the DP
mode disappears and the charge transfer modes emerge in the absorp-
tion spectrum. In this respect, the results obtained for S = 0 and
S = −2.65 Å are very similar. The maximum dipole moment of the
dimer now corresponds to oppositely charged nanowires. The maxi-
mum currents and fields are reached when the total dipole moment
of the system is minimum. Indeed, the current flowing trough the
junction builds the dipole polarization with opposite charges at the
left and right nanowires.

The theory of electron tunneling in the presence of a DC elec-
tromagnetic field24,25,80,81 provides a formal framework that allows
to describe the evolution of the plasmon response in nanoparticle
assemblies with narrow gaps. Assuming linear response regime, the
optical field Eω at frequency ω induces a tunneling current at the
same frequency in the junction between two flat metal surfaces. The
dissipative component (in phase with the driving field) of this AC
tunneling current density is given (in atomic units) by:24,83

Jω =
Vω

2ω
[JDC(U + ω)− JDC(U − ω)] , (4.4)

where U is the applied DC bias, Vω � SEω is the (small) optical
bias across the junction, and JDC(U ± ω) is the DC tunneling cur-
rent at the constant bias U ± ω. Here, we assume that Eω does
not vary across the junction. Equation (4.4) establishes a connection
between the AC tunneling characteristics of the junction and the
static DC tunneling characteristics, commonly used in the descrip-
tion of STM.81 For slow variation of JDC with U , we obtain the
classical limit Jω = SEω dJDC(U)/dU , which can be written as

Jω = G(U,S)Vω = σ(U,S)Eω ,

G(U,S) = dJDC(U)/dU,

σ(U,S) = SG(U,S), (4.5)
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where G(U,S) is the DC conductance of the junction at bias U ,
and σ(U,S) is the DC condutivity of the junction. One expects that
the tunneling current starts affecting the plasmon modes when it
allows partial neutralization of the plasmon-induced screening charge
densities � at the metal surfaces across the junction.89 This implies
that Jω � d�/dt. Assuming Jω = G(U,S)SEω, and Eω = 4π� (flat
capacitor), the harmonic time dependence of the fields results in
G(U,S)SEω � ωEω/4π. Thus, the value of the conductance of the
junction at which tunneling effects are noticeable on the plasmon
modes can be estimated from:

G(U,S) = ω/4πS. (4.6)

For a junction of width of 0.5 nm, and ω ≈ 3 eV, Eq. (4.6) results in
G(U,S) ≈ 2 × 10−3G0, where G0 = 7.75 × 10−5 S is the quantum of
conductance. This estimate is consistent with the range of conduc-
tance values reported for the onset of quantum effects on the bonding
plasmon modes of dimer structures within the TDDFT calculations
in the absence of applied bias (U = 0). 30–34,38,39,90 Since G(U,S)
increases exponentially with decreasing junction width, a variation
of S is the most efficient way to enter into the quantum regime.
However, a modification of the externally applied bias might provide
an additional degree of freedom to tune the optical response of the
nanostructure, together with the functionalization of the plasmonic
gaps with molecular layers, as discussed below.

The approach expressed by Eqs. (4.4) and (4.5) is based on the
theory of photon-assisted tunneling, it describes the resistive AC tun-
neling currents, and thus it can be applied in the case of the junc-
tions with low tunneling probabilities and resistive character. This
approach can thus explain the attenuation of the bonding plasmon
modes of the dimer (DP, QP) (see Fig. 4.6). However, it does not
allow to describe the evolution of the junction from resistive to con-
ductive upon further decreasing S, as shown in Fig. 4.8. Panel (a) of
the figure illustrates the evolution of the electron tunneling barrier
across the junction between two metal surfaces when the junction
width is reduced from S1 to S2, where S2 < S1. Panel (b) displays
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the time-evolution of the current density Jx(t) across the middle
of the junction between two D = 9.8 nm metal cylinders. Jx(t) is
shown as a function of the electric field Ex(t) at the same position.
The subscript refers to the projection on the x-axis of the dimer
(see Fig. 4.1(a)). The time dependence of the currents and fields is
calculated within TDDFT for an incident plane wave resonant with
the corresponding plasmon mode of the system (see caption). If the
frequency-dependent conductivity of the junction is defined as

σ(S, ω) = Jx(ω)/Ex(ω), (4.7)

then the linear proportionality between Jx(t) and Ex(t) with no
relative phase, as shown in panel (b) of Fig. 4.8 for large S (black
lines), implies that σ(S, ω) is real valued (resistive junction). This
conductivity can be obtained from the TDDFT results, as shown
above, or it can be approximated by its DC value defined by Eq. (4.5),
since the approach developed to describe tunneling conductances G
in STM junctions31,91 can be applied. At small S, the relative phase
between Jx(ω) and Ex(ω) implies that σ(S, ω) is complex. Thus,
the junction character evolved from resistive [large S] to conductive
[small S]. The tunneling barrier is low in that situation, and elec-
trons are efficiently transferred between the nanoparticles. The con-
ductance of the junction is in the 0.1 − 1 G0 range, which is the
threshold for observing the emergence of charge transfer plasmon
modes.38,39,89,92 Obviously, at S = 0 the potential barrier vanishes
and the metal-to-metal contact is formed.

The analysis of the quantum regime in tunneling junctions and
its consequences can be summarized as follows:

• In the absence of tunneling, the non-local screening affects the
energies of plasmon modes in junctions with S in the range of
some nanometers. This effect can be accounted for by rescaling
classical results.

• For junction widths below 0.5 nm, electron transfer between
nanoparticles is a dominating process that determines the optical
response. The range of the electron tunneling effect as given here,
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Fig. 4.8. (a). Schematic representation of the evolution of the electron tunneling
barrier across a nanoparticle junction when the junction width is reduced from
S1 to S2, where S2 < S1. No bias is applied. The shaded areas represent the
tunneling barrier for the electrons at the Fermi energy before (gray) and after
(red) changing S. Green arrow shows the AC current Jω due to the incident
electromagnetic field at frequency ω. (b) Conductivity analysis for theD = 9.8 nm
nanowire dimer system. The current density Jx calculated with TDDFT on the
x-axis in the middle of the junction is plotted as a function of the normalized
electric field component Ex at the same position. Different colors correspond to
different junction widths S as labeled in the insert. The incident x-polarized laser
pulse is at resonance with the lowest (DP) plasmon mode for junctions of width
S = 2.65 Å and S = 5.3 Å. For the vanishing junction, S = 0 and S = 1.06 Å,
the incident pulse is at resonance with the C1 charge transfer plasmon mode. For
further details see Ref. 34.

is only an estimate. It depends on the specific conditions and can
be modified through the change of the potential barrier.

• Standard classical electromagnetic approaches do not allow to
describe the electron tunneling effect.

• Quantum calculations naturally include tunneling, but being com-
putationally demanding, are limited to systems too small as com-
pared to those of actual interest in plasmonics.

• For not-too-narrow junctions (low G) much of the understanding
of the modal description can be gained from the theory of photon-
assisted tunneling. However, this theory does not allow for a simple
description of the transition from the tunneling to full contact
regime.
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A recent proposal to cope with the issues pointed above consists
in describing the electron transport properties of the junction via an
effective dielectric constant. In this way, the so-called QCM31 allows
to account for the tunneling between plasmonic nanoparticles within
the framework of classical Maxwell’s equations so that the standard
efficient electromagnetic solvers can be applied in practical plasmonic
morphologies of considerable size. 15,31,34,90,93 The QCM approach is
grounded on two observations. First, the widths of nanogaps where
tunneling effects are important are much smaller than the typical
curvature radii of the plasmonic nanoparticles forming the junction.
The quantum effects in the nanogap can be then modelled using
the properties of the electron transfer as calculated for planar metal
surfaces separated by S, and then continuously varying S according
to the actual geometry of the system. Second, since S < λ (λ is the
wavelength at optical frequencies), Eq. (4.7) can be considered as a
local one. We can thus assume that the local permittivity of the gap
can be defined as

ε(S, ω) = 1 + i 4πσ(S, ω)/ω. (4.8)

Applying Eq. (4.7), the conductivity σ(S, ω) can be obtained from
quantum calculations as shown in Fig. 4.8(b) or reported in Ref. 94.
Then, if this ε(S, ω) is used to describe the response of the junction
in the classical Maxwell’s equations, the relationship between the
current density across the gap and the optical field inside the gap
as obtained from these classical calculations will be the same as the
one obtained from quantum calculations. Alternatively, for resistive
junctions (large enough gaps), σ(S, ω) can be approximated by its
DC value calculated from the STM theory.91

For narrow gaps at the transition from the resistive to conduc-
tive junction, the STM theories do not apply. However, the TDDFT
calculations of σ(S, ω) can be also avoided in this case, by enforcing
the transition to a continuous metal for S = 0 with the use of a
frequency-dependent permittivity of the junction described with the
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Drude model:

εD(S, ω) = 1− ω2
p

ω(ω + iη(S))
, (4.9)

where ωp is the plasma frequency characteristic of the metal nanopar-
ticles. η(S) is set by an exponential function such that for S → 0, one
retrieves the attenuation of the bulk metal, and for large widths of the
gap, εD(S, ω)→ ε(S, ω), given by Equation (4.8).90 Observe that for
large S, the dielectric function becomes independent of the particular
model parametrization. The QCM is shown to correctly reproduce
the full quantum results of the response for various systems such as
the spherical nanoparticle dimer,31 the cylindrical nanowire dimer34

(see Fig. 4.6) and core-shell plasmonic nanoparticles.93 The model
has been also applied to explain a number of recent experimental
observations, as we describe in Fig. 4.9. Screening of the gap plasmon
signal in Electron Energy Loss Spectra, in dark-field scattering, in
nonlinear signals from gaps, or in gaps functionalized with molecular
layers are some of the relevant examples which make quantum effects
in plasmonics evident.

4.4. Controlling Tunneling with Molecular Layers

The recognition that the conductance across a gap between metal
nanoparticles is a key parameter determining the tunneling effect in
the plasmonic response of the system allows one to elaborate a vari-
ety of strategies for controling the latter. While varying the width
of the gap S seems a natural choice to control the conductance
across the junction, using self-assembled molecular layers (SAMs)
also provides the possibility to change this conductance, and thus
to decrease/increase quantum effects. Junctions functionalized with
SAMs offer very promising perspectives as they allow to impact tun-
neling in two ways:95 via variation of the overall tunneling barrier,17

and/or via resonant transfer involving molecular orbitals.92,96–99

Examples of molecular control over the plasmon response in
metal nanostructures characterized by narrow plasmonic gaps are
shown in Fig. 4.10. The nanometer-thick junction between silver
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Fig. 4.9. (a) Continuous collection of EELS measured in 9-nm-diameter silver
homodimer as a function of the separation distance to observe quantum tun-
neling effects at small gap sizes (left).16 Absorption cross-section at different
separation distances calculated with TDDFT for the dimer formed by 4.3-nm-
diameter sodium spheres in vacuum30 (right). BDP, BQP: bonding dipole and
quadrupole plasmons, CTP, CTP’: charge transfer plasmons. (b) Experiment:
measured dark-field scattering spectra from gold disk dimers with various gap-
widths.16 Horizontal axis represents measured gap-widths from 9.1 nm to 2 Å
in log scale. Classical: Results of the classical electromagnetic simulations of the
same situation as above for gap-widths from 1 Å to 10 nm. QCM: Scattering inten-
sities simulated with the QCM. For small gap-widths <4 Å, screening of spectral
features related to electron tunneling is observed and reproduced with QCM.
The measured and calculated scattering intensities are normalized by their corre-
sponding largest values. (c) Third harmonic signal as a function of the thickness
of a self-assembled molecular layer separating 60 nm spherical gold nanoparticles
from a gold surface.18 The experimental data an compared with calculations using
the QCM, and the classical electromagnetic approach. Insets show the calculated
electric field intensity distribution in the gold film just below the nanoparticle
for a wavelength of 1570 nm. The decrease of the nonlinear signal for small film-
nanoparticle distance is attributed to the reduction of the field enhancement
because of electron tunneling. (d) Evolution of the resonance wavelength of the
plasmon band (red dots)
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Fig. 4.9. (caption continued) in gold nanoparticle dimers as the interparticle
distance is reduced by varying the size of the molecular linker.75 The gray curve
is the best fit to an exponential function, representing the classical electromag-
netic model for plasmon coupling. The vertical dotted line marks an interparticle
distance of 1 nm, where quantum plasmon coupling apparently begins.

(a)) 
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Fig. 4.10. (a)–(c) from Ref. 17. (a): Schematic illustration of the molecular
tunnel junctions between two silver nanoparticles bridged by a SAM on a sil-
icon nitride membrane. (b): The distance between two adjacent nanoparticles
is determined by the thickness of the SAMs of either saturated, aliphatic 1,2-
ethanedithiolates (EDT) or aromatic 1,4-benzenedithiolates (BDT). (c): Mea-
sured EELS spectra for double SAMs of EDT (red) and BDT (blue). Tunnel-
ing was observed for the double-layer BDT but not in the double-layer EDT
junctions. (d)–(f) from Ref. 99. (d): Conductive and non-conductive SAMs in
plasmonic junctions. Schematic of a gold nanoparticle separated from a gold film
by a thin molecular spacer layer. (e): Dark-field images of 60 nm gold nanopar-
ticles on biphenyl-4-thiol (BPT) and biphenyl-4,4′-dithiol (BPDT), respectively.
(f): Normalized scattered intensity from individual 60 nm gold nanoparticles on
BPT and BPDT. For nearly the same dielectric constant of BPT and BPDT
polymers linking the junction, tunneling leads to a blue shift of the bonding
plasmon mode in the case of the BPDT film (slightly conductive) as compared
to the BPD (non-conductive).

nanoparticles in one case (panels a, b and c), and between a gold
nanoparticle and a gold surface in the other case (panels d, e and
f) is functionalized with SAMs. Two types of molecular layers are
used in the experiments allowing to compare the results obtained
with SAMs of relatively low and high conductance in order to
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reveal tunneling effects. For silver nanoparticles separated by a dou-
ble molecular layer, the low-energy tunneling plasmon associated
with interparticle charge transfer across the gap has been observed
only for SAMs formed by higher conductance molecules [aromatic
1,4-benzenedithiolates (BDT) in this case]. For SAMs in the junc-
tion between the gold nanoparticle and the gold surface, the higher
conductance biphenyl-4,4′-dithiol (BPDT) molecules induce a blue
shift of the gap plasmon mode. In this case, the tunneling conditions
correspond to the situation described with Equation (4.6). Tunneling
current partially neutralizes the plasmon-induced screening charges
at the junction interfaces, and thus reduces the attractive interac-
tion between the nanoparticle and the substrate.89 At this point, it
is important to stress that using metal-oxide-metal type of junctions
also allows to change the tunneling barrier depending on the band
structure of the dielectric inside the junction. Indeed, the tunneling
barrier is set by the energy of the oxide conduction band minimum
in this case.71,83,91 Last but not least, the examples above show that
monitoring the emergence of the charge transfer plasmon and/or the
blueshift of the gap plasmon provides an access to the tunneling
characteristics of molecular layers. A sophistication of the connec-
tion between the conductance and the plasmonic response in SAMs
could serve as a valuable tool to quantitatively measure molecular
conductance at AC conditions.

4.5. Conclusions

In this chapter, we have described quantum effects in nanoplasmon-
ics derived from the quantum nature of the many-body interactions
between conduction electrons in metals. The presence of surfaces of
metallic objects intrinsically brings up the effects of confinement, of
dynamical screening of electromagnetic fields, of electron spill out, and
of the atomistic arrangement at the interface between different mate-
rials. Plasmonic structures are key building blocks in nanophotonics
where all these quantum effects can be tested. In particular, geometries
characterized by narrow gaps between metallic surfaces (plasmonic
gaps) emerge as canonical systems where optics and electron transport
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can be connected with unprecedented levels of control and monitor-
ing capability. As experimental architectures reach the subnanomet-
ric scale, accounting for quantum effects becomes progressively rele-
vant for a correct interpretation of data obtained from optical spec-
troscopy. There are many situations in nanoplasmonics where clas-
sical and approximate non-local treatments correctly describe many
of the spectral features of the far- and near-field response associated
with plasmons; however, new atomic-scale realms in nanophotonics
are firmly emerging, as robust technological platforms.

In this chapter, we have focused on quantum-size effects in metal-
lic nanoparticles, and on the optoelectronics of plasmonic gaps. We
have shown the differences between tackling the response of noble
metals or free metals in the former, and we have established a descrip-
tion of the effect of a tunneling current in screening the gap plasmon,
and eventually the formation of a charge transfer plasmon, for the
latter. Our description targets the challenge of an accurate quan-
titative comparison between phenomena identified in cutting-edge
experiments and state-of-the-art theoretical descriptions based on
TDDFT techniques. The main trends in optical spectroscopy of
metal nanoparticles can be unveiled in this way. However, much work
remains to be done regarding more sophisticated aspects of optical
spectroscopy and optoelectronics. A modification of the tunneling
current, and thus of the optical response, in molecular layers has
been shown here, but more active ways of controlling the tunneling
barriers have called the attention of many researchers in molecu-
lar electronics100–102 and in electrochemistry.103,104 The possibility
of controlling the optical response by application of an external bias
to a metallic nanogap points out towards new possibilities in opto-
electronic devices, and optical routing.105 Another aspect of interest
is that the tunneling process across a metallic junction is an intrinsic
nonlinear process that could be exploited together with other sources
of nonlinearity connected with structural and morphological prop-
erties of the particles and their environments. All these combined
effects can be exploited in novel nanosystems that include plasmonic
structures coupled at subnanometric scale. A substantial increase of
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nonlinear signals and the possibility of its control can be expected in
this situations.30,84,106,107

In addition to the bottom-up approaches to build subnanometric
structures, based on wet chemistry methods, scanning probe micro-
scopies also provide a very interesting platform to obtain control
of surfaces and molecular species at the atomic-scale. A STM junc-
tion where a DC current produces plasmonic excitation and further
decays into photons reveals interesting possibilities to modify molec-
ular electroluminescence with unprecedented levels of control.108,109

This can lead to the development of new sources of photons for quan-
tum information. Molecular spectroscopy is another field where quan-
tum atomistic effects could be key to understand the subnanometric
resolution recently found in experiments which reveals intramolecu-
lar features.110 Atomistic vertices, edges, and protrusions are able to
localize optical fields beyond the standard plasmonic capabilities,39

producing a new type of ultraconfined optical cavities which can
boost plasmon-exciton coupling111 and optomechanical coupling112

to values and regimes not explored before.
We have limited the content of this chapter to metallic structures.

It is worthwhile to mention that other materials with novel optical
properties such as Van der Waals 2D materials,113 are also offering
the possibility to explore and reveal quantum effects derived from
the many-body interaction between the electrons in the system. This
is a topic of utmost relevance because of the important technological
opportunities; however, we have shown here that standard metallic
materials equally hold an incredible potential for optoelectronics and
spectroscopy in the optical range of the spectrum.

References
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J. Phys. Chem. Lett. 1, p. 2428.



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch04 page 143

Quantum Effects in the Plasmonic Response 143

5. Stockman, M. I. (2011). Optics Exp. 19, p. 22029.
6. Stewart, M. E., et al. (2008). Chem. Rev. 108, p. 494.
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Transformation optics (TO) is a recently developed theoretical tool
that makes possible an unprecedented control over the propagation
and confinement of electromagnetic (EM) fields at both supra- and
sub-wavelength scales. In the context of metamaterial science, TO estab-
lishes a direct link between a desired EM phenomenon and the material
characteristics required for its occurrence. More recently, this power-
ful framework has been successfully applied to the study of surface-
plasmon-assisted phenomena, such as light collection and concentration

∗Corresponding author: a.fernandez-dominguez@uam.es

147



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch05 page 148

148 Handbook of Metamaterials and Plasmonics — Volume 4

by nano-antennas, the emergence of non-local effects in the optical
response of nanostructured metals, or the van der Waals interactions
between particles separated by nanometric distances. In this chapter,
the fundamentals of TO are reviewed, and recent advances on the TO
design and description of plasmonic devices are presented with special
focus on the deep insights provided by this largely analytic approach.

5.1. Introduction

Transformation optics1,2 (TO) has played a key role in the fast
development that metamaterial science and technology have expe-
rienced during the last decade.3 This theoretical framework exploits
the invariance of macroscopic Maxwell’s equations under coordinate
transformations to establish a direct link between an electromagnetic
(EM) phenomenon, encoded in the transformation, and the material
response required for its occurrence. Specifically, TO determines the
way in which the EM constitutive relations, and therefore the per-
mittivity and permeability tensors, must be tailored in space in order
to obtain a desired optical effect. Thus, in recent years, advances in
nanofabrication techniques have made possible the design of meta-
material devices implementing TO prescriptions and realizing tech-
nologically relevant functionalities4,5 or striking phenomena such as
invisibility cloaking.6,7 Importantly, TO fully accounts for the vecto-
rial and undulatory nature of EM fields,8 which makes it exact not
only at supra- but also at sub-wavelength scales.

TO theory demonstrates that, under a general spatial operation
like the one in Fig. 5.1(a), EM fields are distorted in a way that
is exactly equivalent to a transformation of the electric permittivity
and magnetic permeability tensors components of the form9

ε
′i
′
j
′
= [det(Λ)]−1Λi′

i Λj
′

j ε
ij

(5.1)
µ

′i
′
j
′
= [det(Λ)]−1Λi′

i Λj
′

j µ
ij,

where εij(µij) and ε
′i
′
j
′

(µ
′i
′
j
′
) are the permittivity (permeability)

elements in the original (ri) and transformed (r
′i
′
) frames,
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respectively, and Λi′
i = ∂r′i′/∂ri is the Jacobian matrix for the

operation.
Equation (5.1) lie at the core of the TO methodology. From

a metamaterial view, they can be understood as a link between
material characteristics and the EM effect resulting from the spatial
operation. However, from a purely computational electrodynamics
perspective, Eq. (5.1) represent a recipe to exchange geometric and
material characteristics of the EM system. In fact, this interpreta-
tion was the original motivation that led to the development of the
TO framework, first thought as a strategy to ease the numerical
solution of Maxwell’s equations in acute geometries.1 Figure 5.1(b)
exemplifies how TO can be used to map a sharp conical tip into a
blunt cylindrical one, for which Maxwell equations can be accurately
discretized in a regular mesh. This advantage comes at the expense
of more complex, non-uniform and anisotropic permittivity and per-
meability distributions.

Recently, this initial purpose of TO has been recovered under a
different approach. Instead of using this theoretical tool to attack
Maxwell’s equations numerically, it has been exploited to shed
analytical insight into plasmonic phenomena10,11 taking place in
metallo–dielectric systems at a deeply sub-wavelength scale.12,13 In
this nanometric regime, spatial derivatives in Maxwell’s curl equa-
tions are much larger than temporal ones. Therefore, to a first-order
approximation, the latter can be neglected, which translates into the
decoupling of magnetic and electric fields. This is the so-called quasi-
static regime,11 in which electric fields can be described in terms of
an electrostatic potential, E(r) = −∇Φ(r), satisfying Gauss’ law

∇[ε̄(r)∇Φ(r)] = 0, (5.2)

where in the most general scenario, the permittivity is an inhomoge-
neous, anisotropic tensor. Note that in the case of a homogeneous
scalar permittivity, Eq. (5.2) recovers Laplace’s equation. Impor-
tantly, although the quasi-static approximation is only valid for
systems of the order of tens of nanometers at visible frequencies,



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch05 page 150

150 Handbook of Metamaterials and Plasmonics — Volume 4

r3

(b)

(a)

r’3’

r’1’

r’2’

r1

r2

Fig. 5.1. (a) EM fields propagation in free space (sketched as a single field line)
with a Cartesian grid in the background (top), and their distortion under an
arbitrary geometric transformation (bottom).2 (b) Diagram showing the conical
distortion of a cylindrical mesh, parameterized through the angle φ. Note that
for φ = 0, the original grid is recovered.1
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the validity of Eq. (5.2) can be pushed to dimensions up to a few
hundreds of nanometers14 by introducing radiation losses in a self-
consistent fashion through the so-called radiative reaction concept11

(see Section 5.2.4). For larger structure sizes, retardation effects
become significant and a full electrodynamics treatment of optical
effects is required.

In this chapter, we review a set of analytical and quasi-analytical,
exact and approximate, TO solutions of Eq. (5.2) that have lately
been exploited to investigate plasmonic phenomena such as the har-
vesting of light by 2D15–22 and 3D23–27 nano-antennas and rough
surfaces and gratings,28–30 the impact of non-local effects (originated
from the spatially dispersive nature of the metal permittivity) in
nano and sub-nanometric metallic gaps,31–33 and the near-field van
der Waals (vdW) interactions between particles separated by these
tiny gap distances.33–35

5.2. Two-dimensional Conformal Mapping

In this section, we will show how conformal mapping theory36,37 can
be used to describe the optical properties of 2D metallic nanostruc-
tures. Such systems can be described by an isotropic scalar permit-
tivity and present translational symmetry along a spatial direction.
A conformal map is an analytic transformation of the form z′ = f(z),
where z(′) = x(′) + iy(′), that preserves local angles (everywhere
except at geometric singularities). The holomorphic nature of the
mapping translates into the fact that if a given function Φ(z) is
a solution of Laplace’s equation (for the unprimed variables), then
Φ′(z′) = Φ(f−1(z′)) will be the solution of Laplace’s as well (for the
primed ones). This function can, therefore, represent a quasi-static
potential in a 2D geometry, where the electric fields do not depend
on the third spatial coordinate.

Moreover, as z′ = f(z) preserves local angles, the tangential
component of the electric field, E‖ = −n̂ × ∇Φ, and the normal
component of the displacement field, D⊥ = −ε(n̂ · ∇Φ), which are
continuous across any material interface, must be also conserved
under the transformation. This implies that ε′(z′) = ε(f−1(z)), and
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the magnitude of the permittivity is not affected under the map-
ping. This result can be also obtained from Eq. (5.1) in terms of the
(x(′), y(′)) spatial coordinates.

The convenient fashion in which quasi-static potentials and
permittivity distributions transform under conformal operations,
make them suitable candidates for the analytical study of plas-
monic geometries. This approach consists in mapping an initial sub-
wavelength device into an extended (much simpler) structure, whose
analytical description is possible. Importantly, through a set of dif-
ferent mathematical transformations, various sub-wavelength geome-
tries are mapped into the same extended one. This allows for unveil-
ing structural symmetries and optical similarities among them which
would otherwise remain hidden. This is illustrated in Fig. 5.2, which

Fig. 5.2. Schematics of conformal transformations that map canonical extended
metallic systems (top panels) to a whole category of singular structures (bottom
panels).13 (a1) A thin metal slab coupled to a 2D line dipole maps, under an
inversion, into a crescent-shaped cylinder illuminated by a uniform electric field
(a2). (b1)–(c1) Periodic metallic slabs excited by an array of line dipoles. An
exponential transformation converts these two structures into a metallic wedge
(b2) and a V-shaped metallic groove (c2) excited by a single line dipole. (d1) Two
semi-infinite metal slabs separated by a thin dielectric film and excited by a 2D
dipole source are inverted into two touching metallic nanowires illuminated by a
uniform electric field (d2).
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shows that a periodic metallo-dielectric system can be linked to a
variety of metallic nanostructures, which have different geometric
characteristics, but all belong to the same TO family.

In the following, we will describe how the TO strategy described
above has been successfully applied to three different families of
nanostructures: those presenting geometric singularities (such as
touching points or infinitely sharp corners), those whose singular fea-
tures have been rounded (such as edgeless tips or blunt claws), and
those in which strong plasmon hybridization takes place (through
vacuum gaps or circulating around metallic elements).12,13,37

5.2.1. Singular geometries

Over the last decades, much research attention has been focused on
the theoretical description of the EM properties of metallic structures
with sharp geometric features. This interest has been motivated by
the ability of these devices to localize light into nanometric hotspots,
where extremely large field enhancements are produced.38,39 The
numerical modelling of these systems40–47 is very demanding in terms
of computational resources, as it requires the accurate treatment
of very different length scales. Note that the hotspot size can be 3
orders of magnitude smaller than the optical wavelength. Moreover,
these heavy simulations neither provide deep physical insight into the
mechanisms that govern the light localization phenomena nor allow
a comprehensive configurational study of these systems due to their
high time-consuming character. TO offers a way to circumvent these
limitations.

As shown in Fig. 5.2, TO makes it possible revealing the optical
properties of different sub-wavelength structures (bottom panels)
having little symmetry and presenting sharp corners by solving
Eq. (5.2) for a single transformed system (top panels). Importantly,
the latter are planar and have translational symmetry along the
x-direction, which allows expressing the solution to Eq. (5.2) in terms
of a summation (or k-integration) over Bloch wave eigenstates.13,15

Two different EM excitations are considered: a uniform electric
field (the quasi-static analog of an incident plane wave) or a static
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line dipole source (modelling a nano-emitter). Through inverse-like
(exponential-like) transformations, the original plane wave (dipole)
is mapped into a single (an array of) line dipole(s), whose projection
over Bloch waves is well-established. This procedure maps Eq. (5.2)
into a set of algebraic equations in the Bloch expansion coefficients
which result from the EM continuity conditions at the boundaries of
the structure.

Once the quasi-static potential is known in all space, analytical
(or quasi-analytical) expressions not only for the electric field but also
for other derived magnitudes can be obtained. We consider here the
case of a pair of touching nanowires, which, as Figs. 5.2(d1) and (d2)
show, can be mapped into a metal-vacuum-metal waveguide under
an inversion of the form

z′ = f(z) =
g2

z
, (5.3)

where g is an arbitrary length parameter characteristic of the map-
ping. This transformation allows obtaining the following expression
for the absorption cross-section of a pair of touching nanowires of
radius R illuminated by light polarized along the dimer axis15,16

σabs(ω) =
π2D2ω

4c
Re
{

ln
(
ε(ω) − 1
ε(ω) + 1

)}
, (5.4)

where c is the speed of light and ω is the incident frequency. D = 4R
is the physical cross-section of the dimer and ε(ω) is its permittivity.
This expression is formally approximate, as it neglects the contribu-
tion of lossy surface waves to the absorption spectrum of the dimer.14

Note the close connection between Eq. (5.4) and the quasi-
static dispersion relation of the Surface Plasmon (SP) modes for a
metal-vacuum-metal waveguide (the transformed counterpart of the
touching dimer), which is given by16,30

k =
1
d

ln
(
ε(ω)− 1
ε(ω) + 1

)
, (5.5)

where d = d1 + d2 is the slab width, and ω < ωsp, the SP frequency
for the metal satisfying Re{ε(ωsp)} = −1. Figure 5.3(a) plots the
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Fig. 5.3. (a) Absorption cross-section normalized by the square of the physical
cross-section as a function of frequency for touching nanowires.15 The incident
field is polarized along the dimer axis. The analytical absorption spectrum (con-
tinuous black line) is compared to numerical results (dots) for different structure
dimensions (20, 100, 200 and 300 nm). The absorption spectrum of one individual
cylinder11 is also shown for comparison (dashed black line). The inset shows the
axial component electric field for ω = 0.9ωsp. (b) Amplitude of the axial electric
field at the boundary of one of the nanowires as a function of the angle theta
evaluated at ω = 0.68 ωsp.

16 The analytical electric field (continuous red line) is
compared to numerical results for several D : 20 nm (dashed black curve), 100 nm
(blue curve), 200 nm (green curve) and 300 nm (purple curve).

absorption cross-section predicted by Eq. (5.4) for a pair of touching
Ag nanowires (permittivity taken from the Drude fitting to exper-
imental data48,49) as the solid black line. The TO analytical result
is compared against full numerical calculations, showing an excel-
lent agreement for particle sizes within the range of validity of the
quasi-static approximation (R < 20 nm). Figure 5.3(a) shows that
touching dimers exhibit a broadband continuous spectra, present-
ing a cross-section several orders of magnitude larger than single
nanowires (black dashed line) at frequencies well below ωsp.

TO reveals the physical origin of the broadband response of
touching nanowires. Note that this geometry is mapped into a struc-
ture (a metal-dielectric-metal waveguide) that supports SP modes
within a wide spectral window ω < ωsp.10 Thus, as spectral fea-
tures are conserved under the transformation12 (note that these are
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fully given by the permittivity in the quasi-static regime), the sub-
wavelength device inherits the broadband response of its extended
counterpart. Moreover, TO demonstrates that this is a general char-
acteristic of acute geometric features, in which SP waves are slowed
down in their propagation toward the singularity. In the absence
of losses, the SP group velocity will eventually vanish. This trans-
lates into the fact that the SP waves take infinite time to reach the
singularity, in a similar way as the SP modes in the transformed
extended structure travel for infinite time along the flat metal sur-
faces.15 Importantly, this drastic reduction of group velocity leads to
a strong accumulation of EM energy.

Once material losses are introduced in the metal permittivity,
the concentration of SP fields in touching dimers is governed by
the trade-off between the adiabatic focusing mechanism described
above and absorption damping. These two effects can be observed
in Fig. 5.3(b), which renders the TO result (black line) for the axial
component of the electric field along the boundary of one of the
nanowires at ω = 0.68ωsp.16 As the SP wave approaches the touch-
ing point, its effective wavelength shrinks and the field amplitude
increases. However, in the vicinity of the singularity, the small group
velocity makes the SP mode extremely sensitive to absorption losses.
As a result, the electric field amplitude decreases and vanishes just
at the touching point. TO predicts field enhancements of the order
of 103, which is in excellent agreement with numerical simulations
for dimer sizes in the quasi-static regime. For larger D, radiation
damping reduces the focusing capabilities of the device. The inset of
Fig. 5.3(a) shows a complete 2D map of the field distribution in a
nanometric sized dimer at ω = 0.9ωsp.

Importantly, although the TO treatment of light collection
and concentration by SP resonances in 2D singular nanostruc-
tures has been discussed above for the particular case of a pair
of touching nanowires,15,16 the physical mechanisms behind this
phenomenon are the same for a whole set of singular geometries,
such as crescent-shaped nanowires,17 open crescent structures28 or
overlapping nanowire dimers.20 Remarkably, in the latter case, TO
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(a) (b) (c)

(d) (e) (f)

Fig. 5.4. TO Electric field distributions for (a) a crescent-shaped nanowire;17 (b)
an open-crescent structure,21 (c) an overlapping nanowire dimer,20 (d) a cylindri-
cal bump carved on a flat metal surface29 (e) a sharp metal wedge28 (f) a metallic
V-channel.28

predicts diverging electric fields if the intersection angle is different
from zero (as in the perfectly touching case), even with the inclusion
of absorption losses in ε(ω). Figures. 5.4(a)–5.4(c) show the TO elec-
tric field maps associated to the SP modes excited under plane wave
illumination in these sub-wavelength devices.

As anticipated in panels (b) and (c) of Fig. 5.2, TO has also
been applied to describe the excitation and propagation of SP
modes in singular extended geometries, such as concave and convex
wedges28 or cylindrical bumps and grooves carved on a flat surface.29

In this context, TO allows elucidating the optimum way to deco-
rate a flat metal surface to maximize its performance in EM-field-
enhancement-based applications, such as surface-enhanced Raman
spectroscopy50 or SP optical sensing.51 TO predictions for the electric
field distributions in these systems at SP resonance are shown in
Figs. 5.4(d)–5.4(f).
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5.2.2. Blunt structures

As discussed in the previous subsection, TO allows mapping infinite
plasmonic structures into finite singular ones (and vice versa), the
latter inheriting the continuous and broadband SP spectrum of the
former. Considering experimental applications, however, these sin-
gular structures will suffer from inevitable imperfections due to the
nanofabrication process.52–55 TO also enables us to quantitatively
examine how the rounding at the sharp boundaries of the nanostruc-
tures will alter their optical response.21,22

Figure 5.5(a) shows an example of blunt device: overlapping
nanowires connected through a rounded metallic neck. The optical
response of this system, as well as other blunt geometries such as

10-2 10-1 100

(a) (b)

Fig. 5.5. (a) Mapping of a truncated periodic metallo–dielectric structure into a
pair of overlapping nanowires connected through a rounded neck. The EM source
transforms from an array of line dipoles into a uniform electric field. (b) Absorp-
tion cross-section of normalized to the physical size as a function of frequency
and the bluntness dimension of the geometry corners. The overlapping distance
is fixed as a = 0.05D, and the total structure dimension is set as D = 100 nm
(R1 = R2). The blue dashed line indicates the optimal bluntness (b = 1 nm) where
the overlap of all the SP resonances results in a relatively continuous absorption
spectrum.22
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rounded crescents, can be described quasi-analytically through con-
formal mapping. Since these structures are free of singularities, SP
waves do not take infinite time in their propagation along its sur-
face. Instead, SP modes scatter with the truncating features. In the
quasi-static regime, the scattered fields do not radiate, but excite
reflected SP waves that propagate away from the blunt singularity.
In the transformed frame, this translates into planar geometries
which are no longer infinite, but finite in space, see Fig. 5.5(a). The
superposition among the multiple reflected SP waves propagating
across the transformed planar metal surfaces leads to plasmonic
spectra that are no longer continuous, but quantized at discrete SP
resonant frequencies. The Fabry–Perot-like resonance condition for
the device in Fig. 5 is given by13

(
ε(ω)− 1
ε(ω) + 1

)[
exp

(
nπ(2π − θ)
l1 + l2

)
− exp

(
nπθ

l1 + l2

)]2

−
[
exp

(
2π2n

l1 + l2

)
− 1
]2

= 0, (5.6)

where n is an arbitrary integer which denotes the angular momentum
of the SP mode, and l1, l2 and θ are geometric parameters measur-
ing the length and height of the dielectric slabs in the transformed
geometry.

The TO analysis of blunt structures indicates that the spectral
position and bandwidth of each SP resonance mode can be con-
trolled through the geometry of the rounded edges. Therefore, with
appropriate design, broadband devices whose absorption properties
are robust to edge rounding can be realized. Figure 5.5(b) shows
that blunt overlapping Ag nanowires present an absorption spec-
trum that is nearly independent of the geometry of the connect-
ing neck for small rounding radius.22 For larger bluntness radii, b,
the cross-section develops a discrete set of SP resonances. However,
through the careful choice of rounding parameters, the broadband
response characteristic of singular geometries can be preserved in
these devices. Thus, for instance, the blue dashed line in Fig. 5.5(b)
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shows a structural configuration for which σabs for a pair of blunt
overlapping nanowires is continuous over a wide frequency window.

The TO treatment of structures with asymmetric bluntness (such
as overlapping nanowires with different rounding radii at the left
and right sides of the connecting neck) shows the manifestation of
dark modes through symmetry breaking. Specifically, invisibility dips
appear in the radiative spectra of these devices, which originate from
the interference of these additional sub-radiant modes with neigh-
boring dipolar modes. This effect gives rise to rapid changes in the
scattering cross-section, similar to the phenomenology observed in
nanoparticle configurations supporting plasmonic Fano resonances.56

5.2.3. Plasmon hybridization

There is another family of plasmonic structures which can also
be treated within the TO framework: composite systems in which
the localized SPs supported by individual nanoparticles interact,
resulting in a new set of resonances supported by the system as a
whole.57–59 One of the most common approaches used to understand
this interaction is the so-called plasmonic hybridization picture.60,61

This elegant model establishes an analogy between the overlapping of
atomic orbitals that gives rise to molecular states and the interaction
between the localized SPs supported by different metallic elements
in composite plasmonic nanostructures. This method still relies on
numerical simulations to calculate the spectra of complex metallic
devices. In contrast, TO makes it possible solving this problem quasi-
analytically by, once again, transforming the interacting nanoparti-
cles into planar layered structures, on which analytical solutions to
Eq. (5.2) can be easily found without fitting parameters.18,19

Figure 5.6 depicts some examples of 2D nanoparticle systems
where strong plasmonic hybridization takes place, which can be
studied within the TO frame through conformal transformations
involving hyperbolic functions.13 These are gapped nanoparticles in
different geometric configurations. Like blunt geometries, these struc-
tures present a discrete SP spectrum, composed of “bonding” and
“anti-bonding” modes emerging from the coupling of the resonances
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(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

Fig. 5.6. A conformal transformation builds bridges between three planar
metallo–dielectric structures (top panels) and three paradigmatic plasmonic
nanoantenna geometries. The EM source in the initial coordinate frame is an
array of line dipoles with a 2π pitch. Under the conformal mapping, this line
dipole array is transformed into a uniform electric field.13

supported by each of their components. Under the TO picture, the
origin of this spectral discretization can be found in their planar coun-
terparts, see panels (a1)–(c1). These are periodic along the vertical
axis; hence, the SP modes supported by these structures are discrete,
characterized by the Bloch wave-vector kn = n (where n is an arbi-
trary integer). In the finite nanostructure frame, these linear momenta
map into SP angular momenta waves, whose “quantization” originates
from their circulation around the nanoparticles. The superposition
principle gives each SP wave-vector a different resonance condition,
which can be derived analytically in the planar frame.
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We focus here on the structure in panels (a) of Fig. 5.6. Specifi-
cally, we consider pair of identical nanowires separated by a gap size
δ. Within the quasi-static approximation, TO yields the following
expression for the absorption cross-section for this geometry18

σabs(ω) = 4π
ω

c
ρ(ρ+ 1)D2

×Im


ε(ω)− 1
ε(ω)− 1

∑
n=1

n

(
√
ρ+
√
ρ+ 1)4n − ε(ω)−1

ε(ω)+1


, (5.7)

where D = 4R is the physical size of the dimer and ρ = δ/D is
the normalized gap size. This equation shows clearly that the spec-
trum for the system is composed a set of discrete absorption maxima
given by the last term of the expression. This corresponds to the
sum of contributions due to the different SP modes supported by the
nanowire pair, denoted by their angular momentum n (number of
effective wavelengths fitting in the nanowires’ perimeter), and whose
resonant condition is given by the denominators in Eq. (5.7).

Figure 5.7(a) renders the absorption spectrum for a pair of
gapped Ag nanowires as a function of ρ. This spectral map
demonstrates that, indeed, the cross-section for the system builds
up from the summation of multiple SP resonances. Moreover, it can
be observed that these SP modes redshift when the two metallic
elements approach each other, in excellent agreement with the
plasmonic hybridization phenomenology reported theoretically and
experimentally for these systems.45,46

Figure 5.7(a) also clarifies the physical origin of the broadband
continuous spectrum shown in Fig. 5.2(a) for touching dimers. As
the gap between the nanowires diminishes, the number of circulating
SP resonances increases, each redshifting without bound. It is the
overlapping of all the absorption maxima associated with these SP
modes that gives rise to the spectrum in Fig. 5.2(a). In section 5.4,
we will describe how the introduction of non-local corrections to the
metal permittivity modifies plasmon hybridization in sub-nanometric
gap sizes.
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100 10-1 10-2

(a) (b)

Fig. 5.7. Absorption cross-section normalized to the physical cross-section D as
a function of frequency and normalized gap for a nanowire dimer with D = 20nm.
Field enhancement at the surface of the nanowires versus polar angle θ and
frequency for different gap sizes.18

Figure 5.7(b) presents a systematic investigation of the nano-
focusing properties of separated nanowire dimers. The field
enhancement, |E′|/E0, along the nanowires’ boundaries is plotted
in log scale as a function of the angle θ for different gap distances.
In accordance with Fig. 5.2(b), the electric field extends around the
whole nanowire perimeter for a large gap. As δ is reduced, |E′|/E0 is
compressed around the point which eventually becomes the touching
singularity in the ρ→ 0 limit.

In the usual plasmonic hybridization picture, the interaction
among different SP modes takes place via the superposition of their
evanescent tails penetrating into a sub-wavelength dielectric region.
However, SP modes can also couple through metallic elements. The
paradigmatic example of such coupling is a thin metal slab, where
the SP modes at each metal–vacuum interface (satisfying the condi-
tion Re{ε(ω)} = −1 in the quasi-static limit) hybridize. As a result,
the SP modes of the slab acquire the spectral dispersion given by
Eq. (5.5). Note that the dispersion relation is formally the same as
for the complementary structure, a metal-vacuum-metal waveguide.
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Panels (a) in Fig. 5.2 show that, under an inversion, such geometry
transforms into a crescent-shaped nanowire, a singular device whose
optical properties can be described in the TO frame.15,17

TO also allows mapping a simple metal slab structure into peri-
odic gratings under more complex conformal transformations, like
the one considered in Fig. 5.8(a),30

z′ = γ log
(

1
ez − iw0

+ iy0

)
. (5.8)

Importantly, this transformation presents two free parameters, w0

and γ, which means that the same original slab can be linked into
a whole family of gratings with different modulations. As discussed
above, conformal operations preserve spectral characteristics. This
means that, within the quasi-static regime, the dispersion relation
for all the members of one of these grating families must be the
same and it must be given by Eq. (5.5). This prediction proves again
the insightful power of TO, which reveal symmetries and similarities
(or even the total equivalence) among systems that are apparently
completely unrelated.

Figure 5.8(b) shows the dispersion relation of two metallic
gratings belonging to the same TO family.30 Solid lines plot Eq. (5.5)
folded into the first Brillouin zone, and dots correspond to numerical
simulations for deep (triangles) and shallow (circles) grooves. The
good comparison between numerics and analytics demonstrates
the validity of the physical picture emerging from TO. Note that
the approach is not able to reproduce the numerical results for both
grating geometries in two aspects: the overlapping of the first SP-
band and the light line (ω = c ky, black dashed line) at small parallel
wave-vectors, and the apparent gap which opens at the edge of the
Brillouin zone for the first few SP-bands. The overlapping of the
light line is due to the emergence of strong radiative effects at long
wavelengths, which are beyond the quasi-static picture inherent to
Eq. (5.5). On the other hand, the deviation at the band gap is due
to neglect of field discontinuities across a branch point in the trans-
formation, which vanish at the zone center but become increasingly
significant towards the zone boundary.
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(a)

(b) (c)

Fig. 5.8. (a) Set of conformal transformations that map a single-metallic slab
into a whole family of periodic gratings. (b) Dispersion relation of two gratings
of the same family in the first Brillouin zone. The magenta triangles and green
open circles are numerical simulations for structures (γ = 10−8) with w0 = 2.5
and w0 = 1.5, respectively (x0 = 1, d = 0.5). (c) Mode profile for the SP modes
supported by these structures at 4.5 eV.30

In Fig. 5.8(c), the mode profile for the SP modes at 4.5 eV is
rendered for both grating structures, showing the strong EM focusing
that takes place at the bottom of the grooves thanks to the evanescent
SP coupling through the thin metal region.

5.2.4. Radiative corrections

Up to here, we have reviewed how conformal mapping makes it pos-
sible to describe quasi-analytically the optical properties of a wide
range of 2D plasmonic nanostructures within the quasi-static approx-
imation. This restricts the validity of the approach to system sizes of
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very few tens of nanometers. In this subsection, we discuss how the
insightful power of TO can be applied to larger device dimensions.
This should be done rigorously by considering the dynamic coupling
between electric and magnetic fields. However, whereas Eq. (5.1)
preserve the permittivity tensor within the incidence plane, the per-
meability component along the direction of translational symmetry
(the one relevant for transverse magnetic excitation) would acquire
a spatial dependence.62 As we will see in the following section, this
complicates the TO treatment of the system significantly and pre-
vents obtaining exact quasi-analytical expressions for the EM fields.
However, an alternative route can be used to extend TO quasi-
static predictions to larger structural sizes, up to a few hundreds
of nanometers, through the introduction of radiative damping. Note
that retardation effects, which can only be described within a full
electrodynamics picture, play a key role in the optical response of
systems comparable to the incident wavelength.

The radiation reaction concept11 accounts for the fact that the
EM radiation emitted by an oscillating charge distribution does not
only dissipate energy away from the oscillator but also influences
the charge motion itself. This back action force can be considered
as originated by a self-induced electric field. For structures treated
in the dipole limit, the inclusion in a self-consistent fashion of this
new electric field component yields a corrected particle polarizability,
α(ω). Note that µ = ε0α(ω)E0 is the dipole moment induced in the
structure illuminated by the incident electric field E0. The expression
reads63

αcorr(ω) =
αQS(ω)

1− ig0(ω)αQS(ω)
, (5.9)

where αQS(ω) is the polarizability obtained within the quasi-
static approximation, g0(ω) = 1

ε0

(
ω
c

)2 Im {tr {G0(r, r′ = r, ω)}}, and
G0(r, r′, ω) is the EM dyadic Green’s function in free space. In the
case of 2D geometries, g2D

0 (ω) = ω2/8c2.14

This refined induced polarizability allows introducing radiative
corrections in all the EM quantities for the system. Thus, we can
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write the radiative corrected absorption cross-section and near-field
enhancement as

σcorr
abs (ω) = σQS

abs(ω)

|1−ig0(ω)αQS(ω)| ,

∣∣∣Ecorr(ω)
E0

∣∣∣ = |EQS(ω)/E0|
|1−ig0(ω)αQS(ω)| .

(5.10)

TO offers a novel perspective on the radiative reaction scheme
described above. It shows that the radiation losses experienced by a
nanometric system can be directly mapped onto the power dissipated
by a fictive absorbing particle located at the source position in its
transformed extended counterpart. Figure 5.9(a) sketches the TO
picture for radiation damping in the case of touching nanowires
(bottom panel).14 The self-consistent approach described above
yields the dipolar moment of the absorbing particle (red) induced
by the driving source (blue) in the metal-vacuum-metal geometry
(top panel). The radiative reaction in the planar frame corresponds
to the fields scattered by this fictive absorber which are back-emitted
toward the metal slabs.

Figure 5.9(b) plots the absorption spectra for touching nanowires
of different physical sizes: 40, 80, 120 and 160 nm. Analytical TO
predictions obtained within the quasi-static approximation (black
dashed line) and corrected through Eq. (5.10) (red line) are compared
to numerical simulations (blue line). The cross-section for a single
nanowire is rendered in green. These results show that the validity
of TO calculations is pushed to larger nanostructure sizes through
the inclusion of radiative damping.14

5.3. Full Three-dimensional Coordinate
Transformations

In the previous section, we have shown that the TO description of
2D systems provides deep physical insight into the optical properties
of plasmonic devices. However, these TO treatments assume trans-
lational invariance on not only the metal geometry (inherently 2D),
but also the electric fields. This limits the validity of TO predictions
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(b)

ω/ωsp
(a)

Fig. 5.9. (a) Conformal inversion that maps a metal-vacuum-metal waveguide
into a pair of touching nanowires (and vice versa). In the top panel, the emitting
dipole source (blue) is superimposed to a fictive absorbing particle (red). The
former transforms into the uniform electric field illumination in the bottom panel,
whereas the latter accounts for the radiative damping suffered by the touching
dimer. (b) Normalized absorption cross section as a function of frequency for
different physical sizes D. TO quasi-static (dashed black), TO radiation-reaction
corrected quasi-static (red) and numerical (blue) calculations are plotted. The
spectrum for a single nanowire is also shown for comparison.14

greatly, as they are restricted to the subset of EM modes with trans-
verse magnetic polarization, and neglects polarization cross-coupling
effects in the EM scattering at the structural boundaries along the
third dimension.13

In this section, we discuss how the TO framework can be
extended to 3D systems, allowing for a complete description of plas-
monic phenomena in realistic devices. We briefly describe this 3D
TO methodology, which exploits analogies with its 2D counterpart.
Crucially, in contrast to 2D conformal maps, Eq. (5.1) imply that
general 3D transformations act on both geometry and material prop-
erties. This complicates their mathematical treatment significantly
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which, in most cases, translates into the fact that exact and
tractable analytical expressions can no longer be obtained. We will
present two different strategies to circumvent this limitation: through
approximate analytical solutions or exact quasi-analytical treat-
ments. Specifically, we will consider TO solutions for four dif-
ferent systems: singular touching nanospheres,23,24 blunt spherical
nanocrescents,25 separated nanospheres,26 and oblate and prolate
spheroids.27

5.3.1. Touching nanospheres

A pair of touching nanospheres is the evident 3D counterpart of
a pair of touching cylinders. Therefore, it seems natural that the
TO description of this system should exploit the 3D version of the
conformal inversion in Eq. (5.3), which has the form23

r′ =
g2

r2
r. (5.11)

Similarly to its 2D analog, this inversion maps two touching spheres
into two semi-infinite planar slabs, as shown in Fig. 5.10(a).

Introducing Eq. (5.11) into Eq. (5.1), we find that the
permittivity in the bottom panel of Fig. 5.10(a) acquires a spatial
dependence of the form

ε′(r′) =
( g
r′
)2
ε(r(r′)), (5.12)

where ε(r) is a distribution of uniform permittivity regions. This
means that the slabs in the transformed frame are not filled with (sur-
rounded by) a conventional metal (dielectric), but with a modified
material having a permittivity given by expression above. Equation
(5.2) yields that the transformed quasi-static potential must be then
a solution of

∇′
(( g

r′
)
∇′Φ′(r′)

)
= 0. (5.13)

inside each of the different regions of the transformed geometry.
Similarly to the 2D case, Eq. (5.11) maps the incident light (uniform
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electric field) into a dipole-like source at the origin of the trans-
formed frame. This source does not correspond to any conventional
EM source, as it is also the solution of Eq. (5.13).

The general solution to Eq. (5.13) can be written as Φ′(r′) =
r′φ′(r′), where φ′(r′) satisfies Laplace’s equation. This result sheds
light on the physical interpretation of transformed potentials and
provides us with an expansion basis for Φ′(r′) in terms of solutions
of Laplace’s equation in cylindrical coordinates. However, due to
the presence of the r′ pre-factor, the elements of the basis do not
present the cylindrical symmetry of Fig. 5.10(a), and hence they
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Fig. 5.10. (a) Top panel shows light impinging on a pair of metal nanospheres
that touch at a single point. Bottom panel shows the transformed geometry, illu-
mination, and permittivity obtained from Eq. (5.11). (b) Numerical absorption
cross-section versus incident frequency for twin Ag48 touching spheres of different
radii. Black solid line plots the analytical result given by Eq. (5.14). (c) Normal-
ized absorption cross-section as a function of frequency and the ratio between the
two spheres forming the touching dimer.23
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cannot satisfy EM fields continuity at every single point of the slab
boundaries. An approximate analytical solution can be obtained in
a self-consisted way by first ensuring continuity at the point that
transforms into the spheres touching point (in whose vicinity we
expect EM fields to accumulate, as it was reported in the 2D case,
see Fig. 5.3), and then account for the fields mismatch in any other
point of the boundaries as a surface charge correction to the trans-
formed potential. This way, a single term in the solution basis can
be used to obtain the following expression for the dimer’s absorption
cross-section24

σabs(ω) =
64π2R3ω

3c
Re
{

ln
(
ε(ω)− 1
ε(ω) + 1

)[
ln
(
ε(ω) − 1
ε(ω) + 1

)
− 1
]}

,

(5.14)
where R is the nanosphere’s radius. Note the similarity between
Eqs. (5.14) and (5.4), which anticipates that, like their 2D analog,
the absorption properties of touching nanospheres can be described
in terms of the SP modes supported by metal–dielectric–metal waveg-
uides, see Eq. (5.5).

Figure 5.10(b) shows the comparison between numerical calcula-
tions (color dots) and the prediction from Eq. (5.14) (black solid line)
for the absorption spectrum (normalized-to-volume cross-section) of
two touching Ag48 nanospheres under axial illumination. The spec-
tra demonstrate that, similar to the 2D case, the TO result is valid
up to ∼30 nm radii, where the quasi-static assumptions break down.
This panel proves that the broadband response obtained for touch-
ing nanowires (see Fig. 5.3) is reproduced also for their 3D version.
Note the narrowband character of the dashed black spectrum, which
corresponds to a single sphere. Figure 5.10(c) renders TO results for
the transition between a single sphere and a dimer of twin spheres
through the variation of the relative size τ = R2/R1 of the particles
in the dimer.

Although not discussed here, the broadband absorption featured
by touching spheres is accompanied by remarkable field enhance-
ment capabilities at frequencies well below ωsp.23,24 A comprehensive
TO analysis proves that touching spheres show an even better
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nanofocusing performance than touching nanowires, yielding field
enhancements of the order of 104 close to their geometric singularity.
Importantly, this result can be generalized and extended to all 3D
devices, which provide larger field localization and confinement than
their 2D counterparts. This is a purely geometrical effect, originating
from the fact that SPs are focused onto a point in 3D systems instead
of a line, as it happens in 2D structures.13

5.3.2. Blunt spherical nanocrescents

Figure 5.2 shows that conformal inversions make the TO treatment of
touching and crescent-shaped cylinders possible. Similarly, the geo-
metric inversion given by Eq. (5.11) can be used to describe not
only touching spheres, but also spherical crescents (nanoshells whose
inner and outer boundaries are displaced). Fig. 5.11(a) renders a 3D
nanocrescent device (left) and its mapping into a thin slab (right),
whose spatially dependent permittivity is given by Eq. (5.12). If the
original structure corresponds to a singular crescent, presenting a
vertex where the thickness of the shell vanishes, the slab extends till
infinity in the transformed frame. This corresponds to a vanishing
bluntness radius, Rb = 0 in Fig. 5.11(a). On the contrary, if the
singularity is removed by drilling a hole with Rb > 0, the trans-
formed structure becomes a cylindrical plate of finite radius. Using
the TO rationale described in section 5.2.2, we can expect that sin-
gular (blunt) spherical crescents present a continuous (discrete) spec-
tral response. This is confirmed by Fig. 5.11(b), which renders the
TO absorption cross-section of Au48 nanocrescents with 10 nm outer
and 8.5 nm inner radii. The structure presents a broadband spec-
trum for small bluntness radius, whereas a number of resonances
emerge as Rb increases. Note that, whereas the optical properties
of touching dimers depend strongly on the incident polarization, the
response of nanocrescents is rather similar for the two polarizations in
Fig. 5.11(a).25

The TO description of singular spherical crescents can be per-
formed following an approximate, self-consistent procedure similar
to the one leading to Eq. (5.14) for touching spheres. Alternatively,
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(a)

(b) (c)

200 nm

100 nm

50 nm

30 nm

10 nm

Fig. 5.11. (a) Left: Two different light polarizations incident on a gold spherical
nanocrescent. Right: Geometry, illumination and permittivity obtained from the
inversion of the crescent. (b) Absorption cross-section in nm2 as a function of the
incident frequency and the bluntness radius for a 10 nm outer, 8.5 nm inner radii
crescent. (c) TO (solid lines) and numerical (dots) absorption spectrum for sin-
gular crescents with inner-to-outer-radius ratio or 0.9 and different outer radii.25

an exact solution to Eq. (5.13) can be built by expressing it as an
expansion series on the basis Φ′

n(r′) = r′φ′n(r′) (where φ′n(r′) are solu-
tion to Laplace’s equation in cylindrical coordinates) and impose the
appropriate boundary conditions to obtain the corresponding coeffi-
cients. Importantly, this approach, which is no longer analytical, is
not restricted to singular crescents, but allows the treatment of blunt
geometries as well. Note that this was the strategy followed to obtain
the spectra in Fig. 5.11(b).

Figure 5.11(c) plots the absorption cross-section normalized to
the structure volume for singular crescents with an inner-to-outer-
radius ratio of 0.9 and outer radii ranging from 10 to 200 nm.25
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Black solid line plots the purely quasi-static analytical TO solution
obtained for the geometry, which is independent of the overall size
of the structure. Color lines plot quasi-analytical solutions requiring
the combination of ∼50 expansion terms. These include radiative
corrections in the form of Eq. (5.10), where g3D

0 (ω) = ω3/6πc3. For
comparison, numerical simulations for every outer radius value are
shown in color dots. The agreement between quasi-analytical and
numerical simulations is remarkable up to the crescent with 200 nm
outer radius, for which retardation effects (not included in the TO
solutions) are significant. The purely static analytical solution repro-
duces the low-frequency tail of the absorption spectrum, but fails to
describe the cross-section at higher frequencies.

5.3.3. Separated nanospheres

A more general transformation than the one given by Eq. (5.11)
results from the displacement of the inversion point away from the
coordinate origin in both the original and transformed frames. Such
transformation reads

r′ −R′
0 =

g2

|r−R0|2
(r−R0) . (5.15)

Through an appropriate choice of the transformation parameters R0

and R′
0, Eq. (5.15) makes it possible to map two separated spheres

into a concentric annular geometry formed by an inner spherical core
and a spherical void, as shown in Fig. 5.12.26,34

Similar to the previous 3D plasmonic designs, the permittivity in
the transformed frame in Fig. 5.12 acquires a spatial dependence
obtained from Eq. (5.12) by replacing r′ by r′ − R′

0. Therefore,
although the concentric geometry presents spherical symmetry, the
permittivity distribution does not. Consequently, the transformed
potential can be expanded in terms of the wave-function basis
Φ′

lm(r′) = |r′ −R′
0| φ′lm(r′), where φ′lm(r′) is solution of Laplace’s

Equation in spherical coordinates with polar and azimuthal indices
l and m, respectively. Importantly, the radial pre-factor in Φ′

lm(r′)
does not satisfy the spherical symmetry of the geometry, but it only
couples basis elements with adjacent polar indices. As a result, the
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Fig. 5.12. Left: Eq. (5.15) maps a pair of separated spheres into a concentric
spherical geometry, whose permittivity is spatially dependent. Right: TO absorp-
tion cross-section normalized to the physical size for a dimer of 5 nm radius Ag
spheres separated by a 0.1 nm gap. The inset renders the quasi-static potential
distribution in original and transformed frames for the lowest bright plasmonic
mode supported by 5 nm Ag spheres separated by a 0.4 nm gap.26,34

EM continuity conditions for the system can be written in the form
of a tri-diagonal matrix. This allows for the fast computation of the
EM properties of a pair of separated nanospheres, a paradigmatic
plasmonic structure.

The right panel of Fig. 5.12 shows the absorption cross-section
for a pair of Ag48 5 nm radius nanospheres separated by a 0.1 nm
gap.26 The spectrum is normalized to the cross-sectional area of the
dimer. The solid line corresponds to TO calculations, and dots show
simulation results. The agreement is perfect. Importantly, the TO
methodology is up to two orders of magnitude faster than conven-
tional numerical techniques, even for this challenging geometry (note
that the gap is 100 times smaller than the spheres diameter), for
which 60 partial wave terms were included in the quasi-static poten-
tial expansion. A comprehensive analysis of the absorption spectrum
dependence on the gap between the spheres, similar to Fig. 5.7(a),
can be found in Ref. 63.

By removing the excitation source, the EM continuity conditions
yield a homogeneous system of equations, whose non-vanishing
solutions correspond to the plasmonic modes for the gapped dimer.
Therefore, TO makes it possible to calculate the resonant frequency,
mode profile and EM characteristics of the SPs supported by this
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system. The inset of the left panel of Fig. 5.12 renders the quasi-
static potential distribution for the lowest bright (dipole active) SPs
sustained by a pair of 5 nm radius silver spheres separated by a 0.4 nm
gap at 3.53 eV. The potential in the transformed frame is also shown.
As discussed in Section 5.5, the high speed and accuracy of the TO
approach allows for the investigation of the vdW interactions between
the spheres.33–35

5.3.4. Spheroids

So far, we have shown that TO exploits the mapping of an original
structure into another one presenting higher symmetry. These previ-
ously hidden symmetries make the quasi-analytical treatment of the
optical properties of complex devices possible. The price to pay in this
procedure for 3D geometries resides in the spatially dependent permit-
tivity distribution resulting from the transformation. In this section,
we will pay attention to the effect of this operation on the illumination.
Specifically, we will show that the mapping of an asymmetric structure
into a symmetric one can be carried out by coding the original lack of
symmetry into the transformed source. Importantly, this can be done
not only for both 3D structures, but also for 2D ones, where conformal
transformations do not alter the permittivity.

The mapping in Fig. 5.13(a) can be interpreted both in 2D and
3D. In its 2D version, it maps an ellipse (primed coordinates) into a
circular ring (unprimed coordinates) and corresponds to the inverse
of the so-called Joukowski transformation65

z′(z) =
c

2

(
z − 1

z

)
, (5.16)

where c is an arbitrary length scale constant. Due to the holomor-
phic nature of this mapping, the permittivity of ellipse and ring are
the same. On the contrary, the uniform electric field excitation in
the primed frame, Φ′

S(z′) = Re{E∗
0z

′} (where E0 = E0x + iE0y)
maps into an illumination of the form ΦS(z) = ΦS(z′(z)) =
Re{ c′E∗

0
2 z}+Re{ c′E∗

0
2z }. Note that the latter corresponds to the coher-

ent superposition of a uniform electric field and a dipole source
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Fig. 5.13. (a) Sketch of the 2D (3D) mapping that transforms an ellipse
(spheroid) into a circular ring (spherical shell). The transformed geometry is
rotationally symmetric in xy-plane. (b) Normalized absorption spectra for silver
oblate (left) and prolate (right) spheroids (b′ = 0.5a′) for several a′: 5 (black), 10
(cyan) and 30 (red) nm. Solid lines (dots) render TO (numerical) calculations.27

located at the coordinate origin. This shows that TO transfers the
asymmetric character of the ellipse into a more complex EM exci-
tation of the ring. Thus, it enables us to establish a link between
the ellipse and the degenerate ring SP spectra, and interpret the
plasmonic mode splitting in the former geometry in terms of their
coupling to the external source.27

Figure 5.13(a) can be interpreted as the mapping of a spheroid
into a spherical shell. This is possible thanks to the 3D version of the
conformal transformation in Eq. (5.16), which reads

ρ′ =
c

2

(
r ∓ 1

r

)
sin θ, z′ =

c

2

(
r ± 1

r

)
cos θ, (5.17)
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where primed (unprimed) spatial variables are expressed in cylindri-
cal (spherical) coordinates, and the upper (lower) sign must be used
to treat oblate (prolate) spheroids. Equation (5.17) results in tenso-
rial permittivity and permeability distributions (depending on r and
θ) in the ring frame. An analytical solution for Eq. (5.2) can be found
for the complex ε̄(r) obtained under this transformation. It can be
shown that the solution basis for the problem is given by Laplace’s
wave-functions in which the radial variable r is replaced by r±1/r.27

Figure 5.13(b) plots the absorption cross-section for oblate (left)
and prolate (right) Ag49 spheroids. The cross-sections are normalized
by the effective area πa′2 of the spheroids (where a′ is the semi-
major axis). The incident electric field is aligned along the vertical
axis (see inset). Solid lines show TO predictions, and circles cor-
respond to simulations. Different colors correspond to different a′:
5 nm (black), 10 nm (cyan) and 30 nm (red). In all cases, b′ = 0.2a′.
The agreement between numerical and analytical spectra is excellent.
Note that radiative corrections in the form of Eq. (5.10) were imple-
mented self-consistently in the analytical cross-sections.

5.4. Non-local Effects

We have shown that TO is a very suitable framework for the theo-
retical investigation of light concentration phenomena in acute metal
geometries, such as the touching point between nanoparticles or the
apex of crescent-shaped tips. It provides design strategies for the opti-
mization of these effects and sheds light into the sensitivity of plas-
monic performance against geometric bluntness and imperfections.
In this section, we discuss how the metal permittivity description
can be improved beyond local electromagnetism in order to refine
the TO recipes for plasmonic enhancement and localization.

Figure 5.3(b) illustrates the focusing performance of touching
silver nanowires. It plots the electric field amplitude along the
perimeter of the structure and shows that the drastic EM group
velocity reduction and fast spatial SP oscillations take place within
an azimuthal range smaller than 1◦. For the geometry yielding
the largest field enhancement, D = 20 nm, this angular distance
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corresponds to 0.3 nm. This spatial extent is comparable to the
Thomas–Fermi screening length in noble metals, δF ≈ 0.1 nm for
silver.66 Therefore, an accurate description of SP-assisted phenomena
in this sub-nanometer regime requires the implementation of spa-
tially dispersive (non-local) permittivities beyond the Drude free
electron gas,10 taking into account the effect of electron–electron
interactions.67–69

The simplest treatment of the dielectric properties of metals that
reflect the fermionic character of conduction electrons is the so-called
hydrodynamical Drude model.70–72 See Chapter 3 for a more compre-
hensive review on this topic. This introduces a pressure-like term in
the Newtonian dynamics for the Fermi electron gas density, leading to
a tensorial permittivity with transverse and longitudinal components
of the form

εT (ω) = ε∞

[
1− ω2

p

ω(ω + iγ)

]
,

εL(k, ω) = ε∞

[
1− ω2

p

ω(ω + iγ)− β2k2

]
.

(5.18)

Note that ε∞, ωp and γ are usual Drude constants obtained from
the fitting to experimental data.48,49 The parameter β ≈ 106 m/s
measures the degree of non-locality and is proportional to the Fermi
velocity.66 As discussed in Section 5.6, this parameter has also been
determined experimentally for gold.73 Equations (5.18) show that,
within the hydrodynamic Drude model, the transverse permittivity
retains its local form, whereas the longitudinal one becomes spatially
dispersive and acquires an explicit dependence on the modulus of the
EM wave-vector, k = |k|.

The k-dependence of the longitudinal permittivity in Eq. (5.18)
allows for the excitation of longitudinal plasmon (LP) modes at
optical frequencies (below ωp), whose dispersion relation, εL(qLP ,

ω) = 0, yields72

qLP =
1
β

√
ω2

p − ω(ω + iγ) (5.19)
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for the LP evanescent wave-vector. The LP decay into the metal
translates into the thickening of the polarization charges induced
at the metal surface.72 In the local approximation, these charges
accumulate abruptly at the structure boundaries, whereas in the non-
local picture, the induced charge distribution acquires a finite width
δLP = 1/qLP. Note that this width scales linearly with β, having
δLP ≈ 0.1 nm for noble metals.

The TO approach introduced in Section 5.2.1 for the description
of the optical properties of touching nanowires can be extended to
investigate how the non-local blurriness of metal boundaries affects
the focusing ability of this device. This requires the transformation of
the permittivity tensor in Eq. (5.18) under the conformal inversion of
Eq. (5.3). The mapping only modifies the longitudinal permittivity
and yields a spatially dependent non-local parameter of the form

β′(z′) =
∣∣∣∣dz′dz

∣∣∣∣ β =
|z′|2
g2 β. (5.20)

Figure 5.14(a) shows the inversion of a pair of touching nanowires,
similar to Fig. 5.2(d), but including the non-local surface charge
redistribution according to Eq. (5.20). The original uniform charge
thickness (along the nanowires boundaries) maps into a non-uniform
width, δ′LP(z′), that increases along the transformed flat metal sur-
faces away from the origin.

An analytical solution to Eq. (5.2) for the transformed system
in Fig. 5.14(a) can be built through the so-called WKB or eikonal
approximation, which assumes that δ′LP(z′) varies in space much
more slowly than the SPs oscillating fields.31 The main panel of
Fig. 5.14(b) shows the comparison between TO theory (solid lines)
and numerical simulations (dots) for the absorption cross-section
of 10 nm radius touching Ag nanowires and different degrees of
non-locality (red color corresponds to realistic β). The agreement
is remarkable. Note the significant impact of nonlocal effects on
the absorption spectrum, leading to a set of maxima and minima,
instead of the continuous broad response in the local approximation
(black solid line). Importantly, the position of the absorption maxima
blueshifts for larger β.
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Fig. 5.14. Inversion mapping of two touching nanowires into a metal-vacuum-
metal geometry. The non-local uniform surface charge thickening acquires a spa-
tial dependence in the transformed frame. (b) Absorption cross-section of 10 nm
radius Ag touching nanowires for different degrees of non-locality. The inset
renders the electric field enhancement in the vicinity of the touching point for
ω = 0.5ωsp. (c) Electric field enhancement at the touching point versus frequency
and nanowire radius.31

The inset of Fig. 5.14(b) renders the electric field amplitude in the
vicinity of the touching point at ω = 0.5ωsp for the various configu-
rations in the main panel. It clarifies the optical implications of non-
locality. Due to the blurriness of the metal boundaries, the touching
point is no longer an EM singularity, the electric field amplitude does
not vanish and SPs can circulate around the nanowire. This leads to
the emergence of maxima and minima in the absorption cross-section.
Moreover, plasmonic fields no longer oscillate in spatial ranges as
small as 0.1 nm, but span into much larger azimuthal angles. This
reduces the focusing efficiency and field enhancement ability of the
structure (of the order of 102 for realistic Fermi velocity).31
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Spatial dispersion in the metal permittivity diminishes the light
collection and concentration ability of plasmonic devices, being the
impact of non-locality larger for smaller structures. On the contrary,
radiation losses diminish SP-assisted light focusing efficiency for large
systems. The inclusion of both mechanisms into the TO frame makes
it possible to determine the device dimensions maximizing its perfor-
mance. Thus, Fig. 5.14(c) renders the field enhancement in touching
dimers as a function of frequency and the nanowire radius, showing
that the optimum device size lies between 30 and 80 nm.31

Non-local effects do not only alter the optical response of singular
geometries, but also modify plasmon hybridization in nanoparticles
separated by nanometric gaps. In a similar way as in the touching
geometry, spatial dispersion in the metal permittivity can be intro-
duced approximately in, for instance, the TO approach in Fig. 5.6(a).
This allows describing the impact of non-locality in the optical prop-
erties of separated nanowires, such as the SP mode splitting shown
in Fig. 5.7.32

A more general strategy for the inclusion of non-local effects in
the TO frame can be done through a recently developed simplified
modelling for non-locality.74 This method consists in replacing the
spatially dispersive metal by a compound system formed by a usual
local metal and a thin fictitious dielectric cover. The thickness, ∆d,
and permittivity, εNL, of this layer are designed so that the trans-
mission and reflection coefficients for all incident wave-vectors and
at all frequencies are the same as in the spatially dispersive metal. It
can be demonstrated that for geometries with a radius of curvature
larger than the LP decay length, δLP (∼0.1 nm), these must fulfil

εNL

∆d
=

ε(ω)
ε(ω)− 1

qLP, (5.21)

where ε(ω) is the local (spatially non-dispersive) metal permittivity
and qLP is given by Eq. (5.19). This model has been implemented in
the TO description of separated nanowires,74 showing an excellent
agreement with numerical simulations and with previous TO non-
local descriptions of the same geometry.32
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Equation (5.21) provides the local equivalent to a non-local sys-
tem, and maps a bulk spatially dispersive metal into a slightly more
complicated (layered) local structure. Such geometry has been imple-
mented in the inversion illustrated in Fig. 5.12, making possible the
TO description of non-local effects in gapped nanospheres.33 Note
that the inclusion of the fictitious non-local dielectric layer translates
into more complicated continuity equations for the electric field in
the transformed frame. These are no longer tri-diagonal, but penta-
diagonal expressed in matrix form. Figure 5.14 renders the absorption
cross-section of a pair of gold spheres as a function of the incident
frequency and the gap size, δ. Two different radii are considered:
5 nm (a) and 30 nm (b). The comparison between these contour plots
and Fig. 5.7(a) clarifies the effect of spatial dispersion in the optical
properties of separated dimers.

For large gaps, the TO theory reproduces the non-local blueshift
experienced by the dipolar SPs of isolated cylinders and spheres.67,71

More importantly, Figs. 5.15(a)–5.15(b) show that spatial dispersion
truncates the continuous redshifting of the absorption maxima with
decreasing δ obtained within the local approximation (see Fig. 5.7).
This truncation also explains the emergence of maxima and minima
in the spectra for touching nanowires (see Fig. 5.14). The LP decay
length, δLP, introduces a new length scale in the system. For gap
sizes below this distance, due to the non-local-induced metal bound-
ary blurriness, the absorption cross-section saturates, and the optical
properties of separated and touching dimers are exactly the same.

Figure 5.15 also shows that, as anticipated, the impact of spatial
dispersion is larger for smaller particle size. For 5 nm radius spheres,
the non-local truncation allows only for 2 SP resonances (a). On the
contrary up to 4 distinct modes can be observed for 30 nm radius (b).
This is even clearer in the lower panels of Fig. 5.15, which show the
comparison between quasi-analytical calculations and local and non-
local numerical simulations for a gap size δ = 0.2 nm and for 5 nm (c)
and 30 nm (d) radii.33 In Section 5.6, the experimental verification
of non-local effects in the scattering resonances of a gold nanosphere
gold substrate configuration73 will be discussed.
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(a) (b)

(c) (d)

Fig. 5.15. Contour plots of absorption cross-section versus incident frequency
and the separation between a pair of gold nanospheres with equal radii of 5 nm
(a) and 30 nm (b). Comparison of TO quasi-analytical calculations with local
and non-local numerical simulations for two closely separated (δ = 0.2 nm) gold
spheres with equal radii of 5 nm (c) and 30 nm (d).33

5.5. Van der Waals Interactions

vdW forces are caused by the EM interaction between quantum
fluctuation-induced charges. These are ubiquitous but subtle forces
which play an important role in a wide range of surface phenom-
ena such as adhesion, friction and colloidal stability. In the lim-
iting cases of small molecules and large macroscopic bodies, vdW
forces can be calculated by asymptotic equations.75 Moreover, despite
the intricacy of the problem, there are various approaches available
to compute vdW interactions between nanostructures whose size
and separation are comparable. Traditional procedures, such as
the Hamaker’s method76 or the proximity force approximation
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(PFA),77 compute vdW forces via summing over infinitesimal ele-
ments. However, due to the fact that vdW forces are inherently
non-additive, these techniques are not always valid. Some recently
developed methodologies78 and numerical techniques79 are, in prin-
ciple, capable of dealing with sophisticate geometries. However,
for very closely spaced plasmonic nanostructures with nanome-
ter separations, the calculation of vdW forces is still challenging
due to the high confinement of SP field in the gap as shown in
Fig. 5.3(b).

Although vdW forces have a purely quantum origin, the crucial
step in its calculation turns out to be a classical EM problem.80,81

Intuitively, the vdW energy between two objects with a separation
δ is calculated by summing over the zero-point energy of all the
eigenmodes supported by the system.83 This yields an expression of
the form35

E (δ) =
∑
n

1
2

�ωn (δ)−
∑
n

1
2

�ωn (δ →∞) , (5.22)

where ωn is the eigenfrequency for eignenmode n. Then, the associ-
ated force can be calculated as F (δ) = −dE/dδ.

Equation (5.22) is extremely difficult to implement for plasmonic
systems, as these support an infinite number of SP eigenmodes. More-
over, finding these resonances is a difficult task, since the correspond-
ing eigenfrequencies lie within a 2D complex frequency plane due to
the inherent lossy character of metals. In light of the fact that the
roots of det (1−R1R2) = 0 give the resonant frequencies for all the
SP eigenmodes (the R’s are the reflection matrices for the interacting
objects), and using the Cauchy’s residue theorem, the summation of
Eq. (5.22) can be converted into an integral weighted by the zero
point energy,82,83

E (δ) =
�

2π

∫ ∞

0
Im {ln [det (1−R1R2)]} dω. (5.23)

Using this scattering approach, Casimir’s theory84 can be extended
to deal with systems whose reflection coefficients can be analytically
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expressed (such as two dielectric planes and a molecule and a
plane).

TO allows for the quasi-analytical calculation of the reflection
coefficients in Eq. (5.23) for a range of complex geometries. For
instance, the inversion transformation in Fig. 5.12 is exploited to
obtain R1 and R2 for two spheres in close contact.26 These reflec-
tion matrices are written in terms of the continuity equations for the
electric field in the transformed frame. Importantly, in the limit of
small separations, TO yields diagonal R-matrices.34 Plugging these
in Eq. (5.23), vdW energies can be expressed as a simple summa-
tion. Moreover, as discussed in Section 5.3.3, TO provides an efficient
strategy to identify and characterize all the SP resonances supported
by the system, whose dispersion with the gap distance governs the
vdW interactions between two spheres.

The left panel of Fig. 5.16 plots fully converged TO calculations
of the absolute value of the vdW energy between two identical Ag48

spheres and between a sphere and a plane as a function of the
gap distance normalized to the sphere radius. The kinetic energy
of a Brownian particle at room temperature, kBT/2 = 0.013 eV, is
indicated by a black dashed line. |E (δ)| exceeds this value when
δ/R < 0.86 for the sphere–plane configuration, and δ/R < 0.42 for
the sphere–sphere geometry. In the small gap limit, the vdW energy
for the former is roughly twice |E (δ)| for the latter. In this region,
both vdW energies are inversely proportional to δ/R. In the large
gap limit, the sphere-plane energy decays much more slowly than the
sphere–sphere one, with characteristic decays (δ/R)−3 and (δ/R)−6,
respectively. Importantly, the lack of geometric singularities in the
transformed geometry of Fig. 5.12 translates into the fast conver-
gence of TO-based vdW calculations. Thus, only 35 (100) Φ′

lm(r′)
terms were required to reach 99.99% convergence for a gap-to-radius
ratio of 10−2 (10−3) in the sphere-plane geometry in the left panel
of Fig. 5.16.

The right panel of Fig. 5.16 plots E (δ) obtained from Eq. (5.23)
for a pair of 5 nm radius gold48 spheres. The panel shows the com-
parison between TO predictions obtained from the local (dashed
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Fig. 5.16. Left: Absolute value of the vdW energy between two Ag spherical
nanoparticles and between a sphere and a plane as a function of the separation
(normalized to the radius) obtained using TO within the local approximation.
The characteristic kinetic energy of Brownian particle at room temperature is
indicated by the dashed line.34 Right: vdW energy between two 5 nm radius Au
nanospheres as a function of the separation. Solid (dashed) line plots TO nonlocal
(local) predictions.33

line) and non-local (solid line) modelling of the metal permittivity
in the calculation of the R-matrices for the system. Non-local
effects are negligible for gap sizes larger than 1 nm, and both levels
of description yield similar results. However, for δ comparable to
δLP ≈ 0.1 nm, spatial dispersion in the metal permittivity leads to a
drastic reduction in the vdW energy between the nanospheres. The
local 1/δ dependence of E (δ) in the small gap limit is lost once
non-local corrections are taken into account. Instead, TO calcula-
tions show that E (δ) saturates at the touching limit for gap sizes
smaller than the LP decay length. This trend can be understood in
terms of the non-local blurriness of metal boundaries discussed in
Section 5.4.

5.6. Experimental Realizations

In the previous sections, we have shown that much theoretical effort
has been invested to assess and analyze the role played by acute
geometric features in TO designed plasmonic devices. Through the
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inclusion of bluntness and non-local effects into the TO frame-
work, more robust devices, not sensible to structural imperfections
in the sub-nanometric scale, have been proposed. However, the
experimental realization of TO designed nanostructures remains a
challenge. On the one hand, their fabrication requires an enormous
precision in order to define accurately their geometry.85–88 On the
other hand, their full optical characterization involves the prob-
ing of the local field enhancement with spatial resolution at the
nanoscale.89–91 Here, we discuss briefly three works that, going along
these lines, found experimental evidence in agreement with TO pre-
dictions for the close encounter between plasmonic nanoparticles.

The left panel of Fig. 5.17(a) shows the dark-field scattering spec-
tra measured for different incident polarizations (see insets) from
a 155 nm diameter gold sphere on top of a gold film.92 The spec-
tra present three scattering maxima within the wavelength range
under study. The right panel of Fig. 5.17(a) plots the scattering
cross-sections obtained through local numerical simulations for a
nanosphere separated by a 2 nm gap from the substrate. Note that
both the position and shape of the measured scattering maxima are
reproduced numerically. The insets render the electric field amplitude
evaluated at the three resonances supported by the geometry, prov-
ing the strong field enhancement taking place at the gap. Through
the analogy with the TO predictions for the 2D analogue for the
system, a nanowire on top of an infinite substrate,19 the nature of
the SP modes behind these scattering peaks can be clarified. The
long wavelength resonance, which is efficiently excited by 90o illumi-
nation, is caused by a dipolar mode oriented normally to the sub-
strate. The intermediate maximum, which is apparent for all incident
polarizations, corresponds to a hybrid mode with bright dipolar com-
ponents parallel (located at the nanosphere) and normal (at the gap)
to the gold film. Finally, the origin of the short wavelength peak is
a high-order (quadrupole) mode strongly confined at the gap of the
geometry.

A strategy to ease the fabrication of TO designs consists in using
semiconductor materials as the plasmonic platform.93 The dielectric
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properties of semiconductors, such as intrinsic InSb, can be described
through a lossy Drude model with a plasma frequency lying at the
THz range.94 In contrast, the plasma frequency for noble metals is
located at the ultraviolet range of the EM spectrum. Therefore, by
replacing the plasmonic material, the operating wavelength of TO
devices can be shifted from the sub-micron (metals) to the sub-
millimeter (semiconductors) regime. This makes possible the realiza-
tion of the plasmonic phenomena predicted within the TO framework
in much larger structures.

The left panel of Fig. 5.17(b) shows the THz absorption cross-
section measured from a square array of touching dimers of 10-micron
radius InSb disks for different incident polarizations. Note that the
InSb plasma frequency is 2.4 THz. The gap region at each dimer was
patterned using electron beam lithography, giving rise to a V-shaped
gap between the disks. See the right insets of Fig. 5.17(b) for the
lateral and top SEM images of the experimental samples.

Although the experimental InSb disks have a finite thickness,
the measured cross-sections in Fig. 5.17(b) demonstrate the broad-
ening of the absorption spectrum of the disks as the incident polar-
ization is rotated from normal to parallel to the dimer axis. This
observation is in agreement with the broadband response obtained
within the TO framework for touching nanowires, see Fig. 5.3(a),
and nanospheres, see Fig. 5.10(b). The bottom insets of Fig. 5.17(b)
render the charge distribution maps for the different SP resonances
sustained by the experimental geometry. Note that, whereas the sys-
tem supports only one resonance under normal illumination, two dif-
ferent modes emerge when the impinging fields are polarized along
the dimer axis. In agreement with Fig. 5.7(a) in the region of separa-
tions ∼10 times smaller than the nanowire radius, it is the spectral
overlapping between two distinct plasmonic modes which causes the
broadening of the absorption cross-section.

Recently, much research attention has focused on the
experimental exploration of the impact that spatial dispersion in the
metal permittivity has on the optical properties of plasmonic nanos-
tructures. Figure 5.18 shows an experimental configuration in which
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(a)

(b)

0o

90o

Fig. 5.17. (a) Measured (left) and calculated (right) dark-field scattering spectra
for a 155 nm diameter gold sphere standing on top of a gold film. The various
spectra correspond to different incident polarizations. The left inset shows a scan-
ning electron microscopy (SEM) image of the experimental sample (white bar:
500 nm). The right insets render the field enhancement evaluated at the various
scattering maxima.92 (b) Left: measured THz absorption cross-section variation
with the incident polarization angle for InSb touching disks of 10-micron radius.
The labeled absorption peaks correspond to the charge distribution maps in the
inset. Right: lateral and top SEM images of the experimental InSb samples.93

the deviation of empirical observations from local EM predictions
has been quantified through far-field measurements.73 The exper-
imental samples consist of gold nanoparticles seating on top of a
gold substrate. Importantly, the nanoparticle–substrate distance was
controlled with sub-nanometric precision by chemical means. Spacer
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Fig. 5.18. Left: Geometry of the gold film gold nanoparticle experimental sam-
ple (top). Zoom in the gap region, showing the nanoparticle-film separation by
an amine-terminated alkanethiol SAM. Right: Comparison of experimental mea-
surements from SAM and layer-by-layer-type spacers with numerical local and
non-local simulations.73

layers were grown on the flat gold surface using either layer-by-layer
deposition of polyelectrolytes,95 for separations that range from 2.8
to 26.6 nm, or by the formation of self-assembled monolayers (SAMs)
of amine-terminated alkanethiols for even smaller separations, from
0.5 to 2.0 nm.

The optical properties of the nanoparticle–substrate system were
characterized through single particle dark-field spectroscopy mea-
surements. Figure 5.18 shows the spectral position of the lowest
energy scattering resonance measured from the samples as a function
of the gap distance (dots). For comparison, local EM predictions
are plotted in black solid line. For gap sizes between 1 and 10 nm,
experiments and theory show a remarkable agreement. On the con-
trary, local calculations yield a redshifting of SP resonances at sub-
nanometric distances, which is not found in the experiments.

The red solid line in Fig. 5.18 renders numerical results obtained
for the same geometric parameters as the local calculations, but refin-
ing the gold permittivity through a hydrodynamical Drude model.
These reproduce the experimental trend not only at large but also at
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small particle–substrate separations. Importantly, TO sheds physical
insight into this deviation of experimental and theoretical non-local
spectra from local predictions. Figures 5.15(a) and 5.15(b) show a
similar result for nanosphere dimers. In Section 5.4, we associated
this effect with the blurriness of metallic boundaries originated from
the optical excitation of LP modes, which is only significant for gap
sizes comparable to δLP. The numerical fitting to the experimental
spectrum in Fig. 5.18 allowed for the empirical determination of the
non-local parameter for gold, obtaining β = 1.27 × 106 m/s.73

5.7. Conclusions

TO is an elegant, largely analytical tool for the design and analysis
of plasmonic nanostructures. We have shown that it allows reveal-
ing the key features that optimize SP-assisted far-to-near-field EM
energy conversion and plasmonic field enhancement and localiza-
tion. 2D and 3D devices presenting geometric singularities and those
in which strong plasmon hybridization phenomena take place were
investigated in detail. Through the inclusion of geometric bluntness
and non-local effects, this TO approach has been refined. Realistic
TO models taking into account shape imperfections and material
limitations mean a step forward of the framework toward practi-
cal applications. We have also shown that the range of applicability
of this powerful method is beyond the description of the optical
properties of metals. TO also allows for the quasi-analytical treat-
ment of vdW interactions between objects separated by nanomet-
ric distances. Finally, we have reviewed recent experimental reports
inspired by or in excellent agreement with TO predictions.
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and Nonlinear Control
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With a high surface to volume ratio and strongly varying properties
on nanometer length scales, the dynamics of nanomaterials are often
very different from those of bulk materials. Ultrafast single-particle
spectroscopy provides a means of accessing these properties, but has
to overcome challenges related to the diffraction limit and small cross-
sections of single nanoobjects. Several far-field and near-field approaches
have been introduced capable of achieving single-particle resolution
in ultrafast spectroscopy. By designing plasmonic nanosystems as an
antenna, one can exploit local-field enhancements and interactions
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between the antenna and its environment to design ultrafast nonlinear
response. Design considerations for hybrid systems combining plasmonic
and nonlinear materials are discussed together with the progress made
in this area.

6.1. Introduction

Plasmonics, the field dealing with the free-electron response in metal
nanostructures, offers some key advantages in enhancing the way we
can manipulate light on length scales much smaller than the optical
wavelength. The combination of strong optical resonances and spatial
field confinement results in a very high strength of local electromag-
netic fields directly surrounding nanostructured metals. This large
field enhancement drives many of the primary applications of metal
nanoparticles in plasmon-enhanced sensing and spectroscopy.

The surface plasmon (SP) resonances supported by metallic
nanoparticles strongly depend on the metal itself, the particle mor-
phology (size, shape) and its dielectric environment. This extreme
sensitivity limits the information obtainable from ensemble measure-
ments and has motivated the development of ultrasensitive optical
techniques capable of detecting individual nanoobjects and char-
acterizing their linear and nonlinear optical properties,1−3 Time-
resolved single particle studies have naturally followed providing a
unique insight in the ultrafast electronic and vibrational dynamics
of individual plasmonic nanostructures. As will be discussed in this
chapter, these techniques rely on the nonlinear interaction between
one or several ultrashort laser pulses and the metallic nanoobject.
They share several important features. First, they all benefit from
the strong electric field enhancement associated with SP resonances
that yield detectable signals from nanoscale volumes. Second, far-
field nonlinear microscopies provide a spatial resolution superior to
their linear counterparts due to their superlinear dependence on the
incident intensity. Plasmon modes can, therefore, be mapped in sub-
micronic particles by scanning ultrashort laser pulses and detect-
ing the nonlinear emission at each point of the nanoobject. Finally,
nonlinear techniques generally offer a greater versatility due to the
many electric fields involved. From an experimental point of view,



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch06 page 199

Ultrafast Spectroscopy and Nonlinear Control 199

Fig. 6.1. (a) Examples of nonlinear light emission upon excitation of a
metallic nanoobject by an ultrashort optical pulse: SHG, THG, Two-Photon
induced Luminescence (TPL) and Four-Photon induced Photoluminescence
(4PL). (b) Principle of time-resolved pump-probe spectroscopy. (c) Optical con-
trol of the nonlinear response of plasmonic antennas through the optically induced
modification of their environment.

the availability of robust tabletop ultrafast laser systems, accurate
nanopositioning systems and the improvement of detector technology
have constantly pushed the limits of these demanding experiments.

Figure 6.1 shows several examples of ultrafast nonlinear optical
interactions in individual nanoparticles. First, the nonlinear interac-
tion of an ultrashort laser pulse with a metallic nanostructure can
generate a radiation at a frequency different from in the incident
waves. Second harmonic generation (SHG) and third harmonic gen-
eration (THG) are well-known examples of these processes. They
respectively yield nonlinear emission at 2ω and 3ω (Fig. 6.1(a)). We
will discuss them in the second part of this chapter, insisting on their
differences with respect to the nonlinear interactions of propagating
waves in bulk media. We will also show that a lot can be learnt
about the optical resonances and ultrafast dynamics of a metallic
nanoparticle from the characteristics of its nonlinear emission.

Time-resolved pump–probe spectroscopies are another important
class of ultrafast nonlinear spectroscopies. Their sensitivity and ver-
satility offer them a separate discussion in the third part of this
chapter (Fig. 6.1(b)). In these experiments, a first ultrashort optical
“pump” pulse is sent on a sample and the pump-induced modifica-
tion of a selected optical property is analyzed by a second delayed
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“probe” pulse. Whereas most pump–probe studies only involve opti-
cal pulses, sub-picosecond electron packets are now used to probe the
optical near-fields of plasmonic nanostructures. This novel type of
electron spectroscopy is based on recently developed ultrafast trans-
mission electron microscopes. Finally, nonlinear interactions in plas-
monic nanostructures can be used to optically control their ultrafast
dynamics and optical properties (Fig. 6.1(c)).

The first part of this chapter introduces the ultrafast dynamics
of metallic systems and presents the physical origin of their opti-
cal nonlinearities. The second part focuses on recent studies of the
coherent or incoherent nonlinear light emission from individual plas-
monic particles. Experiments addressing the electronic or vibrational
dynamics of single metallic nanoparticles using time-resolved pump–
probe spectroscopy are discussed in the third part. Finally, we review
possible solutions for an optical control of the ultrafast dynamics in
plasmonic nanostructures. We would like to emphasize that we do
not consider what follows as an exhaustive review of the available
literature. This is a subjective selection of examples mostly chosen
for their ability to illustrate the richness of a dynamic research field.
We apologize in advance for the inevitable omissions.

6.2. Ultrafast Dynamics and Optical Nonlinearities
in Metallic Nanomaterials

We first present the main processes involved in the ultrafast dynamics
of optically excited metallic nanomaterials and associated timescales.
We then briefly introduce the two-temperature model (TTM) often
used to describe the electronic dynamics on picosecond timescales.
Finally, we discuss the physical origin of the optical nonlinearities in
metals.

6.2.1. Ultrafast dynamics in metallic nanostructures

6.2.1.1. Characteristic timescales

An optical pulse incident on a metal nanostructure first excites the
electrons of the metal. A minority of optically excited electrons then
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redistributes the energy absorbed from the light beam to the rest of
the electron gas by electron/electron interactions. Going back to a
thermalized electronic distribution characterized by a Fermi–Dirac
occupation function and an electronic temperature, Te, involves a
very large number of these elementary electronic interactions. There-
fore, electronic thermalization occurs on a timescale of ∼500 fs (350 fs
in bulk silver and 500 fs in bulk gold), much larger than the typi-
cal lifetime of a single electronic excitation.4−6 Electronic thermal-
ization only redistributes the excess energy among the electrons,
but does not alter their total energy or temperature. The electron
gas cools down via energy transfer to the metal lattice mediated
by electron/phonon interactions. This electron/lattice thermaliza-
tion occurs on a picosecond timescale in bulk and nanosized noble
metals.4,7−12 It is worth noting that the thermalization of the elec-
tron gas and the electron/lattice thermalization have an opposite
dependence on the incident optical power. Whereas, the former is
faster at higher fluences due to a larger fraction of optically excited
electrons, the latter becomes slower due to the nonlinearity of the
electronic heat capacity.

After a few picoseconds, the electron gas and the ionic lattice of
the metallic nanoobject are thermalized but hotter than the environ-
ment (see Fig. 6.2). Complete thermalization is achieved by means
of heat diffusion and radiation of sound waves due to the excitation
of confined acoustic vibrations.9,13−16 These latter processes occur
on a 10 ps −1 ns timescale. The different processes and associated
timescales are illustrated Fig. 6.2.

6.2.1.2. The two-temperature model

The relaxation of an optically excited metallic system involves energy
transfer from the electrons to the lattice. After internal thermaliza-
tion of the electron gas, the electron/lattice energy exchanges can
be described using the TTM.17 This model assumes that the lattice
is kept in thermal equilibrium at a temperature TL by anharmonic
interactions. Meanwhile, it is assumed that the electron–electron
interactions are fast enough to maintain the electron gas in thermal
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Fig. 6.2. Ultrafast dynamics in metallic systems: main processes and timescales.

equilibrium at a temperature Te > TL. The temporal evolution of
the temperature of the electron gas and the lattice are given by two
coupled differential equations:

Ce
dTe

dt
= −G(Te − TL) + p(t)

Ce
dTL

dt
= +G(Te − TL)

(6.1)

in which G is the electron–phonon coupling constant and p(t) repre-
sents the selective excitation of the electron gas by the pump pulse.

Figure 6.3(b) shows the ultrafast relaxation of the electronic
distribution in gold mediated by electron–electron and electron–
phonon interactions after the intraband absorption of a 20 fs infrared
optical pulse (Fig. 6.3(a)). The electronic and lattice tempera-
tures predicted by the TTM are presented in Fig. 6.3(c). Due
to the small electronic heat capacity, subpicosecond optical exci-
tation of a metal can induce a very high electronic temperature
and a strongly out-of-equilibrium electronic distribution. As can be
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Fig. 6.3. Ultrafast dynamics of a free-electron gas: (a) Due to the Pauli exclu-
sion principle, the absorption of an ultrashort optical pulse by a free-electron gas
promotes electrons from states below the Fermi level Ef to states above the Fermi
level. f(E, t) denotes the electronic occupation number at energy E and time t.
(b) Ultrafast electronic dynamics following excitation of gold by a femtosecond
optical pulse (20 fs, hω = 1.55 eV, ∆T = 500 K). The relaxation dynamics is
computed from a resolution of Boltzmann’s equation taking into account electron–
electron and electron–phonon interactions.4,5 The colormap shows the difference
between f(E, t) and the initial unperturbed Fermi–Dirac distribution. At short
delays after excitation, the electronic distribution is strongly athermal. Electronic
interactions establish a new Fermi–Dirac distribution in about 500 fs. (c) Evolu-
tion of the temperatures of the electron gas and the lattice of gold predicted by
the TTM for the same excitation conditions as in (b). Due to the small heat
capacity of the electron gas, a large increase of the electronic temperature can be
induced optically. (d) Possible applications of hot electrons.18

inferred from Fig. 6.3(b), excited electronic states lying far from
the Fermi level are transiently populated on ultrashort timescales.
These so-called “hot electrons” have an energy excess, which makes
them useful for a variety of applications such as charge injection in
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neighboring systems (e.g. quantum dots, molecules), photovoltaics,
or photocatalysis (Fig. 6.3(d)).18 This topic is currently being given
a large interest in the plasmonics community for its potential appli-
cations.

Care must be taken that electronic and electron/lattice thermal-
izations occur on comparable characteristic timescales: electronic and
lattice dynamics are strongly coupled in the early stages of relax-
ation. Therefore, the simulation of their dynamics on these timescales
must take into account both processes. Whereas an extension of the
TTM accounting for the athermal electron distribution can provide
a satisfactory description, a more rigorous approach based on the
computation of the electron distribution using Boltzmann’s equation
provides accurate results.4,5

6.2.2. Optical nonlinearities in metallic

nanostructures

6.2.2.1. Introduction to nonlinear optics

An (EM) wave impinging on a material induces a polarization P(r,t)
which can be written in the case of a lossless and dispersionless
medium as a power series in the electric field strength (SI units)19,20:

P(r, t) = ε0(χ(1)E(r, t) + χ(2)E(r, t)E(r, t)

+χ(3)E(r, t)E(r, t)E(r, t)) + · · · (6.2)

In the latter, χ(n) are nonlinear susceptibility tensors of order n+ 1
which depend on the considered material and can be significantly
enhanced by intrinsic resonances.

For sufficiently weak electric fields, only the first term is not
negligible and we recover the well-known linear relation between
polarization and local electric field:

P(r, t) = ε0χ
(1)E(r, t).

Reflection, scattering and absorption are all linear optics phenomena.
In the case of a small nanoparticle, the optical wavelength is much
larger than the object and its optical response is then entirely
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captured in a single dipole moment (quasi-static approximation).
For larger nanostructures, retardation effects yield more complex
polarization distributions, but the linear optical response (e.g.
scattering spectrum) can still be traced back to the spatial and spec-
tral dependencies of the induced polarization P(r, t). For instance,
so-called dark Surface Plasmon modes arise from destructive inter-
ferences among induced dipoles that prevent their efficient coupling
with far-field radiation.

When the electric field of the optical excitation becomes compa-
rable in strength to the atomic electric field holding in equilibrium the
electrons of the metal, the motion of the latter becomes sensitive to
the anharmonicity of the lattice potential and the higher order terms
of Eq. (6.2) must be taken into account. These additional terms yield
spectral components at frequencies different from the incident optical
excitation and are the sources of nonlinear emission. For instance, a
monochromatic wave of angular frequency ω creates in a second-
order nonlinear medium a polarization oscillating at twice the inci-
dent frequency and a static polarization. The former is associated
with SHG and the latter with optical rectification. THG (radiation
at 3ω) and the optical Kerr effect (light-induced modification of the
refractive index) are examples of third-order nonlinear processes. In
a quantum mechanical picture, SHG is a process in which two pho-
tons at the fundamental frequency are annihilated and a photon at
twice the fundamental frequency is created.19 SHG was actually the
first nonlinear optical effect ever observed in the optical frequency
range.21

In bulk materials, the nonlinear emission intensity is governed by
the magnitude of the nonlinear susceptibility tensor components and
phase-matching conditions. The latter follow from the requirement
that the waves radiated by different parts of the material must add
constructively to yield a detectable signal. In the case of nanoobjects,
phase-matching is automatically fulfilled because of their subwave-
length dimensions.

The electric fields in Eq. (6.2) are local fields and not the bare
incident fields. This is extremely important as the resonant excitation



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch06 page 206

206 Handbook of Metamaterials and Plasmonics — Volume 4

of SP resonances can lead to large electric field enhancements.
The latter explain why, despite their nanoscale volumes, plasmonic
nanoobjects can generate exploitable nonlinear signals. As will be
illustrated in the following, this sensitivity of nonlinear optical pro-
cesses to local electric fields is also extremely useful for the spatial
characterization of plasmon modes in metallic nanoantennas.

The nonlinear susceptibility tensors depend on the symmetry of
the material. For instance, it follows from inversion symmetry that
centrosymmetric media must have a vanishing second-order suscep-
tibility. This selection rule is valid in the dipole approximation which
assumes a uniform electric field. However, surface plasmon resonances
can confine the electric fields in subwavelength regions. The exis-
tence of strong electric field gradients, therefore, leads to a partial
relaxation of the dipole approximation and non-negligible contribu-
tions from higher order terms such as electric quadrupole or mag-
netic dipole to the nonlinear emission. Furthermore, the presence
of interfaces breaks inversion symmetry in centrosymmetric media
and relaxes the selection rule valid for SHG in bulk materials. The
proximity of other nanoobjects can also affect nonlinear emission.

In the third part of this chapter, we will show that the investiga-
tion of nonlinear emission from plasmonic nanostructures gives access
to the spatial and spectral characteristics of their surface plasmon
resonances and also allows characterizing their ultrafast dynamics.

6.2.2.2. The anharmonic oscillator model

A first insight in the nonlinear response of plasmonic nanostructures
can be obtained from the anharmonic oscillator model. The latter is
an extension of the conventional model which describes localized sur-
face plasmon resonances as classical lorentz oscillators of charge −e
and density N excited by an electric field E(t). A small perturbation
is added to the equation of motion to account for the nonlinearity. In
the scalar field approximation, the equation of motion for a second-
order nonlinearity is:

..
x + Γ

.
x + ω2

0x+ ax2 = −eE(t)
m

. (6.3)
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In the latter, the parameters ω0 and Γ describe the optical resonance
frequency and linewidth, respectively, whereas a determines the
amplitude of the nonlinearity.19,20,22 We assume that the applied
electric field oscillates at ω1 and ω2:

E(t) = 2E1 cos(ω1t) + 2E2 cos(ω2t).

The displacement x(t) of the oscillator can be obtained from a per-
turbation expansion in the electric field strength. The lowest-order
term of the displacement is the well-known solution of the harmonic
oscillator model:

x(1)(t) = x(1)(ω1)e−iω1t + x(1)(ω2)e−iω2t + c.c.

in which:

x(1)(ωi) =
−eEi

m

1
(ω2

0 − ω2
i − iωiΓ)

.

The corresponding linear polarization and susceptibility follow:

P (1)(ωi) = −Nex(1)(ωi) = ε0χ
(1)(ωi)Ei

with:

χ(1)(ωi) =
Ne2

mε0

1
(ω2

0 − ω2
i − iωiΓ)

.

Inserting the expression of x(1) in Eq. (6.3), we note that the non-
linear term generates components of the second-order displacement
x(2) oscillating at 2ω1, 2ω2, ω1 + ω2 and ω1 − ω2. The correspond-
ing contributions to the second-order nonlinear polarization are for
instance at ω1 + ω2:

P (2)(ω1 + ω2) = −Nex(2)(ω1 + ω2) = 2ε0χ(2)(ω1 + ω2;ω1, ω2)E1E2

The second-order nonlinear susceptibility can be expressed as a func-
tion of the linear susceptibilities as:

χ(2)(ω1 + ω2;ω1, ω2) =
ε20ma

N2e3
χ(1)(ω1 + ω2)χ(1)(ω1)χ(1)(ω2). (6.4)

This relation, known as Miller’s rule, relates the nonlinear opti-
cal properties to their linear counterpart. It shows that optical
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resonances revealed in the linear response of a nanoobject can also
enhance its nonlinear emission. Miller’s rule can be generalized to
higher order nonlinearities. For instance, for THG, the nonlinear
susceptibility is proportional to the product of four linear suscep-
tibilities at the different involved frequencies. Whereas this simple
model provides useful insight, it is important to keep in mind that
a rigorous derivation of the nonlinear optical susceptibilities requires
the density matrix formulation of quantum mechanics.

In the anharmonic model, the nonlinearity is introduced only phe-
nomenologically. To gain an deeper understanding of (or about) the
physical origin of optical nonlinearities inmetallic systems, it is instruc-
tive to consider the hydrodynamic description of a free-electrons gas.

6.2.2.3. Second-order nonlinearities from a free-electron gas

Within the framework of the hydrodynamic model, the equation of
motion for a gas of free-electrons excited by an EM wave is19:

∂v
∂t

+ v · ∇v + γv = − e

m
[E + v×B]− 1

mn
∇p. (6.5)

In the latter equation, the electron gas is characterized by its den-
sity n, pressure p and velocity field v. γ is the scattering rate char-
acterizing ohmic damping. E(r, t) and B(r, t) are the electric and
magnetic fields of the EM wave. The continuity equation ensures
charge conservation:

∂ρ

∂t
+∇ · (ρv) = 0.

Combining these two equations with Maxwell’s equations allows find-
ing the polarization P(r, t) inside the electron gas using a series
expansion as a function of the electric field.19 For instance, the
second-order nonlinear polarization of a free-electron gas can be writ-
ten as:

P(2)(2ω) =
e3n(0)

4m2ω4
(E(1) · ∇)E(1) +

eε0
2mω2

(∇ ·E(1))E(1)

− e3n(0)

4im2ω3
(E(1) ×B(1)). (6.6)
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The previous expression shows that optical nonlinearities in a free-
electron gas have two origins. The first is the Lorentz force term
in the equation of motion (last term of Equation 6.6). The second
lies in the spatial variations of the electric field E(r, t) (first and
second term on the right-hand side). Electric field inhomogeneities
are particularly important in the case of plasmonic nanostructures.
Indeed, the nanoscale spatial confinement of optical fields enabled by
SPs generates strong field gradients. The hydrodynamic model was
used to interpret SHG experiments on metallic films.23,24 Recently, a
non-perturbative time-domain implementation of the hydrodynamic
model has been developed to self-consistently describe nonlinear
optical interactions in plasmonic nanostructures.25

6.3. Nonlinear Optical Interactions in the Near-field
of Plasmonic Nanostructures

The nonlinear response of a metallic nanoobject strongly depends
on the local electric field created by an EM solicitation. The spatial,
spectral and temporal variations of nonlinear signals therefore carry
a wealth of information about the optical resonances supported by
the nanosystem. Two different kinds of nonlinear interactions will be
discussed in this section. First, we consider nonlinear light emission
from plasmonic nanostructures excited by an optical beam. Second,
we describe recent electron spectroscopy experiments performed in
ultrafast transmission electron microscopes in which relativistic elec-
trons interact with the optical near-field of a metallic nanoparticle.

6.3.1. Nonlinear light emission: Harmonic generation

and multiphoton-induced luminescence

In this first part, we address coherent nonlinear optical processes such
as SHG and THG in plasmonic nanostructures. Then, we describe the
mechanism and applications of multiphoton-induced luminescence in
gold. We show that nonlinear optical signals can be exploited to
yield useful information on the SP modes and ultrafast dynamics
and review recent studies.
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6.3.1.1. Second-harmonic generation

Plasmonic metals such as aluminium, copper, gold and silver have a
face-centered cubic structure. We have seen in Section 6.2.2.1 that
for such centrosymmetric media, the bulk second-order nonlinear
susceptibility vanishes in the electric dipole approximation. As a
consequence, only higher-order terms, such as electric quadrupole
and magnetic dipole contribute to SHG in the bulk. Conversely, the
presence of surfaces in plasmonic nanostructures breaks the inver-
sion symmetry at the boundaries. Electric dipole terms are therefore
allowed at the surface. The surface nonlinear sources can be described
by a nonlinear dipole moment per unit area:

P(2)
s (r, 2ω) = χ(2)

s :E(r, ω)E(r, ω). (6.7)

Assuming that the metal surface is locally isotropic or equivalently
has C∞ν symmetry, its susceptibility tensor χ(2) reduces to three
independent components : χ(2)

nnn, χ(2)
nss = χ

(2)
ntt, χ

(2)
ssn = χ

(2)
sns = χ

(2)
ttn =

χ
(2)
tnt, n being the unit normal vector and s, t, two perpendicular tan-

gent vectors. Due to the discontinuity of the normal component of
the electric field at the surface, the normal component of the surface
nonlinear polarization is expected to yield the largest contribution.
Whereas the bulk nonlinear polarization arises from weaker higher
order contributions, its contribution to the emitted SHG extends
throughout the optically excited volume and could in principle rep-
resent a sizable fraction of the total emission. However, it can be
shown in materials with a high permittivity, such as metals, that the
bulk nonlinearity is an order of magnitude weaker than the surface
contribution.26 This predominance of surface effects is also supported
by angle and polarization-resolved measurements27 and two-beam
SHG experiments on a gold film.28 The latter study suggests that the
nonlinear response is dominated by the normal surface component
χ

(2)
nnn. The SHG from metallic nanoparticles in the Rayleigh limit has

both dipolar and quadrupolar components.29−32 The dipole compo-
nent originates both from non-local bulk and local surface nonlinear
sources, whereas the quadrupolar component only arises from sur-
face sources. For increasing sizes, the contribution from an octupolar
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plasmon arising from retardation effects can be detected through
interferences with the dipolar contribution.33,34

The influence of surface plasmon resonances on SHG has moti-
vated a rich literature. In agreement with the simple picture given
by Miller’s rule, an enhancement of SHG is observed whenever either
the excitation or emission wavelength matches the frequency of a
plasmon mode.35−39 For instance, SHG from rough silver films is
enhanced compared to smooth films due to the excitation of local
resonances.40,41 Correlated SHG and transmission electron micro-
scope (TEM) experiments on individual metallic nanoparticles have
demonstrated that the second harmonic (SH) emission from Ag
nanorods and clusters (trimers and dimers) is greatly enhanced
by one-photon excitation of the longitudinal plasmons.35 SHG is
enhanced in V-shaped gold nanostructures or aluminum nano-
antennas resonant at the emission wavelength42,39 (see Fig. 6.4(a)).
In the case of sharply pointed structures such as nanotips, the elec-
trostatic lightning-rod effect, due to the geometric singularity at the
tip comes in addition to localized SP resonances. As a consequence,
a strongly enhanced SHG is obtained when the nanotip is excited
with an electric field parallel to the tip axis.43

However, in plasmonic nanostructures and metamaterials, the
nonlinear response cannot always be inferred from the linear prop-
erties. In particular, the influence of the symmetry of the structure,
which is not considered in the anharmonic model, can play a decisive
role. The limits of the anharmonic oscillator model and Miller’s rule
have been recently illustrated in the case of SHG from nanostructures
gradually evolving from a symmetric bar to an asymmetric U-shape.
Whereas Miller’s rule does not predict the optimum geometry, more
sophisticated modelling based on nonlinear scattering theory pro-
vides a much better agreement with experiment.44 Nanostructures
supporting plasmon resonances at the same wavelength and belong-
ing to the same symmetry group can yield very different SHG.

This effect is due to the cancellation of nonlinear dipoles cre-
ated at different hot spots and depends on the particle geometry.47

This silencing also explains why linear dimer antennas with small
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Fig. 6.4. (a) Enhancement of SHG by aluminum nanoantennas resonant at the
harmonic frequency.39 (b) Incident laser field and plasmon field deduced from
third-order autocorrelation measurements on gold nanodisks.45 (c) Left: scanning
electron microscopy (SEM) image of a ZnO nanowire deposited on the hot-spot of
a plasmonic oligomer. Center: map of the SHG intensity. Right: SHG intensity as
a function of excitation wavelength for coupled and uncoupled hybrid ZnO NW
and plasmon oligomer.46

gaps may not generate optimal SHG.48 The combined influence of
geometrical effects and local field distribution has been pointed out
in the case of SHG from arrays of T-shaped nanostructures.49 On a
smaller scale, it has been shown that nanoscopic defects can have a
drastic influence on the SHG.50

6.3.1.2. Third-harmonic generation

Contrary to SHG, THG is allowed in centrosymmetric media.
Therefore, despite the much lower third-order susceptibilities, THG
from the bulk of metallic nanostructures yields detectable signals.
The first report of THG from individual gold plasmonic particles
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was achieved in 2005.51 In these experiments, gold nanospheres
down to 40 nm in diameter were excited with 1 ps pulses at 1500 nm
yielding a third harmonic resonant with the SP of the particles. The
connection between the linear and nonlinear optical response has
been used to quantitatively predict THG from gold rod-type and
bowtie antennas.52,53 In the latter case, despite the complex shape
of the nanostructure, the measured spectra are in excellent agree-
ment with predictions from the anharmonic oscillator model for a
large range of different geometries. Deviations are only observed
for sub-20 nm gaps and attributed to the antenna hot spot.53 The
anharmonic oscillator model also proved useful for the interpretation
of polarization-resolved third harmonic spectroscopy experiments on
arrays of dolmen-type nanostructures supporting Fano resonances.54

Contrary to dissipative processes such as multiphoton lumines-
cence which will be discussed in the following section, paramet-
ric optical processes such as SHG and THG do not involve real
intermediate electronic states. Therefore, they can be considered
as instantaneous with respect to the timescales discussed at the
beginning of this chapter and are often used for the characteri-
zation of the electron dynamics on subpicosecond timescales. For
instance, by measuring the SHG from non-centrosymmetric nanopar-
ticles fabricated by electron beam lithography, it is possible to give
an estimate of the plasmon decay time (dephasing of the coher-
ent electron plasma oscillation) in Au and Ag nanoparticles.55,56

Similarly, the plasmon dephasing has been investigated in arrays of
metal nanoparticles using third-order interferometric autocorrelation
measurements45 (see Fig. 6.4(b)).

6.3.1.3. Enhancement of extrinsic nonlinearities using
plasmonic nanostructures

The electric field amplification by SPs can boost nonlinear optical
emission from the metallic nanostructures themselves, but it is also
interesting for nonlinear optical processes in molecules or quantum
dots placed in their vicinity. For instance, a ZnO nanowire placed in
the hot-spot of a gold pentamer oligomer exhibits a SH conversion
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efficiency of ∼ 3× 10−5%, among the highest values for a nanoscale
object at optical frequencies. Due to the plasmonic enhancement of
the optical near-field, the hybrid system yields an SH intensity ∼1700
times larger than that from the same nanowire excited outside the
hot-spot46 (see Fig. 6.4(c)). Similarly, dielectric ITO nanocrystals
incorporated into the hot-spot of gold nanogap-antennas show an
increase of the radiated third-harmonic intensity when compared to
bare gold antennas.57,58 The two studies disagree in their conclusions,
possibly due to differences in antenna design and gap size used in
experiments. Finite element simulations show that the enhancement
of the third harmonic signal in Ref. 58 is related to changes in the
linear optical properties of the plasmonic antenna resonances when
the ITO nanocrystals are incorporated.

6.3.1.4. Multiphoton-induced luminescence

When exciting a gold nanostructure with ultrashort laser pulses, it is
possible to get a spectrally broad visible luminescence with an inten-
sity varying superlinearly with the optical excitation.59 As will be
discussed in more detail in the following, this so-called multiphoton-
induced photoluminescence is fundamentally different from the para-
metric processes discussed so far such as SHG, or THG. Whereas
the latter leave the quantum state of the emitter unchanged and
only involve virtual energy levels, multiphoton-induced luminescence
involves real intermediate electronic states and non-radiative decay
steps. TPL is a third-order nonlinear process involving two sequen-
tial one-photon absorptions and therefore has a quadratic depen-
dence on the light intensity. It shows great similarity with two-photon
absorption from molecules. As sketched in Fig. 6.5(a), a first photon
absorption excites an electron via an intraband transition within the
sp conduction band. A second photon excites an electron from the
d-bands to the conduction band. The hole created in the d-band can
then decay radiatively and generate TPL.

The spectrum of TPL in gold has two distinctive features in
the green (520 nm) and red (630 nm) spectral regions. This is due to
the fact that electron-hole recombination occurs preferentially near
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Fig. 6.5. (a) Mechanism of Two-Photon photoluminescence in gold.61 (b) Typ-
ical experimental set-up for TPL imaging. (c) Determination of electric field
enhancement in the gap of bow-tie nanoantennas from TPL measurements.64

(d) TPL imaging of a gold dimer antenna showing the enhancement of the electric
field in the gap.65

the L and X symmetry points of the Brillouin zone where the elec-
tronic density of states is larger. First proposed after polarization
studies of the emitted light, the microscopic mechanism of TPL was
confirmed by two pulse autocorrelation measurements.60,61 These lat-
ter experiments investigated the influence of the duration of the exci-
tation laser pulse on the TPL intensity and revealed the existence
of a real intermediate electronic state created by the first photon
absorption.61 Further studies have shown that the relaxation of this
intermediate electronic state is limiting the dynamics of both two-
photon and four-photon photoluminescence in gold nanoantennas.62
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Two-pulse autocorrelation measurements of the TPL intensity have
shown that this relaxation occurs on a picosecond timescale, similar
to the characteristic time of electron-lattice thermalization in gold
(cf. part 2).62

Figure 6.5(b) shows a typical experimental set-up for TPL
detection. The beam of a femtosecond infrared laser is focused using
a high numerical aperture microscope objective on a sample placed
on an XY nanopositioning stage. The TPL is separated from the
incident beam using a dichroic mirror, filtered and sent on a photode-
tector (photomultiplier tube for analog detection or photon counter).
An evidence of the influence of SPs in the TPL emission was given
by comparing the spectra of linear scattering and two-photon pho-
toluminescence from individual nanorods.63 It was shown that the
Two-Photon Luminescence displayed the same optical characteris-
tics as the localized SPs supported by the particles, suggesting that
the recombination of the d-hole involves the excitation of SPs and
their subsequent radiative recombination.63 As will be seen in the fol-
lowing, the TPL intensity is related to the fourth power of the local
electric field amplitude in the nanoobject. This makes it extremely
sensitive to the enhanced electric fields in plasmonic nanostructures.
Even if bulk gold has a weak third-order nonlinear susceptibility, SPs
can locally enhance the electric field and boost the TPL photon yield.
It follows that Two-Photon Luminescence can be used to quantify the
plasmon-induced E-field enhancement (Fig. 6.5(c))64 and map the
spatial distribution of the local electric field associated with plasmon
modes (Fig. 6.5(d)).65−71

Investigations in plasmonic nanoantennas have initially focused
on the properties of the lowest order hybridized mode (bond-
ing mode) in dimer or bowtie antennas.65 Confocal two-photon
luminescence mapping was then used to experimentally demon-
strate direct imaging and selective excitation of the “bonding”
and “antibonding” plasmon mode in symmetric dipole nanoan-
tennas (Fig. 6.6(a)).67 Later, two-photon luminescence microscopy
has been used to investigate higher order plasmon modes in gold
nanorod antennas (Fig. 6.6(b))71 and gold nanoplatelets (see Fig. 6.9
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Fig. 6.6. (a) SEM images and corresponding TPL maps together with signal
profiles (white dashed line) for two single crystalline nanoantennas having the
same height (40 nm), length (383 nm) and gap size (20 nm) but different width.
The TPL distribution changes from a single spot (top) to a two-lobed pattern
(bottom) indicating the excitation of the antibonding mode.67 (b) Resonance
wavelength versus length of metallic nanorod antennas. A good agreement is
observed between linear extinction (full circles) and nonlinear TPL resonances
(open diamonds). Full black lines: linear fits to the extinction data.71 (c) Experi-
mental setup for optical control of near-field distribution: a Gaussian beam from
a near-infrared laser is transformed into a higher-order beam using a phase mask
before being focused onto a single gold optical antenna.74 (d) Experimental TPL
maps recorded on a single-gap antenna (located by the white rectangles) when
driven by three different incident beams (λ = 750 nm): (a) HG00 (Gaussian), (b)
HG10 and (c) LG20. The color scale gives the TPL intensity in photon counts. In
map (b), the vertical dashed line locates the π-shift position of the HG10 beam.
(d)–(f) Associated computed intensity distribution of the incident field (scale bar
= 500 nm). Each of the three beams was linearly polarized along the x-axis. The
black arrows give the relative polarization orientation across the beam.74
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and 6.10).70,72 In the former case, the influence of SP resonances
beyond the fundamental dipolar mode has been clearly evidenced
by comparing the TPL emission intensity and extinction measure-
ments for different rod lengths (Fig. 6.6(b)). The strong correlation
between the TPL and linear spectroscopy results confirmed that the
two-photon absorption cross-section is enhanced whenever the TPL
excitation is resonant with a plasmon mode of the metallic nanorod.
The dispersion of the Fabry–Pérot standing plasmon modes could
even be deduced from the TPL measurements. Furthermore, a clear
signature of the mode parity was found in the TPL images, the TPL
maxima being located within the antenna for odd modes and out-
side for even modes. The interpretation of this effect required to
carefully take into account retardation of the excitation electric field
by computing the near-field for each location of a Gaussian light
beam and integrating the near-field intensity in the volume of the
nanostructure.71,73

TPL scanning microscopy has also been used to demonstrate
the control of optical near fields using sub-wavelength spatial phase
variations at the focus of high-order beams.74 In these experiments,
gold dimer antennas are illuminated with high-order beams such
as Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) beams
obtained after insertion of a phase mask in the beam of a femtosecond
laser (see Fig. 6.6(c)). The antenna is accurately positioned in the
focus of the excitation beam, and the local electric field intensity at
each point of the antenna is mapped by raster scanning the confocal
detection volume using an automated steering mirror inserted in the
detection path and measuring the TPL intensity. The TPL images of
Fig. 6.6(d) demonstrate that the spatial polarization inhomogeneities
of the incident beam can be used to turn on and off the “hot-spot”
at the gap of the antennas by either driving in- or out-of-phase its
constitutive bars. In particular, the π phase jump existing between
the two intensity maxima of a HG10 beam allows to drive out of
phase the two antenna arms and therefore to minimize the electric
field in the gap region. Recently, multiphoton-induced luminescence
from aluminum antennas has been reported.75
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6.3.1.5. Electrodynamical simulations of optical nonlinearities
in plasmonic nanostructures

Several methods can be used to calculate the nonlinear response of
plasmonic nanostructures. Simple geometries such as nanospheres
can be treated with analytical approaches. For instance, SHG from
nanospheres has been modelled using nonlinear Mie theory.29,76−78

However, particles having more complex morphologies or placed in
complex environments (substrate, neighboring nanoobjects) require
numerical techniques. A rich collection of methods such as discrete
dipole approximation, finite element modelling, finite difference time
domain, volume integral methods and boundary element method are
currently available to predict the linear optical properties of metallic
nanoobjects. For a comprehensive introduction to these methods and
for references to the extensive literature on the subject, one may refer
to Refs. 79–81. The numerical frameworks to compute the nonlinear
optical properties are derived from these methods.82−84

6.3.1.5.1. The Green Dyadic Method

In the following, we present a frequency domain approach derived
from the Green Dyadic Method to predict SHG and TPL from a plas-
monic nanostructure as measured in nonlinear scanning microscopy.
In these experiments, a laser beam is focused and raster scanned on
the surface of the metallic particle and a nonlinear signal is collected
at each point. The nanoobject is deposited on a substrate and the
upper medium has a dielectric constant εenv. Several properties can
be measured, such as intensity, polarization or radiation pattern.
We assume that the optical excitation is monochromatic and denote
the incident electric field as E0(r,ω). Care is taken in the following
to rigorously take into account the presence of the substrate and
key experimental parameters such as the numerical aperture of the
collecting optics.

The optical excitation E0(r,ω) induces in the metallic nanoobject
a polarization P(r,ω). Assuming a local response of the metal, this
polarization is given by (CGS units):

P(r, ω) = χ(r, ω) ·E(r, ω), (6.8)
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where χ(r, ω) is the linear susceptibility of the metal and E(r, ω) is
the total electric field at r. The latter is solution of the Helmholtz
equation:

∆E(r · ω) + k2
0εenvE(r, ω) = −4π

[
k2

0 +
1
εenv
∇∇

]
·P(r, ω).

in which k0 = ω/c.
In the framework of the Green Dyadic Method or electrodynam-

ical theory of field susceptibilities, the electric field created at r by
an oscillating dipole p(r′, ω) located at r′ is given by:

E(r, ω) = S(r, r′, ω) · p(r′, ω).

S(r, r′, ω) is the field susceptibility of the environment. The total
electric field E(r,ω), solution of the Helmholtz equation, can then
be written as the sum of the incident electric field E0(r,ω) and the
electric field radiated by the polarization distribution created in the
nanoobject:

E(r, ω) = E0(r, ω) +
∫

V
dr′S(r, r′, ω) ·P(r′, ω). (6.9)

Combining Eqs. (6.8) and (6.9) yields the following Lippmann–
Schwinger equation:

E(r, ω) = E0(r, ω) +
∫

V
dr′S(r, r′, ω) · χ(r′, ω) ·E(r′, ω). (6.10)

This self-consistent equation can be rewritten as a function of the
incident electric field E0(r,ω):

E(r, ω) =
∫

V
dr′K(r, r′, ω) · E0(r′, ω). (6.11)

In the latter, K(r, r′, ω) is the so-called generalized field propagator,
which can be obtained from the following relation:

K(r, r′, ω) = Iδ(r− r′) + χ(r, ω) · S(r, r′, ω).
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Fig. 6.7. An optical beam is focused and raster scanned on the surface of a
metallic particle. At each location R0 of the excitation, a nonlinear signal (SHG,
TPL. . .) is calculated. For the computation, the volume of the nanostructure is
discretized.

The dyadic tensor S(r, r′, ω) obeys Dyson’s equation:

S(r, r′, ω) = S(r, r′, ω) +
∫
V

dr′′S(r, r′′, ω) · χ(r′′, ω) · S(r′′, r′, ω)

(6.12)
The numerical resolution of Dyson’s equation is achieved after dis-
cretization of the volume of the nanostructure. As shown in Fig. 6.7,
the investigated nanoobject is meshed in a lattice of a total of
N points located at positions ri. This procedure generates a sys-
tem of 3N linear equations that can be self-consistently resolved
by numerical inversion yielding the generalized field propagator and
then the electric field E(ri, ω) at each lattice location. We will not
go further into the details of the numerical resolution of Dyson’s
equation. The interested reader is referred to Refs. 85, 86. It is
important to keep in mind that the knowledge of K(r, r′, ω) enables
the direct calculation of the linear optical response of a metallic
nanosystem to arbitrary EM solicitations. Stated differently, the
EM properties of the system (geometry, dielectric constants) are
entirely captured in the generalized field propagator for a given
frequency ω.
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6.3.1.5.2. Second-harmonic generation

In the following, we show how this framework can be extended to
describe SHG. The microscopic description involves three steps: (i)
optical excitation of the nanoobject by the incident wave, (ii) cre-
ation of a nonlinear polarization and (iii) radiation of the harmonic
wave by the nonlinear sources. In a first step, the total electric field
in the nanostructure E(r,ω) is computed from the generalized field
propagator K(r, r′, ω) (Fig. 6.8(b)). Then, the nonlinear sources are
deduced from the fundamental electric field. Here, it is assumed that
the normal component of the nonlinear surface tensor χ(2)

nnn yields
the largest contribution to SHG. The same hypothesis was used in
other studies of SHG from plasmonic nanostructures.84,87 The con-
tribution from other surface tensor components and even the bulk
contribution could equally be computed following the same steps.
We define complex surface nonlinear dipoles pNL(r, 2ω) associated
to each discretization cell located on the surface of the antenna at
position r (Fig. 6.8(c)):

pNL(r, 2ω) = χnnnEn(r, ω)2n(r), (6.13)

En(r, ω) is the complex component of the total electric field along
the local surface normal n(r). The nonlinear sources described by
Eq. (6.13) are complex, and therefore the phase information govern-
ing the far-field radiation is taken into account.

Finally, the energy radiated at the harmonic frequency by the
nonlinear dipoles is computed from the far-field asymptotic limit of
the field susceptibility of the environment S∞(r, r′, 2ω) at the SHG
angular frequency 2ω88:

ESHG(r′ 2ω) = S∞(r, r′, 2ω) · pNL(r, 2ω).

The contribution from the substrate is taken into account by includ-
ing the corresponding field-susceptibility in the calculations:

S∞(r, r′2ω) = S0(r, r′, 2ω) + Ssurf ,∞(r, r′, 2ω).

To compute the SHG intensity, the intensity scattered in the solid
angle defined by the collecting optics is integrated (Fig. 6.8(d)). The
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Fig. 6.8. Illustration of the numerical modelling of SHG from a gold L-shaped
nanoantenna. (a) Discretization of the structure and modelling of the incident
electric field. (b) Real parts of the fundamental electric field after excitation (top)
and corresponding field intensity 10 nm below the structure (bottom). (c) Surface
nonlinear dipoles (real parts, top) and corresponding squared modulus (bottom).
(d) Radiation of the nonlinear dipoles to the far-field allows to calculate the
radiation pattern (top) and extract other information like e.g. the polarization
of SHG in the far-field (bottom), by integration over the collecting solid angle
(green highlighted surface in (d), top). In (e) and (f) experimental results (top)
are compared to simulated SHG intensities (bottom) for two different incident
polarizations. Excitation at λ = 900 nm on a glass substrate (n = 1.5).90

numerical aperture of a microscope objective can therefore easily
be taken into account in the simulations. Also, polarization-resolved
information can be obtained using this approach by considering only
the radiated SHG electric field with the proper polarization.
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We illustrate this method by computing SHG from L-shaped
antennas. Due to their non-centrosymmetry, these structures have
motivated several studies.45,47,50,89 SHG intensities for a large
parameter-range of L-shaped gold antennas from the connected
regime denoted by negative gap sizes to capacitively coupled antenna
arms (positive gaps) are shown in Figs. 6.8(e) and 6.8(f). The incident
wavelength was λ = 900 nm (λSHG = 450 nm), and the struc-
tures were deposited on a glass substrate with a refractive index
of n = 1.5. Comparing the experimental results from electron-beam-
lithographically fabricated nanostructures (top colormaps) to sim-
ulations of the SHG intensities using the Green Dyadic Method
(bottom colormaps), an excellent agreement is observed. Interest-
ingly, the polarization of SHG radiation does not necessarily follow
the polarization of the fundamental field, a behavior that has also
been confirmed in experiments and can be explained by strong can-
cellation of nonlinear dipoles in the gap region due to the symmetry
of the structure.90

We note, that the presence of the nanoobject at the harmonic
radiation is neglected in the last step of the simulations (it is only
taken into account in the computation of the total electric field at
the fundamental frequency). This may become problematic in the
case of near-field investigations and is rigorously taken into account
in more sophisticated approaches.82

6.3.1.5.3. Two-photon luminescence from gold nanostructures

We now address scanning two-photon luminescence microscopy
experiments. As explained in details earlier, TPL is a third-order
incoherent nonlinear process arising from two sequential one-photon
absorptions in the metal. Similar to two-photon absorption in molec-
ular systems, the induced polarization can be described by a third-
order nonlinear susceptibility χ(3) 91,92:

P(3)(r, ω) = χ(3)(ω,−ω, ω)E(r, ω)E∗(r, ω)E(r, ω). (6.14)

In the latter equation, E(r, ω) is the total electric field at the
excitation frequency and E∗(r, ω) its complex conjugate.
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The energy transferred from the field to a volume element located
at r per unit time can be calculated from the induced polarization
P(r, t) and electric field E(r, t)93:

dE
dt

=
〈

dP(r, t)
dt

· E(r, t)
〉

In the case of the linear response, P(r, t) = χ(r, t)E(r, t). For a time-
harmonic electric field of frequency ω,E(r, t) = Re(E(r, ω)e−iωt).
This leads to the well-known fact that the energy transfer between
the optical wave and the metal is given by the imaginary part of the
susceptibility:

dElin

dt
=
ω

2
Im(χ(r, ω))|E(r, ω)|2.

Photoluminescence from gold nanoobjects is, therefore, proportional
to the linear absorption and local electric field intensity. Similarly,
in the case of TPL, the emission intensity is given by the nonlinear
absorption rate:

ITPL ∝ dEnl

dt
=
ω

2
Im(χ(3)(ω,−ω, ω))|E(r, ω)|4. (6.15)

In a scanning experiment, the laser beam is tightly focused by a high
numerical aperture microscope objective and is scanned on the sur-
face of the sample. The scanning procedure can be explicitly taken
into account in the simulations by considering an excitation with
a Gaussian beam centered at R0 denoted E0(r,R0, ω) and com-
puting the total E-field E(r,R0, ω) for each position of the excita-
tion beam using the generalized propagator (Eq. 6.11). Finally, the
two-photon luminescence collected from the entire nanostructure is
obtained by summing the incoherent contributions from the different
volume elements73:

ITPL(R0) ∝
∫

V
|E(r,R0, ω)|4dV (6.16)

The quadratic dependence of TPL on the intensity of the electric
field explains its ability to map the plasmon modes with a spa-
tial resolution typically better than 300 nm for excitation in the
near-infrared. It is important to note that in the last expression, the
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electric field is computed for each position of the excitation beam.
In fact, a direct convolution of the optical near-field intensity distri-
bution to account for the limited spatial resolution in TPL scanning
microscopy can only be the first step in the interpretation of TPL
images.69,71,73

Figure 6.9 shows the results of correlated scanning TPL
microscopy and SEM experiments performed on gold particles.72

The latter are 20-nm thick gold triangular, truncated triangular,
and hexagonal nanoprisms of typical lateral size ranging from 0.5
to 1.0µm prepared using a one-pot protocol based on the direct
reduction of Au precursors by polyvinylpyrrolidone (PVP) (see
Figs. 6.9(a)–(c)). The TPL maps of Figs. 6.9(d)–(i) clearly show a
well-resolved patterning of the TPL emission strongly dependent on
the shape of the nanoobject and polarization of the incident optical
wave. Figures 6.9(j)–(o) demonstrate that the numerical framework
discussed above reproduces the observed dependencies.

One important question is the connection between the observed
TPL patterns and the SP modes of the nanostructures, or stated
differently the impact of the limited spatial resolution on the collected
signal. Electron energy loss spectroscopy (EELS) experiments have
indeed shown that the plasmon modes supported by gold platelets
of micronic size in the 1–2 eV range are higher order plasmon modes
with a finer spatial structure.94

In fact, it is possible to demonstrate that the experimental TPL
maps are the convolution of the surface plasmon local density of
states (SP-LDOS) in the metallic particle with the spatial profile of
the excitation beam.70 First, let us remember that the photonic local
density of states (ph-LDOS) ρph(r, ω) is defined as the number of
EM modes of energy �ω per unit volume at position r, ρph(r, ω) can
be related to the field susceptibility tensor as95:

ρph =
1

2π2ω
Im{TrS(r, r, ω)}. (6.17)

Similarly, for planar plasmonic structures such as the gold platelets
above, it is possible to define inside the metallic nanoobject an
in-plane SP-LDOS ρsp,‖(r, ω). ρsp,‖(r, ω) is the number of SP modes
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 6.9. (a)–(c): SEM images of triangular, truncated triangular and hexagonal
gold nanoplatelets. (d)–(i): Corresponding TPL maps acquired with λ = 700 nm
and linear polarization of 0◦ (d)–(f) and 90◦ (g)–(i), as indicated by the white
bars in the upper right corners. (j)–(o): corresponding simulated maps. Scale bars
are 200 nm.72

of energy �ω at position r inside the metal. For a circularly polarized
excitation, the number of plasmon excitations of energy �ω created
at r is then proportional to ρsp,‖(r, ω) and to the number of incident
photons of the same energy. Equivalently, it is possible to relate the
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local electric field E(r,R0, ω) to the excitation field E0(r,R0, ω) by:

|E(r,R0, ω)|2 ∝ |E0(r,R0, ω)|2ρsp,‖(r, ω).

A complete derivation of this relation is provided in Ref. 70. It is
now possible to write differently the TPL intensity:

ITPL(R0) ∝
∫

V
|E0(r,R0, ω)|4ρ2

sp,‖(r, ω)dV. (6.18)

This last equation provides a new interpretation of the TPL maps
as the convolution between the squared SP-LDOS with the Gaussian
profile of the light beam. This is illustrated in Figs. 6.10(b)–(e) in
which the beam waist is varied between the experimental value of
300 nm and 50 nm. The former gives an excellent agreement with the
experiments (Fig. 6.10(a)) while the last value is equivalent to a Dirac
delta-function and therefore provides a map of the SP-LDOS squared
(Fig. 6.10(e)). To go further, we have computed the photonic local
density of states (LDOS) from Eq. 6.17 at different heights above
the gold nanoparticle. The results shown in Figs. 6.10(f)–(h) demon-
strate that the photonic LDOS becomes increasingly similar to the
SP-LDOS when we get closer to the metallic particle. This reveals
that the contribution of the SP modes of the particle to the photonic
LDOS is restricted to distances shorter than the decay length of
the evanescent optical fields. In the case of linearly polarized excita-
tion along (OX), the same relation holds but with a projected SP-
LDOS ρsp,x(r, ω) instead of the total SP-LDOS ρsp,‖(r, ω). Different
linear polarizations, therefore, probe different projections of the SP-
LDOS.70

6.3.2. Nonlinear optical interaction of fast electrons

with plasmonic nanostructures

The nonlinear optical processes discussed so far arise from the inter-
action between light fields and electrons confined in the metallic
nanoobjects. Their extreme sensitivity to the local electric field
strength explains their enhancement by SPs and makes them very
useful to map the spatial distribution of these modes. However,
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Fig. 6.10. (a) Sum of the TPL signal obtained on a triangular gold nanoplatelet
for a polarization along either X or Y. (b) TPL map computed using the numerical
framework discussed in the text for a beam waist w = 300 nm. (c)–(e) Same for
w = 200, 100 and 50 nm, respectively. (f)–(h) are the ph-LDOS computed from
Eq. 6.17 in a plane located at z = 25, 50 and 100 nm, respectively.

far-field nonlinear scanning microscopies suffer from a limited spatial
resolution. We now discuss a different kind of nonlinear optical inter-
action which involves ultrashort packets of relativistic electrons in
TEMs. As will be shown, the analysis of the interaction between
free electrons and the optical near-fields confined around plasmonic
nanoobjects holds promise for E-field mapping with deeply subwave-
length spatial resolution and coherent manipulation of ultrashort
electron packets.

6.3.2.1. Interaction of free electrons with light

Energy and momentum conservation laws prohibit linear interac-
tion between free electrons and free-space light.96−99 However, it is



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch06 page 230

230 Handbook of Metamaterials and Plasmonics — Volume 4

possible in some cases to satisfy these conservation laws and yield
detectable effects. Thus, Kapitza and Dirac predicted in 1933 that
the elastic interaction between a beam of free electrons and a sta-
tionary light wave could cause electron diffraction.100 The absence
of sufficiently intense light sources has long impeded the experi-
mental verification of this effect, but it has since been detected
unambiguously.101,102 An electron passing near a nanostructured
surface may also interact inelastically with confined light fields. The
energy losses are the best-known manifestation of this coupling but
it is also possible that electrons absorb one or more photons and can
thus be accelerated.96,98,99 The inverse Smith–Purcell103 or inverse
Cherenkov effects104 are examples of such interactions.

6.3.2.2. Electron energy gain spectroscopy

In 2009, Barwick et al. have demonstrated the immense possibilities
of electron energy gain spectroscopy (EEGS) (also termed PINEM
for Photon Induced Near-field Microscopy).97 This technique relies
on the analysis of the energy spectrum of fast electrons incident on
an optically excited nanoobject.

It is based on a pump–probe scheme in which a first femtosecond
optical pulse focused on the nanoobject generates an electric field
confined around the nanoobject and a second probe pulse consisting
of a subpicosecond packet of relativistic electrons is synchronized
with the pump pulse (Figs. 6.11(a)–(b)). The electronic probe pulse is
generated by a delayed optical pulse focused on a photocathode inside
the TEM. The electric fields confined around the optically excited
nanoobject provide the required momentum to satisfy conservation
laws and permit interaction between the free electrons and the light
field. This interaction results in energy exchanges between the free
electrons and the light field in multiples of the incident photon energy
�ω as shown in Figs. 6.11(c)–(d).

The energy gain probability directly depends on the amplitude of
the electric field along the electron trajectory.96−99,105,106 Therefore,
by analyzing the energy of the transmitted electrons, it is possible
to map the optical near-field with nanometer spatial resolution. For
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Fig. 6.11. (a) Schematic of an ultrafast transmission electron microscope.
(b) Close-up of the interaction between an ultrashort electron pulse and an opti-
cally excited nanoobject. (c) Comparison between the electron energy spectrum
before (black) and during (red) optical excitation of a bundle of carbon nanotubes.
(d) Magnified version of (c) showing absorption and emission of multiples of the
photon energy �ω = 2.4 eV.97

instance, the probability of absorbing one photon can be derived from
first-order perturbation theory as96:

PEEGS(E) =
(

2πe
�ω

)2 ∣∣∣∣
∫ +∞

−∞
dzEz(re(t), E)e−iωz/v

∣∣∣∣
2

Figure 6.12(a) shows a map of the PINEM signal on a dimer of
silver nanoparticles which illustrates the nanometer spatial resolu-
tion of the technique.107 Figure 6.12(b) shows the gain probability
computed from first-order perturbation theory using an extension of
the Green Dyadic Method discussed above.108 Two important differ-
ences between EEGS/PINEM and EELS or cathodoluminescence are
worth being emphasized. First, the observed signal can be amplified
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Fig. 6.12. (a) Map of the electron energy gain signal on a dimer of silver
nanospheres.107 (b) Numerical simulation of (a) based on a first-order pertur-
bation theory and computation of the optical near-field using EELS-GDM.108

(c) Energy diagram showing the different possible interactions and interference
between quantum mechanical paths.106 (d) Evolution of the electron-energy spec-
trum for different incident electric field strength (left) and corresponding numer-
ical simulations of the quantum mechanical evolution of the energy components
of the ultrashort electron packet.106

by increasing the power sent on the sample within the limits set
by the damage threshold. Second, whereas EELS is sensitive to all
EM modes supported by a plasmonic nanoparticle, EEGS will only
probe the plasmon modes effectively excited by the pump pulse.
Furthermore, the PINEM signal being a cross-correlation between
the electron and optical pulse, its temporal width could in principle
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give access to the lifetime of SPs. However, these dephasing times
are of the order of tens of femtoseconds and it is, therefore, diffi-
cult to imagine accessing their dynamics using this technique. In
the case of high-power optical excitation, higher-order interactions
develop between the optical field and the free electrons, yielding a
more complex dynamics characterized by multiple photon sidebands.
The occupation probability PEEGS(N�ω) of the Nth photon side-
band is then given by a Bessel function of the first kind of order
N .98,99 It shows an oscillatory behavior with excitation intensity
which can be interpreted as multilevel Rabi oscillations. These oscil-
lations arise from interferences between different quantum mechan-
ical paths contributing to the transition probability (Figs. 6.12(c)
and 6.12(d)).106 These experiments are extremely promising steps
towards the quantum coherent manipulation of free-electron states.

6.4. Femtosecond Time-resolved Spectroscopy
of Individual Plasmonic Nanoparticles
and Antennas

Time-resolved spectroscopy is a valuable tool for obtaining informa-
tion on the dynamics and processes involving electrons, lattice vibra-
tions, and other excitations of materials. As discussed in section 6.2,
most electronic and vibrational processes take place on time scales
ranging from a few femtoseconds to hundreds of picoseconds. Most
of the time-resolved investigations performed on individual nanopar-
ticles are therefore based on femtosecond pump–probe spectroscopy.
Femtosecond pump–probe spectroscopy is a special case of four-wave
mixing or transient grating techniques109 which involve a third-order
nonlinear interaction between the electric field of a delayed probe
pulse and a stronger pump pulse in the metallic particle.

6.4.1. Ultrafast electronic dynamics of individual

small metal nanoparticles

Compared to spectroscopy of bulk systems, challenges appear in
the detection of small single nanoparticles because of the fact that
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the optical cross-section of nanosystems is typically much less than
the geometrical cross-section of diffraction-limited far-field radiation.
The nonlinear perturbations are generally only a fraction of the linear
cross-section, and therefore require very sensitive detection tech-
niques based on lock-in amplification. As an alternative to far-field
spectroscopy, near-field optical techniques can be used to overcome
the diffraction limit and achieve more efficient coupling and high-
resolution readout.110 However, the added complexity and presence
of tip–sample interactions associated with near-field techniques in
many cases is unfavorable.

Femtosecond studies of single metal nanoparticles using far-
field transmission have been demonstrated on metal nanoparticles
with optical cross-sections of several thousand nanometer squared2.
Figure 6.13(a) shows the experimental arrangement used in Ref. 12,
where a single silver nanoparticle of 30 nm diameter was positioned in
the tight focus of a 0.9 N.A. microscope objective. The mismatch of
the illumination area S and particle cross-section σext in this case
results in a fraction of incident light absorbed of order 10−3. In
addition, photoexcitation of hot electrons results in a nonlinear mod-
ulation of the extinction ∆σext/σext of several percent. The pump-
induced transmission change ∆T/T can be written as the product
of the cross-sectional mismatch and the pump-induced perturbation
according to

∆T/T = −(∆σext/σext)(σext/S).

The resulting normalized change in transmission ∆T/T in the
range 10−6− 10−4 can be recovered using sensitive lock-in detection
(Fig. 6.13(b)). The time-resolved data show a fast rise in the nonlin-
ear absorption, caused by excitation of hot electrons, followed by a
picosecond decay due to hot carrier relaxation, following the TTM
of section 6.2.1.2.

Varying the power of the excitation laser pulses shows the
dependence of the electron–phonon relaxation time on absorbed
energy (Fig. 6.13(c)), through the temperature dependence of the
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(a) (b)

(c) (d)

Fig. 6.13. (a) Experimental setup for ultrafast single-nanoparticle spectroscopy.
(b) Time-resolved differential transmission ∆T/T for single 30 nm silver nanopar-
ticle for different pump powers 180 µW (dotted line), 280 µW (solid line) and
480µW (dashed line). (c) Electron–phonon relaxation time τe−ph against pump
power for 30 nm (dots) and 20 nm (squares) silver particle. (d) same as (c) but
against calculated maximum electron temperature rise ∆Te/Te. Lines: analytical
model for electron excess energy (solid) and electron temperature (dashed).12

electronic heat capacity,

C(Tc) = c0Te

with c0 = 65 J/(m3K2) for silver and Te the electronic heat capacity.
Figure 6.13(d) shows the same increase against maximum temper-
ature rise estimated using the absolute cross-section of the single
nanoparticle. A universal scaling is found, which is independent
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of particle size and only depends on the amount of temperature
increase, in agreement with the TTM (solid line). Thus, the quan-
titative in situ studies of both the linear and nonlinear response of
a single nanoparticle allows to calibrate the TTM for the strong
excitation regime.

In addition to revealing fundamental physical processes, the
quantitative spectroscopy of single nanoparticles allows extracting
the ultrafast changes in extinction cross-section.111 This information
allows quantitative modelling of the SP resonance perturbation using
the real and imaginary permittivity changes, under the assumption
that only the permittivity of the nanoparticle is modified and its local
environment remains constant. An extensive analysis of electronic
excitation and cooling dynamics was reported for single gold plas-
monic nanoantennas fabricated using electron-beam lithography.112

6.4.2. Coherent vibrational modes of nanoparticles

The near-instantaneous change in electron temperature following
femtosecond pulsed laser excitation sets up an impulsive strain
in the nanoparticle.113 This impulsive strain launches a coherent
wavepacket of vibrational eigenstates of the nanoparticle. Ensemble
measurements generally suffer from dephasing of the signals caused
by the inhomogeneous distribution of resonance frequencies. Single-
particle spectroscopy allows measurements of the vibrational modes
of nanoparticles without the effects of inhomogeneous distributions,
providing direct access to the homogeneous damping rates and rel-
ative contributions of the vibrational eigenmodes.2,3,15 It was found
that the damping of vibrational modes in nanoparticles strongly
depends on its coupling with the surrounding medium.114 Figure 6.14
shows an experiment where individual 80 nm gold nanospheres were
captured in an optical trap suspended in water. The time response
of each particle was measured to obtain both its resonance fre-
quency and homogeneous damping rate. The effect of the surrounding
water was observed by comparing with gold nanoparticles deposited
on a substrate, where the coupling with the underlying material
is weak.
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(a)

(b)

(c) (d)

Fig. 6.14. (a) Experimental arrangement for vibrational spectroscopy of single
nanoparticles trapped in an optical trap. (b) Example of time-resolved trans-
mission of the trapped nanoparticle, revealing a 40 GHz vibrational eigenmode.
(c) Distribution of eigenmode frequencies and damping rates for nanoparticles in
water (blue circles) and in air (squares). (d) Histograms of the quality factors
obtained from (c).114

6.4.3. Single plasmonic nanoantenna ultrafast

nonlinear devices

Next to the use of single-particle time-resolved spectroscopy of plas-
monic nanoparticles in studying the physical processes of electrons
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and phonons in confined geometries, the high sensitivity of plasmonic
modes to small perturbations is of interest to achieve new types
of devices for nanoscale sensing and nonlinear control of light. As
the size of nanoparticles is scaled up, the extinction cross-section
approaches the geometrical area of the optical wavelength and order-
unity coupling efficiency can be achieved. Combined to bulk mate-
rials, the design of optical nonlinearity at the nanoscale can exploit
combinations of effects and materials.

6.4.3.1. Acousto-plasmonics and antenna vibrational sensors

Similar techniques as for single small colloidal nanoparticles can
be applied to much bigger plasmonic antenna structures defined
using electron-beam lithography.115−118 The effect of vibrational
response here strongly depends on the precise structuring of the
nanoantenna.119 Vibrational modes could be designed for crossed
antennas with different arm lengths in two polarizations, allowing
selective coupling of light to either of the vibrational modes and
coherent control.117 In Figs. 6.15(a)–(d), the interaction between
closely spaced elements in a nanoantenna arrangement was used to
enhance the vibrational response of a small nanoparticle, by coupling
its dipole moment to a much larger antenna structure.118 Here, the
plasmonic sensitivity for the local near-field environment is used to
enhance acousto-optical effects. The field of acousto-plasmonics aims
to exploit such combined effects to achieve a significant increase in
the optical response. Modulation of plasmonic modes using vibra-
tional coupling connects to the field of optomechanics, where exter-
nal mechanical modes are used to drive the system. Typically, the
systems under study have much lower resonance frequencies than
those of single nanoparticles. In recent work,120 a single plasmonic
nanoantenna on a silicon nitride mechanical resonator was used to
achieve plasmo-mechanical coupling at a mechanical resonance fre-
quency of around 9 MHz (Figs. 6.15(e)–(h)). Such nanomechanical
resonators are receiving great interest as they can potentially be
cooled down to the quantum mechanical ground state. Furthermore,
the compact design and plasmonic readout makes acousto-plasmonic



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch06 page 239

Ultrafast Spectroscopy and Nonlinear Control 239

systems an interesting novel platform for nanomechanical (thermal)
force sensing.

6.4.3.2. Toward order-unity modulation
of plasmonic nanoantennas

Mechanical forces can potentially be an efficient route to controlling
plasmonic response; however, their response is fundamentally lim-
ited by the vibrational frequencies of nanomechanical resonators to
the MHz–GHz regime. Optical driving of nonlinear phenomena in
solids can be based on a range of effects including Kerr-nonlinearity,
photorefractive effects, free-carrier, thermo-optic response and phase-
change. In bulk form, many of these phenomena are relatively small
and require long interaction lengths and/or high field strengths to
accumulate sufficient phase- or amplitude response. At the nanoscale,
it may be possible to use strong local field confinement in space
and/or optical resonance (i.e. enhancement in time) to achieve locally
much higher effects than in bulk materials using far-field optics.89

Antenna-sensitized response A first strategy for enhancing optical
modulation at the nanoscale makes use of the antenna as sensitizer
for both the excitation and detection of nonlinear optical response
of an external medium. An example of this approach is shown in
Fig. 6.16(a), where an antenna is placed on top of an otherwise
transparent substrate consisting of a transparent conducting oxide
(TCO) on glass.121,122 Optical excitation of the antenna results in a
strong optical absorption and photoexcitation of hot carriers. Due to
the high DC-electrical conductivity and ohmic contact between gold
and the TCO substrate, electron-mediated heat conductivity results
in a very fast spreading of heat into the TCO film in an area of
several 100 nm around the antenna. Unlike conventional glass, TCO
shows a strong free-carrier nonlinearity, which has been shown to
result in order unity changes in permittivity when modulating the
free-carrier density. The free-carrier nonlinearity is mediated by a
spill out of hot carriers in the localized hot area, governed by the
Seebeck effect, resulting in a local reduction of the electron density.
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(a) (c)

(b)

(e) (f)

(g) (h)

(d)
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 6.15. (Figure on facing page) Detection of the vibrational modes of a small
nanoparticle (a) can be enhanced by placing the particle in the near field of a plas-
monic nanoantenna (b). Modulation of the nanoparticle response is translated into
a larger modulation of the antenna response through near-field interaction, result-
ing in a polarization-dependent enhancement of the vibrational signal (c,d).118

(e) Single plasmonic dimer antenna on a Si3N4 nanomechanical resonator, with
SEM images (f, g) and effect of modulation of nanobeams on optical resonance
frequency.120

This local perturbation of the substrate is subsequently read out by
the shifting of the plasmonic antenna using single-antenna quantita-
tive spectroscopy (Figs. 6.16(b) and (c).121 By carefully optimizing
the antenna design to include an asymmetric gap, different types
of nonlinear response were investigated such as the Fano-resonant
antenna shown in Fig. 6.16(d).123

Next to relatively slow, picosecond nonlinear modulation, much
faster optical response could be achieved using femtosecond opti-
cal pumping of antenna–ITO hybrids.124 It was demonstrated that
the enhanced local fields around the antenna ends produce a local,
ultrafast perturbation of the ITO, which could subsequently be read
out by another, perpendicularly oriented antenna positioned within
several tens of nanometers distance from the excited antenna. This
configuration allows to separate the ultrafast nonlinearity of the sub-
strate from the intrinsic effects associated with photoexcitation of the
metal nanoparticle.

Metallic nonlinearity Next to the use of an external nonlinear
material, the strong optical nonlinearity of the metal itself produces a
large optical modulation. The combination of free-electron response
and interband transitions with the SP resonance in small metal-
lic nanosystems provides very large optical Kerr-nonlinearities.125

Quantitative experiments on small single nanoparticles showed that
nonlinear modulation can amount up to several percent of the
cross-section.12,111 The free-carrier nonlinearity in the near-infrared
range, far away from any interband transitions, is governed by
temperature-dependent changes in the electron–electron scattering
rate. Observed changes for single gold antennas on glass amounted
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Fig. 6.16. (a) Experimental arrangement for two-color, picosecond optical
spectroscopy of individual antennas with cartoon showing the effect of antenna-
sensitized optical response (see description in text).122 (b) SEM image of single
antenna(top)withspatialmapofopticalextinction(middle)andpicosecondnonlinear
response (bottom)measured in reflection. (c)Optical extinction spectrum(top) and
picosecond nonlinear modulation (bottom) for selected antenna–ITO hybrid.121 (d)
Same for asymmetric dimer antenna showing Fano-resonance dip (labelled as γ).123

to over 20% modulation of the linear cross-section due to tran-
sient bleaching.126 Next to relatively slow free-carrier nonlinearity,
two-photon absorption of energy below the interband transitions
offers a fast, sub 100 fs third-order nonlinearity which can be greatly
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enhanced by structuring of metal nanostructures into antennas or
metamaterials.127 Next to the response of the thermalized electron
gas, recent work has claimed another, fast nonlinearity caused by hot
carrier effects.128 This contribution was observed to occur only for
very narrow (<5 nm) gaps between a nanoantenna and a conducting
substrate, and had a near-instantaneous response time. The intrinsic
metallic nonlinearity can be combined with particular metamate-
rial response, such as non-locality,129 epsilon near-zero response130

and hyperbolic dispersion,131 to achieve further enhancement of the
nonlinear properties.

Coupling plasmonic and photonic resonators Plasmonic antennas
provide strong mode confinement below the diffraction limit over
a relatively broad resonance with quality factors typically around 10
or below. Photonic resonators offer high-quality resonances, but are
limited in mode confinement by the diffraction limit. Coupling of
photonic and plasmonic resonators offers an interesting playground
for achieving hybrid modes which retain part of both characteristics
and offer distinct nonlinearities. Positioning of vertically stacked,
parallel nanowire nanoantennas in the standing waves of a micro-
cavity results in symmetric and anti-symmetric combinations where
the anti-symmetric mode couples primarily to magnetic resonances
of the antenna.132 Coupling of plasmonic systems to a dielectric
waveguide results in sharp Fano resonances in the optical extinc-
tion associated with strong optical nonlinearity.133 Hybridization of
microsphere resonators with plasmonic nanoparticles has been devel-
oped as a sensitive platform for optical sensing exploiting the con-
finement of whispering gallery modes on the metal nanoparticles.134

The effect of photonic resonances on the ultrafast nonlinear modu-
lation of plasmonic nanoparticles was explored by positioning small
colloidal nanoparticles in the center of a photonic microcavity.135 The
hybridization with the photonic cavity mode resulted in a narrow-
ing of the SP resonance, which could be interpreted as an increased
lifetime of the hybrid photon-plasmon state, and a concomitant
enhancement of the optical modulation amplitude. While the dis-
sipative plasmon mode reduces the quality of photonic resonances,
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an overall improvement of the nonlinear response can be achieved
by optimizing both the plasmonic and photonic systems and their
coupling.

Photoconductive loading of antennas Originally developed in the
microwave and THz domain, the use of photoconductive materials or
varactors in controlling the optical resonances of antennas has been
well established.136 In the optical domain, photoconductive effects
require very high carrier densities exceeding 1021 cm−3. Such carrier
densities are achievable using pulsed laser excitation of electron-
hole plasma in semiconductors. Theoretical studies have explored
the effects of photoconductive materials placed in the feed gap of
plasmonic antennas.137,138 It was found that conductive loading of a
plasmonic dimer antenna results in a short-circuiting of the antenna,
giving rise to large changes in the optical resonance spectrum. In
this process, the fundamental mode is changed from two half-wave
resonances over the individual antenna arms to a single, half-wave
resonance of the full antenna length. The new, long-wavelength mode
corresponds to the formation of a long-wavelength charge-transfer
plasmon, where the increased conductivity enables a displacement
current between the two antenna elements.

A related, yet very distinct nonlinearity is formed by currents
caused by quantum tunneling between closely spaced (sub-nm) metal
particles.139−141 Here, the quantum conductivity is essentially non-
linear in the local electric field, leading to pronounced multiphoton
absorption and nonlinear susceptibilities exceeding the intrinsic clas-
sical coefficients of the constituting metal. Experimental observation
of these effects will require exquisite control over the nanoscale gaps,
for example using single monolayer materials such as graphene.142

Gate tuning Electrical tuning of plasmonic devices works well up to
mid-infrared wavelengths for carrier densities up to 1019−1020 cm−3.
Next to the use of semiconductors for the tuning of infrared plasmon-
ics through the free-carrier density, gate tuning of free carriers can
be done very easily using two-dimensional materials like graphene
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where the optical permittivity depends strongly on the applied bias
voltage.143 Toward the near-infrared, gate tuning requires the use of
highly doped materials like ITO and high-k dielectrics like HfO2 to
achieve measurable effects. Several percent modulation were achieved
on a silicon-based MOS device platform incorporating plasmonic
antennas at telecommunication wavelengths.144

Semiconductor dielectric antennas Next to the use of free-carrier
effects in semiconductors in controlling the plasmon resonance of
metallic antennas, there is an increasing interest in using the res-
onances of high-index dielectric nanostructures for optical antenna
applications. The optical scattering properties of dielectric antennas
could be controlled by exciting an ultrafast electron-hole plasma,
achieving over 20% modulation of the forward to backward scatter-
ing ratio through the dynamical switching of the magnetoelectric
interference of modes known as the Huygens source regime.145 Self-
modulation of magnetic Mie resonances in a-Si:H disks was achieved
with a depth of 60% using sub-100 fs laser pulses, exploiting the
strong spatiotemporal confinement of light in the Mie resonances of
the dielectric structure.146

Phase change materials Very large optical modulation can be
achieved by exploiting structural phase transitions in materials
systems such as chalcogenides, or transition metal oxides. Direct
optical writing of phase change materials like GST offers a route to
non-volatile optically addressable antennas and metamaterials.147,148

Some of the challenges are related to the relatively high temperatures
required to set and reset the crystalline to amorphous phase tran-
sition, which is associated with a macroscopic structural rearrange-
ment of atoms. Another opportunity is provided by purely electronic
phase transitions found in tetravalent vanadium oxide, VO2. Here,
the phase change occurs at a much lower temperature of 68◦C and
is associated with a local rearrangement within the unit cell from
a monoclinic to rutile structure. The phase change has been used
to obtain fast, reversible switching of plasmonic antennas149,150 and
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variable level optical memory functionality by continuously tuning
the temperature.151

6.5. Conclusions

We have discussed experiments and modelling of single plasmonic
nanoparticles and antennas using a range of ultrafast techniques.
Metal nanoparticles show pronounced nonlinear optical responses
including harmonic generation and two-photon photoluminescence.
Femtosecond pulsed excitation of electrons results in dynamics
on time scales ranging from several femtoseconds to hundreds
of picoseconds, involving plasmon relaxation, electron–electron,
electron–phonon scattering and coherent vibrational modes. All these
processes give rise to changes in the optical properties, which can be
read out and used to analyze the system.

Apart from using techniques to study the nanoparticles, another
line of research aims to use plasmonic nanostructures as antennas for
increasing light–matter interaction. We have discussed several direc-
tions of how a nanoantenna can be used to enhance the nonlinear
response of their environment, sensitize and read out external non-
linear media, and act as a nonlinear material by itself. In order
to achieve order unity efficiency in optical modulation, a number
of strategies can be exploited which may involve combinations of
novel materials, nanoscale control in fabrication and quantum phe-
nomena. There is a significant scope for further developing this
field, which could result in a next generation of nanoscale photonic
devices for controlling and redirecting optical radiation in technolog-
ical applications.
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94. Gu, L., Sigle, W., Koch, C. T., Ögüt, B., van Aken, P. A., Talebi, N.,

Vogelgesang, R., Mu, J., Wen, X. and Mao, J. (2011). Phys. Rev. B 83,
p. 195433.

95. Girard, C., David, T., Chicanne, C., Mary, A., Colas des Francs, G., Bouril-
lot, E., Weeber, J. C. and Dereux, A. (2004). Europhys. Lett. 68, p. 797.

96. Garcia de Abajo, F. J. and Kociak, M. (2008). New J. Phys. 10, p. 073035.
97. Barwick, B., Flannigan, D. J. and Zewail, A. H. (2009). Nature 462, p. 902.
98. Garcia de Abajo, F. J. (2010). Rev. Mod. Phys. 82, p. 209.
99. Park, S. T., Lin, M., Zewail, A. H. (2010). New J. Phys. 12, p. 123028.

100. Kapitza, P. L. and Dirac, P. A. M. (1933). Math. Proc. Cambridge Phil.
Soc. 29, p. 297.

101. Bucksbaum, P. H., Schumacher, D. W. and Bashkansky, M. (1988). Phys.
Rev. Lett. 61, p. 1182.

102. Freimund, D. L., Aflatooni, K. and Batelaan, H. (2001). Nature 413, p. 142.
103. Mizuno, K., Pae, J., Nozokido, T. and Furuya, K. (1987). Nature 328, p. 45.
104. Kimura, W. D., Kim, G. H., Romea, R. D., Steinhauer, L. C., Pogorelsky,

I. V., Kusche, K. P., Fernow, R., Wang, X. and Liu, Y. (1995). Phys. Rev.
Lett. 74, p. 546.
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CHAPTER 7

Ultrafast Plasmonics
JUE-MIN YI, PETRA GROß,
and CHRISTOPH LIENAU∗

Carl von Ossietzky Universität Oldenburg, Germany

7.1. Introduction

It has been known since the pioneering work of Ritchie that
metal/dielectric interfaces support coherent collective charge density
oscillations, and surface plasmons (SPs).1,2 These surface charge
oscillations couple strongly with light and the resulting coupled
modes between charges and fields are termed surface plasmon polari-
tons (SPPs). As discussed in many of the chapters of this hand-
book, SPPs have two characteristic properties which make them
highly interesting for applications.3−6 They can propagate freely,
at almost the speed of light, along planar interfaces. These SPP
waves are then evanescently confined in the direction perpendicular
to the interface and penetrate the dielectric on a scale given by
their wavelength whereas the skin depth gives their penetration
depth into the metal. As such, they can be used to guide and

∗Corresponding author: christoph.lienau@uni-oldenburg.de

255



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch07 page 256

256 Handbook of Metamaterials and Plasmonics — Volume 4

transport light over mesoscopic distances in the form of surface-
bound SPP modes. At the same time, these SPP modes can be
localized into exceedingly small nanometer-sized volumes, well below
the diffraction limit, by tailoring the geometry of the metal. This
offers the ability to confine and manipulate light fields at nanometer
length scales, to locally strongly enhance optical fields and to cre-
ate fields with interesting and non-trivial polarization states of the
local electromagnetic field. The unique properties of SPPs open the
door to optical spectroscopy with nanometer-resolution,7−10 ultra-
sensitive chemical sensing,11−13 plasmon-enhanced photochemistry14

or photovoltaics,15 or plasmonic applications in, for instance, bio-
medicine16 or optical communication.17 Hence, plasmonics has been
a highly active research area in optics during the past decade.

All those intriguing optical properties of plasmonic materials
come at a price. SPP fields inevitably penetrate the supporting
metallic structure and hence are quickly transformed into heat due
to their coupling with electrons and nuclei in the metal. Typical
time scales for these couplings range from a few femtoseconds to a
few hundreds of femtoseconds at the most, depending on the type of
metal and, importantly, its size and shape.18 Hence, these absorptive
“Ohmic losses” put severe constraints on the distance over which
SPP plasmons can transport energy. In addition, evanescent SPP
modes may rapidly lose energy by being scattered into radiating far-
field modes. While such radiative losses are generally negligible for
small metal particles with a size of few nanometers,19 they become
important for larger particles and in particular for disordered or cor-
rugated surfaces.20 Together, absorptive and radiative losses result in
short, femtosecond lifetimes of SPP modes. As such, it is evident that
ultrafast, time-domain methods can provide important insight into
the dynamics of SPP fields. Yet, the short femtosecond lifetimes make
it difficult to trace the dynamics of plasmon excitations, in particular,
their propagation over mesoscopic distances and their coupling with
active quantum emitters, directly in the time domain.

Progress in the development of ultrafast laser sources and
the use of advanced coherent spectroscopy techniques made it
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possible to perform such time-resolved studies during the last
years. This has led, among many other advances, to spatiotem-
poral imaging of SPP propagation,21−23 coherent, spatiotempo-
ral control of plasmonic fields in nanostructures,24,25 time-resolved
studies of optical nonlinearities of single plasmonic antennas,26−31

the observation of coherent Rabi oscillations in strongly coupled
exciton-plasmon systems,32,33 the coherent control of tunneling
currents in nanoantennas34 or the discovery of strong-field pho-
toemission from plasmonic antennas35 and metallic nanotips.36−43

In particular, ultrafast photoemission from metallic tips may
find intriguing applications in next-generation ultrafast electron
microscopes.44

It is beyond the scope of this chapter to provide a comprehensive
review of this emerging field of ultrafast nanooptics.45 Instead, we
will focus on giving an overview of the most important experimen-
tal tools that have so far been employed to study the femtosecond
dynamics of plasmonic excitations in metallic nanostructures in the
time domain. For each of the methods, we will briefly discuss the
underlying experimental concepts and present selected applications
to plasmonics. The application examples are mostly from recent work
of our own group and reference to related work of other groups is
necessarily incomplete. They are mainly chosen to illustrate what
type of new information can be obtained from the specific technique
and to identify the respective pros and cons of the different methods.
With this, we aim at providing the reader with an overview of what
can be learned when applying the rapidly advancing toolbox in ultra-
fast nanooptics to plasmonic systems. We intend to show that such
time-domain studies can provide detailed microscopic insight into the
fundamental physical processes that are underlying the optical prop-
erties of plasmonic nanostructures and hope that this shall stimulate
further research in this emerging field.

This chapter is structured as follows: In Section 7.2, Fourier
transform spectroscopy (FTS) and spectral interferometry (SI)
are introduced as time-domain methods to study the linear opti-
cal response of plasmonic systems. In Section 7.3, photoelectron
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emission microscopy (PEEM) and interferometric frequency-resolved
autocorrelation (IFRAC) spectroscopy are discussed as time-domain
nonlinear optical techniques to study spatiotemporal SPP propaga-
tion and the nonlinear optical response of single plasmonic nanoan-
tennas. In Section 7.4, coherent ultrafast pump-probe spectroscopy
is applied to study strong coupling phenomena between excitons and
SPPs in metal/J-aggregate hybrid systems. This chapter concludes
with a brief outlook on future challenges.

7.2. Linear Optical Response of Plasmonic Systems

In this section, FTS is introduced to study the optical extinction
spectrum of a single metallic nanoparticle. We will then show that
SI provides a measurement of the time-domain response function of
the plasmonic system and will apply the technique to study light
transmission through plasmonic crystals and coherent SPP propaga-
tion.

7.2.1. Fourier transform spectroscopy: Extinction

spectrum of a single gold nanorod

FTS46 is arguably the most straightforward time-domain method to
obtain spectroscopic information in a broad spectral range. Pulses
from a broadband light source are sent into a Michelson interfer-
ometer, generating a phase-locked pair of optical pulses with time-
dependent electric fields E0(t)+E0(t+ τ).a Here, τ denotes the time
delay between the two pulses that is introduced by the interferom-
eter. Both pulses interact with the sample and create time-varying
polarizations in the materials. These polarizations then induce the
reemission of a pair of secondary pulses E1(t) +E1(t+ τ). The total
field E = E0 +E1 that is transmitted through (or reflected from) the
sample is the sum of the incident and reemitted fields. It is related
to the incident fields by convolution with a time-domain response

aFor simplicity, scalar fields are assumed. An extension to vectorial fields is
straightforward and can be found in standard textbooks.80,122
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function r(t)

E(t) =
∫ ∞

−∞
r(t− t′)E0(t′)dt′. (7.1)

This response function fully characterizes the optical response of
the sample. For a spatially homogeneous and isotropic sample studied
in transmission geometry r(t) = 1

2π

∫∞
−∞ t̃(ω)e−iωtdω is the Fourier

transform of the complex transmission coefficient t̃(ω).
In FTS, a photodetector then measures the power of the trans-

mitted field created by the two pulses for a series of different time
delays τ . The intensity of these pulses, averaged over the integration
time of the photodetector, is

I(τ) =
1
2
ε0c〈|E(t) + E(t+ τ)|2〉 = 2I ′ + 2C(τ). (7.2)

Here, 〈...〉 denotes the time-average and I ′ is the intensity of just
one of the pulses E(t) of the pair. The interesting quantity is the
field autocorrelation function

C(τ) =
1
2
ε0cRe〈E(t)E∗(t+ τ)〉. (7.3)

The Wiener–Khinchin theorem dictates that its Fourier trans-
form I(ω) = ε0c|Ẽ(ω)|2 =

∫∞
−∞C(τ)eiωtdt provides a measure of

the power spectrum of E(t). Since the amplitude spectrum of the
transmitted field Ẽ(ω) = t̃(ω)Ẽ0(ω) is related to that of the incident
field by the complex transmission coefficient of the sample, this is
identical to the usual transmission spectrum of a sample measured
with a spectrometer,

I(ω) = |t̃(ω)|2|Ẽ0(ω)|2 = T (ω)I0(ω). (7.4)

Proper normalization then gives the sample transmission T (ω).
It is seen that FTS does not provide the complete time-domain
response function r(t) and thus cannot give access to the dynamics
of the transmitted field. Equation (7.4) also shows that the result
of this measurement does not depend on the spectral phase of the
incident pulses and thus, linear FTS spectra can be recorded with
both coherent and incoherent light.
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Fig. 7.1. (a) Spatial modulation FTS (SM-FTS) of single gold nanorods. (b) Lin-
ear field autocorrelation C(τ ) of the scattering signal from an elliptical nanorod
with 10× 40 nm dimensions as a function of time delay τ for incident field polar-
izations parallel (‖, red curve) and perpendicular (⊥, black dots) to the nanorod
long axis. (c) Deduced extinction spectra of the nanorods for ‖-(red circles) and
⊥-polarized (black circles) incident light. Red solid line: Fit to a Lorentzian line
shape function. Green line: Finite element simulation of the p-polarized extinction
spectrum. Inset: SEM image of a nanorod.

In nanooptics, FTS has quite recently found significant applica-
tions in the mid- and far-infrared spectral region for spectroscopic
nanoimaging of, e.g. polymer vibrational modes,47 individual pro-
tein complexes,48 phonon–polariton modes in dielectric materials49

or thermal near fields.50 So far, however, FTS has hardly been used
for nanospectroscopy in the visible or near-ultraviolet spectral region.
This is likely due to the much higher demands on the stability of the
Michelson interferometer used to create the time delay τ .

The first application of FTS to the measurement of extinction
spectra of single gold nanorods is shown in Fig. 7.1. We study
chemically synthesized, elliptical nanorods with dimensions of
approximately 40 × 10 nm, dispersed at low density on a glass sub-
strate. Their longitudinal SPP resonance is centered around 1.6 eV
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(800 nm) and strongly red shifted from the much weaker transver-
sal SPP resonance.51 Commonly, dark-field spectroscopy is employed
to measure the scattering cross-section of plasmonic nanoparticles.
Since the scattering cross-section of such small rods is quite low
(∼60 nm2), it is challenging to detect them by this method. This can
be achieved, however, by spatial modulation (SM) spectroscopy,52,53

which is a powerful frequency-domain technique providing a quan-
titative measurement of the extinction cross-section. For our ellipti-
cal nanorods, the extinction cross-section is almost the same as the
absorption cross-sections and almost two orders of magnitude larger
than the scattering cross-sections. This makes SM spectroscopy the
method of choice for probing their optical spectra. It has indeed
been successfully applied to measuring single nanoparticle scattering
cross-sections, but it typically requires a continuous tuning of a nar-
rowband excitation laser. Here, we show that such measurements can
be performed without any tuning of the laser by using a broadband
excitation source and combining SM and FTS.

For broadband SM-FTS of single nanorods, linearly polarized
light pulses from a supercontinuum source are sent through a Michel-
son interferometer. The resulting time-delayed pulse pair, with a
spectrum covering a range from 600 nm to 1000 nm, is focused to a
1-µm spot size using an all-reflective objective.43 The focused pulses
induce collective, dipolar oscillations of the electron gas in the gold
rod at frequencies near the longitudinal SP resonance. The electric
field that is emitted from the nanorod is collected with a second
all-reflective objective, together with the transmitted fraction of the
incident pulses. The total power of the transmitted field is measured
with a photodiode. To suppress the strong background signal I ′ in
Eq. (7.2), the sample position is periodically modulated at a fre-
quency of a few kHz. The modulation amplitude is set to ∼300 nm
and the resulting periodic modulation of the recorded photodiode
signal is demodulated using lock-in detection. Under these experi-
mental conditions, the recording of a single FTS spectrum at fixed
average relative position between sample and focus takes a few to a
few tens of seconds. This is sufficiently fast to take spatially resolved
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maps of the SM-FT spectra. The data presented in Fig. 7.1 are taken
from one of such maps at a position that maximizes the interaction
with a specifically selected nanorod.

The resulting field autocorrelation function C(τ) is shown in
Fig. 7.1(b). When choosing an incident polarization perpendicular
to the nanorod axis (black dots), the correlation function is short
lived, with a duration given by the inverse bandwidth of the laser.
For parallel polarization (red line), finite oscillations of the correla-
tion function are detected for delay times of up to 30 fs. A Fourier
transform of C(τ) indeed reveals a pronounced, spectrally narrow
peak at the SPP resonance (∼1.6 eV) for parallel polarization. This
peak vanishes completely when rotating the incident polarization by
90◦. The resulting spectrum is well reproduced by a Lorentzian line
shape function with a quality factor of about 15, matching the results
of finite element simulations for this type of nanorod (green line in
Fig. 7.1(c)).

A more detailed analysis of the data shows that the method pro-
vides a quantitative measurement of the extinction cross-section of
the nanorod. For the specific example of the rod shown in Fig. 7.1(c),
a value of 2700 nm2 is deduced, matching simulated values to within
10–20%. The Lorentzian lineshape of the resonance is a strong indi-
cation that the data show the response of a single nanorod. Thus, SM
FTS can provide quantitative time-domain measurements of the local
optical extinction spectra of single metallic nanoparticles in a broad
spectral range. Since it measures the amplitude of the spectrum, but
not its phase, it does not give direct access to the field dynamics.

7.2.2. Spectral interferometry: Probing plasmon

propagation in the time-domain

SI is a powerful linear optical technique to measure both amplitude
and phase of the transmission spectrum and thus reconstruct the
dynamics of the transmitted electric field in the time domain.54−56

For these, a broadband light pulse is split into a sample and a ref-
erence pulse in a Mach–Zehnder interferometer (Fig. 7.2(a)). The
sample pulse is transmitted through the sample and the transmitted
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Fig. 7.2. (a) Light transmission through plasmonic nanoslit gratings studied by
spectral interferometry. A 650-nm period grating of 50-nm wide slits in a thin
gold film is illuminated with 11-fs pulses from a Titanium:sapphire laser with
known time profile of their electric field Ein(t) = E0(t). The time structure of
the field Eout(t) = E(t) is reconstructed from the spectral interferogram between
transmitted and incident pulses. The output pulse shows an initial, ultrafast burst
reflecting light that is directly transmitted through the slits, with negligible cou-
pling to SPPs. This is followed by a long-lived emission from different, interfering
SPP resonances of the grating, persisting for more than 200 fs.63

field E(t) is overlapped with the time-shifted reference pulse at the
exit of the interferometer. Both beams are sent into a spectrometer
which measures the intensity of the sum of the amplitude spectra of
these pulses

ISI(ω) ∝ |Ẽ0(ω)e−iωτ + τ(ω)Ẽ0(ω)|2. (7.5)

The phase factor e−iωτ introduced by the time-shift results in
pronounced fringes of the SI spectrum. These fringes carry the
desired information on the spectral phase ϕ(ω) of the transmis-
sion coefficient τ(ω) = |τ(ω)|eiϕ(ω). To illustrate this, we rewrite
Ẽ0(ω) = |E0(ω)|eiϕ0(ω) and obtain

ISI(ω) ∝ |Ẽ0(ω)|2(1 + T (ω) + |τ(ω)|(e−iωτeiϕ + eiωτe−iϕ))

∝ I0(ω)(1 + T (ω) + 2|τ(ω)| cos(ωτ − ϕ(ω)) (7.6)

The interference term leads to a high-frequency, quasi-periodic
modulation of the recorded spectrum. A straightforward measure-
ment of the frequency spacing ∆ω(ω) = ω2 − ω1 between adjacent
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zero crossings of the cosine modulation gives ∂ϕ(ω)
∂ω = τ − π

∆ω(ω) and,
after integration, the spectral phase ϕ(ω). Alternatively, a Fourier
transform of the normalized interferogram ISI/I0 gives two side peaks
centered at ±τ . The peak at τ contains the time-shifted response
function r(t− τ). Careful peak isolation, time-shift by −τ and back
transformation57 gives τ(ω).

SI is a versatile and flexible technique for phase-resolved measure-
ments of optical spectra and for reconstructing time-domain response
functions. Being a linear spectroscopic technique, signal levels are
high and high-resolution spectra may be recorded within a few mil-
liseconds or possibly even faster. Data can be analyzed on the fly and
amplitude- and phase-resolved spectra may be visualized at video
rate. As seen from Equation (7.6), SI is insensitive to the spectral
phase of the reference pulse and hence may be used with both coher-
ent and incoherent light sources. The high signal levels make it com-
paratively easy to obtain information in a broad spectral range and
combine the technique with microscopy techniques. In plasmonics,
SI far-field microscopy has been used in several groups to study or
control plasmon propagation along wires58 or nanoantennas59 or to
measure the group velocity of SPPs.60 So far, combinations of SI with
near-field microscopy are limited.61,62

Figure 7.2 illustrates the first application of SI to studying the
dynamics of plasmonic excitations in nanostructures. In these exper-
iments, we have transmitted 11-fs pulses from a Titanium:sapphire
laser through a periodic array of nanometric slits in a 150-nm thin
gold film. The time-dependent electric field of the incident pulses
has been fully characterized prior to the measurements. These one-
dimensional slits support a propagation mode so that a fraction of
the light can directly pass to the backside of the grating. In addition,
scattering of the incident light at the grating can launch SPP excita-
tions at either the front or back side of the grating. These two types
of excitations are clearly separated by measuring the time structure
of the electric field of the transmitted pulses (blue curve in Fig. 7.2).
The reconstructed electric field contains two distinct contributions:
first, an ultrafast burst of light with a time structure which is very
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similar to that of the incident pulse. This burst reflects a spectrally
broadband, non-resonant contribution to the transmitted signal due
to direct light transmission through the slit.64,65 Second, the mea-
surement reveals a long-lived transmission signal persisting for sev-
eral hundreds of femtoseconds and showing an initial beating pattern
at early times. This resonant contribution to the transmission stems
from the excitation of standing wave SPP modes at the slit grating.
Depending on incidence angle, these SPP modes can be very long-
lived, with lifetimes that can even exceed those of SPPs at a planar
gold/air interface. The origin of these long lifetimes can be uncov-
ered by measuring the spatial mode profiles of the SPP fields. Long-
lived SPP modes have field profiles that show little intensity at the
slits, strongly suppressing radiative damping of the SPP fields.63 In
the spectral domain, the interference between the resonant SPP ree-
mission and the off-resonant direct transmission gives rise to highly
asymmetric, Fano-like lineshapes.63,65 These Fano-type resonances
are characteristic for this type of plasmonic gratings.66 as well as for
many other plasmonic nanostructures.67 In the time domain, they are
clearly revealed as a biexponential decay of the associated reemitted
electric field.

A Fourier transformation of the time-domain field gives ampli-
tude and phase of the transmission coefficient in a broad spectral
range and, when recorded for a sufficiently large range of incidence
angles, a precise measurement of the complete bandstructure of this
type of plasmonic crystal.63,68

As a second example, we discuss the use of SI for probing the
propagation of SPP pulses in plasmonic devices. We consider a slit-
grating structure23,60 depicted in Fig. 7.3(a,b). Short, broadband
light pulses are transmitted through a 150-nm wide slit in a 200-nm
thick epitaxially grown gold film. This launches SPP pulses at the
back side of the film. These SPP waves partially propagate towards
a 150-nm wide and 60-nm deep groove where they are scattered
into the far field. The collected field is collimated and overlapped
with a time-shifted replica of the incident pulse (shown in blue in
Fig. 7.3(a)). The resulting spectral interferograms are analyzed and
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Fig. 7.3. (a) Sketch of excitation, propagation and recording of SPP pulses in
a slit-groove structure. (b) Scanning electron microscope (SEM) image of a slit–
groove structure in a 200-nm thick epitaxially grown gold film. (c) Reconstructed
time structure of the propagating SPP field at grooves with a distance of L = 30,
40, 50 µm from the launching slit, respectively. Inset: Field directly transmitted
through the slit. (d) Calculated electric fields at the grooves with varying slit–
groove distance L by FDTD simulations.23

the time structures of the time-domain response functions r(t) are
reconstructed for the light that is transmitted through the slit or
scattered from the groove.

This response function corresponds to the shortest possible pulse
that can be generated at the different sample positions. The mea-
surements are performed for several different distances L between
slit and groove, varying between 30µm and 50 µm, to visualize the
effect of the SPP propagation of the pulse profile. As incident light,
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pulses from a supercontinuum light source are used. Since the slit
supports a propagating mode, essentially the entire bandwidth of the
incident light is transmitted, resulting in an extremely short response
function measured at the slit exit that supports a single-cycle SPP
pulse. The effect of the propagation between slit and groove on the
time-structure of such a short SPP pulse is clearly visualized in
Fig. 7.3(c). The measurements not only reveal the increasing time
delay of the pulses with increasing distance but they also show the
reshaping and stretching of the pulse. A detailed data analysis shows
that the deduced average group velocity (∼0.9 c0, c0: speed of light
in vacuum) agrees well with the tabulated values for the refractive
index of gold and the predicted dispersion relation of a gold/air
interface. Also, the measured values for the frequency-dependent
group velocity dispersion (∼0.5 fs2µm)−1 agree reasonably well with
those deduced from the tabulated refractive index. This shows that
such measurements of plasmon propagation at the field level can
give important information, with attosecond precision, on how this
propagation affects the shape of the pulse. This may be helpful for
probing the effects of optical nonlinearities on plasmon propagation
and to develop and implement novel classes of ultrafast plasmonic
switches.

7.3. Ultrafast Nonlinear Plasmonics

The linear spectroscopic techniques discussed in the previous chapter
can provide time-domain measurements of the linear response of a
plasmonic structure. As such, they give access to the electric field
dynamics and — if combined with microscopy methods — to the
local electric field dynamics in such structures. Yet, being linear opti-
cal techniques, they often suffer from interference from background
or stray fields which may be difficult to eliminate even when using
advanced modulation techniques.

One of the characteristic features of plasmonic samples is the
strong local enhancement of the optical fields at the surface of the
nanostructure. This can locally enhance optical nonlinearities by
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orders of magnitude. This unique field localization feature and the
short lifetimes of the localized plasmonic modes make it attrac-
tive to employ time-domain nonlinear spectroscopy techniques for
characterizing plasmon dynamics. Such methods have been used by
a number of research groups to characterize optical nonlinearities in
single nanostructures12,26−28,30,31,6−72 or to probe plasmon propaga-
tion and localization in a variety of plasmonic systems.21,22,24,25,73,75

Here, we will discuss two of these methods, interferometric frequency-
resolved nonlinear correlation spectroscopy and PEEM in more detail
and give selected examples for their application.

7.3.1. Interferometric frequency-resolved

autocorrelation: Nonlinearities of single

nanostructures

IFRAC, or interferometric frequency-resolved optical gating, is a
powerful method to retrieve the time structure of the electric field
of an unknown ultrashort laser pulse.75−77 The IFRAC measure-
ments have also been helpful in determining the carrier-envelope
offset (CEO) frequency of phase-stabilized pulses.78

Experimentally, IFRAC measurements are performed again by
making use of a collinearly propagating, phase-locked pair of time-
delayed pulses that is generated in a Michelson interferometer. This
pulse pair is focused onto a sample and induces a nonlinear optical
polarization.79 The electric field that is reemitted by this nonlinear
material polarization is spectrally dispersed in a monochromator and
the intensity of the field is recorded with a charge-coupled device
(CCD) camera as a function of the time delay τ between the two
pulses.

To be specific, let us now assume that the pulses are inducing
second harmonic (SH) radiation in an off-resonant and isotropic
material. Then, the material is characterized by a second-order
optical nonlinear susceptibility χ(2) which does not vary strongly
with laser wavelength. In this limit, the emitted SH field is simply
proportional to the square of the total incident laser field and the
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recorded interferometric autocorrelation signal can be written as

IIF(ω, τ ) ∝ |
∫ ∞

−∞
(E(t) + E(t+ τ))2 exp(−iωt)dt|2 (7.7)

It can be seen in Fig. 7.4, that this is quite a complex inter-
ferogram, showing many different types of fringes and carrying very
detailed information. On the horizontal axis, it displays high-contrast
temporal fringes along the delay axis. The vertical axis shows how
these fringes vary with the detection wavelength λ = 2πc/ω. Most
importantly, as shown by Stibenz et al.,76 this interferogram can be
used to reconstruct the time dynamics of the electric field E(t) of one
of the incident pulses. To see this, we write E(t) = A(t) exp(iω0t)
as the product of a complex amplitude A(t) and a carrier wave
at angular frequency ω0 and introduce the difference frequency
∆ω = ω − 2ω0. Then, Eq. (7.7) can be transformed into

IIF(ω, τ ) = 2|ESH(∆ω)|2 + 4|EFROG(∆ω, τ)|2

+ 8cos
[(
ω0 +

∆ω
2

)
τ

]
Re

×
[
EFROG(∆ω, τ)E∗

SH(∆ω) exp
(
i
∆ω
2
τ

)]

+ 2cos[(2ω0 + ∆ω)τ ]|ESH(∆ω)|2 (7.8)

Here,

ESH(∆ω) =
∫ ∞

−∞
A(t)2 exp(−i∆ωt)dt (7.9)

is the amplitude spectrum of SH field of a single pulse, and

EFROG(∆ω, τ) =
∫ ∞

−∞
A(t)A(t− τ) exp(−i∆ωt)dt (7.10)

is the so-called FROG (frequency-resolved optical gating) field of
the two pulses.80,81 This FROG field is of particular interest for
us since the spectrogram IFROG(∆ω, τ) = |EFROG(∆ω, τ)|2 can
be used to reconstruct amplitude and phase of the incident pulse.
“FROG” is currently the most commonly used technique for the
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Fig. 7.4. (a) Schematic of the IFRAC microscope for time-resolved characteri-
zation of adiabatically nanofocused plasmonic light spots at the apex of a conical
gold taper. A scanning electron microscope image of a taper with a grating coupler
is shown. (b) Experimental IFRAC trace of the second harmonic emission from
the plasmonic light spot at the taper apex. (c) Time profile of the electric fields
(red curves) of the incident laser and the nanofocused field at the taper apex. The
intensity spectra and spectral phases of both fields, retrieved from the IFRAC
measurements, are shown as red and blue lines, respectively. In contrast to the
flat phase of the incident pulse, the nanofocused pulse shows a small second-order
dispersion of 25 fs2.

analysis of ultrashort optical pulses and a variety of phase-retrieval
codes82,83 are publicly or commercially available to obtain E(t) from
IFROG(∆ω, τ).

The FROG signal can now be isolated from the IFRAC inter-
ferogram by calculating a Fourier transform of IIF along the delay
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time axis. This Fourier transform shows well-separated peaks around
0 (the DC component), ±ω0 (the fundamental sidebands) and ±2ω0

(the second-order sidebands). The individual peaks in the Fourier
transform can be isolated by, e.g. super-Gaussian filtering and zero
padding. Fourier back transformation of the DC peak gives the
sum of the first two terms in Eq. (7.8) and, after subtraction of
the delay-independent background 2|ESH|2, the desired spectrogram
IFROG(∆ω, τ). Amplitude and phase of the incident field E(t) can
then be reconstructed using standard phase-retrieval software.

It is important to note that also the first-order sideband can be
used for phase retrieval.77 and that the second-order sidepeaks pro-
vide a phase reference which can be helpful for extracting additional
information from the first-order peak. Also, we note that the quanti-
tative analysis of such IFRAC data is of course not limited to mate-
rial systems that are showing a quasi-instantaneous nonlinear optical
response. In such cases, a quantitative analysis of the data requires a
more advanced modeling of the transient nonlinear optical response
of the system. This may, for example, be achieved by density-matrix-
based simulations of optical Bloch equations. Such a more advanced
approach has successfully been applied, for example, to analyze
carrier-wave Rabi oscillations in semiconductors,84,85 to distinguish
between SH emission and two-photon induced luminescence86 or to
study light localization in zinc oxide nanoneedle arrays.87

Here, we use IFRAC to study the pulse duration of ultra-
short, nanolocalized light spots that are created at the apex
of a sharp, needle-like gold taper by plasmonic nanofocusing.7,31

Plasmonic nanofocusing is an emerging, powerful technique to
create isolated and ultrashort nanometer-sized optical27,86,88 and
electron pulses89−91 by using plasmonic superlenses as focusing
element. Its applications are rapidly increasing in different areas of
nanooptics.29,92−97

Plasmonic nanofocusing combines two of the outstanding
properties of metallic nanostructures, their ability to coherently
transport energy in the form of propagating SPP waves over
mesoscopic distances and to localize this energy into nanomet-
ric spots by coupling SPPs with localized surface plasmon (LSP)
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resonances. In particular, sharp conical gold tapers, such as those
shown in Fig. 7.4(a), are of interest for plasmonic nanofocusing. The-
oretical work by Babadjanyan et al.98,99 and Stockman100 showed
that the lowest order eigenmode of such a conical metallic taper
remains a bound, evanescent SPP mode even for vanishingly small
taper radii. The analysis of the eigenmodes of such tapers indicate
that the effective refractive index of this mode increases strongly
with decreasing tip radius and diverges in the limit of vanishing
radius. Consequently, the local SPP wavelength decreases to zero
when approaching the taper apex. For the ideal limit of an infinitely
sharp tip and a sufficiently slow (adiabatic) spatial variation of the
taper radius, both phase and group velocities decrease to zero, and
hence the SPP wave packet is predicted to slow down and come
to a complete halt as it approaches the tip apex.100 The adiabatic
decrease in group velocity is related to a divergence of the electric
field strength near the tip apex and to an extreme concentration of
the electromagnetic energy stored in the SPP wave packet into a
vanishingly small spot size.100 Effectively, the spatial extent of the
SPP wave packet reduces as it approaches the apex and is trans-
formed adiabatically from a propagating into a localized mode. Even
if the field singularity at the tip apex is removed by limiting the
minimum tip radius to 2 nm,101,102 a strong enhancement of the field
intensity by more than three orders of magnitude remains. This field
localization is expected for adiabatic tapers whose change in taper
diameter is small on a scale of the wavelength.

This raises the question whether this adiabatic decrease of the
SPP group velocity can be seen experimentally and to what extent
this affects SPP propagation along such conical tapers.31,103,104 To
analyse these dynamics, we used the experimental setup schemat-
ically depicted in Fig. 7.4(a). Laser pulses at a center wavelength
of about 800 nm and with a duration of only 6 fs are derived from
a Titanium:sapphire oscillator operating at a repetition rate of 82
MHz. The dispersion of those pulses is controlled by a pair of chirped
mirrors and their spectral amplitude and phase is precisely measured,
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as shown in Fig. 7.4(c). This pulse is sent through a Michelson inter-
ferometer and the resulting time-delayed pulse pair is focused onto
the shaft of a conical gold taper with an opening angle of about 30◦.
An all-reflective objective is used for focusing in order to avoid a
chirping of the incident pulse.105 The gold taper is prepared from a
single-crystalline gold wire by chemical etching and has a particularly
smooth surface. It is equipped with a slit grating with a subwave-
length period positioned at a distance of about 30 µm from the taper
apex. This grating is used to launch SPPs at the taper surface which
then propagate as evanescent waves towards the taper apex. Away
from the apex, the intensity of these pulses is so low that all nonlinear
optical effects can safely be neglected. Close to the apex, however,
the spot size of the SPP fields gradually decreases. This results in
a local enhancement of the field intensity that is so significant that
quite intense SH radiation is generated in the apex region. The emit-
ted SH is collected with a high numerical aperture objective with a
focal spot size of less than 1 µm, imaged onto a monochromator and
detected with a CCD camera. Typically, we collect in these experi-
ments about 106–107 SH photons per second, even though the apex
radius is quite small — less than 10 nm as confirmed independently
by high-resolution near-field scattering optical microscopy of single
gold nanoparticles.86

Such signal levels are well sufficient to record noise-free IFRAC
traces, as illustrated in Fig. 7.4(b). Compared to the IFRAC traces
of the incident pulses,43,86 the interference fringes in the signals from
the tip apex extend to slightly longer time delays, pointing to a slight
temporal stretching of the pulse at the apex of the taper. The electric
field profile of the pulse at the taper apex that is deduced from the
IFRAC measurements is shown in Fig. 7.4(c), together with that of
the 6-fs incident pulses. A slight increase of the pulse duration and a
minor chirp of the pulse is seen. Quantitative values of the intensity
spectra and spectral phases of both fields are depicted in the insets
in Fig. 7.4(c) as blue and red lines, respectively. It is seen that the
intensity spectrum of the pulses reaching the apex is very similar
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to that of the incident pulses, apart from a cutoff at short wave-
lengths. This cutoff is due to the strong increase in SPP absorption
in the gold film in the blue part of the pulse spectrum. Such a broad
intensity spectrum at the apex is achieved by rather tight focusing
onto the grating coupler which largely increases the bandwidth of
the incident light that is coupled with SPPs on the taper shaft. The
bandwidth of the spectrum is more than 250 nm wide, which is suf-
ficient to create 3-cycle pulses. In contrast to the flat spectral phase
of the incident pulses, the retrieved spectral phase of the pulses at
the apex shows a small, yet clear second-order dispersion of 25 fs2.
This stretches the pulse duration at the apex to more than 10 fs.
Only a part of this pulse stretching is due to the measured chirp of
the pulse. Our results suggest that the measured value of the second-
order dispersion would result in a stretching of a chirp-free 6-fs pulse
to slightly less than 8 fs. The additional increase in pulse duration
at the apex is due to the finite spectral bandwidth of the grating
coupler.

It seems tempting to assign this chirp to the predicted slowdown
of the SPP group velocity in the apex region. A comparison of
the experimental data with fully three-dimensional finite difference
time-domain (FDTD) simulations of the SPP wavepacket dynamics
indicates, however, that the actual spatiotemporal SPP propagation
dynamics is more complex. Since the SPP pulses are only launched
in a small area of a few square-microns on the grating coupler, the
resulting SPP wavepacket will not only propagate towards the apex
but also spread along the circumference of the taper (a movie of
the SPP propagation dynamics is shown in the Supporting Informa-
tion of Ref. [69]). This results in a spatial and temporal spread of
the SPP wavepacket and may lead to local pulse durations that are
even larger than those at the apex. Hence, the chirp that is seen
in Fig. 7.4(c) mostly results from SPP propagation along the taper
shaft. Importantly, the FDTD simulations support the main con-
clusion that plasmonic nanofocusing leads to the formation of high-
intensity few-cycle SPP pulses at the very apex of the taper, with
spot sizes solely limited by the taper apex diameter.
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Similar studies of the SPP pulse propagation have also been
reported in Ref. [104]. Here, group delays of about 9 fs have been
observed in the apex region of chemically etched polycrystalline
gold tapers and have been assigned to a nanofocusing-induced slow-
down of the group velocity to about 0.2 c0. Recent electron energy-
loss spectroscopy (EELS) experiments106−108 suggest that such SPP
localization phenomena may strongly depend on the geometry of
these tapers, in particular their opening angle and surface roughness.
The exact shape of the taper in a subwavelength region around the
apex may have a profound influence and result in complex reflec-
tion and localization phenomena that deserve further experimental
investigations.97,109,111

In summary, the presented results show that IFRAC mea-
surements are a powerful method to accurately measure the time
structure of the local electric field at the surface of a plasmonic
nanostructure. In contrast to spectral interferometry, discussed in
Section 7.2.2, it does not measure the linear response function of
a certain plasmonic system, but allows reconstructing the time-
dependent SPP field by means of fast and efficient retrieval algo-
rithms. This pulse characterization at the field level can only be
achieved by nonlinear optical techniques.111 It is important that such
a retrieval cannot be unambiguously achieved on the basis of more
conventional interferometric autocorrelation measurements, even if
the intensity spectrum of the SPP pulse is known.82 As such IFRAC
measurements or other variants of nonlinear, frequency-resolved opti-
cal grating techniques are of paramount importance for providing
full temporal information about SPP fields. Their sensitivity is so
high that even the SPP field dynamics of single nanoparticles can be
analyzed.26,27,31

Being far-field optical techniques, their spatial resolution is inher-
ently limited by the wavelength of light. Photoelectron emission
microscopy (PEEM), discussed in the next section, can overcome this
limitation and can greatly increase the spatial resolution of time-
domain SPP field characterization techniques, in principle even to
less than 10 nm.
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7.3.2. Ultrafast photoemission electron microscopy:

Controlling optical fields on the nanoscale

Photoemission electron microscopy (PEEM) is a well-established
technique in surface science in which the spatial distribution and,
possibly, kinetic energy of photoelectrons that are emitted from a
surface are imaged with high resolution.112,113 It is a surface-sensitive
technique since the photoelectrons are emitted from a shallow layer
near the surface. Photoelectron microscopes operate under ultrahigh
vacuum conditions and require a high bias voltage between the sam-
ple and the lens system that images the photoelectrons onto a two-
dimensional detector screen. Under favorable conditions, the spatial
resolution of such PEEM images can reach 10 nm or potentially even
less. Thus, it can exceed that of far-field optical techniques discussed
in Section 7.3.1. by approximately one order of magnitude.

In plasmonics, PEEM has first been used by Kubo et al. to study
photoemission from a structured silver film.21 In their experiment,
they used a phase-locked pair of ultrashort 10-fs pulses at a wave-
length of 400 nm to emit photoelectrons from a silver line grating.
Since the photon energy of the incident pulses of 3.1 eV is much
lower than the work function of silver (∼4.2 eV), photoemission is a
nonlinear, two-photon process. The photoemission yield scales with
the fourth power of the incident field, as in SH emission discussed
in Section 7.3.1. Due to this nonlinearity of the photoemission yield,
the images show photoemission from local “hot spots” of the plasmon
field at the surface (Fig. 7.5(a)). Hot spot formation is a consequence
of SPP localization resulting from multiple scattering of SPPs in the
rough and disordered line grating. It is clearly revealed by the local
enhancement of the electron yield at certain positions along the line
grating. Kubo et al. have now recorded such images as a function
of the time-delay between the two pulses that were used for pho-
toexcitation. A typical interferogram is shown in Fig. 7.5(b). When
comparing interferograms recorded at different hot spots, slight vari-
ations in the fringe spacing were observed at delay times of more
than 20 fs. These variations were taken as a signature that localized
SPP modes with varying resonance frequencies were associated to



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch07 page 277

Ultrafast Plasmonics 277

Fig. 7.5. (a) The PEEM micrograph of a silver grating illuminated with 400-
nm femtosecond laser, linearly polarized perpendicular to the grating lines. The
surface roughness gives rise to excitation of the localized SP modes seen as hot
spots. (b) Microscopic interferometric two-pulse correlation scan from the indi-
vidual hot spot A in the blue rectangle of (a). Figure reproduced with permission
from Ref. [21].

the different hot spots. The lifetime of these localized SPP modes
is sufficiently long to result in lasting fringes in the interferogram.
It was difficult to extract more quantitative information about the
dynamics of the local hot spots from those measurements.

In later experiments from the same group,22 a phase-locked pair
of similar 10-fs pulses at 400-nm wavelength was used to illuminate
a line defect in a silver film. The PEEM images of the local photo-
electron emission yield are recorded as a function of the time delay
between the pulses and are presented in the form of a movie in the
Supporting Information of Ref. [22]. The movie shows a spatially
modulated emission pattern that propagates away from the slit as
the time delay increases. Light scattering at the slit launches prop-
agating SPP fields at the surface of the silver film that propagate
away from the slit at a group velocity of about 0.6 c0. At 400-nm
wavelength, the SPP propagation length is rather short, ∼3 µm,
corresponding to an SPP lifetime of 12 fs. This limits the experi-
mentally observed interference patterns to a narrow region around
the slit. Much longer propagation lengths are observed when using
longer wavelength pulses for excitation.114 The analysis of the results
in Ref. [22] shows that the interference between the excitation field,
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incident under a small angle, and the launched SPP field needs to
be properly taken into account to match the experimental observa-
tions and extract quantitative information about the plasmon prop-
agation. Generally, such PEEM measurements provide very detailed
insight into the spatiotemporal propagation of SPP waves in plas-
monic structures. Ultrafast PEEM can reveal the excitation and
propagation of SPP waves even in complex and highly spatially
inhomogeneous structures and has been employed, e.g. to probe the
dynamics and lifetimes of SPP excitations in a number of different
structures.72,73,115,116.

An entirely new class of experiments becomes possible when com-
bining PEEM with tailor-made ultra-fast optical pulses such as those
shown in Fig. 7.6(a). Powerful pulse shaping tools have been devel-
oped over the last years to sensitively control the amplitude and
phase of each of the frequency components of an ultrashort opti-
cal pulse.117 By making use of advanced spatial light modulation
techniques, Fourier-domain pulse shaping provides exquisite control
over the temporal structure of the electric field of ultrashort optical
pulses. Moreover, optical pulses with complex, time-varying polariza-
tion states can be synthesized by controlling the polarization state
of each of the spectral components of the pulse.118 This polarization
pulse shaping thus does control the temporal shape not only of the
amplitude, but also of the vectorial properties of an ultrashort optical
pulse. An illustration of a complex time-varying electric vector field
that can result from such a polarization pulse shaping is presented
in Fig. 7.6(a).

This offers the exciting opportunity to coherently control the
spatiotemporal dynamics of SPP fields in plasmonic nanostructures.
Let us assume that such a polarization-tailored optical pulse interacts
with an extended plasmonic nanostructure and that the spectrum of
the pulse overlaps with several plasmonic eigenmodes of the nanos-
tructure. This interaction then leads to a complex SPP field pattern
at the surface. The spatiotemporal properties of this field depend, in
general, sensitively on the polarization properties of the input pulse.
Polarization pulse shaping thus offers an intriguing perspective to
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Fig. 7.6. (a) Experimental scheme of a PEEM combined with an ultrafast pulse
shaper. The polarization shaper for ultrashort laser pulses controls the tempo-
ral evolution of the vectorial electric field E(t) on a femtosecond scale. These
pulses illuminate plasmonic nanostructures in an ultrahigh-vacuum chamber with
a PEEM. A CCD camera records the photoemission image and provides a feed-
back signal for an evolutionary learning algorithm. The experimental photoelec-
tron distribution of the star-shaped nanostructure is displayed under p-polarized
excitation with unshaped pulses (b), after adaptive A/B maximization (c), and
after A/B minimization (e), respectively. (d) Adaptive optimization of the A/B
photoemission ratio leads to increased (red) and decreased (blue) contrast of
electron yields from the upper and lower regions as compared to unshaped laser
pulses recorded as a reference (black). Figure reproduced with permission from
Ref. [24].
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spatially and temporally shape the SPP field at the surface of the
nanostructure.119 This concept has been demonstrated in a seminal
paper by Aeschlimann et al.24 Pulses from a Titanium:sapphire laser
are sent through a polarization pulse shaper. They are then focused
onto a plasmonic nanostructure that consists of three dimers of cir-
cular silver disks with 180 nm diameter (Fig. 7.6(b)). A PEEM is
used to image the emission of photoelectrons from the nanodisks.
The number of photoelectrons that is emitted from either the upper
two dimers (region A) or the lower dimer (region B) is recorded.
The signal provides a feedback signal for an evolutionary learning
algorithm. Its output controls the settings of the polarization pulse
shaper. By means of a genetic feedback algorithm, the polarization
pulse is modified until either emission from region A or B is maxi-
mized. The PEEM image that results for optimization of region A
is shown in Fig. 7.6(c). Photoemission stems almost exclusively from
the upper two dimers. In contrast (Figs. 7.6(d,e)), the photoemission
is mostly dominated by the lower dimer after the learning algorithm
was told to optimize emission from region B. Such a polarization
pulse shaping thus offers an exciting perspective for controlling local
optical fields on the nanoscale. It forms the basis for a spatiotempo-
ral control of plasmonic nanofocusing.120,121 or — more generally —
for a coherent control of the transmission of light through multiply
scattering media.122,123

Very interesting perspectives also emerge when combining PEEM
with two-color excitation. In a theoretical paper, Stockman et al.
suggested the development of a new type of ultrafast photoelec-
tron microscope that allows for probing the dynamics of SPPs on a
plasmonic structure on nanometer length and sub-femtosecond time
scales.124 The idea is to use a strong ultrashort near-infrared driv-
ing pulse that resonantly excites the structure, and a high-energy
attosecond, extreme ultraviolet (XUV) pulse to photoemit electrons
from the excited structure. The XUV pulse duration is shorter than
one oscillation cycle of the near-infrared plasmonic field. Photoemis-
sion occurs mainly when both the driving pulse and the XUV pulse
are present. Photoelectrons emitted by the XUV pulse in the presence
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of local SPP field induced by the strong NIR driving pulse will, as a
result, be accelerated, and the resulting change in the kinetic energy
of the photoelectrons is directly related to the vector potential of
the local SPP field at the moment of photoemission. By simultane-
ously measuring the spatial distribution and kinetic energy of the
photoemitted electrons, the spatiotemporal dynamics of local near-
infrared SPP fields can be directly probed on their natural ultrashort
length and time scales. Experimental tests of these ideas, which are
technically rather demanding and require advanced laser technology,
are currently being pursued in different laboratories.125−129.

7.4. Ultrafast Pump-probe Spectroscopy:
Exciton–Plasmon Rabi Oscillations in Hybrid
Metal-molecular Nanostructures

The measurement techniques that we have discussed so far give access
to the dynamics of local electric fields at or near the surface of plas-
monic nanostructures. We have seen that these coherent fields are
usually very short-lived. Depending on the geometry, shape and com-
position of the plasmonic material or nanostructure, they persist for
a few to a few tens of femtoseconds, at most slightly more than 100 fs.
Often, it is of interest to not only know the dynamics of these ultra-
fast fields but also know whether the optical excitation of a plasmonic
material results in a transfer of energy (or charges/spins) to a neigh-
boring material. Measurements of the dynamics and yield of these
processes can give important insight into the underlying physical pro-
cesses. The experimental method of choice for probing such transfer
processes is ultrafast pump-probe spectroscopy.130,131 In pump-probe
spectroscopy, a sample is illuminated with (a sequence of) ultrafast
pump-pulses. The effect of this excitation on the transmission of
a time-delayed probe pulse is measured by recording a differential
transmission spectrum

∆T (λ, τ )
T (λ)

=
Ton(λ, τ )− Toff(λ)

Toff(λ)
. (7.11)
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Fig. 7.7. Schematic illustration of a typical pump-probe setup. Ultrashort pulses
are split into a pair of pump and probe pulses with variable time delay τ . The
pump laser pulses are periodically switched on and off by a chopper, and differ-
ential transmission spectra ∆T/T are recorded.

Here, Ton(λ, τ ) and Toff(λ, τ ) denote the transmission of the probe
laser through the sample in the presence and absence of the pump
laser, respectively. Such pump-probe spectra are typically measured
by spectrally dispersing the transmitted probe laser spectrum in a
monochromator and recording spectra with a photodiode detector
or CCD camera with electronics that is specially designed for fast
read-out and low noise.132 The pump laser is periodically blocked by
a fast chopper (Fig. 7.7). Such pump-probe measurements can also
be performed in a reflection geometry.

Importantly, the time resolution in such measurements is only
limited by the duration of the pump and probe pulses. Using, e.g.
non-collinear optical parametric amplifiers as spectrally tunable laser
sources,133 the time resolution can reach 10 fs or even less. This pulse
duration is shorter than the period of even the fastest vibrational
modes in molecules or solids. As such, the “impulsive” excitation of
a material system with such short optical pulses generally induces a
variety of high-frequency coherent electronic, nuclear and spin oscil-
lations. The dynamics of those oscillations can conveniently be traced
in the time domain by interrogating the optical response of the sys-
tem with a time-delayed probe pulse. This can also sensitively probe
incoherent relaxation pathways between different quantum states of
the system.

More formally, such a pump-probe experiment measures a
higher-order nonlinear material polarization P (n) of the system under
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investigation. In the simplest case (in the limit of sufficiently weak
pump- and probe pulses), the third-order polarization P (3) is mea-
sured. This nonlinear polarization can be written as the convolution
of a third-order nonlinear response function S(3)(t3, t2, t1) with the
three interacting electric fields E(ti), i = 1, 2, 3. Here, E(ti) denotes
the sum of all incident fields at moment ti and

P (3)(t) =
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1E(t− t3)E(t− t3 − t2)

·E(t− t3 − t2 − t1) · S(3)(t3, t2, t1) (7.12)

Hence, pump-probe spectroscopy probes specific types of nonlin-
ear response functions, in contrast to the linear response functions
that are measured with the techniques discussed in Sections 7.2–7.4.
The theoretical description of these response functions is highly
developed and can be found in several excellent textbooks.131,134

These response functions are commonly used to calculate the non-
linear polarization and to simulate pump-probe spectra.

Alternatively, the nonlinear material polarization can be obtained
by directly evaluating the time-evolution of the density matrix ρ of
the system by solving the Liouville–von Neumann equation

∂ρ

∂t
= − i

�
[H, ρ] +

∂ρ

∂t

∣∣∣∣
rel

. (7.13)

Here, H denotes the full Hamiltonian of the system including the
light-matter coupling and the final term in Eq. (7.13) includes possi-
ble dephasing and relaxation phenomena. The macroscopic material
polarization is then given by the expectation value of the dipole oper-
ator µ as

P(t) = Tr(µρ(t)), (7.14)

where Tr denotes the trace of a matrix. The nth-order polarization
P(n)(t) = Tr(µρ(n)(t)) can be conveniently obtained by a pertur-
bative analysis of the dynamics of the density matrix. For this, the
density matrix is expanded in order of powers n of the incident elec-
tric field, ρ(n)(t).
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To illustrate the vast amount of information that can be obtained
from such pump–probe studies, we focus on a specific example,
the coherent coupling of excitons in molecular aggregates to sur-
face plasmon polariton fields in a plasmonic nanoresonator.32,33,135

We will show how this coupling results in a periodic transfer of
energy between plasmonic and excitonic system and how this coher-
ent energy transfer can directly be seen in time-domain pump–probe
experiments.

As an excitonic model system, we study the cyanine dye 2,2′-
dimethyl-8-phenyl-5,6,5′ ,6′-dibenzothiacarbocyanine chloride. This
dye was dissolved in a solution containing polyvinyl alcohol, water
and methanol. The solution was spin-coated onto an optically thick
gold film to form a 50-nm thick dye film. When deposited onto a
planar, unstructured gold surface, this film shows very pronounced
light absorption at the excitonic resonance of the J-aggregated dye
film (∼700 nm, Fig. 7.8(b,c)). J-aggregation of the highly concen-
trated dye forms exciton states with excitonic wavefunctions that
are delocalized over several monomer units of the dye. This exciton
delocalization results in a pronounced red shift of the J-aggregate
exciton with respect to that of the monomer. Also, the J-aggregated
excitonic spectrum shows a very strong light absorption (absorption
coefficient ∼2 · 105 cm−1) and a particularly narrow linewidth. This
strong coupling to light makes it an interesting candidate for exciton-
plasmon coupling.136 As can be seen in Fig. 7.8(b), the excitonic
resonance of the dye film is essentially independent of the angle of
incidence under which light reflection from the film is probed. This
shows that the localization length of J-aggregate exciton is much
smaller than one optical wavelength and that its effective mass is too
large to induce a sizeable angle-dependence of the spectrum.

To form a plasmonic nanoresonator, a periodic array of
nanometer-sized slits is milled into an optical gold film. The array
period is 430 nm. The width (∼45 nm) and depth (∼30 nm) of the
array was chosen to minimize radiative damping20 of SPP excitations
of the film and to increase the SPP lifetime. As is evident from the
angle-dependent linear reflectivity spectra shown in Fig. 7.8(e), these
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Fig. 7.8. Angle-resolved, p-polarized linear reflectivity spectra of J-aggregate
dye molecules on a plasmonic nano-slit array. (a) Molecular structure of the dye.
(b) Spectral reflectivity of a 50 nm-thick film of J-aggregate molecules in a poly-
mer matrix coated onto a planar gold surface as a function of incident angle
between 20◦ and 50◦. (c) A typical single reflectivity spectrum at θ = 40◦. (d)
Schematic of the grating structure excited by an ultrashort pulse. (e) Spectral
reflectivity measurements of a grating with a period of 430 nm. (f) A typical
reflectivity spectrum of the grating, taken at θ = 50◦.

nanoslit arrays show a very pronounced absorption dip at the SPP
resonance. The linewidth of the SPP resonance is extremely narrow
(∼5 nm), giving evidence for a long lifetime of the SPP mode. The
steep angular dispersion of the SPP mode results in pronounced shifts
of the SPP resonance with incidence angle.

These reflectivity spectra change considerably when depositing
the J-aggregated dye film onto the nanoslit array (Fig. 7.9). Now, one
still sees a remaining absorption at the resonance energy of the bare
J-aggregate exciton. The dispersion of the strongly angle-dependent
resonances, however, is drastically different from that of the SPP res-
onance at the bare slit grating. Near a crossing angle of ∼30 degrees,
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Fig. 7.9. (a) Schematic of the formation of coupled exciton–plasmon-polariton
modes in a hybrid structure consisting of a gold nano-slit array and a J-aggregated
dye film. Near the crossing of the dispersion diagram of an uncoupled dye film
and a plasmonic periodic grating, exciton–plasmon coupling leads to the forma-
tion of coupled polariton modes. In case of strong coupling, the two branches
split into distinctly observable upper and lower polaritons. (b) and (c) Angular-
resolved reflectivity amplitude and spectral phase of the hybrid structure with a
50-nm-thick J-aggregated dye film. The black (white) lines in (b) and (c) mark
the coupled (uncoupled) mode dispersion curves. (Adapted with permission from
ACS Nano, Article ASAP, DOI: 10.1021/nn405981k. Copyright (2013) American
Chemical Society.)

one sees a clear bending of the high-energy resonance (above the
J-aggregate exciton) and the low-energy resonance. At the crossing
angle, both modes are clearly energy separated by a splitting energy
�ΩNMS, the normal mode splitting. In the present sample, the split-
ting energy is about 110 meV.

This splitting is a clear signature of a strong coupling between
excitons and surface plasmon polaritons.136−141 The local SPP field
in the vicinity of the nanoslits couples to the optical transition dipole
moments of those J-aggregate excitons that have spatial and orienta-
tional overlap with the SPP field. This results in a transfer of energy
from the SPP field to the excitonic system: the SPP field induces
coherent dipole oscillations in the excitonic layer. Vice versa, the
optical near fields created by the excitonic dipole polarization induce
SPP oscillations in the plasmonic structure and thus transfer energy
back to the plasmonic system. In the limit of strong coupling, i.e.
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if the normal mode splitting exceeds the losses of both the exciton
and SPP mode, one expects coherent population oscillations, Rabi
oscillations, between the excitonic and the SPP mode. The period
of these Rabi oscillations should be 2π/ΩNMS, which, in the present
sample is ∼30 fs.

The strength of this exciton–SPP coupling, the Rabi coupling
ΩR = ΩNMS/2, scales with the scalar product of the excitonic tran-
sition dipole moment and the local electric field times the square
root of the number of J-aggregate excitons that are coupled to sin-
gle SPP modes. In case that the energies of the uncoupled exci-
ton and SPP modes are brought into resonance and that the Rabi
coupling strength exceeds the losses of both the excitonic and the
SPP system, this coupling results in the formation of new upper
(UP) and lower (LP) polaritons. These polariton modes are delocal-
ized, hybrid modes of excitons and SPPs and are the new normal
modes of the coupled system. At the crossing between the exciton
and SPP dispersion relations, the UP–LP splitting is approximately
twice the Rabi energy �ΩR. It is important that the existence and
the strength of this polariton splitting do not depend on the pres-
ence of an external laser field. It may be understood as coupling of
excitonic dipole moments to vacuum fluctuations of the SPP field.
In the present experiments, a large number of excitons are coupled
to the SPP field, and hence the optical signatures of this coupling are
similar to those of two coupled classical oscillators. In this limit, the
Rabi splitting is therefore often called normal mode splitting.142 In
the exciting limit of the strong coupling between a single exciton and
a single SPP mode,143−145 the vacuum Rabi splitting is expected to
depend sensitively on the number of SPPs that are present in the SPP
mode. The normal mode splitting between excitons and SPP fields
occurs only in the regions of the sample with a sufficiently high-field
amplitude of the SPP mode. In our grating structure, this is fulfilled
inside or in the vicinity of the nanoslits. In between two slits, the field
amplitude is much lower so that excitons in these regions will couple
only weakly to the SPP field. Hence, in these regions, no normal
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mode splitting appears and the excitons absorb light at the energy
of the bare J-aggregate exciton resonance.

We now perform a pump–probe experiment to study the periodic
energy transfer between SPPs and excitons in the time domain. For
this, we excite the sample with ultrashort light pulses with dura-
tion of less than 15 fs. This pulse duration is much shorter than
the expected Rabi oscillation period and, thus, short enough to tem-
porally resolve the periodic energy transfer between excitons and
SPPs. The center wavelength of these pulses is tuned to the uncou-
pled exciton resonance and their spectrum is sufficiently broad to
cover both the upper and lower polariton resonances. The pulses are
weakly focused onto the sample at an incidence angle of 39◦. This
angle is chosen in order to spectrally shift the LP away from the bare
J-aggregate exciton. Under these excitation conditions, both bare J-
aggregate exciton and UP mode overlap spectrally. Hence, the ultra-
fast pump pulse creates a coherent superposition of UP, LP and bare
exciton states. To monitor the time dynamics of the coherent polari-
tons wavepackets, we probe the pump-induced change of the reflectiv-
ity of a second, somewhat weaker and time-delayed, probe pulse. This
pulse is a replica of the pump laser and is also incident under the same
angle as the pump laser. The probe beam that is reflected from the
sample is spectrally dispersed in a monochromator, and the pump-
induced change in probe reflectivity ∆R/R is monitored in a broad
energy range, covering both polarition resonances (Fig. 7.10(a)). In
the energy range around 1.8 eV, the differential reflectivity is mostly
dominated by that of the bare J-aggregate excitons. The ∆R/R spec-
trum shows a dispersive lineshape, well known for such J-aggregated
system, which reflects, at lower energies, the pump-induced bleach-
ing of the J-aggregate exciton resonance. In the higher energy wing
of the spectrum, one sees a pump-induced decrease in reflectivity
since the probe light is absorbed by pump-induced exciton to biex-
citon transitions.146 The time dynamics of the pump–probe spectra
show, at negative time delays (when the probe laser arrives before the
pump laser), the so-called perturbed free-induction decay of the exci-
tonic polarization induced by the probe laser.147,148. This transient
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persists during the dephasing time of the coherent exciton population
of about 50 fs. At positive delay times, the decay of the pump–probe
signal is given by the decay of the incoherent exciton population that
is induced by the pump laser. In the present sample, this lifetime is
rather short, about 100–200 fs.33,140

Very different and interesting dynamics are observed when prob-
ing the differential reflectivity near the lower-energy LP resonance
at around 1.65 eV. Again, one finds a distinct dispersive lineshape of
the spectra (Fig. 7.10(b)) reflecting exciton bleaching at lower ener-
gies and biexciton absorption at higher energies. When following the
time dynamics of the differential reflectivity, one finds pronounced
temporal oscillations of the pump–probe signal, both at positive and
negative delay times. The oscillations have a period of about 26 fs,
which matches quite well the expectation for the Rabi oscillation
period. They persist for about 50 fs at positive and negative time
delays, a time scale that is shorter than the population decay time
of the excitons and reflects the dephasing time of the polariton res-
onances. Interestingly, the largest change in differential reflectivity
occurs at around time zero, i.e. when pump and probe lasers interact
simultaneously with the sample. This signal at around time zero does
not stem from the coherent interference of pump and probe lasers
on the sample (an effect that is often called a “coherent artifact”)
since care has been taken in suppressing such interference effects
experimentally.32 When simultaneously changing the incidence angle
of both lasers, the time-domain oscillations sill persist (Fig. 7.10(c))
but their oscillation period is slightly changed. Measured oscillation
periods for different incidence angles are shown in Fig. 7.10(f) as open
triangles. The observed values match quite well with those antici-
pated from the dispersion relation of the coupled polariton modes
(solid line in Fig. 7.10(f)).

How can we understand these time-domain oscillations and what
can be learned from them about the physics of exciton–plasmon inter-
actions? For this, it is important that the scattering cross-section
for SPP excitation by the pump laser is much larger than the exci-
ton absorption cross-section. Hence, the impulsive excitation of the



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch07 page 290

290 Handbook of Metamaterials and Plasmonics — Volume 4

Fig. 7.10. Coherent dynamics of the hybrid exciton/SPP system. (a) Measured
differential reflectivity map for a hybrid structure (J-aggregated dye on a grating
with period 430 nm), recorded at an angle of incidence of 39 deg. Clear temporal
Rabi oscillations are seen near the LP resonance at 1.64 eV. (b) Comparison of
measured (solid line) and simulated (dashed line) differential reflectivity spectra
at zero delay. (c) Time evolution of the differential reflectivity signal near the LP
resonance, measured at θ = 39 deg and θ = 31 deg. Pronounced sub-40fs Rabi
oscillations are noticeable. The shorter oscillation period for the larger angle of
incidence reflects the increased detuning of the hybrid exciton/SPP system. The
dashed line (vertically displaced by −0.025) represents simulated dynamics for an
incidence angle of 39 deg. (d) Simulated differential reflectivity map. (e) Pump-
induced SPP and exciton population dynamics at θ = 39 deg. (f) Comparison
of calculated (solid lines) and observed (open symbols) oscillation periods and
LP resonance energies as functions of θ. The simulated dispersion relations are
included. (Reprinted from Nature Photonics 7, 128132 (2013).)

sample by the pump laser mainly launches SPP excitations in the
nanoslit, while initially the probability to create excitons is rather
low. This is visualized by the blue and green curves in Fig. 7.10(e),
showing the time evolution of the SPP population and the exciton
population, respectively. These curves are simulated on the basis of
a quantum-mechanical density matrix model for the dynamics of the
hybrid exciton/SPP system.32 This shows that the nanoslit grating
essentially acts as an antenna that transforms the incident light into
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SPPs, whereas the direct coupling of the incident far-field light to the
J-aggregate excitons is so weak that it can basically be neglected.
One sees that after impulsive SPP excitation, the exciton population
is created within half a Rabi period. Concomitantly, the SPP popu-
lation decays rapidly. This is followed by periodic, out-of-phase oscil-
lations of both populations with the Rabi period. These oscillations,
which reflect the periodic exchange of the energy between the coupled
SPP and exciton modes, are then damped on a timescale given by
the lifetime of the coupled polariton modes.

This nicely explains the appearance of Rabi oscillations in hybrid
exciton–plasmon system. Yet, it cannot explain the time-dependent
differential reflectivity that is seen in Fig. 7.10(a). For this, it is
important to understand that the optical nonlinearities of excitons
and SPPs are fundamentally different. J-aggregate excitons have
very pronounced optical nonlinearities, and their optical excitation
results in a bleaching of the exciton absorption and in the appearance
of a transient biexciton absorption that is slightly blue-shifted with
respect to the fundamental exciton resonance. These strong excitonic
nonlinearities can account for the differential reflectivity near 1.80
eV, where the contribution from the UP resonance to the nonlin-
earity is weak. In contrast, surface polariton excitations in metallic
nanostructures can essentially be understood as photonic modes with
very weak optical nonlinearities. To first order, their optical proper-
ties are well-described by that of a linear harmonic oscillator. In
this (somewhat simplified) picture, the optical excitation of an SPP
mode should not lead to a differential reflectivity signal. Based on this
very simple model for the optical nonlinearities of the hybrid system
(bleaching of the excitonic mode but vanishing nonlinearity of the
SPP mode), one would expect the following differential reflectivity
dynamics. At time zero, SPP modes are excited (Fig. 7.10(e)). This
excitation does not instantaneously induce nonlinearities, and hence
the ∆R at time zero should be weak. After half a Rabi cycle, energy
is transferred from the SPP mode to the excitonic system. This now
results in a strong ∆R at this time delay, which decays again when
the energy is transferred back to the SPP mode. Similar dynamics are
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expected at negative time delays since both pump and probe laser
can launch SPP modes. Density matrix simulations support these
expectations.32

Yet, this is in striking contrast with the experimental data which
in fact show a maximum in ∆R at time zero and minima in ∆R
at half the Rabi period. This apparent discrepancy can be resolved
by taking into account a second, and much less understood, optical
nonlinearity of the coupled exciton–SPP system.140,149,150 We have
discussed that, in the present system, the SPP mode is coupled to a
large number of exciton states and that the normal mode splitting
scales with the square root of this number.136 The optical excitation
of a fraction nX of these exciton states by pump-induced transitions
from the exciton ground to the excited state will transiently alter
this normal mode splitting. Those excitons that have been optically
excited will no longer be able to absorb light from the SPP field.
Instead, their coupling to the SPP field will either induce their transi-
tion to higher lying biexciton states or will give rise to the stimulated
emission of SPP fields.151 This will, therefore, transiently reduce the
normal mode splitting ΩNMS(t) = Ω(0)

NMS

√
1− 2nx(t) by a factor that

depends on the fraction of optically created excitons. Here, Ω(0)
NMS is

the normal mode splitting in the absence of an optical excitation of
the system.

It turns out that this insight is the key to understanding the
unexpected ∆R dynamics in Fig. 7.10(a). When taking such a tran-
sient reduction of the normal mode splitting into account in our
density matrix simulations, we can nicely and almost quantitatively
reproduce the experimental results (Fig. 7.10(d)). It appears that
the effective reduction in normal mode splitting — and not the
excitonic bleaching — is the dominant optical nonlinearity of the
hybrid system. The simulations suggest that the change in normal
splitting that is induced by the pump and seen by the probe laser
is largest when the probe is time-delayed by an integer multiple of
the Rabi period. Hence, the nonlinearity is maximum at time zero,
satisfactorily explaining the experimental observation.



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch07 page 293

Ultrafast Plasmonics 293

This example shows that nonlinear pump–probe spectroscopy,
in particular when being performed with ultrashort optical pulses
with a duration that is much shorter than the femtosecond lifetime
of short-lived plasmonic modes, provides exquisitely detailed insight
into the elementary energy transfer processes in plasmonic nanos-
tructures that are coupled to other types of quantum emitters. It not
only reveals ultrafast Rabi oscillations as a sign of a periodic energy
exchange between plasmons and (molecular) excitons but also gives
direct access to the physical mechanisms that govern the optical non-
linearities of such hybrid systems. In the present example, we have
learned that the dominant optical nonlinearity is not the bleaching of
the excitonic absorption or a pump-induced excited state absorption,
as might have been expected on the basis of the optical nonlinearities
of the uncoupled systems. Instead, it appears that the photo-induced
generation of excitons results in a transient reduction of the normal
mode splitting in the system. Exciton creation reduces the num-
ber of final states that can absorb the electromagnetic energy that
is stored in surface plasmon polaritons. This mechanism provides a
new ultrafast and highly efficient switch for evanescent SPP fields.
Interestingly, the efficiency of this switch increases the smaller the
dimensions of the hybrid exciton/plasmon nanoresonator get. In the
fundamental limit of strong coupling between a single exciton and
single SPP mode,152 already the absorption of a single photon by
the exciton would suffice to fundamentally alter the optical proper-
ties of the coupled exciton/plasmon nanoresonator. This opens up
the exciting possibility to realize ultrafast, all-optical and highly effi-
cient plasmonic nanoswitches, transistors or gates that might even
consume less power than current electronic transistors, yet operate
on ultrafast, femtosecond times scale that are only accessible by opti-
cal means. Quantum optics dictates that the optical nonlinearities in
this ultimate limit of quantum plasmonics should be governed by
the Jaynes–Cummings model153,154 describing the coupling between
a single photonic mode and a single “two-level system”. It appears
extraordinarily interesting to explore this new regime of light-matter
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interaction. Ultrafast pump–probe spectroscopy should provide the
necessary tools to explore those avenues.

Much more generally, advanced ultrafast pump–probe spec-
troscopy provides all the necessary tools for studying the dynam-
ics of ultrafast charge, spin and energy transfer processes in various
types of nanosystems. This is important, for instance, for understand-
ing the effects of hot electron excitations on the catalytic activity
of nanoparticles155 or for unraveling the disputed role of coherent
vibronic couplings on light-to-current conversion in natural or artifi-
cial light harvesting systems.156−159 This holds in particular when
using advanced ultrafast spectroscopic tools such as 2D160,161 or
3D162 electronic spectroscopy. Yet, even when using such advanced
spectroscopic techniques, an outstanding scientific challenge remains:
Ideally, we would love to probe the coherent dynamics of such
energy-, charge- and spin transfer processes not only on femtosecond
time scales but at the level of a single nanostructure. Only true single
nanoparticle studies will enable us to unravel the effects of structural
nanoscale inhomogeneities on the dynamics of optical excitations in
hybrid and/or plasmonic nanosystems. Such ultrafast single nanopar-
ticle studies are experimentally challenging and have so far only been
performed in a limited number of favorable cases.29,72,163−167 As such,
the combination of ultrafast coherent pump–probe spectroscopy and
single nanoparticle spectroscopy remains an outstanding scientific
challenge.

7.5. Summary and Conclusions

In summary, this chapter provides an overview about different
time-resolved spectroscopic techniques to study the dynamics of
optical excitations in plasmonic nanosystems. Since plasmonic
excitations are inherently short-lived, such experiments should be
performed with femtosecond time resolution to provide direct insight
into those dynamics. Starting from well-established FTS and SI,
we have shown how time-domain spectroscopy can probe the lin-
ear optical response of a single nanoparticle. It is explained how SI
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provides a direct visualization of the effects of SPP propagation on
the temporal shape of an ultrafast SPP pulse. Ultrafast nonlinear
optical spectroscopic techniques such as IFRAC and photoemission
electron microscopy are introduced. We have discussed how these
methods — if combined with sufficiently short, pulsed laser excita-
tion — give direct access to the time structure of the local electric
field at the surface of a plasmonic nanostructure. Exciting perspec-
tives emerge when combining such nonlinear spectroscopic methods
with advanced pulse shaping techniques as this allows for coher-
ently controlling SPP fields in nanoscale dimensions and on ultra-
short time scales. Finally, the last section of this chapter discusses
a specific example of how ultrafast pump-probe spectroscopy can be
used to track the periodic exchange of energy between a plasmonic
nanoresonator and a thin film of molecular excitons. This provides
fundamentally new insight into the exciting regime of strong coupling
between plasmons and excitons and indicates strategies of how such
hybrid nanostructures can be used to design new classes of ultra-
fast all-optical nanophotonic switches. To make full use of these
interesting new hybrid devices, it seems important to explore the
dynamics of strong coupling in hybrid nanostructures that couple a
few — or possibly even only one — quantum emitter with a plas-
monic cavity mode. This poses quite significant experimental chal-
lenges but opens up the exciting perspective to develop new types
of nanophotonic structures that truly merge the best of the pho-
tonics and electronics world. We conclude by mentioning that yet
another important and highly exciting research field has emerged
from the combination of ultrafast optics and plasmonics over the
last few years: strong-field plasmonics. It employs the strong electric
field of an ultrashort light pulse to coherently control the photoemis-
sion of electrons from a plasmonic nanostructure and their motion
in the plasmonic near-field. A recent overview over the field may be
found, e.g. in a collection of research articles in Ref. [129]. Strong-
field plasmonics may be a key enabler for solid-state attosecond
physics and opens the door to new classes of ultrafast electron
microscopes.
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ALEXEY YU. NIKITIN

IKERBASQUE, Basque Foundation for Science,
Spain and CIC NanoGUNE, Spain
a.nikitin@nanogune.eu

Graphene plasmons (GPs) — electromagnetic fields coupled to Dirac
electrons in graphene sheet — have recently attracted a great attention
in different scientific fields, particularly in condensed matter physics and
photonics. In this chapter, we aim to review the most relevant results
in graphene plasmonics reported during the last few years. We con-
sider important properties of GPs, such as their dispersion, confinement,
losses, etc. We discuss various mechanisms of efficient coupling between
free-space waves and GPs. In more detail, we theoretically illustrate an
example of GPs excitation by a diffraction grating.

8.1. Introduction

Graphene plasmons (GPs) present confined electromagnetic fields
coupled to charge carriers (dirac electrons or holes) oscillations
in atomically thick carbon layer — graphene sheet. Apart from
propagating along a purely two-dimensions (2D) material, GPs are
significantly different form conventional surface-plasmon polaritons
(SPPs) existing on metal–dielectric interfaces in several key aspects.
First, while SPPs on metals correspond to the visible and near infra–
red (IR) spectral regions, the frequency (energy) range of GPs is
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3 ÷ 2000 cm−1 (0.4 ÷ 250 meV) covering the mid- and far-IR and
terahertz (THz) bands. Second, GPs have extremely short wave-
lengths λp (down to 100 times shorter that the wavelength of light
in free space, λp � λ0) and therefore large confinement. Third, and
most important, since the GPs present the oscillations of dirac par-
ticles with the liner dispersion, the wavelength of GPs allows for
an efficient electrostatic tuning via changing the Fermi level EF by
external gate voltage. Both the tunability of GPs (enabling an active
control over the GPs’ wavelength) and their extraordinary confine-
ment afford the relevance of GPs for various vital applications in
photonics and optoelectronics: photodetection,1,2 molecular sensing
(especially in the mid-IR fingerprint spectral region),3−8 signal pro-
cessing for THz communications,9 etc.

The dispersion of GPs in a free-standing graphene presents a
typical for 2D electron gases square-root dependency of frequency,
ω, upon the wavevector,10 k, as ω ∝ √k, being well separated from
the light line ω = kc. Free-standing graphene, however, is barely used
and is usually grown (or transferred) on substrates. In the mid-IR
range, substrates typically have phonons which can strongly couple
to GPs. The phonons can thus significantly modify the dispersion of
GPs around certain frequencies (anti-crossing of phonon and plasmon
dispersion curves) and lead to the formation of graphene plasmon–
phonon polaritons.11−13

Many theoretical and experimental studies of GPs have been
reported during a few recent years,1,14−20 revealing exciting and
fundamental physical phenomena, which GPs involve.a Some of
these (both linear and nonlinear) phenomena are similar to
those known in metal plasmonics, e.g. plasmon-enhanced light
absorption,21,22 subwavelength waveguiding of light,9,23,24 high har-
monic generation,25,26 etc. At the same time, strong confinement of
GPs leads to unexpected and contra-intuitive new physical effects,
e.g. enormous spontaneous emission rates ∼106 (favoring strong

aNote that graphene plasmonics was positioned at the 8th place in the top 10
research fronts in Physics according to Thomson Reuters’ Research Fronts 2014
report.
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light/mater interaction),27 anomalously high GP reflection by nano-
metric discontinuities,28−30 giant Faraday rotation,31,32 etc.

Deeply subwavelength character of GPs in many cases allows for
an elegant analytical treatment of the GP-related electromagnetic
problems by means of quasi-static approximation.15,21,33 However,
extremely short wavelength of GPs implies a huge momentum
mismatch with free-space waves, and therefore the experimental
observation of GPs faces substantial difficulties. The momentum mis-
match can be overcome by the near-field microscopy. Particularly,
scattering-type near-field microscopy (s-SNOM) is currently the only
available tool that allows for imaging and characterizing graphene
plasmons in real space.34−36

8.2. Conductivity of Graphene and Dispersion
Relation of Graphene Plasmons

The GPs can be described by the classical electromagnetic theory
based on Maxwell’s equations, assuming that the graphene layer
presents an infinitesimally thin conducting sheet with the 2D com-
plex conductivity σ. The validity of this approximation is justified by
significantly larger wavelengths of GPs compared to the atomic dis-
tances in the graphene monolayer. Within the random-phase approx-
imation (accounting for a weak screened Coulomb interaction), the
dynamic optical response of graphene can be obtained from Kubo for-
mula yielding σ = σinter+σintra, with the terms σinter and σintra being
the contributions from interband and intraband electron–photon
scattering processes, respectively37−39:
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2ie2t
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In these expressions, Ω, γ and t present frequency, decay rate
and temperature, respectively, normalized to the Fermi energy EF :
Ω = �ω/|EF |, γ = �/τ |EF |, t = T/|EF | (T is given in units of
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energy). Note that the mobility of the charge carriers µe is related
to the relaxation time τ via τ = µe|EF |/ev2

F , where vF is the Fermi
velocity and e is the elementary charge. Recall that the real part
of the complex conductivity, σ, characterizes the energy loss in the
system, while the imaginary part of σ characterizes the phase shift
between the electric field and the induced current (“inertness” of the
charge carriers to respond to changing electric field). In the follow-
ing, in order to facilitate readability of equations, we will use the
normalized conductivity α expressed by

α =
2πσ
c
. (8.2)

Figure 8.1(b) shows both real (red curves) and imaginary (blue
curves) part of α as a function of frequency for two Fermi energies:
EF1 = 0.2 eV and EF2 = 0.4 eV. According to the model given by
Eq. (8.1), the intraband part of σ dominates in the frequency region
ω < 2EF , and both Re(α) and Im(α) are positive and increase with
the frequency decrease. In contrast, the interband contributions are
dominant for ω > 2EF resulting in negative Im(α) and the satura-
tion of Re(α) to the value πα0/2, with α0 = e2/�c � 1/137 being the
fine structure constant.b For ω close to the “bounding” frequency,
ω = 2EF (separating the spectral regions with dominating either
σinter or σintra terms in Eq. (8.1)), Im(α) changes the sign and Re(α)
shows a step-like behavior (presenting an abrupt jump for zero tem-
perature, T = 0), see Fig. 8.1(b).

The properties of the plasmons in graphene are mostly defined
by the conductivity σ. Within the electromagnetic theory based
on Maxwell’s equations, the conductivity appears in the boundary
conditions for the electromagnetic fields. Namely, σ provides the
jump of the parallel components of the magnetic fields on the
graphene sheet, related with the presence of the surface current

bThe fine-structure constant, α0, can be interpreted as a ratio of the velocity of
the electron in the first circular orbit (the innermost electron) of the Bohr model
of the atom, ve = c/137 = 2.19 · 106 m/s to the speed of light in vacuum, i.e.
α0 = ve/c.
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Fig. 8.1. Dirac cone and the conductivity of graphene. (a) Schematics for the
dispersion of electrons in graphene near the Dirac point (in energy-momentum
space). The electron filling is shown by the gray color for EF = EF1. (b) Real
part (blue curves) and imaginary part (red curves) of the normalized graphene
optical conductivity α (shown in units of the fine structure constant α0 � 1/137)
as a function of frequency ω, according to Eqs. 8.1 and 8.2. The solid curves
correspond to EF1 = 0.2 eV, while the dashed ones to EF2 = 0.4 eV, respectively.
The vertical solid lines mark the double Fermi energies. The mobility of the charge
carriers µe and the temperature T are taken to be 10,000 cm2/(Vs) and 300 K,
respectively.

j = σEt (subscript “t” means the component parallel to the graphene
sheet). Assuming that the graphene sheet is placed at z = 0, the
boundary conditions for the magnetic and electric fields read:

ez × [H1 −H2] = 2α · ez × [ez ×E1],

ez × [E1 −E2] = 0, (8.3)

where with subscripts 1 and 2, we indicate the fields in the half-space
“1” (positive values of the coordinate z) and “2” (negative values of
the coordinate z) separated by the graphene sheet, respectively.

The GP present the wave decaying perpendicularly to the
graphene sheet. Assuming that the GP is propagating along the
x-axis, the magnetic fields of GP in the graphene sheet placed in
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free space (vacuum) can be written in the following form

H1(x, z) = eyH0e
ikpx+ikpzz, z > 0,

H2(x, z) = −eyH0e
ikpx−ikpzz, z < 0, (8.4)

where kpz =
√
k2

0 − k2
p is the z-component of the GP wavevector and

k0 = ω/c =2π/λ0 is the wave-vector in the free space. The monochro-
matic time dependence, e−iωt, is assumed in Eq. (8.4) and everywhere
in the following. The electric fields can be found from Eq. (8.4) using
Maxwell’s equations E = (i/k0)∇×H:

E1(x, z) =
1
k0
H0(exkpz − ezkp)eikpx+ikpzz, z > 0,

E2(x, z) =
1
k0
H0(exkpz + ezkp)eikpx−ikpzz, z < 0. (8.5)

From Eqs. (8.4) and (8.5), it follows that the magnetic field and
z-component of the electric field are anti-symmetric with respect
to the graphene sheet, while the x-component of the electric field
is symmetric due to continuity given by the boundary conditions.
Connecting the fields in the upper and lower half-spaces, “1” and “2”,
from Eqs. (8.4) and (8.5), through the boundary conditions given by
Eq. (8.3), we can derive the dispersion relation for the GPs:40,41

kp(ω) =
ω

c

√
1− 1

α2 , (8.6)

(which can also be alternatively written as kpz = −1/α). In frequency
regions, where |α| � 1, the dispersion relation simplifies to

kp

k0
= qp � i

α
. (8.7)

In order to guarantee the exponential decay of the GP electro-
magnetic fields away from the graphene sheet (taking place when
Im(kpz) ≥ 0), the imaginary part of α must be positive. This limits
the frequency range of GP to approximately ω < 2EF . On the other
hand, the real part of α is always positive, so that the positiveness
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of Im(kp) is guaranteed (the energy in the system is not ampli-
fied). Due to small α, the transversal and longitudinal components
of the GP wavevector are virtually equal in magnitude (and phase-
shifted by π/2), i.e. kpz � ikp, so that kp characterizes both the
wavelength of GPs, λp = 2π/Re(kp) and their vertical confinement,
δp = 1/Im(kpz) � 1/Re(kp). Both λp and δp can reach ultrasmall
values (down to two orders of magnitude) compared to free space
wavelength, λ0.

In the low-frequency region, where the intraband electron–photon
scattering processes dominate, the relation between the frequency,
Fermi level and GP wavevector can be explicitly found by substitut-
ing σintra from Eq. (8.1) into Eq. (8.7) (taking into account the defi-
nition of α in Eq. (8.2)). Neglecting the temperature (t = 0), we have

kp � �

2e2
.
�ω(ω + i/τ)
|EF |

. (8.8)

We see, thus, that the real part of the GP momentum decreases with
EF and is quadratic in ω, i.e. Re(kp) ∝ ω2/|EF |. This dependency is
illustrated by the dispersion curves of GPs, shown in the left panel
of Fig. 8.2(b), at two different Fermi levels, typical for the graphene
used in experiments.34−36 Each of the dispersion curves is strongly
separated from the light cone, k = ω/c (black solid line in the left
panel of Fig. 8.2(b)), revealing extremely large momentums of GPs.
The large momentums (short wavelengths) of GPs, as well as their
high confinement to the graphene sheet can be also appreciated in
Fig. 8.2(c) where the GP field snapshots are shown together with
the half-wavelength in free space. The strong dependency of the GP
wavelengths upon the Fermi level reveals a high tunability of GPs
(for example, by means of electrostatic gating) being the key in many
optoelectronic applications requiring an active control over the elec-
tromagnetic fields in the nanoscale.

As can be seen in Fig. 8.2(c), the intensity of blue and red fringes
diminishes from left to right. This indicates that the amplitude of GP
decreases from the excitation point due to the finite propagation
length. Note that the success of many potential applications of
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Fig. 8.2. The dispersion and electric fields of graphene plasmons. (a) Schematics
for a propagating plasmon in graphene. (b) The dispersion curves (left panel) and
the normalized propagation lengths (right panel) for GPs calculated for two Fermi
levels: EF1 = 0.2 eV and EF2 = 0.4 eV. The light cone is shown in the left panel
by the black solid line (the inset shows the zoom-in of the low-frequency — far
IR and THz — region to better illustrate the separation of the GP dispersion
from the light cone). (c) The instant field snapshots for the GP fields at the fixed
frequency ω = 1000 cm−1 (λ0 = 10µm) for EF1 and EF2, corresponding to the
GP wavelengths λp1 = 213 nm and λp2 = 460 nm, respectively. For comparison,
the half-period of the free-space wave oscillation (with the wavelength λ0) is
shown by the green curve. The rest of the parameters for σ are the same as in
Fig. 8.1.
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GPs (e.g. photonic circuits for communication technologies, sensing,
light absorbers, etc.) is essentially dependent upon GP propagation
lengths (or decay times). The GP amplitude propagation length,
Lp = 1/Im(kp), defined as the length at which the amplitude of the
fields (see Eqs. (8.4) and (8.5)) decays e times along the propagation
direction, can be explicitly found from Eq. (8.8):

Lp � 2e2|EF |
�

τ

�ω
= veτ

2|EF |
�ω

,
Lp

λp
� τω

2π
, (8.9)

where recall that ve = c/137. While the small absolute values of Lp

are related to the small wavelength of the GPs, the relative values,
Lp/λp (the “figures of merit” for GPs) can potentially reach large
values, which would correspond to long propagation lengths in units
of GP wavelength. According to Eq. (8.9), the figures of merit are a
liner function of frequency. Nevertheless, the right panel of Fig. 8.2(b)
shows strongly non-monotonic behavior of Lp/λp with ω. This dis-
agreement can be explained by a limited applicability of Eq. (8.9)
(low frequencies, where the interband part of the conductivity domi-
nates): it is not valid in the mid-IR range, where the intraband part
of the conductivity in Eq. (8.1) starts playing an important role.

Note that the mobility of today’s standard graphene samples
(particularly, chemical vapor deposition (CVD) graphene transferred
onto oxides) are rather low, being of order of 1000 cm2/(V · s). Low
mobility results in GP figures of merit compared or smaller than 1,
thus limiting the performance of the potential GP-based devices.
In the simulations shown in Fig. 8.2, the mobility is assumed to
be 10,000 cm2/(V · s), resulting in figures of merit 2.6 at EF1 and
8.1 at EF2, respectively. The samples with the record mobilities,
up to approximately 200,000 cm2/(V · s), are graphene encapsulated
between BN layers.42,43 However, at present, the fabrication of the
encapsulated graphene samples is a sophisticated process, staying far
away from the mass production.

Apart from the importance of the propagation lengths in
graphene plasmonics, some applications (related to signals propa-
gation) can also require large amplitude decay time, τa, defined as
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the time during which the amplitude of the GP pulse reduces e times.
For the pulses with small frequency spreads, the lifetime can be cal-
culated as τa = La/vgr, where vgr is the group velocity given by
vgr = dω/dkx (the pulse is supposed to propagate along the x-axis).
Both vgr and τa can be explicitly found from Eq. (8.8) and Eq. (8.9):

vgr � e2

�

|EF |
�ω

= ve
|EF |
�ω

, τa � 2τ. (8.10)

According to Eq. (8.10), the amplitude decay time is not dependent
upon the frequency and is fully defined by the scattering time of the
charge carriers, τ : the frequency dispersion of Lp is compensated by
the dispersion of the group velocity, vgr. Namely, with the frequency
increase, the GPs propagate smaller distance but with lower group
velocity, so that the amplitude decay time remains constant.

As a last note in this section, we would like to mention that the
plasmon dispersion given by Eq. (8.7) can be easily generalized to the
GPs in graphene placed between two media with arbitrary dielectric
permittivities, ε1 and ε2:

qp =
ε1 + ε2

2
· i
α
. (8.11)

Analogously to Eq. (8.7), the validity of Eq. (8.11) is limited by the
condition |α| � 1. The exact solution for the momentum of GPs
in a non-symmetric environment cannot be explicitly written in a
simple form. The equation for the dispersion relation of GPs in a
non-symmetric environment will be shown in Section 8.5 and can
also be found, for instance, in [Refs. 40, 41].

8.3. Approximation of the Graphene Sheet
by a Layer of Finite Thickness
in the Electromagnetic Simulations

In the calculations of the electromagnetic fields in graphene struc-
tures, the graphene is taken into account via the boundary conditions
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Fig. 8.3. Approximation of the graphene sheet by a finite-thickness film.
(a) Schematics for the reflection of a plane wave from a graphene sheet with
the optical conductivity σ. (b) Schematics for the reflection of a plane wave from
a layer of thickness d with the dielectric permittivity εg.

given by Eqs. (8.3). On the one hand, in many cases, it simplifies the
analytical treatment of the electromagnetic problems, since one does
not need to calculate the fields inside the graphene layer. But on the
other hand, some complex problems (involving, for instance, sophisti-
cated shapes of either graphene patches or those of adjusted metallic
antennas, etc.) can only be solved by 3D numeric simulations. Gen-
erally (and every time more frequently), the commercial software for
full-wave simulations is used. However, in existing commercial solvers
based on finite-element methods, setting up the boundary conditions
on an infinitesimally thin conducting layer is not straightforward (or
not even implemented yet).

Let us consider how to approximate a conducting sheet with the
conductivity σ by a thin layer of thickness d with an effective dielec-
tric permittivity εg. The correspondence between σ, εg and d can
be established by comparing the Fresnel coefficients for a conduct-
ing 2D sheet with those for a thin 3D film. For simplicity, let us
consider only the case of the normal incidence and the vacuum envi-
ronment of both the conducting sheet and film. The final results for
the relation between σ and εg will be valid for graphene sheet in any
environment (for multilayer structures), arbitrary polarization and
oblique incidence (we skip the proof here). The Fresnel reflection,
rF , and transmission, tF , coefficients for graphene read simply as
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(see Section 8.5):

rF =
−α

1 + α
, tF =

1
1 + α

. (8.12)

We would like to remark that Fresnel coefficients can be used to
easily obtain the absorption in graphene, A, as A = 1−|rF |2−|tF |2.
Assuming that |α| � 1, the absorption, according to Eq. (8.12),
reads: A � Re(α). In the frequency region, where the interband con-
ductivity dominates, particularly, in the visible region, A simplifies
to A = πα0, yielding approximately 0.023.

The Fresnel reflection, rFd, and transmission, tFd, coefficients for
a slab with the thickness d and dielectric permittivity εg, surrounded
by air, have the following form:

rFd = r
1− e2iϕ

1− r2e2iϕ
, tFd =

√
εgt

2e
iϕ

1− r2e2iϕ
, (8.13)

where ϕ = dk0
√
εg is the optical path length inside the slab. r =

1−√
εg

1+√
εg

and t = 2
1+√

εg
are the reflection and transmission coefficients,

respectively, corresponding to the interface between air and a semi-
infinite bulk medium with the dielectric permittivity, εg. In order to
establish the correspondence between Eqs. (8.13) and (8.12), we will
perform some simplifications.

First of all, let us remember that in the macroscopic electro-
magnetic theory, the polarization vector inside a bulk medium (and
therefore, the dielectric permittivity εg) is proportional to the num-
ber of polarized molecules, or in case of conductors, free charges per
volume,44 i.e. εg ∝ n3D, with n3D = N/∆V . Let us assume that in
a thin slab, which will approximate the graphene layer, N remains
unchanged independently upon the thickness of the slab, d, so that
the number of charges per unit area, n2D = N/∆S, is constant, where
∆S is the area parallel to the slab surfaces. Then for n3D in the slab,
we can write n3D = N/(∆S ·d) = n2D/d. From the last equation, we
conclude that the effective dielectric permittivity should be inversely
proportional to d, and thus be a large number, e.g. εg ∝ 1/d � 1.
The large value of εg can greatly simplify Eq. (8.13).
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Another simplification that can be done in Eq. (8.13) is related
to small optical path lengths inside the slab. Indeed, taking into
account εg ∝ 1/d, from the definition of ϕ (given below Eq. (8.13)),
we see that φ ∼ √d/λ0. Then, approximating the exponentials by
their Tailor series up to the first-order terms and retaining further
in the numerators and denominators of Eq. (8.13) only the first non-
vanishing terms (assuming d to be a small parameter), we arrive at

rFd =
iϕ
√
εg/2

1− iϕ√εg/2 , tFd =
1

1− iϕ√εg/2 . (8.14)

Comparing rFd, tFd in Eq. (8.14) with rF , tF in Eq. (8.12), we obtain
the explicit expression for εg:

εg =
iαλ0

πd
, (8.15)

where α is given by Eq. (8.2).
Note that the result obtained in this section can be also used

for the “inverse” problem: approximation of a thin slab by an effec-
tive infinitesimally thin conductive layer. In this case, Eq. (8.15) can
be used to relate the dielectric permittivity and thickness of a thin
slab with the effective conductivity. Such approximation was used in
the theory of surface polaritons in macroscopic transition layers,41

which established effective boundary conditions for the electromag-
netic fields (analogs to Eq. (8.3)) in thin polar slabs.

8.4. Optical Excitation of Graphene Plasmons

As we have seen in Section 8.2, GPs have momenta much larger than
those corresponding to free-space waves. In other words, at a fixed
frequency, ω, the phase velocity of GPs, vph = ω/kx, is significantly
smaller than that of a wave propagating in free space. Therefore, due
to a strong phase mismatch, a direct coupling between free-space
waves and GPs is not possible. In order to provide an interaction
between plane waves and GPs, one has to compensate the momentum
mismatch, ∆k = kx − kp, by breaking the spatial symmetry.
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(d) Metal antenna (e) Nanoresonators (f) Polariton compression

(a) ATR geometry (b) Grating coupler (c) Point emiter

kp = k0 + ∆k(x)kp = k0 + ∆kkp = k0 + ∆k

kp = ∆kkp = k0 + 2πn/Lkp = k0   εp

Fig. 8.4. Various methods for linear optical excitation of GPs. (a) Attenuated
total reflection with a prism (Otto geometry45). (b) Coupling to GPs via a peri-
odic grating. (c) Excitation of GPs by a localized (point) source. (d) Coupling
to GPs from a resonant metal antenna. (e) Coupling to GP Fabry–Perot modes
in graphene resonators. (f) Coupling to GP by compressing polaritons in tapered
films of polar or semiconducting materials.

Figure 8.4(a) shows the conventional plasmon coupling configu-
ration: a dielectric prism with a dielectric permittivity εp > 1 sep-
arated by a small gap from the graphene layer. This configuration
is known as attenuated total internal reflection (ATR)10,45 and is
widely used in plasmonic sensing applications. Due to total inter-
nal reflection, occurring when the incident angle θ is larger than
the critical one, θc = arcsin(1/√εp), the wave inside the prism is
totally reflected, generating exponentially decaying fields at the bot-
tom face of the prism. These evanescent fields have momentums,
kx = √εpk0sin θ, larger than those of free-space waves, kx > k0, and
therefore for proper incident angle and refractive index of the prism,
kx can be matched with the wavevector of GPs, kx = kp:

kp =
√
εpk0sin θ. (8.16)
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A big disadvantage of the coupling to GPs via prism is that the
refractive index of the prism has to take enormous values. Recall that
the refractive index of GPs, qp = kp/k0, can be one or two orders of
magnitude larger than 1 (see the GP dispersion curves in Fig. 8.2(b)).
Therefore, using prisms made of existing natural materials, coupling
to GPs due to the ATR is only possible at THz frequencies, where
the GP dispersion is not so dramatically separated from the light
line (compared to, for instance, mid-IR frequency range), and thus
the values of refractive indices qp are moderate.46

Figure 8.4(b) shows the diffraction grating, presenting another
common structure for the excitation of GPs.10,45,47 The scattering
of an incident wave by a diffraction grating generates a set of plane
waves (spatial Fourier harmonics of the scattered field) with discrete
wavevectors, knx, along the grating vector G (reciprocal lattice vec-
tor). According to the Floquet theorem, the quantized wavevectors
knx are given by knx = k0sin θ + nG with G = 2π/L, where L is the
period of the grating. The GP excitation condition on the diffraction
grating, in a certain diffraction order n, reads as48−49

kp = k0 sin θ + nG. (8.17)

The efficiency of the GP excitation by the grating can be very high
(see Refs. 14 and 49 and Section 8.5 of this chapter), making the
diffraction gratings promising candidates for GP-based technologies,
particularly for light absorbers and sensors.3 The grating provides the
excitation of the GPs in the form of standing waves (“Bragg GPs”),
rather than propagating GPs. On the other hand, the launching of
propagating GPs, emanating from the local excitation region, can
be crucial, for instance, in applications for communication, signal
processing, coupling between quantum objects or sensing, based on
absorption losses of GPs during the propagation across the sensed
region.3

The propagating GPs can be locally excited by small emitters
like, for instance, quantum dots, metallic nanoparticles or tips of
the near-field microscopes.35,36,43 Figure 8.4(c) shows the simplest
example of a small emitter: a point dipolar source. An approximation
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of a dipolar source is widely used to gain an insight into the physics
behind the local excitation of GPs. The Fourier transform of the elec-
tric field radiated by a point dipole has a broad (plane) distribution
of momenta. Therefore, when a dipole is placed in close proximity to
the graphene sheet, the GPs are directly excited by the evanescent
waves with momenta close to kp.27,51−55 For an appropriate distance
between the dipole and graphene sheet (being of order of the GPs
vertical confinement, δp), the efficiency of coupling to GPs can reach
100%.54 In the conditions of the maximal coupling efficiency, the
spontaneous emission rate of a point emitter is exclusively attributed
to the decay via GPs.

The high efficiencies from point emitters are based on the
assumption that the emitters play the role of electromagnetic energy
sources. However, in real conditions, an external illumination usually
presents the energy source for GPs. The external waves, polarizing
a small object, placed close to the graphene sheet, induce an effec-
tive dipole (with the dipole moment depending upon the size and
geometry of the object) and then the induced effective dipole cou-
ples to GPs. Due to the smallness of the object, its polarizability
(proportional to the volume of the object) is also small. Therefore,
the efficiencies of GP launching from the region of the local excitation
are usually low.

The efficiency of local excitation of propagating GPs can be sig-
nificantly improved by using resonance antennas, see Fig. 8.4(d). For
instance, gold rods with lengths matching approximately a half of
free-space wavelength can act as resonant dipole antennas. At reso-
nance wavelengths, the antenna can provide a strong enhancement
of the generated near-fields, as well as momenta increased orders
of magnitude compared to k0. The high-momentum components of
the intense near-fields in the antenna match the GP wavevector,
thus exciting propagating GPs.34 Due to large sizes of the metallic
antennas (roughly, being of order of λ0/2) compared to GP wave-
length, the wavefronts of the GPs can be controlled by shaping the
antenna. For example, plane wavefronts can be generated by the flat
regions of the antenna, while concave and convex shapes can generate
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divergent and convergent GPs, respectively. The concave shapes can
thus act as 2D lens for focusing GPs.

In appropriately structured graphene patches, reflection of the
GPs from the edges can lead to constructive interference and create
Fabry–Perot resonances. Therefore, shaped graphene structures can
be considered as graphene (nano)resonators or graphene antennas.56

The GP modes in graphene resonators can be directly excited by
an external illumination,11,21−23,57−60 see Fig. 8.4(e). The exter-
nally illuminated light scatters on strong discontinuities (edges) of
graphene antennas, producing the near-fields with large momentums
(similarly to metallic antennas), which then efficiently couple to GPs.
Due to the uniform character of the electric field of plane waves, they
can only couple to GP Fabry–Perot modes of certain symmetries
(bright modes). For example, the dipolar modes with odd number
of nodes can be excited, while those with even number of nodes are
forbidden. Analogously to GPs excited on the diffraction grating, GP
modes in graphene resonators can be beneficial for light absorbers21

and ultra-sensitive actively controllable sensors.4

The last concept of GP launching we would like to mention in
this section is compression of surface polaritons (SPs) on tapered
slabs of bulk materials supporting surface polaritons (polaritonic
waveguides). The latter can be either phonon–polaritons — in polar
dielectrics — or plasmon–polaritons — in highly-doped simiconduc-
tors. The coupling mechanism is sketched in Fig. 8.4(f). First, a SP
propagates along a slab with a negative dielectric permittivity. Note
that the polariton in a relatively thick slab can be easily excited by
the attenuated total internal reflection method, considered above.
The polaritonic waveguide is tapered so that its thickness gradually
decreases. Subsequent propagation of the polariton along a tapered
slab yields a compression of its wavelength until it matches that of
the GPs.61 Finally, by placing the graphene above the thinned slab,
the field of the SP couples efficiently to the GP. As has been shown
theoretically, the polaritonic coupler can launch graphene plasmons
with efficiencies larger than 25%.61
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8.5. Excitation of Graphene Plasmons
in Graphene Sheet with a Periodically
Modulated Conductivity

Let us consider the diffraction of a plane monochromatic electro-
magnetic wave on a graphene sheet with periodically modulated
conductivity, α, see Fig. 8.5(a). For generality, we assume that
α is an arbitrary periodic function of the coordinate x, so that
α(x) = α(x+ L), where L is the period of the modulation.

As any periodic function, α(x) can be expanded into the Fourier
series:

α(x) =
∑
n

ᾱne
inGx, G =

2π
L
, (8.18)

where n is integer (n = · · · − 2,−1, 0, 1, . . .). The Fourier harmonics
ᾱn are given by

ᾱn =
1
L

∫ L/2

−L/2
dxα(x)e−inGx. (8.19)

z

k x

z

k

(a) (b)

kp
-kp 2π/L

ω/c

Fig. 8.5. Excitation of GPs on a graphene sheet with modulated conductivity.
(a) Schematics of the structure. Nearly normally incident illuminating plane wave
has the magnetic field parallel to the graphene sheet and perpendicular to the
grating vector. The plane wave excites the graphene plasmon with the vertical
electric field shown by a red–white–blue color plot. (b) k-vector diagram explain-
ing the momentum matching. The GP k-vectors are shown by the red arrows,
while the k-vectors of the incident, reflected and transmitted waves (in zeroth
diffraction order) are shown by the black arrows. The circle represents the cross-
section of the light cone, k2

x + k2
z = k2

0 , at a fixed frequency.
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We assume that the dielectric permittivities of the upper half-space
(z > 0) and of the lower half-space (z < 0) are ε1 and ε2, respectively,
(see Fig. 8.5(a)). The x-components of the electric fields in the upper,
E1x and lower, E2x half-spaces can be represented by the Fourier–
Floquet expansion:

E1x = eikxx−ikzz +
∑

n

rne
iknxx+ik1nzz,

E2x =
∑
n

tne
iknxx−ik2nzz, (8.20)

where knx = kx + nG and k1,2nz =
√
ε1,2k

2
0 − k2

nx are the x- and
z-components of the wavevectors for the diffracted (scattered) plane
waves. The first term of the right-hand side in the first line of
Eq. (8.20) presents the incident plane wave (which amplitude is
set to 1). Both x- and z-components of the incident plane wave
wavevector can be written through the angle of incidence θ (count-
ing form the normal to the graphene sheet) as kx=

√
ε1k0 sin θ and

kz=
√
ε1k0 cos θ. The coefficients rn and tn present the amplitudes

of the spatial Fourier harmonics (waves diffracted in the nth order)
in the upper and lower half-spaces, respectively.

Using Maxwell’s equations (see Section 8.2) we can find the
y-component of the magnetic fields. Then, matching the fields at
the graphene sheet (z = 0) according to Eq. (8.3), and using the
Fourier series for α(x) in Eq. (8.18), we obtain

eikxx +
∑

n

(rn − tn)eiknxx = 0,

−Y ie
ikxx +

∑
n

(rnY1n − tnY2n)eiknxx = −2
∑
n,m

ᾱmtne
i(knx+mG)x,

(8.21)

where Yi = ε1k0/kz is the admittance (the inverse of the wave
impedance) of the incident wave and Y1,2n = ε1,2k0/k1,2nz are
the admittances of the diffracted waves. Taking into account that
Eq. (8.21) must hold for any value of x, we have to equal the
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coefficients at different exponentials. Then we obtain a compact
system of equations for the amplitudes tn:∑

mDnmtm = Vn,

Dnm = δnm(Y1n + Y2n) + 2ᾱn−m, Vn = 2Yiδn0, (8.22)

where with δnm we mean the Kronecker symbol. The amplitudes, rn,
are related to the amplitudes, tn, by the following relation

rn = −δn0 + tn. (8.23)

The amplitudes rn and tn are related to the scattered power (nor-
malized to the power in the incident wave) in the upper and lower
half-spaces (R and T , respectively) according to

R =
∑
n

Re
(
Y1n

Yi

)
|rn|2, T =

∑
n

Re
(
Y2n

Yi

)
|tn|2. (8.24)

The power absorbed in the graphene layer is given by the following
equation

A = 1−R− T. (8.25)

In short-period diffraction gratings (with L � λ0), suitable for
the excitation of GPs, the values of the wavevectors knx are large,
knx � k0. As a result, all the scattered waves, except the zeroth-order
spatial field harmonic, are evanescent (k1,nz and k2,nz are imaginary
for n 	= 0). Therefore, exclusively the zeroth-order term contributes
to the sums in Eq. (8.24) (k1,0z and k2,0z are real).

The linear system of Eqs. (8.22) and (8.23) can be solved numer-
ically for any type of periodic function α(x). For each type of the
modulation, an appropriate number N of the diffraction orders, n,
must be taken into account in order to achieve the convergence of
the solution. In some cases, however (particularly, for periodic mod-
ulations with abrupt changes of α(x) as, for example, for graphene
ribbons), the convergence with N can be very slow and the system
of Eqs. (8.22) and (8.23) becomes unpractical. On the other hand,
smooth profiles of α(x) provide a good convergence and the number
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of required diffraction order is not large, so that even an analytical
treatment of the system of equations is possible.

To illustrate how the system Eqs. (8.22) and (8.23) can be solved
analytically, we will consider the simplest cosine profile of α(x):

α(x) = ᾱ0 + ∆α · cos(Gx) = ᾱ0 +
∆α
2
e−iGx +

∆α
2
eiGx, (8.26)

where ᾱ0 (presenting the zeroth–order Fourier harmonic) is the
average conductivity and ∆α is the modulation amplitude. From
equation (8.26), it follows that the amplitudes of the first- and
second-order harmonics are

ᾱ−1 = ᾱ1 =
∆α
2
. (8.27)

We will further simplify the solution of the diffraction problem by
assuming the strictly normal incidence (θ = 0, kx = 0, kz = k0). With
this assumption, the matrix Dnm of system of Eqs. (8.22) and (8.23)
becomes three-diagonal and the amplitudes of the diffracted waves
are symmetric with respect to the diffraction order n, i.e. rn = r−n

and tn = t−n.
Let us assume that the period of the grating L is adjusted in

such a way that the k-vector of the 1st–order (and 2nd-order) spatial
field harmonics matches with the k-vector of GP (see Fig. 8.5(b)):
k1x = −k−1x = kp. This condition corresponds to the so-called dou-
ble resonance diffraction.49,50,62 The amplitude of the First-order
field harmonics (resonant harmonics) will resonantly increase and
dominate over the rest of the field harmonics (non-resonant harmon-
ics). Assuming small modulation amplitudes, |∆α| � |ᾱ0|, we can use
the resonance perturbation theory. The main idea of the resonance
perturbation theory consists in retention in the system of Eq. (8.22)
the resonant field harmonics at the first place, and then the min-
imal number of non-resonant field harmonics (originating from the
lowest-order scattering of the resonant field harmonics by the diffrac-
tion grating). The number of the non-resonant field harmonics (and
the contributing scattering processes) are selected with respect to
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the desired precision of the final solution (for more detailed descrip-
tion of the resonance perturbation theory in diffraction problems see
[Refs. 48, 60, 61]). In our simplest example of the resonance diffrac-
tion, the first-order resonant field harmonic will mainly scatter into
the neighboring zeroth- and second-order spatial field harmonic (via
a single scattering process). Therefore, the system of equations (8.22)
will only contain three equations for three variables: t0, t1, t2. These
equations take the following form:

(Y10 + Y20 + 2ᾱ0)t0 + 2ᾱ1t1 = 2Yi

2ᾱ1t0 + (Y11 + Y21 + 2ᾱ0)t1 + 2ᾱ1t2 = 0 (8.28)

2ᾱ1t1 + (Y12 + Y22 + 2ᾱ0)t2 = 0

Solving the system of Eq. (8.28) by Gaussian elimination, and tak-
ing into account relation (8.23), we obtain the explicit analytical
expressions for the amplitudes of the diffracted waves. The resonant
amplitudes (First-order) read as

t±1 = r±1 =
2Yi

b0

∆α
D
, (8.29)

where for compactness of writing, we have introduced the following
notations:

bn = Y1n + Y2n + 2ᾱ0,

D = b1 −∆α2
(

2
b0

+
1
b2

)
. (8.30)

The second-order non-resonant amplitudes read as

t±2 = r±2 =
2Yi

b0b2

∆α2

D
. (8.31)

Finally (after some simple algebraic transformations), the zeroth-
order amplitudes can be written in the form of the sum of the Fresnel
coefficients for the unmodulated graphene sheet (rF , tF ) and the term
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Fig. 8.6. GP resonance on a graphene sheet (surrounded by air, ε1 = ε2 = 1)
with periodically modulated conductivity. (a) Amplitudes of the field Fourier
harmonics (zeroth-, First- and second-order) as a function of the wavelength, λ0.
The curves correspond to the analytical solution given by equations (8.29)–(8.32),
while the circles correspond to the numerical solution of the system of equations
(8.22) and (8.23). (b)–(d) Explanation of the Fano-type profile in reflection: ampli-
tudes and phases of rF , r0, and ∆t as a function of λ0. (e) Wavelength spectra of
the reflection, transmission and absorption coefficients according to Eqs. (8.24)
and (8.25). Fresnel transmission, TF = |tF |2, and reflection, RF = |rF |2, coeffi-
cients (according to equation (8.32)) are shown by the dashed curves. In the
simulation of the conductivity grating, the following parameters have been used:
grating period L = 10µm, modulation amplitude ∆α = iIm(ᾱ0)/4, Fermi energy
EF = 0.2 eV, relaxation time τ = 1ps, temperature T = 300 K.

∆t, presenting the grating contribution:

r0 = rF + ∆t, t0 = tF + ∆t,

rF =
Y10 − Y20 − 2ᾱ0

Y10 + Y20 + 2ᾱ0
, tF =

2Y 10

Y10 + Y20 + 2ᾱ0
,

∆t =
4Yi

b20

∆α2

D
. (8.32)

The amplitudes r0, r±1 and r±2 for normally incident plane
wave onto a free-standing modulated graphene sheet are shown
in Fig. 8.6(a). The parameters of the modulated graphene sheet
(we assume that only the imaginary part of α is modulated) have
been adjusted to have the GP resonance in the THz range, around
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λ0 = 60µm (the frequency of 4.5 THz). The analytical solution given
by equations (8.29)–(8.32) (shown by the curves) perfectly matches
with the numerical solution of the system of Eqs. (8.22) and (8.23)
(shown by the circular symbols), in which 20 diffraction orders (from
n = −10 to n = 10) have been taken into account. The amplitudes
r±1 and r±2 clearly show the symmetric bell-shaped resonance pro-
file, while the profile of r0 is essentially asymmetric (this asymmetry
will be discussed below in detail). The amplitude of the First-order
amplitude dominates over the rest of the diffraction order amplitudes,
justifying our initial assumption on the resonance in the first diffrac-
tion order. From the mathematical point of view, the resonance can
be explained by small values of the denominator D in Eqs. (8.29)–
(8.32), in the vicinity of the resonance wavelength. With the change
of the wavelength, λ0, the value of the GP wavevector kp (having both
real and imaginary parts) becomes very close to k1x (purely real). In
other words, with the change of λ0, the pole of the amplitudes of the
spatial field harmonics, k1x = kp, moves above the real axis in the
complex plane of k1x, in a close proximity to the point k1x = 2π/L.
In fact, the condition D = 0 (never reachable in Eqs. (8.29)–(8.32)
due to purely real-valued k1x) provides the dispersion relation of the
GPs in the modulated graphene sheet. Neglecting the modulation
(∆α = 0), the equation D = 0 simply yields the GP dispersion
relation in a graphene sheet placed on the boundary between two
different dielectric half-spaces. It reads as Y11 + Y21 + 2ᾱ0 = 0, or,
more explicitly (changing k1x to kp)

ε1k0√
ε1k

2
0 − k2

p

+
ε2k0√
ε2k

2
0 − k2

p

+ 2ᾱ0 = 0. (8.33)

Recall that the simplified form of equation (8.33) is given in section
8.2 by Eq. (8.10) (valid when |α| � 1).

According to Eqs. (8.29)–(8.32), r±1 ∝ ∆α, r±2 ∝ ∆α2. As can
be shown by a more detailed analysis of Eqs. (8.22) (being out-
side of the scope of this chapter), the amplitudes of the diffracted
waves (except the zeroth-order one) decay with their diffraction
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order as r|n| ∝ ∆α|n|, and therefore the amplitudes of the high-order
diffracted waves are negligibly small. In contrast, the amplitude of
the zeroth-order diffracted waves, r0 and t0, are composed, according
to Eq. (8.32), by the sum (interference) of the non-resonant terms,
rF and tF , (reflection and transmission coefficients for the unmodu-
lated graphene sheet, respectively) and the resonant term, ∆t, arising
due to the backscattering of the resonantly excited GP (in the ±1st

diffraction orders) into the zeroth-order diffracted waves. Such an
interference can be characterized as a Fano-resonance in which a
non-resonant process interferes with the resonant one, producing an
asymmetric shape of the resonance profile.63 Indeed, as one can see
in Fig. 8.6(b), the amplitude of the reflected zeroth-order wave, r0,
clearly has an asymmetric shape (solid red curve). The asymmetry is
due to (i) similar amplitudes of rF (dashed red curve in Fig. 8.6(c))
and ∆t (solid black curve in Fig. 8.6(c)); and (ii) quick and strong
change of the phase difference between rF and ∆t near the resonance
wavelength (compare dashed and solid blue curves in Fig. 8.6(d)).
Specifically, when the phase difference between rF and ∆t is smaller
than π/2, the total amplitude |r0| is increased compared to |rF | (for
wavelengths smaller than the resonance one, shown in Fig. 8.6(b)–
(d) by a vertical dashed line). On the contrary, because the phase
difference between rF and ∆t is larger than π/2, the total amplitude
|r0| is decreased compared to |rF | (for wavelengths larger than the
resonance one).

We would like to note that the asymmetric line-shape was orig-
inally found by Ugo Fano in his theoretical explanation of inelas-
tic scattering of electrons from helium (1961).64 Although the lat-
ter work is widely cited in the context of asymmetric line shapes,
much less attention, however, is given to other important works of
Fano related with asymmetry of resonances, and being of a sim-
ilar relevance for Plasmonics. Namely, years earlier (1936–1941),
Fano developed a theory which, for the first time, successfully
explained strongly asymmetric resonance spectral features appear-
ing due to the excitation of surface plasmon–polaritons in metallic
diffraction gratings.65,66 (Wood anomalies48,67,68). Afterwards, it
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was realized that asymmetric-shape resonances (called “Fano res-
onances”) present a general wave phenomenon, in which background
and a resonant scattering processes interfere. At present, multiple
examples of Fano resonances can be found in many areas of physics
and engineering.63

Figure 8.6(e) shows reflection, R, transmission, T , and absorp-
tion, A, coefficients (given by Eqs. (8.24), (8.25)) for the periodically
modulated graphene sheet. As a reference, both reflection and trans-
mission coefficients for the unmodulated graphene sheet are also
shown (dashed curves in Fig. 8.6(e)). For the chosen parameters of
the graphene conductivity and its modulation amplitude, the absorp-
tion reaches 20%, while the transmission is well reduced to the value
of 75% (compared to 96% for the unmodulated sheet). The reflection
in GP resonance remains small, being 4% in its resonance maximum,
versus 2% for the unmodulated sheet (at the same wavelength).

The GP resonance can be further enhanced (reducing the mini-
mal transmission and enhancing maximal absorption or reflection) by
optimizing the amplitude of the modulation. The optimal modulation
amplitude can be estimated with the help of the analytical solution,
given by Eqs. (8.29)–(8.32). Since the absorption is proportional to
the intensity of the electric field in the graphene sheet, high values of
GP-induced absorption (and thus, lower values of the transmission)
require high GP field enhancement.

Let us thus find an optimal modulation amplitude yielding the
maximum field enhancement of GP. The amplitude of the GP’s elec-
tric field is given by the amplitude of the first-order spatial field
harmonics, r±1 (or t±1). Let us simplify the expression for r±1

(Eq. (8.29)), assuming the air environment of graphene (ε1 = ε2 = 1).
To simplify the derivations, it is convenient to introduce the following
dimensionless notations for x- and z-components of the wavevectors
of the diffracted waves

qn =
knx

k0
, qnz =

k1,2nz

k0
. (8.34)
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Specifically, for 0th-, 1st- and 2nd-diffraction orders, we have
explicitly

q0 = 0, q±1 = ±κ, q±2 = ±2κ,

q0z = 1, q±1z = i
√
κ2 − 1, q±2z =

√
κ2 − 1, (8.35)

where κ = G/k0 = λ0/L. Then, according to the definition of the
admittances, Y1,2n, by using Eqs. (8.34), (8.35), we have the explicit
expressions for them:

Y1,20 = 1, Y1,2±1 =
1

i
√
κ2 − 1

, Y1,2±1 =
1

i
√

4κ2 − 1
. (8.36)

The coefficients bn appearing in Eq. (8.30) can be now simplified to:

b0 = 2(ᾱ0+1), b1 = 2
(
ᾱ0 − i√

κ2 − 1

)
, b2 = 2

(
ᾱ0 − i√

4κ2 − 1

)
.

(8.37)
Taking into account Eqs. (8.35), (8.36), the amplitudes of the first-
order spatial field harmonics, given by Eq. (8.29), become

r±1 =
−1
b0

∆αq1z

1 + q1z∆
, ∆ = ᾱ0 −∆α2

(
1
b0

+
1

2b2

)
. (8.38)

The maximal value of |r±1|2 is achieved when the real part of the
denominator in Eq. (8.38) takes zero value:

1 + Re(q1z∆) = 0. (8.39)

Under the condition given by Eq. (8.39), taking into account that q1z

is purely imaginary for subwavelength periods of the grating, L < λ0,
the maximal value of |r±1|2 becomes

|r±1|2max =
∣∣∣∣∆αb0

∣∣∣∣
2 1

Re(∆)2
. (8.40)

The maximal value of |r±1|2 given by Eq. (8.40) corresponds to a
certain fixed modulation amplitude, ∆α. Now, we can optimize the
modulation amplitude (find the maximum of |r±1|2max considering it



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch08 page 334

334 Handbook of Metamaterials and Plasmonics — Volume 4

as a function of ∆α). In order to optimize the modulation ampli-
tude, let us further simplify Eq. (8.40), using the smallness of ᾱ0 and
assuming that κ approximately corresponds to the GP resonance in
neglect of the modulation, i.e. κ � Re(qp) = 1/Im(ᾱ0) (see equa-
tion (8.7)). With these assumptions, taking into account that only
the imaginary part of the conductivity is modulated, ∆α = i|∆α|,
we have b0 � 2, b2 = −i/Im(ᾱ0), so that Re(∆) � Re(ᾱ0)+ |∆α|2/2,
and Eq. (8.40) simplifies as

|r±1|2max =
|∆α|2

(2Re(ᾱ0) + |∆α|2)2 . (8.41)

From Eq. (8.41), we see that |r±1|2max reaches its maximal (optimal)
value at |∆α|2 = 2Re(ᾱ0). Therefore, the optimal modulation ampli-
tude, ∆αopt, reads:

∆αopt = i
√

2Re(ᾱ0). (8.42)

At the modulation amplitude, ∆α = ∆αopt, the optimal value for
|r±1|2 depends exclusively upon the intrinsic losses in the unmodu-
lated graphene sheet:

|r±1|2opt =
1

8Re(ᾱ0)
, (8.43)

while the resonant term in Eq. (8.32) takes approximately the con-
stant value, ∆t � −1/2. Then, approximating the Fresnel coefficients
by rF � 0 and tF � 1, from Eq. (8.32) we find the optimal values for
transmission, reflection and absorption coefficients:

Topt = Ropt =
1
4
, Aopt =

1
2
. (8.44)

As can be shown by a more general mathematical analysis (see Refs.
[21, 32]) the optimal values given by Eq. (8.44), correspond to the
highest possible absorption by a symmetrically surrounded graphene
sheet with an arbitrary spatial variation of the conductivity.

Note that the optimal modulation amplitude is attributed to
the compromise between the radiation losses of the GP on the
grating (given by the coupling to the zeroth–order diffracted wave)
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and intrinsic damping of the unmodulated graphene sheet, given
by the real part of its conductivity. Importantly, the optimal value
of the modulation amplitude can easily violate the condition of
the validity for the resonance perturbation theory (∆α < |ᾱ0|),
since for moderate and, particularly, high intrinsic, losses we have√

Re(ᾱ0) ∼ Im(ᾱ0). In this case, for modulation amplitudes close to
∆αopt, the analytical Eqs. (8.29)–(8.32) cannot be used for a quan-
titative description of the diffraction effects. Nevertheless, even in
the regime when the validity of the analytical perturbation theory
is restricted, optimal values given by Eqs. (8.42)–(8.44) can be a
good estimation for the efficiency of the GP resonance in close to the
optimal conditions.

8.6. Conclusions

In this chapter, we have tried to summarize recently developed
concepts of graphene plasmonics. We have provided both a brief
review on some of the most relevant physical effects in the topic
and presented some background information. Therefore, we hope
that the content of this chapter can be of interest both for spe-
cialists and for students or postdocs wishing to start working in
the field.
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Lett. 11, p. 3370.

28. Garcia-Pomar, J. L., Nikitin, A. Y. and Martin-Moreno, L. (2013). ACS
Nano. 7, p. 4988.

29. Chen, J. et al. (2013). Nano Lett. 13, p. 6210.
30. FeiZ et al. (2013). Nat. Nano. 8, p. 821.
31. Crassee, I., Orlita, M., Potemski, M., Walter, A. L., Ostler, M., Seyller,

T., Gaponenko, I., Chen, J. and Kuzmenko, A. B. (2012). Nano Lett. 12,
p. 2470.

32. Tymchenko, M., Nikitin, A. Y. and Mart́ın-Moreno, L. (2013). ACS Nano.
7, p. 9780.

33. Hadad, Y. and Steinberg, B. Z. (2013). Phys. Rev. B 88, p. 075439.
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9.1. Introduction

Plasmonics deals with light confinement at the nanoscale.1 This
is achieved by binding light to coherent electron oscillations at
the surfaces of metallic nanoparticles, the so-called surface plas-
mons (SPs) or surface plasmon polaritons (SPPs). These SPs come
together with large field enhancements and evanescent fields in the
vicinity of metallic nanoparticles,2 which allow light confinement to
subdiffraction volumes.3 Besides being of fundamental interest, this
topic holds promise for a variety of photonics applications, such as
optical communication and storage4 or quantum optics.5

Although plasmonics forms a bridge between the micrometer
scale of optics and the nanometer scale of nanostructures, the
diffraction limit of light forbids in conventional optical microscopy
the direct observation of light confinement with nanometer resolu-
tion. An approach to circumvent this shortcoming is to use instead
of optical (photon) probes other probes, such as electrons, thereby
entering the field of electron microscopy. As both photons and
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electrons interact with plasmonic nanoparticles through the elec-
trodynamic fields, both measurement techniques provide related
information.

Electron energy loss spectroscopy (EELS) is a subfield of electron
microscopy that has proven particularly useful in the context of
plasmon field mapping. The basic principle is sketched in Fig. 9.1:
Electrons with kinetic energies of typically 100 keV (corresponding
to velocities comparable to the speed of light) pass by or pene-
trate through the metallic nanoparticle, excite particle plasmons,
and lose energy. Finally, the energy loss of the electrons is detected
and recorded. By raster-scanning the electron beam over the sam-
ple, one obtains a spatial map of the plasmon fields with nanometer
resolution.

In the dawning of plasmonics, EELS was used for the first obser-
vation of bulk and SPs6,7 (see also Ref. 8 for a brief historical sketch)

Fig. 9.1. Schematics of energy loss of fast electron. (a) A fast electron (see
magenta line) passes by or penetrates through a metallic nanoparticle, here a
silver nanodisk. (b) The electron excites a dipolar particle plasmon, which comes
together with a localized electric field, and performs work against the induced
field, thereby loosing a fraction of its kinetic energy. (c) By raster scanning the
electron beam over the sample and recording the energy loss probability, one
obtains a map of the plasmonic field distribution with nanometer spatial resolu-
tion and with sub-eV energy resolution.



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch09 page 341

Plasmon Excitation by Fast Electrons 341

and was later established as a unique characterization tool for the
investigation of ensembles of plasmonic nanoparticles.9 Initially, fur-
ther progress was hindered by the lack of versatile fabrication tools
for metallic nanoparticle and the limited energy resolution of EELS,
which made it hard to resolve particle plasmons of a few eV in noble-
metal nanoparticles such as gold or silver. The second generation
of EELS measurements of plasmonic nanoparticles started with the
pioneering studies of nanorods and nanotriangles,10,11 which reported
the mapping of plasmon mode distributions with nanometer spatial
and sub-eV energy resolution, opening a most detailed view to the
plasmonics world that was up to that point only accessible through
computer simulations.

This chapter provides an overview of how such EELS mapping is
performed, how it can be interpreted and simulated, and what has
been achieved so far. Let me start with a disclaimer of what the
paper is not about. Being a theoretical physicist, I have refrained
from discussing experimental details. Excellent reviews about elec-
tron microscopy and EELS for plasmonic nanoparticles exist (see
e.g. Refs. 12 and 13 and references therein), and the interested
reader is referred to the pertinent literature. From the viewpoint
of a theoretician, it is amazing to see how much the field of elec-
tron microscopy has matured in recent years. Electron microscopes
nowadays come as true technical masterpieces, however, also hand
in hand with enormous costs that force research groups to join
efforts and make measurement times scarce and precious. In most
of the joint studies where I have been involved, only a few measure-
ment series were performed, and often it takes several weeks from
the planning stage to the experiment. Yet, the true heroes of the
trade remain those who actually perform the experiments. In partic-
ular with EELS for plasmonic nanoparticles, several critical points
remain, such as sample preparation, sufficiently high-energy resolu-
tion, suppression of contamination during the measurement process,
and post-processing of the recorded data. Thus, results that appear
to come out of routine measurements are usually based on extremely
hard work.
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So this chapter deals more with theory, simulation, and results,
although I had to realize with despair that there already exists
an excellent review article by Javier Garćıa de Abajo8 that cov-
ers almost everything. What I thus provide in the following is a
short introduction to EELS with plasmonic nanoparticles, with a
focus on theory and simulation, probably with more equations than
needed. Section 9.2 introduces the basic equations. In section 9.3, I
present the most common simulation approaches together with a few
representative results to highlight the principles underlying EELS
for plasmonic nanoparticles. The quasistatic approximation and an
eigenmode expansion are discussed in section 9.4. Section 9.5 is the
main part of this work and provides an overview of what has been
done with EELS and what can be learned from EELS measurements.
This section contains several references, which, however, are neither
exhaustive nor complete. Finally, in section 9.6, I give a brief sum-
mary and an outlook to possible future developments.

9.2. Theory

In this section, we derive the theory for computing EELS probabil-
ities. Our derivation closely follows the review article of Garćıa de
Abajo.8 To facilitate comparison with this work, in the following, we
adopt a Gaussian unit system (conversion to SI units can be done
along the guidelines given in Ref. 14) and we only consider non-
magnetic materials with a permeability µ = 1. As shown in Fig. 9.1,
in EELS a swift electron passing by or penetrating through a metallic
nanoparticle (i) excites an SP, (ii) performs work against the induced
SP field, and finally (iii) the electron’s loss in kinetic energy is mea-
sured. We will next show how to account for the various steps within
a semiclassical framework.

Within a small time interval dt, an electron propagates the dis-
tance d� = v dt, where v is the electron velocity. Let re(t) denote the
electron position, and E[re(t)] andB[re(t)] the electric and magnetic
fields at the electron position, respectively. The work performed by
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the electron against the electric field is then given by

dW = −q
(
E[re(t)]+v×B[re(t)]

)
·v dt = −qE[re(t)] ·v dt, (9.1)

where q = −e is the charge of the electron. We have exploited the
fact that magnetic fields cannot directly perform work14 because of
(v × B) · v ≡ 0. The total work performed by the electron, which
corresponds to the energy loss ∆E, is then obtained by integrating
over the entire electron trajectory,

∆E = e

∫ ∞

−∞
E[re(t)] · v dt. (9.2)

At this point, we have to be more specific about two points. First, the
electric field entering Eq. (9.2) is the electric field felt by the electron,
which, however, does not include the field produced by the electron
itself.a Second, from now on we will assume that for swift electrons,
with kinetic energies in the range from several tens to hundreds of
keV, the electron’s trajectory is not noticeably modified by the energy
lost through plasmon excitation. We thus assume re(t) = r0 + v t.
For an electron propagating along the positive z-direction, which
will be considered if not noted differently, the electron trajectory
becomes

re(t) = R0 + ẑ vt, (9.3)

with the impact parameter R0 = (x0, y0). There is a subtle point
about Eq. (9.3) that needs some clarification: although it is precisely
the velocity change that allows to detect the electron’s energy loss in
experiment (through deflection in the magnetic field of the detector),
in the theoretical approach the energy losses are already described
through the integral expression of Eq. (9.2), accounting for the work

aThe field produced by the electron and felt by the same electron would diverge
for a point-like particle such as the electron. Self-interaction divergences are com-
monly treated in the field of quantum electrodynamics, but are always neglected
in classical electrodynamics.
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performed by the electron, and the consideration of minor trajec-
tory changes would only lead to very small additional corrections.
The energy loss ∆E of Eq. (9.2) can be spectrally decomposed into
different frequency components using the Fourier transform

E(r, t) =
∫ ∞

−∞
e−iωtE(r, ω)

dω
2π
, (9.4)

where ω is the angular frequency. Inserting this expression into
Eq. (9.2) and using the definition ∆E =

∫∞
0 �ω ΓEELS(R0, ω) dω for

the energy loss probability, with �ω being the energy loss, we finally
arrive at

ΓEELS(R0, ω) =
e

π�ω

∫ ∞

−∞
Re
{
e−iωtv ·E[re(t), ω]

}
dt, (9.5)

where we have used E∗(r, ω) = E(r,−ω), which directly follows
from Eq. (9.4) for real electric fields E(r, t). Equation (9.5) is the
central result of this section which allows us to compute the electron
energy loss probability ΓEELS once the electric field E(r, ω) has been
computed.

9.2.1. Fields produced by swift electrons

The charge distribution of a swift electron propagating along the
trajectory of Eq. (9.3) is

ρ(r, t) = −eδ(R −R0)δ(z − vt), (9.6)

where R = (x, y) are the in-plane coordinates of the electron. The
corresponding current distribution is J(r, t) = vρ(r, t). For the solu-
tion of Maxwell’s equations in frequency space, we need the Fourier
transform of Eq. (9.6), which reads

ρ(r, ω) =
∫
eiωtρ(r, ω) dt = −e

v
δ(R −R0)eiqz, (9.7)

where we have introduced the wavenumber q = ω/v. For an
unbounded medium with a background permittivity ε(ω), the elec-
tric field associated with ρ(r, ω) can be obtained from the solutions
of Maxwell’s equations. The calculation is explicitly worked out in
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Ref. 14 (section 9.14) in the context of the Liénard–Wiechert poten-
tials, by starting from the fields for an electron at rest and then
boosting the electron to velocity v through a (relativistic) Lorentz
transformation, and we get8

E(r, ω) =
2eω
v2γεε

eiqz

[
i

γε
K0

(
ωρ

vγε

)
ẑ −K1

(
ωρ

vγε

)
ρ̂

]
, (9.8)

where γε = 1/
√

1− εv2/c2 is the Lorentz contraction factor, and the
notation ρ = R−R0 has been employed. K0 and K1 are the modified
Bessel functions of order 0 and 1, respectively. For completeness, we
also give the expression for the scalar potential within the Lorentz
gauge condition,

φ(r, ω) = −2e
vε
eiqz K0

(
ωρ

vγε

)
, (9.9)

which will be used later in the context of the boundary element
method (BEM) approach. The vector potential is given byA(r, ω) =
εv

c φ(r, ω).
Figure 9.2 shows the z and radial components of the electric field,

Eq. (9.8). As can be seen, the radial component is much larger than
the z component. For sufficiently small radial distances ρ, the radial
component shows a 1/ρ dependence reminiscent of the electric field
produced by a charged wire. At large distances, the electric field
decays exponentially.

9.2.2. Decomposition into bulk and surface losses

It is convenient to split the energy loss probability of Eq. (9.5) into
bulk and boundary contributions.12 In general, if the electric field
E(r, ω) produced by the electron is at hand (e.g. as obtained from
simulations) such splitting is not mandatory, but it helps to get
more insight into the different loss channels. Bulk losses arise when
the electron propagates through a medium described by a dielectric
function ε(ω). They only depend on the dielectric properties of the
material and the distance L propagated by the swift electron through



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch09 page 346

346 Handbook of Metamaterials and Plasmonics — Volume 4

Fig. 9.2. Electric field components of Eq. (9.8) in z (K0) and radial (K1) direc-
tions, and for two selected loss energies. We use the abbreviation ζ = ωρ/(vγε).
The dashed lines report the 1/ρ dependence for the radial electric field of a charged
wire, which agrees well with K1 at sufficiently small distances.

this material, but not on the nanoparticle geometry8

Γbulk(ω) =
e2L

π�v2
Im
{(

v2

c2
− 1
ε

)
ln
(
q2c − k2ε

q2 − k2ε

)}
, (9.10)

where qc ≈
√

(mvϕout/�)2 + q2 is a cut-off frequency that is
determined by the half-aperture collection angle of the microscope
spectrometer ϕout. In the non-retarded limit c→∞, this expression
reduces to

ΓNR
bulk(ω) =

2e2L
π�v2

Im
{
−1
ε

}
ln
(
qc
q

)
. (9.11)

As an example, we consider a Drude type permittivity ε(ω) = 1 −
ω2

p/[ω(ω+iγ)] with ωp and γ being the plasma frequency and collision
frequency of the free-electron gas. In this case, the loss function can
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Fig. 9.3. Loss function Im[−1/ε(ω)] for silver (Ag) and gold (Au), respectively,
for the dielectric function tabulated in Ref. 15. For silver, the loss function is
dominated by a single peak associated with bulk plasmon excitations, for gold
one observes a broad distribution above 2 eV associated with d-band absorption.1

be evaluated explicitly and we obtain,

Im
{
−1
ε

}
=

2ωγω2
p

(ω2
p − ω2)2 + 4ω2γ2

.

This expression corresponds to a Lorentzian peaked at the plasma
frequency ω ≈ ωp and broadened by the collision frequency γ. For
more realistic dielectric functions, such as those extracted from opti-
cal experiments,15 we find similar shapes with practically no bulk
losses in the low-energy regime relevant for particle plasmons, and a
pronounced peak at the bulk plasmon energy, see Fig. 9.3. In case of
gold, one observes a broad distribution above 2 eV associated with
d-band absorption.1

We next consider the situation where the electron propagates
through a system composed of different materials, described through
homogeneous dielectric functions εj(ω), which are separated by sharp
boundaries ∂Ωj. We split the different loss channels into bulk and
boundary contributions, with Γbulk,j(ω) being given by Eq. (9.10),
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and the boundary losses are often further separated into begrenzung
(German expression for restriction) and surface losses.12 The distinc-
tion between these contributions is somewhat subtle. In short, the
begrenzung losses are due to the fact that dielectric effects entering
Eq. (9.10) become modified in the vicinity of boundaries, for instance,
due to a less efficient screening close to metal boundaries, and the
modification of the loss probabilities is accounted for through an
additional begrenzung term. All remaining contributions, in particu-
lar those originating from SPs, are denoted as surface losses. Below,
we will show how these different losses can be accounted for within
a simulation approach.

9.2.3. Expressing EELS losses in terms of the dyadic

Green function

There is a formal and convenient connection between the EELS loss
of Eq. (9.5) and the dyadic Green function, which was first stated
and analyzed in Ref. 16. Let us first introduce the dyadic Green
function, which rests on the following concept: as we are dealing
with Maxwell’s equations in the linear regime, it suffices to seek for
the solution of delta-like current sources δ(r − r′)11 subject to suit-
able boundary conditions, in general out-going waves at infinity.14

Such a delta-like source is a mathematical idealization, since any
meaningful current distribution must additionally comply with the
continuity equation. Nevertheless, once we have obtained the solution
of Maxwell’s equations for a delta-like current distribution, we can
immediately obtain the solution for a general current source J(r, ω)
through linear superposition of these delta-like sources.

To be more precise, we start from the wave equation for the
electric field and for delta-like sources,

∇×∇×G(r, r′, ω)− k2
0ε(r, ω)G(r, r′, ω) = − 1

c2
δ(r − r′)11, (9.12)

where k0 = ω/c is the wavenumber of light in vacuum andG(r, r′, ω)
is the dyadic Green function. It describes the electric field at posi-
tion r for a delta-like current source at position r′, oscillating with
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frequency ω. Additionally,G is assumed to have the proper boundary
conditions of out-going waves at infinity (retarded Green function14).
With the dyadic Green function of Eq. (9.12), we can immedi-
ately write down a formal solution for a general current distribution
J(r, ω) as

E(r, ω) = −4πiω
∫
G(r, r′, ω) · J(r′, ω) dr′. (9.13)

Equation (9.13) follows from the defining Eq. (9.12) through a linear
superposition of the delta-like sources, and thus also has the proper
boundary conditions. For this reason, once we have determined the
dyadic Green function of Eq. (9.12) for a given frequency ω and
dielectric environment ε(r, ω), we have the solution of Maxwell’s
equation through Eq. (9.13) at hand.

The dyadic Green function can be immediately employed for the
calculation of the energy loss probability of Eq. (9.5),

ΓEELS(R0, ω) = −4ev2

�

∫ ∞

−∞
Im
{
e−iω(t−t′)Gzz[re(t), re(t′), ω]

}
dtdt′,

(9.14)
with Gzz = ẑ ·G · ẑ. Assuming a straight electron trajectory re(t) =
R0 + ẑ vt and indicating explicitly the dependence of G on the
in-plane and z directions, this expression can be rewritten as

ΓEELS(R0, ω) = −4e
�

∫ ∞

−∞
Im
{
e−iq(z−z′)Gzz[R0, z,R0, z

′, ω]
}

dzdz′.

(9.15)
Equation (9.15) expresses the EELS losses in terms of the dyadic
Green function of Maxwell’s theory. When the electron propagation
path goes through several media, for instance for trajectories pen-
etrating metallic nanoparticles, it is convenient to split the Green
function into a bulk and boundary contribution,

G(r, r′, ω) = Gbulk(r, r′, ω) +Gind(r, r′, ω). (9.16)

Here, −4πi
∫
Gbulk(r, r′, ω) · J(r′, ω) dr′ gives the field for a cur-

rent distribution inside an unbounded medium, and the induced part



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch09 page 350

350 Handbook of Metamaterials and Plasmonics — Volume 4

Gind gives the begrenzung and surface contributions due to the par-
ticle boundaries. With this decomposition, we can split the losses of
Eq. (9.15) into bulk losses, as previously discussed in section 9.2.2,
and additional boundary losses viz.

ΓEELS(R0, ω) = −4e
�

∫ ∞

−∞
Im
{
e−iq(z−z′)Gind, zz[R0, z,R0, z

′, ω]
}

×dzdz′ + Γbulk(ω). (9.17)

For simple geometries, such as layer structures or spheres, this expres-
sion can be evaluated analytically, as briefly discussed below. In the
general case, one must employ numerical simulation approaches, as
will be shown in section 9.3.

9.2.4. Analytic expressions for simple systems

For simple geometries, such as layer structures, infinitely long cylin-
ders, or spheres, one can obtain analytic expressions which are
often extremely useful, e.g. for testing the accuracy of simulation
approaches. For spheres, one can resort to Mie theory and compute
the EELS probabilities either within the quasistatic limit17 (see sec-
tion 9.4) or using the full Maxwell’s equations.18 Explicit expressions
can be found in these papers as well as in Ref. 8.

9.3. Simulation Approaches

The simulation of EELS and plasmonic nanoparticles usually
employs Eq. (9.17), which splits the loss probabilities into bulk
and boundary contributions, and on generic Maxwell solvers. These
solvers start with a given source, in our case the current distribu-
tion J(r, ω) = v ρ(r, ω) of the swift electron, and compute the elec-
tromagnetic fields E(r, ω) and B(r, ω) using Maxwell’s equations.
Among the many available Maxwell solvers, in the following, we dis-
cuss three of them which have so far been predominantly used in
the literature, namely, the discrete dipole approximation (DDA), the
finite difference time domain (FDTD), and the BEM approaches.



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch09 page 351

Plasmon Excitation by Fast Electrons 351

9.3.1. Discrete dipole approximation

The conceptually probably most simple approach is based on the
so-called discrete dipole approximation (DDA),19,20 which approx-
imates a metallic nanoparticle through a large collection of small
polarizable particles (“discrete dipole”). A given external excitation
Eext, such as the electric field of the swift electron, then polarizes
the different dipoles according to

Pj = αj ·Ej. (9.18)

Here, Pj is the polarization of the j’th dipole with polarizability αj ,
which in general is assumed to be isotropic, and Ej is the sum of Eext

and the polarization field produces by all dipoles. Equation (9.18)
constitutes a matrix equation, which can be solved by inversion usu-
ally employing iterative schemes.19,20 In Ref. 21, the authors pre-
sented a DDA implementation of EELS simulations and for electron
trajectories that do not penetrate the nanoparticle.

9.3.2. Finite difference time domain

The FDTD approach is arguably the most successful and widely used
simulation schemes in computational electrodynamics.22,23 The basic
idea is to discretize the computational domain by finite differences
and to propagate the fields, starting with some initial conditions, in
the time domain. Typically different spatial and time meshes are used
for the electric and magnetic fields E and B, which allows E and B
to propagate in an efficient manner. A key ingredient of the FDTD
approach are the perfectly matched layer (PML) absorbing boundary
conditions which allow to restrict the computational domain, almost
perfectly absorbing out-going waves at a user-defined boundary suf-
ficiently far away from the simulated nanoparticles.

An FDTD implementation for EELS simulations was presented
in Ref. 24. In a related scheme, EELS simulations with a discontinu-
ous Galerkin time-domain method were presented.25 Both simulation
approaches work best for non-penetrating electron trajectories.
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9.3.3. Boundary element method

The BEM approach was the first EELS simulation scheme used in
the field of plasmonics. The development for BEM simulations of
EELS was pioneered by Javier Garćıa de Abajo et al.8,26 As we will
present below primarily results from such BEM simulations, in the
following we describe the main ingredients in more detail.

The BEM approach of Ref. 8, 26 uses as basic ingredients the
scalar and vector potentials φ andA rather than the electromagnetic
fields E and B, and additionally employs the Lorentz gauge condi-
tion ∇ · A = ik0εφ.14 Potentials and fields are connected through
E = ik0A − ∇φ and B = ∇ × A. Both φ and A are solutions of
the Helmholtz equations (rather than the wave equations for electro-
magnetic fields)

(∇2 + k2
0ε(r, ω)

)
φ(r, ω) = −4π

ρ(r, ω)
ε(r, ω)

(9.19a)

(∇2 + k2
0ε(r, ω)

)
A(r, ω) = −4π

c
J(r, ω). (9.19b)

In what comes next, we foresee the separation of the EELS losses
into bulk and boundary contributions. First, we split the scalar and
vector potentials into external and induced contributions

φj(r, ω) = φj
ext(r, ω) + φj

ind(r, ω), φj
ext(r, ω) = − 2e

vεj
eiqzK0

(
ωρ

vγεj

)
(9.20a)

Aj(r, ω) = Aj
ext(r, ω) +Aj

ind(r, ω), Aj
ext(r, ω) = εj

v

c
φext(r, ω).

(9.20b)

These potentials are to be used for the electron propagating within
the medium with permittivity εj , i.e. r ∈ Ωj. Due to the decompo-
sition of Eqs. (9.20), the external and induced potentials give rise to
bulk and boundary losses, respectively.

In order to obtain the induced potentials, we again make use
of the concept of Green functions, which, however, in this case are
not defined through the wave Eq. (9.12) but rather the Helmholtz
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equation

(∇2 + k2
0εj
)
Gj(r, r′, ω) = −4πδ(r − r′), Gj(r, r′, ω) =

eikj |r−r′|

|r − r′| ,
(9.21)

with kj = √εj k0 being the wavenumber in medium j. We can now
write down the solutions of the Helmholtz equations in the ad hoc
form

φj(r, ω) = φj
ext(r, ω) +

∮
∂Ωj

Gj(r, s′, ω)σj(s′, ω) ds′ (9.22a)

Aj(r, ω) = Aj
ext(r, ω) +

∮
∂Ωj

Gj(r, s′, ω)hj(s′, ω) ds′. (9.22b)

These expressions are constructed such that: (i) since φj
ext, A

j
ext, and

Gj fulfill the Helmholtz equations everywhere in the spatial domain
Ωj except on the boundary ∂Ωj , Eqs. (9.22) also fulfill the Helmholtz
equations within Ωj; (ii) the (artificial) surface charges and currents
σj and hj have to be chosen such that the boundary conditions of
Maxwell’s equations are fulfilled. As shown in Refs. 26, 27, this leads
to a set of eight integral equations.

To render Eqs. (9.22) suitable for a numerical implementation
within a BEM approach, we have to approximate the boundaries
∂Ωj by boundary elements of finite size. The boundary integrals of
Eqs. (9.22) are then represented by a sum over these boundary ele-
ments, and the eight constituent equations for the (now discretized)
surface charges and currents become matrix equations, which can be
solved through numerical matrix inversion.26,27 In Refs. 27, 28, we
presented details of a computational solution scheme for the BEM
equations using the Matlab toolbox MNPBEM.

9.3.4. Selected results of BEM simulations

Figure 9.4 shows results of BEM simulations28 for a swift electron
with a kinetic energy of 200 keV (electron velocity v/c ≈ 0.7) passing
by a silver nanoparticle with a diameter of 80 nm. The dielectric
function of Ag is taken from optical experiments15 and the minimal
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Fig. 9.4. Loss probability for electron trajectory passing by a silver nanosphere,
as shown in inset. We compare the results of our BEM simulations with analytic
results derived within Mie theory.8 In the simulation, the nanosphere diameter
is 80 nm, the silver dielectric function is extracted from optical experiments,15

the background dielectric constant is one and the minimal distance between
electron beam and nanosphere is 10 nm. We assume a kinetic electron energy
of 200 keV.

distance between electron and nanosphere is 10 nm. For comparison,
we also report results from Mie calculations8,18 providing an ana-
lytic expression for ΓEELS. As can be seen, the results of the BEM
simulations and Mie calculations are in extremely good agreement,
thus highlighting the accuracy of numerical simulation approaches.
We tentatively assign the two peaks at loss energies of 3.26 eV
and 3.54 eV to excitations of the dipolar and quadrupolar modes,
respectively.

Figure 9.5 shows the induced electric field Eind at the dipole
plasmon resonance, of 3.26 eV. On resonance, the induced field is
approximately 90◦ phase delayed with respect to the driving field of
the swift electron; for this reason, we plot the imaginary part of Eind

only. According to Eq. (9.17), the energy loss is determined by the
integrated work performed by the swift electron against the induced
field.
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Fig. 9.5. Induced electric fieldEind at the dipole resonance of 3.26 eV. All simula-
tion parameters are identical to those given in Fig. 9.4. We show the discretization
of the particle boundary as used in our BEM simulation approach.28 The cones
show the imaginary part of Eind in the plane of the trajectory of the swift electron
(see magenta line).

9.4. Quasistatic Approximation
and Modal Decomposition

9.4.1. Quasistatic approximation

Equations (9.5) and (9.15) are the general expressions that allow to
compute the EEL probabilities from the solutions of the full Maxwell
equations. In some cases, in particular for small nanoparticles and
for a more intuitive understanding of EELS, it is advantageous to
resort to the so-called quasistatic approximation.

In the quasistatic approximation, one assumes that the nanopar-
ticle is much smaller than the wavelength of light, both inside and
outside the metallic nanoparticle, such that in Eq. (9.19) we have
|∇φ(r, ω)| � |kφ(r, ω)|. If this is the case, the vector potential is
much smaller than the scalar potential (as can be inferred from
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the Lorentz gauge condition), and is thus neglected. Instead of the
Helmholtz equation, we then obtain the Poisson equation

∇2φ(r, ω) = −4π
ρ(r, ω)
ε(r, ω)

. (9.23)

The potentials inside and outside the nanoparticle have to be
matched by employing the boundary conditions of Maxwell’s equa-
tions at the particle boundary ∂Ω, namely the continuity of the par-
allel component of the electric field and of the normal component of
the dielectric displacement. Electric field E and scalar potential φ are
related through E = −∇φ. The “quasi” of the quasistatic approxi-
mation refers to the fact that we keep in the solution of Eq. (9.23)
and the consideration of the boundary conditions the full frequency
content of ε(r, ω).

We next evaluate the energy loss probability of Eq. (9.5), which
we rewrite in the form

ΓEELS(R0, ω) = − 1
π�ω

∫
Re {J∗(r, ω) ·Eind(r, ω)} dr + Γbulk,

where J is the current distribution of the swift electron and Eind

the induced field of the nanoparticle. Through repeated use of the
divergence theorem, one can establish a number of useful expressions.
We start with ∇ · (J∗φind) = (∇ · J∗)φind + J∗ · ∇φind, where, upon
integration over the entire space and use of the divergence theorem,
the term on the left-hand side vanishes because φind approaches zero
at infinity. Together with the continuity equation iωρ = ∇ · J , we
then find

ΓEELS(R0, ω) = − 1
π�

∫
Im {ρ∗(r, ω)φind(r, ω)} dr + Γbulk, (9.24)

which is the equivalent form of Eq. (9.5) but within the quasistatic
limit.

For an electron beam that does not penetrate the metallic
nanoparticle, we can proceede even further. From ∇ · [(∇φ∗)φind] =
(∇2φ∗)φind + (∇φ∗) · (∇φext) together with ρ = −∇2φind/(4π),
we obtain after integration over the entire space and use of the
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divergence theorem the intriguing expression

ΓEELS(R0, ω) =
1

4π2�

∫
Im {E∗(r, ω) ·Eind(r, ω)} dr, (9.25)

stating that the loss probability is maximized when the integrated
overlap between the field of the swift electron E∗ (which is reminis-
cent of the field distribution of a charged wire) and of the “induced”
particle plasmon field Eind is as large as possible.

9.4.2. Solution of Maxwell’s equations

in the quasistatic approximation

We will now show how to compute the scalar potential in case of
a single boundary ∂Ω, for a discussion of more general setups see
Refs. 17, 27. First, we introduce the Green function for the Poisson
equation,

∇2G(r, r′) = −4πδ(r − r′) , G(r, r′) =
1

|r − r′| . (9.26)

Similar to Eq. (9.22), we split the scalar potential into an external
and induced part

φ(r, ω) = φext(r, ω) +
∮

∂Ω
G(r, s′)σ(s′, ω) ds′, (9.27)

where φext is the external potential associated with the charge dis-
tribution of the swift electron, see Eq. (9.20) and Ref. 8 for its qua-
sistatic approximation. Again, we have introduced a surface charge
distribution σ(s, ω) that has to be chosen such that the boundary
conditions of Maxwell’s equations are fulfilled. The continuity of the
tangential electric field E‖

in = E
‖
out at the particle in- and outside is

fulfilled when the potential is continuous, as is per construction the
case in Eq. (9.22).b For the continuity of the dielectric displacement

bNote that in the quasistatic limit the external potential φext does not depend
on the material’s permittivities,8 similar to the Green function of the Poisson
equation, and the surface charge distribution σ(s, ω) at the particle in- and outside
is the same. In the case of the full Maxwell equations, see Eq. (9.22), φj

ext, A
j
ext
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D⊥
in = D⊥

out, we have to perform in Eq. (9.27) a normal derivative
∂
∂n = n̂ · ∇ on both sides of the equation, and finally perform the
limit r → s. As discussed in more length in Ref. 26, some care has
to be taken about this limit in the integral on the right-hand side. If
we use a coordinate system with n̂ poynting in the z-direction and
assume that the surface charge distribution σ is constant within a
small circle of radius R, the contribution to the surface derivative of
the integral becomes

lim
z→±0

n̂ ·
∫

r − s′
|r − s′|3 ds′ → lim

z→±0
2πz

∫ R

0

ρdρ

(ρ2 + z2)
3
2

= ±2π, (9.28)

where the sign depends on whether we approach the surface from the
out- or inside of the particle boundary. Thus, we find for the surface
derivatives of the dielectric displacement

D⊥
out(s, ω)

= −εout

(
∂φext(s, ω)

∂n
+ 2πσ(s, ω) +

∮
∂Ω

∂G(s, s′)
∂n

σ(s′, ω) ds′
)
,

D⊥
in(s, ω)

= −εin
(
∂φext(s, ω)

∂n
− 2πσ(s, ω) +

∮
∂Ω

∂G(s, s′)
∂n

σ(s′, ω) ds′
)
.

Subtracting the two expressions finally leads to the integral equation[
Λ(ω)σ(s, ω) +

∮
∂Ω

∂G(s, s′)
∂n

σ(s′, ω) ds′
]

= −∂φext(s, ω)
∂n

,

Λ(ω) = 2π
εout + εin
εout − εin , (9.29)

which allows us to compute for a given external potential the surface
charge distribution σ, and thus provides the solution of Maxwell’s
equations in the quasistatic limit. Again, Eq. (9.29) can be trans-
formed from a boundary integral equation to a BEM equation by

and Gj dependent on εj , and one has to introduce different σj and hj at the
particle’s in- and outside.
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approximating the particle boundary through a set of boundary ele-
ments of finite size.26,27 The solution for σ then involves a simple
matrix inversion.

9.4.3. Eigenmode expansion

The neat thing about Eq. (9.29) is that all material parameters are
embodied in the function Λ(ω). As we will discuss now, this allows
for a convenient eigenmode expansion which was first introduced
by Ouyang and Isaacson.29 To this end, we introduce σk(s) defined
through ∮

∂Ω

∂G(s, s′)
∂n

σk(s′) ds′ = λkσk(s), (9.30)

which form a complete basis set satisfying the unusual orthogonality
relationsc ∮

∂Ω
σk(s)G(s, s′)σk′(s′) dsds′ = δkk′ .

In accordance with Ref. 31, we shall refer to these modes as geomet-
ric eigenmode as they only depend on the nanoparticle geometry.
Through these modes, one can decompose the solution of Eq. (9.29)
into contributions that only depend on material properties (described
through Λ) and geometry (described through σk and λk). As worked
out in Ref. 31, for a point charge at position r′ the field at position
r can be expressed through the induced Green function

Gind(r, r′, ω) = −1
ε

∑
k

λk + 2π
Λ(ω) + λk

φk(r)φk(r′),

φk(r) =
∮

∂Ω
G(r, s)σk(s) ds, (9.31)

cThere exists another definition for an eigenmode expansion,30,31 where in addi-
tion to the right eigenmodes of Eq. (9.30) one introduces left eigenmodes σ̃k(s)

defined through
H

∂Ω
σ̃k(s′) ∂G(s′,s)

∂n
ds′ = λkσ̃k(s). The left and right eigen-

modes form a biorthogonal set
H

∂Ω
σk(s)σ̃k′(s) ds = δkk′ which is complete. This

biorthogonal basis set is often advantageous for numerical implementations.28,31
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where we have assumed that both r and r′ are located outside the
metallic nanoparticle in a medium with permittivity ε. Inserting the
eigenmode expansion into Eq. (9.24) gives for an electron trajectory
that does not penetrate the nanoparticle [see Eq. (9.17) for the cor-
responding expression using the full Maxwell’s equations]

ΓEELS(R0, ω) = − 1
π�

∫
Im
{
ρ∗(r, ω)Gind(r, r′, ω)ρ(r′, ω)

}
drdr′,

which can be brought to the final form

ΓEELS(R0, ω)

= − e2

π�v2ε

∑
k

Im
{

λk + 2π
Λ(ω) + λk

} ∣∣∣∣
∫ ∞

−∞
eiqzφk(R0, z) dz

∣∣∣∣
2

. (9.32)

The term in curly brackets gives a Lorentzian lineshape at the res-
onance frequencies where Re[Λ(ω) + λk] ≈ 0, the integral gives a
form factor describing how well a given eigenmode can be excited
by the electron beam. Equation (9.32) provides a quite transparent
decomposition of the loss function into a lineshape function and an
oscillator strength.

9.5. Results

References 10 and 11 were the first to investigate SP resonances of
single metallic nanorods and nanotriangles, respectively. Figure 9.6
shows EEL spectra and maps for a silver nanotriangle, with a side
length and height of approximately 80 nm and 10 nm, respectively.
Panel (a) shows EEL spectra recorded for three different electron
beam positions, as indicated in the inset which additionally shows a
high-angle annular dark-field (HAADF) image of the nanotriangle.
In the spectra, one can distinguish at least three peaks, whose maps
are displayed in panels (c)–(e). Below, we will use a quasistatic mode
expansion to label them as (c) dipole, (d) hexapole and (e) breathing
modes.32 From the figure it becomes apparent that, in comparison
to optical spectroscopy, EELS can (i) map both modes that couple
to light and those which are “dark”,33 and (ii) allows to map the
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Fig. 9.6. EEL spectra and maps for a silver nanotriangle taken from Ref. 13. (a) EEL spectra taken at three different
positions, as indicated in the inset. The scale bar is 20 nm. (b) Energy and (c) intensity map for the dipolar mode at
1.75 eV. (d, e) Intensity maps for second and third plasmon mode.
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Fig. 9.7. EEL spectra at three different positions for the electron beam, indicated
in the inset, as computed with the MNPBEM toolbox27,28 for a silver triangle with
a base length of approximately 80 nm and a height of 10 nm. In our simulations,
we use dielectric functions extracted from optical experiments.15 The dashed lines
report the energetic positions of the plasmon resonances where the spatial EELS
maps of Fig. 9.8 are computed.

EEL mode patterns with nanometer resolution. This renders EELS
ideal for the investigation of the complete plasmonic mode spectrum.
On the other hand, in comparison to optical spectroscopy the loss
peaks are typically broader, due to the finite EELS energy resolution
of ≈0.1 eV caused by the non-monochromatic energy distribution of
the swift electrons, which, however, is usually not a serious limitation
for the observation of SP peaks which are intrinsically broadened
through ohmic losses of the metal and radiative damping. Another
problem is the question of which quantity is measured in EELS. This
point will be discussed in more detail in section 9.5.6.

Figure 9.7 shows simulated EEL spectra for a nanoparticle geom-
etry similar to the experimental study shown in Fig. 9.6 (see also
Ref. 11 for related simulation results). In comparison to the experi-
ments, the simulated spectra show a richer peak structure, which is
probably masked in the experiment by the finite spectral resolution,
and the peaks are blueshifted. This shift is attributed to the neglect of
the substrate in the simulations, as will be discussed in section 9.5.4.
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Fig. 9.8. Spatial EEL maps for the same nanotriangle as investigated in Fig. 9.7
at the plasmon resonances indicated by dashed lines. The modes can be assigned
to (a) dipole, (b, c) hexapole and (d) breathing mode,32,33 as discussed in the
text.

We observe in the simulated spectra at least four pronounced peaks,
labeled with (a)–(d), in addition to the bulk plasmon peak around
3.8 eV (see also Fig. 9.3). The EEL maps computed at the resonance
energies are displayed in Fig. 9.8. In particular, the modes (a,b,d)
compare well with the experimental maps of Fig. 9.6(c)–(e), showing
that EELS experiments and simulations can be compared on par. We
will return to a discussion of these modes in section 9.5.2.

9.5.1. The example of a metallic nanodisk

To get more insight to the plasmonic mode patterns and how they
are measured in EELS, in the following we discuss the situation of
a metallic nanodisk. A combined experimental and simulation study
of silver nanodisks was presented in Refs. 32–35. In contrast to the
nanotriangle discussed above, the nanodisk has cylinder symmetry
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leading to the conservation of angular momentum,26 which signifi-
cantly facilitates the interpretation.

Figure 9.9 shows typical EEL spectra for a silver nanodisk with
60 nm diameter and 10 nm height. At the disk edge (triangular sym-
bols), one observes a number of peaks, whereas in the center (circle)
we only observe one pronounced peak. We again see a bulk loss peak
at an energy of 3.8 eV. Since the nanodisk exhibits cylinder sym-
metry, the EELS probability only depends on the radial distance of
the electron beam (measured with respect to the disk center) but
not on the azimuthal angle. For this reason, in Fig. 9.10, we show
instead of EEL maps a density plot of the EELS probabilities as a
function of loss energy and impact parameter. In agreement to the
spectra for selected impact parameters shown in Fig. 9.9, we observe
(i) a series of peaks located at the disk boundaries, whose spatial
extension decreases with increasing loss energy, (ii) a mode located
in the disk center around 3.5 eV, and (iii) a featureless bulk plasmon
peak at 3.8 eV.

In Fig. 9.11, we report the surface charge distributions for the
geometric eigenmodes σk(s) computed from Eq. (9.30). As the disk
exhibits cylinder symmetry, the modes can be classified according to
the angular momentum � = 0, 1, 2, . . . .26 The surface charge distri-
butions thus depend through σk ∼ e±i�ϕ on the azimuthal angle
ϕ, with degenerate eigenvalues for ±�. We can also form linear
superpositions cos �φ and sin �φ from these degenerate modes. These
(real-valued) eigenmodes naturally come out from BEM solvers and
numerical diagonalization routines.27 In EELS, the position of the
electron beam determines the linear combination of the modes, and
by rotating the electron beam around the nanodisk the mode pattern
will rotate accordingly. For this reason, the loss probability, which
accounts for mode excitations and the work of the electron performed
against the electric field of the excited modes, does not depend on
angle (see also Fig. 9.1(c)).

The dipolar, quadrupolar and hexapolar modes shown in
Fig. 9.11 correspond to angular momentum numbers � = ±1,±2,±3,
respectively. In principle, there exists an infinite number of such
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Fig. 9.9. The EEL spectra for a silver nanodisk with a diameter of 60 nm and
a height of 10 nm. The impact parameters of the electron beams for the different
spectra are reported in the inset, and the beam propagation direction is the z-
direction perpendicular to the shaded disk.
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Fig. 9.10. Density map of EEL spectra for nanodisk and for different loss energies
and impact parameters using the same geometry as investigated in Fig. 9.9. The
dashed line at an impact parameter of 30 nm indicates the disk boundary.

modes. As can be seen in Fig. 9.10, the highest loss probabilities for
these modes are at the disk edge. The spatial extension of the EELS
signal decreases with increasing angular order �, which is attributed
to the tighter field confinement and the stronger localization of σk at
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Fig. 9.11. Geometric eigenmodes [see Eq. (9.30)] for a nanodisk with a diame-
ter to height ratio of 6:1. With increasing energy, we obtain dipole, quadrupole,
hexapole and other multipole modes, whose surface charge distribution is largest
at the disk edges. Additionally, we obtain a “breathing” mode with a charge
distribution that oscillates in the radial direction. The slight deviations of the
eigenmodes from cylinder symmetry are due to the non-spherical boundary dis-
cretization used in our simulations.

the disk edges for larger � orders. The “breathing” mode in Fig. 9.11
corresponds to a radial oscillation mode with � = 0,33 which shows
up in the EEL maps of Fig. 9.10 at a loss energy of 3.5 eV. This
mode is optically dark, at least for sufficiently small nanoparticles
where retardation effects can be ignored.35 As shown in Ref. 33,
with increasing disk size additional radial “breathing” modes appear
in the spectra, with mode patterns that have two to several zeros
along the radial direction. In addition to these angular and radial
plasmon excitations, there also exist modes with nodes along the
vertical z-direction. However, for flat nanodisks these modes typi-
cally have very high plasmon energies and can be hardly observed in
EELS. It is important to realize that this mode characterization in
terms of angular, radial, and vertical modes is entirely dictated by
symmetry.

In Ref. 34, it was shown that there exists an intriguing connection
of radial and angular modes to SPs in planar film geometries and at
the edges of such films. For films, the SP plasmon dispersion ω2D(k‖)
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depends on the wavevector k‖ in the in-plane direction, whereas for
film edges the plasmon dispersion ω1D(kx) depends on the wavenum-
ber kx associated with the motion along the edge. The radial modes
then can be interpreted as SP film modes, where the wavenumber
kn ≈ 2nπ/d is determined by the disk diameter and the radial mode
number n = 1, 2, . . . .d As has been demonstrated both experimen-
tally and theoretically,33,34 the plasmon energies of the radial modes
coincide almost perfectly with the SP energies �ω2D(kn). Similarly,
the plasmon energies of the angular modes agree extremely well with
the SP energies of edge modes �ω1D(k�), with the wavenumber asso-
ciated with the angular order and the disk circumference according
to k� ≈ 2�π/(πd). Thus, the radial and angular disk modes can
be mapped to the film and edge modes of planar films, where the
wavenumbers are determined by the disk geometry (diameter and
circumference). A similar characterization in terms of film and edge
modes was also demonstrated for other particle geometries.37,38

9.5.2. EELS mapping for nanotriangles

and other geometries

We briefly comment on the modes of a nanotriangle, with EEL spec-
tra and maps already discussed at the beginning of section 9.5.
Figures 9.12(a)–(c) show the eigenmodes for a nanotriangle, with
increasing energy, as computed from Eq. (9.30). The modes of panel
(a) have dipolar character, whereas modes (b, c) are more compli-
cated.32 Although not completely obvious from the figure, through
linear combination of the two dipolar modes we can get modes where
the dipole moment points into any direction within the (x, y) plane.
Indeed, in optics the scattering or extinction spectra do not depend
on the polarization direction within the triangle plane. Similarly, all
EEL maps shown in Fig. 9.8 exhibit perfect triangular symmetry.

dQuite generally, one has to be careful about the reflection phase of the SP at
the disk edge, which was neglected in Refs. 33,34. This phase was measured to
be around 70◦ for a nanowire.36
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Fig. 9.12. Geometric eigenmodes for a nanotriangle with a base length to height
ratio of 8:1. With increasing energy, we obtain (a) dipole and (b, c) second and
third excited modes. (e) Through linear superposition of the degenerate dipole
modes, one can rotate the triangular dipole mode into any direction.

In addition to the investigation of nanotriangles,11,39–41 EELS
was employed to a myriad of other nanoparticle geometries, such
as nanorods,10,42–47 nanocubes,48–50 nanoholes,51 nanodecahedra,52

plasmonic tapers,53 or split-ring resonators.54 Additionally, for
nanowires, EELS was used for probing the complex SP reflection
coefficients at the wire ends55,56 and for the investigation of plasmon
modes in bent geometries.57 All these studies underlined the great
potential of EELS for nanometer imaging of plasmon modes with
sub-eV energy resolution.

9.5.3. Coupled particles

Nanoparticle coupling allows for strong field enhancements in the
gap regions, which can be exploited for extreme light confinement,
surface enhanced Raman spectroscopy (SERS)58 and sensorics, or
for tailoring light-matter couplings.1,3 Again, EELS can be used for
the mapping of plasmon modes in coupled nanoparticles, but the
interpretation of the signals from the hot-spot region requires some
care. Consider, for example, the bowtie geometry shown in the inset
of Fig. 9.13, which consists of two flipped nanotriangles separated
by a narrow gap region. The modes of lowest energy correspond to
bonding and antibonding dipolar modes, where the dipoles (see lower
panel of Fig. 9.12) are either parallel (bonding mode) or antiparallel
(antibonding mode). The dipole moments for these modes add up
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Fig. 9.13. The EEL spectra for coupled nanotriangles (bowtie geometry) and for
selected electron beam positions, as indicated in the inset. The geometry of the
individual nanotriangles is identical to those given in Fig. 9.7, and the gap size
is 10 nm. Modes (a) and (b) correspond to the bonding and antibonding dipolar
modes, whose EEL maps are shown in Fig. 9.14.

either constructively or destructively, resulting in optically bright and
dark modes. For the bonding mode, the electric field in the gap region
points from one nanotriangle to the other one and comes together
with a strong near-field enhancement.

When an electron with propagation direction perpendicular to
the bowtie plane shown in the inset of Fig. 9.14 moves through the
hot-spot region, the velocity v is perpendicular to the induced elec-
tric field Eind. Thus, the energy loss probability of Eq. (9.5) becomes
small because of v · Eind ≈ 0, and EELS “is blind to hot spots”.59

Another way of understanding this effect is to recall Eq. (9.25) stating
that the loss probability is given by the integrated overlap between
the field of the swift electron E∗ and of the “induced” particle plas-
mon field Eind. Because of symmetry, E∗ is symmetric with respect
to reflection at the mirror plane, whereas Eind of the bonding mode
is antisymmetric. Thus, the integral vanishes. Figure 9.14 shows EEL
maps for the (a) bonding and (b) antibonding modes, showing indeed
a strongly reduced EELS signal for the bonding mode in the gap
region. In contrast, the antibonding mode has a high EELS signal,
despite its low photonic local density of states (LDOS),2 which is
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Fig. 9.14. The EEL maps for bowtie geometry, see Fig. 9.13, and for (a) bonding
and (b) antibonding mode. For the bonding mode, the EEL intensity at the hot-
spot in the gap region vanishes, as discussed in the text and in Ref. 59.

attributed to the strong components of Eind in z direction and the
resulting large v · Eind contributions. Indeed, corresponding EEL
maps were observed in Refs. 60, 61.

Other coupling phenomena have been observed for metal
nanosphere dimers,62,63 nanowire dimers,64 oligomer-type nanocav-
ities,65 split-ring resonators,66 or hybrid metal–semiconductor
nanogap antennas.67 The relation between SERS hot spots and
EELS signals has been studied in Ref. 68. Non-locality69 and quan-
tum effects61,70,71 have been investigated for coupled nanoparticles.
Assembly of plasmonic nanoparticles through DNA strands has been
demonstrated in Refs. 72,73.

9.5.4. Substrate effects

In EELS experiments, the plasmonic nanoparticles must be placed
on some thin support, such as mica,11 carbon grids,42 or silicon
nitride (SiN) membranes.33 Large-area and homogeneous SiN mem-
branes are available for various thicknesses, typically of the order
of 10 nm. Figure 9.15 shows results of simulations performed with
(solid lines) and without (dashed lines) a thin SiN membrane.
Whereas the thin membrane leads to practically no additional elec-
tron losses, the energies of the plasmon modes are significantly red-
shifted due to the large permittivity ε ≈ 4 of SiN and should
be included in EELS simulations for quantitative comparison with
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Fig. 9.15. The EEL spectra for nanotriangle and for selected electron beam posi-
tions, see also Fig. 9.7. The dashed lines correspond to simulations of a nanotri-
angle in free space, the solid lines show results of simulations where an additional
15 nm thick silicon nitride (ε = 4) membrane supporting the nanotriangle is
considered. This membrane leads to a relatively large red-shift ≈ 0.5 eV of the
plasmon peaks.

experiment.74 Substrate-induced symmetry breaking of plasmon
modes was reported in Refs. 34, 75.

9.5.5. Combining electrons and photons

When a fast electron excites a particle plasmon, the plasmon can
decay by emitting a photon. This so-called cathodoluminescence
(CL) provides additional information about plasmon modes.12,13 See
also Refs. 8, 76 for CL theory. CL was first observed for a silver
nanosphere,77 and has since then been applied in many experimental
studies, such as for imaging of plasmonic modes in nanowires78 or
nanotriangles.79 Correlated CL and EELS mapping has been stud-
ied in Refs. 44, 52, and the differences and similarities between these
two techniques have been analyzed in Ref. 41.

Another interesting experimental technique based on electron
microscopy is to combine photoexcitation and subsequent EELS
imaging of SPs using the time-resolved photon-induced near-field
electron microscopy (PINEM) technique,80 which has been used
for the investigation of spherical dimers81 and for nanorods.82
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Theoretical work has been concerned with plasmon electron energy-
gain spectroscopy83 and vortex electron beams.84 Nonlinear inelastic
electron scattering in EELS has been demonstrated in Ref. 85.

9.5.6. Plasmon tomography

A question that has attracted some interest is what quantity is mea-
sured in EELS. In Ref. 16, the authors established a link between
EELS and the photonic LDOS, although this link is sometimes
rather dubious.59 An interesting recent development is the connec-
tion between EELS and plasmon field tomography. In Ref. 86, the
authors showed that the full three-dimensional plasmon fields can
be reconstructed from a series of rotated EELS maps, making var-
ious assumptions including the validity of the quasistatic approxi-
mation. A similar approach was developed independently in Ref. 49
and demonstrated experimentally for a silver nanocube. Angular-
resolved EELS maps were presented for a split-ring resonator.87

A tomography scheme using CL was shown in Ref. 88.

9.5.7. Quantum effects

Recent years have seen various efforts to investigate the limits of
classical plasmonics, bringing EELS to the regime where quantum
effects play a noticeable role. Quantum plasmon resonances of indi-
vidual70 and coupled71 metallic nanoparticles were presented. In the
latter approach, the electromagnetic forces on plasmonic nanoparti-
cles induced by fast-electron beams were used to control the nanopar-
ticle arrangements.89 In a recent study,90 the authors investigated
silver nanocubes coupled through a molecular tunnel junction, which
leads to plasmon tunneling and the emergence of charge-transfer
plasmon peaks.

9.6. Summary and Outlook

To summarize, we have given a short introduction to EELS of
plasmonic nanoparticles. In the first part, we have developed the
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methodology for computing EEL signals and maps, including a
generic description scheme within the framework of the Green’s
tensor of Maxwell’s theory and an eigenmode expansion using the
quasistatic approximation, and have discussed implementations for
EELS simulations. In the second part, we have discussed typical
EELS results for single and coupled nanoparticles, the impact of
membranes needed to support the nanoparticles, as well as variants
of EELS, such as CL, time-resolved PINEM, or plasmon field tomog-
raphy. Although plasmonics remains an optics game, targeting at
light confinement at the nanoscale through excitation of SPs, EELS
has been established as an extremely efficient characterization tool
that provides information about plasmonic field distributions with
nanometer spatial and sub-eV energy resolution.

As usual, it is impossible to foresee future developments of
the field, and predictions are doomed to failure. I will neverthe-
less try to speculate a little bit about future developments. First,
the combination of electron microscopy and optics is particularly
attractive for plasmonics, and CL will probably be employed more
routinely in future studies. PINEM and variants which combine elec-
tron microscopy with a femtosecond time resolution have a great
potential for unveiling coherent and incoherent plasmon dynamics
at ultrashort time scales. Future EELS studies will also benefit from
improved energy resolutions, providing spectra that have the intrinsic
linewidths of the plasmonic peaks. Both from the experimental and
theoretical side, plasmon tomography still needs further improve-
ments, but holds a lot of promise for measuring plasmonic fields in
full 3D and with unprecedented precision. By a similar token, elec-
tron holography91 offers the possibility to retrieve phase information
of plasmonic processes. One can also expect that novel materials
will move into the focus of plasmonics, where EELS and electron
microscopy provide an ideal platform for detailed investigations.
Altogether, EELS of plasmonic nanoparticle and, more generally, the
interaction of fast electrons with SPs will certainly play an important
role in the (continuously) promising future of plasmonics.
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Photothermal processes in plasmonic nanoparticles have been at the
basis of a decade of burgeoning activities that set the field of thermo-
plasmonics. Here, we present an overview of this dynamic research
area. Specifically, we detail the underlying physics of heat generation
in plasmonic nanoparticles. Key aspects related to heat generation
processes, determination of temperature increase (both numerically and
experimentally), time scales, collective effects and heating under pulsed
illumination are first addressed. Subsequently, we review the main tar-
geted applications, namely photothermal cancer therapy, nanochemistry,
thermophotovoltaics and heat-assisted magnetic recording.

10.1. Introduction

Under illumination, plasmonic nanoparticles act as sources of heat
generation due to light absorption in the metal.1 This process is

379
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naturally enhanced at the plasmonic resonance wavelength and can
become particularly strong, leading e.g., to nanoparticle damage,
melting or boiling of the surrounding medium. Heat generation
in plasmonic systems had been considered for long as a side
effect, when the optical properties of plasmonic nanoparticles were
the main subject of interest. In 2002 and 2003, two trendset-
ting advances evidenced possible benefits based on heat genera-
tion in plasmonics. First, the Orrit’s group2 introduced an optical
technique for nanoparticle localization based on the detection of
heating modulation of gold nanoparticles. Second, Pitsillides et al.3

and Hirsch et al.4 concomitantly proposed to use gold nanoparticles
under illumination to locally destroy cancer cells by hyperthermia.
These new concepts triggered the development of thermoplasmonics,
which now denotes the branch of plasmonics involving photothermal
processes.

Today, thermoplasmonics is arousing strong interest in the whole
plasmonics community. Indeed, any experimental development in
plasmonics may involve photothermal effects, even if it is not the
original purpose. The temperature increase has to be quantified and
its contribution to the experiment assessed. More generally, since
any field of science features thermal effects, heating of plasmonic
nanoparticles can lead to countless applications in a wide range of
fields, including chemistry, biomedicine, magnetic recording, phase
transition, polymer science or hydrodynamics.

The aim of this chapter is three-fold: (i) introducing the
fundamentals of heat generation in plasmonics, (ii) detailing available
experimental or numerical tools able to predict or measure local tem-
perature increase in plasmonics and (iii) critically reviewing the most
promising applications based on photothermal effects in plasmonics.

10.2. Fundamentals

This section presents the underlying theory of thermoplasmonics.
We first address the notions of heat generation and absorption
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cross-section, two important parameters to describe photothermal
effects in plasmonics. We then focus on the magnitude of the
temperature increase in plasmonic systems and how it can be pre-
dicted theoretically. This is a very common concern, which is not
always easy to address, especially for non-spherical nanoparticles
or under transient illumination or when collective thermal effects
occur. A final part is dedicated to the theory of heating under pulsed
illumination.

10.2.1. Heat generation

Heat generation in a metal nanoparticle under illumination arises
from Joule effect. Let q(r) be the heat source density inside the
nanoparticle. It is related to the complex amplitude E(r) of the elec-
tric field by the relation1

q(r) =
1
2
Re[J∗(r).E(r)] (10.1)

where J∗ denotes the complex conjugate of J. Using the relations
J = −iωP and P = ε0ε(ω)E, one ends up with the expression of
the heat source density as a function of the electric field amplitude
inside the nanoparticle:

q(r) =
ω

2
Im(ε(ω))ε0|E(r)|2 (10.2)

Heat generation in plasmonics is thus related to the square of the
electric field inside the metal nanoparticle. This result differs from the
more common concern in plasmonics, where only the external optical
near-field matters, for instance in applications related to enhanced
light–matter interaction like surface enhanced Raman scattering or
sensing (see Chapter 5). For this reason, nanoparticles acting as effi-
cient near-field enhancers, such as gap dimers, do not necessarily
behave as efficient photothermal transducers.5 Conversely, elongated,
thin morphologies enabling a better penetration of the electric field
inside the metal are preferred in thermoplasmonics.6
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10.2.2. Absorption cross-section

The absorption cross-section of a nanoparticle is defined as

P = σabsI (10.3)

where P is the light power absorbed by the nanoparticle and I is
the light intensity (power per unit area). The power P absorbed by
the nanoparticle equals, to a good approximation, the power deliv-
ered by the nanoparticle. Other energy conversion pathways, such as
fluorescence or thermal radiation, are fully negligible in general.

There exists a simple relation between the two important physical
quantities introduced so far, q(r) and σabs, that reads

P =
∫
q(r)dr = σabsI, (10.4)

where the integral runs over the nanoparticle volume. For small
nanoparticles, the absorption cross-section is proportional to the
volume of the nanoparticle. For gold, this proportionality is observed
typically for nanoparticles smaller than 60 nm.1

10.2.3. Temperature increase

What the actual temperature increase is in plasmonics experiments
is a widespread concern. Addressing this question is not straightfor-
ward, especially for non-spherical particles, or multiple nanoparticles
in close proximity. The experimental measurement of the tempera-
ture distribution in plasmonics is the subject of a forthcoming sec-
tion. In this part, we shall only focus on the numerical and analytical
determination of a temperature distribution in plasmonics.

In most applications in plasmonics, nanoparticles are deposited
on, or immersed in a dense medium (liquid or solid). This makes the
temperature distribution in the system governed by the heat diffusion
equation7:

c
∂T (r, t)
∂t

− κ∇2T (r, t) = q(r, t) (10.5)

where c and κ are the volumetric heat capacity and the thermal
conductivity (of the metal or of the surrounding medium, depending
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on r). The heat source density q is defined in the previous section
and naturally equals zero outside the nanoparticle. In general, the
thermal conductivity of the metal is much larger than the thermal
conductivity of the surrounding medium, κm � κs. Heat diffusion is
consequently much faster inside the nanoparticle, which makes the
nanoparticle temperature uniform. This is a general rule of thumb
in thermoplasmonics. Non-uniform temperature in plasmonic struc-
tures can be only achieved with elongated structures and non-uniform
illumination,8 or with disconnected structures such as dimers.9 Under
the assumption of uniform nanoparticle temperature, one can eas-
ily calculate the temperature distribution in the simple case of a
spherical particle of radius a immersed in a uniform medium. It yields

T (r) =
σabsI

4πκsr
(10.6)

in the surrounding medium, i.e., for r > a. Importantly, the tem-
perature decays as 1/r in the surrounding medium, where r = |r|
denotes the radial coordinate. This rule also holds for non-spherical
nanoparticles for r large compared to the dimensions of the nanopar-
ticle. Inside the nanoparticle, the temperature increase is uniform and
reads

TNP =
σabsI

4πκsa
(10.7)

A plot of the overall temperature profile is represented in Fig. 10.1.
This description only holds for a spherical nanoparticle in a

uniform surrounding medium. For non-spherical nanoparticles, no
closed-form expressions exist and numerical simulations are in prin-
ciple required. A simple approach was yet proposed8 to retrieve
the temperature increase using closed-form fitting expressions for a
specific set of nanoparticle morphologies, namely rod, disc, ellipsoid
and torus. The method consists in using Eq. 10.6 with an effective
radius corrected by a factor β

TNP =
σabsI

4πκsβa
, (10.8)
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Fig. 10.1. Radial profile of the normalized temperature increase T (r)/TNP

around a spherical nanoparticle of radius a.

where a is now the equivalent radius of a sphere of the same volume.
The fitting equations fixing the misprints of the original article8 are
reproduced here:

Ellipsoid β = exp(
√

1 + 0.0416ln(D/d) + 0.092∗ln(D/d) − 1)

Rod β = 1 + 0.09657ln(D/d)

Disk β = exp[0.040 − 0.0124ln(D/d)+

0.0677ln2(D/d)− 0.00457ln3(D/d)]

Ring β = 1.021 + 0.17442ln2(D/d− 0.625)

Although this method provides a very simple way to retrieve a
temperature increase in plasmonics for common nanoparticle mor-
phologies, it involves the absorption cross-section, which has still to
be calculated numerically a priori, using for instance the Boundary
Element Method.10

For more specific nanoparticle geometries, it is still possible to
use equation Eq. 10.6 by replacing the radius a by an effective radius
coined the Laplace radius9 aL

TNP =
σabsI

4πκsaL
. (10.9)
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The numerical calculation only involves the inversion of a simple
matrix. This formalism also enables the calculation of the temper-
ature profile in the surrounding medium using a Green’s function
method.

A last common approach to compute temperature profiles in plas-
monics consists in using Comsol. But this commercial software has
to be used with care when considering thermodynamics calculations.
Here are some precautions that have to be taken:

1. Do not consider a two-dimensional (2D) model even if one length
of the nanoparticle is much larger than the other, for a rod or
a wire for instance. This amounts to considering a nanoparticle
with an infinite size (an infinite wire in this case), and changing the
dimensionality changes the physics in thermodynamics. Even for
an elongated system, numerical simulations have to be conducted
using a 3D model, or possibly a 1D model in the case of a system
with point symmetry, such as a sphere or a core-shell structure.

2. Mind the boundary conditions. In particular, do not use insulating
walls, or the simulation is never going to converge. Heat has to be
released somehow. Prefer walls that are far from the heat sources
and set the walls to ambient temperature.

10.2.4. Thermal collective effects in plasmonics

The simple numerical approaches to determine a temperature
increase in plasmonics as detailed in the previous paragraphs only
hold for single nanoparticles (except Comsol). For assemblies of
nanoparticles, thermal collective effects11−13 are likely to occur,
which it the subject of this paragraph.

When several nanoparticles are simultaneously illuminated, the
temperature increase experienced by one specific nanoparticle results
from its inner heat generation, but also from the contribution of
all the other nanoparticles in its vicinity. This second contribution
can be dominant or not, compared to the self-generation of heat,
depending on the geometry of the system. This yields two regimes,
the regime where thermal hot spots exist around each nanoparticles
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Fig. 10.2. Temperature maps of regular arrays of nanoparticles, and associated
temperature profiles. (a) Case of large ζ value characterizing the temperature
localization regime. (b) Case ζ < 1 characterizing the presence of a dominant
overall temperature offset resulting from thermal collective effects.

(temperature localization regime, Fig. 10.2(a)), and a regime where
collective effects occur, characterized by an overall temperature off-
set, and a smooth temperature throughout the system despite the
nanometric size of the heat sources (Fig. 10.2(b)). The occurrence
of one regime or another can be easily determined by considering
a dimensionless number than depends only on geometric properties
of the system. For a two-dimensional distribution of nanoparticles
(typically nanoparticles deposited on a substrate), this dimensionless
number reads13

ζ =
p2

3La
(10.10)

where p is the typical nanoparticle interdistance, L is the size of
the nanoparticle distribution and 2a is the characteristic size of the
nanoparticles. Many developments in plasmonics are based on the
illumination of ensembles of nanoparticles where collective effects
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are very likely to occur. Unfortunately, such a counterintuitive effect
is sometimes discarded in reported works in plasmonics, leading to
an underestimated effect of the temperature and misleading inter-
pretations.

10.2.5. Temperature dynamics

A frequent concern in thermoplasmonics is to know how fast a tem-
perature profile appears or disappears when switching on or off the
illumination.14 The most basic answer is: over the timescale

τd =
L2

D
(10.11)

where L is the size of the heat source and D is the thermal diffusivity
of the medium surrounding the source. L can be either the diameter
of the nanoparticle in the case of a single nanoparticle illumination,
or the size of an array of nanoparticles if collective thermal effects
occur (see previous paragraph). For water, D is on the order of 1.4×
10−7 m2 s−1 and for glass 3 × 10−7 m2 s−1. Plot of τD as a function
of the size of the heat source is represented in Fig. 10.3 in the case
of a water environment.

Equation (10.11) stands for the most rudimentary approach to
get a rough estimation of the expected time scale of temperature
dynamics. Reality may be slightly different from this simple esti-
mation if the nanoparticle is endowed with a significant surface
thermal resistivity (so-called Kapitza resistivity), which contributes
to slow down any thermal exchange between the nanoparticle and
its surroundings.14 The value of the interface resistivity depends on
the molecular coating of the nanoparticle and on the nature of the
surrounding medium.

The actual temperature dynamics also depends on the nature
of the illumination variations. For instance, when considering a
point-like nanoparticle illuminated by a Heaviside intensity profile,
the nanoparticle temperature varies according to the error func-
tion erf:

T (r, t) =
P

2π3/2cmρD

(
1− erf

(
r√
4Dt

))
(10.12)
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Fig. 10.3. Characteristic time scale of heat diffusion in water as a function of
the size of the heat source.

However, if the nanoparticle is illuminated by a Dirac-like intensity
profile, the nanoparticle temperature variation reads14

T (r, t) =
E0
cmρ

1
(4πD t)3/2 exp

(
− r2

4Dt

)
(10.13)

Finally, if the nanoparticle is illuminated by a modulated light
intensity at the angular frequency Ω, the nanoparticle tempera-
ture is15

T (r, t) =
P

4πκsr

[
1 + e−(r−R)/δth cos

(
r −R
δth

−Ωt
)]

(10.14)

where δth =
√

2D/Ω. Note that the decay length δth of the “thermal
wave” is 2π times shorter than the period 2πδth of the cosine. Con-
sequently, no matter the angular frequency Ω of the excitation, it
is not possible to observe thermal waves propagating from a modu-
lated heat source. For a spherical nanoparticle, a more sophisticated
expression can be derived.16
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These three temperature distributions are represented in
Fig. 10.4. Because they correspond to point-like sources of heat,
they can be considered as Green’s functions. Thus, they can be used
as a basis to investigate more elaborated illumination conditions or
particle distributions.

10.2.6. Heating under pulsed illumination

A large part of the current developments in thermoplasmonics are
based on heating using femtosecond to nanosecond pulsed illumina-
tion. In this case, the purpose is often to induce a very fast and
intense increase of temperature in the vicinity of single nanoparticles
in order to generate physical effects such as bubble formation17,18 or
pressure wave generation.19,20

The physics of heat generation under pulsed illumination is
slightly more complex than under continuous wave illumination and
requires considering the following three-step process.21,22

1. The electronic gas of the metal nanoparticle primarily absorbs
part of the incoming light energy.

2. This energy is transferred to the atomic lattice of the nanoparticle
via electron–phonon interaction.

3. The nanoparticle cools down by releasing its thermal energy into
the surrounding medium by thermal diffusion.

In this scenario, three time scales are involved. Step 1 occurs over
a time scale that is the pulse duration τp. Step 2 occurs over a dura-
tion that corresponds to the time constant τep of electron–phonon
interaction, typically on the picosecond scale, (for gold,23−25τep =
1.7 ps). And step 3 occurs over the cooling time scale of the nanopar-
ticle that reads14

τNP = a2 cm
3κs

(10.15)

where a is the equivalent radius of the nanoparticle, cm the volumet-
ric heat capacity of the nanoparticle (cm = ρcp,m where ρ is the mass
density and cp,m the specific heat capacity, more commonly found in
constant tables) and κs the thermal conductivity of the surrounding
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Fig. 10.4. (a) Absorbed power and temperature evolutions resulting from a
Heaviside-like illumination. (b) Absorbed power and temperature evolutions
resulting from a Dirac-like (pulsed) illumination.

medium. Depending on the relative values of these different time
scales, different regimes can be observed. If τNP � τep, i.e., if the
heat release to the surroundings is much slower than the heating of
the nanoparticle by the pulse of light, then a simple expression of
the temperature increase in the nanoparticle can be derived from
simple considerations of energy conservation. If F is the fluence of
the illumination (energy per unit area), the total energy absorbed
by the nanoparticle reads e = σabsF . If the energy is transferred in
totality to the nanoparticle before heat release to the surroundings,



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch10 page 391

Thermoplasmonics 391

which is our assumption, the temperature increase δT must satisfy
the relation e = V cmδT where V is the nanoparticle volume and cm
the volumetric heat capacity of the metal. This yields an estimation
of the maximum nanoparticle temperature increase achieved under
pulsed illumination14:

δT =
σabsF

V cm
(10.16)

This expression does not assume any nanoparticle geometry and is
useful to obtain an order of magnitude of the temperature increase
under pulsed illumination. The assumption of no heat release during
pulse absorption is valid mostly under femtosecond pulsed illumina-
tion and for nanoparticles that are larger than typically 40 nm. This
ideal temperature increase appears as an upper limit. In general, the
actual temperature increase is smaller than this value.26

Under pulsed illumination, the long-range 1/r temperature
extension described in the previous paragraphs does not apply.
On the contrary, the transient temperature increase remains con-
fined at the vicinity of the nanoparticle in the case of small
nanoparticles. More precisely, if one defines Tmax(r) = maxt[T (r, t)]
as the maximum temperature increase achieved in the surrounding
medium over time, Tmax scales as 1/r3, a much steeper temperature
decay compared to steady state.14

10.3. Thermal microscopy techniques

Measuring a temperature distribution on the nanometric and micro-
metric scales is not easy. First experiments related to temperature
mapping in plasmonics only dates from 2009.27 Since then, many
other techniques have been developed, each of them with their own
advantages and drawbacks. Let us review the most important devel-
opments in temperature mapping in plasmonics.

Most temperature mapping techniques developed in the context
of thermoplasmonics are based on the use of fluorescent compounds
dispersed in the nanoparticles’ surroundings.27−33 Many fluorescence
properties are supposed to be temperature dependent. While the first



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch10 page 392

392 Handbook of Metamaterials and Plasmonics — Volume 4

reported temperature mapping technique in plasmonics was based on
the measurement of fluorescence polarization anisotropy,5,27 other
physical quantities such as fluorescence lifetime31,32 and fluorescence
spectra28−30 have also proved to be efficient. Using this strategy,
two approaches are usually adopted. The fluorescence compounds are
either dispersed in a liquid medium surrounding the nanoparticles,
or are embedded within the substrate.

An alternative temperature mapping technique is based on wave-
front sensing.33 In this label-free approach, which does not require
the use of molecular probes, a planar wavefront crossing the medium
of interest undergoes a thermal-induced distortion that is mapped
using a quantitative wavefront sensor (based on quadriwave lateral
shearing interferometry). This wavefront distortion is due to the
temperature-induced variation of the refractive index of the medium
surrounding the nanoparticles. As only liquids feature substantial
temperature-induced variation of refractive index, this technique is
restricted to applications involving a liquid environment, and where
the nanoparticles are deposited on a planar substrate. The map of the
wavefront distortion is subsequently post-processed using an inver-
sion algorithm to retrieve the temperature distribution and the heat
source density distribution (power per unit area) delivered in the
system. This technique also enables the quantitative determination
of absorption cross-sections of nanoparticles.34

Examples of temperature maps around plasmonic nanoparticles
are presented in Fig. 10.5.

10.4. Applications

In this section, we review the main potential applications of thermo-
plasmonics and discuss their respective opportunities and challenges.

10.4.1. Heat-assisted magnetic recording

The maximum capacity of a hard disk, defined by its density of mag-
netic bits, is limited by the maximum magnetic field that can be pro-
duced around the recording head. Indeed, for the sake of reliability,
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Fig. 10.5. (a,b) SEM image of a gold dimer antenna and the associated
temperature distribution measured using fluorescent molecules and fluorescence
polarization anisotropy (FPA) confocal microscopy.5,27 (c,d) SEM image of a
40 nm gold dot and the associated temperature distribution measured using the
fluorescence spectra of Erbium ionic centers embedded within the substrate.29

(e,f) Optical image of gold nanowires and the associated temperature and heat
source density distributions, measured using optical wavefront sensing.33,35
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a decrease in the bit size requires an increase of the coercivity of the
magnetic material (intensity of the applied magnetic field required
to cancel the magnetization of that material, i.e., reach the Curie
temperature). Consequently, there exists a minimum bit size beyond
which the required magnetic field becomes prohibitive.36

Heat-assisted magnetic recording (HAMR) is one of the technolo-
gies that was proposed back to the 50s to overcome this technological
problem and increase the capacity of hard drives. In the HAMR
approach, a focused laser beam is used to locally heat up above the
Curie point the portion of the disk that is being written. Such a
local heating provisionally reduces the coercivity in such a way that
writing requires a lower magnetic field.

While HAMR was originally demonstrated using illumination
through a planar solid immersion lens (average optical spot size of
λ/4), a much higher accuracy on local heating is required to substan-
tially increase the current storage density. This is where nanoplas-
monics is foreseen to play a major role. By exploiting the capability of
metallic nanostructures to control light fields on the nanometer scale,
it is possible to strongly reduce the dimension of the illumination spot
and thus of the heated region.36,38 Interestingly, unlike what one can
first expect, direct heating of the metallic NP is not the dominant
contribution. According to the papers published in this field, local
heating results rather from the local absorption by the magnetic
material of the optical near field bound to the nanoparticle. For this
reason, the magnetic material and the plasmonic nanoparticle have
to be as close as possible.

Plasmon-enhanced HAMR was pioneered in 2008 by Matsumoto
et al. at Hitachi by exploiting the optical near field from a gold
nanobeak.39 One year later, Seagate reported on a experiment in
which a plasmonic antenna was integrated at the extremity of a
standard HAMR recording head.37 In this implementation, the light
coupled to the planar solid immersion lens was concentrated onto a
200 nm “lollipop” antenna (Fig. 10.6). The antenna was designed in
such a way that it focused the intercepted light at its extremity, onto
the magnetic material. Using a continuous laser power of 80 mW at
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Fig. 10.6. (a) A planar solid immersion mirror with a dual offset grating used
to focus a waveguide mode onto the lollipop NFT (bottom). The electric field for
the TE mode is shown, which generates a longitudinal (vertical) field at the focus.
Expended view of the NFT in front of the magnetic medium (top). (b) Profile of
the field intensity |E|2 through a cross-section of the NFT. (c) MFM image of a
recorded track. The track width is about 70 nm. Scale bar, 300 nm.37

a wavelength of 830 nm and a constant head-to-medium distance of
about 15 nm, the authors demonstrated writing of a 75 nm (FWHM)
track (versus around 250 nm with standard HAMR), which corre-
sponds to an areal density of 375 Tb/m2. In 2010, Hitachi demon-
strated 1.5Pb/m2 by combining a novel E-shape antenna design with
a pre-patterned.39

Although local heating has been exclusively attributed to the
optical absorption of the magnetic medium inducing the plasmonic
hot spot, the actual mechanism of plasmon-based HAMR is expected
to be more complex since the plasmonic nanoantenna acts itself as a
nanosource of heat. Further studies are required to better understand
and thus optimize this mechanism.

At that stage, the main hard drive companies seem to con-
firm that the new generation of storing devices will include
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the plasmon-enhanced HAMR technology. Back in 2014, Seagate
announced they planned to produce low quantities of 6–10 Tb capac-
ity hard disks in the “near future” without confirming though they
will use HAMR. As of 2015, no hard disks using HAMR are cur-
rently commercialized, but HAMR keeps progressing with demon-
stration drives produced by companies such as Seagate.40 While TDK
originally predicted that HAMR hard disks could be commercially
released in 2015,41 it seems they will rather enter the market in
2018.42

10.4.2. Heat to electricity conversion

(Thermophotovoltaics)

In the framework of light to electricity conversion, it has been
proposed that the unique optical properties of resonant metallic
nanoparticles (MNPs) could benefit the field of photovoltaics.43

MNPs integrated to a photovoltaic (PV) cell can act as efficient
optical antennas capable of boosting solar light harvesting before
concentrating collected photons into the photovoltaic medium. Yet,
the presence of MNPs in a PV device also introduces additional
loss channels along with technical limitations. All in all, it remains
unclear whether plasmonics could substantially increase the efficiency
of photovoltaic cells and if so, whether the technology would be indus-
trially doable.

Conversely, enhanced absorption and heating in plasmonic MNPs
could contribute to an alternative light-to-electricity conversion
technology known as thermophotovoltaics (TPV).44,45 Originally
proposed in the 60s, TPV is the energy conversion process to convert
heat into electricity via photons. A TPV device consists of a heat
source that emits photons through blackbody radiation and a photo-
voltaic cell that converts these photons into current (see Fig. 10.7).
The main technological challenge of developing TPV systems is
matching the spectral sensitivity of the photocells with the radia-
tion spectrum of the emitter, in order to achieve high conversion
efficiency. In practice, this is done by shaping the emitter radia-
tion spectrum by suppressing the emission of photons with energies



September 8, 2017 8:30 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch10 page 397

Thermoplasmonics 397

Fig. 10.7. Sketch of a TPV device based on photothermal conversion of plas-
monic nanostructures.

below the bandgap of the photovoltaic cell. Spectral tunability can
be achieved by using selectively emitting materials or combining a
broadband emitter with a selective filter, which reflects low, energy
photons back into the emitter. Alternatively, controlling the infrared
photon density of states by structuring the emitter surface offers a
narrow-band emission that is temperature independent.46

So far, most efforts have been focused on combustion driven
systems to be implemented for instance in combination with gas,
oil or wood burners. Alternatively, the heat source can be generated
by absorption of solar light of an absorbing material. In a recent
breakthrough experiment, Lenert et al. used a dense arrangement of
vertical multiwall CNTs as a nearly ideal absorber (>0.99 absorbance
over the all visible spectrum).47 Selective emission is ensured by shap-
ing the photon density of states with a Si/SiO2 photonic crystal.
This unique combination enabled the authors to reach a conversion
efficiency of 3.2%, which outperforms the 1% efficiency of previous
implementations.

The main advantage of plasmonic surfaces over other photo-
absorbing materials is to enable both high absorption through
the whole solar spectrum and narrow-band thermal emission as
illustrated in Ref. [48]. In this configuration, the heating part is
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formed by a periodic array of metallic nano-patches separated from
a continuous metallic film by a thin dielectric spacer. Instead of gold
or silver, the authors use high-loss refractory metals like tungsten
and molybdenum that combine both high loss and high resistance to
high temperatures. The absorbance spectra of the optimum design
feature a broad peak over the solar spectrum that is used to collect
and heat up and a sharp peak in the mid-IR that is used to feed the
PV cell. The feature of the emission peak can be tuned by adjusting
the structural parameters according to the Kirchhoff’s law of thermal
radiation. While solar TPV based on plasmonics seems to offer very
interesting opportunities, this topic is only at its infancy and further
studies will be necessary to confirm whether this could become a
doable technology.

10.4.3. Chemistry

When noble metal nanoparticles are dispersed in a chemical reaction
medium and illuminated at their plasmonic resonance, an increase
of the chemical yield of the reaction can be observed. This obser-
vation gave birth to the research area that we name plasmon-
induced nanochemistry (PINC) in this chapter. There are at least
three possible mechanisms leading to the enhancement of chemical
reactions using plasmonic nanoparticles49: (i) the optical near-field
enhancement in the case of photochemical reactions, (ii) the local
temperature increase due to light absorption and subsequent heat
generation (named T-PINC, the subject that will be developed
in this section) and (iii) hot-electron generation and transfer to
surrounding oxidizing chemical species (see Chapter 12). In the
context of the current chapter, devoted to thermoplasmonics, we will
focus only on the second mechanism involving a local temperature
increase.

Most chemical reactions are temperature dependent according to
the Arrhenius law:

K(T ) = A exp(−Ea/RT ),
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where K is the equilibrium constant of the reaction, Ea is the
activation energy and R is the ideal gas constant. According to this
law, K is a strictly increasing function of T . Thus, nanoparticle heat-
ing can contribute to activate chemical reactions or boost reaction
kinetics.

The benefits of using plasmonic nanoparticles compared with the
use of a regular hot plate are the followings:

— Heating a small region makes it possible to make the thermal
dynamics faster, due to a reduced thermal inertia (typically below
the microsecond time scale).1

— Heating a micrometric area makes it possible to easily super-
heat the fluid above its boiling point, with possible application in
solvothermal chemistry without using an autoclave.50

— Heating on the nanoscale enables the formation of products with
a nanometer spatial resolution.

Consequently, T-PINC may not be so advantageous for produc-
ing industrial amounts of chemicals51 and is mostly attractive upon
localized heating. Indeed, when heating is performed by illuminating
a macroscopic assembly of nanoparticles, the three above-mentioned
benefits no longer hold and heating with a hot plate would be rather
equivalent (except is the laser illumination is pulsed). The advan-
tage of using nanometric particles is then lost, especially because
of collective effects (temperature homogenization) that make the
temperature completely uniform even at the nanoscale (see sec-
tion 10.2).13

According to the literature, application of T-PINC can be divided
into three main categories, all based on a two-dimensional geometry
(plasmonic nanoparticles lying on a solid substrate):

— Plasmonic-assisted chemical vapor deposition.
— Thermoplasmonic-assisted catalysis in gas phase.
— Thermoplasmonic-assisted catalysis in liquids.

Here is a near exhaustive review of these three categories.
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10.4.3.1. Plasmon-assisted chemical vapor deposition
(PACVD)

In 2006, Goodwin’s group52 conducted the seminal experiment
showing the concept of PINC. Chemical vapor deposition (CVD) is
a well-known process suited to produce high-quality solid materials
across extended regions. The authors introduced a new CVD process
in which the local heating necessary to induce the deposition process
was performed by local laser heating on the micrometric scale of
gold nanoparticles deposited on a substrate. They named this tech-
nique PACVD (plasmon-assisted CVD). The author demonstrated
microscale patterning of metal oxides such as PbO and TiO2 on
a glass substrate by local heating up to 150◦C. Local laser heat-
ing for CVD, known as laser-assisted CVD (LACVD) was already
known,53 but limited by the size of the laser spot. The use of plas-
monic nanoparticles strongly relaxes the requirements on the power
of the heating laser and potentially enables pattering on the sub-
diffraction limit. Sub-diffraction PACVD leading to the formation
of silicon, germanium or carbon nanowires was later on achieved by
Brongersma’s group54 in 2007, and more recently by Hwang et al. in
2011 in a more detailed study.55 In 2008, Hung et al.56 renamed this
technique PRCVD (plasmon-resonant CVD), with little credit to the
seminal work of Boyd et al.52

10.4.3.2. Thermoplasmonic-assisted catalysis in gas phase

Producing new catalytic compounds that are highly active under
solar illumination is an important current challenge. With the pioneer
works of Haruta starting in 1987,57,58 gold is known to feature strong
catalytic activity provided it is used in the form of nanoparticles sup-
ported by titanium dioxide (or other oxides), due to changes in the
electronic structure, catalyst–substrate interactions, and morpholog-
ical features, compared to its bulk counterpart. Today, oxidation of
various volatile organic compounds, such as CO, CH3OH, HCHO,
have been demonstrated using gold nanoparticles on metal oxides,
at moderately elevated temperatures (no light involved). The idea
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of Chen et al.59 in 2008 was to further enhance the heterogeneous
catalytic activity of gold nanoparticles on oxides by heating the gold
nanoparticles themselves under laser illumination. The authors used
gold nanoparticles on ZrO2 and SiO2 (wide bandgap semiconduc-
tors to avoid any photocatalytic effect) to generate the oxidation
of HCHO in CO2. According to this work, the benefit of such an
approach is that heating is limited to the catalytically active area of
the system, hence a gain in energy consumption compared to a global
heating approach. But the benefit compared to immersing a resistor
inside the solution is not obvious. In 2010, the group of Cronin60 bor-
rowed the same idea to generate the exothermic oxidation of carbon
monoxide in carbon dioxide, using gold nanoparticles on Fe2O3. The
authors quantified the benefit of heating using a laser approach com-
pared to a global heating. A gain of 2–3 orders of magnitude was
evidenced.

10.4.3.3. Thermoplasmonic-assisted catalysis in liquids

Thermoplasmonic-assisted catalysis can also be adapted to liquid
phase. This was first proposed first by Adleman et al. in 2009 and
named PAC for plasmon-assisted catalysis.51 The authors chose to
investigate the thermal-induced reforming of a liquid mixture of
ethanol and water, leading to the formation of CO2, CO and H2.
The experiments were conducted in a microfluidic channel in order
to more easily collect the gas products. The authors stressed the fact
that their plasmon-assisted catalysis approach was general and could
be used with a variety of endothermic catalytic processes. Along
the same line, in 2011, Fasciani et al.61 investigated the thermal
decomposition of peroxides. The key parameter of this work was
the use of a nanosecond-pulsed illumination (1 Hz repetition rate)
to generate rapid and intense temperature increases, without boiling
the fluid. This way, the authors evidenced that organic chemistry
can be performed at relatively high-energy reaction at near-ambient
temperature. In 2013, Vazquez-Vazquez et al.62 presented an original
approach where thermal-induced PAC was performed on the inside of
hollow nanometric silica shells containing the reactants. The shell was
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decorated with gold nanoparticles intended to generate the required
heat upon illumination to generate the reaction. The main interest
of this work was to demonstrate that local chemical reactions can
be generated in a confined volume with a surrounding solvent at
ambient pressure, and that the extent of reaction can be followed by
SERS.

10.4.3.4. Unidentified thermal effects in PINC

In PINC developments, some observations have been demonstrated
to originate from thermal effects, but some others are presumably
attributed to optical effects or involve hot electron injection. In these
two other schemes, it is often difficult to rule out any thermal contri-
bution. This problem was pointed out by Yen and El Sayed in 2009.63

The group studied the reduction of ferricyanide by thiosulfate and
concluded that the origin of the observed enhanced chemical yield
was purely due to a temperature increase of the solution, not due to a
photocatalytic effect, questioning the interest of using gold nanopar-
ticles compared to a regular hot plate. In the same spirit, the group
of Cronin60 monitored the temperature rise of their sample (simply
using an infrared camera), which turned out to be significant. One
can regret that all the reported works did not present such a rig-
orous and simple test to quantify the significance of thermal effects
in PINC applications. For instance, the group of Linic conducted
several studies in PINC64,65 where a purely photocatalytic effect was
claimed, while all the results are consistent with a purely thermal
effect. In particular, Fig. 10.3b in Ref. [66] could be nicely fitted
with the Arrhenius law, as well.

10.4.4. Nanomedicine

It is well established that under suitable conditions, heat can play
a beneficial role in the treatment of diseases, and in particular of
cancer. There exist two different regimes of hyperthermia. In the
non-ablative regime, typically for temperature ranging between 41
and 45◦C, heat is used as complement to radio- and chemotherapy
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in order to increase their efficiency through enhanced tumor tissue
oxygenation and immunological response. The second approach con-
sists in using high enough temperature to ablate tissues (>45◦C). In
practice, a major challenge for both approaches is to deliver heat in
a controlled, specific and non-invasive manner to the region of the
patient body that needs to be treated.

A great achievement would be to deliver heat specifically and
non-invasively, allowing higher temperatures locally without affecting
surrounding healthy tissues. And this is where plasmonic nanoparti-
cles can greatly contribute, acting as an artificial photothermal con-
trast agent upon illumination (nanoparticle-mediated hyperthermia).
Note that similar principles are currently studied with both carbon
nanotubes and magnetic nanoparticles.

In seminal works published almost simultaneously in 2003, the
group of West,66 on one hand, Pitsillides et al.67 on the other,
first demonstrated the feasibility of using plasmonic nanoparticles
to ablate cancer cells upon illumination.

Shortly later, the group of West reported on longer survival of
mice intravenously injected with gold nanoshells and treated with
NIR light compared to the control (without nanoshells injection
nor laser illumination) and the sham (laser illumination without
nanoshells) groups.68 Since then, many developments have con-
tributed to increase the maturity of this approach to bring it closer
to the clinic,69−71 and several human trials have been performed, in
particular by the company Nanospectra Biosciences Inc.72

Yet, despite these important advances, several challenges still
prevent NP-assisted hyperthermia from becoming a widely used
treatment:

(i) The first main challenge is related to the ability to specifically
deliver the NPs to cancer tissues to maximize the absorption
contrast with the rest of the healthy tissues. It is well estab-
lished that intravenously injected NPs tend to accumulate in
tumors in part due to their extra vasculature and less effi-
cient lymphatic draining (known as enhanced permeability and
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retention (EPR)). Yet, such passive targeting is inefficient, and
better tumor-specific accumulation requires functionalizing the
NPs surface with targeting molecules like antibodies.

(ii) A second major challenge is a consequence of the lack of control
on the actual concentration of NPs delivered to the tumor that
translates into a major uncertainty on the temperature increase
achieved locally (similar problem as in photodynamic therapy
(PDT)). A currently explored strategy to address this limita-
tion is to create a feedback on the actual local temperature to
properly adjust the illumination intensity.

(iii) Last but not least, the clinical viability of NP-assisted hyper-
thermia requires further knowledge about the clearance of NPs
from the patient body and their possible toxicity due to accu-
mulation in organs.

While lots of efforts are currently invested in this multidisciplinary
research area that holds great promises, the entry of nanoparticle-
mediated hyperthermia to the clinic will be conditioned by the
possibility to overcome all the above-mentioned challenges.
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10. Hohenester, U. and Trügler, A. (2012). Comp. Phys. Commun. 183, p. 370.
11. Keblinski, P., Cahill, D. G., Bodapati, A., Sullivan, C. R. and Taton, T. A.

(2006). J. Appl. Phys. 100, p. 054305.
12. Govorov, A. O., Zhang, W., Skeini, T., Richardson, H., Lee, J. and Kotov,

N. A. (2006). Nanoscale Res. Lett. 1, p. 84.
13. Baffou, G., Berto, P., Ureña, E. B., Quidant, R., Monneret, S., Polleux, J.

and Rigneault, H. (2013). ACS Nano 7, p. 6478.
14. Baffou, G. and Rigneault, H. (2011). Phys. Rev. B 84, p. 035415.
15. Berto, P., Mohamed, M. S. A., Rigneault, H. and Baffou, G. (2014). Phys.

Rev. B 90, p. 035439.
16. Heber, A., Selmke, M. and Cichos, F. (2015). Phys. Chem. Chem. Phys. 17,

p. 20868.
17. Kotaidis, V., Dahmen, C., von Plessen, G., Springer, F. and Plech, A. (2006).

J. Chem. Phys. 124, p. 184702.
18. Helb, E. Y. and Lapotko, D. O. (2008). Nanotechnol. 19, p. 355702.
19. Egerev, S. et al. (2009). Appl. Opt. 48, p. C38.
20. Vogel, A., Linz, N., Freidank, S. and Paltauf, G. (2008). Phys. Rev. Lett.

100, p. 038102.
21. Inouye, H., Tanaka, K., Tanahashi, I. and Hirao, K. (1998). Phys. Rev. B

57, p. 11334.
22. Grau, P., Morreeuw, J. P., Bercegol, H., Jonusauskas, G. and Vallée, F.

(2003). Phys. Rev. B. 68, p. 035424.
23. Huang, W., Qian, W., El-Sayed, M. A., Dong, Y. and Wang, Z. L. (2007).

J. Phys. Chem. C. 111, p. 10751.
24. Hodak, J. H., Henglein, A. and Hartland, G. V. (1999). J. Chem. Phys. 111,

p. 8613.
25. Link, S., Burda, C., Wang, Z. L. and El-Sayed, M. A. (1999). J. Chem. Phys.

111, p. 1255.
26. Metwally, K., Mensah, S. and Baffou, G. (2015). J. Phys. Chem. C 119, pp.

28586–28596.
27. Baffou, G., Kreuzer, M. P., Kulzer, F. and Quidant, R. (2009). Opt. Exp. 17,

p. 3291.
28. Clarke, M. L., Grace Chou, S. and Hwang, J. (2010). J. Phys. Chem. Lett.

1, p. 1743.
29. Carlson, M. T., Khan, A. and Richardson, H. H. (2011). Nano Lett. 11,

p. 1061.
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11.1. Introduction

The most promising aspect of plasmonics is its ability to confine and
manipulate light fields at nanometer length scales.1−3 This is the
basis for the development of ultrasensitive chemical sensing,4 high-
resolution microscopy5 and optical circuitry,6 to name just a few
potential applications.7 This confinement of fields, however, repre-
sents something of a doubled-edged sword. While it gives plasmonic
devices and structures their unique properties, it also presents a num-
ber of practical challenges.

These challenges arise from the wave-like nature of light itself.
With conventional, far-field optical techniques, light cannot be
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squeezed into a space much smaller than its free-space wavelength λ.
This lower bound is known as the diffraction limit and is usually
approximated as λ/2. When plasmonic structures concentrate fields
in very small volumes, the diffraction limit means that far-field optics
lack the spatial resolution to study the field distributions created by
the structures in any level of detail.

A number of sub-diffraction-limited techniques have thus been
developed to fill this gap.8,9 Some of them rely on electrons
to provide the necessary resolution, as in the case of photoe-
mission electron microscopy10 (PEEM — photon-in/electron out),
cathodoluminescence11 (CL — electron-in/photon-out) and electron
energy-loss spectroscopy (EELS — electron-in/electron out).12 Oth-
ers rely on nonlinear optical effects, including two-photon-induced
luminescence13,14 (TPL). Further techniques rely on directly probing
the optical near field, which exists in the immediate vicinity of a struc-
ture (photon-in/photon-out). Among these are the two forms of scan-
ning near-field optical microscopy (SNOM); aperture-type SNOM15,16

(a-SNOM), which uses a tapered optical fiber to pick up fields on a
surface, and scattering-type SNOM17 (s-SNOM), which scatters near
fields into the far field with a sharp tip so that they can be easily
detected.

The focus of this chapter is exclusively on s-SNOM, which offers a
number of advantages, including an extremely high spatial resolution
(typically 10–20 nm), complete independence of the spatial resolution
from the illuminating wavelength λ, allowing measurements from the
visible to terahertz spectral regions, spectroscopic capabilities, dis-
crimination between polarization states, time-resolved measurements
and the ability to record both the magnitude and phase of plasmonic
field distributions. Readers interested in the other listed techniques
are directed to Ref. [9].

The sections that follow outline how s-SNOM is used to image
plasmonic phenomena, but at this stage it is worth pointing out why
one might want to do so in the first place. The first reason is as an
experimental verification of theoretical predictions. Many facets of
plasmonic behavior are first discovered with numerical simulations;
imaging the field distribution around real-world objects caused by
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these newly discovered effects often provides conclusive evidence that
the predictions are indeed correct. The second reason is that real-life
materials and fabrication processes are imperfect. The performance
of plasmonic devices is strongly linked to these imperfections, and
the ability to examine the fields in real structures allows designers to
check that their creations are working as well as they expect.

Before concluding this introduction, we offer a summary of
the important nomenclature for this chapter. Strictly speaking, a
plasmon is a collective oscillation of a free electron gas (such as exists
inside a metal). A surface plasmon is the particular type of plasmon
that is confined to a surface. When a surface plasmon interacts with
light, a surface plasmon polariton (SPP) results. If the shape of the
metallic structure supporting it does not restrict the SPP, it will
propagate freely, before eventually decaying away. If the geometry of
the structure is such that the SPP is confined, a resonance can result
upon which the SPP is called a localized SPP (LSPP), or alternatively
a localized surface plasmon resonance (LSPR). In this chapter, we
adopt the more colloquial phrases plasmon and plasmon resonance,
by which we really mean SPP and LSPP, respectively.

11.2. Overview of s-SNOM

The basis of s-SNOM is the atomic force microscope18 (AFM). The
AFM is itself based on the scanning tunneling microscope19 (STM),
which earned its inventors the Nobel Prize for Physics in 1986. In
atomic force microscopy, a very sharp tip is raster scanned across
a sample surface, and a feedback mechanism is used to regulate
the tip–sample separation. In this way, an extremely high-resolution
image of the sample topography is built up. It has even proven
possible to image the chemical bonds of individual molecules using
the technique.20 AFM has become one of the key tools in imaging
and manipulating matter at the nanoscale, and as such, a mature
commercial sector exists to support its development and application.
Figure 11.1(a) shows a typical AFM probe, comprising a sharp tip
positioned at the end of a cantilever.

s-SNOM initially emerged in the mid-1990s21−23 as a means of
adding optical contrast to the plain topography image that AFM
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10 µm

(a) (b)

tip

Fig. 11.1. (a) Electron micrograph of a typical AFM probe, made up of a sharp
tip positioned at the end of a cantilever arm. The apex of the tip typically has
a diameter of a few tens of nanometers. (b) The numerical simulation showing
the enhancement and confinement (the “lightning rod” effect) of the electric field
intensity at the apex of a nanoscale metallic tip, when the incident radiation is
polarized parallel to the tip axis.

provides. This was achieved by focusing laser illumination onto the
apex of a metallic AFM tip, and subsequently collecting the scattered
light. Under the illumination, the metal tip acts like an optical
antenna, both focusing and scattering the field in the immediate
vicinity of its apex. This field enhancement at the tip apex is known
as the “lightning rod” effect (see Fig. 11.1(b)), and has been exploited
since the early 1980s, particularly in the field of tip-enhanced Raman
spectroscopy.24 Such strong fields at the apex allow the tip to interact
with an extremely small volume of the sample in the vicinity of
the strong fields, probing the sample’s optical properties. The latter
information is transmitted as a change in the tip-scattered light and
can be detected in the far field by classical optical elements. Record-
ing the tip-scattered field as the sample is scanned beneath the tip
thus provides images of the sample optical properties with a spatial
resolution defined by the size of the tip apex (typically just a few
nanometers) and thus, well below the diffraction limit. Note that
plasmon resonances supported by the s-SNOM probe itself have also
been used to provide field enhancement at the tip apex.25
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11.2.1. Modes of operation

Two main modes of operation can be identified for s-SNOM, depend-
ing on the strength of the interaction between the tip and the sample.

11.2.1.1. Material contrast with metallic tips

When s-SNOM is operated in the way outlined above i.e. with a
metallic tip and the incident radiation (p-)polarized along the tip
axis, the tip interacts strongly with the sample. The interaction can
be qualitatively described by modelling the tip as a dipole and treat-
ing the sample as an image dipole.26,27 In this case, differences in the
near-field signal are fundamentally caused by changes in the dielectric
constant across the sample surface, which we refer to as “material
contrast”.

As the technique has been refined (and the sensitivity increased),
a large number of applications have been found for s-SNOM operated
in this manner. The technique is particularly powerful when light
from the mid-infrared part of the spectrum — the “chemical fin-
gerprint” region — is used, where vibrational resonances in molec-
ular bonds are especially good identifiers of different materials.
Examples include polymer studies,28−30 phonons,31,32 charge-carrier
density mapping,33 and biological materials34−37 to name just a few.
Similarly, terahertz radiation has been used to map the conductivity
of a transistor’s cross-section.38 Given that the spatial resolution in
s-SNOM is independent of the wavelength and defined only by the
tip’s diameter, the gain in resolution compared to traditional far-field
optics is particularly marked in the infrared and terahertz spectral
regions.

11.2.1.2. Near-field mapping with dielectric tips
and s-polarized incident light

The early attempts to image field distributions created by plasmon
resonances with an s-SNOM followed a similar approach to what had
worked so successfully for mapping material differences; a metal tip
was used with p-polarized light to measure resonant field patterns
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around and between gold nanoparticles.39−41 In this case, the tip
scattered the nanoparticles’ local near fields into the far field, a
process where the spatial resolution is again defined by the size of
the tip’s radius and thus sub-diffraction limited. It was quickly real-
ized, however, that the large conductivity of the metallic tip could
be perturbing the plasmon fields42 (indeed, this perturbation can be
so large that it has since been shown that the presence of a metallic
tip can be used to precisely control an antenna resonance43).

Attempts to minimize any tip-induced distortion led to the search
for alternative approaches. A carbon nanotube probe, for example,
was shown to be capable of imaging a simple dipolar resonance on
nanoscale gold islands.44 The biggest breakthrough, however, came
from using a silicon tip and rotating the polarization of the incident
illumination from p to s, such that it lays perpendicular to the axis
of the tip45 (a full description of this experimental setup is given in
the following section). The idea behind this approach was twofold:
firstly, direct excitation of the tip would be avoided; and secondly, by
choosing a dielectric over a metal, the tip would be a weak scatterer.
These two advances greatly reduced the perturbation of the sample’s
near-fields by the tip, allowing for much more straightforward image
interpretation, where even higher order resonances could easily be
distinguished.45−47

When the incident light is s-polarized, the plasmon resonance in
the sample structure can be strongly excited (while the tip is hardly
excited at all — see Fig. 11.2). In this case, the tip only weakly
interacts with the sample, and any light that is scattered by the tip
can be directly attributed to the presence of the sample’s near fields.
Note that this is true for any sample structure that creates an elec-
tromagnetic (EM) field distribution (not just plasmon resonances):
indeed, the near-field distribution around purely dielectric structures
has even been mapped using s-SNOM48. Furthermore, it has been
shown — to a first approximation — that the s and p-polarization
states of the scattered light, which we label ES and EP, are related
to the in-plane (Ex or Ey), and out-of-plane (Ez) components of the
near-field distribution. Under this simplistic assumption, selection of
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Fig. 11.2. Under a simplistic interpretation, incident radiation (with wavevector
kin) excites a plasmon resonance. The s-SNOM tip is subsequently illuminated
by the near fields of the structure (field lines labeled Eplasmon), and scatters them
into the far field (with wavevector ksca). The s and p-polarized scattered fields,
ES and EP , are then proportional to the in-plane, Ex, and out-of-plane, Ez,
components of the near fields, respectively.

just the p-polarized scattered light EP by means of a polarizer in
the far field means that the out-of-plane component of the near-field
distribution can be mapped. Likewise, the s-polarized scattered light
ES can be isolated to map the in-plane component of the resonance.49

Note that the particular case where the p-polarized scattered light
EP is isolated i.e. s-polarization in, p-polarization out, is known as
the cross-polarization scheme and is one of the more commonly used
experimental setups.50

11.2.2. A note regarding polarization sensitivity

The interpretations that ES ∼ Ex and EP ∼ Ez are valid when
the s-SNOM tip is the principle scatterer in a measurement.41,51,49

Care must be taken, however, in analyzing images for which the
sample structure also scatters strongly.52 When this is the case,
the tip not only scatters directly into the far field, but may also
scatter via the structure due to a tip-structure coupling.53 ES and
EP can then depend on a much more complex combination (both
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linear and nonlinear) of the near-field components, Ex,y,z. The image
interpretation for measurements of the overall scattered field is
therefore challenging, and developing a full understanding of this
phenomenon is currently an active area of research.

11.3. Experimental Setups

11.3.1. Basic AFM/s-SNOM principles

The s-SNOM setup is based upon that of an AFM operating
in intermittent contact (or “tapping”) mode. For this mode of
operation, the cantilever to which the sharp tip is attached (see
Fig. 11.1(a)) is driven to oscillate in the vertical (z-)direction at its
resonant frequency Ω, which is typically a few hundred kilohertz. The
amplitude of oscillation (usually a few tens of nanometers) is moni-
tored and is used to regulate the tip–sample distance at a constant
value as the sample is scanned. By recording the vertical position of
the sample as a function of its lateral position, the topography of the
sample surface (with a resolution roughly equal to that of the tip’s
diameter) is acquired.

As mentioned in Section 11.2, what distinguishes s-SNOM from
AFM is the light focused onto the tip–sample system. This focusing
is often accomplished with a reflective parabolic mirror, rather than
a dielectric lens, as this allows for easy transition between different
spectral regions.

11.3.2. s-SNOM with interferometry

To extract both the amplitude and phase of the scattered field
(i.e. the complex field), s-SNOM must be applied in conjunction
with an interferometer. The knowledge of the phase is important
in s-SNOM54 regardless of whether it is being applied to measure
material contrast (where the phase is often linked to the sample’s
absorption coefficient55,56) or in field distribution mapping (where
the phase enables direct investigation of the modes in nanostructures,
or the determination of the phase velocity direction in a propagating
mode).
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Fig. 11.3. Typical experimental setup of a side-illuminated cross-polarization
scheme. Adapted from P. Alonso-González et al.77

Note that using an interferometer serves the additional purpose
of amplifying the near-field signal. Such interferometric amplifica-
tion has the special property that the signal can be amplified to a
large amount without affecting the signal-to-shot-noise limit57; this
is particularly important when the near-field signal is very weak.

11.3.2.1. Side-illumination mode

Figure 11.3 shows the typical experimental setup for mapping near-
field distributions with an s-SNOM operated in side-illumination
mode. The s-polarized light from a laser is first passed through a
beamsplitter, where it splits into two arms. In the signal arm of the
interferometer, the light is weakly focused (usually by a parabolic
mirror) to the sample where the plasmon is excited. In the reference
arm, light is reflected from a mirror. Note that if the p-polarized scat-
tered field EP is being detected, a polarizer at 45◦ must be placed in
the reference arm to introduce a p-polarized component to the beam
(without this addition, light from signal and reference arms would
not constructively interfere). After recombination of the two beams
at the beamsplitter, a final polarizer, labeled P , is positioned prior
to the detector to select either the s or p-polarization.
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The side-illumination scheme is a commonly used experimental
setup, largely because it is very similar to the s-SNOM setup used
for mapping material contrast across a sample surface with a metal-
lic tip17 (the only difference being the presence of the polarization
optics). Care must be taken, however, with the effects of retardation
due to the angled incident illumination. Retardation becomes sig-
nificant when the phase of the illuminating beam varies across the
area of the plasmon-supporting structure, as illustrated in Fig. 11.4.
Side-illumination, therefore, is typically only suitable for narrow
structures whose depth is considerably shorter than the illumination
wavelength, such as simple rod antennas.

11.3.2.2. Transmission mode

Retardation effects can be overcome by operating an s-SNOM in
transmission mode, where the illuminating light is normally incident
upon the sample surface.58,59 A typical setup is shown in Fig. 11.5.
Light is weakly focused to the sample from beneath, thus providing a
nearly homogenous sample illumination. This illumination scheme is
similar to the experimental configuration in antenna-enhanced sen-
sors and photodetectors, where light is typically normally incident on
the sample. Illuminating the sample from beneath, however, means
that the sample structures must be fabricated on a transparent sub-
strate. Similar to the side-illumination mode, the tip-scattered field

A B

Path
difference

φ

Fig. 11.4. The retardation effect. When two rays, labeled A and B, are obliquely
incident upon a surface (at angle φ from the sample plane here), the phase of the
electric field at the surface is non-uniform due to the path length difference.
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Fig. 11.5. Typical experimental setup of a transmission mode cross-polarization
scheme. Adapted from Shang-Chi Jiang et al.94

is then combined with a reference beam at a beamsplitter, and the
interference of the two measured at a detector.

The transmission mode setup allows the near-field distribution
of much larger structures to be reliably mapped. However, it is tech-
nically more difficult to implement than the side-illumination mode.
Transmission mode requires that two foci be overlapped — those of
the focusing lens and the collection optics (the parabolic mirror in
Fig. 11.5). Side-illumination, on the other hand, does not present this
difficulty, as the same optical element acts to both focus light to the
tip and sample and to recollimate the backscattered light.

11.4. Background Suppression

One of the general problems encountered in s-SNOM is how to dis-
tinguish the near-field scattering from the much larger background of
light scattered from the body of the tip and directly from the sample
itself. This can be seen by describing the overall scattered light as
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the linear superposition of two scattering coefficients:

Esca = σEin = (σNF + σB)Ein, (11.1)

where Esca represents the overall scattered field, Ein the incident
field, σ the overall scattering coefficient, σNF the near-field scattering
coefficient and σB the background scattering coefficient.

11.4.1. Distinguishing the near-field scattering

and background scattering

What allows the near-field scattering σNF and the background σB

to be discerned is their very different sensitivities to the tip–sample
separation distance: as σNF decays to negligible levels within a few
nanometers of the sample surface, it is highly affected by the tip’s ver-
tical oscillations of a few tens of nanometers17,60 (see Section 11.3.1,
Ω∼ a few hundred kilohertz). The background scattering σB , on the
other hand, only significantly varies over length scales equal to the
illuminating wavelength, which is usually an order of magnitude or
two larger than the tip oscillation amplitude. Most of the variation in
the overall scattered field Esca due to the tip’s oscillation, therefore,
comes from the near-field scattering coefficient σNF. By denoting the
scattering coefficient of the overall scattering σ as a Fourier series,
such that:

σ =
∞∑

n=−∞
σne

inΩt, (11.2)

it follows that there is a greater contribution of σNF in the higher
harmonics of σn. Correspondingly, the ratio σNF,n:σB,n is also larger
for the higher harmonics of σn. For sufficiently high harmonics of σn,
therefore, the background scattering σB,n has a negligibly small influ-
ence on the overall scattering σn, and the only contribution comes
from the near-field coefficient σNF,n. For the visible and near-infrared
parts of the spectrum, this typically occurs at n = 3, whereas in the
mid-infrared spectral range we find n = 2, being usually sufficient to
suppress the background.61
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11.4.2. Removing the multiplicative background

Simply demodulating the detector output at a frequency nΩ,
however, is not enough to completely remove the effects of the back-
ground scattering. Photodetectors register a voltage, U , proportional
to the light intensity that falls upon them, and this intensity is itself
related to the square of the scattering coefficient, σ2. As a result,
the detected voltage contains multiplicative cross-terms between the
near-field and background Fourier coefficients, σNF,n and σB,n. The
demodulated detector signal at a given harmonic n is thus contami-
nated by the DC background scattering:

Un ∼ σ∗B,0σNF,n (11.3)

The influence of this multiplicative background can be completely
removed by making use of the reference beam in the experimental
setup’s interferometer. When the reference beam, ER, is included,
the demodulated photodetector signal is given by:

Un ∼ E∗
RσNF,n + σ∗B,0σNF,n (11.4)

If the reference beam ER is now modulated, a modulation of the
ERσNF,n term is introduced, allowing for this term to be isolated.
Several variations on this theme have been used as s-SNOM detection
techniques, including two-step homodyne with sufficiently strong ref-
erence beam,62 heterodyne,63 pseudo-heterodyne,64 phase-shifting,65

holographic66 and generalized lock-in detection.67 The case where a
reference beam is not used, and the background scattering alone is
relied upon to amplify the near-field signal as shown in Eq. (11.3),
is known as self-homodyne detection.68 Although experimentally the
most simple, it is not a preferred technique as the background scatter-
ing can vary depending on the position of the probe on the sample,
often leading to difficulties in image interpretation (although it is
still occasionally used for rapid point spectroscopy69). The benefit of
using a reference beam, on the other hand, is that the factor ER is
constant, regardless of the probe’s position.
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Fig. 11.6. Schematic for the Fourier transform of the pseudo-heterodyne tech-
niques detector signal V (t). The harmonics of the tip’s oscillation frequency Ω
are split into sidebands by the phase modulation of the reference beam, separated
by multiples of the reference mirror oscillation frequency M . Adapted from M.
Ocelic et al.64

11.4.3. The pseudo-heterodyne technique

Foremost amongst these detection methodologies for most of the past
decade is the pseudo-heterodyne technique. First demonstrated in
2006,64 it has risen to its position of prominence thanks to its ability
to simultaneously measure both the amplitude and the phase of the
near-field signal, and also for the simplicity of the optical components
it requires, making it easy to use in any spectral range.

Pseudo-heterodyne detection works by sinusoidally phase-
modulating the reference beam. This is achieved by oscillating the
mirror in the reference arm of the interferometric setup (see Fig. 11.3)
with a frequency M , which is typically a few hundred Hz, and thus,
much smaller than Ω. As outlined above, the effect of the reference
beam’s phase modulation is to split the harmonics of the tip’s oscil-
lation frequency nΩ into sidebands, which are separated in frequency
by the value of M . Figure 11.6 shows this principle schematically.

It can be shown that the odd and even sidebands are related
to the imaginary and real parts of the near-field scattering σNF,n,
respectively, in case the mirror oscillation amplitude is 21% of the
illumination wavelength.64 If we label the value of a given sideband
as CnΩ+mM , the amplitude sn and phase φn of the complex near-field
coefficient are given by:

sn =
√
|CnΩ+M |2 + |CnΩ+2M |2, (11.5)

φn = tan−1 |CnΩ+M |
|CnΩ+2M | . (11.6)
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These experimentally measured values of sn and φn thus correspond
to the amplitude and phase of the near field (e.g. from an antenna
or propagating polariton) at any given point on the sample surface.

11.5. Examples

For the efficient excitation of a polariton, the wavevector of the excit-
ing radiation must be matched to that of the polariton70 (known as
phase or momentum matching). This concept is easily understood by
examining a typical dispersion curve of a surface plasmon polariton,
as seen in Fig. 11.7, and noting that the light line and the polariton
dispersion do not overlap.

At this stage, it is useful to point out a practical difference
between localized polariton resonances and propagating polaritons.
The former can be excited by direct light illumination (a consequence
of the curved surfaces of their supporting structures), whereas it is
impossible to excite the latter by simply shining light onto a metal–
dielectric interface (due to the wavevector mismatch ∆k). In far-field

∆k

Fig. 11.7. SPP dispersion curve assuming zero loss. The wavevector mismatch
∆k between light in free space and the SPP means that simply shining light on
a metal-dielectric interface is not sufficient to excite the polariton.
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experiments, propagating polaritons are usually launched in one of
two ways; by using the evanescent fields that emanate from a prism in
which light is totally internally reflected (in either the Kretschmann71

or Otto72 configuration), or by using a surface defect such as a slit or
grating to provide the coupling.73,74 Near-field experiments, on the
other hand, typically launch polaritons using one of two approaches;
either by fabricating antenna structures on the sample, or by making
use of the antenna properties of the s-SNOM tip itself.

11.5.1. Localized polaritons

11.5.1.1. Dipole antennas

The simplest example of a near-field distribution measured by
s-SNOM is the dipole antenna. Such antennas have been well studied
in the literature, often as proof-of-principle experiments.44−47,58,75,76

Here, we show the results of Schnell et al.,58 where pseudo-heterodyne
detection was used alongside the transmission mode to map the
out-of-plane Ez component of a gold rod antenna via the cross-
polarization scheme (Fig. 11.8).

The near-field images show “hot spots” at each end of the
antenna, typical of the supported dipole mode. The optical phase
shows that these areas of strong field enhancement have opposite
phases, as would be expected for the out-of-plane Ez component of
the antenna’s near field (represented schematically in Fig. 11.2).

11.5.1.2. Coupled infrared antennas

As a straightforward demonstration of s-SNOM’s ability to map the
different near-field components of plasmonic nanoantennas by mea-
suring the scattered light’s different polarization states ES and EP ,
we present the key results of a paper published by Alonso-González
et al. in 2013 on the coupling between two infrared nanoatennas.77

Note that coupled antenna fields have been extensively studied
with s-SNOM.46,58,59,78,79 For the paper in question here, the
authors used pseudo-heterodyne detection in conjunction with the
side-illumination mode (as shown in Fig. 11.3) to image two gold rod
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Fig. 11.8. (a) Topography showing a 1550 nm long gold rod with a 230 nm diam-
eter. (b) Optical amplitude s3 of the p-polarized scattered light, showing the Ez

component of the rods near field. (c) Optical phase φ3. The illumination wave-
length was 9.6µm. Reprinted from M. Schnell et al.58

antennas separated by a small gap on a calcium fluoride substrate
(topography shown in Fig. 11.9a).

The p- and s-polarization scattered fields, demodulated at the 4th
harmonic of the tip’s oscillation frequency, are shown in Fig. 11.9(b)
and 11.9(c). Note that the phase images φ4 have been grayed out
away from the antennas: when the signal is weak, the phase is essen-
tially a random value between π and –π. For the p-polarized scat-
tered field (revealing the out-of-plane near-field component), each
nanoantenna shows a large amplitude signal at its extremities that
oscillates out-of-phase by π radians (180◦). In the gap, no field is
observed, as there is no out-of-plane component in this location.
For the s-polarized scattered field, an intense “hot spot” is observed
in the gap (indicating a capacitive coupling between the antennas),
whereas no phase shift is observed between the extremities. It reveals
the strongly concentrated in-plane fields inside the gap.93
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(a)

(b)

(c)

Fig. 11.9. (a) Topography of coupled nanoantennas. (b) P -polarized scattered
light’s amplitude and phase demodulated at the 4th harmonic of the tip oscillation
frequency. (c) As for (b), but for s-polarized scattered light. The illumination
wavelength is 11.1 µm. Reprinted from P. Alonso-González et al.77

11.5.2. Propagating polaritons

Propagating polaritons in near-field experiments are often launched
with antennas, and these fall into two general categories: resonant
and non-resonant. Resonant antennas (for example, a bar antenna
supporting a dipole mode) are used when the coupling strength
between the incident light and the polariton needs to be maximized.80

Non-resonant structures (such as a simple metal edges,81 disks82 or
slits83) have also been demonstrated and have the benefit of working
across broad spectral ranges.

Alternatively, propagating polaritons can be excited directly by
an s-SNOM tip.84 Such polaritons propagate radially away from the
tip, and can only be detected if they reflect from an object or an
edge to create a standing wave. As the sample is raster scanned,
the tip thus passes through areas of constructive and destructive
interference, creating a series of fringes.66,85−87 The spacing of these
fringes is approximately λp/2, where λp is the polariton wavelength.
One useful application of tip-launched polaritons is that by tuning
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the frequency of the incident light and measuring the fringe spacing,
the dispersion curve can be experimentally deduced.32,88

11.5.2.1. Transmission lines and waveguides

The study of transmission lines and waveguides is another research
field in which s-SNOM has proved a useful tool for mapping near-field
distributions.89−91 A recent example is the work by Andryieuski
et al.92 in which mode propagation for plasmonic slot waveguides was
studied for telecommunication wavelengths (1.55 µm). The topogra-
phy of the waveguide is shown in Fig. 11.10a: a rectangular slot of
width 300 nm was cut into a gold film along with two dipole anten-
nas that would act as nanocouplers for the waveguide mode. For
the experimental setup, this study used pseudo-heterodyne detection

-π Minπ MaxMax0

(a) (b) (c) (d)

Fig. 11.10. (a) Slot-waveguide topography. (b) Amplitude, (c) phase and (d)
real part of the slot mode fields, as extracted from the 2nd harmonic of the p-
polarized tip-scattered light. The illumination wavelength is 1.55 µm. Reprinted
with permission from A. Andryieuski et al.92 Copyright 2014, American Chemical
Society.
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with transmission mode illumination (see Fig. 11.5). In terms of
polarization sensitivity, the cross-polarization scheme was used, i.e.
only the p-polarized scattered light was detected.

The amplitude, phase and real part of the scattered light
stemming from the propagating waveguide mode (demodulated at
the second harmonic of the tip’s oscillation frequency) are shown in
Fig. 11.10(b)–(d), respectively. Note that these images do not rep-
resent the raw recorded data — the raw data contain a background
SPP field, which is simultaneously excited by the incident light. The
images in Fig. 11.10 represent the data after this background has
been removed.

The optical images reveal a propagating slot mode with decreas-
ing amplitude and a linearly rotating phase. There is no out-of-plane
field component in the middle of the slot (similar to the coupled
antenna case of Section 11.5.1), and the field has opposite signs on
each side of the slot at any given position.

The s-SNOM characterization of the near-field distribution of
waveguide allows the authors to determine the efficiencies of different
coupling antennas as well as determine the effective index and prop-
agation lengths of the waveguide mode.

11.5.2.2. Plasmon focusing

As an example of mapping propagating SPPs, we summarize here
work by Gjonaj et al.,83 published in 2014. In this paper, the authors
demonstrated the focusing of plasmons into a sub-100 nm area. The
plasmons themselves were supported by a silver–silicon nitride lay-
ered structure and were launched by curved slits (Fig. 11.11(a)).
Experimentally, the s-SNOM used to record the plasmon fields was
operated in transmission mode with an illumination wavelength
532 nm. Pseudo-heterodyne detection was used to map both the
amplitude and phase of the SPP (Fig. 11.11(b),(c)). Note that no
polarization (i.e. s or p) was selected in the far-field: as a result, the
amplitude and phase maps primarily represent the out-of-plane (Ez)
component of the plasmon’s field due to the tip’s stronger scattering
for fields along its principle axis.
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200 nm

(a) (b) (c)

-π πMax0

Fig. 11.11. (a) SEM image of the “plasmonic lens” used for focusing the SPPs.
Top arc has a radius of 1µm. The dashed box outlines area shown in (b) and (c).
(b) Measured optical amplitude s3 and (c) phase φ3, representing the out-of-plane
(Ez) component of the propagating SPPs. The incident wavelength is 532 nm.
Reprinted with permission from B. Gjonaj et al.83 Copyright 2014, American
Chemical Society.

The optical images show curved wavefronts launched by the slits,
which propagate to a small (∼70 nm) area of high confinement and
optical power. This focus is the result of the constructive interference
between two counter-propagating SPPs — the authors envision that
such a plasmon focusing system might be used for in vivo biological
imaging.

11.5.2.3. Graphene plasmons

One of the more promising candidates in the search for plasmonic
materials that exhibit lower optical losses is graphene. Graphene is
advantageous for several reasons; its 2D nature, high carrier mobility
and ability to control the carrier concentration by electrical gating
are among the most important. The wavelength of graphene plas-
mons, however, is particularly short compared to the wavelength of
light in free space at the same frequency — for graphene plasmons
to be launched, therefore, this large momentum mismatch must be
overcome.

This was first demonstrated by Chen et al.86 and Fei et al.87 in
2012, who used a metallic s-SNOM tip to launch, and subsequently
detect, graphene plasmons (with pseudo-heterodyne detection, and
p-polarized incident light to maximize the near fields at the tip’s
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Fig. 11.12. (a) Schematic for tip-launching graphene plasmons in a graphene
ribbon (12µm long, 1µm wide). Reprinted from J. Chen et al.86 (b) Optical
amplitude s3, with an incident wavelength of 9.7µm. (c) Topography of the
sample showing off-resonance (left) and on-resonance (right) gold antennas on
graphene. (d) Real part of the p-polarized tip-scattered light, representing the
out-of-plane (Ez) component of the antenna/graphene plasmon fields. The illu-
mination wavelength was 11.06 µm. From P. Alonso-González et al.80 Reprinted
with permission from AAAS.

apex). Figure 11.12(a) shows a schematic of the experiment, where
the standing waves created by reflection of the tip-launched graphene
plasmons from the edges of a tapered graphene ribbon are mapped
(Fig. 11.12b). A series images at different incident frequencies allowed
the authors to experimentally measure the graphene plasmon disper-
sion curve.

In 2014, Alonso-González et al. showed that this was also possi-
ble to launch graphene plasmons using resonant gold antennas.80

These antennas provided strong near-fields at their extremities
with large enough momenta to launch the plasmons. The topog-
raphy of the sample is shown in Fig. 11.12(c), where both an off-
resonance (left) and on-resonance antenna (right) are seen. The
real part of the out-of-plane component (Ez) of the graphene
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plasmons is shown in Fig. 11.12(d). Experimentally, this was mapped
by using pseudo-heterodyne detection in conjunction with the
side-illumination mode setup operated using the cross-polarization
scheme (i.e. s-polarization in, p-polarization out).

The distance between the field maxima of the same polarity yields
the graphene plasmon wavelength (380 nm), which is smaller than the
free-space illumination wavelength (11.06 µm) by a factor of 27. Note
that the off-resonance antenna, which does not exhibit a resonant
field enhancement at its extremities, barely launches the plasmons
at all.

11.6. Conclusion

s-SNOM is a powerful tool for characterizing plasmonic phenom-
ena with nanoscale spatial resolution and within a broad spectral
range including visible and infrared frequencies. It is based on AFM,
where the probing tip acts simultaneously as mechanical and opti-
cal probe. Nanoscale optical imaging is achieved by recording the
elastically scattered light simultaneously to topography. Interfero-
metric detection thereby yields both, near-field optical amplitude and
phase images. Imaging of the near-field distribution and wavefronts of
localized and propagating surface plasmon polaritons on metal films,
antennas and waveguide structures is often performed with dielectric
Si tips. They essentially act as passive scattering probes, and thus
minimally disturb the plasmonic structures. Plasmon mapping can
be also performed with metallic tips, but in this case the strong
field enhancement at the very tip apex might disturb plasmonic field
distribution. On the other hand, the strongly confined near fields at
the tip apex can provide the necessary momenta to launch strongly
confined plasmons, for example in doped graphene. The tip-launched
plasmons can be imaged when they are reflected at edges or defects,
thus yielding plasmon interference patterns in the near-field images.

Plasmon imaging by s-SNOM can be applied for studying fun-
damental aspects of plasmon localization and propagation, but also
for verifying novel design concepts and to perform quality control
of emerging plasmonic devices. With the emergence of 2D materials
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such as graphene, s-SNOM encounters a novel and exciting field,
where exotic polariton phenomena are waiting to be explored.
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Chemical Synthesis

of Plasmonic Nanoparticles
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The rapidly increasing interest in plasmonic nanoparticles (NPs) has
driven the scientific community to explore a variety of innovative pro-
cedures for their production, including advanced nanolithography tech-
niques, sacrificial templates and many others. While these techniques
provide high-quality nanomaterials, scale-up is hindered due to poten-
tially complicated and expensive processes. In this respect, finding com-
plementary and alternative approaches is required. Bench-top chemical
strategies do not suffer in principle from such limitations and are thus
of tremendous interest in plasmonic materials design. We address in this
chapter, the most commonly used methods of preparing plasmonic NPs
by wet chemistry approaches. Rather than giving a list of manufacturing
routes, which would be nearly impossible taking into account the vast
available literature, we aim at providing the reader with the necessary
knowledge to apprehend this field.
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12.1. Introduction

The exciting plasmonic properties of metal nanoparticles (NPs) such
as gold and silver have been used since ancient times for the prepa-
ration of stained glasses. One of the most famous examples is the
Lycurgus cup prepared by the Romans, which is still on display at
the British Museum.1 The utilization of metals as coloring agents
was expanded in the middle ages thanks to alchemists like Cassius
or Knuckel, who described the preparation of purple of Cassius and
ruby red stained glass.2 Scientific discussions on these phenomena
started with Faraday in 1857 when he presented in a lecture at the
Royal Institution the first systematic work on the interaction of finely
divided metals with light.3 He prepared aqueous dispersions of small
gold particles by reducing a chloroaurate salt with white phosphorous
and recognized that the resulting colors were due to the small size
of the metal particles in the dispersion. In 1908, Gustav Mie4 came
forward to explain the red color of the gold NPs (Au NPs) in solution
by applying a simplified resolution of Maxwell’s equations for spheres;
this model is still useful to describe the optical properties of spheri-
cal particles smaller than the wavelength of the incoming light. Since
these pioneering works, many other protocols have been proposed
that largely improved the level of control over the size and stability
of NPs. Notably, the term “colloid science” gained great interest in
the early years of the XXth century within the scientific community.
In 1925, Richard Adolf Zsigmondy was awarded the Nobel Prize
in chemistry for his work on the heterogeneous nature of colloidal
solutions.5,6 Later in 1950, Turkevich et al.7 reduced gold salts with
citrate anions forming monodisperse colloids in water, in the range
of 10–50 nm. Frens8 refined this protocol in 1973, accomplishing a
better size tunability of the particles by adjusting the molar ratio
of citrate to gold. This readily accessible synthesis, often denoted as
citrate reduction method, is still popular nowadays, in part because
the prepared colloids are stabilized by weak ligands (citrate ions)
that can be readily exchanged to functionalize the particles with
higher affinity ligands for different applications such as directed self-
assembly,9−11 biomedical activity12,13 and many others.14 Another
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well-known synthesis is the Brust–Schiffrin method,15 in which Au
NPs are prepared in a two-phase system leading to nanocrystals as
small as 1 nm, stabilized by alkanethiols that can be dispersed in
organic solvents. Nowadays, many routes for the synthesis of a vari-
ety of nanocrystals made of different materials are well documented,
even commercially available, but improvement of existing particles or
preparation of new particles with different properties is still under the
focus of many research groups. Additionally, the continuous devel-
opment of novel microscopy techniques allows scientists to describe
in detail the crystallinity and the precise morphology of the NPs,
thereby helping to improve existing protocols. Although we focus
the discussion on the preparation of plasmonic NPs made of noble
metals such as gold and silver, some other examples of non-metallic
NPs displaying plasmon resonances will also be provided.

The plasmonic properties of colloidal spherical Au NPs, typically
characterized by a deep red color, can be modified by tuning particle
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Fig. 12.1. Photographs of stained glasses from (a) Cologne Cathedral; (b) Santa
Maria Sopra Minerva church in Rome; (c) Lycurgus cup; c©The trustees of the
British museum, and (d) various NP solutions: (I) 5 nm Au NPs in organic solvent
at high concentration15; (II) 18 nm Au NPs; (III) 55 nm Au NPs; (IV) 100 nm
citrate Au NPs stabilized with citrate16; (V) gold nanorods17; (VI) nanostars18;
(VII) branched gold AUNPs; (VIII) gold nanotriangles19; (IX) 40 nm AgNPs20;
(X) silver-coated gold nanorods covered with silica.

size, between ∼3 and 200 nm, leading to plasmon shifts from ∼519
to 730 nm.15,16 In the case of silver nanoparticles (Ag NPs), local-
ized surface plasmon resonances (LSPRs) occur at higher energies
around 400 nm but can also be tuned by increasing particle size.20 It
is also possible to synthesize nanoalloys made of gold and silver or
other metals by co-reduction of the corresponding metallic salts in
solution, thereby shifting the plasmon resonances within the range
between 380 and 520 nm.21 However, for applications that require
a wider spectral range, alternative strategies have been developed
to control not only the size but also the shape of the NPs. In con-
trast to the early development of spherical NPs, the synthesis of
colloidal anisotropic NPs gained tremendous interest around the
beginning of this century thanks to protocols that allowed high-
yield preparation.22 Research in this direction is thus motivated
by the exciting optical properties of anisotropic NPs, which can
accommodate additional plasmon modes related to various particle
morphologies. A classification of the particles can, therefore, be made
according to their dimensionality,23 starting from 0D quasi-spherical
particles, through 1D rod-like particles, bars and wires, 2D
platelets and prisms to 3D cages and branched NPs, frequently
characterized by concave surfaces displaying facets with high Miller
indexes.24

Among the different available approaches for the preparation of
anisotropic NPs, seed-mediated growth methods are most commonly
used. The seed-mediated process comprises two steps: the prepara-
tion of a seed solution containing small crystallites (e.g. 1–5 nm),
which is subsequently injected into a growth solution containing
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metal salt, as well as reducing, stabilizing and shape directing agents.
Other “one-step” synthetic methods also exist, albeit generally
leading to smaller but more polydisperse NPs. Aiming to provide
a clear overview to the readers, we describe here the synthesis of
NPs according to their dimensions. Note that the field is so broad,
as indicated by the huge amount of articles published in recent
years, that it is difficult to cover all possible aspects. Although a
universal view about the growth mechanism is still lacking in the
literature, some of the reported protocols allow for a tight control
over particle shape. Due to the need for increasingly sophisticated
structures, Wang et al.25 classified NP growth according to ther-
modynamically or kinetically controlled scenarios. We summarize
here such general mechanisms, while more details on the prepara-
tion of specific anisotropic NPs can be found in the corresponding
subsections.

In general terms, the growth of NPs is produced by a chemical
reaction that provides free atoms or molecules that get involved in
the growth. The interaction of these atoms with each other has been
described in the classical theory of nucleation and growth. The dif-
ferent mechanisms that explain the formation of uniform particles
are presented in Fig. 12.2.

In homogeneous precipitation, a short single nucleation burst
occurs when the concentration of constituent species reaches crit-
ical supersaturation. Then, the so-obtained nuclei are allowed to
grow uniformly by diffusion of solutes from the solution to their
surface until the final size is attained. To obtain monodisperse par-
ticles, nucleation and growth stages must be separated. Kinetically
speaking, this means that in order to achieve uniform NPs the rate at
which the growth materials are produced should be slower than that
of their consumption (heterogeneous deposition on existing nuclei),
allowing all the nuclei to emerge at roughly the same time and to grow
at the same rate. This corresponds to the model proposed by LaMer
and Dinegar26 (Curve I, Fig. 12.2). A self-sharpening growth process
following multiple nucleation events is the so-called Ostwald ripening
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Fig. 12.2. Growth mechanisms explained by different models. Plot of solute con-
centration versus time, showing the initial accumulation of solute, the nucleation
stage and the subsequent growth; curve I represents a single nucleation event and
uniform growth by diffusion (classical model of LaMer and Dinegar)26; curve II
shows nucleation, growth and aggregation of smaller subunits27,28 and curve III
represents multiple nucleation events and growth via Ostwald ripening.29

process, through which uniform particles can also be obtained (Curve
III, Fig. 12.2). In some cases, however, it has been shown that uni-
form particles can also be obtained as a result of aggregation of much
smaller subunits rather than continuous growth by diffusion,30,31

which has been observed for example in the formation of magnetic
NPs27,28 (Curve II, Fig. 12.2).

Experimental studies of plasmonic nanocrystal growth in general
invoke the LaMer mechanism, Ostwald ripening or both. In the seed-
mediated growth method, nucleation and growth are temporally sep-
arated, thereby avoiding the overlap of nucleation and growth and
the resulting polydispersity, as often occurs in “one pot” synthesis
methods. Nucleation (i.e. formation of seeds) is generally induced by
the reduction of metal salt by a strong reducing agent such as sodium
borohydride (NaBH4). In the second step, the injection of seeds into
the growth solution initiates the slow reduction of the oxidized metal
salt in solution at the surface of the seeds, which therefore also act
as a catalyst. The metal salt would thus be the solute or monomer
in the LaMer mechanism, as shown in Fig. 12.2. On the other hand,
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Ostwald ripening corresponds to the growth of larger nanocrystals
at the expense of smaller nanocrystals, the latter being progres-
sively dissolved. It should, however, be noted that growth of larger
nanocrystals may occur as well by aggregative growth, converting
a suspension of non-stable small colloids into often more homoge-
neously distributed and stable aggregates, which can be either poly-
or monocrystalline. These Ostwald ripening or aggregative growth
processes may be avoided via a fine control of the reaction conditions
involving strong stabilizing ligands that passivate the surface of the
nanocrystals.

12.2. Controlling the Shape of Plasmonic
Nanoparticles

12.2.1. General considerations

As introduced above, the initial work on colloidal plasmonic NPs
dealt with spherical or quasi-spherical NPs, mainly due to the
simpler synthetic procedures required for the reproducible forma-
tion of monodisperse colloids. Indeed, NPs tend to afford spheri-
cal geometry thereby reducing their surface free energy; in other
words, it is the most thermodynamically favorable morphology. In
order to access anisotropic nanostructures, it is necessary to find
reaction conditions leading to the required symmetry break from
the spherical seeds, as well as control the reaction kinetics. In the
following, we guide the reader through the milestones in NP syn-
thesis, including the key factors toward directing NP growth. Seed-
mediated growth can be used to prepare a large library of parti-
cles having different shapes and crystallinity. Interestingly, slight
changes in the reaction conditions may lead to different collective
behavior of the reactants and produce completely different NPs.
We focus here on the preparation of Au NPs, but the concepts
can be translated to the synthesis of other metal particles. In this
case, the growth solution is composed of a trivalent gold salt (tetra-
chloroauric acid, HAuCl4) dissolved in an aqueous solution contain-
ing surfactants, which are typically hexacethyltrimethylammonium
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bromide or chloride, denoted as CTA-Br or CTA-Cl, respectively.
These surfactants contain quaternary ammonium headgroups, which
can readily complex the metal ions in solution and ultimately the
gold atoms on the particle surfaces, forming interdigitated bilayers
in which the CTA+ headgroups of the external layer face the solvent
(water).32,33 Homogenization of the solution at this point is impor-
tant when shape-directing agents such as silver nitrate are added, as
they are believed to interact synergistically with the other reactants.
A weak reducing agent is also introduced, which can reduce Au(III)
into Au(I), as reflected in a color change from yellowish to colorless.
Ascorbic acid is the most popular reducing agent because its reduc-
tion strength can be easily tuned through adjustment of the solution
pH, its electrochemical potential increasing at lower pH values. In a
final step, the growth of the NPs is triggered by the fast injection of
the seeds, and the typical duration ranges from 2 to 6 h.

Despite their apparent spherical shape when viewed in an
electron microscope, gold seeds display crystalline facets. Seeds can
be either mono- or poly-crystalline, the latter being characterized
by the presence of stacking faults and/or twin boundaries in the
lattice structure (Fig. 12.3). Importantly, as the seeds template the
growth of larger particles, their crystallinity is a cornerstone to direct
NPs morphology and size. Indeed, the addition of a larger amount
of seeds to a given concentration of Au ions results in a larger
number of smaller particles, whereas larger particles are obtained
when less seeds are used. On the other hand, the crystalline habit
is an important attribute of NPs because it will ultimately influence
their catalytic, optical and electrical properties. It is thus significant
to achieve control over the crystallinity of the seeds, not only to
direct the NP shape but also to envision applications. Noble met-
als, gold and silver in particular, are characterized by a face-centered
cubic (fcc) lattice. The addition of chemical species that can stabilize
specific crystal facets has been proposed as a tool to fine-tune the
growth rates in specific crystallographic directions, resulting in NPs
with morphologies that may not always be those expected from ther-
modynamic considerations (i.e. octahedron and tetrahedron).23,34,35
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Fig. 12.3. Scheme illustrating the importance of the seed crystallinity to define
particle shape. Seeds grow from the initial nuclei into either monocrystalline
or polycrystalline structures, which in turn can be singly twinned or multiply
twinned and/or contain stacking faults. The green, orange, and purple colors
represent {100}, {111} and {110} facets, respectively. Twin planes are delineated
in the drawing with red lines. The parameter R is defined as the ratio between
the growth rates along 〈100〉 and 〈111〉 directions.34 Reprinted with permission
from Ref. 34. Copyright 2009 Wiley-VCH.

Capping agents preferentially adsorb onto certain types of crys-
tal facets and can passivate them, so that the resulting particle
overexpresses such facets, thereby directing particle shape. Recent
optimization of some protocols has allowed drawing mechanistic
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aspects that can be applied to most synthetic routes. It appears from
experimental evidences that halide ions (Cl−, Br− and I−) as well as
silver ions are important to direct the particle morphology as they
can preferentially adsorb on certain crystal facets. One interpreta-
tion of the mechanism underlying the action of silver ions on shape-
directed growth is the so-called silver underpotential deposition, in
which an Ag0 adlayer would be deposited preferentially on high-index
facets, which can thus be stabilized as the most abundant ones.36

Iodide is known to stabilize {111} facets preferentially, promoting
the growth of two-dimensional particles while preventing the growth
of oblong particles.19,37,38 On the contrary, an emerging method for
the generation of anisotropic particles is the surface-selective etching
of pre-formed nanocrystals.39 In the following, the key ingredients
for making and characterizing particles with different morphologies,
including core@shell nanostructures, are described in the following
subsections.

12.2.2. The case of isotropic nanoparticles (0D)

Crystallinity is a key parameter that determines the properties of
NPs as it impacts their optical or electrical properties, thereby
inducing differences between solids made of same material.

In general, in thermodynamic terms, the most favorable shapes
are polyhedrons with convex surfaces, such as cubes, octahedrons
or icosahedrons, depending on the number of twin defects in the
seed and the ratio of growth rates along {111} and {100} directions.
A nanocrystal will assume its equilibrium shape when its total Gibbs
free energy reaches the global minimum.40 Thus, it is known that
for a metal nanocrystal, its equilibrium shape cannot be spherical
because many high-index facets with high specific surface free ener-
gies would be required to obtain a perfect sphere.23 However, this is
more complex to explain as the types of facets of the NPs must be
taken into account. Different facets have different densities of sur-
face atoms, charges and often adsorbed ligands, resulting in different
stabilities and, thus, different particle shapes. This is schematically
shown in Fig. 12.4. However, most nanocrystals lie in between the
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Fig. 12.4. NPs shape depending on the stability of its facets. Reprinted with
permission from Ref. 25. Copyright 2014 Wiley-VCH.

two extremes; therefore, it can be said that polyhedral shapes are
the most favorable ones.

So-called Platonic NPs have aspect ratios near one and mainly
differ in the number of crystal facets. In other words, they are poly-
hedrons containing regular polygonal facets with the same number of
polygons meeting at each corner. The five platonic shapes are tetrahe-
dron (4 triangular facets), hexahedron (cube; 6 square facets), octa-
hedron (8 triangular facets), dodecahedron (12 pentagonal facets)
and icosahedron (20 triangular facets) (Fig. 12.5(a)). In general,
tetrahedrons, octahedrons and icosahedrons are dominated by {111}
facets, whereas hexahedrons are bound by {100} and dodecahedrons
by {110} facets. It should, however, be noted that often NPs are
not perfect and some or all corners can be truncated, resulting in
different structures (Fig. 12.5(c)). Thus, these platonic particles can
also be used as seeds to form other different structures via seeded
growth (Fig. 12.3). Note that capping ligands that bind selectively
onto specific facets can direct the overgrowth, ultimately resulting
in different particle shapes (Fig. 12.5(b)).23 In addition, polyhedral
NPs can also be used to obtain specific shapes via etching processes,
which is commonly used for example to obtain concave particles
as explained below.24 Spherical monocrystalline gold particles have
been obtained by oxidation of gold octahedrons with chloroauric
acid.41
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Fig. 12.5. (figure on facing page) (a) The five platonic shapes: (I) Au
tetrahedron42; (II) Ag hexahedron (i.e. cube)43; (III) Au octahedron44; (IV) Au
dodecahedron45; (V) Au icosahedron42 : (b) Schematic illustrations showing the
role of capping agents in directing the growth of a single-crystal seed made of an
fcc metal. The shape of the resulting nanocrystals can be manipulated through the
introduction of a capping agent (represented by red or blue dots) that selectively
bind to a specific type of facet, altering the order of surface-free energies and
eventually leading to the formation of a nanocube enclosed by {100} facets and
an octahedron enclosed by {111} facets, respectively.23 (c) Formed shapes from
platonic NPs (VI) Au trisoctahedron NPs46; (VII) Pt tetrahexahedron NPs47;
(VIII) Au concave hexahedron NPs.48 (I) and (V) were adapted with permission
from Ref. 42. Copyright 2004 Wiley-VCH. (II), (III), (IV), (VI), (VII) and (VIII)
and (B) Reprinted with permission from Refs. [44–48], respectively. Copyright
American Chemical Society.

12.2.3. 1D Elongated shapes: Rods and wires

Although the first examples of efficient synthesis of rod-shaped Au
NPs are probably electrochemical methods, either using alumina
membranes as templates49 or in solution,50 the colloidal synthesis
of gold nanorods with high yield was widely used after the modifi-
cations made by Murphy and El-Sayed groups, starting in 200151−54

Of all the possible NP shapes, nanorods are especially interesting as
they offer strong plasmonic fields while exhibiting excellent tunability
through adjustment of their aspect ratio.55 Rather small variations in
the synthesis of Au nanorods can, however, lead to either single crys-
tals with octagonal cross-section or fivefold twinned crystals, with
pentagonal cross-section. Other modifications have been reported to
lead to e.g. rectangular or singly twinned crystals, but these will
not be described here.34,56 For the sake of clarity, the term nanowire
will be used to refer to nanorods with high aspect ratio >10. Single
crystal gold nanorods are elongated along the 〈001〉 direction and
possess eight lateral {520} facets, whereas penta-twinned nanorods
are elongated along the 〈110〉 direction and possess five {100} lat-
eral facets.36,57,58 Single crystal nanorods possess smooth ends as
observed in electron microscopy due to a combination of {100}, {110}
and {111} facets whereas penta-twinned rods possess sharp tips made
of {111} facets.36,57 The formation of single crystalline gold nanorods
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is almost invariably mediated by silver ions, but penta-twinned rods
do not contain silver. On the other hand, the synthesis of single
crystalline silver rods has not been reported, but several examples
exist for penta-twinned silver nanorods.56,59,60

Single crystalline gold rods are usually prepared in the presence of
CTA-Br, ascorbic acid, HAuCl4, AgNO3 and single crystalline seeds
(1.5 nm).57,61 Therefore, in addition to the growth solution described
above, silver ions are essential in this particular case to direct the
rod shape, which has been ascribed to either underpotential deposi-
tion or to the formation of Ag-CTAB complexes in solution.33,62−64

Interestingly, the aspect ratio of Au nanorods can be readily tai-
lored between 1 and 5 by simply tuning the Au/Ag concentration
ratio or the seed concentration. Additionally, recent improvements
in gold nanorod synthesis have been reported which are based on the
addition of a co-surfactant or other metal ions.17,65−67 For instance,
the addition of aromatic molecules provides further control on the
reaction kinetics and the stabilization of crystal facets during the
growth process (Fig. 12.6(a)).65 As discussed above, pH can also be
used to tune the rate of the reaction, by affecting the reduction power
of ascorbic acid.

Penta-twinned gold nanorods are prepared in the presence
of CTA-Br, ascorbic acid, HAuCl4 and ca. 3.0 nm penta-twinned
seeds.57 In this case, the seeds are prepared in the presence of citrate
anions instead of CTA-Br, which leads to a significant increase in the
degree of twinning. The polycrystalline nature of the seed provides
enough anisotropy to break the symmetry of the particles during
growth. Indeed, the packing of the five tetrahedral subunits results
in an incomplete filling of the space, inducing strain in the lattice
structure.68 Although this technique can be adapted to obtain rods
with aspect ratios up to 10, post-synthesis overgrowth can be per-
formed to increase the length and obtain wires with aspect ratios even
greater than 20.69 In a further development based on lowering both
the pH and the amount of seeds, the growth of gold nanowires with
aspect ratio over 200 has been reported.70 On the other hand, flexi-
ble ultrathin gold nanowires can be synthesized in organic solvents,



September 26, 2017 9:44 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-ch12 page 453

Chemical Synthesis of Plasmonic Nanoparticles 453

Fig. 12.6. Synthesis of different types of 1D nanocrystals. (a) TEM images of sin-
gle crystalline gold nanorods of different aspect ratios displaying different optical
properties as illustrated by the corresponding photographs of the colloidal sus-
pensions. The scale bars on all images are 200 nm. (right) High-resolution TEM
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←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 12.6. (Caption Continued) of a single crystalline nanorod.67 (b) Silver
nanowires synthesized by the polyol synthesis.59 The pentagonal cross-section of
the wires is visible on the right image.72 (c) Ultra-thin gold nanowires prepared
in organic solvent.71 (a), (b) and (c) were adapted with permission from Refs. 65,
59, 71, 73, respectively. Copyright American Chemical Society.

in the presence of oleylamine, featuring a diameter of 1.6 nm but
lengths up to 10µm, thus expanding the aspect ratio control up to
2500 (Fig. 12.6(c)).71 In this particular case, even if the solvent and
ligands are different, the underlying growth mechanism may also be
related to preferential adsorption of oleylamine on certain surface
facets, thereby triggering anisotropic growth.

Regarding silver, the synthesis of penta-twinned nanowires has
been reported by Sun et al., based on the so-called polyol process,59,72

which involves the reduction of silver nitrate by ethylene glycol in
the presence of poly(vinylpyrrolidone) (PVP) and the introduction
of seeds that can be either penta-twinned silver or Pt (Fig. 12.6(b)).
Again, in this case, PVP acts as a molecular template by passivating
{100} and {110} facets so that the addition of monomers occurs
preferentially on {111} facets. A coalescence mechanism has been
proposed for the formation of the nanowire in which small nanocrys-
tals having high surface energy aggregate into a 1D structure.60,73

12.2.4. 2D platelets, triangles and disks

During the last decade, several procedures have been reported to
prepare plasmonic nanoplates, such as nanoprisms NPs used or nan-
otriangles (NTs), hexagons, pentagons, star shaped or disks, all of
them based on the polyol process using a variety of polymers. In this
way, the polymer can act as stabilizer, template and even reductant.
Polymers such as poly(ethylene oxide), poly(propylene oxide) and
poly(vinyl alcohol) are involved in the synthesis of gold nanoplates,
often with no need of an additional reducing agent.74 The polymer
may, however, act only as stabilizer in which case an additional
reducing agent such as l-ascorbic acid is required to reduce HAuCl4,
as reported by Yamamoto et al. for the formation of star-shaped
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Fig. 12.7. Different examples of 2D nanocrystals. (a) TEM images of Au NTs
with increasing edge lengths and the corresponding UV–vis spectra.19 (b) (I)
TEM image of a single triangular gold nanoplate and (II) the corresponding
electron diffraction pattern. (III) TEM image of a truncated hexagonal gold
nanoplate (with 6 long edges and 6 short edges) and (IV) the corresponding
electron diffraction pattern. Scale bars: 50 nm.77 (c) High-resolution SEM image
of nanoprisms. The arrow highlights flat particles where contrast uniformity indi-
cates thickness uniformity.80 (d) SEM image of gold nanoprisms.82 (a), (b) and
(d) were adapted with permission from Refs. [19], [77], [82], respectively. Copy-
right American Chemical Society. (c) was adapted with permission from Ref. [80].
Copyright 2006 Wiley-VCH.

nanoplates coated with PVP.75 In addition, this wet-chemical route
has been extensively applied for other kinds of particles in which the
morphology can be defined though the relative concentrations of the
various reactants and the synthesis conditions. In 2004, a mild, large-
scale synthesis of Au nanoplates was reported by Sun et al.76 whereas
Chu et al.77 carried out the synthesis of triangular and hexagonal gold
nanoplates in aqueous solution by thermal reduction of HAuCl4 with
trisodium citrate in the presence of CTAB.
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Triangular nanoprisms of gold or silver are interesting due to
their plasmonic features in the visible and IR regions and can be
used for several applications.78,79 The size of Au NTs can be tuned
within a wide range by simply changing the experimental parame-
ters. These methods usually yield particles with lateral dimensions
above 100 nm.80 Recently, Scarabelli et al.19 Developed a method
to synthesize Au NTs with edge lengths between 50 and 150 nm,
which translated into LSPRs between 630 and 740 nm. The obtained
crystals can be purified from by-products using a simple sedimen-
tation method81 comprising the addition of a high surfactant con-
centration, which induces morphology- and size-dependent depletion
interactions, and leading to a shape purity as high as 95%. It has been
confirmed that the amount of seeds and the addition of iodide ions
to the growth solution are crucial to control the nanotriangle size. In
addition, these particles are excellent candidates for plasmonic bio-
logical applications, so efforts have been made to develop particles
that avoid the use of toxic capping agents such as CTAB or CTAC.
Thus, CTAB-free, biocompatible single-crystalline nanoprisms have
also been reported.82

12.2.5. 3D: Branched and concave morphologies:

nanostars

Metal nanocrystals with highly branched morphologies or with
concave surfaces possessing high Miller indexes (>1) have become
increasingly common during recent years. The sharp corners or edges
and tips serve as efficient nanoantennas where electromagnetic fields
are expected to be very high.83 Dissolution and overgrowth are the
two main synthetic approaches to prepare crystals with concave sur-
faces. The dissolution or corrosion of a metal has been shown to
lead to surface degradation and structure failure, which can take
place in different ways including etching, pitting, galvanic replace-
ment and dealloying. Some of these mechanisms are explained in
detail in the following section, and thus we restrict our discussion
here to 3D structures prepared by seeded growth mechanisms. As
mentioned in the section on 0D nanostructures, the seeded growth
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mechanism generally favors polyhedral shapes with convex surfaces,
such as cubes, octahedrons or icosahedrons, depending on the num-
ber of twin defects in the seed and the ratio between the growth
rates along {111} and {100} directions. The formation of concave
structures is however not thermodynamically favored. This limitation
can be overcome by conducting the synthesis with an appropriate
capping agent or under kinetically controlled conditions. For exam-
ple, PVP passivates {100} rather than {111} facets in Ag, resulting in
nanocubes or penta-twinned nanorods.84 Additionally, under certain
conditions, halide ions such as Br− and I−, preferentially adsorb onto
{100} facets, thus promoting the formation of cubes, bars or rods
enclosed by these facets.85 Langille et al. recently reported a detailed
study of NP growth on cetyltrimethylammonium chloride (CTAC)-
capped seeds where the use of different halogen counter-anions was
crucial in the synthesis of NPs of different shapes.87 Although a num-
ber of examples have been published in which this approach allowed
control over the growth of different metals, most likely it cannot be
considered as a universal method, as each ligand interacts differently
with the metal used. The kinetically controlled method is based on
the manipulation of the growth rate at which atoms generated from
the precursors can be added to the surface of a seed that may carry a
capping agent or not, leading to different morphologies.24 The formed
atoms tend to be added to the edges, but the reaction kinetics can
be manipulated by adjusting different parameters such as precursor
and reductant concentrations, temperature, etc.23 The presence or
absence of silver ions is also crucial toward the formation of cer-
tain types of branched NPs such as gold nanostars (Au NSs),86 as
well as for others such as nanorods or high-index concave cubic Au
nanocrystals with {720} surfaces.87

There are many examples of the synthesis of 3D structures
obtained by optimization of the experimental conditions. Branched
NPs including multipods.88 and/or nanostars18 (also known as
nanoflowers and nanourchins89) have been extensively studied as
they are excellent candidates for nanodevices and for in vivo
applications due to characteristic LSPR peaks in the near IR
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region, for which penetration of light in tissues is favored.90

Chen and carroll reported in 2003 the synthesis of Au monopods,
bipods, tripods and tetrapods through the reduction of Au(III)
with ascorbic acid in the presence of CTAB and Ag platelets.91

Sau and Murphy used the seed-mediated synthesis to modify the
dimensions and the number of branches.92 Hao et al. reported
the synthesis of “branched” gold nanocrystals in high yield by a
wet-chemical route where HAuCl4 was reduced by sodium citrate
in a solution of bis-(p-sulfonatophenyl)phenylphosphinedipotassium
dehydrate (BSPP) and H2O2, at room temperature.93 Although var-
ious other routes were subsequently used,94 high yield production
could not be achieved until 2008, when Kumar et al. proposed a
seed-mediated reduction of HAuCl4 in a concentrated solution of
poly(vinylpyrrolidone) (PVP) in N ,N -dimethylformamide (DMF)
(Fig. 12.8(b)).18 Another efficient, surfactant-free method was later
developed by Yuan et al. in which naked NPs can be obtained,
which is important for several applications such as SERS. By vary-
ing the amount of Ag+ added to citrate-capped Au seeds in the
presence of chloroauric acid and HCl, the shape and optical response
can be tuned (Fig. 12.8(a)).86 Similar procedures were subsequently
employed to grow Au spikes onto different structures as for example
Janus NPs95 (Fig 12.8(c)) or nanodumbbells.96

Smooth nanodumbbells can also be prepared in high yield97

by seeded growth of nanorods in the presence of iodide ions
(Fig. 12.8(d)). Other morphologies such as gold nanotadpoles were
synthesized by citrate reduction of chloroauric acid in the presence
of sodium dodecyl sulfate as capping agent.98 Recently, these struc-
tures were also synthesized through the standard seed-mediated pro-
cess in the presence of Ag+ ions and CTAB at room temperature.99

Au dendrites are also interesting structures that possess a hierar-
chical tree-type architecture with trunks, branches, and leaf compo-
nents (Fig. 12.8(e)). Huang et al. reported the first shape-controlled
synthesis in the presence of supramolecular complexes formed from
dodecyltrimethylammonium bromide (DTAB) and β-cyclodextrin
(β-CD).100
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Fig. 12.8. Branched NPs. (a) TEM images of surfactant-free Au nanostars and
simulation of electric field enhancement in their when excited by a z-polarized
plane wave, propagating in the y-direction, with a wavelength of 800 nm.86 (b)
TEM images of PVP-coated Au nanostars.18 (c) HAADF-STEM images and
tomographic reconstruction of Au-silica Janus nanostars.95 (d) TEM images
of Au dumbbells.101 (e) SEM image of an Au nanodendrite grown in mixed
DTAB/β-CD solution.100 (a) and (b) were adapted with permission from Refs. 86
and 18, respectively. Copyright IOP Science. (c) was adapted with permission
from Ref. 95. Copyright Royal Society of Chemistry. (d) was adapted with permis-
sion from Ref. 97. Copyright 2008 Wiley-VCH. (e) was adapted with permission
from Ref. 100 Copyright 2010 American Chemical Society.

12.2.6. Core/shell nanoparticles (0D/1D/2D/3D)

The discussion has been focused so far on plasmonic NPs made of a
single metal. It is important, however, to remember that many other
wet-chemistry synthesis methods exist for synthesizing particles of
other compositions, e.g. with semiconductor or magnetic properties.
In the scope of making heterostructures, synthetic approaches can
be combined to fabricate particles with new functionalities. Indeed,
growing one type of material on top of another by heteroepitaxy may
affect charge carrier dynamics and lead to the emergence of unusual
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properties, unattainable by any of the single components alone. For
instance, heterostructured NPs based on semiconductors and noble
metals show altered degree of quantum confinement and modified
charge-carrier recombination or separation dynamics. Additionally,
many examples exist on plasmonic NPs coated with inert materials
such as silica, toward devising biocompatible NPs as the shell medi-
ates the interaction with the surrounding media. Generally speaking,
coating NPs with various organic or inorganic spacers can lead to a
precise control over the interaction of plasmonic particles with their
environment. The growth of platinum or palladium on gold or silver
cores has also been widely used to tune or enhance their optical and
catalytic properties, respectively. In the following, we focus on het-
erostructures made of gold and silver displaying novel morphology
and optical properties, which allow us to complete the plasmonic
toolbox. Gold and silver possess very similar lattice parameters (lat-
tice mismatch below 0.3%), which allows us to envision growth by
heteroepitaxy of one metal on the surface of the other with minimum
mechanical stress at the interface between the two materials. Silver
coated Au NPs (Au@Ag) can be easily prepared by seed-mediated
growth in which gold seeds are injected in a growth solution con-
taining dissolved silver salt and a mild reducing agent. On the other
hand, gold-coated silver nanoparticles (Ag@Au) are more difficult to
fabricate because of the oxidation of the silver core by the introduced
gold ions, an effect that is known as galvanic replacement reaction
and occurs because the silver core acts as a sacrificial anode for the
cathodic reduction of gold ions. In other terms, galvanic replacement
is a redox process occurring because gold has a higher reduction
potential than silver. Even if this effect may be seen as a limitation,
it actually enriches our plasmonic toolbox because hollow nanocrys-
tals can be devised. In this section, we first introduce silver coating
of Au NPs and subsequently describe the preparation of the hollow
plasmonic nanocrystals.

In principle, no restrictions apply regarding the morphology of
the gold particles used as seeds during the synthesis of Au@Ag NPs,
which can be exploited to tune the morphology of the resulting
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core-shell particles. Again, the growth solution comprises the dis-
solved salt, a weak reducing agent and shape directing and stabilizing
agents. The manner in which the silver shell grows will depend on the
surface energy of the exposed seed facets, which can be further tuned
trough the addition of halides. Halides stabilize {100} silver facets,
leading to preferential growth of other facets in the gold core. Con-
sequently, a silver overgrowth reaction on either single crystalline or
penta-twinned nanorods as seeds leads to preferential silver growth at
the sides or the ends, respectively (Fig. 12.9).57,101−103 Likewise, gold
octahedral seeds can be converted into Au@Ag nanocubes enclosed
by six {100} facets. It is interesting to note that in Fig. 12.9 the silver
shell is readily discerned from the gold core by high-angle annular
dark field scanning TEM (HAADF-STEM), in which the contrast is
due to variation of the atomic number between the two components.
Ag shells have thus been tuned into different morphologies such as
cubic or truncated cubic, cuboctahedral, truncated octahedral and
octahedral structures from rhombic dodecahedral seeds by adjusting
the concentration of reactants.104 Apart from the increase in size,
Au@Ag NPs exhibit a higher extinction cross-section compared to
the initial Au NPs, thereby resulting in enhanced optical proper-
ties. Au@Ag NPs show a more complex set of plasmon resonances
than those in single metal particles. Notably, the plasmon resonance
peaks of the gold cores are shifted toward higher energy as the silver
shell thickness increases and additional higher energy peaks develop
thanks to the better plasmonic performance of silver.105

The preparation of hollow nanocrystals via galvanic replacement
has been widely used to engineer particles with novel structure and
composition, which may even comprise more than two metals. As
discussed above, the reaction occurs if the introduced metal ions pos-
sess a higher reduction potential than that of the metal composing
the seeds, which is often referred as a sacrificial template. Typically,
the template gets oxidized while the second metal is deposited on the
outer surface by heteroepitaxy, forming complex structures. Various
metals have been reported to promote galvanic replacement reactions
such as Au, Pt and Pd.106 reduced on Ag templates, and many
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Fig. 12.9. Synthesis of Au@Ag NPs. (a) Scheme illustrating the importance of
seed crystallinity to define the shape of the silver shell. Three types of gold seeds:
single crystalline rods, octahedrons and penta-twinned rods are represented before
and after silver deposition. (b)–(j) electron microscopy images characterizing the
above-mentioned particles. Au@Ag NPs were prepared from gold seeds of different
crystallinity (b)–(d) octahedrons. (e)–(g) single crystalline rods. (h)–(j) Pentag-
onally twinned rods. Three types of electron microscopy techniques were used:
(b)–(e) TEM (and SEM in b), (c)–(i) STEM-HAADF, (d)–(j) Electron tomog-
raphy. (b)–(i) and (j) were adapted with permission from Refs. 102 and 106,
respectively. Copyright American Chemical Society.
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other combinations of metals (or even oxides) can be used includ-
ing Cu, Co, Mn3O4 and Fe2O3. Although most attention is directed
toward the galvanic replacement of an Ag template by gold ions,
the reaction mechanism may be generally translated to other cases.
Colloidal synthesis of nanostructures involving galvanic replacement
reactions was started by Sun et al. in 2002 and is nowadays widely
used.61 They prepared gold nanocages (Au NCs), hollow and porous
gold nanostructures through galvanic replacement by reacting sil-
ver nanocubes with chloroauric acid. When gold ions are added to a
suspension of Ag NPs, Ag surface atoms get quickly oxidized and dis-
solved, subsequently generating a small hole on one of the NP facets
(Fig. 12.10(a)). Simultaneously, the generated electrons are captured
by the gold ions to generate Au atoms by reduction. The deposition
of gold on the surface of Ag NPs acts as an anticorrosion layer for
the Ag underneath; as a result, the pinhole formed in the early stage
of the process serves as an active site for the continuous dissolution
of Ag inside the NP, ultimately forming hollow nanostructures.106,107

Importantly, the oxidation of three Ag atoms from the NP is required
for the reduction of one Au3+ ion on the NP when HAuCl4 is used
as gold precursor. Therefore, the stoichiometry of the two elements
has to be carefully selected to control the level of void and porosity
of the final product. During the titration of the silver particles by
gold ions, the formation of an Au–Ag alloy is observed, but in the
final stages, particles undergo a dealloying process where all the sil-
ver may be completely replaced. The optical properties can thus be
tuned by controlling the amount of gold and porosity in the nanos-
tructure. For instance, gold nanocages prepared from silver nanocubes
may have plasmon modes in the NIR region.107 By tuning the amount
of HAuCl4 in the reaction, the LSPR peak position of Au NCs can
be precisely tuned to display LSPR peaks around 800 nm, while main-
taining sizes around 40 nm and allowing specific targeting through bio-
conjugation with antibodies.108 A wide range of silver nanostructures
have been used, such as cubes, rods, wires, octahedrons, decahedrons
and triangles, giving rise to the corresponding hollow nanostructures,
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Fig. 12.10. Synthesis of hollow particles. (a) Schematic illustration of structural
changes during the galvanic replacement reaction between an Ag NP and
HAuCl4

106 (b) TEM images showing the structural and morphological changes
during the titration of silver nanocubes and a gold salt (HAuCl4) in aqueous solu-
tion. Scale bars on all images are 100 nm.43 (c) Selective galvanic replacement on
a silver cuboctahedron and HAuCl4 solution, before (b) and after (c) galvanic
replacement.112 (d) 3D rendering of the morphology and chemical composition of
Ag nanocubes and Au–Ag octahedral nanocages.113 (a) and (c) were adapted with
permission from Ref. [107], Copyright 2015 Wiley-VCH. (b) and (d) adapted with
permission from Refs. [43] and [118]. Copyright 2015 American Chemical Society.

using gold as both an etchant and a coating agent.109−118 Accord-
ingly, various particle structures have been obtained including cages,
tubes and frames. This synthetic approach for the preparation of hol-
low nanocrystals is simple, versatile and has been applied both in
water and in organic solvents. The reaction is believed to occur at
the same rate on the six {100} facets of Ag nanocubes, resulting in
Au–Ag nanocages with random porosity (Fig. 12.10(b)).43 On the
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other hand, owing to the surface selectivity of the galvanic replacement
reaction, the dissolution of Ag is specific on Ag cuboctahedrons which
are enclosed by six {100} and eight {111} facets (Fig. 12.10(c)).112

In this case, the dissolution of Ag atoms is initiated at the {111}
facets, whereas the deposition of Au atoms occurs on the {100} facets
covered by PVP. The nanocages produced from the Ag cuboctahe-
drons show uniform pores localized at the eight corners where the
{111} facets were positioned (Fig. 12.10(d)).113 Note that the sur-
face selectivity of the reaction can be modified by the introduction
of halides or surface-selective ligands such as PVP because they alter
the surface free energy of the different facets. The galvanic replace-
ment reaction can also be modulated by complexing the gold ions to
tune the reduction potential. In most cases HAuCl4 is used as a pre-
cursor (Au3+/Au, 1.50 V versus standard hydrogen electrode (SHE);
AuCl4−/Au, 0.93 V versus SHE) with a higher potential than that
for the silver template (Ag+/Ag, 0.80 V versus SHE). However, the
reduction potential of gold ions complexed with iodide becomes lower
than that of the silver template114,115 (AuI−4 /Au, 0.56 V versus. SHE),
which can be used to prevent the galvanic replacement reaction.61,114

This strategy has been used to synthesize Ag@Au nanoplates in high
yield.114 In order to prevent the galvanic replacement reaction, a
competing reaction can be introduced by means of ascorbic acid at
high pH for fabricating Ag@Au nanocubes.116 In general, the prepa-
ration of hollow nanocrystals is performed at 100◦C to control the
diffusion of Au and Ag atoms and obtain nearly atomically smooth
nanocrystals. By performing the reaction at room temperature under
particular conditions, other diffusive processes are allowed to take
place like the Kirkendall effect. Gonźalez et al. combined galvanic
and Kirkendall reactions to prepare double-walled nanocages at room
temperature.111

12.3. Emerging Plasmonic Nanoparticles

Apart from noble metal NPs, certain non-metallic materials can
exhibit LSPRs.117,118 For example, nanocrystals “intrinsically”
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doped by the formation of cation vacancies, also called self-doped, or
“extrinsically” doped with heterogeneous dopant atoms present high
concentrations of free charge carriers resulting in LSPR modes at
NIR wavelengths, which are particularly useful not only for biomed-
ical applications, but also for photonics, optoelectrics and nanoelec-
tronics. The origins of LSPRs in doped semiconductors is the same
as that in noble metal NPs, i.e. the resonant interaction between the
electromagnetic field and free charge carriers. The charge carriers in
noble metals are electrons, while in doped semiconductor or metal
oxide nanocrystals can also be holes. Additionally, the density of
these charge carriers can vary with the degree of doping or with the
surface ligands, which cannot be realized in metals.

Intrinsically-doped NCs include doped semiconductor nanocrys-
tals in which free holes result from the presence of cation vacancies.
These are mainly composed by copper-deficient copper chalcogenide
nanocrystals, including copper sulfide (Cu2−xS),119−121 copper
selenide (Cu2−xSe),122,123 copper telluride (Cu2−xTe).124,125 and
alloys Cu2−xSSe1−y.126 The study and synthesis of these nanocrystals
is in progress, and LSPR tuning is typically achieved by changing the
amount of doping via different combinations or other strategies such
as size and shape variations or tuning copper deficiency by oxidation.
On the other hand, extrinsically-doped colloidal nanocrystals dis-
playing LSPRs correspond basically to colloidal indium tin oxide
(ITO),127,128 ZnO doped with group III elements,129 tungsten oxide
(WO3−δ),130 molybdenum trioxide (MO3−x),131 titanium dioxide
(TiO2)132 or even silicon doped nanocrystals.133 These novel materi-
als are still emerging and further developments are expected in com-
ing years, but the currently existing materials can be very attractive
for applications where NIR and mid-IR light is involved.

12.4. Closing Remarks

In this chapter, the preparation of plasmonic NPs by wet-chemistry
approaches has been discussed. We aimed at providing to the reader
an overview of the past, the present and the future challenges in
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the synthesis of plasmonic NPs through three sections. In particular,
in the first section, the history of their preparation over the last
century was introduced. In the second section, the recent literature on
the preparation of nanocrystals having different dimensionalities and
composition was discussed in detail. Finally, some examples depicting
the synthesis of emerging plasmonic NPs were briefly presented in the
third section.

Although spherical NPs have been prepared for more than a cen-
tury, the synthesis of anisotropic NPs is still under extensive devel-
opment in order to understand the mechanisms of formation and
to prepare them with a high yield. The milestones in the synthesis
processes invoke a fine control of the kinetics of the reaction and
a careful addition of reactant. In particular, the roles of adsorbate
such as halides as well as the role of the seed crystallinity and their
influence to direct the final NP shape have been discussed. Even
if significant advances have been made over the past decades, the
comprehension of the processes is still empirical in many syntheses
reported in the literature. Therefore, a unified theory encompassing
the thermodynamics and the kinetics of the process as well as the
description of the molecular interaction between the organic and inor-
ganic moieties is anticipated. In this sense, the continuous develop-
ment of novel microscopy and computational techniques will help
scientists to improve knowledge in the field.

The preparation of nanoalloys and hollow particles has also
been presented, illustrating the many faces of the chemical synthe-
sis of plasmonic NPs. However, despite their exiting optical prop-
erties and the fine control of their morphology, plasmonic particles
made of noble metals face a major problem for their implementa-
tion in devices, regarding the high cost of the raw materials. In
this respect, devising plasmonic NPs made of more materials that
are abundantly found on earth is required. Consequently, a short
discussion presenting some of those emerging plasmonic NPs has
been provided. In conclusion, NP synthesis is a broad field in constant
rejuvenation along with the parallel development of new fields that
aim to address their implementation in devices.
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124. Kriegel, I., Jiang, C., Rodŕıguez-Fernández, J., Schaller, R. D., Talapin, D.
V., da Como, E. and Feldmann, J. (2012). J. Am. Chem. Soc. 134, p. 1583.

125. Li, W., Zamani, R., Rivera Gil, P., Pelaz, B., Ibañez, M., Cadavid, D.,
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optical Bloch equations, 271

optical Kerr effect, 205

optical nonlinearities, 204

optical spectroscopy, 256

phase change materials, 245

phase velocity, 319

photochemistry, 126

photoconductive loading, 244

photoelectron emission microscopy,
258

photon induced near-field microscopy,
230

photon-assisted electron tunneling,
117

photon-assisted tunneling, 126, 133,
135

photon-induced near-field electron
microscopy, 371

photovoltaics, 126, 396

plasma frequency, 137

plasmon dynamics, 268

plasmon focusing, 429

plasmon hybridization, 122, 160, 192

plasmon tomography, 372

plasmonic, 440

plasmonic antennas, 257

plasmonic dimer, 118, 122

plasmonic enhancement, 178

plasmonic hybridization picture, 163

plasmonic nanoantenna, 237

plasmonic nanofocusing, 271

plasmonics, 256

plasmons, 116

point dipolar, 321

point dipole, 322

Poisson equation, 356

polariton modes, 287

power density spectrum, 102

pressure waves, 77

propagation length, 313, 315

pseudo-heterodyne, 421, 422, 424,
427, 429, 431

pulsed illumination, 389

Purcell factor, 43, 44, 57

quantum aspects, 116

quantum confinement effects, 122

quantum corrected model (QCM),
128, 136–138

quantum effects, 122, 133, 137, 140,
142, 372

quantum spill-out, 81, 94

quantum tunneling, 89

quantum-corrected model, 87

quantum-size, 141

quasi-static approximation, 165, 355

quasi-static regime, 149, 156



September 26, 2017 10:8 Handbook of Metamaterials and Plasmonics — Volume 4 9in x 6in b2857-v4-index page 479

Index 479

Rabi oscillation, 45, 47, 257

Rabi splitting, 48
radial modes, 367
radiation quenching, 40

radiation reaction, 31
radiation reaction concept, 166

radiation resistance, 22
radiative decay, 125
radiative decay rate, 125
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